File size: 5,557 Bytes
e0f29bb
 
 
 
 
 
 
 
 
 
 
 
 
 
6ac8934
e0f29bb
 
6ac8934
e0f29bb
6ac8934
 
7df20a1
 
 
6ac8934
 
7df20a1
 
 
6ac8934
 
7df20a1
 
 
6ac8934
 
54c62fb
7df20a1
e0f29bb
 
 
6ac8934
 
7df20a1
 
 
e0f29bb
 
 
7df20a1
 
 
 
 
 
e0f29bb
 
 
7df20a1
 
 
 
 
 
e0f29bb
 
 
7df20a1
 
 
 
 
 
 
 
e0f29bb
 
 
 
 
7df20a1
54c62fb
7df20a1
e0f29bb
 
54c62fb
e0f29bb
 
 
7df20a1
e0f29bb
 
 
54c62fb
e0f29bb
 
7df20a1
e0f29bb
54c62fb
 
e0f29bb
 
7df20a1
e0f29bb
 
 
 
54c62fb
e0f29bb
7df20a1
 
 
 
 
 
e0f29bb
7df20a1
54c62fb
e0f29bb
 
 
7df20a1
e0f29bb
 
54c62fb
7df20a1
 
e0f29bb
 
 
 
 
 
 
54c62fb
e0f29bb
7df20a1
6ac8934
e0f29bb
 
7df20a1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers and return the result."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers and return the result."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract the second integer from the first and return the result."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide the first integer by the second and return the result as float."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return the remainder when the first integer is divided by the second."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return up to 2 results."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs]
    )
    return {"wiki_results": formatted}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return up to 3 results."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs]
    )
    return {"web_results": formatted}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return up to 3 results."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' for doc in search_docs]
    )
    return {"arvix_results": formatted}

# Load system prompt
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

sys_msg = SystemMessage(content=system_prompt)

# Setup Supabase vector retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,
    table_name="Vector_Test",
    query_name="match_documents_langchain",
)

create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store."
)

# Define tool list
tools = [
    multiply, add, subtract, divide, modulus,
    wiki_search, web_search, arvix_search
]

# Build graph
def build_graph(provider: str = "groq"):
    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            )
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        similar = vector_store.similarity_search(state["messages"][0].content)
        example_msg = HumanMessage(content=f"Here I provide a similar question and answer for reference: \n\n{similar[0].page_content}")
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    graph = build_graph("groq")
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()