|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from supabase.client import Client, create_client |
|
|
|
load_dotenv() |
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two integers and return the result.""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two integers and return the result.""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract the second integer from the first and return the result.""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
"""Divide the first integer by the second and return the result as float.""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Return the remainder when the first integer is divided by the second.""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return up to 2 results.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted = "\n\n---\n\n".join( |
|
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs] |
|
) |
|
return {"wiki_results": formatted} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return up to 3 results.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted = "\n\n---\n\n".join( |
|
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs] |
|
) |
|
return {"web_results": formatted} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return up to 3 results.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted = "\n\n---\n\n".join( |
|
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' for doc in search_docs] |
|
) |
|
return {"arvix_results": formatted} |
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding=embeddings, |
|
table_name="Vector_Test", |
|
query_name="match_documents_langchain", |
|
) |
|
|
|
create_retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question Search", |
|
description="A tool to retrieve similar questions from a vector store." |
|
) |
|
|
|
|
|
tools = [ |
|
multiply, add, subtract, divide, modulus, |
|
wiki_search, web_search, arvix_search |
|
] |
|
|
|
|
|
def build_graph(provider: str = "groq"): |
|
if provider == "google": |
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "huggingface": |
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0, |
|
) |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
def assistant(state: MessagesState): |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
def retriever(state: MessagesState): |
|
similar = vector_store.similarity_search(state["messages"][0].content) |
|
example_msg = HumanMessage(content=f"Here I provide a similar question and answer for reference: \n\n{similar[0].page_content}") |
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
|
|
return builder.compile() |
|
|
|
if __name__ == "__main__": |
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" |
|
graph = build_graph("groq") |
|
messages = [HumanMessage(content=question)] |
|
messages = graph.invoke({"messages": messages}) |
|
for m in messages["messages"]: |
|
m.pretty_print() |
|
|