reshinthadith commited on
Commit
2ff5974
·
verified ·
1 Parent(s): ecce996

Create example.txt

Browse files
Files changed (1) hide show
  1. example.txt +75 -0
example.txt ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ###Instruction: Generate a small python repo for matplotlib to visualize timeseries data to read from timeseries.csv file using polars.
2
+ ###Response: The repository should include the following:
3
+ - A `src` directory for the Python source files.
4
+ - A `data` directory for the input CSV file.
5
+ - A `requirements.txt` file listing the necessary libraries.
6
+ - A `README.md` file explaining how to use the tool.
7
+ - A `run.sh` script to execute the main program.
8
+
9
+ Create the repository structure and populate it with the necessary files. ```python
10
+ <libs>matplotlib,polars</libs>
11
+ <planning>
12
+ #1 Create the repository structure.
13
+ - Initialize the git repository.
14
+ - Create the `src`, `data`, and `docs` directories.
15
+ #2 Populate the repository with necessary files.
16
+ - Add a `requirements.txt` file with the necessary libraries.
17
+ - Add a `README.md` file explaining how to use the tool.
18
+ - Add a `run.sh` script to execute the main program.
19
+ - Add a Python script in `src` to visualize timeseries data.
20
+ </planning>
21
+ <requirements>matplotlib==3.5.1
22
+ polars==0.17.0</requirements>
23
+ <output><file1>src/visualize_timeseries.py<content>
24
+ import polars as pl
25
+ import matplotlib.pyplot as plt
26
+
27
+ def load_timeseries_data(file_path):
28
+ """Load timeseries data from a CSV file."""
29
+ return pl.read_csv(file_path, has_headers=True)
30
+
31
+ def visualize_timeseries(data):
32
+ """Visualize the timeseries data."""
33
+ plt.figure(figsize=(10, 6))
34
+ plt.plot(data['timestamp'], data['value'], label='Timeseries Data')
35
+ plt.xlabel('Timestamp')
36
+ plt.ylabel('Value')
37
+ plt.title('Timeseries Visualization')
38
+ plt.legend()
39
+ plt.grid(True)
40
+ plt.show()
41
+
42
+ if __name__ == "__main__":
43
+ file_path = 'data/timeseries.csv'
44
+ data = load_timeseries_data(file_path)
45
+ visualize_timeseries(data)
46
+ </content></file1>
47
+ <bashfile>run.sh<content>python3 src/visualize_timeseries.py</content></bashfile>
48
+ <readme>README.md<content>
49
+ # Timeseries Visualization Tool
50
+
51
+ This tool visualizes timeseries data loaded from a CSV file using `pandas` for data handling and `matplotlib` for plotting.
52
+
53
+ ## Requirements
54
+
55
+ Ensure you have the following libraries installed:
56
+
57
+ ```bash
58
+ pip install -r requirements.txt
59
+ ```
60
+
61
+ ## Usage
62
+
63
+ To run the visualization tool, execute the following command:
64
+
65
+ ```bash
66
+ bash run.sh
67
+ ```
68
+
69
+ ## Data
70
+
71
+ The tool expects a CSV file named `timeseries.csv` in the `data` directory with the following columns:
72
+ - `timestamp`: Timestamp of the data point.
73
+ - `value`: Value of the timeseries data.
74
+ </content></readme>
75
+ </output>