Spaces:
Running
Running
File size: 40,184 Bytes
b57ed91 3e64737 2c68bd8 3e64737 ce1eb3c cd3e466 e881a6a 66cb301 ce1eb3c 9b7ad24 ce1eb3c cd3e466 db322cc a703d91 db322cc cd3e466 ce1eb3c db322cc e881a6a db322cc e881a6a ce1eb3c cd3e466 ce1eb3c e581856 ce1eb3c e581856 ce1eb3c e581856 66cb301 e881a6a fcf1816 cd3e466 fcf1816 cd3e466 fcf1816 cd3e466 fcf1816 e881a6a f17f847 a703d91 f17f847 db322cc f17f847 a703d91 f17f847 a703d91 e881a6a db322cc fcf1816 9b7ad24 e881a6a db322cc fcf1816 e881a6a 9b7ad24 0e95f56 9b7ad24 f17f847 db322cc e881a6a a703d91 db322cc e881a6a a703d91 e881a6a f17f847 e881a6a db322cc 9b7ad24 e881a6a a703d91 9b7ad24 db322cc fcf1816 db322cc e881a6a db322cc 9b7ad24 e881a6a fcf1816 e881a6a db322cc 9b7ad24 e881a6a fcf1816 0e95f56 db322cc fcf1816 ce1eb3c e581856 fcf1816 e581856 ce1eb3c cd3e466 fcf1816 ce1eb3c a703d91 db322cc 6f8fb84 e881a6a fcf1816 6f8fb84 9b7ad24 fcf1816 6f8fb84 9b7ad24 e881a6a fcf1816 9b7ad24 ce1eb3c 0e95f56 6f8fb84 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c 0e95f56 a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c 0e95f56 6f8fb84 ce1eb3c a703d91 0e95f56 a703d91 ce1eb3c e581856 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 6f8fb84 a703d91 ce1eb3c a703d91 cd3e466 a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 3e64737 a703d91 3e64737 ce1eb3c 6f8fb84 ce1eb3c a703d91 431b892 a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 431b892 a703d91 3e64737 a703d91 ce1eb3c a703d91 ce1eb3c 0e95f56 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 9cf39ac a703d91 ce1eb3c a703d91 ce1eb3c a703d91 ce1eb3c a703d91 647dadd a703d91 0e95f56 a703d91 0e95f56 a703d91 0e95f56 a703d91 0e95f56 a703d91 ce1eb3c e881a6a a703d91 e881a6a a703d91 b6b0c94 a703d91 ce1eb3c 2c68bd8 ce1eb3c 6e6aad7 2c68bd8 ce1eb3c db322cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 |
import gradio as gr
import pandas as pd
import json
import os
import re
from PyPDF2 import PdfReader
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import html
from pathlib import Path
import fitz # PyMuPDF for better PDF text extraction
import pytesseract
from PIL import Image
import io
import secrets
import string
from huggingface_hub import HfApi, HfFolder
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
# ========== CONFIGURATION ==========
PROFILES_DIR = "student_profiles"
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"]
MAX_FILE_SIZE_MB = 5
MIN_AGE = 5
MAX_AGE = 120
SESSION_TOKEN_LENGTH = 32
HF_TOKEN = os.getenv("HF_TOKEN")
# Model configuration
MODEL_CHOICES = {
"TinyLlama (Fastest)": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"Phi-2 (Balanced)": "microsoft/phi-2",
"DeepSeek-V3 (Most Powerful)": "deepseek-ai/deepseek-llm-7b"
}
DEFAULT_MODEL = "TinyLlama (Fastest)"
# Initialize Hugging Face API
if HF_TOKEN:
hf_api = HfApi(token=HF_TOKEN)
HfFolder.save_token(HF_TOKEN)
# ========== OPTIMIZED MODEL LOADING ==========
class ModelLoader:
def __init__(self):
self.model = None
self.tokenizer = None
self.loaded = False
self.loading = False
self.error = None
self.current_model = None
def load_model(self, model_name, progress=gr.Progress()):
"""Lazy load the model with progress feedback"""
if self.loaded and self.current_model == model_name:
return self.model, self.tokenizer
self.loading = True
self.error = None
try:
progress(0, desc=f"Loading {model_name}...")
