content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from slothql.types.scalars import IntegerType, FloatType, StringType, BooleanType, IDType from slothql.types.json import JsonStringType from slothql.types.datetime import DateTimeType, DateType, TimeType from .field import Field
[ 6738, 1017, 849, 13976, 13, 19199, 13, 1416, 282, 945, 1330, 34142, 6030, 11, 48436, 6030, 11, 10903, 6030, 11, 41146, 6030, 11, 4522, 6030, 198, 6738, 1017, 849, 13976, 13, 19199, 13, 17752, 1330, 449, 1559, 10100, 6030, 198, 6738, 1017, 849, 13976, 13, 19199, 13, 19608, 8079, 1330, 7536, 7575, 6030, 11, 7536, 6030, 11, 3862, 6030, 198, 6738, 764, 3245, 1330, 7663, 628, 628, 628, 628, 628 ]
3.4
70
import psycopg2 import json import os import sys def create_tables(): """ create tables in the PostgreSQL database""" commands = ( """DROP TABLE main; """, """ CREATE TABLE main ( package VARCHAR NOT NULL, category VARCHAR NOT NULL, downloads BIGINT NOT NULL, description TEXT NOT NULL, developer VARCHAR NOT NULL ); """) conn = None try: # read the connection parameters params = "dbname='app_data' user='postgres' host='localhost' password='postgres'" # connect to the PostgreSQL server conn = psycopg2.connect(params) cur = conn.cursor() # create table one by one for command in commands: cur.execute(command) # close communication with the PostgreSQL database server cur.close() # commit the changes conn.commit() except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() if __name__ == '__main__': create_tables() read_jason(sys.argv[1])
[ 11748, 17331, 22163, 70, 17, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 4299, 2251, 62, 83, 2977, 33529, 198, 220, 220, 220, 37227, 2251, 8893, 287, 262, 2947, 47701, 6831, 37811, 198, 220, 220, 220, 9729, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7707, 3185, 43679, 1388, 26, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29244, 6158, 43679, 1388, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5301, 569, 31315, 1503, 5626, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 569, 31315, 1503, 5626, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21333, 26746, 12394, 5626, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 40383, 5626, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8517, 569, 31315, 1503, 5626, 15697, 198, 220, 220, 220, 220, 220, 220, 220, 5619, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 4943, 628, 220, 220, 220, 48260, 796, 6045, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1100, 262, 4637, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 366, 9945, 3672, 11639, 1324, 62, 7890, 6, 2836, 11639, 7353, 34239, 6, 2583, 11639, 36750, 6, 9206, 11639, 7353, 34239, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2018, 284, 262, 2947, 47701, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 17331, 22163, 70, 17, 13, 8443, 7, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 796, 48260, 13, 66, 21471, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 3084, 530, 416, 530, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3141, 287, 9729, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 41049, 7, 21812, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1969, 6946, 351, 262, 2947, 47701, 6831, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4589, 262, 2458, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 2845, 357, 16922, 11, 17331, 22163, 70, 17, 13, 38105, 12331, 8, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 18224, 8, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 48260, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 19836, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2251, 62, 83, 2977, 3419, 198, 220, 220, 220, 1100, 62, 73, 888, 7, 17597, 13, 853, 85, 58, 16, 12962 ]
2.29783
507
import tensorflow as tf import numpy class GaussianBoundaryCondition(tf.keras.layers.Layer): """A simple module for applying an exponential boundary condition in N dimensions Note that the exponent is *inside* of the power of 2 in the exponent. This is to prevent divergence when it is trainable and goes negative. Extends: tf.keras.layers.Layer """ def __init__(self, n : int, exp : float=0.1, trainable : bool=True, dtype = tf.float64): """Initializer Create a new exponentional boundary condition Arguments: n {int} -- Number of dimensions Keyword Arguments: exp {float} -- Starting value of exponents. Must be broadcastable to the number of dimensions (default: {1.0}) trainable {bool} -- Whether to allow the boundary condition to be trainable (default: {True}) """ tf.keras.layers.Layer.__init__(self, dtype=dtype) self.mean_subtract = True if n < 1: raise Exception("Dimension must be at least 1 for GaussianBoundaryCondition") # This is the parameter controlling the shape of the exponent: self.exponent = tf.Variable(exp, trainable=True, dtype=dtype) self.exponent2 = tf.Variable(0.02, trainable=True, dtype=dtype) @tf.function
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 198, 198, 4871, 12822, 31562, 49646, 560, 48362, 7, 27110, 13, 6122, 292, 13, 75, 6962, 13, 49925, 2599, 198, 220, 220, 220, 37227, 32, 2829, 8265, 329, 11524, 281, 39682, 18645, 4006, 287, 399, 15225, 628, 220, 220, 220, 5740, 326, 262, 28622, 318, 1635, 48787, 9, 286, 262, 1176, 286, 362, 287, 262, 28622, 13, 198, 220, 220, 220, 770, 318, 284, 2948, 43366, 618, 340, 318, 4512, 540, 290, 2925, 4633, 13, 628, 220, 220, 220, 5683, 2412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 75, 6962, 13, 49925, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 299, 1058, 493, 11, 1033, 1058, 12178, 28, 15, 13, 16, 11, 4512, 540, 1058, 20512, 28, 17821, 11, 288, 4906, 796, 48700, 13, 22468, 2414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 7509, 628, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 649, 1033, 261, 1463, 282, 18645, 4006, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1391, 600, 92, 1377, 7913, 286, 15225, 628, 220, 220, 220, 220, 220, 220, 220, 7383, 4775, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1033, 1391, 22468, 92, 1377, 17962, 1988, 286, 1033, 3906, 13, 220, 12039, 307, 7025, 540, 284, 262, 1271, 286, 15225, 357, 12286, 25, 1391, 16, 13, 15, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 540, 1391, 30388, 92, 1377, 10127, 284, 1249, 262, 18645, 4006, 284, 307, 4512, 540, 357, 12286, 25, 1391, 17821, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 75, 6962, 13, 49925, 13, 834, 15003, 834, 7, 944, 11, 288, 4906, 28, 67, 4906, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32604, 62, 7266, 83, 974, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 611, 299, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 29271, 3004, 1276, 307, 379, 1551, 352, 329, 12822, 31562, 49646, 560, 48362, 4943, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 262, 11507, 12755, 262, 5485, 286, 262, 28622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11201, 3471, 796, 48700, 13, 43015, 7, 11201, 11, 4512, 540, 28, 17821, 11, 288, 4906, 28, 67, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11201, 3471, 17, 796, 48700, 13, 43015, 7, 15, 13, 2999, 11, 4512, 540, 28, 17821, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 220, 220, 220, 2488, 27110, 13, 8818, 198 ]
2.694501
491
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simulate cost-optimal electrical grid construction under different policies. Code contains GridElements: Power Sources, Demands and Storage. Grid Elements are placed in different grid regions. Grid regions are separated from each other so only sources with grid_region_id == x can power Demands with grid_region_id == x The costs of constructing GridElements are based upon: nameplate_unit_cost: The cost to build one unit (e.g. Megawatt) of power. variable_unit_cost: The cost to provide one unit of power over time. (e.g. Megawatt-Hour) The code simulates the grid over multiple time-slices. e.g. Hourly over a one year period which would map to 24 * 365 = 8760 time-slices. The code is based upon a linear-program which contains: - An objective which is to minimize costs. - Constraints which must be met before the solution can converge. - conserve_power_constraint: Ensure that sum(power[t]) >= demand[t] for all t in each grid-region This code will work with any set of consistent units. For the purposes of documentation, the units chosen are: Power: Megawatts Time: Hours (Derived) Energy = Power * Time => Megawatt-Hours Cost: Dollars ($) CO2 Emissions: Tonnes (Derived) CO2 Emitted per Energy => Tonnes / Megawatt-Hours Carbon Tax: $ / Tonnes """ import logging import numpy as np from ortools.linear_solver import pywraplp class Constraint(object): """Holds an LP Constraint object with extra debugging information. Attributes: constraint: underlying pywraplp.Constraint object name: name of constraint formula: hashtable that maps names of variables to coefficients pywraplp.Constraint doesn't surface a list of variables/coefficients, so we have to keep track ourselves. """ def __init__(self, lp, lower_bound, upper_bound, name=None, debug=False): """Initializes Constraint. Args: lp: LinearProgramContainer that wraps the LP solver which creates the constraint. lower_bound: (float) Lower bound on product between coeffs and variables. upper_bound: (float) Upper bound on product between coeffs and variables. name: Optional human readable string. debug: Boolean which if set, logs constraint info. """ self.constraint = lp.solver.Constraint(lower_bound, upper_bound) self.name = name self.formula = {} self.debug = debug if self.debug: logging.debug("CONSTRAINT: %f <= %s <= %f", lower_bound, name, upper_bound) def set_coefficient(self, variable, coefficient): """Adds variable * coefficient to LP Coefficient. Wraps pywrap.SetCoefficient(variable, coefficient) method and saves variable, coefficient to formula dict. After calling this method, Objective += variable * coefficient Args: variable: (Lp Variable) The Variable multiplicand. coefficient: (float) The coefficient multiplicand. """ self.constraint.SetCoefficient(variable, coefficient) self.formula[variable.name()] = coefficient if self.debug: logging.debug("%s += %s * %f", self.name, variable.name(), coefficient) class Objective(object): """Holds an LP Objective object with extra debugging information. Attributes: objective: Underlying pywraplp.Objective object. """ def __init__(self, lp, minimize=True): """Initializes Objective. Args: lp: LinearProgramContainer that wraps the LP solver which creates the Objective. minimize: boolean, True if objective should be minimized otherwise objective is maximizied. """ self.objective = lp.solver.Objective() self.formula = {} if minimize: self.objective.SetMinimization() else: self.objective.SetMaximization() def set_coefficient(self, variable, coefficient): """Adds variable * coefficient to LP Objective. Wraps pywrap.SetCoefficient(variable, coefficient) method and saves variable, coefficient to formula dict. After calling this method, Objective += variable * coefficient Args: variable: (Lp Variable) The Variable multiplicand. coefficient: (float) The coefficient multiplicand. """ self.objective.SetCoefficient(variable, coefficient) self.formula[variable.name()] = coefficient class GridDemand(object): """Simple place-holder object which represents load on the grid.""" def __init__(self, name, grid_region_id=0): """Initializes GridDemand object. Args: name: name of the demand object grid_region_id: An int specifying the grid region of the demand. Only sources with the same grid_region_id can power this demand. """ self.name = name self.grid_region_id = grid_region_id class GridSource(object): """Denotes Costs, co2, region, power and energy limitations of a power source. Grid Sources may either be dispatchable or non-dispatchable. - Dispatchable sources may power at any time, e.g. fossil fuel plants. - Non-dispatchable sources are dependent on the environment to generate power. e.g. Solar or Wind plants. If there is a time-slice power profile indexed by the same name as this source in LinearProgramContainer.profiles. The source is considered Non-dispatchable. Otherwise, it is considered dispatchable. Attributes: name: (str) name of the object. nameplate_unit_cost: (float) Cost to build a unit of dispatchable power. ($ / Megawatt of capacity) variable_unit_cost: (float) Cost to supply a unit of dispatchable power per time. ($ / Megawatt-Hour) grid_region_id: An int specifying the grid region of the source. Only demands with the same grid_region_id can sink the power from this source. max_power: (float) Optional Maximum power which object can supply. (Megawatt). Set < 0 if there is no limit. max_energy: (float) Optional maximum energy which object can supply. (Megawatt-Hours) Set < 0 if there is no limit. co2_per_electrical_energy: (float) (Tonnes of CO2 / Megawatt Hour). power_coefficient: (float) ratio of how much power is supplied by object vs. how much power gets on the grid. 0 < power_coefficient < 1. Nominally 1.0. is_rps_source: Boolean which denotes if the source is included in the Renewable Portfolio Standard. solver: Either a _GridSourceDispatchableSolver or _GridSourceNonDispatchableSolver. Used to setup LP Constraints, Objectives and variables for the source and to report results. timeslice_variables: An array of LP variables, one per time-slice of simulation. Array is mapped so that variable for time-slice t is at index t. e.g. Variable for first time-slice is timeslice_variable[0]. Variable for last time-slice is timeslice_variable[-1]. Variable for time-slice at time t is timeslice_variable[t]. Only gets declared if GridSource is a DispatchableSource. nameplate_variable: LP variable representing the nameplate or maximum power the GridSource can output at any given time. """ def __init__( self, name, nameplate_unit_cost, variable_unit_cost, grid_region_id=0, max_power=-1.0, max_energy=-1.0, co2_per_electrical_energy=0, power_coefficient=1.0, is_rps_source=False, ): """Sets characteristics of a GridSource object. Args: name: (str) name of the object. nameplate_unit_cost: (float) Cost to build a unit of dispatchable power. ($ / Megawatt of capacity) variable_unit_cost: (float) Cost to supply a unit of dispatchable power per time. ($ / Megawatt-Hour) grid_region_id: An int specifying the grid region of the demand. Only demands with the same grid_region_id can sink the power from this source. max_power: (float) Maximum power which object can supply. (Megawatt) max_energy: (float) Maximum energy which object can supply. (Megawatt-Hours) co2_per_electrical_energy: (float) (Tonnes of CO2 / Megawatt Hour). power_coefficient: (float) ratio of how much power is supplied by object vs. how much power gets on the grid. 0 < power_coefficient < 1. Nominally 1.0. is_rps_source: Boolean which denotes if the source is included in the Renewable Portfolio Standard. """ self.name = name self.nameplate_unit_cost = nameplate_unit_cost self.variable_unit_cost = variable_unit_cost self.max_energy = max_energy self.max_power = max_power self.grid_region_id = grid_region_id self.co2_per_electrical_energy = co2_per_electrical_energy self.power_coefficient = power_coefficient self.is_rps_source = is_rps_source self.solver = None self.timeslice_variables = None self.nameplate_variable = None def configure_lp_variables_and_constraints(self, lp): """Declare lp variables, and set constraints. Args: lp: The LinearProgramContainer. Defers to self.solver which properly configures variables and constraints in this object. See Also: _GridSourceDispatchableSolver, _GridSourceNonDispatchableSolver """ self.solver.configure_lp_variables_and_constraints(lp) def post_process(self, lp): """Update lp post_processing result variables. This is done post lp.solve() so that sanity data checks can be done on RPS before returning results. Args: lp: The LinearProgramContainer where the post processing variables reside. """ if lp.rps_percent > 0.0 and self.is_rps_source: lp.rps_total[self.grid_region_id] += self.get_solution_values() else: lp.non_rps_total[self.grid_region_id] += self.get_solution_values() def get_solution_values(self): """Gets the linear program solver results. Must be called after lp.solve() to ensure solver has properly converged and has generated results. Returns: np.array of solutions for each timeslice variable. """ return self.solver.get_solution_values() def get_nameplate_solution_value(self): """Gets the linear program solver results for nameplate. Must be called after lp.solve() to ensure solver has properly converged and has generated results. Raises: RuntimeError: If called before LinearProgramContainer.solve(). Returns: Float value representing solved nameplate value. """ nameplate_variable = self.nameplate_variable if nameplate_variable is None: raise RuntimeError("Get_nameplate_solution_value called before solve().") return nameplate_variable.solution_value() class _GridSourceDispatchableSolver(object): """Power Source which can provide power at any time. Attributes: source: GridSource object where self generates LP variables """ def configure_lp_variables_and_constraints(self, lp): """Declare lp variables, and set constraints in grid_source. Args: lp: The LinearProgramContainer. Variables Declared include: - timeslice variables: represent how much power the source is outputting at each time-slice. - nameplate variable: represents the maximum power sourced. The values of these variables are solved by the linear program to optimize costs subject to some constraints. The overall objective is to minimize cost. Herein, the overall cost is increased by: - nameplate cost: nameplate_unit_cost * nameplate variable - variable cost: variable_unit_cost * sum(timeslice_variables) - carbon cost: lp.carbon_tax * sum(timeslice_variables) * co2_per_electrical_energy Since variable and carbon costs accrue on a periodic basis, we multiply them by lp.cost_of_money to make periodic and one-time costs comparable. Constraints created / modified here include: - Maximum Energy: Ensure sum timeslice-variables < max_energy if self.max_energy >= 0. This constraint is only for sources where there are limits to the total amount of generation which can be built. E.g. There are only a limited number of places where one can build hydropower. - Maximum Power: Ensure no timeslice-variables > max_power if self.max_power is >= 0. This constraint is only for sources where there are limits to the maximum amount of power which can be built. E.g. hydropower which can only discharge at a maximum rate. - Conserve Power: Ensure that sum(power) > demand for all time-slices. Colloquially called "Keeping the Lights on." - Ensure nameplate variable > power(t) for all t. We must make sure that we've priced out a plant which can supply the requested power. """ source = self.source # setup LP variables. source.timeslice_variables = lp.declare_timeslice_variables( source.name, source.grid_region_id ) source.nameplate_variable = lp.declare_nameplate_variable( source.name, source.grid_region_id ) solver = lp.solver # Configure maximum energy if it is >= 0. Otherwise do not # create a constraint. max_energy_constraint = ( lp.constraint(0.0, source.max_energy) if source.max_energy >= 0 else None ) # Configure maximum nameplate if it is >= 0. Otherwise do not # create a constraint. max_power = source.max_power if max_power >= 0: lp.constraint(0.0, max_power).set_coefficient( source.nameplate_variable, 1.0 ) # Total_cost includes nameplate cost. cost_objective = lp.minimize_costs_objective cost_objective.set_coefficient( source.nameplate_variable, source.nameplate_unit_cost ) # Add timeslice variables to coefficients. for t, var in enumerate(source.timeslice_variables): # Total_cost also includes variable and carbon cost. variable_coef = ( source.variable_unit_cost + source.co2_per_electrical_energy * lp.carbon_tax ) * lp.cost_of_money cost_objective.set_coefficient(var, variable_coef) # Keep the lights on at all times. Power_coefficient is usually # 1.0, but is -1.0 for GridStorage.sink and discharge_efficiency # for GridStorage.source. lp.conserve_power_constraint[source.grid_region_id][t].set_coefficient( var, source.power_coefficient ) # Constrain rps_credit if needed. if source.is_rps_source: lp.rps_source_constraints[source.grid_region_id][t].set_coefficient( var, source.power_coefficient ) # Ensure total energy is less than source.max_energy. if max_energy_constraint is not None: max_energy_constraint.set_coefficient(var, 1.0) # Ensure power doesn't exceed source.max_power. if max_power >= 0: lp.constraint(0.0, max_power).set_coefficient(var, 1.0) # Nameplate must be bigger than largest power. # If nameplate_unit_cost > 0, Cost Optimization will push # Nameplate near max(timeslice_variables). nameplate_constraint = lp.constraint(0.0, solver.infinity()) nameplate_constraint.set_coefficient(var, -1.0) nameplate_constraint.set_coefficient(source.nameplate_variable, 1.0) # Constrain maximum nameplate if max_power is set. if source.max_power >= 0: lp.constraint(0.0, source.max_power).set_coefficient( source.nameplate_variable, 1.0 ) def get_solution_values(self): """Gets the linear program solver results. Must be called after lp.solve() to ensure solver has properly converged and has generated results. Raises: RuntimeError: If called before