Datawithsarah's picture
changed to ChatAgent
de718ca
raw
history blame
4.9 kB
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
# === Load environment ===
load_dotenv()
# === Tools ===
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return a modulo b."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
@tool
def web_search(query: str) -> str:
"""Search the web for a query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])
# === System Prompt ===
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
# === Embedding and Supabase Setup ===
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="Vector_Test",
query_name="match_documents_langchain",
)
# === Tools List ===
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
# === Graph Builder ===
def build_graph(provider: str = "groq"):
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
)
)
else:
raise ValueError("Invalid provider.")
llm_with_tools = llm.bind_tools(tools)
def retriever(state: MessagesState):
query = state["messages"][-1].content
similar = vector_store.similarity_search(query)
return {"messages": [sys_msg, state["messages"][-1], HumanMessage(content=f"Reference: {similar[0].page_content}")]}
def assistant(state: MessagesState):
response = llm_with_tools.invoke(state["messages"])
return {"messages": state["messages"] + [response]}
def formatter(state: MessagesState):
last = state["messages"][-1].content.strip()
if "FINAL ANSWER:" in last:
answer = last.split("FINAL ANSWER:")[-1].strip()
else:
answer = last.strip()
return {"messages": [AIMessage(content=answer)]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_node("formatter", formatter)
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
builder.add_edge("assistant", "formatter")
return builder.compile()
# === Test Entry Point ===
if __name__ == "__main__":
graph = build_graph("groq")
messages = graph.invoke({"messages": [HumanMessage(content="What is the capital of France?")]})
for msg in messages["messages"]:
msg.pretty_print()