Dannyar608 commited on
Commit
6e6aad7
·
verified ·
1 Parent(s): 1d7de1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +353 -75
app.py CHANGED
@@ -1,25 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # ========== LEARNING STYLE QUIZ ==========
2
  learning_style_questions = [
3
  "When you study for a test, you prefer to:",
4
  "When you need directions to a new place, you prefer:",
5
  "When you learn a new skill, you prefer to:",
6
  "When you're trying to concentrate, you:",
7
- "When you meet new people, you remember them by:",
8
- "When you're assembling furniture or a gadget, you:",
9
- "When choosing a restaurant, you rely most on:",
10
- "When you're in a waiting room, you typically:",
11
- "When giving someone instructions, you tend to:",
12
- "When you're trying to recall information, you:",
13
- "When you're at a museum or exhibit, you:",
14
- "When you're learning a new language, you prefer:",
15
- "When you're taking notes in class, you:",
16
- "When you're explaining something complex, you:",
17
- "When you're at a party, you enjoy:",
18
- "When you're trying to remember a phone number, you:",
19
- "When you're relaxing, you prefer to:",
20
- "When you're learning to use new software, you:",
21
- "When you're giving a presentation, you rely on:",
22
- "When you're solving a difficult problem, you:"
23
  ]
24
 
25
  learning_style_options = [
@@ -27,22 +146,7 @@ learning_style_options = [
27
  ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
28
  ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
29
  ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
30
- ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"],
31
- ["Read the instructions carefully (Reading/Writing)", "Look at the diagrams (Visual)", "Ask someone to explain (Auditory)", "Start putting pieces together (Kinesthetic)"],
32
- ["Online photos of the food (Visual)", "Recommendations from friends (Auditory)", "Reading the menu online (Reading/Writing)", "Remembering how it felt to eat there (Kinesthetic)"],
33
- ["Read magazines (Reading/Writing)", "Listen to music (Auditory)", "Watch TV (Visual)", "Fidget or move around (Kinesthetic)"],
34
- ["Write them down (Reading/Writing)", "Explain verbally (Auditory)", "Demonstrate (Visual)", "Guide them physically (Kinesthetic)"],
35
- ["See written words in your mind (Visual)", "Hear the information in your head (Auditory)", "Write it down to remember (Reading/Writing)", "Associate it with physical actions (Kinesthetic)"],
36
- ["Read all the descriptions (Reading/Writing)", "Listen to audio guides (Auditory)", "Look at the displays (Visual)", "Touch interactive exhibits (Kinesthetic)"],
37
- ["Study grammar rules (Reading/Writing)", "Listen to native speakers (Auditory)", "Use flashcards with images (Visual)", "Practice conversations (Kinesthetic)"],
38
- ["Write detailed paragraphs (Reading/Writing)", "Record the lecture (Auditory)", "Draw diagrams and charts (Visual)", "Doodle while listening (Kinesthetic)"],
39
- ["Write detailed steps (Reading/Writing)", "Explain verbally with examples (Auditory)", "Draw diagrams (Visual)", "Use physical objects to demonstrate (Kinesthetic)"],
40
- ["Conversations with people (Auditory)", "Watching others or the environment (Visual)", "Writing notes or texting (Reading/Writing)", "Dancing or physical activities (Kinesthetic)"],
41
- ["See the numbers in your head (Visual)", "Say them aloud (Auditory)", "Write them down (Reading/Writing)", "Dial them on a keypad (Kinesthetic)"],
42
- ["Read a book (Reading/Writing)", "Listen to music (Auditory)", "Watch TV/movies (Visual)", "Do something physical (Kinesthetic)"],
43
- ["Read the manual (Reading/Writing)", "Ask someone to show you (Visual)", "Call tech support (Auditory)", "Experiment with the software (Kinesthetic)"],
44
- ["Detailed notes (Reading/Writing)", "Verbal explanations (Auditory)", "Visual slides (Visual)", "Physical demonstrations (Kinesthetic)"],
45
- ["Write out possible solutions (Reading/Writing)", "Talk through it with someone (Auditory)", "Draw diagrams (Visual)", "Build a model or prototype (Kinesthetic)"]
46
  ]
47
 