LinearProgramContainer.solve(). Returns: np.array of solutions for each timeslice variable. """ timeslice_variables = self.source.timeslice_variables if timeslice_variables is None: raise RuntimeError("get_solution_values called before solve.") return np.array([v.solution_value() for v in timeslice_variables]) class _GridSourceNonDispatchableSolver(object): """Power Source which can provide nameplate multiple of its profile. Attributes: source: GridSource object where self generates LP variables profile: pandas Series which represents what fraction of the nameplate the source can provide at any given time. """ def configure_lp_variables_and_constraints(self, lp): """Declare lp variables, and set constraints in grid_source. Args: lp: The LinearProgramContainer. Variables Declared include: - nameplate variable: represents the maximum power sourced. The values of these variables are solved by the linear program to optimize costs subject to some constraints. The overall objective is to minimize cost. Herein, the overall cost is increased by: - nameplate cost: nameplate_unit_cost * nameplate variable - variable cost: variable_unit_cost * nameplate variable * sum(profile) - carbon cost: lp.carbon_tax * nameplate variable * sum(profile) Since variable and carbon costs accrue on a yearly basis, we multiply them by lp.cost_of_money to make yearly and one-time costs comparable. Constraints created / modified here include: - Maximum Energy: Ensure nameplate * sum(profile) < max_energy if self.max_energy >= 0. This constraint is only for sources where there are limits to the total amount of generation which can be built. E.g. There are only a limited number of places where one can build hydropower. - Maximum Power: Ensure nameplate <= max_power if self.max_power >= 0. This constraint is only for sources where there are limits to the maximum amount of power which can be built. E.g. hydropower which can only discharge at a maximum rate. - Conserve Power: Ensure that sum(power) > demand for all time-slices. Colloquially called "Keeping the Lights on." """ source = self.source # setup LP variables. source.nameplate_variable = lp.declare_nameplate_variable( source.name, source.grid_region_id ) sum_profile = sum(self.profile) # Configure maximum energy if it is >= 0. Otherwise do not # create a constraint. if source.max_energy >= 0: lp.constraint(0.0, source.max_energy).set_coefficient( source.nameplate_variable, sum_profile ) # Configure maximum energy if it is >= 0. Otherwise do not # create a constraint. max_power = source.max_power if max_power >= 0: lp.constraint(0.0, max_power).set_coefficient( source.nameplate_variable, 1.0 ) # Total_cost includes nameplate cost. cost_objective = lp.minimize_costs_objective cost_coefficient = source.nameplate_unit_cost + lp.cost_of_money * ( source.variable_unit_cost * sum_profile + source.co2_per_electrical_energy * sum_profile * lp.carbon_tax ) cost_objective.set_coefficient(source.nameplate_variable, cost_coefficient) # Add timeslice variables to coefficients. for t, profile_t in enumerate(self.profile): # Keep the lights on at all times. try: constraint = lp.conserve_power_constraint[source.grid_region_id] except KeyError: raise KeyError( "No Demand declared in grid_region %d." % (source.grid_region_id) ) constraint[t].set_coefficient(source.nameplate_variable, profile_t) # Constrain rps_credit if needed. if source.is_rps_source: lp.rps_source_constraints[source.grid_region_id][t].set_coefficient( source.nameplate_variable, profile_t ) def get_solution_values(self): """Gets the linear program solver results. Must be called after lp.solve() to ensure solver has properly converged and has generated results. Raises: RuntimeError: If called before LinearProgramContainer.solve(). Returns: np.array of solutions for each timeslice variable. """ nameplate_variable = self.source.nameplate_variable if nameplate_variable is None: raise RuntimeError("get_solution_values called before solve.") return nameplate_variable.solution_value() * self.profile.values class GridStorage(object): """Stores energy from the grid and returns it when needed subject to losses. Attributes: name: A string which is the name of the object. storage_nameplate_cost: A float which is the cost per nameplate of energy storage. E.g. The cost of batteries. charge_nameplate_cost: A float which is the cost per nameplate power to charge the storage. E.g. The rectifier cost to convert an AC grid to DC storage. discharge_nameplate_cost: A float which is the cost per nameplate power to recharge the grid. E.g. The cost of a power inverter to convert DC storage back to AC grid_region_id: An int specifying the grid region of the storage. The storage can only store energy generated by sources with the same grid_region_id. Only demands with the same grid_region_id can sink power from this. charge_efficiency: A float ranging from 0.0 - 1.0 which describes the energy loss between the grid and the storage element. 0.0 means complete loss, 1.0 means no loss. storage_efficiency: A float ranging from 0.0 - 1.0 which describes how much stored energy remains from previous stored energy after one time-cycle. 1.0 means no loss. 0.0 means all stored energy is lost. discharge_efficiency: A float ranging from 0.0 - 1.0 which describes the energy loss between storage and grid when recharging the grid. 0.0 means complete loss, 1.0 means no loss. max_charge_power: A float which represents the maximum power that can charge storage (calculated before any efficiency losses.). A value < 0 means there is no charge power limit. max_discharge_power: A float which represents the maximum power that can discharge storage (calculated before any efficiency losses.). A value < 0 means there is no discharge power limit. max_storage: An optional float which represents the maximum energy that can be stored. A value < 0 means there is no maximum storage limit. is_rps: Boolean; if true, keeps track of rps_credit as storage is charged / discharged. Amount charging[t] is subtracted from rps_credit[t] from rps_credit[t]. Amount discharging[t] is added to rps_credit[t]. If false, no rps_credits are adjusted. """ def configure_lp_variables_and_constraints(self, lp): """Declare lp variables, and set constraints. Args: lp: LinearProgramContainer, contains lp solver and constraints. """ # Set up LP variables. self.energy_variables = lp.declare_timeslice_variables( self.name, self.grid_region_id ) if self.storage_nameplate_cost: self.energy_nameplate = lp.declare_nameplate_variable( self.name, self.grid_region_id ) # Set up source and configure LP variables. self.source = GridSource( name=self.name + " source", nameplate_unit_cost=self.discharge_nameplate_cost, variable_unit_cost=0.0, grid_region_id=self.grid_region_id, max_power=self.max_discharge_power, co2_per_electrical_energy=0.0, power_coefficient=self.discharge_efficiency, is_rps_source=self.is_rps, ) self.source.solver = _GridSourceDispatchableSolver(self.source) self.source.configure_lp_variables_and_constraints(lp) # Set up sink and configure LP variables. self.sink = GridSource( name=self.name + " sink", nameplate_unit_cost=self.discharge_nameplate_cost, variable_unit_cost=0.0, grid_region_id=self.grid_region_id, max_power=self.max_charge_power, co2_per_electrical_energy=0.0, power_coefficient=-1.0, is_rps_source=self.is_rps, ) self.sink.solver = _GridSourceDispatchableSolver(self.sink) self.sink.configure_lp_variables_and_constraints(lp) # Add energy nameplate costs to the objective. Other costs are # added by source/sink.configure_lp_variables_and_constraints. if self.storage_nameplate_cost: nameplate = self.energy_nameplate lp.minimize_costs_objective.set_coefficient( nameplate, self.storage_nameplate_cost ) # Constrain Energy Storage to be Energy Last time plus sink minus source. # Storage is circular so variables at t=0 depend on variables at t=-1 # which is equivalent to last value in python indexing scheme. variables = self.energy_variables for t in lp.time_index_iterable: # Ce = charge_efficiency, # Se = storage_efficiency. # Stored[i] = se * Stored[i-1] + ce * sink[i-1] - source[i-1] # 0 = -Stored[i] + se * Stored[i-1] + ce * sink[i-1] - source[i-1] c = lp.constraint(0.0, 0.0) c.set_coefficient(variables[t], -1.0) # -Stored[i] c.set_coefficient(variables[t - 1], self.storage_efficiency) # Source and sink are relative to the grid, so opposite here: # Sink adds to storage, source subtracts from storage. c.set_coefficient(self.source.timeslice_variables[t - 1], -1.0) c.set_coefficient( self.sink.timeslice_variables[t - 1], self.charge_efficiency ) # Ensure nameplate is larger than stored_value. if self.storage_nameplate_cost: nameplate_constraint = lp.constraint(0.0, lp.solver.infinity()) nameplate_constraint.set_coefficient(nameplate, 1.0) nameplate_constraint.set_coefficient(variables[t], -1.0) # Constrain maximum storage if max_storage >= 0 if self.max_storage >= 0.0: max_storage_constraint = lp.constraint(0.0, self.max_storage) max_storage_constraint.set_coefficient(variables[t], 1.0) def post_process(self, lp): """Update lp post_processing result variables. This is done post lp.solve() so that sanity data checks can be done on RPS before returning results. Args: lp: The LinearProgramContainer where the post processing variables reside. """ sink_vals = self.sink.get_solution_values() source_vals = self.source.get_solution_values() * self.discharge_efficiency if self.is_rps: lp.rps_total[self.grid_region_id] += source_vals - sink_vals else: lp.non_rps_total[self.grid_region_id] += source_vals - sink_vals def get_nameplate_solution_value(self): """Gets the linear program solver results for nameplate. Must be called after lp.solve() to ensure solver has properly converged and has generated results. Raises: RuntimeError: If called before LinearProgramContainer.solve(). Returns: Float value representing solved nameplate value. """ if self.storage_nameplate_cost: nameplate_variable = self.energy_nameplate if nameplate_variable is None: raise RuntimeError( "Get_nameplate_solution_value called before solve()." ) return nameplate_variable.solution_value() else: return max(self.get_solution_values()) def get_solution_values(self): """Gets the linear program solver results. Must be called after lp.solve() to ensure solver has properly converged and has generated results. Raises: RuntimeError: If called before LinearProgramContainer.solve(). Returns: np.array of solutions for each timeslice variable. """ timeslice_variables = self.energy_variables if timeslice_variables is None: raise RuntimeError("get_solution_values called before solve.") return np.array([v.solution_value() for v in timeslice_variables]) class GridRecStorage(object): """Stores energy from the grid and returns it when needed subject to losses. This is a wrapper around two GridStorage objects, one which stores "clean" energy (is_rps) and one which stores "dirty" energy (not is_rps). There is a need for both types of storage to keep track of renewable energy credits. Attributes: name: A string which is the name of the object. storage_nameplate_cost: A float which is the cost per nameplate of energy storage. E.g. The cost of batteries. charge_nameplate_cost: A float which is the cost per nameplate power to charge the storage. E.g. The rectifier cost to convert an AC grid to DC storage. discharge_nameplate_cost: A float which is the cost per nameplate power to recharge the grid. E.g. The cost of a power inverter to convert DC storage back to AC grid_region_id: An int specifying the grid region of the storage. The storage can only store energy generated by sources with the same grid_region_id. Only demands with the same grid_region_id can sink power from this. charge_efficiency: A float ranging from 0.0 - 1.0 which describes the energy loss between the grid and the storage element. 0.0 means complete loss, 1.0 means no loss. storage_efficiency: A float ranging from 0.0 - 1.0 which describes how much stored energy remains from previous stored energy after one time-cycle. 1.0 means no loss. 0.0 means all stored energy is lost. discharge_efficiency: A float ranging from 0.0 - 1.0 which describes the energy loss between storage and grid when recharging the grid. 0.0 means complete loss, 1.0 means no loss. max_charge_power: A float which represents the maximum power that can charge storage (calculated before any efficiency losses.). A value < 0 means there is no charge power limit. max_discharge_power: A float which represents the maximum power that can discharge storage (calculated before any efficiency losses.). A value < 0 means there is no discharge power limit. max_storage: An optional float which represents the maximum energy that can be stored. A value < 0 means there is no maximum storage limit. rec_storage: GridStorage object which stores "clean" energy. no_rec_storage: GridStorage object which stores "dirty" energy. """ def configure_lp_variables_and_constraints(self, lp): """Declare lp variables, and set constraints.""" # For rec_storage and no_rec_storage storage, set all costs to 0 # and with no limits. Calculate costs and limits after # declaration. self.rec_storage = GridStorage( name=self.name + " REC_STORAGE", storage_nameplate_cost=0, grid_region_id=self.grid_region_id, charge_efficiency=self.charge_efficiency, discharge_efficiency=self.discharge_efficiency, storage_efficiency=self.storage_efficiency, is_rps=True, ) self.no_rec_storage = GridStorage( name=self.name + " NO_REC_STORAGE", storage_nameplate_cost=0, grid_region_id=self.grid_region_id, charge_efficiency=self.charge_efficiency, discharge_efficiency=self.discharge_efficiency, storage_efficiency=self.storage_efficiency, is_rps=False, ) self.rec_storage.configure_lp_variables_and_constraints(lp) self.no_rec_storage.configure_lp_variables_and_constraints(lp) # Calculate costs and limits based on the sum of both rec_storage # and no_rec_storage. # Set up LP variables. self.energy_variables = lp.declare_timeslice_variables( self.name, self.grid_region_id ) self.energy_nameplate = lp.declare_nameplate_variable( self.name, self.grid_region_id ) self.charge_nameplate = lp.declare_nameplate_variable( self.name + " charge nameplate", self.grid_region_id ) self.discharge_nameplate = lp.declare_nameplate_variable( self.name + " discharge nameplate", self.grid_region_id ) # Set limits if needed. if self.max_storage >= 0: lp.constraint(0.0, self.max_storage).set_coefficient( self.energy_nameplate, 1.0 ) if self.max_charge_power >= 0: lp.constraint(0.0, self.max_charge_power).set_coefficient( self.charge_nameplate, 1.0 ) if self.max_discharge_power >= 0: lp.constraint(0.0, self.max_discharge_power).set_coefficient( self.discharge_nameplate, 1.0 ) # Add energy nameplate costs to the objective. lp.minimize_costs_objective.set_coefficient( self.energy_nameplate, self.storage_nameplate_cost ) lp.minimize_costs_objective.set_coefficient( self.charge_nameplate, self.charge_nameplate_cost ) lp.minimize_costs_objective.set_coefficient( self.discharge_nameplate, self.discharge_nameplate_cost ) rec_storage_energy_variables = self.rec_storage.energy_variables no_rec_storage_energy_variables = self.no_rec_storage.energy_variables for t in lp.time_index_iterable: # Ensure nameplate is >= sum(stored_values)[t]. nameplate_constraint = lp.constraint(0.0, lp.solver.infinity()) nameplate_constraint.set_coefficient(self.energy_nameplate, 1.0) nameplate_constraint.set_coefficient(rec_storage_energy_variables[t], -1.0) nameplate_constraint.set_coefficient( no_rec_storage_energy_variables[t], -1.0 ) rec_storage_charge_variables = self.rec_storage.sink.timeslice_variables no_rec_storage_charge_variables = ( self.no_rec_storage.sink.timeslice_variables ) rec_storage_discharge_variables = ( self.rec_storage.source.timeslice_variables ) no_rec_storage_discharge_variables = ( self.no_rec_storage.source.timeslice_variables ) max_charge_constraint = lp.constraint(0.0, lp.solver.infinity()) max_charge_constraint.set_coefficient(self.charge_nameplate, 1.0) max_charge_constraint.set_coefficient(rec_storage_charge_variables[t], -1.0) max_charge_constraint.set_coefficient( no_rec_storage_charge_variables[t], -1.0 ) max_charge_constraint.set_coefficient( rec_storage_discharge_variables[t], 1.0 ) max_charge_constraint.set_coefficient( no_rec_storage_discharge_variables[t], 1.0 ) max_discharge_constraint = lp.constraint(0.0, lp.solver.infinity()) max_discharge_constraint.set_coefficient(self.discharge_nameplate, 1.0) max_discharge_constraint.set_coefficient( rec_storage_charge_variables[t], 1.0 ) max_discharge_constraint.set_coefficient( no_rec_storage_charge_variables[t], 1.0 ) max_discharge_constraint.set_coefficient( rec_storage_discharge_variables[t], -1.0 ) max_discharge_constraint.set_coefficient( no_rec_storage_discharge_variables[t], -1.0 ) def get_nameplate_solution_value(self): """Gets the linear program solver results for nameplate. Must be called after lp.solve() to ensure solver has properly converged and has generated results. Raises: RuntimeError: If called before LinearProgramContainer.solve(). Returns: Float value representing solved nameplate value. """ if self.storage_nameplate_cost: nameplate_variable = self.energy_nameplate if nameplate_variable is None: raise RuntimeError( "Get_nameplate_solution_value called before solve()." ) return nameplate_variable.solution_value() else: return max(self.get_solution_values()) class _GridTransmission(GridSource): """Shuttles power from one time-zone to another.""" def __init__( self, name, nameplate_unit_cost, source_grid_region_id=0, sink_grid_region_id=1, max_power=-1.0, efficiency=1.0, ): """Init function. Args: name: String name of the object. nameplate_unit_cost: (float) Cost to build a unit of transmission capacity. ($ / Megawatt of capacity) source_grid_region_id: An int specifying which grid_region power gets power added. sink_grid_region_id: An int specifying which grid_region power gets power subtracted. max_power: (float) Optional Maximum power which can be transmitted. (Megawatt). Set < 0 if there is no limit. efficiency: (float) ratio of how much power gets moved one grid_region to the other grid_region. Acceptable values are 0. < efficiency < 1. """ super(_GridTransmission, self).