content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
#!/usr/bin/env python #-*- coding: UTF-8 -*- import os import time import subprocess import shutil import sys os.chdir(sys.path[0]) print(os.getcwd()) cacheFolder = os.getcwd() + "/temp/" cacheFile = cacheFolder + "temp" caches = [] generalSize = "640X640" if(len(sys.argv) > 1) : wishSize = 640 * int(sys.argv[1]) generalSize = "%dx%d" % (wishSize, wishSize) print("开始...") checkTempFileExist() loadCache() initRunner() print("已结束.")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 12, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 850, 14681, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 198, 418, 13, 354, 15908, 7, 17597, 13, 6978, 58, 15, 12962, 198, 4798, 7, 418, 13, 1136, 66, 16993, 28955, 198, 198, 23870, 41092, 796, 28686, 13, 1136, 66, 16993, 3419, 1343, 12813, 29510, 30487, 198, 23870, 8979, 796, 12940, 41092, 1343, 366, 29510, 1, 198, 66, 3694, 796, 17635, 198, 24622, 10699, 796, 366, 31102, 55, 31102, 1, 198, 198, 361, 7, 11925, 7, 17597, 13, 853, 85, 8, 1875, 352, 8, 1058, 198, 220, 220, 220, 4601, 10699, 796, 33759, 1635, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 2276, 10699, 796, 36521, 34350, 4, 67, 1, 4064, 357, 86, 680, 10699, 11, 4601, 10699, 8, 198, 198, 4798, 7203, 28156, 222, 34650, 233, 9313, 8, 198, 9122, 30782, 8979, 3109, 396, 3419, 198, 2220, 30562, 3419, 198, 15003, 49493, 3419, 198, 4798, 7203, 32432, 110, 163, 119, 241, 30266, 253, 19570, 198 ]
2.352632
190
# Note taken from --> https://gist.github.com/JungeAlexander/6ce0a5213f3af56d7369 & https://stackoverflow.com/questions/714063/importing-modules-from-parent-folder/11158224#11158224 import os, sys, inspect current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) import time import datetime import json from wtforms import fields from _compat import text_type, as_unicode # from widgets import * as admin_widgets import form.widgets as admin_widgets __all__ = ['DateTimeField', 'TimeField', 'Select2Field', 'Select2TagsField', 'JSONField']
[ 2, 220, 5740, 2077, 422, 14610, 3740, 1378, 70, 396, 13, 12567, 13, 785, 14, 22396, 469, 38708, 14, 21, 344, 15, 64, 4309, 1485, 69, 18, 1878, 3980, 67, 22, 30803, 1222, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 45722, 3312, 18, 14, 11748, 278, 12, 18170, 12, 6738, 12, 8000, 12, 43551, 14, 1157, 1314, 6469, 1731, 2, 1157, 1314, 6469, 1731, 198, 11748, 28686, 11, 25064, 11, 10104, 198, 14421, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 1040, 806, 13, 1136, 7753, 7, 1040, 806, 13, 14421, 14535, 3419, 22305, 198, 8000, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 14421, 62, 15908, 8, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 2560, 62, 15908, 8, 198, 198, 11748, 640, 220, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 198, 6738, 266, 83, 23914, 1330, 7032, 198, 6738, 4808, 5589, 265, 1330, 2420, 62, 4906, 11, 355, 62, 46903, 1098, 198, 198, 2, 422, 40803, 1330, 1635, 355, 13169, 62, 28029, 11407, 198, 11748, 1296, 13, 28029, 11407, 355, 13169, 62, 28029, 11407, 628, 198, 834, 439, 834, 796, 37250, 10430, 7575, 15878, 3256, 705, 7575, 15878, 3256, 705, 17563, 17, 15878, 3256, 705, 17563, 17, 36142, 15878, 3256, 705, 40386, 15878, 20520, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198 ]
2.721774
248
from datetime import datetime from os.path import dirname, join import pytest from city_scrapers_core.constants import COMMISSION, PASSED, TENTATIVE from city_scrapers_core.utils import file_response from freezegun import freeze_time from scrapy.settings import Settings from city_scrapers.spiders.chi_ssa_23 import ChiSsa23Spider test_response = file_response( join(dirname(__file__), "files", "chi_ssa_23.html"), url="https://www.lincolnparkchamber.com/clark-street-ssa-administration/", ) spider = ChiSsa23Spider() spider.settings = Settings(values={"CITY_SCRAPERS_ARCHIVE": False}) freezer = freeze_time("2020-05-11") freezer.start() parsed_items = sorted( [item for item in spider.parse(test_response)], key=lambda i: i["start"], reverse=True, ) freezer.stop() @pytest.mark.parametrize("item", parsed_items) @pytest.mark.parametrize("item", parsed_items) @pytest.mark.parametrize("item", parsed_items) @pytest.mark.parametrize("item", parsed_items) @pytest.mark.parametrize("item", parsed_items) @pytest.mark.parametrize("item", parsed_items)
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 4654, 198, 198, 11748, 12972, 9288, 198, 6738, 1748, 62, 1416, 2416, 364, 62, 7295, 13, 9979, 1187, 1330, 22240, 40373, 11, 41752, 1961, 11, 309, 3525, 37045, 198, 6738, 1748, 62, 1416, 2416, 364, 62, 7295, 13, 26791, 1330, 2393, 62, 26209, 198, 6738, 1479, 89, 1533, 403, 1330, 16611, 62, 2435, 198, 6738, 15881, 88, 13, 33692, 1330, 16163, 198, 198, 6738, 1748, 62, 1416, 2416, 364, 13, 2777, 4157, 13, 11072, 62, 824, 64, 62, 1954, 1330, 21380, 50, 11400, 1954, 41294, 198, 198, 9288, 62, 26209, 796, 2393, 62, 26209, 7, 198, 220, 220, 220, 4654, 7, 15908, 3672, 7, 834, 7753, 834, 828, 366, 16624, 1600, 366, 11072, 62, 824, 64, 62, 1954, 13, 6494, 12340, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 2503, 13, 75, 11690, 20928, 354, 7789, 13, 785, 14, 565, 668, 12, 25662, 12, 824, 64, 12, 39081, 1358, 14, 1600, 198, 8, 198, 198, 2777, 1304, 796, 21380, 50, 11400, 1954, 41294, 3419, 198, 2777, 1304, 13, 33692, 796, 16163, 7, 27160, 28, 4895, 34, 9050, 62, 6173, 49, 2969, 4877, 62, 31315, 9306, 1298, 10352, 30072, 198, 198, 5787, 9107, 796, 16611, 62, 2435, 7203, 42334, 12, 2713, 12, 1157, 4943, 198, 5787, 9107, 13, 9688, 3419, 198, 198, 79, 945, 276, 62, 23814, 796, 23243, 7, 198, 220, 220, 220, 685, 9186, 329, 2378, 287, 19230, 13, 29572, 7, 9288, 62, 26209, 8, 4357, 198, 220, 220, 220, 1994, 28, 50033, 1312, 25, 1312, 14692, 9688, 33116, 198, 220, 220, 220, 9575, 28, 17821, 11, 198, 8, 198, 198, 5787, 9107, 13, 11338, 3419, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9186, 1600, 44267, 62, 23814, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9186, 1600, 44267, 62, 23814, 8, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9186, 1600, 44267, 62, 23814, 8, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9186, 1600, 44267, 62, 23814, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9186, 1600, 44267, 62, 23814, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9186, 1600, 44267, 62, 23814, 8, 628 ]
2.7325
400
import subprocess filename = "../data/crackdump-01.csv" read()
[ 198, 11748, 850, 14681, 198, 198, 34345, 796, 366, 40720, 7890, 14, 6098, 441, 39455, 12, 486, 13, 40664, 1, 198, 198, 961, 3419, 198 ]
2.64
25
import logging from base64 import b64encode from asn1crypto.cms import CMSAttribute, ContentInfo, IssuerAndSerialNumber from cryptography.hazmat.primitives.asymmetric import padding from .asn1 import SCEPCMSAttributeType from .cryptoutils import digest_for_data, decrypt, digest_function_for_type from .enums import MessageType, PKIStatus from .certificate import Certificate CMSAttribute._fields = [ ('type', SCEPCMSAttributeType), ('values', None), ] logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 6738, 2779, 2414, 1330, 275, 2414, 268, 8189, 198, 6738, 355, 77, 16, 29609, 78, 13, 46406, 1330, 16477, 4090, 926, 4163, 11, 14041, 12360, 11, 10585, 15573, 1870, 32634, 15057, 198, 6738, 45898, 13, 71, 1031, 6759, 13, 19795, 20288, 13, 4107, 3020, 19482, 1330, 24511, 198, 198, 6738, 764, 292, 77, 16, 1330, 311, 5222, 5662, 44, 4090, 926, 4163, 6030, 198, 198, 6738, 764, 29609, 448, 4487, 1330, 16274, 62, 1640, 62, 7890, 11, 42797, 11, 16274, 62, 8818, 62, 1640, 62, 4906, 198, 198, 6738, 764, 268, 5700, 1330, 16000, 6030, 11, 29673, 40, 19580, 198, 6738, 764, 22583, 22460, 1330, 27895, 198, 198, 24187, 4090, 926, 4163, 13557, 25747, 796, 685, 198, 220, 220, 220, 19203, 4906, 3256, 311, 5222, 5662, 44, 4090, 926, 4163, 6030, 828, 198, 220, 220, 220, 19203, 27160, 3256, 6045, 828, 198, 60, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198 ]
3.104294
163
import pytest from sort import * @pytest.mark.parametrize( "input,expected", [ pytest.param( [4], [4] ), pytest.param( [5, 7, 6, 4], [4, 5, 6, 7] ), ], ) @pytest.mark.parametrize( "input,expected", [ pytest.param( [4], [4] ), pytest.param( [5, 7, 6, 4], [4, 5, 6, 7] ), ], ) @pytest.mark.parametrize( "input,expected", [ pytest.param( [4], [4] ), pytest.param( [4, 2], [2, 4] ), pytest.param( [5, 7, 6, 4], [4, 5, 6, 7] ), ], )
[ 11748, 12972, 9288, 198, 198, 6738, 3297, 1330, 1635, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 15414, 11, 40319, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 4357, 685, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 20, 11, 767, 11, 718, 11, 604, 4357, 685, 19, 11, 642, 11, 718, 11, 767, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 15414, 11, 40319, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 4357, 685, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 20, 11, 767, 11, 718, 11, 604, 4357, 685, 19, 11, 642, 11, 718, 11, 767, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 15414, 11, 40319, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 4357, 685, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 362, 4357, 685, 17, 11, 604, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 20, 11, 767, 11, 718, 11, 604, 4357, 685, 19, 11, 642, 11, 718, 11, 767, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 16589, 198, 8, 198 ]
1.543981
432
""" Created on 26 Dec 2016 @author: Bruno Beloff ([email protected]) https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/port """ import serial import time from scs_core.sys.serial import Serial from scs_host.lock.lock import Lock # -------------------------------------------------------------------------------------------------------------------- class HostSerial(Serial): """ classdocs """ # ---------------------------------------------------------------------------------------------------------------- def __init__(self, device_path, baud_rate, hard_handshake=False): """ Constructor """ super().__init__(device_path, baud_rate, hard_handshake) # ---------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------- @property # ---------------------------------------------------------------------------------------------------------------- @property
[ 37811, 198, 41972, 319, 2608, 4280, 1584, 198, 198, 31, 9800, 25, 31045, 3944, 2364, 357, 1671, 36909, 13, 6667, 2364, 31, 35782, 1073, 5773, 4234, 13, 785, 8, 198, 198, 5450, 1378, 35720, 13, 324, 1878, 4872, 13, 785, 14, 33990, 12, 929, 12, 952, 12, 29412, 12, 32016, 12, 261, 12, 1350, 19345, 15992, 12, 13424, 14, 634, 198, 37811, 198, 198, 11748, 11389, 198, 11748, 640, 198, 198, 6738, 629, 82, 62, 7295, 13, 17597, 13, 46911, 1330, 23283, 198, 198, 6738, 629, 82, 62, 4774, 13, 5354, 13, 5354, 1330, 13656, 628, 198, 2, 16529, 3880, 19351, 198, 198, 4871, 14504, 32634, 7, 32634, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1398, 31628, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3335, 62, 6978, 11, 275, 3885, 62, 4873, 11, 1327, 62, 4993, 32431, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 25202, 62, 6978, 11, 275, 3885, 62, 4873, 11, 1327, 62, 4993, 32431, 8, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 628, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 2488, 26745, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 2488, 26745, 198 ]
4.559524
252
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os from random import random, seed from bertsum.others.utils import test_rouge def get_rouge(predictions, targets, temp_dir, random_seed=42): """ function to get the rouge metric for the prediction and the reference. Args: predictions (list of strings): Predictions to be compared. target (list of strings): References temp_dir (str): Path where temporary folders are created to host the files generated by ROUGE application. seed (int, optional): Random seed. Defaults to 42. Return: dictionary: rouge metric """ seed(random_seed) random_number = random() os.makedirs(temp_dir, exist_ok=True) candidate_path = os.path.join(temp_dir, "candidate" + str(random_number)) gold_path = os.path.join(temp_dir, "gold" + str(random_number)) _write_list_to_file(predictions, candidate_path) _write_list_to_file(targets, gold_path) rouge = test_rouge(temp_dir, candidate_path, gold_path) return rouge
[ 2, 15069, 357, 66, 8, 5413, 10501, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 198, 198, 11748, 28686, 198, 6738, 4738, 1330, 4738, 11, 9403, 198, 198, 6738, 275, 861, 16345, 13, 847, 82, 13, 26791, 1330, 1332, 62, 472, 469, 628, 198, 4299, 651, 62, 472, 469, 7, 28764, 9278, 11, 6670, 11, 20218, 62, 15908, 11, 4738, 62, 28826, 28, 3682, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 284, 651, 262, 13805, 469, 18663, 329, 262, 17724, 290, 262, 4941, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16277, 357, 4868, 286, 13042, 2599, 14322, 9278, 284, 307, 3688, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 357, 4868, 286, 13042, 2599, 31458, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 15908, 357, 2536, 2599, 10644, 810, 8584, 24512, 389, 2727, 284, 2583, 262, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7560, 416, 371, 2606, 8264, 3586, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9403, 357, 600, 11, 11902, 2599, 14534, 9403, 13, 2896, 13185, 284, 5433, 13, 628, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 22155, 25, 13805, 469, 18663, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 9403, 7, 25120, 62, 28826, 8, 198, 220, 220, 220, 4738, 62, 17618, 796, 4738, 3419, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 29510, 62, 15908, 11, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 4540, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 29510, 62, 15908, 11, 366, 46188, 20540, 1, 1343, 965, 7, 25120, 62, 17618, 4008, 198, 220, 220, 220, 3869, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 29510, 62, 15908, 11, 366, 24267, 1, 1343, 965, 7, 25120, 62, 17618, 4008, 198, 220, 220, 220, 4808, 13564, 62, 4868, 62, 1462, 62, 7753, 7, 28764, 9278, 11, 4540, 62, 6978, 8, 198, 220, 220, 220, 4808, 13564, 62, 4868, 62, 1462, 62, 7753, 7, 83, 853, 1039, 11, 3869, 62, 6978, 8, 198, 220, 220, 220, 13805, 469, 796, 1332, 62, 472, 469, 7, 29510, 62, 15908, 11, 4540, 62, 6978, 11, 3869, 62, 6978, 8, 198, 220, 220, 220, 1441, 13805, 469, 198 ]
2.784615
390
from flask import Flask from .extensions import db from .models import Tree app = Flask(__name__) db.init_app(app) db.app = app # Create dummy secrey key so we can use sessions app.config['SECRET_KEY'] = '123456790' # Create in-memory database # app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://data.sqlite' from .views import * # noqa @app.before_first_request
[ 6738, 42903, 1330, 46947, 198, 198, 6738, 764, 2302, 5736, 1330, 20613, 198, 6738, 764, 27530, 1330, 12200, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 9945, 13, 15003, 62, 1324, 7, 1324, 8, 198, 9945, 13, 1324, 796, 598, 198, 198, 2, 13610, 31548, 792, 4364, 1994, 523, 356, 460, 779, 10991, 198, 1324, 13, 11250, 17816, 23683, 26087, 62, 20373, 20520, 796, 705, 10163, 2231, 3134, 3829, 6, 198, 2, 13610, 287, 12, 31673, 6831, 198, 2, 598, 13, 11250, 17816, 17861, 1847, 3398, 3620, 56, 62, 35, 1404, 6242, 11159, 62, 47269, 20520, 796, 705, 25410, 578, 1378, 7890, 13, 25410, 578, 6, 198, 198, 6738, 764, 33571, 1330, 1635, 220, 1303, 645, 20402, 628, 198, 198, 31, 1324, 13, 19052, 62, 11085, 62, 25927, 198 ]
2.810606
132
import torch # https://discuss.pytorch.org/t/covariance-and-gradient-support/16217
[ 11748, 28034, 198, 198, 2, 3740, 1378, 15410, 1046, 13, 9078, 13165, 354, 13, 2398, 14, 83, 14, 66, 709, 2743, 590, 12, 392, 12, 49607, 12, 11284, 14, 1433, 24591, 198 ]
2.625
32
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
# Copyright (c) 2009 Doug Hellmann All rights reserved. # """ """ # end_pymotw_header import compileall import sys sys.path[:] = ["examples", "notthere"] print("sys.path =", sys.path) compileall.compile_path()
[ 2, 15069, 357, 66, 8, 3717, 15115, 5783, 9038, 1439, 2489, 10395, 13, 198, 2, 198, 37811, 198, 37811, 198, 198, 2, 886, 62, 79, 4948, 313, 86, 62, 25677, 198, 11748, 17632, 439, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 58, 47715, 796, 14631, 1069, 12629, 1600, 366, 1662, 8117, 8973, 198, 4798, 7203, 17597, 13, 6978, 796, 1600, 25064, 13, 6978, 8, 198, 5589, 576, 439, 13, 5589, 576, 62, 6978, 3419, 198 ]
2.789474
76
import yaml import argparse from datasets import get_dataset from diffusion.trainers import get_trainer # The first arg parser parses out only the --config argument, this argument is used to # load a yaml file containing key-values that override the defaults for the main parser below config_parser = parser = argparse.ArgumentParser( description="Training Config", add_help=False ) parser.add_argument( "-c", "--config", default="", type=str, metavar="FILE", help="YAML config file specifying default arguments", ) if __name__ == "__main__": args, args_text = _parse_args() print(args_text) # Get Dataset trainloader, testloader = get_dataset(args) # Get trainer and train trainer = get_trainer(args) trainer.train(trainloader, testloader)
[ 11748, 331, 43695, 198, 11748, 1822, 29572, 198, 6738, 40522, 1330, 651, 62, 19608, 292, 316, 198, 6738, 44258, 13, 27432, 364, 1330, 651, 62, 2213, 10613, 198, 198, 2, 383, 717, 1822, 30751, 13544, 274, 503, 691, 262, 1377, 11250, 4578, 11, 428, 4578, 318, 973, 284, 198, 2, 3440, 257, 331, 43695, 2393, 7268, 1994, 12, 27160, 326, 20957, 262, 26235, 329, 262, 1388, 30751, 2174, 198, 11250, 62, 48610, 796, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 6764, 2625, 44357, 17056, 1600, 751, 62, 16794, 28, 25101, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 66, 1600, 198, 220, 220, 220, 366, 438, 11250, 1600, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 1138, 615, 283, 2625, 25664, 1600, 198, 220, 220, 220, 1037, 2625, 56, 2390, 43, 4566, 2393, 31577, 4277, 7159, 1600, 198, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 26498, 11, 26498, 62, 5239, 796, 4808, 29572, 62, 22046, 3419, 198, 220, 220, 220, 3601, 7, 22046, 62, 5239, 8, 198, 220, 220, 220, 1303, 3497, 16092, 292, 316, 198, 220, 220, 220, 4512, 29356, 11, 1332, 29356, 796, 651, 62, 19608, 292, 316, 7, 22046, 8, 628, 220, 220, 220, 1303, 3497, 21997, 290, 4512, 198, 220, 220, 220, 21997, 796, 651, 62, 2213, 10613, 7, 22046, 8, 198, 220, 220, 220, 21997, 13, 27432, 7, 27432, 29356, 11, 1332, 29356, 8, 198 ]
3.037879
264
# # PySNMP MIB module CIENA-CES-ACL-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CIENA-CES-ACL-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:31:34 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint") cienaCesConfig, = mibBuilder.importSymbols("CIENA-SMI", "cienaCesConfig") CienaGlobalState, = mibBuilder.importSymbols("CIENA-TC", "CienaGlobalState") InetAddress, InetAddressType, InetAddressPrefixLength = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType", "InetAddressPrefixLength") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") ModuleIdentity, ObjectIdentity, Unsigned32, Counter64, IpAddress, iso, Bits, MibScalar, MibTable, MibTableRow, MibTableColumn, Integer32, TimeTicks, MibIdentifier, Counter32, Gauge32, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "ObjectIdentity", "Unsigned32", "Counter64", "IpAddress", "iso", "Bits", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Integer32", "TimeTicks", "MibIdentifier", "Counter32", "Gauge32", "NotificationType") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") cienaCesAclMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25)) cienaCesAclMIB.setRevisions(('2012-11-21 00:00', '2012-05-01 00:00',)) if mibBuilder.loadTexts: cienaCesAclMIB.setLastUpdated('201211210000Z') if mibBuilder.loadTexts: cienaCesAclMIB.setOrganization('Ciena, Inc') cienaCesAclMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1)) cienaCesAclGlobal = MibIdentifier((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1)) cienaCesAclRules = MibIdentifier((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2)) cienaCesAclMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 3)) cienaCesAclMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 3, 1)) cienaCesAclMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 3, 2)) cienaCesAclAdminState = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 1), CienaGlobalState()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclAdminState.setStatus('current') cienaCesAclCacheHit = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclCacheHit.setStatus('current') cienaCesAclNoHit = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclNoHit.setStatus('current') cienaCesAclBadPort = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclBadPort.setStatus('current') cienaCesAclBadDscp = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclBadDscp.setStatus('current') cienaCesAclOperState = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 6), CienaGlobalState()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclOperState.setStatus('current') cienaCesAclInUseEntries = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclInUseEntries.setStatus('current') cienaCesAclMaxEntries = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclMaxEntries.setStatus('current') cienaCesAclBadProtocol = MibScalar((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclBadProtocol.setStatus('current') cienaCesAclTable = MibTable((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1), ) if mibBuilder.loadTexts: cienaCesAclTable.setStatus('deprecated') cienaCesAclEntry = MibTableRow((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1), ).setIndexNames((0, "CIENA-CES-ACL-MIB", "cienaCesAclEntryInetAddrType"), (0, "CIENA-CES-ACL-MIB", "cienaCesAclEntryInetAddr"), (0, "CIENA-CES-ACL-MIB", "cienaCesAclEntryInetPrefixLength")) if mibBuilder.loadTexts: cienaCesAclEntry.setStatus('deprecated') cienaCesAclEntryInetAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 1), InetAddressType()) if mibBuilder.loadTexts: cienaCesAclEntryInetAddrType.setStatus('deprecated') cienaCesAclEntryInetAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 2), InetAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryInetAddr.setStatus('deprecated') cienaCesAclEntryInetPrefixLength = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 3), InetAddressPrefixLength()) if mibBuilder.loadTexts: cienaCesAclEntryInetPrefixLength.setStatus('deprecated') cienaCesAclEntryHits = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryHits.setStatus('deprecated') cienaCesAclEntryBadPort = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryBadPort.setStatus('deprecated') cienaCesAclEntryDscpMask = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 6), OctetString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryDscpMask.setStatus('deprecated') cienaCesAclEntryBadDscp = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryBadDscp.setStatus('deprecated') cienaCesAclEntryPortBitMask = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 8), OctetString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryPortBitMask.setStatus('deprecated') cienaCesAclEntryNotifInetAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 9), InetAddressType()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryNotifInetAddrType.setStatus('deprecated') cienaCesAclEntryNotifInetAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 10), InetAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryNotifInetAddr.setStatus('deprecated') cienaCesAclEntryNotifInetPrefixLength = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 1, 1, 11), InetAddressPrefixLength()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesAclEntryNotifInetPrefixLength.setStatus('deprecated') cienaCesExtAclTable = MibTable((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2), ) if mibBuilder.loadTexts: cienaCesExtAclTable.setStatus('current') cienaCesExtAclEntry = MibTableRow((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1), ).setIndexNames((0, "CIENA-CES-ACL-MIB", "cienaCesExtAclEntrySrcInetAddrType"), (0, "CIENA-CES-ACL-MIB", "cienaCesExtAclEntrySrcInetAddr"), (0, "CIENA-CES-ACL-MIB", "cienaCesExtAclEntrySrcInetPrefixLen"), (0, "CIENA-CES-ACL-MIB", "cienaCesExtAclEntryDstInetAddrType"), (0, "CIENA-CES-ACL-MIB", "cienaCesExtAclEntryDstInetAddr"), (0, "CIENA-CES-ACL-MIB", "cienaCesExtAclEntryDstInetPrefixLen")) if mibBuilder.loadTexts: cienaCesExtAclEntry.setStatus('current') cienaCesExtAclEntrySrcInetAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 1), InetAddressType()) if mibBuilder.loadTexts: cienaCesExtAclEntrySrcInetAddrType.setStatus('current') cienaCesExtAclEntrySrcInetAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 2), InetAddress().subtype(subtypeSpec=ValueSizeConstraint(16, 16)).setFixedLength(16)) if mibBuilder.loadTexts: cienaCesExtAclEntrySrcInetAddr.setStatus('current') cienaCesExtAclEntrySrcInetPrefixLen = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 3), InetAddressPrefixLength()) if mibBuilder.loadTexts: cienaCesExtAclEntrySrcInetPrefixLen.setStatus('current') cienaCesExtAclEntryDstInetAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 4), InetAddressType()) if mibBuilder.loadTexts: cienaCesExtAclEntryDstInetAddrType.setStatus('current') cienaCesExtAclEntryDstInetAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 5), InetAddress().subtype(subtypeSpec=ValueSizeConstraint(16, 16)).setFixedLength(16)) if mibBuilder.loadTexts: cienaCesExtAclEntryDstInetAddr.setStatus('current') cienaCesExtAclEntryDstInetPrefixLen = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 6), InetAddressPrefixLength()) if mibBuilder.loadTexts: cienaCesExtAclEntryDstInetPrefixLen.setStatus('current') cienaCesExtAclEntryNotifSrcInetAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 7), InetAddressType()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryNotifSrcInetAddrType.setStatus('current') cienaCesExtAclEntryNotifSrcInetAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 8), InetAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryNotifSrcInetAddr.setStatus('current') cienaCesExtAclEntryNotifSrcInetPrefixLen = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 9), InetAddressPrefixLength()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryNotifSrcInetPrefixLen.setStatus('current') cienaCesExtAclEntryNotifDstInetAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 10), InetAddressType()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryNotifDstInetAddrType.setStatus('current') cienaCesExtAclEntryNotifDstInetAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 11), InetAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryNotifDstInetAddr.setStatus('current') cienaCesExtAclEntryNotifDstInetPrefixLen = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 12), InetAddressPrefixLength()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryNotifDstInetPrefixLen.setStatus('current') cienaCesExtAclEntryHits = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 13), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryHits.setStatus('current') cienaCesExtAclEntryBadPort = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 14), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryBadPort.setStatus('current') cienaCesExtAclEntryDscpMask = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 15), OctetString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryDscpMask.setStatus('current') cienaCesExtAclEntryBadDscp = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 16), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryBadDscp.setStatus('current') cienaCesExtAclEntryPortBitMask = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 17), OctetString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryPortBitMask.setStatus('current') cienaCesExtAclEntryProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 18), Bits().clone(namedValues=NamedValues(("icmp", 0), ("tcp", 1), ("udp", 2), ("all", 15)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryProtocol.setStatus('current') cienaCesExtAclEntryBadProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 1271, 2, 1, 25, 1, 2, 2, 1, 19), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cienaCesExtAclEntryBadProtocol.setStatus('current') mibBuilder.exportSymbols("CIENA-CES-ACL-MIB", cienaCesAclNoHit=cienaCesAclNoHit, PYSNMP_MODULE_ID=cienaCesAclMIB, cienaCesExtAclEntryPortBitMask=cienaCesExtAclEntryPortBitMask, cienaCesExtAclEntryDstInetAddrType=cienaCesExtAclEntryDstInetAddrType, cienaCesAclEntryBadPort=cienaCesAclEntryBadPort, cienaCesAclInUseEntries=cienaCesAclInUseEntries, cienaCesExtAclEntrySrcInetAddr=cienaCesExtAclEntrySrcInetAddr, cienaCesExtAclEntryNotifDstInetAddrType=cienaCesExtAclEntryNotifDstInetAddrType, cienaCesExtAclEntryHits=cienaCesExtAclEntryHits, cienaCesAclTable=cienaCesAclTable, cienaCesAclBadProtocol=cienaCesAclBadProtocol, cienaCesAclEntry=cienaCesAclEntry, cienaCesExtAclEntryBadDscp=cienaCesExtAclEntryBadDscp, cienaCesExtAclEntryDstInetAddr=cienaCesExtAclEntryDstInetAddr, cienaCesAclEntryHits=cienaCesAclEntryHits, cienaCesExtAclEntryProtocol=cienaCesExtAclEntryProtocol, cienaCesAclMIBConformance=cienaCesAclMIBConformance, cienaCesAclEntryInetPrefixLength=cienaCesAclEntryInetPrefixLength, cienaCesAclMIBCompliances=cienaCesAclMIBCompliances, cienaCesAclEntryNotifInetAddr=cienaCesAclEntryNotifInetAddr, cienaCesExtAclEntryNotifSrcInetPrefixLen=cienaCesExtAclEntryNotifSrcInetPrefixLen, cienaCesExtAclEntryBadProtocol=cienaCesExtAclEntryBadProtocol, cienaCesAclEntryBadDscp=cienaCesAclEntryBadDscp, cienaCesAclMIBObjects=cienaCesAclMIBObjects, cienaCesAclOperState=cienaCesAclOperState, cienaCesExtAclTable=cienaCesExtAclTable, cienaCesAclEntryNotifInetPrefixLength=cienaCesAclEntryNotifInetPrefixLength, cienaCesAclEntryInetAddr=cienaCesAclEntryInetAddr, cienaCesExtAclEntryNotifSrcInetAddr=cienaCesExtAclEntryNotifSrcInetAddr, cienaCesAclMIBGroups=cienaCesAclMIBGroups, cienaCesAclGlobal=cienaCesAclGlobal, cienaCesAclEntryInetAddrType=cienaCesAclEntryInetAddrType, cienaCesExtAclEntryNotifDstInetAddr=cienaCesExtAclEntryNotifDstInetAddr, cienaCesAclEntryPortBitMask=cienaCesAclEntryPortBitMask, cienaCesExtAclEntryDstInetPrefixLen=cienaCesExtAclEntryDstInetPrefixLen, cienaCesExtAclEntryNotifSrcInetAddrType=cienaCesExtAclEntryNotifSrcInetAddrType, cienaCesExtAclEntryBadPort=cienaCesExtAclEntryBadPort, cienaCesExtAclEntrySrcInetAddrType=cienaCesExtAclEntrySrcInetAddrType, cienaCesExtAclEntryDscpMask=cienaCesExtAclEntryDscpMask, cienaCesAclRules=cienaCesAclRules, cienaCesAclEntryDscpMask=cienaCesAclEntryDscpMask, cienaCesAclEntryNotifInetAddrType=cienaCesAclEntryNotifInetAddrType, cienaCesAclMIB=cienaCesAclMIB, cienaCesAclCacheHit=cienaCesAclCacheHit, cienaCesAclBadPort=cienaCesAclBadPort, cienaCesExtAclEntry=cienaCesExtAclEntry, cienaCesExtAclEntrySrcInetPrefixLen=cienaCesExtAclEntrySrcInetPrefixLen, cienaCesAclAdminState=cienaCesAclAdminState, cienaCesExtAclEntryNotifDstInetPrefixLen=cienaCesExtAclEntryNotifDstInetPrefixLen, cienaCesAclBadDscp=cienaCesAclBadDscp, cienaCesAclMaxEntries=cienaCesAclMaxEntries)
[ 2, 198, 2, 9485, 15571, 7378, 337, 9865, 8265, 14514, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 357, 4023, 1378, 16184, 76, 489, 8937, 13, 785, 14, 79, 893, 11632, 8, 198, 2, 7054, 45, 13, 16, 2723, 2393, 1378, 14, 14490, 14, 67, 615, 47562, 19, 14, 13603, 14, 76, 571, 82, 13, 16184, 76, 489, 8937, 13, 785, 14, 292, 77, 16, 14, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 198, 2, 21522, 771, 416, 279, 893, 11632, 12, 15, 13, 18, 13, 19, 379, 2892, 2758, 2808, 1596, 25, 3132, 25, 2682, 13130, 198, 2, 1550, 2583, 42274, 54, 15567, 19, 12, 44, 12, 1415, 2425, 3859, 21450, 2196, 1248, 13, 20, 13, 15, 416, 2836, 288, 615, 47562, 19, 198, 2, 8554, 11361, 2196, 513, 13, 22, 13, 18, 357, 12286, 11, 1526, 2681, 13130, 11, 7769, 25, 1954, 25, 1314, 8, 220, 198, 2, 198, 12349, 316, 10100, 11, 9515, 33234, 7483, 11, 34142, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 1600, 366, 12349, 316, 10100, 1600, 366, 10267, 33234, 7483, 1600, 366, 46541, 4943, 198, 45, 2434, 40161, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 1677, 5883, 1137, 6234, 1600, 366, 45, 2434, 40161, 4943, 198, 3103, 2536, 6003, 38176, 11, 11052, 10699, 3103, 2536, 2913, 11, 1482, 2536, 6003, 9492, 5458, 11, 11052, 17257, 3103, 2536, 2913, 11, 14206, 11395, 3103, 2536, 2913, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 2200, 20032, 12529, 1600, 366, 3103, 2536, 6003, 38176, 1600, 366, 11395, 10699, 3103, 2536, 2913, 1600, 366, 3103, 2536, 6003, 9492, 5458, 1600, 366, 11395, 17257, 3103, 2536, 2913, 1600, 366, 28008, 11395, 3103, 2536, 2913, 4943, 198, 979, 8107, 34, 274, 16934, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 25690, 45510, 12, 50, 8895, 1600, 366, 979, 8107, 34, 274, 16934, 4943, 198, 34, 2013, 64, 22289, 9012, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 25690, 45510, 12, 4825, 1600, 366, 34, 2013, 64, 22289, 9012, 4943, 198, 818, 316, 20231, 11, 554, 316, 20231, 6030, 11, 554, 316, 20231, 36698, 844, 24539, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1268, 2767, 12, 2885, 7707, 7597, 12, 8895, 33, 1600, 366, 818, 316, 20231, 1600, 366, 818, 316, 20231, 6030, 1600, 366, 818, 316, 20231, 36698, 844, 24539, 4943, 198, 26796, 38143, 3610, 11, 42808, 13247, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 10943, 37, 1600, 366, 26796, 38143, 3610, 1600, 366, 3673, 2649, 13247, 4943, 198, 26796, 7390, 26858, 11, 9515, 7390, 26858, 11, 791, 32696, 2624, 11, 15034, 2414, 11, 314, 79, 20231, 11, 47279, 11, 44733, 11, 337, 571, 3351, 282, 283, 11, 337, 571, 10962, 11, 337, 571, 10962, 25166, 11, 337, 571, 10962, 39470, 11, 34142, 2624, 11, 3862, 51, 3378, 11, 337, 571, 33234, 7483, 11, 15034, 2624, 11, 35094, 469, 2624, 11, 42808, 6030, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 50, 8895, 1600, 366, 26796, 7390, 26858, 1600, 366, 10267, 7390, 26858, 1600, 366, 3118, 32696, 2624, 1600, 366, 31694, 2414, 1600, 366, 40, 79, 20231, 1600, 366, 26786, 1600, 366, 33, 896, 1600, 366, 44, 571, 3351, 282, 283, 1600, 366, 44, 571, 10962, 1600, 366, 44, 571, 10962, 25166, 1600, 366, 44, 571, 10962, 39470, 1600, 366, 46541, 2624, 1600, 366, 7575, 51, 3378, 1600, 366, 44, 571, 33234, 7483, 1600, 366, 31694, 2624, 1600, 366, 38, 559, 469, 2624, 1600, 366, 3673, 2649, 6030, 4943, 198, 8206, 723, 3103, 4018, 11, 16531, 10100, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 4825, 1600, 366, 8206, 723, 3103, 4018, 1600, 366, 23114, 10100, 4943, 198, 979, 8107, 34, 274, 32, 565, 8895, 33, 796, 19937, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 4008, 198, 979, 8107, 34, 274, 32, 565, 8895, 33, 13, 2617, 18009, 3279, 7, 10786, 6999, 12, 1157, 12, 2481, 3571, 25, 405, 3256, 705, 6999, 12, 2713, 12, 486, 3571, 25, 405, 3256, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 8895, 33, 13, 2617, 5956, 17354, 10786, 1264, 2481, 19244, 2388, 57, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 8895, 33, 13, 2617, 26121, 1634, 10786, 34, 2013, 64, 11, 3457, 11537, 198, 979, 8107, 34, 274, 32, 565, 8895, 33, 10267, 82, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 4008, 198, 979, 8107, 34, 274, 32, 565, 22289, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 4008, 198, 979, 8107, 34, 274, 32, 565, 37766, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 4008, 198, 979, 8107, 34, 274, 32, 565, 8895, 2749, 261, 10367, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 513, 4008, 198, 979, 8107, 34, 274, 32, 565, 8895, 2749, 6316, 16097, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 513, 11, 352, 4008, 198, 979, 8107, 34, 274, 32, 565, 8895, 40469, 14459, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 513, 11, 362, 4008, 198, 979, 8107, 34, 274, 32, 565, 46787, 9012, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 352, 828, 327, 2013, 64, 22289, 9012, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 46787, 9012, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 30562, 17889, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 362, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30562, 17889, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 2949, 17889, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 513, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 2949, 17889, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 22069, 13924, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 604, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 22069, 13924, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 22069, 35, 1416, 79, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 642, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 22069, 35, 1416, 79, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 18843, 9012, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 718, 828, 327, 2013, 64, 22289, 9012, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 18843, 9012, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 818, 11041, 14539, 1678, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 767, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 818, 11041, 14539, 1678, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 11518, 14539, 1678, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 807, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 11518, 14539, 1678, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 22069, 19703, 4668, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 352, 11, 860, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 22069, 19703, 4668, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 32, 565, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 10962, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 6030, 12340, 357, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 12340, 357, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 36698, 844, 24539, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 6030, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 352, 828, 554, 316, 20231, 6030, 28955, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 6030, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 362, 828, 554, 316, 20231, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 36698, 844, 24539, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 513, 828, 554, 316, 20231, 36698, 844, 24539, 28955, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 818, 316, 36698, 844, 24539, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 39, 896, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 604, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 39, 896, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 22069, 13924, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 642, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 22069, 13924, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 35, 1416, 79, 45195, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 718, 828, 2556, 316, 10100, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 10699, 3103, 2536, 2913, 7, 23, 11, 807, 29720, 2617, 13715, 24539, 7, 23, 29720, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 35, 1416, 79, 45195, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 22069, 35, 1416, 79, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 767, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 22069, 35, 1416, 79, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 13924, 13128, 45195, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 807, 828, 2556, 316, 10100, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 10699, 3103, 2536, 2913, 7, 23, 11, 807, 29720, 2617, 13715, 24539, 7, 23, 29720, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 13924, 13128, 45195, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 4550, 81, 6030, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 860, 828, 554, 316, 20231, 6030, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 4550, 81, 6030, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 4550, 81, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 838, 828, 554, 316, 20231, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 4550, 81, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 36698, 844, 24539, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 352, 11, 352, 11, 1367, 828, 554, 316, 20231, 36698, 844, 24539, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 36698, 844, 24539, 13, 2617, 19580, 10786, 10378, 31023, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 6030, 12340, 357, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 12340, 357, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 36698, 844, 30659, 12340, 357, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 6030, 12340, 357, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 12340, 357, 15, 11, 366, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 366, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 36698, 844, 30659, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 6030, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 352, 828, 554, 316, 20231, 6030, 28955, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 6030, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 362, 828, 554, 316, 20231, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 10699, 3103, 2536, 2913, 7, 1433, 11, 1467, 29720, 2617, 13715, 24539, 7, 1433, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 36698, 844, 30659, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 513, 828, 554, 316, 20231, 36698, 844, 24539, 28955, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 36698, 844, 30659, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 6030, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 604, 828, 554, 316, 20231, 6030, 28955, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 6030, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 642, 828, 554, 316, 20231, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 10699, 3103, 2536, 2913, 7, 1433, 11, 1467, 29720, 2617, 13715, 24539, 7, 1433, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 36698, 844, 30659, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 718, 828, 554, 316, 20231, 36698, 844, 24539, 28955, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 36698, 844, 30659, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 4550, 81, 6030, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 767, 828, 554, 316, 20231, 6030, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 4550, 81, 6030, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 4550, 81, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 807, 828, 554, 316, 20231, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 4550, 81, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 36698, 844, 30659, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 860, 828, 554, 316, 20231, 36698, 844, 24539, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 36698, 844, 30659, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 4550, 81, 6030, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 838, 828, 554, 316, 20231, 6030, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 4550, 81, 6030, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 4550, 81, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 1367, 828, 554, 316, 20231, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 4550, 81, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 36698, 844, 30659, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 1105, 828, 554, 316, 20231, 36698, 844, 24539, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 36698, 844, 30659, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 39, 896, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 1511, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 39, 896, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 22069, 13924, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 1478, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 22069, 13924, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 1416, 79, 45195, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 1315, 828, 2556, 316, 10100, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 10699, 3103, 2536, 2913, 7, 23, 11, 807, 29720, 2617, 13715, 24539, 7, 23, 29720, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 35, 1416, 79, 45195, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 22069, 35, 1416, 79, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 1467, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 22069, 35, 1416, 79, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 13924, 13128, 45195, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 1596, 828, 2556, 316, 10100, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 10699, 3103, 2536, 2913, 7, 23, 11, 807, 29720, 2617, 13715, 24539, 7, 23, 29720, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 13924, 13128, 45195, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 19703, 4668, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 1248, 828, 44733, 22446, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 291, 3149, 1600, 657, 828, 5855, 83, 13155, 1600, 352, 828, 5855, 463, 79, 1600, 362, 828, 5855, 439, 1600, 1315, 22305, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 19703, 4668, 13, 2617, 19580, 10786, 14421, 11537, 198, 979, 8107, 34, 274, 11627, 32, 565, 30150, 22069, 19703, 4668, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1105, 4869, 11, 362, 11, 352, 11, 1679, 11, 352, 11, 362, 11, 362, 11, 352, 11, 678, 828, 15034, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 22069, 19703, 4668, 13, 2617, 19580, 10786, 14421, 11537, 198, 76, 571, 32875, 13, 39344, 13940, 2022, 10220, 7203, 25690, 45510, 12, 34, 1546, 12, 2246, 43, 12, 8895, 33, 1600, 269, 2013, 64, 34, 274, 32, 565, 2949, 17889, 28, 979, 8107, 34, 274, 32, 565, 2949, 17889, 11, 350, 56, 15571, 7378, 62, 33365, 24212, 62, 2389, 28, 979, 8107, 34, 274, 32, 565, 8895, 33, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 13924, 13128, 45195, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 13924, 13128, 45195, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 6030, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 6030, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 22069, 13924, 28, 979, 8107, 34, 274, 32, 565, 30150, 22069, 13924, 11, 269, 2013, 64, 34, 274, 32, 565, 818, 11041, 14539, 1678, 28, 979, 8107, 34, 274, 32, 565, 818, 11041, 14539, 1678, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 4550, 81, 6030, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 4550, 81, 6030, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 39, 896, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 39, 896, 11, 269, 2013, 64, 34, 274, 32, 565, 10962, 28, 979, 8107, 34, 274, 32, 565, 10962, 11, 269, 2013, 64, 34, 274, 32, 565, 22069, 19703, 4668, 28, 979, 8107, 34, 274, 32, 565, 22069, 19703, 4668, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 28, 979, 8107, 34, 274, 32, 565, 30150, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 22069, 35, 1416, 79, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 22069, 35, 1416, 79, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 4550, 81, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 39, 896, 28, 979, 8107, 34, 274, 32, 565, 30150, 39, 896, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 19703, 4668, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 19703, 4668, 11, 269, 2013, 64, 34, 274, 32, 565, 8895, 2749, 261, 10367, 28, 979, 8107, 34, 274, 32, 565, 8895, 2749, 261, 10367, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 818, 316, 36698, 844, 24539, 28, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 36698, 844, 24539, 11, 269, 2013, 64, 34, 274, 32, 565, 8895, 2749, 6316, 16097, 28, 979, 8107, 34, 274, 32, 565, 8895, 2749, 6316, 16097, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 4550, 81, 28, 979, 8107, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 4550, 81, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 36698, 844, 30659, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 36698, 844, 30659, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 22069, 19703, 4668, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 22069, 19703, 4668, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 22069, 35, 1416, 79, 28, 979, 8107, 34, 274, 32, 565, 30150, 22069, 35, 1416, 79, 11, 269, 2013, 64, 34, 274, 32, 565, 8895, 33, 10267, 82, 28, 979, 8107, 34, 274, 32, 565, 8895, 33, 10267, 82, 11, 269, 2013, 64, 34, 274, 32, 565, 18843, 9012, 28, 979, 8107, 34, 274, 32, 565, 18843, 9012, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 10962, 28, 979, 8107, 34, 274, 11627, 32, 565, 10962, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 36698, 844, 24539, 28, 979, 8107, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 36698, 844, 24539, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 28, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 4550, 81, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 4550, 81, 11, 269, 2013, 64, 34, 274, 32, 565, 8895, 40469, 14459, 28, 979, 8107, 34, 274, 32, 565, 8895, 40469, 14459, 11, 269, 2013, 64, 34, 274, 32, 565, 22289, 28, 979, 8107, 34, 274, 32, 565, 22289, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 6030, 28, 979, 8107, 34, 274, 32, 565, 30150, 818, 316, 4550, 81, 6030, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 4550, 81, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 4550, 81, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 13924, 13128, 45195, 28, 979, 8107, 34, 274, 32, 565, 30150, 13924, 13128, 45195, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 36698, 844, 30659, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 301, 818, 316, 36698, 844, 30659, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 4550, 81, 6030, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 50, 6015, 818, 316, 4550, 81, 6030, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 22069, 13924, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 22069, 13924, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 6030, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 4550, 81, 6030, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 35, 1416, 79, 45195, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 35, 1416, 79, 45195, 11, 269, 2013, 64, 34, 274, 32, 565, 37766, 28, 979, 8107, 34, 274, 32, 565, 37766, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 35, 1416, 79, 45195, 28, 979, 8107, 34, 274, 32, 565, 30150, 35, 1416, 79, 45195, 11, 269, 2013, 64, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 4550, 81, 6030, 28, 979, 8107, 34, 274, 32, 565, 30150, 3673, 361, 818, 316, 4550, 81, 6030, 11, 269, 2013, 64, 34, 274, 32, 565, 8895, 33, 28, 979, 8107, 34, 274, 32, 565, 8895, 33, 11, 269, 2013, 64, 34, 274, 32, 565, 30562, 17889, 28, 979, 8107, 34, 274, 32, 565, 30562, 17889, 11, 269, 2013, 64, 34, 274, 32, 565, 22069, 13924, 28, 979, 8107, 34, 274, 32, 565, 22069, 13924, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 36698, 844, 30659, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 50, 6015, 818, 316, 36698, 844, 30659, 11, 269, 2013, 64, 34, 274, 32, 565, 46787, 9012, 28, 979, 8107, 34, 274, 32, 565, 46787, 9012, 11, 269, 2013, 64, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 36698, 844, 30659, 28, 979, 8107, 34, 274, 11627, 32, 565, 30150, 3673, 361, 35, 301, 818, 316, 36698, 844, 30659, 11, 269, 2013, 64, 34, 274, 32, 565, 22069, 35, 1416, 79, 28, 979, 8107, 34, 274, 32, 565, 22069, 35, 1416, 79, 11, 269, 2013, 64, 34, 274, 32, 565, 11518, 14539, 1678, 28, 979, 8107, 34, 274, 32, 565, 11518, 14539, 1678, 8, 198 ]
2.313321
6,546
import argparse from functools import partial from multiprocessing import Pool from pathlib import Path from PIL import Image from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument(dest='base_dir', type=Path) parser.add_argument(dest='out_dir', type=Path) args = parser.parse_args() if __name__ == '__main__': main()
[ 11748, 1822, 29572, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 7, 16520, 11639, 8692, 62, 15908, 3256, 2099, 28, 15235, 8, 198, 48610, 13, 2860, 62, 49140, 7, 16520, 11639, 448, 62, 15908, 3256, 2099, 28, 15235, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 628 ]
3.070175
114
import requests from helpers.logHelper import logger symbolNamePairs = { "BITCOIN": "BTC", "ETHEREUM": "ETH", "DOGECOIN": "DOGE", } setting = settings()
[ 11748, 7007, 201, 198, 6738, 49385, 13, 6404, 47429, 1330, 49706, 201, 198, 201, 198, 1837, 23650, 5376, 47, 3468, 796, 1391, 201, 198, 220, 220, 220, 366, 26094, 8220, 1268, 1298, 366, 35964, 1600, 201, 198, 220, 220, 220, 366, 20702, 9338, 5883, 1298, 366, 20702, 1600, 201, 198, 220, 220, 220, 366, 35, 7730, 2943, 46, 1268, 1298, 366, 35, 7730, 36, 1600, 201, 198, 92, 201, 198, 201, 198, 201, 198, 201, 198, 33990, 796, 6460, 3419, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.125
88
"""Operation on Streams that leave the shape of the stream unchanged""" import numpy as np import pandas as pd from vmpy.utils import cast_array_to_original_type # FTP based 7-zones with left bind edge set to -0.001 POWER_ZONES_THRESHOLD = [-0.001, 0.55, 0.75, 0.9, 1.05, 1.2, 1.5, 10.0] POWER_ZONES_THRESHOLD_DESC = ["Active Recovery", "Endurance", "Tempo", "Threshold", "VO2Max", "Anaerobic", "Neuromuscular",] POWER_ZONES_THRESHOLD_ZNAME = ["Z1", "Z2", "Z3", "Z4", "Z5", "Z6", "Z7"] # LTHR based 5-zones with left bind edge set to -0.001 HEART_RATE_ZONES = [-0.001, 0.68, 0.83, 0.94, 1.05, 10.0] HEART_RATE_ZONES_DESC = ["Active recovery", "Endurance", "Tempo", "Threshold", "VO2Max",] HEART_RATE_ZONES_ZNAME = ["Z1", "Z2", "Z3", "Z4", "Z5"] def compute_zones(arg, **kwargs): """Convert stream into respective zones stream Watts streams can be converted either into ftp based 7-zones or into custom zones HR streams can be converted either in lthr based 5-zones or into custom zones One of three *ftp*, *lthr* or *zone* keyword parameters must be provided Parameters ---------- arg : array-like ftp : number, optional Value for FTP, will be used for 7-zones calculation lthr: number, optional Value for LTHR, will be used for 5-zones calculation zones: list, optional List of custom defined zones with left edge set to -1 and right edge to 10000 Returns ------- array-like of int, the same type as arg """ arg_s = pd.Series(arg) if kwargs.get('zones', None): abs_zones = kwargs.get('zones') elif kwargs.get('ftp', None): abs_zones = np.asarray(POWER_ZONES_THRESHOLD) * kwargs.get('ftp') elif kwargs.get('lthr', None): abs_zones = np.asarray(HEART_RATE_ZONES) * kwargs.get('lthr') else: raise ValueError labels = kwargs.get('labels', list(range(1, len(abs_zones)))) assert len(abs_zones) == (len(labels) + 1) y = pd.cut(arg_s, bins=abs_zones, labels=labels) y = cast_array_to_original_type(y, type(arg)) return y def wpk(power, weight): """Watts per kilo Parameters ---------- power : list, ndarray, series weight : number Returns ------- array-like """ rv = pd.Series(power, dtype=float)/ weight rv = cast_array_to_original_type(rv, type(power)) return rv def mask_fill(arg, mask=None, value=0.0, **kwargs): """Replace masked values Parameters ---------- arg : array-like mask : array-like of bools, optional Default value is None, which means no masking will be applied value : number, optional Value to use for replacement, default=0.0 Returns ------- y: type of input argument In case the arg is an ndarray all operations will be performed on the original array. To preserve original array pass a copy to the function """ if mask is None: return arg y = np.array(arg) mask = np.array(mask, dtype=bool) y[~mask] = value rv = cast_array_to_original_type(y, type(arg)) return rv def median_filter(arg, window=31, threshold=1, value=None, **kwargs): """Outlier replacement using median filter Detect outliers using median filter and replace with rolling median or specified value Parameters ---------- arg : array-like window : int, optional Size of window (including the sample; default=31 is equal to 15 on either side of value) threshold : number, optional default=3 and corresponds to 2xSigma value : float, optional Value to be used for replacement, default=None, which means replacement by rolling median value Returns ------- y: type of input argument In case the arg is an ndarray all operations will be performed on the original array. To preserve original array pass a copy to the function """ y = pd.Series(arg) rolling_median = y.rolling(window, min_periods=1).median() difference = np.abs(y - rolling_median) median_abs_deviation = difference.rolling(window, min_periods=1).median() outlier_idx = difference > 1.4826 * threshold * median_abs_deviation """ The factor 1.4826 makes the MAD scale estimate an unbiased estimate of the standard deviation for Gaussian data. """ if value: y[outlier_idx] = value else: y[outlier_idx] = rolling_median[outlier_idx] y = y.as_matrix() y = cast_array_to_original_type(y, type(arg)) return y def rolling_mean(arg, window=10, mask=None, value=0.0, **kwargs): """Compute rolling mean Compute *uniform* or *ewma* rolling mean of the stream. In-process masking with replacement is controlled by optional keyword parameters Parameters ---------- arg : array-like window : int Size of the moving window in sec, default=10 mask : array-like of boolean, optional Default value is None, which means no masking will be applied value : number, optional Value to use for replacement, default=0.0 type : {"uniform", "emwa"}, optional Type of averaging, default="uniform" Returns ------- y: type of input argument The moving array will indicate which samples to set to zero before applying rolling mean. """ if mask is not None: arg = mask_fill(arg, mask, value, **kwargs) y = pd.Series(arg) if kwargs.get('type', 'uniform') == 'ewma': y = y.ewm(span=window, min_periods=1).mean().values else: y = y.rolling(window, min_periods=1).mean().values y = cast_array_to_original_type(y, type(arg)) return y
[ 37811, 32180, 319, 13860, 82, 326, 2666, 262, 5485, 286, 262, 4269, 21588, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 410, 3149, 88, 13, 26791, 1330, 3350, 62, 18747, 62, 1462, 62, 14986, 62, 4906, 628, 198, 2, 45854, 1912, 767, 12, 89, 1952, 351, 1364, 11007, 5743, 900, 284, 532, 15, 13, 8298, 198, 47, 36048, 62, 57, 39677, 62, 4221, 19535, 39, 15173, 796, 25915, 15, 13, 8298, 11, 657, 13, 2816, 11, 657, 13, 2425, 11, 657, 13, 24, 11, 352, 13, 2713, 11, 352, 13, 17, 11, 352, 13, 20, 11, 838, 13, 15, 60, 198, 47, 36048, 62, 57, 39677, 62, 4221, 19535, 39, 15173, 62, 30910, 34, 796, 14631, 13739, 21007, 1600, 366, 12915, 3874, 1600, 366, 12966, 7501, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 817, 10126, 1600, 366, 29516, 17, 11518, 1600, 366, 2025, 25534, 20803, 1600, 366, 8199, 333, 296, 385, 10440, 1600, 60, 198, 47, 36048, 62, 57, 39677, 62, 4221, 19535, 39, 15173, 62, 57, 20608, 796, 14631, 57, 16, 1600, 366, 57, 17, 1600, 366, 57, 18, 1600, 366, 57, 19, 1600, 366, 57, 20, 1600, 366, 57, 21, 1600, 366, 57, 22, 8973, 198, 198, 2, 406, 4221, 49, 1912, 642, 12, 89, 1952, 351, 1364, 11007, 5743, 900, 284, 532, 15, 13, 8298, 198, 13909, 7227, 62, 49, 6158, 62, 57, 39677, 796, 25915, 15, 13, 8298, 11, 657, 13, 3104, 11, 657, 13, 5999, 11, 657, 13, 5824, 11, 352, 13, 2713, 11, 838, 13, 15, 60, 198, 13909, 7227, 62, 49, 6158, 62, 57, 39677, 62, 30910, 34, 796, 14631, 13739, 7628, 1600, 366, 12915, 3874, 1600, 366, 12966, 7501, 1600, 366, 817, 10126, 1600, 366, 29516, 17, 11518, 1600, 60, 198, 13909, 7227, 62, 49, 6158, 62, 57, 39677, 62, 57, 20608, 796, 14631, 57, 16, 1600, 366, 57, 17, 1600, 366, 57, 18, 1600, 366, 57, 19, 1600, 366, 57, 20, 8973, 628, 198, 4299, 24061, 62, 89, 1952, 7, 853, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 4269, 656, 11756, 14123, 4269, 628, 220, 220, 220, 27555, 15190, 460, 307, 11513, 2035, 656, 10117, 79, 1912, 767, 12, 89, 1952, 393, 656, 2183, 14123, 198, 220, 220, 220, 15172, 15190, 460, 307, 11513, 2035, 287, 300, 400, 81, 1912, 642, 12, 89, 1952, 393, 656, 2183, 14123, 198, 220, 220, 220, 1881, 286, 1115, 1635, 701, 79, 25666, 1635, 75, 400, 81, 9, 393, 1635, 11340, 9, 21179, 10007, 1276, 307, 2810, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1822, 1058, 7177, 12, 2339, 198, 220, 220, 220, 10117, 79, 1058, 1271, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 329, 45854, 11, 481, 307, 973, 329, 767, 12, 89, 1952, 17952, 198, 220, 220, 220, 300, 400, 81, 25, 1271, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 329, 406, 4221, 49, 11, 481, 307, 973, 329, 642, 12, 89, 1952, 17952, 198, 220, 220, 220, 14123, 25, 1351, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 2183, 5447, 14123, 351, 1364, 5743, 900, 284, 532, 16, 290, 826, 5743, 284, 33028, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7177, 12, 2339, 286, 493, 11, 262, 976, 2099, 355, 1822, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1822, 62, 82, 796, 279, 67, 13, 27996, 7, 853, 8, 628, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 89, 1952, 3256, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2352, 62, 89, 1952, 796, 479, 86, 22046, 13, 1136, 10786, 89, 1952, 11537, 628, 220, 220, 220, 1288, 361, 479, 86, 22046, 13, 1136, 10786, 701, 79, 3256, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2352, 62, 89, 1952, 796, 45941, 13, 292, 18747, 7, 47, 36048, 62, 57, 39677, 62, 4221, 19535, 39, 15173, 8, 1635, 479, 86, 22046, 13, 1136, 10786, 701, 79, 11537, 628, 220, 220, 220, 1288, 361, 479, 86, 22046, 13, 1136, 10786, 75, 400, 81, 3256, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2352, 62, 89, 1952, 796, 45941, 13, 292, 18747, 7, 13909, 7227, 62, 49, 6158, 62, 57, 39677, 8, 1635, 479, 86, 22046, 13, 1136, 10786, 75, 400, 81, 11537, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 628, 220, 220, 220, 14722, 796, 479, 86, 22046, 13, 1136, 10786, 23912, 1424, 3256, 1351, 7, 9521, 7, 16, 11, 18896, 7, 8937, 62, 89, 1952, 35514, 198, 220, 220, 220, 6818, 18896, 7, 8937, 62, 89, 1952, 8, 6624, 357, 11925, 7, 23912, 1424, 8, 1343, 352, 8, 628, 220, 220, 220, 331, 796, 279, 67, 13, 8968, 7, 853, 62, 82, 11, 41701, 28, 8937, 62, 89, 1952, 11, 14722, 28, 23912, 1424, 8, 198, 220, 220, 220, 331, 796, 3350, 62, 18747, 62, 1462, 62, 14986, 62, 4906, 7, 88, 11, 2099, 7, 853, 4008, 628, 220, 220, 220, 1441, 331, 628, 198, 198, 4299, 266, 79, 74, 7, 6477, 11, 3463, 2599, 198, 220, 220, 220, 37227, 54, 30353, 583, 8769, 78, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1176, 1058, 1351, 11, 299, 67, 18747, 11, 2168, 198, 220, 220, 220, 3463, 1058, 1271, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7177, 12, 2339, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 374, 85, 796, 279, 67, 13, 27996, 7, 6477, 11, 288, 4906, 28, 22468, 20679, 3463, 198, 220, 220, 220, 374, 85, 796, 3350, 62, 18747, 62, 1462, 62, 14986, 62, 4906, 7, 81, 85, 11, 2099, 7, 6477, 4008, 628, 220, 220, 220, 1441, 374, 85, 628, 198, 4299, 9335, 62, 20797, 7, 853, 11, 9335, 28, 14202, 11, 1988, 28, 15, 13, 15, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 3041, 5372, 29229, 3815, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1822, 1058, 7177, 12, 2339, 198, 220, 220, 220, 9335, 1058, 7177, 12, 2339, 286, 275, 10141, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 15161, 1988, 318, 6045, 11, 543, 1724, 645, 9335, 278, 481, 307, 5625, 198, 220, 220, 220, 1988, 1058, 1271, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 284, 779, 329, 9014, 11, 4277, 28, 15, 13, 15, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 331, 25, 2099, 286, 5128, 4578, 628, 198, 220, 220, 220, 554, 1339, 262, 1822, 318, 281, 299, 67, 18747, 477, 4560, 481, 307, 6157, 319, 262, 2656, 7177, 13, 198, 220, 220, 220, 1675, 12201, 2656, 7177, 1208, 257, 4866, 284, 262, 2163, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 9335, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1822, 628, 220, 220, 220, 331, 796, 45941, 13, 18747, 7, 853, 8, 628, 220, 220, 220, 9335, 796, 45941, 13, 18747, 7, 27932, 11, 288, 4906, 28, 30388, 8, 198, 220, 220, 220, 331, 58, 93, 27932, 60, 796, 1988, 628, 220, 220, 220, 374, 85, 796, 3350, 62, 18747, 62, 1462, 62, 14986, 62, 4906, 7, 88, 11, 2099, 7, 853, 4008, 628, 220, 220, 220, 1441, 374, 85, 628, 198, 4299, 14288, 62, 24455, 7, 853, 11, 4324, 28, 3132, 11, 11387, 28, 16, 11, 1988, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 7975, 2505, 9014, 1262, 14288, 8106, 628, 220, 220, 220, 35874, 41528, 3183, 1262, 14288, 8106, 290, 6330, 351, 10708, 14288, 393, 7368, 1988, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1822, 1058, 7177, 12, 2339, 198, 220, 220, 220, 4324, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 12849, 286, 4324, 357, 8201, 262, 6291, 26, 4277, 28, 3132, 318, 4961, 284, 1315, 319, 2035, 1735, 286, 1988, 8, 198, 220, 220, 220, 11387, 1058, 1271, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 18, 290, 24866, 284, 362, 87, 50, 13495, 198, 220, 220, 220, 1988, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 284, 307, 973, 329, 9014, 11, 4277, 28, 14202, 11, 543, 1724, 9014, 416, 10708, 14288, 1988, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 331, 25, 2099, 286, 5128, 4578, 628, 220, 220, 220, 554, 1339, 262, 1822, 318, 281, 299, 67, 18747, 477, 4560, 481, 307, 6157, 319, 262, 2656, 7177, 13, 198, 220, 220, 220, 1675, 12201, 2656, 7177, 1208, 257, 4866, 284, 262, 2163, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 331, 796, 279, 67, 13, 27996, 7, 853, 8, 628, 220, 220, 220, 10708, 62, 1150, 666, 796, 331, 13, 18886, 7, 17497, 11, 949, 62, 41007, 82, 28, 16, 737, 1150, 666, 3419, 628, 220, 220, 220, 3580, 796, 45941, 13, 8937, 7, 88, 532, 10708, 62, 1150, 666, 8, 628, 220, 220, 220, 14288, 62, 8937, 62, 7959, 3920, 796, 3580, 13, 18886, 7, 17497, 11, 949, 62, 41007, 82, 28, 16, 737, 1150, 666, 3419, 628, 220, 220, 220, 503, 2505, 62, 312, 87, 796, 3580, 1875, 352, 13, 2780, 2075, 1635, 11387, 1635, 14288, 62, 8937, 62, 7959, 3920, 198, 220, 220, 220, 37227, 383, 5766, 352, 13, 2780, 2075, 1838, 262, 45878, 5046, 8636, 198, 220, 220, 220, 220, 220, 220, 220, 281, 46735, 8636, 286, 262, 3210, 28833, 329, 12822, 31562, 1366, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 58, 448, 2505, 62, 312, 87, 60, 796, 1988, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 58, 448, 2505, 62, 312, 87, 60, 796, 10708, 62, 1150, 666, 58, 448, 2505, 62, 312, 87, 60, 628, 220, 220, 220, 331, 796, 331, 13, 292, 62, 6759, 8609, 3419, 628, 220, 220, 220, 331, 796, 3350, 62, 18747, 62, 1462, 62, 14986, 62, 4906, 7, 88, 11, 2099, 7, 853, 4008, 628, 220, 220, 220, 1441, 331, 628, 198, 4299, 10708, 62, 32604, 7, 853, 11, 4324, 28, 940, 11, 9335, 28, 14202, 11, 1988, 28, 15, 13, 15, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 10708, 1612, 628, 220, 220, 220, 3082, 1133, 1635, 403, 6933, 9, 393, 1635, 413, 2611, 9, 10708, 1612, 286, 262, 4269, 13, 554, 12, 14681, 9335, 278, 351, 9014, 318, 198, 220, 220, 220, 6856, 416, 11902, 21179, 10007, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1822, 1058, 7177, 12, 2339, 198, 220, 220, 220, 4324, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 12849, 286, 262, 3867, 4324, 287, 792, 11, 4277, 28, 940, 198, 220, 220, 220, 9335, 1058, 7177, 12, 2339, 286, 25131, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 15161, 1988, 318, 6045, 11, 543, 1724, 645, 9335, 278, 481, 307, 5625, 198, 220, 220, 220, 1988, 1058, 1271, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 284, 779, 329, 9014, 11, 4277, 28, 15, 13, 15, 198, 220, 220, 220, 2099, 1058, 19779, 403, 6933, 1600, 366, 368, 10247, 25719, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 5994, 286, 20430, 11, 4277, 2625, 403, 6933, 1, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 331, 25, 2099, 286, 5128, 4578, 628, 220, 220, 220, 383, 3867, 7177, 481, 7603, 543, 8405, 284, 900, 284, 6632, 878, 198, 220, 220, 220, 11524, 10708, 1612, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 9335, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 796, 9335, 62, 20797, 7, 853, 11, 9335, 11, 1988, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 331, 796, 279, 67, 13, 27996, 7, 853, 8, 628, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 4906, 3256, 705, 403, 6933, 11537, 6624, 705, 413, 2611, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 331, 13, 413, 76, 7, 12626, 28, 17497, 11, 949, 62, 41007, 82, 28, 16, 737, 32604, 22446, 27160, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 331, 13, 18886, 7, 17497, 11, 949, 62, 41007, 82, 28, 16, 737, 32604, 22446, 27160, 628, 220, 220, 220, 331, 796, 3350, 62, 18747, 62, 1462, 62, 14986, 62, 4906, 7, 88, 11, 2099, 7, 853, 4008, 628, 220, 220, 220, 1441, 331, 628 ]
2.617109
2,186
from cms.plugin_base import CMSPluginBase from cms.plugin_pool import plugin_pool from cms.models.pluginmodel import CMSPlugin from django.utils.translation import ugettext_lazy as _ from cms.models import Page from django.conf import settings from django.contrib.sites.shortcuts import get_current_site from arividam.utils import get_page_by_slug from .models import PromotedNews import logging logger = logging.getLogger(__name__) plugin_pool.register_plugin(NewsPlugin) plugin_pool.register_plugin(FeaturedNewsPlugin)
[ 6738, 269, 907, 13, 33803, 62, 8692, 1330, 40773, 37233, 14881, 198, 6738, 269, 907, 13, 33803, 62, 7742, 1330, 13877, 62, 7742, 198, 6738, 269, 907, 13, 27530, 13, 33803, 19849, 1330, 40773, 37233, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 6738, 269, 907, 13, 27530, 1330, 7873, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 49315, 13, 19509, 23779, 1330, 651, 62, 14421, 62, 15654, 198, 6738, 257, 15104, 312, 321, 13, 26791, 1330, 651, 62, 7700, 62, 1525, 62, 6649, 1018, 198, 6738, 764, 27530, 1330, 10335, 5191, 9980, 198, 198, 11748, 18931, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 33803, 62, 7742, 13, 30238, 62, 33803, 7, 9980, 37233, 8, 198, 33803, 62, 7742, 13, 30238, 62, 33803, 7, 37948, 9980, 37233, 8, 198 ]
3.33758
157
import os import re import requests import subprocess filename = 'requirements.txt' new_packages = [] with open(filename, 'r') as file: pattern = '(.*) == (.*)' packages = re.findall(pattern, file.read()) for package, version in packages: response = requests.get(f'https://pypi.org/pypi/{package}/json') keys = response.json()['releases'].keys() releases = [key for key in keys if key.replace('.', '').isdigit()] latest = sorted( releases, key=lambda release: [ int(number) for number in release.split('.') ]).pop() if latest != version: print(f'Upgrading {package} ({version} => {latest})') CI = os.environ.get('CI') python = 'python' if CI else 'python3' cmd = f'{python} -m pip install {package}=={latest}' code = subprocess.run(cmd, shell=True).returncode if code: exit(code) version = latest new_packages.append((package, version)) with open(filename, 'w') as file: for package, version in new_packages: file.write(f'{package} == {version}\n')
[ 11748, 28686, 201, 198, 11748, 302, 201, 198, 11748, 7007, 201, 198, 11748, 850, 14681, 201, 198, 201, 198, 34345, 796, 705, 8897, 18883, 13, 14116, 6, 201, 198, 3605, 62, 43789, 796, 17635, 201, 198, 201, 198, 4480, 1280, 7, 34345, 11, 705, 81, 11537, 355, 2393, 25, 201, 198, 220, 220, 220, 3912, 796, 29513, 15885, 8, 6624, 357, 15885, 33047, 201, 198, 220, 220, 220, 10392, 796, 302, 13, 19796, 439, 7, 33279, 11, 2393, 13, 961, 28955, 201, 198, 220, 220, 220, 329, 5301, 11, 2196, 287, 10392, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 6, 5450, 1378, 79, 4464, 72, 13, 2398, 14, 79, 4464, 72, 14, 90, 26495, 92, 14, 17752, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 2882, 13, 17752, 3419, 17816, 260, 29329, 6, 4083, 13083, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 10050, 796, 685, 2539, 329, 1994, 287, 8251, 611, 1994, 13, 33491, 10786, 2637, 11, 10148, 737, 9409, 328, 270, 3419, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3452, 796, 23243, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10050, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 28, 50033, 2650, 25, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 17618, 8, 329, 1271, 287, 2650, 13, 35312, 10786, 2637, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 737, 12924, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3452, 14512, 2196, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 4933, 29247, 1391, 26495, 92, 37913, 9641, 92, 5218, 1391, 42861, 30072, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14514, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 25690, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21015, 796, 705, 29412, 6, 611, 14514, 2073, 705, 29412, 18, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 277, 6, 90, 29412, 92, 532, 76, 7347, 2721, 1391, 26495, 92, 855, 90, 42861, 92, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2438, 796, 850, 14681, 13, 5143, 7, 28758, 11, 7582, 28, 17821, 737, 7783, 8189, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2438, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 8189, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2196, 796, 3452, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 43789, 13, 33295, 19510, 26495, 11, 2196, 4008, 201, 198, 201, 198, 4480, 1280, 7, 34345, 11, 705, 86, 11537, 355, 2393, 25, 201, 198, 220, 220, 220, 329, 5301, 11, 2196, 287, 649, 62, 43789, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 69, 6, 90, 26495, 92, 6624, 1391, 9641, 32239, 77, 11537, 201, 198 ]
2.175943
557
n = int(input()) num = list(map(int , input().split())) d,m = map(int , input().split()) c= 0 for i in range(0,n-m+1): d_ = 0 for j in range(0,m): d_ += num[i+j] if d_ == d: c += 1 print(c)
[ 77, 796, 493, 7, 15414, 28955, 198, 198, 22510, 796, 1351, 7, 8899, 7, 600, 837, 5128, 22446, 35312, 3419, 4008, 198, 198, 67, 11, 76, 796, 3975, 7, 600, 837, 5128, 22446, 35312, 28955, 198, 66, 28, 657, 198, 198, 1640, 1312, 287, 2837, 7, 15, 11, 77, 12, 76, 10, 16, 2599, 198, 220, 220, 220, 288, 62, 796, 657, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 15, 11, 76, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 15853, 220, 997, 58, 72, 10, 73, 60, 198, 220, 220, 220, 611, 288, 62, 6624, 288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 15853, 352, 198, 198, 4798, 7, 66, 8 ]
1.85
120
