import streamlit as st import numpy as np import matplotlib.pyplot as plt import random from scipy.stats import entropy as scipy_entropy from io import BytesIO # --- НАСТРОЙКИ --- seqlen = 60 steps = 120 min_run, max_run = 1, 2 ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0} bases = ['A', 'C', 'G', 'T'] # --- ФУНКЦИИ --- def find_local_min_runs(profile, min_run=1, max_run=2): result = [] N = len(profile) i = 0 while i < N: run_val = profile[i] run_length = 1 while i + run_length < N and profile[i + run_length] == run_val: run_length += 1 if min_run <= run_length <= max_run: result.append((i, i + run_length - 1, run_val)) i += run_length return result def bio_mutate(seq): r = random.random() if r < 0.70: idx = random.randint(0, len(seq)-1) orig = seq[idx] prob = random.random() if orig in 'AG': newbase = 'C' if prob < 0.65 else random.choice(['T', 'C']) elif orig in 'CT': newbase = 'G' if prob < 0.65 else random.choice(['A', 'G']) else: newbase = random.choice([b for b in bases if b != orig]) seq = seq[:idx] + newbase + seq[idx+1:] elif r < 0.80: idx = random.randint(0, len(seq)-1) ins = ''.join(random.choices(bases, k=random.randint(1, 3))) seq = seq[:idx] + ins + seq[idx:] seq = seq[:seqlen] elif r < 0.90: if len(seq) > 4: idx = random.randint(0, len(seq)-2) dell = random.randint(1, min(3, len(seq)-idx)) seq = seq[:idx] + seq[idx+dell:] else: if len(seq) > 10: start = random.randint(0, len(seq)-6) end = start + random.randint(3,6) subseq = seq[start:end][::-1] seq = seq[:start] + subseq + seq[end:] while len(seq) < seqlen: seq += random.choice(bases) if len(seq) > seqlen: seq = seq[:seqlen] return seq def compute_autocorr(profile): profile = profile - np.mean(profile) result = np.correlate(profile, profile, mode='full') result = result[result.size // 2:] norm = np.max(result) if np.max(result)!=0 else 1 return result[:10]/norm def compute_entropy(profile): vals, counts = np.unique(profile, return_counts=True) p = counts / counts.sum() return scipy_entropy(p, base=2) def plot_step(seq, step, cnt_hist, ent_hist, ac_hist): torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq]) runs = find_local_min_runs(torsion_profile, min_run, max_run) fig, axs = plt.subplots(3, 1, figsize=(10, 8)) plt.subplots_adjust(hspace=0.45) axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол") for start, end, val in runs: axs[0].axvspan(start, end, color="red", alpha=0.3) axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5) axs[0].set_ylim(-200, 200) axs[0].set_xlabel("Позиция") axs[0].set_ylabel("Торсионный угол (град.)") axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent_hist[-1]:.2f}") axs[0].legend() axs[1].plot(cnt_hist, '-o', color='crimson', markersize=4) axs[1].set_xlabel("Шаг") axs[1].set_ylabel("Число машин") axs[1].set_ylim(0, max(10, max(cnt_hist)+1)) axs[1].set_title("Динамика: число 'биомашин'") axs[2].bar(np.arange(6), ac_hist[-1][:6], color='teal', alpha=0.7) axs[2].set_xlabel("Лаг") axs[2].set_ylabel("Автокорреляция") axs[2].set_title("Автокорреляция углового профиля и энтропия") axs[2].text(0.70,0.70, f"Энтропия: {ent_hist[-1]:.2f}", transform=axs[2].transAxes) return fig # --- STREAMLIT --- st.set_page_config(layout="wide") st.title("\U0001F9EA Торсионное пространство биомашин") if 'seq' not in st.session_state: st.session_state.seq = ''.join(random.choices(bases, k=seqlen)) st.session_state.cnt_hist = [] st.session_state.ent_hist = [] st.session_state.ac_hist = [] st.session_state.step = 0 if st.button("Следующий шаг мутации"): st.session_state.seq = bio_mutate(st.session_state.seq) profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq]) runs = find_local_min_runs(profile, min_run, max_run) st.session_state.cnt_hist.append(len(runs)) st.session_state.ent_hist.append(compute_entropy(profile)) st.session_state.ac_hist.append(compute_autocorr(profile)) st.session_state.step += 1 if st.session_state.step > 0: fig = plot_step( st.session_state.seq, st.session_state.step, st.session_state.cnt_hist, st.session_state.ent_hist, st.session_state.ac_hist ) st.pyplot(fig) else: st.info("Нажмите кнопку, чтобы начать мутацию цепи и наблюдение за торсионными биомашинами.")