File size: 7,582 Bytes
dfe4f5a
788485d
67d8dd6
8d47cbc
 
788485d
 
 
 
 
 
74dc1de
b26e0e5
74dc1de
788485d
3fde5b7
becfda3
8d47cbc
788485d
 
 
8d47cbc
 
 
 
 
 
 
 
788485d
 
 
 
 
8d47cbc
788485d
3fde5b7
788485d
3fde5b7
1003bb3
88f109e
3fde5b7
 
 
 
1003bb3
4d5b045
3fde5b7
4d5b045
8d47cbc
3fde5b7
8d47cbc
 
3fde5b7
 
 
 
 
 
 
 
 
 
8d47cbc
 
788485d
8d47cbc
3fde5b7
14f3941
3fde5b7
7ff1ac7
 
3fde5b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788485d
 
becfda3
3fde5b7
becfda3
 
3fde5b7
 
 
 
 
 
 
 
 
becfda3
788485d
becfda3
3fde5b7
becfda3
788485d
3fde5b7
 
 
 
 
 
 
 
 
becfda3
788485d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727e195
 
b26e0e5
f0aff34
727e195
74dc1de
788485d
 
 
 
 
 
 
 
 
942f1db
 
 
 
72fbc8e
788485d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942f1db
 
 
 
 
 
 
 
 
788485d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942f1db
 
 
 
 
 
 
788485d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# agent.py

import os
import pandas as pd
import faiss

from sentence_transformers import SentenceTransformer
from serpapi import GoogleSearch

# 1️⃣ Switch Graph β†’ StateGraph
from langgraph.graph import StateGraph
#from langchain_core.language_models.llms import LLM
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader

# ────────────────
# 2️⃣ Load & index your static FAISS docs
# ────────────────
df = pd.read_csv("documents.csv")
DOCS = df["content"].tolist()

EMBEDDER = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
EMBS = EMBEDDER.encode(DOCS, show_progress_bar=True).astype("float32")
INDEX = faiss.IndexFlatL2(EMBS.shape[1])
INDEX.add(EMBS)

# ────────────────
# 3️⃣ Read your system prompt
# ────────────────
with open("system_prompt.txt","r",encoding="utf-8") as f:
    SYSTEM_PROMPT = f.read().strip()

# ────────────────
# 4️⃣ Define your tools (with docstrings)
# ────────────────

@tool
def calculator(expr: str) -> str:
    """
    Evaluate the given Python expression and return its result as a string.
    Returns "Error" if evaluation fails.
    """
    try:
        return str(eval(expr))
    except Exception:
        return "Error"


@tool
def retrieve_docs(query: str, k: int = 3) -> str:
    """
    Perform vector similarity search over the FAISS index.
    
    Args:
        query: the user’s query string to embed and search for.
        k: the number of nearest documents to return (default 3).
    
    Returns:
        The top-k document contents concatenated into one string.
    """
    q_emb = EMBEDDER.encode([query]).astype("float32")
    D, I = INDEX.search(q_emb, k)
    return "\n\n---\n\n".join(DOCS[i] for i in I[0])


SERPAPI_KEY = os.getenv("SERPAPI_KEY")

@tool
def web_search(query: str, num_results: int = 5) -> str:
    """
    Run a Google search via SerpAPI and return the top snippets.
    
    Args:
        query: the search query.
        num_results: how many results to fetch (default 5).
    
    Returns:
        A newline-separated list of snippet strings.
    """
    params = {
        "engine":       "google",
        "q":            query,
        "num":          num_results,
        "api_key":      SERPAPI_KEY,
    }
    res = GoogleSearch(params).get_dict().get("organic_results", [])
    return "\n".join(f"- {r.get('snippet','')}" for r in res)


@tool
def wiki_search(query: str) -> str:
    """
    Search Wikipedia for up to 2 pages matching `query`.
    
    Args:
        query: the topic to look up on Wikipedia.
    
    Returns:
        The combined page contents of the top-2 Wikipedia results.
    """
    pages = WikipediaLoader(query=query, load_max_docs=2).load()
    return "\n\n---\n\n".join(d.page_content for d in pages)


@tool
def arxiv_search(query: str) -> str:
    """
    Search ArXiv for up to 3 papers matching `query` and return abstracts.
    
