File size: 1,054 Bytes
68d1f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f58612e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---

license: apache-2.0
datasets:
- AI-MO/NuminaMath-TIR
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
metrics:
- accuracy
base_model:
- Qwen/Qwen2.5-0.5B-Instruct
---

# NeuroCoder Qwen2.5-0.5B-Instruct-MemoryR

## Overview

This is the Hugging Face checkpoint of **Qwen2.5-0.5B-Instruct-MemoryR**, a memory-augmented RL-tuned model based on Qwen2.5. 

The model is introduced and analyzed in our paper: https://arxiv.org/abs/2504.02273

## Usage
```python

from transformers import AutoModelForCausalLM, AutoTokenizer



# Load tokenizer and model

tokenizer = AutoTokenizer.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")

model = AutoModelForCausalLM.from_pretrained("neurocoder/Qwen2.5-0.5B-Instruct-MemoryR")



# Example input

prompt = "What is the capital of France?"

inputs = tokenizer(prompt, return_tensors="pt")



# Generate output

outputs = model.generate(**inputs, max_new_tokens=50)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

```