Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,15 +15,18 @@ import io
|
|
15 |
import secrets
|
16 |
import string
|
17 |
from huggingface_hub import HfApi, HfFolder
|
|
|
18 |
|
19 |
# ========== CONFIGURATION ==========
|
20 |
PROFILES_DIR = "student_profiles"
|
21 |
-
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"]
|
22 |
MAX_FILE_SIZE_MB = 5
|
23 |
MIN_AGE = 5
|
24 |
MAX_AGE = 120
|
25 |
SESSION_TOKEN_LENGTH = 32
|
26 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
27 |
|
28 |
# Initialize Hugging Face API
|
29 |
if HF_TOKEN:
|
@@ -83,129 +86,81 @@ def extract_text_with_ocr(file_path: str) -> str:
|
|
83 |
except Exception as e:
|
84 |
raise gr.Error(f"OCR processing failed: {str(e)}")
|
85 |
|
86 |
-
# ========== TRANSCRIPT PARSING ==========
|
87 |
-
def
|
88 |
-
"""
|
89 |
-
|
90 |
-
|
91 |
-
rf'{gpa_type}\s*GPA\s+([0-5]\.\d{{2}}|\d\.\d)', # Weighted GPA 3.50
|
92 |
-
rf'{gpa_type}\s*[:=]?\s*([0-5]\.\d{{2}}|\d\.\d)', # Weighted: 3.50
|
93 |
-
rf'GPA\s*\({gpa_type}\)\s*[:=]?\s*([0-5]\.\d{{2}}|\d\.\d)', # GPA (Weighted): 3.50
|
94 |
-
rf'{gpa_type}\s*[=:]?\s*([0-5]\.\d{{2}}|\d\.\d)', # Weighted=3.50
|
95 |
-
rf'{gpa_type}\s*[=:]?\s*(\d\.\d{{2}})' # Weighted:3.50
|
96 |
-
]
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# Fallback to looking for any GPA-like number near the term
|
111 |
-
fallback_pattern = re.compile(rf'(?:{gpa_type}.*?)([0-5]\.\d{{1,2}})(?!\d)')
|
112 |
-
match = re.search(fallback_pattern, text, re.IGNORECASE)
|
113 |
-
if match:
|
114 |
-
return match.group(1)
|
115 |
-
|
116 |
-
return "N/A"
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
r'([A-F][+-]?|P|F|W|I)\s+' # Grade
|
142 |
-
r'(\d+\.?\d*)' # Credits
|
143 |
-
),
|
144 |
-
# Fallback pattern for less structured data
|
145 |
-
re.compile(
|
146 |
-
r'([A-Z]+\s*\d+[A-Z]*)\s+' # Course code
|
147 |
-
r'(.+?)\s+' # Course name
|
148 |
-
r'(?:Grade\s*:\s*)?([A-F][+-]?|P|F|W|I)\s*' # Grade
|
149 |
-
r'(?:Credits\s*:\s*)?(\d+\.?\d*)' # Credits
|
150 |
-
)
|
151 |
-
]
|
152 |
-
|
153 |
-
courses_by_grade = defaultdict(list)
|
154 |
-
extracted_courses = set() # To avoid duplicates
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
else:
|
161 |
-
# Handle shorter patterns
|
162 |
-
code, name, grade_mark, credits = match.groups()[:4]
|
163 |
-
year = "Unknown"
|
164 |
-
grade = "Unknown"
|
165 |
-
|
166 |
-
# Create unique identifier to avoid duplicates
|
167 |
-
course_id = f"{code}_{name}_{year}"
|
168 |
-
if course_id in extracted_courses:
|
169 |
-
continue
|
170 |
-
extracted_courses.add(course_id)
|
171 |
-
|
172 |
-
# Clean and format data
|
173 |
-
code = code.strip()
|
174 |
-
name = name.strip()
|
175 |
-
if 'AP' in code and 'AP ' not in code:
|
176 |
-
code = code.replace('AP', 'AP ')
|
177 |
-
if 'DE' in code and 'DE ' not in code:
|
178 |
-
code = code.replace('DE', 'DE ')
|
179 |
-
|
180 |
-
course_info = {
|
181 |
-
'code': code,
|
182 |
-
'name': name,
|
183 |
-
'grade': grade_mark.strip() if grade_mark else None,
|
184 |
-
'credits': credits if credits else '0',
|
185 |
-
'year': year.strip() if year else 'Unknown'
|
186 |
-
}
|
187 |
-
|
188 |
-
courses_by_grade[grade.strip() if grade else 'Unknown'].append(course_info)
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
course_info = {
|
197 |
-
'code': code.strip(),
|
198 |
-
'name': name.strip(),
|
199 |
-
'grade': grade_mark.strip() if grade_mark else None,
|
200 |
-
'credits': credits if credits else '0',
|
201 |
-
'year': 'Unknown'
|
202 |
-
}
|
203 |
-
courses_by_grade['Unknown'].append(course_info)
|
204 |
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
def parse_transcript(file_obj) -> Tuple[str, Optional[Dict]]:
|
208 |
-
"""Parse transcript file with
|
209 |
try:
|
210 |
if not file_obj:
|
211 |
raise gr.Error("Please upload a file first")
|
@@ -237,46 +192,45 @@ def parse_transcript(file_obj) -> Tuple[str, Optional[Dict]]:
|
|
237 |
if not text.strip():