__init__( name, nameplate_unit_cost=nameplate_unit_cost, variable_unit_cost=0, grid_region_id=source_grid_region_id, max_power=max_power, max_energy=-1, co2_per_electrical_energy=0, power_coefficient=efficiency, ) self.sink_grid_region_id = sink_grid_region_id self.solver = _GridSourceDispatchableSolver(self) def configure_lp_variables_and_constraints(self, lp): """Declare lp variables, and set constraints. Args: lp: LinearProgramContainer, contains lp solver and constraints. """ super(_GridTransmission, self).configure_lp_variables_and_constraints(lp) # Handle Constraints. for t, var in enumerate(self.timeslice_variables): sink_id = self.sink_grid_region_id source_id = self.grid_region_id # Whatever the super-class is sourcing in source_grid_region_id, # sink it from sink_grid_region_id. lp.conserve_power_constraint[sink_id][t].set_coefficient(var, -1.0) if self.is_rps_source: lp.rps_source_constraints[sink_id][t].set_coefficient(var, -1.0) def post_process(self, lp): """Update lp post_processing result variables. This is done so that sanity data checks can be done on RPS before returning results. Args: lp: The LinearProgramContainer where the post processing variables reside. """ # Normal source post_process super(_GridTransmission, self).post_process(lp) # Sink post_process sink_id = self.sink_grid_region_id if lp.rps_percent > 0.0 and self.is_rps_source: lp.rps_total[sink_id] -= self.get_solution_values() else: lp.non_rps_total[sink_id] -= self.get_solution_values() class GridTransmission(object): """Transmits power bidirectionally between two grid_regions. At interface level, transmitting from region-m to region-n is identical to transmitting from region-n to region-m. Attributes: name: (str) name of the object. nameplate_unit_cost: (float) Cost to build a unit of transmission capacity. ($ / Megawatt of capacity) grid_region_id_a: An int specifying one grid_region transmission terminus grid_region_id_b: An int specifying a different grid_region transmission terminus max_power: (float) Optional Maximum power which can be transmitted. (Megawatt). Set < 0 if there is no limit. efficiency: (float) ratio of how much power gets moved one grid_region to the other grid_region. Acceptable values are 0. < efficiency < 1. a_to_b: _GridTransmission object which moves dirty power from grid_region_a to grid_region_b b_to_a: _GridTransmission object which moves dirty power from grid_region_b to grid_region_a rec_a_to_b: _GridTransmission object which moves clean power from grid_region_a to grid_region_b rec_b_to_a: _GridTransmission object which moves clean power from grid_region_b to grid_region_a """ def configure_lp_variables_and_constraints(self, lp): """Declare lp variables, and set constraints. Args: lp: LinearProgramContainer, contains lp solver and constraints. """ self.a_to_b = _GridTransmission( self.name + " a_to_b", 0, self.grid_region_id_b, self.grid_region_id_a, self.max_power, self.efficiency, ) self.b_to_a = _GridTransmission( self.name + " b_to_a", 0, self.grid_region_id_a, self.grid_region_id_b, self.max_power, self.efficiency, ) self.rec_a_to_b = _GridTransmission( self.name + " rec a_to_b", 0, self.grid_region_id_b, self.grid_region_id_a, self.max_power, self.efficiency, is_rps=True, ) self.rec_b_to_a = _GridTransmission( self.name + " rec b_to_a", 0, self.grid_region_id_a, self.grid_region_id_b, self.max_power, self.efficiency, is_rps=True, ) self.a_to_b.configure_lp_variables_and_constraints(lp) self.b_to_a.configure_lp_variables_and_constraints(lp) self.rec_a_to_b.configure_lp_variables_and_constraints(lp) self.rec_b_to_a.configure_lp_variables_and_constraints(lp) # Make sure nameplate >= sum(a_to_b) and nameplate >= sum(b_to_a) self.nameplate_variable = lp.declare_nameplate_variable( self.name, "%d_%d" % (self.grid_region_id_a, self.grid_region_id_b) ) lp.minimize_costs_objective.set_coefficient( self.nameplate_variable, self.nameplate_unit_cost ) for t in lp.time_index_iterable: # nameplate >= a_to_b[t] + rec_a_to_b[t] - b_to_a[t] - rec_b_to_a[t] a_to_b_constraint = lp.constraint(0.0, lp.solver.infinity()) a_to_b_constraint.set_coefficient(self.nameplate_variable, 1.0) a_to_b_constraint.set_coefficient(self.a_to_b.timeslice_variables[t], -1.0) a_to_b_constraint.set_coefficient( self.rec_a_to_b.timeslice_variables[t], -1.0 ) a_to_b_constraint.set_coefficient(self.b_to_a.timeslice_variables[t], 1.0) a_to_b_constraint.set_coefficient( self.rec_b_to_a.timeslice_variables[t], 1.0 ) # nameplate >= b_to_a[t] + rec_b_to_a[t] - a_to_b[t] - rec_a_to_b[t] b_to_a_constraint = lp.constraint(0.0, lp.solver.infinity()) b_to_a_constraint.set_coefficient(self.nameplate_variable, 1.0) b_to_a_constraint.set_coefficient(self.b_to_a.timeslice_variables[t], -1.0) b_to_a_constraint.set_coefficient( self.rec_b_to_a.timeslice_variables[t], -1.0 ) b_to_a_constraint.set_coefficient(self.a_to_b.timeslice_variables[t], 1.0) b_to_a_constraint.set_coefficient( self.rec_a_to_b.timeslice_variables[t], 1.0 ) def post_process(self, lp): """Update lp post_processing result variables. This is done so that sanity data checks can be done on RPS before returning results. Args: lp: The LinearProgramContainer where the post processing variables reside. """ self.a_to_b.post_process(lp) self.b_to_a.post_process(lp) self.rec_a_to_b.post_process(lp) self.rec_b_to_a.post_process(lp) def get_nameplate_solution_value(self): """Gets the linear program solver results for nameplate. Must be called after lp.solve() to ensure solver has properly converged and has generated results. Raises: RuntimeError: If called before LinearProgramContainer.solve(). Returns: Float value representing solved nameplate value. """ nameplate_variable = self.nameplate_variable if nameplate_variable is None: raise RuntimeError("Get_nameplate_solution_value called before solve().") return nameplate_variable.solution_value() class LinearProgramContainer(object): """Instantiates and interfaces to LP Solver. Example Usage: Initialize: lp = LinearProgramContainer() Add objects: lp.add_demands(<GridDemand>) lp.add_sources(<GridSource>) lp.add_transmissions(<GridTransmission>) lp.solve() Attributes: carbon_tax: The amount to tax 1 unit of co2 emissions. cost_of_money: The amount to multiply variable costs by to make yearly costs and fixed costs comparable. profiles: time-series profiles indexed by name which map to GridDemands and GridNonDispatchableSources. number_of_timeslices: int representing one timeslice per profile index. time_index_iterable: A simple int range from 0 - number_of_timeslices. Constraints: conserve_power_constraint: Dict keyed by grid_region_id. Value is a list of LP Constraints which ensures that power > demand at all times in all grid_regions. minimize_costs_objective: The LP Objective which is to minimize costs. rps_source_constraints: Dict keyed by grid_region_id. Value is a list of LP Constraints which ensures that rps_credit[grid_region, t] <= sum(rps_sources[grid_region, t]) rps_demand_constraints: Dict keyed by grid_region_id. Value is a list of LP Constraints which ensures that rps_credit[grid_region, t] <= demand[grid_region, t] RPS Variables: rps_credit_variables: Dict object keyed by grid_region_id. Value is a list of rps_credit[grid_region, t] variables for calculating rps. Post Processing Variables. Computed after LP converges: rps_total: Dict object keyed by grid_region_id. Value is sum (GridSource_power[grid_region, t]) of all rps sources. non_rps_total: Dict object keyed by grid_region_id. Value is sum (GridSource_power[grid_region, t]) of all non_rps sources. adjusted_demand: Dict object keyed by grid_region_id. Value is Demand[grid_region, t] rps_credit_values: Dict object keyed by grid_region_id. Value is rps_credit.value[grid_region, t] Grid Elements: demands: A list of GridDemand(s). sources: A list of GridSource(s). storage: A list of GridStorage(s). transmission: A list of GridTransmission(s). solver: The wrapped pywraplp.Solver. solver_precision: A float representing estimated precision of the solver. """ def __init__(self, profiles): """Initializes LP Container. Args: profiles: Time-series pandas dataframe profiles indexed by name which map to GridDemands and GridNonDispatchableSources. Raises: ValueError: If any value in profiles is < 0 or Nan / None. """ self.carbon_tax = 0.0 self.cost_of_money = 1.0 self.rps_percent = 0.0 self.profiles = profiles # Constraints self.conserve_power_constraint = {} self.minimize_costs_objective = None # RPS Constraints self.rps_source_constraints = {} self.rps_demand_constraints = {} # RPS Variables self.rps_credit_variables = {} # Post Processing Variables self.rps_total = {} self.non_rps_total = {} self.adjusted_demand = {} self.total_demand = 0 self.rps_demand = 0 self.rps_credit_values = {} self.demands = [] self.sources = [] self.storage = [] self.transmission = [] self.solver = None self.solver_precision = 1e-3 # Validate profiles if profiles is None: raise ValueError("No profiles specified.") if profiles.empty: raise ValueError("No Data in Profiles.") if profiles.isnull().values.any(): raise ValueError("Profiles may not be Null or None") profiles_lt_0 = profiles.values < 0 if profiles_lt_0.any(): raise ValueError("Profiles must not be < 0.") self.number_of_timeslices = len(profiles) self.time_index_iterable = range(self.number_of_timeslices) def add_demands(self, *demands): """Add all GridDemands in Args to self.demands.""" for d in demands: self.demands.append(d) def add_dispatchable_sources(self, *sources): """Verify source has no profile associated with it and add to self.sources. Args: *sources: arbitrary number of GridSources. Raises: KeyError: if Source has a profile associated with it which would indicate the source was non-dispatchable instead of dispatchable. """ for source in sources: if source.name in self.profiles: raise KeyError( "Dispatchable Source %s has a profile associated with it" % (source.name) ) source.solver = _GridSourceDispatchableSolver(source) self.sources.append(source) def add_nondispatchable_sources(self, *sources): """Verify source has a profile associated with it and add to self.sources. Args: *sources: arbitrary number of GridSources. Raises: KeyError: if Source has no profile associated with it which would indicate the source was dispatchable instead of non-dispatchable. """ for source in sources: if source.name not in self.profiles: known_sources = ",".join(sorted(self.profiles.columns)) known_source_string = "Known sources are (%s)." % known_sources raise KeyError( "Nondispatchable Source %s has no profile. %s" % (source.name, known_source_string) ) source.solver = _GridSourceNonDispatchableSolver( source, self.profiles[source.name] ) self.sources.append(source) def add_storage(self, *storage): """Add storage to lp.""" self.storage.extend(storage) def add_transmissions(self, *transmission): """Add transmission to lp.""" self.transmission.extend(transmission) def constraint(self, lower, upper, name=None, debug=False): """Build a new Constraint which with valid range between lower and upper.""" return Constraint(self, lower, upper, name, debug) def _initialize_solver(self): """Initializes solver, declares objective and set constraints. Solver is pywraplp.solver. Objective is to minimize costs subject to constraints. One constraint declared here is to ensure that power[grid_region][t] > demand[grid_region][t] for all t and grid_regions. Also configures GridElements. """ self.solver = pywraplp.Solver( "SolveEnergy", pywraplp.Solver.CLP_LINEAR_PROGRAMMING ) self.minimize_costs_objective = Objective(self, minimize=True) # Initialize GridDemands and GridSources demand_sum = 0.0 for d in self.demands: try: profiles = self.profiles[d.name] self.adjusted_demand[d.grid_region_id] = np.array(profiles.values) except KeyError: profile_names = str(self.profiles.keys()) error_string = ( "GridDemand %s. No profile found! Known profiles:(%s)" % (d.name, profile_names) ) raise KeyError(error_string) self.conserve_power_constraint[d.grid_region_id] = [ self.constraint( p, self.solver.infinity(), "Conserve Power gid:%d t:%d" % (d.grid_region_id, t), ) for t, p in enumerate(profiles) ] demand_sum += sum(profiles) # Handle RPS which is tricky. It requires special credit # variables[grid_region][time] and 3 constraints. # # Constraint #1: # The overall goal is to have RPS exceed rps_percent of total # demand. Given that: # total_rps_credit := sum(rps_credit[g][t]) # total_demand := sum(demand[g][t]) # # The constraint named total_rps_credit_gt_rps_percent_constraint # is: # total_rps_credit >= (self.rps_percent / 100) * total_demand # # Constraint #2: # rps_credit[g][t] cannot exceed sum of rps_sources - sum of # rps_sinks at each g,t. An example of rps_sink is the 'REC_STORAGE' # part of GridRecStorage which stores rps energy off the grid only # to put it back on the grid later as a rps_source. This is # reflected in the constraint named # rps_source_constraints[g][t]: # rps_credit[g][t] <= sum(rps_sources[g][t]) - sum(rps_sinks[g][t]) # # Constraint #3 # rps_credit[g][t] cannot exceed what can be used at each g,t. if # rps_sources generate a Gigawatt at g,t = 0,0 and only 1MW can be # used at g,t then we don't want to credit the unused 999 MW. # # The constraint named rps_demand_constraints is: # rps_credit[g][t] <= demand[g][t] # self.total_demand = demand_sum self.rps_demand = demand_sum * self.rps_percent / 100.0 solver = self.solver total_rps_credit_gt_rps_percent_constraint = self.constraint( self.rps_demand, solver.infinity() ) for d in self.demands: profiles = self.profiles[d.name] if self.rps_percent > 0.0: rps_credit_variables = self.declare_timeslice_variables( "__rps_credit__", d.grid_region_id ) else: rps_credit_variables = [ solver.NumVar( 0.0, 0.0, "__bogus rps_credit__ %d %d" % (d.grid_region_id, t) ) for t in self.time_index_iterable ] rps_demand_constraints = [] rps_source_constraints = [ self.constraint(0.0, solver.infinity()) for t in self.time_index_iterable ] self.rps_source_constraints[d.grid_region_id] = rps_source_constraints self.rps_credit_variables[d.grid_region_id] = rps_credit_variables for t in self.time_index_iterable: # Sum(rps_credit[grid_region, t]) >= rps_percent * total demand. total_rps_credit_gt_rps_percent_constraint.set_coefficient( rps_credit_variables[t], 1.0 ) # Rps_credit[grid_region, t] <= demand[grid_region, t]. rps_credit_less_than_demand = self.constraint( -solver.infinity(), profiles[t] ) rps_credit_less_than_demand.set_coefficient( rps_credit_variables[t], 1.0 ) rps_demand_constraints.append(rps_credit_less_than_demand) # Rps_credit[grid_region, t] <= (sum(rps_sources[grid_region, t]) # Constraint also gets adjusted by _GridSource(Non)DispatchableSolver. # configure_lp_variables_and_constraints rps_source_constraints[t].set_coefficient(rps_credit_variables[t], -1.0) self.rps_demand_constraints[d.grid_region_id] = rps_demand_constraints # Configure sources and storage. for s in self.sources + self.storage + self.transmission: s.configure_lp_variables_and_constraints(self) def solve(self): """Initializes and runs linear program. This is the main routine to call after __init__. Returns: True if linear program gave an optimal result. False otherwise. """ self._initialize_solver() status = self.solver.Solve() converged = status == self.solver.OPTIMAL if converged: self._post_process() return converged def _post_process(self): """Generates data used for calculating consumed rps/non-rps values. Also double-checks results to make sure they match constraints. Raises: RuntimeError: If double-checked results do not match constraints. """ # Initialize post_processing totals. for d in self.demands: # Total amount of rps_sources[g][t] power. self.rps_total[d.grid_region_id] = np.zeros(self.number_of_timeslices) # Total amount of non-rps_sources[g][t] power. self.non_rps_total[d.grid_region_id] = np.zeros(self.number_of_timeslices) for s in self.sources + self.storage + self.transmission: s.post_process(self) # Sanity error check results against constraints. If any of these # get raised, it indicates a bug in the code. solver_precision = self.solver_precision sum_rps_credits = 0.0 for g_id in [d.grid_region_id for d in self.demands]: power_deficit = self.adjusted_demand[g_id] - ( self.rps_total[g_id] + self.non_rps_total[g_id] ) lights_kept_on = (power_deficit < solver_precision).all() rps_credits = np.array( [rcv.solution_value() for rcv in self.rps_credit_variables[g_id]] ) sum_rps_credits += sum(rps_credits) self.rps_credit_values[g_id] = rps_credits rps_credit_gt_demand = ( rps_credits > self.adjusted_demand[g_id] + solver_precision ).all() rps_credit_gt_rps_sources = ( rps_credits > self.rps_total[g_id] + solver_precision ).all() storage_exceeds_demand = ( self.adjusted_demand[g_id] < -solver_precision ).all() if not lights_kept_on: raise DemandNotSatisfiedError( "Demand not satisfied by %f for region %d" % (max(power_deficit), g_id) ) if rps_credit_gt_demand: raise RpsExceedsDemandError( "RPS Credits Exceed Demand for region %d" % g_id ) if rps_credit_gt_rps_sources: raise RpsCreditExceedsSourcesError( "RPS Credits Exceed RPS Sources for region %d" % g_id ) if storage_exceeds_demand: raise StorageExceedsDemandError( "Storage Exceeds Demand for region %d" % g_id ) # Scale solver_precision by number of timeslices to get precision # for a summed comparison. sum_solver_precision = solver_precision * self.number_of_timeslices if sum_solver_precision + sum_rps_credits < self.rps_demand: raise RpsPercentNotMetError( "Sum RPS credits (%f) < demand * (%f rps_percent) (%f)" % (sum_rps_credits, float(self.rps_percent), self.rps_demand) ) def declare_timeslice_variables(self, name, grid_region_id): """Declares timeslice variables for a grid_region. Args: name: String to be included in the generated variable name. grid_region_id: Int which identifies which grid these variables affect. Do Not call this function with the same (name, grid_region_id) pair more than once. There may not be identically named variables in the same grid_region. Returns: Array of lp variables, each which range from 0 to infinity. Array is mapped so that variable for time-slice x is at index x. e.g. variable for first time-slice is variable[0]. variable for last time-slice is variable[-1] """ solver = self.solver variables = [] for t in self.time_index_iterable: var_name = "__".join( [name, "grid_region_id", str(grid_region_id), "at_t", str(t)] ) variables.append(solver.NumVar(0.0, solver.infinity(), var_name)) return variables def declare_nameplate_variable(self, name, grid_region_id): """Declares a nameplate variable for a grid_region. Args: name: String to be included in the generated variable name. grid_region_id: Stringifyable object which identifies which grid these variables affect. Do Not call this function with the same (name, grid_region_id) pair more than once. There may not be identically named variables in the same grid_region. Returns: A lp variable which values range from 0 to infinity. """ nameplate_name = "__".join( [name, "grid_region_id", str(grid_region_id), "peak"] ) solver = self.solver return solver.NumVar(0.0, solver.infinity(), nameplate_name) def extrapolate_cost(cost, discount_rate, time_span_1, time_span_2): """Extrapolate cost from one time span to another. Args: cost: cost incurred during time_span_1 (in units of currency) discount_rate: rate that money decays, per year (as decimal, e.g., .06) time_span_1: time span when cost incurred (in units of years) time_span_2: time span to extrapolate cost (in units of years) Returns: Cost extrapolated to time_span_2, units of currency. Model parameters are costs over time spans. For example, the demand may be a time series that lasts 1 year. The variable cost to fulfill that demand would then be for 1 year of operation. However, the GridModel is supposed to compute the total cost over a longer time span (e.g., 30 years). If there were no time value of money, the extrapolated cost would be the ratio of time_span_2 to time_span_1 (e.g., 30 in the example). However, payments in the future are less costly than payments in the present. We extrapolate the cost by first finding the equivalent continuous stream of payments over time_span_1 that is equivalent to the cost, then assume that stream of payments occurs over time_span_2, instead. """ growth_rate = 1.0 + discount_rate value_decay_1 = pow(growth_rate, -time_span_2) value_decay_2 = pow(growth_rate, -time_span_1) try: return cost * (1.0 - value_decay_1) / (1.0 - value_decay_2) except ZeroDivisionError: return cost
[ 2, 15069, 2177, 3012, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 8890, 5039, 1575, 12, 8738, 4402, 12278, 10706, 5103, 739, 1180, 4788, 13, 198, 198, 10669, 4909, 24846, 36, 3639, 25, 4333, 26406, 11, 1897, 1746, 290, 20514, 13, 220, 24846, 198, 36, 3639, 389, 4624, 287, 1180, 10706, 7652, 13, 220, 24846, 7652, 389, 198, 25512, 515, 422, 1123, 584, 523, 691, 4237, 351, 10706, 62, 36996, 62, 312, 6624, 2124, 460, 198, 6477, 1897, 1746, 351, 10706, 62, 36996, 62, 312, 6624, 2124, 198, 198, 464, 3484, 286, 30580, 24846, 36, 3639, 389, 1912, 2402, 25, 198, 220, 1438, 6816, 62, 20850, 62, 15805, 25, 383, 1575, 284, 1382, 530, 4326, 357, 68, 13, 70, 13, 8336, 707, 1078, 8, 286, 1176, 13, 198, 220, 7885, 62, 20850, 62, 15805, 25, 383, 1575, 284, 2148, 530, 4326, 286, 1176, 625, 640, 13, 198, 220, 220, 220, 357, 68, 13, 70, 13, 8336, 707, 1078, 12, 43223, 8, 198, 198, 464, 2438, 985, 15968, 262, 10706, 625, 3294, 640, 12, 82, 677, 274, 13, 220, 304, 13, 70, 13, 220, 19123, 306, 198, 2502, 257, 530, 614, 2278, 543, 561, 3975, 284, 1987, 1635, 21268, 796, 10083, 1899, 640, 12, 82, 677, 274, 13, 198, 198, 464, 2438, 318, 1912, 2402, 257, 14174, 12, 23065, 543, 4909, 25, 628, 220, 532, 1052, 9432, 543, 318, 284, 17775, 3484, 13, 198, 220, 532, 1482, 2536, 6003, 543, 1276, 307, 1138, 878, 262, 4610, 460, 47873, 13, 198, 220, 220, 220, 532, 45075, 62, 6477, 62, 1102, 2536, 2913, 25, 48987, 326, 2160, 7, 6477, 58, 83, 12962, 18189, 198, 220, 220, 220, 220, 220, 3512, 58, 83, 60, 329, 477, 256, 287, 1123, 10706, 12, 36996, 198, 198, 1212, 2438, 481, 670, 351, 597, 900, 286, 6414, 4991, 13, 220, 1114, 262, 198, 14225, 4832, 286, 10314, 11, 262, 4991, 7147, 389, 25, 628, 220, 4333, 25, 8336, 46684, 198, 220, 3862, 25, 19347, 198, 220, 357, 28532, 1572, 8, 6682, 796, 4333, 1635, 3862, 5218, 8336, 707, 1078, 12, 39792, 198, 220, 6446, 25, 45792, 45491, 198, 220, 7375, 17, 2295, 7717, 25, 16859, 2516, 628, 220, 357, 28532, 1572, 8, 7375, 17, 2295, 2175, 583, 6682, 5218, 16859, 2516, 1220, 8336, 707, 1078, 12, 39792, 198, 220, 23699, 9241, 25, 720, 1220, 16859, 2516, 198, 198, 37811, 198, 198, 11748, 18931, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 393, 31391, 13, 29127, 62, 82, 14375, 1330, 12972, 29988, 489, 79, 628, 628, 628, 628, 198, 4871, 1482, 2536, 2913, 7, 15252, 2599, 198, 220, 220, 220, 37227, 39, 10119, 281, 18470, 1482, 2536, 2913, 2134, 351, 3131, 28769, 1321, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 32315, 25, 10238, 12972, 29988, 489, 79, 13, 3103, 2536, 2913, 2134, 198, 220, 220, 220, 220, 220, 220, 1438, 25, 1438, 286, 32315, 198, 220, 220, 220, 220, 220, 220, 10451, 25, 20267, 540, 326, 8739, 3891, 286, 9633, 284, 44036, 628, 220, 220, 220, 12972, 29988, 489, 79, 13, 3103, 2536, 2913, 1595, 470, 4417, 257, 1351, 286, 9633, 14, 1073, 41945, 11, 523, 198, 220, 220, 220, 356, 423, 284, 1394, 2610, 6731, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 300, 79, 11, 2793, 62, 7784, 11, 6727, 62, 7784, 11, 1438, 28, 14202, 11, 14257, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 1482, 2536, 2913, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 44800, 15167, 29869, 326, 27521, 262, 18470, 1540, 332, 543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8075, 262, 32315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 62, 7784, 25, 357, 22468, 8, 16048, 5421, 319, 1720, 1022, 763, 14822, 82, 290, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6727, 62, 7784, 25, 357, 22468, 8, 20390, 5421, 319, 1720, 1022, 763, 14822, 82, 290, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 32233, 1692, 31744, 4731, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 25, 41146, 543, 611, 900, 11, 17259, 32315, 7508, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 2536, 2913, 796, 300, 79, 13, 82, 14375, 13, 