Spaces:
Running
Running
File size: 5,902 Bytes
caff61e bccf53b dc80d48 0152e0c a186d85 caff61e a186d85 0152e0c 0e19825 b5a364c a186d85 36e1064 0e19825 a186d85 0152e0c a186d85 0152e0c 0e19825 0152e0c 0e19825 e82b28e a186d85 8513c99 0e19825 a186d85 0e19825 a186d85 0e19825 a186d85 0e19825 8513c99 a186d85 0e19825 3e3644e a186d85 0e19825 a186d85 0e19825 a186d85 0e19825 8513c99 a186d85 0e19825 a186d85 8513c99 a186d85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
from pathlib import Path
# Create cache directory for models if it doesn't exist
os.makedirs("models", exist_ok=True)
# Check device availability - Hugging Face Spaces often provides GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load YOLOv5x model with caching for faster startup
model_path = Path("models/yolov5x.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True,
source="local", path=str(model_path)).to(device)
else:
print("Downloading YOLOv5x model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
# Cache the model for faster startup next time
torch.save(model.state_dict(), model_path)
# Optimization configurations
model.conf = 0.3 # Confidence threshold of 0.3 as specified
model.iou = 0.3 # NMS IoU threshold of 0.3 as specified
model.classes = None # Detect all 80+ COCO classes
# Optimize for GPU if available
if device.type == "cuda":
# Use mixed precision for performance boost
model.half()
else:
# On CPU, optimize operations
torch.set_num_threads(os.cpu_count())
# Set model to evaluation mode for inference
model.eval()
# Assign fixed colors to each class for consistent visualization
np.random.seed(42) # For reproducible colors
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
# Track performance metrics
total_inference_time = 0
inference_count = 0
def detect_objects(image):
"""
Process input image for object detection using YOLOv5
Args:
image: Input image as numpy array
Returns:
output_image: Image with detection results visualized
"""
global total_inference_time, inference_count
if image is None:
return None
start_time = time.time()
# Create a copy for drawing results
output_image = image.copy()
# Fixed input size for optimal processing
input_size = 640
# Perform inference with no gradient calculation
with torch.no_grad():
# Convert image to tensor for faster processing
results = model(image, size=input_size)
# Record inference time (model processing only)
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
# Extract detections from first (and only) image
detections = results.pred[0].cpu().numpy()
# Draw each detection on the output image
for *xyxy, conf, cls in detections:
# Extract coordinates and convert to integers
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
# Get color for this class
color = colors[class_id].tolist()
# Draw bounding box
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 2)
# Create label with class name and confidence score
label = f"{model.names[class_id]} {conf:.2f}"
# Calculate text size for background rectangle
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
# Draw label background
cv2.rectangle(output_image, (x1, y1 - 20), (x1 + w, y1), color, -1)
# Draw label text
cv2.putText(output_image, label, (x1, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
# Calculate FPS
fps = 1 / inference_time
# Add FPS counter to the image
cv2.putText(output_image, f"FPS: {fps:.2f}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (10, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return output_image
# Define example images - these will be stored in the same directory as this script
example_images = [
"examples/spring_street_after.jpg",
"examples/pexels-hikaique-109919.jpg"
]
# Make sure example directory exists
os.makedirs("examples", exist_ok=True)
# Create Gradio interface - optimized for Hugging Face Spaces
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
gr.Markdown("""
# Optimized YOLOv5 Object Detection
This system utilizes YOLOv5 to detect 80+ object types from the COCO dataset.
**Performance Features:**
- Processing speed: Optimized for 30+ FPS at 640x640 resolution
- Confidence threshold: 0.3
- IoU threshold: 0.3
- Real-time FPS display
Simply upload an image or take a photo with your camera to see the detections!
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
with gr.Row():
camera_button = gr.Button("Take Photo from Camera")
clear_button = gr.Button("Clear")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Objects", type="numpy")
# Example gallery
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=detect_objects,
cache_examples=True # Cache for faster response
)
# Set up the inference call
input_image.change(fn=detect_objects, inputs=input_image, outputs=output_image)
# Event listeners for buttons
camera_button.click(lambda: None, None, input_image, js="() => {document.querySelector('button.webcam').click(); return null}")
clear_button.click(lambda: None, None, [input_image, output_image])
# Launch for Hugging Face Spaces
demo.launch() |