ApsidalSolid4's picture
Update app.py
5f61427 verified
raw
history blame
23.5 kB
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import spacy
from typing import List, Dict, Tuple
import logging
import os
import gradio as gr
from fastapi.middleware.cors import CORSMiddleware
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import time
from datetime import datetime
import openpyxl
from openpyxl import Workbook
from openpyxl.utils import get_column_letter
from io import BytesIO
import base64
import hashlib
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_LENGTH = 512
MODEL_NAME = "microsoft/deberta-v3-small"
WINDOW_SIZE = 6
WINDOW_OVERLAP = 2
CONFIDENCE_THRESHOLD = 0.65
BATCH_SIZE = 8 # Reduced batch size for CPU
MAX_WORKERS = 4 # Number of worker threads for processing
# Get password hash from environment variable (more secure)
ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
if not ADMIN_PASSWORD_HASH:
ADMIN_PASSWORD_HASH = "5e22d1ed71b273b1b2b5331f2d3e0f6cf34595236f201c6924d6bc81de27cdcb"
# Excel file path for logs
EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
def is_admin_password(input_text: str) -> bool:
"""
Check if the input text matches the admin password using secure hash comparison.
This prevents the password from being visible in the source code.
"""
# Hash the input text
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
# Compare hashes (constant-time comparison to prevent timing attacks)
return input_hash == ADMIN_PASSWORD_HASH
class TextWindowProcessor:
def __init__(self):
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
logger.info("Downloading spacy model...")
spacy.cli.download("en_core_web_sm")
self.nlp = spacy.load("en_core_web_sm")
if 'sentencizer' not in self.nlp.pipe_names:
self.nlp.add_pipe('sentencizer')
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
self.nlp.disable_pipes(*disabled_pipes)
# Initialize thread pool for parallel processing
self.executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
def split_into_sentences(self, text: str) -> List[str]:
doc = self.nlp(text)
return [str(sent).strip() for sent in doc.sents]
def create_windows(self, sentences: List[str], window_size: int, overlap: int) -> List[str]:
if len(sentences) < window_size:
return [" ".join(sentences)]
windows = []
stride = window_size - overlap
for i in range(0, len(sentences) - window_size + 1, stride):
window = sentences[i:i + window_size]
windows.append(" ".join(window))
return windows
def create_centered_windows(self, sentences: List[str], window_size: int) -> Tuple[List[str], List[List[int]]]:
"""Create windows with better boundary handling"""
windows = []
window_sentence_indices = []
for i in range(len(sentences)):
# Calculate window boundaries centered on current sentence
half_window = window_size // 2
start_idx = max(0, i - half_window)
end_idx = min(len(sentences), i + half_window + 1)
# Create the window
window = sentences[start_idx:end_idx]
windows.append(" ".join(window))
window_sentence_indices.append(list(range(start_idx, end_idx)))
return windows, window_sentence_indices
class TextClassifier:
def __init__(self):
# Set thread configuration before any model loading or parallel work
if not torch.cuda.is_available():
torch.set_num_threads(MAX_WORKERS)
torch.set_num_interop_threads(MAX_WORKERS)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model_name = MODEL_NAME
self.tokenizer = None
self.model = None
self.processor = TextWindowProcessor()
self.initialize_model()
def initialize_model(self):
"""Initialize the model and tokenizer."""
logger.info("Initializing model and tokenizer...")
from transformers import DebertaV2TokenizerFast
self.tokenizer = DebertaV2TokenizerFast.from_pretrained(
self.model_name,
model_max_length=MAX_LENGTH,
use_fast=True
)
self.model = AutoModelForSequenceClassification.from_pretrained(
self.model_name,
num_labels=2
).to(self.device)
model_path = "model_20250209_184929_acc1.0000.pt"
if os.path.exists(model_path):
logger.info(f"Loading custom model from {model_path}")
checkpoint = torch.load(model_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
else:
logger.warning("Custom model file not found. Using base model.")
self.model.eval()
def quick_scan(self, text: str) -> Dict:
"""Perform a quick scan using simple window analysis."""
if not text.strip():
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_windows': 0
}
sentences = self.processor.split_into_sentences(text)
windows = self.processor.create_windows(sentences, WINDOW_SIZE, WINDOW_OVERLAP)
predictions = []
# Process windows in smaller batches for CPU efficiency
for i in range(0, len(windows), BATCH_SIZE):
batch_windows = windows[i:i + BATCH_SIZE]
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
for idx, window in enumerate(batch_windows):
prediction = {
'window': window,
'human_prob': probs[idx][1].item(),
'ai_prob': probs[idx][0].item(),
'prediction': 'human' if probs[idx][1] > probs[idx][0] else 'ai'
}
predictions.append(prediction)
# Clean up GPU memory if available
del inputs, outputs, probs
if torch.cuda.is_available():
torch.cuda.empty_cache()
if not predictions:
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_windows': 0
}
avg_human_prob = sum(p['human_prob'] for p in predictions) / len(predictions)
avg_ai_prob = sum(p['ai_prob'] for p in predictions) / len(predictions)
return {
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_windows': len(predictions)
}
def detailed_scan(self, text: str) -> Dict:
"""Perform a detailed scan with improved sentence-level analysis."""
