--- library_name: transformers tags: [] --- # Model Card for Model ID ## Code to create model ```py import torch from transformers import MimiConfig, MimiModel, AutoProcessor model_id = 'kyutai/mimi' config = MimiConfig.from_pretrained( model_id, intermediate_size=64, hidden_size=16, num_hidden_layers=2, num_key_value_heads=2, upsample_groups=16, num_filters=8, codebook_dim=8, vector_quantization_hidden_dimension=8, codebook_size=32, ) # Create model and randomize all weights model = MimiModel(config) torch.manual_seed(0) # Set for reproducibility for name, param in model.named_parameters(): param.data = torch.randn_like(param) processor = AutoProcessor.from_pretrained(model_id) ``` ## ONNX conversion code ```py import torch import torch.nn as nn from transformers import MimiModel class MimiEncoder(nn.Module): def __init__(self, model): super(MimiEncoder, self).__init__() self.model = model def forward(self, input_values, padding_mask=None): return self.model.encode(input_values, padding_mask=padding_mask).audio_codes class MimiDecoder(nn.Module): def __init__(self, model): super(MimiDecoder, self).__init__() self.model = model def forward(self, audio_codes, padding_mask=None): return self.model.decode(audio_codes, padding_mask=padding_mask).audio_values model = MimiModel.from_pretrained("hf-internal-testing/tiny-random-MimiModel") encoder = MimiEncoder(model) decoder = MimiDecoder(model) dummy_encoder_inputs = torch.randn((5, 1, 82500)) torch.onnx.export( encoder, dummy_encoder_inputs, "encoder_model.onnx", export_params=True, opset_version=14, do_constant_folding=True, input_names=['input_values'], output_names=['audio_codes'], dynamic_axes={ 'input_values': {0: 'batch_size', 1: 'num_channels', 2: 'sequence_length'}, 'audio_codes': {0: 'batch_size', 2: 'codes_length'}, }, ) dummy_decoder_inputs = torch.randint(8, (4, model.config.num_quantizers, 91)) torch.onnx.export( decoder, dummy_decoder_inputs, "decoder_model.onnx", export_params=True, opset_version=14, do_constant_folding=True, input_names=['audio_codes'], output_names=['audio_values'], dynamic_axes={ 'audio_codes': {0: 'batch_size', 2: 'codes_length'}, 'audio_values': {0: 'batch_size', 1: 'num_channels', 2: 'sequence_length'}, }, ) ``` ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]