Aumkeshchy2003 commited on
Commit
359afbb
·
verified ·
1 Parent(s): 6de980c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +111 -26
app.py CHANGED
@@ -1,35 +1,120 @@
1
- import cv2
2
  import torch
3
- from ultralytics import YOLO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
- # Load YOLOv5 model with GPU support if available
6
- device = "cuda" if torch.cuda.is_available() else "cpu"
7
- model = YOLO("yolov5s.pt").to(device) # You can use yolov5m.pt for better accuracy
 
8
 
9
- # Initialize video capture (Webcam)
10
- cap = cv2.VideoCapture(0)
11
- cap.set(cv2.CAP_PROP_FPS, 30) # Ensure 30+ FPS
12
- cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) # Set width
13
- cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) # Set height
14
 
15
- while cap.isOpened():
16
- ret, frame = cap.read()
17
- if not ret:
18
- break
19
 
20
- # Perform object detection
21
- results = model(frame)
22
 
23
- # Plot the results (draw bounding boxes)
24
- result_img = results[0].plot()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- # Display the output in a window
27
- cv2.imshow("YOLOv5 Live Object Detection", result_img)
28
 
29
- # Break loop with 'q' key
30
- if cv2.waitKey(1) & 0xFF == ord("q"):
31
- break
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
- # Release resources
34
- cap.release()
35
- cv2.destroyAllWindows()
 
 
1
  import torch
2
+ import numpy as np
3
+ import gradio as gr
4
+ import cv2
5
+ import time
6
+ import os
7
+ from pathlib import Path
8
+
9
+ # Create cache directory for models
10
+ os.makedirs("models", exist_ok=True)
11
+
12
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+ print(f"Using device: {device}")
14
+
15
+ model_path = Path("models/yolov5n.pt")
16
+ if model_path.exists():
17
+ print(f"Loading model from cache: {model_path}")
18
+ model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
19
+ else:
20
+ print("Downloading YOLOv5n model and caching...")
21
+ model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
22
+ torch.save(model.state_dict(), model_path)
23
+
24
+ # Model configurations
25
+ model.conf = 0.6
26
+ model.iou = 0.6
27
+ model.classes = None
28
 
29
+ if device.type == "cuda":
30
+ model.half()
31
+ else:
32
+ torch.set_num_threads(os.cpu_count())
33
 
34
+ model.eval()
 
 
 
 
35
 
36
+ np.random.seed(42)
37
+ colors = np.random.uniform(0, 255, size=(len(model.names), 3))
 
 
38
 
39
+ total_inference_time = 0
40
+ inference_count = 0
41
 
42
+ def detect_objects(image):
43
+ global total_inference_time, inference_count
44
+
45
+ if image is None:
46
+ return None
47
+
48
+ start_time = time.time()
49
+ output_image = image.copy()
50
+ input_size = 640
51
+
52
+ with torch.no_grad():
53
+ results = model(image, size=input_size)
54
+
55
+ inference_time = time.time() - start_time
56
+ total_inference_time += inference_time
57
+ inference_count += 1
58
+ avg_inference_time = total_inference_time / inference_count
59
+
60
+ detections = results.pred[0].cpu().numpy()
61
+
62
+ for *xyxy, conf, cls in detections:
63
+ x1, y1, x2, y2 = map(int, xyxy)
64
+ class_id = int(cls)
65
+ color = colors[class_id].tolist()
66
+
67
+ # Thicker bounding boxes
68
+ cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
69
+
70
+ label = f"{model.names[class_id]} {conf:.2f}"
71
+ font_scale, font_thickness = 0.9, 2
72
+ (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
73
+
74
+ cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
75
+ cv2.putText(output_image, label, (x1 + 5, y1 - 5),
76
+ cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
77
+
78
+ fps = 1 / inference_time
79
+
80
+ # Stylish FPS display
81
+ overlay = output_image.copy()
82
+ cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
83
+ output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
84
+ cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
85
+ cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
86
+ cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
87
+ cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
88
+
89
+ return output_image
90
 
91
+ example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
92
+ os.makedirs("examples", exist_ok=True)
93
 
94
+ with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
95
+ gr.Markdown("""
96
+ # Optimized YOLOv5 Object Detection
97
+ Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
98
+ """)
99
+
100
+ with gr.Row():
101
+ with gr.Column(scale=1):
102
+ input_image = gr.Image(label="Input Image", type="numpy")
103
+ submit_button = gr.Button("Submit", variant="primary")
104
+ clear_button = gr.Button("Clear")
105
+
106
+ with gr.Column(scale=1):
107
+ output_image = gr.Image(label="Detected Objects", type="numpy")
108
+
109
+ gr.Examples(
110
+ examples=example_images,
111
+ inputs=input_image,
112
+ outputs=output_image,
113
+ fn=detect_objects,
114
+ cache_examples=True
115
+ )
116
+
117
+ submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
118
+ clear_button.click(lambda: (None, None), None, [input_image, output_image])
119
 
120
+ demo.launch()