File size: 4,571 Bytes
e0f29bb 6ac8934 e0f29bb 6ac8934 e0f29bb 6ac8934 54c62fb 6ac8934 54c62fb 6ac8934 54c62fb 6ac8934 54c62fb 6ac8934 54c62fb e0f29bb 6ac8934 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 54c62fb e0f29bb 6ac8934 e0f29bb 54c62fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
# === TOOLS === #
@tool
def multiply(a: int, b: int) -> int: return a * b
@tool
def add(a: int, b: int) -> int: return a + b
@tool
def subtract(a: int, b: int) -> int: return a - b
@tool
def divide(a: int, b: int) -> float:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int: return a % b
@tool
def wiki_search(query: str) -> str:
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return {"wiki_results": "\n\n---\n\n".join(doc.page_content for doc in docs)}
@tool
def web_search(query: str) -> str:
docs = TavilySearchResults(max_results=3).invoke(query)
return {"web_results": "\n\n---\n\n".join(doc.page_content for doc in docs)}
@tool
def arvix_search(query: str) -> str:
docs = ArxivLoader(query=query, load_max_docs=3).load()
return {"arvix_results": "\n\n---\n\n".join(doc.page_content[:1000] for doc in docs)}
# === SYSTEM PROMPT === #
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
# === EMBEDDING + RETRIEVER === #
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="Vector_Test",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store."
)
# === TOOL LIST === #
tools = [
multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search
]
# === BUILD GRAPH === #
def build_graph(provider: str = "groq"):
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0))
else:
raise ValueError("Invalid provider.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
response = llm_with_tools.invoke(state["messages"])
answer = response.content.strip()
if "FINAL ANSWER:" not in answer:
answer = f"FINAL ANSWER: {answer.strip().splitlines()[0]}"
return {"messages": [AIMessage(content=answer)]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
if similar:
ref = HumanMessage(content=f"Here is a similar example: \n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [ref]}
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
graph = build_graph()
question = "What is 12 + 4?"
result = graph.invoke({"messages": [HumanMessage(content=question)]})
for m in result["messages"]:
print(m.content)
|