# Clean up trailing whitespace
text = text.rstrip()
if not text.strip():
return {
'sentence_predictions': [],
'highlighted_text': '',
'full_text': '',
'overall_prediction': {
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
}
sentences = self.processor.split_into_sentences(text)
if not sentences:
return {}
# Create centered windows for each sentence
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
# Track scores for each sentence
sentence_appearances = {i: 0 for i in range(len(sentences))}
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
# Process windows in batches
for i in range(0, len(windows), BATCH_SIZE):
batch_windows = windows[i:i + BATCH_SIZE]
batch_indices = window_sentence_indices[i:i + BATCH_SIZE]
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
# Attribute predictions with weighted scoring
for window_idx, indices in enumerate(batch_indices):
center_idx = len(indices) // 2
center_weight = 0.7 # Higher weight for center sentence
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
for pos, sent_idx in enumerate(indices):
# Apply higher weight to center sentence
weight = center_weight if pos == center_idx else edge_weight
sentence_appearances[sent_idx] += weight
sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
# Clean up memory
del inputs, outputs, probs
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Calculate final predictions with boundary smoothing
sentence_predictions = []
for i in range(len(sentences)):
if sentence_appearances[i] > 0:
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
# Apply minimal smoothing at prediction boundaries
if i > 0 and i < len(sentences) - 1:
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
# Check if we're at a prediction boundary
current_pred = 'human' if human_prob > ai_prob else 'ai'
prev_pred = 'human' if prev_human > prev_ai else 'ai'
next_pred = 'human' if next_human > next_ai else 'ai'
if current_pred != prev_pred or current_pred != next_pred:
# Small adjustment at boundaries
smooth_factor = 0.1
human_prob = (human_prob * (1 - smooth_factor) +
(prev_human + next_human) * smooth_factor / 2)
ai_prob = (ai_prob * (1 - smooth_factor) +
(prev_ai + next_ai) * smooth_factor / 2)
sentence_predictions.append({
'sentence': sentences[i],
'human_prob': human_prob,
'ai_prob': ai_prob,
'prediction': 'human' if human_prob > ai_prob else 'ai',
'confidence': max(human_prob, ai_prob)
})
return {
'sentence_predictions': sentence_predictions,
'highlighted_text': self.format_predictions_html(sentence_predictions),
'full_text': text,
'overall_prediction': self.aggregate_predictions(sentence_predictions)
}
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
"""Format predictions as HTML with color-coding."""
html_parts = []
for pred in sentence_predictions:
sentence = pred['sentence']
confidence = pred['confidence']
if confidence >= CONFIDENCE_THRESHOLD:
if pred['prediction'] == 'human':
color = "#90EE90" # Light green
else:
color = "#FFB6C6" # Light red
else:
if pred['prediction'] == 'human':
color = "#E8F5E9" # Very light green
else:
color = "#FFEBEE" # Very light red
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
return " ".join(html_parts)
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
"""Aggregate predictions from multiple sentences into a single prediction."""
if not predictions:
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
total_human_prob = sum(p['human_prob'] for p in predictions)
total_ai_prob = sum(p['ai_prob'] for p in predictions)
num_sentences = len(predictions)
avg_human_prob = total_human_prob / num_sentences
avg_ai_prob = total_ai_prob / num_sentences
return {
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_sentences': num_sentences
}
def initialize_excel_log():
"""Initialize the Excel log file if it doesn't exist."""
if not os.path.exists(EXCEL_LOG_PATH):
wb = Workbook()
ws = wb.active
ws.title = "Prediction Logs"
# Set column headers
headers = ["timestamp", "word_count", "prediction", "confidence",
"execution_time_ms", "analysis_mode", "full_text"]
for col_num, header in enumerate(headers, 1):
ws.cell(row=1, column=col_num, value=header)
# Adjust column widths for better readability
ws.column_dimensions[get_column_letter(1)].width = 20 # timestamp
ws.column_dimensions[get_column_letter(2)].width = 10 # word_count
ws.column_dimensions[get_column_letter(3)].width = 10 # prediction
ws.column_dimensions[get_column_letter(4)].width = 10 # confidence
ws.column_dimensions[get_column_letter(5)].width = 15 # execution_time_ms
ws.column_dimensions[get_column_letter(6)].width = 15 # analysis_mode
ws.column_dimensions[get_column_letter(7)].width = 100 # full_text
# Save the workbook
wb.save(EXCEL_LOG_PATH)
logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
"""Log prediction data to an Excel file in the /tmp directory."""
