Datawithsarah's picture
refined prompt
54c62fb
raw
history blame
4.57 kB
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
# === TOOLS === #
@tool
def multiply(a: int, b: int) -> int: return a * b
@tool
def add(a: int, b: int) -> int: return a + b
@tool
def subtract(a: int, b: int) -> int: return a - b
@tool
def divide(a: int, b: int) -> float:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int: return a % b
@tool
def wiki_search(query: str) -> str:
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return {"wiki_results": "\n\n---\n\n".join(doc.page_content for doc in docs)}
@tool
def web_search(query: str) -> str:
docs = TavilySearchResults(max_results=3).invoke(query)
return {"web_results": "\n\n---\n\n".join(doc.page_content for doc in docs)}
@tool
def arvix_search(query: str) -> str:
docs = ArxivLoader(query=query, load_max_docs=3).load()
return {"arvix_results": "\n\n---\n\n".join(doc.page_content[:1000] for doc in docs)}
# === SYSTEM PROMPT === #
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
# === EMBEDDING + RETRIEVER === #
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="Vector_Test",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store."
)
# === TOOL LIST === #
tools = [
multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search
]
# === BUILD GRAPH === #
def build_graph(provider: str = "groq"):
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0))
else:
raise ValueError("Invalid provider.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
response = llm_with_tools.invoke(state["messages"])
answer = response.content.strip()
if "FINAL ANSWER:" not in answer:
answer = f"FINAL ANSWER: {answer.strip().splitlines()[0]}"
return {"messages": [AIMessage(content=answer)]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
if similar:
ref = HumanMessage(content=f"Here is a similar example: \n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [ref]}
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
graph = build_graph()
question = "What is 12 + 4?"
result = graph.invoke({"messages": [HumanMessage(content=question)]})
for m in result["messages"]:
print(m.content)