from collections import namedtuple from functools import partial import pytest import torch from sklearn.metrics import accuracy_score from sklearn.metrics import r2_score as sk_r2score from tests.helpers import seed_all from tests.helpers.testers import BATCH_SIZE, NUM_BATCHES, NUM_CLASSES, MetricTester from torchmetrics import Metric from torchmetrics.classification import Accuracy from torchmetrics.regression import R2Score from torchmetrics.wrappers.multioutput import MultioutputWrapper seed_all(42) class _MultioutputMetric(Metric): """Test class that allows passing base metric as a class rather than its instantiation to the wrapper.""" def _update(self, preds: torch.Tensor, target: torch.Tensor) -> None: """Update the each pair of outputs and predictions.""" return self.metric.update(preds, target) def _compute(self) -> torch.Tensor: """Compute the R2 score between each pair of outputs and predictions.""" return self.metric.compute() @torch.jit.unused def forward(self, *args, **kwargs): """Run forward on the underlying metric.""" return self.metric(*args, **kwargs) def reset(self) -> None: """Reset the underlying metric state.""" self.metric.reset() num_targets = 2 Input = namedtuple("Input", ["preds", "target"]) _multi_target_regression_inputs = Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), ) _multi_target_classification_inputs = Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, num_targets), target=torch.randint(NUM_CLASSES, (NUM_BATCHES, BATCH_SIZE, num_targets)), ) def _multi_target_sk_r2score(preds, target, adjusted=0, multioutput="raw_values"): """Compute R2 score over multiple outputs.""" sk_preds = preds.view(-1, num_targets).numpy() sk_target = target.view(-1, num_targets).numpy() r2_score = sk_r2score(sk_target, sk_preds, multioutput=multioutput) if adjusted != 0: r2_score = 1 - (1 - r2_score) * (sk_preds.shape[0] - 1) / (sk_preds.shape[0] - adjusted - 1) return r2_score def _multi_target_sk_accuracy(preds, target, num_outputs): """Compute accuracy over multiple outputs.""" accs = [] for i in range(num_outputs): accs.append(accuracy_score(torch.argmax(preds[:, :, i], dim=1), target[:, i])) return accs @pytest.mark.parametrize( "base_metric_class, compare_metric, preds, target, num_outputs, metric_kwargs", [ ( R2Score, _multi_target_sk_r2score, _multi_target_regression_inputs.preds, _multi_target_regression_inputs.target, num_targets, {}, ), ( Accuracy, partial(_multi_target_sk_accuracy, num_outputs=2), _multi_target_classification_inputs.preds, _multi_target_classification_inputs.target, num_targets, dict(num_classes=NUM_CLASSES), ), ], ) class TestMultioutputWrapper(MetricTester): """Test the MultioutputWrapper class with regression and classification inner metrics.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("dist_sync_on_step", [True, False]) def test_multioutput_wrapper( self, base_metric_class, compare_metric, preds, target, num_outputs, metric_kwargs, ddp, dist_sync_on_step ): """Test that the multioutput wrapper properly slices and computes outputs along the output dimension for both classification and regression metrics.""" self.run_class_metric_test( ddp, preds, target, _MultioutputMetric, compare_metric, dist_sync_on_step, metric_args=dict(num_outputs=num_outputs, base_metric_class=base_metric_class, **metric_kwargs), )
[ 6738, 17268, 1330, 3706, 83, 29291, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 11748, 12972, 9288, 198, 11748, 28034, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 9922, 62, 26675, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 374, 17, 62, 26675, 355, 1341, 62, 81, 17, 26675, 198, 198, 6738, 5254, 13, 16794, 364, 1330, 9403, 62, 439, 198, 6738, 5254, 13, 16794, 364, 13, 27205, 1330, 347, 11417, 62, 33489, 11, 36871, 62, 33, 11417, 1546, 11, 36871, 62, 31631, 1546, 11, 3395, 1173, 51, 7834, 198, 6738, 28034, 4164, 10466, 1330, 3395, 1173, 198, 6738, 28034, 4164, 10466, 13, 4871, 2649, 1330, 33222, 198, 6738, 28034, 4164, 10466, 13, 2301, 2234, 1330, 371, 17, 26595, 198, 6738, 28034, 4164, 10466, 13, 29988, 11799, 13, 41684, 22915, 1330, 15237, 22915, 36918, 2848, 198, 198, 28826, 62, 439, 7, 3682, 8, 628, 198, 4871, 4808, 29800, 22915, 9171, 1173, 7, 9171, 1173, 2599, 198, 220, 220, 220, 37227, 14402, 1398, 326, 3578, 6427, 2779, 18663, 355, 257, 1398, 2138, 621, 663, 9113, 3920, 284, 262, 29908, 526, 15931, 628, 220, 220, 220, 825, 4808, 19119, 7, 944, 11, 2747, 82, 25, 28034, 13, 51, 22854, 11, 2496, 25, 28034, 13, 51, 22854, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 1123, 5166, 286, 23862, 290, 16277, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4164, 1173, 13, 19119, 7, 28764, 82, 11, 2496, 8, 628, 220, 220, 220, 825, 4808, 5589, 1133, 7, 944, 8, 4613, 28034, 13, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7293, 1133, 262, 371, 17, 4776, 1022, 1123, 5166, 286, 23862, 290, 16277, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4164, 1173, 13, 5589, 1133, 3419, 628, 220, 220, 220, 2488, 13165, 354, 13, 45051, 13, 403, 1484, 198, 220, 220, 220, 825, 2651, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 2651, 319, 262, 10238, 18663, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4164, 1173, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 13259, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 262, 10238, 18663, 1181, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 1173, 13, 42503, 3419, 628, 198, 22510, 62, 83, 853, 1039, 796, 362, 198, 198, 20560, 796, 3706, 83, 29291, 7203, 20560, 1600, 14631, 28764, 82, 1600, 366, 16793, 8973, 8, 198, 198, 62, 41684, 62, 16793, 62, 2301, 2234, 62, 15414, 82, 796, 23412, 7, 198, 220, 220, 220, 2747, 82, 28, 13165, 354, 13, 25192, 7, 41359, 62, 33, 11417, 1546, 11, 347, 11417, 62, 33489, 11, 997, 62, 83, 853, 1039, 828, 198, 220, 220, 220, 2496, 28, 13165, 354, 13, 25192, 7, 41359, 62, 33, 11417, 1546, 11, 347, 11417, 62, 33489, 11, 997, 62, 83, 853, 1039, 828, 198, 8, 198, 62, 41684, 62, 16793, 62, 4871, 2649, 62, 15414, 82, 796, 23412, 7, 198, 220, 220, 220, 2747, 82, 28, 13165, 354, 13, 25192, 7, 41359, 62, 33, 11417, 1546, 11, 347, 11417, 62, 33489, 11, 36871, 62, 31631, 1546, 11, 997, 62, 83, 853, 1039, 828, 198, 220, 220, 220, 2496, 28, 13165, 354, 13, 25192, 600, 7, 41359, 62, 31631, 1546, 11, 357, 41359, 62, 33, 11417, 1546, 11, 347, 11417, 62, 33489, 11, 997, 62, 83, 853, 1039, 36911, 198, 8, 628, 198, 4299, 4808, 41684, 62, 16793, 62, 8135, 62, 81, 17, 26675, 7, 28764, 82, 11, 2496, 11, 12328, 28, 15, 11, 5021, 22915, 2625, 1831, 62, 27160, 1, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 371, 17, 4776, 625, 3294, 23862, 526, 15931, 198, 220, 220, 220, 1341, 62, 28764, 82, 796, 2747, 82, 13, 1177, 32590, 16, 11, 997, 62, 83, 853, 1039, 737, 77, 32152, 3419, 198, 220, 220, 220, 1341, 62, 16793, 796, 2496, 13, 1177, 32590, 16, 11, 997, 62, 83, 853, 1039, 737, 77, 32152, 3419, 198, 220, 220, 220, 374, 17, 62, 26675, 796, 1341, 62, 81, 17, 26675, 7, 8135, 62, 16793, 11, 1341, 62, 28764, 82, 11, 5021, 22915, 28, 41684, 22915, 8, 198, 220, 220, 220, 611, 12328, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 17, 62, 26675, 796, 352, 532, 357, 16, 532, 374, 17, 62, 26675, 8, 1635, 357, 8135, 62, 28764, 82, 13, 43358, 58, 15, 60, 532, 352, 8, 1220, 357, 8135, 62, 28764, 82, 13, 43358, 58, 15, 60, 532, 12328, 532, 352, 8, 198, 220, 220, 220, 1441, 374, 17, 62, 26675, 628, 198, 4299, 4808, 41684, 62, 16793, 62, 8135, 62, 4134, 23843, 7, 28764, 82, 11, 2496, 11, 997, 62, 22915, 82, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 9922, 625, 3294, 23862, 526, 15931, 198, 220, 220, 220, 697, 82, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 697, 82, 13, 33295, 7, 4134, 23843, 62, 26675, 7, 13165, 354, 13, 853, 9806, 7, 28764, 82, 58, 45299, 1058, 11, 1312, 4357, 5391, 28, 16, 828, 2496, 58, 45299, 1312, 60, 4008, 198, 220, 220, 220, 1441, 697, 82, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 8692, 62, 4164, 1173, 62, 4871, 11, 8996, 62, 4164, 1173, 11, 2747, 82, 11, 2496, 11, 997, 62, 22915, 82, 11, 18663, 62, 46265, 22046, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 17, 26595, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 41684, 62, 16793, 62, 8135, 62, 81, 17, 26675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 41684, 62, 16793, 62, 2301, 2234, 62, 15414, 82, 13, 28764, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 41684, 62, 16793, 62, 2301, 2234, 62, 15414, 82, 13, 16793, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33222, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13027, 28264, 41684, 62, 16793, 62, 8135, 62, 4134, 23843, 11, 997, 62, 22915, 82, 28, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 41684, 62, 16793, 62, 4871, 2649, 62, 15414, 82, 13, 28764, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 41684, 62, 16793, 62, 4871, 2649, 62, 15414, 82, 13, 16793, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 22510, 62, 37724, 28, 41359, 62, 31631, 1546, 828, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 16589, 198, 8, 198, 4871, 6208, 29800, 22915, 36918, 2848, 7, 9171, 1173, 51, 7834, 2599, 198, 220, 220, 220, 37227, 14402, 262, 15237, 22915, 36918, 2848, 1398, 351, 20683, 290, 17923, 8434, 20731, 526, 15931, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1860, 79, 1600, 685, 17821, 11, 10352, 12962, 198, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 17080, 62, 27261, 62, 261, 62, 9662, 1600, 685, 17821, 11, 10352, 12962, 198, 220, 220, 220, 825, 1332, 62, 41684, 22915, 62, 48553, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 2779, 62, 4164, 1173, 62, 4871, 11, 8996, 62, 4164, 1173, 11, 2747, 82, 11, 2496, 11, 997, 62, 22915, 82, 11, 18663, 62, 46265, 22046, 11, 288, 26059, 11, 1233, 62, 27261, 62, 261, 62, 9662, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 326, 262, 5021, 22915, 29908, 6105, 24314, 290, 552, 1769, 23862, 1863, 262, 5072, 15793, 329, 198, 220, 220, 220, 220, 220, 220, 220, 1111, 17923, 290, 20683, 20731, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 62, 4871, 62, 4164, 1173, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 26059, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 29800, 22915, 9171, 1173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8996, 62, 4164, 1173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 62, 27261, 62, 261, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 62, 22046, 28, 11600, 7, 22510, 62, 22915, 82, 28, 22510, 62, 22915, 82, 11, 2779, 62, 4164, 1173, 62, 4871, 28, 8692, 62, 4164, 1173, 62, 4871, 11, 12429, 4164, 1173, 62, 46265, 22046, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.426897
1,621
import hashlib import json import logging import re import uuid from django.db import models from django.db.models.signals import pre_save from django.dispatch import receiver from oldp.apps.cases.models import Case from oldp.apps.laws.models import Law logger = logging.getLogger(__name__) class ReferenceMarker(models.Model): """ Abstract class for reference markers, i.e. the actual reference within a text "§§ 12-14 BGB". Marker has a position (start, end, line), unique identifier (uuid, randomly generated), text of the marker as in the text, list of references (can be law, case, ...). Implementations of abstract class (LawReferenceMarker, ...) have the corresponding source object (LawReferenceMarker: referenced_by = a law object). """ text = models.CharField(max_length=250) # Text of marker uuid = models.CharField(max_length=36) start = models.IntegerField(default=0) end = models.IntegerField(default=0) line = models.CharField(blank=True, max_length=200) referenced_by = None referenced_by_type = None references = [] @staticmethod @staticmethod def make_markers_clickable(value): """ TODO Replace ref marker number with db id """ return re.sub(r'\[ref=([-a-z0-9]+)\](.*?)\[\/ref\]', r'<a href="#refs" onclick="clickRefMarker(this);" data-ref-uuid="\1" class="ref">\2</a>', value) class LawReferenceMarker(ReferenceMarker): """ A reference marker in a law content object. """ referenced_by_type = Law referenced_by = models.ForeignKey(Law, on_delete=models.CASCADE) @receiver(pre_save, sender=LawReferenceMarker) class CaseReferenceMarker(ReferenceMarker): """ A reference marker in a case content object. """ referenced_by_type = Case referenced_by = models.ForeignKey(Case, on_delete=models.CASCADE) @receiver(pre_save, sender=CaseReferenceMarker) class Reference(models.Model): """ A reference connecting two content objects (1:1 relation). The object that is referenced is either "law", "case" or ... (reference target). The referencing object (the object which text contains the reference) can be derived via marker. Abstract class: Depending on the referencing object (its marker) the corresponding implementation is used. If the referenced object is not defined, the reference is "not assigned" (is_assigned method) """ law = models.ForeignKey(Law, null=True, on_delete=models.SET_NULL) case = models.ForeignKey(Case, null=True, on_delete=models.SET_NULL) to = models.CharField(max_length=250) # to as string, if case or law cannot be assigned (ref id) to_hash = models.CharField(max_length=100, null=True) marker = None count = None def get_url(self): """ Returns Url to law or case item (if exist) otherwise return search Url. :return: """ if self.law is not None: return self.law.get_url() elif self.case is not None: return self.case.get_url() else: return '/search/?q=%s' % self.marker.text class LawReference(Reference): """ A reference from a law to any content object (law, case, ...) """ marker = models.ForeignKey(LawReferenceMarker, on_delete=models.CASCADE) @receiver(pre_save, sender=LawReference) class CaseReference(Reference): """ A reference from a case to any content object (law, case, ...) """ marker = models.ForeignKey(CaseReferenceMarker, on_delete=models.CASCADE) @receiver(pre_save, sender=CaseReference) # @receiver(pre_save, sender=Reference) # def json_dumps_reference(sender, instance, *args, **kwargs): # if not isinstance(instance.to, str): # instance.to = json.dumps(instance.to) # @receiver(post_init, sender=LawReference) # def json_loads_reference(sender, instance, *args, **kwargs): # print(instance.ids) # exit(0) # if instance.ids is not None and isinstance(instance.ids, str): # instance.ids = json.loads(instance.ids)
[ 11748, 12234, 8019, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 302, 198, 11748, 334, 27112, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 12683, 874, 1330, 662, 62, 21928, 198, 6738, 42625, 14208, 13, 6381, 17147, 1330, 9733, 198, 198, 6738, 1468, 79, 13, 18211, 13, 33964, 13, 27530, 1330, 8913, 198, 6738, 1468, 79, 13, 18211, 13, 29317, 13, 27530, 1330, 3854, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 20984, 9704, 263, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 1398, 329, 4941, 19736, 11, 1312, 13, 68, 13, 262, 4036, 4941, 1626, 257, 2420, 366, 16273, 16273, 1105, 12, 1415, 347, 4579, 1911, 628, 220, 220, 220, 2940, 263, 468, 257, 2292, 357, 9688, 11, 886, 11, 1627, 828, 3748, 27421, 357, 12303, 312, 11, 15456, 7560, 828, 2420, 286, 262, 18364, 355, 287, 198, 220, 220, 220, 262, 2420, 11, 1351, 286, 10288, 357, 5171, 307, 1099, 11, 1339, 11, 2644, 737, 48282, 602, 286, 12531, 1398, 357, 16966, 26687, 9704, 263, 11, 2644, 8, 198, 220, 220, 220, 423, 262, 11188, 2723, 2134, 357, 16966, 26687, 9704, 263, 25, 20717, 62, 1525, 796, 257, 1099, 2134, 737, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 9031, 8, 220, 1303, 8255, 286, 18364, 198, 220, 220, 220, 334, 27112, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 2623, 8, 198, 220, 220, 220, 923, 796, 4981, 13, 46541, 15878, 7, 12286, 28, 15, 8, 198, 220, 220, 220, 886, 796, 4981, 13, 46541, 15878, 7, 12286, 28, 15, 8, 198, 220, 220, 220, 1627, 796, 4981, 13, 12441, 15878, 7, 27190, 28, 17821, 11, 3509, 62, 13664, 28, 2167, 8, 198, 220, 220, 220, 20717, 62, 1525, 796, 6045, 198, 220, 220, 220, 20717, 62, 1525, 62, 4906, 796, 6045, 198, 220, 220, 220, 10288, 796, 17635, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 787, 62, 4102, 364, 62, 12976, 540, 7, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 40177, 1006, 18364, 1271, 351, 20613, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 302, 13, 7266, 7, 81, 6, 59, 58, 5420, 16193, 58, 12, 64, 12, 89, 15, 12, 24, 48688, 19415, 16151, 15885, 10091, 59, 58, 11139, 5420, 59, 60, 3256, 374, 6, 27, 64, 13291, 25698, 5420, 82, 1, 319, 12976, 2625, 12976, 8134, 9704, 263, 7, 5661, 1776, 1, 1366, 12, 5420, 12, 12303, 312, 2625, 59, 16, 1, 1398, 2625, 5420, 5320, 59, 17, 3556, 64, 29, 3256, 1988, 8, 628, 198, 4871, 3854, 26687, 9704, 263, 7, 26687, 9704, 263, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 317, 4941, 18364, 287, 257, 1099, 2695, 2134, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 20717, 62, 1525, 62, 4906, 796, 3854, 198, 220, 220, 220, 20717, 62, 1525, 796, 4981, 13, 33616, 9218, 7, 16966, 11, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 628, 198, 31, 260, 39729, 7, 3866, 62, 21928, 11, 29788, 28, 16966, 26687, 9704, 263, 8, 628, 198, 4871, 8913, 26687, 9704, 263, 7, 26687, 9704, 263, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 317, 4941, 18364, 287, 257, 1339, 2695, 2134, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 20717, 62, 1525, 62, 4906, 796, 8913, 198, 220, 220, 220, 20717, 62, 1525, 796, 4981, 13, 33616, 9218, 7, 20448, 11, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 628, 198, 31, 260, 39729, 7, 3866, 62, 21928, 11, 29788, 28, 20448, 26687, 9704, 263, 8, 628, 198, 4871, 20984, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 317, 4941, 14320, 734, 2695, 5563, 357, 16, 25, 16, 8695, 737, 383, 2134, 326, 318, 20717, 318, 2035, 366, 6270, 1600, 366, 7442, 1, 198, 220, 220, 220, 393, 2644, 357, 35790, 2496, 737, 383, 32578, 2134, 357, 1169, 2134, 543, 2420, 4909, 262, 4941, 8, 460, 307, 10944, 198, 220, 220, 220, 2884, 18364, 13, 628, 220, 220, 220, 27741, 1398, 25, 23591, 319, 262, 32578, 2134, 357, 896, 18364, 8, 262, 11188, 7822, 318, 973, 13, 628, 220, 220, 220, 1002, 262, 20717, 2134, 318, 407, 5447, 11, 262, 4941, 318, 366, 1662, 8686, 1, 357, 271, 62, 562, 3916, 2446, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1099, 796, 4981, 13, 33616, 9218, 7, 16966, 11, 9242, 28, 17821, 11, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 8, 198, 220, 220, 220, 1339, 796, 4981, 13, 33616, 9218, 7, 20448, 11, 9242, 28, 17821, 11, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 8, 198, 220, 220, 220, 284, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 9031, 8, 220, 1303, 284, 355, 4731, 11, 611, 1339, 393, 1099, 2314, 307, 8686, 357, 5420, 4686, 8, 198, 220, 220, 220, 284, 62, 17831, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3064, 11, 9242, 28, 17821, 8, 198, 220, 220, 220, 18364, 796, 6045, 198, 220, 220, 220, 954, 796, 6045, 628, 220, 220, 220, 825, 651, 62, 6371, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 8799, 75, 284, 1099, 393, 1339, 2378, 357, 361, 2152, 8, 4306, 1441, 2989, 8799, 75, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 6270, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 6270, 13, 1136, 62, 6371, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 7442, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7442, 13, 1136, 62, 6371, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 31051, 12947, 20924, 80, 28, 4, 82, 6, 4064, 2116, 13, 4102, 263, 13, 5239, 628, 198, 4871, 3854, 26687, 7, 26687, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 317, 4941, 422, 257, 1099, 284, 597, 2695, 2134, 357, 6270, 11, 1339, 11, 2644, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 18364, 796, 4981, 13, 33616, 9218, 7, 16966, 26687, 9704, 263, 11, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 628, 198, 31, 260, 39729, 7, 3866, 62, 21928, 11, 29788, 28, 16966, 26687, 8, 628, 198, 4871, 8913, 26687, 7, 26687, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 317, 4941, 422, 257, 1339, 284, 597, 2695, 2134, 357, 6270, 11, 1339, 11, 2644, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 18364, 796, 4981, 13, 33616, 9218, 7, 20448, 26687, 9704, 263, 11, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 628, 198, 31, 260, 39729, 7, 3866, 62, 21928, 11, 29788, 28, 20448, 26687, 8, 628, 198, 2, 2488, 260, 39729, 7, 3866, 62, 21928, 11, 29788, 28, 26687, 8, 198, 2, 825, 33918, 62, 67, 8142, 62, 35790, 7, 82, 2194, 11, 4554, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 2, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 39098, 13, 1462, 11, 965, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4554, 13, 1462, 796, 33918, 13, 67, 8142, 7, 39098, 13, 1462, 8, 198, 198, 2, 2488, 260, 39729, 7, 7353, 62, 15003, 11, 29788, 28, 16966, 26687, 8, 198, 2, 825, 33918, 62, 46030, 62, 35790, 7, 82, 2194, 11, 4554, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 2, 220, 220, 220, 220, 3601, 7, 39098, 13, 2340, 8, 198, 2, 220, 220, 220, 220, 8420, 7, 15, 8, 198, 2, 611, 4554, 13, 2340, 318, 407, 6045, 290, 318, 39098, 7, 39098, 13, 2340, 11, 965, 2599, 198, 2, 220, 220, 220, 220, 4554, 13, 2340, 796, 33918, 13, 46030, 7, 39098, 13, 2340, 8, 628 ]
2.85084
1,428
#!/usr/bin/env python3 import os if os.geteuid() != 0: exit('This script requires root privileges.\nPlease try again with sudo.')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 28686, 198, 361, 28686, 13, 1136, 12496, 312, 3419, 14512, 657, 25, 198, 220, 220, 220, 8420, 10786, 1212, 4226, 4433, 6808, 18850, 13, 59, 77, 5492, 1949, 757, 351, 21061, 2637, 8, 628 ]
2.956522
46
import argparse from pathlib import Path import typing import numpy as np import scipy.spatial.distance from encoder.inference import Model as EncoderModel from synthesizer.inference import Synthesizer _NUM_ENROLLMENTS = 3 _NUM_VERIFICATIONS = 5 _WAV_FODLER = Path('/Users/dalei/Downloads/VCTK-Corpus/wav48') _TXT_FODLER = Path('/Users/dalei/Downloads/VCTK-Corpus/txt') if __name__ == '__main__': parser = argparse.ArgumentParser() args, _ = parser.parse_known_args() run(args)
[ 11748, 1822, 29572, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 19720, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 2777, 34961, 13, 30246, 198, 198, 6738, 2207, 12342, 13, 259, 4288, 1330, 9104, 355, 14711, 12342, 17633, 198, 6738, 24983, 7509, 13, 259, 4288, 1330, 26375, 956, 7509, 198, 198, 62, 41359, 62, 1677, 13252, 3069, 28957, 796, 513, 198, 62, 41359, 62, 5959, 30643, 18421, 796, 642, 198, 62, 54, 10116, 62, 37, 3727, 39878, 796, 10644, 10786, 14, 14490, 14, 14597, 72, 14, 10002, 82, 14, 53, 4177, 42, 12, 45680, 385, 14, 45137, 2780, 11537, 198, 62, 51, 25010, 62, 37, 3727, 39878, 796, 10644, 10786, 14, 14490, 14, 14597, 72, 14, 10002, 82, 14, 53, 4177, 42, 12, 45680, 385, 14, 14116, 11537, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 26498, 11, 4808, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 3419, 628, 220, 220, 220, 1057, 7, 22046, 8, 628 ]
2.697297
185
## system-config-printer ## Copyright (C) 2008, 2011 Red Hat, Inc. ## Authors: ## Tim Waugh <[email protected]> ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. __all__ = ['set_debugprint_fn', 'Device', 'Printer', 'activateNewPrinter', 'copyPPDOptions', 'getDevices', 'getPrinters', 'missingPackagesAndExecutables', 'missingExecutables', 'parseDeviceID', 'setPPDPageSize', 'ppds', 'openprinting'] _debugprint_fn = _no_debug def set_debugprint_fn (debugprint): """ Set debugging hook. @param debugprint: function to print debug output @type debugprint: fn (str) -> None """ global _debugprint_fn _debugprint_fn = debugprint from cupshelpers import \ Device, \ Printer, \ activateNewPrinter, \ copyPPDOptions, \ getDevices, \ getPrinters, \ missingPackagesAndExecutables, \ missingExecutables, \ parseDeviceID, \ setPPDPageSize import ppds import openprinting
[ 2235, 1080, 12, 11250, 12, 1050, 3849, 198, 198, 2235, 15069, 357, 34, 8, 3648, 11, 2813, 2297, 10983, 11, 3457, 13, 198, 2235, 46665, 25, 198, 2235, 220, 5045, 370, 1567, 1279, 4246, 1567, 31, 445, 5183, 13, 785, 29, 198, 198, 2235, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2235, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2235, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 286, 262, 13789, 11, 393, 198, 2235, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 198, 2235, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2235, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2235, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2235, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 198, 2235, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2235, 1863, 351, 428, 1430, 26, 611, 407, 11, 3551, 284, 262, 3232, 10442, 198, 2235, 5693, 11, 3457, 1539, 6885, 14021, 3530, 11, 19383, 22343, 11, 6182, 11, 8779, 220, 657, 2481, 940, 12, 1485, 486, 11, 4916, 13, 198, 198, 834, 439, 834, 220, 796, 37250, 2617, 62, 24442, 4798, 62, 22184, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24728, 3256, 705, 6836, 3849, 3256, 705, 39022, 3791, 6836, 3849, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30073, 47, 5760, 29046, 3256, 705, 1136, 13603, 1063, 3256, 705, 1136, 6836, 20193, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 45688, 11869, 1095, 1870, 23002, 315, 2977, 3256, 705, 45688, 23002, 315, 2977, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29572, 24728, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2617, 47, 5760, 9876, 10699, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 381, 9310, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9654, 4798, 278, 20520, 198, 198, 62, 24442, 4798, 62, 22184, 796, 4808, 3919, 62, 24442, 198, 198, 4299, 900, 62, 24442, 4798, 62, 22184, 357, 24442, 4798, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5345, 28769, 8011, 13, 628, 220, 220, 220, 2488, 17143, 14257, 4798, 25, 2163, 284, 3601, 14257, 5072, 198, 220, 220, 220, 2488, 4906, 14257, 4798, 25, 24714, 357, 2536, 8, 4613, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 4808, 24442, 4798, 62, 22184, 198, 220, 220, 220, 4808, 24442, 4798, 62, 22184, 796, 14257, 4798, 198, 198, 6738, 14180, 16794, 364, 1330, 197, 197, 197, 197, 59, 198, 220, 220, 220, 16232, 11, 197, 197, 197, 197, 197, 59, 198, 220, 220, 220, 1736, 3849, 11, 197, 197, 197, 197, 197, 59, 198, 220, 220, 220, 15155, 3791, 6836, 3849, 11, 197, 197, 197, 197, 59, 198, 220, 220, 220, 4866, 47, 5760, 29046, 11, 197, 197, 197, 197, 59, 198, 220, 220, 220, 651, 13603, 1063, 11, 197, 197, 197, 197, 197, 59, 198, 220, 220, 220, 651, 6836, 20193, 11, 197, 197, 197, 197, 59, 198, 220, 220, 220, 4814, 11869, 1095, 1870, 23002, 315, 2977, 11, 197, 197, 59, 198, 220, 220, 220, 4814, 23002, 315, 2977, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 198, 220, 220, 220, 21136, 24728, 2389, 11, 197, 197, 197, 197, 59, 198, 220, 220, 220, 900, 47, 5760, 9876, 10699, 198, 198, 11748, 9788, 9310, 198, 11748, 1280, 4798, 278, 198 ]
2.677966
649
import mock import time import redis from pyramid import testing from kinto.core.utils import sqlalchemy from kinto.core.storage import exceptions from kinto.core.cache import (CacheBase, postgresql as postgresql_backend, redis as redis_backend, memory as memory_backend, heartbeat) from .support import unittest, skip_if_no_postgresql @skip_if_no_postgresql
[ 11748, 15290, 198, 11748, 640, 198, 198, 11748, 2266, 271, 198, 6738, 27944, 1330, 4856, 198, 198, 6738, 479, 20424, 13, 7295, 13, 26791, 1330, 44161, 282, 26599, 198, 6738, 479, 20424, 13, 7295, 13, 35350, 1330, 13269, 198, 6738, 479, 20424, 13, 7295, 13, 23870, 1330, 357, 30562, 14881, 11, 1281, 34239, 13976, 355, 1281, 34239, 13976, 62, 1891, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2266, 271, 355, 2266, 271, 62, 1891, 437, 11, 4088, 355, 4088, 62, 1891, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36051, 8, 198, 198, 6738, 764, 11284, 1330, 555, 715, 395, 11, 14267, 62, 361, 62, 3919, 62, 7353, 34239, 13976, 628, 628, 628, 198, 31, 48267, 62, 361, 62, 3919, 62, 7353, 34239, 13976, 198 ]
2.45977
174
# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import onnx.helper as oh from onnx import TensorProto import finn.analysis.topology as ta from finn.core.modelwrapper import ModelWrapper from finn.transformation.infer_shapes import InferShapes
[ 2, 15069, 357, 66, 8, 12131, 11, 1395, 346, 28413, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 198, 2, 220, 220, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 198, 2, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 1635, 16126, 262, 1438, 286, 33642, 45, 4249, 262, 3891, 286, 663, 198, 2, 220, 220, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 198, 2, 220, 220, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 198, 2, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 198, 2, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 2, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 198, 2, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 198, 2, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 198, 2, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 198, 2, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 198, 2, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 198, 2, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 198, 11748, 319, 77, 87, 13, 2978, 525, 355, 11752, 198, 6738, 319, 77, 87, 1330, 309, 22854, 2964, 1462, 198, 198, 11748, 957, 77, 13, 20930, 13, 4852, 1435, 355, 20486, 198, 6738, 957, 77, 13, 7295, 13, 19849, 48553, 1330, 9104, 36918, 2848, 198, 6738, 957, 77, 13, 7645, 1161, 13, 259, 2232, 62, 1477, 7916, 1330, 554, 2232, 2484, 7916, 628, 198 ]
3.516393
488
from selenium import webdriver as seledriver class WebDriver(object): """ The base class for controlling the browser in the webbrowser class. Selenium Webdriver wrapper class. """ def __init__(self, options = None): """ Initialize Class Parameters ---- options: str|list arguments of webdriver """ self._webdriver = None self.options = [] if options is not None: self.add_options(options) def add_options(self, value): """ add options Parameters ---- value: str|list arguments """ if type(value) == str: self.options.append(value) elif type(value == list): for v in value: if type(v) == str: self.options.append(v) else: raise ValueError("Invalid Value") else: raise ValueError("Invalid Value") def get_browser(self): """ get browser object Returns ---- driver: selenium.webdriver browser's driver object """ raise NotImplementedError class ChromeDriver(WebDriver): """ Google Chrome's driver require chromedriver_binary `pip install chromedriver_binary` This class does not currently support using Chrome with an existing profile. The option does not specify User-data-dir because "Selenium.common.exceptions.webdriverexception" occurs. """ def get_browser(self): """ get browser object Returns ---- driver: selenium.webdriver browser's driver object """ import chromedriver_binary options = seledriver.ChromeOptions() for o in self.options: options.add_argument(o) return seledriver.Chrome(options=options)
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 355, 384, 992, 38291, 198, 198, 4871, 5313, 32103, 7, 15252, 2599, 198, 220, 37227, 198, 220, 383, 2779, 1398, 329, 12755, 262, 6444, 287, 262, 3992, 40259, 1398, 13, 198, 220, 15300, 47477, 5313, 26230, 29908, 1398, 13, 198, 220, 37227, 198, 220, 825, 11593, 15003, 834, 7, 944, 11, 3689, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20768, 1096, 5016, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 3689, 25, 965, 91, 4868, 198, 220, 220, 220, 220, 220, 7159, 286, 3992, 26230, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 12384, 26230, 796, 6045, 198, 220, 220, 220, 2116, 13, 25811, 796, 17635, 198, 220, 220, 220, 611, 3689, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 25811, 7, 25811, 8, 628, 220, 825, 751, 62, 25811, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 751, 3689, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 1988, 25, 965, 91, 4868, 198, 220, 220, 220, 220, 220, 7159, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2099, 7, 8367, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 25811, 13, 33295, 7, 8367, 8, 198, 220, 220, 220, 1288, 361, 2099, 7, 8367, 6624, 1351, 2599, 198, 220, 220, 220, 220, 220, 329, 410, 287, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 85, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25811, 13, 33295, 7, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 11052, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 11052, 4943, 628, 220, 825, 651, 62, 40259, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 651, 6444, 2134, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 4639, 25, 384, 11925, 1505, 13, 12384, 26230, 198, 220, 220, 220, 220, 220, 6444, 338, 4639, 2134, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 198, 198, 4871, 13282, 32103, 7, 13908, 32103, 2599, 198, 220, 37227, 198, 220, 3012, 13282, 338, 4639, 198, 220, 2421, 15358, 276, 38291, 62, 39491, 198, 220, 4600, 79, 541, 2721, 15358, 276, 38291, 62, 39491, 63, 628, 220, 770, 1398, 857, 407, 3058, 1104, 1262, 13282, 351, 281, 4683, 7034, 13, 198, 220, 383, 3038, 857, 407, 11986, 11787, 12, 7890, 12, 15908, 780, 366, 48767, 47477, 13, 11321, 13, 1069, 11755, 13, 12384, 7553, 4119, 87, 4516, 1, 8833, 13, 198, 220, 37227, 628, 220, 825, 651, 62, 40259, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 651, 6444, 2134, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 13498, 198, 220, 220, 220, 4639, 25, 384, 11925, 1505, 13, 12384, 26230, 198, 220, 220, 220, 220, 220, 6444, 338, 4639, 2134, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 15358, 276, 38291, 62, 39491, 198, 220, 220, 220, 3689, 796, 384, 992, 38291, 13, 1925, 5998, 29046, 3419, 198, 220, 220, 220, 329, 267, 287, 2116, 13, 25811, 25, 198, 220, 220, 220, 220, 220, 3689, 13, 2860, 62, 49140, 7, 78, 8, 198, 220, 220, 220, 1441, 384, 992, 38291, 13, 1925, 5998, 7, 25811, 28, 25811, 8 ]
2.75082
610
# -*- coding: utf-8 -*- from collections import defaultdict import click from mygeotab import API, dates from mygeotab.ext import feed @click.command(help="A console data feeder example") @click.argument("database", nargs=1, required=True) @click.option("--user", "-u", prompt=True, help="A MyGeotab username") @click.option("--password", "-p", prompt=True, hide_input=True, help="A MyGeotab password") @click.option("--server", default=None, help="The server (default is my.geotab.com)") @click.option( "--interval", "-i", type=click.IntRange(5, 300), default=60, help="The data feed interval in seconds (default is 60 seconds)", ) if __name__ == "__main__": main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 11748, 3904, 198, 198, 6738, 616, 469, 313, 397, 1330, 7824, 11, 9667, 198, 6738, 616, 469, 313, 397, 13, 2302, 1330, 3745, 628, 198, 198, 31, 12976, 13, 21812, 7, 16794, 2625, 32, 8624, 1366, 3745, 263, 1672, 4943, 198, 31, 12976, 13, 49140, 7203, 48806, 1600, 299, 22046, 28, 16, 11, 2672, 28, 17821, 8, 198, 31, 12976, 13, 18076, 7203, 438, 7220, 1600, 27444, 84, 1600, 6152, 28, 17821, 11, 1037, 2625, 32, 2011, 10082, 313, 397, 20579, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 28712, 1600, 27444, 79, 1600, 6152, 28, 17821, 11, 7808, 62, 15414, 28, 17821, 11, 1037, 2625, 32, 2011, 10082, 313, 397, 9206, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 15388, 1600, 4277, 28, 14202, 11, 1037, 2625, 464, 4382, 357, 12286, 318, 616, 13, 469, 313, 397, 13, 785, 8, 4943, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 3849, 2100, 1600, 198, 220, 220, 220, 27444, 72, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 5317, 17257, 7, 20, 11, 5867, 828, 198, 220, 220, 220, 4277, 28, 1899, 11, 198, 220, 220, 220, 1037, 2625, 464, 1366, 3745, 16654, 287, 4201, 357, 12286, 318, 3126, 4201, 42501, 198, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.818548
248
from config import Config import psycopg2 from psycopg2.extras import Json, DictCursor import pdb import pandas as pd import os import time import cv2 from gesture_recognition import featurizer def orchestrator(): """Pull frames with confidence, accurate predictions from database and use them to generate new model.""" # define database names db_frames = 'frames' db_model_scores = 'model_scores' db_users = 'users' db_conf_preds = 'confident_preds' # define feature names instance = 'instance' user_id = 'user_id' root_dir = 'root_dir' pred_gest = 'pred_gest' true_gest = 'true_gest' pred_conf= 'pred_conf' processed_path = 'processed_path' # select all high-scoring predictions. These will be used to train new models. conn = psycopg2.connect(host=Config.DB_HOST, database=Config.DB_NAME, user=Config.DB_USER, password=Config.DB_PASS) cur = conn.cursor(cursor_factory=DictCursor) confidence_threshold = 0 # way too low; used for testing features = f'{instance}, {user_id}, {true_gest}, {pred_conf}, {root_dir}, {processed_path}' query = 'SELECT ' + features + f' FROM {db_frames} WHERE {pred_conf} > {confidence_threshold} AND {pred_gest} = {true_gest}' cur.execute(query) conn.commit() rows = cur.fetchall() # make dataframe for high-scoring predictions that includes rotated images. Rotated images will enhance training results. columns = [feature.strip() for feature in features.split(",")] df = pd.DataFrame(rows, columns=columns) df = df.drop(pred_conf, axis=1) df = df[df.notnull()] # exit if no frames in database if df.empty: print(f'[ERROR] No accurately predicted frames with prediction confidence > {confidence_threshold} in {db_frames}.') cur.close() else: print(f'[INFO] Confident predictions pulled from {db_frames} table.') # generate rotated images, save files to file storage system, append paths to dataframe processed_path = 'processed_path' flipped_path = 'flipped_path' mirrored_path = 'mirrored_path' mirrored_flipped_path = 'mirrored_flipped_path' rotated_image_path_feats = [flipped_path, mirrored_path, mirrored_flipped_path] for feat in rotated_image_path_feats: df[feat] = None df_feats = [instance, user_id, root_dir] start_time = time.time() for i in range(len(df)): orig_path = df[processed_path][i] frame_orig = cv2.imread(orig_path) (_, frame_orig) = cv2.threshold(frame_orig, 127, 255, cv2.THRESH_BINARY) row_orig = df.iloc[i] rotate_dict = featurizer.rotate(frame_orig, row_orig, df_feats) rotate_keys = list(rotate_dict.keys()) root_dir_path = row_orig[root_dir] rotated_dir = os.path.join(root_dir_path, 'rotated') if os.path.isdir(rotated_dir) == False: print('[INFO] Creating directory for rotated images.') os.mkdir(rotated_dir) user_id_num = str(row_orig[user_id]) user_dir = os.path.join(rotated_dir, str(user_id_num)) if os.path.isdir(user_dir) == False: print(f'[INFO] Creating directory for rotated images from user {user_id_num}.') os.mkdir(user_dir) for key in rotate_keys: frame = rotate_dict[key]['frame'] path = rotate_dict[key]['path'] cv2.imwrite(path, frame) try: column = key + '_path' df[column][i] = path except: print('[ERROR] Unable to save rotated image path to database or dataframe') print(f'[INFO] Processing rotated images took {time.time() - start_time} seconds') # drop user_id and root_dir from data frame df = df.drop([user_id, root_dir], axis=1) df = df.rename(columns={'true_gest': 'gesture'}) # add table of confident predictions to database from sqlalchemy import create_engine engine = create_engine("postgresql://{user}:{pw}@{host}/{name}".format(host=Config.DB_HOST, user=Config.DB_USER, pw=Config.DB_PASS, name=Config.DB_NAME)) table = 'conf_preds' df.to_sql(table, con=engine, if_exists='replace', index=False) # would be better to append existing table conf_preds but current design processes all images from database rather than just new ones. Will update in the future. print(f'[INFO] Table of confident predictions updated.') # check if sufficient number of each gesture present in table of confident predictions. If not, exit since a new model cannot be trained from objects import gestures_map # may place gestures_map on database. stored models should be saved with gestures_map they correspond with. example: train new model with additional gestures gestures_list = list(gestures_map.values()) df_gestures_list = list(df['gesture'].unique()) differing_gestures = [gesture for gesture in gestures_list if gesture not in df_gestures_list] if differing_gestures != []: print(f'[ERROR] Not enough confident predictions have been made for {differing_gestures}. Unable to split data.') return # generate new table with image paths transposed for convenient model training df_conf_preds = pd.DataFrame() for i in range(len(df)): row = df.iloc[i] instance_val = row[instance] gesture_val = row['gesture'] # append row for each file path. the predicted and true gestures of each file are the same df_conf_preds = df_conf_preds.append([[instance_val + '_og', gesture_val, row[processed_path]]], ignore_index=True) df_conf_preds = df_conf_preds.append([[instance_val + '_f', gesture_val, row[flipped_path]]], ignore_index=True) df_conf_preds = df_conf_preds.append([[instance_val + '_m', gesture_val, row[mirrored_path]]], ignore_index=True) df_conf_preds = df_conf_preds.append([[instance_val + '_mf', gesture_val, row[mirrored_flipped_path]]], ignore_index=True) df_conf_preds = df_conf_preds.rename(columns={0: instance, 1: 'gesture', 2: 'path'}) # form y_data from confident predictions dataframe from keras.utils import to_categorical y_data = df_conf_preds['gesture'] for cat in list(gestures_map.keys()): gesture_name = gestures_map[cat] y_data = y_data.replace(gesture_name, cat) y_data = to_categorical(y_data, num_classes=len(gestures_map.keys())) y_data = pd.DataFrame(y_data) # reduce table size to count of least occurring gesture import random driving_count = -1 for i in y_data.columns: gesture_count = len(y_data[y_data[i] == 1][i]) if gesture_count < driving_count or driving_count == -1: driving_count = gesture_count indices = [] for i in y_data.columns: gesture_indices = list(y_data[y_data[i] == 1][i].index); sample_indices = random.sample(gesture_indices, driving_count); indices.extend(sample_indices) y_data = y_data.iloc[indices] # form x_data from confident predictions dataframe. Size of x_data driven by least occuring gesture x_data = df_conf_preds['path'].iloc[indices] # split data into training (72%), validation (8%), and testing (20%) sets test_size = 0.2 if len(x_data) < len(gestures_list)/test_size: print(f'[ERROR] Not enough confident predictions have been made. Unable to split data.') return from sklearn.model_selection import train_test_split x_train_paths, x_test_paths, y_train, y_test = train_test_split(x_data, y_data, test_size=0.2, stratify=y_data) x_train_paths, x_val_paths, y_train, y_val = train_test_split(x_train_paths, y_train, test_size=0.1, stratify=y_train) print(f'[INFO] Prepared training data. Building model...') # build model from .builder import build_and_save_model from objects import gestures_map # ideally, the gesture map should be capable of dynamically impacting the training cycle. However, I am assuming the set of predicted gestures will not change model_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'models') [model_path, training_date] = build_and_save_model(x_train_paths, x_val_paths, y_train, y_val, model_dir) # wait until data collection infrastructure in place to train new models # determine model_name based on entries in database query = 'SELECT model_name from models' cur.execute(query) conn.commit() rows = cur.fetchall() if rows == []: model_name = 'model_0' else: name_start = 'model_' last_num = int(rows[-1][0].split(name_start)[1]) model_name = name_start + str(last_num+1) # push model to database gestures_map = Json(gestures_map) model = open(model_path, 'rb').read() model_blob = psycopg2.Binary(model) table = 'models' query = f"INSERT INTO {table}(model_name, training_date, gestures_map, model, model_path) VALUES('{model_name}', '{training_date}', {gestures_map}, {model_blob}, '{model_path}')" cur.execute(query) conn.commit() print(f'[INFO] New model stored in database.') # make dataframe containing all instances used to train new model new_instances = df_conf_preds.loc[list(x_train_paths.index)]['instance'].sort_index() df_new_instances = pd.DataFrame(new_instances) df_new_instances[model_name] = 1 # update table that contains which frame instances were used to train which model(s) # In the long run, this table may be helpful for determining which training images correspond with accurate models # There is likely a cleaner way to accomplish this table = 'model_train_data_map' query = f"SELECT {instance} FROM {table}" cur.execute(query) conn.commit() sql_instances = cur.fetchall() if sql_instances != []: df_sql_instances = pd.DataFrame(sql_instances).rename(columns={0: "instance"}) df_new_instances = df_new_instances.merge(df_sql_instances, how='outer', on='instance') # push temporary table to database that contains all training instances with instances used to train new model indicated with "1" new_instance = 'new_instance' df_new_instances = df_new_instances.rename(columns={instance: new_instance}) new_table = 'new_table' df_new_instances.to_sql(new_table, con=engine, if_exists='replace', index=False) engine.dispose() # on database, merge newly created temporary table with original one temp_table = 'temp_table' query = f""" DROP TABLE IF EXISTS {temp_table}; SELECT * INTO {temp_table} FROM {new_table} LEFT JOIN {table} ON {instance}={new_instance}; DROP TABLE IF EXISTS {new_table}; ALTER TABLE {temp_table} DROP COLUMN {instance}; ALTER TABLE {temp_table} RENAME COLUMN {new_instance} to {instance}; DROP TABLE IF EXISTS {table}; ALTER TABLE {temp_table} RENAME TO {table} """ cur.execute(query) conn.commit() print(f'[INFO] Model / training data mapping table updated.') # evaluate model performance and compare with performance of other models from . import evaluator table = 'model_scores' query = f"SELECT * FROM {table}" cur.execute(query) conn.commit() sql_model_scores = pd.DataFrame(cur.fetchall()) # close database connection cur.close() # evaluate new model and append scores to model score table [f1, eval_date, eval_time, y_true, y_pred] = evaluator.evaluate_model(model_path, x_test_paths, y_test) rank = 1 model_results = [model_name, f1, rank, eval_date, eval_time, y_true, y_pred] sql_model_scores = sql_model_scores.append([model_results], ignore_index=True) sql_model_scores = sql_model_scores.rename(columns={0:'model_name', 1:'f1_score', 2:'rank', 3:'evaluation_date', 4:'evaluation_time', 5:'true_gestures', 6:'predicted_gestures'}) # rank models by f1 score sql_model_scores = sql_model_scores.sort_values('f1_score', ascending=False, ignore_index=True) rank_vals = [] for i in range(len(sql_model_scores)): rank_vals.append(i+1) sql_model_scores['rank'] = rank_vals # replace database table with new model scores engine = create_engine("postgresql://{user}:{pw}@{host}/{name}".format(host=Config.DB_HOST, user=Config.DB_USER, pw=Config.DB_PASS, name=Config.DB_NAME)) sql_model_scores.to_sql(table, con=engine, if_exists='replace', index=False) engine.dispose()
[ 6738, 4566, 1330, 17056, 198, 11748, 17331, 22163, 70, 17, 198, 6738, 17331, 22163, 70, 17, 13, 2302, 8847, 1330, 449, 1559, 11, 360, 713, 34, 21471, 198, 11748, 279, 9945, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 269, 85, 17, 198, 6738, 18342, 62, 26243, 653, 1330, 2218, 333, 7509, 198, 198, 4299, 28127, 1352, 33529, 198, 220, 220, 220, 37227, 42940, 13431, 351, 6628, 11, 7187, 16277, 422, 6831, 290, 779, 606, 284, 7716, 649, 2746, 526, 15931, 628, 220, 220, 220, 1303, 8160, 6831, 3891, 198, 220, 220, 220, 20613, 62, 37805, 796, 705, 37805, 6, 198, 220, 220, 220, 20613, 62, 19849, 62, 1416, 2850, 796, 705, 19849, 62, 1416, 2850, 6, 198, 220, 220, 220, 20613, 62, 18417, 796, 705, 18417, 6, 198, 220, 220, 220, 20613, 62, 10414, 62, 28764, 82, 796, 705, 10414, 738, 62, 28764, 82, 6, 628, 220, 220, 220, 1303, 8160, 3895, 3891, 220, 198, 220, 220, 220, 4554, 796, 705, 39098, 6, 198, 220, 220, 220, 2836, 62, 312, 796, 705, 7220, 62, 312, 6, 198, 220, 220, 220, 6808, 62, 15908, 796, 705, 15763, 62, 15908, 6, 198, 220, 220, 220, 2747, 62, 3495, 796, 705, 28764, 62, 3495, 6, 198, 220, 220, 220, 2081, 62, 3495, 796, 705, 7942, 62, 3495, 6, 198, 220, 220, 220, 2747, 62, 10414, 28, 705, 28764, 62, 10414, 6, 198, 220, 220, 220, 13686, 62, 6978, 796, 705, 14681, 276, 62, 6978, 6, 628, 220, 220, 220, 1303, 2922, 477, 1029, 12, 46536, 16277, 13, 2312, 481, 307, 973, 284, 4512, 649, 4981, 13, 220, 198, 220, 220, 220, 48260, 796, 17331, 22163, 70, 17, 13, 8443, 7, 4774, 28, 16934, 13, 11012, 62, 39, 10892, 11, 6831, 28, 16934, 13, 11012, 62, 20608, 11, 2836, 28, 16934, 13, 11012, 62, 29904, 11, 9206, 28, 16934, 13, 11012, 62, 47924, 8, 198, 220, 220, 220, 1090, 796, 48260, 13, 66, 21471, 7, 66, 21471, 62, 69, 9548, 28, 35, 713, 34, 21471, 8, 198, 220, 220, 220, 6628, 62, 400, 10126, 796, 657, 1303, 835, 1165, 1877, 26, 973, 329, 4856, 198, 220, 220, 220, 3033, 796, 277, 6, 90, 39098, 5512, 1391, 7220, 62, 312, 5512, 1391, 7942, 62, 3495, 5512, 1391, 28764, 62, 10414, 5512, 1391, 15763, 62, 15908, 5512, 1391, 14681, 276, 62, 6978, 92, 6, 198, 220, 220, 220, 12405, 796, 705, 46506, 705, 1343, 3033, 1343, 277, 6, 16034, 1391, 9945, 62, 37805, 92, 33411, 1391, 28764, 62, 10414, 92, 1875, 1391, 39745, 62, 400, 10126, 92, 5357, 1391, 28764, 62, 3495, 92, 796, 1391, 7942, 62, 3495, 92, 6, 198, 220, 220, 220, 1090, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 15274, 796, 1090, 13, 69, 7569, 439, 3419, 628, 220, 220, 220, 1303, 787, 1366, 14535, 329, 1029, 12, 46536, 16277, 326, 3407, 38375, 4263, 13, 18481, 515, 4263, 481, 9494, 3047, 2482, 13, 220, 198, 220, 220, 220, 15180, 796, 685, 30053, 13, 36311, 3419, 329, 3895, 287, 3033, 13, 35312, 7, 2430, 15437, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 8516, 11, 15180, 28, 28665, 82, 8, 198, 220, 220, 220, 47764, 796, 47764, 13, 14781, 7, 28764, 62, 10414, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 47764, 796, 47764, 58, 7568, 13, 1662, 8423, 3419, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 8420, 611, 645, 13431, 287, 6831, 198, 220, 220, 220, 611, 47764, 13, 28920, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 24908, 60, 1400, 14351, 11001, 13431, 351, 17724, 6628, 1875, 1391, 39745, 62, 400, 10126, 92, 287, 1391, 9945, 62, 37805, 92, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 19836, 3419, 198, 220, 220, 220, 2073, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 10778, 60, 7326, 738, 16277, 5954, 422, 1391, 9945, 62, 37805, 92, 3084, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 38375, 4263, 11, 3613, 3696, 284, 2393, 6143, 1080, 11, 24443, 13532, 284, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 13686, 62, 6978, 796, 705, 14681, 276, 62, 6978, 6, 198, 220, 220, 220, 220, 220, 220, 220, 26157, 62, 6978, 796, 705, 2704, 3949, 62, 6978, 6, 198, 220, 220, 220, 220, 220, 220, 220, 40070, 62, 6978, 796, 705, 10793, 34640, 62, 6978, 6, 198, 220, 220, 220, 220, 220, 220, 220, 40070, 62, 2704, 3949, 62, 6978, 796, 705, 10793, 34640, 62, 2704, 3949, 62, 6978, 6, 198, 220, 220, 220, 220, 220, 220, 220, 38375, 62, 9060, 62, 6978, 62, 5036, 1381, 796, 685, 2704, 3949, 62, 6978, 11, 40070, 62, 6978, 11, 40070, 62, 2704, 3949, 62, 6978, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2218, 287, 38375, 62, 9060, 62, 6978, 62, 5036, 1381, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 27594, 60, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 5036, 1381, 796, 685, 39098, 11, 2836, 62, 312, 11, 6808, 62, 15908, 60, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 7568, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 6978, 796, 47764, 58, 14681, 276, 62, 6978, 7131, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 62, 11612, 796, 269, 85, 17, 13, 320, 961, 7, 11612, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44104, 11, 5739, 62, 11612, 8, 796, 269, 85, 17, 13, 400, 10126, 7, 14535, 62, 11612, 11, 18112, 11, 14280, 11, 269, 85, 17, 13, 4221, 19535, 39, 62, 33, 1268, 13153, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 11612, 796, 47764, 13, 346, 420, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23064, 62, 11600, 796, 2218, 333, 7509, 13, 10599, 378, 7, 14535, 62, 11612, 11, 5752, 62, 11612, 11, 47764, 62, 5036, 1381, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23064, 62, 13083, 796, 1351, 7, 10599, 378, 62, 11600, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 15908, 62, 6978, 796, 5752, 62, 11612, 58, 15763, 62, 15908, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38375, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 62, 15908, 62, 6978, 11, 705, 10599, 515, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 10599, 515, 62, 15908, 8, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 10778, 60, 30481, 8619, 329, 38375, 4263, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 10599, 515, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 312, 62, 22510, 796, 965, 7, 808, 62, 11612, 58, 7220, 62, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 10599, 515, 62, 15908, 11, 965, 7, 7220, 62, 312, 62, 22510, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 7220, 62, 15908, 8, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 10778, 60, 30481, 8619, 329, 38375, 4263, 422, 2836, 1391, 7220, 62, 312, 62, 22510, 92, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 7220, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 23064, 62, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 23064, 62, 11600, 58, 2539, 7131, 6, 14535, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 23064, 62, 11600, 58, 2539, 7131, 6, 6978, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7, 6978, 11, 5739, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 1994, 1343, 705, 62, 6978, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 28665, 7131, 72, 60, 796, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 24908, 60, 27319, 284, 3613, 38375, 2939, 3108, 284, 6831, 393, 1366, 14535, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 10778, 60, 28403, 38375, 4263, 1718, 1391, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 92, 4201, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4268, 2836, 62, 312, 290, 6808, 62, 15908, 422, 1366, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 14781, 26933, 7220, 62, 312, 11, 6808, 62, 15908, 4357, 16488, 28, 16, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 918, 480, 7, 28665, 82, 34758, 6, 7942, 62, 3495, 10354, 705, 3495, 495, 6, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 3084, 286, 6563, 16277, 284, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 422, 44161, 282, 26599, 1330, 2251, 62, 18392, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 796, 2251, 62, 18392, 7203, 7353, 34239, 13976, 1378, 90, 7220, 92, 29164, 79, 86, 92, 31, 90, 4774, 92, 14, 90, 3672, 92, 1911, 18982, 7, 4774, 28, 16934, 13, 11012, 62, 39, 10892, 11, 2836, 28, 16934, 13, 11012, 62, 29904, 11, 279, 86, 28, 16934, 13, 11012, 62, 47924, 11, 1438, 28, 16934, 13, 11012, 62, 20608, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 705, 10414, 62, 28764, 82, 6, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 1462, 62, 25410, 7, 11487, 11, 369, 28, 18392, 11, 611, 62, 1069, 1023, 11639, 33491, 3256, 6376, 28, 25101, 8, 1303, 561, 307, 1365, 284, 24443, 4683, 3084, 1013, 62, 28764, 82, 475, 1459, 1486, 7767, 477, 4263, 422, 6831, 2138, 621, 655, 649, 3392, 13, 2561, 4296, 287, 262, 2003, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 10778, 60, 8655, 286, 6563, 16277, 6153, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 6751, 1271, 286, 1123, 18342, 1944, 287, 3084, 286, 6563, 16277, 13, 1002, 407, 11, 8420, 1201, 257, 649, 2746, 2314, 307, 8776, 198, 220, 220, 220, 220, 220, 220, 220, 422, 5563, 1330, 24621, 62, 8899, 1303, 743, 1295, 24621, 62, 8899, 319, 6831, 13, 8574, 4981, 815, 307, 7448, 351, 24621, 62, 8899, 484, 6053, 351, 13, 1672, 25, 4512, 649, 2746, 351, 3224, 24621, 220, 198, 220, 220, 220, 220, 220, 220, 220, 24621, 62, 4868, 796, 1351, 7, 3495, 942, 62, 8899, 13, 27160, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 3495, 942, 62, 4868, 796, 1351, 7, 7568, 17816, 3495, 495, 6, 4083, 34642, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 28742, 62, 3495, 942, 796, 685, 3495, 495, 329, 18342, 287, 24621, 62, 4868, 611, 18342, 407, 287, 47764, 62, 3495, 942, 62, 4868, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28742, 62, 3495, 942, 14512, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 24908, 60, 1892, 1576, 6563, 16277, 423, 587, 925, 329, 1391, 26069, 1586, 62, 3495, 942, 27422, 27319, 284, 6626, 1366, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 649, 3084, 351, 2939, 13532, 1007, 29813, 329, 11282, 2746, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 10414, 62, 28764, 82, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 7568, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 47764, 13, 346, 420, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4554, 62, 2100, 796, 5752, 58, 39098, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18342, 62, 2100, 796, 5752, 17816, 3495, 495, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24443, 5752, 329, 1123, 2393, 3108, 13, 262, 11001, 290, 2081, 24621, 286, 1123, 2393, 389, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 10414, 62, 28764, 82, 796, 47764, 62, 10414, 62, 28764, 82, 13, 33295, 26933, 58, 39098, 62, 2100, 1343, 705, 62, 519, 3256, 18342, 62, 2100, 11, 5752, 58, 14681, 276, 62, 6978, 11907, 4357, 8856, 62, 9630, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 10414, 62, 28764, 82, 796, 47764, 62, 10414, 62, 28764, 82, 13, 33295, 26933, 58, 39098, 62, 2100, 1343, 705, 62, 69, 3256, 18342, 62, 2100, 11, 5752, 58, 2704, 3949, 62, 6978, 11907, 4357, 8856, 62, 9630, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 10414, 62, 28764, 82, 796, 47764, 62, 10414, 62, 28764, 82, 13, 33295, 26933, 58, 39098, 62, 2100, 1343, 705, 62, 76, 3256, 18342, 62, 2100, 11, 5752, 58, 10793, 34640, 62, 6978, 11907, 4357, 8856, 62, 9630, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 10414, 62, 28764, 82, 796, 47764, 62, 10414, 62, 28764, 82, 13, 33295, 26933, 58, 39098, 62, 2100, 1343, 705, 62, 76, 69, 3256, 18342, 62, 2100, 11, 5752, 58, 10793, 34640, 62, 2704, 3949, 62, 6978, 11907, 4357, 8856, 62, 9630, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 10414, 62, 28764, 82, 796, 47764, 62, 10414, 62, 28764, 82, 13, 918, 480, 7, 28665, 82, 34758, 15, 25, 4554, 11, 352, 25, 705, 3495, 495, 3256, 362, 25, 705, 6978, 6, 30072, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1296, 331, 62, 7890, 422, 6563, 16277, 1366, 14535, 220, 198, 220, 220, 220, 220, 220, 220, 220, 422, 41927, 292, 13, 26791, 1330, 284, 62, 66, 2397, 12409, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 7890, 796, 47764, 62, 10414, 62, 28764, 82, 17816, 3495, 495, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3797, 287, 1351, 7, 3495, 942, 62, 8899, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18342, 62, 3672, 796, 24621, 62, 8899, 58, 9246, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 7890, 796, 331, 62, 7890, 13, 33491, 7, 3495, 495, 62, 3672, 11, 3797, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 7890, 796, 284, 62, 66, 2397, 12409, 7, 88, 62, 7890, 11, 997, 62, 37724, 28, 11925, 7, 3495, 942, 62, 8899, 13, 13083, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 7890, 796, 279, 67, 13, 6601, 19778, 7, 88, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4646, 3084, 2546, 284, 954, 286, 1551, 14963, 18342, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 4738, 198, 220, 220, 220, 220, 220, 220, 220, 5059, 62, 9127, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 331, 62, 7890, 13, 28665, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18342, 62, 9127, 796, 18896, 7, 88, 62, 7890, 58, 88, 62, 7890, 58, 72, 60, 6624, 352, 7131, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18342, 62, 9127, 1279, 5059, 62, 9127, 393, 5059, 62, 9127, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5059, 62, 9127, 796, 18342, 62, 9127, 198, 220, 220, 220, 220, 220, 220, 220, 36525, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 331, 62, 7890, 13, 28665, 82, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18342, 62, 521, 1063, 796, 1351, 7, 88, 62, 7890, 58, 88, 62, 7890, 58, 72, 60, 6624, 352, 7131, 72, 4083, 9630, 1776, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 521, 1063, 796, 4738, 13, 39873, 7, 3495, 495, 62, 521, 1063, 11, 5059, 62, 9127, 1776, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 13, 2302, 437, 7, 39873, 62, 521, 1063, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 7890, 796, 331, 62, 7890, 13, 346, 420, 58, 521, 1063, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1296, 2124, 62, 7890, 422, 6563, 16277, 1366, 14535, 13, 12849, 286, 2124, 62, 7890, 7986, 416, 1551, 1609, 870, 18342, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 7890, 796, 47764, 62, 10414, 62, 28764, 82, 17816, 6978, 6, 4083, 346, 420, 58, 521, 1063, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6626, 1366, 656, 3047, 357, 4761, 15920, 21201, 357, 23, 15920, 290, 4856, 357, 1238, 4407, 5621, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7857, 796, 657, 13, 17, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 87, 62, 7890, 8, 1279, 18896, 7, 3495, 942, 62, 4868, 20679, 9288, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 24908, 60, 1892, 1576, 6563, 16277, 423, 587, 925, 13, 27319, 284, 6626, 1366, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 27432, 62, 6978, 82, 11, 2124, 62, 9288, 62, 6978, 82, 11, 331, 62, 27432, 11, 331, 62, 9288, 796, 4512, 62, 9288, 62, 35312, 7, 87, 62, 7890, 11, 331, 62, 7890, 11, 1332, 62, 7857, 28, 15, 13, 17, 11, 25369, 1958, 28, 88, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 27432, 62, 6978, 82, 11, 2124, 62, 2100, 62, 6978, 82, 11, 331, 62, 27432, 11, 331, 62, 2100, 796, 4512, 62, 9288, 62, 35312, 7, 87, 62, 27432, 62, 6978, 82, 11, 331, 62, 27432, 11, 1332, 62, 7857, 28, 15, 13, 16, 11, 25369, 1958, 28, 88, 62, 27432, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 10778, 60, 19141, 1144, 3047, 1366, 13, 11819, 2746, 986, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1382, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 422, 764, 38272, 1330, 1382, 62, 392, 62, 21928, 62, 19849, 198, 220, 220, 220, 220, 220, 220, 220, 422, 5563, 1330, 24621, 62, 8899, 1303, 30274, 11, 262, 18342, 3975, 815, 307, 6007, 286, 32366, 40288, 262, 3047, 6772, 13, 2102, 11, 314, 716, 13148, 262, 900, 286, 11001, 24621, 481, 407, 1487, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 705, 27530, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 685, 19849, 62, 6978, 11, 3047, 62, 4475, 60, 796, 1382, 62, 392, 62, 21928, 62, 19849, 7, 87, 62, 27432, 62, 6978, 82, 11, 2124, 62, 2100, 62, 6978, 82, 11, 331, 62, 27432, 11, 331, 62, 2100, 11, 2746, 62, 15908, 8, 1303, 4043, 1566, 1366, 4947, 6884, 287, 1295, 284, 4512, 649, 4981, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5004, 2746, 62, 3672, 1912, 319, 12784, 287, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 705, 46506, 2746, 62, 3672, 422, 4981, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 15274, 796, 1090, 13, 69, 7569, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15274, 6624, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 796, 705, 19849, 62, 15, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 9688, 796, 705, 19849, 62, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 22510, 796, 493, 7, 8516, 58, 12, 16, 7131, 15, 4083, 35312, 7, 3672, 62, 9688, 38381, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 796, 1438, 62, 9688, 1343, 965, 7, 12957, 62, 22510, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4574, 2746, 284, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 24621, 62, 8899, 796, 449, 1559, 7, 3495, 942, 62, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 1280, 7, 19849, 62, 6978, 11, 705, 26145, 27691, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2436, 672, 796, 17331, 22163, 70, 17, 13, 33, 3219, 7, 19849, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 705, 27530, 6, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 277, 1, 20913, 17395, 39319, 1391, 11487, 92, 7, 19849, 62, 3672, 11, 3047, 62, 4475, 11, 24621, 62, 8899, 11, 2746, 11, 2746, 62, 6978, 8, 26173, 35409, 10786, 90, 19849, 62, 3672, 92, 3256, 705, 90, 34409, 62, 4475, 92, 3256, 1391, 3495, 942, 62, 8899, 5512, 1391, 19849, 62, 2436, 672, 5512, 705, 90, 19849, 62, 6978, 92, 11537, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 10778, 60, 968, 2746, 8574, 287, 6831, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 1366, 14535, 7268, 477, 10245, 973, 284, 4512, 649, 2746, 220, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 8625, 1817, 796, 47764, 62, 10414, 62, 28764, 82, 13, 17946, 58, 4868, 7, 87, 62, 27432, 62, 6978, 82, 13, 9630, 8, 7131, 6, 39098, 6, 4083, 30619, 62, 9630, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 3605, 62, 8625, 1817, 796, 279, 67, 13, 6601, 19778, 7, 3605, 62, 8625, 1817, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 3605, 62, 8625, 1817, 58, 19849, 62, 3672, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 3084, 326, 4909, 543, 5739, 10245, 547, 973, 284, 4512, 543, 2746, 7, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 262, 890, 1057, 11, 428, 3084, 743, 307, 7613, 329, 13213, 543, 3047, 4263, 6053, 351, 7187, 4981, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1318, 318, 1884, 257, 21723, 835, 284, 9989, 428, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 705, 19849, 62, 27432, 62, 7890, 62, 8899, 6, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 277, 1, 46506, 1391, 39098, 92, 16034, 1391, 11487, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 8625, 1817, 796, 1090, 13, 69, 7569, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 44161, 62, 8625, 1817, 14512, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 25410, 62, 8625, 1817, 796, 279, 67, 13, 6601, 19778, 7, 25410, 62, 8625, 1817, 737, 918, 480, 7, 28665, 82, 34758, 15, 25, 366, 39098, 20662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 3605, 62, 8625, 1817, 796, 47764, 62, 3605, 62, 8625, 1817, 13, 647, 469, 7, 7568, 62, 25410, 62, 8625, 1817, 11, 703, 11639, 39605, 3256, 319, 11639, 39098, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4574, 8584, 3084, 284, 6831, 326, 4909, 477, 3047, 10245, 351, 10245, 973, 284, 4512, 649, 2746, 8203, 351, 366, 16, 1, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 39098, 796, 705, 3605, 62, 39098, 6, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 3605, 62, 8625, 1817, 796, 47764, 62, 3605, 62, 8625, 1817, 13, 918, 480, 7, 28665, 82, 34758, 39098, 25, 649, 62, 39098, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 11487, 796, 705, 3605, 62, 11487, 6, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 3605, 62, 8625, 1817, 13, 1462, 62, 25410, 7, 3605, 62, 11487, 11, 369, 28, 18392, 11, 611, 62, 1069, 1023, 11639, 33491, 3256, 6376, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 13, 6381, 3455, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 319, 6831, 11, 20121, 8308, 2727, 8584, 3084, 351, 2656, 530, 220, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 11487, 796, 705, 29510, 62, 11487, 6, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 277, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10560, 3185, 43679, 16876, 7788, 1797, 4694, 1391, 29510, 62, 11487, 19629, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33493, 1635, 39319, 1391, 29510, 62, 11487, 92, 16034, 1391, 3605, 62, 11487, 92, 12509, 9792, 32357, 1268, 1391, 11487, 92, 6177, 1391, 39098, 92, 34758, 3605, 62, 39098, 19629, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10560, 3185, 43679, 16876, 7788, 1797, 4694, 1391, 3605, 62, 11487, 19629, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8355, 5781, 43679, 1391, 29510, 62, 11487, 92, 10560, 3185, 20444, 5883, 45, 1391, 39098, 19629, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8355, 5781, 43679, 1391, 29510, 62, 11487, 92, 371, 1677, 10067, 20444, 5883, 45, 1391, 3605, 62, 39098, 92, 284, 1391, 39098, 19629, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10560, 3185, 43679, 16876, 7788, 1797, 4694, 1391, 11487, 19629, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8355, 5781, 43679, 1391, 29510, 62, 11487, 92, 371, 1677, 10067, 5390, 1391, 11487, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 10778, 60, 9104, 1220, 3047, 1366, 16855, 3084, 6153, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13446, 2746, 2854, 290, 8996, 351, 2854, 286, 584, 4981, 198, 220, 220, 220, 220, 220, 220, 220, 422, 764, 1330, 5418, 84, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 705, 19849, 62, 1416, 2850, 6, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 277, 1, 46506, 1635, 16034, 1391, 11487, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 19849, 62, 1416, 2850, 796, 279, 67, 13, 6601, 19778, 7, 22019, 13, 69, 7569, 439, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1969, 6831, 4637, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13446, 649, 2746, 290, 24443, 8198, 284, 2746, 4776, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 685, 69, 16, 11, 5418, 62, 4475, 11, 5418, 62, 2435, 11, 331, 62, 7942, 11, 331, 62, 28764, 60, 796, 5418, 84, 1352, 13, 49786, 62, 19849, 7, 19849, 62, 6978, 11, 2124, 62, 9288, 62, 6978, 82, 11, 331, 62, 9288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 43420, 796, 685, 19849, 62, 3672, 11, 277, 16, 11, 4279, 11, 5418, 62, 4475, 11, 5418, 62, 2435, 11, 331, 62, 7942, 11, 331, 62, 28764, 60, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 19849, 62, 1416, 2850, 796, 44161, 62, 19849, 62, 1416, 2850, 13, 33295, 26933, 19849, 62, 43420, 4357, 8856, 62, 9630, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 19849, 62, 1416, 2850, 796, 44161, 62, 19849, 62, 1416, 2850, 13, 918, 480, 7, 28665, 82, 34758, 15, 32105, 19849, 62, 3672, 3256, 352, 32105, 69, 16, 62, 26675, 3256, 362, 32105, 43027, 3256, 513, 32105, 18206, 2288, 62, 4475, 3256, 604, 32105, 18206, 2288, 62, 2435, 3256, 642, 32105, 7942, 62, 3495, 942, 3256, 718, 32105, 28764, 5722, 62, 3495, 942, 6, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4279, 4981, 416, 277, 16, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 19849, 62, 1416, 2850, 796, 44161, 62, 19849, 62, 1416, 2850, 13, 30619, 62, 27160, 10786, 69, 16, 62, 26675, 3256, 41988, 28, 25101, 11, 8856, 62, 9630, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 62, 12786, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 25410, 62, 19849, 62, 1416, 2850, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4279, 62, 12786, 13, 33295, 7, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 19849, 62, 1416, 2850, 17816, 43027, 20520, 796, 4279, 62, 12786, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6330, 6831, 3084, 351, 649, 2746, 8198, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 796, 2251, 62, 18392, 7203, 7353, 34239, 13976, 1378, 90, 7220, 92, 29164, 79, 86, 92, 31, 90, 4774, 92, 14, 90, 3672, 92, 1911, 18982, 7, 4774, 28, 16934, 13, 11012, 62, 39, 10892, 11, 2836, 28, 16934, 13, 11012, 62, 29904, 11, 279, 86, 28, 16934, 13, 11012, 62, 47924, 11, 1438, 28, 16934, 13, 11012, 62, 20608, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 44161, 62, 19849, 62, 1416, 2850, 13, 1462, 62, 25410, 7, 11487, 11, 369, 28, 18392, 11, 611, 62, 1069, 1023, 11639, 33491, 3256, 6376, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 13, 6381, 3455, 3419 ]
2.404623
5,494
import nmap import sys import os import multiprocessing import socket from colorama import Fore, Back, Style scanner = nmap.PortScanner()
[ 11748, 299, 8899, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 18540, 305, 919, 278, 198, 11748, 17802, 198, 6738, 3124, 1689, 1330, 4558, 11, 5157, 11, 17738, 198, 198, 35836, 1008, 796, 299, 8899, 13, 13924, 33351, 1008, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.867925
53
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2018-11-22 14:09 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 1314, 319, 2864, 12, 1157, 12, 1828, 1478, 25, 2931, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.753623
69
import re import time from datetime import datetime, timedelta def test_mode_replay(eventgen_test_helper): """Test normal replay mode settings""" events = eventgen_test_helper("eventgen_replay.conf").get_events() # assert the event length is the same as sample file size assert len(events) == 12 pattern = re.compile(r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}") for event in events: # assert that integer token is replaced assert "@@integer" not in event result = pattern.match(event) assert result is not None def test_mode_replay_end_1(eventgen_test_helper): """Test normal replay mode with end = 2 which will replay the sample twice and exit""" events = eventgen_test_helper("eventgen_replay_end_1.conf").get_events() # assert the event length is twice of the events in the sample file assert len(events) == 24 def test_mode_replay_end_2(eventgen_test_helper): """Test normal replay mode with end = -1 which will replay the sample forever""" helper = eventgen_test_helper("eventgen_replay_end_2.conf") time.sleep(60) assert helper.is_alive() def test_mode_replay_backfill(eventgen_test_helper): """Test normal replay mode with backfill = -5s which should be ignore since backfill < interval""" events = eventgen_test_helper("eventgen_replay_backfill.conf").get_events() # assert the events length is twice of the events in the sample file assert len(events) == 24 def test_mode_replay_backfill_greater_interval(eventgen_test_helper): """Test normal replay mode with backfill = -120s""" current_datetime = datetime.now() events = eventgen_test_helper( "eventgen_replay_backfill_greater_interval.conf" ).get_events() # assert the events length is twice of the events in the sample file assert len(events) == 24 pattern = re.compile(r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}") for event in events: result = pattern.match(event) assert result is not None event_datetime = datetime.strptime(result.group(), "%Y-%m-%d %H:%M:%S") assert event_datetime < current_datetime def test_mode_replay_tutorial1(eventgen_test_helper): """Test the replay mode with csv for sample file sample.tutorial1.csv""" events = eventgen_test_helper("eventgen_tutorial1.conf").get_events() assert len(events) == 2019 def test_mode_replay_timemultiple(eventgen_test_helper): """Test normal replay mode with timeMultiple = 0.5 which will replay the sample with half time interval""" current_datetime = datetime.now() events = eventgen_test_helper("eventgen_replay_timeMultiple.conf").get_events() pattern = re.compile(r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}") for event in events: result = pattern.match(event) assert result is not None event_datetime = datetime.strptime(result.group(), "%Y-%m-%d %H:%M:%S") delter_seconds = (event_datetime - current_datetime).total_seconds() # assert the event time is after (now - earliest) time assert delter_seconds < 14 def test_mode_replay_csv(eventgen_test_helper): """Test normal replay mode with sampletype = csv which will get _raw row from the sample""" events = eventgen_test_helper("eventgen_replay_csv.conf").get_events() # assert the events equals to the sample csv file assert len(events) == 10 def test_mode_replay_with_timezone(eventgen_test_helper): """Test normal replay mode with sampletype = csv which will get _raw row from the sample""" events = eventgen_test_helper("eventgen_replay_csv_with_tz.conf").get_events() # assert the events equals to the sample csv file assert len(events) == 4 now_ts = datetime.utcnow() + timedelta(hours=-1) for event in events: event_ts = datetime.strptime(event.split(" ")[0], "%Y-%m-%dT%H:%M:%S,%f") d = now_ts - event_ts assert d.seconds < 60, "timestamp with timezone check fails."