|
238 |
raise gr.Error("No text could be extracted from the file")
|
239 |
|
240 |
-
#
|
241 |
-
|
242 |
-
'weighted': extract_gpa(text, 'Weighted'),
|
243 |
-
'unweighted': extract_gpa(text, 'Unweighted')
|
244 |
-
}
|
245 |
-
|
246 |
-
# Extract grade level with multiple fallback patterns
|
247 |
-
grade_match = (
|
248 |
-
re.search(r'Current Grade:\s*(\d+)', text) or
|
249 |
-
re.search(r'Grade\s*:\s*(\d+)', text) or
|
250 |
-
re.search(r'Grade\s+(\d+)', text) or
|
251 |
-
re.search(r'Grade\s+Level:\s*(\d+)', text) or
|
252 |
-
re.search(r'Grade\s*\(?\s*(\d+)\s*\)?', text)
|
253 |
-
)
|
254 |
-
grade_level = grade_match.group(1) if grade_match else "Unknown"
|
255 |
-
|
256 |
-
courses_by_grade = extract_courses_from_table(text)
|
257 |
|
258 |
# Format output text
|
259 |
output_text = f"Student Transcript Summary\n{'='*40}\n"
|
260 |
-
output_text += f"Current Grade Level: {grade_level}\n"
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
263 |
output_text += "Course History:\n{'='*40}\n"
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
|
266 |
output_text += f"\nGrade {grade}:\n{'-'*30}\n"
|
267 |
for course in courses_by_grade[grade]:
|
268 |
-
output_text += f"- {course
|
269 |
if 'grade' in course and course['grade']:
|
270 |
output_text += f" (Grade: {course['grade']})"
|
271 |
if 'credits' in course:
|
272 |
output_text += f" | Credits: {course['credits']}"
|
273 |
-
|
|
|
|
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
"grade_level": grade_level,
|
|
|
278 |
"courses": dict(courses_by_grade)
|
279 |
}
|
|
|
|
|
280 |
|
281 |
except Exception as e:
|
282 |
return f"Error processing transcript: {str(e)}", None
|
@@ -1359,4 +1313,4 @@ app = create_interface()
|
|
1359 |
# For Hugging Face Spaces deployment
|
1360 |
if __name__ == "__main__":
|
1361 |
app.launch()
|
1362 |
-
|
|
|
15 |
import secrets
|
16 |
import string
|
17 |
from huggingface_hub import HfApi, HfFolder
|
18 |
+
import requests # For API calls to DeepSeek
|
19 |
|
20 |
# ========== CONFIGURATION ==========
|
21 |
PROFILES_DIR = "student_profiles"
|
22 |
+
ALLOWED_FILE_TYPES = [".pdf", ".png", ".jpg", ".jpeg"]
|
23 |
MAX_FILE_SIZE_MB = 5
|
24 |
MIN_AGE = 5
|
25 |
MAX_AGE = 120
|
26 |
SESSION_TOKEN_LENGTH = 32
|
27 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
28 |
+
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY") # Add your DeepSeek API key here
|
29 |
+
DEEPSEEK_API_URL = "https://api.deepseek.com/v1/chat/completions" # Example endpoint
|
30 |
|
31 |
# Initialize Hugging Face API
|
32 |
if HF_TOKEN:
|
|
|
86 |
except Exception as e:
|
87 |
raise gr.Error(f"OCR processing failed: {str(e)}")
|
88 |
|
89 |
+
# ========== ENHANCED TRANSCRIPT PARSING WITH DEEPSEEK ==========
|
90 |
+
def parse_transcript_with_deepseek(text: str) -> Dict:
|
91 |
+
"""Use DeepSeek model to parse transcript text with high accuracy."""
|
92 |
+
if not DEEPSEEK_API_KEY:
|
93 |
+
raise gr.Error("DeepSeek API key not configured")
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
prompt = f"""
|
96 |
+
Analyze this academic transcript and extract the following information in JSON format:
|
97 |
+
- Current grade level
|
98 |
+
- Weighted GPA
|
99 |
+
- Unweighted GPA
|
100 |
+
- List of all courses with:
|
101 |
+
* Course code
|
102 |
+
* Course name
|
103 |
+
* Grade received
|
104 |
+
* Credits earned
|
105 |
+
* Year/semester taken
|
106 |
+
* Grade level when taken
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
Return the data in this exact JSON structure:
|
109 |
+
{{
|
110 |
+
"grade_level": "11",
|
111 |
+
"gpa": {{
|
112 |
+
"weighted": "4.2",
|
113 |
+
"unweighted": "3.9"
|
114 |
+
}},
|
115 |
+
"courses": [
|
116 |
+
{{
|
117 |
+
"code": "MATH101",
|
118 |
+
"name": "Algebra II",
|
119 |
+
"grade": "A",
|
120 |
+
"credits": "1.0",
|
121 |
+
"year": "2023-2024",
|
122 |
+
"grade_level": "11"
|
123 |
+
}},
|
124 |
+
// more courses...
