Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,120 @@
|
|
1 |
-
import cv2
|
2 |
import torch
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
cap = cv2.VideoCapture(0)
|
11 |
-
cap.set(cv2.CAP_PROP_FPS, 30) # Ensure 30+ FPS
|
12 |
-
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) # Set width
|
13 |
-
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) # Set height
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
if not ret:
|
18 |
-
break
|
19 |
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
cap.release()
|
35 |
-
cv2.destroyAllWindows()
|
|
|
|
|
1 |
import torch
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import cv2
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
# Create cache directory for models
|
10 |
+
os.makedirs("models", exist_ok=True)
|
11 |
+
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
print(f"Using device: {device}")
|
14 |
+
|
15 |
+
model_path = Path("models/yolov5n.pt")
|
16 |
+
if model_path.exists():
|
17 |
+
print(f"Loading model from cache: {model_path}")
|
18 |
+
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True, source="local", path=str(model_path)).to(device)
|
19 |
+
else:
|
20 |
+
print("Downloading YOLOv5n model and caching...")
|
21 |
+
model = torch.hub.load("ultralytics/yolov5", "yolov5x", pretrained=True).to(device)
|
22 |
+
torch.save(model.state_dict(), model_path)
|
23 |
+
|
24 |
+
# Model configurations
|
25 |
+
model.conf = 0.6
|
26 |
+
model.iou = 0.6
|
27 |
+
model.classes = None
|
28 |
|
29 |
+
if device.type == "cuda":
|
30 |
+
model.half()
|
31 |
+
else:
|
32 |
+
torch.set_num_threads(os.cpu_count())
|
33 |
|
34 |
+
model.eval()
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
np.random.seed(42)
|
37 |
+
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
|
|
|
|
|
38 |
|
39 |
+
total_inference_time = 0
|
40 |
+
inference_count = 0
|
41 |
|
42 |
+
def detect_objects(image):
|
43 |
+
global total_inference_time, inference_count
|
44 |
+
|
45 |
+
if image is None:
|
46 |
+
return None
|
47 |
+
|
48 |
+
start_time = time.time()
|
49 |
+
output_image = image.copy()
|
50 |
+
input_size = 640
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
results = model(image, size=input_size)
|
54 |
+
|
55 |
+
inference_time = time.time() - start_time
|
56 |
+
total_inference_time += inference_time
|
57 |
+
inference_count += 1
|
58 |
+
avg_inference_time = total_inference_time / inference_count
|
59 |
+
|
60 |
+
detections = results.pred[0].cpu().numpy()
|
61 |
+
|
62 |
+
for *xyxy, conf, cls in detections:
|
63 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
64 |
+
class_id = int(cls)
|
65 |
+
color = colors[class_id].tolist()
|
66 |
+
|
67 |
+
# Thicker bounding boxes
|
68 |
+
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
|
69 |
+
|
70 |
+
label = f"{model.names[class_id]} {conf:.2f}"
|
71 |
+
font_scale, font_thickness = 0.9, 2
|
72 |
+
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
|
73 |
+
|
74 |
+
cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
|
75 |
+
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
|
76 |
+
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
|
77 |
+
|
78 |
+
fps = 1 / inference_time
|
79 |
+
|
80 |
+
# Stylish FPS display
|
81 |
+
overlay = output_image.copy()
|
82 |
+
cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
|
83 |
+
output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
|
84 |
+
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
|
85 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
86 |
+
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
|
87 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
88 |
+
|
89 |
+
return output_image
|
90 |
|
91 |
+
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
|
92 |
+
os.makedirs("examples", exist_ok=True)
|
93 |
|
94 |
+
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
|
95 |
+
gr.Markdown("""
|
96 |
+
# Optimized YOLOv5 Object Detection
|
97 |
+
Detects objects using YOLOv5 with enhanced visualization and FPS tracking.
|
98 |
+
""")
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
with gr.Column(scale=1):
|
102 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
103 |
+
submit_button = gr.Button("Submit", variant="primary")
|
104 |
+
clear_button = gr.Button("Clear")
|
105 |
+
|
106 |
+
with gr.Column(scale=1):
|
107 |
+
output_image = gr.Image(label="Detected Objects", type="numpy")
|
108 |
+
|
109 |
+
gr.Examples(
|
110 |
+
examples=example_images,
|
111 |
+
inputs=input_image,
|
112 |
+
outputs=output_image,
|
113 |
+
fn=detect_objects,
|
114 |
+
cache_examples=True
|
115 |
+
)
|
116 |
+
|
117 |
+
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
|
118 |
+
clear_button.click(lambda: (None, None), None, [input_image, output_image])
|
119 |
|
120 |
+
demo.launch()
|
|
|
|