Aumkeshchy2003 commited on
Commit
df054c6
·
verified ·
1 Parent(s): a4bd3f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -145
app.py CHANGED
@@ -4,8 +4,6 @@ import gradio as gr
4
  import cv2
5
  import time
6
  import os
7
- import threading
8
- from queue import Queue
9
  from pathlib import Path
10
 
11
  # Create cache directory for models
@@ -14,52 +12,54 @@ os.makedirs("models", exist_ok=True)
14
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
  print(f"Using device: {device}")
16
 
17
- # Use YOLOv5n (nano) for higher FPS
18
  model_path = Path("models/yolov5n.pt")
19
  if model_path.exists():
20
  print(f"Loading model from cache: {model_path}")
21
- model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True, source="local", path=str(model_path)).to(device)
 
22
  else:
23
  print("Downloading YOLOv5n model and caching...")
24
  model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
25
  torch.save(model.state_dict(), model_path)
26
 
27
- # Model configurations for better performance
28
- model.conf = 0.5 # Confidence threshold
29
- model.iou = 0.45 # IOU threshold
30
- model.classes = None # Detect all classes
31
- model.max_det = 20 # Limit detections for speed
32
 
 
33
  if device.type == "cuda":
34
- model.half() # Half precision for CUDA
 
35
  else:
36
  torch.set_num_threads(os.cpu_count())
37
 
38
  model.eval()
39
 
40
- # Precompute colors for bounding boxes
41
  np.random.seed(42)
42
  colors = np.random.uniform(0, 255, size=(len(model.names), 3))
43
 
44
- # Performance tracking
45
  total_inference_time = 0
46
  inference_count = 0
47
- last_fps_values = [] # Store recent FPS values
48
 
49
  def detect_objects(image):
50
- """Process a single image for object detection"""
51
  global total_inference_time, inference_count
52
 
53
  if image is None:
54
  return None
55
 
 
 
 
 
56
  start_time = time.time()
57
- output_image = image.copy()
58
- input_size = 640
59
 
60
- # Optimize input for inference
 
 
61
  with torch.no_grad():
62
- results = model(image, size=input_size)
63
 
64
  inference_time = time.time() - start_time
65
  total_inference_time += inference_time
@@ -68,150 +68,64 @@ def detect_objects(image):
68
 
69
  detections = results.pred[0].cpu().numpy()
70
 
71
- # Draw detections
72
  for *xyxy, conf, cls in detections:
73
  x1, y1, x2, y2 = map(int, xyxy)
74
  class_id = int(cls)
75
  color = colors[class_id].tolist()
76
 
77
- # Bounding box
78
- cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
79
 
80
- # Label with class name and confidence
81
  label = f"{model.names[class_id]} {conf:.2f}"
82
- font_scale, font_thickness = 0.9, 2
83
- (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
84
-
85
- cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
86
- cv2.putText(output_image, label, (x1 + 5, y1 - 5),
87
- cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
88
-
89
- fps = 1 / inference_time
90
-
91
- # Stylish FPS display
92
- overlay = output_image.copy()
93
- cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
94
- output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
95
- cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
96
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
97
- cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
98
- cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
99
-
100
- return output_image
101
-
102
- def process_webcam_frame(frame):
103
- """Process a single frame from webcam"""
104
- global last_fps_values
105
-
106
- if frame is None:
107
- return None
108
-
109
- start_time = time.time()
110
-
111
- # Use a smaller size for real-time
112
- input_size = 384
113
-
114
- # Process the frame
115
- with torch.no_grad():
116
- results = model(frame, size=input_size)
117
-
118
- # Calculate FPS
119
- inference_time = time.time() - start_time
120
- current_fps = 1 / inference_time if inference_time > 0 else 30
121
-
122
- # Update FPS history (keep last 30 values)
123
- last_fps_values.append(current_fps)
124
- if len(last_fps_values) > 30:
125
- last_fps_values.pop(0)
126
- avg_fps = sum(last_fps_values) / len(last_fps_values)
127
 
