Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,16 +1,30 @@
|
|
1 |
# agent.py
|
2 |
|
3 |
-
import os
|
|
|
4 |
from langchain.tools import tool
|
5 |
from langchain.agents import initialize_agent, AgentType
|
6 |
-
|
7 |
from langchain_community.document_loaders import WikipediaLoader
|
8 |
|
9 |
-
# 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
@tool
|
12 |
def calculator(expr: str) -> str:
|
13 |
-
"""Safely evaluate a math expression."""
|
14 |
try:
|
15 |
return str(eval(expr, {"__builtins__": {}}))
|
16 |
except Exception as e:
|
@@ -18,62 +32,33 @@ def calculator(expr: str) -> str:
|
|
18 |
|
19 |
@tool
|
20 |
def wiki_search(query: str) -> str:
|
21 |
-
"""Fetch up to 2 Wikipedia pages for the query."""
|
22 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
23 |
return "\n\n".join(d.page_content for d in docs)
|
24 |
|
25 |
-
#
|
26 |
|
27 |
class BasicAgent:
|
28 |
def __init__(self):
|
29 |
-
|
30 |
-
assert token, "HF_TOKEN secret is missing!"
|
31 |
-
# We call the free inference endpoint directly
|
32 |
-
self.api_url = "https://api-inference.huggingface.co/models/google/flan-t5-large"
|
33 |
-
self.headers = {"Authorization": f"Bearer {token}"}
|
34 |
-
|
35 |
-
# LangChain’s HF wrapper
|
36 |
-
from langchain.llms import HuggingFaceEndpoint
|
37 |
-
self.llm = HuggingFaceEndpoint(
|
38 |
-
endpoint_url=self.api_url,
|
39 |
-
headers=self.headers,
|
40 |
-
model_kwargs={"temperature": 0.0, "max_new_tokens": 200},
|
41 |
-
)
|
42 |
-
|
43 |
-
# Register tools and initialize a React agent
|
44 |
self.agent = initialize_agent(
|
45 |
[calculator, wiki_search],
|
46 |
-
|
|
|
47 |
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
48 |
-
verbose=True,
|
49 |
-
max_iterations=5,
|
50 |
early_stopping_method="generate"
|
51 |
)
|
52 |
|
53 |
def __call__(self, question: str) -> str:
|
54 |
-
#
|
55 |
-
EXAMPLES = """
|
56 |
-
Q: What is 2+2?
|
57 |
-
A: 4
|
58 |
-
|
59 |
-
Q: If a car goes 60 km/h for 2 hours, how far?
|
60 |
-
A: 120
|
61 |
-
|
62 |
-
Q: What is the capital of France?
|
63 |
-
A: Paris
|
64 |
-
"""
|
65 |
prompt = (
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
f"
|
71 |
-
f"### Examples ###{EXAMPLES}\n"
|
72 |
-
f"### New Question ###\n{question}"
|
73 |
)
|
74 |
-
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
# Extract the last line as the answer
|
79 |
-
return raw.splitlines()[-1].strip()
|
|
|
1 |
# agent.py
|
2 |
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
from langchain.tools import tool
|
6 |
from langchain.agents import initialize_agent, AgentType
|
|
|
7 |
from langchain_community.document_loaders import WikipediaLoader
|
8 |
|
9 |
+
# ——— 1) Gemini Client Setup ———
|
10 |
+
from google import genai
|
11 |
+
|
12 |
+
# Initialize once at import time
|
13 |
+
GENAI_CLIENT = genai.Client(api_key=os.environ["GEMINI_API_KEY"])
|
14 |
+
GEMINI_MODEL = "gemini-1.5-pro" # or "gemini-1.0", "gemini-2.0-flash", etc.
|
15 |
+
|
16 |
+
def gemini_generate(prompt: str) -> str:
|
17 |
+
"""Call Google Gemini via the GenAI SDK."""
|
18 |
+
response = GENAI_CLIENT.generate_content(
|
19 |
+
model=GEMINI_MODEL,
|
20 |
+
contents=[prompt]
|
21 |
+
)
|
22 |
+
return response.text
|
23 |
+
|
24 |
+
# ——— 2) Tools ———
|
25 |
|
26 |
@tool
|
27 |
def calculator(expr: str) -> str:
|
|
|
28 |
try:
|
29 |
return str(eval(expr, {"__builtins__": {}}))
|
30 |
except Exception as e:
|
|
|
32 |
|
33 |
@tool
|
34 |
def wiki_search(query: str) -> str:
|
|
|
35 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
36 |
return "\n\n".join(d.page_content for d in docs)
|
37 |
|
38 |
+
# ——— 3) Agent Definition ———
|
39 |
|
40 |
class BasicAgent:
|
41 |
def __init__(self):
|
42 |
+
# We’re not using Hugging Face anymore—Gemini handles LLM calls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
self.agent = initialize_agent(
|
44 |
[calculator, wiki_search],
|
45 |
+
# Wrap our gemini_generate as an LLM
|
46 |
+
lambda prompt: gemini_generate(prompt),
|
47 |
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
48 |
+
verbose=True,
|
49 |
+
max_iterations=5,
|
50 |
early_stopping_method="generate"
|
51 |
)
|
52 |
|
53 |
def __call__(self, question: str) -> str:
|
54 |
+
# Prepend your toy examples or system prompt if you like
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
prompt = (
|
56 |
+
"You have two tools:\n"
|
57 |
+
" • calculator(expr)\n"
|
58 |
+
" • wiki_search(query)\n"
|
59 |
+
"Use them internally, then OUTPUT ONLY the final answer.\n\n"
|
60 |
+
f"Question: {question}"
|
|
|
|
|
61 |
)
|
62 |
+
result = self.agent.run(prompt)
|
63 |
+
# Strip off anything but the last line
|
64 |
+
return result.splitlines()[-1].strip()
|
|
|
|
|
|