File size: 5,557 Bytes
e0f29bb 6ac8934 e0f29bb 6ac8934 e0f29bb 6ac8934 7df20a1 6ac8934 7df20a1 6ac8934 7df20a1 6ac8934 54c62fb 7df20a1 e0f29bb 6ac8934 7df20a1 e0f29bb 7df20a1 e0f29bb 7df20a1 e0f29bb 7df20a1 e0f29bb 7df20a1 54c62fb 7df20a1 e0f29bb 54c62fb e0f29bb 7df20a1 e0f29bb 54c62fb e0f29bb 7df20a1 e0f29bb 54c62fb e0f29bb 7df20a1 e0f29bb 54c62fb e0f29bb 7df20a1 e0f29bb 7df20a1 54c62fb e0f29bb 7df20a1 e0f29bb 54c62fb 7df20a1 e0f29bb 54c62fb e0f29bb 7df20a1 6ac8934 e0f29bb 7df20a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers and return the result."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers and return the result."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first and return the result."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide the first integer by the second and return the result as float."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder when the first integer is divided by the second."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return up to 2 results."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted = "\n\n---\n\n".join(
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs]
)
return {"wiki_results": formatted}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return up to 3 results."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted = "\n\n---\n\n".join(
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs]
)
return {"web_results": formatted}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return up to 3 results."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted = "\n\n---\n\n".join(
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' for doc in search_docs]
)
return {"arvix_results": formatted}
# Load system prompt
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
# Setup Supabase vector retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="Vector_Test",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store."
)
# Define tool list
tools = [
multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search
]
# Build graph
def build_graph(provider: str = "groq"):
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
)
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
example_msg = HumanMessage(content=f"Here I provide a similar question and answer for reference: \n\n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
graph = build_graph("groq")
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|