|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from supabase.client import Client, create_client |
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
return {"wiki_results": "\n\n---\n\n".join(doc.page_content for doc in docs)} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
docs = TavilySearchResults(max_results=3).invoke(query) |
|
return {"web_results": "\n\n---\n\n".join(doc.page_content for doc in docs)} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
return {"arvix_results": "\n\n---\n\n".join(doc.page_content[:1000] for doc in docs)} |
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
supabase: Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY")) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding=embeddings, |
|
table_name="Vector_Test", |
|
query_name="match_documents_langchain", |
|
) |
|
create_retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question Search", |
|
description="A tool to retrieve similar questions from a vector store." |
|
) |
|
|
|
|
|
tools = [ |
|
multiply, add, subtract, divide, modulus, |
|
wiki_search, web_search, arvix_search |
|
] |
|
|
|
|
|
def build_graph(provider: str = "groq"): |
|
if provider == "google": |
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "huggingface": |
|
llm = ChatHuggingFace(llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0)) |
|
else: |
|
raise ValueError("Invalid provider.") |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
def assistant(state: MessagesState): |
|
response = llm_with_tools.invoke(state["messages"]) |
|
answer = response.content.strip() |
|
if "FINAL ANSWER:" not in answer: |
|
answer = f"FINAL ANSWER: {answer.strip().splitlines()[0]}" |
|
return {"messages": [AIMessage(content=answer)]} |
|
|
|
def retriever(state: MessagesState): |
|
similar = vector_store.similarity_search(state["messages"][0].content) |
|
if similar: |
|
ref = HumanMessage(content=f"Here is a similar example: \n{similar[0].page_content}") |
|
return {"messages": [sys_msg] + state["messages"] + [ref]} |
|
return {"messages": [sys_msg] + state["messages"]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
return builder.compile() |
|
|
|
if __name__ == "__main__": |
|
graph = build_graph() |
|
question = "What is 12 + 4?" |
|
result = graph.invoke({"messages": [HumanMessage(content=question)]}) |
|
for m in result["messages"]: |
|
print(m.content) |
|
|