[ 11748, 302, 198, 11748, 640, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 3487, 24788, 4235, 6460, 37811, 198, 220, 220, 220, 2995, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7203, 15596, 5235, 62, 260, 1759, 13, 10414, 11074, 1136, 62, 31534, 3419, 198, 220, 220, 220, 1303, 6818, 262, 1785, 4129, 318, 262, 976, 355, 6291, 2393, 2546, 198, 220, 220, 220, 6818, 18896, 7, 31534, 8, 6624, 1105, 198, 220, 220, 220, 3912, 796, 302, 13, 5589, 576, 7, 81, 1, 59, 67, 90, 19, 92, 12, 59, 67, 90, 17, 92, 12, 59, 67, 90, 17, 92, 3467, 67, 90, 17, 92, 7479, 67, 90, 17, 92, 7479, 67, 90, 17, 92, 4943, 198, 220, 220, 220, 329, 1785, 287, 2995, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6818, 326, 18253, 11241, 318, 6928, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 366, 12404, 41433, 1, 407, 287, 1785, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 3912, 13, 15699, 7, 15596, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1255, 318, 407, 6045, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 62, 437, 62, 16, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 3487, 24788, 4235, 351, 886, 796, 362, 543, 481, 24788, 262, 6291, 5403, 290, 8420, 37811, 198, 220, 220, 220, 2995, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7203, 15596, 5235, 62, 260, 1759, 62, 437, 62, 16, 13, 10414, 11074, 1136, 62, 31534, 3419, 198, 220, 220, 220, 1303, 6818, 262, 1785, 4129, 318, 5403, 286, 262, 2995, 287, 262, 6291, 2393, 198, 220, 220, 220, 6818, 18896, 7, 31534, 8, 6624, 1987, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 62, 437, 62, 17, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 3487, 24788, 4235, 351, 886, 796, 532, 16, 543, 481, 24788, 262, 6291, 8097, 37811, 198, 220, 220, 220, 31904, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7203, 15596, 5235, 62, 260, 1759, 62, 437, 62, 17, 13, 10414, 4943, 198, 220, 220, 220, 640, 13, 42832, 7, 1899, 8, 198, 220, 220, 220, 6818, 31904, 13, 271, 62, 282, 425, 3419, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 62, 1891, 20797, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 3487, 24788, 4235, 351, 736, 20797, 796, 532, 20, 82, 543, 815, 307, 8856, 1201, 736, 20797, 1279, 16654, 37811, 198, 220, 220, 220, 2995, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7203, 15596, 5235, 62, 260, 1759, 62, 1891, 20797, 13, 10414, 11074, 1136, 62, 31534, 3419, 198, 220, 220, 220, 1303, 6818, 262, 2995, 4129, 318, 5403, 286, 262, 2995, 287, 262, 6291, 2393, 198, 220, 220, 220, 6818, 18896, 7, 31534, 8, 6624, 1987, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 62, 1891, 20797, 62, 18223, 263, 62, 3849, 2100, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 3487, 24788, 4235, 351, 736, 20797, 796, 532, 10232, 82, 37811, 198, 220, 220, 220, 1459, 62, 19608, 8079, 796, 4818, 8079, 13, 2197, 3419, 198, 220, 220, 220, 2995, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15596, 5235, 62, 260, 1759, 62, 1891, 20797, 62, 18223, 263, 62, 3849, 2100, 13, 10414, 1, 198, 220, 220, 220, 6739, 1136, 62, 31534, 3419, 198, 220, 220, 220, 1303, 6818, 262, 2995, 4129, 318, 5403, 286, 262, 2995, 287, 262, 6291, 2393, 198, 220, 220, 220, 6818, 18896, 7, 31534, 8, 6624, 1987, 198, 220, 220, 220, 3912, 796, 302, 13, 5589, 576, 7, 81, 1, 59, 67, 90, 19, 92, 12, 59, 67, 90, 17, 92, 12, 59, 67, 90, 17, 92, 3467, 67, 90, 17, 92, 7479, 67, 90, 17, 92, 7479, 67, 90, 17, 92, 4943, 198, 220, 220, 220, 329, 1785, 287, 2995, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 3912, 13, 15699, 7, 15596, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1255, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 19608, 8079, 796, 4818, 8079, 13, 2536, 457, 524, 7, 20274, 13, 8094, 22784, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1785, 62, 19608, 8079, 1279, 1459, 62, 19608, 8079, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 62, 83, 44917, 16, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 262, 24788, 4235, 351, 269, 21370, 329, 6291, 2393, 6291, 13, 83, 44917, 16, 13, 40664, 37811, 198, 220, 220, 220, 2995, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7203, 15596, 5235, 62, 83, 44917, 16, 13, 10414, 11074, 1136, 62, 31534, 3419, 198, 220, 220, 220, 6818, 18896, 7, 31534, 8, 6624, 13130, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 62, 16514, 368, 586, 2480, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 3487, 24788, 4235, 351, 640, 31217, 796, 657, 13, 20, 543, 481, 24788, 262, 6291, 351, 2063, 640, 16654, 37811, 198, 220, 220, 220, 1459, 62, 19608, 8079, 796, 4818, 8079, 13, 2197, 3419, 198, 220, 220, 220, 2995, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7203, 15596, 5235, 62, 260, 1759, 62, 2435, 31217, 13, 10414, 11074, 1136, 62, 31534, 3419, 628, 220, 220, 220, 3912, 796, 302, 13, 5589, 576, 7, 81, 1, 59, 67, 90, 19, 92, 12, 59, 67, 90, 17, 92, 12, 59, 67, 90, 17, 92, 3467, 67, 90, 17, 92, 7479, 67, 90, 17, 92, 7479, 67, 90, 17, 92, 4943, 198, 220, 220, 220, 329, 1785, 287, 2995, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 3912, 13, 15699, 7, 15596, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1255, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 19608, 8079, 796, 4818, 8079, 13, 2536, 457, 524, 7, 20274, 13, 8094, 22784, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 353, 62, 43012, 796, 357, 15596, 62, 19608, 8079, 532, 1459, 62, 19608, 8079, 737, 23350, 62, 43012, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6818, 262, 1785, 640, 318, 706, 357, 2197, 532, 14555, 8, 640, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1619, 353, 62, 43012, 1279, 1478, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 62, 40664, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 3487, 24788, 4235, 351, 6291, 4906, 796, 269, 21370, 543, 481, 651, 4808, 1831, 5752, 422, 262, 6291, 37811, 198, 220, 220, 220, 2995, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7203, 15596, 5235, 62, 260, 1759, 62, 40664, 13, 10414, 11074, 1136, 62, 31534, 3419, 198, 220, 220, 220, 1303, 6818, 262, 2995, 21767, 284, 262, 6291, 269, 21370, 2393, 198, 220, 220, 220, 6818, 18896, 7, 31534, 8, 6624, 838, 628, 198, 4299, 1332, 62, 14171, 62, 260, 1759, 62, 4480, 62, 2435, 11340, 7, 15596, 5235, 62, 9288, 62, 2978, 525, 2599, 198, 220, 220, 220, 37227, 14402, 3487, 24788, 4235, 351, 6291, 4906, 796, 269, 21370, 543, 481, 651, 4808, 1831, 5752, 422, 262, 6291, 37811, 198, 220, 220, 220, 2995, 796, 1785, 5235, 62, 9288, 62, 2978, 525, 7203, 15596, 5235, 62, 260, 1759, 62, 40664, 62, 4480, 62, 22877, 13, 10414, 11074, 1136, 62, 31534, 3419, 198, 220, 220, 220, 1303, 6818, 262, 2995, 21767, 284, 262, 6291, 269, 21370, 2393, 198, 220, 220, 220, 6818, 18896, 7, 31534, 8, 6624, 604, 198, 220, 220, 220, 783, 62, 912, 796, 4818, 8079, 13, 315, 66, 2197, 3419, 1343, 28805, 12514, 7, 24425, 10779, 16, 8, 198, 220, 220, 220, 329, 1785, 287, 2995, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 912, 796, 4818, 8079, 13, 2536, 457, 524, 7, 15596, 13, 35312, 7203, 366, 38381, 15, 4357, 36521, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 4, 44, 25, 4, 50, 11, 4, 69, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 783, 62, 912, 532, 1785, 62, 912, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 288, 13, 43012, 1279, 3126, 11, 366, 16514, 27823, 351, 640, 11340, 2198, 10143, 526, 198 ]
2.685348
1,481
#!/usr/bin/env python # Invalidates CDNs so the caches are refreshed import boto3 import os import time
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 17665, 689, 6458, 47503, 523, 262, 50177, 389, 47193, 198, 198, 11748, 275, 2069, 18, 198, 11748, 28686, 198, 11748, 640, 628 ]
3.242424
33
import pandas as pd import pytest from powersimdata.tests.mock_grid import MockGrid from powersimdata.tests.mock_scenario import MockScenario from powersimdata.tests.mock_scenario_info import MockScenarioInfo period_num = 4 # plant_id is the index mock_plant = { "plant_id": [101, 102, 103, 104, 105, 106], "bus_id": [1001, 1002, 1003, 1004, 1005, 1006], "type": ["solar", "wind", "ng", "coal", "dfo", "hydro"], "zone_id": [1, 2, 3, 1, 3, 2], "GenFuelCost": [0, 0, 3.3, 4.4, 5.5, 0], "Pmin": [0, 0, 0, 0, 0, 0], "Pmax": [40, 80, 50, 150, 80, 60], } @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 12972, 9288, 198, 198, 6738, 5635, 320, 7890, 13, 41989, 13, 76, 735, 62, 25928, 1330, 44123, 41339, 198, 6738, 5635, 320, 7890, 13, 41989, 13, 76, 735, 62, 1416, 39055, 1330, 44123, 3351, 39055, 198, 6738, 5635, 320, 7890, 13, 41989, 13, 76, 735, 62, 1416, 39055, 62, 10951, 1330, 44123, 3351, 39055, 12360, 198, 198, 41007, 62, 22510, 796, 604, 198, 198, 2, 4618, 62, 312, 318, 262, 6376, 198, 76, 735, 62, 15060, 796, 1391, 198, 220, 220, 220, 366, 15060, 62, 312, 1298, 685, 8784, 11, 15143, 11, 15349, 11, 14436, 11, 13343, 11, 15696, 4357, 198, 220, 220, 220, 366, 10885, 62, 312, 1298, 685, 47705, 11, 1802, 17, 11, 1802, 18, 11, 1802, 19, 11, 1802, 20, 11, 1802, 21, 4357, 198, 220, 220, 220, 366, 4906, 1298, 14631, 82, 6192, 1600, 366, 7972, 1600, 366, 782, 1600, 366, 25140, 1600, 366, 67, 6513, 1600, 366, 15511, 305, 33116, 198, 220, 220, 220, 366, 11340, 62, 312, 1298, 685, 16, 11, 362, 11, 513, 11, 352, 11, 513, 11, 362, 4357, 198, 220, 220, 220, 366, 13746, 42663, 13729, 1298, 685, 15, 11, 657, 11, 513, 13, 18, 11, 604, 13, 19, 11, 642, 13, 20, 11, 657, 4357, 198, 220, 220, 220, 366, 47, 1084, 1298, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 198, 220, 220, 220, 366, 47, 9806, 1298, 685, 1821, 11, 4019, 11, 2026, 11, 6640, 11, 4019, 11, 3126, 4357, 198, 92, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628 ]
2.250859
291
#!/usr/bin/env python3 # Copyright 2009-2017 BHG http://bw.org/ # Class inheritance is the fundamental part of OOP # allows you to extend your class by deriving properties/variables and methods from parent classes. # no longer providing default values. # it is bcz this is going to be the base class and it's going too be inherited in order to be used. # bcz of this we need to do extra checking in our getters and setters. # we cannot just return a value, we need to check and see whether the value is actually there. # so, using exceptions here - exception tries to return a value and if it fails it returns None instead. # using duck class to inherit base class animal. # using kitten class to inherit base class animal. # s - string that will identify the target of its predator if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 3717, 12, 5539, 347, 39, 38, 2638, 1378, 65, 86, 13, 2398, 14, 198, 198, 2, 5016, 24155, 318, 262, 7531, 636, 286, 440, 3185, 198, 2, 3578, 345, 284, 9117, 534, 1398, 416, 4587, 1412, 6608, 14, 25641, 2977, 290, 5050, 422, 2560, 6097, 13, 628, 198, 220, 220, 220, 1303, 645, 2392, 4955, 4277, 3815, 13, 198, 220, 220, 220, 1303, 340, 318, 275, 26691, 428, 318, 1016, 284, 307, 262, 2779, 1398, 290, 340, 338, 1016, 1165, 307, 19552, 287, 1502, 284, 307, 973, 13, 198, 220, 220, 220, 1303, 275, 26691, 286, 428, 356, 761, 284, 466, 3131, 10627, 287, 674, 651, 1010, 290, 900, 1010, 13, 198, 220, 220, 220, 1303, 356, 2314, 655, 1441, 257, 1988, 11, 356, 761, 284, 2198, 290, 766, 1771, 262, 1988, 318, 1682, 612, 13, 198, 220, 220, 220, 1303, 523, 11, 1262, 13269, 994, 532, 6631, 8404, 284, 1441, 257, 1988, 290, 611, 340, 10143, 340, 5860, 6045, 2427, 13, 628, 198, 2, 1262, 22045, 1398, 284, 16955, 2779, 1398, 5044, 13, 628, 198, 2, 1262, 42143, 1398, 284, 16955, 2779, 1398, 5044, 13, 628, 220, 220, 220, 1303, 264, 532, 4731, 326, 481, 5911, 262, 2496, 286, 663, 30135, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 1388, 3419, 198 ]
3.708696
230
"""Here are the db connection.""" import importlib import logging from mixer.settings import db_type from mixer.glogger import logger class Reader(object): """Helper to gen the reader class.""" def __init__(self, db_name): """Constructor.""" DB = getattr( importlib.import_module( "utilities.database.{}".format(db_type) ), "DB" ) logger.log(logging.INFO, "Initialize DB connection") self.db = DB(db_name) self.db_name = db_name
[ 37811, 4342, 389, 262, 20613, 4637, 526, 15931, 201, 198, 11748, 1330, 8019, 201, 198, 11748, 18931, 201, 198, 201, 198, 6738, 33938, 13, 33692, 1330, 20613, 62, 4906, 201, 198, 6738, 33938, 13, 4743, 519, 1362, 1330, 49706, 201, 198, 201, 198, 201, 198, 4871, 25342, 7, 15252, 2599, 201, 198, 220, 220, 220, 37227, 47429, 284, 2429, 262, 9173, 1398, 526, 15931, 201, 198, 201, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 20613, 62, 3672, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 273, 526, 15931, 201, 198, 220, 220, 220, 220, 220, 220, 220, 20137, 796, 651, 35226, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 8019, 13, 11748, 62, 21412, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 315, 2410, 13, 48806, 13, 90, 92, 1911, 18982, 7, 9945, 62, 4906, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 366, 11012, 1, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 6404, 7, 6404, 2667, 13, 10778, 11, 366, 24243, 1096, 20137, 4637, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 796, 20137, 7, 9945, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 62, 3672, 796, 20613, 62, 3672, 201, 198 ]
2.18254
252
# -------------- # import the libraries import numpy as np import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings('ignore') # Code starts here df = pd.read_csv(path) print(df.head()) X = df.drop('insuranceclaim',axis=1) y = df['insuranceclaim'] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=6) # Code ends here # -------------- import matplotlib.pyplot as plt # Code starts here plt.boxplot(X_train['bmi']) q_value = X_train['bmi'].quantile(0.95) y_train.value_counts() # Code ends here # -------------- # Code starts here relation = X_train.corr() print(relation) sns.pairplot(X_train) # Code ends here # -------------- import seaborn as sns import matplotlib.pyplot as plt # Code starts here cols = ['children','sex','region','smoker'] fig, axes = plt.subplots(2, 2, figsize=(10,10)) for i in range(2): for j in range(2): ax = axes[i,j] col = cols[i*2+j] sns.countplot(x=X_train[col],hue=y_train,ax=ax) # Code ends here # -------------- from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # parameters for grid search parameters = {'C':[0.1,0.5,1,5]} # Code starts here lr = LogisticRegression() grid = GridSearchCV(lr,parameters) grid.fit(X_train,y_train) y_pred = grid.predict(X_test) accuracy = accuracy_score(y_test,y_pred) print(accuracy) # Code ends here # -------------- from sklearn.metrics import roc_auc_score, auc from sklearn import metrics # Code starts here #y_scores = grid.decision_function(X_test) score = roc_auc_score(y_pred,y_test) y_pred_proba = grid.predict_proba(X_test)[:,1] fpr, tpr,_ = metrics.roc_curve(y_test,y_pred) roc_auc = roc_auc_score(y_test, y_pred_proba) auc = auc(fpr,tpr) plt.plot(fpr,tpr,label='Logistic model, auc='+str(auc)) # Code ends here
[ 2, 220, 26171, 198, 2, 1330, 262, 12782, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 11537, 198, 198, 2, 6127, 4940, 994, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 6978, 8, 198, 4798, 7, 7568, 13, 2256, 28955, 198, 55, 796, 47764, 13, 14781, 10786, 1040, 3874, 6604, 3256, 22704, 28, 16, 8, 198, 88, 796, 47764, 17816, 1040, 3874, 6604, 20520, 198, 198, 55, 62, 27432, 11, 55, 62, 9288, 11, 88, 62, 27432, 11, 88, 62, 9288, 796, 4512, 62, 9288, 62, 35312, 7, 55, 11, 88, 11, 9288, 62, 7857, 28, 15, 13, 17, 11, 25120, 62, 5219, 28, 21, 8, 198, 2, 6127, 5645, 994, 628, 198, 2, 220, 26171, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 2, 6127, 4940, 994, 198, 489, 83, 13, 3524, 29487, 7, 55, 62, 27432, 17816, 65, 11632, 6, 12962, 198, 80, 62, 8367, 796, 1395, 62, 27432, 17816, 65, 11632, 6, 4083, 40972, 576, 7, 15, 13, 3865, 8, 198, 88, 62, 27432, 13, 8367, 62, 9127, 82, 3419, 198, 2, 6127, 5645, 994, 628, 198, 2, 220, 26171, 198, 2, 6127, 4940, 994, 198, 49501, 796, 1395, 62, 27432, 13, 10215, 81, 3419, 198, 4798, 7, 49501, 8, 198, 198, 82, 5907, 13, 24874, 29487, 7, 55, 62, 27432, 8, 198, 2, 6127, 5645, 994, 628, 198, 2, 220, 26171, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 2, 6127, 4940, 994, 198, 4033, 82, 796, 37250, 17197, 41707, 8044, 41707, 36996, 41707, 5796, 11020, 20520, 198, 5647, 11, 34197, 796, 458, 83, 13, 7266, 489, 1747, 7, 17, 11, 362, 11, 2336, 7857, 16193, 940, 11, 940, 4008, 198, 198, 1640, 1312, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 34197, 58, 72, 11, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 951, 796, 951, 82, 58, 72, 9, 17, 10, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3013, 82, 13, 9127, 29487, 7, 87, 28, 55, 62, 27432, 58, 4033, 4357, 71, 518, 28, 88, 62, 27432, 11, 897, 28, 897, 8, 198, 2, 6127, 5645, 994, 628, 198, 2, 220, 26171, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 24846, 18243, 33538, 11, 14534, 1143, 18243, 33538, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 9922, 62, 26675, 628, 198, 2, 10007, 329, 10706, 2989, 198, 17143, 7307, 796, 1391, 6, 34, 10354, 58, 15, 13, 16, 11, 15, 13, 20, 11, 16, 11, 20, 48999, 198, 198, 2, 6127, 4940, 994, 198, 14050, 796, 5972, 2569, 8081, 2234, 3419, 198, 25928, 796, 24846, 18243, 33538, 7, 14050, 11, 17143, 7307, 8, 198, 25928, 13, 11147, 7, 55, 62, 27432, 11, 88, 62, 27432, 8, 198, 88, 62, 28764, 796, 10706, 13, 79, 17407, 7, 55, 62, 9288, 8, 198, 198, 4134, 23843, 796, 9922, 62, 26675, 7, 88, 62, 9288, 11, 88, 62, 28764, 8, 198, 4798, 7, 4134, 23843, 8, 198, 2, 6127, 5645, 994, 628, 198, 2, 220, 26171, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 686, 66, 62, 14272, 62, 26675, 11, 257, 1229, 198, 6738, 1341, 35720, 1330, 20731, 198, 198, 2, 6127, 4940, 994, 198, 2, 88, 62, 1416, 2850, 796, 10706, 13, 12501, 1166, 62, 8818, 7, 55, 62, 9288, 8, 198, 26675, 796, 686, 66, 62, 14272, 62, 26675, 7, 88, 62, 28764, 11, 88, 62, 9288, 8, 198, 88, 62, 28764, 62, 1676, 7012, 796, 10706, 13, 79, 17407, 62, 1676, 7012, 7, 55, 62, 9288, 38381, 45299, 16, 60, 198, 69, 1050, 11, 256, 1050, 11, 62, 796, 20731, 13, 12204, 62, 22019, 303, 7, 88, 62, 9288, 11, 88, 62, 28764, 8, 198, 198, 12204, 62, 14272, 796, 686, 66, 62, 14272, 62, 26675, 7, 88, 62, 9288, 11, 331, 62, 28764, 62, 1676, 7012, 8, 198, 14272, 796, 257, 1229, 7, 69, 1050, 11, 83, 1050, 8, 198, 489, 83, 13, 29487, 7, 69, 1050, 11, 83, 1050, 11, 18242, 11639, 11187, 2569, 2746, 11, 257, 1229, 11639, 10, 2536, 7, 14272, 4008, 198, 2, 6127, 5645, 994, 628, 198 ]
2.560626
767
# Definition for a binary tree node. # Do in order traversal. The in order traversal is monotonically increase # O(1) Space, can not use iterative method or recursive solution, both use space # class Solution(object): # first = TreeNode(None) # second = TreeNode(None) # prev = TreeNode(None) # def recoverTree(self, root): # """ # :type root: TreeNode # :rtype: None Do not return anything, modify root in-place instead. # """ # # Recursion Method # if root is None: # return # def helper(self, curr): # if curr is None: # return # helper(curr.left) # if prev is not None and prev.val >= curr.val: # # have mistake first is the prev node, second is the curr node # Morris Traversal O(1) solution
[ 2, 30396, 329, 257, 13934, 5509, 10139, 13, 198, 198, 2, 2141, 287, 1502, 33038, 282, 13, 383, 287, 1502, 33038, 282, 318, 937, 18970, 1146, 2620, 198, 2, 440, 7, 16, 8, 4687, 11, 460, 407, 779, 11629, 876, 2446, 393, 45115, 4610, 11, 1111, 779, 2272, 198, 198, 2, 1398, 28186, 7, 15252, 2599, 198, 2, 220, 220, 220, 220, 717, 796, 12200, 19667, 7, 14202, 8, 198, 2, 220, 220, 220, 220, 1218, 796, 12200, 19667, 7, 14202, 8, 198, 2, 220, 220, 220, 220, 8654, 796, 12200, 19667, 7, 14202, 8, 198, 198, 2, 220, 220, 220, 220, 825, 8551, 27660, 7, 944, 11, 6808, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 6808, 25, 12200, 19667, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 6045, 2141, 407, 1441, 1997, 11, 13096, 6808, 287, 12, 5372, 2427, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3311, 24197, 11789, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6808, 318, 6045, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2, 220, 220, 220, 220, 825, 31904, 7, 944, 11, 1090, 81, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 81, 318, 6045, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 31904, 7, 22019, 81, 13, 9464, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8654, 318, 407, 6045, 290, 8654, 13, 2100, 18189, 1090, 81, 13, 2100, 25, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 423, 7457, 717, 318, 262, 8654, 10139, 11, 1218, 318, 262, 1090, 81, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2, 14433, 4759, 690, 282, 440, 7, 16, 8, 4610, 198, 220, 220, 220, 220, 198 ]
2.269129
379
import os from utils.Template_directory import * from utils.utilities import * import sys sys.path.append('../') from core.Renderer.FileRenderer import Renderer layer1 = [Experiment,Production] layer1_names = ['Experiment','Production'] Files = File
[ 11748, 28686, 198, 6738, 3384, 4487, 13, 30800, 62, 34945, 1330, 1635, 198, 6738, 3384, 4487, 13, 315, 2410, 1330, 1635, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 11537, 198, 6738, 4755, 13, 49, 437, 11882, 13, 8979, 49, 437, 11882, 1330, 28703, 11882, 198, 29289, 16, 796, 685, 20468, 3681, 11, 35027, 60, 198, 29289, 16, 62, 14933, 796, 37250, 20468, 3681, 41707, 35027, 20520, 198, 25876, 796, 9220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.988636
88
# problem7.py # By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. # What is the 10 001st prime number? i = 1 z = 1 while i < 10002: z += 1 if z > 1: for j in range(2, z): if z % j == 0: break else: i += 1 print(z)
[ 2, 1917, 22, 13, 9078, 198, 198, 2, 2750, 13487, 262, 717, 2237, 6994, 3146, 25, 362, 11, 513, 11, 642, 11, 767, 11, 1367, 11, 290, 1511, 11, 356, 460, 766, 326, 262, 718, 400, 6994, 318, 1511, 13, 198, 2, 1867, 318, 262, 838, 3571, 16, 301, 6994, 1271, 30, 198, 198, 72, 796, 352, 198, 89, 796, 352, 198, 4514, 1312, 1279, 8576, 17, 25, 198, 220, 220, 220, 1976, 15853, 352, 198, 220, 220, 220, 611, 1976, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 17, 11, 1976, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1976, 4064, 474, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 198, 4798, 7, 89, 8, 198 ]
1.964497
169
import re import os if __name__ == '__main__': # Check if file with name Cache.txt exists if os.path.isfile('Cache.txt'): # If file exists, delete it os.remove('Cache.txt') # Create file with name Cache.txt name = input('Enter your name (Enter -1 to skip): ') while not name: name = input('Enter your name (Enter -1 to skip): ') if name == '-1': name = '' skip_column = input('Enter column number to skip in the excel file (Enter -1 to skip): ') while (not skip_column or not skip_column.isdigit()) and skip_column != '-1': if not skip_column.isdigit(): print("Invalid input :(\nEnter an integer") skip_column = "" skip_column = input( 'Enter column number to skip in the excel file (Enter -1 to skip): ') if skip_column == '-1': skip_column = '' skip_row = input('Enter row number to skip in the excel file (Enter -1 to skip): ') while (not skip_row or not skip_row.isdigit()) and skip_row != '-1': if not skip_row.isdigit(): print("Invalid input :(\nEnter an integer") skip_row = "" skip_row = input('Enter row number to skip in the excel file (Enter -1 to skip): ') if skip_row == '-1': skip_row = '' # Write name, skip_column and skip_row to Cache.txt color = input( 'Enter hex value of the color with which you want to color the cell (Enter -1 to skip): ') while not isValidHexaCode(color) and color != '-1': color = input( 'Enter hex value of the color with which you want to color the cell (Enter -1 to skip): ') print("Choose how do you want to extract names from the name list:") print("Enter 1 to get names from Excel file", "Enter 2 to get names from txt file", "Enter -1 to skip", sep='\n') file_input = input("Enter your choice: ") while file_input not in ['1', '2', '-1']: print("Enter 1 to get names from Excel file", "Enter 2 to get names from txt file", "Enter -1 to skip", sep='\n') file_input = input("Enter your choice: ") if file_input == '-1': file_input = '' if color == '-1': color = '' with open('Cache.txt', 'w') as f: f.write(name + "|Name" + '\n' + skip_column + "|No. of columns to skip" + '\n' + skip_row + '|No. of rows to skip\n'+color+'|Cell Color\n' + file_input + '|File Input')
[ 11748, 302, 198, 11748, 28686, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 6822, 611, 2393, 351, 1438, 34088, 13, 14116, 7160, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 10786, 30562, 13, 14116, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 2393, 7160, 11, 12233, 340, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 10786, 30562, 13, 14116, 11537, 628, 220, 220, 220, 1303, 13610, 2393, 351, 1438, 34088, 13, 14116, 198, 220, 220, 220, 1438, 796, 5128, 10786, 17469, 534, 1438, 357, 17469, 532, 16, 284, 14267, 2599, 705, 8, 198, 220, 220, 220, 981, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 5128, 10786, 17469, 534, 1438, 357, 17469, 532, 16, 284, 14267, 2599, 705, 8, 198, 220, 220, 220, 611, 1438, 6624, 705, 12, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 10148, 198, 220, 220, 220, 14267, 62, 28665, 796, 5128, 10786, 17469, 5721, 1271, 284, 14267, 287, 262, 27336, 2393, 357, 17469, 532, 16, 284, 14267, 2599, 705, 8, 198, 220, 220, 220, 981, 357, 1662, 14267, 62, 28665, 393, 407, 14267, 62, 28665, 13, 9409, 328, 270, 28955, 290, 14267, 62, 28665, 14512, 705, 12, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 14267, 62, 28665, 13, 9409, 328, 270, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 44651, 5128, 36147, 59, 77, 17469, 281, 18253, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 28665, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 28665, 796, 5128, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17469, 5721, 1271, 284, 14267, 287, 262, 27336, 2393, 357, 17469, 532, 16, 284, 14267, 2599, 705, 8, 198, 220, 220, 220, 611, 14267, 62, 28665, 6624, 705, 12, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 28665, 796, 10148, 198, 220, 220, 220, 14267, 62, 808, 796, 5128, 10786, 17469, 5752, 1271, 284, 14267, 287, 262, 27336, 2393, 357, 17469, 532, 16, 284, 14267, 2599, 705, 8, 198, 220, 220, 220, 981, 357, 1662, 14267, 62, 808, 393, 407, 14267, 62, 808, 13, 9409, 328, 270, 28955, 290, 14267, 62, 808, 14512, 705, 12, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 14267, 62, 808, 13, 9409, 328, 270, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 44651, 5128, 36147, 59, 77, 17469, 281, 18253, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 808, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 808, 796, 5128, 10786, 17469, 5752, 1271, 284, 14267, 287, 262, 27336, 2393, 357, 17469, 532, 16, 284, 14267, 2599, 705, 8, 198, 220, 220, 220, 611, 14267, 62, 808, 6624, 705, 12, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 808, 796, 10148, 198, 220, 220, 220, 1303, 19430, 1438, 11, 14267, 62, 28665, 290, 14267, 62, 808, 284, 34088, 13, 14116, 198, 220, 220, 220, 3124, 796, 5128, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17469, 17910, 1988, 286, 262, 3124, 351, 543, 345, 765, 284, 3124, 262, 2685, 357, 17469, 532, 16, 284, 14267, 2599, 705, 8, 198, 220, 220, 220, 981, 407, 318, 47139, 39, 1069, 64, 10669, 7, 8043, 8, 290, 3124, 14512, 705, 12, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 5128, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17469, 17910, 1988, 286, 262, 3124, 351, 543, 345, 765, 284, 3124, 262, 2685, 357, 17469, 532, 16, 284, 14267, 2599, 705, 8, 198, 220, 220, 220, 3601, 7203, 31851, 703, 466, 345, 765, 284, 7925, 3891, 422, 262, 1438, 1351, 25, 4943, 198, 220, 220, 220, 3601, 7203, 17469, 352, 284, 651, 3891, 422, 24134, 2393, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17469, 362, 284, 651, 3891, 422, 256, 742, 2393, 1600, 366, 17469, 532, 16, 284, 14267, 1600, 41767, 11639, 59, 77, 11537, 198, 220, 220, 220, 2393, 62, 15414, 796, 5128, 7203, 17469, 534, 3572, 25, 366, 8, 198, 220, 220, 220, 981, 2393, 62, 15414, 407, 287, 37250, 16, 3256, 705, 17, 3256, 705, 12, 16, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 17469, 352, 284, 651, 3891, 422, 24134, 2393, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17469, 362, 284, 651, 3891, 422, 256, 742, 2393, 1600, 366, 17469, 532, 16, 284, 14267, 1600, 41767, 11639, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 15414, 796, 5128, 7203, 17469, 534, 3572, 25, 366, 8, 198, 220, 220, 220, 611, 2393, 62, 15414, 6624, 705, 12, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 15414, 796, 10148, 198, 220, 220, 220, 611, 3124, 6624, 705, 12, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 10148, 198, 220, 220, 220, 351, 1280, 10786, 30562, 13, 14116, 3256, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 3672, 1343, 366, 91, 5376, 1, 1343, 705, 59, 77, 6, 1343, 14267, 62, 28665, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 91, 2949, 13, 286, 15180, 284, 14267, 1, 1343, 705, 59, 77, 6, 1343, 14267, 62, 808, 1343, 705, 91, 2949, 13, 286, 15274, 284, 14267, 59, 77, 6, 10, 8043, 10, 6, 91, 28780, 5315, 59, 77, 6, 1343, 2393, 62, 15414, 1343, 705, 91, 8979, 23412, 11537, 198 ]
2.466332
995
#================================================# # vector_scalar.py # based on: gsn_vec_scal_1.ncl, # gsn_vec_scal_2.ncl, # gsn_vec_scal_3.ncl #================================================# from pathlib import Path import numpy as np import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs #=================================================# # open file and read in data #=================================================# data_location = Path("/Users/brianpm/Documents/www.ncl.ucar.edu/Applications/Data/cdf/") data_file = data_location / "uvt.nc" f1 = xr.open_dataset(data_file) u = f1['U'][0,0,:,:] # read in example data [2D only here] v = f1['V'][0,0,:,:] speed = (u**2 + v**2)**0.5 #=================================================# # PLOT 1 - Vector field colored by a scalar. #=================================================# outfile_ext = "png" outfilename = "gsn_vec_scal" wks, ax = plt.subplots() plot = ax.quiver(u,v,speed) # you can change the relative size of the arrows # with the scale kwarg, but it requires quite # a bit of tuning. # plot = ax.quiver(u,v,speed, scale=350) # you can still concatenate strings with +: wks.savefig("/Users/brianpm/Desktop/"+outfilename+"."+outfile_ext) #=================================================# # PLOT 2 - Contour plot with vectors on top #=================================================# wks2, ax2 = plt.subplots() plot2 = ax2.contourf(speed[10:30,20:40]) # contour the variable plotV = ax2.quiver(u[10:30, 20:40], v[10:30, 20:40]) wks2.savefig("/Users/brianpm/Desktop/"+outfilename+"2."+outfile_ext) #=================================================# # Plot 3 - Put it on a map #=================================================# wks3, ax3 = plt.subplots(subplot_kw={"projection":ccrs.PlateCarree()}) lon = f1['lon'] lat = f1['lat'] lons, lats = np.meshgrid(lon, lat) plot3 = ax3.quiver(lons, lats, u, v, speed, transform=ccrs.PlateCarree()) ax3.set_title("Basic Vector/Scalar/Map Plot") ax3.set_extent([lon.min(), lon.max(), lat.min(), lat.max()]) ax3.coastlines() ax3.set_xticks(np.arange(-180, 180, 30)) ax3.set_yticks(np.arange(-90, 90, 30)) ax3.grid() wks3.savefig("/Users/brianpm/Desktop/"+outfilename+"3."+outfile_ext)
[ 2, 10052, 4770, 2, 198, 2, 220, 15879, 62, 1416, 282, 283, 13, 9078, 198, 2, 220, 1912, 319, 25, 308, 16184, 62, 35138, 62, 1416, 282, 62, 16, 13, 77, 565, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 16184, 62, 35138, 62, 1416, 282, 62, 17, 13, 77, 565, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 16184, 62, 35138, 62, 1416, 282, 62, 18, 13, 77, 565, 198, 2, 10052, 4770, 2, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2124, 18747, 355, 2124, 81, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 6383, 11081, 13, 66, 3808, 355, 36624, 3808, 198, 2, 10052, 4770, 46249, 198, 2, 1280, 2393, 290, 1100, 287, 1366, 198, 2, 10052, 4770, 46249, 198, 7890, 62, 24886, 796, 10644, 7203, 14, 14490, 14, 65, 4484, 4426, 14, 38354, 14, 2503, 13, 77, 565, 13, 1229, 283, 13, 15532, 14, 41995, 14, 6601, 14, 66, 7568, 14, 4943, 198, 7890, 62, 7753, 796, 1366, 62, 24886, 1220, 366, 14795, 83, 13, 10782, 1, 198, 198, 69, 16, 796, 2124, 81, 13, 9654, 62, 19608, 292, 316, 7, 7890, 62, 7753, 8, 198, 84, 796, 277, 16, 17816, 52, 6, 7131, 15, 11, 15, 11, 45299, 47715, 220, 220, 220, 1303, 1100, 287, 1672, 1366, 685, 17, 35, 691, 994, 60, 198, 85, 796, 277, 16, 17816, 53, 6, 7131, 15, 11, 15, 11, 45299, 47715, 198, 12287, 796, 357, 84, 1174, 17, 1343, 410, 1174, 17, 8, 1174, 15, 13, 20, 198, 2, 10052, 4770, 46249, 198, 2, 9297, 2394, 352, 532, 20650, 2214, 16396, 416, 257, 16578, 283, 13, 198, 2, 10052, 4770, 46249, 198, 448, 7753, 62, 2302, 796, 366, 11134, 1, 198, 448, 34345, 796, 366, 14542, 77, 62, 35138, 62, 1416, 282, 1, 198, 86, 591, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 29487, 796, 7877, 13, 421, 1428, 7, 84, 11, 85, 11, 12287, 8, 198, 198, 2, 345, 460, 1487, 262, 3585, 2546, 286, 262, 20507, 198, 2, 351, 262, 5046, 479, 86, 853, 11, 475, 340, 4433, 2407, 198, 2, 257, 1643, 286, 24549, 13, 198, 2, 7110, 796, 7877, 13, 421, 1428, 7, 84, 11, 85, 11, 12287, 11, 5046, 28, 14877, 8, 198, 198, 2, 345, 460, 991, 1673, 36686, 378, 13042, 351, 1343, 25, 198, 86, 591, 13, 21928, 5647, 7203, 14, 14490, 14, 65, 4484, 4426, 14, 36881, 30487, 10, 448, 34345, 10, 1, 526, 10, 448, 7753, 62, 2302, 8, 198, 198, 2, 10052, 4770, 46249, 198, 2, 9297, 2394, 362, 220, 532, 220, 2345, 454, 7110, 351, 30104, 319, 1353, 198, 2, 10052, 4770, 46249, 198, 86, 591, 17, 11, 7877, 17, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 29487, 17, 796, 7877, 17, 13, 3642, 454, 69, 7, 12287, 58, 940, 25, 1270, 11, 1238, 25, 1821, 12962, 220, 220, 1303, 542, 454, 262, 7885, 198, 29487, 53, 796, 7877, 17, 13, 421, 1428, 7, 84, 58, 940, 25, 1270, 11, 1160, 25, 1821, 4357, 410, 58, 940, 25, 1270, 11, 1160, 25, 1821, 12962, 198, 86, 591, 17, 13, 21928, 5647, 7203, 14, 14490, 14, 65, 4484, 4426, 14, 36881, 30487, 10, 448, 34345, 10, 1, 17, 526, 10, 448, 7753, 62, 2302, 8, 198, 2, 10052, 4770, 46249, 198, 2, 28114, 513, 220, 532, 220, 5930, 340, 319, 257, 3975, 198, 2, 10052, 4770, 46249, 198, 86, 591, 18, 11, 7877, 18, 796, 458, 83, 13, 7266, 489, 1747, 7, 7266, 29487, 62, 46265, 28, 4895, 16302, 295, 1298, 535, 3808, 13, 3646, 378, 9914, 631, 3419, 30072, 198, 14995, 796, 277, 16, 17816, 14995, 20520, 198, 15460, 796, 277, 16, 17816, 15460, 20520, 198, 75, 684, 11, 300, 1381, 796, 45941, 13, 76, 5069, 25928, 7, 14995, 11, 3042, 8, 198, 29487, 18, 796, 7877, 18, 13, 421, 1428, 7, 75, 684, 11, 300, 1381, 11, 334, 11, 410, 11, 2866, 11, 6121, 28, 535, 3808, 13, 3646, 378, 9914, 631, 28955, 198, 897, 18, 13, 2617, 62, 7839, 7203, 26416, 20650, 14, 3351, 282, 283, 14, 13912, 28114, 4943, 198, 897, 18, 13, 2617, 62, 2302, 298, 26933, 14995, 13, 1084, 22784, 300, 261, 13, 9806, 22784, 3042, 13, 1084, 22784, 3042, 13, 9806, 3419, 12962, 198, 897, 18, 13, 1073, 459, 6615, 3419, 198, 897, 18, 13, 2617, 62, 742, 3378, 7, 37659, 13, 283, 858, 32590, 15259, 11, 11546, 11, 1542, 4008, 198, 897, 18, 13, 2617, 62, 20760, 3378, 7, 37659, 13, 283, 858, 32590, 3829, 11, 4101, 11, 1542, 4008, 198, 897, 18, 13, 25928, 3419, 198, 86, 591, 18, 13, 21928, 5647, 7203, 14, 14490, 14, 65, 4484, 4426, 14, 36881, 30487, 10, 448, 34345, 10, 1, 18, 526, 10, 448, 7753, 62, 2302, 8, 198 ]
2.761614
818
# -*- encoding: utf-8 -*- ### # Copyright 2019 Joël Perras <[email protected]> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ### ### # Prevent commands from being mistakenly printed to buffers instead of being # executed due to leading spaces or tabs. # # Upon hitting enter with an input that has leading spaces before a slash e.g. # ` /nick vulpine`, the input will be halted and a message will be printed in # the core weechat buffer. # # There are currently no commands or settings. Simply install and activate this # script and you're good to go. ### import re import weechat SCRIPT_NAME = "command_cop" SCRIPT_AUTHOR = "Joël Perras <[email protected]>" SCRIPT_VERSION = "0.1" SCRIPT_LICENSE = "MIT" SCRIPT_DESC = "Prevent entering of leading spaces before /command." def command_run_input(data, buffer, command): """ Function called when a command "/input xxxx" is run.""" if command == "/input return": # As in enter was pressed. # Get input contents. input_s = weechat.buffer_get_string(buffer, 'input') # Match leading spaces before commands (slashes) and spaces just after a # command slash. matches = re.match(r'(?:\s+/|/\s+)(.*)', input_s) if matches is not None: # Alert in weechat buffer. weechat.prnt("", "%sLeading spaces detected in command!" % weechat.color('red')) return weechat.WEECHAT_RC_OK_EAT return weechat.WEECHAT_RC_OK if __name__ == '__main__': if weechat.register(SCRIPT_NAME, SCRIPT_AUTHOR, SCRIPT_VERSION, SCRIPT_LICENSE, SCRIPT_DESC, '', ''): weechat.hook_command_run('/input return', 'command_run_input', '')
[ 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 21017, 198, 2, 15069, 13130, 5302, 26689, 75, 2448, 8847, 1279, 7639, 417, 31, 1008, 1082, 7246, 13, 785, 29, 198, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 21017, 198, 198, 21017, 198, 2, 31572, 9729, 422, 852, 33168, 10398, 284, 39334, 2427, 286, 852, 198, 2, 10945, 2233, 284, 3756, 9029, 393, 22524, 13, 198, 2, 198, 2, 220, 220, 14438, 9008, 3802, 351, 281, 5128, 326, 468, 3756, 9029, 878, 257, 24632, 304, 13, 70, 13, 198, 2, 220, 220, 4600, 220, 1220, 17172, 24477, 23908, 47671, 262, 5128, 481, 307, 27771, 290, 257, 3275, 481, 307, 10398, 287, 198, 2, 220, 220, 262, 4755, 356, 3055, 265, 11876, 13, 198, 2, 198, 2, 220, 220, 1318, 389, 3058, 645, 9729, 393, 6460, 13, 17973, 2721, 290, 15155, 428, 198, 2, 220, 220, 4226, 290, 345, 821, 922, 284, 467, 13, 198, 21017, 198, 198, 11748, 302, 198, 11748, 356, 3055, 265, 198, 198, 6173, 46023, 62, 20608, 220, 220, 220, 796, 366, 21812, 62, 22163, 1, 198, 6173, 46023, 62, 32, 24318, 1581, 220, 796, 366, 9908, 26689, 75, 2448, 8847, 1279, 7639, 417, 31, 1008, 1082, 7246, 13, 785, 24618, 198, 6173, 46023, 62, 43717, 796, 366, 15, 13, 16, 1, 198, 6173, 46023, 62, 43, 2149, 24290, 796, 366, 36393, 1, 198, 6173, 46023, 62, 30910, 34, 220, 220, 220, 796, 366, 6719, 1151, 8218, 286, 3756, 9029, 878, 1220, 21812, 526, 628, 198, 4299, 3141, 62, 5143, 62, 15414, 7, 7890, 11, 11876, 11, 3141, 2599, 198, 220, 220, 220, 37227, 15553, 1444, 618, 257, 3141, 12813, 15414, 2124, 31811, 1, 318, 1057, 526, 15931, 628, 220, 220, 220, 611, 3141, 6624, 12813, 15414, 1441, 1298, 1303, 1081, 287, 3802, 373, 12070, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 5128, 10154, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 82, 796, 356, 3055, 265, 13, 22252, 62, 1136, 62, 8841, 7, 22252, 11, 705, 15414, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13225, 3756, 9029, 878, 9729, 357, 6649, 7465, 8, 290, 9029, 655, 706, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3141, 24632, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7466, 796, 302, 13, 15699, 7, 81, 6, 7, 30, 7479, 82, 10, 14, 91, 14, 59, 82, 10, 5769, 15885, 8, 3256, 5128, 62, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7466, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23276, 287, 356, 3055, 265, 11876, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 356, 3055, 265, 13, 1050, 429, 7203, 1600, 36521, 82, 20451, 278, 9029, 12326, 287, 3141, 2474, 4064, 356, 3055, 265, 13, 8043, 10786, 445, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 356, 3055, 265, 13, 8845, 25994, 1404, 62, 7397, 62, 11380, 62, 36, 1404, 628, 220, 220, 220, 1441, 356, 3055, 265, 13, 8845, 25994, 1404, 62, 7397, 62, 11380, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 611, 356, 3055, 265, 13, 30238, 7, 6173, 46023, 62, 20608, 11, 6374, 46023, 62, 32, 24318, 1581, 11, 6374, 46023, 62, 43717, 11, 6374, 46023, 62, 43, 2149, 24290, 11, 6374, 46023, 62, 30910, 34, 11, 705, 3256, 10148, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 356, 3055, 265, 13, 25480, 62, 21812, 62, 5143, 10786, 14, 15414, 1441, 3256, 705, 21812, 62, 5143, 62, 15414, 3256, 10148, 8, 198 ]
3.054484
881
from redis import StrictRedis import logging # 准备配置类 class Config(object): """app配置类""" # DEBUG = True # 配置MySQL:指定数据库位置 SQLALCHEMY_DATABASE_URI = 'mysql://root:mysql@[email protected]:3306/information_new' # 禁用追踪mysql:因为mysql的性能差,如果再去追踪mysql的所有的修改,会再次浪费性能 SQLALCHEMY_TRACK_MODIFICATIONS = False # 配置redis REDIS_HOST = '127.0.0.1' REDIS_PORT = 6379 # 准备秘钥 SECRET_KEY = 'ajkhdflhslfjlfh' # 配置Session:将flask的session数据引导到redis SESSION_TYPE = 'redis' # 存储到redis # 配置redis的位置 SESSION_REDIS=StrictRedis(host=REDIS_HOST,port=REDIS_PORT) # 使用签名将session的明文转成密文 SESSION_USE_SIGNER = True # 设置session有效期:一天,以秒为单位 PERMANENT_SESSION_LIFETIME = 60*60*24 class DevelopmentConfig(Config): """开发环境配置类 如果开发环境的配置和父类一致,可以直接pass """ DEBUG = True # 开发环境的日志等级为调试模式 LOGGING_LEVEL = logging.DEBUG class ProductionConfig(Config): """生产环境配置类 实际开发中,需要额外配置生产环境下的数据库和其他的信息 """ DEBUG = False # 生产环境的日志等级为调试模式 LOGGING_LEVEL = logging.WARNING # 工厂方法需要的原材料 configs = { 'dev':DevelopmentConfig, 'prod':ProductionConfig }
[ 6738, 2266, 271, 1330, 520, 2012, 7738, 271, 198, 11748, 18931, 198, 198, 2, 10263, 229, 228, 13783, 229, 165, 227, 235, 163, 121, 106, 163, 109, 119, 198, 4871, 17056, 7, 15252, 2599, 198, 220, 220, 220, 37227, 1324, 165, 227, 235, 163, 121, 106, 163, 109, 119, 37811, 198, 220, 220, 220, 1303, 16959, 796, 6407, 628, 220, 220, 220, 1303, 16268, 227, 235, 163, 121, 106, 3666, 17861, 25, 162, 234, 229, 22522, 248, 46763, 108, 162, 235, 106, 41753, 241, 19526, 235, 163, 121, 106, 198, 220, 220, 220, 16363, 1847, 3398, 3620, 56, 62, 35, 1404, 6242, 11159, 62, 47269, 796, 705, 28744, 13976, 1378, 15763, 25, 28744, 13976, 31, 28744, 13976, 31, 16799, 13, 15, 13, 15, 13, 16, 25, 18, 20548, 14, 17018, 62, 3605, 6, 198, 220, 220, 220, 1303, 13328, 99, 223, 18796, 101, 164, 4204, 164, 116, 103, 28744, 13976, 25, 32368, 254, 10310, 118, 28744, 13976, 21410, 45250, 100, 47797, 121, 32432, 106, 171, 120, 234, 36685, 224, 162, 252, 250, 37863, 235, 43889, 119, 164, 4204, 164, 116, 103, 28744, 13976, 21410, 33699, 222, 17312, 231, 21410, 46479, 106, 162, 242, 117, 171, 120, 234, 27670, 248, 37863, 235, 162, 105, 94, 38184, 103, 164, 112, 117, 45250, 100, 47797, 121, 198, 220, 220, 220, 16363, 1847, 3398, 3620, 56, 62, 5446, 8120, 62, 33365, 30643, 18421, 796, 10352, 628, 220, 220, 220, 1303, 16268, 227, 235, 163, 121, 106, 445, 271, 198, 220, 220, 220, 23848, 1797, 62, 39, 10892, 796, 705, 16799, 13, 15, 13, 15, 13, 16, 6, 198, 220, 220, 220, 23848, 1797, 62, 15490, 796, 718, 29088, 628, 220, 220, 220, 1303, 10263, 229, 228, 13783, 229, 163, 100, 246, 165, 240, 98, 198, 220, 220, 220, 10729, 26087, 62, 20373, 796, 705, 1228, 14636, 67, 2704, 11994, 1652, 73, 1652, 71, 6, 628, 220, 220, 220, 1303, 16268, 227, 235, 163, 121, 106, 36044, 25, 49546, 2704, 2093, 21410, 29891, 46763, 108, 162, 235, 106, 28156, 243, 43380, 120, 26344, 108, 445, 271, 198, 220, 220, 220, 311, 47621, 62, 25216, 796, 705, 445, 271, 6, 220, 1303, 10263, 255, 246, 43636, 101, 26344, 108, 445, 271, 198, 220, 220, 220, 1303, 16268, 227, 235, 163, 121, 106, 445, 271, 21410, 19526, 235, 163, 121, 106, 198, 220, 220, 220, 311, 47621, 62, 22083, 1797, 28, 1273, 2012, 7738, 271, 7, 4774, 28, 22083, 1797, 62, 39, 10892, 11, 634, 28, 22083, 1797, 62, 15490, 8, 198, 220, 220, 220, 1303, 220, 45635, 18796, 101, 163, 255, 122, 28938, 235, 49546, 29891, 21410, 23626, 236, 23877, 229, 164, 121, 105, 22755, 238, 43380, 228, 23877, 229, 198, 220, 220, 220, 311, 47621, 62, 19108, 62, 46224, 1137, 796, 6407, 198, 220, 220, 220, 1303, 5525, 106, 122, 163, 121, 106, 29891, 17312, 231, 46763, 230, 17312, 253, 171, 120, 248, 31660, 25465, 171, 120, 234, 20015, 98, 163, 100, 240, 10310, 118, 39355, 243, 19526, 235, 198, 220, 220, 220, 19878, 10725, 3525, 62, 50, 47621, 62, 43, 5064, 2767, 12789, 796, 3126, 9, 1899, 9, 1731, 198, 198, 4871, 7712, 16934, 7, 16934, 2599, 198, 220, 220, 220, 37227, 28156, 222, 20998, 239, 163, 236, 107, 161, 95, 225, 165, 227, 235, 163, 121, 106, 163, 109, 119, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 99, 224, 162, 252, 250, 28156, 222, 20998, 239, 163, 236, 107, 161, 95, 225, 21410, 165, 227, 235, 163, 121, 106, 161, 240, 234, 163, 230, 114, 163, 109, 119, 31660, 164, 229, 112, 171, 120, 234, 20998, 107, 20015, 98, 33566, 112, 162, 236, 98, 6603, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 16959, 796, 6407, 628, 220, 220, 220, 1303, 10263, 120, 222, 20998, 239, 163, 236, 107, 161, 95, 225, 21410, 33768, 98, 33232, 245, 163, 255, 231, 163, 118, 100, 10310, 118, 164, 108, 225, 46237, 243, 162, 101, 94, 28156, 237, 198, 220, 220, 220, 41605, 38, 2751, 62, 2538, 18697, 796, 18931, 13, 30531, 628, 198, 4871, 19174, 16934, 7, 16934, 2599, 198, 220, 220, 220, 37227, 37955, 12859, 100, 163, 236, 107, 161, 95, 225, 165, 227, 235, 163, 121, 106, 163, 109, 119, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 106, 252, 165, 247, 227, 28156, 222, 20998, 239, 40792, 171, 120, 234, 165, 250, 222, 17358, 223, 165, 95, 251, 13783, 244, 165, 227, 235, 163, 121, 106, 37955, 12859, 100, 163, 236, 107, 161, 95, 225, 10310, 233, 21410, 46763, 108, 162, 235, 106, 41753, 241, 161, 240, 234, 17739, 114, 20015, 244, 21410, 46479, 94, 162, 223, 107, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 16959, 796, 10352, 628, 220, 220, 220, 1303, 13328, 242, 253, 12859, 100, 163, 236, 107, 161, 95, 225, 21410, 33768, 98, 33232, 245, 163, 255, 231, 163, 118, 100, 10310, 118, 164, 108, 225, 46237, 243, 162, 101, 94, 28156, 237, 198, 220, 220, 220, 41605, 38, 2751, 62, 2538, 18697, 796, 18931, 13, 31502, 198, 198, 2, 10263, 115, 98, 43889, 224, 43095, 37345, 243, 165, 250, 222, 17358, 223, 21410, 43889, 253, 30266, 238, 23877, 247, 198, 11250, 82, 796, 1391, 198, 220, 220, 220, 705, 7959, 10354, 41206, 16934, 11, 198, 220, 220, 220, 705, 1676, 67, 10354, 35027, 16934, 198, 92 ]
1.279955
893
from datetime import datetime from flask_wtf import Form from wtforms import ( BooleanField, DateTimeField, SelectField, SelectMultipleField, StringField, ) from wtforms.validators import DataRequired, URL from constants import GENRES, STATES
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 42903, 62, 86, 27110, 1330, 5178, 198, 6738, 266, 83, 23914, 1330, 357, 198, 220, 220, 220, 41146, 15878, 11, 198, 220, 220, 220, 7536, 7575, 15878, 11, 198, 220, 220, 220, 9683, 15878, 11, 198, 220, 220, 220, 9683, 31217, 15878, 11, 198, 220, 220, 220, 10903, 15878, 11, 198, 8, 198, 6738, 266, 83, 23914, 13, 12102, 2024, 1330, 6060, 37374, 11, 10289, 198, 6738, 38491, 1330, 24700, 19535, 11, 47023, 628, 628 ]
3.204819
83
import math import numpy as np """ A controller class which implements a joint feedforward controller by compensating for the desired acceleration torque and the desired gravity torque."""
[ 11748, 10688, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 37811, 317, 10444, 1398, 543, 23986, 257, 6466, 3745, 11813, 198, 36500, 416, 7144, 803, 329, 262, 10348, 20309, 26415, 290, 262, 10348, 13522, 26415, 526, 15931, 628 ]
4.923077
39
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Main logic for training the A2N model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import gc import math import os from absl import app from absl import flags from absl import logging import clueweb_text_graph import dataset import graph import losses import metrics import models import numpy as np import slim from tensorboard.plugins import projector import tensorflow as tf from tensorflow.python.training.summary_io import SummaryWriterCache import text_graph import utils FLAGS = flags.FLAGS flags.DEFINE_string("kg_file", None, "path to kg file") flags.DEFINE_string("output_dir", None, "output dir for summaries/logs") flags.DEFINE_string("dev_kg_file", None, "path to dev kg file") flags.DEFINE_string("test_kg_file", None, "path to test kg file") flags.DEFINE_string("model_path", None, "path to model if testing only") flags.DEFINE_boolean("evaluate", False, "run eval loop") flags.DEFINE_boolean("test_only", False, "if test only") flags.DEFINE_integer("global_step", None, "global_step to restore model for testing") flags.DEFINE_integer("num_epochs", 5, "number of train epochs") flags.DEFINE_integer("batchsize", 64, "batchsize for training") flags.DEFINE_integer("test_batchsize", 10, "batchsize for testing") flags.DEFINE_integer("max_neighbors", None, "maximum neighbors to use during training") flags.DEFINE_integer("max_negatives", None, "maximum number of negative entities to sample") flags.DEFINE_integer("emb_dim", 100, "dimension of entity and relation embeddings") flags.DEFINE_float("entity_encoder_dropout", 1.0, "dropout for entity embeddings") flags.DEFINE_float("relation_encoder_dropout", 1.0, "dropout for relation embeddings") flags.DEFINE_float("init_entity_encoder_dropout", 1.0, "dropout for init entity embeddings in attention") flags.DEFINE_float("attention_encoder_dropout", 1.0, "dropout for attention encoder") flags.DEFINE_boolean("use_separate_attention_emb", False, "use separate entity embeddings for computing attention") flags.DEFINE_integer("num_parallel_preprocess", 64, "number of processes to use in dataset preprocessing") flags.DEFINE_integer("prefetch_examples", 10, "number of examples to prefetch") flags.DEFINE_integer("shuffle_buffer", 50000, "buffer for shuffling training examples") flags.DEFINE_float("learning_rate", 0.001, "learning for optimizer") flags.DEFINE_float("grad_clip", None, "Clip gradient norm during training") flags.DEFINE_integer("save_every", 100, "save model every this many steps") flags.DEFINE_string("entity_names_file", None, "mapping of Freebase mid to names") flags.DEFINE_enum("model", "attention", ["distmult", "attention", "source_attention", "source_rel_attention", "source_path_attention"], "the model to use") flags.DEFINE_bool("use_tanh", False, "use tanh non-linearity on embeddings") flags.DEFINE_enum("attention_type", "bilinear", ["bilinear", "cosine", "sigmoid_bilinear", "sigmoid_avg_bilinear", "relation"], "type of attention to use for attention model") flags.DEFINE_bool("analyze", False, "analyze model") flags.DEFINE_integer("max_path_length", None, "maximum path length for path attention models") flags.DEFINE_string("text_kg_file", None, "path to text data") flags.DEFINE_integer("max_text_len", None, "max length of text") flags.DEFINE_integer("max_vocab_size", None, "max number of text words") flags.DEFINE_integer("min_word_freq", None, "min freq threshold for text words") flags.DEFINE_integer("max_text_neighbors", None, "max text neighbors") flags.DEFINE_float("text_encoder_dropout", 1.0, "dropout for text cnn") flags.DEFINE_list("text_encoder_filter_widths", ["3", "5", "7"], "filter widths for cnn") flags.DEFINE_enum("text_encoder_nonlinearity", "tanh", ["relu", "tanh"], "non-linearity to use for TextCNN") flags.DEFINE_integer("text_encoder_num_filters", 64, "num filters for cnn") flags.DEFINE_string("clueweb_sentences", None, "path to clueweb sentences (or data formatted like cw)") flags.DEFINE_string("clueweb_data", None, "path to clueweb data (or data formatted like cw)") flags.DEFINE_string("clueweb_embeddings", None, "path to clueweb embeddings (or data formatted like cw)") flags.DEFINE_integer("text_emb_dim", None, "embedding dim for clueweb text") flags.DEFINE_integer("subsample_text_rels", None, "subsample text to max this many per pair") flags.DEFINE_string("master", "local", """BNS name of the TensorFlow master to use.""") flags.DEFINE_integer("task", 0, """Task id of the replica running the training.""") flags.DEFINE_integer("ps_tasks", 0, """Number of tasks in the ps job. If 0 no ps job is used.""") flags.mark_flag_as_required("kg_file") flags.mark_flag_as_required("output_dir") def get_train_op(loss, optimizer, grad_clip=None, global_step=None): """Make a train_op apply gradients to loss using optimizer. Args: loss: the loss function to optimize optimizer: the optimizer to compute and apply gradients grad_clip: clip gradient norms by the value supplied (default dont clip) global_step: tf.placeholder for global_step Returns: train_op: the training op to run grads_and_vars: the gradients and variables for debugging var_names: the variable names for debugging capped_grads_and_vars: for debugging """ variables = tf.trainable_variables() grads_and_vars = optimizer.compute_gradients(loss, variables) var_names = [v.name for v in variables] logging.info("Trainable variables:") for var in var_names: logging.info("\t %s", var) logging.debug(grads_and_vars) grad_var_norms = [(tf.global_norm([gv[1]]), tf.global_norm([gv[0]])) for gv in grads_and_vars] if grad_clip: capped_grads_and_vars = [(tf.clip_by_norm(gv[0], grad_clip), gv[1]) for gv in grads_and_vars] else: capped_grads_and_vars = grads_and_vars # norms of gradients for debugging # grad_norms = [tf.sqrt(tf.reduce_sum(tf.square(grad))) # for grad, _ in grads_and_vars] train_op = optimizer.apply_gradients(capped_grads_and_vars, global_step=global_step) return train_op, grad_var_norms, var_names, capped_grads_and_vars def read_graph_data( kg_file, add_reverse_graph, add_inverse_edge, mode, num_epochs, batchsize, max_neighbors, max_negatives, train_graph=None, text_kg_file=None, val_graph=None ): """Read graph, create dataset and build model.""" # Read graphs and create datasets entity_vocab = relation_vocab = None if train_graph: entity_vocab = train_graph.entity_vocab relation_vocab = train_graph.relation_vocab if FLAGS.clueweb_data and mode == "train": graph_type = clueweb_text_graph.CWTextGraph text_kg_file = FLAGS.clueweb_data elif text_kg_file and mode == "train": graph_type = text_graph.TextGraph text_kg_file = FLAGS.text_kg_file else: graph_type = graph.Graph text_kg_file = None k_graph = graph_type( text_kg_file=text_kg_file, skip_new=True, max_text_len=FLAGS.max_text_len, max_vocab_size=FLAGS.max_vocab_size, min_word_freq=FLAGS.min_word_freq, kg_file=kg_file, add_reverse_graph=add_reverse_graph, add_inverse_edge=add_inverse_edge, mode=mode, entity_vocab=entity_vocab, relation_vocab=relation_vocab, max_path_length=FLAGS.max_path_length if mode == "train" else None, embeddings_file=FLAGS.clueweb_embeddings, sentence_vocab_file=FLAGS.clueweb_sentences, subsample=FLAGS.subsample_text_rels ) if FLAGS.text_kg_file: max_text_len = FLAGS.max_text_len if mode == "train": max_text_len = max_text_len or k_graph.max_text_len elif train_graph: max_text_len = max_text_len or train_graph.max_text_len else: max_text_len = None k_data = dataset.Dataset(data_graph=k_graph, train_graph=train_graph, mode=mode, num_epochs=num_epochs, batchsize=batchsize, max_neighbors=max_neighbors, max_negatives=max_negatives, model_type=FLAGS.model, max_text_len=max_text_len, max_text_neighbors=FLAGS.max_text_neighbors, val_graph=val_graph) # Create the training data iterator and return the input tensors # with tf.device("/job:worker"): k_data.create_dataset_iterator( num_parallel=FLAGS.num_parallel_preprocess, prefetch=FLAGS.prefetch_examples, shuffle_buffer=FLAGS.shuffle_buffer # , device="worker" if FLAGS.master != "local" else "cpu" ) return k_graph, k_data def create_model(train_graph, iterator): """Create model and placeholders.""" if FLAGS.clueweb_data: s, nbrs_s, text_nbrs_s, r, candidates, nbrs_candidates, labels, text_nbrs_s_emb = iterator.get_next() elif FLAGS.text_kg_file: s, nbrs_s, text_nbrs_s, r, candidates, nbrs_candidates, labels = \ iterator.get_next() else: s, nbrs_s, r, candidates, nbrs_candidates, labels = iterator.get_next() # Create the attention model, this returns candidates scores and the model # encoders in a dict for creating feed_dict for all encoders is_train_ph = tf.placeholder_with_default(True, shape=[], name="is_train_ph") if FLAGS.model == "attention": with tf.variable_scope("attention_model", reuse=False): candidate_scores, model = models.attention_kbc_model( FLAGS, train_graph, is_train_ph, (s, nbrs_s, r, candidates, nbrs_candidates) ) elif FLAGS.model == "source_attention": with tf.variable_scope("s_attention_model", reuse=False): candidate_scores, model = models.source_attention_kbc_model( FLAGS, train_graph, is_train_ph, (s, nbrs_s, r, candidates) ) elif FLAGS.model in ["source_rel_attention", "source_path_attention"]: if FLAGS.clueweb_data: input_tensors = (s, nbrs_s, text_nbrs_s, text_nbrs_s_emb, r, candidates) elif FLAGS.text_kg_file: input_tensors = (s, nbrs_s, text_nbrs_s, r, candidates) else: input_tensors = (s, nbrs_s, r, candidates) with tf.variable_scope("s_attention_model", reuse=False): candidate_scores, model = models.source_attention_kbc_model( FLAGS, train_graph, is_train_ph, input_tensors, model_type=FLAGS.model ) elif FLAGS.model == "distmult": with tf.variable_scope("distmult_model", reuse=False): candidate_scores, model = models.distmult_kbc_model( FLAGS, train_graph, is_train_ph, (s, r, candidates) ) if FLAGS.clueweb_data: inputs = (s, nbrs_s, text_nbrs_s, text_nbrs_s_emb, r, candidates, nbrs_candidates) elif FLAGS.text_kg_file: inputs = (s, nbrs_s, text_nbrs_s, r, candidates, nbrs_candidates) else: inputs = (s, nbrs_s, r, candidates, nbrs_candidates) return candidate_scores, candidates, labels, model, is_train_ph, inputs def evaluate(): """Run evaluation on dev or test data.""" add_inverse_edge = FLAGS.model in \ ["source_rel_attention", "source_path_attention"] if FLAGS.clueweb_data: train_graph = clueweb_text_graph.CWTextGraph( text_kg_file=FLAGS.clueweb_data, embeddings_file=FLAGS.clueweb_embeddings, sentence_vocab_file=FLAGS.clueweb_sentences, skip_new=True, kg_file=FLAGS.kg_file, add_reverse_graph=not add_inverse_edge, add_inverse_edge=add_inverse_edge, subsample=FLAGS.subsample_text_rels ) elif FLAGS.text_kg_file: train_graph = text_graph.TextGraph( text_kg_file=FLAGS.text_kg_file, skip_new=True, max_text_len=FLAGS.max_text_len, max_vocab_size=FLAGS.max_vocab_size, min_word_freq=FLAGS.min_word_freq, kg_file=FLAGS.kg_file, add_reverse_graph=not add_inverse_edge, add_inverse_edge=add_inverse_edge, max_path_length=FLAGS.max_path_length ) else: train_graph = graph.Graph( kg_file=FLAGS.kg_file, add_reverse_graph=not add_inverse_edge, add_inverse_edge=add_inverse_edge, max_path_length=FLAGS.max_path_length ) # train_graph, _ = read_graph_data( # kg_file=FLAGS.kg_file, # add_reverse_graph=(FLAGS.model != "source_rel_attention"), # add_inverse_edge=(FLAGS.model == "source_rel_attention"), # mode="train", num_epochs=FLAGS.num_epochs, batchsize=FLAGS.batchsize, # max_neighbors=FLAGS.max_neighbors, # max_negatives=FLAGS.max_negatives # ) val_graph = None if FLAGS.dev_kg_file: val_graph, eval_data = read_graph_data( kg_file=FLAGS.dev_kg_file, add_reverse_graph=not add_inverse_edge, add_inverse_edge=add_inverse_edge, # add_reverse_graph=False, # add_inverse_edge=False, mode="dev", num_epochs=1, batchsize=FLAGS.test_batchsize, max_neighbors=FLAGS.max_neighbors, max_negatives=FLAGS.max_negatives, train_graph=train_graph, text_kg_file=FLAGS.text_kg_file ) if FLAGS.test_kg_file: _, eval_data = read_graph_data( kg_file=FLAGS.test_kg_file, add_reverse_graph=not add_inverse_edge, add_inverse_edge=add_inverse_edge, # add_reverse_graph=False, # add_inverse_edge=False, mode="test", num_epochs=1, batchsize=FLAGS.test_batchsize, max_neighbors=FLAGS.max_neighbors, max_negatives=None, train_graph=train_graph, text_kg_file=FLAGS.text_kg_file, val_graph=val_graph ) if not FLAGS.dev_kg_file and not FLAGS.test_kg_file: raise ValueError("Evalution without a dev or test file!") iterator = eval_data.dataset.make_initializable_iterator() candidate_scores, candidates, labels, model, is_train_ph, inputs = \ create_model(train_graph, iterator) # Create eval metrics # if FLAGS.dev_kg_file: batch_rr = metrics.mrr(candidate_scores, candidates, labels) mrr, mrr_update = tf.metrics.mean(batch_rr) mrr_summary = tf.summary.scalar("MRR", mrr) all_hits, all_hits_update, all_hits_summaries = [], [], [] for k in [1, 3, 10]: batch_hits = metrics.hits_at_k(candidate_scores, candidates, labels, k=k) hits, hits_update = tf.metrics.mean(batch_hits) hits_summary = tf.summary.scalar("Hits_at_%d" % k, hits) all_hits.append(hits) all_hits_update.append(hits_update) all_hits_summaries.append(hits_summary) hits = tf.group(*all_hits) hits_update = tf.group(*all_hits_update) global_step = tf.Variable(0, name="global_step", trainable=False) current_step = tf.Variable(0, name="current_step", trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES]) incr_current_step = tf.assign_add(current_step, 1) reset_current_step = tf.assign(current_step, 0) slim.get_or_create_global_step(graph=tf.get_default_graph()) # best_hits = tf.Variable(0., trainable=False) # best_step = tf.Variable(0, trainable=False) # with tf.control_dependencies([hits]): # update_best_hits = tf.cond(tf.greater(hits, best_hits), # lambda: tf.assign(best_hits, hits), # lambda: 0.) # update_best_step = tf.cond(tf.greater(hits, best_hits), # lambda: tf.assign(best_step, global_step), # lambda: 0) # best_hits_summary = tf.summary.scalar("Best Hits@10", best_hits) # best_step_summary = tf.summary.scalar("Best Step", best_step) nexamples = eval_data.data_graph.tuple_store.shape[0] if eval_data.data_graph.add_reverse_graph: nexamples *= 2 num_batches = math.ceil(nexamples / float(FLAGS.test_batchsize)) local_init_op = tf.local_variables_initializer() if FLAGS.analyze: entity_names = utils.read_entity_name_mapping(FLAGS.entity_names_file) session = tf.Session() # summary_writer = tf.summary.FileWriter(FLAGS.output_dir, session.graph) init_op = tf.global_variables_initializer() session.run(init_op) session.run(local_init_op) saver = tf.train.Saver(tf.trainable_variables()) ckpt_path = FLAGS.model_path + "/model.ckpt-%d" % FLAGS.global_step attention_probs = model["attention_encoder"].get_from_collection( "attention_probs" ) if FLAGS.clueweb_data: s, nbrs_s, text_nbrs_s, text_nbrs_s_emb, r, candidates, _ = inputs elif FLAGS.text_kg_file: s, nbrs_s, text_nbrs_s, r, candidates, _ = inputs else: s, nbrs_s, r, candidates, _ = inputs saver.restore(session, ckpt_path) session.run(iterator.initializer) num_attention = 5 nsteps = 0 outf_correct = open(FLAGS.output_dir + "/analyze_correct.txt", "w+") outf_incorrect = open( FLAGS.output_dir + "/analyze_incorrect.txt", "w+" ) ncorrect = 0 analyze_outputs = [candidate_scores, s, nbrs_s, r, candidates, labels, attention_probs] if FLAGS.text_kg_file: analyze_outputs.append(text_nbrs_s) while True: try: analyze_vals = session.run(analyze_outputs, {is_train_ph: False}) if FLAGS.text_kg_file: cscores, se, nbrs, qr, cands, te, nbr_attention_probs, text_nbrs = \ analyze_vals else: cscores, se, nbrs, qr, cands, te, nbr_attention_probs = analyze_vals # import pdb; pdb.set_trace() pred_ids = cscores.argmax(1) for i in range(se.shape[0]): sname = train_graph.inverse_entity_vocab[se[i]] if sname in entity_names: sname = entity_names[sname] rname = train_graph.inverse_relation_vocab[qr[i]] pred_target = cands[i, pred_ids[i]] pred_name = train_graph.inverse_entity_vocab[pred_target] if pred_name in entity_names: pred_name = entity_names[pred_name] tname = train_graph.inverse_entity_vocab[te[i][0]] if tname in entity_names: tname = entity_names[tname] if te[i][0] == pred_target: outf = outf_correct ncorrect += 1 else: outf = outf_incorrect outf.write("\n(%d) %s, %s, ? \t Pred: %s \t Target: %s" % (nsteps+i+1, sname, rname, pred_name, tname)) top_nbrs_index = np.argsort(nbr_attention_probs[i, :])[::-1] outf.write("\nTop Nbrs:") for j in range(num_attention): nbr_index = top_nbrs_index[j] if nbr_index < FLAGS.max_neighbors: nbr_id = nbrs[i, nbr_index, :] nbr_name = "" for k in range(0, nbrs.shape[-1], 2): ent_name = train_graph.inverse_entity_vocab[nbr_id[k+1]] if ent_name in entity_names: ent_name = entity_names[ent_name] rel_name = train_graph.inverse_relation_vocab[nbr_id[k]] nbr_name += "(%s, %s)" % (rel_name, ent_name) else: # Text Relation text_nbr_ids = text_nbrs[i, nbr_index - FLAGS.max_neighbors, :] text_nbr_ent = text_nbr_ids[0] ent_name = train_graph.inverse_entity_vocab[text_nbr_ent] if ent_name in entity_names: ent_name = entity_names[ent_name] rel_name = train_graph.get_relation_text(text_nbr_ids[1:]) nbr_name = "(%s, %s)" % (rel_name, ent_name) outf.write("\n\t\t %s Prob: %.4f" % (nbr_name, nbr_attention_probs[i, nbr_index])) nsteps += se.shape[0] tf.logging.info("Current hits@1: %.3f", ncorrect * 1.0 / (nsteps)) except tf.errors.OutOfRangeError: break outf_correct.close() outf_incorrect.close() return if FLAGS.test_only: ckpt_path = FLAGS.model_path + "/model.ckpt-%d" % FLAGS.global_step slim.evaluation.evaluate_once( master=FLAGS.master, checkpoint_path=ckpt_path, logdir=FLAGS.output_dir, variables_to_restore=tf.trainable_variables() + [global_step], initial_op=tf.group(local_init_op, iterator.initializer), # initial_op=iterator.initializer, num_evals=num_batches, eval_op=tf.group(mrr_update, hits_update, incr_current_step), eval_op_feed_dict={is_train_ph: False}, final_op=tf.group(mrr, hits), final_op_feed_dict={is_train_ph: False}, summary_op=tf.summary.merge([mrr_summary]+ all_hits_summaries), hooks=[DataInitHook(), tf.train.LoggingTensorHook( {"mrr": mrr, "hits": hits, "step": current_step}, every_n_iter=1 )] ) else: slim.evaluation.evaluation_loop( master=FLAGS.master, checkpoint_dir=FLAGS.model_path, logdir=FLAGS.output_dir, variables_to_restore=tf.trainable_variables() + [global_step], initial_op=tf.group(local_init_op, iterator.initializer), # initial_op=iterator.initializer, num_evals=num_batches, eval_op=tf.group(mrr_update, hits_update, incr_current_step), eval_op_feed_dict={is_train_ph: False}, final_op=tf.group(mrr, hits), final_op_feed_dict={is_train_ph: False}, summary_op=tf.summary.merge([mrr_summary] + all_hits_summaries), max_number_of_evaluations=None, eval_interval_secs=60, hooks=[DataInitHook(), tf.train.LoggingTensorHook( {"mrr": mrr, "hits": hits, "step": current_step}, every_n_iter=1 )] ) def train(): """Running the main training loop with given parameters.""" if FLAGS.task == 0 and not tf.gfile.Exists(FLAGS.output_dir): tf.gfile.MakeDirs(FLAGS.output_dir) # Read train/dev/test graphs, create datasets and model add_inverse_edge = FLAGS.model in \ ["source_rel_attention", "source_path_attention"] train_graph, train_data = read_graph_data( kg_file=FLAGS.kg_file, add_reverse_graph=not add_inverse_edge, add_inverse_edge=add_inverse_edge, mode="train", num_epochs=FLAGS.num_epochs, batchsize=FLAGS.batchsize, max_neighbors=FLAGS.max_neighbors, max_negatives=FLAGS.max_negatives, text_kg_file=FLAGS.text_kg_file ) worker_device = "/job:{}".format(FLAGS.brain_job_name) with tf.device( tf.train.replica_device_setter( FLAGS.ps_tasks, worker_device=worker_device)): iterator = train_data.dataset.make_one_shot_iterator() candidate_scores, _, labels, model, is_train_ph, _ = create_model( train_graph, iterator ) # Create train loss and training op loss = losses.softmax_crossentropy(logits=candidate_scores, labels=labels) optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) global_step = tf.Variable(0, name="global_step", trainable=False) train_op = get_train_op(loss, optimizer, FLAGS.grad_clip, global_step=global_step) tf.summary.scalar("Loss", loss) run_options = tf.RunOptions(report_tensor_allocations_upon_oom=True) session_config = tf.ConfigProto(log_device_placement=True) # Create tf training session scaffold = tf.train.Scaffold(saver=tf.train.Saver(max_to_keep=1000)) # ckpt_hook = tf.train.CheckpointSaverHook( # checkpoint_dir=FLAGS.output_dir, scaffold=scaffold, # save_steps=FLAGS.save_every # ) # summary_hook = tf.train.SummarySaverHook( # save_secs=60, output_dir=FLAGS.output_dir, # summary_op=tf.summary.merge_all() # ) session = tf.train.MonitoredTrainingSession( master=FLAGS.master, is_chief=(FLAGS.task == 0), checkpoint_dir=FLAGS.output_dir, save_checkpoint_steps=FLAGS.save_every, scaffold=scaffold, save_summaries_secs=60, # hooks=[summary_hook], # chief_only_hooks=[ckpt_hook], config=session_config ) # Create embeddings visualization if FLAGS.task == 0: utils.save_embedding_vocabs(FLAGS.output_dir, train_graph, FLAGS.entity_names_file) pconfig = projector.ProjectorConfig() add_embedding_to_projector( pconfig, model["entity_encoder"].embeddings.name.split(":")[0], os.path.join(FLAGS.output_dir, "entity_vocab.tsv") ) add_embedding_to_projector( pconfig, model["relation_encoder"].embeddings.name.split(":")[0], os.path.join(FLAGS.output_dir, "relation_vocab.tsv") ) if FLAGS.text_kg_file: word_embeddings = model["text_encoder"].word_embedding_encoder.embeddings add_embedding_to_projector( pconfig, word_embeddings.name.split(":")[0], os.path.join(FLAGS.output_dir, "word_vocab.tsv") ) projector.visualize_embeddings( SummaryWriterCache.get(FLAGS.output_dir), pconfig ) # Main training loop running_total_loss = 0. nsteps = 0 gc.collect() while True: try: current_loss, _, _ = session.run( [loss, train_op, global_step], # feed_dict={is_train_ph: True, handle: train_iterator_handle}, feed_dict={is_train_ph: True}, options=run_options ) nsteps += 1 running_total_loss += current_loss tf.logging.info("Step %d, loss: %.3f, running avg loss: %.3f", nsteps, current_loss, running_total_loss / nsteps) if nsteps %2 == 0: gc.collect() except tf.errors.OutOfRangeError: tf.logging.info("End of Traning Epochs after %d steps", nsteps) break if __name__ == "__main__": app.run(main)