# Clear previous model if any
if self.model:
del self.model
del self.tokenizer
torch.cuda.empty_cache()
# Load tokenizer first
self.tokenizer = AutoTokenizer.from_pretrained(
MODEL_CHOICES[model_name],
trust_remote_code=True
)
progress(0.3, desc="Loaded tokenizer...")
# Load model with appropriate settings
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_CHOICES[model_name],
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True
)
progress(0.9, desc="Finalizing...")
self.loaded = True
self.current_model = model_name
return self.model, self.tokenizer
except Exception as e:
self.error = str(e)
print(f"Error loading model: {self.error}")
return None, None
finally:
self.loading = False
# Initialize model loader
model_loader = ModelLoader()
# ========== UTILITY FUNCTIONS ==========
def generate_session_token() -> str:
"""Generate a random session token for user identification."""
alphabet = string.ascii_letters + string.digits
return ''.join(secrets.choice(alphabet) for _ in range(SESSION_TOKEN_LENGTH))
def sanitize_input(text: str) -> str:
"""Sanitize user input to prevent XSS and injection attacks."""
return html.escape(text.strip())
def validate_name(name: str) -> str:
"""Validate name input."""
name = name.strip()
if not name:
raise gr.Error("Name cannot be empty")
if len(name) > 100:
raise gr.Error("Name is too long (max 100 characters)")
if any(c.isdigit() for c in name):
raise gr.Error("Name cannot contain numbers")
return name
def validate_age(age: Union[int, float, str]) -> int:
"""Validate and convert age input."""
try:
age_int = int(age)
if not MIN_AGE <= age_int <= MAX_AGE:
raise gr.Error(f"Age must be between {MIN_AGE} and {MAX_AGE}")
return age_int
except (ValueError, TypeError):
raise gr.Error("Please enter a valid age number")
def validate_file(file_obj) -> None:
"""Validate uploaded file."""
if not file_obj:
raise gr.Error("No file uploaded")
file_ext = os.path.splitext(file_obj.name)[1].lower()
if file_ext not in ALLOWED_FILE_TYPES:
raise gr.Error(f"Invalid file type. Allowed: {', '.join(ALLOWED_FILE_TYPES)}")
file_size = os.path.getsize(file_obj.name) / (1024 * 1024) # MB
if file_size > MAX_FILE_SIZE_MB:
raise gr.Error(f"File too large. Max size: {MAX_FILE_SIZE_MB}MB")
# ========== TEXT EXTRACTION FUNCTIONS ==========
def extract_text_from_file(file_path: str, file_ext: str) -> str:
"""Enhanced text extraction with better error handling and fallbacks."""
text = ""
try:
if file_ext == '.pdf':
# First try PyMuPDF for better text extraction
try:
doc = fitz.open(file_path)
for page in doc:
text += page.get_text("text") + '\n'
if not text.strip():
raise ValueError("PyMuPDF returned empty text")
except Exception as e:
print(f"PyMuPDF failed, trying OCR fallback: {str(e)}")
text = extract_text_from_pdf_with_ocr(file_path)
elif file_ext in ['.png', '.jpg', '.jpeg']:
text = extract_text_with_ocr(file_path)
# Clean up the extracted text
text = clean_extracted_text(text)
if not text.strip():
raise ValueError("No text could be extracted from the file")
return text
except Exception as e:
raise gr.Error(f"Text extraction error: {str(e)}")
def extract_text_from_pdf_with_ocr(file_path: str) -> str:
"""Fallback PDF text extraction using OCR."""
text = ""
try:
doc = fitz.open(file_path)
for page in doc:
pix = page.get_pixmap()
img = Image.open(io.BytesIO(pix.tobytes()))
text += pytesseract.image_to_string(img) + '\n'
except Exception as e:
raise ValueError(f"PDF OCR failed: {str(e)}")
return text
def extract_text_with_ocr(file_path: str) -> str:
"""Extract text from image files using OCR with preprocessing."""
try:
image = Image.open(file_path)
# Preprocess image for better OCR results
image = image.convert('L') # Convert to grayscale
image = image.point(lambda x: 0 if x < 128 else 255, '1') # Thresholding
# Custom Tesseract configuration
custom_config = r'--oem 3 --psm 6'
text = pytesseract.image_to_string(image, config=custom_config)
return text
except Exception as e:
raise ValueError(f"OCR processing failed: {str(e)}")
def clean_extracted_text(text: str) -> str:
"""Clean and normalize the extracted text."""
