|
###Instruction: Generate a small python repo for matplotlib to visualize timeseries data to read from timeseries.csv file using polars. |
|
###Response: The repository should include the following: |
|
- A `src` directory for the Python source files. |
|
- A `data` directory for the input CSV file. |
|
- A `requirements.txt` file listing the necessary libraries. |
|
- A `README.md` file explaining how to use the tool. |
|
- A `run.sh` script to execute the main program. |
|
|
|
Create the repository structure and populate it with the necessary files. ```python |
|
<libs>matplotlib,polars</libs> |
|
<planning> |
|
#1 Create the repository structure. |
|
- Initialize the git repository. |
|
- Create the `src`, `data`, and `docs` directories. |
|
#2 Populate the repository with necessary files. |
|
- Add a `requirements.txt` file with the necessary libraries. |
|
- Add a `README.md` file explaining how to use the tool. |
|
- Add a `run.sh` script to execute the main program. |
|
- Add a Python script in `src` to visualize timeseries data. |
|
</planning> |
|
<requirements>matplotlib==3.5.1 |
|
polars==0.17.0</requirements> |
|
<output><file1>src/visualize_timeseries.py<content> |
|
import polars as pl |
|
import matplotlib.pyplot as plt |
|
|
|
def load_timeseries_data(file_path): |
|
"""Load timeseries data from a CSV file.""" |
|
return pl.read_csv(file_path, has_headers=True) |
|
|
|
def visualize_timeseries(data): |
|
"""Visualize the timeseries data.""" |
|
plt.figure(figsize=(10, 6)) |
|
plt.plot(data['timestamp'], data['value'], label='Timeseries Data') |
|
plt.xlabel('Timestamp') |
|
plt.ylabel('Value') |
|
plt.title('Timeseries Visualization') |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
if __name__ == "__main__": |
|
file_path = 'data/timeseries.csv' |
|
data = load_timeseries_data(file_path) |
|
visualize_timeseries(data) |
|
</content></file1> |
|
<bashfile>run.sh<content>python3 src/visualize_timeseries.py</content></bashfile> |
|
<readme>README.md<content> |
|
# Timeseries Visualization Tool |
|
|
|
This tool visualizes timeseries data loaded from a CSV file using `pandas` for data handling and `matplotlib` for plotting. |
|
|
|
## Requirements |
|
|
|
Ensure you have the following libraries installed: |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
## Usage |
|
|
|
To run the visualization tool, execute the following command: |
|
|
|
```bash |
|
bash run.sh |
|
``` |
|
|
|
## Data |
|
|
|
The tool expects a CSV file named `timeseries.csv` in the `data` directory with the following columns: |
|
- `timestamp`: Timestamp of the data point. |
|
- `value`: Value of the timeseries data. |
|
</content></readme> |
|
</output> |