[ 2, 15069, 13130, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 13383, 9156, 329, 3047, 262, 317, 17, 45, 2746, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 308, 66, 198, 11748, 10688, 198, 11748, 28686, 198, 198, 6738, 2352, 75, 1330, 598, 198, 6738, 2352, 75, 1330, 9701, 198, 6738, 2352, 75, 1330, 18931, 198, 11748, 537, 84, 413, 1765, 62, 5239, 62, 34960, 198, 11748, 27039, 198, 11748, 4823, 198, 11748, 9089, 198, 11748, 20731, 198, 11748, 4981, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 18862, 198, 6738, 11192, 273, 3526, 13, 37390, 1330, 43396, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 13, 49736, 62, 952, 1330, 21293, 34379, 30562, 198, 11748, 2420, 62, 34960, 198, 11748, 3384, 4487, 198, 198, 38948, 50, 796, 9701, 13, 38948, 50, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 10025, 62, 7753, 1600, 6045, 11, 366, 6978, 284, 14211, 2393, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 22915, 62, 15908, 1600, 6045, 11, 366, 22915, 26672, 329, 30114, 3166, 14, 6404, 82, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 7959, 62, 10025, 62, 7753, 1600, 6045, 11, 366, 6978, 284, 1614, 14211, 2393, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 9288, 62, 10025, 62, 7753, 1600, 6045, 11, 366, 6978, 284, 1332, 14211, 2393, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 19849, 62, 6978, 1600, 6045, 11, 366, 6978, 284, 2746, 611, 4856, 691, 4943, 198, 33152, 13, 7206, 29940, 62, 2127, 21052, 7203, 49786, 1600, 10352, 11, 366, 5143, 5418, 9052, 4943, 198, 33152, 13, 7206, 29940, 62, 2127, 21052, 7203, 9288, 62, 8807, 1600, 10352, 11, 366, 361, 1332, 691, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 20541, 62, 9662, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20541, 62, 9662, 284, 11169, 2746, 329, 4856, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 22510, 62, 538, 5374, 82, 1600, 642, 11, 366, 17618, 286, 4512, 36835, 82, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 43501, 7857, 1600, 5598, 11, 366, 43501, 7857, 329, 3047, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 9288, 62, 43501, 7857, 1600, 838, 11, 366, 43501, 7857, 329, 4856, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 9806, 62, 710, 394, 32289, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47033, 12020, 284, 779, 1141, 3047, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 9806, 62, 12480, 2929, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47033, 1271, 286, 4633, 12066, 284, 6291, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 24419, 62, 27740, 1600, 1802, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46156, 286, 9312, 290, 8695, 11525, 67, 654, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 26858, 62, 12685, 12342, 62, 14781, 448, 1600, 352, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14781, 448, 329, 9312, 11525, 67, 654, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 49501, 62, 12685, 12342, 62, 14781, 448, 1600, 352, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14781, 448, 329, 8695, 11525, 67, 654, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 15003, 62, 26858, 62, 12685, 12342, 62, 14781, 448, 1600, 352, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14781, 448, 329, 2315, 9312, 11525, 67, 654, 287, 3241, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 1078, 1463, 62, 12685, 12342, 62, 14781, 448, 1600, 352, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14781, 448, 329, 3241, 2207, 12342, 4943, 198, 33152, 13, 7206, 29940, 62, 2127, 21052, 7203, 1904, 62, 25512, 378, 62, 1078, 1463, 62, 24419, 1600, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1904, 4553, 9312, 11525, 67, 654, 329, 14492, 3241, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 22510, 62, 1845, 29363, 62, 3866, 14681, 1600, 5598, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17618, 286, 7767, 284, 779, 287, 27039, 662, 36948, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 3866, 69, 7569, 62, 1069, 12629, 1600, 838, 11, 366, 17618, 286, 6096, 284, 7694, 7569, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 1477, 18137, 62, 22252, 1600, 642, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22252, 329, 32299, 1359, 3047, 6096, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 40684, 62, 4873, 1600, 657, 13, 8298, 11, 366, 40684, 329, 6436, 7509, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 9744, 62, 15036, 1600, 6045, 11, 366, 2601, 541, 31312, 2593, 1141, 3047, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 21928, 62, 16833, 1600, 1802, 11, 366, 21928, 2746, 790, 428, 867, 4831, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 26858, 62, 14933, 62, 7753, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 76, 5912, 286, 3232, 8692, 3095, 284, 3891, 4943, 198, 33152, 13, 7206, 29940, 62, 44709, 7203, 19849, 1600, 366, 1078, 1463, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 17080, 16680, 1600, 366, 1078, 1463, 1600, 366, 10459, 62, 1078, 1463, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10459, 62, 2411, 62, 1078, 1463, 1600, 366, 10459, 62, 6978, 62, 1078, 1463, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1169, 2746, 284, 779, 4943, 198, 33152, 13, 7206, 29940, 62, 30388, 7203, 1904, 62, 38006, 71, 1600, 10352, 11, 366, 1904, 25706, 71, 1729, 12, 29127, 414, 319, 11525, 67, 654, 4943, 198, 33152, 13, 7206, 29940, 62, 44709, 7203, 1078, 1463, 62, 4906, 1600, 366, 33473, 259, 451, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 33473, 259, 451, 1600, 366, 6966, 500, 1600, 366, 82, 17225, 1868, 62, 33473, 259, 451, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 17225, 1868, 62, 615, 70, 62, 33473, 259, 451, 1600, 366, 49501, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 286, 3241, 284, 779, 329, 3241, 2746, 4943, 198, 33152, 13, 7206, 29940, 62, 30388, 7203, 38200, 2736, 1600, 10352, 11, 366, 38200, 2736, 2746, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 9806, 62, 6978, 62, 13664, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47033, 3108, 4129, 329, 3108, 3241, 4981, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 5239, 62, 10025, 62, 7753, 1600, 6045, 11, 366, 6978, 284, 2420, 1366, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 9806, 62, 5239, 62, 11925, 1600, 6045, 11, 366, 9806, 4129, 286, 2420, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 9806, 62, 18893, 397, 62, 7857, 1600, 6045, 11, 366, 9806, 1271, 286, 2420, 2456, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 1084, 62, 4775, 62, 19503, 80, 1600, 6045, 11, 366, 1084, 2030, 80, 11387, 329, 2420, 2456, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 9806, 62, 5239, 62, 710, 394, 32289, 1600, 6045, 11, 366, 9806, 2420, 12020, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 5239, 62, 12685, 12342, 62, 14781, 448, 1600, 352, 13, 15, 11, 366, 14781, 448, 329, 2420, 269, 20471, 4943, 198, 33152, 13, 7206, 29940, 62, 4868, 7203, 5239, 62, 12685, 12342, 62, 24455, 62, 10394, 82, 1600, 14631, 18, 1600, 366, 20, 1600, 366, 22, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24455, 9647, 82, 329, 269, 20471, 4943, 198, 33152, 13, 7206, 29940, 62, 44709, 7203, 5239, 62, 12685, 12342, 62, 13159, 29127, 414, 1600, 366, 38006, 71, 1600, 14631, 260, 2290, 1600, 366, 38006, 71, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13159, 12, 29127, 414, 284, 779, 329, 8255, 18474, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 5239, 62, 12685, 12342, 62, 22510, 62, 10379, 1010, 1600, 5598, 11, 366, 22510, 16628, 329, 269, 20471, 4943, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 565, 84, 413, 1765, 62, 34086, 3007, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6978, 284, 537, 84, 413, 1765, 13439, 357, 273, 1366, 39559, 588, 269, 86, 8, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 565, 84, 413, 1765, 62, 7890, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6978, 284, 537, 84, 413, 1765, 1366, 357, 273, 1366, 39559, 588, 269, 86, 8, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 565, 84, 413, 1765, 62, 20521, 67, 654, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6978, 284, 537, 84, 413, 1765, 11525, 67, 654, 357, 273, 1366, 39559, 588, 269, 86, 8, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 5239, 62, 24419, 62, 27740, 1600, 6045, 11, 366, 20521, 12083, 5391, 329, 537, 84, 413, 1765, 2420, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 7266, 39873, 62, 5239, 62, 2411, 82, 1600, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7266, 39873, 2420, 284, 3509, 428, 867, 583, 5166, 4943, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 9866, 1600, 366, 12001, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 33, 8035, 1438, 286, 262, 309, 22854, 37535, 4958, 284, 779, 32203, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 35943, 1600, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 25714, 4686, 286, 262, 30069, 2491, 262, 3047, 32203, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 862, 62, 83, 6791, 1600, 657, 11, 37227, 15057, 286, 8861, 287, 262, 26692, 1693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 657, 645, 26692, 1693, 318, 973, 32203, 4943, 198, 198, 33152, 13, 4102, 62, 32109, 62, 292, 62, 35827, 7203, 10025, 62, 7753, 4943, 198, 33152, 13, 4102, 62, 32109, 62, 292, 62, 35827, 7203, 22915, 62, 15908, 4943, 628, 198, 198, 4299, 651, 62, 27432, 62, 404, 7, 22462, 11, 6436, 7509, 11, 3915, 62, 15036, 28, 14202, 11, 3298, 62, 9662, 28, 14202, 2599, 198, 220, 37227, 12050, 257, 4512, 62, 404, 4174, 3915, 2334, 284, 2994, 1262, 6436, 7509, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 2994, 25, 262, 2994, 2163, 284, 27183, 198, 220, 220, 6436, 7509, 25, 262, 6436, 7509, 284, 24061, 290, 4174, 3915, 2334, 198, 220, 220, 3915, 62, 15036, 25, 10651, 31312, 19444, 416, 262, 1988, 14275, 357, 12286, 17666, 10651, 8, 198, 220, 220, 3298, 62, 9662, 25, 48700, 13, 5372, 13829, 329, 3298, 62, 9662, 628, 220, 16409, 25, 198, 220, 220, 4512, 62, 404, 25, 262, 3047, 1034, 284, 1057, 198, 220, 220, 3915, 82, 62, 392, 62, 85, 945, 25, 262, 3915, 2334, 290, 9633, 329, 28769, 198, 220, 220, 1401, 62, 14933, 25, 262, 7885, 3891, 329, 28769, 198, 220, 220, 28490, 62, 2164, 5643, 62, 392, 62, 85, 945, 25, 329, 28769, 198, 220, 37227, 198, 220, 9633, 796, 48700, 13, 27432, 540, 62, 25641, 2977, 3419, 198, 220, 3915, 82, 62, 392, 62, 85, 945, 796, 6436, 7509, 13, 5589, 1133, 62, 9744, 2334, 7, 22462, 11, 9633, 8, 198, 220, 1401, 62, 14933, 796, 685, 85, 13, 3672, 329, 410, 287, 9633, 60, 198, 220, 18931, 13, 10951, 7203, 44077, 540, 9633, 25, 4943, 198, 220, 329, 1401, 287, 1401, 62, 14933, 25, 198, 220, 220, 220, 18931, 13, 10951, 7203, 59, 83, 4064, 82, 1600, 1401, 8, 198, 220, 18931, 13, 24442, 7, 2164, 5643, 62, 392, 62, 85, 945, 8, 198, 220, 3915, 62, 7785, 62, 27237, 82, 796, 47527, 27110, 13, 20541, 62, 27237, 26933, 70, 85, 58, 16, 11907, 828, 48700, 13, 20541, 62, 27237, 26933, 70, 85, 58, 15, 11907, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 85, 287, 3915, 82, 62, 392, 62, 85, 945, 60, 628, 220, 611, 3915, 62, 15036, 25, 198, 220, 220, 220, 28490, 62, 2164, 5643, 62, 392, 62, 85, 945, 796, 47527, 27110, 13, 15036, 62, 1525, 62, 27237, 7, 70, 85, 58, 15, 4357, 3915, 62, 15036, 828, 308, 85, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 85, 287, 3915, 82, 62, 392, 62, 85, 945, 60, 198, 220, 2073, 25, 198, 220, 220, 220, 28490, 62, 2164, 5643, 62, 392, 62, 85, 945, 796, 3915, 82, 62, 392, 62, 85, 945, 198, 220, 1303, 19444, 286, 3915, 2334, 329, 28769, 198, 220, 1303, 3915, 62, 27237, 82, 796, 685, 27110, 13, 31166, 17034, 7, 27110, 13, 445, 7234, 62, 16345, 7, 27110, 13, 23415, 7, 9744, 22305, 198, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3915, 11, 4808, 287, 3915, 82, 62, 392, 62, 85, 945, 60, 198, 220, 4512, 62, 404, 796, 6436, 7509, 13, 39014, 62, 9744, 2334, 7, 66, 6320, 62, 2164, 5643, 62, 392, 62, 85, 945, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9662, 28, 20541, 62, 9662, 8, 198, 220, 1441, 4512, 62, 404, 11, 3915, 62, 7785, 62, 27237, 82, 11, 1401, 62, 14933, 11, 28490, 62, 2164, 5643, 62, 392, 62, 85, 945, 628, 198, 4299, 1100, 62, 34960, 62, 7890, 7, 198, 220, 220, 220, 14211, 62, 7753, 11, 751, 62, 50188, 62, 34960, 11, 751, 62, 259, 4399, 62, 14907, 11, 4235, 11, 198, 220, 220, 220, 997, 62, 538, 5374, 82, 11, 15458, 7857, 11, 3509, 62, 710, 394, 32289, 11, 3509, 62, 12480, 2929, 11, 198, 220, 220, 220, 4512, 62, 34960, 28, 14202, 11, 2420, 62, 10025, 62, 7753, 28, 14202, 11, 1188, 62, 34960, 28, 14202, 198, 2599, 198, 220, 37227, 5569, 4823, 11, 2251, 27039, 290, 1382, 2746, 526, 15931, 198, 220, 1303, 4149, 28770, 290, 2251, 40522, 198, 220, 9312, 62, 18893, 397, 796, 8695, 62, 18893, 397, 796, 6045, 198, 220, 611, 4512, 62, 34960, 25, 198, 220, 220, 220, 9312, 62, 18893, 397, 796, 4512, 62, 34960, 13, 26858, 62, 18893, 397, 198, 220, 220, 220, 8695, 62, 18893, 397, 796, 4512, 62, 34960, 13, 49501, 62, 18893, 397, 198, 220, 611, 9977, 4760, 50, 13, 565, 84, 413, 1765, 62, 7890, 290, 4235, 6624, 366, 27432, 1298, 198, 220, 220, 220, 4823, 62, 4906, 796, 537, 84, 413, 1765, 62, 5239, 62, 34960, 13, 43538, 8206, 37065, 198, 220, 220, 220, 2420, 62, 10025, 62, 7753, 796, 9977, 4760, 50, 13, 565, 84, 413, 1765, 62, 7890, 198, 220, 1288, 361, 2420, 62, 10025, 62, 7753, 290, 4235, 6624, 366, 27432, 1298, 198, 220, 220, 220, 4823, 62, 4906, 796, 2420, 62, 34960, 13, 8206, 37065, 198, 220, 220, 220, 2420, 62, 10025, 62, 7753, 796, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 198, 220, 2073, 25, 198, 220, 220, 220, 4823, 62, 4906, 796, 4823, 13, 37065, 198, 220, 220, 220, 2420, 62, 10025, 62, 7753, 796, 6045, 198, 220, 479, 62, 34960, 796, 4823, 62, 4906, 7, 198, 220, 220, 220, 220, 220, 2420, 62, 10025, 62, 7753, 28, 5239, 62, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 14267, 62, 3605, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 3509, 62, 5239, 62, 11925, 28, 38948, 50, 13, 9806, 62, 5239, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 3509, 62, 18893, 397, 62, 7857, 28, 38948, 50, 13, 9806, 62, 18893, 397, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 949, 62, 4775, 62, 19503, 80, 28, 38948, 50, 13, 1084, 62, 4775, 62, 19503, 80, 11, 198, 220, 220, 220, 220, 220, 14211, 62, 7753, 28, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 751, 62, 50188, 62, 34960, 28, 2860, 62, 50188, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 751, 62, 259, 4399, 62, 14907, 28, 2860, 62, 259, 4399, 62, 14907, 11, 4235, 28, 14171, 11, 198, 220, 220, 220, 220, 220, 9312, 62, 18893, 397, 28, 26858, 62, 18893, 397, 11, 8695, 62, 18893, 397, 28, 49501, 62, 18893, 397, 11, 198, 220, 220, 220, 220, 220, 3509, 62, 6978, 62, 13664, 28, 38948, 50, 13, 9806, 62, 6978, 62, 13664, 611, 4235, 6624, 366, 27432, 1, 2073, 6045, 11, 198, 220, 220, 220, 220, 220, 11525, 67, 654, 62, 7753, 28, 38948, 50, 13, 565, 84, 413, 1765, 62, 20521, 67, 654, 11, 198, 220, 220, 220, 220, 220, 6827, 62, 18893, 397, 62, 7753, 28, 38948, 50, 13, 565, 84, 413, 1765, 62, 34086, 3007, 11, 198, 220, 220, 220, 220, 220, 6352, 1403, 28, 38948, 50, 13, 7266, 39873, 62, 5239, 62, 2411, 82, 198, 220, 1267, 198, 220, 611, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 3509, 62, 5239, 62, 11925, 796, 9977, 4760, 50, 13, 9806, 62, 5239, 62, 11925, 198, 220, 220, 220, 611, 4235, 6624, 366, 27432, 1298, 198, 220, 220, 220, 220, 220, 3509, 62, 5239, 62, 11925, 796, 3509, 62, 5239, 62, 11925, 393, 479, 62, 34960, 13, 9806, 62, 5239, 62, 11925, 198, 220, 220, 220, 1288, 361, 4512, 62, 34960, 25, 198, 220, 220, 220, 220, 220, 3509, 62, 5239, 62, 11925, 796, 3509, 62, 5239, 62, 11925, 393, 4512, 62, 34960, 13, 9806, 62, 5239, 62, 11925, 198, 220, 2073, 25, 198, 220, 220, 220, 3509, 62, 5239, 62, 11925, 796, 6045, 198, 220, 479, 62, 7890, 796, 27039, 13, 27354, 292, 316, 7, 7890, 62, 34960, 28, 74, 62, 34960, 11, 4512, 62, 34960, 28, 27432, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 14171, 11, 997, 62, 538, 5374, 82, 28, 22510, 62, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 7857, 28, 43501, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 710, 394, 32289, 28, 9806, 62, 710, 394, 32289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 12480, 2929, 28, 9806, 62, 12480, 2929, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 4906, 28, 38948, 50, 13, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 5239, 62, 11925, 28, 9806, 62, 5239, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 5239, 62, 710, 394, 32289, 28, 38948, 50, 13, 9806, 62, 5239, 62, 710, 394, 32289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 34960, 28, 2100, 62, 34960, 8, 198, 220, 1303, 13610, 262, 3047, 1366, 41313, 290, 1441, 262, 5128, 11192, 669, 198, 220, 1303, 351, 48700, 13, 25202, 7203, 14, 21858, 25, 28816, 1, 2599, 198, 220, 479, 62, 7890, 13, 17953, 62, 19608, 292, 316, 62, 48727, 7, 198, 220, 220, 220, 220, 220, 997, 62, 1845, 29363, 28, 38948, 50, 13, 22510, 62, 1845, 29363, 62, 3866, 14681, 11, 198, 220, 220, 220, 220, 220, 7694, 7569, 28, 38948, 50, 13, 3866, 69, 7569, 62, 1069, 12629, 11, 198, 220, 220, 220, 220, 220, 36273, 62, 22252, 28, 38948, 50, 13, 1477, 18137, 62, 22252, 198, 220, 220, 220, 220, 220, 1303, 837, 3335, 2625, 28816, 1, 611, 9977, 4760, 50, 13, 9866, 14512, 366, 12001, 1, 2073, 366, 36166, 1, 198, 220, 1267, 628, 220, 1441, 479, 62, 34960, 11, 479, 62, 7890, 628, 198, 4299, 2251, 62, 19849, 7, 27432, 62, 34960, 11, 41313, 2599, 198, 220, 37227, 16447, 2746, 290, 1295, 10476, 526, 15931, 198, 220, 611, 9977, 4760, 50, 13, 565, 84, 413, 1765, 62, 7890, 25, 198, 220, 220, 220, 264, 11, 299, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 299, 1671, 82, 62, 46188, 37051, 11, 14722, 11, 2420, 62, 77, 1671, 82, 62, 82, 62, 24419, 796, 41313, 13, 1136, 62, 19545, 3419, 198, 220, 1288, 361, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 264, 11, 299, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 299, 1671, 82, 62, 46188, 37051, 11, 14722, 796, 3467, 198, 220, 220, 220, 220, 220, 41313, 13, 1136, 62, 19545, 3419, 198, 220, 2073, 25, 198, 220, 220, 220, 264, 11, 299, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 299, 1671, 82, 62, 46188, 37051, 11, 14722, 796, 41313, 13, 1136, 62, 19545, 3419, 628, 220, 1303, 13610, 262, 3241, 2746, 11, 428, 5860, 5871, 8198, 290, 262, 2746, 198, 220, 1303, 2207, 375, 364, 287, 257, 8633, 329, 4441, 3745, 62, 11600, 329, 477, 2207, 375, 364, 198, 220, 318, 62, 27432, 62, 746, 796, 48700, 13, 5372, 13829, 62, 4480, 62, 12286, 7, 17821, 11, 5485, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 271, 62, 27432, 62, 746, 4943, 198, 220, 611, 9977, 4760, 50, 13, 19849, 6624, 366, 1078, 1463, 1298, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7203, 1078, 1463, 62, 19849, 1600, 32349, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 4540, 62, 1416, 2850, 11, 2746, 796, 4981, 13, 1078, 1463, 62, 74, 15630, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 11, 4512, 62, 34960, 11, 318, 62, 27432, 62, 746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 11, 299, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 299, 1671, 82, 62, 46188, 37051, 8, 198, 220, 220, 220, 220, 220, 1267, 198, 220, 1288, 361, 9977, 4760, 50, 13, 19849, 6624, 366, 10459, 62, 1078, 1463, 1298, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7203, 82, 62, 1078, 1463, 62, 19849, 1600, 32349, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 4540, 62, 1416, 2850, 11, 2746, 796, 4981, 13, 10459, 62, 1078, 1463, 62, 74, 15630, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 11, 4512, 62, 34960, 11, 318, 62, 27432, 62, 746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 11, 299, 1671, 82, 62, 82, 11, 374, 11, 5871, 8, 198, 220, 220, 220, 220, 220, 1267, 198, 220, 1288, 361, 9977, 4760, 50, 13, 19849, 287, 14631, 10459, 62, 2411, 62, 1078, 1463, 1600, 366, 10459, 62, 6978, 62, 1078, 1463, 1, 5974, 198, 220, 220, 220, 611, 9977, 4760, 50, 13, 565, 84, 413, 1765, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 5128, 62, 83, 641, 669, 796, 357, 82, 11, 299, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 62, 24419, 11, 374, 11, 5871, 8, 198, 220, 220, 220, 1288, 361, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 5128, 62, 83, 641, 669, 796, 357, 82, 11, 299, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 11, 374, 11, 5871, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 5128, 62, 83, 641, 669, 796, 357, 82, 11, 299, 1671, 82, 62, 82, 11, 374, 11, 5871, 8, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7203, 82, 62, 1078, 1463, 62, 19849, 1600, 32349, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 4540, 62, 1416, 2850, 11, 2746, 796, 4981, 13, 10459, 62, 1078, 1463, 62, 74, 15630, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 11, 4512, 62, 34960, 11, 318, 62, 27432, 62, 746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 83, 641, 669, 11, 2746, 62, 4906, 28, 38948, 50, 13, 19849, 198, 220, 220, 220, 220, 220, 1267, 198, 220, 1288, 361, 9977, 4760, 50, 13, 19849, 6624, 366, 17080, 16680, 1298, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7203, 17080, 16680, 62, 19849, 1600, 32349, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 4540, 62, 1416, 2850, 11, 2746, 796, 4981, 13, 17080, 16680, 62, 74, 15630, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 11, 4512, 62, 34960, 11, 318, 62, 27432, 62, 746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 11, 374, 11, 5871, 8, 198, 220, 220, 220, 220, 220, 1267, 198, 220, 611, 9977, 4760, 50, 13, 565, 84, 413, 1765, 62, 7890, 25, 198, 220, 220, 220, 17311, 796, 357, 82, 11, 299, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 62, 24419, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 11, 5871, 11, 299, 1671, 82, 62, 46188, 37051, 8, 198, 220, 1288, 361, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 17311, 796, 357, 82, 11, 299, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 299, 1671, 82, 62, 46188, 37051, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 17311, 796, 357, 82, 11, 299, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 299, 1671, 82, 62, 46188, 37051, 8, 628, 220, 1441, 4540, 62, 1416, 2850, 11, 5871, 11, 14722, 11, 2746, 11, 318, 62, 27432, 62, 746, 11, 17311, 628, 198, 4299, 13446, 33529, 198, 220, 37227, 10987, 12660, 319, 1614, 393, 1332, 1366, 526, 15931, 198, 220, 751, 62, 259, 4399, 62, 14907, 796, 9977, 4760, 50, 13, 19849, 287, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 10459, 62, 2411, 62, 1078, 1463, 1600, 366, 10459, 62, 6978, 62, 1078, 1463, 8973, 198, 220, 611, 9977, 4760, 50, 13, 565, 84, 413, 1765, 62, 7890, 25, 198, 220, 220, 220, 4512, 62, 34960, 796, 537, 84, 413, 1765, 62, 5239, 62, 34960, 13, 43538, 8206, 37065, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 10025, 62, 7753, 28, 38948, 50, 13, 565, 84, 413, 1765, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 67, 654, 62, 7753, 28, 38948, 50, 13, 565, 84, 413, 1765, 62, 20521, 67, 654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6827, 62, 18893, 397, 62, 7753, 28, 38948, 50, 13, 565, 84, 413, 1765, 62, 34086, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 3605, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14211, 62, 7753, 28, 38948, 50, 13, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 50188, 62, 34960, 28, 1662, 751, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 259, 4399, 62, 14907, 28, 2860, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6352, 1403, 28, 38948, 50, 13, 7266, 39873, 62, 5239, 62, 2411, 82, 198, 220, 220, 220, 1267, 198, 220, 1288, 361, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 4512, 62, 34960, 796, 2420, 62, 34960, 13, 8206, 37065, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 10025, 62, 7753, 28, 38948, 50, 13, 5239, 62, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 3605, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 5239, 62, 11925, 28, 38948, 50, 13, 9806, 62, 5239, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 18893, 397, 62, 7857, 28, 38948, 50, 13, 9806, 62, 18893, 397, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 4775, 62, 19503, 80, 28, 38948, 50, 13, 1084, 62, 4775, 62, 19503, 80, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14211, 62, 7753, 28, 38948, 50, 13, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 50188, 62, 34960, 28, 1662, 751, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 259, 4399, 62, 14907, 28, 2860, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6978, 62, 13664, 28, 38948, 50, 13, 9806, 62, 6978, 62, 13664, 198, 220, 220, 220, 1267, 198, 220, 2073, 25, 198, 220, 220, 220, 4512, 62, 34960, 796, 4823, 13, 37065, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14211, 62, 7753, 28, 38948, 50, 13, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 50188, 62, 34960, 28, 1662, 751, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 259, 4399, 62, 14907, 28, 2860, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6978, 62, 13664, 28, 38948, 50, 13, 9806, 62, 6978, 62, 13664, 198, 220, 220, 220, 1267, 198, 220, 1303, 4512, 62, 34960, 11, 4808, 796, 1100, 62, 34960, 62, 7890, 7, 198, 220, 1303, 220, 220, 220, 220, 14211, 62, 7753, 28, 38948, 50, 13, 10025, 62, 7753, 11, 198, 220, 1303, 220, 220, 220, 220, 751, 62, 50188, 62, 34960, 16193, 38948, 50, 13, 19849, 14512, 366, 10459, 62, 2411, 62, 1078, 1463, 12340, 198, 220, 1303, 220, 220, 220, 220, 751, 62, 259, 4399, 62, 14907, 16193, 38948, 50, 13, 19849, 6624, 366, 10459, 62, 2411, 62, 1078, 1463, 12340, 198, 220, 1303, 220, 220, 220, 220, 4235, 2625, 27432, 1600, 997, 62, 538, 5374, 82, 28, 38948, 50, 13, 22510, 62, 538, 5374, 82, 11, 15458, 7857, 28, 38948, 50, 13, 43501, 7857, 11, 198, 220, 1303, 220, 220, 220, 220, 3509, 62, 710, 394, 32289, 28, 38948, 50, 13, 9806, 62, 710, 394, 32289, 11, 198, 220, 1303, 220, 220, 220, 220, 3509, 62, 12480, 2929, 28, 38948, 50, 13, 9806, 62, 12480, 2929, 198, 220, 1303, 1267, 198, 220, 1188, 62, 34960, 796, 6045, 198, 220, 611, 9977, 4760, 50, 13, 7959, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 1188, 62, 34960, 11, 5418, 62, 7890, 796, 1100, 62, 34960, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14211, 62, 7753, 28, 38948, 50, 13, 7959, 62, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 50188, 62, 34960, 28, 1662, 751, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 259, 4399, 62, 14907, 28, 2860, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 62, 50188, 62, 34960, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 62, 259, 4399, 62, 14907, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 2625, 7959, 1600, 997, 62, 538, 5374, 82, 28, 16, 11, 15458, 7857, 28, 38948, 50, 13, 9288, 62, 43501, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 710, 394, 32289, 28, 38948, 50, 13, 9806, 62, 710, 394, 32289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 12480, 2929, 28, 38948, 50, 13, 9806, 62, 12480, 2929, 11, 4512, 62, 34960, 28, 27432, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 10025, 62, 7753, 28, 38948, 50, 13, 5239, 62, 10025, 62, 7753, 198, 220, 220, 220, 1267, 198, 220, 611, 9977, 4760, 50, 13, 9288, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 4808, 11, 5418, 62, 7890, 796, 1100, 62, 34960, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14211, 62, 7753, 28, 38948, 50, 13, 9288, 62, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 50188, 62, 34960, 28, 1662, 751, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 259, 4399, 62, 14907, 28, 2860, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 62, 50188, 62, 34960, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 62, 259, 4399, 62, 14907, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 2625, 9288, 1600, 997, 62, 538, 5374, 82, 28, 16, 11, 15458, 7857, 28, 38948, 50, 13, 9288, 62, 43501, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 710, 394, 32289, 28, 38948, 50, 13, 9806, 62, 710, 394, 32289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 12480, 2929, 28, 14202, 11, 4512, 62, 34960, 28, 27432, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 10025, 62, 7753, 28, 38948, 50, 13, 5239, 62, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 34960, 28, 2100, 62, 34960, 198, 220, 220, 220, 1267, 198, 220, 611, 407, 9977, 4760, 50, 13, 7959, 62, 10025, 62, 7753, 290, 407, 9977, 4760, 50, 13, 9288, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 5298, 11052, 12331, 7203, 36, 2100, 1009, 1231, 257, 1614, 393, 1332, 2393, 2474, 8, 628, 220, 41313, 796, 5418, 62, 7890, 13, 19608, 292, 316, 13, 15883, 62, 36733, 13821, 62, 48727, 3419, 198, 220, 4540, 62, 1416, 2850, 11, 5871, 11, 14722, 11, 2746, 11, 318, 62, 27432, 62, 746, 11, 17311, 796, 3467, 198, 220, 220, 220, 2251, 62, 19849, 7, 27432, 62, 34960, 11, 41313, 8, 628, 220, 1303, 13610, 5418, 20731, 198, 220, 1303, 611, 9977, 4760, 50, 13, 7959, 62, 10025, 62, 7753, 25, 198, 220, 15458, 62, 21062, 796, 20731, 13, 76, 21062, 7, 46188, 20540, 62, 1416, 2850, 11, 5871, 11, 14722, 8, 198, 220, 285, 21062, 11, 285, 21062, 62, 19119, 796, 48700, 13, 4164, 10466, 13, 32604, 7, 43501, 62, 21062, 8, 198, 220, 285, 21062, 62, 49736, 796, 48700, 13, 49736, 13, 1416, 282, 283, 7203, 13599, 49, 1600, 285, 21062, 8, 628, 220, 477, 62, 71, 896, 11, 477, 62, 71, 896, 62, 19119, 11, 477, 62, 71, 896, 62, 82, 13929, 3166, 796, 685, 4357, 685, 4357, 17635, 198, 220, 329, 479, 287, 685, 16, 11, 513, 11, 838, 5974, 198, 220, 220, 220, 15458, 62, 71, 896, 796, 20731, 13, 71, 896, 62, 265, 62, 74, 7, 46188, 20540, 62, 1416, 2850, 11, 5871, 11, 14722, 11, 479, 28, 74, 8, 198, 220, 220, 220, 7127, 11, 7127, 62, 19119, 796, 48700, 13, 4164, 10466, 13, 32604, 7, 43501, 62, 71, 896, 8, 198, 220, 220, 220, 7127, 62, 49736, 796, 48700, 13, 49736, 13, 1416, 282, 283, 7203, 39, 896, 62, 265, 62, 4, 67, 1, 4064, 479, 11, 7127, 8, 198, 220, 220, 220, 477, 62, 71, 896, 13, 33295, 7, 71, 896, 8, 198, 220, 220, 220, 477, 62, 71, 896, 62, 19119, 13, 33295, 7, 71, 896, 62, 19119, 8, 198, 220, 220, 220, 477, 62, 71, 896, 62, 82, 13929, 3166, 13, 33295, 7, 71, 896, 62, 49736, 8, 198, 220, 7127, 796, 48700, 13, 8094, 46491, 439, 62, 71, 896, 8, 198, 220, 7127, 62, 19119, 796, 48700, 13, 8094, 46491, 439, 62, 71, 896, 62, 19119, 8, 628, 220, 3298, 62, 9662, 796, 48700, 13, 43015, 7, 15, 11, 1438, 2625, 20541, 62, 9662, 1600, 4512, 540, 28, 25101, 8, 198, 220, 1459, 62, 9662, 796, 48700, 13, 43015, 7, 15, 11, 1438, 2625, 14421, 62, 9662, 1600, 4512, 540, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17268, 41888, 27110, 13, 37065, 40729, 13, 29701, 1847, 62, 53, 1503, 3539, 9148, 1546, 12962, 198, 220, 753, 81, 62, 14421, 62, 9662, 796, 48700, 13, 562, 570, 62, 2860, 7, 14421, 62, 9662, 11, 352, 8, 198, 220, 13259, 62, 14421, 62, 9662, 796, 48700, 13, 562, 570, 7, 14421, 62, 9662, 11, 657, 8, 628, 220, 18862, 13, 1136, 62, 273, 62, 17953, 62, 20541, 62, 9662, 7, 34960, 28, 27110, 13, 1136, 62, 12286, 62, 34960, 28955, 628, 220, 1303, 1266, 62, 71, 896, 796, 48700, 13, 43015, 7, 15, 1539, 4512, 540, 28, 25101, 8, 198, 220, 1303, 1266, 62, 9662, 796, 48700, 13, 43015, 7, 15, 11, 4512, 540, 28, 25101, 8, 198, 220, 1303, 351, 48700, 13, 13716, 62, 45841, 3976, 26933, 71, 896, 60, 2599, 198, 220, 1303, 220, 220, 4296, 62, 13466, 62, 71, 896, 796, 48700, 13, 17561, 7, 27110, 13, 18223, 263, 7, 71, 896, 11, 1266, 62, 71, 896, 828, 198, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 48700, 13, 562, 570, 7, 13466, 62, 71, 896, 11, 7127, 828, 198, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 657, 2014, 198, 220, 1303, 220, 220, 4296, 62, 13466, 62, 9662, 796, 48700, 13, 17561, 7, 27110, 13, 18223, 263, 7, 71, 896, 11, 1266, 62, 71, 896, 828, 198, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 48700, 13, 562, 570, 7, 13466, 62, 9662, 11, 3298, 62, 9662, 828, 198, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 657, 8, 198, 220, 1303, 1266, 62, 71, 896, 62, 49736, 796, 48700, 13, 49736, 13, 1416, 282, 283, 7203, 13014, 28626, 31, 940, 1600, 1266, 62, 71, 896, 8, 198, 220, 1303, 1266, 62, 9662, 62, 49736, 796, 48700, 13, 49736, 13, 1416, 282, 283, 7203, 13014, 5012, 1600, 1266, 62, 9662, 8, 628, 220, 497, 87, 12629, 796, 5418, 62, 7890, 13, 7890, 62, 34960, 13, 83, 29291, 62, 8095, 13, 43358, 58, 15, 60, 198, 220, 611, 5418, 62, 7890, 13, 7890, 62, 34960, 13, 2860, 62, 50188, 62, 34960, 25, 198, 220, 220, 220, 497, 87, 12629, 1635, 28, 362, 198, 220, 997, 62, 8664, 2052, 796, 10688, 13, 344, 346, 7, 12413, 12629, 1220, 12178, 7, 38948, 50, 13, 9288, 62, 43501, 7857, 4008, 198, 220, 1957, 62, 15003, 62, 404, 796, 48700, 13, 12001, 62, 25641, 2977, 62, 36733, 7509, 3419, 628, 220, 611, 9977, 4760, 50, 13, 38200, 2736, 25, 198, 220, 220, 220, 9312, 62, 14933, 796, 3384, 4487, 13, 961, 62, 26858, 62, 3672, 62, 76, 5912, 7, 38948, 50, 13, 26858, 62, 14933, 62, 7753, 8, 198, 220, 220, 220, 6246, 796, 48700, 13, 36044, 3419, 198, 220, 220, 220, 1303, 10638, 62, 16002, 796, 48700, 13, 49736, 13, 8979, 34379, 7, 38948, 50, 13, 22915, 62, 15908, 11, 6246, 13, 34960, 8, 198, 220, 220, 220, 2315, 62, 404, 796, 48700, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 3419, 198, 220, 220, 220, 6246, 13, 5143, 7, 15003, 62, 404, 8, 198, 220, 220, 220, 6246, 13, 5143, 7, 12001, 62, 15003, 62, 404, 8, 198, 220, 220, 220, 473, 332, 796, 48700, 13, 27432, 13, 50, 8770, 7, 27110, 13, 27432, 540, 62, 25641, 2977, 28955, 198, 220, 220, 220, 269, 74, 457, 62, 6978, 796, 9977, 4760, 50, 13, 19849, 62, 6978, 1343, 12813, 19849, 13, 694, 457, 12, 4, 67, 1, 4064, 9977, 4760, 50, 13, 20541, 62, 9662, 198, 220, 220, 220, 3241, 62, 1676, 1443, 796, 2746, 14692, 1078, 1463, 62, 12685, 12342, 1, 4083, 1136, 62, 6738, 62, 43681, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1078, 1463, 62, 1676, 1443, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 9977, 4760, 50, 13, 565, 84, 413, 1765, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 264, 11, 299, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 62, 24419, 11, 374, 11, 5871, 11, 4808, 796, 17311, 198, 220, 220, 220, 1288, 361, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 264, 11, 299, 1671, 82, 62, 82, 11, 2420, 62, 77, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 4808, 796, 17311, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 264, 11, 299, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 4808, 796, 17311, 198, 220, 220, 220, 473, 332, 13, 2118, 382, 7, 29891, 11, 269, 74, 457, 62, 6978, 8, 198, 220, 220, 220, 6246, 13, 5143, 7, 48727, 13, 36733, 7509, 8, 198, 220, 220, 220, 997, 62, 1078, 1463, 796, 642, 198, 220, 220, 220, 299, 20214, 796, 657, 198, 220, 220, 220, 503, 69, 62, 30283, 796, 1280, 7, 38948, 50, 13, 22915, 62, 15908, 1343, 12813, 38200, 2736, 62, 30283, 13, 14116, 1600, 366, 86, 10, 4943, 198, 220, 220, 220, 503, 69, 62, 1939, 47315, 796, 1280, 7, 198, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 13, 22915, 62, 15908, 1343, 12813, 38200, 2736, 62, 1939, 47315, 13, 14116, 1600, 366, 86, 10, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 299, 30283, 796, 657, 198, 220, 220, 220, 16602, 62, 22915, 82, 796, 685, 46188, 20540, 62, 1416, 2850, 11, 264, 11, 299, 1671, 82, 62, 82, 11, 374, 11, 5871, 11, 14722, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3241, 62, 1676, 1443, 60, 198, 220, 220, 220, 611, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 16602, 62, 22915, 82, 13, 33295, 7, 5239, 62, 77, 1671, 82, 62, 82, 8, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16602, 62, 12786, 796, 6246, 13, 5143, 7, 38200, 2736, 62, 22915, 82, 11, 1391, 271, 62, 27432, 62, 746, 25, 10352, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 1416, 2850, 11, 384, 11, 299, 1671, 82, 11, 10662, 81, 11, 269, 1746, 11, 573, 11, 299, 1671, 62, 1078, 1463, 62, 1676, 1443, 11, 2420, 62, 77, 1671, 82, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16602, 62, 12786, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 1416, 2850, 11, 384, 11, 299, 1671, 82, 11, 10662, 81, 11, 269, 1746, 11, 573, 11, 299, 1671, 62, 1078, 1463, 62, 1676, 1443, 796, 16602, 62, 12786, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1330, 279, 9945, 26, 279, 9945, 13, 2617, 62, 40546, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 2340, 796, 269, 1416, 2850, 13, 853, 9806, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 325, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3013, 480, 796, 4512, 62, 34960, 13, 259, 4399, 62, 26858, 62, 18893, 397, 58, 325, 58, 72, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3013, 480, 287, 9312, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3013, 480, 796, 9312, 62, 14933, 58, 82, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 3672, 796, 4512, 62, 34960, 13, 259, 4399, 62, 49501, 62, 18893, 397, 58, 80, 81, 58, 72, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 16793, 796, 269, 1746, 58, 72, 11, 2747, 62, 2340, 58, 72, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 3672, 796, 4512, 62, 34960, 13, 259, 4399, 62, 26858, 62, 18893, 397, 58, 28764, 62, 16793, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2747, 62, 3672, 287, 9312, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 3672, 796, 9312, 62, 14933, 58, 28764, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 3672, 796, 4512, 62, 34960, 13, 259, 4399, 62, 26858, 62, 18893, 397, 58, 660, 58, 72, 7131, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 3672, 287, 9312, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 3672, 796, 9312, 62, 14933, 58, 83, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 573, 58, 72, 7131, 15, 60, 6624, 2747, 62, 16793, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 69, 796, 503, 69, 62, 30283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 30283, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 69, 796, 503, 69, 62, 1939, 47315, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 69, 13, 13564, 7203, 59, 77, 7, 4, 67, 8, 4064, 82, 11, 4064, 82, 11, 5633, 3467, 83, 14322, 25, 4064, 82, 3467, 83, 12744, 25, 4064, 82, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 77, 20214, 10, 72, 10, 16, 11, 3013, 480, 11, 374, 3672, 11, 2747, 62, 3672, 11, 256, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 77, 1671, 82, 62, 9630, 796, 45941, 13, 22046, 419, 7, 77, 1671, 62, 1078, 1463, 62, 1676, 1443, 58, 72, 11, 1058, 12962, 58, 3712, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 69, 13, 13564, 7203, 59, 77, 9126, 399, 1671, 82, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 22510, 62, 1078, 1463, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1671, 62, 9630, 796, 1353, 62, 77, 1671, 82, 62, 9630, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 1671, 62, 9630, 1279, 9977, 4760, 50, 13, 9806, 62, 710, 394, 32289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1671, 62, 312, 796, 299, 1671, 82, 58, 72, 11, 299, 1671, 62, 9630, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1671, 62, 3672, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 15, 11, 299, 1671, 82, 13, 43358, 58, 12, 16, 4357, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 920, 62, 3672, 796, 4512, 62, 34960, 13, 259, 4399, 62, 26858, 62, 18893, 397, 58, 77, 1671, 62, 312, 58, 74, 10, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 920, 62, 3672, 287, 9312, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 920, 62, 3672, 796, 9312, 62, 14933, 58, 298, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 62, 3672, 796, 4512, 62, 34960, 13, 259, 4399, 62, 49501, 62, 18893, 397, 58, 77, 1671, 62, 312, 58, 74, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1671, 62, 3672, 15853, 30629, 4, 82, 11, 4064, 82, 16725, 4064, 357, 2411, 62, 3672, 11, 920, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8255, 4718, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 77, 1671, 62, 2340, 796, 2420, 62, 77, 1671, 82, 58, 72, 11, 299, 1671, 62, 9630, 532, 9977, 4760, 50, 13, 9806, 62, 710, 394, 32289, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 77, 1671, 62, 298, 796, 2420, 62, 77, 1671, 62, 2340, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 920, 62, 3672, 796, 4512, 62, 34960, 13, 259, 4399, 62, 26858, 62, 18893, 397, 58, 5239, 62, 77, 1671, 62, 298, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 920, 62, 3672, 287, 9312, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 920, 62, 3672, 796, 9312, 62, 14933, 58, 298, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 62, 3672, 796, 4512, 62, 34960, 13, 1136, 62, 49501, 62, 5239, 7, 5239, 62, 77, 1671, 62, 2340, 58, 16, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1671, 62, 3672, 796, 30629, 4, 82, 11, 4064, 82, 16725, 4064, 357, 2411, 62, 3672, 11, 920, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 69, 13, 13564, 7203, 59, 77, 59, 83, 59, 83, 4064, 82, 30873, 25, 4064, 13, 19, 69, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 77, 1671, 62, 3672, 11, 299, 1671, 62, 1078, 1463, 62, 1676, 1443, 58, 72, 11, 299, 1671, 62, 9630, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 299, 20214, 15853, 384, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6404, 2667, 13, 10951, 7203, 11297, 7127, 31, 16, 25, 4064, 13, 18, 69, 1600, 299, 30283, 1635, 352, 13, 15, 1220, 357, 77, 20214, 4008, 628, 220, 220, 220, 220, 220, 2845, 48700, 13, 48277, 13, 7975, 5189, 17257, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 503, 69, 62, 30283, 13, 19836, 3419, 198, 220, 220, 220, 503, 69, 62, 1939, 47315, 13, 19836, 3419, 198, 220, 220, 220, 1441, 628, 220, 611, 9977, 4760, 50, 13, 9288, 62, 8807, 25, 198, 220, 220, 220, 269, 74, 457, 62, 6978, 796, 9977, 4760, 50, 13, 19849, 62, 6978, 1343, 12813, 19849, 13, 694, 457, 12, 4, 67, 1, 4064, 9977, 4760, 50, 13, 20541, 62, 9662, 198, 220, 220, 220, 18862, 13, 18206, 2288, 13, 49786, 62, 27078, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4958, 28, 38948, 50, 13, 9866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 28, 694, 457, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 15908, 28, 38948, 50, 13, 22915, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9633, 62, 1462, 62, 2118, 382, 28, 27110, 13, 27432, 540, 62, 25641, 2977, 3419, 1343, 685, 20541, 62, 9662, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 404, 28, 27110, 13, 8094, 7, 12001, 62, 15003, 62, 404, 11, 41313, 13, 36733, 7509, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4238, 62, 404, 28, 48727, 13, 36733, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1990, 874, 28, 22510, 62, 8664, 2052, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 404, 28, 27110, 13, 8094, 7, 76, 21062, 62, 19119, 11, 7127, 62, 19119, 11, 753, 81, 62, 14421, 62, 9662, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 404, 62, 12363, 62, 11600, 34758, 271, 62, 27432, 62, 746, 25, 10352, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 404, 28, 27110, 13, 8094, 7, 76, 21062, 11, 7127, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 404, 62, 12363, 62, 11600, 34758, 271, 62, 27432, 62, 746, 25, 10352, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 10638, 62, 404, 28, 27110, 13, 49736, 13, 647, 469, 26933, 76, 21062, 62, 49736, 48688, 477, 62, 71, 896, 62, 82, 13929, 3166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 26569, 41888, 6601, 31768, 39, 566, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 27432, 13, 11187, 2667, 51, 22854, 39, 566, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 76, 21062, 1298, 285, 21062, 11, 366, 71, 896, 1298, 7127, 11, 366, 9662, 1298, 1459, 62, 9662, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 790, 62, 77, 62, 2676, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48600, 198, 220, 220, 220, 1267, 198, 220, 2073, 25, 198, 220, 220, 220, 18862, 13, 18206, 2288, 13, 18206, 2288, 62, 26268, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4958, 28, 38948, 50, 13, 9866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 28, 38948, 50, 13, 19849, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 15908, 28, 38948, 50, 13, 22915, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9633, 62, 1462, 62, 2118, 382, 28, 27110, 13, 27432, 540, 62, 25641, 2977, 3419, 1343, 685, 20541, 62, 9662, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 404, 28, 27110, 13, 8094, 7, 12001, 62, 15003, 62, 404, 11, 41313, 13, 36733, 7509, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4238, 62, 404, 28, 48727, 13, 36733, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1990, 874, 28, 22510, 62, 8664, 2052, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 404, 28, 27110, 13, 8094, 7, 76, 21062, 62, 19119, 11, 7127, 62, 19119, 11, 753, 81, 62, 14421, 62, 9662, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 404, 62, 12363, 62, 11600, 34758, 271, 62, 27432, 62, 746, 25, 10352, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 404, 28, 27110, 13, 8094, 7, 76, 21062, 11, 7127, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 404, 62, 12363, 62, 11600, 34758, 271, 62, 27432, 62, 746, 25, 10352, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 10638, 62, 404, 28, 27110, 13, 49736, 13, 647, 469, 26933, 76, 21062, 62, 49736, 60, 1343, 220, 477, 62, 71, 896, 62, 82, 13929, 3166, 828, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 17618, 62, 1659, 62, 18206, 6055, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 3849, 2100, 62, 2363, 82, 28, 1899, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26569, 41888, 6601, 31768, 39, 566, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 27432, 13, 11187, 2667, 51, 22854, 39, 566, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 76, 21062, 1298, 285, 21062, 11, 366, 71, 896, 1298, 7127, 11, 366, 9662, 1298, 1459, 62, 9662, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 790, 62, 77, 62, 2676, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48600, 198, 220, 220, 220, 1267, 628, 198, 4299, 4512, 33529, 198, 220, 37227, 28768, 262, 1388, 3047, 9052, 351, 1813, 10007, 526, 15931, 198, 220, 611, 9977, 4760, 50, 13, 35943, 6624, 657, 290, 407, 48700, 13, 70, 7753, 13, 3109, 1023, 7, 38948, 50, 13, 22915, 62, 15908, 2599, 198, 220, 220, 220, 48700, 13, 70, 7753, 13, 12050, 35, 17062, 7, 38948, 50, 13, 22915, 62, 15908, 8, 628, 220, 1303, 4149, 4512, 14, 7959, 14, 9288, 28770, 11, 2251, 40522, 290, 2746, 198, 220, 751, 62, 259, 4399, 62, 14907, 796, 9977, 4760, 50, 13, 19849, 287, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 10459, 62, 2411, 62, 1078, 1463, 1600, 366, 10459, 62, 6978, 62, 1078, 1463, 8973, 198, 220, 4512, 62, 34960, 11, 4512, 62, 7890, 796, 1100, 62, 34960, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 14211, 62, 7753, 28, 38948, 50, 13, 10025, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 751, 62, 50188, 62, 34960, 28, 1662, 751, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 751, 62, 259, 4399, 62, 14907, 28, 2860, 62, 259, 4399, 62, 14907, 11, 198, 220, 220, 220, 220, 220, 4235, 2625, 27432, 1600, 198, 220, 220, 220, 220, 220, 997, 62, 538, 5374, 82, 28, 38948, 50, 13, 22510, 62, 538, 5374, 82, 11, 15458, 7857, 28, 38948, 50, 13, 43501, 7857, 11, 198, 220, 220, 220, 220, 220, 3509, 62, 710, 394, 32289, 28, 38948, 50, 13, 9806, 62, 710, 394, 32289, 11, 198, 220, 220, 220, 220, 220, 3509, 62, 12480, 2929, 28, 38948, 50, 13, 9806, 62, 12480, 2929, 11, 198, 220, 220, 220, 220, 220, 2420, 62, 10025, 62, 7753, 28, 38948, 50, 13, 5239, 62, 10025, 62, 7753, 198, 220, 1267, 628, 220, 8383, 62, 25202, 796, 12813, 21858, 29164, 92, 1911, 18982, 7, 38948, 50, 13, 27825, 62, 21858, 62, 3672, 8, 198, 220, 351, 48700, 13, 25202, 7, 198, 220, 220, 220, 220, 220, 48700, 13, 27432, 13, 35666, 3970, 62, 25202, 62, 2617, 353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 13, 862, 62, 83, 6791, 11, 8383, 62, 25202, 28, 28816, 62, 25202, 8, 2599, 198, 220, 220, 220, 41313, 796, 4512, 62, 7890, 13, 19608, 292, 316, 13, 15883, 62, 505, 62, 9442, 62, 48727, 3419, 198, 220, 220, 220, 4540, 62, 1416, 2850, 11, 4808, 11, 14722, 11, 2746, 11, 318, 62, 27432, 62, 746, 11, 4808, 796, 2251, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 34960, 11, 41313, 198, 220, 220, 220, 1267, 628, 220, 1303, 13610, 4512, 2994, 290, 3047, 1034, 198, 220, 2994, 796, 9089, 13, 4215, 9806, 62, 19692, 298, 28338, 7, 6404, 896, 28, 46188, 20540, 62, 1416, 2850, 11, 14722, 28, 23912, 1424, 8, 198, 220, 6436, 7509, 796, 48700, 13, 27432, 13, 23159, 27871, 320, 7509, 7, 40684, 62, 4873, 28, 38948, 50, 13, 40684, 62, 4873, 8, 198, 220, 3298, 62, 9662, 796, 48700, 13, 43015, 7, 15, 11, 1438, 2625, 20541, 62, 9662, 1600, 4512, 540, 28, 25101, 8, 198, 220, 4512, 62, 404, 796, 651, 62, 27432, 62, 404, 7, 22462, 11, 6436, 7509, 11, 9977, 4760, 50, 13, 9744, 62, 15036, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9662, 28, 20541, 62, 9662, 8, 198, 220, 48700, 13, 49736, 13, 1416, 282, 283, 7203, 43, 793, 1600, 2994, 8, 628, 220, 1057, 62, 25811, 796, 48700, 13, 10987, 29046, 7, 13116, 62, 83, 22854, 62, 439, 20968, 62, 27287, 62, 4207, 28, 17821, 8, 198, 220, 6246, 62, 11250, 796, 48700, 13, 16934, 2964, 1462, 7, 6404, 62, 25202, 62, 489, 5592, 28, 17821, 8, 628, 220, 1303, 13610, 48700, 3047, 6246, 198, 220, 41498, 727, 796, 48700, 13, 27432, 13, 3351, 2001, 727, 7, 82, 8770, 28, 27110, 13, 27432, 13, 50, 8770, 7, 9806, 62, 1462, 62, 14894, 28, 12825, 4008, 198, 220, 1303, 269, 74, 457, 62, 25480, 796, 48700, 13, 27432, 13, 9787, 4122, 50, 8770, 39, 566, 7, 198, 220, 1303, 220, 220, 220, 220, 26954, 62, 15908, 28, 38948, 50, 13, 22915, 62, 15908, 11, 41498, 727, 28, 1416, 2001, 727, 11, 198, 220, 1303, 220, 220, 220, 220, 3613, 62, 20214, 28, 38948, 50, 13, 21928, 62, 16833, 198, 220, 1303, 1267, 198, 220, 1303, 10638, 62, 25480, 796, 48700, 13, 27432, 13, 22093, 50, 8770, 39, 566, 7, 198, 220, 1303, 220, 220, 220, 220, 3613, 62, 2363, 82, 28, 1899, 11, 5072, 62, 15908, 28, 38948, 50, 13, 22915, 62, 15908, 11, 198, 220, 1303, 220, 220, 220, 220, 10638, 62, 404, 28, 27110, 13, 49736, 13, 647, 469, 62, 439, 3419, 198, 220, 1303, 1267, 198, 220, 6246, 796, 48700, 13, 27432, 13, 9069, 20026, 44357, 36044, 7, 198, 220, 220, 220, 220, 220, 4958, 28, 38948, 50, 13, 9866, 11, 198, 220, 220, 220, 220, 220, 318, 62, 17351, 16193, 38948, 50, 13, 35943, 6624, 657, 828, 198, 220, 220, 220, 220, 220, 26954, 62, 15908, 28, 38948, 50, 13, 22915, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 62, 20214, 28, 38948, 50, 13, 21928, 62, 16833, 11, 198, 220, 220, 220, 220, 220, 41498, 727, 28, 1416, 2001, 727, 11, 198, 220, 220, 220, 220, 220, 3613, 62, 82, 13929, 3166, 62, 2363, 82, 28, 1899, 11, 198, 220, 220, 220, 220, 220, 1303, 26569, 41888, 49736, 62, 25480, 4357, 198, 220, 220, 220, 220, 220, 1303, 4039, 62, 8807, 62, 25480, 82, 41888, 694, 457, 62, 25480, 4357, 198, 220, 220, 220, 220, 220, 4566, 28, 29891, 62, 11250, 198, 220, 1267, 628, 220, 1303, 13610, 11525, 67, 654, 32704, 198, 220, 611, 9977, 4760, 50, 13, 35943, 6624, 657, 25, 198, 220, 220, 220, 3384, 4487, 13, 21928, 62, 20521, 12083, 62, 18893, 8937, 7, 38948, 50, 13, 22915, 62, 15908, 11, 4512, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9977, 4760, 50, 13, 26858, 62, 14933, 62, 7753, 8, 198, 220, 220, 220, 279, 11250, 796, 43396, 13, 16775, 273, 16934, 3419, 198, 220, 220, 220, 751, 62, 20521, 12083, 62, 1462, 62, 16302, 273, 7, 198, 220, 220, 220, 220, 220, 220, 220, 279, 11250, 11, 2746, 14692, 26858, 62, 12685, 12342, 1, 4083, 20521, 67, 654, 13, 3672, 13, 35312, 7, 2404, 38381, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 38948, 50, 13, 22915, 62, 15908, 11, 366, 26858, 62, 18893, 397, 13, 912, 85, 4943, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 751, 62, 20521, 12083, 62, 1462, 62, 16302, 273, 7, 198, 220, 220, 220, 220, 220, 220, 220, 279, 11250, 11, 2746, 14692, 49501, 62, 12685, 12342, 1, 4083, 20521, 67, 654, 13, 3672, 13, 35312, 7, 2404, 38381, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 38948, 50, 13, 22915, 62, 15908, 11, 366, 49501, 62, 18893, 397, 13, 912, 85, 4943, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 9977, 4760, 50, 13, 5239, 62, 10025, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 1573, 62, 20521, 67, 654, 796, 2746, 14692, 5239, 62, 12685, 12342, 1, 4083, 4775, 62, 20521, 12083, 62, 12685, 12342, 13, 20521, 67, 654, 198, 220, 220, 220, 220, 220, 751, 62, 20521, 12083, 62, 1462, 62, 16302, 273, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 11250, 11, 1573, 62, 20521, 67, 654, 13, 3672, 13, 35312, 7, 2404, 38381, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 38948, 50, 13, 22915, 62, 15908, 11, 366, 4775, 62, 18893, 397, 13, 912, 85, 4943, 198, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 43396, 13, 41464, 1096, 62, 20521, 67, 654, 7, 198, 220, 220, 220, 220, 220, 220, 220, 21293, 34379, 30562, 13, 1136, 7, 38948, 50, 13, 22915, 62, 15908, 828, 279, 11250, 198, 220, 220, 220, 1267, 628, 220, 1303, 8774, 3047, 9052, 198, 220, 2491, 62, 23350, 62, 22462, 796, 657, 13, 198, 220, 299, 20214, 796, 657, 198, 220, 308, 66, 13, 33327, 3419, 198, 220, 981, 6407, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 1459, 62, 22462, 11, 4808, 11, 4808, 796, 6246, 13, 5143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 22462, 11, 4512, 62, 404, 11, 3298, 62, 9662, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3745, 62, 11600, 34758, 271, 62, 27432, 62, 746, 25, 6407, 11, 5412, 25, 4512, 62, 48727, 62, 28144, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 34758, 271, 62, 27432, 62, 746, 25, 6407, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 28, 5143, 62, 25811, 198, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 299, 20214, 15853, 352, 198, 220, 220, 220, 220, 220, 2491, 62, 23350, 62, 22462, 15853, 1459, 62, 22462, 198, 220, 220, 220, 220, 220, 48700, 13, 6404, 2667, 13, 10951, 7203, 8600, 4064, 67, 11, 2994, 25, 4064, 13, 18, 69, 11, 2491, 42781, 2994, 25, 4064, 13, 18, 69, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 20214, 11, 1459, 62, 22462, 11, 2491, 62, 23350, 62, 22462, 1220, 299, 20214, 8, 198, 220, 220, 220, 220, 220, 611, 299, 20214, 4064, 17, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 308, 66, 13, 33327, 3419, 198, 220, 220, 220, 2845, 48700, 13, 48277, 13, 7975, 5189, 17257, 12331, 25, 198, 220, 220, 220, 220, 220, 48700, 13, 6404, 2667, 13, 10951, 7203, 12915, 286, 833, 7574, 4551, 5374, 82, 706, 4064, 67, 4831, 1600, 299, 20214, 8, 198, 220, 220, 220, 220, 220, 2270, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 598, 13, 5143, 7, 12417, 8, 198 ]
2.217247
12,083
from Module import AbstractModule
[ 6738, 19937, 1330, 27741, 26796, 628 ]
5.833333
6
from typing import Iterable import sqlalchemy as sa from scrapfishin.models import Recipe def grocery_list( s: sa.orm.Session, recipes: Iterable[Recipe] ) -> str: """ Format an iterable of Recipes into a Grocery List. Parameters ---------- s : sqlalchemy.orm.Session database session to bind objects recipes : [Recipe] list of recipes to shop for Returns ------- grocery_page : str page of sorted ingredients """ seen = [] for r in recipes: for i in r.ingredient_amounts: unit = f'{i.measurement.unit} of {i.ingredient.food}' amount = i.amount try: existing = next(s for s in seen if unit in s) except StopIteration: pass else: amount += float(existing.split(' ')[0]) seen.remove(existing) seen.append(f'{amount} {unit}') return '\n'.join(sorted(seen, key=lambda i: i.split(' of ')[-1])) def random_recipe(s: sa.orm.Session, *, n: int=1) -> Iterable(Recipe): """ Get `n` random recipes. Parameters ---------- s : sqlalchemy.orm.Session database session to bind objects n : int = [default: 1] number of recipes to return """ q = s.query(Recipe)\ .order_by(sa.func.random())\ .limit(n) return iter(q.all())
[ 6738, 19720, 1330, 40806, 540, 198, 198, 11748, 44161, 282, 26599, 355, 473, 198, 198, 6738, 15881, 11084, 259, 13, 27530, 1330, 26694, 628, 198, 4299, 16918, 62, 4868, 7, 198, 220, 220, 220, 264, 25, 473, 13, 579, 13, 36044, 11, 198, 220, 220, 220, 14296, 25, 40806, 540, 58, 37523, 60, 198, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18980, 281, 11629, 540, 286, 44229, 656, 257, 10299, 12757, 7343, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 264, 1058, 44161, 282, 26599, 13, 579, 13, 36044, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 6246, 284, 11007, 5563, 628, 220, 220, 220, 14296, 1058, 685, 37523, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 14296, 284, 6128, 329, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 16918, 62, 7700, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 2443, 286, 23243, 9391, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1775, 796, 17635, 628, 220, 220, 220, 329, 374, 287, 14296, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 374, 13, 278, 445, 1153, 62, 17287, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 796, 277, 6, 90, 72, 13, 1326, 5015, 434, 13, 20850, 92, 286, 1391, 72, 13, 278, 445, 1153, 13, 19425, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 796, 1312, 13, 17287, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4683, 796, 1306, 7, 82, 329, 264, 287, 1775, 611, 4326, 287, 264, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 13707, 29993, 341, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 15853, 12178, 7, 25687, 13, 35312, 10786, 705, 38381, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1775, 13, 28956, 7, 25687, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1775, 13, 33295, 7, 69, 6, 90, 17287, 92, 1391, 20850, 92, 11537, 628, 220, 220, 220, 1441, 705, 59, 77, 4458, 22179, 7, 82, 9741, 7, 15898, 11, 1994, 28, 50033, 1312, 25, 1312, 13, 35312, 10786, 286, 705, 38381, 12, 16, 60, 4008, 628, 198, 4299, 4738, 62, 29102, 431, 7, 82, 25, 473, 13, 579, 13, 36044, 11, 1635, 11, 299, 25, 493, 28, 16, 8, 4613, 40806, 540, 7, 37523, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 4600, 77, 63, 4738, 14296, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 264, 1058, 44161, 282, 26599, 13, 579, 13, 36044, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 6246, 284, 11007, 5563, 628, 220, 220, 220, 299, 1058, 493, 796, 685, 12286, 25, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 14296, 284, 1441, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10662, 796, 264, 13, 22766, 7, 37523, 19415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 2875, 62, 1525, 7, 11400, 13, 20786, 13, 25120, 3419, 19415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 32374, 7, 77, 8, 628, 220, 220, 220, 1441, 11629, 7, 80, 13, 439, 28955, 198 ]
2.231132
636
#!/usr/bin/env python """NDG Security Attribute Authority test harness for unit test site 'A' NERC Data Grid Project """ __author__ = "P J Kershaw" __date__ = "24/09/08" __copyright__ = "(C) 2009 Science and Technology Facilities Council" __contact__ = "[email protected]" __revision__ = "$Id$" from os import path import optparse from paste.script.util.logging_config import fileConfig from paste.deploy import loadapp from ndg.security.server.utils.wsgi_utils import GunicornServerApp from ndg.security.server.test.base import NDGSEC_TEST_CONFIG_DIR INI_FILENAME = 'attribute-service.ini' CFG_FILEPATH = path.join(path.dirname(path.abspath(__file__)), INI_FILENAME) if __name__ == '__main__': def_cert_filepath = path.join(NDGSEC_TEST_CONFIG_DIR, 'pki', 'localhost.crt') def_prikey_filepath = path.join(NDGSEC_TEST_CONFIG_DIR, 'pki', 'localhost.key') parser = optparse.OptionParser() parser.add_option("-p", "--port", dest="port", default=5443, type='int', help="port number to run under") parser.add_option("-c", "--cert-file", dest='cert_filepath', default=def_cert_filepath, help="SSL Certificate file") parser.add_option("-k", "--private-key-file", dest='prikey_filepath', default=def_prikey_filepath, help="SSL private key file") parser.add_option("-f", "--conf", dest="config_filepath", default=CFG_FILEPATH, help="Configuration file path") opt = parser.parse_args()[0] dir_name = path.dirname(__file__) options = { 'bind': '{}:{}'.format('127.0.0.1', opt.port), 'keyfile': opt.prikey_filepath, 'certfile': opt.cert_filepath } fileConfig(opt.config_filepath) app = loadapp('config:%s' % opt.config_filepath) gunicorn_server_app = GunicornServerApp(app, options) gunicorn_server_app.run()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 8575, 38, 4765, 3460, 4163, 11416, 1332, 19356, 329, 4326, 1332, 2524, 705, 32, 6, 198, 198, 21479, 34, 6060, 24846, 4935, 198, 198, 37811, 198, 834, 9800, 834, 796, 366, 47, 449, 49521, 26615, 1, 198, 834, 4475, 834, 796, 366, 1731, 14, 2931, 14, 2919, 1, 198, 834, 22163, 4766, 834, 796, 30629, 34, 8, 3717, 5800, 290, 8987, 48939, 4281, 1, 198, 834, 32057, 834, 796, 366, 18673, 541, 13, 42, 364, 26615, 31, 301, 16072, 13, 330, 13, 2724, 1, 198, 834, 260, 10178, 834, 796, 17971, 7390, 3, 1, 198, 6738, 28686, 1330, 3108, 198, 11748, 2172, 29572, 198, 198, 6738, 17008, 13, 12048, 13, 22602, 13, 6404, 2667, 62, 11250, 1330, 2393, 16934, 220, 220, 220, 220, 198, 6738, 17008, 13, 2934, 1420, 1330, 3440, 1324, 198, 198, 6738, 299, 67, 70, 13, 12961, 13, 15388, 13, 26791, 13, 18504, 12397, 62, 26791, 1330, 6748, 291, 1211, 10697, 4677, 198, 6738, 299, 67, 70, 13, 12961, 13, 15388, 13, 9288, 13, 8692, 1330, 25524, 14313, 2943, 62, 51, 6465, 62, 10943, 16254, 62, 34720, 198, 198, 1268, 40, 62, 46700, 1677, 10067, 796, 705, 42348, 12, 15271, 13, 5362, 6, 198, 22495, 38, 62, 25664, 34219, 796, 3108, 13, 22179, 7, 6978, 13, 15908, 3672, 7, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 36911, 3268, 40, 62, 46700, 1677, 10067, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 220, 220, 220, 220, 198, 220, 220, 220, 825, 62, 22583, 62, 7753, 6978, 796, 3108, 13, 22179, 7, 8575, 14313, 2943, 62, 51, 6465, 62, 10943, 16254, 62, 34720, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 4106, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36750, 13, 6098, 83, 11537, 198, 220, 220, 220, 825, 62, 3448, 2539, 62, 7753, 6978, 796, 3108, 13, 22179, 7, 8575, 14313, 2943, 62, 51, 6465, 62, 10943, 16254, 62, 34720, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 4106, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36750, 13, 2539, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 30751, 796, 2172, 29572, 13, 19722, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 79, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 634, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 634, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 20, 34938, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 634, 1271, 284, 1057, 739, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 66, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 22583, 12, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 22583, 62, 7753, 6978, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 4299, 62, 22583, 62, 7753, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 31127, 27895, 2393, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 74, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 19734, 12, 2539, 12, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 3448, 2539, 62, 7753, 6978, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 4299, 62, 3448, 2539, 62, 7753, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 31127, 2839, 1994, 2393, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 18076, 7203, 12, 69, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 10414, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 11250, 62, 7753, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 22495, 38, 62, 25664, 34219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 38149, 2393, 3108, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2172, 796, 30751, 13, 29572, 62, 22046, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 26672, 62, 3672, 796, 3108, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 220, 220, 220, 3689, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21653, 10354, 705, 90, 92, 29164, 92, 4458, 18982, 10786, 16799, 13, 15, 13, 15, 13, 16, 3256, 2172, 13, 634, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2539, 7753, 10354, 2172, 13, 3448, 2539, 62, 7753, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22583, 7753, 10354, 2172, 13, 22583, 62, 7753, 6978, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 2393, 16934, 7, 8738, 13, 11250, 62, 7753, 6978, 8, 198, 220, 220, 220, 598, 796, 3440, 1324, 10786, 11250, 25, 4, 82, 6, 4064, 2172, 13, 11250, 62, 7753, 6978, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2485, 291, 1211, 62, 15388, 62, 1324, 796, 6748, 291, 1211, 10697, 4677, 7, 1324, 11, 3689, 8, 198, 220, 220, 220, 2485, 291, 1211, 62, 15388, 62, 1324, 13, 5143, 3419 ]
1.908055
1,229
import random from tyckiting_client.ai import base from tyckiting_client import actions from tyckiting_client.ai.strategies import pipelineEscaping from tyckiting_client.ai.strategies import scanning from tyckiting_client.ai.strategies import uncertainTracking ''' Rules: like robin but in certain situations endangered bots stay and do an other action ''' STAY_PROB = 0.25
[ 11748, 4738, 198, 198, 6738, 1259, 694, 1780, 62, 16366, 13, 1872, 1330, 2779, 198, 6738, 1259, 694, 1780, 62, 16366, 1330, 4028, 198, 6738, 1259, 694, 1780, 62, 16366, 13, 1872, 13, 2536, 2397, 444, 1330, 11523, 47051, 9269, 198, 6738, 1259, 694, 1780, 62, 16366, 13, 1872, 13, 2536, 2397, 444, 1330, 21976, 198, 6738, 1259, 694, 1780, 62, 16366, 13, 1872, 13, 2536, 2397, 444, 1330, 8627, 2898, 5430, 198, 198, 7061, 6, 198, 37766, 25, 198, 2339, 3857, 259, 475, 287, 1728, 7445, 22700, 29641, 2652, 290, 466, 281, 584, 2223, 198, 7061, 6, 198, 198, 2257, 4792, 62, 4805, 9864, 796, 657, 13, 1495, 628 ]
3.436364
110
""" Code related to face detection and manipulation """ #pip install facenet_pytorch from facenet_pytorch import MTCNN mtcnn = MTCNN(image_size=256, margin=80) # simplest ye olde trustworthy MTCNN for face detection with landmarks # my version of isOdd, should make a separate repo for it :D # the actual scaler function """ A useful scaler algorithm, based on face detection. Takes PIL.Image, returns a uniformly scaled PIL.Image boxes: a list of detected bboxes _img: PIL.Image max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU. target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension. fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit. max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess. """
[ 37811, 198, 220, 220, 220, 6127, 3519, 284, 1986, 13326, 290, 17512, 198, 37811, 198, 198, 2, 79, 541, 2721, 1777, 268, 316, 62, 9078, 13165, 354, 198, 198, 6738, 1777, 268, 316, 62, 9078, 13165, 354, 1330, 337, 4825, 6144, 198, 16762, 66, 20471, 796, 337, 4825, 6144, 7, 9060, 62, 7857, 28, 11645, 11, 10330, 28, 1795, 8, 198, 198, 2, 24043, 9838, 1468, 68, 34412, 337, 4825, 6144, 329, 1986, 13326, 351, 41532, 198, 198, 2, 616, 2196, 286, 318, 46, 1860, 11, 815, 787, 257, 4553, 29924, 329, 340, 1058, 35, 198, 198, 2, 262, 4036, 16578, 263, 2163, 198, 198, 37811, 220, 198, 220, 220, 220, 317, 4465, 16578, 263, 11862, 11, 1912, 319, 1986, 13326, 13, 198, 220, 220, 220, 33687, 350, 4146, 13, 5159, 11, 5860, 257, 42096, 27464, 350, 4146, 13, 5159, 628, 220, 220, 220, 10559, 25, 257, 1351, 286, 12326, 275, 29305, 198, 220, 220, 220, 4808, 9600, 25, 350, 4146, 13, 5159, 198, 220, 220, 220, 3509, 62, 411, 25, 5415, 17465, 1989, 284, 4197, 656, 13, 5765, 284, 2652, 2174, 262, 6453, 2390, 7095, 286, 534, 11362, 13, 198, 220, 220, 220, 2496, 62, 2550, 25, 10348, 1986, 2546, 13, 471, 27566, 1000, 393, 866, 9888, 262, 2187, 2939, 284, 4197, 262, 12326, 1986, 656, 326, 15793, 13, 198, 220, 220, 220, 5969, 62, 10366, 952, 25, 5969, 5046, 13, 16583, 2850, 262, 1986, 2546, 11, 475, 1595, 470, 8856, 262, 3509, 62, 411, 4179, 13, 198, 220, 220, 220, 3509, 62, 4739, 38765, 25, 5415, 44918, 8064, 13, 43280, 658, 422, 20796, 4263, 351, 7009, 6698, 284, 257, 44701, 2085, 13, 198, 37811, 628 ]
3.314079
277
{%- if cookiecutter.copyright != "None" -%} # Copyright (c) {% now "utc", '%Y' %}, {{ cookiecutter.copyright }}. Unauthorised use, distribution or duplication is prohibited {% endif %} """ {{ cookiecutter.project_name }}. {{ cookiecutter.library_name }} """ from flask import Blueprint, jsonify from observability.logger import Logger blueprint = Blueprint("health_check", __name__, url_prefix="/api/health") logger = Logger.init("{{ cookiecutter.__project_name_slug }}") @blueprint.route("/") def health_check(): """Check health status.""" logger.info("Health check") return jsonify({"status": "ok"})
[ 90, 33963, 611, 19751, 8968, 353, 13, 22163, 4766, 14512, 366, 14202, 1, 532, 4, 92, 198, 2, 15069, 357, 66, 8, 1391, 4, 783, 366, 315, 66, 1600, 705, 4, 56, 6, 4064, 5512, 22935, 19751, 8968, 353, 13, 22163, 4766, 1782, 27422, 791, 9800, 1417, 779, 11, 6082, 393, 50124, 318, 12244, 198, 90, 4, 45762, 4064, 92, 198, 37811, 198, 27007, 19751, 8968, 353, 13, 16302, 62, 3672, 1782, 27422, 198, 198, 27007, 19751, 8968, 353, 13, 32016, 62, 3672, 34949, 198, 37811, 198, 198, 6738, 42903, 1330, 39932, 11, 33918, 1958, 198, 198, 6738, 3799, 1799, 13, 6404, 1362, 1330, 5972, 1362, 198, 198, 17585, 4798, 796, 39932, 7203, 13948, 62, 9122, 1600, 11593, 3672, 834, 11, 19016, 62, 40290, 35922, 15042, 14, 13948, 4943, 198, 198, 6404, 1362, 796, 5972, 1362, 13, 15003, 7203, 27007, 19751, 8968, 353, 13, 834, 16302, 62, 3672, 62, 6649, 1018, 34949, 4943, 628, 198, 31, 17585, 4798, 13, 38629, 7203, 14, 4943, 198, 4299, 1535, 62, 9122, 33529, 198, 220, 220, 220, 37227, 9787, 1535, 3722, 526, 15931, 198, 220, 220, 220, 49706, 13, 10951, 7203, 18081, 2198, 4943, 198, 220, 220, 220, 1441, 33918, 1958, 7, 4895, 13376, 1298, 366, 482, 20662, 8, 198 ]
3.014563
206
#!/usr/bin/env python #-*- coding: utf-8 -*- import sys import os import pytest from mock import patch sys.path.insert(0, os.path.abspath('./')) from feuersoftware import PublicAPI TOKEN = '2xgRoQfoMGb4IveCDJIZqOO1l8hZZ5jT5mAw7SSk1otrFSq50IA2HIYB3luEpv7Vw8BWwG'\ 'Y2zV96VUkOF3FCZs2OP03qaTWF3CDrUHOKndvLIFTTgx0FCMBTFBRF1DfG4g3rs8BSMHB4'\ '6qph1AlxOZ6parmJlp90V3GQB4EoI6DFdKE4SZeBuu46mXoaDlSmpTTS3FCpeG7oEUJVgy'\ 'pLZkZSFPRng5HdKhp6HG2XmNIMAtKTG3DAUWuKRi3cZ4JstLj05y4r7jt81g4DYXz9gVYc'\ 'UWk2pOkIZ9RPmu0s4LlaXHEK3TJlxLIUt5eHIzPUVKXyhdJDckviPsTYNfRxkpcNGd0vAb'\ 'zfzwMadgb4xaOi1v6ZpsRfXyOPgpudcnO6rwwi9TlAWNZ2075CO7HVFEP31yGhXmYsdFwj'\ 'ne3UIraWovMWHqeyv2yQLigKLePDAgXYUFqQpZ9P5ScznSMUg0ZnxS0Miy0qKe9zDYtqTk'\ 'qQVwrUGfGVFp4Ti83NJLCCGUOCmF0ovOB28mYyQIqGAi2MDaNIuAvz6HT1tGAo5nYdzOeu' @patch("feuersoftware.logging.Logger.info") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.error") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.info") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.info") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.info") @patch("feuersoftware.logging.Logger.warning") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.error") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.info") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.error") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.info") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.info") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.info") @patch("feuersoftware.logging.Logger.warning") @patch("feuersoftware.requests") @patch("feuersoftware.logging.Logger.error") @patch("feuersoftware.requests")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 12, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 12972, 9288, 198, 6738, 15290, 1330, 8529, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 397, 2777, 776, 7, 4458, 14, 6, 4008, 198, 198, 6738, 730, 42178, 11205, 1574, 1330, 5094, 17614, 198, 198, 10468, 43959, 796, 705, 17, 87, 70, 15450, 48, 6513, 20474, 65, 19, 40, 303, 8610, 41, 14887, 80, 6684, 16, 75, 23, 71, 30148, 20, 73, 51, 20, 76, 23155, 22, 5432, 74, 16, 313, 81, 10652, 80, 1120, 3539, 17, 25374, 56, 33, 18, 2290, 13807, 85, 22, 53, 86, 23, 48802, 86, 38, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 705, 56, 17, 89, 53, 4846, 53, 28425, 19238, 18, 4851, 57, 82, 17, 3185, 3070, 20402, 34551, 37, 18, 34, 6187, 52, 39, 11380, 358, 85, 43, 5064, 15751, 70, 87, 15, 4851, 10744, 10234, 11473, 37, 16, 35, 69, 38, 19, 70, 18, 3808, 23, 4462, 44, 32886, 19, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21, 80, 746, 16, 2348, 87, 46, 57, 21, 79, 1670, 41, 34431, 3829, 53, 18, 38, 40291, 19, 36, 78, 40, 21, 8068, 67, 7336, 19, 50, 36056, 33, 12303, 3510, 76, 55, 12162, 35, 75, 50, 3149, 51, 4694, 18, 4851, 431, 38, 22, 78, 19684, 41697, 1360, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 705, 79, 43, 57, 74, 57, 20802, 4805, 782, 20, 39, 67, 42, 24831, 21, 39, 38, 17, 55, 76, 45, 3955, 2953, 42, 35990, 18, 5631, 52, 54, 84, 30758, 72, 18, 66, 57, 19, 41, 301, 43, 73, 2713, 88, 19, 81, 22, 73, 83, 6659, 70, 19, 35, 56, 55, 89, 24, 70, 53, 56, 66, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 705, 52, 54, 74, 17, 79, 18690, 14887, 24, 20031, 30300, 15, 82, 19, 43, 5031, 55, 13909, 42, 18, 51, 41, 75, 87, 31271, 18274, 20, 68, 25374, 89, 5105, 47191, 55, 88, 31298, 37882, 694, 8903, 12016, 9936, 45, 69, 49, 87, 74, 14751, 10503, 67, 15, 85, 4826, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 705, 89, 69, 89, 86, 18454, 22296, 19, 27865, 46, 72, 16, 85, 21, 57, 862, 49, 69, 55, 88, 3185, 31197, 463, 31522, 46, 21, 81, 1383, 72, 24, 51, 75, 12298, 37371, 1238, 2425, 8220, 22, 39, 53, 37, 8905, 3132, 88, 41126, 55, 76, 56, 21282, 37, 86, 73, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 705, 710, 18, 10080, 430, 54, 709, 44, 12418, 80, 2959, 85, 17, 88, 9711, 328, 42, 3123, 47, 5631, 70, 34278, 36820, 80, 48, 79, 57, 24, 47, 20, 3351, 47347, 12310, 52, 70, 15, 57, 77, 87, 50, 15, 44, 7745, 15, 80, 8896, 24, 89, 35, 56, 83, 80, 51, 74, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 705, 80, 48, 53, 18351, 7340, 69, 37094, 37, 79, 19, 40533, 5999, 41074, 43, 4093, 38022, 4503, 76, 37, 15, 709, 9864, 2078, 76, 56, 88, 48, 40, 80, 9273, 72, 17, 12740, 64, 22125, 84, 7355, 89, 21, 6535, 16, 83, 9273, 78, 20, 77, 56, 67, 89, 46, 12496, 6, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 10951, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 18224, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 10951, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 10951, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 10951, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 43917, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 18224, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 10951, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 18224, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 10951, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 10951, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 10951, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 43917, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 628, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 6404, 2667, 13, 11187, 1362, 13, 18224, 4943, 198, 31, 17147, 7203, 5036, 42178, 11205, 1574, 13, 8897, 3558, 4943, 198 ]
1.956432
964
# Generated by Django 3.1.2 on 2020-10-27 11:12 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 17, 319, 12131, 12, 940, 12, 1983, 1367, 25, 1065, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
3.019231
52
"""Module for events adapter.""" import copy import logging import os from typing import List from aiohttp import ClientSession from aiohttp import hdrs from aiohttp import web from multidict import MultiDict EVENTS_HOST_SERVER = os.getenv("EVENTS_HOST_SERVER", "localhost") EVENTS_HOST_PORT = os.getenv("EVENTS_HOST_PORT", "8082") EVENT_SERVICE_URL = f"http://{EVENTS_HOST_SERVER}:{EVENTS_HOST_PORT}" class DashboardAdapter: """Class representing events.""" async def get_all_events(self, token: str) -> List: """Get all events function.""" events = [] headers = MultiDict( [ (hdrs.CONTENT_TYPE, "application/json"), (hdrs.AUTHORIZATION, f"Bearer {token}"), ] ) async with ClientSession() as session: async with session.get( f"{EVENT_SERVICE_URL}/events", headers=headers ) as resp: logging.debug(f"get_all_events - got response {resp.status}") if resp.status == 200: events = await resp.json() logging.debug(f"events - got response {events}") elif resp.status == 401: logging.info("TODO Performing new login") # Perform login else: logging.error(f"Error {resp.status} getting events: {resp} ") return events async def get_event(self, token: str, id: str) -> dict: """Get event function.""" event = {} headers = MultiDict( [ (hdrs.CONTENT_TYPE, "application/json"), (hdrs.AUTHORIZATION, f"Bearer {token}"), ] ) async with ClientSession() as session: async with session.get( f"{EVENT_SERVICE_URL}/events/{id}", headers=headers ) as resp: logging.debug(f"get_event {id} - got response {resp.status}") if resp.status == 200: event = await resp.json() logging.debug(f"event - got response {event}") else: logging.error(f"Error {resp.status} getting events: {resp} ") return event async def create_event(self, token: str, event: dict) -> str: """Create new event function.""" id = "" headers = MultiDict( [ (hdrs.CONTENT_TYPE, "application/json"), (hdrs.AUTHORIZATION, f"Bearer {token}"), ] ) request_body = copy.deepcopy(event) async with ClientSession() as session: async with session.post( f"{EVENT_SERVICE_URL}/events", headers=headers, json=request_body ) as resp: if resp.status == 201: logging.debug(f"result - got response {resp}") location = resp.headers[hdrs.LOCATION] id = location.split(os.path.sep)[-1] else: logging.error(f"create_event failed - {resp.status}") raise web.HTTPBadRequest(reason="Create event failed.") return id async def delete_event(self, token: str, id: str) -> str: """Delete event function.""" headers = MultiDict( [ (hdrs.CONTENT_TYPE, "application/json"), (hdrs.AUTHORIZATION, f"Bearer {token}"), ] ) url = f"{EVENT_SERVICE_URL}/events/{id}" async with ClientSession() as session: async with session.delete(url, headers=headers) as response: pass logging.debug(f"Delete event: {id} - res {response.status}") if response.status == 204: logging.debug(f"result - got response {response}") else: logging.error(f"delete_event failed - {response.status}, {response}") raise web.HTTPBadRequest(reason="Delete event failed.") return str(response.status) async def update_event(self, token: str, id: str, request_body: dict) -> str: """Update event function.""" headers = MultiDict( [ (hdrs.CONTENT_TYPE, "application/json"), (hdrs.AUTHORIZATION, f"Bearer {token}"), ] ) async with ClientSession() as session: async with session.put( f"{EVENT_SERVICE_URL}/events/{id}", headers=headers, json=request_body ) as resp: if resp.status == 204: logging.debug(f"update event - got response {resp}") else: logging.error(f"update_event failed - {resp.status}") raise web.HTTPBadRequest(reason="Update event failed.") logging.debug(f"Updated event: {id} - res {resp.status}") return str(resp.status)
