Spaces:
Sleeping
Sleeping
File size: 7,742 Bytes
27722f3 d8defef d671290 b1d8341 d671290 4c35288 05abb4e d671290 27722f3 d8defef 27722f3 91493e2 96ff31c 5e03f2b 91493e2 d671290 d767636 d8defef d671290 4c35288 d8defef 4c35288 d8defef 2dc4c21 d8defef 2dc4c21 d8defef 6179695 d8defef 6179695 d8defef 6179695 d8defef 6179695 d8defef 6179695 d8defef a370b95 d8defef a370b95 d8defef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
title: Markit
emoji: π
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 5.14.0
app_file: app.py
build_script: build.sh
startup_script: setup.sh
pinned: false
---
# Markit: Document to Markdown Converter
[](https://huggingface.co/spaces/Ansemin101/Markit)
**Author: Anse Min** | [GitHub](https://github.com/ansemin) | [LinkedIn](https://www.linkedin.com/in/ansemin/)
## Project Links
- **GitHub Repository**: [github.com/ansemin/Markit_HF](https://github.com/ansemin/Markit_HF)
- **Hugging Face Space**: [huggingface.co/spaces/Ansemin101/Markit](https://huggingface.co/spaces/Ansemin101/Markit)
## Overview
Markit is a powerful tool that converts various document formats (PDF, DOCX, images, etc.) to Markdown format. It uses different parsing engines and OCR methods to extract text from documents and convert them to clean, readable Markdown formats.
## Key Features
- **Multiple Document Formats**: Convert PDFs, Word documents, images, and other document formats
- **Versatile Output Formats**: Export to Markdown, JSON, plain text, or document tags format
- **Advanced Parsing Engines**:
- **PyPdfium**: Fast PDF parsing using the PDFium engine
- **Docling**: Advanced document structure analysis
- **Marker**: Specialized for markup and formatting
- **Gemini Flash**: AI-powered conversion using Google's Gemini API
- **OCR Integration**: Extract text from images and scanned documents using Tesseract OCR
- **Interactive UI**: User-friendly Gradio interface with page navigation for large documents
- **AI-Powered Chat**: Interact with your documents using AI to ask questions about content
## System Architecture
The application is built with a modular architecture:
- **Core Engine**: Handles document conversion and processing workflows
- **Parser Registry**: Central registry for all document parsers
- **UI Layer**: Gradio-based web interface
- **Service Layer**: Handles AI chat functionality and external services integration
## Installation
### For Local Development
1. Clone the repository
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Install Tesseract OCR (required for OCR functionality):
- Windows: Download and install from [GitHub](https://github.com/UB-Mannheim/tesseract/wiki)
- Linux: `sudo apt-get install tesseract-ocr libtesseract-dev`
- macOS: `brew install tesseract`
4. Run the application:
```bash
python app.py
```
### API Keys Setup
#### Gemini Flash Parser
To use the Gemini Flash parser, you need to:
1. Install the Google Generative AI client: `pip install google-genai`
2. Set the API key environment variable:
```bash
# On Windows
set GOOGLE_API_KEY=your_api_key_here
# On Linux/Mac
export GOOGLE_API_KEY=your_api_key_here
```
3. Alternatively, create a `.env` file in the project root with:
```
GOOGLE_API_KEY=your_api_key_here
```
4. Get your Gemini API key from [Google AI Studio](https://aistudio.google.com/app/apikey)
## Deploying to Hugging Face Spaces
### Environment Configuration
1. Go to your Space settings: `https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME/settings`
2. Add the following repository secrets:
- Name: `GOOGLE_API_KEY`
- Value: Your Gemini API key
### Space Configuration
Ensure your Hugging Face Space configuration includes:
```yaml
build:
dockerfile: Dockerfile
python_version: "3.10"
system_packages:
- "tesseract-ocr"
- "libtesseract-dev"
```
## How to Use
### Document Conversion
1. Upload your document using the file uploader
2. Select a parser provider:
- **PyPdfium**: Best for standard PDFs with selectable text
- **Docling**: Best for complex document layouts
- **Marker**: Best for preserving document formatting
- **Gemini Flash**: Best for AI-powered conversions (requires API key)
3. Choose an OCR option based on your selected parser:
- **None**: No OCR processing (for documents with selectable text)
- **Tesseract**: Basic OCR using Tesseract
- **Advanced**: Enhanced OCR with layout preservation (available with specific parsers)
4. Select your desired output format:
- **Markdown**: Clean, readable markdown format
- **JSON**: Structured data representation
- **Text**: Plain text extraction
- **Document Tags**: XML-like structure tags
5. Click "Convert" to process your document
6. Navigate through pages using the navigation buttons for multi-page documents
7. Download the converted content in your selected format
### Document Chat
1. After converting a document, switch to the "Chat with Document" tab
2. Type your questions about the document content
3. The AI will analyze the document and provide context-aware responses
4. Use the conversation history to track your Q&A session
5. Click "Clear" to start a new conversation
## Troubleshooting
### OCR Issues
- Ensure Tesseract is properly installed and in your system PATH
- Check the TESSDATA_PREFIX environment variable is set correctly
- Verify language files are available in the tessdata directory
### Gemini Flash Parser Issues
- Confirm your API key is set correctly as an environment variable
- Check for API usage limits or restrictions
- Verify the document format is supported by the Gemini API
### General Issues
- Check the console logs for error messages
- Ensure all dependencies are installed correctly
- For large documents, try processing fewer pages at a time
## Development Guide
### Project Structure
```
markit/
βββ app.py # Main application entry point
βββ setup.sh # Setup script
βββ build.sh # Build script
βββ requirements.txt # Python dependencies
βββ README.md # Project documentation
βββ .env # Environment variables
βββ .gitignore # Git ignore file
βββ .gitattributes # Git attributes file
βββ src/ # Source code
β βββ __init__.py # Package initialization
β βββ main.py # Main module
β βββ core/ # Core functionality
β β βββ __init__.py # Package initialization
β β βββ converter.py # Document conversion logic
β β βββ parser_factory.py # Parser factory
β βββ parsers/ # Parser implementations
β β βββ __init__.py # Package initialization
β β βββ parser_interface.py # Parser interface
β β βββ parser_registry.py # Parser registry
β β βββ docling_parser.py # Docling parser
β β βββ marker_parser.py # Marker parser
β β βββ pypdfium_parser.py # PyPDFium parser
β βββ ui/ # User interface
β β βββ __init__.py # Package initialization
β β βββ ui.py # Gradio UI implementation
β βββ services/ # External services
β βββ __init__.py # Package initialization
β βββ docling_chat.py # Chat service
βββ tests/ # Tests
βββ __init__.py # Package initialization
```
### Adding a New Parser
1. Create a new parser class implementing the `DocumentParser` interface
2. Register the parser with the `ParserRegistry`
3. Implement the required methods: `get_name()`, `get_supported_ocr_methods()`, and `parse()`
4. Add your parser to the imports in `src/parsers/__init__.py`
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
This project is open source and available under the MIT License.
|