File size: 4,793 Bytes
e0f29bb 62ba0d1 e0f29bb 62ba0d1 e0f29bb 62ba0d1 6ac8934 e0f29bb 6ac8934 72298ff 6ac8934 7df20a1 72298ff 7df20a1 6ac8934 7df20a1 72298ff 7df20a1 6ac8934 7df20a1 72298ff 7df20a1 6ac8934 54c62fb 72298ff e0f29bb 6ac8934 7df20a1 72298ff 7df20a1 e0f29bb 72298ff 7df20a1 72298ff e0f29bb 72298ff 7df20a1 72298ff e0f29bb 72298ff 7df20a1 72298ff 7df20a1 72298ff e0f29bb 72298ff 54c62fb 7df20a1 e0f29bb 54c62fb e0f29bb 7df20a1 72298ff e0f29bb 72298ff e0f29bb 54c62fb e0f29bb 7df20a1 e0f29bb 7df20a1 54c62fb e0f29bb 72298ff e0f29bb 72298ff 7df20a1 e0f29bb 54c62fb e0f29bb 7df20a1 6ac8934 e0f29bb 7df20a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
"""LangGraph Agent"""
import os
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
from langchain_core.tools import tool
from langchain_core.runnables.graph import StateGraph, START
from langchain_core.runnables.history import MessagesState
from langchain_core.runnables.utils import ToolNode, tools_condition
from langchain_community.utilities import WikipediaLoader, ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.chat_models import ChatHuggingFace
from langchain_community.llms import HuggingFaceEndpoint
from supabase import create_client, Client
from dotenv import load_dotenv
load_dotenv()
# === Tools ===
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return a modulo b."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
@tool
def web_search(query: str) -> str:
"""Search the web for a query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])
# === System Prompt ===
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
# === Embeddings and Vector Store ===
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase: Client = create_client(os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="Vector_Test",
query_name="match_documents_langchain",
)
# === Tools ===
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
# === Build Graph ===
def build_graph(provider: str = "groq"):
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
)
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
response = llm_with_tools.invoke(state["messages"])
content = response.content.strip()
if "FINAL ANSWER:" in content:
content = content.split("FINAL ANSWER:")[-1].strip()
return {"messages": [AIMessage(content=content)]}
def retriever(state: MessagesState):
similar_question = vector_store.similarity_search(state["messages"][0].content)
example_msg = HumanMessage(content=f"Reference: {similar_question[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
graph = build_graph("groq")
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|