# Remove multiple spaces and newlines
text = re.sub(r'\s+', ' ', text).strip()
# Fix common OCR errors
replacements = {
'|': 'I',
'‘': "'",
'’': "'",
'“': '"',
'”': '"',
'fi': 'fi',
'fl': 'fl'
}
for wrong, right in replacements.items():
text = text.replace(wrong, right)
return text
def remove_sensitive_info(text: str) -> str:
"""Remove potentially sensitive information from transcript text."""
# Remove social security numbers
text = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[REDACTED]', text)
# Remove student IDs (assuming 6-9 digit numbers)
text = re.sub(r'\b\d{6,9}\b', '[ID]', text)
# Remove email addresses
text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]', text)
return text
# ========== TRANSCRIPT PARSING ==========
class TranscriptParser:
def __init__(self):
self.student_data = {}
self.requirements = {}
self.current_courses = []
self.course_history = []
def parse_transcript(self, text: str) -> Dict:
"""Main method to parse transcript text"""
self._extract_student_info(text)
self._extract_requirements(text)
self._extract_course_history(text)
self._extract_current_courses(text)
return {
"student_info": self.student_data,
"requirements": self.requirements,
"current_courses": self.current_courses,
"course_history": self.course_history,
"completion_status": self._calculate_completion()
}
def _extract_student_info(self, text: str):
"""Extract student personal information"""
header_match = re.search(
r"(\d{7}) - ([\w\s,]+)\s*\|\s*Cohort \w+\s*\|\s*Un-weighted GPA ([\d.]+)\s*\|\s*Comm Serv Hours (\d+)",
text
)
if header_match:
self.student_data = {
"id": header_match.group(1),
"name": header_match.group(2).strip(),
"unweighted_gpa": float(header_match.group(3)),
"community_service_hours": int(header_match.group(4))
}
# Extract additional info
grade_match = re.search(
r"Current Grade: (\d+)\s*\|\s*YOG (\d{4})\s*\|\s*Weighted GPA ([\d.]+)\s*\|\s*Comm Serv Date \d{2}/\d{2}/\d{4}\s*\|\s*Total Credits Earned ([\d.]+)",
text
)
if grade_match:
self.student_data.update({
"current_grade": grade_match.group(1),
"graduation_year": grade_match.group(2),
"weighted_gpa": float(grade_match.group(3)),
"total_credits": float(grade_match.group(4))
})
def _extract_requirements(self, text: str):
"""Parse the graduation requirements section"""
req_table = re.findall(
r"\|([A-Z]-[\w\s]+)\s*\|([^\|]+)\|([\d.]+)\s*\|([\d.]+)\s*\|([\d.]+)\s*\|([^\|]+)\|",
text
)
for row in req_table:
req_name = row[0].strip()
self.requirements[req_name] = {
"required": float(row[2]),
"completed": float(row[4]),
"status": f"{row[5].strip()}%"
}
def _extract_course_history(self, text: str):
"""Parse the detailed course history"""
course_lines = re.findall(
r"\|([A-Z]-[\w\s&\(\)]+)\s*\|(\d{4}-\d{4})\s*\|(\d{2})\s*\|([A-Z0-9]+)\s*\|([^\|]+)\|([^\|]+)\|([^\|]+)\|([A-Z])\s*\|([YRXW]?)\s*\|([^\|]+)\|",
text
)
for course in course_lines:
self.course_history.append({
"requirement_category": course[0].strip(),
"school_year": course[1],
"grade_level": course[2],
"course_code": course[3],
"description": course[4].strip(),
"term": course[5].strip(),
"district_number": course[6].strip(),
"grade": course[7],
"inclusion_status": course[8],
"credits": course[9].strip()
})
def _extract_current_courses(self, text: str):
"""Identify courses currently in progress"""
in_progress = [c for c in self.course_history if "inProgress" in c["credits"]]
self.current_courses = [
{
"course": c["description"],
"category": c["requirement_category"],
"term": c["term"],
"credits": c["credits"]
}
for c in in_progress
]
def _calculate_completion(self) -> Dict:
"""Calculate overall completion status"""
total_required = sum(req["required"] for req in self.requirements.values())
total_completed = sum(req["completed"] for req in self.requirements.values())
return {
"total_required": total_required,
"total_completed": total_completed,
"percent_complete": round((total_completed / total_required) * 100, 1),
"remaining_credits": total_required - total_completed
}
def to_json(self) -> str:
"""Export parsed data as JSON"""
return json.dumps({
"student_info": self.student_data,
"requirements": self.requirements,
"current_courses": self.current_courses,
"course_history": self.course_history,
"completion_status": self._calculate_completion()
}, indent=2)
def parse_transcript_with_ai(text: str, progress=gr.Progress()) -> Dict:
"""Use AI model to parse transcript text with progress feedback"""
try:
# First try structured parsing
progress(0.1, desc="Parsing transcript structure...")
