metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:MultipleNegativesRankingLoss
- loss:CosineSimilarityLoss
base_model: ritulk/MPNET-fine-tuned-political-clustering
widget:
- source_sentence: Der Mann hat über die Internetkamera mit einem Mädchen gesprochen.
sentences:
- Eine Gruppe älterer Menschen posiert um einen Esstisch.
- Ein Teenager spricht über eine Webcam mit einem Mädchen.
- >-
Mindestlohngesetze schaden den am wenigsten Qualifizierten, den am
wenigsten Produktiven am meisten.
- source_sentence: Eine Frau schreibt etwas.
sentences:
- Es gibt kein "Standbild", das nicht relativ zu einem anderen Objekt ist.
- >-
Ein blondhaariges Kind, das vor einem Haus auf der Trompete spielt,
während sein jüngerer Bruder zusieht.
- Eine Frau schneidet grüne Zwiebeln.
- source_sentence: >-
Sterne entstehen in Sternentstehungsgebieten, die ihrerseits aus
Molekülwolken entstehen.
sentences:
- >-
Sie bezieht sich auf die maximale Blendenzahl (definiert als das
Verhältnis von Brennweite zu effektivem Blendendurchmesser).
- >-
Es ist möglich, dass ein Sonnensystem wie unseres außerhalb einer
Galaxie existiert.
- >-
Es gibt einen sehr guten Grund, die Gattin der Königin nicht als "König"
zu bezeichnen - denn sie sind nicht der König.
- source_sentence: Der Spieler schießt die Siegpunkte.
sentences:
- Die Dame frittierte das panierte Fleisch in heißem Öl.
- Der Basketballspieler ist dabei, Punkte für sein Team zu sammeln.
- >-
Obwohl ich glaube, dass Searle sich irrt, glaube ich nicht, dass Sie das
Problem gefunden haben.
- source_sentence: Zwei Weißkopfseeadler auf einem Ast.
sentences:
- Die Frau schneidet Kartoffeln.
- >-
Ein Mann, der in einem Raum auf dem Boden sitzt, klimpert auf einer
Gitarre.
- Zwei Adler sitzen auf einem Ast.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on ritulk/MPNET-fine-tuned-political-clustering
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.6568108475174784
name: Pearson Cosine
- type: spearman_cosine
value: 0.657621425130489
name: Spearman Cosine
- type: pearson_cosine
value: 0.6759557480156315
name: Pearson Cosine
- type: spearman_cosine
value: 0.6750383325651396
name: Spearman Cosine
- type: pearson_cosine
value: 0.7640996792459651
name: Pearson Cosine
- type: spearman_cosine
value: 0.7619248730277344
name: Spearman Cosine
datasets:
- PhilipMay/stsb_multi_mt
SentenceTransformer based on ritulk/MPNET-fine-tuned-political-clustering
This is a sentence-transformers model finetuned from ritulk/MPNET-fine-tuned-political-clustering. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: ritulk/MPNET-fine-tuned-political-clustering
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ritulk/MPNET_finetuned_on_stsb_multi_mt_dataset")
# Run inference
sentences = [
'Zwei Weißkopfseeadler auf einem Ast.',
'Zwei Adler sitzen auf einem Ast.',
'Ein Mann, der in einem Raum auf dem Boden sitzt, klimpert auf einer Gitarre.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6568 |
spearman_cosine | 0.6576 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.676 |
spearman_cosine | 0.675 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7641 |
spearman_cosine | 0.7619 |
Training Details
Training Dataset
PhilipMay/stsb_multi_mt
- Size: 5,749 training samples
- Columns:
text
,text_pair
, andscore
- Approximate statistics based on the first 1000 samples:
text text_pair score type string string float details - min: 7 tokens
- mean: 14.58 tokens
- max: 49 tokens
- min: 7 tokens
- mean: 14.6 tokens
- max: 47 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
text text_pair score Ein Flugzeug hebt gerade ab.