[ 37811, 26796, 329, 2995, 21302, 526, 15931, 198, 11748, 4866, 198, 11748, 18931, 198, 11748, 28686, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 257, 952, 4023, 1330, 20985, 36044, 198, 6738, 257, 952, 4023, 1330, 289, 67, 3808, 198, 6738, 257, 952, 4023, 1330, 3992, 198, 6738, 1963, 312, 713, 1330, 15237, 35, 713, 198, 198, 20114, 15365, 62, 39, 10892, 62, 35009, 5959, 796, 28686, 13, 1136, 24330, 7203, 20114, 15365, 62, 39, 10892, 62, 35009, 5959, 1600, 366, 36750, 4943, 198, 20114, 15365, 62, 39, 10892, 62, 15490, 796, 28686, 13, 1136, 24330, 7203, 20114, 15365, 62, 39, 10892, 62, 15490, 1600, 366, 1795, 6469, 4943, 198, 20114, 3525, 62, 35009, 27389, 62, 21886, 796, 277, 1, 4023, 1378, 90, 20114, 15365, 62, 39, 10892, 62, 35009, 5959, 92, 29164, 20114, 15365, 62, 39, 10892, 62, 15490, 36786, 628, 198, 4871, 16189, 3526, 47307, 25, 198, 220, 220, 220, 37227, 9487, 10200, 2995, 526, 15931, 628, 220, 220, 220, 30351, 825, 651, 62, 439, 62, 31534, 7, 944, 11, 11241, 25, 965, 8, 4613, 7343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 477, 2995, 2163, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2995, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 15237, 35, 713, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 37815, 3525, 62, 25216, 11, 366, 31438, 14, 17752, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 32, 24318, 1581, 14887, 6234, 11, 277, 1, 3856, 11258, 1391, 30001, 92, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 20985, 36044, 3419, 355, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 6246, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 20114, 3525, 62, 35009, 27389, 62, 21886, 92, 14, 31534, 1600, 24697, 28, 50145, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 355, 1217, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 1136, 62, 439, 62, 31534, 532, 1392, 2882, 1391, 4363, 13, 13376, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 13, 13376, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2995, 796, 25507, 1217, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 31534, 532, 1392, 2882, 1391, 31534, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1217, 13, 13376, 6624, 22219, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 51, 3727, 46, 2448, 15464, 649, 17594, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35006, 17594, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 69, 1, 12331, 1391, 4363, 13, 13376, 92, 1972, 2995, 25, 1391, 4363, 92, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2995, 628, 220, 220, 220, 30351, 825, 651, 62, 15596, 7, 944, 11, 11241, 25, 965, 11, 4686, 25, 965, 8, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 1785, 2163, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 15237, 35, 713, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 37815, 3525, 62, 25216, 11, 366, 31438, 14, 17752, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 32, 24318, 1581, 14887, 6234, 11, 277, 1, 3856, 11258, 1391, 30001, 92, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 20985, 36044, 3419, 355, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 6246, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 20114, 3525, 62, 35009, 27389, 62, 21886, 92, 14, 31534, 14, 90, 312, 92, 1600, 24697, 28, 50145, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 355, 1217, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 1136, 62, 15596, 1391, 312, 92, 532, 1392, 2882, 1391, 4363, 13, 13376, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 13, 13376, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 796, 25507, 1217, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 15596, 532, 1392, 2882, 1391, 15596, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 69, 1, 12331, 1391, 4363, 13, 13376, 92, 1972, 2995, 25, 1391, 4363, 92, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1785, 628, 220, 220, 220, 30351, 825, 2251, 62, 15596, 7, 944, 11, 11241, 25, 965, 11, 1785, 25, 8633, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 649, 1785, 2163, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 15237, 35, 713, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 37815, 3525, 62, 25216, 11, 366, 31438, 14, 17752, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 32, 24318, 1581, 14887, 6234, 11, 277, 1, 3856, 11258, 1391, 30001, 92, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 2618, 796, 4866, 13, 22089, 30073, 7, 15596, 8, 628, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 20985, 36044, 3419, 355, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 6246, 13, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 20114, 3525, 62, 35009, 27389, 62, 21886, 92, 14, 31534, 1600, 24697, 28, 50145, 11, 33918, 28, 25927, 62, 2618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 355, 1217, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 13, 13376, 6624, 580, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 20274, 532, 1392, 2882, 1391, 4363, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 796, 1217, 13, 50145, 58, 31298, 3808, 13, 29701, 6234, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 4067, 13, 35312, 7, 418, 13, 6978, 13, 325, 79, 38381, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 69, 1, 17953, 62, 15596, 4054, 532, 1391, 4363, 13, 13376, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3992, 13, 40717, 22069, 18453, 7, 41181, 2625, 16447, 1785, 4054, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4686, 628, 220, 220, 220, 30351, 825, 12233, 62, 15596, 7, 944, 11, 11241, 25, 965, 11, 4686, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 1785, 2163, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 15237, 35, 713, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 37815, 3525, 62, 25216, 11, 366, 31438, 14, 17752, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 32, 24318, 1581, 14887, 6234, 11, 277, 1, 3856, 11258, 1391, 30001, 92, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 277, 1, 90, 20114, 3525, 62, 35009, 27389, 62, 21886, 92, 14, 31534, 14, 90, 312, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 20985, 36044, 3419, 355, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 6246, 13, 33678, 7, 6371, 11, 24697, 28, 50145, 8, 355, 2882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 38727, 1785, 25, 1391, 312, 92, 532, 581, 1391, 26209, 13, 13376, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 6624, 26956, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 20274, 532, 1392, 2882, 1391, 26209, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 69, 1, 33678, 62, 15596, 4054, 532, 1391, 26209, 13, 13376, 5512, 1391, 26209, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3992, 13, 40717, 22069, 18453, 7, 41181, 2625, 38727, 1785, 4054, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 7, 26209, 13, 13376, 8, 628, 220, 220, 220, 30351, 825, 4296, 62, 15596, 7, 944, 11, 11241, 25, 965, 11, 4686, 25, 965, 11, 2581, 62, 2618, 25, 8633, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 1785, 2163, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 15237, 35, 713, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 37815, 3525, 62, 25216, 11, 366, 31438, 14, 17752, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 31298, 3808, 13, 32, 24318, 1581, 14887, 6234, 11, 277, 1, 3856, 11258, 1391, 30001, 92, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 20985, 36044, 3419, 355, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 6246, 13, 1996, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 20114, 3525, 62, 35009, 27389, 62, 21886, 92, 14, 31534, 14, 90, 312, 92, 1600, 24697, 28, 50145, 11, 33918, 28, 25927, 62, 2618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 355, 1217, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 13, 13376, 6624, 26956, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 19119, 1785, 532, 1392, 2882, 1391, 4363, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 69, 1, 19119, 62, 15596, 4054, 532, 1391, 4363, 13, 13376, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3992, 13, 40717, 22069, 18453, 7, 41181, 2625, 10260, 1785, 4054, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 1, 17354, 1785, 25, 1391, 312, 92, 532, 581, 1391, 4363, 13, 13376, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 7, 4363, 13, 13376, 8, 198 ]
2.018753
2,453
#!/usr/bin/python3 DOC="""feots_compare feots_compare is use to compare two FEOTS NetCDF output files and report simple statistics. Currently feots_compare will generate a histogram of log_{10}( |f_1 - f_2| ) where f_1 and f_2 are tracer fields from two FEOTS output files. Usage: feots_compare absdiff <file1> <file2> [--field=<tracerfield>] Commands: absdiff Compute statistics using absolute differences between two FEOTS files Options: -h --help Display this help screen --field=<string> Specification of the field in the NetCDF file to compare [default: DyeTracer_01] """ import netCDF4 as nc import numpy as np from matplotlib import pyplot as plt from docopt import docopt #END parse_cli #END main if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 38715, 2625, 15931, 5036, 1747, 62, 5589, 533, 198, 198, 5036, 1747, 62, 5589, 533, 318, 779, 284, 8996, 734, 18630, 33472, 3433, 34, 8068, 5072, 3696, 290, 989, 2829, 7869, 13, 198, 21327, 730, 1747, 62, 5589, 533, 481, 7716, 257, 1554, 21857, 286, 2604, 23330, 940, 92, 7, 930, 69, 62, 16, 532, 277, 62, 17, 91, 1267, 810, 220, 277, 62, 16, 290, 198, 69, 62, 17, 389, 491, 11736, 7032, 422, 734, 18630, 33472, 5072, 3696, 13, 198, 198, 28350, 25, 198, 220, 730, 1747, 62, 5589, 533, 2352, 26069, 1279, 7753, 16, 29, 1279, 7753, 17, 29, 685, 438, 3245, 28, 27, 2213, 11736, 3245, 37981, 198, 198, 6935, 1746, 25, 198, 220, 2352, 26069, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 7869, 1262, 4112, 5400, 1022, 734, 18630, 33472, 3696, 198, 198, 29046, 25, 198, 220, 532, 71, 1377, 16794, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16531, 428, 1037, 3159, 198, 220, 1377, 3245, 28, 27, 8841, 29, 220, 220, 220, 220, 18291, 2649, 286, 262, 2214, 287, 262, 3433, 34, 8068, 2393, 284, 8996, 685, 12286, 25, 360, 5948, 2898, 11736, 62, 486, 60, 198, 37811, 198, 11748, 2010, 34, 8068, 19, 355, 299, 66, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 6738, 2205, 8738, 1330, 2205, 8738, 198, 198, 2, 10619, 21136, 62, 44506, 198, 198, 2, 10619, 1388, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 1388, 3419, 198 ]
2.830935
278
import importlib import json import os from oauth2client import client, crypt from opendc.util import exceptions, parameter_checker from opendc.util.exceptions import ClientError class Request: """WebSocket message to REST request mapping.""" def __init__(self, message=None): """"Initialize a Request from a socket message.""" # Get the Request parameters from the message if message is None: return try: self.message = message self.id = message['id'] self.path = message['path'] self.method = message['method'] self.params_body = message['parameters']['body'] self.params_path = message['parameters']['path'] self.params_query = message['parameters']['query'] self.token = message['token'] except KeyError as exception: raise exceptions.MissingRequestParameterError(exception) # Parse the path and import the appropriate module try: self.path = message['path'].strip('/') module_base = 'opendc.api.{}.endpoint' module_path = self.path.replace('{', '').replace('}', '').replace('/', '.') self.module = importlib.import_module(module_base.format(module_path)) except ImportError as e: print(e) raise exceptions.UnimplementedEndpointError('Unimplemented endpoint: {}.'.format(self.path)) # Check the method if self.method not in ['POST', 'GET', 'PUT', 'PATCH', 'DELETE']: raise exceptions.UnsupportedMethodError('Non-rest method: {}'.format(self.method)) if not hasattr(self.module, self.method): raise exceptions.UnsupportedMethodError('Unimplemented method at endpoint {}: {}'.format( self.path, self.method)) # Verify the user if "OPENDC_FLASK_TESTING" in os.environ: self.google_id = 'test' return try: self.google_id = self._verify_token(self.token) except crypt.AppIdentityError as e: raise exceptions.AuthorizationTokenError(e) def check_required_parameters(self, **kwargs): """Raise an error if a parameter is missing or of the wrong type.""" try: parameter_checker.check(self, **kwargs) except exceptions.ParameterError as e: raise ClientError(Response(400, str(e))) def process(self): """Process the Request and return a Response.""" method = getattr(self.module, self.method) try: response = method(self) except ClientError as e: e.response.id = self.id return e.response response.id = self.id return response def to_JSON(self): """Return a JSON representation of this Request""" self.message['id'] = 0 self.message['token'] = None return json.dumps(self.message) @staticmethod def _verify_token(token): """Return the ID of the signed-in user. Or throw an Exception if the token is invalid. """ try: id_info = client.verify_id_token(token, os.environ['OPENDC_OAUTH_CLIENT_ID']) except Exception as e: print(e) raise crypt.AppIdentityError('Exception caught trying to verify ID token: {}'.format(e)) if id_info['aud'] != os.environ['OPENDC_OAUTH_CLIENT_ID']: raise crypt.AppIdentityError('Unrecognized client.') if id_info['iss'] not in ['accounts.google.com', 'https://accounts.google.com']: raise crypt.AppIdentityError('Wrong issuer.') return id_info['sub'] class Response: """Response to websocket mapping""" def __init__(self, status_code, status_description, content=None): """Initialize a new Response.""" self.id = 0 self.status = {'code': status_code, 'description': status_description} self.content = content def to_JSON(self): """"Return a JSON representation of this Response""" data = {'id': self.id, 'status': self.status} if self.content is not None: data['content'] = self.content return json.dumps(data, default=str)
[ 11748, 1330, 8019, 198, 11748, 33918, 198, 11748, 28686, 198, 198, 6738, 267, 18439, 17, 16366, 1330, 5456, 11, 8194, 198, 198, 6738, 1034, 437, 66, 13, 22602, 1330, 13269, 11, 11507, 62, 9122, 263, 198, 6738, 1034, 437, 66, 13, 22602, 13, 1069, 11755, 1330, 20985, 12331, 628, 198, 4871, 19390, 25, 198, 220, 220, 220, 37227, 13908, 39105, 3275, 284, 30617, 2581, 16855, 526, 15931, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3275, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 24243, 1096, 257, 19390, 422, 257, 17802, 3275, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 19390, 10007, 422, 262, 3275, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3275, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20500, 796, 3275, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 796, 3275, 17816, 312, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 796, 3275, 17816, 6978, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24396, 796, 3275, 17816, 24396, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37266, 62, 2618, 796, 3275, 17816, 17143, 7307, 6, 7131, 6, 2618, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37266, 62, 6978, 796, 3275, 17816, 17143, 7307, 6, 7131, 6, 6978, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37266, 62, 22766, 796, 3275, 17816, 17143, 7307, 6, 7131, 6, 22766, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 796, 3275, 17816, 30001, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 355, 6631, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 13269, 13, 43730, 18453, 36301, 12331, 7, 1069, 4516, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2547, 325, 262, 3108, 290, 1330, 262, 5035, 8265, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 796, 3275, 17816, 6978, 6, 4083, 36311, 10786, 14, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 62, 8692, 796, 705, 404, 437, 66, 13, 15042, 13, 90, 27422, 437, 4122, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 62, 6978, 796, 2116, 13, 6978, 13, 33491, 10786, 90, 3256, 10148, 737, 33491, 10786, 92, 3256, 10148, 737, 33491, 10786, 14, 3256, 705, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21412, 796, 1330, 8019, 13, 11748, 62, 21412, 7, 21412, 62, 8692, 13, 18982, 7, 21412, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 17267, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 13269, 13, 3118, 320, 1154, 12061, 12915, 4122, 12331, 10786, 3118, 320, 1154, 12061, 36123, 25, 23884, 2637, 13, 18982, 7, 944, 13, 6978, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 262, 2446, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 24396, 407, 287, 37250, 32782, 3256, 705, 18851, 3256, 705, 30076, 3256, 705, 47, 11417, 3256, 705, 7206, 2538, 9328, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 13269, 13, 3118, 15999, 17410, 12331, 10786, 15419, 12, 2118, 2446, 25, 23884, 4458, 18982, 7, 944, 13, 24396, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 468, 35226, 7, 944, 13, 21412, 11, 2116, 13, 24396, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 13269, 13, 3118, 15999, 17410, 12331, 10786, 3118, 320, 1154, 12061, 2446, 379, 36123, 23884, 25, 23884, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 11, 2116, 13, 24396, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 49899, 262, 2836, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 3185, 1677, 9697, 62, 3697, 1921, 42, 62, 51, 6465, 2751, 1, 287, 28686, 13, 268, 2268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13297, 62, 312, 796, 705, 9288, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13297, 62, 312, 796, 2116, 13557, 332, 1958, 62, 30001, 7, 944, 13, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 8194, 13, 4677, 7390, 26858, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 13269, 13, 13838, 1634, 30642, 12331, 7, 68, 8, 628, 220, 220, 220, 825, 2198, 62, 35827, 62, 17143, 7307, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 21762, 786, 281, 4049, 611, 257, 11507, 318, 4814, 393, 286, 262, 2642, 2099, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 62, 9122, 263, 13, 9122, 7, 944, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 13269, 13, 36301, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20985, 12331, 7, 31077, 7, 7029, 11, 965, 7, 68, 22305, 628, 220, 220, 220, 825, 1429, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18709, 262, 19390, 290, 1441, 257, 18261, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2446, 796, 651, 35226, 7, 944, 13, 21412, 11, 2116, 13, 24396, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2446, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 20985, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 13, 26209, 13, 312, 796, 2116, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 304, 13, 26209, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 312, 796, 2116, 13, 312, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 825, 284, 62, 40386, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 19449, 10552, 286, 428, 19390, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20500, 17816, 312, 20520, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20500, 17816, 30001, 20520, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 944, 13, 20500, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 332, 1958, 62, 30001, 7, 30001, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 4522, 286, 262, 4488, 12, 259, 2836, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1471, 3714, 281, 35528, 611, 262, 11241, 318, 12515, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 10951, 796, 5456, 13, 332, 1958, 62, 312, 62, 30001, 7, 30001, 11, 28686, 13, 268, 2268, 17816, 3185, 1677, 9697, 62, 23621, 24318, 62, 5097, 28495, 62, 2389, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8194, 13, 4677, 7390, 26858, 12331, 10786, 16922, 4978, 2111, 284, 11767, 4522, 11241, 25, 23884, 4458, 18982, 7, 68, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4686, 62, 10951, 17816, 3885, 20520, 14512, 28686, 13, 268, 2268, 17816, 3185, 1677, 9697, 62, 23621, 24318, 62, 5097, 28495, 62, 2389, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8194, 13, 4677, 7390, 26858, 12331, 10786, 3118, 26243, 1143, 5456, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4686, 62, 10951, 17816, 747, 20520, 407, 287, 37250, 23317, 82, 13, 13297, 13, 785, 3256, 705, 5450, 1378, 23317, 82, 13, 13297, 13, 785, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8194, 13, 4677, 7390, 26858, 12331, 10786, 39213, 506, 44168, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4686, 62, 10951, 17816, 7266, 20520, 628, 198, 4871, 18261, 25, 198, 220, 220, 220, 37227, 31077, 284, 2639, 5459, 16855, 37811, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3722, 62, 8189, 11, 3722, 62, 11213, 11, 2695, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 257, 649, 18261, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 796, 1391, 6, 8189, 10354, 3722, 62, 8189, 11, 705, 11213, 10354, 3722, 62, 11213, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11299, 796, 2695, 628, 220, 220, 220, 825, 284, 62, 40386, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 13615, 257, 19449, 10552, 286, 428, 18261, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 6, 312, 10354, 2116, 13, 312, 11, 705, 13376, 10354, 2116, 13, 13376, 92, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11299, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 11299, 20520, 796, 2116, 13, 11299, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 7890, 11, 4277, 28, 2536, 8, 198 ]
2.403135
1,786
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\statistics\ranked_statistic.py # Compiled at: 2020-08-11 17:51:45 # Size of source mod 2**32: 58267 bytes from protocolbuffers import SimObjectAttributes_pb2 as protocols, Commodities_pb2 import contextlib, operator from bucks.bucks_enums import BucksType from bucks.bucks_utils import BucksUtils from distributor.shared_messages import IconInfoData from event_testing.resolver import SingleSimResolver from event_testing.test_events import TestEvent from interactions.utils.loot import LootActions from interactions.utils.tunable_icon import TunableIcon from sims4.localization import TunableLocalizedString, TunableLocalizedStringFactory from sims4.math import Threshold from sims4.tuning.instances import HashedTunedInstanceMetaclass from sims4.tuning.tunable import HasTunableReference, OptionalTunable, TunableList, Tunable, TunableMapping, TunableTuple, TunableEnumEntry, TunableResourceKey, TunableRange, TunableReference, TunableColor from sims4.tuning.tunable_base import ExportModes, GroupNames from sims4.utils import constproperty, classproperty, flexmethod from singletons import DEFAULT from statistics.commodity_messages import send_sim_ranked_stat_update_message, send_sim_ranked_stat_change_rank_change_update_message from statistics.progressive_statistic_callback_mixin import ProgressiveStatisticCallbackMixin from statistics.statistic_enums import StatisticLockAction from ui.ui_dialog import UiDialogResponse from ui.ui_dialog_notification import UiDialogNotification import event_testing, services, sims4.log, sims4.resources, statistics, tag, telemetry_helper, ui.screen_slam logger = sims4.log.Logger('RankedStatistic', default_owner='rfleig') TELEMETRY_GROUP_RANKED_STAT = 'RKST' TELEMETRY_HOOK_RANKED_STAT_LEVEL_CHANGE = 'LEVE' TELEMETRY_FIELD_RANKED_STAT_TYPE = 'type' TELEMETRY_FIELD_RANKED_STAT_LEVEL = 'leve' ranked_stat_telemetry_writer = sims4.telemetry.TelemetryWriter(TELEMETRY_GROUP_RANKED_STAT) L. 786 0 LOAD_CONST 0 2 STORE_FAST 'batch_rank_levels' L. 787 4 SETUP_LOOP 200 'to 200' 6_0 COME_FROM 184 '184' 6 LOAD_FAST 'old_level' 8 LOAD_FAST 'new_level' 10 COMPARE_OP < 12 POP_JUMP_IF_FALSE 198 'to 198' L. 788 14 LOAD_FAST 'old_level' 16 LOAD_CONST 1 18 INPLACE_ADD 20 STORE_FAST 'old_level' L. 790 22 LOAD_FAST 'self' 24 LOAD_ATTR event_data 26 LOAD_METHOD get 28 LOAD_FAST 'old_level' 30 CALL_METHOD_1 1 '1 positional argument' 32 STORE_FAST 'event_data' L. 791 34 LOAD_FAST 'event_data' 36 LOAD_CONST None 38 COMPARE_OP is-not 40 POP_JUMP_IF_FALSE 172 'to 172' L. 792 42 LOAD_FAST 'self' 44 LOAD_ATTR tracker 46 LOAD_ATTR owner 48 LOAD_ATTR is_simulating 50 POP_JUMP_IF_FALSE 158 'to 158' L. 793 52 LOAD_GLOBAL SingleSimResolver 54 LOAD_FAST 'self' 56 LOAD_ATTR tracker 58 LOAD_ATTR owner 60 CALL_FUNCTION_1 1 '1 positional argument' 62 STORE_FAST 'resolver' L. 794 64 LOAD_FAST 'old_level' 66 LOAD_FAST 'self' 68 LOAD_ATTR highest_level 70 COMPARE_OP > 72 STORE_FAST 'is_new_level' L. 795 74 LOAD_FAST 'is_new_level' 76 POP_JUMP_IF_FALSE 110 'to 110' L. 797 78 SETUP_LOOP 104 'to 104' 80 LOAD_FAST 'event_data' 82 LOAD_ATTR loot 84 GET_ITER 86 FOR_ITER 102 'to 102' 88 STORE_FAST 'loot' L. 798 90 LOAD_FAST 'loot' 92 LOAD_METHOD apply_to_resolver 94 LOAD_FAST 'resolver' 96 CALL_METHOD_1 1 '1 positional argument' 98 POP_TOP 100 JUMP_BACK 86 'to 86' 102 POP_BLOCK 104_0 COME_FROM_LOOP 78 '78' L. 801 104 LOAD_FAST 'old_level' 106 LOAD_FAST 'self' 108 STORE_ATTR highest_level 110_0 COME_FROM 76 '76' L. 802 110 LOAD_FAST 'event_data' 112 LOAD_ATTR rank_up 114 POP_JUMP_IF_FALSE 130 'to 130' L. 803 116 LOAD_FAST 'self' 118 LOAD_ATTR increase_rank_level 120 LOAD_FAST 'is_new_level' 122 LOAD_FAST 'from_add' 124 LOAD_CONST ('new_rank', 'from_add') 126 CALL_FUNCTION_KW_2 2 '2 total positional and keyword args' 128 POP_TOP 130_0 COME_FROM 114 '114' L. 804 130 SETUP_LOOP 172 'to 172' 132 LOAD_FAST 'event_data' 134 LOAD_ATTR loot_always 136 GET_ITER 138 FOR_ITER 154 'to 154' 140 STORE_FAST 'loot' L. 805 142 LOAD_FAST 'loot' 144 LOAD_METHOD apply_to_resolver 146 LOAD_FAST 'resolver' 148 CALL_METHOD_1 1 '1 positional argument' 150 POP_TOP 152 JUMP_BACK 138 'to 138' 154 POP_BLOCK 156 JUMP_FORWARD 172 'to 172' 158_0 COME_FROM 50 '50' L. 806 158 LOAD_FAST 'event_data' 160 LOAD_ATTR rank_up 162 POP_JUMP_IF_FALSE 172 'to 172' L. 807 164 LOAD_FAST 'batch_rank_levels' 166 LOAD_CONST 1 168 INPLACE_ADD 170 STORE_FAST 'batch_rank_levels' 172_0 COME_FROM 162 '162' 172_1 COME_FROM 156 '156' 172_2 COME_FROM_LOOP 130 '130' 172_3 COME_FROM 40 '40' L. 813 172 LOAD_FAST 'self' 174 LOAD_ATTR tracker 176 LOAD_ATTR owner 178 LOAD_ATTR is_npc 180 POP_JUMP_IF_FALSE 186 'to 186' 182 LOAD_FAST 'from_add' 184 POP_JUMP_IF_TRUE 6 'to 6' 186_0 COME_FROM 180 '180' L. 816 186 LOAD_FAST 'self' 188 LOAD_METHOD _handle_level_change_telemetry 190 LOAD_FAST 'old_level' 192 CALL_METHOD_1 1 '1 positional argument' 194 POP_TOP 196 JUMP_BACK 6 'to 6' 198_0 COME_FROM 12 '12' 198 POP_BLOCK 200_0 COME_FROM_LOOP 4 '4' L. 818 200 LOAD_FAST 'batch_rank_levels' 202 LOAD_CONST 0 204 COMPARE_OP > 206 POP_JUMP_IF_FALSE 220 'to 220' L. 819 208 LOAD_FAST 'self' 210 LOAD_METHOD increase_rank_levels 212 LOAD_FAST 'batch_rank_levels' 214 CALL_METHOD_1 1 '1 positional argument' 216 POP_TOP 218 JUMP_FORWARD 232 'to 232' 220_0 COME_FROM 206 '206' L. 823 220 LOAD_FAST 'self' 222 LOAD_ATTR create_and_send_commodity_update_msg 224 LOAD_CONST False 226 LOAD_CONST ('is_rate_change',) 228 CALL_FUNCTION_KW_1 1 '1 total positional and keyword args' 230 POP_TOP 232_0 COME_FROM 218 '218' Parse error at or near `COME_FROM_LOOP' instruction at offset 172_2 @contextlib.contextmanager @sims4.utils.classproperty @sims4.utils.classproperty @sims4.utils.classproperty @sims4.utils.classproperty @flexmethod @constproperty @classmethod @classmethod @classmethod @flexmethod @classproperty @classmethod @classmethod
[ 2, 34318, 2349, 21, 2196, 513, 13, 22, 13, 19, 198, 2, 11361, 18022, 8189, 513, 13, 22, 357, 2091, 5824, 8, 198, 2, 4280, 3361, 3902, 422, 25, 11361, 513, 13, 22, 13, 24, 357, 31499, 14, 85, 18, 13, 22, 13, 24, 25, 1485, 66, 24, 2857, 2857, 66, 22, 11, 2447, 1596, 12131, 11, 1248, 25, 3365, 25, 1507, 8, 685, 5653, 34, 410, 13, 48104, 5598, 1643, 357, 28075, 2414, 15437, 198, 2, 13302, 47238, 2393, 1438, 25, 309, 7479, 818, 8777, 59, 43241, 59, 7391, 82, 59, 10697, 59, 14269, 3969, 59, 28282, 62, 14269, 2569, 13, 9078, 198, 2, 3082, 3902, 379, 25, 12131, 12, 2919, 12, 1157, 1596, 25, 4349, 25, 2231, 198, 2, 12849, 286, 2723, 953, 362, 1174, 2624, 25, 7618, 25674, 9881, 198, 6738, 8435, 36873, 364, 1330, 3184, 10267, 29021, 62, 40842, 17, 355, 19565, 11, 1520, 375, 871, 62, 40842, 17, 198, 11748, 4732, 8019, 11, 10088, 198, 6738, 24780, 13, 18999, 62, 268, 5700, 1330, 29751, 6030, 198, 6738, 24780, 13, 18999, 62, 26791, 1330, 29751, 18274, 4487, 198, 6738, 32137, 13, 28710, 62, 37348, 1095, 1330, 26544, 12360, 6601, 198, 6738, 1785, 62, 33407, 13, 411, 14375, 1330, 14206, 8890, 4965, 14375, 198, 6738, 1785, 62, 33407, 13, 9288, 62, 31534, 1330, 6208, 9237, 198, 6738, 12213, 13, 26791, 13, 75, 1025, 1330, 29970, 32, 2733, 198, 6738, 12213, 13, 26791, 13, 28286, 540, 62, 4749, 1330, 13932, 540, 19578, 198, 6738, 985, 82, 19, 13, 12001, 1634, 1330, 13932, 540, 14565, 1143, 10100, 11, 13932, 540, 14565, 1143, 10100, 22810, 198, 6738, 985, 82, 19, 13, 11018, 1330, 536, 10126, 198, 6738, 985, 82, 19, 13, 28286, 278, 13, 8625, 1817, 1330, 367, 5263, 51, 40881, 33384, 9171, 330, 31172, 198, 6738, 985, 82, 19, 13, 28286, 278, 13, 28286, 540, 1330, 7875, 51, 403, 540, 26687, 11, 32233, 51, 403, 540, 11, 13932, 540, 8053, 11, 13932, 540, 11, 13932, 540, 44, 5912, 11, 13932, 540, 51, 29291, 11, 13932, 540, 4834, 388, 30150, 11, 13932, 540, 26198, 9218, 11, 13932, 540, 17257, 11, 13932, 540, 26687, 11, 13932, 540, 10258, 198, 6738, 985, 82, 19, 13, 28286, 278, 13, 28286, 540, 62, 8692, 1330, 36472, 44, 4147, 11, 4912, 36690, 198, 6738, 985, 82, 19, 13, 26791, 1330, 1500, 26745, 11, 1398, 26745, 11, 7059, 24396, 198, 6738, 1702, 1616, 684, 1330, 5550, 38865, 198, 6738, 7869, 13, 785, 4666, 414, 62, 37348, 1095, 1330, 3758, 62, 14323, 62, 28282, 62, 14269, 62, 19119, 62, 20500, 11, 3758, 62, 14323, 62, 28282, 62, 14269, 62, 3803, 62, 43027, 62, 3803, 62, 19119, 62, 20500, 198, 6738, 7869, 13, 1676, 19741, 62, 14269, 2569, 62, 47423, 62, 19816, 259, 1330, 25852, 17126, 2569, 47258, 35608, 259, 198, 6738, 7869, 13, 14269, 2569, 62, 268, 5700, 1330, 5133, 2569, 25392, 12502, 198, 6738, 334, 72, 13, 9019, 62, 38969, 519, 1330, 471, 72, 44204, 31077, 198, 6738, 334, 72, 13, 9019, 62, 38969, 519, 62, 1662, 2649, 1330, 471, 72, 44204, 3673, 2649, 198, 11748, 1785, 62, 33407, 11, 2594, 11, 985, 82, 19, 13, 6404, 11, 985, 82, 19, 13, 37540, 11, 7869, 11, 7621, 11, 5735, 41935, 62, 2978, 525, 11, 334, 72, 13, 9612, 62, 82, 2543, 198, 6404, 1362, 796, 985, 82, 19, 13, 6404, 13, 11187, 1362, 10786, 36713, 17126, 2569, 3256, 4277, 62, 18403, 11639, 81, 27919, 328, 11537, 198, 9328, 2538, 47123, 18276, 62, 46846, 62, 49, 15154, 1961, 62, 35744, 796, 705, 49, 42, 2257, 6, 198, 9328, 2538, 47123, 18276, 62, 39, 15308, 62, 49, 15154, 1961, 62, 35744, 62, 2538, 18697, 62, 3398, 27746, 796, 705, 2538, 6089, 6, 198, 9328, 2538, 47123, 18276, 62, 44603, 62, 49, 15154, 1961, 62, 35744, 62, 25216, 796, 705, 4906, 6, 198, 9328, 2538, 47123, 18276, 62, 44603, 62, 49, 15154, 1961, 62, 35744, 62, 2538, 18697, 796, 705, 293, 303, 6, 198, 28282, 62, 14269, 62, 46813, 41935, 62, 16002, 796, 985, 82, 19, 13, 46813, 41935, 13, 31709, 41935, 34379, 7, 9328, 2538, 47123, 18276, 62, 46846, 62, 49, 15154, 1961, 62, 35744, 8, 628, 406, 13, 767, 4521, 220, 220, 220, 220, 220, 220, 220, 220, 657, 220, 17579, 2885, 62, 10943, 2257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 220, 3563, 6965, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43501, 62, 43027, 62, 46170, 6, 628, 406, 13, 767, 5774, 220, 220, 220, 220, 220, 220, 220, 220, 604, 220, 25823, 8577, 62, 21982, 3185, 220, 220, 220, 220, 220, 220, 220, 220, 220, 939, 220, 705, 1462, 939, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 718, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28598, 220, 705, 22883, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 718, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 727, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 807, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3605, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 838, 220, 24301, 12203, 62, 3185, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1105, 220, 37586, 62, 41, 20476, 62, 5064, 62, 37, 23719, 220, 220, 2757, 220, 705, 1462, 2757, 6, 628, 406, 13, 767, 3459, 220, 220, 220, 220, 220, 220, 220, 1478, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 727, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1467, 220, 17579, 2885, 62, 10943, 2257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1248, 220, 3268, 6489, 11598, 62, 29266, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1160, 220, 3563, 6965, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 727, 62, 5715, 6, 628, 406, 13, 767, 3829, 220, 220, 220, 220, 220, 220, 220, 2534, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1987, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2608, 220, 17579, 2885, 62, 49273, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2579, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 727, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1542, 220, 42815, 62, 49273, 62, 16, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 705, 16, 45203, 4578, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3933, 220, 3563, 6965, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 7890, 6, 628, 406, 13, 767, 6420, 220, 220, 220, 220, 220, 220, 220, 4974, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 7890, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4570, 220, 17579, 2885, 62, 10943, 2257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4353, 220, 24301, 12203, 62, 3185, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 12, 1662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2319, 220, 37586, 62, 41, 20476, 62, 5064, 62, 37, 23719, 220, 220, 23120, 220, 705, 1462, 23120, 6, 628, 406, 13, 767, 5892, 220, 220, 220, 220, 220, 220, 220, 5433, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5846, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30013, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6337, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4870, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4764, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 14323, 8306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 220, 37586, 62, 41, 20476, 62, 5064, 62, 37, 23719, 220, 220, 24063, 220, 705, 1462, 24063, 6, 628, 406, 13, 767, 6052, 220, 220, 220, 220, 220, 220, 220, 6740, 220, 17579, 2885, 62, 8763, 9864, 1847, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14206, 8890, 4965, 14375, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7175, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7265, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30013, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7618, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4870, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3126, 220, 42815, 62, 42296, 4177, 2849, 62, 16, 220, 220, 220, 220, 220, 220, 352, 220, 705, 16, 45203, 4578, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8190, 220, 3563, 6965, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 411, 14375, 6, 628, 406, 13, 767, 5824, 220, 220, 220, 220, 220, 220, 220, 5598, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 727, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7930, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8257, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4511, 62, 5715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4317, 220, 24301, 12203, 62, 3185, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1875, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7724, 220, 3563, 6965, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 3605, 62, 5715, 6, 628, 406, 13, 767, 3865, 220, 220, 220, 220, 220, 220, 220, 8915, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 3605, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8684, 220, 37586, 62, 41, 20476, 62, 5064, 62, 37, 23719, 220, 220, 9796, 220, 705, 1462, 9796, 6, 628, 406, 13, 767, 5607, 220, 220, 220, 220, 220, 220, 220, 8699, 220, 25823, 8577, 62, 21982, 3185, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14436, 220, 705, 1462, 14436, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4019, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 7890, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9415, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16702, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9508, 220, 17151, 62, 2043, 1137, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9849, 220, 7473, 62, 2043, 1137, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15143, 220, 705, 1462, 15143, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9193, 220, 3563, 6965, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 1025, 6, 628, 406, 13, 767, 4089, 220, 220, 220, 220, 220, 220, 220, 4101, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 1025, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10190, 220, 17579, 2885, 62, 49273, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4174, 62, 1462, 62, 411, 14375, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10048, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 411, 14375, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9907, 220, 42815, 62, 49273, 62, 16, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 705, 16, 45203, 4578, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9661, 220, 37586, 62, 35222, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1802, 220, 449, 20476, 62, 31098, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9849, 220, 705, 1462, 9849, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15143, 220, 37586, 62, 9148, 11290, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14436, 62, 15, 220, 9440, 36, 62, 10913, 2662, 62, 21982, 3185, 220, 220, 220, 220, 220, 220, 8699, 220, 705, 3695, 6, 628, 406, 13, 807, 486, 220, 220, 220, 220, 220, 220, 14436, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 727, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15696, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15495, 220, 3563, 6965, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4511, 62, 5715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9796, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8684, 220, 705, 4304, 6, 628, 406, 13, 33121, 220, 220, 220, 220, 220, 220, 9796, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 7890, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13539, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4279, 62, 929, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17342, 220, 37586, 62, 41, 20476, 62, 5064, 62, 37, 23719, 220, 220, 11323, 220, 705, 1462, 11323, 6, 628, 406, 13, 807, 3070, 220, 220, 220, 220, 220, 220, 18693, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19035, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2620, 62, 43027, 62, 5715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7982, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 3605, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19409, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6738, 62, 2860, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19755, 220, 17579, 2885, 62, 10943, 2257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 3605, 62, 43027, 3256, 705, 6738, 62, 2860, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19710, 220, 42815, 62, 42296, 4177, 2849, 62, 42, 54, 62, 17, 220, 220, 220, 220, 362, 220, 705, 17, 2472, 45203, 290, 21179, 26498, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13108, 220, 37586, 62, 35222, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11323, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17342, 220, 705, 16562, 6, 628, 406, 13, 807, 3023, 220, 220, 220, 220, 220, 220, 11323, 220, 25823, 8577, 62, 21982, 3185, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23120, 220, 705, 1462, 23120, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21761, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 7890, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22352, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16702, 62, 33770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21056, 220, 17151, 62, 2043, 1137, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21503, 220, 7473, 62, 2043, 1137, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24235, 220, 705, 1462, 24235, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12713, 220, 3563, 6965, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 1025, 6, 628, 406, 13, 807, 2713, 220, 220, 220, 220, 220, 220, 25181, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 1025, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20224, 220, 17579, 2885, 62, 49273, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4174, 62, 1462, 62, 411, 14375, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22986, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 411, 14375, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22613, 220, 42815, 62, 49273, 62, 16, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 705, 16, 45203, 4578, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6640, 220, 37586, 62, 35222, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24848, 220, 449, 20476, 62, 31098, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21503, 220, 705, 1462, 21503, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24235, 220, 37586, 62, 9148, 11290, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23871, 220, 449, 20476, 62, 13775, 39743, 220, 220, 220, 220, 220, 220, 220, 23120, 220, 705, 1462, 23120, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24063, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2026, 220, 705, 1120, 6, 628, 406, 13, 807, 3312, 220, 220, 220, 220, 220, 220, 24063, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15596, 62, 7890, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13454, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4279, 62, 929, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25090, 220, 37586, 62, 41, 20476, 62, 5064, 62, 37, 23719, 220, 220, 23120, 220, 705, 1462, 23120, 6, 628, 406, 13, 807, 2998, 220, 220, 220, 220, 220, 220, 25307, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43501, 62, 43027, 62, 46170, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26753, 220, 17579, 2885, 62, 10943, 2257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23378, 220, 3268, 6489, 11598, 62, 29266, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16677, 220, 3563, 6965, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43501, 62, 43027, 62, 46170, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23120, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25090, 220, 705, 25061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23120, 62, 16, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23871, 220, 705, 21599, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23120, 62, 17, 220, 9440, 36, 62, 10913, 2662, 62, 21982, 3185, 220, 220, 220, 220, 220, 11323, 220, 705, 12952, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23120, 62, 18, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2319, 220, 705, 1821, 6, 628, 406, 13, 807, 1485, 220, 220, 220, 220, 220, 220, 23120, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27621, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30013, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26937, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4870, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27368, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 77, 14751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11546, 220, 37586, 62, 41, 20476, 62, 5064, 62, 37, 23719, 220, 220, 28481, 220, 705, 1462, 28481, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28581, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6738, 62, 2860, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28598, 220, 37586, 62, 41, 20476, 62, 5064, 62, 5446, 8924, 220, 220, 220, 220, 220, 718, 220, 705, 1462, 718, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28481, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11546, 220, 705, 15259, 6, 628, 406, 13, 807, 1433, 220, 220, 220, 220, 220, 220, 28481, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27778, 220, 17579, 2885, 62, 49273, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 28144, 62, 5715, 62, 3803, 62, 46813, 41935, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19884, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 727, 62, 5715, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17817, 220, 42815, 62, 49273, 62, 16, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 705, 16, 45203, 4578, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30483, 220, 37586, 62, 35222, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28817, 220, 449, 20476, 62, 31098, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 718, 220, 705, 1462, 718, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2757, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1105, 220, 705, 1065, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2757, 220, 37586, 62, 9148, 11290, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 939, 62, 15, 220, 9440, 36, 62, 10913, 2662, 62, 21982, 3185, 220, 220, 220, 220, 220, 220, 220, 604, 220, 705, 19, 6, 628, 406, 13, 807, 1507, 220, 220, 220, 220, 220, 220, 939, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43501, 62, 43027, 62, 46170, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22131, 220, 17579, 2885, 62, 10943, 2257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26956, 220, 24301, 12203, 62, 3185, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1875, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27253, 220, 37586, 62, 41, 20476, 62, 5064, 62, 37, 23719, 220, 220, 15629, 220, 705, 1462, 15629, 6, 628, 406, 13, 807, 1129, 220, 220, 220, 220, 220, 220, 27121, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20064, 220, 17579, 2885, 62, 49273, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2620, 62, 43027, 62, 46170, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23679, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43501, 62, 43027, 62, 46170, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28277, 220, 42815, 62, 49273, 62, 16, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 705, 16, 45203, 4578, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26881, 220, 37586, 62, 35222, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29217, 220, 449, 20476, 62, 13775, 39743, 220, 220, 220, 220, 220, 220, 220, 31773, 220, 705, 1462, 31773, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15629, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27253, 220, 705, 22136, 6, 628, 406, 13, 807, 1954, 220, 220, 220, 220, 220, 220, 15629, 220, 17579, 2885, 62, 37, 11262, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 944, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27795, 220, 17579, 2885, 62, 1404, 5446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 392, 62, 21280, 62, 785, 4666, 414, 62, 19119, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26063, 220, 17579, 2885, 62, 10943, 2257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31510, 220, 17579, 2885, 62, 10943, 2257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 271, 62, 4873, 62, 3803, 3256, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29041, 220, 42815, 62, 42296, 4177, 2849, 62, 42, 54, 62, 16, 220, 220, 220, 220, 352, 220, 705, 16, 2472, 45203, 290, 21179, 26498, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18395, 220, 37586, 62, 35222, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31773, 62, 15, 220, 9440, 36, 62, 10913, 2662, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29217, 220, 705, 28727, 6, 198, 198, 10044, 325, 4049, 379, 393, 1474, 4600, 9858, 36, 62, 10913, 2662, 62, 21982, 3185, 6, 12064, 379, 11677, 23120, 62, 17, 628, 220, 220, 220, 2488, 22866, 8019, 13, 22866, 37153, 628, 220, 220, 220, 2488, 82, 12078, 19, 13, 26791, 13, 4871, 26745, 628, 220, 220, 220, 2488, 82, 12078, 19, 13, 26791, 13, 4871, 26745, 628, 220, 220, 220, 2488, 82, 12078, 19, 13, 26791, 13, 4871, 26745, 628, 220, 220, 220, 2488, 82, 12078, 19, 13, 26791, 13, 4871, 26745, 628, 220, 220, 220, 2488, 32880, 24396, 628, 220, 220, 220, 2488, 9979, 26745, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 32880, 24396, 628, 220, 220, 220, 2488, 4871, 26745, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396 ]
1.68128
5,657
# Import utils submodule import api.api # Decide to start seeing other people api.api.we_need_to_talk(break_up=False) import api # Create instance of MyClass my_instance = api.AppClass(value='class attribute value') # Print out class attribute value print(my_instance.attribute)
[ 2, 17267, 3384, 4487, 850, 21412, 198, 11748, 40391, 13, 15042, 198, 198, 2, 4280, 485, 284, 923, 4379, 584, 661, 198, 15042, 13, 15042, 13, 732, 62, 31227, 62, 1462, 62, 16620, 7, 9032, 62, 929, 28, 25101, 8, 198, 198, 11748, 40391, 198, 2, 13610, 4554, 286, 2011, 9487, 198, 1820, 62, 39098, 796, 40391, 13, 4677, 9487, 7, 8367, 11639, 4871, 11688, 1988, 11537, 198, 2, 12578, 503, 1398, 11688, 1988, 198, 4798, 7, 1820, 62, 39098, 13, 42348, 8 ]
3.373494
83
import numba import autogalaxy as ag from autolens.point.point_dataset import PointDataset from autolens.point.point_solver import PointSolver from autolens.point.fit_point.fluxes import FitFluxes from autolens.point.fit_point.positions_image import FitPositionsImage from autolens.point.fit_point.positions_source import FitPositionsSource from autolens.lens.ray_tracing import Tracer from autolens import exc
[ 11748, 997, 7012, 201, 198, 201, 198, 11748, 1960, 519, 282, 6969, 355, 556, 201, 198, 201, 198, 6738, 1960, 349, 641, 13, 4122, 13, 4122, 62, 19608, 292, 316, 1330, 6252, 27354, 292, 316, 201, 198, 6738, 1960, 349, 641, 13, 4122, 13, 4122, 62, 82, 14375, 1330, 6252, 50, 14375, 201, 198, 6738, 1960, 349, 641, 13, 4122, 13, 11147, 62, 4122, 13, 69, 22564, 274, 1330, 25048, 37, 22564, 274, 201, 198, 6738, 1960, 349, 641, 13, 4122, 13, 11147, 62, 4122, 13, 1930, 1756, 62, 9060, 1330, 25048, 21604, 1756, 5159, 201, 198, 6738, 1960, 349, 641, 13, 4122, 13, 11147, 62, 4122, 13, 1930, 1756, 62, 10459, 1330, 25048, 21604, 1756, 7416, 201, 198, 6738, 1960, 349, 641, 13, 75, 641, 13, 2433, 62, 2213, 4092, 1330, 833, 11736, 201, 198, 201, 198, 6738, 1960, 349, 641, 1330, 2859, 201, 198, 201, 198 ]
2.891892
148
""" Plot a quartz class map for a drill core HSI cube. """ from __future__ import print_function import os import os.path as osp import matplotlib.pyplot as plt import numpy as np import pysptools.util as util import pysptools.eea as eea import pysptools.abundance_maps as amp if __name__ == '__main__': # Load the cube data_path = os.environ['PYSPTOOLS_DATA'] home = os.environ['HOME'] result_path = os.path.join(home, 'results') sample = 'hematite.hdr' data_file = osp.join(data_path, sample) data, header = util.load_ENVI_file(data_file) if osp.exists(result_path) == False: os.makedirs(result_path) axes = parse_ENVI_header(header) # Telops cubes are flipped left-right # Flipping them again restore the orientation data = np.fliplr(data) U = get_endmembers(data, axes, 4, result_path) amaps = gen_abundance_maps(data, U, result_path) # EM4 == quartz quartz = amaps[:,:,3] plot(quartz, 'spectral', 'quartz', result_path) # EM1 == background, we use the backgroud to isolate the drill core # and define the mask mask = (amaps[:,:,0] < 0.2) plot(mask, 'spectral', 'mask', result_path) # Plot the quartz in color and the hematite in gray plot(np.logical_and(mask == 1, quartz <= 0.001) + quartz, 'spectral', 'hematite+quartz', result_path) # pixels stat rock_surface = np.sum(mask) quartz_surface = np.sum(quartz > 0.16) print('Some statistics') print(' Drill core surface (mask) in pixels:', rock_surface) print(' Quartz surface in pixels:', quartz_surface) print(' Hematite surface in pixels:', rock_surface - quartz_surface)
[ 37811, 201, 198, 43328, 257, 47969, 1398, 3975, 329, 257, 16007, 4755, 367, 11584, 23441, 13, 201, 198, 37811, 201, 198, 201, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 201, 198, 201, 198, 11748, 28686, 201, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 201, 198, 11748, 279, 893, 457, 10141, 13, 22602, 355, 7736, 201, 198, 11748, 279, 893, 457, 10141, 13, 1453, 64, 355, 304, 18213, 201, 198, 11748, 279, 893, 457, 10141, 13, 397, 917, 590, 62, 31803, 355, 20766, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1303, 8778, 262, 23441, 201, 198, 220, 220, 220, 1366, 62, 6978, 796, 28686, 13, 268, 2268, 17816, 47, 56, 4303, 10468, 3535, 50, 62, 26947, 20520, 201, 198, 220, 220, 220, 1363, 796, 28686, 13, 268, 2268, 17816, 39069, 20520, 201, 198, 220, 220, 220, 1255, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 11195, 11, 705, 43420, 11537, 201, 198, 201, 198, 220, 220, 220, 6291, 796, 705, 10024, 578, 13, 71, 7109, 6, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1366, 62, 7753, 796, 267, 2777, 13, 22179, 7, 7890, 62, 6978, 11, 6291, 8, 201, 198, 220, 220, 220, 1366, 11, 13639, 796, 7736, 13, 2220, 62, 1677, 12861, 62, 7753, 7, 7890, 62, 7753, 8, 201, 198, 201, 198, 220, 220, 220, 611, 267, 2777, 13, 1069, 1023, 7, 20274, 62, 6978, 8, 6624, 10352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 20274, 62, 6978, 8, 201, 198, 201, 198, 220, 220, 220, 34197, 796, 21136, 62, 1677, 12861, 62, 25677, 7, 25677, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12088, 2840, 34896, 389, 26157, 1364, 12, 3506, 201, 198, 220, 220, 220, 1303, 1610, 4501, 606, 757, 11169, 262, 12852, 201, 198, 220, 220, 220, 1366, 796, 45941, 13, 2704, 24705, 81, 7, 7890, 8, 201, 198, 201, 198, 220, 220, 220, 471, 796, 651, 62, 437, 30814, 7, 7890, 11, 34197, 11, 604, 11, 1255, 62, 6978, 8, 201, 198, 220, 220, 220, 716, 1686, 796, 2429, 62, 397, 917, 590, 62, 31803, 7, 7890, 11, 471, 11, 1255, 62, 6978, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 17228, 19, 6624, 47969, 201, 198, 220, 220, 220, 47969, 796, 716, 1686, 58, 45299, 45299, 18, 60, 201, 198, 220, 220, 220, 7110, 7, 421, 13636, 11, 705, 4443, 1373, 3256, 705, 421, 13636, 3256, 1255, 62, 6978, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 17228, 16, 6624, 4469, 11, 356, 779, 262, 736, 70, 5493, 284, 28091, 262, 16007, 4755, 201, 198, 220, 220, 220, 1303, 290, 8160, 262, 9335, 201, 198, 220, 220, 220, 9335, 796, 357, 321, 1686, 58, 45299, 45299, 15, 60, 1279, 657, 13, 17, 8, 201, 198, 220, 220, 220, 7110, 7, 27932, 11, 705, 4443, 1373, 3256, 705, 27932, 3256, 1255, 62, 6978, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 262, 47969, 287, 3124, 290, 262, 339, 6759, 578, 287, 12768, 201, 198, 220, 220, 220, 7110, 7, 37659, 13, 6404, 605, 62, 392, 7, 27932, 6624, 352, 11, 47969, 19841, 657, 13, 8298, 8, 1343, 47969, 11, 705, 4443, 1373, 3256, 705, 10024, 578, 10, 421, 13636, 3256, 1255, 62, 6978, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 17848, 1185, 201, 198, 220, 220, 220, 3881, 62, 42029, 796, 45941, 13, 16345, 7, 27932, 8, 201, 198, 220, 220, 220, 47969, 62, 42029, 796, 45941, 13, 16345, 7, 421, 13636, 1875, 657, 13, 1433, 8, 201, 198, 220, 220, 220, 3601, 10786, 4366, 7869, 11537, 201, 198, 220, 220, 220, 3601, 10786, 220, 46350, 4755, 4417, 357, 27932, 8, 287, 17848, 25, 3256, 3881, 62, 42029, 8, 201, 198, 220, 220, 220, 3601, 10786, 220, 45976, 4417, 287, 17848, 25, 3256, 47969, 62, 42029, 8, 201, 198, 220, 220, 220, 3601, 10786, 220, 15617, 265, 578, 4417, 287, 17848, 25, 3256, 3881, 62, 42029, 532, 47969, 62, 42029, 8, 201, 198 ]
2.440559
715
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import math if __name__ == '__main__': print(func(5, 3)()) print(func(8, 10, 1)()) print(func(3, 5, 0)()) print(func(2, 2, 1)())
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 10688, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 7, 20786, 7, 20, 11, 513, 8, 28955, 198, 220, 220, 220, 3601, 7, 20786, 7, 23, 11, 838, 11, 352, 8, 28955, 198, 220, 220, 220, 3601, 7, 20786, 7, 18, 11, 642, 11, 657, 8, 28955, 198, 220, 220, 220, 3601, 7, 20786, 7, 17, 11, 362, 11, 352, 8, 28955, 198 ]
1.989899
99
'''from django.contrib.auth import get_user_model from django.test import TestCase #an extension of Python’s TestCase from django.urls import reverse, resolve from django.test import Client from .models import PremiumBlog from .views import ( BlogListView, BlogDetailView, ) class CustomUserTests(TestCase): def test_create_user(self): User = get_user_model() user = User.objects.create_user( username='partho', email='[email protected]', first_name='Partho', last_name='Bhattacharjee', country='Bangladesh', city_or_district='Sylhet' ) user.set_password('testpass123') user.save() self.assertEqual(user.email, '[email protected]') self.assertEqual(user.country, 'Bangladesh') self.assertEqual(user.city_or_district, 'Sylhet') self.assertTrue(user.is_active) self.assertFalse(user.is_staff) self.assertFalse(user.is_superuser) class BlogTests(TestCase): def setUp(self): c = Client() c.login(email='[email protected]', password='testpass123') url = reverse('blog_list') self.response = self.client.get(url) def test_job_post(self): post = PremiumBlog.objects.create( Author='Barun', Title='What is Django?', Description='Python Framework', ) self.assertEqual(post.Author, 'Barun') self.assertEqual(post.Title, 'What is Django?') self.assertEqual(post.Description, 'Python Framework') def test_job_list_template(self): self.assertEqual(self.response.status_code, 200) self.assertTemplateUsed(self.response, 'premium/blog_list.html') self.assertContains(self.response, 'Search your blog here') self.assertNotContains( self.response, 'Hi there! I should not be on the page.') def job_detail_view(self): post = PremiumBlog.objects.create( Author='Barun', Title='What is Django?', Description='Python Framework', ) response = self.client.get(post.get_absolute_url()) no_response = self.client.get('/jobs/12345/') self.assertEqual(response.status_code, 200) self.assertEqual(no_response.status_code, 404) self.assertContains(response, 'What is Django?') self.assertTemplateUsed(response, 'premium/blog_detail.html')'''
[ 7061, 6, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 1303, 272, 7552, 286, 11361, 447, 247, 82, 6208, 20448, 198, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 11, 10568, 198, 198, 6738, 42625, 14208, 13, 9288, 1330, 20985, 198, 198, 6738, 764, 27530, 1330, 17315, 42383, 198, 198, 6738, 764, 33571, 1330, 357, 198, 220, 220, 220, 14001, 8053, 7680, 11, 198, 220, 220, 220, 14001, 11242, 603, 7680, 11, 198, 8, 220, 220, 628, 198, 198, 4871, 8562, 12982, 51, 3558, 7, 14402, 20448, 2599, 198, 220, 220, 220, 825, 1332, 62, 17953, 62, 7220, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11787, 796, 651, 62, 7220, 62, 19849, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 11787, 13, 48205, 13, 17953, 62, 7220, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 11639, 1845, 400, 78, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 11639, 1845, 400, 78, 25816, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 3672, 11639, 10044, 400, 78, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 3672, 11639, 33, 11653, 620, 283, 34589, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1499, 11639, 43984, 75, 13410, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 273, 62, 17080, 2012, 11639, 50, 2645, 3202, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 2617, 62, 28712, 10786, 9288, 6603, 10163, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 21928, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 7220, 13, 12888, 11, 705, 1845, 400, 78, 25816, 31, 14816, 13, 785, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 7220, 13, 19315, 11, 705, 43984, 75, 13410, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 7220, 13, 19205, 62, 273, 62, 17080, 2012, 11, 705, 50, 2645, 3202, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 7220, 13, 271, 62, 5275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 25101, 7, 7220, 13, 271, 62, 28120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 25101, 7, 7220, 13, 271, 62, 16668, 7220, 8, 628, 198, 4871, 14001, 51, 3558, 7, 14402, 20448, 2599, 198, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 20985, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 13, 38235, 7, 12888, 11639, 1845, 400, 78, 25816, 31, 14816, 13, 785, 3256, 9206, 11639, 9288, 6603, 10163, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 9575, 10786, 14036, 62, 4868, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26209, 796, 2116, 13, 16366, 13, 1136, 7, 6371, 8, 628, 628, 198, 220, 220, 220, 825, 1332, 62, 21858, 62, 7353, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1281, 796, 17315, 42383, 13, 48205, 13, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6434, 11639, 10374, 403, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11851, 11639, 2061, 318, 37770, 30, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12489, 11639, 37906, 25161, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 7353, 13, 13838, 11, 705, 10374, 403, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 7353, 13, 19160, 11, 705, 2061, 318, 37770, 8348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 7353, 13, 11828, 11, 705, 37906, 25161, 11537, 628, 198, 220, 220, 220, 825, 1332, 62, 21858, 62, 4868, 62, 28243, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 944, 13, 26209, 13, 13376, 62, 8189, 11, 939, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 30800, 38052, 7, 944, 13, 26209, 11, 705, 31605, 1505, 14, 14036, 62, 4868, 13, 6494, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 4264, 1299, 7, 944, 13, 26209, 11, 705, 18243, 534, 4130, 994, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3673, 4264, 1299, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26209, 11, 705, 17250, 612, 0, 314, 815, 407, 307, 319, 262, 2443, 2637, 8, 628, 220, 220, 220, 825, 1693, 62, 49170, 62, 1177, 7, 944, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1281, 796, 17315, 42383, 13, 48205, 13, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6434, 11639, 10374, 403, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11851, 11639, 2061, 318, 37770, 30, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12489, 11639, 37906, 25161, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 16366, 13, 1136, 7, 7353, 13, 1136, 62, 48546, 62, 6371, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 645, 62, 26209, 796, 2116, 13, 16366, 13, 1136, 10786, 14, 43863, 14, 10163, 2231, 14, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26209, 13, 13376, 62, 8189, 11, 939, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3919, 62, 26209, 13, 13376, 62, 8189, 11, 32320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 4264, 1299, 7, 26209, 11, 705, 2061, 318, 37770, 8348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 30800, 38052, 7, 26209, 11, 705, 31605, 1505, 14, 14036, 62, 49170, 13, 6494, 11537, 7061, 6 ]
2.295644
1,079
# Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for action_metrics_observers.""" from acme import specs from acme.testing import fakes from acme.utils.observers import action_metrics import dm_env import numpy as np from absl.testing import absltest _FAKE_ENV = _make_fake_env() _TIMESTEP = _FAKE_ENV.reset() if __name__ == '__main__': absltest.main()
[ 2, 15069, 2864, 10766, 28478, 21852, 15302, 13, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 51, 3558, 329, 2223, 62, 4164, 10466, 62, 672, 2655, 690, 526, 15931, 628, 198, 6738, 936, 1326, 1330, 25274, 198, 6738, 936, 1326, 13, 33407, 1330, 277, 1124, 198, 6738, 936, 1326, 13, 26791, 13, 672, 2655, 690, 1330, 2223, 62, 4164, 10466, 198, 11748, 288, 76, 62, 24330, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 2352, 75, 13, 33407, 1330, 2352, 2528, 395, 628, 198, 62, 7708, 7336, 62, 1677, 53, 796, 4808, 15883, 62, 30706, 62, 24330, 3419, 198, 62, 51, 3955, 6465, 8905, 796, 4808, 7708, 7336, 62, 1677, 53, 13, 42503, 3419, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 2352, 2528, 395, 13, 12417, 3419, 628 ]
3.381295
278
