"""LangGraph Agent""" import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client # === Load environment === load_dotenv() # === Tools === @tool def multiply(a: int, b: int) -> int: """Multiply two integers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract b from a.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide a by b.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Return a modulo b.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) @tool def web_search(query: str) -> str: """Search the web for a query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) @tool def arvix_search(query: str) -> str: """Search Arxiv for a query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs]) # === System Prompt === with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) # === Embedding and Supabase Setup === embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")) vector_store = SupabaseVectorStore( client=supabase, embedding=embeddings, table_name="Vector_Test", query_name="match_documents_langchain", ) # === Tools List === tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] # === Graph Builder === def build_graph(provider: str = "groq"): if provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": llm = ChatGroq(model="qwen-qwq-32b", temperature=0) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0, ) ) else: raise ValueError("Invalid provider.") llm_with_tools = llm.bind_tools(tools) def retriever(state: MessagesState): query = state["messages"][-1].content similar = vector_store.similarity_search(query) return {"messages": [sys_msg, state["messages"][-1], HumanMessage(content=f"Reference: {similar[0].page_content}")]} def assistant(state: MessagesState): response = llm_with_tools.invoke(state["messages"]) return {"messages": state["messages"] + [response]} def formatter(state: MessagesState): last = state["messages"][-1].content.strip() if "FINAL ANSWER:" in last: answer = last.split("FINAL ANSWER:")[-1].strip() else: answer = last.strip() return {"messages": [AIMessage(content=answer)]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_node("formatter", formatter) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") builder.add_edge("assistant", "formatter") return builder.compile() # === Test Entry Point === if __name__ == "__main__": graph = build_graph("groq") messages = graph.invoke({"messages": [HumanMessage(content="What is the capital of France?")]}) for msg in messages["messages"]: msg.pretty_print()