128
- # Create output image
129
- output = frame.copy()
130
-
131
- # Draw detections
132
- detections = results.pred[0].cpu().numpy()
133
- for *xyxy, conf, cls in detections:
134
- x1, y1, x2, y2 = map(int, xyxy)
135
- class_id = int(cls)
136
- color = colors[class_id].tolist()
137
-
138
- # Draw rectangle and label
139
- cv2.rectangle(output, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
140
-
141
- label = f"{model.names[class_id]} {conf:.2f}"
142
- font_scale, font_thickness = 0.6, 1
143
- (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
144
-
145
- cv2.rectangle(output, (x1, y1 - h - 5), (x1 + w + 5, y1), color, -1)
146
- cv2.putText(output, label, (x1 + 3, y1 - 3),
147
- cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
148
 
149
- # Add FPS counter
150
- cv2.rectangle(output, (10, 10), (210, 80), (0, 0, 0), -1)
151
- cv2.putText(output, f"FPS: {current_fps:.1f}", (20, 40),
152
- cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2, lineType=cv2.LINE_AA)
153
- cv2.putText(output, f"Avg FPS: {avg_fps:.1f}", (20, 70),
154
- cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2, lineType=cv2.LINE_AA)
155
 
156
- return output
157
-
158
- def process_uploaded_image(image):
159
- """Process an uploaded image"""
160
- return detect_objects(image)
161
 
162
- # Setup Gradio interface
163
  example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
164
  os.makedirs("examples", exist_ok=True)
165
 
166
- # Simplified interface with proper webcam handling
167
- with gr.Blocks(title="YOLOv5 Object Detection - Real-time & Image Upload") as demo:
168
  gr.Markdown("""
169
- # YOLOv5 Object Detection
170
- ## Real-time webcam detection and image upload processing
 
 
171
  """)
172
 
173
- with gr.Tabs():
174
- with gr.TabItem("Real-time Detection"):
175
- gr.Markdown("""
176
- ### Real-time Object Detection
177
- Using your webcam for continuous object detection at 30+ FPS.
178
- """)
179
- # Use Gradio's webcam component with processing function
180
- webcam = gr.Webcam(label="Webcam Input")
181
- webcam_output = gr.Image(label="Real-time Detection")
182
- detect_button = gr.Button("Detect Objects")
 
 
 
 
183
 
184
- # Connect webcam to processor
185
- detect_button.click(
186
- fn=process_webcam_frame,
187
- inputs=webcam,
188
- outputs=webcam_output
189
- )
190
 
191
- with gr.TabItem("Image Upload"):
192
- gr.Markdown("""
193
- ### Image Upload Detection
194
- Upload an image to detect objects.
195
- """)
196
- with gr.Row():
197
- with gr.Column(scale=1):
198
- input_image = gr.Image(label="Input Image", type="numpy")
199
- submit_button = gr.Button("Submit", variant="primary")
200
- clear_button = gr.Button("Clear")
201
-
202
- with gr.Column(scale=1):
203
- output_image = gr.Image(label="Detected Objects", type="numpy")
204
-
205
- gr.Examples(
206
- examples=example_images,
207
- inputs=input_image,
208
- outputs=output_image,
209
- fn=process_uploaded_image,
210
- cache_examples=True
211
- )
212
-
213
- # Set up event handlers
214
- submit_button.click(fn=process_uploaded_image, inputs=input_image, outputs=output_image)
215
- clear_button.click(lambda: (None, None), None, [input_image, output_image])
216
 
217
- demo.launch(share=False)
 
4
  import cv2
5
  import time
6
  import os
 
 
7
  from pathlib import Path
8
 
9
  # Create cache directory for models
 
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
  print(f"Using device: {device}")
14
 
15
+ # Load YOLOv5n model (corrected from original)
16
  model_path = Path("models/yolov5n.pt")
17
  if model_path.exists():
18
  print(f"Loading model from cache: {model_path}")
19
+ model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True,
20
+ source="local", path=str(model_path)).to(device)
21
  else:
22
  print("Downloading YOLOv5n model and caching...")
23
  model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
24
  torch.save(model.state_dict(), model_path)
25
 