# -*- coding: utf-8 -*- r""" A policy that acts as a wrapper on another policy `P`, assumed to be *horizon dependent* (has to known :math:`T`), by implementing a "doubling trick": - starts to assume that :math:`T=T_0=1000`, and run the policy :math:`P(T_0)`, from :math:`t=1` to :math:`t=T_0`, - if :math:`t > T_0`, then the "doubling trick" is performed, by either re-initializing or just changing the parameter `horizon` of the policy P, for instance with :math:`T_2 = 10 \times T_0`, - and keep doing this until :math:`t = T`. .. note:: This is implemented in a very generic way, with simply a function `next_horizon(horizon)` that gives the next horizon to try when crossing the current guess. It can be a simple linear function (`next_horizon(horizon) = horizon + 100`), a geometric growth to have the "real" doubling trick (`next_horizon(horizon) = horizon * 10`), or even functions growing exponentially fast (`next_horizon(horizon) = horizon ** 1.1`, `next_horizon(horizon) = horizon ** 1.5`, `next_horizon(horizon) = horizon ** 2`). .. note:: My guess is that this "doubling trick" wrapping policy can only be efficient (for stochastic problems) if: - the underlying policy `P` is a very efficient horizon-dependent algorithm, e.g., the :class:`Policies.ApproximatedFHGittins`, - the growth function `next_horizon` is growing faster than any geometric rate, so that the number of refresh is :math:`o(\log T)` and not :math:`O(\log T)`. .. seealso:: Reference: [[What the Doubling Trick Can or Can't Do for Multi-Armed Bandits, Lilian Besson and Emilie Kaufmann, 2018]](https://hal.inria.fr/hal-01736357), to be presented soon. .. warning:: Interface: If `FULL_RESTART=False` (default), the underlying algorithm is recreated at every breakpoint, instead its attribute `horizon` or `_horizon` is updated. Be sure that this is enough to really change the internal value used by the policy. Some policy use T only once to compute others parameters, which should be updated as well. A manual implementation of the `__setattr__` method can help. """ from __future__ import division, print_function # Python 2 compatibility __author__ = "Lilian Besson" __version__ = "0.9" import numpy as np try: from .BaseWrapperPolicy import BaseWrapperPolicy from .UCBH import UCBH except ImportError: from BaseWrapperPolicy import BaseWrapperPolicy from UCBH import UCBH try: from .usenumba import jit # Import numba.jit or a dummy jit(f)=f except (ValueError, ImportError, SystemError): from usenumba import jit # Import numba.jit or a dummy jit(f)=f #: Default horizon-dependent policy default_horizonDependent_policy = UCBH #: Default constant to know what to do when restarting the underlying policy with a new horizon parameter. #: #: - `True` means that a new policy, initialized from scratch, will be created at every breakpoint. #: - `False` means that the same policy object is used but just its attribute `horizon` is updated (default). FULL_RESTART = True FULL_RESTART = False #: Default horizon, used for the first step. DEFAULT_FIRST_HORIZON = 200 #: Default stepsize for the arithmetic horizon progression. ARITHMETIC_STEP = 10 * DEFAULT_FIRST_HORIZON ARITHMETIC_STEP = 1 * DEFAULT_FIRST_HORIZON @jit def next_horizon__arithmetic(i, horizon): r""" The arithmetic horizon progression function: .. math:: T &\mapsto T + 100,\\ T_i &:= T_0 + 100 \times i. """ return horizon + ARITHMETIC_STEP next_horizon__arithmetic.__latex_name__ = "arithm" next_horizon__arithmetic.__latex_name__ = r"$T_i = {} + {} \times i$".format(DEFAULT_FIRST_HORIZON, ARITHMETIC_STEP) #: Default multiplicative constant for the geometric horizon progression. GEOMETRIC_STEP = 2 @jit def next_horizon__geometric(i, horizon): r""" The geometric horizon progression function: .. math:: T &\mapsto T \times 2,\\ T_i &:= T_0 2^i. """ return horizon * GEOMETRIC_STEP next_horizon__geometric.__latex_name__ = "geom" next_horizon__geometric.__latex_name__ = r"$T_i = {} \times {}^i$".format(DEFAULT_FIRST_HORIZON, GEOMETRIC_STEP) #: Default exponential constant for the exponential horizon progression. EXPONENTIAL_STEP = 1.5 @jit def next_horizon__exponential(i, horizon): r""" The exponential horizon progression function: .. math:: T &\mapsto \left\lfloor T^{1.5} \right\rfloor,\\ T_i &:= \left\lfloor T_0^{1.5^i} \right\rfloor. """ return int(np.floor(horizon ** EXPONENTIAL_STEP)) next_horizon__exponential.__latex_name__ = "exp" next_horizon__exponential.__latex_name__ = r"$T_i = {}^{}$".format(DEFAULT_FIRST_HORIZON, r"{%.3g^i}" % EXPONENTIAL_STEP) #: Default exponential constant for the slow exponential horizon progression. SLOW_EXPONENTIAL_STEP = 1.1 @jit def next_horizon__exponential_slow(i, horizon): r""" The exponential horizon progression function: .. math:: T &\mapsto \left\lfloor T^{1.1} \right\rfloor,\\ T_i &:= \left\lfloor T_0^{1.1^i} \right\rfloor. """ return int(np.floor(horizon ** SLOW_EXPONENTIAL_STEP)) next_horizon__exponential_slow.__latex_name__ = "slow exp" next_horizon__exponential_slow.__latex_name__ = r"$T_i = {}^{}$".format(DEFAULT_FIRST_HORIZON, r"{%.3g^i}" % SLOW_EXPONENTIAL_STEP) #: Default exponential constant for the fast exponential horizon progression. FAST_EXPONENTIAL_STEP = 2 @jit def next_horizon__exponential_fast(i, horizon): r""" The exponential horizon progression function: .. math:: T &\mapsto \lfloor T^{2} \rfloor,\\ T_i &:= \lfloor T_0^{2^i} \rfloor. """ return int(np.floor(horizon ** 2)) next_horizon__exponential_fast.__latex_name__ = "fast exp" next_horizon__exponential_fast.__latex_name__ = r"$T_i = {}^{}$".format(DEFAULT_FIRST_HORIZON, r"{%.3g^i}" % FAST_EXPONENTIAL_STEP) #: Default constant :math:`\alpha` for the generic exponential sequence. ALPHA = 2 #: Default constant :math:`\beta` for the generic exponential sequence. BETA = 2 def next_horizon__exponential_generic(i, horizon): r""" The generic exponential horizon progression function: .. math:: T_i := \left\lfloor \frac{T_0}{a} a^{b^i} \right\rfloor. """ return int((DEFAULT_FIRST_HORIZON / ALPHA) * ALPHA ** (BETA ** i)) # return int(ALPHA * np.floor(horizon ** BETA)) next_horizon__exponential_generic.__latex_name__ = r"exp $a={:.3g}$, $b={:.3g}$".format(ALPHA, BETA) next_horizon__exponential_generic.__latex_name__ = r"$T_i = ({}/{}) {}^{}$".format(DEFAULT_FIRST_HORIZON, ALPHA, ALPHA, r"{%.3g^i}" % BETA) #: Chose the default horizon growth function. # default_next_horizon = next_horizon__arithmetic # default_next_horizon = next_horizon__geometric # default_next_horizon = next_horizon__geometric # default_next_horizon = next_horizon__exponential_fast default_next_horizon = next_horizon__exponential_slow # --- Utility function def breakpoints(next_horizon, first_horizon, horizon, debug=False): r""" Return the list of restart point (breakpoints), if starting from ``first_horizon`` to ``horizon`` with growth function ``next_horizon``. - Also return the gap between the last guess for horizon and the true horizon. This gap should not be too large. - Nicely print all the values if ``debug=True``. - First examples: >>> first_horizon = 1000 >>> horizon = 30000 >>> breakpoints(next_horizon__arithmetic, first_horizon, horizon) # doctest: +ELLIPSIS ([1000, 1200, 1400, ..., 29800, 30000], 0) >>> breakpoints(next_horizon__geometric, first_horizon, horizon) ([1000, 2000, 4000, 8000, 16000, 32000], 2000) >>> breakpoints(next_horizon__exponential, first_horizon, horizon) ([1000, 31622], 1622) >>> breakpoints(next_horizon__exponential_slow, first_horizon, horizon) ([1000, 1995, 4265, 9838, 24671, 67827], 37827) >>> breakpoints(next_horizon__exponential_fast, first_horizon, horizon) ([1000, 1000000], 970000) - Second examples: >>> first_horizon = 5000 >>> horizon = 1000000 >>> breakpoints(next_horizon__arithmetic, first_horizon, horizon) # doctest: +ELLIPSIS ([5000, 5200, ..., 999600, 999800, 1000000], 0) >>> breakpoints(next_horizon__geometric, first_horizon, horizon) ([5000, 10000, 20000, 40000, 80000, 160000, 320000, 640000, 1280000], 280000) >>> breakpoints(next_horizon__exponential, first_horizon, horizon) ([5000, 353553, 210223755], 209223755) >>> breakpoints(next_horizon__exponential_slow, first_horizon, horizon) ([5000, 11718, 29904, 83811, 260394, 906137, 3572014], 2572014) >>> breakpoints(next_horizon__exponential_fast, first_horizon, horizon) ([5000, 25000000], 24000000) - Third examples: >>> first_horizon = 10 >>> horizon = 1123456 >>> breakpoints(next_horizon__arithmetic, first_horizon, horizon) # doctest: +ELLIPSIS ([10, 210, 410, ..., 1123210, 1123410, 1123610], 154) >>> breakpoints(next_horizon__geometric, first_horizon, horizon) ([10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720], 187264) >>> breakpoints(next_horizon__exponential, first_horizon, horizon) ([10, 31, 172, 2255, 107082, 35040856], 33917400) >>> breakpoints(next_horizon__exponential_slow, first_horizon, horizon) ([10, 12, 15, 19, 25, 34, 48, 70, 107, 170, 284, 499, 928, 1837, 3895, 8903, 22104, 60106, 180638, 606024, 2294768], 1171312) >>> breakpoints(next_horizon__exponential_fast, first_horizon, horizon) ([10, 100, 10000, 100000000], 98876544) """ i = 0 t = max(first_horizon, 2) times = [t] if debug: print("\n\nFor the growth function {}, named '{}', first guess of the horizon = {} and true horizon = {} ...\n ==> The times will be:".format(next_horizon, getattr(next_horizon, '__latex_name__', '?'), first_horizon, horizon)) while t < horizon: t = next_horizon(i, t) i += 1 times.append(t) if debug: print(" The {}th breakpoint is {} ...".format(i, t)) # DEBUG assert horizon <= t, "Error: the last guess for horizon = {} was found smaller than the true horizon = {}...".format(t, horizon) # DEBUG gap = t - horizon if debug: print("This last guess for horizon = {} gives a gap = {} against the true horizon {}. Relative difference = {:.3%}...".format(t, gap, horizon, gap / float(horizon))) # DEBUG return times, gap # --- Experimental code to plot some doubling sequences and # check numerically some inequalities : # like controlling a sum Sigma_i=0^n u_i by a constant times to last term u_n # and controlling the last term u_{L_T} as a function of T. #: The constant c in front of the function f. constant_c_for_the_functions_f = 1.0 constant_c_for_the_functions_f = 0.1 constant_c_for_the_functions_f = 0.5 def function_f__for_geometric_sequences(i, c=constant_c_for_the_functions_f): r""" For the *geometric* doubling sequences, :math:`f(i) = c \times \log(i)`.""" if i <= 0: return 0.0 return c * np.log(i) def function_f__for_exponential_sequences(i, c=constant_c_for_the_functions_f): r""" For the *exponential* doubling sequences, :math:`f(i) = c \times i`.""" return c * i def function_f__for_generic_sequences(i, c=constant_c_for_the_functions_f, d=0.5, e=0.0): r""" For a certain *generic* family of doubling sequences, :math:`f(i) = c \times i^{d} \times (\log(i))^{e}`. - ``d, e = 0, 1`` gives :func:`function_f__for_geometric_sequences`, - ``d, e = 1, 0`` gives :func:`function_f__for_geometric_sequences`, - ``d, e = 0.5, 0`` gives an intermediate sequence, growing faster than any geometric sequence and slower than any exponential sequence, - any other combination has not been studied yet. .. warning:: ``d`` should most probably be smaller than 1. """ i = float(i) if i <= 0: return 0.0 if e == 0: assert d > 0, "Error: invalid value of d = {} for function_f__for_generic_sequences.".format(d) # DEBUG return c * (i ** d) if d == 0: assert e > 0, "Error: invalid value of e = {} for function_f__for_generic_sequences.".format(e) # DEBUG return c * ((np.log(i)) ** e) return c * (i ** d) * ((np.log(i)) ** e) #: Value of the parameter :math:`\alpha` for the :func:`Ti_from_f` function. alpha_for_Ti = 0.1 alpha_for_Ti = 1.0 alpha_for_Ti = 0.5 def Ti_from_f(f, alpha=alpha_for_Ti, *args, **kwargs): r""" For any non-negative and increasing function :math:`f: i \mapsto f(i)`, the corresponding sequence is defined by: .. math:: \forall i\in\mathbb{N},\; T_i := \lfloor \exp(\alpha \times \exp(f(i))) \rfloor. .. warning:: :math:`f(i)` can need other parameters, see the examples above. They can be given as ``*args`` or ``**kwargs`` to :func:`Ti_from_f`. .. warning:: it should be computed otherwise, I should give :math:`i \mapsto \exp(f(i))` instead of :math:`f: i \mapsto f(i)`. I need to try as much as possible to reduce the risk of overflow errors! """ # WARNING don't forget the floor! return Ti def Ti_geometric(i, horizon, alpha=alpha_for_Ti, first_horizon=DEFAULT_FIRST_HORIZON, *args, **kwargs): """ Sequence :math:`T_i` generated from the function :math:`f` = :func:`function_f__for_geometric_sequences`.""" f = function_f__for_geometric_sequences this_Ti = first_horizon + np.floor(np.exp(alpha * np.exp(f(float(i), *args, **kwargs)))) if not (np.isinf(this_Ti) or np.isnan(this_Ti)): this_Ti = int(this_Ti) return this_Ti Ti_geometric.__latex_name__ = r"$f(i)=\log(i)$" def Ti_exponential(i, horizon, alpha=alpha_for_Ti, first_horizon=DEFAULT_FIRST_HORIZON, *args, **kwargs): """ Sequence :math:`T_i` generated from the function :math:`f` = :func:`function_f__for_exponential_sequences`.""" f = function_f__for_exponential_sequences this_Ti = first_horizon + np.floor(np.exp(alpha * np.exp(f(float(i), *args, **kwargs)))) if not (np.isinf(this_Ti) or np.isnan(this_Ti)): this_Ti = int(this_Ti) return this_Ti Ti_exponential.__latex_name__ = r"$f(i)=i$" def Ti_intermediate_sqrti(i, horizon, alpha=alpha_for_Ti, first_horizon=DEFAULT_FIRST_HORIZON, *args, **kwargs): """ Sequence :math:`T_i` generated from the function :math:`f` = :func:`function_f__for_intermediate_sequences`.""" f = function_f__for_intermediate_sequences this_Ti = first_horizon + np.floor(np.exp(alpha * np.exp(f(float(i), *args, **kwargs)))) if not (np.isinf(this_Ti) or np.isnan(this_Ti)): this_Ti = int(this_Ti) return this_Ti Ti_intermediate_sqrti.__latex_name__ = r"$f(i)=\sqrt{i}$" def Ti_intermediate_i13(i, horizon, alpha=alpha_for_Ti, first_horizon=DEFAULT_FIRST_HORIZON, *args, **kwargs): """ Sequence :math:`T_i` generated from the function :math:`f` = :func:`function_f__for_intermediate2_sequences`.""" f = function_f__for_intermediate2_sequences this_Ti = first_horizon + np.floor(np.exp(alpha * np.exp(f(float(i), *args, **kwargs)))) if not (np.isinf(this_Ti) or np.isnan(this_Ti)): this_Ti = int(this_Ti) return this_Ti Ti_intermediate_i13.__latex_name__ = r"$f(i)=i^{1/3}$" def Ti_intermediate_i23(i, horizon, alpha=alpha_for_Ti, first_horizon=DEFAULT_FIRST_HORIZON, *args, **kwargs): """ Sequence :math:`T_i` generated from the function :math:`f` = :func:`function_f__for_intermediate3_sequences`.""" f = function_f__for_intermediate3_sequences this_Ti = first_horizon + np.floor(np.exp(alpha * np.exp(f(float(i), *args, **kwargs)))) if not (np.isinf(this_Ti) or np.isnan(this_Ti)): this_Ti = int(this_Ti) return this_Ti Ti_intermediate_i23.__latex_name__ = r"$f(i)=i^{2/3}$" def Ti_intermediate_i12_logi12(i, horizon, alpha=alpha_for_Ti, first_horizon=DEFAULT_FIRST_HORIZON, *args, **kwargs): """ Sequence :math:`T_i` generated from the function :math:`f` = :func:`function_f__for_intermediate4_sequences`.""" f = function_f__for_intermediate4_sequences this_Ti = first_horizon + np.floor(np.exp(alpha * np.exp(f(float(i), *args, **kwargs)))) if not (np.isinf(this_Ti) or np.isnan(this_Ti)): this_Ti = int(this_Ti) return this_Ti Ti_intermediate_i12_logi12.__latex_name__ = r"$f(i)=\sqrt{i \log(i)}$" def Ti_intermediate_i_by_logi(i, horizon, alpha=alpha_for_Ti, first_horizon=DEFAULT_FIRST_HORIZON, *args, **kwargs): """ Sequence :math:`T_i` generated from the function :math:`f` = :func:`function_f__for_intermediate5_sequences`.""" f = function_f__for_intermediate5_sequences this_Ti = first_horizon + np.floor(np.exp(alpha * np.exp(f(float(i + 1), *args, **kwargs)))) if not (np.isinf(this_Ti) or np.isnan(this_Ti)): this_Ti = int(this_Ti) return this_Ti Ti_intermediate_i_by_logi.__latex_name__ = r"$f(i)=i / \log(i)$" def last_term_operator_LT(Ti, max_i=10000): r""" For a certain function representing a doubling sequence, :math:`T: i \mapsto T_i`, this :func:`last_term_operator_LT` function returns the function :math:`L: T \mapsto L_T`, defined as: .. math:: \forall T\in\mathbb{N},\; L_T := \min\{ i \in\mathbb{N},\; T \leq T_i \}. :math:`L_T` is the only integer which satisfies :math:`T_{L_T - 1} < T \leq T_{L_T}`. """ return LT import matplotlib.pyplot as plt import seaborn as sns def plot_doubling_sequences( i_min=1, i_max=30, list_of_f=( function_f__for_geometric_sequences, function_f__for_intermediate_sequences, function_f__for_intermediate2_sequences, function_f__for_intermediate3_sequences, function_f__for_intermediate4_sequences, function_f__for_exponential_sequences, ), label_of_f=( "Geometric doubling (d=0, e=1)", "Intermediate doubling (d=1/2, e=0)", "Intermediate doubling (d=1/3, e=0)", "Intermediate doubling (d=2/3, e=0)", "Intermediate doubling (d=1/2, e=1/2)", "Exponential doubling (d=1, e=0)", ), *args, **kwargs ): r""" Display a plot to illustrate the values of the :math:`T_i` as a function of :math:`i` for some i. - Can accept many functions f (and labels). """ # Make unique markers nb = len(list_of_f) allmarkers = ['o', 'D', 'v', 'p', '<', 's', '^', '*', 'h', '>'] longlist = allmarkers * (1 + int(nb / float(len(allmarkers)))) # Cycle the good number of time markers = longlist[:nb] # Truncate # Make unique colors colors = sns.hls_palette(nb + 1)[:nb] fig = plt.figure() # plt.hold(True) i_s = np.arange(i_min, i_max) # now for each function f for num_f, (f, la) in enumerate(zip(list_of_f, label_of_f)): print("\n\nThe {}th function is referred to as {} and is {}".format(num_f, la, f)) # DEBUG Ti = Ti_from_f(f) values_of_Ti = np.array([ Ti(i) for i in i_s ]) plt.plot(i_s, values_of_Ti, label=la, lw=3, ms=3, color=colors[num_f], marker=markers[num_f]) plt.legend() plt.xlabel(r"Value of the time horizon $i = {},...,{}$".format(i_min, i_max)) plt.title(r"Comparison of the values of $T_i$") plt.show() return fig def plot_quality_first_upper_bound( Tmin=10, Tmax=int(1e8), nbTs=100, gamma=0.0, delta=1.0, # XXX bound in RT <= log(T) # gamma=0.5, delta=0.0, # XXX bound in RT <= sqrt(T) # gamma=0.5, delta=0.5, # XXX bound in RT <= sqrt(T * log(T)) # gamma=0.66667, delta=1.0, # XXX another weird bound in RT <= T^2/3 * log(T) list_of_f=( function_f__for_geometric_sequences, function_f__for_intermediate_sequences, function_f__for_intermediate2_sequences, function_f__for_intermediate3_sequences, function_f__for_intermediate4_sequences, function_f__for_exponential_sequences, ), label_of_f=( "Geometric doubling (d=0, e=1)", "Intermediate doubling (d=1/2, e=0)", "Intermediate doubling (d=1/3, e=0)", "Intermediate doubling (d=2/3, e=0)", "Intermediate doubling (d=1/2, e=1/2)", "Exponential doubling (d=1, e=0)", ), show_Ti_m_Tim1=True, # show_Ti_m_Tim1=False, # DEBUG *args, **kwargs ): r""" Display a plot to compare numerically between the following sum :math:`S` and the upper-bound we hope to have, :math:`T^{\gamma} (\log T)^{\delta}`, as a function of :math:`T` for some values between :math:`T_{\min}` and :math:`T_{\max}`: .. math:: S := \sum_{i=0}^{L_T} (T_i - T_{i-1})^{\gamma} (\log (T_i - T_{i-1}))^{\delta}. - Can accept many functions f (and labels). - Can use :math:`T_i` instead of :math:`T_i - T_{i-1}` if ``show_Ti_m_Tim1=False`` (default is to use the smaller possible bound, with difference of sequence lengths, :math:`T_i - T_{i-1}`). .. warning:: This is still ON GOING WORK. """ # Make unique markers nb = len(list_of_f) allmarkers = ['o', 'D', 'v', 'p', '<', 's', '^', '*', 'h', '>'] longlist = allmarkers * (1 + int(nb / float(len(allmarkers)))) # Cycle the good number of time markers = longlist[:nb] # Truncate # Make unique colors colors = sns.hls_palette(nb + 1)[:nb] fig = plt.figure() # plt.hold(True) Ts = np.floor(np.linspace(Tmin, Tmax, num=nbTs)) the_bound_we_want = (Ts ** gamma) * (np.log(Ts) ** delta) # plt.plot(Ts, the_bound_we_want, label=r"$T^{\gamma} (\log T)^{\delta}$", lw=3, ms=3, color=colors[0], marker=markers[0]) # compute the sequence lengths to use, either T_i or T_i - T_{i-1} Ts_for_f = np.copy(Ts) if show_Ti_m_Tim1: Ts_for_f[1:] = np.diff(Ts) # now for each function f for num_f, (f, la) in enumerate(zip(list_of_f, label_of_f)): print("\n\nThe {}th function is referred to as {} and is {}".format(num_f, la, f)) # DEBUG Ti = Ti_from_f(f) LT = last_term_operator_LT(Ti) the_sum_we_have = np.zeros_like(Ts_for_f) for j, (Tj, dTj) in enumerate(zip(Ts, Ts_for_f)): LTj = LT(Tj) the_sum_we_have[j] = sum( (dTj ** gamma) * (np.log(dTj) ** delta) for i in range(0, LTj + 1) ) print("For j = {}, Tj = {}, dTj = {}, gives LTj = {}, and the value of the sum from i=0 to LTj is = {}.".format(j, Tj, dTj, LTj, the_sum_we_have[j])) # DEBUG print("the_sum_we_have =", the_sum_we_have) # DEBUG plt.plot(Ts, the_sum_we_have / the_bound_we_want, label=la, lw=3, ms=3, color=colors[num_f], marker=markers[num_f]) plt.legend() plt.xlabel(r"Value of the time horizon $T = {},...,{}$".format(Tmin, Tmax)) str_of_Tj_or_dTj = "T_i - T_{i-1}" if show_Ti_m_Tim1 else "T_i" plt.title(r"Ratio of the sum $\sum_{i=0}^{L_T} (%s)^{\gamma} (\log(%s))^{\delta}$ and the upper-bound $T^{\gamma} \log(T)^{\delta}$, for $\gamma=%.3g$, $\delta=%.3g$." % (str_of_Tj_or_dTj, str_of_Tj_or_dTj, gamma, delta)) # DEBUG plt.show() return fig # --- The interesting class #: If the sequence Ti does not grow enough, artificially increase i until T_inext > T_i MAX_NB_OF_TRIALS = 500 class DoublingTrickWrapper(BaseWrapperPolicy): r""" A policy that acts as a wrapper on another policy `P`, assumed to be *horizon dependent* (has to known :math:`T`), by implementing a "doubling trick". - Reference: [[What the Doubling Trick Can or Can't Do for Multi-Armed Bandits, Lilian Besson and Emilie Kaufmann, 2018]](https://hal.inria.fr/hal-01736357), to be presented soon. """ # --- pretty printing # --- Start game by creating new underlying policy def startGame(self): """ Initialize the policy for a new game.""" super(BaseWrapperPolicy, self).startGame() # super(DoublingTrickWrapper, self).startGame() # WARNING no self._i = 0 # reinitialize this self.horizon = self._first_horizon #: Last guess for the horizon try: self.policy = self._policy(self.nbArms, horizon=self.horizon, lower=self.lower, amplitude=self.amplitude, *self._args, **self._kwargs) except Exception as e: print("WARNING: Received exception {} when trying to create the underlying policy... maybe the 'horizon={}' keyword argument was not understood correctly? Retrying without it...".format(e, self.horizon)) # DEBUG self.policy = self._policy(self.nbArms, lower=self.lower, amplitude=self.amplitude, *self._args, **self._kwargs) # now also start game for the underlying policy self.policy.startGame() # --- Pass the call to the subpolicy def getReward(self, arm, reward): """ Pass the reward, as usual, update t and sometimes restart the underlying policy.""" # print(" - At time t = {}, got a reward = {} from arm {} ...".format(self.t, arm, reward)) # DEBUG # super(DoublingTrickWrapper, self).getReward(arm, reward) self.t += 1 self.policy.getReward(arm, reward) # Maybe we have to update the horizon? if self.t > self.horizon: self._i += 1 new_horizon = self._next_horizon(self._i, self.horizon) # XXX <!-- small hack if the sequence is not growing fast enough nb_of_trials = 1 while nb_of_trials < MAX_NB_OF_TRIALS and new_horizon <= self.horizon: self._i += 1 nb_of_trials += 1 new_horizon = self._next_horizon(self._i, self.horizon) # XXX end of small hack --> assert new_horizon > self.horizon, "Error: the new_horizon = {} is not > the current horizon = {} ...".format(new_horizon, self.horizon) # DEBUG # print(" - At time t = {}, a DoublingTrickWrapper class was running with current horizon T_i = {} and decided to use {} as a new horizon...".format(self.t, self.horizon, new_horizon)) # DEBUG self.horizon = new_horizon # now we have to update or restart the underlying policy if self.full_restart: try: self.policy = self._policy(self.nbArms, horizon=self.horizon, lower=self.lower, amplitude=self.amplitude, *self._args, **self._kwargs) except Exception as e: # print("Received exception {} when trying to create the underlying policy... maybe the 'horizon={}' keyword argument was not understood correctly? Retrying without it...".format(e, self.horizon)) # DEBUG self.policy = self._policy(self.nbArms, lower=self.lower, amplitude=self.amplitude, *self._args, **self._kwargs) # now also start game for the underlying policy self.policy.startGame() # print(" ==> Fully restarting the underlying policy by creating a new object... Now it is = {} ...".format(self.policy)) # DEBUG else: if hasattr(self.policy, 'horizon'): try: self.policy.horizon = self.horizon except AttributeError: pass # print("Warning: unable to update the parameter 'horizon' of the underlying policy {}... Trying '_horizon' ...".format(self.policy)) # DEBUG # print(" ==> Just updating the horizon parameter of the underlying policy... Now it is = {} ...".format(self.policy)) # DEBUG # else: # print(" ==> Nothing to do, as the underlying policy DOES NOT have a 'horizon' or '_horizon' parameter that could have been updated... Maybe you are not using a good policy? I suggest UCBH or ApproximatedFHGittins.") # DEBUG # # --- Debugging if __name__ == "__main__": import sys if "plot" in sys.argv[1:]: plt.ion() # plot_doubling_sequences() for gamma, delta in [ (0.0, 1.0), # XXX bound in RT <= log(T) (0.5, 0.0), # XXX bound in RT <= sqrt(T) (0.5, 0.5), # XXX bound in RT <= sqrt(T * log(T)) (0.66667, 1.0), # XXX another weird bound in RT <= T^2/3 * log(T) ]: plot_quality_first_upper_bound(gamma=gamma, delta=delta, show_Ti_m_Tim1=True) plot_quality_first_upper_bound(gamma=gamma, delta=delta, show_Ti_m_Tim1=False) sys.exit(0) # Code for debugging purposes. from doctest import testmod print("\nTesting automatically all the docstring written in each functions of this module :") testmod(verbose=True)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 81, 37811, 317, 2450, 326, 6529, 355, 257, 29908, 319, 1194, 2450, 4600, 47, 47671, 9672, 284, 307, 1635, 17899, 8637, 10795, 9, 357, 10134, 284, 1900, 1058, 11018, 25, 63, 51, 63, 828, 416, 15427, 257, 366, 67, 280, 11108, 6908, 1298, 198, 198, 12, 4940, 284, 7048, 326, 1058, 11018, 25, 63, 51, 28, 51, 62, 15, 28, 12825, 47671, 290, 1057, 262, 2450, 1058, 11018, 25, 63, 47, 7, 51, 62, 15, 8, 47671, 422, 1058, 11018, 25, 63, 83, 28, 16, 63, 284, 1058, 11018, 25, 63, 83, 28, 51, 62, 15, 47671, 198, 12, 611, 1058, 11018, 25, 63, 83, 1875, 309, 62, 15, 47671, 788, 262, 366, 67, 280, 11108, 6908, 1, 318, 6157, 11, 416, 2035, 302, 12, 36733, 2890, 393, 655, 5609, 262, 11507, 4600, 17899, 8637, 63, 286, 262, 2450, 350, 11, 329, 4554, 351, 1058, 11018, 25, 63, 51, 62, 17, 796, 838, 3467, 22355, 309, 62, 15, 47671, 198, 12, 290, 1394, 1804, 428, 1566, 1058, 11018, 25, 63, 83, 796, 309, 44646, 198, 198, 492, 3465, 3712, 628, 220, 220, 770, 318, 9177, 287, 257, 845, 14276, 835, 11, 351, 2391, 257, 2163, 4600, 19545, 62, 17899, 8637, 7, 17899, 8637, 8, 63, 326, 3607, 262, 1306, 17810, 284, 1949, 618, 12538, 262, 1459, 4724, 13, 198, 220, 220, 632, 460, 307, 257, 2829, 14174, 2163, 357, 63, 19545, 62, 17899, 8637, 7, 17899, 8637, 8, 796, 17810, 1343, 1802, 63, 828, 257, 38445, 3349, 284, 423, 262, 366, 5305, 1, 26862, 6908, 357, 63, 19545, 62, 17899, 8637, 7, 17899, 8637, 8, 796, 17810, 1635, 838, 63, 828, 393, 772, 5499, 3957, 35529, 3049, 357, 63, 19545, 62, 17899, 8637, 7, 17899, 8637, 8, 796, 17810, 12429, 352, 13, 16, 47671, 4600, 19545, 62, 17899, 8637, 7, 17899, 8637, 8, 796, 17810, 12429, 352, 13, 20, 47671, 4600, 19545, 62, 17899, 8637, 7, 17899, 8637, 8, 796, 17810, 12429, 362, 63, 737, 198, 198, 492, 3465, 3712, 628, 220, 220, 2011, 4724, 318, 326, 428, 366, 67, 280, 11108, 6908, 1, 27074, 2450, 460, 691, 307, 6942, 357, 1640, 3995, 354, 3477, 2761, 8, 611, 25, 628, 220, 220, 532, 262, 10238, 2450, 4600, 47, 63, 318, 257, 845, 6942, 17810, 12, 21186, 11862, 11, 304, 13, 70, 1539, 262, 1058, 4871, 25, 63, 47, 4160, 444, 13, 4677, 13907, 15655, 44602, 38, 715, 1040, 47671, 198, 220, 220, 532, 262, 3349, 2163, 4600, 19545, 62, 17899, 8637, 63, 318, 3957, 5443, 621, 597, 38445, 2494, 11, 523, 326, 262, 1271, 286, 14976, 318, 1058, 11018, 25, 63, 78, 38016, 6404, 309, 8, 63, 290, 407, 1058, 11018, 25, 63, 46, 38016, 6404, 309, 8, 44646, 198, 198, 492, 766, 14508, 3712, 628, 220, 220, 20984, 25, 16410, 2061, 262, 5728, 11108, 30028, 1680, 393, 1680, 470, 2141, 329, 15237, 12, 3163, 1150, 10243, 896, 11, 16342, 666, 347, 39670, 290, 44272, 494, 28148, 69, 9038, 11, 2864, 11907, 7, 5450, 1378, 14201, 13, 259, 7496, 13, 8310, 14, 14201, 12, 29326, 2623, 27277, 828, 284, 307, 5545, 2582, 13, 198, 198, 492, 6509, 3712, 628, 220, 220, 26491, 25, 1002, 4600, 37, 9994, 62, 49, 6465, 7227, 28, 25101, 63, 357, 12286, 828, 262, 10238, 11862, 318, 11027, 515, 379, 790, 2270, 4122, 11, 198, 220, 220, 2427, 663, 11688, 4600, 17899, 8637, 63, 393, 4600, 62, 17899, 8637, 63, 318, 6153, 13, 1355, 1654, 326, 428, 318, 1576, 284, 1107, 198, 220, 220, 1487, 262, 5387, 1988, 973, 416, 262, 2450, 13, 2773, 2450, 779, 309, 691, 1752, 284, 24061, 1854, 10007, 11, 198, 220, 220, 543, 815, 307, 6153, 355, 880, 13, 317, 10107, 7822, 286, 262, 4600, 834, 2617, 35226, 834, 63, 2446, 460, 1037, 13, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 220, 1303, 11361, 362, 17764, 198, 198, 834, 9800, 834, 796, 366, 43, 35824, 347, 39670, 1, 198, 834, 9641, 834, 796, 366, 15, 13, 24, 1, 628, 198, 11748, 299, 32152, 355, 45941, 198, 28311, 25, 198, 220, 220, 220, 422, 764, 14881, 36918, 2848, 36727, 1330, 7308, 36918, 2848, 36727, 198, 220, 220, 220, 422, 764, 9598, 33, 39, 1330, 14417, 33, 39, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 7308, 36918, 2848, 36727, 1330, 7308, 36918, 2848, 36727, 198, 220, 220, 220, 422, 14417, 33, 39, 1330, 14417, 33, 39, 198, 28311, 25, 198, 220, 220, 220, 422, 764, 385, 268, 2178, 64, 1330, 474, 270, 220, 1303, 17267, 997, 7012, 13, 45051, 393, 257, 31548, 474, 270, 7, 69, 47505, 69, 198, 16341, 357, 11395, 12331, 11, 17267, 12331, 11, 4482, 12331, 2599, 198, 220, 220, 220, 422, 514, 268, 2178, 64, 1330, 474, 270, 220, 1303, 17267, 997, 7012, 13, 45051, 393, 257, 31548, 474, 270, 7, 69, 47505, 69, 628, 198, 2, 25, 15161, 17810, 12, 21186, 2450, 198, 12286, 62, 17899, 8637, 35, 8682, 62, 30586, 796, 14417, 33, 39, 198, 198, 2, 25, 15161, 6937, 284, 760, 644, 284, 466, 618, 15765, 278, 262, 10238, 2450, 351, 257, 649, 17810, 11507, 13, 198, 2, 25, 198, 2, 25, 532, 4600, 17821, 63, 1724, 326, 257, 649, 2450, 11, 23224, 422, 12692, 11, 481, 307, 2727, 379, 790, 2270, 4122, 13, 198, 2, 25, 532, 4600, 25101, 63, 1724, 326, 262, 976, 2450, 2134, 318, 973, 475, 655, 663, 11688, 4600, 17899, 8637, 63, 318, 6153, 357, 12286, 737, 198, 37, 9994, 62, 49, 6465, 7227, 796, 6407, 198, 37, 9994, 62, 49, 6465, 7227, 796, 10352, 628, 198, 198, 2, 25, 15161, 17810, 11, 973, 329, 262, 717, 2239, 13, 198, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 796, 939, 628, 198, 2, 25, 15161, 4831, 1096, 329, 262, 34768, 17810, 17085, 13, 198, 1503, 10554, 47123, 2149, 62, 42135, 796, 838, 1635, 5550, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 198, 1503, 10554, 47123, 2149, 62, 42135, 796, 352, 1635, 5550, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 628, 198, 31, 45051, 198, 4299, 1306, 62, 17899, 8637, 834, 283, 29848, 7, 72, 11, 17810, 2599, 198, 220, 220, 220, 374, 37811, 383, 34768, 17810, 17085, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 309, 1222, 59, 8899, 301, 78, 309, 1343, 1802, 11, 6852, 198, 220, 220, 220, 220, 220, 220, 220, 309, 62, 72, 1222, 25, 28, 309, 62, 15, 1343, 1802, 3467, 22355, 1312, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 17810, 1343, 5923, 10554, 47123, 2149, 62, 42135, 198, 198, 19545, 62, 17899, 8637, 834, 283, 29848, 13, 834, 17660, 87, 62, 3672, 834, 796, 366, 283, 342, 76, 1, 198, 19545, 62, 17899, 8637, 834, 283, 29848, 13, 834, 17660, 87, 62, 3672, 834, 796, 374, 1, 3, 51, 62, 72, 796, 23884, 1343, 23884, 3467, 22355, 1312, 3, 1911, 18982, 7, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 5923, 10554, 47123, 2149, 62, 42135, 8, 628, 198, 2, 25, 15161, 15082, 43058, 6937, 329, 262, 38445, 17810, 17085, 13, 198, 8264, 2662, 2767, 41132, 62, 42135, 796, 362, 628, 198, 31, 45051, 198, 4299, 1306, 62, 17899, 8637, 834, 469, 16996, 7, 72, 11, 17810, 2599, 198, 220, 220, 220, 374, 37811, 383, 38445, 17810, 17085, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 309, 1222, 59, 8899, 301, 78, 309, 3467, 22355, 362, 11, 6852, 198, 220, 220, 220, 220, 220, 220, 220, 309, 62, 72, 1222, 25, 28, 309, 62, 15, 362, 61, 72, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 17810, 1635, 22319, 2662, 2767, 41132, 62, 42135, 198, 198, 19545, 62, 17899, 8637, 834, 469, 16996, 13, 834, 17660, 87, 62, 3672, 834, 796, 366, 469, 296, 1, 198, 19545, 62, 17899, 8637, 834, 469, 16996, 13, 834, 17660, 87, 62, 3672, 834, 796, 374, 1, 3, 51, 62, 72, 796, 23884, 3467, 22355, 23884, 61, 72, 3, 1911, 18982, 7, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 22319, 2662, 2767, 41132, 62, 42135, 8, 628, 198, 2, 25, 15161, 39682, 6937, 329, 262, 39682, 17810, 17085, 13, 198, 49864, 1340, 3525, 12576, 62, 42135, 796, 352, 13, 20, 628, 198, 31, 45051, 198, 4299, 1306, 62, 17899, 8637, 834, 11201, 35470, 7, 72, 11, 17810, 2599, 198, 220, 220, 220, 374, 37811, 383, 39682, 17810, 17085, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 309, 1222, 59, 8899, 301, 78, 3467, 9464, 59, 1652, 75, 2675, 309, 36796, 16, 13, 20, 92, 3467, 3506, 59, 81, 28300, 11, 6852, 198, 220, 220, 220, 220, 220, 220, 220, 309, 62, 72, 1222, 25, 28, 3467, 9464, 59, 1652, 75, 2675, 309, 62, 15, 36796, 16, 13, 20, 61, 72, 92, 3467, 3506, 59, 81, 28300, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 493, 7, 37659, 13, 28300, 7, 17899, 8637, 12429, 25703, 1340, 3525, 12576, 62, 42135, 4008, 198, 198, 19545, 62, 17899, 8637, 834, 11201, 35470, 13, 834, 17660, 87, 62, 3672, 834, 796, 366, 11201, 1, 198, 19545, 62, 17899, 8637, 834, 11201, 35470, 13, 834, 17660, 87, 62, 3672, 834, 796, 374, 1, 3, 51, 62, 72, 796, 23884, 36796, 92, 3, 1911, 18982, 7, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 374, 1, 90, 7225, 18, 70, 61, 72, 36786, 4064, 25703, 1340, 3525, 12576, 62, 42135, 8, 628, 198, 2, 25, 15161, 39682, 6937, 329, 262, 3105, 39682, 17810, 17085, 13, 198, 8634, 3913, 62, 49864, 1340, 3525, 12576, 62, 42135, 796, 352, 13, 16, 628, 198, 31, 45051, 198, 4299, 1306, 62, 17899, 8637, 834, 11201, 35470, 62, 38246, 7, 72, 11, 17810, 2599, 198, 220, 220, 220, 374, 37811, 383, 39682, 17810, 17085, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 309, 1222, 59, 8899, 301, 78, 3467, 9464, 59, 1652, 75, 2675, 309, 36796, 16, 13, 16, 92, 3467, 3506, 59, 81, 28300, 11, 6852, 198, 220, 220, 220, 220, 220, 220, 220, 309, 62, 72, 1222, 25, 28, 3467, 9464, 59, 1652, 75, 2675, 309, 62, 15, 36796, 16, 13, 16, 61, 72, 92, 3467, 3506, 59, 81, 28300, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 493, 7, 37659, 13, 28300, 7, 17899, 8637, 12429, 12419, 3913, 62, 49864, 1340, 3525, 12576, 62, 42135, 4008, 198, 198, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 38246, 13, 834, 17660, 87, 62, 3672, 834, 796, 366, 38246, 1033, 1, 198, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 38246, 13, 834, 17660, 87, 62, 3672, 834, 796, 374, 1, 3, 51, 62, 72, 796, 23884, 36796, 92, 3, 1911, 18982, 7, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 374, 1, 90, 7225, 18, 70, 61, 72, 36786, 4064, 12419, 3913, 62, 49864, 1340, 3525, 12576, 62, 42135, 8, 628, 198, 2, 25, 15161, 39682, 6937, 329, 262, 3049, 39682, 17810, 17085, 13, 198, 37, 11262, 62, 49864, 1340, 3525, 12576, 62, 42135, 796, 362, 628, 198, 31, 45051, 198, 4299, 1306, 62, 17899, 8637, 834, 11201, 35470, 62, 7217, 7, 72, 11, 17810, 2599, 198, 220, 220, 220, 374, 37811, 383, 39682, 17810, 17085, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 309, 1222, 59, 8899, 301, 78, 3467, 1652, 75, 2675, 309, 36796, 17, 92, 3467, 81, 28300, 11, 6852, 198, 220, 220, 220, 220, 220, 220, 220, 309, 62, 72, 1222, 25, 28, 3467, 1652, 75, 2675, 309, 62, 15, 36796, 17, 61, 72, 92, 3467, 81, 28300, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 493, 7, 37659, 13, 28300, 7, 17899, 8637, 12429, 362, 4008, 198, 198, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 7217, 13, 834, 17660, 87, 62, 3672, 834, 796, 366, 7217, 1033, 1, 198, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 7217, 13, 834, 17660, 87, 62, 3672, 834, 796, 374, 1, 3, 51, 62, 72, 796, 23884, 36796, 92, 3, 1911, 18982, 7, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 374, 1, 90, 7225, 18, 70, 61, 72, 36786, 4064, 376, 11262, 62, 49864, 1340, 3525, 12576, 62, 42135, 8, 628, 198, 2, 25, 15161, 6937, 1058, 11018, 25, 63, 59, 26591, 63, 329, 262, 14276, 39682, 8379, 13, 198, 1847, 47, 7801, 796, 362, 198, 2, 25, 15161, 6937, 1058, 11018, 25, 63, 59, 31361, 63, 329, 262, 14276, 39682, 8379, 13, 198, 33, 20892, 796, 362, 198, 198, 4299, 1306, 62, 17899, 8637, 834, 11201, 35470, 62, 41357, 7, 72, 11, 17810, 2599, 198, 220, 220, 220, 374, 37811, 383, 14276, 39682, 17810, 17085, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 309, 62, 72, 19039, 3467, 9464, 59, 1652, 75, 2675, 3467, 31944, 90, 51, 62, 15, 18477, 64, 92, 257, 36796, 65, 61, 72, 92, 3467, 3506, 59, 81, 28300, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 493, 19510, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 1220, 42674, 7801, 8, 1635, 42674, 7801, 12429, 357, 33, 20892, 12429, 1312, 4008, 198, 220, 220, 220, 1303, 1441, 493, 7, 1847, 47, 7801, 1635, 45941, 13, 28300, 7, 17899, 8637, 12429, 347, 20892, 4008, 198, 198, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 41357, 13, 834, 17660, 87, 62, 3672, 834, 796, 374, 1, 11201, 720, 64, 34758, 25, 13, 18, 70, 92, 47113, 720, 65, 34758, 25, 13, 18, 70, 92, 3, 1911, 18982, 7, 1847, 47, 7801, 11, 347, 20892, 8, 198, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 41357, 13, 834, 17660, 87, 62, 3672, 834, 796, 374, 1, 3, 51, 62, 72, 796, 37913, 92, 14, 90, 30072, 23884, 36796, 92, 3, 1911, 18982, 7, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 42674, 7801, 11, 42674, 7801, 11, 374, 1, 90, 7225, 18, 70, 61, 72, 36786, 4064, 347, 20892, 8, 628, 198, 2, 25, 609, 577, 262, 4277, 17810, 3349, 2163, 13, 198, 2, 4277, 62, 19545, 62, 17899, 8637, 796, 1306, 62, 17899, 8637, 834, 283, 29848, 198, 2, 4277, 62, 19545, 62, 17899, 8637, 796, 1306, 62, 17899, 8637, 834, 469, 16996, 198, 2, 4277, 62, 19545, 62, 17899, 8637, 796, 1306, 62, 17899, 8637, 834, 469, 16996, 198, 2, 4277, 62, 19545, 62, 17899, 8637, 796, 1306, 62, 17899, 8637, 834, 11201, 35470, 62, 7217, 198, 12286, 62, 19545, 62, 17899, 8637, 796, 1306, 62, 17899, 8637, 834, 11201, 35470, 62, 38246, 628, 198, 2, 11420, 34030, 2163, 198, 198, 4299, 2270, 13033, 7, 19545, 62, 17899, 8637, 11, 717, 62, 17899, 8637, 11, 17810, 11, 14257, 28, 25101, 2599, 198, 220, 220, 220, 374, 37811, 8229, 262, 1351, 286, 15765, 966, 357, 9032, 13033, 828, 611, 3599, 422, 7559, 11085, 62, 17899, 8637, 15506, 284, 7559, 17899, 8637, 15506, 351, 3349, 2163, 7559, 19545, 62, 17899, 8637, 15506, 13, 628, 220, 220, 220, 532, 4418, 1441, 262, 7625, 1022, 262, 938, 4724, 329, 17810, 290, 262, 2081, 17810, 13, 770, 7625, 815, 407, 307, 1165, 1588, 13, 198, 220, 220, 220, 532, 18460, 306, 3601, 477, 262, 3815, 611, 7559, 24442, 28, 17821, 15506, 13, 628, 220, 220, 220, 532, 3274, 6096, 25, 628, 220, 220, 220, 13163, 717, 62, 17899, 8637, 796, 8576, 198, 220, 220, 220, 13163, 17810, 796, 513, 2388, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 283, 29848, 11, 717, 62, 17899, 8637, 11, 17810, 8, 220, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 29565, 12825, 11, 24938, 11, 36641, 11, 2644, 11, 2808, 7410, 11, 513, 2388, 4357, 657, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 469, 16996, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 12825, 11, 4751, 11, 30123, 11, 38055, 11, 1467, 830, 11, 3933, 830, 4357, 4751, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 12825, 11, 34131, 1828, 4357, 1467, 1828, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 38246, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 12825, 11, 8735, 11, 604, 22980, 11, 9661, 2548, 11, 1987, 46250, 11, 718, 3695, 1983, 4357, 45473, 1983, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 7217, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 12825, 11, 1802, 2388, 4357, 10111, 2388, 8, 628, 220, 220, 220, 532, 5498, 6096, 25, 628, 220, 220, 220, 13163, 717, 62, 17899, 8637, 796, 23336, 198, 220, 220, 220, 13163, 17810, 796, 1802, 2388, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 283, 29848, 11, 717, 62, 17899, 8637, 11, 17810, 8, 220, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 29565, 27641, 11, 642, 2167, 11, 2644, 11, 36006, 8054, 11, 36006, 7410, 11, 1802, 2388, 4357, 657, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 469, 16996, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 27641, 11, 33028, 11, 939, 405, 11, 604, 2388, 11, 807, 2388, 11, 1467, 2388, 11, 513, 2167, 405, 11, 5598, 2388, 11, 13108, 2388, 4357, 2579, 2388, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 27641, 11, 3439, 2327, 4310, 11, 20064, 22047, 38172, 4357, 28815, 22047, 38172, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 38246, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 27641, 11, 19048, 1507, 11, 31011, 3023, 11, 807, 2548, 1157, 11, 21148, 34626, 11, 860, 3312, 19708, 11, 45210, 4967, 4357, 36100, 4967, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 7217, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 27641, 11, 1679, 10535, 4357, 1987, 10535, 8, 628, 220, 220, 220, 532, 10467, 6096, 25, 628, 220, 220, 220, 13163, 717, 62, 17899, 8637, 796, 838, 198, 220, 220, 220, 13163, 17810, 796, 352, 10163, 29228, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 283, 29848, 11, 717, 62, 17899, 8637, 11, 17810, 8, 220, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 29565, 940, 11, 20064, 11, 32921, 11, 2644, 11, 13539, 2624, 940, 11, 13539, 2682, 940, 11, 13539, 2623, 940, 4357, 24235, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 469, 16996, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 940, 11, 1160, 11, 2319, 11, 4019, 11, 13454, 11, 20959, 11, 33759, 11, 37674, 11, 1679, 1899, 11, 642, 10232, 11, 838, 16102, 11, 1160, 22148, 11, 2319, 39277, 11, 807, 40454, 11, 1467, 2548, 1821, 11, 513, 27988, 1795, 11, 45021, 15277, 11, 1511, 15982, 1238, 4357, 27649, 18897, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 940, 11, 3261, 11, 23120, 11, 362, 13381, 11, 49616, 6469, 11, 13803, 26200, 3980, 4357, 42489, 1558, 7029, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 38246, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 940, 11, 1105, 11, 1315, 11, 678, 11, 1679, 11, 4974, 11, 4764, 11, 4317, 11, 16226, 11, 16677, 11, 40654, 11, 48391, 11, 860, 2078, 11, 1248, 2718, 11, 4353, 3865, 11, 9919, 3070, 11, 2534, 13464, 11, 49231, 3312, 11, 1248, 3312, 2548, 11, 3126, 1899, 1731, 11, 31064, 2857, 3104, 4357, 19048, 1485, 1065, 8, 198, 220, 220, 220, 13163, 2270, 13033, 7, 19545, 62, 17899, 8637, 834, 11201, 35470, 62, 7217, 11, 717, 62, 17899, 8637, 11, 17810, 8, 198, 220, 220, 220, 29565, 940, 11, 1802, 11, 33028, 11, 1802, 10535, 4357, 860, 3459, 29143, 2598, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 256, 796, 3509, 7, 11085, 62, 17899, 8637, 11, 362, 8, 198, 220, 220, 220, 1661, 796, 685, 83, 60, 198, 220, 220, 220, 611, 14257, 25, 3601, 7203, 59, 77, 59, 77, 1890, 262, 3349, 2163, 1391, 5512, 3706, 705, 90, 92, 3256, 717, 4724, 286, 262, 17810, 796, 23884, 290, 2081, 17810, 796, 23884, 2644, 59, 77, 6624, 29, 383, 1661, 481, 307, 25, 1911, 18982, 7, 19545, 62, 17899, 8637, 11, 651, 35226, 7, 19545, 62, 17899, 8637, 11, 705, 834, 17660, 87, 62, 3672, 834, 3256, 705, 8348, 828, 717, 62, 17899, 8637, 11, 17810, 4008, 198, 220, 220, 220, 981, 256, 1279, 17810, 25, 198, 220, 220, 220, 220, 220, 220, 220, 256, 796, 1306, 62, 17899, 8637, 7, 72, 11, 256, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 13, 33295, 7, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14257, 25, 3601, 7203, 220, 220, 220, 383, 23884, 400, 2270, 4122, 318, 23884, 35713, 13, 18982, 7, 72, 11, 256, 4008, 220, 1303, 16959, 198, 220, 220, 220, 6818, 17810, 19841, 256, 11, 366, 12331, 25, 262, 938, 4724, 329, 17810, 796, 23884, 373, 1043, 4833, 621, 262, 2081, 17810, 796, 23884, 9313, 13, 18982, 7, 83, 11, 17810, 8, 220, 1303, 16959, 198, 220, 220, 220, 7625, 796, 256, 532, 17810, 198, 220, 220, 220, 611, 14257, 25, 3601, 7203, 1212, 938, 4724, 329, 17810, 796, 23884, 3607, 257, 7625, 796, 23884, 1028, 262, 2081, 17810, 23884, 13, 45344, 3580, 796, 46110, 13, 18, 4, 92, 9313, 13, 18982, 7, 83, 11, 7625, 11, 17810, 11, 7625, 1220, 12178, 7, 17899, 8637, 22305, 220, 1303, 16959, 198, 220, 220, 220, 1441, 1661, 11, 7625, 628, 198, 2, 11420, 32286, 2438, 284, 7110, 617, 26862, 16311, 290, 198, 2, 2198, 5470, 1146, 617, 45460, 1058, 198, 2, 588, 12755, 257, 2160, 31669, 62, 72, 28, 15, 61, 77, 334, 62, 72, 416, 257, 6937, 1661, 284, 938, 3381, 334, 62, 77, 198, 2, 290, 12755, 262, 938, 3381, 334, 23330, 43, 62, 51, 92, 355, 257, 2163, 286, 309, 13, 628, 198, 2, 25, 383, 6937, 269, 287, 2166, 286, 262, 2163, 277, 13, 198, 9979, 415, 62, 66, 62, 1640, 62, 1169, 62, 12543, 2733, 62, 69, 796, 352, 13, 15, 198, 9979, 415, 62, 66, 62, 1640, 62, 1169, 62, 12543, 2733, 62, 69, 796, 657, 13, 16, 198, 9979, 415, 62, 66, 62, 1640, 62, 1169, 62, 12543, 2733, 62, 69, 796, 657, 13, 20, 628, 198, 4299, 2163, 62, 69, 834, 1640, 62, 469, 16996, 62, 3107, 3007, 7, 72, 11, 269, 28, 9979, 415, 62, 66, 62, 1640, 62, 1169, 62, 12543, 2733, 62, 69, 2599, 198, 220, 220, 220, 374, 37811, 1114, 262, 1635, 469, 16996, 9, 26862, 16311, 11, 1058, 11018, 25, 63, 69, 7, 72, 8, 796, 269, 3467, 22355, 3467, 6404, 7, 72, 8, 63, 526, 15931, 198, 220, 220, 220, 611, 1312, 19841, 657, 25, 1441, 657, 13, 15, 198, 220, 220, 220, 1441, 269, 1635, 45941, 13, 6404, 7, 72, 8, 628, 198, 4299, 2163, 62, 69, 834, 1640, 62, 11201, 35470, 62, 3107, 3007, 7, 72, 11, 269, 28, 9979, 415, 62, 66, 62, 1640, 62, 1169, 62, 12543, 2733, 62, 69, 2599, 198, 220, 220, 220, 374, 37811, 1114, 262, 1635, 11201, 35470, 9, 26862, 16311, 11, 1058, 11018, 25, 63, 69, 7, 72, 8, 796, 269, 3467, 22355, 1312, 63, 526, 15931, 198, 220, 220, 220, 1441, 269, 1635, 1312, 628, 198, 4299, 2163, 62, 69, 834, 1640, 62, 41357, 62, 3107, 3007, 7, 72, 11, 269, 28, 9979, 415, 62, 66, 62, 1640, 62, 1169, 62, 12543, 2733, 62, 69, 11, 288, 28, 15, 13, 20, 11, 304, 28, 15, 13, 15, 2599, 198, 220, 220, 220, 374, 37811, 1114, 257, 1728, 1635, 41357, 9, 1641, 286, 26862, 16311, 11, 1058, 11018, 25, 63, 69, 7, 72, 8, 796, 269, 3467, 22355, 1312, 36796, 67, 92, 3467, 22355, 357, 59, 6404, 7, 72, 4008, 36796, 68, 92, 44646, 628, 220, 220, 220, 532, 7559, 67, 11, 304, 796, 657, 11, 352, 15506, 3607, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 469, 16996, 62, 3107, 3007, 47671, 198, 220, 220, 220, 532, 7559, 67, 11, 304, 796, 352, 11, 657, 15506, 3607, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 469, 16996, 62, 3107, 3007, 47671, 198, 220, 220, 220, 532, 7559, 67, 11, 304, 796, 657, 13, 20, 11, 657, 15506, 3607, 281, 19898, 8379, 11, 3957, 5443, 621, 597, 38445, 8379, 290, 13611, 621, 597, 39682, 8379, 11, 198, 220, 220, 220, 532, 597, 584, 6087, 468, 407, 587, 9713, 1865, 13, 628, 220, 220, 220, 11485, 6509, 3712, 7559, 67, 15506, 815, 749, 2192, 307, 4833, 621, 352, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1312, 796, 12178, 7, 72, 8, 198, 220, 220, 220, 611, 1312, 19841, 657, 25, 1441, 657, 13, 15, 198, 220, 220, 220, 611, 304, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 288, 1875, 657, 11, 366, 12331, 25, 12515, 1988, 286, 288, 796, 23884, 329, 2163, 62, 69, 834, 1640, 62, 41357, 62, 3107, 3007, 526, 13, 18982, 7, 67, 8, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 1635, 357, 72, 12429, 288, 8, 198, 220, 220, 220, 611, 288, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 304, 1875, 657, 11, 366, 12331, 25, 12515, 1988, 286, 304, 796, 23884, 329, 2163, 62, 69, 834, 1640, 62, 41357, 62, 3107, 3007, 526, 13, 18982, 7, 68, 8, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 1635, 14808, 37659, 13, 6404, 7, 72, 4008, 12429, 304, 8, 198, 220, 220, 220, 1441, 269, 1635, 357, 72, 12429, 288, 8, 1635, 14808, 37659, 13, 6404, 7, 72, 4008, 12429, 304, 8, 628, 198, 198, 2, 25, 11052, 286, 262, 11507, 1058, 11018, 25, 63, 59, 26591, 63, 329, 262, 1058, 20786, 25, 63, 40533, 62, 6738, 62, 69, 63, 2163, 13, 198, 26591, 62, 1640, 62, 40533, 796, 657, 13, 16, 198, 26591, 62, 1640, 62, 40533, 796, 352, 13, 15, 198, 26591, 62, 1640, 62, 40533, 796, 657, 13, 20, 628, 198, 4299, 16953, 62, 6738, 62, 69, 7, 69, 11, 17130, 28, 26591, 62, 1640, 62, 40533, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 1114, 597, 1729, 12, 31591, 290, 3649, 2163, 1058, 11018, 25, 63, 69, 25, 1312, 3467, 8899, 301, 78, 277, 7, 72, 8, 47671, 262, 11188, 8379, 318, 5447, 416, 25, 628, 220, 220, 220, 11485, 10688, 3712, 3467, 1640, 439, 1312, 59, 259, 59, 11018, 11848, 90, 45, 5512, 59, 26, 309, 62, 72, 19039, 3467, 1652, 75, 2675, 3467, 11201, 38016, 26591, 3467, 22355, 3467, 11201, 7, 69, 7, 72, 22305, 3467, 81, 28300, 13, 628, 220, 220, 220, 11485, 6509, 3712, 1058, 11018, 25, 63, 69, 7, 72, 8, 63, 460, 761, 584, 10007, 11, 766, 262, 6096, 2029, 13, 1119, 460, 307, 1813, 355, 7559, 9, 22046, 15506, 393, 7559, 1174, 46265, 22046, 15506, 284, 1058, 20786, 25, 63, 40533, 62, 6738, 62, 69, 44646, 628, 220, 220, 220, 11485, 6509, 3712, 340, 815, 307, 29231, 4306, 11, 314, 815, 1577, 1058, 11018, 25, 63, 72, 3467, 8899, 301, 78, 3467, 11201, 7, 69, 7, 72, 4008, 63, 2427, 286, 1058, 11018, 25, 63, 69, 25, 1312, 3467, 8899, 301, 78, 277, 7, 72, 8, 44646, 314, 761, 284, 1949, 355, 881, 355, 1744, 284, 4646, 262, 2526, 286, 30343, 8563, 0, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 39410, 836, 470, 6044, 262, 4314, 0, 198, 220, 220, 220, 1441, 16953, 628, 198, 4299, 16953, 62, 469, 16996, 7, 72, 11, 17810, 11, 17130, 28, 26591, 62, 1640, 62, 40533, 11, 717, 62, 17899, 8637, 28, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 45835, 1058, 11018, 25, 63, 51, 62, 72, 63, 7560, 422, 262, 2163, 1058, 11018, 25, 63, 69, 63, 796, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 469, 16996, 62, 3107, 3007, 63, 526, 15931, 198, 220, 220, 220, 277, 796, 2163, 62, 69, 834, 1640, 62, 469, 16996, 62, 3107, 3007, 198, 220, 220, 220, 428, 62, 40533, 796, 717, 62, 17899, 8637, 1343, 45941, 13, 28300, 7, 37659, 13, 11201, 7, 26591, 1635, 45941, 13, 11201, 7, 69, 7, 22468, 7, 72, 828, 1635, 22046, 11, 12429, 46265, 22046, 35514, 198, 220, 220, 220, 611, 407, 357, 37659, 13, 271, 10745, 7, 5661, 62, 40533, 8, 393, 45941, 13, 271, 12647, 7, 5661, 62, 40533, 8, 2599, 428, 62, 40533, 796, 493, 7, 5661, 62, 40533, 8, 198, 220, 220, 220, 1441, 428, 62, 40533, 198, 40533, 62, 469, 16996, 13, 834, 17660, 87, 62, 3672, 834, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 374, 1, 3, 69, 7, 72, 47505, 59, 6404, 7, 72, 8, 3, 1, 198, 198, 4299, 16953, 62, 11201, 35470, 7, 72, 11, 17810, 11, 17130, 28, 26591, 62, 1640, 62, 40533, 11, 717, 62, 17899, 8637, 28, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 45835, 1058, 11018, 25, 63, 51, 62, 72, 63, 7560, 422, 262, 2163, 1058, 11018, 25, 63, 69, 63, 796, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 11201, 35470, 62, 3107, 3007, 63, 526, 15931, 198, 220, 220, 220, 277, 796, 2163, 62, 69, 834, 1640, 62, 11201, 35470, 62, 3107, 3007, 198, 220, 220, 220, 428, 62, 40533, 796, 717, 62, 17899, 8637, 1343, 45941, 13, 28300, 7, 37659, 13, 11201, 7, 26591, 1635, 45941, 13, 11201, 7, 69, 7, 22468, 7, 72, 828, 1635, 22046, 11, 12429, 46265, 22046, 35514, 198, 220, 220, 220, 611, 407, 357, 37659, 13, 271, 10745, 7, 5661, 62, 40533, 8, 393, 45941, 13, 271, 12647, 7, 5661, 62, 40533, 8, 2599, 428, 62, 40533, 796, 493, 7, 5661, 62, 40533, 8, 198, 220, 220, 220, 1441, 428, 62, 40533, 198, 40533, 62, 11201, 35470, 13, 834, 17660, 87, 62, 3672, 834, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 374, 1, 3, 69, 7, 72, 47505, 72, 3, 1, 198, 198, 4299, 16953, 62, 3849, 13857, 62, 31166, 17034, 72, 7, 72, 11, 17810, 11, 17130, 28, 26591, 62, 1640, 62, 40533, 11, 717, 62, 17899, 8637, 28, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 45835, 1058, 11018, 25, 63, 51, 62, 72, 63, 7560, 422, 262, 2163, 1058, 11018, 25, 63, 69, 63, 796, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 3849, 13857, 62, 3107, 3007, 63, 526, 15931, 198, 220, 220, 220, 277, 796, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 62, 3107, 3007, 198, 220, 220, 220, 428, 62, 40533, 796, 717, 62, 17899, 8637, 1343, 45941, 13, 28300, 7, 37659, 13, 11201, 7, 26591, 1635, 45941, 13, 11201, 7, 69, 7, 22468, 7, 72, 828, 1635, 22046, 11, 12429, 46265, 22046, 35514, 198, 220, 220, 220, 611, 407, 357, 37659, 13, 271, 10745, 7, 5661, 62, 40533, 8, 393, 45941, 13, 271, 12647, 7, 5661, 62, 40533, 8, 2599, 428, 62, 40533, 796, 493, 7, 5661, 62, 40533, 8, 198, 220, 220, 220, 1441, 428, 62, 40533, 198, 40533, 62, 3849, 13857, 62, 31166, 17034, 72, 13, 834, 17660, 87, 62, 3672, 834, 220, 220, 220, 220, 220, 796, 374, 1, 3, 69, 7, 72, 47505, 59, 31166, 17034, 90, 72, 92, 3, 1, 198, 198, 4299, 16953, 62, 3849, 13857, 62, 72, 1485, 7, 72, 11, 17810, 11, 17130, 28, 26591, 62, 1640, 62, 40533, 11, 717, 62, 17899, 8637, 28, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 45835, 1058, 11018, 25, 63, 51, 62, 72, 63, 7560, 422, 262, 2163, 1058, 11018, 25, 63, 69, 63, 796, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 3849, 13857, 17, 62, 3107, 3007, 63, 526, 15931, 198, 220, 220, 220, 277, 796, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 17, 62, 3107, 3007, 198, 220, 220, 220, 428, 62, 40533, 796, 717, 62, 17899, 8637, 1343, 45941, 13, 28300, 7, 37659, 13, 11201, 7, 26591, 1635, 45941, 13, 11201, 7, 69, 7, 22468, 7, 72, 828, 1635, 22046, 11, 12429, 46265, 22046, 35514, 198, 220, 220, 220, 611, 407, 357, 37659, 13, 271, 10745, 7, 5661, 62, 40533, 8, 393, 45941, 13, 271, 12647, 7, 5661, 62, 40533, 8, 2599, 428, 62, 40533, 796, 493, 7, 5661, 62, 40533, 8, 198, 220, 220, 220, 1441, 428, 62, 40533, 198, 40533, 62, 3849, 13857, 62, 72, 1485, 13, 834, 17660, 87, 62, 3672, 834, 220, 220, 220, 220, 220, 220, 220, 796, 374, 1, 3, 69, 7, 72, 47505, 72, 36796, 16, 14, 18, 92, 3, 1, 198, 198, 4299, 16953, 62, 3849, 13857, 62, 72, 1954, 7, 72, 11, 17810, 11, 17130, 28, 26591, 62, 1640, 62, 40533, 11, 717, 62, 17899, 8637, 28, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 45835, 1058, 11018, 25, 63, 51, 62, 72, 63, 7560, 422, 262, 2163, 1058, 11018, 25, 63, 69, 63, 796, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 3849, 13857, 18, 62, 3107, 3007, 63, 526, 15931, 198, 220, 220, 220, 277, 796, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 18, 62, 3107, 3007, 198, 220, 220, 220, 428, 62, 40533, 796, 717, 62, 17899, 8637, 1343, 45941, 13, 28300, 7, 37659, 13, 11201, 7, 26591, 1635, 45941, 13, 11201, 7, 69, 7, 22468, 7, 72, 828, 1635, 22046, 11, 12429, 46265, 22046, 35514, 198, 220, 220, 220, 611, 407, 357, 37659, 13, 271, 10745, 7, 5661, 62, 40533, 8, 393, 45941, 13, 271, 12647, 7, 5661, 62, 40533, 8, 2599, 428, 62, 40533, 796, 493, 7, 5661, 62, 40533, 8, 198, 220, 220, 220, 1441, 428, 62, 40533, 198, 40533, 62, 3849, 13857, 62, 72, 1954, 13, 834, 17660, 87, 62, 3672, 834, 220, 220, 220, 220, 220, 220, 220, 796, 374, 1, 3, 69, 7, 72, 47505, 72, 36796, 17, 14, 18, 92, 3, 1, 198, 198, 4299, 16953, 62, 3849, 13857, 62, 72, 1065, 62, 6404, 72, 1065, 7, 72, 11, 17810, 11, 17130, 28, 26591, 62, 1640, 62, 40533, 11, 717, 62, 17899, 8637, 28, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 45835, 1058, 11018, 25, 63, 51, 62, 72, 63, 7560, 422, 262, 2163, 1058, 11018, 25, 63, 69, 63, 796, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 3849, 13857, 19, 62, 3107, 3007, 63, 526, 15931, 198, 220, 220, 220, 277, 796, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 19, 62, 3107, 3007, 198, 220, 220, 220, 428, 62, 40533, 796, 717, 62, 17899, 8637, 1343, 45941, 13, 28300, 7, 37659, 13, 11201, 7, 26591, 1635, 45941, 13, 11201, 7, 69, 7, 22468, 7, 72, 828, 1635, 22046, 11, 12429, 46265, 22046, 35514, 198, 220, 220, 220, 611, 407, 357, 37659, 13, 271, 10745, 7, 5661, 62, 40533, 8, 393, 45941, 13, 271, 12647, 7, 5661, 62, 40533, 8, 2599, 428, 62, 40533, 796, 493, 7, 5661, 62, 40533, 8, 198, 220, 220, 220, 1441, 428, 62, 40533, 198, 40533, 62, 3849, 13857, 62, 72, 1065, 62, 6404, 72, 1065, 13, 834, 17660, 87, 62, 3672, 834, 796, 374, 1, 3, 69, 7, 72, 47505, 59, 31166, 17034, 90, 72, 3467, 6404, 7, 72, 38165, 3, 1, 198, 198, 4299, 16953, 62, 3849, 13857, 62, 72, 62, 1525, 62, 6404, 72, 7, 72, 11, 17810, 11, 17130, 28, 26591, 62, 1640, 62, 40533, 11, 717, 62, 17899, 8637, 28, 7206, 38865, 62, 39776, 2257, 62, 39, 1581, 14887, 1340, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 45835, 1058, 11018, 25, 63, 51, 62, 72, 63, 7560, 422, 262, 2163, 1058, 11018, 25, 63, 69, 63, 796, 1058, 20786, 25, 63, 8818, 62, 69, 834, 1640, 62, 3849, 13857, 20, 62, 3107, 3007, 63, 526, 15931, 198, 220, 220, 220, 277, 796, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 20, 62, 3107, 3007, 198, 220, 220, 220, 428, 62, 40533, 796, 717, 62, 17899, 8637, 1343, 45941, 13, 28300, 7, 37659, 13, 11201, 7, 26591, 1635, 45941, 13, 11201, 7, 69, 7, 22468, 7, 72, 1343, 352, 828, 1635, 22046, 11, 12429, 46265, 22046, 35514, 198, 220, 220, 220, 611, 407, 357, 37659, 13, 271, 10745, 7, 5661, 62, 40533, 8, 393, 45941, 13, 271, 12647, 7, 5661, 62, 40533, 8, 2599, 428, 62, 40533, 796, 493, 7, 5661, 62, 40533, 8, 198, 220, 220, 220, 1441, 428, 62, 40533, 198, 40533, 62, 3849, 13857, 62, 72, 62, 1525, 62, 6404, 72, 13, 834, 17660, 87, 62, 3672, 834, 220, 796, 374, 1, 3, 69, 7, 72, 47505, 72, 1220, 3467, 6404, 7, 72, 8, 3, 1, 628, 198, 4299, 938, 62, 4354, 62, 46616, 62, 27734, 7, 40533, 11, 3509, 62, 72, 28, 49388, 2599, 198, 220, 220, 220, 374, 37811, 1114, 257, 1728, 2163, 10200, 257, 26862, 8379, 11, 1058, 11018, 25, 63, 51, 25, 1312, 3467, 8899, 301, 78, 309, 62, 72, 47671, 428, 1058, 20786, 25, 63, 12957, 62, 4354, 62, 46616, 62, 27734, 63, 2163, 5860, 262, 2163, 1058, 11018, 25, 63, 43, 25, 309, 3467, 8899, 301, 78, 406, 62, 51, 47671, 5447, 355, 25, 628, 220, 220, 220, 11485, 10688, 3712, 3467, 1640, 439, 309, 59, 259, 59, 11018, 11848, 90, 45, 5512, 59, 26, 406, 62, 51, 19039, 3467, 1084, 59, 90, 1312, 3467, 259, 59, 11018, 11848, 90, 45, 5512, 59, 26, 309, 3467, 293, 80, 309, 62, 72, 3467, 27422, 628, 220, 220, 220, 1058, 11018, 25, 63, 43, 62, 51, 63, 318, 262, 691, 18253, 543, 45104, 1058, 11018, 25, 63, 51, 23330, 43, 62, 51, 532, 352, 92, 1279, 309, 3467, 293, 80, 309, 23330, 43, 62, 51, 92, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 34146, 628, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 628, 198, 4299, 7110, 62, 67, 280, 11108, 62, 3107, 3007, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 1084, 28, 16, 11, 1312, 62, 9806, 28, 1270, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 62, 1659, 62, 69, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 469, 16996, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 17, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 18, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 19, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 11201, 35470, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 1659, 62, 69, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10082, 16996, 220, 220, 220, 26862, 357, 67, 28, 15, 11, 304, 28, 16, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 13857, 26862, 357, 67, 28, 16, 14, 17, 11, 304, 28, 15, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 13857, 26862, 357, 67, 28, 16, 14, 18, 11, 304, 28, 15, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 13857, 26862, 357, 67, 28, 17, 14, 18, 11, 304, 28, 15, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 13857, 26862, 357, 67, 28, 16, 14, 17, 11, 304, 28, 16, 14, 17, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16870, 35470, 220, 26862, 357, 67, 28, 16, 11, 304, 28, 15, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 11, 12429, 46265, 22046, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 374, 37811, 16531, 257, 7110, 284, 19418, 262, 3815, 286, 262, 1058, 11018, 25, 63, 51, 62, 72, 63, 355, 257, 2163, 286, 1058, 11018, 25, 63, 72, 63, 329, 617, 1312, 13, 628, 220, 220, 220, 532, 1680, 2453, 867, 5499, 277, 357, 392, 14722, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6889, 3748, 19736, 198, 220, 220, 220, 299, 65, 796, 18896, 7, 4868, 62, 1659, 62, 69, 8, 198, 220, 220, 220, 477, 4102, 364, 796, 37250, 78, 3256, 705, 35, 3256, 705, 85, 3256, 705, 79, 3256, 705, 27, 3256, 705, 82, 3256, 705, 61, 3256, 705, 9, 3256, 705, 71, 3256, 705, 29, 20520, 198, 220, 220, 220, 890, 4868, 796, 477, 4102, 364, 1635, 357, 16, 1343, 493, 7, 46803, 1220, 12178, 7, 11925, 7, 439, 4102, 364, 35514, 220, 1303, 26993, 262, 922, 1271, 286, 640, 198, 220, 220, 220, 19736, 796, 890, 4868, 58, 25, 46803, 60, 220, 1303, 833, 19524, 378, 198, 220, 220, 220, 1303, 6889, 3748, 7577, 198, 220, 220, 220, 7577, 796, 3013, 82, 13, 71, 7278, 62, 18596, 5857, 7, 46803, 1343, 352, 38381, 25, 46803, 60, 628, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 1303, 458, 83, 13, 2946, 7, 17821, 8, 628, 220, 220, 220, 1312, 62, 82, 796, 45941, 13, 283, 858, 7, 72, 62, 1084, 11, 1312, 62, 9806, 8, 198, 220, 220, 220, 1303, 783, 329, 1123, 2163, 277, 198, 220, 220, 220, 329, 997, 62, 69, 11, 357, 69, 11, 8591, 8, 287, 27056, 378, 7, 13344, 7, 4868, 62, 1659, 62, 69, 11, 6167, 62, 1659, 62, 69, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 59, 77, 464, 23884, 400, 2163, 318, 6412, 284, 355, 23884, 290, 318, 23884, 1911, 18982, 7, 22510, 62, 69, 11, 8591, 11, 277, 4008, 220, 1303, 16959, 628, 220, 220, 220, 220, 220, 220, 220, 16953, 796, 16953, 62, 6738, 62, 69, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 62, 1659, 62, 40533, 796, 45941, 13, 18747, 26933, 16953, 7, 72, 8, 329, 1312, 287, 1312, 62, 82, 33761, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 72, 62, 82, 11, 3815, 62, 1659, 62, 40533, 11, 6167, 28, 5031, 11, 300, 86, 28, 18, 11, 13845, 28, 18, 11, 3124, 28, 4033, 669, 58, 22510, 62, 69, 4357, 18364, 28, 4102, 364, 58, 22510, 62, 69, 12962, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 81, 1, 11395, 286, 262, 640, 17810, 720, 72, 796, 1391, 5512, 986, 11, 90, 92, 3, 1911, 18982, 7, 72, 62, 1084, 11, 1312, 62, 9806, 4008, 198, 220, 220, 220, 458, 83, 13, 7839, 7, 81, 1, 50249, 1653, 286, 262, 3815, 286, 720, 51, 62, 72, 3, 4943, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 1441, 2336, 628, 198, 4299, 7110, 62, 13237, 62, 11085, 62, 45828, 62, 7784, 7, 198, 220, 220, 220, 220, 220, 220, 220, 309, 1084, 28, 940, 11, 309, 9806, 28, 600, 7, 16, 68, 23, 828, 299, 65, 33758, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 28, 15, 13, 15, 11, 25979, 28, 16, 13, 15, 11, 220, 1303, 27713, 5421, 287, 11923, 19841, 2604, 7, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34236, 28, 15, 13, 20, 11, 25979, 28, 15, 13, 15, 11, 220, 1303, 27713, 5421, 287, 11923, 19841, 19862, 17034, 7, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34236, 28, 15, 13, 20, 11, 25979, 28, 15, 13, 20, 11, 220, 1303, 27713, 5421, 287, 11923, 19841, 19862, 17034, 7, 51, 1635, 2604, 7, 51, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34236, 28, 15, 13, 19060, 22, 11, 25979, 28, 16, 13, 15, 11, 220, 1303, 27713, 1194, 7650, 5421, 287, 11923, 19841, 309, 61, 17, 14, 18, 1635, 2604, 7, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 62, 1659, 62, 69, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 469, 16996, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 17, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 18, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 3849, 13857, 19, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 69, 834, 1640, 62, 11201, 35470, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 1659, 62, 69, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10082, 16996, 220, 220, 220, 26862, 357, 67, 28, 15, 11, 304, 28, 16, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 13857, 26862, 357, 67, 28, 16, 14, 17, 11, 304, 28, 15, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 13857, 26862, 357, 67, 28, 16, 14, 18, 11, 304, 28, 15, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 13857, 26862, 357, 67, 28, 17, 14, 18, 11, 304, 28, 15, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 13857, 26862, 357, 67, 28, 16, 14, 17, 11, 304, 28, 16, 14, 17, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16870, 35470, 220, 26862, 357, 67, 28, 16, 11, 304, 28, 15, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 40533, 62, 76, 62, 14967, 16, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 905, 62, 40533, 62, 76, 62, 14967, 16, 28, 25101, 11, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 11, 12429, 46265, 22046, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 374, 37811, 16531, 257, 7110, 284, 8996, 5470, 1146, 1022, 262, 1708, 2160, 1058, 11018, 25, 63, 50, 63, 290, 262, 6727, 12, 7784, 356, 2911, 284, 423, 11, 1058, 11018, 25, 63, 51, 61, 31478, 28483, 2611, 92, 357, 59, 6404, 309, 8, 61, 31478, 67, 12514, 92, 47671, 355, 257, 2163, 286, 1058, 11018, 25, 63, 51, 63, 329, 617, 3815, 1022, 1058, 11018, 25, 63, 51, 23330, 59, 1084, 92, 63, 290, 1058, 11018, 25, 63, 51, 23330, 59, 9806, 92, 63, 25, 628, 220, 220, 220, 11485, 10688, 3712, 311, 19039, 3467, 16345, 23330, 72, 28, 15, 92, 36796, 43, 62, 51, 92, 357, 51, 62, 72, 532, 309, 23330, 72, 12, 16, 30072, 61, 31478, 28483, 2611, 92, 357, 59, 6404, 357, 51, 62, 72, 532, 309, 23330, 72, 12, 16, 92, 4008, 61, 31478, 67, 12514, 27422, 628, 220, 220, 220, 532, 1680, 2453, 867, 5499, 277, 357, 392, 14722, 737, 198, 220, 220, 220, 532, 1680, 779, 1058, 11018, 25, 63, 51, 62, 72, 63, 2427, 286, 1058, 11018, 25, 63, 51, 62, 72, 532, 309, 23330, 72, 12, 16, 92, 63, 611, 7559, 12860, 62, 40533, 62, 76, 62, 14967, 16, 28, 25101, 15506, 357, 12286, 318, 284, 779, 262, 4833, 1744, 5421, 11, 351, 3580, 286, 8379, 20428, 11, 1058, 11018, 25, 63, 51, 62, 72, 532, 309, 23330, 72, 12, 16, 92, 63, 737, 628, 220, 220, 220, 11485, 6509, 3712, 770, 318, 991, 6177, 10351, 2751, 30936, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6889, 3748, 19736, 198, 220, 220, 220, 299, 65, 796, 18896, 7, 4868, 62, 1659, 62, 69, 8, 198, 220, 220, 220, 477, 4102, 364, 796, 37250, 78, 3256, 705, 35, 3256, 705, 85, 3256, 705, 79, 3256, 705, 27, 3256, 705, 82, 3256, 705, 61, 3256, 705, 9, 3256, 705, 71, 3256, 705, 29, 20520, 198, 220, 220, 220, 890, 4868, 796, 477, 4102, 364, 1635, 357, 16, 1343, 493, 7, 46803, 1220, 12178, 7, 11925, 7, 439, 4102, 364, 35514, 220, 1303, 26993, 262, 922, 1271, 286, 640, 198, 220, 220, 220, 19736, 796, 890, 4868, 58, 25, 46803, 60, 220, 1303, 833, 19524, 378, 198, 220, 220, 220, 1303, 6889, 3748, 7577, 198, 220, 220, 220, 7577, 796, 3013, 82, 13, 71, 7278, 62, 18596, 5857, 7, 46803, 1343, 352, 38381, 25, 46803, 60, 628, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 1303, 458, 83, 13, 2946, 7, 17821, 8, 628, 220, 220, 220, 13146, 796, 45941, 13, 28300, 7, 37659, 13, 21602, 10223, 7, 51, 1084, 11, 309, 9806, 11, 997, 28, 46803, 33758, 4008, 198, 220, 220, 220, 262, 62, 7784, 62, 732, 62, 42949, 796, 357, 33758, 12429, 34236, 8, 1635, 357, 37659, 13, 6404, 7, 33758, 8, 12429, 25979, 8, 628, 220, 220, 220, 1303, 458, 83, 13, 29487, 7, 33758, 11, 262, 62, 7784, 62, 732, 62, 42949, 11, 6167, 28, 81, 1, 3, 51, 61, 31478, 28483, 2611, 92, 357, 59, 6404, 309, 8, 61, 31478, 67, 12514, 92, 3, 1600, 300, 86, 28, 18, 11, 13845, 28, 18, 11, 3124, 28, 4033, 669, 58, 15, 4357, 18364, 28, 4102, 364, 58, 15, 12962, 198, 220, 220, 220, 1303, 24061, 262, 8379, 20428, 284, 779, 11, 2035, 309, 62, 72, 393, 309, 62, 72, 532, 309, 23330, 72, 12, 16, 92, 198, 220, 220, 220, 13146, 62, 1640, 62, 69, 796, 45941, 13, 30073, 7, 33758, 8, 198, 220, 220, 220, 611, 905, 62, 40533, 62, 76, 62, 14967, 16, 25, 13146, 62, 1640, 62, 69, 58, 16, 47715, 796, 45941, 13, 26069, 7, 33758, 8, 628, 220, 220, 220, 1303, 783, 329, 1123, 2163, 277, 198, 220, 220, 220, 329, 997, 62, 69, 11, 357, 69, 11, 8591, 8, 287, 27056, 378, 7, 13344, 7, 4868, 62, 1659, 62, 69, 11, 6167, 62, 1659, 62, 69, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 59, 77, 464, 23884, 400, 2163, 318, 6412, 284, 355, 23884, 290, 318, 23884, 1911, 18982, 7, 22510, 62, 69, 11, 8591, 11, 277, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 16953, 796, 16953, 62, 6738, 62, 69, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 34146, 796, 938, 62, 4354, 62, 46616, 62, 27734, 7, 40533, 8, 198, 220, 220, 220, 220, 220, 220, 220, 262, 62, 16345, 62, 732, 62, 14150, 796, 45941, 13, 9107, 418, 62, 2339, 7, 33758, 62, 1640, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 11, 357, 51, 73, 11, 288, 51, 73, 8, 287, 27056, 378, 7, 13344, 7, 33758, 11, 13146, 62, 1640, 62, 69, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34146, 73, 796, 34146, 7, 51, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 62, 16345, 62, 732, 62, 14150, 58, 73, 60, 796, 2160, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 67, 51, 73, 12429, 34236, 8, 1635, 357, 37659, 13, 6404, 7, 67, 51, 73, 8, 12429, 25979, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 34146, 73, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1890, 474, 796, 1391, 5512, 309, 73, 796, 1391, 5512, 288, 51, 73, 796, 1391, 5512, 3607, 34146, 73, 796, 1391, 5512, 290, 262, 1988, 286, 262, 2160, 422, 1312, 28, 15, 284, 34146, 73, 318, 796, 23884, 526, 13, 18982, 7, 73, 11, 309, 73, 11, 288, 51, 73, 11, 34146, 73, 11, 262, 62, 16345, 62, 732, 62, 14150, 58, 73, 60, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1169, 62, 16345, 62, 732, 62, 14150, 796, 1600, 262, 62, 16345, 62, 732, 62, 14150, 8, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 33758, 11, 262, 62, 16345, 62, 732, 62, 14150, 1220, 262, 62, 7784, 62, 732, 62, 42949, 11, 6167, 28, 5031, 11, 300, 86, 28, 18, 11, 13845, 28, 18, 11, 3124, 28, 4033, 669, 58, 22510, 62, 69, 4357, 18364, 28, 4102, 364, 58, 22510, 62, 69, 12962, 628, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 81, 1, 11395, 286, 262, 640, 17810, 720, 51, 796, 1391, 5512, 986, 11, 90, 92, 3, 1911, 18982, 7, 51, 1084, 11, 309, 9806, 4008, 198, 220, 220, 220, 965, 62, 1659, 62, 51, 73, 62, 273, 62, 67, 51, 73, 796, 366, 51, 62, 72, 532, 309, 23330, 72, 12, 16, 36786, 611, 905, 62, 40533, 62, 76, 62, 14967, 16, 2073, 366, 51, 62, 72, 1, 198, 220, 220, 220, 458, 83, 13, 7839, 7, 81, 1, 29665, 952, 286, 262, 2160, 39280, 16345, 23330, 72, 28, 15, 92, 36796, 43, 62, 51, 92, 37633, 82, 8, 61, 31478, 28483, 2611, 92, 357, 59, 6404, 7, 4, 82, 4008, 61, 31478, 67, 12514, 92, 3, 290, 262, 6727, 12, 7784, 720, 51, 61, 31478, 28483, 2611, 92, 3467, 6404, 7, 51, 8, 61, 31478, 67, 12514, 92, 47113, 329, 39280, 28483, 2611, 28, 7225, 18, 70, 47113, 39280, 67, 12514, 28, 7225, 18, 70, 3, 526, 4064, 357, 2536, 62, 1659, 62, 51, 73, 62, 273, 62, 67, 51, 73, 11, 965, 62, 1659, 62, 51, 73, 62, 273, 62, 67, 51, 73, 11, 34236, 11, 25979, 4008, 220, 1303, 16959, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 1441, 2336, 628, 198, 2, 11420, 383, 3499, 1398, 198, 198, 2, 25, 1002, 262, 8379, 16953, 857, 407, 1663, 1576, 11, 32455, 2620, 1312, 1566, 309, 62, 500, 742, 1875, 309, 62, 72, 198, 22921, 62, 32819, 62, 19238, 62, 5446, 12576, 50, 796, 5323, 628, 198, 4871, 5728, 11108, 2898, 624, 36918, 2848, 7, 14881, 36918, 2848, 36727, 2599, 198, 220, 220, 220, 374, 37811, 317, 2450, 326, 6529, 355, 257, 29908, 319, 1194, 2450, 4600, 47, 47671, 9672, 284, 307, 1635, 17899, 8637, 10795, 9, 357, 10134, 284, 1900, 1058, 11018, 25, 63, 51, 63, 828, 416, 15427, 257, 366, 67, 280, 11108, 6908, 1911, 628, 220, 220, 220, 532, 20984, 25, 16410, 2061, 262, 5728, 11108, 30028, 1680, 393, 1680, 470, 2141, 329, 15237, 12, 3163, 1150, 10243, 896, 11, 16342, 666, 347, 39670, 290, 44272, 494, 28148, 69, 9038, 11, 2864, 11907, 7, 5450, 1378, 14201, 13, 259, 7496, 13, 8310, 14, 14201, 12, 29326, 2623, 27277, 828, 284, 307, 5545, 2582, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 11420, 2495, 13570, 628, 220, 220, 220, 1303, 11420, 7253, 983, 416, 4441, 649, 10238, 2450, 628, 220, 220, 220, 825, 923, 8777, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20768, 1096, 262, 2450, 329, 257, 649, 983, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 14881, 36918, 2848, 36727, 11, 2116, 737, 9688, 8777, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2208, 7, 40287, 11108, 2898, 624, 36918, 2848, 11, 2116, 737, 9688, 8777, 3419, 220, 1303, 39410, 645, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 72, 796, 657, 220, 1303, 6865, 6847, 1096, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 8637, 796, 2116, 13557, 11085, 62, 17899, 8637, 220, 1303, 25, 4586, 4724, 329, 262, 17810, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30586, 796, 2116, 13557, 30586, 7, 944, 13, 46803, 3163, 907, 11, 17810, 28, 944, 13, 17899, 8637, 11, 2793, 28, 944, 13, 21037, 11, 37188, 28, 944, 13, 321, 489, 3984, 11, 1635, 944, 13557, 22046, 11, 12429, 944, 13557, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 31502, 25, 20557, 6631, 23884, 618, 2111, 284, 2251, 262, 10238, 2450, 986, 3863, 262, 705, 17899, 8637, 34758, 92, 6, 21179, 4578, 373, 407, 7247, 9380, 30, 4990, 14992, 1231, 340, 9313, 13, 18982, 7, 68, 11, 2116, 13, 17899, 8637, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30586, 796, 2116, 13557, 30586, 7, 944, 13, 46803, 3163, 907, 11, 2793, 28, 944, 13, 21037, 11, 37188, 28, 944, 13, 321, 489, 3984, 11, 1635, 944, 13557, 22046, 11, 12429, 944, 13557, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 635, 923, 983, 329, 262, 10238, 2450, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30586, 13, 9688, 8777, 3419, 628, 220, 220, 220, 1303, 11420, 6251, 262, 869, 284, 262, 22718, 21424, 628, 220, 220, 220, 825, 651, 48123, 7, 944, 11, 3211, 11, 6721, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6251, 262, 6721, 11, 355, 6678, 11, 4296, 256, 290, 3360, 15765, 262, 10238, 2450, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 532, 1629, 640, 256, 796, 1391, 5512, 1392, 257, 6721, 796, 23884, 422, 3211, 23884, 35713, 13, 18982, 7, 944, 13, 83, 11, 3211, 11, 6721, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2208, 7, 40287, 11108, 2898, 624, 36918, 2848, 11, 2116, 737, 1136, 48123, 7, 1670, 11, 6721, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30586, 13, 1136, 48123, 7, 1670, 11, 6721, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6674, 356, 423, 284, 4296, 262, 17810, 30, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 83, 1875, 2116, 13, 17899, 8637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 72, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17899, 8637, 796, 2116, 13557, 19545, 62, 17899, 8637, 7, 944, 13557, 72, 11, 2116, 13, 17899, 8637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27713, 37922, 1402, 8156, 611, 262, 8379, 318, 407, 3957, 3049, 1576, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 1659, 62, 28461, 874, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 299, 65, 62, 1659, 62, 28461, 874, 1279, 25882, 62, 32819, 62, 19238, 62, 5446, 12576, 50, 290, 649, 62, 17899, 8637, 19841, 2116, 13, 17899, 8637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 72, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 1659, 62, 28461, 874, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17899, 8637, 796, 2116, 13557, 19545, 62, 17899, 8637, 7, 944, 13557, 72, 11, 2116, 13, 17899, 8637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27713, 886, 286, 1402, 8156, 14610, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 649, 62, 17899, 8637, 1875, 2116, 13, 17899, 8637, 11, 366, 12331, 25, 262, 649, 62, 17899, 8637, 796, 23884, 318, 407, 1875, 262, 1459, 17810, 796, 23884, 35713, 13, 18982, 7, 3605, 62, 17899, 8637, 11, 2116, 13, 17899, 8637, 8, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 220, 532, 1629, 640, 256, 796, 1391, 5512, 257, 5728, 11108, 2898, 624, 36918, 2848, 1398, 373, 2491, 351, 1459, 17810, 309, 62, 72, 796, 23884, 290, 3066, 284, 779, 23884, 355, 257, 649, 17810, 9313, 13, 18982, 7, 944, 13, 83, 11, 2116, 13, 17899, 8637, 11, 649, 62, 17899, 8637, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17899, 8637, 796, 649, 62, 17899, 8637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 356, 423, 284, 4296, 393, 15765, 262, 10238, 2450, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 12853, 62, 2118, 433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30586, 796, 2116, 13557, 30586, 7, 944, 13, 46803, 3163, 907, 11, 17810, 28, 944, 13, 17899, 8637, 11, 2793, 28, 944, 13, 21037, 11, 37188, 28, 944, 13, 321, 489, 3984, 11, 1635, 944, 13557, 22046, 11, 12429, 944, 13557, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 3041, 6471, 6631, 23884, 618, 2111, 284, 2251, 262, 10238, 2450, 986, 3863, 262, 705, 17899, 8637, 34758, 92, 6, 21179, 4578, 373, 407, 7247, 9380, 30, 4990, 14992, 1231, 340, 9313, 13, 18982, 7, 68, 11, 2116, 13, 17899, 8637, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30586, 796, 2116, 13557, 30586, 7, 944, 13, 46803, 3163, 907, 11, 2793, 28, 944, 13, 21037, 11, 37188, 28, 944, 13, 321, 489, 3984, 11, 1635, 944, 13557, 22046, 11, 12429, 944, 13557, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 635, 923, 983, 329, 262, 10238, 2450, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30586, 13, 9688, 8777, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 220, 220, 6624, 29, 40234, 15765, 278, 262, 10238, 2450, 416, 4441, 257, 649, 2134, 986, 2735, 340, 318, 796, 23884, 35713, 13, 18982, 7, 944, 13, 30586, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 944, 13, 30586, 11, 705, 17899, 8637, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30586, 13, 17899, 8637, 796, 2116, 13, 17899, 8637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 20361, 25, 5906, 284, 4296, 262, 11507, 705, 17899, 8637, 6, 286, 262, 10238, 2450, 23884, 986, 31165, 705, 62, 17899, 8637, 6, 35713, 13, 18982, 7, 944, 13, 30586, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 220, 220, 6624, 29, 2329, 19698, 262, 17810, 11507, 286, 262, 10238, 2450, 986, 2735, 340, 318, 796, 23884, 35713, 13, 18982, 7, 944, 13, 30586, 4008, 220, 1303, 16959, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7203, 220, 220, 6624, 29, 10528, 284, 466, 11, 355, 262, 10238, 2450, 38359, 5626, 423, 257, 705, 17899, 8637, 6, 393, 705, 62, 17899, 8637, 6, 11507, 326, 714, 423, 587, 6153, 986, 6674, 345, 389, 407, 1262, 257, 922, 2450, 30, 314, 1950, 14417, 33, 39, 393, 2034, 13907, 15655, 44602, 38, 715, 1040, 19570, 220, 1303, 16959, 628, 198, 2, 1303, 11420, 31687, 2667, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 611, 366, 29487, 1, 287, 25064, 13, 853, 85, 58, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 295, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 62, 67, 280, 11108, 62, 3107, 3007, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 34236, 11, 25979, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 15, 11, 352, 13, 15, 828, 220, 1303, 27713, 5421, 287, 11923, 19841, 2604, 7, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 20, 11, 657, 13, 15, 828, 220, 1303, 27713, 5421, 287, 11923, 19841, 19862, 17034, 7, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 20, 11, 657, 13, 20, 828, 220, 1303, 27713, 5421, 287, 11923, 19841, 19862, 17034, 7, 51, 1635, 2604, 7, 51, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 19060, 22, 11, 352, 13, 15, 828, 220, 1303, 27713, 1194, 7650, 5421, 287, 11923, 19841, 309, 61, 17, 14, 18, 1635, 2604, 7, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 13237, 62, 11085, 62, 45828, 62, 7784, 7, 28483, 2611, 28, 28483, 2611, 11, 25979, 28, 67, 12514, 11, 905, 62, 40533, 62, 76, 62, 14967, 16, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 13237, 62, 11085, 62, 45828, 62, 7784, 7, 28483, 2611, 28, 28483, 2611, 11, 25979, 28, 67, 12514, 11, 905, 62, 40533, 62, 76, 62, 14967, 16, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 628, 220, 220, 220, 1303, 6127, 329, 28769, 4959, 13, 198, 220, 220, 220, 422, 10412, 395, 1330, 1332, 4666, 198, 220, 220, 220, 3601, 7203, 59, 77, 44154, 6338, 477, 262, 2205, 8841, 3194, 287, 1123, 5499, 286, 428, 8265, 1058, 4943, 198, 220, 220, 220, 1332, 4666, 7, 19011, 577, 28, 17821, 8, 198 ]
2.43969
11,731
myVarRed= "Red" myVarBlue= "Blue" print("Roses are Red. " + "Violets are Blue.") print("Roses are " + myVarRed + ". Violets are " + myVarBlue) myStr = "Roses are Red. " + "Violets are Blue." varStr = "Roses are " + myVarRed + ". Violets are " + myVarBlue print(myStr) print(varStr) name = "Joe" feet= 6 inches= 2 print("My name is " + name + ". I'm " + str(feet) + " feet " + str(inches) + " inches tall.") myStr = "My name is " + name + ". I'm " + str(feet) + " feet " + str(inches) + " inches tall." print(myStr) print(myVarRed + " roses can grow up to " + str(feet) + " feet!") myStr = myVarBlue + " violets can grow up to " + str(inches) + " inches!" print(myStr) print("The " + myVarBlue + " sky turned " + myVarRed + "!")
