File size: 4,775 Bytes
e0f29bb
 
 
 
 
 
 
 
 
 
 
 
 
 
6ac8934
e0f29bb
 
6ac8934
e0f29bb
6ac8934
72298ff
 
6ac8934
7df20a1
72298ff
7df20a1
6ac8934
 
7df20a1
72298ff
7df20a1
6ac8934
 
7df20a1
72298ff
7df20a1
6ac8934
 
54c62fb
72298ff
e0f29bb
 
 
6ac8934
 
7df20a1
72298ff
7df20a1
e0f29bb
 
 
72298ff
7df20a1
72298ff
e0f29bb
 
 
72298ff
7df20a1
72298ff
e0f29bb
 
 
72298ff
7df20a1
72298ff
7df20a1
72298ff
e0f29bb
 
 
 
72298ff
54c62fb
7df20a1
e0f29bb
 
54c62fb
e0f29bb
 
 
7df20a1
72298ff
 
e0f29bb
72298ff
e0f29bb
 
 
 
54c62fb
e0f29bb
7df20a1
 
 
 
 
 
e0f29bb
7df20a1
54c62fb
e0f29bb
 
 
72298ff
 
 
 
 
e0f29bb
 
72298ff
 
7df20a1
e0f29bb
 
 
 
 
 
 
54c62fb
e0f29bb
7df20a1
6ac8934
e0f29bb
 
7df20a1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client

load_dotenv()

# === Tools ===

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract b from a."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide a by b."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return a modulo b."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    return "\n\n---\n\n".join([doc.page_content for doc in search_docs])

@tool
def web_search(query: str) -> str:
    """Search the web for a query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    return "\n\n---\n\n".join([doc.page_content for doc in search_docs])

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])

# === System Prompt ===
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)

# === Embeddings and Vector Store ===
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,
    table_name="Vector_Test",
    query_name="match_documents_langchain",
)

# === Tools ===
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]

# === Build Graph ===
def build_graph(provider: str = "groq"):
    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            )
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        response = llm_with_tools.invoke(state["messages"])
        content = response.content.strip()
        if "FINAL ANSWER:" in content:
            content = content.split("FINAL ANSWER:")[-1].strip()
        return {"messages": [AIMessage(content=content)]}

    def retriever(state: MessagesState):
        similar_question = vector_store.similarity_search(state["messages"][0].content)
        example_msg = HumanMessage(content=f"Reference: {similar_question[0].page_content}")
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    graph = build_graph("groq")
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()