48
  def learning_style_quiz(*answers):
@@ -64,54 +168,228 @@ def learning_style_quiz(*answers):
64
  scores["Kinesthetic"] += 1
65
 
66
  max_score = max(scores.values())
67
- total_questions = len(learning_style_questions)
68
 
69
- # Calculate percentages
70
- percentages = {style: (score/total_questions)*100 for style, score in scores.items()}
 
 
 
 
 
 
 
71
 
72
- # Sort styles by score (descending)
73
- sorted_styles = sorted(scores.items(), key=lambda x: x[1], reverse=True)
 
 
 
 
 
 
 
 
74
 
75
- # Prepare detailed results
76
- result = "Your Learning Style Results:\n\n"
77
- for style, score in sorted_styles:
78
- result += f"{style}: {score}/{total_questions} ({percentages[style]:.1f}%)\n"
 
 
 
 
 
79
 
80
- result += "\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
- # Determine primary and secondary styles
83
- primary_styles = [style for style, score in scores.items() if score == max_score]
 
 
 
84
 
85
- if len(primary_styles) == 1:
86
- result += f"Your primary learning style is: {primary_styles[0]}\n\n"
87
- # Add personalized tips based on primary style
88
- if primary_styles[0] == "Visual":
89
- result += "Tips for Visual Learners:\n"
90
- result += "- Use color coding in your notes\n"
91
- result += "- Create mind maps and diagrams\n"
92
- result += "- Watch educational videos\n"
93
- result += "- Use flashcards with images\n"
94
- elif primary_styles[0] == "Auditory":
95
- result += "Tips for Auditory Learners:\n"
96
- result += "- Record lectures and listen to them\n"
97
- result += "- Participate in study groups\n"
98
- result += "- Explain concepts out loud to yourself\n"
99
- result += "- Use rhymes or songs to remember information\n"
100
- elif primary_styles[0] == "Reading/Writing":
101
- result += "Tips for Reading/Writing Learners:\n"
102
- result += "- Write detailed notes\n"
103
- result += "- Create summaries in your own words\n"
104
- result += "- Read textbooks and articles\n"
105
- result += "- Make lists to organize information\n"
106
- else: # Kinesthetic
107
- result += "Tips for Kinesthetic Learners:\n"
108
- result += "- Use hands-on activities\n"
109
- result += "- Take frequent movement breaks\n"
110
- result += "- Create physical models\n"
111
- result += "- Associate information with physical actions\n"
112
- else:
113
- result += f"You have multiple strong learning styles: {', '.join(primary_styles)}\n\n"
114
- result += "You may benefit from combining different learning approaches.\n"
 
 
 
 
 
 
 