[ 1820, 19852, 7738, 28, 366, 7738, 1, 198, 1820, 19852, 14573, 28, 366, 14573, 1, 198, 198, 4798, 7203, 49, 4629, 389, 2297, 13, 366, 1343, 366, 53, 952, 5289, 389, 4518, 19570, 198, 4798, 7203, 49, 4629, 389, 366, 1343, 616, 19852, 7738, 1343, 27071, 569, 952, 5289, 389, 366, 1343, 616, 19852, 14573, 8, 198, 198, 1820, 13290, 796, 366, 49, 4629, 389, 2297, 13, 366, 1343, 366, 53, 952, 5289, 389, 4518, 526, 198, 7785, 13290, 796, 366, 49, 4629, 389, 366, 1343, 616, 19852, 7738, 1343, 27071, 569, 952, 5289, 389, 366, 1343, 616, 19852, 14573, 198, 198, 4798, 7, 1820, 13290, 8, 198, 4798, 7, 7785, 13290, 8, 628, 198, 3672, 796, 366, 19585, 1, 198, 39690, 28, 718, 198, 45457, 28, 362, 198, 198, 4798, 7203, 3666, 1438, 318, 366, 1343, 1438, 1343, 27071, 314, 1101, 366, 1343, 965, 7, 39690, 8, 1343, 366, 3625, 366, 1343, 965, 7, 45457, 8, 1343, 366, 8331, 7331, 19570, 198, 198, 1820, 13290, 796, 366, 3666, 1438, 318, 366, 1343, 1438, 1343, 27071, 314, 1101, 366, 1343, 965, 7, 39690, 8, 1343, 366, 3625, 366, 1343, 965, 7, 45457, 8, 1343, 366, 8331, 7331, 526, 198, 4798, 7, 1820, 13290, 8, 628, 198, 198, 4798, 7, 1820, 19852, 7738, 1343, 366, 42152, 460, 1663, 510, 284, 366, 1343, 965, 7, 39690, 8, 1343, 366, 3625, 2474, 8, 198, 1820, 13290, 796, 616, 19852, 14573, 1343, 366, 410, 952, 5289, 460, 1663, 510, 284, 366, 1343, 965, 7, 45457, 8, 1343, 366, 8331, 2474, 198, 4798, 7, 1820, 13290, 8, 198, 198, 4798, 7203, 464, 366, 1343, 616, 19852, 14573, 1343, 366, 6766, 2900, 366, 1343, 616, 19852, 7738, 1343, 366, 2474, 8 ]
2.589474
285
__all__ = [ 'builder_android', ]
[ 834, 439, 834, 796, 685, 201, 198, 197, 6, 38272, 62, 19411, 3256, 201, 198, 60 ]
2.1875
16
from configparser import RawConfigParser CONTEXT = Context()
[ 6738, 4566, 48610, 1330, 16089, 16934, 46677, 628, 198, 198, 10943, 32541, 796, 30532, 3419, 198 ]
4
16
#!/usr/bin/env python import os import re import unasync # requires pip>=10.0 for PEP 518 support from setuptools import setup # Get the version (borrowed from SQLAlchemy) base_path = os.path.dirname(__file__) with open(os.path.join(base_path, "src", "urllib3", "__init__.py")) as fp: version = re.match(r".*__version__ = \"(.*?)\"", fp.read(), re.S).group(1) setup(version=version, cmdclass={"build_py": unasync.build_py})
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 28686, 198, 11748, 302, 198, 198, 11748, 555, 292, 13361, 220, 1303, 4433, 7347, 29, 28, 940, 13, 15, 329, 350, 8905, 642, 1507, 1104, 198, 6738, 900, 37623, 10141, 1330, 9058, 628, 198, 2, 3497, 262, 2196, 357, 2865, 808, 276, 422, 16363, 2348, 26599, 8, 198, 8692, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 8692, 62, 6978, 11, 366, 10677, 1600, 366, 333, 297, 571, 18, 1600, 366, 834, 15003, 834, 13, 9078, 48774, 355, 277, 79, 25, 198, 220, 220, 220, 2196, 796, 302, 13, 15699, 7, 81, 1911, 9, 834, 9641, 834, 796, 3467, 18109, 15885, 10091, 7879, 1600, 277, 79, 13, 961, 22784, 302, 13, 50, 737, 8094, 7, 16, 8, 198, 198, 40406, 7, 9641, 28, 9641, 11, 23991, 4871, 28, 4895, 11249, 62, 9078, 1298, 555, 292, 13361, 13, 11249, 62, 9078, 30072, 198 ]
2.568047
169
from amplification.tasks.equals import EqualsTask from amplification.tasks.graph import GraphTask, MidpointTask from amplification.tasks.sum import SumTask from amplification.tasks.eval import EvalTask, EvalSumTask from amplification.tasks.iterate import IterTask from amplification.tasks.sat import SatTask
[ 6738, 50250, 13, 83, 6791, 13, 4853, 874, 1330, 7889, 874, 25714, 198, 6738, 50250, 13, 83, 6791, 13, 34960, 1330, 29681, 25714, 11, 7215, 4122, 25714, 198, 6738, 50250, 13, 83, 6791, 13, 16345, 1330, 5060, 25714, 198, 6738, 50250, 13, 83, 6791, 13, 18206, 1330, 26439, 25714, 11, 26439, 13065, 25714, 198, 6738, 50250, 13, 83, 6791, 13, 2676, 378, 1330, 40806, 25714, 198, 6738, 50250, 13, 83, 6791, 13, 49720, 1330, 7031, 25714, 198 ]
4
77
class TestSimpleClass(object): """ Classes can still be used to organize collections of test cases, with each test being a Method on the Class, rather than a standalone function. """ x = 1 y = 2
[ 4871, 6208, 26437, 9487, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38884, 460, 991, 307, 973, 284, 16481, 17268, 286, 1332, 2663, 11, 351, 198, 220, 220, 220, 1123, 1332, 852, 257, 11789, 319, 262, 5016, 11, 2138, 621, 257, 27669, 2163, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2124, 796, 352, 198, 220, 220, 220, 331, 796, 362, 198 ]
3.235294
68
# coding: utf8 from pybo import Config from pathlib import Path
[ 2, 19617, 25, 3384, 69, 23, 198, 6738, 12972, 2127, 1330, 17056, 198, 6738, 3108, 8019, 1330, 10644, 628 ]
3.421053
19
from globals_consts import NAMESPACE, cname
[ 6738, 15095, 874, 62, 1102, 6448, 1330, 399, 29559, 47, 11598, 11, 269, 3672 ]
3.071429
14
from city_scrapers_core.spiders import CityScrapersSpider from city_scrapers.mixins.wayne_commission import WayneCommissionMixin
[ 6738, 1748, 62, 1416, 2416, 364, 62, 7295, 13, 2777, 4157, 1330, 2254, 3351, 2416, 364, 41294, 198, 198, 6738, 1748, 62, 1416, 2416, 364, 13, 19816, 1040, 13, 43932, 62, 785, 3411, 1330, 13329, 50246, 35608, 259, 628 ]
3.358974
39
#!/usr/bin/env python __copyright__ = """ Copyright (c) 2020 Tananaev Denis Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from pylatex import ( Document, Command, Section, Subsection, LongTable, MultiColumn, Figure, SubFigure, ) from pylatex.utils import italic, bold, NoEscape import os def create_long_table( doc, parameters, skip_parameters=[], table_specs=r"|p{0.45\linewidth}|p{0.45\linewidth}|", header=[bold("Parameter"), bold("Value")], ): """ Helper function to create long table for parameters Arguments: doc: document to add table parameters: parameters dict skip_parameters: list of parameters to skip table_specs: latex specific table settings header: list with column names """ columns = len(header) with doc.create(LongTable(table_spec=table_specs)) as data_table: # Table header data_table.add_hline() data_table.add_row(header) data_table.add_hline() data_table.end_table_header() data_table.add_row( (MultiColumn(columns, align="r", data="Continued on Next Page"),) ) data_table.end_table_footer() data_table.add_row((MultiColumn(columns, align="r", data="End of Table"),)) data_table.end_table_last_footer() for item in parameters: if item not in skip_parameters: data_table.add_row([item, str(parameters[item])]) data_table.add_hline() def add_figure(doc, graphics_dir, image_name, width=r"0.5\linewidth"): """ Helper function to create figure Arguments: doc: document to add figure graphics_dir: directory containing .png image image_name: the name of image without extension width: width of image in docement page """ image_filename = os.path.join( os.path.dirname(__file__), graphics_dir, image_name + ".png" ) with doc.create(Figure(position="h!")) as pic: pic.add_image(image_filename, width=NoEscape(width)) pic.add_caption(image_name) def add_sub_figure(doc, graphics_dir, image_names=[], captioning="Metrics"): """ Helper function to create multiple sub figures Arguments: doc: document to add figure graphics_dir: directory containing .png image image_names: the list of image names without extension captioning: global captioning for the figure """ num_figures = len(image_names) scale = 1.0 / num_figures sub_width = str(scale) + r"\linewidth" with doc.create(Figure(position="h!")) as fig: for image in image_names: image_filename = os.path.join( os.path.dirname(__file__), graphics_dir, image + ".png" ) with doc.create( SubFigure(position="b", width=NoEscape(sub_width)) ) as sub_fig: sub_fig.add_image(image_filename, width=NoEscape(r"\linewidth")) sub_fig.add_caption(image) fig.add_caption(captioning) def generate_latex_pdf( graphics_dir, output_dir, report_dict, report_name="experiment_report", clean_tex=True, ): """ The function generates latex/pdf report from json dictionary Arguments: graphics_dir: directory containing .png images for report output_dir: the directory to output report report_dict: dictionary with report information report_name: the name of output latex/pdf report clean_tex: remove latex specific files """ output_filename = os.path.join(output_dir, report_name) parameters = report_dict["parameters"] report_name = parameters["experiment_info"]["experiment_name"].strip() description = parameters["experiment_info"]["description"].strip() authors = parameters["experiment_info"]["authors"].strip() best_epoch = report_dict["best_epoch"] main_metric = report_dict["main_metric"] metric_value = float(report_dict["epoch_metrics"][best_epoch][main_metric]) * 100 result = "\nResult: Best epoch {} with {:.2f}% {}.".format( best_epoch, metric_value, main_metric ) # More dertails about page options: https://www.overleaf.com/learn/latex/page_size_and_margins geometry_options = { "tmargin": "1cm", "bmargin": "3cm", "lmargin": "2cm", "rmargin": "2cm", "includeheadfoot": True, } doc = Document(geometry_options=geometry_options, page_numbers=True) doc.preamble.append(Command("title", "Experiment Report")) doc.preamble.append(Command("author", authors)) doc.preamble.append(Command("date", report_dict["date"])) doc.append(NoEscape(r"\maketitle")) # We should handle in unique way in report each parameter which is not correspod {param : single_value} skip_parameters = set(["experiment_info", "optimizer", "scheduler", "augment"]) with doc.create(Section(report_name)): doc.append(italic("Description:\n")) doc.append(description) doc.append(bold(result)) with doc.create(Subsection("Parameters")): create_long_table(doc, parameters, skip_parameters) with doc.create(Subsection("Optimizer")): create_long_table(doc, parameters["optimizer"]) with doc.create(Subsection("Scheduler")): create_long_table(doc, parameters["scheduler"]) add_figure(doc, graphics_dir, "learning_rate_scheduler") with doc.create(Subsection("Augmentations")): create_long_table(doc, parameters["augment"]) with doc.create(Section("Data plots")): image_names = ["loss_epoch_metrics"] add_sub_figure( doc, graphics_dir, image_names=image_names, captioning="Epoch metrics" ) # add_figure(doc, graphics_dir, "accuracy_epoch_metrics") doc.generate_pdf(output_filename, clean_tex=clean_tex)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 834, 22163, 4766, 834, 796, 37227, 198, 15269, 357, 66, 8, 12131, 11818, 2271, 1990, 33089, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 9088, 198, 1659, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 30760, 284, 466, 523, 11, 198, 32796, 284, 262, 1708, 3403, 25, 383, 2029, 6634, 4003, 290, 428, 7170, 198, 42138, 2236, 307, 3017, 287, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 8959, 49094, 11, 198, 1268, 39149, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 376, 46144, 7473, 317, 16652, 2149, 37232, 198, 47, 4261, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 198, 13775, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 198, 31858, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 198, 7206, 1847, 20754, 3268, 3336, 47466, 13, 198, 37811, 198, 198, 6738, 279, 2645, 378, 87, 1330, 357, 198, 220, 220, 220, 16854, 11, 198, 220, 220, 220, 9455, 11, 198, 220, 220, 220, 7275, 11, 198, 220, 220, 220, 3834, 5458, 11, 198, 220, 220, 220, 5882, 10962, 11, 198, 220, 220, 220, 15237, 39470, 11, 198, 220, 220, 220, 11291, 11, 198, 220, 220, 220, 3834, 11337, 11, 198, 8, 198, 6738, 279, 2645, 378, 87, 13, 26791, 1330, 46127, 291, 11, 10758, 11, 1400, 36, 6794, 198, 11748, 28686, 628, 198, 4299, 2251, 62, 6511, 62, 11487, 7, 198, 220, 220, 220, 2205, 11, 198, 220, 220, 220, 10007, 11, 198, 220, 220, 220, 14267, 62, 17143, 7307, 41888, 4357, 198, 220, 220, 220, 3084, 62, 4125, 6359, 28, 81, 1, 91, 79, 90, 15, 13, 2231, 59, 2815, 413, 5649, 92, 91, 79, 90, 15, 13, 2231, 59, 2815, 413, 5649, 92, 91, 1600, 198, 220, 220, 220, 13639, 41888, 36575, 7203, 36301, 12340, 10758, 7203, 11395, 4943, 4357, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 2251, 890, 3084, 329, 10007, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 25, 3188, 284, 751, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 25, 10007, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 17143, 7307, 25, 1351, 286, 10007, 284, 14267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 62, 4125, 6359, 25, 47038, 2176, 3084, 6460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 25, 1351, 351, 5721, 3891, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15180, 796, 18896, 7, 25677, 8, 198, 220, 220, 220, 351, 2205, 13, 17953, 7, 14617, 10962, 7, 11487, 62, 16684, 28, 11487, 62, 4125, 6359, 4008, 355, 1366, 62, 11487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8655, 13639, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 2860, 62, 71, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 2860, 62, 808, 7, 25677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 2860, 62, 71, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 437, 62, 11487, 62, 25677, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 2860, 62, 808, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 29800, 39470, 7, 28665, 82, 11, 10548, 2625, 81, 1600, 1366, 2625, 17875, 1739, 319, 7406, 7873, 12340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 437, 62, 11487, 62, 5898, 263, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 2860, 62, 808, 19510, 29800, 39470, 7, 28665, 82, 11, 10548, 2625, 81, 1600, 1366, 2625, 12915, 286, 8655, 12340, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 437, 62, 11487, 62, 12957, 62, 5898, 263, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 10007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 407, 287, 14267, 62, 17143, 7307, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 2860, 62, 808, 26933, 9186, 11, 965, 7, 17143, 7307, 58, 9186, 12962, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11487, 13, 2860, 62, 71, 1370, 3419, 628, 198, 4299, 751, 62, 26875, 7, 15390, 11, 9382, 62, 15908, 11, 2939, 62, 3672, 11, 9647, 28, 81, 1, 15, 13, 20, 59, 2815, 413, 5649, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 2251, 3785, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 25, 3188, 284, 751, 3785, 198, 220, 220, 220, 220, 220, 220, 220, 9382, 62, 15908, 25, 8619, 7268, 764, 11134, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 3672, 25, 262, 1438, 286, 2939, 1231, 7552, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 25, 9647, 286, 2939, 287, 466, 344, 434, 2443, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2939, 62, 34345, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 9382, 62, 15908, 11, 2939, 62, 3672, 1343, 27071, 11134, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 351, 2205, 13, 17953, 7, 11337, 7, 9150, 2625, 71, 2474, 4008, 355, 8301, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8301, 13, 2860, 62, 9060, 7, 9060, 62, 34345, 11, 9647, 28, 2949, 36, 6794, 7, 10394, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 8301, 13, 2860, 62, 6888, 1159, 7, 9060, 62, 3672, 8, 628, 198, 4299, 751, 62, 7266, 62, 26875, 7, 15390, 11, 9382, 62, 15908, 11, 2939, 62, 14933, 41888, 4357, 8305, 278, 2625, 9171, 10466, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 2251, 3294, 850, 5538, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 25, 3188, 284, 751, 3785, 198, 220, 220, 220, 220, 220, 220, 220, 9382, 62, 15908, 25, 8619, 7268, 764, 11134, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 14933, 25, 262, 1351, 286, 2939, 3891, 1231, 7552, 198, 220, 220, 220, 220, 220, 220, 220, 8305, 278, 25, 3298, 8305, 278, 329, 262, 3785, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 997, 62, 5647, 942, 796, 18896, 7, 9060, 62, 14933, 8, 198, 220, 220, 220, 5046, 796, 352, 13, 15, 1220, 997, 62, 5647, 942, 198, 220, 220, 220, 850, 62, 10394, 796, 965, 7, 9888, 8, 1343, 374, 1, 59, 2815, 413, 5649, 1, 628, 220, 220, 220, 351, 2205, 13, 17953, 7, 11337, 7, 9150, 2625, 71, 2474, 4008, 355, 2336, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2939, 287, 2939, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 34345, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 9382, 62, 15908, 11, 2939, 1343, 27071, 11134, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2205, 13, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3834, 11337, 7, 9150, 2625, 65, 1600, 9647, 28, 2949, 36, 6794, 7, 7266, 62, 10394, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 355, 850, 62, 5647, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 62, 5647, 13, 2860, 62, 9060, 7, 9060, 62, 34345, 11, 9647, 28, 2949, 36, 6794, 7, 81, 1, 59, 2815, 413, 5649, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 62, 5647, 13, 2860, 62, 6888, 1159, 7, 9060, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 6888, 1159, 7, 6888, 1159, 278, 8, 628, 198, 4299, 7716, 62, 17660, 87, 62, 12315, 7, 198, 220, 220, 220, 9382, 62, 15908, 11, 198, 220, 220, 220, 5072, 62, 15908, 11, 198, 220, 220, 220, 989, 62, 11600, 11, 198, 220, 220, 220, 989, 62, 3672, 2625, 23100, 3681, 62, 13116, 1600, 198, 220, 220, 220, 3424, 62, 16886, 28, 17821, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 2163, 18616, 220, 47038, 14, 12315, 989, 422, 33918, 22155, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9382, 62, 15908, 25, 8619, 7268, 764, 11134, 4263, 329, 989, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 25, 262, 8619, 284, 5072, 989, 198, 220, 220, 220, 220, 220, 220, 220, 989, 62, 11600, 25, 22155, 351, 989, 1321, 198, 220, 220, 220, 220, 220, 220, 220, 989, 62, 3672, 25, 262, 1438, 286, 5072, 47038, 14, 12315, 989, 198, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 16886, 25, 4781, 47038, 2176, 3696, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5072, 62, 34345, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 11, 989, 62, 3672, 8, 628, 220, 220, 220, 10007, 796, 989, 62, 11600, 14692, 17143, 7307, 8973, 198, 220, 220, 220, 989, 62, 3672, 796, 10007, 14692, 23100, 3681, 62, 10951, 1, 7131, 1, 23100, 3681, 62, 3672, 1, 4083, 36311, 3419, 198, 220, 220, 220, 6764, 796, 10007, 14692, 23100, 3681, 62, 10951, 1, 7131, 1, 11213, 1, 4083, 36311, 3419, 198, 220, 220, 220, 7035, 796, 10007, 14692, 23100, 3681, 62, 10951, 1, 7131, 1, 41617, 1, 4083, 36311, 3419, 628, 220, 220, 220, 1266, 62, 538, 5374, 796, 989, 62, 11600, 14692, 13466, 62, 538, 5374, 8973, 198, 220, 220, 220, 1388, 62, 4164, 1173, 796, 989, 62, 11600, 14692, 12417, 62, 4164, 1173, 8973, 198, 220, 220, 220, 18663, 62, 8367, 796, 12178, 7, 13116, 62, 11600, 14692, 538, 5374, 62, 4164, 10466, 1, 7131, 13466, 62, 538, 5374, 7131, 12417, 62, 4164, 1173, 12962, 1635, 1802, 198, 220, 220, 220, 1255, 796, 37082, 77, 23004, 25, 6705, 36835, 23884, 351, 46110, 13, 17, 69, 92, 4, 23884, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 538, 5374, 11, 18663, 62, 8367, 11, 1388, 62, 4164, 1173, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 3125, 288, 861, 1768, 546, 2443, 3689, 25, 3740, 1378, 2503, 13, 2502, 33201, 13, 785, 14, 35720, 14, 17660, 87, 14, 7700, 62, 7857, 62, 392, 62, 30887, 1040, 628, 220, 220, 220, 22939, 62, 25811, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17209, 853, 259, 1298, 366, 16, 11215, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20475, 853, 259, 1298, 366, 18, 11215, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 75, 36153, 1298, 366, 17, 11215, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 26224, 853, 259, 1298, 366, 17, 11215, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17256, 2256, 5898, 1298, 6407, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 2205, 796, 16854, 7, 469, 15748, 62, 25811, 28, 469, 15748, 62, 25811, 11, 2443, 62, 77, 17024, 28, 17821, 8, 198, 220, 220, 220, 2205, 13, 79, 1476, 903, 13, 33295, 7, 21575, 7203, 7839, 1600, 366, 20468, 3681, 6358, 48774, 198, 220, 220, 220, 2205, 13, 79, 1476, 903, 13, 33295, 7, 21575, 7203, 9800, 1600, 7035, 4008, 198, 220, 220, 220, 2205, 13, 79, 1476, 903, 13, 33295, 7, 21575, 7203, 4475, 1600, 989, 62, 11600, 14692, 4475, 8973, 4008, 198, 220, 220, 220, 2205, 13, 33295, 7, 2949, 36, 6794, 7, 81, 1, 59, 76, 461, 316, 2578, 48774, 628, 220, 220, 220, 1303, 775, 815, 5412, 287, 3748, 835, 287, 989, 1123, 11507, 543, 318, 407, 1162, 4363, 375, 1391, 17143, 1058, 2060, 62, 8367, 92, 198, 220, 220, 220, 14267, 62, 17143, 7307, 796, 900, 7, 14692, 23100, 3681, 62, 10951, 1600, 366, 40085, 7509, 1600, 366, 1416, 704, 18173, 1600, 366, 559, 5154, 8973, 8, 628, 220, 220, 220, 351, 2205, 13, 17953, 7, 16375, 7, 13116, 62, 3672, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 13, 33295, 7, 1287, 291, 7203, 11828, 7479, 77, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 13, 33295, 7, 11213, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 13, 33295, 7, 36575, 7, 20274, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 351, 2205, 13, 17953, 7, 7004, 5458, 7203, 48944, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 6511, 62, 11487, 7, 15390, 11, 10007, 11, 14267, 62, 17143, 7307, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2205, 13, 17953, 7, 7004, 5458, 7203, 27871, 320, 7509, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 6511, 62, 11487, 7, 15390, 11, 10007, 14692, 40085, 7509, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2205, 13, 17953, 7, 7004, 5458, 7203, 50, 1740, 18173, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 6511, 62, 11487, 7, 15390, 11, 10007, 14692, 1416, 704, 18173, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 26875, 7, 15390, 11, 9382, 62, 15908, 11, 366, 40684, 62, 4873, 62, 1416, 704, 18173, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2205, 13, 17953, 7, 7004, 5458, 7203, 12512, 434, 602, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 6511, 62, 11487, 7, 15390, 11, 10007, 14692, 559, 5154, 8973, 8, 628, 220, 220, 220, 351, 2205, 13, 17953, 7, 16375, 7203, 6601, 21528, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 14933, 796, 14631, 22462, 62, 538, 5374, 62, 4164, 10466, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 7266, 62, 26875, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 11, 9382, 62, 15908, 11, 2939, 62, 14933, 28, 9060, 62, 14933, 11, 8305, 278, 2625, 13807, 5374, 20731, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 62, 26875, 7, 15390, 11, 9382, 62, 15908, 11, 366, 4134, 23843, 62, 538, 5374, 62, 4164, 10466, 4943, 628, 220, 220, 220, 2205, 13, 8612, 378, 62, 12315, 7, 22915, 62, 34345, 11, 3424, 62, 16886, 28, 27773, 62, 16886, 8, 198 ]
2.565697
2,717
import pytest @pytest.fixture(params=[None, False]) def sort(request): """ Valid values for the 'sort' parameter used in the Index setops methods (intersection, union, etc.) Caution: Don't confuse this one with the "sort" fixture used for DataFrame.append or concat. That one has parameters [True, False]. We can't combine them as sort=True is not permitted in in the Index setops methods. """ return request.param
[ 11748, 12972, 9288, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 37266, 41888, 14202, 11, 10352, 12962, 198, 4299, 3297, 7, 25927, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 48951, 3815, 329, 262, 705, 30619, 6, 11507, 973, 287, 262, 12901, 198, 220, 220, 220, 900, 2840, 5050, 357, 3849, 5458, 11, 6441, 11, 3503, 2014, 628, 220, 220, 220, 6488, 1009, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2094, 470, 27531, 428, 530, 351, 262, 366, 30619, 1, 29220, 973, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6060, 19778, 13, 33295, 393, 1673, 265, 13, 1320, 530, 468, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 685, 17821, 11, 10352, 4083, 628, 220, 220, 220, 220, 220, 220, 220, 775, 460, 470, 12082, 606, 355, 3297, 28, 17821, 318, 407, 10431, 198, 220, 220, 220, 220, 220, 220, 220, 287, 287, 262, 12901, 900, 2840, 5050, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2581, 13, 17143, 198 ]
2.824561
171
# Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from yardstick.common import exceptions from yardstick.common.messaging import payloads from yardstick.tests.unit import base as ut_base
[ 2, 15069, 357, 66, 8, 2864, 8180, 10501, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 12699, 13915, 13, 11321, 1330, 13269, 198, 6738, 12699, 13915, 13, 11321, 13, 37348, 3039, 1330, 21437, 82, 198, 6738, 12699, 13915, 13, 41989, 13, 20850, 1330, 2779, 355, 3384, 62, 8692, 628, 628, 198 ]
3.851852
189
# -*- coding: utf-8 -*- r""" # .---. .----------- # / \ __ / ------ # / / \( )/ ----- (`-') _ _(`-') <-. (`-')_ # ////// '\/ ` --- ( OO).-/( (OO ).-> .-> \( OO) ) .-> # //// / // : : --- (,------. \ .'_ (`-')----. ,--./ ,--/ ,--.' ,-. # // / / / `\/ '-- | .---' '`'-..__)( OO).-. ' | \ | | (`-')'.' / # // //..\\ (| '--. | | ' |( _) | | | | . '| |)(OO \ / # ============UU====UU==== | .--' | | / : \| |)| | | |\ | | / /) # '//||\\` | `---. | '-' / ' '-' ' | | \ | `-/ /` # ''`` `------' `------' `-----' `--' `--' `--' # ###################################################################################### # # Author: edony - [email protected] # # twitter : @edonyzpc # # Last modified: 2015-05-10 15:02 # # Filename: filebuf.py # # Description: All Rights Are Reserved # """ class PyColor(object): """ This class is for colored print in the python interpreter! "F3" call Addpy() function to add this class which is defined in the .vimrc for vim Editor.""" @property def new(self): """ Customized Python Print Color. """ return self._newcolor @new.setter def new(self,color_str): """ New Color. """ self._newcolor = color_str def disable(self): """ Disable Color Print. """ self.warningcolor = '' self.endcolor = '' class FileBuf(object): """ FILEBUF: class to write the each different lines into buffer file named `tmp`. """ def __init__(self, file1, file2): """ Initialize the instance attributes: [file1, file2, file1_line_num, file2_line_num] """ self.file1 = file1 self.file2 = file2 self.file1_line_num = len(open(self.file1).readlines()) self.file2_line_num = len(open(self.file2).readlines()) self.buffer = [] def mark_diff(self): """ Mark up the different lines into buffer """ f1 = open(self.file1) f2 = open(self.file2) if self.file1_line_num > self.file2_line_num: line1_num_counter = 0 line2_num_counter = 0 for line1 in f1.readlines(): line2 = f2.readline() line1_num_counter += 1 line2_num_counter += 1 if line1 == line2: continue else: if line1 == '': line1 = line1 + '\n' if line2 == '': line2 = line2 + '\n' line1 = str(line1_num_counter) + '-' + line1 line2 = str(line2_num_counter) + '-' + line2 self.buffer.append(line1) self.buffer.append(line2) else: line1_num_counter = 0 line2_num_counter = 0 for line2 in f2.readlines(): line1 = f1.readline() line1_num_counter += 1 line2_num_counter += 1 if line1 == line2: continue else: if line1 == '': line1 = line1 + '\n' if line2 == '': line2 = line2 + '\n' line1 = str(line1_num_counter) + '+' + line1 line2 = str(line2_num_counter) + '+' + line2 self.buffer.append(line1) self.buffer.append(line2) def write_file(self): """ Write the buffer into buffer file `tmp` in current direction """ file_write = open('tmp','w') for line in self.buffer: file_write.write(line) if __name__ == '__main__': test_file_buf = FileBuf('f2.txt', 'f1.txt') test_file_buf.mark_diff() test_file_buf.write_file()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 81, 37811, 198, 1303, 220, 220, 220, 220, 220, 220, 220, 764, 6329, 13, 220, 220, 220, 220, 220, 220, 220, 220, 764, 32284, 198, 1303, 220, 220, 220, 220, 220, 220, 1220, 220, 220, 220, 220, 3467, 220, 11593, 220, 1220, 220, 220, 220, 40103, 198, 1303, 220, 220, 220, 220, 220, 1220, 1220, 220, 220, 220, 220, 16792, 220, 1267, 14, 220, 220, 220, 37404, 220, 220, 357, 63, 12, 11537, 220, 4808, 4808, 7, 63, 12, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24293, 13, 357, 63, 12, 11537, 62, 198, 1303, 220, 220, 220, 220, 3373, 9705, 220, 220, 220, 705, 11139, 4600, 220, 220, 11420, 220, 220, 220, 220, 220, 357, 440, 46, 737, 12, 29006, 357, 6684, 6739, 3784, 220, 220, 220, 220, 764, 3784, 220, 220, 220, 220, 220, 16792, 440, 46, 8, 1267, 220, 220, 220, 220, 764, 3784, 198, 1303, 220, 220, 220, 3373, 1003, 1220, 3373, 220, 1058, 220, 220, 1058, 11420, 220, 220, 220, 220, 220, 357, 11, 23031, 13, 3467, 220, 220, 220, 764, 6, 62, 357, 63, 12, 11537, 650, 13, 837, 438, 19571, 837, 438, 14, 220, 837, 438, 2637, 220, 837, 34507, 198, 1303, 220, 220, 3373, 1220, 220, 220, 1220, 220, 1220, 4600, 11139, 705, 438, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 764, 6329, 6, 705, 63, 29001, 492, 834, 5769, 440, 46, 737, 34507, 705, 930, 220, 220, 3467, 930, 220, 930, 357, 63, 12, 11537, 6, 2637, 220, 1220, 198, 1303, 220, 3373, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3373, 492, 6852, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 91, 220, 705, 438, 13, 220, 930, 220, 930, 220, 705, 930, 7, 4808, 8, 930, 930, 930, 930, 220, 764, 705, 91, 220, 930, 5769, 6684, 3467, 220, 220, 220, 1220, 198, 1303, 796, 2559, 18604, 30100, 1421, 30100, 1421, 220, 220, 220, 220, 220, 930, 220, 764, 438, 6, 220, 930, 220, 930, 220, 1220, 1058, 3467, 91, 220, 930, 14726, 930, 930, 220, 930, 59, 220, 220, 220, 930, 220, 930, 220, 1220, 220, 220, 1220, 8, 198, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1003, 15886, 6852, 63, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 4600, 6329, 13, 930, 220, 705, 19355, 220, 1220, 220, 705, 220, 705, 19355, 705, 930, 220, 930, 3467, 220, 220, 930, 220, 4600, 12, 14, 220, 220, 1220, 63, 198, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10148, 15506, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 23031, 6, 4600, 23031, 6, 220, 220, 220, 4600, 650, 19355, 4600, 438, 6, 220, 4600, 438, 6, 220, 220, 220, 4600, 438, 6, 198, 1303, 1303, 29113, 29113, 14468, 4242, 2, 198, 1303, 198, 1303, 6434, 25, 1225, 1647, 532, 1225, 1647, 89, 14751, 31, 14816, 13, 785, 198, 1303, 198, 1303, 17044, 1058, 2488, 276, 1647, 89, 14751, 198, 1303, 198, 1303, 4586, 9518, 25, 1853, 12, 2713, 12, 940, 1315, 25, 2999, 198, 1303, 198, 1303, 7066, 12453, 25, 2393, 29325, 13, 9078, 198, 1303, 198, 1303, 12489, 25, 1439, 6923, 4231, 33876, 198, 1303, 198, 37811, 198, 4871, 9485, 10258, 7, 15252, 2599, 198, 220, 220, 220, 37227, 770, 1398, 318, 329, 16396, 3601, 287, 262, 21015, 28846, 0, 198, 220, 220, 220, 366, 37, 18, 1, 869, 3060, 9078, 3419, 2163, 284, 751, 428, 1398, 543, 318, 5447, 198, 220, 220, 220, 287, 262, 764, 31124, 6015, 329, 43907, 12058, 526, 15931, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 649, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8562, 1143, 11361, 12578, 5315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3605, 8043, 198, 220, 220, 220, 2488, 3605, 13, 2617, 353, 198, 220, 220, 220, 825, 649, 7, 944, 11, 8043, 62, 2536, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 968, 5315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3605, 8043, 796, 3124, 62, 2536, 198, 220, 220, 220, 825, 15560, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 31529, 5315, 12578, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43917, 8043, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 8043, 796, 10148, 198, 198, 4871, 9220, 33, 3046, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45811, 19499, 37, 25, 1398, 284, 3551, 262, 1123, 1180, 3951, 656, 11876, 2393, 3706, 4600, 22065, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2393, 16, 11, 2393, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 262, 4554, 12608, 25, 685, 7753, 16, 11, 2393, 17, 11, 2393, 16, 62, 1370, 62, 22510, 11, 2393, 17, 62, 1370, 62, 22510, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 16, 796, 2393, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 17, 796, 2393, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 16, 62, 1370, 62, 22510, 796, 18896, 7, 9654, 7, 944, 13, 7753, 16, 737, 961, 6615, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 17, 62, 1370, 62, 22510, 796, 18896, 7, 9654, 7, 944, 13, 7753, 17, 737, 961, 6615, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22252, 796, 17635, 628, 220, 220, 220, 825, 1317, 62, 26069, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2940, 510, 262, 1180, 3951, 656, 11876, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 277, 16, 796, 1280, 7, 944, 13, 7753, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 17, 796, 1280, 7, 944, 13, 7753, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 7753, 16, 62, 1370, 62, 22510, 1875, 2116, 13, 7753, 17, 62, 1370, 62, 22510, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 62, 22510, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 62, 22510, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 16, 287, 277, 16, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 796, 277, 17, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 62, 22510, 62, 24588, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 62, 22510, 62, 24588, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 16, 6624, 1627, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 16, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 796, 1627, 16, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 17, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 796, 1627, 17, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 796, 965, 7, 1370, 16, 62, 22510, 62, 24588, 8, 1343, 705, 19355, 1343, 1627, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 796, 965, 7, 1370, 17, 62, 22510, 62, 24588, 8, 1343, 705, 19355, 1343, 1627, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22252, 13, 33295, 7, 1370, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22252, 13, 33295, 7, 1370, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 62, 22510, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 62, 22510, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 17, 287, 277, 17, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 796, 277, 16, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 62, 22510, 62, 24588, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 62, 22510, 62, 24588, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 16, 6624, 1627, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 16, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 796, 1627, 16, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 17, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 796, 1627, 17, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 796, 965, 7, 1370, 16, 62, 22510, 62, 24588, 8, 1343, 705, 10, 6, 1343, 1627, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 796, 965, 7, 1370, 17, 62, 22510, 62, 24588, 8, 1343, 705, 10, 6, 1343, 1627, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22252, 13, 33295, 7, 1370, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22252, 13, 33295, 7, 1370, 17, 8, 628, 220, 220, 220, 825, 3551, 62, 7753, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19430, 262, 11876, 656, 11876, 2393, 4600, 22065, 63, 287, 1459, 4571, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 13564, 796, 1280, 10786, 22065, 41707, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 2116, 13, 22252, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 13564, 13, 13564, 7, 1370, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 62, 7753, 62, 29325, 796, 9220, 33, 3046, 10786, 69, 17, 13, 14116, 3256, 705, 69, 16, 13, 14116, 11537, 198, 220, 220, 220, 1332, 62, 7753, 62, 29325, 13, 4102, 62, 26069, 3419, 198, 220, 220, 220, 1332, 62, 7753, 62, 29325, 13, 13564, 62, 7753, 3419, 198 ]
1.832883
2,220
import re from wtforms import validators from solr_admin import keycloak from solr_admin import models from solr_admin import solr from solr_admin.models import synonym_audit # The customized ModelView that is used for working with the synonyms. from solr_admin.services.get_stems import get_stems from solr_admin.services.get_multi_word_synonyms import get_multi_word_synonyms from solr_admin.views.secured_view import SecuredView # Validate the Synonyms Text and ensure it meets our standards. # Check for multi-word synonyms # Only a-z, 0-9, and space are allowed in the synonyms. # Multiple spaces are not allowed. # Duplicate values are not allowed. # Ensure that there is more than one value. # Put a CSV string into alphabetical order, and format nicely. # Do the audit logging - we will write the complete record, not the delta (although the latter is possible).
[ 198, 11748, 302, 198, 198, 6738, 266, 83, 23914, 1330, 4938, 2024, 198, 198, 6738, 1540, 81, 62, 28482, 1330, 1994, 565, 15877, 198, 6738, 1540, 81, 62, 28482, 1330, 4981, 198, 6738, 1540, 81, 62, 28482, 1330, 1540, 81, 198, 6738, 1540, 81, 62, 28482, 13, 27530, 1330, 6171, 5177, 62, 3885, 270, 628, 198, 2, 383, 27658, 9104, 7680, 326, 318, 973, 329, 1762, 351, 262, 6171, 43612, 13, 198, 6738, 1540, 81, 62, 28482, 13, 30416, 13, 1136, 62, 927, 82, 1330, 651, 62, 927, 82, 198, 6738, 1540, 81, 62, 28482, 13, 30416, 13, 1136, 62, 41684, 62, 4775, 62, 28869, 43612, 1330, 651, 62, 41684, 62, 4775, 62, 28869, 43612, 198, 6738, 1540, 81, 62, 28482, 13, 33571, 13, 2363, 1522, 62, 1177, 1330, 1882, 1522, 7680, 628, 198, 198, 2, 3254, 20540, 262, 16065, 43612, 8255, 290, 4155, 340, 11185, 674, 5423, 13, 198, 198, 2, 6822, 329, 5021, 12, 4775, 6171, 43612, 628, 198, 2, 5514, 257, 12, 89, 11, 657, 12, 24, 11, 290, 2272, 389, 3142, 287, 262, 6171, 43612, 13, 628, 198, 2, 20401, 9029, 389, 407, 3142, 13, 628, 198, 2, 49821, 5344, 3815, 389, 407, 3142, 13, 628, 198, 2, 48987, 326, 612, 318, 517, 621, 530, 1988, 13, 628, 198, 2, 5930, 257, 44189, 4731, 656, 24830, 605, 1502, 11, 290, 5794, 16576, 13, 628, 198, 2, 2141, 262, 14984, 18931, 532, 356, 481, 3551, 262, 1844, 1700, 11, 407, 262, 25979, 357, 16670, 262, 6846, 318, 1744, 737, 198 ]
3.525692
253
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch from torch.optim import Optimizer
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 2, 198, 198, 11748, 28034, 198, 6738, 28034, 13, 40085, 1330, 30011, 7509, 628 ]
3.920635
63
'todo list controller' import json from flask import request from flask import jsonify from flask import current_app import data.database as database def list_items(): 'GET todo list' current_app.logger.info('todo controller called, func: list') db = database.Database(current_app.config['CONN_STRING']) items = db.get_items() return jsonify({ 'todoList': items }) def add(): 'POST add item into todo list' current_app.logger.info('todo controller called, func: add') data = json.loads(request.data.decode("utf-8")) item = data['newItem'] db = database.Database(current_app.config['CONN_STRING']) db.insert_item(item) items = db.get_items() return jsonify({ 'todoList': items }) def delete(): 'POST delete item from list' current_app.logger.info('todo controller called, func: delete') data = json.loads(request.data.decode("utf-8")) item = data['itemToDelete'] db = database.Database(current_app.config['CONN_STRING']) db.delete_item(item) items = db.get_items() return jsonify({ 'todoList': items }) def item_update(): 'POST update item in list' current_app.logger.info('todo controller called, func: item_update') data = json.loads(request.data.decode('utf-8')) item = data['itemToUpdate'] db = database.Database(current_app.config['CONN_STRING']) db.update_item(item) items = db.get_items() return jsonify({ 'todoList': items })
[ 470, 24313, 1351, 10444, 6, 198, 11748, 33918, 198, 6738, 42903, 1330, 2581, 198, 198, 6738, 42903, 1330, 33918, 1958, 198, 6738, 42903, 1330, 1459, 62, 1324, 198, 198, 11748, 1366, 13, 48806, 355, 6831, 198, 198, 4299, 1351, 62, 23814, 33529, 198, 220, 220, 220, 705, 18851, 284, 4598, 1351, 6, 198, 220, 220, 220, 1459, 62, 1324, 13, 6404, 1362, 13, 10951, 10786, 83, 24313, 10444, 1444, 11, 25439, 25, 1351, 11537, 198, 220, 220, 220, 20613, 796, 6831, 13, 38105, 7, 14421, 62, 1324, 13, 11250, 17816, 10943, 45, 62, 18601, 2751, 6, 12962, 198, 220, 220, 220, 3709, 796, 20613, 13, 1136, 62, 23814, 3419, 198, 220, 220, 220, 1441, 33918, 1958, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 83, 24313, 8053, 10354, 3709, 198, 220, 220, 220, 32092, 198, 198, 4299, 751, 33529, 198, 220, 220, 220, 705, 32782, 751, 2378, 656, 284, 4598, 1351, 6, 198, 220, 220, 220, 1459, 62, 1324, 13, 6404, 1362, 13, 10951, 10786, 83, 24313, 10444, 1444, 11, 25439, 25, 751, 11537, 628, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 25927, 13, 7890, 13, 12501, 1098, 7203, 40477, 12, 23, 48774, 198, 220, 220, 220, 2378, 796, 1366, 17816, 3605, 7449, 20520, 628, 220, 220, 220, 20613, 796, 6831, 13, 38105, 7, 14421, 62, 1324, 13, 11250, 17816, 10943, 45, 62, 18601, 2751, 6, 12962, 198, 220, 220, 220, 20613, 13, 28463, 62, 9186, 7, 9186, 8, 198, 220, 220, 220, 3709, 796, 20613, 13, 1136, 62, 23814, 3419, 628, 220, 220, 220, 1441, 33918, 1958, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 83, 24313, 8053, 10354, 3709, 198, 220, 220, 220, 32092, 198, 198, 4299, 12233, 33529, 198, 220, 220, 220, 705, 32782, 12233, 2378, 422, 1351, 6, 198, 220, 220, 220, 1459, 62, 1324, 13, 6404, 1362, 13, 10951, 10786, 83, 24313, 10444, 1444, 11, 25439, 25, 12233, 11537, 628, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 25927, 13, 7890, 13, 12501, 1098, 7203, 40477, 12, 23, 48774, 198, 220, 220, 220, 2378, 796, 1366, 17816, 9186, 2514, 38727, 20520, 628, 220, 220, 220, 20613, 796, 6831, 13, 38105, 7, 14421, 62, 1324, 13, 11250, 17816, 10943, 45, 62, 18601, 2751, 6, 12962, 198, 220, 220, 220, 20613, 13, 33678, 62, 9186, 7, 9186, 8, 198, 220, 220, 220, 3709, 796, 20613, 13, 1136, 62, 23814, 3419, 628, 220, 220, 220, 1441, 33918, 1958, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 83, 24313, 8053, 10354, 3709, 198, 220, 220, 220, 32092, 198, 198, 4299, 2378, 62, 19119, 33529, 198, 220, 220, 220, 705, 32782, 4296, 2378, 287, 1351, 6, 198, 220, 220, 220, 1459, 62, 1324, 13, 6404, 1362, 13, 10951, 10786, 83, 24313, 10444, 1444, 11, 25439, 25, 2378, 62, 19119, 11537, 628, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 25927, 13, 7890, 13, 12501, 1098, 10786, 40477, 12, 23, 6, 4008, 198, 220, 220, 220, 2378, 796, 1366, 17816, 9186, 2514, 10260, 20520, 628, 220, 220, 220, 20613, 796, 6831, 13, 38105, 7, 14421, 62, 1324, 13, 11250, 17816, 10943, 45, 62, 18601, 2751, 6, 12962, 198, 220, 220, 220, 20613, 13, 19119, 62, 9186, 7, 9186, 8, 198, 220, 220, 220, 3709, 796, 20613, 13, 1136, 62, 23814, 3419, 628, 220, 220, 220, 1441, 33918, 1958, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 83, 24313, 8053, 10354, 3709, 198, 220, 220, 220, 32092, 198 ]
2.615917
578
""" The model package """ from models.gcn import GCN_2Layers from models.mlp import MLP_1h, MLP_2h from models.wgcn import WGCN, WGCN_embedding_classifier, WGCN_VocabEmbedding __all__ = [ "MLP_1h", "MLP_2h", "GCN_2Layers", "WGCN", "WGCN_embedding_classifier", "WGCN_VocabEmbedding", ]
[ 37811, 198, 464, 2746, 5301, 198, 37811, 198, 198, 6738, 4981, 13, 70, 31522, 1330, 20145, 45, 62, 17, 43, 6962, 198, 6738, 4981, 13, 4029, 79, 1330, 10373, 47, 62, 16, 71, 11, 10373, 47, 62, 17, 71, 198, 6738, 4981, 13, 86, 70, 31522, 1330, 370, 15916, 45, 11, 370, 15916, 45, 62, 20521, 12083, 62, 4871, 7483, 11, 370, 15916, 45, 62, 53, 420, 397, 31567, 6048, 278, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 5805, 47, 62, 16, 71, 1600, 198, 220, 220, 220, 366, 5805, 47, 62, 17, 71, 1600, 198, 220, 220, 220, 366, 15916, 45, 62, 17, 43, 6962, 1600, 198, 220, 220, 220, 366, 54, 15916, 45, 1600, 198, 220, 220, 220, 366, 54, 15916, 45, 62, 20521, 12083, 62, 4871, 7483, 1600, 198, 220, 220, 220, 366, 54, 15916, 45, 62, 53, 420, 397, 31567, 6048, 278, 1600, 198, 60, 198 ]
2.006452
155
# Advent of Code 2021, Day 14 # # Apply character insertion rules to a sequence of characters, # runs out of memory if you try to build up character strings, # so had to build dictionary of pairs of characters. # # AK, 14/12/2021 import time t0 = time.time() # Input file name f = 'sample.txt' f = 'input.txt' # Read data, pattern on line 1, rules thereafter lines = [l.strip() for l in open(f)] patt = None rules = {} for l in lines: if not patt: patt = l elif len(l) > 0: # "AB -> C" to dictionary rules[l[:2]] = l[6] # Parse starting pattern, and get frequency counts of letters, # and number of transitions trans = {} # "AB" -> count counts = {} # 'A' -> count prevC = None for c in patt: counts[c] = counts.get(c,0) + 1 if prevC: t = prevC + c trans[t] = trans.get(t,0) + 1 prevC = c # Show starting data print('Transitions:', trans) print('Chars:', counts) print('Rules:', rules) # Do one iteration # Do iterations (10 for Part 1, 40 for Part 2) for i in range(40): print('\nIteration', i+1) iter() print('Counts:', counts) # Show final results print('\nFinal character counts:', counts) print('\nMax - min counts:', max(counts.values()) - min(counts.values())) print(time.time() - t0, 'secs')
[ 2, 33732, 286, 6127, 33448, 11, 3596, 1478, 198, 2, 198, 2, 27967, 2095, 36075, 3173, 284, 257, 8379, 286, 3435, 11, 198, 2, 4539, 503, 286, 4088, 611, 345, 1949, 284, 1382, 510, 2095, 13042, 11, 198, 2, 523, 550, 284, 1382, 22155, 286, 14729, 286, 3435, 13, 198, 2, 198, 2, 15837, 11, 1478, 14, 1065, 14, 1238, 2481, 198, 198, 11748, 640, 198, 83, 15, 796, 640, 13, 2435, 3419, 198, 198, 2, 23412, 2393, 1438, 198, 69, 796, 705, 39873, 13, 14116, 6, 198, 69, 796, 705, 15414, 13, 14116, 6, 198, 198, 2, 4149, 1366, 11, 3912, 319, 1627, 352, 11, 3173, 19547, 198, 6615, 796, 685, 75, 13, 36311, 3419, 329, 300, 287, 1280, 7, 69, 15437, 198, 79, 1078, 796, 6045, 198, 38785, 796, 23884, 198, 1640, 300, 287, 3951, 25, 198, 220, 220, 220, 611, 407, 279, 1078, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 1078, 796, 300, 198, 220, 220, 220, 1288, 361, 18896, 7, 75, 8, 1875, 657, 25, 220, 1303, 366, 6242, 4613, 327, 1, 284, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 3173, 58, 75, 58, 25, 17, 11907, 796, 300, 58, 21, 60, 198, 198, 2, 2547, 325, 3599, 3912, 11, 290, 651, 8373, 9853, 286, 7475, 11, 198, 2, 290, 1271, 286, 27188, 198, 7645, 796, 23884, 220, 1303, 366, 6242, 1, 4613, 954, 198, 9127, 82, 796, 23884, 1303, 705, 32, 6, 4613, 954, 198, 47050, 34, 796, 6045, 198, 1640, 269, 287, 279, 1078, 25, 198, 220, 220, 220, 9853, 58, 66, 60, 796, 9853, 13, 1136, 7, 66, 11, 15, 8, 1343, 352, 198, 220, 220, 220, 611, 8654, 34, 25, 198, 220, 220, 220, 220, 220, 220, 220, 256, 796, 8654, 34, 1343, 269, 198, 220, 220, 220, 220, 220, 220, 220, 1007, 58, 83, 60, 796, 1007, 13, 1136, 7, 83, 11, 15, 8, 1343, 352, 198, 220, 220, 220, 8654, 34, 796, 269, 198, 198, 2, 5438, 3599, 1366, 198, 4798, 10786, 8291, 1756, 25, 3256, 1007, 8, 198, 4798, 10786, 1925, 945, 25, 3256, 9853, 8, 198, 4798, 10786, 37766, 25, 3256, 3173, 8, 198, 198, 2, 2141, 530, 24415, 198, 198, 2, 2141, 34820, 357, 940, 329, 2142, 352, 11, 2319, 329, 2142, 362, 8, 198, 1640, 1312, 287, 2837, 7, 1821, 2599, 198, 220, 220, 220, 3601, 10786, 59, 77, 29993, 341, 3256, 1312, 10, 16, 8, 198, 220, 220, 220, 11629, 3419, 198, 220, 220, 220, 3601, 10786, 12332, 82, 25, 3256, 9853, 8, 198, 198, 2, 5438, 2457, 2482, 198, 4798, 10786, 59, 77, 19006, 2095, 9853, 25, 3256, 9853, 8, 198, 4798, 10786, 59, 77, 11518, 532, 949, 9853, 25, 3256, 3509, 7, 9127, 82, 13, 27160, 28955, 532, 949, 7, 9127, 82, 13, 27160, 3419, 4008, 198, 4798, 7, 2435, 13, 2435, 3419, 532, 256, 15, 11, 705, 2363, 82, 11537, 198 ]
2.632231
484
''' This script illustrates training of an inflammation classifier for patches along SI joints ''' import argparse import os import shutil import pytorch_lightning as pl from torch.utils.data import DataLoader from neuralnets.util.io import print_frm from neuralnets.util.tools import set_seed from neuralnets.util.augmentation import * from pytorch_lightning.callbacks import ModelCheckpoint from data.datasets import SPARCCDataset from models.sparcc_cnn import Inflammation_CNN from util.constants import * factor = {INFLAMMATION_MODULE: 64, DEEP_INFLAMMATION_MODULE: 12, SPARCC_MODULE: 1, JOINT: 1} if __name__ == '__main__': # parse all the arguments parser = argparse.ArgumentParser() parser.add_argument("--data-dir", help="Path to the directory that contains a preprocessed dataset", type=str, required=True) parser.add_argument("--si-joint-model", help="Path to the SI joint detection checkpoint", type=str, required=True) parser.add_argument("--model-checkpoint-illium", help="Path to the illium U-Net checkpoint", type=str, required=True) parser.add_argument("--model-checkpoint-sacrum", help="Path to the sacrum U-Net checkpoint", type=str, required=True) parser.add_argument("--repetitions", help="Number of repetitions", type=int, default=1) parser.add_argument("--folds", help="Number of folds (overrides repetitions parameter if provided)", type=int, default=None) # network parameters parser.add_argument("--train_val_test_split", help="Train/validation/test split", type=str, default="0.50,0.75") parser.add_argument("--backbone", help="Backbone feature extractor of the model", type=str, default='ResNet18') parser.add_argument("--omit_t1_input", help="Boolean flag that omits usage of T1 slices", action='store_true', default=False) parser.add_argument("--omit_t2_input", help="Boolean flag that omits usage of T1 slices", action='store_true', default=False) parser.add_argument("--omit_weighting", help="Boolean flag that specifies ROI masking", action='store_true', default=False) # optimization parameters parser.add_argument("--epochs", help="Number of training epochs", type=int, default=400) parser.add_argument("--lr", help="Learning rate for the optimization", type=float, default=1e-3) # compute parameters parser.add_argument("--train_batch_size", help="Batch size during training", type=int, default=1) parser.add_argument("--test_batch_size", help="Batch size during testing", type=int, default=1) parser.add_argument("--num_workers", help="Amount of workers", type=int, default=12) parser.add_argument("--gpus", help="Devices available for computing", type=str, default='0') parser.add_argument("--accelerator", help="Acceleration engine for computations", type=str, default='dp') # logging parameters parser.add_argument("--log_dir", help="Logging directory", type=str, default='logs') parser.add_argument("--log_freq", help="Frequency to log results", type=int, default=50) parser.add_argument("--log_refresh_rate", help="Refresh rate for logging", type=int, default=1) parser.add_argument("--seed", help="Seed for reproducibility", type=int, default=0) parser.add_argument("--clean-up", help="Boolean flag that specifies ROI masking", action='store_true', default=False) args = parser.parse_args() args.train_val_test_split = [float(item) for item in args.train_val_test_split.split(',')] metrics = [] if args.folds is not None: reps = args.folds range_split = ((0, 1), (0, 1)) else: reps = args.repetitions f = None split = args.train_val_test_split range_split = ((0, split[1]), (0, split[1]), (split[1], 1)) for i in range(reps): rep_str = 'fold' if args.folds is not None else 'repetition' print_frm('') print_frm('Start processing %s %d/%d ...' % (rep_str, i+1, reps)) print_frm('') """ Fix seed (in case of cross validation), or increment if repetitive training """ if args.folds is not None: set_seed(args.seed) else: args.seed = args.seed + 1 set_seed(args.seed) """ Load the data """ print_frm('Loading data') transform = Compose([Rotate90(), Flip(prob=0.5, dim=0), Flip(prob=0.5, dim=1), RandomDeformation(), AddNoise(sigma_max=0.05)]) train = SPARCCDataset(args.data_dir, args.si_joint_model, args.model_checkpoint_illium, args.model_checkpoint_sacrum, range_split=range_split[0], folds=args.folds, f=i, train=True, transform=transform, seed=args.seed, mode=INFLAMMATION_MODULE, use_t1_input=not args.omit_t1_input, use_t2_input=not args.omit_t2_input, apply_weighting=not args.omit_weighting) val = SPARCCDataset(args.data_dir, args.si_joint_model, args.model_checkpoint_illium, args.model_checkpoint_sacrum, range_split=range_split[1], folds=args.folds, f=i, train=False, seed=args.seed, mode=INFLAMMATION_MODULE, use_t1_input=not args.omit_t1_input, use_t2_input=not args.omit_t2_input, apply_weighting=not args.omit_weighting) print_frm('Train data distribution: Infl: %.2f - Non-infl: %.2f' % (100*np.mean(train.q_scores), 100*np.mean(1-train.q_scores))) print_frm('Val data distribution: Infl: %.2f - Non-infl: %.2f' % (100*np.mean(val.q_scores), 100*np.mean(1-val.q_scores))) if args.folds is None: test = SPARCCDataset(args.data_dir, args.si_joint_model, args.model_checkpoint_illium, args.model_checkpoint_sacrum, range_split=range_split[2], seed=args.seed, mode=INFLAMMATION_MODULE, use_t1_input=not args.omit_t1_input, use_t2_input=not args.omit_t2_input, apply_weighting=not args.omit_weighting) print_frm('Test data distribution: Infl: %.2f - Non-infl: %.2f' % (100*np.mean(test.q_scores), 100*np.mean(1-test.q_scores))) """ Build the network """ print_frm('Building the network') weights = train.score_weights[0] net = Inflammation_CNN(backbone=args.backbone, lr=args.lr, use_t1_input=not args.omit_t1_input, use_t2_input=not args.omit_t2_input, weights=weights) print_frm('Balancing weights for loss function: %s' % (weights)) """ Train the inflammation network """ print_frm('Starting training of the inflammation network') trainer = _train_module(net, train, val, args) print_frm('Testing network') _test_module(trainer, net, val if args.folds is not None else test, args) metrics.append([float(trainer.logged_metrics['test/' + m].cpu()) for m in METRICS]) """ Save the final model """ print_frm('Saving final model') shutil.copyfile(trainer.checkpoint_callback.best_model_path, os.path.join(trainer.log_dir, OPTIMAL_CKPT)) """ Clean up """ print_frm('Cleaning up') if args.clean_up: os.system('rm -r ' + os.path.join(trainer.log_dir, 'checkpoints')) """ Report final performance results """ metrics = np.asarray(metrics) metrics_avg = np.mean(metrics, axis=0) print_frm('Final performance report:') print_frm('=========================') for i, m in enumerate(METRICS): print_frm(' %s: %f' % (m, metrics_avg[i]))
[ 7061, 6, 198, 1212, 4226, 21290, 3047, 286, 281, 20881, 1398, 7483, 329, 16082, 1863, 25861, 24039, 198, 7061, 6, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 12972, 13165, 354, 62, 2971, 768, 355, 458, 198, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 6738, 17019, 45938, 13, 22602, 13, 952, 1330, 3601, 62, 8310, 76, 198, 6738, 17019, 45938, 13, 22602, 13, 31391, 1330, 900, 62, 28826, 198, 6738, 17019, 45938, 13, 22602, 13, 559, 5154, 341, 1330, 1635, 198, 6738, 12972, 13165, 354, 62, 2971, 768, 13, 13345, 10146, 1330, 9104, 9787, 4122, 198, 198, 6738, 1366, 13, 19608, 292, 1039, 1330, 6226, 1503, 4093, 27354, 292, 316, 198, 6738, 4981, 13, 82, 1845, 535, 62, 66, 20471, 1330, 4806, 11199, 341, 62, 18474, 198, 6738, 7736, 13, 9979, 1187, 1330, 1635, 628, 198, 31412, 796, 1391, 1268, 3697, 2390, 44, 6234, 62, 33365, 24212, 25, 5598, 11, 5550, 8905, 62, 1268, 3697, 2390, 44, 6234, 62, 33365, 24212, 25, 1105, 11, 6226, 1503, 4093, 62, 33365, 24212, 25, 352, 11, 32357, 12394, 25, 352, 92, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 1303, 21136, 477, 262, 7159, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 7890, 12, 15908, 1600, 1037, 2625, 15235, 284, 262, 8619, 326, 4909, 257, 662, 14681, 276, 27039, 1600, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 13396, 12, 73, 1563, 12, 19849, 1600, 1037, 2625, 15235, 284, 262, 25861, 6466, 13326, 26954, 1600, 2099, 28, 2536, 11, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 19849, 12, 9122, 4122, 12, 359, 1505, 1600, 1037, 2625, 15235, 284, 262, 2801, 1505, 471, 12, 7934, 26954, 1600, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 19849, 12, 9122, 4122, 12, 30584, 6582, 1600, 1037, 2625, 15235, 284, 262, 5360, 6582, 471, 12, 7934, 26954, 1600, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 260, 6449, 1756, 1600, 1037, 2625, 15057, 286, 46152, 1756, 1600, 2099, 28, 600, 11, 4277, 28, 16, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 69, 10119, 1600, 1037, 2625, 15057, 286, 38744, 357, 2502, 81, 1460, 46152, 1756, 11507, 611, 2810, 42501, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 8, 628, 220, 220, 220, 1303, 3127, 10007, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 27432, 62, 2100, 62, 9288, 62, 35312, 1600, 1037, 2625, 44077, 14, 12102, 341, 14, 9288, 6626, 1600, 2099, 28, 2536, 11, 4277, 2625, 15, 13, 1120, 11, 15, 13, 2425, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 1891, 15992, 1600, 1037, 2625, 7282, 15992, 3895, 7925, 273, 286, 262, 2746, 1600, 2099, 28, 2536, 11, 4277, 11639, 4965, 7934, 1507, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 296, 270, 62, 83, 16, 62, 15414, 1600, 1037, 2625, 46120, 13087, 6056, 326, 267, 24883, 8748, 286, 309, 16, 24314, 1600, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 296, 270, 62, 83, 17, 62, 15414, 1600, 1037, 2625, 46120, 13087, 6056, 326, 267, 24883, 8748, 286, 309, 16, 24314, 1600, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 296, 270, 62, 6551, 278, 1600, 1037, 2625, 46120, 13087, 6056, 326, 26052, 15107, 40, 9335, 278, 1600, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 8, 628, 220, 220, 220, 1303, 23989, 10007, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 538, 5374, 82, 1600, 1037, 2625, 15057, 286, 3047, 36835, 82, 1600, 2099, 28, 600, 11, 4277, 28, 7029, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 14050, 1600, 1037, 2625, 41730, 2494, 329, 262, 23989, 1600, 2099, 28, 22468, 11, 4277, 28, 16, 68, 12, 18, 8, 628, 220, 220, 220, 1303, 24061, 10007, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 27432, 62, 43501, 62, 7857, 1600, 1037, 2625, 33, 963, 2546, 1141, 3047, 1600, 2099, 28, 600, 11, 4277, 28, 16, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 9288, 62, 43501, 62, 7857, 1600, 1037, 2625, 33, 963, 2546, 1141, 4856, 1600, 2099, 28, 600, 11, 4277, 28, 16, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 22510, 62, 22896, 1600, 1037, 2625, 31264, 286, 3259, 1600, 2099, 28, 600, 11, 4277, 28, 1065, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 31197, 385, 1600, 1037, 2625, 13603, 1063, 1695, 329, 14492, 1600, 2099, 28, 2536, 11, 4277, 11639, 15, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 330, 7015, 1352, 1600, 1037, 2625, 12832, 7015, 341, 3113, 329, 2653, 602, 1600, 2099, 28, 2536, 11, 4277, 11639, 26059, 11537, 628, 220, 220, 220, 1303, 18931, 10007, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 6404, 62, 15908, 1600, 1037, 2625, 11187, 2667, 8619, 1600, 2099, 28, 2536, 11, 4277, 11639, 6404, 82, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 6404, 62, 19503, 80, 1600, 1037, 2625, 37, 28707, 284, 2604, 2482, 1600, 2099, 28, 600, 11, 4277, 28, 1120, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 6404, 62, 5420, 3447, 62, 4873, 1600, 1037, 2625, 8134, 3447, 2494, 329, 18931, 1600, 2099, 28, 600, 11, 4277, 28, 16, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 28826, 1600, 1037, 2625, 50, 2308, 329, 8186, 66, 2247, 1600, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 27773, 12, 929, 1600, 1037, 2625, 46120, 13087, 6056, 326, 26052, 15107, 40, 9335, 278, 1600, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 8, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 26498, 13, 27432, 62, 2100, 62, 9288, 62, 35312, 796, 685, 22468, 7, 9186, 8, 329, 2378, 287, 26498, 13, 27432, 62, 2100, 62, 9288, 62, 35312, 13, 35312, 7, 3256, 11537, 60, 628, 220, 220, 220, 20731, 796, 17635, 198, 220, 220, 220, 611, 26498, 13, 69, 10119, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20982, 796, 26498, 13, 69, 10119, 198, 220, 220, 220, 220, 220, 220, 220, 2837, 62, 35312, 796, 14808, 15, 11, 352, 828, 357, 15, 11, 352, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20982, 796, 26498, 13, 260, 6449, 1756, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 6626, 796, 26498, 13, 27432, 62, 2100, 62, 9288, 62, 35312, 198, 220, 220, 220, 220, 220, 220, 220, 2837, 62, 35312, 796, 14808, 15, 11, 6626, 58, 16, 46570, 357, 15, 11, 6626, 58, 16, 46570, 357, 35312, 58, 16, 4357, 352, 4008, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 260, 862, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1128, 62, 2536, 796, 705, 11379, 6, 611, 26498, 13, 69, 10119, 318, 407, 6045, 2073, 705, 260, 6449, 653, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 7, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 10434, 7587, 4064, 82, 4064, 67, 14, 4, 67, 2644, 6, 4064, 357, 7856, 62, 2536, 11, 1312, 10, 16, 11, 20982, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 7, 7061, 8, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13268, 9403, 357, 259, 1339, 286, 3272, 21201, 828, 393, 18703, 611, 28585, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 69, 10119, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 62, 28826, 7, 22046, 13, 28826, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 28826, 796, 26498, 13, 28826, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 62, 28826, 7, 22046, 13, 28826, 8, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8778, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 19031, 1366, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 796, 3082, 577, 26933, 24864, 378, 3829, 22784, 29583, 7, 1676, 65, 28, 15, 13, 20, 11, 5391, 28, 15, 828, 29583, 7, 1676, 65, 28, 15, 13, 20, 11, 5391, 28, 16, 828, 14534, 5005, 1161, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3060, 2949, 786, 7, 82, 13495, 62, 9806, 28, 15, 13, 2713, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 796, 6226, 1503, 4093, 27354, 292, 316, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 13396, 62, 73, 1563, 62, 19849, 11, 26498, 13, 19849, 62, 9122, 4122, 62, 359, 1505, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19849, 62, 9122, 4122, 62, 30584, 6582, 11, 2837, 62, 35312, 28, 9521, 62, 35312, 58, 15, 4357, 38744, 28, 22046, 13, 69, 10119, 11, 277, 28, 72, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 28, 17821, 11, 6121, 28, 35636, 11, 9403, 28, 22046, 13, 28826, 11, 4235, 28, 1268, 3697, 2390, 44, 6234, 62, 33365, 24212, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 83, 16, 62, 15414, 28, 1662, 26498, 13, 296, 270, 62, 83, 16, 62, 15414, 11, 779, 62, 83, 17, 62, 15414, 28, 1662, 26498, 13, 296, 270, 62, 83, 17, 62, 15414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4174, 62, 6551, 278, 28, 1662, 26498, 13, 296, 270, 62, 6551, 278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 6226, 1503, 4093, 27354, 292, 316, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 13396, 62, 73, 1563, 62, 19849, 11, 26498, 13, 19849, 62, 9122, 4122, 62, 359, 1505, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19849, 62, 9122, 4122, 62, 30584, 6582, 11, 2837, 62, 35312, 28, 9521, 62, 35312, 58, 16, 4357, 38744, 28, 22046, 13, 69, 10119, 11, 277, 28, 72, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 28, 25101, 11, 9403, 28, 22046, 13, 28826, 11, 4235, 28, 1268, 3697, 2390, 44, 6234, 62, 33365, 24212, 11, 779, 62, 83, 16, 62, 15414, 28, 1662, 26498, 13, 296, 270, 62, 83, 16, 62, 15414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 83, 17, 62, 15414, 28, 1662, 26498, 13, 296, 270, 62, 83, 17, 62, 15414, 11, 4174, 62, 6551, 278, 28, 1662, 26498, 13, 296, 270, 62, 6551, 278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 44077, 1366, 6082, 25, 554, 2704, 25, 4064, 13, 17, 69, 532, 8504, 12, 259, 2704, 25, 4064, 13, 17, 69, 6, 4064, 357, 3064, 9, 37659, 13, 32604, 7, 27432, 13, 80, 62, 1416, 2850, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1802, 9, 37659, 13, 32604, 7, 16, 12, 27432, 13, 80, 62, 1416, 2850, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 7762, 1366, 6082, 25, 554, 2704, 25, 4064, 13, 17, 69, 532, 8504, 12, 259, 2704, 25, 4064, 13, 17, 69, 6, 4064, 357, 3064, 9, 37659, 13, 32604, 7, 2100, 13, 80, 62, 1416, 2850, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1802, 9, 37659, 13, 32604, 7, 16, 12, 2100, 13, 80, 62, 1416, 2850, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 69, 10119, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 796, 6226, 1503, 4093, 27354, 292, 316, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 13396, 62, 73, 1563, 62, 19849, 11, 26498, 13, 19849, 62, 9122, 4122, 62, 359, 1505, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19849, 62, 9122, 4122, 62, 30584, 6582, 11, 2837, 62, 35312, 28, 9521, 62, 35312, 58, 17, 4357, 9403, 28, 22046, 13, 28826, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 1268, 3697, 2390, 44, 6234, 62, 33365, 24212, 11, 779, 62, 83, 16, 62, 15414, 28, 1662, 26498, 13, 296, 270, 62, 83, 16, 62, 15414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 83, 17, 62, 15414, 28, 1662, 26498, 13, 296, 270, 62, 83, 17, 62, 15414, 11, 4174, 62, 6551, 278, 28, 1662, 26498, 13, 296, 270, 62, 6551, 278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 14402, 1366, 6082, 25, 554, 2704, 25, 4064, 13, 17, 69, 532, 8504, 12, 259, 2704, 25, 4064, 13, 17, 69, 6, 4064, 357, 3064, 9, 37659, 13, 32604, 7, 9288, 13, 80, 62, 1416, 2850, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1802, 9, 37659, 13, 32604, 7, 16, 12, 9288, 13, 80, 62, 1416, 2850, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10934, 262, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 25954, 262, 3127, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 796, 4512, 13, 26675, 62, 43775, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 4806, 11199, 341, 62, 18474, 7, 1891, 15992, 28, 22046, 13, 1891, 15992, 11, 300, 81, 28, 22046, 13, 14050, 11, 779, 62, 83, 16, 62, 15414, 28, 1662, 26498, 13, 296, 270, 62, 83, 16, 62, 15414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 83, 17, 62, 15414, 28, 1662, 26498, 13, 296, 270, 62, 83, 17, 62, 15414, 11, 19590, 28, 43775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 24597, 5077, 19590, 329, 2994, 2163, 25, 4064, 82, 6, 4064, 357, 43775, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16835, 262, 20881, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 22851, 3047, 286, 262, 20881, 3127, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 21997, 796, 4808, 27432, 62, 21412, 7, 3262, 11, 4512, 11, 1188, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 44154, 3127, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 9288, 62, 21412, 7, 2213, 10613, 11, 2010, 11, 1188, 611, 26498, 13, 69, 10119, 318, 407, 6045, 2073, 1332, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20731, 13, 33295, 26933, 22468, 7, 2213, 10613, 13, 6404, 2004, 62, 4164, 10466, 17816, 9288, 14, 6, 1343, 285, 4083, 36166, 28955, 329, 285, 287, 31243, 49, 19505, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12793, 262, 2457, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 50, 2703, 2457, 2746, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7753, 7, 2213, 10613, 13, 9122, 4122, 62, 47423, 13, 13466, 62, 19849, 62, 6978, 11, 28686, 13, 6978, 13, 22179, 7, 2213, 10613, 13, 6404, 62, 15908, 11, 39852, 3955, 1847, 62, 34, 42, 11571, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5985, 510, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 34, 25909, 510, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 27773, 62, 929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 10786, 26224, 532, 81, 705, 1343, 28686, 13, 6978, 13, 22179, 7, 2213, 10613, 13, 6404, 62, 15908, 11, 705, 9122, 13033, 6, 4008, 628, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6358, 2457, 2854, 2482, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20731, 796, 45941, 13, 292, 18747, 7, 4164, 10466, 8, 198, 220, 220, 220, 20731, 62, 615, 70, 796, 45941, 13, 32604, 7, 4164, 10466, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 3601, 62, 8310, 76, 10786, 19006, 2854, 989, 25, 11537, 198, 220, 220, 220, 3601, 62, 8310, 76, 10786, 4770, 2559, 28, 11537, 198, 220, 220, 220, 329, 1312, 11, 285, 287, 27056, 378, 7, 47123, 49, 19505, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8310, 76, 10786, 220, 220, 220, 4064, 82, 25, 4064, 69, 6, 4064, 357, 76, 11, 20731, 62, 615, 70, 58, 72, 60, 4008, 198 ]