    Args:
        query: the search query for ArXiv.
    
    Returns:
        The first 1000 characters of each of the top-3 ArXiv abstracts.
    """
    papers = ArxivLoader(query=query, load_max_docs=3).load()
    return "\n\n---\n\n".join(d.page_content[:1000] for d in papers)

# ────────────────
# 5️⃣ Define your State schema
# ────────────────
from typing import TypedDict, List
from langchain_core.messages import BaseMessage

class AgentState(TypedDict):
    # We’ll carry a list of messages as our β€œchat history”
    messages: List[BaseMessage]


# ────────────────
# 6️⃣ Build the StateGraph
# ────────────────

GROQ_API_KEY=os.getenv("GROQ_API_KEY")
def build_graph(provider: str = "groq") -> StateGraph:
    llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    


    # 6.1) Node: init β†’ seed system prompt
    def init_node(_: AgentState) -> AgentState:
        return {
            "messages": [
                SystemMessage(content=SYSTEM_PROMPT)
            ]
        }
    

    # 6.2) Node: human β†’ stash the GAIA task ID, then append the question
    def human_node(state: AgentState, id: str, question: str) -> AgentState:
        # keep the GAIA task id so we can submit it later
        state["task_id"] = task_id
        state["messages"].append(HumanMessage(content=question))
        return state
    # 6.3) Node: assistant β†’ call LLM on current messages
    def assistant_node(state: AgentState) -> dict:
        ai_msg = llm.invoke(state["messages"])
        return {"messages": state["messages"] + [ai_msg]}

    # 6.4) Optional: tool nodes (they’ll read last HumanMessage)
    def make_tool_node(fn):
        def tool_node(state: AgentState) -> dict:
            # fetch the latest human query
            last_query = state["messages"][-1].content
            result = fn(last_query)
            # append the tool’s output as if from system/Human
            state["messages"].append(HumanMessage(content=result))
            return {"messages": state["messages"]}
        return tool_node
    # 6.5) Node: answer β†’ pull out the last assistant reply & format submission dict
    def answer_node(state: AgentState) -> dict[str,str]:
        # the GAIA runner will do `.items()` on whatever you return here
        tid = state["task_id"]
        # grab the last message (could be a BaseMessage or a raw str)
        last = state["messages"][-1]
        text = getattr(last, "content", None) or str(last)
        return { tid: text }


    # Instantiate nodes for each tool
    calc_node     = make_tool_node(calculator)
    retrieve_node = make_tool_node(retrieve_docs)
    web_node      = make_tool_node(web_search)
    wiki_node     = make_tool_node(wiki_search)
    arxiv_node    = make_tool_node(arxiv_search)

    # 6.5) Build the graph
    g = StateGraph(AgentState)

    # Register nodes
    g.add_node("init",    init_node)
    g.add_node("human",   human_node)
    g.add_node("assistant", assistant_node)
    g.add_node("calc",    calc_node)
    g.add_node("retrieve", retrieve_node)
    g.add_node("web",      web_node)
    g.add_node("wiki",     wiki_node)
    g.add_node("arxiv",    arxiv_node)

    # Wire up edges
    from langgraph.graph import END
    g.set_entry_point("init")
    # init β†’ human (placeholder: we’ll inject the actual question at runtime)
    g.add_edge("init", "human")
    # human β†’ assistant
    g.add_edge("human", "assistant")
    # assistant β†’ tool nodes (conditional on tool calls)
    g.add_edge("assistant", "calc")
    g.add_edge("assistant", "retrieve")
    g.add_edge("assistant", "web")
    g.add_edge("assistant", "wiki")
    g.add_edge("assistant", "arxiv")
    # each tool returns back into assistant for follow‐up
    g.add_edge("calc",     "assistant")
    g.add_edge("retrieve", "assistant")
    g.add_edge("web",      "assistant")
    g.add_edge("wiki",     "assistant")
    g.add_edge("arxiv",    "assistant")

    # register & wire your new answer node
    g.add_node("answer", answer_node)

    # send assistant β†’ answer β†’ END
    g.add_edge("assistant", "answer")
    g.add_edge("answer", END)

    return g.compile()