115
 
116
- return result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import json
4
+ import os
5
+ import re
6
+ from PyPDF2 import PdfReader
7
+ from collections import defaultdict
8
+
9
+ # ========== TRANSCRIPT PARSING FUNCTIONS ==========
10
+ def extract_courses_with_grade_levels(text):
11
+ grade_level_pattern = r"(Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)"
12
+ grade_match = re.search(grade_level_pattern, text, re.IGNORECASE)
13
+ current_grade_level = grade_match.group(2) if grade_match else "Unknown"
14
+
15
+ course_pattern = r"""
16
+ (?:^|\n)
17
+ (?: (Grade|Year)\s*[:]?\s*(\d+|Freshman|Sophomore|Junior|Senior)\s*[\n-]* )?
18
+ (
19
+ (?:[A-Z]{2,}\s?\d{3})
20
+ |
21
+ [A-Z][a-z]+(?:\s[A-Z][a-z]+)*
22
+ )
23
+ \s*
24
+ (?: [:\-]?\s* ([A-F][+-]?|\d{2,3}%)? )?
25
+ """
26
+
27
+ courses_by_grade = defaultdict(list)
28
+ current_grade = current_grade_level
29
+
30
+ for match in re.finditer(course_pattern, text, re.VERBOSE | re.MULTILINE):
31
+ grade_context, grade_level, course, grade = match.groups()
32
+
33
+ if grade_context:
34
+ current_grade = grade_level
35
+
36
+ if course:
37
+ course_info = {"course": course.strip()}
38
+ if grade:
39
+ course_info["grade"] = grade.strip()
40
+ courses_by_grade[current_grade].append(course_info)
41
+
42
+ return dict(courses_by_grade)
43
+
44
+ def parse_transcript(file):
45
+ if file.name.endswith('.csv'):
46
+ df = pd.read_csv(file)
47
+ elif file.name.endswith('.xlsx'):
48
+ df = pd.read_excel(file)
49
+ elif file.name.endswith('.pdf'):
50
+ text = ''
51
+ reader = PdfReader(file)
52
+ for page in reader.pages:
53
+ page_text = page.extract_text()
54
+ if page_text:
55
+ text += page_text + '\n'
56
+
57
+ # Grade level extraction
58
+ grade_match = re.search(r'(Grade|Year)[\s:]*(\d+|Freshman|Sophomore|Junior|Senior)', text, re.IGNORECASE)
59
+ grade_level = grade_match.group(2) if grade_match else "Unknown"
60
+
61
+ # Enhanced GPA extraction
62
+ gpa_data = {'weighted': "N/A", 'unweighted': "N/A"}
63
+ gpa_patterns = [
64
+ r'Weighted GPA[\s:]*(\d\.\d{1,2})',
65
+ r'GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
66
+ r'Cumulative GPA \(Weighted\)[\s:]*(\d\.\d{1,2})',
67
+ r'Unweighted GPA[\s:]*(\d\.\d{1,2})',
68
+ r'GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
69
+ r'Cumulative GPA \(Unweighted\)[\s:]*(\d\.\d{1,2})',
70
+ r'GPA[\s:]*(\d\.\d{1,2})'
71
+ ]
72
+ for pattern in gpa_patterns:
73
+ for match in re.finditer(pattern, text, re.IGNORECASE):
74
+ gpa_value = match.group(1)
75
+ if 'weighted' in pattern.lower():
76
+ gpa_data['weighted'] = gpa_value
77
+ elif 'unweighted' in pattern.lower():
78
+ gpa_data['unweighted'] = gpa_value
79
+ else:
80
+ if gpa_data['unweighted'] == "N/A":
81
+ gpa_data['unweighted'] = gpa_value
82
+ if gpa_data['weighted'] == "N/A":
83
+ gpa_data['weighted'] = gpa_value
84
+
85
+ courses_by_grade = extract_courses_with_grade_levels(text)
86
+
87
+ output_text = f"Grade Level: {grade_level}\n\n"
88
+ if gpa_data['weighted'] != "N/A" or gpa_data['unweighted'] != "N/A":
89
+ output_text += "GPA Information:\n"
90
+ if gpa_data['unweighted'] != "N/A":
91
+ output_text += f"- Unweighted GPA: {gpa_data['unweighted']}\n"
92
+ if gpa_data['weighted'] != "N/A":
93
+ output_text += f"- Weighted GPA: {gpa_data['weighted']}\n"
94
+ else:
95
+ output_text += "No GPA information found\n"
96
+
97
+ output_text += "\n(Courses not shown here)"
98
+
99
+ return output_text, {
100
+ "gpa": gpa_data,
101
+ "grade_level": grade_level,
102
+ "courses": courses_by_grade
103
+ }
104
+ else:
105
+ return "Unsupported file format", None
106
+
107
+ # For CSV/XLSX fallback
108
+ gpa = "N/A"
109
+ for col in ['GPA', 'Grade Point Average', 'Cumulative GPA']:
110
+ if col in df.columns:
111
+ gpa = df[col].iloc[0] if isinstance(df[col].iloc[0], (float, int)) else "N/A"
112
+ break
113
+
114
+ grade_level = "N/A"
115
+ for col in ['Grade Level', 'Grade', 'Class', 'Year']:
116
+ if col in df.columns:
117
+ grade_level = df[col].iloc[0]
118
+ break
119
+
120
+ courses = []
121
+ for col in ['Course', 'Subject', 'Course Name', 'Class']:
122
+ if col in df.columns:
123
+ courses = df[col].tolist()
124
+ break
125
+
126
+ output_text = f"Grade Level: {grade_level}\nGPA: {gpa}\n\nCourses:\n"
127
+ output_text += "\n".join(f"- {course}" for course in courses)
128
+
129
+ return output_text, {
130
+ "gpa": {"unweighted": gpa, "weighted": "N/A"},
131
+ "grade_level": grade_level,
132
+ "courses": courses
133
+ }
134
+
135
  # ========== LEARNING STYLE QUIZ ==========
136
  learning_style_questions = [
137
  "When you study for a test, you prefer to:",
138
  "When you need directions to a new place, you prefer:",
139
  "When you learn a new skill, you prefer to:",
140
  "When you're trying to concentrate, you:",
141
+ "When you meet new people, you remember them by:"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  ]
143
 
