|
---
|
|
license: apache-2.0
|
|
datasets:
|
|
- AI-MO/NuminaMath-TIR
|
|
language:
|
|
- zho
|
|
- eng
|
|
- fra
|
|
- spa
|
|
- por
|
|
- deu
|
|
- ita
|
|
- rus
|
|
- jpn
|
|
- kor
|
|
- vie
|
|
- tha
|
|
- ara
|
|
metrics:
|
|
- accuracy
|
|
base_model:
|
|
- Qwen/Qwen2.5-0.5B-Instruct
|
|
---
|
|
# NeuroCoder Qwen2.5-0.5B-Instruct-MemoryR
|
|
|
|
## Overview
|
|
|
|
This is the Hugging Face checkpoint of **Qwen2.5-0.5B-Instruct-MemoryR**, a memory-augmented RL-tuned model based on Qwen2.5.
|
|
|
|
The model is introduced and analyzed in our paper: https://arxiv.org/abs/2504.02273
|
|
|
|
## Usage
|
|
```python
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
# Load tokenizer and model
|
|
tokenizer = AutoTokenizer.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
|
|
model = AutoModelForCausalLM.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
|
|
|
|
# Example input
|
|
prompt = "What is the capital of France?"
|
|
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
# Generate output
|
|
outputs = model.generate(**inputs, max_new_tokens=50)
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
``` |