File size: 1,054 Bytes
68d1f3e f58612e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
datasets:
- AI-MO/NuminaMath-TIR
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
metrics:
- accuracy
base_model:
- Qwen/Qwen2.5-0.5B-Instruct
---
# NeuroCoder Qwen2.5-0.5B-Instruct-MemoryR
## Overview
This is the Hugging Face checkpoint of **Qwen2.5-0.5B-Instruct-MemoryR**, a memory-augmented RL-tuned model based on Qwen2.5.
The model is introduced and analyzed in our paper: https://arxiv.org/abs/2504.02273
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
model = AutoModelForCausalLM.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")
# Example input
prompt = "What is the capital of France?"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
``` |