3103, 2536, 2913, 7, 21037, 62, 7784, 11, 6727, 62, 7784, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 687, 4712, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 796, 14257, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 10943, 2257, 3861, 12394, 25, 4064, 69, 19841, 4064, 82, 19841, 4064, 69, 1600, 2793, 62, 7784, 11, 1438, 11, 6727, 62, 7784, 8, 628, 220, 220, 220, 825, 900, 62, 1073, 16814, 7, 944, 11, 7885, 11, 35381, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46245, 7885, 1635, 35381, 284, 18470, 1766, 16814, 13, 628, 220, 220, 220, 220, 220, 220, 220, 27323, 862, 12972, 37150, 13, 7248, 34, 2577, 5632, 7, 45286, 11, 35381, 8, 2446, 290, 198, 220, 220, 220, 220, 220, 220, 220, 16031, 7885, 11, 35381, 284, 10451, 8633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2293, 4585, 428, 2446, 11, 37092, 15853, 7885, 1635, 35381, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 25, 357, 43, 79, 35748, 8, 383, 35748, 15082, 291, 392, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35381, 25, 357, 22468, 8, 383, 35381, 15082, 291, 392, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 2536, 2913, 13, 7248, 34, 2577, 5632, 7, 45286, 11, 35381, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 687, 4712, 58, 45286, 13, 3672, 3419, 60, 796, 35381, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 4, 82, 15853, 4064, 82, 1635, 4064, 69, 1600, 2116, 13, 3672, 11, 7885, 13, 3672, 22784, 35381, 8, 628, 198, 4871, 37092, 7, 15252, 2599, 198, 220, 220, 220, 37227, 39, 10119, 281, 18470, 37092, 2134, 351, 3131, 28769, 1321, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 9432, 25, 4698, 3157, 12972, 29988, 489, 79, 13, 10267, 425, 2134, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 300, 79, 11, 17775, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 37092, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 44800, 15167, 29869, 326, 27521, 262, 18470, 1540, 332, 543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8075, 262, 37092, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17775, 25, 25131, 11, 6407, 611, 9432, 815, 307, 49491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4306, 9432, 318, 12991, 528, 798, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15252, 425, 796, 300, 79, 13, 82, 14375, 13, 10267, 425, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 687, 4712, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 17775, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15252, 425, 13, 7248, 9452, 320, 1634, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15252, 425, 13, 7248, 11518, 320, 1634, 3419, 628, 220, 220, 220, 825, 900, 62, 1073, 16814, 7, 944, 11, 7885, 11, 35381, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46245, 7885, 1635, 35381, 284, 18470, 37092, 13, 628, 220, 220, 220, 220, 220, 220, 220, 27323, 862, 12972, 37150, 13, 7248, 34, 2577, 5632, 7, 45286, 11, 35381, 8, 2446, 290, 198, 220, 220, 220, 220, 220, 220, 220, 16031, 7885, 11, 35381, 284, 10451, 8633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2293, 4585, 428, 2446, 11, 37092, 15853, 7885, 1635, 35381, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 25, 357, 43, 79, 35748, 8, 383, 35748, 15082, 291, 392, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35381, 25, 357, 22468, 8, 383, 35381, 15082, 291, 392, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15252, 425, 13, 7248, 34, 2577, 5632, 7, 45286, 11, 35381, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 687, 4712, 58, 45286, 13, 3672, 3419, 60, 796, 35381, 628, 198, 4871, 24846, 42782, 7, 15252, 2599, 198, 220, 220, 220, 37227, 26437, 1295, 12, 13829, 2134, 543, 6870, 3440, 319, 262, 10706, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 11, 10706, 62, 36996, 62, 312, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 24846, 42782, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 1438, 286, 262, 3512, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 25, 1052, 493, 31577, 262, 10706, 3814, 286, 262, 3512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5514, 4237, 351, 262, 976, 10706, 62, 36996, 62, 312, 460, 1176, 428, 3512, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 796, 10706, 62, 36996, 62, 312, 628, 198, 4871, 24846, 7416, 7, 15252, 2599, 198, 220, 220, 220, 37227, 21306, 6421, 36845, 11, 763, 17, 11, 3814, 11, 1176, 290, 2568, 11247, 286, 257, 1176, 2723, 13, 628, 220, 220, 220, 24846, 26406, 743, 2035, 307, 27965, 540, 393, 1729, 12, 6381, 17147, 540, 13, 198, 220, 220, 220, 220, 220, 532, 35934, 540, 4237, 743, 1176, 379, 597, 640, 11, 304, 13, 70, 13, 12584, 5252, 6134, 13, 198, 220, 220, 220, 220, 220, 532, 8504, 12, 6381, 17147, 540, 4237, 389, 10795, 319, 262, 2858, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7716, 1176, 13, 304, 13, 70, 13, 12347, 393, 3086, 6134, 13, 628, 220, 220, 220, 1002, 612, 318, 257, 640, 12, 48369, 1176, 7034, 41497, 416, 262, 976, 1438, 355, 198, 220, 220, 220, 428, 2723, 287, 44800, 15167, 29869, 13, 5577, 2915, 13, 220, 383, 2723, 318, 198, 220, 220, 220, 3177, 8504, 12, 6381, 17147, 540, 13, 220, 15323, 11, 340, 318, 3177, 27965, 540, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 1438, 25, 357, 2536, 8, 1438, 286, 262, 2134, 13, 198, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 25, 357, 22468, 8, 6446, 284, 1382, 257, 4326, 286, 198, 220, 220, 220, 220, 220, 220, 220, 27965, 540, 1176, 13, 220, 7198, 1220, 8336, 707, 1078, 286, 5339, 8, 628, 220, 220, 220, 220, 220, 7885, 62, 20850, 62, 15805, 25, 357, 22468, 8, 6446, 284, 5127, 257, 4326, 286, 27965, 540, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 583, 640, 13, 7198, 1220, 8336, 707, 1078, 12, 43223, 8, 628, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 25, 1052, 493, 31577, 262, 10706, 3814, 286, 262, 2723, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5514, 8665, 351, 262, 976, 10706, 62, 36996, 62, 312, 460, 14595, 262, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 422, 428, 2723, 13, 628, 220, 220, 220, 220, 220, 3509, 62, 6477, 25, 357, 22468, 8, 32233, 22246, 1176, 543, 2134, 460, 5127, 13, 198, 220, 220, 220, 220, 220, 220, 220, 357, 42672, 707, 1078, 737, 5345, 1279, 657, 611, 612, 318, 645, 4179, 13, 628, 220, 220, 220, 220, 220, 3509, 62, 22554, 25, 357, 22468, 8, 32233, 5415, 2568, 543, 2134, 460, 198, 220, 220, 220, 220, 220, 220, 220, 5127, 13, 357, 42672, 707, 1078, 12, 39792, 8, 5345, 1279, 657, 611, 612, 318, 645, 4179, 13, 628, 220, 220, 220, 220, 220, 763, 17, 62, 525, 62, 9509, 8143, 62, 22554, 25, 357, 22468, 8, 357, 35416, 2516, 286, 7375, 17, 1220, 8336, 707, 1078, 19123, 737, 628, 220, 220, 220, 220, 220, 1176, 62, 1073, 16814, 25, 357, 22468, 8, 8064, 286, 703, 881, 1176, 318, 14275, 416, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 3691, 13, 703, 881, 1176, 3011, 319, 262, 10706, 13, 220, 657, 1279, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 1073, 16814, 1279, 352, 13, 220, 21198, 3289, 352, 13, 15, 13, 628, 220, 220, 220, 220, 220, 318, 62, 81, 862, 62, 10459, 25, 41146, 543, 43397, 611, 262, 2723, 318, 3017, 198, 220, 220, 220, 220, 220, 220, 220, 287, 262, 29479, 540, 4347, 13652, 8997, 13, 628, 220, 220, 220, 220, 220, 1540, 332, 25, 15467, 257, 4808, 41339, 7416, 49354, 540, 50, 14375, 393, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 41339, 7416, 15419, 49354, 540, 50, 14375, 13, 220, 16718, 284, 9058, 18470, 198, 220, 220, 220, 220, 220, 220, 220, 1482, 2536, 6003, 11, 9515, 1083, 290, 9633, 329, 262, 2723, 290, 284, 198, 220, 220, 220, 220, 220, 220, 220, 989, 2482, 13, 628, 220, 220, 220, 220, 220, 1661, 75, 501, 62, 25641, 2977, 25, 1052, 7177, 286, 18470, 9633, 11, 530, 583, 640, 12, 48369, 198, 220, 220, 220, 220, 220, 220, 220, 286, 18640, 13, 220, 15690, 318, 27661, 523, 326, 7885, 329, 198, 220, 220, 220, 220, 220, 220, 220, 640, 12, 48369, 256, 318, 379, 6376, 256, 13, 198, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 329, 717, 640, 12, 48369, 318, 1661, 75, 501, 62, 45286, 58, 15, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 329, 938, 640, 12, 48369, 318, 1661, 75, 501, 62, 45286, 58, 12, 16, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 329, 640, 12, 48369, 379, 640, 256, 318, 1661, 75, 501, 62, 45286, 58, 83, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 5514, 3011, 6875, 611, 24846, 7416, 318, 257, 35934, 540, 7416, 13, 628, 220, 220, 220, 220, 220, 1438, 6816, 62, 45286, 25, 18470, 7885, 10200, 262, 1438, 6816, 393, 198, 220, 220, 220, 220, 220, 220, 220, 5415, 1176, 262, 24846, 7416, 460, 5072, 379, 597, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7885, 62, 20850, 62, 15805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 10779, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22554, 10779, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 763, 17, 62, 525, 62, 9509, 8143, 62, 22554, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 1073, 16814, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 81, 862, 62, 10459, 28, 25101, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 9695, 286, 257, 24846, 7416, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 357, 2536, 8, 1438, 286, 262, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 25, 357, 22468, 8, 6446, 284, 1382, 257, 4326, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27965, 540, 1176, 13, 220, 7198, 1220, 8336, 707, 1078, 286, 5339, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 62, 20850, 62, 15805, 25, 357, 22468, 8, 6446, 284, 5127, 257, 4326, 286, 27965, 540, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 583, 640, 13, 7198, 1220, 8336, 707, 1078, 12, 43223, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 25, 1052, 493, 31577, 262, 10706, 3814, 286, 262, 3512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5514, 8665, 351, 262, 976, 10706, 62, 36996, 62, 312, 460, 14595, 262, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 428, 2723, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 25, 357, 22468, 8, 22246, 1176, 543, 2134, 460, 5127, 13, 357, 42672, 707, 1078, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22554, 25, 357, 22468, 8, 22246, 2568, 543, 2134, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5127, 13, 357, 42672, 707, 1078, 12, 39792, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 17, 62, 525, 62, 9509, 8143, 62, 22554, 25, 357, 22468, 8, 357, 35416, 2516, 286, 7375, 17, 1220, 8336, 707, 1078, 19123, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 1073, 16814, 25, 357, 22468, 8, 8064, 286, 703, 881, 1176, 318, 14275, 416, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2134, 3691, 13, 703, 881, 1176, 3011, 319, 262, 10706, 13, 220, 657, 1279, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 1073, 16814, 1279, 352, 13, 220, 21198, 3289, 352, 13, 15, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 81, 862, 62, 10459, 25, 41146, 543, 43397, 611, 262, 2723, 318, 3017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 29479, 540, 4347, 13652, 8997, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 6816, 62, 20850, 62, 15805, 796, 1438, 6816, 62, 20850, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45286, 62, 20850, 62, 15805, 796, 7885, 62, 20850, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 22554, 796, 3509, 62, 22554, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 6477, 796, 3509, 62, 6477, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 796, 10706, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1073, 17, 62, 525, 62, 9509, 8143, 62, 22554, 796, 763, 17, 62, 525, 62, 9509, 8143, 62, 22554, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6477, 62, 1073, 16814, 796, 1176, 62, 1073, 16814, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 81, 862, 62, 10459, 796, 318, 62, 81, 862, 62, 10459, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22355, 75, 501, 62, 25641, 2977, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 6816, 62, 45286, 796, 6045, 628, 220, 220, 220, 825, 17425, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 533, 300, 79, 9633, 11, 290, 900, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 383, 44800, 15167, 29869, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2896, 364, 284, 2116, 13, 82, 14375, 543, 6105, 4566, 942, 9633, 290, 198, 220, 220, 220, 220, 220, 220, 220, 17778, 287, 428, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 4418, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 41339, 7416, 49354, 540, 50, 14375, 11, 4808, 41339, 7416, 15419, 49354, 540, 50, 14375, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 628, 220, 220, 220, 825, 1281, 62, 14681, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 300, 79, 1281, 62, 36948, 1255, 9633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 1760, 1281, 300, 79, 13, 82, 6442, 3419, 523, 326, 34182, 1366, 8794, 460, 307, 1760, 198, 220, 220, 220, 220, 220, 220, 220, 319, 371, 3705, 878, 8024, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 383, 44800, 15167, 29869, 810, 262, 1281, 7587, 9633, 26412, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 300, 79, 13, 81, 862, 62, 25067, 1875, 657, 13, 15, 290, 2116, 13, 271, 62, 81, 862, 62, 10459, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 81, 862, 62, 23350, 58, 944, 13, 25928, 62, 36996, 62, 312, 60, 15853, 2116, 13, 1136, 62, 82, 2122, 62, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 13159, 62, 81, 862, 62, 23350, 58, 944, 13, 25928, 62, 36996, 62, 312, 60, 15853, 2116, 13, 1136, 62, 82, 2122, 62, 27160, 3419, 628, 220, 220, 220, 825, 651, 62, 82, 2122, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 14174, 1430, 1540, 332, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1444, 706, 300, 79, 13, 82, 6442, 3419, 284, 4155, 1540, 332, 468, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 290, 468, 7560, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 286, 8136, 329, 1123, 1661, 75, 501, 7885, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 82, 14375, 13, 1136, 62, 82, 2122, 62, 27160, 3419, 628, 220, 220, 220, 825, 651, 62, 3672, 6816, 62, 82, 2122, 62, 8367, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 14174, 1430, 1540, 332, 2482, 329, 1438, 6816, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1444, 706, 300, 79, 13, 82, 6442, 3419, 284, 4155, 1540, 332, 468, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 290, 468, 7560, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43160, 12331, 25, 1002, 1444, 878, 44800, 15167, 29869, 13, 82, 6442, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48436, 1988, 10200, 16019, 1438, 6816, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 45286, 796, 2116, 13, 3672, 6816, 62, 45286, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6816, 62, 45286, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 3855, 62, 3672, 6816, 62, 82, 2122, 62, 8367, 1444, 878, 8494, 3419, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 6816, 62, 45286, 13, 82, 2122, 62, 8367, 3419, 628, 198, 4871, 4808, 41339, 7416, 49354, 540, 50, 14375, 7, 15252, 2599, 198, 220, 220, 220, 37227, 13434, 8090, 543, 460, 2148, 1176, 379, 597, 640, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 2723, 25, 24846, 7416, 2134, 810, 2116, 18616, 18470, 9633, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 17425, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 533, 300, 79, 9633, 11, 290, 900, 17778, 287, 10706, 62, 10459, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 383, 44800, 15167, 29869, 13, 628, 220, 220, 220, 220, 220, 220, 220, 15965, 2977, 16691, 1144, 2291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1661, 75, 501, 9633, 25, 2380, 703, 881, 1176, 262, 2723, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 889, 379, 1123, 640, 12, 48369, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1438, 6816, 7885, 25, 6870, 262, 5415, 1176, 18229, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 3815, 286, 777, 9633, 389, 16019, 416, 262, 14174, 1430, 284, 198, 220, 220, 220, 220, 220, 220, 220, 27183, 3484, 2426, 284, 617, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4045, 9432, 318, 284, 17775, 1575, 13, 220, 3423, 259, 11, 262, 4045, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 318, 3220, 416, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1438, 6816, 1575, 25, 1438, 6816, 62, 20850, 62, 15805, 1635, 1438, 6816, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 7885, 1575, 25, 7885, 62, 20850, 62, 15805, 1635, 2160, 7, 22355, 75, 501, 62, 25641, 2977, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 6588, 1575, 25, 300, 79, 13, 29255, 62, 19290, 1635, 2160, 7, 22355, 75, 501, 62, 25641, 2977, 8, 1635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 17, 62, 525, 62, 9509, 8143, 62, 22554, 628, 220, 220, 220, 220, 220, 220, 220, 4619, 7885, 290, 6588, 3484, 697, 24508, 319, 257, 27458, 4308, 11, 356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29162, 606, 416, 300, 79, 13, 15805, 62, 1659, 62, 26316, 284, 787, 27458, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 12, 2435, 3484, 13975, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1482, 2536, 6003, 2727, 1220, 9518, 994, 2291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 22246, 6682, 25, 48987, 2160, 1661, 75, 501, 12, 25641, 2977, 1279, 3509, 62, 22554, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 22554, 18189, 657, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 32315, 318, 691, 329, 4237, 810, 612, 389, 7095, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 262, 2472, 2033, 286, 5270, 543, 460, 307, 3170, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 13, 1318, 389, 691, 257, 3614, 1271, 286, 4113, 810, 530, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 7409, 1773, 789, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 22246, 4333, 25, 48987, 645, 1661, 75, 501, 12, 25641, 2977, 1875, 3509, 62, 6477, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 6477, 318, 18189, 657, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 32315, 318, 691, 329, 4237, 810, 612, 389, 7095, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 262, 5415, 2033, 286, 1176, 543, 460, 307, 3170, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 13, 7409, 1773, 789, 543, 460, 691, 17655, 379, 257, 5415, 2494, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3515, 3760, 4333, 25, 48987, 326, 2160, 7, 6477, 8, 1875, 3512, 329, 477, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 12, 82, 677, 274, 13, 220, 7778, 22696, 1927, 1444, 366, 44815, 262, 22661, 319, 526, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 48987, 1438, 6816, 7885, 1875, 1176, 7, 83, 8, 329, 477, 256, 13, 220, 775, 1276, 787, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1654, 326, 356, 1053, 19744, 503, 257, 4618, 543, 460, 5127, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9167, 1176, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 2116, 13, 10459, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9058, 18470, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 22355, 75, 501, 62, 25641, 2977, 796, 300, 79, 13, 32446, 533, 62, 22355, 75, 501, 62, 25641, 2977, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 11, 2723, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 6816, 62, 45286, 796, 300, 79, 13, 32446, 533, 62, 3672, 6816, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 11, 2723, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1540, 332, 796, 300, 79, 13, 82, 14375, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17056, 495, 5415, 2568, 611, 340, 318, 18189, 657, 13, 220, 15323, 466, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 32315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22554, 62, 1102, 2536, 2913, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 2723, 13, 9806, 62, 22554, 8, 611, 2723, 13, 9806, 62, 22554, 18189, 657, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17056, 495, 5415, 1438, 6816, 611, 340, 318, 18189, 657, 13, 220, 15323, 466, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 32315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 796, 2723, 13, 9806, 62, 6477, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 62, 6477, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 3509, 62, 6477, 737, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 6816, 62, 45286, 11, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7472, 62, 15805, 3407, 1438, 6816, 1575, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 15252, 425, 796, 300, 79, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 15252, 425, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 6816, 62, 45286, 11, 2723, 13, 3672, 6816, 62, 20850, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1661, 75, 501, 9633, 284, 44036, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 11, 1401, 287, 27056, 378, 7, 10459, 13, 22355, 75, 501, 62, 25641, 2977, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7472, 62, 15805, 635, 3407, 7885, 290, 6588, 1575, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 62, 1073, 891, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 45286, 62, 20850, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2723, 13, 1073, 17, 