Aumkeshchy2003's picture
Update app.py
df054c6 verified
raw
history blame
4.55 kB
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
from pathlib import Path
# Create cache directory for models
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load YOLOv5n model (corrected from original)
model_path = Path("models/yolov5n.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True,
source="local", path=str(model_path)).to(device)
else:
print("Downloading YOLOv5n model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
torch.save(model.state_dict(), model_path)
# Model configurations
model.conf = 0.6
model.iou = 0.45
model.classes = None
# Optimizations
if device.type == "cuda":
model.half()
torch.backends.cudnn.benchmark = True
else:
torch.set_num_threads(os.cpu_count())
model.eval()
np.random.seed(42)
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
total_inference_time = 0
inference_count = 0
def detect_objects(image):
global total_inference_time, inference_count
if image is None:
return None
# Convert RGB to BGR for OpenCV operations
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
output_image = image_bgr.copy()
start_time = time.time()
# Convert to RGB for model inference
img_rgb = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
with torch.no_grad():
results = model(img_rgb, size=320) # Reduced input size for speed
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
# Draw bounding boxes
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
# Draw labels
label = f"{model.names[class_id]} {conf:.2f}"
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1)
cv2.rectangle(output_image, (x1, y1 - 20), (x1 + w, y1), color, -1)
cv2.putText(output_image, label, (x1, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, lineType=cv2.LINE_AA)
# Convert back to RGB for Gradio
output_image_rgb = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
# Draw performance metrics
fps = 1 / inference_time
cv2.putText(output_image_rgb, f"FPS: {fps:.1f}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, lineType=cv2.LINE_AA)
cv2.putText(output_image_rgb, f"Avg FPS: {1/avg_inference_time:.1f}", (10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, lineType=cv2.LINE_AA)
return output_image_rgb
# Example images
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
os.makedirs("examples", exist_ok=True)
with gr.Blocks(title="Real-time YOLOv5 Object Detection") as demo:
gr.Markdown("""
# Real-time YOLOv5 Object Detection
- Real-time webcam detection (30+ FPS on GPU)
- Image upload capability
- Performance optimized with half-precision and CUDA acceleration
""")
with gr.Tab("πŸŽ₯ Real-time Webcam"):
with gr.Row():
webcam = gr.Image(source="webcam", streaming=True, label="Live Webcam Feed")
live_output = gr.Image(label="Detection Results")
webcam.stream(fn=detect_objects, inputs=webcam, outputs=live_output)
with gr.Tab("πŸ“Έ Image Upload"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type="numpy", label="Input Image")
gr.Examples(examples=example_images, inputs=input_image)
with gr.Row():
submit_btn = gr.Button("Detect Objects", variant="primary")
clear_btn = gr.Button("Clear")
with gr.Column():
output_image = gr.Image(type="numpy", label="Processed Image")
submit_btn.click(fn=detect_objects, inputs=input_image, outputs=output_image)
clear_btn.click(lambda: (None, None), outputs=[input_image, output_image])
demo.launch()