Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -11,7 +11,7 @@ from serpapi import GoogleSearch
|
|
11 |
from langgraph.graph import StateGraph
|
12 |
from langchain_core.language_models.llms import LLM
|
13 |
from langchain_core.messages import SystemMessage, HumanMessage
|
14 |
-
from
|
15 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
16 |
|
17 |
# ββββββββββββββββ
|
@@ -32,39 +32,91 @@ with open("system_prompt.txt","r",encoding="utf-8") as f:
|
|
32 |
SYSTEM_PROMPT = f.read().strip()
|
33 |
|
34 |
# ββββββββββββββββ
|
35 |
-
# 4οΈβ£ Define your tools (
|
36 |
# ββββββββββββββββ
|
|
|
37 |
@tool
|
38 |
def calculator(expr: str) -> str:
|
|
|
|
|
|
|
|
|
39 |
try:
|
40 |
return str(eval(expr))
|
41 |
-
except:
|
42 |
return "Error"
|
43 |
|
|
|
44 |
@tool
|
45 |
def retrieve_docs(query: str, k: int = 3) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
q_emb = EMBEDDER.encode([query]).astype("float32")
|
47 |
D, I = INDEX.search(q_emb, k)
|
48 |
return "\n\n---\n\n".join(DOCS[i] for i in I[0])
|
49 |
|
|
|
50 |
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
|
|
|
51 |
@tool
|
52 |
def web_search(query: str, num_results: int = 5) -> str:
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
res = GoogleSearch(params).get_dict().get("organic_results", [])
|
55 |
return "\n".join(f"- {r.get('snippet','')}" for r in res)
|
56 |
|
|
|
57 |
@tool
|
58 |
def wiki_search(query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
pages = WikipediaLoader(query=query, load_max_docs=2).load()
|
60 |
return "\n\n---\n\n".join(d.page_content for d in pages)
|
61 |
|
|
|
62 |
@tool
|
63 |
def arxiv_search(query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
papers = ArxivLoader(query=query, load_max_docs=3).load()
|
65 |
return "\n\n---\n\n".join(d.page_content[:1000] for d in papers)
|
66 |
|
67 |
-
|
68 |
# ββββββββββββββββ
|
69 |
# 5οΈβ£ Define your State schema
|
70 |
# ββββββββββββββββ
|
|
|
11 |
from langgraph.graph import StateGraph
|
12 |
from langchain_core.language_models.llms import LLM
|
13 |
from langchain_core.messages import SystemMessage, HumanMessage
|
14 |
+
from langchain_core.tools import tool
|
15 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
16 |
|
17 |
# ββββββββββββββββ
|
|
|
32 |
SYSTEM_PROMPT = f.read().strip()
|
33 |
|
34 |
# ββββββββββββββββ
|
35 |
+
# 4οΈβ£ Define your tools (with docstrings)
|
36 |
# ββββββββββββββββ
|
37 |
+
|
38 |
@tool
|
39 |
def calculator(expr: str) -> str:
|
40 |
+
"""
|
41 |
+
Evaluate the given Python expression and return its result as a string.
|
42 |
+
Returns "Error" if evaluation fails.
|
43 |
+
"""
|
44 |
try:
|
45 |
return str(eval(expr))
|
46 |
+
except Exception:
|
47 |
return "Error"
|
48 |
|
49 |
+
|
50 |
@tool
|
51 |
def retrieve_docs(query: str, k: int = 3) -> str:
|
52 |
+
"""
|
53 |
+
Perform vector similarity search over the FAISS index.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
query: the userβs query string to embed and search for.
|
57 |
+
k: the number of nearest documents to return (default 3).
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
The top-k document contents concatenated into one string.
|
61 |
+
"""
|
62 |
q_emb = EMBEDDER.encode([query]).astype("float32")
|
63 |
D, I = INDEX.search(q_emb, k)
|
64 |
return "\n\n---\n\n".join(DOCS[i] for i in I[0])
|
65 |
|
66 |
+
|
67 |
SERPAPI_KEY = os.getenv("SERPAPI_KEY")
|
68 |
+
|
69 |
@tool
|
70 |
def web_search(query: str, num_results: int = 5) -> str:
|
71 |
+
"""
|
72 |
+
Run a Google search via SerpAPI and return the top snippets.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
query: the search query.
|
76 |
+
num_results: how many results to fetch (default 5).
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
A newline-separated list of snippet strings.
|
80 |
+
"""
|
81 |
+
params = {
|
82 |
+
"engine": "google",
|
83 |
+
"q": query,
|
84 |
+
"num": num_results,
|
85 |
+
"api_key": SERPAPI_KEY,
|
86 |
+
}
|
87 |
res = GoogleSearch(params).get_dict().get("organic_results", [])
|
88 |
return "\n".join(f"- {r.get('snippet','')}" for r in res)
|
89 |
|
90 |
+
|
91 |
@tool
|
92 |
def wiki_search(query: str) -> str:
|
93 |
+
"""
|
94 |
+
Search Wikipedia for up to 2 pages matching `query`.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
query: the topic to look up on Wikipedia.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
The combined page contents of the top-2 Wikipedia results.
|
101 |
+
"""
|
102 |
pages = WikipediaLoader(query=query, load_max_docs=2).load()
|
103 |
return "\n\n---\n\n".join(d.page_content for d in pages)
|
104 |
|
105 |
+
|
106 |
@tool
|
107 |
def arxiv_search(query: str) -> str:
|
108 |
+
"""
|
109 |
+
Search ArXiv for up to 3 papers matching `query` and return abstracts.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
query: the search query for ArXiv.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
The first 1000 characters of each of the top-3 ArXiv abstracts.
|
116 |
+
"""
|
117 |
papers = ArxivLoader(query=query, load_max_docs=3).load()
|
118 |
return "\n\n---\n\n".join(d.page_content[:1000] for d in papers)
|
119 |
|
|
|
120 |
# ββββββββββββββββ
|
121 |
# 5οΈβ£ Define your State schema
|
122 |
# ββββββββββββββββ
|