62, 525, 62, 9509, 8143, 62, 22554, 1635, 300, 79, 13, 29255, 62, 19290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 1635, 300, 79, 13, 15805, 62, 1659, 62, 26316, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 15252, 425, 13, 2617, 62, 1073, 16814, 7, 7785, 11, 7885, 62, 1073, 891, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9175, 262, 7588, 319, 379, 477, 1661, 13, 220, 4333, 62, 1073, 16814, 318, 3221, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 13, 15, 11, 475, 318, 532, 16, 13, 15, 329, 24846, 31425, 13, 82, 676, 290, 17655, 62, 45888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 24846, 31425, 13, 10459, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 5936, 3760, 62, 6477, 62, 1102, 2536, 2913, 58, 10459, 13, 25928, 62, 36996, 62, 312, 7131, 83, 4083, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 11, 2723, 13, 6477, 62, 1073, 16814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 391, 374, 862, 62, 43082, 611, 2622, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 13, 271, 62, 81, 862, 62, 10459, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 81, 862, 62, 10459, 62, 1102, 2536, 6003, 58, 10459, 13, 25928, 62, 36996, 62, 312, 7131, 83, 4083, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 11, 2723, 13, 6477, 62, 1073, 16814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 2472, 2568, 318, 1342, 621, 2723, 13, 9806, 62, 22554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 62, 22554, 62, 1102, 2536, 2913, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22554, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 7785, 11, 352, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 1176, 1595, 470, 7074, 2723, 13, 9806, 62, 6477, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 62, 6477, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 3509, 62, 6477, 737, 2617, 62, 1073, 16814, 7, 7785, 11, 352, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6530, 6816, 1276, 307, 5749, 621, 4387, 1176, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 1438, 6816, 62, 20850, 62, 15805, 1875, 657, 11, 6446, 30011, 1634, 481, 4574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6530, 6816, 1474, 3509, 7, 22355, 75, 501, 62, 25641, 2977, 737, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 1540, 332, 13, 10745, 6269, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 7785, 11, 532, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 10459, 13, 3672, 6816, 62, 45286, 11, 352, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 391, 5415, 1438, 6816, 611, 3509, 62, 6477, 318, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 13, 9806, 62, 6477, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 2723, 13, 9806, 62, 6477, 737, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 6816, 62, 45286, 11, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 651, 62, 82, 2122, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 14174, 1430, 1540, 332, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1444, 706, 300, 79, 13, 82, 6442, 3419, 284, 4155, 1540, 332, 468, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 290, 468, 7560, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43160, 12331, 25, 1002, 1444, 878, 44800, 15167, 29869, 13, 82, 6442, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 286, 8136, 329, 1123, 1661, 75, 501, 7885, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1661, 75, 501, 62, 25641, 2977, 796, 2116, 13, 10459, 13, 22355, 75, 501, 62, 25641, 2977, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1661, 75, 501, 62, 25641, 2977, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 1136, 62, 82, 2122, 62, 27160, 1444, 878, 8494, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 85, 13, 82, 2122, 62, 8367, 3419, 329, 410, 287, 1661, 75, 501, 62, 25641, 2977, 12962, 628, 198, 4871, 4808, 41339, 7416, 15419, 49354, 540, 50, 14375, 7, 15252, 2599, 198, 220, 220, 220, 37227, 13434, 8090, 543, 460, 2148, 1438, 6816, 3294, 286, 663, 7034, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 2723, 25, 24846, 7416, 2134, 810, 2116, 18616, 18470, 9633, 198, 220, 220, 220, 220, 220, 7034, 25, 19798, 292, 7171, 543, 6870, 644, 13390, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 262, 2723, 460, 2148, 379, 597, 1813, 640, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 17425, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 533, 300, 79, 9633, 11, 290, 900, 17778, 287, 10706, 62, 10459, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 383, 44800, 15167, 29869, 13, 628, 220, 220, 220, 220, 220, 220, 220, 15965, 2977, 16691, 1144, 2291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1438, 6816, 7885, 25, 6870, 262, 5415, 1176, 18229, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 3815, 286, 777, 9633, 389, 16019, 416, 262, 14174, 1430, 284, 198, 220, 220, 220, 220, 220, 220, 220, 27183, 3484, 2426, 284, 617, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4045, 9432, 318, 284, 17775, 1575, 13, 220, 3423, 259, 11, 262, 4045, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 318, 3220, 416, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1438, 6816, 1575, 25, 1438, 6816, 62, 20850, 62, 15805, 1635, 1438, 6816, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 7885, 1575, 25, 7885, 62, 20850, 62, 15805, 1635, 1438, 6816, 7885, 1635, 2160, 7, 13317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 6588, 1575, 25, 300, 79, 13, 29255, 62, 19290, 1635, 1438, 6816, 7885, 1635, 2160, 7, 13317, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4619, 7885, 290, 6588, 3484, 697, 24508, 319, 257, 24169, 4308, 11, 356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29162, 606, 416, 300, 79, 13, 15805, 62, 1659, 62, 26316, 284, 787, 24169, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 12, 2435, 3484, 13975, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1482, 2536, 6003, 2727, 1220, 9518, 994, 2291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 22246, 6682, 25, 48987, 1438, 6816, 1635, 2160, 7, 13317, 8, 1279, 3509, 62, 22554, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 22554, 18189, 657, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 32315, 318, 691, 329, 4237, 810, 612, 389, 7095, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 262, 2472, 2033, 286, 5270, 543, 460, 307, 3170, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 13, 1318, 389, 691, 257, 3614, 1271, 286, 4113, 810, 530, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 7409, 1773, 789, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 22246, 4333, 25, 48987, 1438, 6816, 19841, 3509, 62, 6477, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 6477, 18189, 657, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 32315, 318, 691, 329, 4237, 810, 612, 389, 7095, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 262, 5415, 2033, 286, 1176, 543, 460, 307, 3170, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 13, 7409, 1773, 789, 543, 460, 691, 17655, 379, 257, 5415, 2494, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3515, 3760, 4333, 25, 48987, 326, 2160, 7, 6477, 8, 1875, 3512, 329, 477, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 12, 82, 677, 274, 13, 220, 7778, 22696, 1927, 1444, 366, 44815, 262, 22661, 319, 526, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 2116, 13, 10459, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9058, 18470, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 6816, 62, 45286, 796, 300, 79, 13, 32446, 533, 62, 3672, 6816, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 11, 2723, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2160, 62, 13317, 796, 2160, 7, 944, 13, 13317, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17056, 495, 5415, 2568, 611, 340, 318, 18189, 657, 13, 220, 15323, 466, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 32315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 13, 9806, 62, 22554, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 2723, 13, 9806, 62, 22554, 737, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 6816, 62, 45286, 11, 2160, 62, 13317, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17056, 495, 5415, 2568, 611, 340, 318, 18189, 657, 13, 220, 15323, 466, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 32315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 796, 2723, 13, 9806, 62, 6477, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 62, 6477, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 3509, 62, 6477, 737, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 6816, 62, 45286, 11, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7472, 62, 15805, 3407, 1438, 6816, 1575, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 15252, 425, 796, 300, 79, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 628, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 1073, 16814, 796, 2723, 13, 3672, 6816, 62, 20850, 62, 15805, 1343, 300, 79, 13, 15805, 62, 1659, 62, 26316, 1635, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 45286, 62, 20850, 62, 15805, 1635, 2160, 62, 13317, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2723, 13, 1073, 17, 62, 525, 62, 9509, 8143, 62, 22554, 1635, 2160, 62, 13317, 1635, 300, 79, 13, 29255, 62, 19290, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 15252, 425, 13, 2617, 62, 1073, 16814, 7, 10459, 13, 3672, 6816, 62, 45286, 11, 1575, 62, 1073, 16814, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1661, 75, 501, 9633, 284, 44036, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 11, 7034, 62, 83, 287, 27056, 378, 7, 944, 13, 13317, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9175, 262, 7588, 319, 379, 477, 1661, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32315, 796, 300, 79, 13, 5936, 3760, 62, 6477, 62, 1102, 2536, 2913, 58, 10459, 13, 25928, 62, 36996, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2949, 34479, 6875, 287, 10706, 62, 36996, 4064, 67, 526, 4064, 357, 10459, 13, 25928, 62, 36996, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32315, 58, 83, 4083, 2617, 62, 1073, 16814, 7, 10459, 13, 3672, 6816, 62, 45286, 11, 7034, 62, 83, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 391, 374, 862, 62, 43082, 611, 2622, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 13, 271, 62, 81, 862, 62, 10459, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 81, 862, 62, 10459, 62, 1102, 2536, 6003, 58, 10459, 13, 25928, 62, 36996, 62, 312, 7131, 83, 4083, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 3672, 6816, 62, 45286, 11, 7034, 62, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 651, 62, 82, 2122, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 14174, 1430, 1540, 332, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1444, 706, 300, 79, 13, 82, 6442, 3419, 284, 4155, 1540, 332, 468, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 290, 468, 7560, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43160, 12331, 25, 1002, 1444, 878, 44800, 15167, 29869, 13, 82, 6442, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 286, 8136, 329, 1123, 1661, 75, 501, 7885, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 45286, 796, 2116, 13, 10459, 13, 3672, 6816, 62, 45286, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6816, 62, 45286, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 1136, 62, 82, 2122, 62, 27160, 1444, 878, 8494, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 6816, 62, 45286, 13, 82, 2122, 62, 8367, 3419, 1635, 2116, 13, 13317, 13, 27160, 628, 198, 4871, 24846, 31425, 7, 15252, 2599, 198, 220, 220, 220, 37227, 1273, 2850, 2568, 422, 262, 10706, 290, 5860, 340, 618, 2622, 2426, 284, 9089, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 1438, 25, 317, 4731, 543, 318, 262, 1438, 286, 262, 2134, 13, 198, 220, 220, 220, 220, 220, 6143, 62, 3672, 6816, 62, 15805, 25, 317, 12178, 543, 318, 262, 1575, 583, 1438, 6816, 286, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 6143, 13, 220, 412, 13, 70, 13, 383, 1575, 286, 13591, 13, 198, 220, 220, 220, 220, 220, 3877, 62, 3672, 6816, 62, 15805, 25, 317, 12178, 543, 318, 262, 1575, 583, 1438, 6816, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 284, 3877, 262, 6143, 13, 220, 412, 13, 70, 13, 383, 13621, 7483, 1575, 284, 10385, 198, 220, 220, 220, 220, 220, 220, 220, 281, 7125, 10706, 284, 6257, 6143, 13, 198, 220, 220, 220, 220, 220, 17655, 62, 3672, 6816, 62, 15805, 25, 317, 12178, 543, 318, 262, 1575, 583, 1438, 6816, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 284, 27978, 262, 10706, 13, 220, 412, 13, 70, 13, 383, 1575, 286, 257, 1176, 40631, 353, 284, 198, 220, 220, 220, 220, 220, 220, 220, 10385, 6257, 6143, 736, 284, 7125, 198, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 25, 1052, 493, 31577, 262, 10706, 3814, 286, 262, 6143, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6143, 460, 691, 3650, 2568, 7560, 416, 4237, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 976, 10706, 62, 36996, 62, 312, 13, 220, 5514, 8665, 351, 262, 976, 10706, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 460, 14595, 1176, 422, 428, 13, 198, 220, 220, 220, 220, 220, 3877, 62, 45888, 25, 317, 12178, 12897, 422, 657, 13, 15, 532, 352, 13, 15, 543, 8477, 198, 220, 220, 220, 220, 220, 220, 220, 262, 2568, 2994, 1022, 262, 10706, 290, 262, 6143, 5002, 13, 220, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1724, 1844, 2994, 11, 352, 13, 15, 1724, 645, 2994, 13, 198, 220, 220, 220, 220, 220, 6143, 62, 45888, 25, 317, 12178, 12897, 422, 657, 13, 15, 532, 352, 13, 15, 543, 8477, 198, 220, 220, 220, 220, 220, 220, 220, 703, 881, 8574, 2568, 3793, 422, 2180, 8574, 2568, 706, 198, 220, 220, 220, 220, 220, 220, 220, 530, 640, 12, 13696, 13, 220, 352, 13, 15, 1724, 645, 2994, 13, 657, 13, 15, 1724, 477, 8574, 2568, 198, 220, 220, 220, 220, 220, 220, 220, 318, 2626, 13, 198, 220, 220, 220, 220, 220, 17655, 62, 45888, 25, 317, 12178, 12897, 422, 657, 13, 15, 532, 352, 13, 15, 543, 8477, 198, 220, 220, 220, 220, 220, 220, 220, 262, 2568, 2994, 1022, 6143, 290, 10706, 618, 302, 31498, 262, 10706, 13, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 1724, 1844, 2994, 11, 352, 13, 15, 1724, 645, 2994, 13, 198, 220, 220, 220, 220, 220, 3509, 62, 10136, 62, 6477, 25, 317, 12178, 543, 6870, 262, 5415, 1176, 326, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3877, 6143, 357, 9948, 49262, 878, 597, 9332, 9089, 15729, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1988, 1279, 657, 1724, 612, 318, 645, 3877, 1176, 4179, 13, 198, 220, 220, 220, 220, 220, 3509, 62, 6381, 10136, 62, 6477, 25, 317, 12178, 543, 6870, 262, 5415, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 326, 460, 17655, 6143, 357, 9948, 49262, 878, 597, 9332, 198, 220, 220, 220, 220, 220, 220, 220, 9089, 15729, 220, 317, 1988, 1279, 657, 1724, 612, 318, 645, 17655, 1176, 4179, 13, 198, 220, 220, 220, 220, 220, 3509, 62, 35350, 25, 1052, 11902, 12178, 543, 6870, 262, 5415, 2568, 198, 220, 220, 220, 220, 220, 220, 220, 326, 460, 307, 8574, 13, 220, 317, 1988, 1279, 657, 1724, 612, 318, 645, 5415, 198, 220, 220, 220, 220, 220, 220, 220, 6143, 4179, 13, 198, 220, 220, 220, 220, 220, 318, 62, 81, 862, 25, 41146, 26, 611, 2081, 11, 7622, 2610, 286, 374, 862, 62, 43082, 355, 6143, 318, 198, 220, 220, 220, 220, 220, 220, 220, 5047, 1220, 26476, 13, 220, 26308, 11642, 58, 83, 60, 318, 13284, 20216, 422, 198, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 58, 83, 60, 422, 374, 862, 62, 43082, 58, 83, 4083, 220, 26308, 595, 31498, 58, 83, 60, 318, 198, 220, 220, 220, 220, 220, 220, 220, 2087, 284, 374, 862, 62, 43082, 58, 83, 4083, 220, 1002, 3991, 11, 645, 374, 862, 62, 66, 20696, 389, 12328, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 17425, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 533, 300, 79, 9633, 11, 290, 900, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 44800, 15167, 29869, 11, 4909, 300, 79, 1540, 332, 290, 17778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 510, 18470, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22554, 62, 25641, 2977, 796, 300, 79, 13, 32446, 533, 62, 22355, 75, 501, 62, 25641, 2977, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 11, 2116, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35350, 62, 3672, 6816, 62, 15805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22554, 62, 3672, 6816, 796, 300, 79, 13, 32446, 533, 62, 3672, 6816, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 11, 2116, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 510, 2723, 290, 17425, 18470, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 796, 24846, 7416, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 944, 13, 3672, 1343, 366, 2723, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 28, 944, 13, 6381, 10136, 62, 3672, 6816, 62, 15805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 62, 20850, 62, 15805, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 28, 944, 13, 25928, 62, 36996, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 28, 944, 13, 9806, 62, 6381, 10136, 62, 6477, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 17, 62, 525, 62, 9509, 8143, 62, 22554, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 1073, 16814, 28, 944, 13, 6381, 10136, 62, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 81, 862, 62, 10459, 28, 944, 13, 271, 62, 81, 862, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 13, 82, 14375, 796, 4808, 41339, 7416, 49354, 540, 50, 14375, 7, 944, 13, 10459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 510, 14595, 290, 17425, 18470, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 676, 796, 24846, 7416, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 944, 13, 3672, 1343, 366, 14595, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 28, 944, 13, 6381, 10136, 62, 3672, 6816, 62, 15805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 62, 20850, 62, 15805, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 28, 944, 13, 25928, 62, 36996, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 28, 944, 13, 9806, 62, 10136, 62, 6477, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 17, 62, 525, 62, 9509, 8143, 62, 22554, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 1073, 16814, 10779, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 81, 862, 62, 10459, 28, 944, 13, 271, 62, 81, 862, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 676, 13, 82, 14375, 796, 4808, 41339, 7416, 49354, 540, 50, 14375, 7, 944, 13, 82, 676, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 676, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 2568, 1438, 6816, 3484, 284, 262, 9432, 13, 220, 3819, 3484, 389, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2087, 416, 2723, 14, 82, 676, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35350, 62, 3672, 6816, 62, 15805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 796, 2116, 13, 22554, 62, 3672, 6816, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 11, 2116, 13, 35350, 62, 3672, 6816, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 391, 6682, 20514, 284, 307, 6682, 4586, 640, 5556, 14595, 20208, 2723, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20514, 318, 18620, 523, 9633, 379, 256, 28, 15, 4745, 319, 9633, 379, 256, 10779, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 543, 318, 7548, 284, 938, 1988, 287, 21015, 6376, 278, 7791, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9633, 796, 2116, 13, 22554, 62, 25641, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 300, 79, 13, 2435, 62, 9630, 62, 2676, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20101, 796, 3877, 62, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1001, 796, 6143, 62, 45888, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 520, 1850, 58, 72, 60, 796, 384, 1635, 520, 1850, 58, 72, 12, 16, 60, 1343, 2906, 1635, 14595, 58, 72, 12, 16, 60, 532, 2723, 58, 72, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 657, 796, 532, 1273, 1850, 58, 72, 60, 1343, 384, 1635, 520, 1850, 58, 72, 12, 16, 60, 1343, 2906, 1635, 14595, 58, 72, 12, 16, 60, 532, 2723, 58, 72, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 2617, 62, 1073, 16814, 7, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 8, 220, 1303, 532, 1273, 1850, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 2617, 62, 1073, 16814, 7, 25641, 2977, 58, 83, 532, 352, 4357, 2116, 13, 35350, 62, 45888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8090, 290, 14595, 389, 3585, 284, 262, 10706, 11, 523, 6697, 994, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 311, 676, 6673, 284, 6143, 11, 2723, 34128, 82, 422, 6143, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 2617, 62, 1073, 16814, 7, 944, 13, 10459, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 532, 352, 4357, 532, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 676, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 532, 352, 4357, 2116, 13, 10136, 62, 45888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 1438, 6816, 318, 4025, 621, 8574, 62, 8367, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35350, 62, 3672, 6816, 62, 15805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 