144
  learning_style_options = [
 
146
  ["Look at a map (Visual)", "Have someone tell you (Auditory)", "Write down directions (Reading/Writing)", "Try walking/driving there (Kinesthetic)"],
147
  ["Read instructions (Reading/Writing)", "Have someone show you (Visual)", "Listen to explanations (Auditory)", "Try it yourself (Kinesthetic)"],
148
  ["Need quiet (Reading/Writing)", "Need background noise (Auditory)", "Need to move around (Kinesthetic)", "Need visual stimulation (Visual)"],
149
+ ["Their face (Visual)", "Their name (Auditory)", "What you talked about (Reading/Writing)", "What you did together (Kinesthetic)"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
  ]
151
 
152
  def learning_style_quiz(*answers):
 
168
  scores["Kinesthetic"] += 1
169
 
170
  max_score = max(scores.values())
171
+ dominant_styles = [style for style, score in scores.items() if score == max_score]
172
 
173
+ if len(dominant_styles) == 1:
174
+ return f"Your primary learning style is: {dominant_styles[0]}"
175
+ else:
176
+ return f"You have multiple strong learning styles: {', '.join(dominant_styles)}"
177
+
178
+ # ========== SAVE STUDENT PROFILE FUNCTION ==========
179
+ def save_profile(name, age, interests, transcript, learning_style, movie, movie_reason, show, show_reason, book, book_reason, character, character_reason, blog):
180
+ # Convert age to int if it's a numpy number (from gradio Number input)
181
+ age = int(age) if age else 0
182
 
183
+ favorites = {
184
+ "movie": movie,
185
+ "movie_reason": movie_reason,
186
+ "show": show,
187
+ "show_reason": show_reason,
188
+ "book": book,
189
+ "book_reason": book_reason,
190
+ "character": character,
191
+ "character_reason": character_reason
192
+ }
193
 
194
+ data = {
195
+ "name": name,
196
+ "age": age,
197
+ "interests": interests,
198
+ "transcript": transcript,
199
+ "learning_style": learning_style,
200
+ "favorites": favorites,
201
+ "blog": blog
202
+ }
203
 
