Spaces:
Running
Running
File size: 6,701 Bytes
caff61e 359afbb 679a693 bf9434d 679a693 359afbb 679a693 a549deb 679a693 359afbb a549deb 679a693 3545274 679a693 aeec4bb 679a693 bf9434d 679a693 bf9434d 679a693 bf9434d 679a693 bf9434d 679a693 c1a4fa5 ebbb1aa a549deb 18a593e bf9434d ebbb1aa 18a593e ebbb1aa 1052f15 ebbb1aa a549deb ebbb1aa bf9434d 1052f15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
from pathlib import Path
from PIL import Image
# Create cache directory for models
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load YOLOv5 Nano model
model_path = Path("models/yolov5n.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), source="local").to(device)
else:
print("Downloading YOLOv5n model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
torch.save(model.state_dict(), model_path)
# Optimize model for speed
model.conf = 0.3
model.iou = 0.3
model.classes = None
if device.type == "cuda":
model.half()
else:
torch.set_num_threads(os.cpu_count())
model.eval()
# Pre-generate colors for bounding boxes
np.random.seed(42)
colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8)
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Could not open video file."
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
fps = cap.get(cv2.CAP_PROP_FPS)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_path = "output_video.mp4"
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
total_frames = 0
total_time = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
start_time = time.time()
# Convert frame for YOLOv5
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model(img, size=640)
inference_time = time.time() - start_time
total_time += inference_time
total_frames += 1
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
cv2.putText(frame, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
# Calculate FPS
avg_fps = total_frames / total_time if total_time > 0 else 0
cv2.putText(frame, f"FPS: {avg_fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
out.write(frame)
cap.release()
out.release()
return output_path
def process_image(image):
img = np.array(image)
results = model(img, size=640)
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
cv2.rectangle(img, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
cv2.putText(img, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
return Image.fromarray(img)
css = """
#title {
text-align: center;
color: #2C3E50;
font-size: 2.5rem;
margin: 1.5rem 0;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
.gradio-container {
background-color: #F5F7FA;
}
.tab-item {
background-color: white;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
margin: 10px;
}
.button-row {
display: flex;
justify-content: space-around;
margin: 1rem 0;
}
#video-process-btn, #submit-btn {
background-color: #3498DB;
border: none;
}
#clear-btn {
background-color: #E74C3C;
border: none;
}
.output-container {
margin-top: 1.5rem;
border: 2px dashed #3498DB;
border-radius: 10px;
padding: 10px;
}
.footer {
text-align: center;
margin-top: 2rem;
font-size: 0.9rem;
color: #7F8C8D;
}
"""
with gr.Blocks(css=css, title="Video & Image Object Detection by YOLOv5") as demo:
gr.Markdown("""# YOLOv5 Object Detection""", elem_id="title")
with gr.Tabs():
with gr.TabItem("Video Detection", elem_classes="tab-item"):
with gr.Row():
video_input = gr.Video(
label="Upload Video",
interactive=True,
elem_id="video-input"
)
with gr.Row(elem_classes="button-row"):
process_button = gr.Button(
"Process Video",
variant="primary",
elem_id="video-process-btn"
)
with gr.Row(elem_classes="output-container"):
video_output = gr.Video(
label="Processed Video",
elem_id="video-output"
)
process_button.click(
fn=process_video,
inputs=video_input,
outputs=video_output
)
with gr.TabItem("Image Detection", elem_classes="tab-item"):
with gr.Row():
image_input = gr.Image(
type="pil",
label="Upload Image",
interactive=True
)
with gr.Row(elem_classes="button-row"):
clear_button = gr.Button(
"Clear",
variant="secondary",
elem_id="clear-btn"
)
submit_button = gr.Button(
"Detect Objects",
variant="primary",
elem_id="submit-btn"
)
with gr.Row(elem_classes="output-container"):
image_output = gr.Image(
label="Detected Objects",
elem_id="image-output"
)
clear_button.click(
fn=lambda: None,
inputs=None,
outputs=image_output
)
submit_button.click(
fn=process_image,
inputs=image_input,
outputs=image_output
)
gr.Markdown("""
### Powered by YOLOv5.
This application enables seamless object detection using the YOLOv5 model, allowing users to analyze images and videos with high accuracy and efficiency.
""", elem_classes="footer")
demo.launch() |