300, 79, 13, 82, 14375, 13, 10745, 6269, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 3672, 6816, 11, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 391, 5415, 6143, 611, 3509, 62, 35350, 18189, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9806, 62, 35350, 18189, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 35350, 62, 1102, 2536, 2913, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 2116, 13, 9806, 62, 35350, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 35350, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 25641, 2977, 58, 83, 4357, 352, 13, 15, 8, 628, 220, 220, 220, 825, 1281, 62, 14681, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 300, 79, 1281, 62, 36948, 1255, 9633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 1760, 1281, 300, 79, 13, 82, 6442, 3419, 523, 326, 34182, 1366, 8794, 460, 307, 1760, 198, 220, 220, 220, 220, 220, 220, 220, 319, 371, 3705, 878, 8024, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 383, 44800, 15167, 29869, 810, 262, 1281, 7587, 9633, 26412, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14595, 62, 12786, 796, 2116, 13, 82, 676, 13, 1136, 62, 82, 2122, 62, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 12786, 796, 2116, 13, 10459, 13, 1136, 62, 82, 2122, 62, 27160, 3419, 1635, 2116, 13, 6381, 10136, 62, 45888, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 271, 62, 81, 862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 81, 862, 62, 23350, 58, 944, 13, 25928, 62, 36996, 62, 312, 60, 15853, 2723, 62, 12786, 532, 14595, 62, 12786, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 13159, 62, 81, 862, 62, 23350, 58, 944, 13, 25928, 62, 36996, 62, 312, 60, 15853, 2723, 62, 12786, 532, 14595, 62, 12786, 628, 220, 220, 220, 825, 651, 62, 3672, 6816, 62, 82, 2122, 62, 8367, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 14174, 1430, 1540, 332, 2482, 329, 1438, 6816, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1444, 706, 300, 79, 13, 82, 6442, 3419, 284, 4155, 1540, 332, 468, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 290, 468, 7560, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43160, 12331, 25, 1002, 1444, 878, 44800, 15167, 29869, 13, 82, 6442, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48436, 1988, 10200, 16019, 1438, 6816, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35350, 62, 3672, 6816, 62, 15805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 45286, 796, 2116, 13, 22554, 62, 3672, 6816, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6816, 62, 45286, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3855, 62, 3672, 6816, 62, 82, 2122, 62, 8367, 1444, 878, 8494, 3419, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 6816, 62, 45286, 13, 82, 2122, 62, 8367, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3509, 7, 944, 13, 1136, 62, 82, 2122, 62, 27160, 28955, 628, 220, 220, 220, 825, 651, 62, 82, 2122, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 14174, 1430, 1540, 332, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1444, 706, 300, 79, 13, 82, 6442, 3419, 284, 4155, 1540, 332, 468, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 290, 468, 7560, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43160, 12331, 25, 1002, 1444, 878, 44800, 15167, 29869, 13, 82, 6442, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 286, 8136, 329, 1123, 1661, 75, 501, 7885, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1661, 75, 501, 62, 25641, 2977, 796, 2116, 13, 22554, 62, 25641, 2977, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1661, 75, 501, 62, 25641, 2977, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 1136, 62, 82, 2122, 62, 27160, 1444, 878, 8494, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 85, 13, 82, 2122, 62, 8367, 3419, 329, 410, 287, 1661, 75, 501, 62, 25641, 2977, 12962, 628, 198, 4871, 24846, 6690, 31425, 7, 15252, 2599, 198, 220, 220, 220, 37227, 1273, 2850, 2568, 422, 262, 10706, 290, 5860, 340, 618, 2622, 2426, 284, 9089, 13, 628, 220, 220, 220, 770, 318, 257, 29908, 1088, 734, 24846, 31425, 5563, 11, 530, 543, 7000, 198, 220, 220, 220, 366, 27773, 1, 2568, 357, 271, 62, 81, 862, 8, 290, 530, 543, 7000, 366, 49075, 1, 2568, 357, 1662, 198, 220, 220, 220, 318, 62, 81, 862, 737, 220, 1318, 318, 257, 761, 329, 1111, 3858, 286, 6143, 284, 1394, 2610, 286, 198, 220, 220, 220, 15713, 2568, 10824, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 1438, 25, 317, 4731, 543, 318, 262, 1438, 286, 262, 2134, 13, 198, 220, 220, 220, 220, 220, 6143, 62, 3672, 6816, 62, 15805, 25, 317, 12178, 543, 318, 262, 1575, 583, 1438, 6816, 286, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 6143, 13, 220, 412, 13, 70, 13, 383, 1575, 286, 13591, 13, 198, 220, 220, 220, 220, 220, 3877, 62, 3672, 6816, 62, 15805, 25, 317, 12178, 543, 318, 262, 1575, 583, 1438, 6816, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 284, 3877, 262, 6143, 13, 220, 412, 13, 70, 13, 383, 13621, 7483, 1575, 284, 10385, 198, 220, 220, 220, 220, 220, 220, 220, 281, 7125, 10706, 284, 6257, 6143, 13, 198, 220, 220, 220, 220, 220, 17655, 62, 3672, 6816, 62, 15805, 25, 317, 12178, 543, 318, 262, 1575, 583, 1438, 6816, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 284, 27978, 262, 10706, 13, 220, 412, 13, 70, 13, 383, 1575, 286, 257, 1176, 40631, 353, 284, 198, 220, 220, 220, 220, 220, 220, 220, 10385, 6257, 6143, 736, 284, 7125, 198, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 25, 1052, 493, 31577, 262, 10706, 3814, 286, 262, 6143, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6143, 460, 691, 3650, 2568, 7560, 416, 4237, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 976, 10706, 62, 36996, 62, 312, 13, 220, 5514, 8665, 351, 262, 976, 10706, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 460, 14595, 1176, 422, 428, 13, 198, 220, 220, 220, 220, 220, 3877, 62, 45888, 25, 317, 12178, 12897, 422, 657, 13, 15, 532, 352, 13, 15, 543, 8477, 198, 220, 220, 220, 220, 220, 220, 220, 262, 2568, 2994, 1022, 262, 10706, 290, 262, 6143, 5002, 13, 220, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1724, 1844, 2994, 11, 352, 13, 15, 1724, 645, 2994, 13, 198, 220, 220, 220, 220, 220, 6143, 62, 45888, 25, 317, 12178, 12897, 422, 657, 13, 15, 532, 352, 13, 15, 543, 8477, 198, 220, 220, 220, 220, 220, 220, 220, 703, 881, 8574, 2568, 3793, 422, 2180, 8574, 2568, 706, 198, 220, 220, 220, 220, 220, 220, 220, 530, 640, 12, 13696, 13, 220, 352, 13, 15, 1724, 645, 2994, 13, 657, 13, 15, 1724, 477, 8574, 2568, 198, 220, 220, 220, 220, 220, 220, 220, 318, 2626, 13, 198, 220, 220, 220, 220, 220, 17655, 62, 45888, 25, 317, 12178, 12897, 422, 657, 13, 15, 532, 352, 13, 15, 543, 8477, 198, 220, 220, 220, 220, 220, 220, 220, 262, 2568, 2994, 1022, 6143, 290, 10706, 618, 302, 31498, 262, 10706, 13, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 1724, 1844, 2994, 11, 352, 13, 15, 1724, 645, 2994, 13, 198, 220, 220, 220, 220, 220, 3509, 62, 10136, 62, 6477, 25, 317, 12178, 543, 6870, 262, 5415, 1176, 326, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3877, 6143, 357, 9948, 49262, 878, 597, 9332, 9089, 15729, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1988, 1279, 657, 1724, 612, 318, 645, 3877, 1176, 4179, 13, 198, 220, 220, 220, 220, 220, 3509, 62, 6381, 10136, 62, 6477, 25, 317, 12178, 543, 6870, 262, 5415, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 326, 460, 17655, 6143, 357, 9948, 49262, 878, 597, 9332, 198, 220, 220, 220, 220, 220, 220, 220, 9089, 15729, 220, 317, 1988, 1279, 657, 1724, 612, 318, 645, 17655, 1176, 4179, 13, 198, 220, 220, 220, 220, 220, 3509, 62, 35350, 25, 1052, 11902, 12178, 543, 6870, 262, 5415, 2568, 198, 220, 220, 220, 220, 220, 220, 220, 326, 460, 307, 8574, 13, 220, 317, 1988, 1279, 657, 1724, 612, 318, 645, 5415, 198, 220, 220, 220, 220, 220, 220, 220, 6143, 4179, 13, 628, 220, 220, 220, 220, 220, 664, 62, 35350, 25, 24846, 31425, 2134, 543, 7000, 366, 27773, 1, 2568, 13, 198, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 25, 24846, 31425, 2134, 543, 7000, 366, 49075, 1, 2568, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 17425, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 533, 300, 79, 9633, 11, 290, 900, 17778, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 664, 62, 35350, 290, 645, 62, 8344, 62, 35350, 6143, 11, 900, 477, 3484, 284, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 351, 645, 7095, 13, 220, 27131, 378, 3484, 290, 7095, 706, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14305, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 35350, 796, 24846, 31425, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 944, 13, 3672, 1343, 366, 19644, 62, 2257, 1581, 11879, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 3672, 6816, 62, 15805, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 28, 944, 13, 25928, 62, 36996, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3877, 62, 45888, 28, 944, 13, 10136, 62, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17655, 62, 45888, 28, 944, 13, 6381, 10136, 62, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 45888, 28, 944, 13, 35350, 62, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 81, 862, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3919, 62, 8344, 62, 35350, 796, 24846, 31425, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 944, 13, 3672, 1343, 366, 8005, 62, 38827, 62, 2257, 1581, 11879, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 3672, 6816, 62, 15805, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 28, 944, 13, 25928, 62, 36996, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3877, 62, 45888, 28, 944, 13, 10136, 62, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17655, 62, 45888, 28, 944, 13, 6381, 10136, 62, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 45888, 28, 944, 13, 35350, 62, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 81, 862, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 35350, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3919, 62, 8344, 62, 35350, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 3484, 290, 7095, 1912, 319, 262, 2160, 286, 1111, 664, 62, 35350, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 645, 62, 8344, 62, 35350, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 510, 18470, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22554, 62, 25641, 2977, 796, 300, 79, 13, 32446, 533, 62, 22355, 75, 501, 62, 25641, 2977, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 11, 2116, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22554, 62, 3672, 6816, 796, 300, 79, 13, 32446, 533, 62, 3672, 6816, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 11, 2116, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10136, 62, 3672, 6816, 796, 300, 79, 13, 32446, 533, 62, 3672, 6816, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 1343, 366, 3877, 1438, 6816, 1600, 2116, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6381, 10136, 62, 3672, 6816, 796, 300, 79, 13, 32446, 533, 62, 3672, 6816, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 1343, 366, 17655, 1438, 6816, 1600, 2116, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 7095, 611, 2622, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9806, 62, 35350, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 2116, 13, 9806, 62, 35350, 737, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22554, 62, 3672, 6816, 11, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9806, 62, 10136, 62, 6477, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 2116, 13, 9806, 62, 10136, 62, 6477, 737, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10136, 62, 3672, 6816, 11, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9806, 62, 6381, 10136, 62, 6477, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 2116, 13, 9806, 62, 6381, 10136, 62, 6477, 737, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6381, 10136, 62, 3672, 6816, 11, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 2568, 1438, 6816, 3484, 284, 262, 9432, 13, 198, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22554, 62, 3672, 6816, 11, 2116, 13, 35350, 62, 3672, 6816, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10136, 62, 3672, 6816, 11, 2116, 13, 10136, 62, 3672, 6816, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6381, 10136, 62, 3672, 6816, 11, 2116, 13, 6381, 10136, 62, 3672, 6816, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 664, 62, 35350, 62, 22554, 62, 25641, 2977, 796, 2116, 13, 8344, 62, 35350, 13, 22554, 62, 25641, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 62, 22554, 62, 25641, 2977, 796, 2116, 13, 3919, 62, 8344, 62, 35350, 13, 22554, 62, 25641, 2977, 628, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 300, 79, 13, 2435, 62, 9630, 62, 2676, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 1438, 6816, 318, 18189, 2160, 7, 301, 1850, 62, 27160, 38381, 83, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 300, 79, 13, 82, 14375, 13, 10745, 6269, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 22554, 62, 3672, 6816, 11, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 8344, 62, 35350, 62, 22554, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 62, 22554, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 62, 35350, 62, 10136, 62, 25641, 2977, 796, 2116, 13, 8344, 62, 35350, 13, 82, 676, 13, 22355, 75, 501, 62, 25641, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 62, 10136, 62, 25641, 2977, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3919, 62, 8344, 62, 35350, 13, 82, 676, 13, 22355, 75, 501, 62, 25641, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 62, 35350, 62, 6381, 10136, 62, 25641, 2977, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 35350, 13, 10459, 13, 22355, 75, 501, 62, 25641, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 62, 6381, 10136, 62, 25641, 2977, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3919, 62, 8344, 62, 35350, 13, 10459, 13, 22355, 75, 501, 62, 25641, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 10136, 62, 1102, 2536, 2913, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 300, 79, 13, 82, 14375, 13, 10745, 6269, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 10136, 62, 3672, 6816, 11, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 8344, 62, 35350, 62, 10136, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 62, 10136, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 62, 35350, 62, 6381, 10136, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 62, 6381, 10136, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6381, 10136, 62, 1102, 2536, 2913, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 300, 79, 13, 82, 14375, 13, 10745, 6269, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6381, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 6381, 10136, 62, 3672, 6816, 11, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6381, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 62, 35350, 62, 10136, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6381, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 62, 10136, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6381, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 62, 35350, 62, 6381, 10136, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6381, 10136, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 62, 8344, 62, 35350, 62, 6381, 10136, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 651, 62, 3672, 6816, 62, 82, 2122, 62, 8367, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 14174, 1430, 1540, 332, 2482, 329, 1438, 6816, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1444, 706, 300, 79, 13, 82, 6442, 3419, 284, 4155, 1540, 332, 468, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 290, 468, 7560, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43160, 12331, 25, 1002, 1444, 878, 44800, 15167, 29869, 13, 82, 6442, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48436, 1988, 10200, 16019, 1438, 6816, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35350, 62, 3672, 6816, 62, 15805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 45286, 796, 2116, 13, 22554, 62, 3672, 6816, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6816, 62, 45286, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3855, 62, 3672, 6816, 62, 82, 2122, 62, 8367, 1444, 878, 8494, 3419, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 6816, 62, 45286, 13, 82, 2122, 62, 8367, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3509, 7, 944, 13, 1136, 62, 82, 2122, 62, 27160, 28955, 628, 198, 4871, 4808, 41339, 8291, 3411, 7, 41339, 7416, 2599, 198, 220, 220, 220, 37227, 2484, 15318, 829, 1176, 422, 530, 640, 12, 11340, 284, 1194, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 25928, 62, 36996, 62, 312, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14595, 62, 25928, 62, 36996, 62, 312, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 10779, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9332, 28, 16, 13, 15, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31768, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 10903, 1438, 286, 262, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 25, 357, 22468, 8, 6446, 284, 1382, 257, 4326, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11478, 5339, 13, 220, 7198, 1220, 8336, 707, 1078, 286, 5339, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 25928, 62, 36996, 62, 312, 25, 1052, 493, 31577, 543, 10706, 62, 36996, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 3011, 1176, 2087, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14595, 62, 25928, 62, 36996, 62, 312, 25, 1052, 493, 31577, 543, 10706, 62, 36996, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 3011, 1176, 13284, 20216, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 25, 357, 22468, 8, 32233, 22246, 1176, 543, 460, 307, 18307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 42672, 707, 1078, 737, 5345, 1279, 657, 611, 612, 318, 645, 4179, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9332, 25, 357, 22468, 8, 8064, 286, 703, 881, 1176, 3011, 3888, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 284, 262, 584, 10706, 62, 36996, 13, 21699, 540, 3815, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 1279, 9332, 1279, 352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 28264, 41339, 8291, 3411, 11, 2116, 737, 834, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 28, 3672, 6816, 62, 20850, 62, 15805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 62, 20850, 62, 15805, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 28, 10459, 62, 25928, 62, 36996, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 6477, 28, 9806, 62, 6477, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22554, 10779, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 17, 62, 525, 62, 9509, 8143, 62, 22554, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 1073, 16814, 28, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 676, 62, 25928, 62, 36996, 62, 312, 796, 14595, 62, 25928, 62, 36996, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 796, 4808, 41339, 7416, 49354, 540, 50, 14375, 7, 944, 8, 628, 220, 220, 220, 825, 17425, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 533, 300, 79, 9633, 11, 290, 900, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 44800, 15167, 29869, 11, 4909, 300, 79, 1540, 332, 290, 17778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 28264, 41339, 8291, 3411, 11, 2116, 737, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 33141, 1482, 2536, 6003, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 11, 1401, 287, 27056, 378, 7, 944, 13, 22355, 75, 501, 62, 25641, 2977, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14595, 62, 312, 796, 2116, 13, 82, 676, 62, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 312, 796, 2116, 13, 25928, 62, 36996, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15935, 262, 2208, 12, 4871, 318, 47015, 287, 2723, 62, 25928, 62, 36996, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14595, 340, 422, 14595, 62, 25928, 62, 36996, 62, 312, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 5936, 3760, 62, 6477, 62, 1102, 2536, 2913, 58, 82, 676, 62, 312, 7131, 83, 4083, 2617, 62, 1073, 16814, 7, 7785, 11, 532, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 271, 62, 81, 862, 62, 10459, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 81, 862, 62, 10459, 62, 1102, 2536, 6003, 58, 82, 676, 62, 312, 7131, 83, 4083, 2617, 62, 1073, 16814, 7, 7785, 11, 532, 16, 13, 15, 8, 628, 220, 220, 220, 825, 1281, 62, 14681, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 300, 79, 1281, 62, 36948, 1255, 9633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 1760, 523, 326, 34182, 1366, 8794, 460, 307, 1760, 319, 371, 3705, 878, 198, 220, 220, 220, 220, 220, 220, 220, 8024, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 383, 44800, 15167, 29869, 810, 262, 1281, 7587, 9633, 26412, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14435, 2723, 1281, 62, 14681, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 28264, 41339, 8291, 3411, 11, 2116, 737, 7353, 62, 14681, 7, 