parser = TranscriptParser()
parsed_data = parser.parse_transcript(text)
progress(0.9, desc="Formatting results...")
# Convert to expected format
formatted_data = {
"grade_level": parsed_data["student_info"].get("current_grade", "Unknown"),
"gpa": {
"weighted": parsed_data["student_info"].get("weighted_gpa", "N/A"),
"unweighted": parsed_data["student_info"].get("unweighted_gpa", "N/A")
},
"courses": []
}
# Add courses
for course in parsed_data["course_history"]:
formatted_data["courses"].append({
"code": course["course_code"],
"name": course["description"],
"grade": course["grade"],
"credits": course["credits"],
"year": course["school_year"],
"grade_level": course["grade_level"]
})
progress(1.0)
return validate_parsed_data(formatted_data)
except Exception as e:
print(f"Structured parsing failed, falling back to AI: {str(e)}")
# Fall back to AI parsing if structured parsing fails
return parse_transcript_with_ai_fallback(text, progress)
def parse_transcript_with_ai_fallback(text: str, progress=gr.Progress()) -> Dict:
"""Fallback AI parsing method when structured parsing fails"""
# Ensure model is loaded
if not model_loader.loaded:
model_loader.load_model(model_loader.current_model or DEFAULT_MODEL, progress)
if not model_loader.model or not model_loader.tokenizer:
raise gr.Error("AI model failed to load. Please try again or select a different model.")
# Pre-process the text
text = remove_sensitive_info(text[:15000]) # Limit input size
prompt = f"""
Analyze this academic transcript and extract structured information:
- Current grade level
- Weighted GPA (if available)
- Unweighted GPA (if available)
- List of all courses with:
* Course code
* Course name
* Grade received
* Credits earned
* Year/semester taken
* Grade level when taken
Return the data in JSON format.
Transcript Text:
{text}
"""
try:
progress(0.1, desc="Processing transcript with AI...")
# Tokenize and generate response
inputs = model_loader.tokenizer(prompt, return_tensors="pt").to(model_loader.model.device)
progress(0.4)
outputs = model_loader.model.generate(
**inputs,
max_new_tokens=1500,
temperature=0.1,
do_sample=True
)
progress(0.8)
# Decode the response
response = model_loader.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract JSON from response
json_str = response.split('```json')[1].split('```')[0].strip() if '```json' in response else response
# Parse and validate
parsed_data = json.loads(json_str)
progress(1.0)
return validate_parsed_data(parsed_data)
except torch.cuda.OutOfMemoryError:
raise gr.Error("The model ran out of memory. Try with a smaller transcript or use a smaller model.")
except Exception as e:
raise gr.Error(f"Error processing transcript: {str(e)}")
def validate_parsed_data(data: Dict) -> Dict:
"""Validate and clean the parsed data structure."""
if not isinstance(data, dict):
raise ValueError("Invalid data format")
# Set default structure if missing
if 'grade_level' not in data:
data['grade_level'] = 'Unknown'
if 'gpa' not in data:
data['gpa'] = {'weighted': 'N/A', 'unweighted': 'N/A'}
if 'courses' not in data:
data['courses'] = []
# Clean course data
for course in data['courses']:
if 'grade' in course:
course['grade'] = course['grade'].upper().strip()
# Ensure numeric credits are strings
if 'credits' in course and isinstance(course['credits'], (int, float)):
course['credits'] = str(course['credits'])
return data
def format_transcript_output(data: Dict) -> str:
"""Format the parsed data into human-readable text."""
