File size: 2,504 Bytes
2ff5974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
###Instruction: Generate a small python repo for matplotlib to visualize timeseries data to read from timeseries.csv file using polars. ###Response: The repository should include the following: - A `src` directory for the Python source files. - A `data` directory for the input CSV file. - A `requirements.txt` file listing the necessary libraries. - A `README.md` file explaining how to use the tool. - A `run.sh` script to execute the main program. Create the repository structure and populate it with the necessary files. ```python <libs>matplotlib,polars</libs> <planning> #1 Create the repository structure. - Initialize the git repository. - Create the `src`, `data`, and `docs` directories. #2 Populate the repository with necessary files. - Add a `requirements.txt` file with the necessary libraries. - Add a `README.md` file explaining how to use the tool. - Add a `run.sh` script to execute the main program. - Add a Python script in `src` to visualize timeseries data. </planning> <requirements>matplotlib==3.5.1 polars==0.17.0</requirements> <output><file1>src/visualize_timeseries.py<content> import polars as pl import matplotlib.pyplot as plt def load_timeseries_data(file_path): """Load timeseries data from a CSV file.""" return pl.read_csv(file_path, has_headers=True) def visualize_timeseries(data): """Visualize the timeseries data.""" plt.figure(figsize=(10, 6)) plt.plot(data['timestamp'], data['value'], label='Timeseries Data') plt.xlabel('Timestamp') plt.ylabel('Value') plt.title('Timeseries Visualization') plt.legend() plt.grid(True) plt.show() if __name__ == "__main__": file_path = 'data/timeseries.csv' data = load_timeseries_data(file_path) visualize_timeseries(data) </content></file1> <bashfile>run.sh<content>python3 src/visualize_timeseries.py</content></bashfile> <readme>README.md<content> # Timeseries Visualization Tool This tool visualizes timeseries data loaded from a CSV file using `pandas` for data handling and `matplotlib` for plotting. ## Requirements Ensure you have the following libraries installed: ```bash pip install -r requirements.txt ``` ## Usage To run the visualization tool, execute the following command: ```bash bash run.sh ``` ## Data The tool expects a CSV file named `timeseries.csv` in the `data` directory with the following columns: - `timestamp`: Timestamp of the data point. - `value`: Value of the timeseries data. </content></readme> </output> |