204
+ os.makedirs("student_profiles", exist_ok=True)
205
+ json_path = os.path.join("student_profiles", f"{name.replace(' ', '_')}_profile.json")
206
+ with open(json_path, "w") as f:
207
+ json.dump(data, f, indent=2)
208
+
209
+ markdown_summary = f"""### Student Profile: {name}
210
+ **Age:** {age}
211
+ **Interests:** {interests}
212
+ **Learning Style:** {learning_style}
213
+ #### Transcript:
214
+ {transcript_display(transcript)}
215
+ #### Favorites:
216
+ - Movie: {favorites['movie']} ({favorites['movie_reason']})
217
+ - Show: {favorites['show']} ({favorites['show_reason']})
218
+ - Book: {favorites['book']} ({favorites['book_reason']})
219
+ - Character: {favorites['character']} ({favorites['character_reason']})
220
+ #### Blog:
221
+ {blog if blog else "_No blog provided_"}
222
+ """
223
+ return markdown_summary
224
+
225
+ def transcript_display(transcript_dict):
226
+ if not transcript_dict:
227
+ return "No transcript uploaded."
228
+ if isinstance(transcript_dict, dict) and "courses" in transcript_dict:
229
+ if isinstance(transcript_dict["courses"], dict):
230
+ display = ""
231
+ for grade_level, courses in transcript_dict["courses"].items():
232
+ display += f"\n**Grade {grade_level}**\n"
233
+ for course in courses:
234
+ display += f"- {course['course']}"
235
+ if 'grade' in course:
236
+ display += f" (Grade: {course['grade']})"
237
+ display += "\n"
238
+ return display
239
+ elif isinstance(transcript_dict["courses"], list):
240
+ return "\n".join([f"- {course}" for course in transcript_dict["courses"]])
241
+ return "No course information available"
242
+
243
+ # ========== AI TEACHING ASSISTANT ==========
244
+ def load_profile():
245
+ if not os.path.exists("student_profiles"):
246
+ return {}
247
+ files = [f for f in os.listdir("student_profiles") if f.endswith('.json')]
248
+ if files:
249
+ with open(os.path.join("student_profiles", files[0]), "r") as f:
250
+ return json.load(f)
251
+ return {}
252
+
253
+ def generate_response(message, history):
254
+ profile = load_profile()
255
+ if not profile:
256
+ return "Please complete and save your profile first using the previous tabs."
257
 
258
+ # Get profile data
259
+ learning_style = profile.get("learning_style", "")
260
+ grade_level = profile.get("transcript", {}).get("grade_level", "unknown")
261
+ gpa = profile.get("transcript", {}).get("gpa", {})
262
+ interests = profile.get("interests", "")
263
 
264
+ # Common responses
265
+ greetings = ["hi", "hello", "hey"]
266
+ study_help = ["study", "learn", "prepare", "exam"]
267
+ grade_help = ["grade", "gpa", "score"]
268
+ interest_help = ["interest", "hobby", "passion"]
269
+
270
+ if any(greet in message.lower() for greet in greetings):
271
+ return f"Hello {profile.get('name', 'there')}! How can I help you today?"
272
+
273
+ elif any(word in message.lower() for word in study_help):
274
+ if "Visual" in learning_style:
275
+ response = ("Based on your visual learning style, I recommend:\n"
276
+ "- Creating mind maps or diagrams\n"
277
+ "- Using color-coded notes\n"
278
+ "- Watching educational videos")
279
+ elif "Auditory" in learning_style:
280
+ response = ("Based on your auditory learning style, I recommend:\n"
281
+ "- Recording lectures and listening to them\n"
282
+ "- Participating in study groups\n"
283
+ "- Explaining concepts out loud")
284
+ elif "Reading/Writing" in learning_style:
285
+ response = ("Based on your reading/writing learning style, I recommend:\n"
286
+ "- Writing detailed notes\n"
287
+ "- Creating summaries in your own words\n"
288
+ "- Reading textbooks and articles")
289
+ elif "Kinesthetic" in learning_style:
290
+ response = ("Based on your kinesthetic learning style, I recommend:\n"
291
+ "- Hands-on practice\n"
292
+ "- Creating physical models\n"
293
+ "- Taking frequent movement breaks")
294
+ else:
295
+ response = ("Here are some general study tips:\n"
296
+ "- Break study sessions into 25-minute chunks\n"
297
+ "- Review material regularly\n"
298
+ "- Teach concepts to someone else")
299
+
300
+ return response
301
 