Ein Flugzeug hebt gerade ab.
1.0
Ein Mann spielt eine große Flöte.
Ein Mann spielt eine Flöte.
0.7599999904632568
Ein Mann streicht geriebenen Käse auf eine Pizza.
Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.
0.7599999904632568
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,500 evaluation samples
- Columns:
text
,text_pair
, andscore
- Approximate statistics based on the first 1000 samples:
text text_pair score type string string float details - min: 6 tokens
- mean: 25.19 tokens
- max: 65 tokens
- min: 7 tokens
- mean: 25.21 tokens
- max: 70 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
text text_pair score Ein Mann mit einem Schutzhelm tanzt.
Ein Mann mit einem Schutzhelm tanzt.
1.0
Ein kleines Kind reitet auf einem Pferd.
Ein Kind reitet auf einem Pferd.
0.95
Ein Mann verfüttert eine Maus an eine Schlange.
Der Mann füttert die Schlange mit einer Maus.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
---|---|---|---|---|
0.2778 | 100 | 0.6009 | 0.9181 | - |
0.5556 | 200 | 0.4724 | 0.8744 | - |
0.8333 | 300 | 0.449 | 0.8405 | - |
-1 | -1 | - | - | 0.6576 |
0.2778 | 100 | 0.0781 | 0.9378 | - |
0.5556 | 200 | 0.0772 | 0.9290 | - |
0.8333 | 300 | 0.2281 | 0.8876 | - |
1.1111 | 400 | 0.3267 | 0.9336 | - |
1.3889 | 500 | 0.2936 | 0.8612 | - |
1.6667 | 600 | 0.2283 | 0.8569 | - |
1.9444 | 700 | 0.2448 | 0.8589 | - |
2.2222 | 800 | 0.1877 | 0.8418 | - |
2.5 | 900 | 0.1693 | 0.8351 | - |
2.7778 | 1000 | 0.1635 | 0.8588 | - |
3.0556 | 1100 | 0.1642 | 0.8260 | - |
3.3333 | 1200 | 0.1027 | 0.8380 | - |
3.6111 | 1300 | 0.0983 | 0.8407 | - |
3.8889 | 1400 | 0.0978 | 0.8317 | - |
4.1667 | 1500 | 0.1187 | 0.8376 | - |
4.4444 | 1600 | 0.0977 | 0.8465 | - |
4.7222 | 1700 | 0.0686 | 0.8492 | - |
5.0 | 1800 | 0.0587 | 0.8485 | - |
-1 | -1 | - | - | 0.6750 |
0.2778 | 100 | 0.0656 | 0.0464 | - |
0.5556 | 200 | 0.0564 | 0.0454 | - |
0.8333 | 300 | 0.0498 | 0.0496 | - |
1.1111 | 400 | 0.042 | 0.0408 | - |
1.3889 | 500 | 0.0384 | 0.0416 | - |
1.6667 | 600 | 0.0319 | 0.0427 | - |
1.9444 | 700 | 0.0332 | 0.0427 | - |
2.2222 | 800 | 0.0249 | 0.0416 | - |
2.5 | 900 | 0.0232 | 0.0408 | - |
2.7778 | 1000 | 0.0219 | 0.0415 | - |
3.0556 | 1100 | 0.0215 | 0.0409 | - |
3.3333 | 1200 | 0.0158 | 0.0402 | - |
3.6111 | 1300 | 0.0171 | 0.0387 | - |
3.8889 | 1400 | 0.0152 | 0.0393 | - |
4.1667 | 1500 | 0.0126 | 0.0389 | - |
4.4444 | 1600 | 0.0124 | 0.0389 | - |
4.7222 | 1700 | 0.0118 | 0.0393 | - |
5.0 | 1800 | 0.0127 | 0.0391 | - |
-1 | -1 | - | - | 0.7619 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.0.2
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}