output = []
output.append(f"Student Transcript Summary\n{'='*40}")
output.append(f"Current Grade Level: {data.get('grade_level', 'Unknown')}")
if 'gpa' in data:
output.append(f"\nGPA:")
output.append(f"- Weighted: {data['gpa'].get('weighted', 'N/A')}")
output.append(f"- Unweighted: {data['gpa'].get('unweighted', 'N/A')}")
if 'courses' in data:
output.append("\nCourse History:\n" + '='*40)
# Group courses by grade level
courses_by_grade = defaultdict(list)
for course in data['courses']:
grade_level = course.get('grade_level', 'Unknown')
courses_by_grade[grade_level].append(course)
# Sort grades numerically
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
output.append(f"\nGrade {grade}:\n{'-'*30}")
for course in courses_by_grade[grade]:
course_str = f"- {course.get('code', '')} {course.get('name', 'Unnamed course')}"
if 'grade' in course:
course_str += f" (Grade: {course['grade']})"
if 'credits' in course:
course_str += f" | Credits: {course['credits']}"
if 'year' in course:
course_str += f" | Year: {course['year']}"
output.append(course_str)
return '\n'.join(output)
def parse_transcript(file_obj, progress=gr.Progress()) -> Tuple[str, Optional[Dict]]:
"""Main function to parse transcript files."""
try:
if not file_obj:
raise ValueError("Please upload a file first")
validate_file(file_obj)
file_ext = os.path.splitext(file_obj.name)[1].lower()
# Extract text from file
text = extract_text_from_file(file_obj.name, file_ext)
# Use hybrid parsing approach
parsed_data = parse_transcript_with_ai(text, progress)
# Format output text
output_text = format_transcript_output(parsed_data)
# Prepare the data structure for saving
transcript_data = {
"grade_level": parsed_data.get('grade_level', 'Unknown'),
"gpa": parsed_data.get('gpa', {}),
"courses": defaultdict(list)
}
# Organize courses by grade level
for course in parsed_data.get('courses', []):
grade_level = course.get('grade_level', 'Unknown')
transcript_data["courses"][grade_level].append(course)
return output_text, transcript_data
except Exception as e:
return f"Error processing transcript: {str(e)}", None
# ========== LEARNING STYLE QUIZ ==========
class LearningStyleQuiz:
def __init__(self):
self.questions = [
"When learning something new, I prefer to:",
"I remember information best when I:",
"When giving directions, I:",
"When I have to concentrate, I'm most distracted by:",
"I prefer to get new information in:",
"When I'm trying to recall something, I:",
"When I'm angry, I tend to:",
"I tend to:",
"When I meet someone new, I remember:",
"When I'm relaxing, I prefer to:"
]
self.options = [
["See diagrams and charts", "Listen to an explanation", "Try it out myself"],
["See pictures or diagrams", "Hear someone explain it", "Do something with it"],
["Draw a map", "Give verbal instructions", "Show them how to get there"],
["Untidiness or movement", "Noises", "Other people moving around"],
["Written form", "Spoken form", "Demonstration form"],
["See a mental picture", "Repeat it to myself", "Feel it or move my hands"],
["Visualize the incident", "Shout and yell", "Stomp around and slam doors"],
["Talk to myself", "Use my hands when talking", "Move around a lot"],
["Their face", "Their name", "Something we did together"],
["Watch TV or read", "Listen to music or talk", "Do something active"]
]
self.learning_styles = {
"Visual": "You learn best through seeing. Use visual aids like diagrams, charts, and color-coding.",
"Auditory": "You learn best through listening. Record lectures, discuss concepts, and use rhymes or songs.",
"Kinesthetic": "You learn best through movement and touch. Use hands-on activities and take frequent breaks."
