Markit / README.md
AnseMin's picture
Edit Readme
91493e2

A newer version of the Gradio SDK is available: 5.29.0

Upgrade
metadata
title: Markit
emoji: πŸ“„
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 5.14.0
app_file: app.py
build_script: build.sh
startup_script: setup.sh
pinned: false

Markit: Document to Markdown Converter

Hugging Face Space

Author: Anse Min | GitHub | LinkedIn

Project Links

Overview

Markit is a powerful tool that converts various document formats (PDF, DOCX, images, etc.) to Markdown format. It uses different parsing engines and OCR methods to extract text from documents and convert them to clean, readable Markdown formats.

Key Features

  • Multiple Document Formats: Convert PDFs, Word documents, images, and other document formats
  • Versatile Output Formats: Export to Markdown, JSON, plain text, or document tags format
  • Advanced Parsing Engines:
    • PyPdfium: Fast PDF parsing using the PDFium engine
    • Docling: Advanced document structure analysis
    • Marker: Specialized for markup and formatting
    • Gemini Flash: AI-powered conversion using Google's Gemini API
  • OCR Integration: Extract text from images and scanned documents using Tesseract OCR
  • Interactive UI: User-friendly Gradio interface with page navigation for large documents
  • AI-Powered Chat: Interact with your documents using AI to ask questions about content

System Architecture

The application is built with a modular architecture:

  • Core Engine: Handles document conversion and processing workflows
  • Parser Registry: Central registry for all document parsers
  • UI Layer: Gradio-based web interface
  • Service Layer: Handles AI chat functionality and external services integration

Installation

For Local Development

  1. Clone the repository

  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Install Tesseract OCR (required for OCR functionality):

    • Windows: Download and install from GitHub
    • Linux: sudo apt-get install tesseract-ocr libtesseract-dev
    • macOS: brew install tesseract
  4. Run the application:

    python app.py
    

API Keys Setup

Gemini Flash Parser

To use the Gemini Flash parser, you need to:

  1. Install the Google Generative AI client: pip install google-genai
  2. Set the API key environment variable:
    # On Windows
    set GOOGLE_API_KEY=your_api_key_here
    
    # On Linux/Mac
    export GOOGLE_API_KEY=your_api_key_here
    
  3. Alternatively, create a .env file in the project root with:
    GOOGLE_API_KEY=your_api_key_here
    
  4. Get your Gemini API key from Google AI Studio

Deploying to Hugging Face Spaces

Environment Configuration

  1. Go to your Space settings: https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME/settings
  2. Add the following repository secrets:
    • Name: GOOGLE_API_KEY
    • Value: Your Gemini API key

Space Configuration

Ensure your Hugging Face Space configuration includes:

build:
  dockerfile: Dockerfile
  python_version: "3.10" 
  system_packages:
    - "tesseract-ocr"
    - "libtesseract-dev"

How to Use

Document Conversion

  1. Upload your document using the file uploader
  2. Select a parser provider:
    • PyPdfium: Best for standard PDFs with selectable text
    • Docling: Best for complex document layouts
    • Marker: Best for preserving document formatting
    • Gemini Flash: Best for AI-powered conversions (requires API key)
  3. Choose an OCR option based on your selected parser:
    • None: No OCR processing (for documents with selectable text)
    • Tesseract: Basic OCR using Tesseract
    • Advanced: Enhanced OCR with layout preservation (available with specific parsers)
  4. Select your desired output format:
    • Markdown: Clean, readable markdown format
    • JSON: Structured data representation
    • Text: Plain text extraction
    • Document Tags: XML-like structure tags
  5. Click "Convert" to process your document
  6. Navigate through pages using the navigation buttons for multi-page documents
  7. Download the converted content in your selected format

Document Chat

  1. After converting a document, switch to the "Chat with Document" tab
  2. Type your questions about the document content
  3. The AI will analyze the document and provide context-aware responses
  4. Use the conversation history to track your Q&A session
  5. Click "Clear" to start a new conversation

Troubleshooting

OCR Issues

  • Ensure Tesseract is properly installed and in your system PATH
  • Check the TESSDATA_PREFIX environment variable is set correctly
  • Verify language files are available in the tessdata directory

Gemini Flash Parser Issues

  • Confirm your API key is set correctly as an environment variable
  • Check for API usage limits or restrictions
  • Verify the document format is supported by the Gemini API

General Issues

  • Check the console logs for error messages
  • Ensure all dependencies are installed correctly
  • For large documents, try processing fewer pages at a time

Development Guide

Project Structure

markit/
β”œβ”€β”€ app.py                  # Main application entry point
β”œβ”€β”€ setup.sh                # Setup script
β”œβ”€β”€ build.sh                # Build script
β”œβ”€β”€ requirements.txt        # Python dependencies
β”œβ”€β”€ README.md               # Project documentation
β”œβ”€β”€ .env                    # Environment variables
β”œβ”€β”€ .gitignore              # Git ignore file
β”œβ”€β”€ .gitattributes          # Git attributes file
β”œβ”€β”€ src/                    # Source code
β”‚   β”œβ”€β”€ __init__.py         # Package initialization
β”‚   β”œβ”€β”€ main.py             # Main module
β”‚   β”œβ”€β”€ core/               # Core functionality
β”‚   β”‚   β”œβ”€β”€ __init__.py     # Package initialization
β”‚   β”‚   β”œβ”€β”€ converter.py    # Document conversion logic
β”‚   β”‚   └── parser_factory.py # Parser factory
β”‚   β”œβ”€β”€ parsers/            # Parser implementations
β”‚   β”‚   β”œβ”€β”€ __init__.py     # Package initialization
β”‚   β”‚   β”œβ”€β”€ parser_interface.py # Parser interface
β”‚   β”‚   β”œβ”€β”€ parser_registry.py # Parser registry
β”‚   β”‚   β”œβ”€β”€ docling_parser.py # Docling parser
β”‚   β”‚   β”œβ”€β”€ marker_parser.py # Marker parser
β”‚   β”‚   └── pypdfium_parser.py # PyPDFium parser
β”‚   β”œβ”€β”€ ui/                 # User interface
β”‚   β”‚   β”œβ”€β”€ __init__.py     # Package initialization
β”‚   β”‚   └── ui.py           # Gradio UI implementation
β”‚   └── services/           # External services
β”‚       β”œβ”€β”€ __init__.py     # Package initialization
β”‚       └── docling_chat.py # Chat service
└── tests/                  # Tests
    └── __init__.py         # Package initialization

Adding a New Parser

  1. Create a new parser class implementing the DocumentParser interface
  2. Register the parser with the ParserRegistry
  3. Implement the required methods: get_name(), get_supported_ocr_methods(), and parse()
  4. Add your parser to the imports in src/parsers/__init__.py

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is open source and available under the MIT License.