26
+ # Model configurations
27
+ model.conf = 0.6
28
+ model.iou = 0.45
29
+ model.classes = None
 
30
 
31
+ # Optimizations
32
  if device.type == "cuda":
33
+ model.half()
34
+ torch.backends.cudnn.benchmark = True
35
  else:
36
  torch.set_num_threads(os.cpu_count())
37
 
38
  model.eval()
39
 
 
40
  np.random.seed(42)
41
  colors = np.random.uniform(0, 255, size=(len(model.names), 3))
42
 
 
43
  total_inference_time = 0
44
  inference_count = 0
 
45
 
46
  def detect_objects(image):
 
47
  global total_inference_time, inference_count
48
 
49
  if image is None:
50
  return None
51
 
52
+ # Convert RGB to BGR for OpenCV operations
53
+ image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
54
+ output_image = image_bgr.copy()
55
+
56
  start_time = time.time()
 
 
57
 
58
+ # Convert to RGB for model inference
59
+ img_rgb = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
60
+
61
  with torch.no_grad():
62
+ results = model(img_rgb, size=320) # Reduced input size for speed
63
 
64
  inference_time = time.time() - start_time
65
  total_inference_time += inference_time
 
68
 
69
  detections = results.pred[0].cpu().numpy()
70
 
 
71
  for *xyxy, conf, cls in detections:
72
  x1, y1, x2, y2 = map(int, xyxy)
73
  class_id = int(cls)
74
  color = colors[class_id].tolist()
75
 
76
+ # Draw bounding boxes
77
+ cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
78
 
79
+ # Draw labels
80
  label = f"{model.names[class_id]} {conf:.2f}"
81
+ (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1)
82
+ cv2.rectangle(output_image, (x1, y1 - 20), (x1 + w, y1), color, -1)
83
+ cv2.putText(output_image, label, (x1, y1 - 5),
84
+ cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, lineType=cv2.LINE_AA)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ # Convert back to RGB for Gradio
87
+ output_image_rgb = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
+ # Draw performance metrics
90
+ fps = 1 / inference_time
91
+ cv2.putText(output_image_rgb, f"FPS: {fps:.1f}", (10, 30),
92
+ cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, lineType=cv2.LINE_AA)
93
+ cv2.putText(output_image_rgb, f"Avg FPS: {1/avg_inference_time:.1f}", (10, 60),
94
+ cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, lineType=cv2.LINE_AA)
95
 
96
+ return output_image_rgb
 
 
 
 
97
 
98
+ # Example images
99
  example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
100
  os.makedirs("examples", exist_ok=True)
101
 
102
+ with gr.Blocks(title="Real-time YOLOv5 Object Detection") as demo:
 
103
  gr.Markdown("""
104
+ # Real-time YOLOv5 Object Detection
105
+ - Real-time webcam detection (30+ FPS on GPU)
106
+ - Image upload capability
107
+ - Performance optimized with half-precision and CUDA acceleration
108
  """)
109
 
110
+ with gr.Tab("🎥 Real-time Webcam"):
111
+ with gr.Row():
112
+ webcam = gr.Image(source="webcam", streaming=True, label="Live Webcam Feed")
113
+ live_output = gr.Image(label="Detection Results")
114
+ webcam.stream(fn=detect_objects, inputs=webcam, outputs=live_output)
115
+
116
+ with gr.Tab("📸 Image Upload"):
117
+ with gr.Row():
118
+ with gr.Column():
119
+ input_image = gr.Image(type="numpy", label="Input Image")
120
+ gr.Examples(examples=example_images, inputs=input_image)
121
+ with gr.Row():
122
+ submit_btn = gr.Button("Detect Objects", variant="primary")
123
+ clear_btn = gr.Button("Clear")
124
 
125
+ with gr.Column():
126
+ output_image = gr.Image(type="numpy", label="Processed Image")
 
 
 
 
127
 
128
+ submit_btn.click(fn=detect_objects, inputs=input_image, outputs=output_image)
129
+ clear_btn.click(lambda: (None, None), outputs=[input_image, output_image])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
+ demo.launch()