}
def get_quiz_questions(self) -> List[Dict]:
"""Return formatted questions for the quiz interface"""
return [
{"question": q, "options": opts}
for q, opts in zip(self.questions, self.options)
]
def calculate_learning_style(self, answers: List[int]) -> Dict:
"""Calculate the learning style based on user answers"""
if len(answers) != len(self.questions):
raise ValueError("Invalid number of answers")
style_counts = {"Visual": 0, "Auditory": 0, "Kinesthetic": 0}
style_map = {0: "Visual", 1: "Auditory", 2: "Kinesthetic"}
for answer in answers:
if answer not in [0, 1, 2]:
raise ValueError("Invalid answer value")
style = style_map[answer]
style_counts[style] += 1
primary_style = max(style_counts, key=style_counts.get)
secondary_styles = [
style for style, count in style_counts.items()
if style != primary_style and count > 0
]
return {
"primary": primary_style,
"secondary": secondary_styles,
"description": self.learning_styles[primary_style],
"scores": style_counts
}
# Initialize quiz instance
learning_style_quiz = LearningStyleQuiz()
# ========== PROFILE MANAGEMENT ==========
class ProfileManager:
def __init__(self):
self.profiles_dir = Path(PROFILES_DIR)
self.profiles_dir.mkdir(exist_ok=True)
def create_profile(
self,
name: str,
age: int,
grade_level: str,
learning_style: Dict,
transcript_data: Optional[Dict] = None
) -> str:
"""Create a new student profile with all collected data"""
try:
name = validate_name(name)
age = validate_age(age)
profile_id = f"{name.lower().replace(' ', '_')}_{age}"
profile_path = self.profiles_dir / f"{profile_id}.json"
if profile_path.exists():
raise ValueError("Profile already exists")
profile_data = {
"id": profile_id,
"name": name,
"age": age,
"grade_level": grade_level,
"learning_style": learning_style,
"transcript": transcript_data or {},
"created_at": time.strftime("%Y-%m-%d %H:%M:%S"),
"updated_at": time.strftime("%Y-%m-%d %H:%M:%S")
}
with open(profile_path, 'w') as f:
json.dump(profile_data, f, indent=2)
return profile_id
except Exception as e:
raise gr.Error(f"Error creating profile: {str(e)}")
def get_profile(self, profile_id: str) -> Dict:
"""Retrieve a student profile by ID"""
try:
profile_path = self.profiles_dir / f"{profile_id}.json"
if not profile_path.exists():
raise ValueError("Profile not found")
with open(profile_path, 'r') as f:
return json.load(f)
except Exception as e:
raise gr.Error(f"Error loading profile: {str(e)}")
def update_profile(self, profile_id: str, updates: Dict) -> Dict:
"""Update an existing profile with new data"""
try:
profile = self.get_profile(profile_id)
profile.update(updates)
profile["updated_at"] = time.strftime("%Y-%m-%d %H:%M:%S")
profile_path = self.profiles_dir / f"{profile_id}.json"
with open(profile_path, 'w') as f:
json.dump(profile, f, indent=2)
return profile
except Exception as e:
raise gr.Error(f"Error updating profile: {str(e)}")
def list_profiles(self) -> List[Dict]:
"""List all available student profiles"""
try:
profiles = []
for file in self.profiles_dir.glob("*.json"):
with open(file, 'r') as f:
profile = json.load(f)
profiles.append({
"id": profile["id"],
"name": profile["name"],
"age": profile["age"],
"grade_level": profile["grade_level"],
"created_at": profile["created_at"]
})
return sorted(profiles, key=lambda x: x["name"])
except Exception as e:
raise gr.Error(f"Error listing profiles: {str(e)}")
# Initialize profile manager
profile_manager = ProfileManager()
# ========== AI TEACHING ASSISTANT ==========
class TeachingAssistant:
def __init__(self):
self.model_loader = model_loader
def generate_study_plan(self, profile_data: Dict, progress=gr.Progress()) -> str:
"""Generate a personalized study plan based on student profile"""
try:
# Ensure model is loaded
if not self.model_loader.loaded:
self.model_loader.load_model(DEFAULT_MODEL, progress)
learning_style = profile_data.get("learning_style", {})
transcript = profile_data.get("transcript", {})
# Prepare prompt
prompt = f"""
Create a personalized study plan for {profile_data['name']}, a {profile_data['age']}-year-old student in grade {profile_data['grade_level']}.
