import torch import numpy as np import gradio as gr import cv2 import time import os from pathlib import Path # Create cache directory for models os.makedirs("models", exist_ok=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load YOLOv5n model (corrected from original) model_path = Path("models/yolov5n.pt") if model_path.exists(): print(f"Loading model from cache: {model_path}") model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True, source="local", path=str(model_path)).to(device) else: print("Downloading YOLOv5n model and caching...") model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device) torch.save(model.state_dict(), model_path) # Model configurations model.conf = 0.6 model.iou = 0.45 model.classes = None # Optimizations if device.type == "cuda": model.half() torch.backends.cudnn.benchmark = True else: torch.set_num_threads(os.cpu_count()) model.eval() np.random.seed(42) colors = np.random.uniform(0, 255, size=(len(model.names), 3)) total_inference_time = 0 inference_count = 0 def detect_objects(image): global total_inference_time, inference_count if image is None: return None # Convert RGB to BGR for OpenCV operations image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) output_image = image_bgr.copy() start_time = time.time() # Convert to RGB for model inference img_rgb = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) with torch.no_grad(): results = model(img_rgb, size=320) # Reduced input size for speed inference_time = time.time() - start_time total_inference_time += inference_time inference_count += 1 avg_inference_time = total_inference_time / inference_count detections = results.pred[0].cpu().numpy() for *xyxy, conf, cls in detections: x1, y1, x2, y2 = map(int, xyxy) class_id = int(cls) color = colors[class_id].tolist() # Draw bounding boxes cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA) # Draw labels label = f"{model.names[class_id]} {conf:.2f}" (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1) cv2.rectangle(output_image, (x1, y1 - 20), (x1 + w, y1), color, -1) cv2.putText(output_image, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, lineType=cv2.LINE_AA) # Convert back to RGB for Gradio output_image_rgb = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) # Draw performance metrics fps = 1 / inference_time cv2.putText(output_image_rgb, f"FPS: {fps:.1f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, lineType=cv2.LINE_AA) cv2.putText(output_image_rgb, f"Avg FPS: {1/avg_inference_time:.1f}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, lineType=cv2.LINE_AA) return output_image_rgb # Example images example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"] os.makedirs("examples", exist_ok=True) with gr.Blocks(title="Real-time YOLOv5 Object Detection") as demo: gr.Markdown(""" # Real-time YOLOv5 Object Detection - Real-time webcam detection (30+ FPS on GPU) - Image upload capability - Performance optimized with half-precision and CUDA acceleration """) with gr.Tab("🎥 Real-time Webcam"): with gr.Row(): webcam = gr.Image(source="webcam", streaming=True, label="Live Webcam Feed") live_output = gr.Image(label="Detection Results") webcam.stream(fn=detect_objects, inputs=webcam, outputs=live_output) with gr.Tab("📸 Image Upload"): with gr.Row(): with gr.Column(): input_image = gr.Image(type="numpy", label="Input Image") gr.Examples(examples=example_images, inputs=input_image) with gr.Row(): submit_btn = gr.Button("Detect Objects", variant="primary") clear_btn = gr.Button("Clear") with gr.Column(): output_image = gr.Image(type="numpy", label="Processed Image") submit_btn.click(fn=detect_objects, inputs=input_image, outputs=output_image) clear_btn.click(lambda: (None, None), outputs=[input_image, output_image]) demo.launch()