# Initialize the Excel file if it doesn't exist
if not os.path.exists(EXCEL_LOG_PATH):
initialize_excel_log()
try:
# Load the existing workbook
wb = openpyxl.load_workbook(EXCEL_LOG_PATH)
ws = wb.active
# Get the next row number
next_row = ws.max_row + 1
# Clean up the input text for Excel storage (replace problematic characters)
cleaned_text = input_text.replace("\n", " ")
# Prepare row data
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
row_data = [
timestamp,
word_count,
prediction,
f"{confidence:.2f}",
f"{execution_time:.2f}",
mode,
cleaned_text
]
# Add the data to the worksheet
for col_num, value in enumerate(row_data, 1):
ws.cell(row=next_row, column=col_num, value=value)
# Save the workbook
wb.save(EXCEL_LOG_PATH)
logger.info(f"Successfully logged prediction data to {EXCEL_LOG_PATH}")
return True
except Exception as e:
logger.error(f"Error logging prediction data to Excel: {str(e)}")
return False
def get_logs_as_base64():
"""Read the Excel logs file and return as base64 for downloading."""
if not os.path.exists(EXCEL_LOG_PATH):
return None
try:
# Read the Excel file into memory
with open(EXCEL_LOG_PATH, "rb") as f:
file_data = f.read()
# Encode the file as base64
base64_data = base64.b64encode(file_data).decode('utf-8')
return base64_data
except Exception as e:
logger.error(f"Error reading Excel logs: {str(e)}")
return None
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
"""Analyze text using specified mode and return formatted results."""
# Check if the input text matches the admin password using secure comparison
if is_admin_password(text.strip()):
# Return logs instead of analysis
base64_data = get_logs_as_base64()
logs_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
logs_filename = f"prediction_logs_{logs_timestamp}.xlsx"
if base64_data:
# Create downloadable HTML with the logs
html_content = f"""
<div style="background-color: #e6f7ff; padding: 15px; border-radius: 5px;">
<h3>Admin Access Granted - Prediction Logs</h3>
<p>Logs retrieved at: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</p>
<p>Excel file contains all prediction data with full text of all submissions.</p>
<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{base64_data}"
download="{logs_filename}"
style="display: inline-block; margin-top: 10px; padding: 10px 15px;
background-color: #4CAF50; color: white; text-decoration: none;
border-radius: 4px;">
Download Excel Logs
</a>
</div>
"""
else:
html_content = """
<div style="background-color: #ffe6e6; padding: 15px; border-radius: 5px;">
<h3>Admin Access Granted - No Logs Found</h3>
<p>No prediction logs were found or there was an error reading the logs file.</p>
</div>
"""
# Return special admin output instead of normal analysis
return (
html_content,
f"Admin access granted. Logs retrieved at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
f"ADMIN MODE\nLogs available for download\nFile: {EXCEL_LOG_PATH}"
)
# Start timing for normal analysis
start_time = time.time()
# Count words in the text
word_count = len(text.split())
# If text is less than 200 words and detailed mode is selected, switch to quick mode
original_mode = mode
if word_count < 200 and mode == "detailed":
mode = "quick"
if mode == "quick":
result = classifier.quick_scan(text)
quick_analysis = f"""
PREDICTION: {result['prediction'].upper()}
Confidence: {result['confidence']*100:.1f}%
Windows analyzed: {result['num_windows']}
"""
# Add note if mode was switched
if original_mode == "detailed":
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
# Calculate execution time in milliseconds
execution_time = (time.time() - start_time) * 1000
# Log the prediction data
log_prediction_data(
input_text=text,
word_count=word_count,
prediction=result['prediction'],
confidence=result['confidence'],
execution_time=execution_time,
mode=original_mode
)
return (
text, # No highlighting in quick mode
"Quick scan mode - no sentence-level analysis available",
quick_analysis
)
else:
analysis = classifier.detailed_scan(text)
detailed_analysis = []
for pred in analysis['sentence_predictions']:
confidence = pred['confidence'] * 100
detailed_analysis.append(f"Sentence: {pred['sentence']}")
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
detailed_analysis.append("-" * 50)
final_pred = analysis['overall_prediction']
overall_result = f"""
FINAL PREDICTION: {final_pred['prediction'].upper()}
Overall confidence: {final_pred['confidence']*100:.1f}%
Number of sentences analyzed: {final_pred['num_sentences']}
"""
# Calculate execution time in milliseconds
execution_time = (time.time() - start_time) * 1000
# Log the prediction data
log_prediction_data(
input_text=text,
word_count=word_count,
prediction=final_pred['prediction'],
confidence=final_pred['confidence'],
execution_time=execution_time,
mode=original_mode
)
return (
analysis['highlighted_text'],
"\n".join(detailed_analysis),
overall_result
)
# Initialize the classifier globally
classifier = TextClassifier()
# Create Gradio interface
demo = gr.Interface(
fn=lambda text, mode: analyze_text(text, mode, classifier),
inputs=[
gr.Textbox(
lines=8,
placeholder="Enter text to analyze...",
label="Input Text"
),
gr.Radio(
choices=["quick", "detailed"],
value="quick",
label="Analysis Mode",
info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
)
],
outputs=[
gr.HTML(label="Highlighted Analysis"),
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
gr.Textbox(label="Overall Result", lines=4)
],
title="AI Text Detector",
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
api_name="predict",
flagging_mode="never"
)
# Get the FastAPI app from Gradio
app = demo.app
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # For development
allow_credentials=True,
allow_methods=["GET", "POST", "OPTIONS"],
allow_headers=["*"],
)
# Ensure CORS is applied before launching
if __name__ == "__main__":
demo.queue()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)