34431, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 311, 676, 1281, 62, 14681, 198, 220, 220, 220, 220, 220, 220, 220, 14595, 62, 312, 796, 2116, 13, 82, 676, 62, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 611, 300, 79, 13, 81, 862, 62, 25067, 1875, 657, 13, 15, 290, 2116, 13, 271, 62, 81, 862, 62, 10459, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 81, 862, 62, 23350, 58, 82, 676, 62, 312, 60, 48185, 2116, 13, 1136, 62, 82, 2122, 62, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 13159, 62, 81, 862, 62, 23350, 58, 82, 676, 62, 312, 60, 48185, 2116, 13, 1136, 62, 82, 2122, 62, 27160, 3419, 628, 198, 4871, 24846, 8291, 3411, 7, 15252, 2599, 198, 220, 220, 220, 37227, 8291, 24883, 1176, 8406, 4154, 453, 1022, 734, 10706, 62, 2301, 507, 13, 628, 220, 220, 220, 1629, 7071, 1241, 11, 39573, 422, 3814, 12, 76, 284, 3814, 12, 77, 318, 198, 220, 220, 220, 10411, 284, 39573, 422, 3814, 12, 77, 284, 3814, 12, 76, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 1438, 25, 357, 2536, 8, 1438, 286, 262, 2134, 13, 198, 220, 220, 220, 220, 220, 1438, 6816, 62, 20850, 62, 15805, 25, 357, 22468, 8, 6446, 284, 1382, 257, 4326, 286, 198, 220, 220, 220, 220, 220, 220, 220, 11478, 5339, 13, 220, 7198, 1220, 8336, 707, 1078, 286, 5339, 8, 198, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 62, 64, 25, 1052, 493, 31577, 530, 10706, 62, 36996, 11478, 198, 220, 220, 220, 220, 220, 220, 220, 5651, 385, 198, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 62, 65, 25, 1052, 493, 31577, 257, 1180, 10706, 62, 36996, 198, 220, 220, 220, 220, 220, 220, 220, 11478, 5651, 385, 198, 220, 220, 220, 220, 220, 3509, 62, 6477, 25, 357, 22468, 8, 32233, 22246, 1176, 543, 460, 307, 18307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 357, 42672, 707, 1078, 737, 5345, 1279, 657, 611, 612, 318, 645, 4179, 13, 198, 220, 220, 220, 220, 220, 9332, 25, 357, 22468, 8, 8064, 286, 703, 881, 1176, 3011, 3888, 530, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 284, 262, 584, 10706, 62, 36996, 13, 21699, 540, 3815, 389, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 1279, 9332, 1279, 352, 13, 198, 220, 220, 220, 220, 220, 257, 62, 1462, 62, 65, 25, 4808, 41339, 8291, 3411, 2134, 543, 6100, 11841, 1176, 422, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 64, 284, 10706, 62, 36996, 62, 65, 198, 220, 220, 220, 220, 220, 275, 62, 1462, 62, 64, 25, 4808, 41339, 8291, 3411, 2134, 543, 6100, 11841, 1176, 422, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 65, 284, 10706, 62, 36996, 62, 64, 198, 220, 220, 220, 220, 220, 664, 62, 64, 62, 1462, 62, 65, 25, 4808, 41339, 8291, 3411, 2134, 543, 6100, 3424, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 422, 10706, 62, 36996, 62, 64, 284, 10706, 62, 36996, 62, 65, 198, 220, 220, 220, 220, 220, 664, 62, 65, 62, 1462, 62, 64, 25, 4808, 41339, 8291, 3411, 2134, 543, 6100, 3424, 1176, 198, 220, 220, 220, 220, 220, 220, 220, 422, 10706, 62, 36996, 62, 65, 284, 10706, 62, 36996, 62, 64, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 17425, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 533, 300, 79, 9633, 11, 290, 900, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 44800, 15167, 29869, 11, 4909, 300, 79, 1540, 332, 290, 17778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 64, 62, 1462, 62, 65, 796, 4808, 41339, 8291, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 1343, 366, 257, 62, 1462, 62, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 62, 65, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 62, 64, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 6477, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 62, 1462, 62, 64, 796, 4808, 41339, 8291, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 1343, 366, 275, 62, 1462, 62, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 62, 64, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 62, 65, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 6477, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 64, 62, 1462, 62, 65, 796, 4808, 41339, 8291, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 1343, 366, 664, 257, 62, 1462, 62, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 62, 65, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 62, 64, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 6477, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 81, 862, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 65, 62, 1462, 62, 64, 796, 4808, 41339, 8291, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 1343, 366, 664, 275, 62, 1462, 62, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 62, 64, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25928, 62, 36996, 62, 312, 62, 65, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 6477, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 81, 862, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 64, 62, 1462, 62, 65, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 62, 1462, 62, 64, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 64, 62, 1462, 62, 65, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 65, 62, 1462, 62, 64, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 34431, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 1654, 1438, 6816, 18189, 2160, 7, 64, 62, 1462, 62, 65, 8, 290, 1438, 6816, 18189, 2160, 7, 65, 62, 1462, 62, 64, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 6816, 62, 45286, 796, 300, 79, 13, 32446, 533, 62, 3672, 6816, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 11, 36521, 67, 62, 4, 67, 1, 4064, 357, 944, 13, 25928, 62, 36996, 62, 312, 62, 64, 11, 2116, 13, 25928, 62, 36996, 62, 312, 62, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 300, 79, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 6816, 62, 45286, 11, 2116, 13, 3672, 6816, 62, 20850, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 300, 79, 13, 2435, 62, 9630, 62, 2676, 540, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1438, 6816, 18189, 257, 62, 1462, 62, 65, 58, 83, 60, 1343, 664, 62, 64, 62, 1462, 62, 65, 58, 83, 60, 532, 275, 62, 1462, 62, 64, 58, 83, 60, 532, 664, 62, 65, 62, 1462, 62, 64, 58, 83, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 1462, 62, 65, 62, 1102, 2536, 2913, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 300, 79, 13, 82, 14375, 13, 10745, 6269, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 1462, 62, 65, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 3672, 6816, 62, 45286, 11, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 1462, 62, 65, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 64, 62, 1462, 62, 65, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 1462, 62, 65, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 64, 62, 1462, 62, 65, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 1462, 62, 65, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 65, 62, 1462, 62, 64, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 1462, 62, 65, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 65, 62, 1462, 62, 64, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1438, 6816, 18189, 275, 62, 1462, 62, 64, 58, 83, 60, 1343, 664, 62, 65, 62, 1462, 62, 64, 58, 83, 60, 532, 257, 62, 1462, 62, 65, 58, 83, 60, 532, 664, 62, 64, 62, 1462, 62, 65, 58, 83, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 1462, 62, 64, 62, 1102, 2536, 2913, 796, 300, 79, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 300, 79, 13, 82, 14375, 13, 10745, 6269, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 1462, 62, 64, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 3672, 6816, 62, 45286, 11, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 1462, 62, 64, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 65, 62, 1462, 62, 64, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 1462, 62, 64, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 65, 62, 1462, 62, 64, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 1462, 62, 64, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 944, 13, 64, 62, 1462, 62, 65, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 1462, 62, 64, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 64, 62, 1462, 62, 65, 13, 22355, 75, 501, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1281, 62, 14681, 7, 944, 11, 300, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 300, 79, 1281, 62, 36948, 1255, 9633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 1760, 523, 326, 34182, 1366, 8794, 460, 307, 1760, 319, 371, 3705, 878, 198, 220, 220, 220, 220, 220, 220, 220, 8024, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 79, 25, 383, 44800, 15167, 29869, 810, 262, 1281, 7587, 9633, 26412, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 64, 62, 1462, 62, 65, 13, 7353, 62, 14681, 7, 34431, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 62, 1462, 62, 64, 13, 7353, 62, 14681, 7, 34431, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 64, 62, 1462, 62, 65, 13, 7353, 62, 14681, 7, 34431, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 62, 65, 62, 1462, 62, 64, 13, 7353, 62, 14681, 7, 34431, 8, 628, 220, 220, 220, 825, 651, 62, 3672, 6816, 62, 82, 2122, 62, 8367, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 14174, 1430, 1540, 332, 2482, 329, 1438, 6816, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 1444, 706, 300, 79, 13, 82, 6442, 3419, 284, 4155, 1540, 332, 468, 6105, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 290, 468, 7560, 2482, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43160, 12331, 25, 1002, 1444, 878, 44800, 15167, 29869, 13, 82, 6442, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48436, 1988, 10200, 16019, 1438, 6816, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 45286, 796, 2116, 13, 3672, 6816, 62, 45286, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6816, 62, 45286, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 3855, 62, 3672, 6816, 62, 82, 2122, 62, 8367, 1444, 878, 8494, 3419, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 6816, 62, 45286, 13, 82, 2122, 62, 8367, 3419, 628, 198, 4871, 44800, 15167, 29869, 7, 15252, 2599, 198, 220, 220, 220, 37227, 6310, 17096, 689, 290, 20314, 284, 18470, 4294, 332, 13, 628, 220, 220, 220, 17934, 29566, 25, 198, 220, 220, 220, 20768, 1096, 25, 300, 79, 796, 44800, 15167, 29869, 3419, 198, 220, 220, 220, 3060, 5563, 25, 198, 220, 220, 220, 220, 220, 300, 79, 13, 2860, 62, 9536, 1746, 7, 27, 41339, 42782, 43734, 198, 220, 220, 220, 220, 220, 300, 79, 13, 2860, 62, 82, 2203, 7, 27, 41339, 7416, 43734, 198, 220, 220, 220, 220, 220, 300, 79, 13, 2860, 62, 7645, 8481, 7, 27, 41339, 8291, 3411, 43734, 198, 220, 220, 220, 220, 220, 300, 79, 13, 82, 6442, 3419, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 6588, 62, 19290, 25, 383, 2033, 284, 1687, 352, 4326, 286, 763, 17, 8971, 13, 198, 220, 220, 220, 220, 220, 1575, 62, 1659, 62, 26316, 25, 383, 2033, 284, 29162, 7885, 3484, 416, 284, 198, 220, 220, 220, 220, 220, 220, 220, 787, 24169, 3484, 290, 5969, 3484, 13975, 13, 198, 220, 220, 220, 220, 220, 16545, 25, 640, 12, 25076, 16545, 41497, 416, 1438, 543, 3975, 284, 198, 220, 220, 220, 220, 220, 220, 220, 24846, 11522, 1746, 290, 24846, 15419, 49354, 540, 21188, 13, 198, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 22355, 677, 274, 25, 493, 10200, 530, 1661, 75, 501, 583, 7034, 6376, 13, 198, 220, 220, 220, 220, 220, 640, 62, 9630, 62, 2676, 540, 25, 317, 2829, 493, 2837, 422, 657, 532, 1271, 62, 1659, 62, 22355, 677, 274, 13, 628, 220, 220, 220, 220, 220, 1482, 2536, 6003, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45075, 62, 6477, 62, 1102, 2536, 2913, 25, 360, 713, 1994, 276, 416, 10706, 62, 36996, 62, 312, 13, 11052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 257, 1351, 286, 18470, 1482, 2536, 6003, 543, 19047, 326, 1176, 1875, 3512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 477, 1661, 287, 477, 10706, 62, 2301, 507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 17775, 62, 15805, 82, 62, 15252, 425, 25, 383, 18470, 37092, 543, 318, 284, 17775, 3484, 13, 628, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 10459, 62, 1102, 2536, 6003, 25, 360, 713, 1994, 276, 416, 10706, 62, 36996, 62, 312, 13, 11052, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 18470, 1482, 2536, 6003, 543, 19047, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 58, 25928, 62, 36996, 11, 256, 60, 19841, 2160, 7, 81, 862, 62, 82, 2203, 58, 25928, 62, 36996, 11, 256, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 28550, 62, 1102, 2536, 6003, 25, 360, 713, 1994, 276, 416, 10706, 62, 36996, 62, 312, 13, 220, 11052, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 1351, 286, 18470, 1482, 2536, 6003, 543, 19047, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 58, 25928, 62, 36996, 11, 256, 60, 19841, 3512, 58, 25928, 62, 36996, 11, 256, 60, 628, 220, 220, 220, 220, 220, 371, 3705, 15965, 2977, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 25641, 2977, 25, 360, 713, 2134, 1994, 276, 416, 10706, 62, 36996, 62, 312, 13, 220, 11052, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 374, 862, 62, 43082, 58, 25928, 62, 36996, 11, 256, 60, 9633, 329, 26019, 374, 862, 13, 628, 220, 220, 220, 220, 220, 2947, 28403, 15965, 2977, 13, 220, 955, 17128, 706, 18470, 6718, 3212, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 23350, 25, 360, 713, 2134, 1994, 276, 416, 10706, 62, 36996, 62, 312, 13, 220, 11052, 318, 2160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 41339, 7416, 62, 6477, 58, 25928, 62, 36996, 11, 256, 12962, 286, 477, 374, 862, 4237, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1729, 62, 81, 862, 62, 23350, 25, 360, 713, 2134, 1994, 276, 416, 10706, 62, 36996, 62, 312, 13, 220, 11052, 318, 2160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 41339, 7416, 62, 6477, 58, 25928, 62, 36996, 11, 256, 12962, 286, 477, 1729, 62, 81, 862, 4237, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12328, 62, 28550, 25, 360, 713, 2134, 1994, 276, 416, 10706, 62, 36996, 62, 312, 13, 220, 11052, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34479, 58, 25928, 62, 36996, 11, 256, 60, 628, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 27160, 25, 360, 713, 2134, 1994, 276, 416, 10706, 62, 36996, 62, 312, 13, 220, 11052, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 13, 8367, 58, 25928, 62, 36996, 11, 256, 60, 628, 220, 220, 220, 220, 220, 24846, 26632, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8665, 25, 317, 1351, 286, 24846, 42782, 7, 82, 737, 198, 220, 220, 220, 220, 220, 220, 220, 4237, 25, 317, 1351, 286, 24846, 7416, 7, 82, 737, 198, 220, 220, 220, 220, 220, 220, 220, 6143, 25, 317, 1351, 286, 24846, 31425, 7, 82, 737, 198, 220, 220, 220, 220, 220, 220, 220, 11478, 25, 317, 1351, 286, 24846, 8291, 3411, 7, 82, 737, 628, 220, 220, 220, 220, 220, 1540, 332, 25, 383, 12908, 12972, 29988, 489, 79, 13, 50, 14375, 13, 198, 220, 220, 220, 220, 220, 1540, 332, 62, 3866, 16005, 25, 317, 12178, 10200, 6108, 15440, 286, 262, 1540, 332, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 16545, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 18470, 43101, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16545, 25, 3862, 12, 25076, 19798, 292, 1366, 14535, 16545, 41497, 416, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 543, 3975, 284, 24846, 11522, 1746, 290, 24846, 15419, 49354, 540, 21188, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 1002, 597, 1988, 287, 16545, 318, 1279, 657, 393, 18008, 1220, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29255, 62, 19290, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15805, 62, 1659, 62, 26316, 796, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 25067, 796, 657, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5577, 2915, 796, 16545, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 6003, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5936, 3760, 62, 6477, 62, 1102, 2536, 2913, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 371, 3705, 1482, 2536, 6003, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 10459, 62, 1102, 2536, 6003, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 28550, 62, 1102, 2536, 6003, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 371, 3705, 15965, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 43082, 62, 25641, 2977, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2947, 28403, 15965, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 23350, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13159, 62, 81, 862, 62, 23350, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29117, 62, 28550, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 28550, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 28550, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 43082, 62, 27160, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9536, 1746, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 2203, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35350, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 3411, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 62, 3866, 16005, 796, 352, 68, 12, 18, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3254, 20540, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16545, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 2949, 16545, 7368, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 611, 16545, 13, 28920, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 2949, 6060, 287, 4415, 2915, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 611, 16545, 13, 271, 8423, 22446, 27160, 13, 1092, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 15404, 2915, 743, 407, 307, 35886, 393, 6045, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 16545, 62, 2528, 62, 15, 796, 16545, 13, 27160, 1279, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16545, 62, 2528, 62, 15, 13, 1092, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 15404, 2915, 1276, 407, 307, 1279, 657, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17618, 62, 1659, 62, 22355, 677, 274, 796, 18896, 7, 5577, 2915, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2435, 62, 9630, 62, 2676, 540, 796, 2837, 7, 944, 13, 17618, 62, 1659, 62, 22355, 677, 274, 8, 628, 220, 220, 220, 825, 751, 62, 9536, 1746, 7, 944, 11, 1635, 9536, 1746, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 477, 24846, 11522, 1746, 287, 943, 14542, 284, 2116, 13, 9536, 1746, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 8665, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9536, 1746, 13, 33295, 7, 67, 8, 628, 220, 220, 220, 825, 751, 62, 6381, 17147, 540, 62, 82, 2203, 7, 944, 11, 1635, 82, 2203, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13414, 1958, 2723, 468, 645, 7034, 3917, 351, 340, 290, 751, 284, 2116, 13, 82, 2203, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 82, 2203, 25, 14977, 1271, 286, 24846, 21188, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7383, 12331, 25, 611, 8090, 468, 257, 7034, 3917, 351, 340, 543, 561, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7603, 262, 2723, 373, 1729, 12, 6381, 17147, 540, 2427, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27965, 540, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2723, 287, 4237, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 13, 3672, 287, 2116, 13, 5577, 2915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49354, 540, 8090, 4064, 82, 468, 257, 7034, 3917, 351, 340, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 10459, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 82, 14375, 796, 4808, 41339, 7416, 49354, 540, 50, 14375, 7, 10459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 2203, 13, 33295, 7, 10459, 8, 628, 220, 220, 220, 825, 751, 62, 77, 623, 8802, 963, 540, 62, 82, 2203, 7, 944, 11, 1635, 82, 2203, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13414, 1958, 2723, 468, 257, 7034, 3917, 351, 340, 290, 751, 284, 2116, 13, 82, 2203, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 82, 2203, 25, 14977, 1271, 286, 24846, 21188, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7383, 12331, 25, 611, 8090, 468, 645, 7034, 3917, 351, 340, 543, 561, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7603, 262, 2723, 373, 27965, 540, 2427, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 12, 6381, 17147, 540, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2723, 287, 4237, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 13, 3672, 407, 287, 2116, 13, 5577, 2915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1900, 62, 82, 2203, 796, 366, 553, 13, 22179, 7, 82, 9741, 7, 944, 13, 5577, 2915, 13, 28665, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1900, 62, 10459, 62, 8841, 796, 366, 29870, 4237, 389, 37633, 82, 21387, 4064, 1900, 62, 82, 2203, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45, 623, 8802, 963, 540, 8090, 4064, 82, 468, 645, 7034, 13, 4064, 82, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 10459, 13, 3672, 11, 1900, 62, 10459, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 13, 82, 14375, 796, 4808, 41339, 7416, 15419, 49354, 540, 50, 14375, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 