Xenova's picture
Xenova HF Staff
Update README.md
cb5341f verified
|
raw
history blame contribute delete
7.57 kB
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Code to create model
```py
import torch
from transformers import MimiConfig, MimiModel, AutoProcessor
model_id = 'kyutai/mimi'
config = MimiConfig.from_pretrained(
model_id,
intermediate_size=64,
hidden_size=16,
num_hidden_layers=2,
num_key_value_heads=2,
upsample_groups=16,
num_filters=8,
codebook_dim=8,
vector_quantization_hidden_dimension=8,
codebook_size=32,
)
# Create model and randomize all weights
model = MimiModel(config)
torch.manual_seed(0) # Set for reproducibility
for name, param in model.named_parameters():
param.data = torch.randn_like(param)
processor = AutoProcessor.from_pretrained(model_id)
```
## ONNX conversion code
```py
import torch
import torch.nn as nn
from transformers import MimiModel
class MimiEncoder(nn.Module):
def __init__(self, model):
super(MimiEncoder, self).__init__()
self.model = model
def forward(self, input_values, padding_mask=None):
return self.model.encode(input_values, padding_mask=padding_mask).audio_codes
class MimiDecoder(nn.Module):
def __init__(self, model):
super(MimiDecoder, self).__init__()
self.model = model
def forward(self, audio_codes, padding_mask=None):
return self.model.decode(audio_codes, padding_mask=padding_mask).audio_values
model = MimiModel.from_pretrained("hf-internal-testing/tiny-random-MimiModel")
encoder = MimiEncoder(model)
decoder = MimiDecoder(model)
dummy_encoder_inputs = torch.randn((5, 1, 82500))
torch.onnx.export(
encoder,
dummy_encoder_inputs,
"encoder_model.onnx",
export_params=True,
opset_version=14,
do_constant_folding=True,
input_names=['input_values'],
output_names=['audio_codes'],
dynamic_axes={
'input_values': {0: 'batch_size', 1: 'num_channels', 2: 'sequence_length'},
'audio_codes': {0: 'batch_size', 2: 'codes_length'},
},
)
dummy_decoder_inputs = torch.randint(8, (4, model.config.num_quantizers, 91))
torch.onnx.export(
decoder,
dummy_decoder_inputs,
"decoder_model.onnx",
export_params=True,
opset_version=14,
do_constant_folding=True,
input_names=['audio_codes'],
output_names=['audio_values'],
dynamic_axes={
'audio_codes': {0: 'batch_size', 2: 'codes_length'},
'audio_values': {0: 'batch_size', 1: 'num_channels', 2: 'sequence_length'},
},
)
```
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]