Aumkeshchy2003 commited on
Commit
3545274
·
verified ·
1 Parent(s): bf9434d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -5
app.py CHANGED
@@ -26,7 +26,7 @@ else:
26
  # Optimize model for speed
27
  model.conf = 0.3 # Lower confidence threshold
28
  model.iou = 0.3 # Non-Maximum Suppression IoU threshold
29
- model.classes = None # Detect all classes
30
 
31
  if device.type == "cuda":
32
  model.half() # Use FP16 for faster inference
@@ -37,7 +37,7 @@ model.eval()
37
 
38
  # Pre-generate colors for bounding boxes
39
  np.random.seed(42)
40
- colors = np.random.uniform(0, 255, size=(len(model.names), 3))
41
 
42
  def process_video(video_path):
43
  cap = cv2.VideoCapture(video_path)
@@ -121,8 +121,13 @@ with gr.Blocks(title="Real-Time YOLOv5 Video & Image Detection") as demo:
121
  process_button.click(fn=process_video, inputs=video_input, outputs=video_output)
122
 
123
  with gr.TabItem("Image Detection"):
124
- image_input = gr.Image(type="pil", label="Upload Image")
125
- image_output = gr.Image(label="Detected Objects")
126
- image_input.change(fn=process_image, inputs=image_input, outputs=image_output)
 
 
 
 
 
127
 
128
  demo.launch()
 
26
  # Optimize model for speed
27
  model.conf = 0.3 # Lower confidence threshold
28
  model.iou = 0.3 # Non-Maximum Suppression IoU threshold
29
+ model.classes = None # Detect all 80+ COCO classes
30
 
31
  if device.type == "cuda":
32
  model.half() # Use FP16 for faster inference
 
37
 
38
  # Pre-generate colors for bounding boxes
39
  np.random.seed(42)
40
+ colors = np.random.randint(0, 255, size=(len(model.names), 3), dtype=np.uint8)
41
 
42
  def process_video(video_path):
43
  cap = cv2.VideoCapture(video_path)
 
121
  process_button.click(fn=process_video, inputs=video_input, outputs=video_output)
122
 
123
  with gr.TabItem("Image Detection"):
124
+ with gr.Row():
125
+ image_input = gr.Image(type="pil", label="Upload Image", width=256, height=256)
126
+ with gr.Row():
127
+ submit_button = gr.Button("Submit")
128
+ clear_button = gr.Button("Clear")
129
+ image_output = gr.Image(label="Detected Objects", width=256, height=256)
130
+ submit_button.click(fn=process_image, inputs=image_input, outputs=image_output)
131
+ clear_button.click(fn=lambda: None, inputs=None, outputs=image_output)
132
 
133
  demo.launch()