Learning Style:
- Primary: {learning_style.get('primary', 'Unknown')}
- Description: {learning_style.get('description', 'No learning style information')}
Academic History:
- Current GPA: {transcript.get('gpa', {}).get('weighted', 'N/A')} (weighted)
- Courses Completed: {len(transcript.get('courses', []))}
Focus on study techniques that match the student's learning style and provide specific recommendations based on their academic history.
Include:
1. Daily study routine suggestions
2. Subject-specific strategies
3. Recommended resources
4. Time management tips
5. Any areas that need improvement
Format the response with clear headings and bullet points.
"""
progress(0.2, desc="Generating study plan...")
# Generate response
inputs = self.model_loader.tokenizer(prompt, return_tensors="pt").to(self.model_loader.model.device)
outputs = self.model_loader.model.generate(
**inputs,
max_new_tokens=1000,
temperature=0.7,
do_sample=True
)
progress(0.8, desc="Formatting response...")
response = self.model_loader.tokenizer.decode(outputs[0], skip_special_tokens=True)
return self._format_response(response)
except Exception as e:
raise gr.Error(f"Error generating study plan: {str(e)}")
def answer_question(self, question: str, context: str = "", progress=gr.Progress()) -> str:
"""Answer student questions with optional context"""
try:
if not question.strip():
return "Please ask a question."
# Ensure model is loaded
if not self.model_loader.loaded:
self.model_loader.load_model(DEFAULT_MODEL, progress)
prompt = f"""
Answer the following student question in a helpful, educational manner.
{f"Context: {context}" if context else ""}
Question: {question}
Provide a clear, concise answer with examples if helpful. Break down complex concepts.
If the question is unclear, ask for clarification.
"""
progress(0.3, desc="Processing question...")
# Generate response
inputs = self.model_loader.tokenizer(prompt, return_tensors="pt").to(self.model_loader.model.device)
outputs = self.model_loader.model.generate(
**inputs,
max_new_tokens=500,
temperature=0.5,
do_sample=True
)
progress(0.8, desc="Formatting answer...")
response = self.model_loader.tokenizer.decode(outputs[0], skip_special_tokens=True)
return self._format_response(response)
except Exception as e:
raise gr.Error(f"Error answering question: {str(e)}")
def _format_response(self, text: str) -> str:
"""Format the AI response for better readability"""
# Clean up common artifacts
text = text.replace("<|endoftext|>", "").strip()
# Add markdown formatting if not present
if "#" not in text and "**" not in text:
# Split into paragraphs and add headings
sections = text.split("\n\n")
formatted = []
for section in sections:
if section.strip().endswith(":"):
formatted.append(f"**{section}**")
else:
formatted.append(section)
text = "\n\n".join(formatted)
return text
# Initialize teaching assistant
teaching_assistant = TeachingAssistant()
# ========== GRADIO INTERFACE ==========
def create_interface():
with gr.Blocks(title="Student Profile Assistant", theme="soft") as app:
session_token = gr.State(generate_session_token())
# Tab navigation
with gr.Tabs():
with gr.Tab("Profile Creation"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Student Information")
name_input = gr.Textbox(label="Full Name", placeholder="Enter student's full name")
age_input = gr.Number(label="Age", minimum=MIN_AGE, maximum=MAX_AGE, step=1)
grade_level = gr.Dropdown(
label="Grade Level",
choices=["9", "10", "11", "12", "Other"],
value="9"
)
gr.Markdown("## Transcript Upload")
file_upload = gr.File(label="Upload Transcript", file_types=ALLOWED_FILE_TYPES)
parse_btn = gr.Button("Parse Transcript")
transcript_output = gr.Textbox(label="Transcript Summary", interactive=False, lines=10)
with gr.Column(scale=1):
gr.Markdown("## Learning Style Quiz")
quiz_components = []
for i, question in enumerate(learning_style_quiz.questions):
quiz_components.append(
gr.Radio(
label=question,
choices=learning_style_quiz.options[i],
type="index"
)
)
quiz_submit = gr.Button("Submit Quiz")
learning_style_output = gr.JSON(label="Learning Style Results")
gr.Markdown("## Complete Profile")
