Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,133 Bytes
17d10a7 a15d204 d448add db46bfb cf3593c e7b189b c243adb dfa5d3e cf3593c e7b189b dfa5d3e e7b189b dfa5d3e cf3593c f0b5707 e7b189b d0384c8 dfa5d3e e7b189b dfa5d3e e7b189b dfa5d3e cf3593c e7b189b 17d10a7 dfa5d3e 17d10a7 dfa5d3e cf3593c 17d10a7 d448add cf3593c d448add dfa5d3e b50e3e1 e7b189b dfa5d3e e7b189b b50e3e1 dfa5d3e b50e3e1 e7b189b dfa5d3e 17d10a7 f0b5707 b50e3e1 70d35c8 b50e3e1 70d35c8 3fe530b a8c9cb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration
)
from scipy.io.wavfile import write
import tempfile
from dotenv import load_dotenv
import spaces
# Load environment variables (e.g., Hugging Face token)
load_dotenv()
hf_token = os.getenv("HF_TOKEN")
# Globals for Lazy Loading
llama_pipeline = None
musicgen_model = None
musicgen_processor = None
# ---------------------------------------------------------------------
# Load Llama 3 Model with Zero GPU (Lazy Loading)
# ---------------------------------------------------------------------
@spaces.GPU(duration=120)
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
global llama_pipeline
if llama_pipeline is None:
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto", # Automatically handles GPU allocation
trust_remote_code=True
)
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
except Exception as e:
return f"Error loading Llama pipeline: {e}"
return llama_pipeline
# ---------------------------------------------------------------------
# Load MusicGen Model (Lazy Loading)
# ---------------------------------------------------------------------
@spaces.GPU(duration=120)
def load_musicgen_model():
global musicgen_model, musicgen_processor
if musicgen_model is None or musicgen_processor is None:
try:
musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
except Exception as e:
return None, f"Error loading MusicGen model: {e}"
return musicgen_model, musicgen_processor
# ---------------------------------------------------------------------
# Generate Radio Script
# ---------------------------------------------------------------------
def generate_script(user_input: str, llama_pipeline):
try:
system_prompt = (
"You are a top-tier radio imaging producer using Llama 3. "
"Take the user's concept and craft a short, creative promo script."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
return result[0]['generated_text'].split("Refined script:")[-1].strip()
except Exception as e:
return f"Error generating script: {e}"
# ---------------------------------------------------------------------
# Generate Audio
# ---------------------------------------------------------------------
@spaces.GPU(duration=120)
def generate_audio(prompt: str, audio_length: int):
mg_model, mg_processor = load_musicgen_model()
if mg_model is None or isinstance(mg_processor, str):
return mg_processor
try:
mg_model.to("cuda") # Move the model to GPU
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
mg_model.to("cpu") # Return the model to CPU
sr = mg_model.config.audio_encoder.sampling_rate
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
write(temp_wav.name, sr, normalized_audio)
return temp_wav.name
except Exception as e:
return f"Error generating audio: {e}"
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
def radio_imaging_script(user_prompt, llama_model_id):
llama_pipeline = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
if isinstance(llama_pipeline, str):
return llama_pipeline
# Generate Script
script = generate_script(user_prompt, llama_pipeline)
return script
def radio_imaging_audio(script, audio_length):
return generate_audio(script, audio_length)
# ---------------------------------------------------------------------
# Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
# Script Generation Section
with gr.Row():
with gr.Column():
gr.Markdown("## Step 1: Generate the Promo Script")
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B")
generate_script_button = gr.Button("Generate Promo Script")
script_output = gr.Textbox(label="Generated Script", interactive=False)
generate_script_button.click(
fn=radio_imaging_script,
inputs=[user_prompt, llama_model_id],
outputs=script_output
)
# Audio Generation Section
with gr.Row():
with gr.Column():
gr.Markdown("## Step 2: Generate the Sound")
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
generate_audio_button = gr.Button("Generate Sound from Script")
audio_output = gr.Audio(label="Generated Audio", type="filepath")
generate_audio_button.click(
fn=radio_imaging_audio,
inputs=[script_output, audio_length],
outputs=audio_output
)
demo.launch(debug=True)
|