|
125 |
+
]
|
126 |
+
}}
|
127 |
+
|
128 |
+
Here is the transcript text to analyze:
|
129 |
+
{text}
|
130 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
headers = {
|
133 |
+
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
134 |
+
"Content-Type": "application/json"
|
135 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
payload = {
|
138 |
+
"model": "deepseek-chat",
|
139 |
+
"messages": [{"role": "user", "content": prompt}],
|
140 |
+
"temperature": 0.1,
|
141 |
+
"max_tokens": 2000
|
142 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
try:
|
145 |
+
response = requests.post(DEEPSEEK_API_URL, headers=headers, json=payload)
|
146 |
+
response.raise_for_status()
|
147 |
+
result = response.json()
|
148 |
+
|
149 |
+
# Extract the JSON content from the response
|
150 |
+
content = result['choices'][0]['message']['content']
|
151 |
+
|
152 |
+
# Sometimes the response includes markdown code blocks
|
153 |
+
if '```json' in content:
|
154 |
+
content = content.split('```json')[1].split('```')[0].strip()
|
155 |
+
elif '```' in content:
|
156 |
+
content = content.split('```')[1].split('```')[0].strip()
|
157 |
+
|
158 |
+
return json.loads(content)
|
159 |
+
except Exception as e:
|
160 |
+
raise gr.Error(f"DeepSeek API error: {str(e)}")
|
161 |
|
162 |
def parse_transcript(file_obj) -> Tuple[str, Optional[Dict]]:
|
163 |
+
"""Parse transcript file with DeepSeek enhanced parsing."""
|
164 |
try:
|
165 |
if not file_obj:
|
166 |
raise gr.Error("Please upload a file first")
|
|
|
192 |
if not text.strip():
|
193 |
raise gr.Error("No text could be extracted from the file")
|
194 |
|
195 |
+
# Use DeepSeek for enhanced parsing
|
196 |
+
parsed_data = parse_transcript_with_deepseek(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
# Format output text
|
199 |
output_text = f"Student Transcript Summary\n{'='*40}\n"
|
200 |
+
output_text += f"Current Grade Level: {parsed_data.get('grade_level', 'Unknown')}\n"
|
201 |
+
|
202 |
+
if 'gpa' in parsed_data:
|
203 |
+
output_text += f"Weighted GPA: {parsed_data['gpa'].get('weighted', 'N/A')}\n"
|
204 |
+
output_text += f"Unweighted GPA: {parsed_data['gpa'].get('unweighted', 'N/A')}\n\n"
|
205 |
+
|
206 |
output_text += "Course History:\n{'='*40}\n"
|
207 |
|
208 |
+
# Organize courses by grade level
|
209 |
+
courses_by_grade = defaultdict(list)
|
210 |
+
for course in parsed_data.get('courses', []):
|
211 |
+
grade_level = course.get('grade_level', 'Unknown')
|
212 |
+
courses_by_grade[grade_level].append(course)
|
213 |
+
|
214 |
for grade in sorted(courses_by_grade.keys(), key=lambda x: int(x) if x.isdigit() else x):
|
215 |
output_text += f"\nGrade {grade}:\n{'-'*30}\n"
|
216 |
for course in courses_by_grade[grade]:
|
217 |
+
output_text += f"- {course.get('code', '')} {course.get('name', 'Unnamed course')}"
|
218 |
if 'grade' in course and course['grade']:
|
219 |
output_text += f" (Grade: {course['grade']})"
|
220 |
if 'credits' in course:
|
221 |
output_text += f" | Credits: {course['credits']}"
|
222 |
+
if 'year' in course:
|
223 |
+
output_text += f" | Year: {course['year']}"
|
224 |
+
output_text += "\n"
|
225 |
|
226 |
+
# Prepare the data structure for saving
|
227 |
+
transcript_data = {
|
228 |
+
"grade_level": parsed_data.get('grade_level', 'Unknown'),
|
229 |
+
"gpa": parsed_data.get('gpa', {}),
|
230 |
"courses": dict(courses_by_grade)
|
231 |
}
|
232 |
+
|
233 |
+
return output_text, transcript_data
|
234 |
|
235 |
except Exception as e:
|
236 |
return f"Error processing transcript: {str(e)}", None
|
|
|
1313 |
# For Hugging Face Spaces deployment
|
1314 |
if __name__ == "__main__":
|
1315 |
app.launch()
|
1316 |
+
|