create_profile_btn = gr.Button("Create Profile")
profile_status = gr.Textbox(label="Profile Status", interactive=False)
with gr.Tab("Study Tools"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Study Plan Generator")
profile_selector = gr.Dropdown(
label="Select Profile",
choices=[p["id"] for p in profile_manager.list_profiles()],
interactive=True
)
refresh_profiles = gr.Button("Refresh Profiles")
study_plan_btn = gr.Button("Generate Study Plan")
study_plan_output = gr.Markdown(label="Personalized Study Plan")
with gr.Column(scale=1):
gr.Markdown("## Ask the Teaching Assistant")
question_input = gr.Textbox(label="Your Question", lines=3)
context_input = gr.Textbox(label="Additional Context (optional)", lines=2)
ask_btn = gr.Button("Ask Question")
answer_output = gr.Markdown(label="Answer")
with gr.Tab("Profile Management"):
gr.Markdown("## Existing Profiles")
profile_table = gr.Dataframe(
headers=["Name", "Age", "Grade Level", "Created At"],
datatype=["str", "number", "str", "str"],
interactive=False
)
refresh_table = gr.Button("Refresh Profiles")
with gr.Row():
with gr.Column():
gr.Markdown("## Profile Details")
selected_profile = gr.Dropdown(
label="Select Profile",
choices=[p["id"] for p in profile_manager.list_profiles()],
interactive=True
)
view_profile_btn = gr.Button("View Profile")
profile_display = gr.JSON(label="Profile Data")
with gr.Column():
gr.Markdown("## Update Profile")
update_grade = gr.Dropdown(
label="Update Grade Level",
choices=["9", "10", "11", "12", "Other"],
interactive=True
)
update_transcript = gr.File(label="Update Transcript", file_types=ALLOWED_FILE_TYPES)
update_btn = gr.Button("Update Profile")
update_status = gr.Textbox(label="Update Status", interactive=False)
# ========== EVENT HANDLERS ==========
# Transcript parsing
parse_btn.click(
parse_transcript,
inputs=[file_upload],
outputs=[transcript_output, gr.State()],
show_progress=True
)
# Learning style quiz
quiz_submit.click(
learning_style_quiz.calculate_learning_style,
inputs=quiz_components,
outputs=learning_style_output
)
# Profile creation
create_profile_btn.click(
profile_manager.create_profile,
inputs=[
name_input,
age_input,
grade_level,
learning_style_output,
gr.State()
],
outputs=profile_status
).then(
lambda: [p["id"] for p in profile_manager.list_profiles()],
outputs=profile_selector
).then(
lambda: [p["id"] for p in profile_manager.list_profiles()],
outputs=selected_profile
).then(
lambda: profile_manager.list_profiles(),
outputs=profile_table
)
# Study tools
refresh_profiles.click(
lambda: [p["id"] for p in profile_manager.list_profiles()],
outputs=profile_selector
)
study_plan_btn.click(
lambda profile_id: profile_manager.get_profile(profile_id),
inputs=profile_selector,
outputs=gr.State()
).then(
teaching_assistant.generate_study_plan,
inputs=gr.State(),
outputs=study_plan_output,
show_progress=True
)
# Teaching assistant
ask_btn.click(
teaching_assistant.answer_question,
inputs=[question_input, context_input],
outputs=answer_output,
show_progress=True
)
# Profile management
refresh_table.click(
lambda: profile_manager.list_profiles(),
outputs=profile_table
).then(
lambda: [p["id"] for p in profile_manager.list_profiles()],
outputs=selected_profile
)
view_profile_btn.click(
profile_manager.get_profile,
inputs=selected_profile,
outputs=profile_display
)
update_btn.click(
lambda profile_id, grade, file_obj: (
profile_manager.update_profile(
profile_id,
{"grade_level": grade}
) if not file_obj else None,
parse_transcript(file_obj) if file_obj else (None, None)
),
inputs=[selected_profile, update_grade, update_transcript],
outputs=[profile_display, gr.State()]
).then(
lambda: "Profile updated successfully!",
outputs=update_status
)
# Initialization
app.load(
lambda: profile_manager.list_profiles(),
outputs=profile_table
).then(
lambda: [p["id"] for p in profile_manager.list_profiles()],
outputs=profile_selector
).then(
lambda: [p["id"] for p in profile_manager.list_profiles()],
outputs=selected_profile
)
return app
# Create the interface
app = create_interface()
# For Hugging Face Spaces deployment
if __name__ == "__main__":
app.launch()
|