File size: 7,916 Bytes
17d10a7
a15d204
d448add
db46bfb
1c1b50f
 
db46bfb
1c1b50f
db8ba25
db46bfb
cf3593c
d9bf0f0
b950350
6aba99a
3168a3e
019c404
3168a3e
ecc69bf
cf3593c
 
 
1c1b50f
b950350
1c1b50f
ecc69bf
b950350
dfa5d3e
db8ba25
 
 
 
 
 
 
 
 
 
dfa5d3e
e564c8e
 
 
3168a3e
60b6e41
b950350
e564c8e
 
 
 
 
 
 
b950350
 
 
 
 
 
 
019c404
b950350
019c404
 
 
 
b950350
019c404
 
b950350
dfa5d3e
b950350
dfa5d3e
 
b950350
dfa5d3e
3b58485
b950350
17d10a7
db8ba25
 
 
a3b5047
 
 
 
8b6a33e
cf3593c
17d10a7
a3b5047
b950350
d9bf0f0
b950350
d9bf0f0
6f08234
cf3593c
b950350
d448add
dfa5d3e
b950350
dfa5d3e
b950350
ecc69bf
b950350
 
d9bf0f0
 
b950350
d9bf0f0
b950350
 
 
 
 
d9bf0f0
b950350
d9bf0f0
 
b950350
ecc69bf
5080bd7
b950350
e564c8e
 
b950350
ecc69bf
f16af7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c07fa
b950350
d9bf0f0
b950350
 
 
 
3fe530b
a8c9cb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import os
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
    AutoProcessor,
    MusicgenForConditionalGeneration,
)
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import tempfile
import spaces
from TTS.api import TTS

# Load environment variables
load_dotenv()
hf_token = os.getenv("HF_TOKEN")

# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            use_auth_token=token,
            torch_dtype=torch.float16,
            device_map="auto",
            trust_remote_code=True,
        )
        llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)

        system_prompt = (
            f"You are an expert radio imaging producer specializing in sound design and music. "
            f"Based on the user's concept and the selected duration of {duration} seconds, craft a concise, engaging promo script. "
            f"Ensure the script fits within the time limit and suggest a matching music style that complements the theme."
        )

        combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nRefined script and music suggestion:"
        result = llama_pipeline(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)

        generated_text = result[0]["generated_text"].split("Refined script and music suggestion:")[-1].strip()
        if "Music Suggestion:" in generated_text:
            script, music_suggestion = generated_text.split("Music Suggestion:")
            return script.strip(), music_suggestion.strip()
        return generated_text, "No specific music suggestion found."
    except Exception as e:
        return f"Error generating script: {e}", None

# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_voice(script: str, speaker: str = "default"):
    try:
        # Load the TTS model
        tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", gpu=torch.cuda.is_available())
        
        # Generate the speech audio file
        output_path = f"{tempfile.gettempdir()}/generated_voice.wav"
        tts.tts_to_file(text=script, file_path=output_path, speaker=speaker)
        
        return output_path
    except Exception as e:
        return f"Error generating voice-over: {e}"

# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=300)
def generate_music(prompt: str, audio_length: int):
    try:
        musicgen_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
        musicgen_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")

        device = "cuda" if torch.cuda.is_available() else "cpu"
        musicgen_model.to(device)

        inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
        outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)

        audio_data = outputs[0, 0].cpu().numpy()
        normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")

        output_path = f"{tempfile.gettempdir()}/generated_music.wav"
        write(output_path, 44100, normalized_audio)

        return output_path
    except Exception as e:
        return f"Error generating music: {e}"

# ---------------------------------------------------------------------
# Audio Blending Function with Ducking
# ---------------------------------------------------------------------
def blend_audio(voice_path: str, music_path: str, ducking: bool):
    try:
        voice = AudioSegment.from_file(voice_path)
        music = AudioSegment.from_file(music_path)

        if ducking:
            music = music - 10  # Lower music volume for ducking

        combined = music.overlay(voice)
        output_path = f"{tempfile.gettempdir()}/final_promo.wav"
        combined.export(output_path, format="wav")

        return output_path
    except Exception as e:
        return f"Error blending audio: {e}"

# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
    gr.Markdown("""
        # 🎧 AI Promo Studio with Step-by-Step Script, Voice, Music, and Mixing 🚀  
        Generate and mix radio promos effortlessly with AI tools!
    """)

    with gr.Tabs():
        with gr.Tab("Step 1: Generate Script"):
            with gr.Row():
                user_prompt = gr.Textbox(label="Promo Idea", placeholder="E.g., A 30-second promo for a morning show.")
                llama_model_id = gr.Textbox(label="Llama Model ID", value="meta-llama/Meta-Llama-3-8B-Instruct")
                duration = gr.Slider(label="Duration (seconds)", minimum=15, maximum=60, step=15, value=30)

            generate_script_button = gr.Button("Generate Script")
            script_output = gr.Textbox(label="Generated Script")
            music_suggestion_output = gr.Textbox(label="Music Suggestion")

            generate_script_button.click(
                fn=lambda user_prompt, model_id, duration: generate_script(user_prompt, model_id, hf_token, duration),
                inputs=[user_prompt, llama_model_id, duration],
                outputs=[script_output, music_suggestion_output],
            )

        with gr.Tab("Step 2: Generate Voice"):
            with gr.Row():
                speaker = gr.Textbox(label="Voice Style (optional)", placeholder="E.g., male, female, or neutral.")

            generate_voice_button = gr.Button("Generate Voice")
            voice_output = gr.Audio(label="Generated Voice", type="filepath")

            generate_voice_button.click(
                fn=lambda script, speaker: generate_voice(script, speaker),
                inputs=[script_output, speaker],
                outputs=[voice_output],
            )

        with gr.Tab("Step 3: Generate Music"):
            with gr.Row():
                audio_length = gr.Slider(label="Music Length (tokens)", minimum=128, maximum=1024, step=64, value=512)

            generate_music_button = gr.Button("Generate Music")
            music_output = gr.Audio(label="Generated Music", type="filepath")

            generate_music_button.click(
                fn=lambda music_suggestion, audio_length: generate_music(music_suggestion, audio_length),
                inputs=[music_suggestion_output, audio_length],
                outputs=[music_output],
            )

        with gr.Tab("Step 4: Blend Audio"):
            with gr.Row():
                ducking = gr.Checkbox(label="Enable Ducking", value=True)

            blend_button = gr.Button("Blend Audio")
            final_output = gr.Audio(label="Final Promo Audio", type="filepath")

            blend_button.click(
                fn=lambda voice_path, music_path, ducking: blend_audio(voice_path, music_path, ducking),
                inputs=[voice_output, music_output, ducking],
                outputs=[final_output],
            )

    gr.Markdown("""
        <hr>
        <p style="text-align: center; font-size: 0.9em;">
            Created with ❤️ by <a href="https://bilsimaging.com" target="_blank">bilsimaging.com</a>
        </p>
    """)

demo.launch(debug=True)