2.225868
3,657
print("-----------------rule_1------------------")
[ 4798, 7203, 1783, 12, 25135, 62, 16, 1783, 438, 4943, 198 ]
4.636364
11
from flask import Flask from flask import render_template app = Flask(__name__) @app.route('/hello/<name>') @app.route('/user/<username>', methods=['POST','GET']) @app.route('/test/<num>') if __name__ == '__main__': app.run()
[ 6738, 42903, 1330, 46947, 198, 6738, 42903, 1330, 8543, 62, 28243, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 628, 198, 31, 1324, 13, 38629, 10786, 14, 31373, 14, 27, 3672, 29, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 7220, 14, 27, 29460, 29, 3256, 5050, 28, 17816, 32782, 41707, 18851, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 9288, 14, 27, 22510, 29, 11537, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 3419, 198 ]
2.565217
92
# (c) Copyright IBM Corp. 2021 # (c) Copyright Instana Inc. 2021 from instana.propagators.binary_propagator import BinaryPropagator from instana.span_context import SpanContext import unittest
[ 2, 357, 66, 8, 15069, 19764, 11421, 13, 33448, 198, 2, 357, 66, 8, 15069, 2262, 2271, 3457, 13, 33448, 198, 198, 6738, 916, 2271, 13, 22930, 363, 2024, 13, 39491, 62, 22930, 363, 1352, 1330, 45755, 24331, 363, 1352, 198, 6738, 916, 2271, 13, 12626, 62, 22866, 1330, 49101, 21947, 198, 11748, 555, 715, 395, 198 ]
3.403509
57
''' 实验名称:RGB灯带 版本:v1.0 日期:2019.7 作者:01Studio 说明:RGB灯带控制。 ''' from ws2812 import WS2812 from colors import * from machine import Pin import pyb #定义灯带连接引脚,Y11接口 LED = Pin('Y11',Pin.OUT,value=0) #构建RGB灯带对象,定义控制引脚和灯珠数量 strip = WS2812(spi_bus=LED, led_count=30) #灯带填色函数,灯珠数量为led_count #清空RGB灯带颜色 strip.show(fill_color(EMPTY)) while True: strip.show(fill_color(RED)) pyb.delay(1000) strip.show(fill_color(GREEN)) pyb.delay(1000) strip.show(fill_color(BLUE)) pyb.delay(1000)
[ 198, 7061, 6, 198, 22522, 252, 165, 103, 234, 28938, 235, 163, 100, 108, 171, 120, 248, 36982, 163, 223, 107, 30585, 99, 198, 48304, 17312, 105, 171, 120, 248, 85, 16, 13, 15, 198, 33768, 98, 17312, 253, 171, 120, 248, 23344, 13, 22, 198, 43291, 38519, 171, 120, 248, 486, 41501, 198, 46237, 112, 23626, 236, 171, 120, 248, 36982, 163, 223, 107, 30585, 99, 162, 236, 100, 26344, 114, 16764, 198, 7061, 6, 198, 198, 6738, 266, 82, 2078, 1065, 1330, 25290, 2078, 1065, 198, 6738, 7577, 1330, 1635, 198, 6738, 4572, 1330, 13727, 198, 11748, 12972, 65, 198, 198, 2, 22522, 248, 20046, 231, 163, 223, 107, 30585, 99, 32573, 252, 162, 236, 98, 28156, 243, 164, 226, 248, 171, 120, 234, 56, 1157, 162, 236, 98, 20998, 96, 198, 30465, 796, 13727, 10786, 56, 1157, 3256, 28348, 13, 12425, 11, 8367, 28, 15, 8, 198, 198, 2, 162, 252, 226, 161, 119, 118, 36982, 163, 223, 107, 30585, 99, 43380, 117, 164, 109, 94, 11, 22522, 248, 20046, 231, 162, 236, 100, 26344, 114, 28156, 243, 164, 226, 248, 161, 240, 234, 163, 223, 107, 163, 237, 254, 46763, 108, 34932, 237, 198, 36311, 796, 25290, 2078, 1065, 7, 2777, 72, 62, 10885, 28, 30465, 11, 2957, 62, 9127, 28, 1270, 8, 198, 198, 2, 163, 223, 107, 30585, 99, 161, 94, 104, 164, 231, 110, 49035, 121, 46763, 108, 11, 163, 223, 107, 163, 237, 254, 46763, 108, 34932, 237, 10310, 118, 992, 62, 9127, 198, 198, 2, 162, 116, 227, 163, 102, 118, 36982, 163, 223, 107, 30585, 99, 165, 95, 250, 164, 231, 110, 198, 36311, 13, 12860, 7, 20797, 62, 8043, 7, 39494, 9936, 4008, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 10283, 13, 12860, 7, 20797, 62, 8043, 7, 22083, 4008, 198, 220, 220, 220, 12972, 65, 13, 40850, 7, 12825, 8, 628, 220, 220, 220, 10283, 13, 12860, 7, 20797, 62, 8043, 7, 43016, 4008, 198, 220, 220, 220, 12972, 65, 13, 40850, 7, 12825, 8, 628, 220, 220, 220, 10283, 13, 12860, 7, 20797, 62, 8043, 7, 9148, 8924, 4008, 198, 220, 220, 220, 12972, 65, 13, 40850, 7, 12825, 8, 628 ]
1.371585
366
from __future__ import with_statement import unittest from cStringIO import StringIO from format import format from prettyprinter import * from bindings import bindings import printervars if __name__ == "__main__": unittest.main()
[ 6738, 11593, 37443, 834, 1330, 351, 62, 26090, 198, 11748, 555, 715, 395, 198, 6738, 269, 10100, 9399, 1330, 10903, 9399, 198, 6738, 5794, 1330, 5794, 198, 6738, 2495, 1050, 3849, 1330, 1635, 198, 6738, 34111, 1330, 34111, 198, 11748, 20632, 85, 945, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.575758
66
#!/usr/bin/python3 # requires system Python and the python3-apt package import textwrap from collections import OrderedDict # Starting with Python 3.7, we could just use vanilla dicts import apt # ImportError? apt install python3-apt HELP_INFO = """Top-level package manager This tool lists all packages that aren't marked auto, and have updates available. Press Q at any time to exit without touching your system; if you have no need to make changes, this script can be run without root privileges. Press Space to select or deselect a package for upgrade. Press 'I' on any package to see more info about it. Press 'A' to mark a package as automatically installed. Press 'R' to remove a package. Press 'Q' to go back, or to quit the program. """ def find_ultimate_dependency(cache, deps): """Find any one manually-installed package that ultimately caused at least one of the given deps to be installed. Returns "" if none found. """ depchain = {dep: dep for dep in deps} while depchain: newchain = {} for dep, path in depchain.items(): for parent in cache[dep]._pkg.rev_depends_list: if parent.dep_type_untranslated != "Depends": continue n = parent.parent_pkg.name if not cache[n].installed: continue if not cache[n].is_auto_installed: # Found one! return path + " --> " + n newchain[n] = path + " - " + n depchain = newchain return "" def show_packages(scr, cache, upgrades, auto): """Returns True after making cache changes, or False to ignore and do nothing""" desc = [describe(pkg) for pkg in upgrades] widths = OrderedDict((x, len(x)) for x in desc[0]) # Start with header widths for d in desc: for col in d: widths[col] = max(widths[col], len(d[col])) fmt = "[%s] " + " ".join("%%-%ds" % col for col in widths.values()) # print(fmt % ("*", *widths), curses.A_BOLD) # Python 3.5+ print(fmt % (("*",) + tuple(widths)), curses.A_BOLD) print("--- " + " ".join("-" * col for col in widths.values())) # TODO: Also adjust for insufficient width? Currently will quietly # truncate lines at the available width, which isn't bad if it's # just a character or two, but could be wasteful with long pkgnames. pkg = 0 actions = [" "] * len(upgrades) lastheight = None popup = None nonautodeps = [] while True: height, width = scr.getmaxyx() # Also used by make_popup() if height != lastheight: # Note that a resize event is sent through as a pseudo-key, so # this will trigger immediately, without waiting for the next # actual key. lastheight, lastpage = height, None scr.setscrreg(0, height - 1) perpage = min(height - 8, len(upgrades)) scr.move(perpage + 2, 0) scr.clrtobot() print() if auto: print("Plus %d auto-installed packages." % auto) print("Select packages to upgrade, then Enter to apply.") print("Press ? for help, or Q to quit without making any changes") pagestart = pkg - pkg % perpage if pagestart != lastpage: lastpage = pagestart # Update (only if the page has changed) for i, d in enumerate(desc[pagestart : pagestart + perpage]): scr.addstr(i + 2, 0, fmt % ((actions[pagestart + i],) + tuple(d.values()))) # Erase any spare space, including the mandatory blank at the end for i in range(i + 1, perpage + 1): # Is this the best way to clear a line?? scr.move(i + 2, 0) scr.clrtoeol() scr.setscrreg(2, perpage + 4) scr.move((pkg % perpage) + 2, 1) key = scr.getkey() if popup: # Restricted key handling when a popup is open if key in "Aa" and nonautodeps: for i, p in enumerate(upgrades): if p in nonautodeps: toggle(i, "A") if key in "?QqIiAa": popup = None nonautodeps = [] scr.touchwin() scr.refresh() curses.curs_set(2) continue if key == "Q" or key == "q": return False if key == "\n": break if key == "KEY_UP": pkg = (pkg - 1) % len(upgrades) if key == "KEY_DOWN": pkg = (pkg + 1) % len(upgrades) if key == "KEY_PPAGE": pkg = 0 if pkg < perpage else pkg - perpage if key == "KEY_NPAGE": pkg = len(upgrades) - 1 if pkg >= len(upgrades) - perpage else pkg + perpage if key == "KEY_MOUSE": TODO = curses.getmouse() if key == " ": toggle(pkg, "I") if key in "Aa": toggle(pkg, "A") if key in "Rr": toggle(pkg, "R") if key == "?": make_popup(HELP_INFO.split("\n")) if key == "I" or key == "i": # TODO: Show a new window with package info # Show the from and to versions, optionally the changelog, # and ideally, the list of other packages that would be # upgraded along with this one (its out-of-date deps). # Note: get_changelog() appears to be broken. No idea why. # Neither the default URI nor the hand-checked one below # work; not sure if it's failing to download or failing to # parse afterwards, but it gets no useful info. # http://packages.debian.org/changelogs/pool/%(src_section)s/%(prefix)s/%(src_pkg)s/%(src_pkg)s_%(src_ver)s/changelog # http://metadata.ftp-master.debian.org/changelogs/%(src_section)s/%(prefix)s/%(src_pkg)s/%(src_pkg)s_%(src_ver)s_changelog sel = upgrades[pkg] info = ["Upgrading %s from %s to %s" % (sel.fullname, sel.installed.version, sel.candidate.version), ""] for line in sel.candidate.description.split("\n"): info.extend(textwrap.fill(line, width - 6).split("\n")) try: sel.mark_upgrade() except apt.package.apt_pkg.Error as e: info.append("Unable to upgrade this package:") info.append(e.args[0]) # Should I recognize packages by equality, identity, or name? changes = [p for p in cache.get_changes() if p != sel] if changes: info.append("") info.append("Additional packages to upgrade:") nonautodeps = [] for p in changes: if p.installed == p.candidate: continue # For some reason, it sometimes marks "changes" that aren't changes at all. info.append("* %s from %s to %s" % ( p.fullname, p.installed.version if p.installed else "(none)", p.candidate.version, )) if not p.is_auto_installed: info[-1] = (info[-1], curses.A_BOLD) nonautodeps.append(p) if nonautodeps: info.append("") info.append(("%d dependencies were not auto-installed." % len(nonautodeps), curses.A_BOLD)) info.append(("Press 'A' to mark those deps as auto.", curses.A_BOLD)) # TODO: Disambiguate "A to mark my deps auto" from "A to mark me auto"? cache.clear() make_popup(info) if key in "Ww": # Similar info to "aptitude why". # Mark this package auto, mark it for deletion. See what needs to be # deleted. Filter to only those which are not auto. List those as the # deps of this package. # 1) Find out why this package was installed # 2) If this is a hard dep of a non-auto package (or of an auto package # that is a hard dep of a non-auto package), this can be marked auto. # 3) If this is a Recommends/Suggests only, say which package. p = upgrades[pkg]._pkg # Is there a non-private way to find the underlying package? deps, recs, sugs = {}, {}, {} for dep in p.rev_depends_list: # Note: Using get_fullname() would be better than name, but it doesn't work on older apts n = dep.parent_pkg.name inst = cache[n] if not inst.installed: continue type = dep.dep_type_untranslated if type == "Depends": # Hard dependency. Definite reason to install something # TODO: Keep the most interesting, not the last seen, version? deps[n] = dep.parent_ver elif type == "Recommends": # Soft dependency. If there are no hard deps, then this would be # why the package was installed, but it shouldn't be marked auto. recs[n] = dep.parent_ver elif type == "Suggests": # Even softer dependency. As with Recommends but even more so. # A "Suggests" dep won't be shown unless there are no Deps *or* # Recs. sugs[n] = dep.parent_ver info = ["Why was %s installed?" % upgrades[pkg].name, ""] if deps: info.append("Depended on by:") elif recs: info.append("Recommended by:") elif sugs: info.append("Suggested by:") else: info.append("Presumably manual installation") # No deps. got_nonauto = False for dep in deps or recs or sugs: # Pick the highest-priority category only if not cache[dep].is_auto_installed: info.append(("* " + dep, curses.A_BOLD)) got_nonauto = True else: info.append("* " + dep) if deps and not got_nonauto: # Trace the chain of deps and find something, anything, that # was manually installed. Keep going till we get somewhere or # run out of dependencies to look at. cause = find_ultimate_dependency(cache, deps) if cause: info.extend(["", "Installed because:", cause]) else: info.extend(["", "No ultimate installation cause found - everything's autoinstalled."]) make_popup(info) # scr.addstr(height - 2, 0, repr(key)); scr.clrtoeol() changes = False if "R" in actions: # Don't bother running through the packages (slow) if we aren't removing any already_auto_removable = {pkg.fullname for pkg in cache if pkg.is_auto_removable} for pkg, ac in zip(upgrades, actions): if ac != " ": changes = True if ac == "I": pkg.mark_upgrade() elif ac == "A": pkg.mark_auto() elif ac == "R": pkg.mark_delete(purge=True) if "R" in actions: # Remove should be equiv of "apt --purge autoremove pkgname" but # doesn't remove anything that was already autoremovable for pkg in cache: if pkg.is_auto_removable and pkg.fullname not in already_auto_removable: pkg.mark_delete(purge=True) return changes if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 2, 4433, 1080, 11361, 290, 262, 21015, 18, 12, 2373, 5301, 198, 11748, 2420, 37150, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 1303, 17962, 351, 11361, 513, 13, 22, 11, 356, 714, 655, 779, 16858, 8633, 82, 198, 11748, 15409, 1303, 17267, 12331, 30, 15409, 2721, 21015, 18, 12, 2373, 198, 198, 39, 3698, 47, 62, 10778, 796, 37227, 9126, 12, 5715, 5301, 4706, 198, 198, 1212, 2891, 8341, 477, 10392, 326, 3588, 470, 7498, 8295, 11, 290, 423, 5992, 198, 15182, 13, 4332, 1195, 379, 597, 640, 284, 8420, 1231, 15241, 534, 1080, 26, 198, 361, 345, 423, 645, 761, 284, 787, 2458, 11, 428, 4226, 460, 307, 1057, 1231, 198, 15763, 18850, 13, 198, 198, 13800, 4687, 284, 2922, 393, 748, 9509, 257, 5301, 329, 8515, 13, 198, 13800, 705, 40, 6, 319, 597, 5301, 284, 766, 517, 7508, 546, 340, 13, 198, 13800, 705, 32, 6, 284, 1317, 257, 5301, 355, 6338, 6589, 13, 198, 13800, 705, 49, 6, 284, 4781, 257, 5301, 13, 198, 13800, 705, 48, 6, 284, 467, 736, 11, 393, 284, 11238, 262, 1430, 13, 198, 37811, 198, 198, 4299, 1064, 62, 44818, 62, 45841, 1387, 7, 23870, 11, 390, 862, 2599, 198, 197, 37811, 16742, 597, 530, 14500, 12, 37050, 5301, 326, 6165, 4073, 379, 198, 197, 293, 459, 530, 286, 262, 1813, 390, 862, 284, 307, 6589, 13, 16409, 13538, 611, 4844, 1043, 13, 198, 197, 37811, 198, 197, 10378, 7983, 796, 1391, 10378, 25, 1207, 329, 1207, 287, 390, 862, 92, 198, 197, 4514, 1207, 7983, 25, 198, 197, 197, 3605, 7983, 796, 23884, 198, 197, 197, 1640, 1207, 11, 3108, 287, 1207, 7983, 13, 23814, 33529, 198, 197, 197, 197, 1640, 2560, 287, 12940, 58, 10378, 4083, 62, 35339, 13, 18218, 62, 10378, 2412, 62, 4868, 25, 198, 197, 197, 197, 197, 361, 2560, 13, 10378, 62, 4906, 62, 403, 7645, 17249, 14512, 366, 12156, 2412, 1298, 2555, 198, 197, 197, 197, 197, 77, 796, 2560, 13, 8000, 62, 35339, 13, 3672, 198, 197, 197, 197, 197, 361, 407, 12940, 58, 77, 4083, 37050, 25, 2555, 198, 197, 197, 197, 197, 361, 407, 12940, 58, 77, 4083, 271, 62, 23736, 62, 37050, 25, 198, 197, 197, 197, 197, 197, 2, 4062, 530, 0, 198, 197, 197, 197, 197, 197, 7783, 3108, 1343, 366, 14610, 366, 1343, 299, 198, 197, 197, 197, 197, 3605, 7983, 58, 77, 60, 796, 3108, 1343, 366, 532, 366, 1343, 299, 198, 197, 197, 10378, 7983, 796, 649, 7983, 198, 197, 7783, 13538, 198, 198, 4299, 905, 62, 43789, 7, 1416, 81, 11, 12940, 11, 16608, 11, 8295, 2599, 198, 197, 37811, 35561, 6407, 706, 1642, 12940, 2458, 11, 393, 10352, 284, 8856, 290, 466, 2147, 37811, 198, 197, 20147, 796, 685, 20147, 4892, 7, 35339, 8, 329, 279, 10025, 287, 16608, 60, 198, 197, 10394, 82, 796, 14230, 1068, 35, 713, 19510, 87, 11, 18896, 7, 87, 4008, 329, 2124, 287, 1715, 58, 15, 12962, 1303, 7253, 351, 13639, 9647, 82, 198, 197, 1640, 288, 287, 1715, 25, 198, 197, 197, 1640, 951, 287, 288, 25, 198, 197, 197, 197, 10394, 82, 58, 4033, 60, 796, 3509, 7, 10394, 82, 58, 4033, 4357, 18896, 7, 67, 58, 4033, 60, 4008, 198, 197, 69, 16762, 796, 12878, 4, 82, 60, 366, 1343, 366, 220, 27071, 22179, 7203, 16626, 12, 4, 9310, 1, 4064, 951, 329, 951, 287, 9647, 82, 13, 27160, 28955, 198, 197, 2, 3601, 7, 69, 16762, 4064, 5855, 9, 1600, 1635, 10394, 82, 828, 43878, 13, 32, 62, 33, 15173, 8, 1303, 11361, 513, 13, 20, 10, 198, 197, 4798, 7, 69, 16762, 4064, 357, 7203, 9, 1600, 8, 1343, 46545, 7, 10394, 82, 36911, 43878, 13, 32, 62, 33, 15173, 8, 198, 197, 4798, 7203, 6329, 366, 1343, 366, 220, 27071, 22179, 7203, 21215, 1635, 951, 329, 951, 287, 9647, 82, 13, 27160, 3419, 4008, 198, 197, 2, 16926, 46, 25, 4418, 4532, 329, 19022, 9647, 30, 16888, 481, 12703, 198, 197, 2, 40122, 378, 3951, 379, 262, 1695, 9647, 11, 543, 2125, 470, 2089, 611, 340, 338, 198, 197, 2, 655, 257, 2095, 393, 734, 11, 475, 714, 307, 45393, 351, 890, 279, 74, 4593, 1047, 13, 198, 197, 35339, 796, 657, 198, 197, 4658, 796, 14631, 366, 60, 1635, 18896, 7, 929, 31177, 8, 198, 197, 12957, 17015, 796, 6045, 198, 197, 12924, 929, 796, 6045, 198, 197, 13159, 2306, 375, 25386, 796, 17635, 198, 197, 4514, 6407, 25, 198, 197, 197, 17015, 11, 9647, 796, 6040, 13, 1136, 76, 6969, 87, 3419, 1303, 4418, 973, 416, 787, 62, 12924, 929, 3419, 198, 197, 197, 361, 6001, 14512, 938, 17015, 25, 198, 197, 197, 197, 2, 5740, 326, 257, 47558, 1785, 318, 1908, 832, 355, 257, 24543, 12, 2539, 11, 523, 198, 197, 197, 197, 2, 428, 481, 7616, 3393, 11, 1231, 4953, 329, 262, 1306, 198, 197, 197, 197, 2, 4036, 1994, 13, 198, 197, 197, 197, 12957, 17015, 11, 938, 7700, 796, 6001, 11, 6045, 198, 197, 197, 197, 1416, 81, 13, 28709, 6098, 2301, 7, 15, 11, 6001, 532, 352, 8, 198, 197, 197, 197, 525, 7700, 796, 949, 7, 17015, 532, 807, 11, 18896, 7, 929, 31177, 4008, 198, 197, 197, 197, 1416, 81, 13, 21084, 7, 525, 7700, 1343, 362, 11, 657, 8, 198, 197, 197, 197, 1416, 81, 13, 565, 17034, 672, 313, 3419, 198, 197, 197, 197, 4798, 3419, 198, 197, 197, 197, 361, 8295, 25, 3601, 7203, 17860, 4064, 67, 8295, 12, 37050, 10392, 526, 4064, 8295, 8, 198, 197, 197, 197, 4798, 7203, 17563, 10392, 284, 8515, 11, 788, 6062, 284, 4174, 19570, 198, 197, 197, 197, 4798, 7203, 13800, 5633, 329, 1037, 11, 393, 1195, 284, 11238, 1231, 1642, 597, 2458, 4943, 198, 197, 197, 79, 363, 395, 433, 796, 279, 10025, 532, 279, 10025, 4064, 583, 7700, 198, 197, 197, 361, 42208, 395, 433, 14512, 938, 7700, 25, 198, 197, 197, 197, 12957, 7700, 796, 42208, 395, 433, 198, 197, 197, 197, 2, 10133, 357, 8807, 611, 262, 2443, 468, 3421, 8, 198, 197, 197, 197, 1640, 1312, 11, 288, 287, 27056, 378, 7, 20147, 58, 79, 363, 395, 433, 1058, 42208, 395, 433, 1343, 583, 7700, 60, 2599, 198, 197, 197, 197, 197, 1416, 81, 13, 2860, 2536, 7, 72, 1343, 362, 11, 657, 11, 46996, 4064, 14808, 4658, 58, 79, 363, 395, 433, 1343, 1312, 4357, 8, 1343, 46545, 7, 67, 13, 27160, 3419, 22305, 198, 197, 197, 197, 2, 5256, 589, 597, 13952, 2272, 11, 1390, 262, 13677, 9178, 379, 262, 886, 198, 197, 197, 197, 1640, 1312, 287, 2837, 7, 72, 1343, 352, 11, 583, 7700, 1343, 352, 2599, 198, 197, 197, 197, 197, 2, 1148, 428, 262, 1266, 835, 284, 1598, 257, 1627, 3548, 198, 197, 197, 197, 197, 1416, 81, 13, 21084, 7, 72, 1343, 362, 11, 657, 8, 198, 197, 197, 197, 197, 1416, 81, 13, 565, 81, 44579, 349, 3419, 198, 197, 197, 197, 1416, 81, 13, 28709, 6098, 2301, 7, 17, 11, 583, 7700, 1343, 604, 8, 628, 197, 197, 1416, 81, 13, 21084, 19510, 35339, 4064, 583, 7700, 8, 1343, 362, 11, 352, 8, 198, 197, 197, 2539, 796, 6040, 13, 1136, 2539, 3419, 198, 197, 197, 361, 46207, 25, 198, 197, 197, 197, 2, 8324, 20941, 1994, 9041, 618, 257, 46207, 318, 1280, 198, 197, 197, 197, 361, 1994, 287, 366, 32, 64, 1, 290, 1729, 2306, 375, 25386, 25, 198, 197, 197, 197, 197, 1640, 1312, 11, 279, 287, 27056, 378, 7, 929, 31177, 2599, 198, 197, 197, 197, 197, 197, 361, 279, 287, 1729, 2306, 375, 25386, 25, 198, 197, 197, 197, 197, 197, 197, 44256, 7, 72, 11, 366, 32, 4943, 198, 197, 197, 197, 361, 1994, 287, 366, 30, 48, 80, 40, 72, 32, 64, 1298, 198, 197, 197, 197, 197, 12924, 929, 796, 6045, 198, 197, 197, 197, 197, 13159, 2306, 375, 25386, 796, 17635, 198, 197, 197, 197, 197, 1416, 81, 13, 29332, 5404, 3419, 198, 197, 197, 197, 197, 1416, 81, 13, 5420, 3447, 3419, 198, 197, 197, 197, 197, 66, 46998, 13, 66, 1834, 62, 2617, 7, 17, 8, 198, 197, 197, 197, 43043, 198, 197, 197, 361, 1994, 6624, 366, 48, 1, 393, 1994, 6624, 366, 80, 1298, 1441, 10352, 198, 197, 197, 361, 1994, 6624, 37082, 77, 1298, 2270, 198, 197, 197, 361, 1994, 6624, 366, 20373, 62, 8577, 1298, 220, 220, 279, 10025, 796, 357, 35339, 532, 352, 8, 4064, 18896, 7, 929, 31177, 8, 198, 197, 197, 361, 1994, 6624, 366, 20373, 62, 41925, 1298, 279, 10025, 796, 357, 35339, 1343, 352, 8, 4064, 18896, 7, 929, 31177, 8, 198, 197, 197, 361, 1994, 6624, 366, 20373, 62, 47, 4537, 8264, 1298, 279, 10025, 796, 657, 611, 279, 10025, 1279, 583, 7700, 2073, 279, 10025, 532, 583, 7700, 198, 197, 197, 361, 1994, 6624, 366, 20373, 62, 45, 4537, 8264, 1298, 279, 10025, 796, 18896, 7, 929, 31177, 8, 532, 352, 611, 279, 10025, 18189, 18896, 7, 929, 31177, 8, 532, 583, 7700, 2073, 279, 10025, 1343, 583, 7700, 198, 197, 197, 361, 1994, 6624, 366, 20373, 62, 44, 2606, 5188, 1298, 16926, 46, 796, 43878, 13, 1136, 35888, 3419, 198, 197, 197, 361, 1994, 6624, 366, 366, 25, 19846, 7, 35339, 11, 366, 40, 4943, 198, 197, 197, 361, 1994, 287, 366, 32, 64, 1298, 19846, 7, 35339, 11, 366, 32, 4943, 198, 197, 197, 361, 1994, 287, 366, 49, 81, 1298, 19846, 7, 35339, 11, 366, 49, 4943, 198, 197, 197, 361, 1994, 6624, 366, 30, 1298, 198, 197, 197, 197, 15883, 62, 12924, 929, 7, 39, 3698, 47, 62, 10778, 13, 35312, 7203, 59, 77, 48774, 198, 197, 197, 361, 1994, 6624, 366, 40, 1, 393, 1994, 6624, 366, 72, 1298, 198, 197, 197, 197, 2, 16926, 46, 25, 5438, 257, 649, 4324, 351, 5301, 7508, 198, 197, 197, 197, 2, 5438, 262, 422, 290, 284, 6300, 11, 42976, 262, 1488, 417, 519, 11, 198, 197, 197, 197, 2, 290, 30274, 11, 262, 1351, 286, 584, 10392, 326, 561, 307, 198, 197, 197, 197, 2, 17955, 1863, 351, 428, 530, 357, 896, 503, 12, 1659, 12, 4475, 390, 862, 737, 628, 197, 197, 197, 2, 5740, 25, 651, 62, 354, 8368, 519, 3419, 3568, 284, 307, 5445, 13, 1400, 2126, 1521, 13, 198, 197, 197, 197, 2, 16126, 262, 4277, 43975, 4249, 262, 1021, 12, 26752, 530, 2174, 198, 197, 197, 197, 2, 670, 26, 407, 1654, 611, 340, 338, 9894, 284, 4321, 393, 9894, 284, 198, 197, 197, 197, 2, 21136, 12979, 11, 475, 340, 3011, 645, 4465, 7508, 13, 198, 197, 197, 197, 2, 2638, 1378, 43789, 13, 24689, 13, 2398, 14, 354, 8368, 18463, 14, 7742, 14, 4, 7, 10677, 62, 5458, 8, 82, 14, 4, 7, 40290, 8, 82, 14, 4, 7, 10677, 62, 35339, 8, 82, 14, 4, 7, 10677, 62, 35339, 8, 82, 62, 4, 7, 10677, 62, 332, 8, 82, 14, 354, 8368, 519, 198, 197, 197, 197, 2, 2638, 1378, 38993, 13, 701, 79, 12, 9866, 13, 24689, 13, 2398, 14, 354, 8368, 18463, 14, 4, 7, 10677, 62, 5458, 8, 82, 14, 4, 7, 40290, 8, 82, 14, 4, 7, 10677, 62, 35339, 8, 82, 14, 4, 7, 10677, 62, 35339, 8, 82, 62, 4, 7, 10677, 62, 332, 8, 82, 62, 354, 8368, 519, 628, 197, 197, 197, 741, 796, 16608, 58, 35339, 60, 198, 197, 197, 197, 10951, 796, 14631, 4933, 29247, 4064, 82, 422, 4064, 82, 284, 4064, 82, 1, 4064, 357, 741, 13, 12853, 3672, 11, 384, 75, 13, 37050, 13, 9641, 11, 384, 75, 13, 46188, 20540, 13, 9641, 828, 366, 8973, 198, 197, 197, 197, 1640, 1627, 287, 384, 75, 13, 46188, 20540, 13, 11213, 13, 35312, 7203, 59, 77, 1, 2599, 198, 197, 197, 197, 197, 10951, 13, 2302, 437, 7, 5239, 37150, 13, 20797, 7, 1370, 11, 9647, 532, 718, 737, 35312, 7203, 59, 77, 48774, 198, 197, 197, 197, 28311, 25, 384, 75, 13, 4102, 62, 929, 9526, 3419, 198, 197, 197, 197, 16341, 15409, 13, 26495, 13, 2373, 62, 35339, 13, 12331, 355, 304, 25, 198, 197, 197, 197, 197, 10951, 13, 33295, 7203, 3118, 540, 284, 8515, 428, 5301, 25, 4943, 198, 197, 197, 197, 197, 10951, 13, 33295, 7, 68, 13, 22046, 58, 15, 12962, 198, 197, 197, 197, 2, 10358, 314, 7564, 10392, 416, 10537, 11, 5369, 11, 393, 1438, 30, 198, 197, 197, 197, 36653, 796, 685, 79, 329, 279, 287, 12940, 13, 1136, 62, 36653, 3419, 611, 279, 14512, 384, 75, 60, 198, 197, 197, 197, 361, 2458, 25, 198, 197, 197, 197, 197, 10951, 13, 33295, 7203, 4943, 198, 197, 197, 197, 197, 10951, 13, 33295, 7203, 17699, 10392, 284, 8515, 25, 4943, 198, 197, 197, 197, 197, 13159, 2306, 375, 25386, 796, 17635, 198, 197, 197, 197, 197, 1640, 279, 287, 2458, 25, 198, 197, 197, 197, 197, 197, 361, 279, 13, 37050, 6624, 279, 13, 46188, 20540, 25, 2555, 1303, 1114, 617, 1738, 11, 340, 3360, 8849, 366, 36653, 1, 326, 3588, 470, 2458, 379, 477, 13, 198, 197, 197, 197, 197, 197, 10951, 13, 33295, 7203, 9, 4064, 82, 422, 4064, 82, 284, 4064, 82, 1, 4064, 357, 198, 197, 197, 197, 197, 197, 197, 79, 13, 12853, 3672, 11, 198, 197, 197, 197, 197, 197, 197, 79, 13, 37050, 13, 9641, 611, 279, 13, 37050, 2073, 30629, 23108, 42501, 198, 197, 197, 197, 197, 197, 197, 79, 13, 46188, 20540, 13, 9641, 11, 198, 197, 197, 197, 197, 197, 4008, 198, 197, 197, 197, 197, 197, 361, 407, 279, 13, 271, 62, 23736, 62, 37050, 25, 198, 197, 197, 197, 197, 197, 197, 10951, 58, 12, 16, 60, 796, 357, 10951, 58, 12, 16, 4357, 43878, 13, 32, 62, 33, 15173, 8, 198, 197, 197, 197, 197, 197, 197, 13159, 2306, 375, 25386, 13, 33295, 7, 79, 8, 198, 197, 197, 197, 197, 361, 1729, 2306, 375, 25386, 25, 198, 197, 197, 197, 197, 197, 10951, 13, 33295, 7203, 4943, 198, 197, 197, 197, 197, 197, 10951, 13, 33295, 7, 7203, 4, 67, 20086, 547, 407, 8295, 12, 37050, 526, 4064, 18896, 7, 13159, 2306, 375, 25386, 828, 43878, 13, 32, 62, 33, 15173, 4008, 198, 197, 197, 197, 197, 197, 10951, 13, 33295, 7, 7203, 13800, 705, 32, 6, 284, 1317, 883, 390, 862, 355, 8295, 33283, 43878, 13, 32, 62, 33, 15173, 4008, 198, 197, 197, 197, 2, 16926, 46, 25, 3167, 4131, 328, 4985, 366, 32, 284, 1317, 616, 390, 862, 8295, 1, 422, 366, 32, 284, 1317, 502, 8295, 13984, 198, 197, 197, 197, 23870, 13, 20063, 3419, 198, 197, 197, 197, 15883, 62, 12924, 929, 7, 10951, 8, 198, 197, 197, 361, 1994, 287, 366, 54, 86, 1298, 198, 197, 197, 197, 2, 11014, 7508, 284, 366, 2373, 3984, 1521, 1911, 198, 197, 197, 197, 2, 2940, 428, 5301, 8295, 11, 1317, 340, 329, 39948, 13, 4091, 644, 2476, 284, 307, 198, 197, 197, 197, 2, 13140, 13, 25853, 284, 691, 883, 543, 389, 407, 8295, 13, 7343, 883, 355, 262, 198, 197, 197, 197, 2, 390, 862, 286, 428, 5301, 13, 198, 197, 197, 197, 2, 352, 8, 9938, 503, 1521, 428, 5301, 373, 6589, 198, 197, 197, 197, 2, 362, 8, 1002, 428, 318, 257, 1327, 1207, 286, 257, 1729, 12, 23736, 5301, 357, 273, 286, 281, 8295, 5301, 198, 197, 197, 197, 2, 220, 220, 220, 326, 318, 257, 1327, 1207, 286, 257, 1729, 12, 23736, 5301, 828, 428, 460, 307, 7498, 8295, 13, 198, 197, 197, 197, 2, 513, 8, 1002, 428, 318, 257, 19237, 2412, 14, 43857, 82, 691, 11, 910, 543, 5301, 13, 198, 197, 197, 197, 79, 796, 16608, 58, 35339, 4083, 62, 35339, 1303, 1148, 612, 257, 1729, 12, 19734, 835, 284, 1064, 262, 10238, 5301, 30, 198, 197, 197, 197, 10378, 82, 11, 664, 82, 11, 424, 14542, 796, 1391, 5512, 1391, 5512, 23884, 198, 197, 197, 197, 1640, 1207, 287, 279, 13, 18218, 62, 10378, 2412, 62, 4868, 25, 198, 197, 197, 197, 197, 2, 5740, 25, 8554, 651, 62, 12853, 3672, 3419, 561, 307, 1365, 621, 1438, 11, 475, 340, 1595, 470, 670, 319, 4697, 15409, 82, 198, 197, 197, 197, 197, 77, 796, 1207, 13, 8000, 62, 35339, 13, 3672, 198, 197, 197, 197, 197, 8625, 796, 12940, 58, 77, 60, 198, 197, 197, 197, 197, 361, 407, 916, 13, 37050, 25, 2555, 198, 197, 197, 197, 197, 4906, 796, 1207, 13, 10378, 62, 4906, 62, 403, 7645, 17249, 198, 197, 197, 197, 197, 361, 2099, 6624, 366, 12156, 2412, 1298, 198, 197, 197, 197, 197, 197, 2, 6912, 20203, 13, 2896, 9504, 1738, 284, 2721, 1223, 198, 197, 197, 197, 197, 197, 2, 16926, 46, 25, 9175, 262, 749, 3499, 11, 407, 262, 938, 1775, 11, 2196, 30, 198, 197, 197, 197, 197, 197, 10378, 82, 58, 77, 60, 796, 1207, 13, 8000, 62, 332, 198, 197, 197, 197, 197, 417, 361, 2099, 6624, 366, 24898, 2412, 1298, 198, 197, 197, 197, 197, 197, 2, 8297, 20203, 13, 1002, 612, 389, 645, 1327, 390, 862, 11, 788, 428, 561, 307, 198, 197, 197, 197, 197, 197, 2, 1521, 262, 5301, 373, 6589, 11, 475, 340, 6584, 470, 307, 7498, 8295, 13, 198, 197, 197, 197, 197, 197, 260, 6359, 58, 77, 60, 796, 1207, 13, 8000, 62, 332, 198, 197, 197, 197, 197, 417, 361, 2099, 6624, 366, 43857, 82, 1298, 198, 197, 197, 197, 197, 197, 2, 3412, 32359, 20203, 13, 1081, 351, 19237, 2412, 475, 772, 517, 523, 13, 198, 197, 197, 197, 197, 197, 2, 317, 366, 43857, 82, 1, 1207, 1839, 470, 307, 3402, 4556, 612, 389, 645, 2129, 82, 1635, 273, 9, 198, 197, 197, 197, 197, 197, 2, 3311, 82, 13, 198, 197, 197, 197, 197, 197, 82, 10339, 58, 77, 60, 796, 1207, 13, 8000, 62, 332, 198, 197, 197, 197, 10951, 796, 14631, 5195, 373, 4064, 82, 6589, 1701, 4064, 16608, 58, 35339, 4083, 3672, 11, 366, 8973, 198, 197, 197, 197, 361, 390, 862, 25, 7508, 13, 33295, 7203, 12156, 1631, 319, 416, 25, 4943, 198, 197, 197, 197, 417, 361, 664, 82, 25, 7508, 13, 33295, 7203, 36171, 416, 25, 4943, 198, 197, 197, 197, 417, 361, 424, 14542, 25, 7508, 13, 33295, 7203, 43857, 276, 416, 25, 4943, 198, 197, 197, 197, 17772, 25, 7508, 13, 33295, 7203, 25460, 31303, 10107, 9988, 4943, 1303, 1400, 390, 862, 13, 198, 197, 197, 197, 23442, 62, 13159, 23736, 796, 10352, 198, 197, 197, 197, 1640, 1207, 287, 390, 862, 393, 664, 82, 393, 424, 14542, 25, 1303, 12346, 262, 4511, 12, 49336, 6536, 691, 198, 197, 197, 197, 197, 361, 407, 12940, 58, 10378, 4083, 271, 62, 23736, 62, 37050, 25, 198, 197, 197, 197, 197, 197, 10951, 13, 33295, 7, 7203, 9, 366, 1343, 1207, 11, 43878, 13, 32, 62, 33, 15173, 4008, 198, 197, 197, 197, 197, 197, 23442, 62, 13159, 23736, 796, 6407, 198, 197, 197, 197, 197, 17772, 25, 7508, 13, 33295, 7203, 9, 366, 1343, 1207, 8, 198, 197, 197, 197, 361, 390, 862, 290, 407, 1392, 62, 13159, 23736, 25, 198, 197, 197, 197, 197, 2, 34912, 262, 6333, 286, 390, 862, 290, 1064, 1223, 11, 1997, 11, 326, 198, 197, 197, 197, 197, 2, 373, 14500, 6589, 13, 9175, 1016, 10597, 356, 651, 7382, 393, 198, 197, 197, 197, 197, 2, 1057, 503, 286, 20086, 284, 804, 379, 13, 198, 197, 197, 197, 197, 25587, 796, 1064, 62, 44818, 62, 45841, 1387, 7, 23870, 11, 390, 862, 8, 198, 197, 197, 197, 197, 361, 2728, 25, 7508, 13, 2302, 437, 7, 14692, 1600, 366, 6310, 4262, 780, 25, 1600, 2728, 12962, 198, 197, 197, 197, 197, 17772, 25, 7508, 13, 2302, 437, 7, 14692, 1600, 366, 2949, 8713, 9988, 2728, 1043, 532, 2279, 338, 8295, 37050, 526, 12962, 198, 197, 197, 197, 15883, 62, 12924, 929, 7, 10951, 8, 198, 197, 197, 2, 6040, 13, 2860, 2536, 7, 17015, 532, 362, 11, 657, 11, 41575, 7, 2539, 18125, 6040, 13, 565, 81, 44579, 349, 3419, 198, 197, 36653, 796, 10352, 198, 197, 361, 366, 49, 1, 287, 4028, 25, 198, 197, 197, 2, 2094, 470, 11393, 2491, 832, 262, 10392, 357, 38246, 8, 611, 356, 3588, 470, 10829, 597, 198, 197, 197, 282, 1493, 62, 23736, 62, 2787, 21985, 796, 1391, 35339, 13, 12853, 3672, 329, 279, 10025, 287, 12940, 611, 279, 10025, 13, 271, 62, 23736, 62, 2787, 21985, 92, 198, 197, 1640, 279, 10025, 11, 936, 287, 19974, 7, 929, 31177, 11, 4028, 2599, 198, 197, 197, 361, 936, 14512, 366, 366, 25, 2458, 796, 6407, 198, 197, 197, 361, 936, 6624, 366, 40, 1298, 279, 10025, 13, 4102, 62, 929, 9526, 3419, 198, 197, 197, 417, 361, 936, 6624, 366, 32, 1298, 279, 10025, 13, 4102, 62, 23736, 3419, 198, 197, 197, 417, 361, 936, 6624, 366, 49, 1298, 279, 10025, 13, 4102, 62, 33678, 7, 14225, 469, 28, 17821, 8, 198, 197, 361, 366, 49, 1, 287, 4028, 25, 198, 197, 197, 2, 17220, 815, 307, 1602, 452, 286, 366, 2373, 1377, 14225, 469, 1960, 382, 21084, 279, 10025, 3672, 1, 475, 198, 197, 197, 2, 1595, 470, 4781, 1997, 326, 373, 1541, 1960, 29625, 21985, 198, 197, 197, 1640, 279, 10025, 287, 12940, 25, 198, 197, 197, 197, 361, 279, 10025, 13, 271, 62, 23736, 62, 2787, 21985, 290, 279, 10025, 13, 12853, 3672, 407, 287, 1541, 62, 23736, 62, 2787, 21985, 25, 198, 197, 197, 197, 197, 35339, 13, 4102, 62, 33678, 7, 14225, 469, 28, 17821, 8, 198, 197, 7783, 2458, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 12417, 3419, 198 ]
2.644082
3,616
import csv import cv2 import numpy as np from keras.models import Sequential, load_model from keras.layers import Flatten, Dense, Lambda, Cropping2D, Dropout from keras.layers.convolutional import Conv2D from sklearn.model_selection import train_test_split from sklearn.utils import shuffle lines = [] path = 'C:/Users/609600403/Documents/ML/project/CarND-Behavioral-Cloning-P3-master/data/' # loading the image paths from csv lines = get_data(path) print(len(lines)) # Splitting train and validation ,used 20% of data for validation train_samples, validation_samples = train_test_split(lines, test_size=0.2) # Getting training and validation using generator function, used batch of 32 train_generator = generator(train_samples, path, batch_size=32) validation_generator = generator(validation_samples, path, batch_size=32) # getting model model = get_model() # when you are loading the model #model = load_model('model-4.h5') # training the model using generator model.fit_generator(train_generator, steps_per_epoch=4*len(train_samples),validation_data=validation_generator, validation_steps=len(validation_samples),epochs=1, verbose=1) # Saving the model model.save('model-5.h5')
[ 11748, 269, 21370, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 11, 3440, 62, 19849, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 1610, 41769, 11, 360, 1072, 11, 21114, 6814, 11, 9325, 2105, 17, 35, 11, 14258, 448, 198, 6738, 41927, 292, 13, 75, 6962, 13, 42946, 2122, 282, 1330, 34872, 17, 35, 198, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1341, 35720, 13, 26791, 1330, 36273, 628, 198, 6615, 796, 17635, 628, 198, 198, 6978, 796, 705, 34, 14079, 14490, 14, 1899, 4846, 405, 31552, 14, 38354, 14, 5805, 14, 16302, 14, 9914, 8575, 12, 25267, 15759, 282, 12, 2601, 12484, 12, 47, 18, 12, 9866, 14, 7890, 14, 6, 198, 198, 2, 11046, 262, 2939, 13532, 422, 269, 21370, 198, 6615, 796, 651, 62, 7890, 7, 6978, 8, 198, 4798, 7, 11925, 7, 6615, 4008, 198, 2, 13341, 2535, 4512, 290, 21201, 837, 1484, 1160, 4, 286, 1366, 329, 21201, 198, 27432, 62, 82, 12629, 11, 21201, 62, 82, 12629, 796, 4512, 62, 9288, 62, 35312, 7, 6615, 11, 1332, 62, 7857, 28, 15, 13, 17, 8, 198, 198, 2, 18067, 3047, 290, 21201, 1262, 17301, 2163, 11, 973, 15458, 286, 3933, 198, 27432, 62, 8612, 1352, 796, 17301, 7, 27432, 62, 82, 12629, 11, 3108, 11, 15458, 62, 7857, 28, 2624, 8, 198, 12102, 341, 62, 8612, 1352, 796, 17301, 7, 12102, 341, 62, 82, 12629, 11, 3108, 11, 15458, 62, 7857, 28, 2624, 8, 198, 198, 2, 1972, 2746, 198, 19849, 796, 651, 62, 19849, 3419, 198, 2, 618, 345, 389, 11046, 262, 2746, 198, 198, 2, 19849, 796, 3440, 62, 19849, 10786, 19849, 12, 19, 13, 71, 20, 11537, 628, 198, 2, 3047, 262, 2746, 1262, 17301, 198, 19849, 13, 11147, 62, 8612, 1352, 7, 27432, 62, 8612, 1352, 11, 4831, 62, 525, 62, 538, 5374, 28, 19, 9, 11925, 7, 27432, 62, 82, 12629, 828, 12102, 341, 62, 7890, 28, 12102, 341, 62, 8612, 1352, 11, 21201, 62, 20214, 28, 11925, 7, 12102, 341, 62, 82, 12629, 828, 538, 5374, 82, 28, 16, 11, 15942, 577, 28, 16, 8, 198, 2, 34689, 262, 2746, 198, 19849, 13, 21928, 10786, 19849, 12, 20, 13, 71, 20, 11537 ]
3.101299
385
# -*- coding:utf-8 -*- """ flskapp/helper.py ~~~~~~~~~~~~~~ Flask框架帮助方法 """ import os from random import randint import traceback import urllib2 from sharper.util.string import random_number from flask import get_flashed_messages, request, jsonify, current_app, logging, session import sys from ..lib.error import ErrorCode, AppError from ..util.helper import get_utf8, get_unicode from .logger import logger import time __authors__ = ['"linnchord gao" <[email protected]>'] def get_flash_msg(_type=None, joiner=' '): """ 获取指定类别所有flash消息拼接文本 @_type: ('ok', 'info', 'warn', 'alert') """ if _type: return joiner.join(get_flashed_messages(category_filter=[_type])) else: return joiner.join(get_flashed_messages()) def need_json_response(): """ 判断是否需要返回json """ return 'application/json' in request.headers.get('Accept') def print_redirect(url="/", text=None, duration=5, title=u'正在跳转', templ=None): """ 打印内容并在指定时间(秒)跳转到指定url @param text: @param url: @param duration: @return: """ if not templ: templ = u'<html>' \ u'<title>{title}</title>' \ u'<meta http-equiv="refresh" content="{duration}; url={url}" />' \ u'<body>' \ u'<h1>{text}</h1>' \ u'<span>{duration}秒后将跳转,请稍候</span>' \ u'</body>' \ u'</html>' return templ.format(duration=duration, url=url, text=text, title=title) def clear_cookie(resp, name_or_list): """ 清除指定cookie @resp: response @name_or_list: cookie name or name list """ resp = current_app.make_response(resp) if isinstance(name_or_list, basestring): name_or_list = [name_or_list] for n in name_or_list: resp.set_cookie(n, '', expires=0) return resp def set_cookie(resp, name, value, expires,max_age=1800): """ 设置cookie """ resp = current_app.make_response(resp) resp.set_cookie(name, value,expires=expires,max_age=max_age) return resp def simple_times_limit_validate(category, key, limit=5, expire=300, _kvdb=None, more_paras=None, amount=1): """ 针对指定类型+关键字参数+更多其他参数(dict类型拼接)在指定过期时间内仅允许n次(limit)访问 例如: * 用户登录(类型)指定ip(关键字参数)在5分钟(expire)内只允许访问5次(limit) * 某api指定ip或客户端在1分钟内只允许访问1000次 @category: 类型(例如 reg | login ) @key: 关键参数 (例如 203.12.213.30 ) @limit: 限制访问次数 @expire: 过期时间 单位:秒 通过redis key过期时间控制 @kvdb: redis库 默认kvdb.common @more_paras: 用于较多参数变量控制,拼接为缓存键 """ # redis缓存键构造 key = 'STLV:%s:%s' % (category, key) if more_paras: for k, v in more_paras.items(): key += ':%s:%s' % (k, v) if not _kvdb: from .kvdb import kvdb _kvdb = kvdb.common now = _kvdb.incr(key, amount=amount) ttl = _kvdb.ttl(key) if not ttl: _kvdb.expire(key, expire) return int(now) <= limit def simple_vcode_validate(category, key, vcode=None, expire=300, _kvdb=None, more_paras=None): """ 针对指定类型+关键字参数+更多其他参数(dict类型拼接)在指定过期时间设置验证码验证 例如: * 用户手机绑定(类型)在5分钟(expire)内验证手机验证码 @category: 类型(例如 reg | login ) @key: 关键参数 (例如 手机号 18621111111 ) @vcode: 验证码 (若无则生成并返回验证码,若有则验证 ) @expire: 过期时间 单位:秒 通过redis key过期时间控制 @kvdb: redis库 默认kvdb.common @more_paras: 用于较多参数变量控制,拼接为缓存键 """ # redis缓存键构造 key = 'SPV:%s:%s' % (category, key) if more_paras: for k, v in more_paras.items(): key += ':%s:%s' % (k, v) if not _kvdb: from .kvdb import kvdb _kvdb = kvdb.common if vcode: if vcode == _kvdb.get(key): _kvdb.delete(key) return True else: return False else: vcode = random_number(6) _kvdb.setex(key, vcode, expire) return vcode def is_internal_ip(): """ check internal ip """ ip = get_client_ip() return (ip in current_app.config.get('INTERNAL_IP_LIST', []) or ip in ('127.0.0.1', '0.0.0.0') or ip.startswith('192.168.'))
[ 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 37811, 198, 220, 220, 220, 781, 8135, 1324, 14, 2978, 525, 13, 9078, 198, 220, 220, 220, 220, 15116, 8728, 4907, 628, 220, 220, 220, 46947, 162, 94, 228, 162, 252, 114, 30585, 106, 27950, 102, 43095, 37345, 243, 198, 37811, 198, 11748, 28686, 198, 6738, 4738, 1330, 43720, 600, 198, 11748, 12854, 1891, 198, 11748, 2956, 297, 571, 17, 198, 6738, 41415, 13, 22602, 13, 8841, 1330, 4738, 62, 17618, 198, 6738, 42903, 1330, 651, 62, 2704, 5263, 62, 37348, 1095, 11, 2581, 11, 33918, 1958, 11, 1459, 62, 1324, 11, 18931, 11, 6246, 198, 11748, 25064, 198, 6738, 11485, 8019, 13, 18224, 1330, 13047, 10669, 11, 2034, 12331, 198, 6738, 11485, 22602, 13, 2978, 525, 1330, 651, 62, 40477, 23, 11, 651, 62, 46903, 1098, 198, 6738, 764, 6404, 1362, 1330, 49706, 198, 11748, 640, 198, 198, 834, 41617, 834, 796, 685, 29653, 2815, 77, 354, 585, 308, 5488, 1, 1279, 2815, 77, 354, 585, 31, 14816, 13, 785, 29, 20520, 628, 198, 4299, 651, 62, 34167, 62, 19662, 28264, 4906, 28, 14202, 11, 4654, 263, 11639, 705, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5525, 236, 115, 20998, 244, 162, 234, 229, 22522, 248, 163, 109, 119, 26344, 104, 33699, 222, 17312, 231, 34167, 162, 114, 230, 162, 223, 107, 162, 233, 120, 162, 236, 98, 23877, 229, 17312, 105, 628, 220, 220, 220, 2488, 62, 4906, 25, 19203, 482, 3256, 705, 10951, 3256, 705, 40539, 3256, 705, 44598, 11537, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4808, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4654, 263, 13, 22179, 7, 1136, 62, 2704, 5263, 62, 37348, 1095, 7, 22872, 62, 24455, 28, 29795, 4906, 60, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4654, 263, 13, 22179, 7, 1136, 62, 2704, 5263, 62, 37348, 1095, 28955, 628, 198, 4299, 761, 62, 17752, 62, 26209, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 230, 97, 23877, 255, 42468, 28938, 99, 165, 250, 222, 17358, 223, 32573, 242, 32368, 252, 17752, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 705, 31438, 14, 17752, 6, 287, 2581, 13, 50145, 13, 1136, 10786, 38855, 11537, 628, 198, 4299, 3601, 62, 445, 1060, 7, 6371, 35922, 1600, 2420, 28, 14202, 11, 9478, 28, 20, 11, 3670, 28, 84, 6, 29826, 96, 28839, 101, 164, 115, 111, 164, 121, 105, 3256, 2169, 489, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 231, 241, 39355, 108, 37863, 227, 22522, 117, 33176, 114, 28839, 101, 162, 234, 229, 22522, 248, 33768, 114, 29785, 112, 171, 120, 230, 163, 100, 240, 171, 120, 231, 164, 115, 111, 164, 121, 105, 26344, 108, 162, 234, 229, 22522, 248, 6371, 198, 220, 220, 220, 2488, 17143, 2420, 25, 198, 220, 220, 220, 2488, 17143, 19016, 25, 198, 220, 220, 220, 2488, 17143, 9478, 25, 198, 220, 220, 220, 2488, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 2169, 489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2169, 489, 796, 334, 6, 27, 6494, 29, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 27, 7839, 29, 90, 7839, 92, 3556, 7839, 29, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 27, 28961, 2638, 12, 4853, 452, 2625, 5420, 3447, 1, 2695, 2625, 90, 32257, 19629, 19016, 34758, 6371, 36786, 11037, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 27, 2618, 29, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 27, 71, 16, 29, 90, 5239, 92, 3556, 71, 16, 29, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 27, 12626, 29, 90, 32257, 92, 163, 100, 240, 28938, 236, 49546, 164, 115, 111, 164, 121, 105, 171, 120, 234, 46237, 115, 163, 101, 235, 161, 222, 247, 3556, 12626, 29, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 3556, 2618, 29, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 3556, 6494, 29, 6, 198, 220, 220, 220, 1441, 2169, 489, 13, 18982, 7, 32257, 28, 32257, 11, 19016, 28, 6371, 11, 2420, 28, 5239, 11, 3670, 28, 7839, 8, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 4299, 1598, 62, 44453, 7, 4363, 11, 1438, 62, 273, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 116, 227, 165, 247, 97, 162, 234, 229, 22522, 248, 44453, 628, 220, 220, 220, 2488, 4363, 25, 2882, 198, 220, 220, 220, 2488, 3672, 62, 273, 62, 4868, 25, 19751, 1438, 393, 1438, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1217, 796, 1459, 62, 1324, 13, 15883, 62, 26209, 7, 4363, 8, 198, 220, 220, 220, 611, 318, 39098, 7, 3672, 62, 273, 62, 4868, 11, 1615, 395, 1806, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 273, 62, 4868, 796, 685, 3672, 62, 273, 62, 4868, 60, 198, 220, 220, 220, 329, 299, 287, 1438, 62, 273, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 13, 2617, 62, 44453, 7, 77, 11, 705, 3256, 27396, 28, 15, 8, 198, 220, 220, 220, 1441, 1217, 628, 198, 4299, 900, 62, 44453, 7, 4363, 11, 1438, 11, 1988, 11, 27396, 11, 9806, 62, 496, 28, 39188, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5525, 106, 122, 163, 121, 106, 44453, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1217, 796, 1459, 62, 1324, 13, 15883, 62, 26209, 7, 4363, 8, 198, 220, 220, 220, 1217, 13, 2617, 62, 44453, 7, 3672, 11, 1988, 11, 11201, 2387, 28, 11201, 2387, 11, 9806, 62, 496, 28, 9806, 62, 496, 8, 198, 220, 220, 220, 1441, 1217, 628, 198, 4299, 2829, 62, 22355, 62, 32374, 62, 12102, 378, 7, 22872, 11, 1994, 11, 4179, 28, 20, 11, 24264, 28, 6200, 11, 4808, 74, 85, 9945, 28, 14202, 11, 517, 62, 1845, 292, 28, 14202, 11, 2033, 28, 16, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16268, 240, 230, 43380, 117, 162, 234, 229, 22522, 248, 163, 109, 119, 161, 252, 233, 10, 17739, 111, 165, 242, 106, 27764, 245, 20998, 224, 46763, 108, 10, 162, 249, 112, 13783, 248, 17739, 114, 20015, 244, 20998, 224, 46763, 108, 171, 120, 230, 11600, 163, 109, 119, 161, 252, 233, 162, 233, 120, 162, 236, 98, 171, 120, 231, 28839, 101, 162, 234, 229, 22522, 248, 32573, 229, 17312, 253, 33768, 114, 29785, 112, 37863, 227, 20015, 227, 17739, 223, 164, 106, 116, 77, 162, 105, 94, 7, 32374, 8, 164, 106, 123, 29785, 106, 628, 220, 220, 220, 220, 160, 122, 233, 36685, 224, 171, 120, 248, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 13328, 242, 101, 22755, 115, 163, 247, 119, 37605, 243, 171, 120, 230, 163, 109, 119, 161, 252, 233, 171, 120, 231, 162, 234, 229, 22522, 248, 541, 171, 120, 230, 17739, 111, 165, 242, 106, 27764, 245, 20998, 224, 46763, 108, 171, 120, 231, 28839, 101, 20, 26344, 228, 165, 240, 253, 171, 120, 230, 1069, 5111, 171, 120, 231, 37863, 227, 20998, 103, 17739, 223, 164, 106, 116, 164, 106, 123, 29785, 106, 20, 162, 105, 94, 171, 120, 230, 32374, 171, 120, 231, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 10545, 253, 238, 15042, 162, 234, 229, 22522, 248, 541, 22755, 244, 22522, 95, 22755, 115, 44165, 107, 28839, 101, 16, 26344, 228, 165, 240, 253, 37863, 227, 20998, 103, 17739, 223, 164, 106, 116, 164, 106, 123, 29785, 106, 12825, 162, 105, 94, 628, 220, 220, 220, 2488, 22872, 25, 13328, 109, 119, 161, 252, 233, 171, 120, 230, 160, 122, 233, 36685, 224, 842, 930, 17594, 27332, 120, 231, 198, 220, 220, 220, 2488, 2539, 25, 10263, 227, 111, 165, 242, 106, 20998, 224, 46763, 108, 27332, 120, 230, 160, 122, 233, 36685, 224, 27408, 13, 1065, 13, 26427, 13, 1270, 27332, 120, 231, 198, 220, 220, 220, 2488, 32374, 25, 16268, 247, 238, 26344, 114, 164, 106, 123, 29785, 106, 162, 105, 94, 46763, 108, 198, 220, 220, 220, 2488, 1069, 5111, 25, 5525, 123, 229, 17312, 253, 33768, 114, 29785, 112, 10263, 235, 243, 19526, 235, 171, 120, 248, 163, 100, 240, 16268, 222, 248, 32573, 229, 445, 271, 1994, 32573, 229, 17312, 253, 33768, 114, 29785, 112, 162, 236, 100, 26344, 114, 198, 220, 220, 220, 2488, 74, 85, 9945, 25, 2266, 271, 41753, 241, 16268, 119, 246, 164, 106, 97, 74, 85, 9945, 13, 11321, 198, 220, 220, 220, 2488, 3549, 62, 1845, 292, 25, 13328, 242, 101, 12859, 236, 164, 122, 225, 13783, 248, 20998, 224, 46763, 108, 20998, 246, 34932, 237, 162, 236, 100, 26344, 114, 171, 120, 234, 162, 233, 120, 162, 236, 98, 10310, 118, 163, 120, 241, 27764, 246, 165, 242, 106, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 2266, 271, 163, 120, 241, 27764, 246, 165, 242, 106, 162, 252, 226, 34460, 254, 198, 220, 220, 220, 1994, 796, 705, 2257, 30976, 25, 4, 82, 25, 4, 82, 6, 4064, 357, 22872, 11, 1994, 8, 198, 220, 220, 220, 611, 517, 62, 1845, 292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 517, 62, 1845, 292, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 15853, 705, 25, 4, 82, 25, 4, 82, 6, 4064, 357, 74, 11, 410, 8, 628, 220, 220, 220, 611, 407, 4808, 74, 85, 9945, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 764, 74, 85, 9945, 1330, 479, 85, 9945, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 74, 85, 9945, 796, 479, 85, 9945, 13, 11321, 628, 220, 220, 220, 783, 796, 4808, 74, 85, 9945, 13, 1939, 81, 7, 2539, 11, 2033, 28, 17287, 8, 198, 220, 220, 220, 256, 28781, 796, 4808, 74, 85, 9945, 13, 926, 75, 7, 2539, 8, 198, 220, 220, 220, 611, 407, 256, 28781, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 74, 85, 9945, 13, 1069, 5111, 7, 2539, 11, 24264, 8, 628, 220, 220, 220, 1441, 493, 7, 2197, 8, 19841, 4179, 628, 198, 4299, 2829, 62, 85, 8189, 62, 12102, 378, 7, 22872, 11, 1994, 11, 410, 8189, 28, 14202, 11, 24264, 28, 6200, 11, 4808, 74, 85, 9945, 28, 14202, 11, 517, 62, 1845, 292, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16268, 240, 230, 43380, 117, 162, 234, 229, 22522, 248, 163, 109, 119, 161, 252, 233, 10, 17739, 111, 165, 242, 106, 27764, 245, 20998, 224, 46763, 108, 10, 162, 249, 112, 13783, 248, 17739, 114, 20015, 244, 20998, 224, 46763, 108, 171, 120, 230, 11600, 163, 109, 119, 161, 252, 233, 162, 233, 120, 162, 236, 98, 171, 120, 231, 28839, 101, 162, 234, 229, 22522, 248, 32573, 229, 17312, 253, 33768, 114, 29785, 112, 164, 106, 122, 163, 121, 106, 165, 103, 234, 46237, 223, 163, 254, 223, 165, 103, 234, 46237, 223, 628, 220, 220, 220, 220, 160, 122, 233, 36685, 224, 171, 120, 248, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 13328, 242, 101, 22755, 115, 33699, 233, 17312, 118, 163, 119, 239, 22522, 248, 171, 120, 230, 163, 109, 119, 161, 252, 233, 171, 120, 231, 28839, 101, 20, 26344, 228, 165, 240, 253, 171, 120, 230, 1069, 5111, 171, 120, 231, 37863, 227, 165, 103, 234, 46237, 223, 33699, 233, 17312, 118, 165, 103, 234, 46237, 223, 163, 254, 223, 628, 220, 220, 220, 2488, 22872, 25, 13328, 109, 119, 161, 252, 233, 171, 120, 230, 160, 122, 233, 36685, 224, 842, 930, 17594, 27332, 120, 231, 198, 220, 220, 220, 2488, 2539, 25, 10263, 227, 111, 165, 242, 106, 20998, 224, 46763, 108, 27332, 120, 230, 160, 122, 233, 36685, 224, 10545, 231, 233, 17312, 118, 20998, 115, 49658, 26259, 16243, 27332, 120, 231, 198, 220, 220, 220, 2488, 85, 8189, 25, 16268, 103, 234, 46237, 223, 163, 254, 223, 27332, 120, 230, 164, 233, 98, 33768, 254, 26344, 247, 37955, 22755, 238, 33176, 114, 32573, 242, 32368, 252, 165, 103, 234, 46237, 223, 163, 254, 223, 171, 120, 234, 164, 233, 98, 17312, 231, 26344, 247, 165, 103, 234, 46237, 223, 27332, 120, 231, 198, 220, 220, 220, 2488, 1069, 5111, 25, 5525, 123, 229, 17312, 253, 33768, 114, 29785, 112, 10263, 235, 243, 19526, 235, 171, 120, 248, 163, 100, 240, 16268, 222, 248, 32573, 229, 445, 271, 1994, 32573, 229, 17312, 253, 33768, 114, 29785, 112, 162, 236, 100, 26344, 114, 198, 220, 220, 220, 2488, 74, 85, 9945, 25, 2266, 271, 41753, 241, 16268, 119, 246, 164, 106, 97, 74, 85, 9945, 13, 11321, 198, 220, 220, 220, 2488, 3549, 62, 1845, 292, 25, 13328, 242, 101, 12859, 236, 164, 122, 225, 13783, 248, 20998, 224, 46763, 108, 20998, 246, 34932, 237, 162, 236, 100, 26344, 114, 171, 120, 234, 162, 233, 120, 162, 236, 98, 10310, 118, 163, 120, 241, 27764, 246, 165, 242, 106, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 2266, 271, 163, 120, 241, 27764, 246, 165, 242, 106, 162, 252, 226, 34460, 254, 198, 220, 220, 220, 1994, 796, 705, 4303, 53, 25, 4, 82, 25, 4, 82, 6, 4064, 357, 22872, 11, 1994, 8, 198, 220, 220, 220, 611, 517, 62, 1845, 292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 517, 62, 1845, 292, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 15853, 705, 25, 4, 82, 25, 4, 82, 6, 4064, 357, 74, 11, 410, 8, 628, 220, 220, 220, 611, 407, 4808, 74, 85, 9945, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 764, 74, 85, 9945, 1330, 479, 85, 9945, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 74, 85, 9945, 796, 479, 85, 9945, 13, 11321, 628, 220, 220, 220, 611, 410, 8189, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 410, 8189, 6624, 4808, 74, 85, 9945, 13, 1136, 7, 2539, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 74, 85, 9945, 13, 33678, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 8189, 796, 4738, 62, 17618, 7, 21, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 74, 85, 9945, 13, 2617, 1069, 7, 2539, 11, 410, 8189, 11, 24264, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 410, 8189, 628, 198, 4299, 318, 62, 32538, 62, 541, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2198, 5387, 20966, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20966, 796, 651, 62, 16366, 62, 541, 3419, 198, 220, 220, 220, 1441, 357, 541, 287, 1459, 62, 1324, 13, 11250, 13, 1136, 10786, 1268, 31800, 1847, 62, 4061, 62, 45849, 3256, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 20966, 287, 19203, 16799, 13, 15, 13, 15, 13, 16, 3256, 705, 15, 13, 15, 13, 15, 13, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 20966, 13, 9688, 2032, 342, 10786, 17477, 13, 14656, 2637, 4008, 628, 628, 198 ]
1.522062
2,697
""" Here timestamps are updated in order to have elapsed times following a particular pattern/rule Author: Mattia Fraccaro """ import csv import time from datetime import datetime, timedelta from random import *
[ 37811, 198, 4342, 4628, 395, 9430, 389, 6153, 287, 1502, 284, 423, 42118, 1661, 1708, 257, 1948, 3912, 14, 25135, 198, 198, 13838, 25, 4705, 544, 1305, 4134, 12022, 198, 37811, 198, 198, 11748, 269, 21370, 198, 11748, 640, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 4738, 1330, 1635, 198 ]
3.890909
55
# # Copyright 2015-2019, Institute for Systems Biology # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from future import standard_library standard_library.install_aliases() from builtins import object import json import base64 import logging import urllib.request, urllib.parse, urllib.error import traceback import requests from django.conf import settings from bq_data_access.v1.data_access import get_feature_vector from bq_data_access.v1.feature_value_types import ValueType from bq_data_access.v1.utils import VectorMergeSupport logger = logging.getLogger('main_logger')
[ 2, 198, 2, 15069, 1853, 12, 23344, 11, 5136, 329, 11998, 24698, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 6738, 2003, 1330, 3210, 62, 32016, 198, 20307, 62, 32016, 13, 17350, 62, 7344, 1386, 3419, 198, 6738, 3170, 1040, 1330, 2134, 198, 11748, 33918, 198, 11748, 2779, 2414, 198, 11748, 18931, 198, 11748, 2956, 297, 571, 13, 25927, 11, 2956, 297, 571, 13, 29572, 11, 2956, 297, 571, 13, 18224, 198, 11748, 12854, 1891, 198, 11748, 7007, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 198, 6738, 275, 80, 62, 7890, 62, 15526, 13, 85, 16, 13, 7890, 62, 15526, 1330, 651, 62, 30053, 62, 31364, 198, 6738, 275, 80, 62, 7890, 62, 15526, 13, 85, 16, 13, 30053, 62, 8367, 62, 19199, 1330, 11052, 6030, 198, 6738, 275, 80, 62, 7890, 62, 15526, 13, 85, 16, 13, 26791, 1330, 20650, 13102, 469, 15514, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 12417, 62, 6404, 1362, 11537, 628 ]
3.591362
301
from core.himesis import Himesis import cPickle as pickle from uuid import UUID
[ 198, 198, 6738, 4755, 13, 71, 999, 271, 1330, 367, 999, 271, 198, 11748, 269, 31686, 293, 355, 2298, 293, 198, 6738, 334, 27112, 1330, 471, 27586, 628 ]
2.964286
28
from easyprocess import EasyProcess from pyvirtualdisplay.smartdisplay import SmartDisplay from discogui.hover import active_rectangles
[ 6738, 2562, 14681, 1330, 16789, 18709, 198, 6738, 12972, 32844, 13812, 13, 27004, 13812, 1330, 10880, 23114, 198, 198, 6738, 1221, 519, 9019, 13, 43753, 1330, 4075, 62, 2554, 27787, 628, 628 ]
4.375
32
# -*- coding: utf-8 -*- # # Copyright (C) 2008-2013 Richard Liao <[email protected]> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. # from __future__ import with_statement import inspect import textwrap import time import urllib from pkg_resources import resource_exists, resource_filename from trac.admin.api import IAdminCommandProvider, IAdminPanelProvider from trac.core import * from trac.config import BoolOption, ListOption, Option from trac.db import DatabaseManager from trac.env import IEnvironmentSetupParticipant from trac.perm import IPermissionRequestor from trac.ticket import Ticket, Type as TicketType from trac.util.translation import domain_functions from trac.web.api import IRequestHandler, ITemplateStreamFilter, RequestDone from trac.web.chrome import Chrome, ITemplateProvider, add_script, \ add_script_data try: import json except ImportError: import simplejson as json from default_templates import DEFAULT_TEMPLATES from tickettemplate.model import TT_Template, schema, schema_version from utils import * gettext, _, tag_, N_, add_domain = \ domain_functions('tickettemplate', 'gettext', '_', 'tag_', 'N_', 'add_domain')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 3648, 12, 6390, 6219, 406, 13481, 1279, 7527, 446, 13, 75, 13481, 13, 72, 31, 14816, 13, 785, 29, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 770, 3788, 318, 11971, 355, 3417, 287, 262, 2393, 27975, 45761, 11, 543, 198, 2, 345, 815, 423, 2722, 355, 636, 286, 428, 6082, 13, 198, 2, 198, 198, 6738, 11593, 37443, 834, 1330, 351, 62, 26090, 198, 198, 11748, 10104, 198, 11748, 2420, 37150, 198, 11748, 640, 198, 11748, 2956, 297, 571, 198, 6738, 279, 10025, 62, 37540, 1330, 8271, 62, 1069, 1023, 11, 8271, 62, 34345, 198, 198, 6738, 491, 330, 13, 28482, 13, 15042, 1330, 314, 46787, 21575, 29495, 11, 314, 46787, 26639, 29495, 198, 6738, 491, 330, 13, 7295, 1330, 1635, 198, 6738, 491, 330, 13, 11250, 1330, 347, 970, 19722, 11, 7343, 19722, 11, 16018, 198, 6738, 491, 330, 13, 9945, 1330, 24047, 13511, 198, 6738, 491, 330, 13, 24330, 1330, 314, 31441, 40786, 34363, 415, 198, 6738, 491, 330, 13, 16321, 1330, 314, 5990, 3411, 18453, 273, 198, 6738, 491, 330, 13, 43350, 1330, 24014, 11, 5994, 355, 24014, 6030, 198, 6738, 491, 330, 13, 22602, 13, 41519, 1330, 7386, 62, 12543, 2733, 198, 6738, 491, 330, 13, 12384, 13, 15042, 1330, 314, 18453, 25060, 11, 7283, 368, 6816, 12124, 22417, 11, 19390, 45677, 198, 6738, 491, 330, 13, 12384, 13, 46659, 1330, 13282, 11, 7283, 368, 6816, 29495, 11, 751, 62, 12048, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 12048, 62, 7890, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 33918, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 2829, 17752, 355, 33918, 198, 198, 6738, 4277, 62, 11498, 17041, 1330, 5550, 38865, 62, 51, 3620, 6489, 29462, 198, 6738, 4378, 3087, 368, 6816, 13, 19849, 1330, 26653, 62, 30800, 11, 32815, 11, 32815, 62, 9641, 198, 6738, 3384, 4487, 1330, 1635, 198, 198, 1136, 5239, 11, 4808, 11, 7621, 62, 11, 399, 62, 11, 751, 62, 27830, 796, 3467, 198, 220, 220, 220, 7386, 62, 12543, 2733, 10786, 42298, 3087, 368, 6816, 3256, 705, 1136, 5239, 3256, 705, 62, 3256, 705, 12985, 62, 3256, 705, 45, 62, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2860, 62, 27830, 11537, 628 ]
3.076566
431
#!/usr/bin/env python import functools import numpy import hypothesis import hypothesis.extra.numpy import hypothesis.strategies import libnu.sum from test import eq arrays = functools.partial( hypothesis.extra.numpy.arrays, dtype=numpy.float32, unique=True, ) floats = hypothesis.strategies.floats(-1.0, 1.0) numpy.zeros = functools.partial(numpy.zeros, dtype=numpy.float32) @hypothesis.given(arrays(shape=10, elements=floats)) @hypothesis.given(arrays(shape=10, elements=floats), floats) @hypothesis.given(arrays(shape=100, elements=floats)) @hypothesis.given(arrays(shape=100, elements=floats)) if __name__ == '__main__': test_sum() test_meanvar() test_mean() test_var()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 1257, 310, 10141, 198, 11748, 299, 32152, 198, 198, 11748, 14078, 198, 11748, 14078, 13, 26086, 13, 77, 32152, 198, 11748, 14078, 13, 2536, 2397, 444, 198, 198, 11748, 9195, 28803, 13, 16345, 198, 198, 6738, 1332, 1330, 37430, 198, 198, 3258, 592, 796, 1257, 310, 10141, 13, 47172, 7, 198, 220, 220, 220, 14078, 13, 26086, 13, 77, 32152, 13, 3258, 592, 11, 198, 220, 220, 220, 288, 4906, 28, 77, 32152, 13, 22468, 2624, 11, 198, 220, 220, 220, 3748, 28, 17821, 11, 198, 8, 198, 48679, 1381, 796, 14078, 13, 2536, 2397, 444, 13, 48679, 1381, 32590, 16, 13, 15, 11, 352, 13, 15, 8, 198, 77, 32152, 13, 9107, 418, 796, 1257, 310, 10141, 13, 47172, 7, 77, 32152, 13, 9107, 418, 11, 288, 4906, 28, 77, 32152, 13, 22468, 2624, 8, 628, 198, 31, 36362, 313, 8497, 13, 35569, 7, 3258, 592, 7, 43358, 28, 940, 11, 4847, 28, 48679, 1381, 4008, 628, 198, 31, 36362, 313, 8497, 13, 35569, 7, 3258, 592, 7, 43358, 28, 940, 11, 4847, 28, 48679, 1381, 828, 36016, 8, 628, 198, 31, 36362, 313, 8497, 13, 35569, 7, 3258, 592, 7, 43358, 28, 3064, 11, 4847, 28, 48679, 1381, 4008, 628, 198, 31, 36362, 313, 8497, 13, 35569, 7, 3258, 592, 7, 43358, 28, 3064, 11, 4847, 28, 48679, 1381, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 1332, 62, 16345, 3419, 198, 220, 220, 220, 1332, 62, 32604, 7785, 3419, 198, 220, 220, 220, 1332, 62, 32604, 3419, 198, 220, 220, 220, 1332, 62, 7785, 3419, 198 ]
2.573477
279