Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import gradio as gr | |
import cv2 | |
import time | |
import os | |
from pathlib import Path | |
# Create cache directory for models | |
os.makedirs("models", exist_ok=True) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# Load YOLOv5n model (corrected from original) | |
model_path = Path("models/yolov5n.pt") | |
if model_path.exists(): | |
print(f"Loading model from cache: {model_path}") | |
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True, | |
source="local", path=str(model_path)).to(device) | |
else: | |
print("Downloading YOLOv5n model and caching...") | |
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device) | |
torch.save(model.state_dict(), model_path) | |
# Model configurations | |
model.conf = 0.6 | |
model.iou = 0.45 | |
model.classes = None | |
# Optimizations | |
if device.type == "cuda": | |
model.half() | |
torch.backends.cudnn.benchmark = True | |
else: | |
torch.set_num_threads(os.cpu_count()) | |
model.eval() | |
np.random.seed(42) | |
colors = np.random.uniform(0, 255, size=(len(model.names), 3)) | |
total_inference_time = 0 | |
inference_count = 0 | |
def detect_objects(image): | |
global total_inference_time, inference_count | |
if image is None: | |
return None | |
# Convert RGB to BGR for OpenCV operations | |
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
output_image = image_bgr.copy() | |
start_time = time.time() | |
# Convert to RGB for model inference | |
img_rgb = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) | |
with torch.no_grad(): | |
results = model(img_rgb, size=320) # Reduced input size for speed | |
inference_time = time.time() - start_time | |
total_inference_time += inference_time | |
inference_count += 1 | |
avg_inference_time = total_inference_time / inference_count | |
detections = results.pred[0].cpu().numpy() | |
for *xyxy, conf, cls in detections: | |
x1, y1, x2, y2 = map(int, xyxy) | |
class_id = int(cls) | |
color = colors[class_id].tolist() | |
# Draw bounding boxes | |
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA) | |
# Draw labels | |
label = f"{model.names[class_id]} {conf:.2f}" | |
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1) | |
cv2.rectangle(output_image, (x1, y1 - 20), (x1 + w, y1), color, -1) | |
cv2.putText(output_image, label, (x1, y1 - 5), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, lineType=cv2.LINE_AA) | |
# Convert back to RGB for Gradio | |
output_image_rgb = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) | |
# Draw performance metrics | |
fps = 1 / inference_time | |
cv2.putText(output_image_rgb, f"FPS: {fps:.1f}", (10, 30), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, lineType=cv2.LINE_AA) | |
cv2.putText(output_image_rgb, f"Avg FPS: {1/avg_inference_time:.1f}", (10, 60), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, lineType=cv2.LINE_AA) | |
return output_image_rgb | |
# Example images | |
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"] | |
os.makedirs("examples", exist_ok=True) | |
with gr.Blocks(title="Real-time YOLOv5 Object Detection") as demo: | |
gr.Markdown(""" | |
# Real-time YOLOv5 Object Detection | |
- Real-time webcam detection (30+ FPS on GPU) | |
- Image upload capability | |
- Performance optimized with half-precision and CUDA acceleration | |
""") | |
with gr.Tab("π₯ Real-time Webcam"): | |
with gr.Row(): | |
webcam = gr.Image(source="webcam", streaming=True, label="Live Webcam Feed") | |
live_output = gr.Image(label="Detection Results") | |
webcam.stream(fn=detect_objects, inputs=webcam, outputs=live_output) | |
with gr.Tab("πΈ Image Upload"): | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="numpy", label="Input Image") | |
gr.Examples(examples=example_images, inputs=input_image) | |
with gr.Row(): | |
submit_btn = gr.Button("Detect Objects", variant="primary") | |
clear_btn = gr.Button("Clear") | |
with gr.Column(): | |
output_image = gr.Image(type="numpy", label="Processed Image") | |
submit_btn.click(fn=detect_objects, inputs=input_image, outputs=output_image) | |
clear_btn.click(lambda: (None, None), outputs=[input_image, output_image]) | |
demo.launch() |