302
+ elif any(word in message.lower() for word in grade_help):
303
+ return (f"Your GPA information:\n"
304
+ f"- Unweighted: {gpa.get('unweighted', 'N/A')}\n"
305
+ f"- Weighted: {gpa.get('weighted', 'N/A')}\n\n"
306
+ "To improve your grades, try:\n"
307
+ "- Setting specific goals\n"
308
+ "- Meeting with teachers\n"
309
+ "- Developing a study schedule")
310
+
311
+ elif any(word in message.lower() for word in interest_help):
312
+ return (f"I see you're interested in: {interests}\n\n"
313
+ "You might want to:\n"
314
+ "- Find clubs or activities related to these interests\n"
315
+ "- Explore career paths that align with them")
316
+
317
+ elif "help" in message.lower():
318
+ return ("I can help with:\n"
319
+ "- Study tips based on your learning style\n"
320
+ "- GPA and grade information\n"
321
+ "- General academic advice\n\n"
322
+ "Try asking about study strategies or your grades!")
323
+
324
+ else:
325
+ return ("I'm your personalized teaching assistant. "
326
+ "I can help with study tips, grade information, and academic advice. "
327
+ "Try asking about how to study for your classes!")
328
+
329
+ # ========== GRADIO INTERFACE ==========
330
+ with gr.Blocks() as app:
331
+ with gr.Tab("Step 1: Upload Transcript"):
332
+ transcript_file = gr.File(label="Upload your transcript (CSV, Excel, or PDF)")
333
+ transcript_output = gr.Textbox(label="Transcript Output")
334
+ transcript_data = gr.State()
335
+ transcript_file.change(fn=parse_transcript, inputs=transcript_file, outputs=[transcript_output, transcript_data])
336
+
337
+ with gr.Tab("Step 2: Learning Style Quiz"):
338
+ gr.Markdown("### Learning Style Quiz")
339
+ quiz_components = []
340
+ for i, (question, options) in enumerate(zip(learning_style_questions, learning_style_options)):
341
+ quiz_components.append(
342
+ gr.Radio(options, label=f"{i+1}. {question}")
343
+ )
344
+
345
+ learning_output = gr.Textbox(label="Learning Style Result")
346
+ gr.Button("Submit Quiz").click(
347
+ learning_style_quiz,
348
+ inputs=quiz_components,
349
+ outputs=learning_output
350
+ )
351
+
352
+ with gr.Tab("Step 3: Personal Questions"):
353
+ name = gr.Textbox(label="What's your name?")
354
+ age = gr.Number(label="How old are you?", precision=0)
355
+ interests = gr.Textbox(label="What are your interests?")
356
+ movie = gr.Textbox(label="Favorite movie?")
357
+ movie_reason = gr.Textbox(label="Why do you like that movie?")
358
+ show = gr.Textbox(label="Favorite TV show?")
359
+ show_reason = gr.Textbox(label="Why do you like that show?")
360
+ book = gr.Textbox(label="Favorite book?")
361
+ book_reason = gr.Textbox(label="Why do you like that book?")
362
+ character = gr.Textbox(label="Favorite character?")
363
+ character_reason = gr.Textbox(label="Why do you like that character?")
364
+ blog_checkbox = gr.Checkbox(label="Do you want to write a blog?", value=False)
365
+ blog_text = gr.Textbox(label="Write your blog here", visible=False, lines=5)
366
+ blog_checkbox.change(lambda x: gr.update(visible=x), inputs=blog_checkbox, outputs=blog_text)
367
+
368
+ with gr.Tab("Step 4: Save & Review"):
369
+ output_summary = gr.Markdown()
370
+ save_btn = gr.Button("Save Profile")
371
+
372
+ save_btn.click(
373
+ fn=save_profile,
374
+ inputs=[name, age, interests, transcript_data, learning_output,
375
+ movie, movie_reason, show, show_reason,
376
+ book, book_reason, character, character_reason, blog_text],
377
+ outputs=output_summary
378
+ )
379
+
380
+ # AI Teaching Assistant Tab
381
+ with gr.Tab("🤖 AI Teaching Assistant"):
382
+ gr.Markdown("## Your Personalized Learning Assistant")
383
+ chatbot = gr.ChatInterface(
384
+ fn=generate_response,
385
+ examples=[
386
+ "How should I study for my next test?",
387
+ "What's my GPA information?",
388
+ "Help me with study strategies",
389
+ "How can I improve my grades?"
390
+ ]
391
+ )
392
+
393
+ if __name__ == "__main__":
394
+ app.launch()
395