11, 2116, 13, 5577, 2915, 58, 10459, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 2203, 13, 33295, 7, 10459, 8, 628, 220, 220, 220, 825, 751, 62, 35350, 7, 944, 11, 1635, 35350, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 6143, 284, 300, 79, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35350, 13, 2302, 437, 7, 35350, 8, 628, 220, 220, 220, 825, 751, 62, 7645, 8481, 7, 944, 11, 1635, 7645, 3411, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 11478, 284, 300, 79, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 3411, 13, 2302, 437, 7, 7645, 3411, 8, 628, 220, 220, 220, 825, 32315, 7, 944, 11, 2793, 11, 6727, 11, 1438, 28, 14202, 11, 14257, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 257, 649, 1482, 2536, 2913, 543, 351, 4938, 2837, 1022, 2793, 290, 6727, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1482, 2536, 2913, 7, 944, 11, 2793, 11, 6727, 11, 1438, 11, 14257, 8, 628, 220, 220, 220, 825, 4808, 36733, 1096, 62, 82, 14375, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 1540, 332, 11, 24183, 9432, 290, 900, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4294, 332, 318, 12972, 29988, 489, 79, 13, 82, 14375, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37092, 318, 284, 17775, 3484, 2426, 284, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1881, 32315, 6875, 994, 318, 284, 4155, 326, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 58, 25928, 62, 36996, 7131, 83, 60, 1875, 3512, 58, 25928, 62, 36996, 7131, 83, 60, 329, 477, 256, 290, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 2301, 507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4418, 4566, 942, 24846, 36, 3639, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 796, 12972, 29988, 489, 79, 13, 50, 14375, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 50, 6442, 28925, 1600, 12972, 29988, 489, 79, 13, 50, 14375, 13, 5097, 47, 62, 24027, 1503, 62, 4805, 7730, 24115, 44, 2751, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1084, 48439, 62, 15805, 82, 62, 15252, 425, 796, 37092, 7, 944, 11, 17775, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 24846, 11522, 1746, 290, 24846, 21188, 198, 220, 220, 220, 220, 220, 220, 220, 3512, 62, 16345, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 2116, 13, 9536, 1746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16545, 796, 2116, 13, 5577, 2915, 58, 67, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29117, 62, 28550, 58, 67, 13, 25928, 62, 36996, 62, 312, 60, 796, 45941, 13, 18747, 7, 5577, 2915, 13, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7034, 62, 14933, 796, 965, 7, 944, 13, 5577, 2915, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 8841, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41339, 42782, 4064, 82, 13, 1400, 7034, 1043, 0, 29454, 16545, 37498, 4, 82, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 67, 13, 3672, 11, 7034, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7, 18224, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5936, 3760, 62, 6477, 62, 1102, 2536, 2913, 58, 67, 13, 25928, 62, 36996, 62, 312, 60, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 2536, 2913, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 13, 10745, 6269, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9444, 3760, 4333, 308, 312, 25, 4, 67, 256, 25, 4, 67, 1, 4064, 357, 67, 13, 25928, 62, 36996, 62, 312, 11, 256, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 11, 279, 287, 27056, 378, 7, 5577, 2915, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3512, 62, 16345, 15853, 2160, 7, 5577, 2915, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 33141, 371, 3705, 543, 318, 17198, 13, 220, 632, 4433, 2041, 3884, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9633, 58, 25928, 62, 36996, 7131, 2435, 60, 290, 513, 17778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 2913, 1303, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 4045, 3061, 318, 284, 423, 371, 3705, 7074, 374, 862, 62, 25067, 286, 2472, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3512, 13, 220, 11259, 326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 2472, 62, 81, 862, 62, 43082, 19039, 2160, 7, 81, 862, 62, 43082, 58, 70, 7131, 83, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 2472, 62, 28550, 19039, 2160, 7, 28550, 58, 70, 7131, 83, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 32315, 3706, 2472, 62, 81, 862, 62, 43082, 62, 13655, 62, 81, 862, 62, 25067, 62, 1102, 2536, 2913, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 2472, 62, 81, 862, 62, 43082, 18189, 357, 944, 13, 81, 862, 62, 25067, 1220, 1802, 8, 1635, 2472, 62, 28550, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 2913, 1303, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 374, 862, 62, 43082, 58, 70, 7131, 83, 60, 2314, 7074, 2160, 286, 374, 862, 62, 82, 2203, 532, 2160, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 374, 862, 62, 82, 2973, 379, 1123, 308, 11, 83, 13, 220, 1052, 1672, 286, 374, 862, 62, 82, 676, 318, 262, 705, 38827, 62, 2257, 1581, 11879, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 636, 286, 24846, 6690, 31425, 543, 7000, 374, 862, 2568, 572, 262, 10706, 691, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 1234, 340, 736, 319, 262, 10706, 1568, 355, 257, 374, 862, 62, 10459, 13, 220, 770, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12548, 287, 262, 32315, 3706, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 374, 862, 62, 10459, 62, 1102, 2536, 6003, 58, 70, 7131, 83, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 374, 862, 62, 43082, 58, 70, 7131, 83, 60, 19841, 2160, 7, 81, 862, 62, 82, 2203, 58, 70, 7131, 83, 12962, 532, 2160, 7, 81, 862, 62, 82, 2973, 58, 70, 7131, 83, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 2913, 1303, 18, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 374, 862, 62, 43082, 58, 70, 7131, 83, 60, 2314, 7074, 644, 460, 307, 973, 379, 1123, 308, 11, 83, 13, 220, 611, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 374, 862, 62, 82, 2203, 7716, 257, 19525, 707, 1078, 379, 308, 11, 83, 796, 657, 11, 15, 290, 691, 352, 14326, 460, 307, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 973, 379, 308, 11, 83, 788, 356, 836, 470, 765, 284, 3884, 262, 21958, 36006, 29961, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 32315, 3706, 374, 862, 62, 28550, 62, 1102, 2536, 6003, 318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 374, 862, 62, 43082, 58, 70, 7131, 83, 60, 19841, 3512, 58, 70, 7131, 83, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 28550, 796, 3512, 62, 16345, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 28550, 796, 3512, 62, 16345, 1635, 2116, 13, 81, 862, 62, 25067, 1220, 1802, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1540, 332, 796, 2116, 13, 82, 14375, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 81, 862, 62, 43082, 62, 13655, 62, 81, 862, 62, 25067, 62, 1102, 2536, 2913, 796, 2116, 13, 1102, 2536, 2913, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 28550, 11, 1540, 332, 13, 10745, 6269, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 2116, 13, 9536, 1746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16545, 796, 2116, 13, 5577, 2915, 58, 67, 13, 3672, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 81, 862, 62, 25067, 1875, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 25641, 2977, 796, 2116, 13, 32446, 533, 62, 22355, 75, 501, 62, 25641, 2977, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 834, 81, 862, 62, 43082, 834, 1600, 288, 13, 25928, 62, 36996, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 25641, 2977, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1540, 332, 13, 33111, 19852, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 11, 657, 13, 15, 11, 366, 834, 65, 519, 385, 374, 862, 62, 43082, 834, 4064, 67, 4064, 67, 1, 4064, 357, 67, 13, 25928, 62, 36996, 62, 312, 11, 256, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2116, 13, 2435, 62, 9630, 62, 2676, 540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 28550, 62, 1102, 2536, 6003, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 10459, 62, 1102, 2536, 6003, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 2536, 2913, 7, 15, 13, 15, 11, 1540, 332, 13, 10745, 6269, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2116, 13, 2435, 62, 9630, 62, 2676, 540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 10459, 62, 1102, 2536, 6003, 58, 67, 13, 25928, 62, 36996, 62, 312, 60, 796, 374, 862, 62, 10459, 62, 1102, 2536, 6003, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 43082, 62, 25641, 2977, 58, 67, 13, 25928, 62, 36996, 62, 312, 60, 796, 374, 862, 62, 43082, 62, 25641, 2977, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2116, 13, 2435, 62, 9630, 62, 2676, 540, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5060, 7, 81, 862, 62, 43082, 58, 25928, 62, 36996, 11, 256, 12962, 18189, 374, 862, 62, 25067, 1635, 2472, 3512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 81, 862, 62, 43082, 62, 13655, 62, 81, 862, 62, 25067, 62, 1102, 2536, 2913, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 371, 862, 62, 43082, 58, 25928, 62, 36996, 11, 256, 60, 19841, 3512, 58, 25928, 62, 36996, 11, 256, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 1203, 62, 14813, 62, 28550, 796, 2116, 13, 1102, 2536, 2913, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 82, 14375, 13, 10745, 6269, 22784, 16545, 58, 83, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 1203, 62, 14813, 62, 28550, 13, 2617, 62, 1073, 16814, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 25641, 2977, 58, 83, 4357, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 28550, 62, 1102, 2536, 6003, 13, 33295, 7, 81, 862, 62, 43082, 62, 1203, 62, 14813, 62, 28550, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 371, 862, 62, 43082, 58, 25928, 62, 36996, 11, 256, 60, 19841, 357, 16345, 7, 81, 862, 62, 82, 2203, 58, 25928, 62, 36996, 11, 256, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1482, 2536, 2913, 635, 3011, 12328, 416, 4808, 41339, 7416, 7, 15419, 8, 49354, 540, 50, 14375, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17425, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 10459, 62, 1102, 2536, 6003, 58, 83, 4083, 2617, 62, 1073, 16814, 7, 81, 862, 62, 43082, 62, 25641, 2977, 58, 83, 4357, 532, 16, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 28550, 62, 1102, 2536, 6003, 58, 67, 13, 25928, 62, 36996, 62, 312, 60, 796, 374, 862, 62, 28550, 62, 1102, 2536, 6003, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17056, 495, 4237, 290, 6143, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2116, 13, 82, 2203, 1343, 2116, 13, 35350, 1343, 2116, 13, 7645, 3411, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 11250, 495, 62, 34431, 62, 25641, 2977, 62, 392, 62, 1102, 2536, 6003, 7, 944, 8, 628, 220, 220, 220, 825, 8494, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 290, 4539, 14174, 1430, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 262, 1388, 8027, 284, 869, 706, 11593, 15003, 834, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 611, 14174, 1430, 2921, 281, 16586, 1255, 13, 220, 10352, 4306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 36733, 1096, 62, 82, 14375, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 2116, 13, 82, 14375, 13, 50, 6442, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6718, 2004, 796, 3722, 6624, 2116, 13, 82, 14375, 13, 3185, 51, 3955, 1847, 628, 220, 220, 220, 220, 220, 220, 220, 611, 6718, 2004, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7353, 62, 14681, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6718, 2004, 628, 220, 220, 220, 825, 4808, 7353, 62, 14681, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 689, 1366, 973, 329, 26019, 13529, 374, 862, 14, 13159, 12, 81, 862, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4418, 4274, 12, 42116, 2482, 284, 787, 1654, 484, 2872, 17778, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43160, 12331, 25, 1002, 4274, 12, 26752, 2482, 466, 407, 2872, 17778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 1281, 62, 36948, 26310, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 2116, 13, 9536, 1746, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7472, 2033, 286, 374, 862, 62, 82, 2203, 58, 70, 7131, 83, 60, 1176, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 23350, 58, 67, 13, 25928, 62, 36996, 62, 312, 60, 796, 45941, 13, 9107, 418, 7, 944, 13, 17618, 62, 1659, 62, 22355, 677, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7472, 2033, 286, 1729, 12, 81, 862, 62, 82, 2203, 58, 70, 7131, 83, 60, 1176, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13159, 62, 81, 862, 62, 23350, 58, 67, 13, 25928, 62, 36996, 62, 312, 60, 796, 45941, 13, 9107, 418, 7, 944, 13, 17618, 62, 1659, 62, 22355, 677, 274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2116, 13, 82, 2203, 1343, 2116, 13, 35350, 1343, 2116, 13, 7645, 3411, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 7353, 62, 14681, 7, 944, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2986, 414, 4049, 2198, 2482, 1028, 17778, 13, 220, 1002, 597, 286, 777, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 4376, 11, 340, 9217, 257, 5434, 287, 262, 2438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1540, 332, 62, 3866, 16005, 796, 2116, 13, 82, 14375, 62, 3866, 16005, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 62, 81, 862, 62, 66, 20696, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 329, 308, 62, 312, 287, 685, 67, 13, 25928, 62, 36996, 62, 312, 329, 288, 287, 2116, 13, 9536, 1746, 5974, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 4299, 3628, 796, 2116, 13, 29117, 62, 28550, 58, 70, 62, 312, 60, 532, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 23350, 58, 70, 62, 312, 60, 1343, 2116, 13, 13159, 62, 81, 862, 62, 23350, 58, 70, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7588, 62, 45089, 62, 261, 796, 357, 6477, 62, 4299, 3628, 1279, 1540, 332, 62, 3866, 16005, 737, 439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 66, 20696, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 6015, 85, 13, 82, 2122, 62, 8367, 3419, 329, 374, 33967, 287, 2116, 13, 81, 862, 62, 43082, 62, 25641, 2977, 58, 70, 62, 312, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 62, 81, 862, 62, 66, 20696, 15853, 2160, 7, 81, 862, 62, 66, 20696, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 862, 62, 43082, 62, 27160, 58, 70, 62, 312, 60, 796, 374, 862, 62, 66, 20696, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 13655, 62, 28550, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 66, 20696, 1875, 2116, 13, 29117, 62, 28550, 58, 70, 62, 312, 60, 1343, 1540, 332, 62, 3866, 16005, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 43082, 62, 13655, 62, 81, 862, 62, 82, 2203, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 862, 62, 66, 20696, 1875, 2116, 13, 81, 862, 62, 23350, 58, 70, 62, 312, 60, 1343, 1540, 332, 62, 3866, 16005, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 1069, 2707, 82, 62, 28550, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29117, 62, 28550, 58, 70, 62, 312, 60, 1279, 532, 82, 14375, 62, 3866, 16005, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 7588, 62, 45089, 62, 261, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 34479, 3673, 50, 17403, 798, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 42782, 407, 11378, 416, 4064, 69, 329, 3814, 4064, 67, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 9806, 7, 6477, 62, 4299, 3628, 828, 308, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 862, 62, 43082, 62, 13655, 62, 28550, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 371, 862, 3109, 2707, 82, 42782, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49, 3705, 29501, 1475, 2707, 34479, 329, 3814, 4064, 67, 1, 4064, 308, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 862, 62, 43082, 62, 13655, 62, 81, 862, 62, 82, 2203, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 371, 862, 23690, 3109, 2707, 82, 21188, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49, 3705, 29501, 1475, 2707, 371, 3705, 26406, 329, 3814, 4064, 67, 1, 4064, 308, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6143, 62, 1069, 2707, 82, 62, 28550, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20514, 3109, 2707, 82, 42782, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31425, 1475, 2707, 82, 34479, 329, 3814, 4064, 67, 1, 4064, 308, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 21589, 1540, 332, 62, 3866, 16005, 416, 1271, 286, 1661, 677, 274, 284, 651, 15440, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 257, 32794, 7208, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 62, 82, 14375, 62, 3866, 16005, 796, 1540, 332, 62, 3866, 16005, 1635, 2116, 13, 17618, 62, 1659, 62, 22355, 677, 274, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2160, 62, 82, 14375, 62, 3866, 16005, 1343, 2160, 62, 81, 862, 62, 66, 20696, 1279, 2116, 13, 81, 862, 62, 28550, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 371, 862, 31905, 3673, 9171, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13065, 371, 3705, 10824, 37633, 69, 8, 1279, 3512, 1635, 37633, 69, 374, 862, 62, 25067, 8, 37633, 69, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 16345, 62, 81, 862, 62, 66, 20696, 11, 12178, 7, 944, 13, 81, 862, 62, 25067, 828, 2116, 13, 81, 862, 62, 28550, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 13627, 62, 22355, 75, 501, 62, 25641, 2977, 7, 944, 11, 1438, 11, 10706, 62, 36996, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 3565, 1661, 75, 501, 9633, 329, 257, 10706, 62, 36996, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 10903, 284, 307, 3017, 287, 262, 7560, 7885, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 25, 2558, 543, 21079, 543, 10706, 777, 9633, 2689, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2141, 1892, 869, 428, 2163, 351, 262, 976, 357, 3672, 11, 10706, 62, 36996, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5166, 517, 621, 1752, 13, 220, 1318, 743, 407, 307, 1852, 1146, 3706, 9633, 198, 220, 220, 220, 220, 220, 220, 220, 287, 262, 976, 10706, 62, 36996, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 300, 79, 9633, 11, 1123, 543, 2837, 422, 657, 284, 37174, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 318, 27661, 523, 326, 7885, 329, 640, 12, 48369, 2124, 318, 379, 6376, 2124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 13, 7885, 329, 717, 640, 12, 48369, 318, 7885, 58, 15, 4083, 7885, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 640, 12, 48369, 318, 7885, 58, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1540, 332, 796, 2116, 13, 82, 14375, 628, 220, 220, 220, 220, 220, 220, 220, 9633, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2116, 13, 2435, 62, 9630, 62, 2676, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 3672, 796, 366, 834, 1911, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 3672, 11, 366, 25928, 62, 36996, 62, 312, 1600, 965, 7, 25928, 62, 36996, 62, 312, 828, 366, 265, 62, 83, 1600, 965, 7, 83, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9633, 13, 33295, 7, 82, 14375, 13, 33111, 19852, 7, 15, 13, 15, 11, 1540, 332, 13, 10745, 6269, 22784, 1401, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9633, 628, 220, 220, 220, 825, 13627, 62, 3672, 6816, 62, 45286, 7, 944, 11, 1438, 11, 10706, 62, 36996, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 3565, 257, 1438, 6816, 7885, 329, 257, 10706, 62, 36996, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 10903, 284, 307, 3017, 287, 262, 7560, 7885, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 36996, 62, 312, 25, 10903, 1958, 540, 2134, 543, 21079, 543, 10706, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 777, 9633, 2689, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2141, 1892, 869, 428, 2163, 351, 262, 976, 357, 3672, 11, 10706, 62, 36996, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5166, 517, 621, 1752, 13, 220, 1318, 743, 407, 307, 1852, 1146, 3706, 9633, 198, 220, 220, 220, 220, 220, 220, 220, 287, 262, 976, 10706, 62, 36996, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 300, 79, 7885, 543, 3815, 2837, 422, 657, 284, 37174, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 6816, 62, 3672, 796, 366, 834, 1911, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 3672, 11, 366, 25928, 62, 36996, 62, 312, 1600, 965, 7, 25928, 62, 36996, 62, 312, 828, 366, 36729, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1540, 332, 796, 2116, 13, 82, 14375, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1540, 332, 13, 33111, 19852, 7, 15, 13, 15, 11, 1540, 332, 13, 10745, 6269, 22784, 1438, 6816, 62, 3672, 8, 628, 198, 4299, 36804, 27976, 62, 15805, 7, 15805, 11, 9780, 62, 4873, 11, 640, 62, 12626, 62, 16, 11, 640, 62, 12626, 62, 17, 2599, 198, 220, 220, 220, 37227, 11627, 2416, 27976, 1575, 422, 530, 640, 11506, 284, 1194, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1575, 25, 1575, 23436, 1141, 640, 62, 12626, 62, 16, 357, 259, 4991, 286, 7395, 8, 198, 220, 220, 220, 220, 220, 9780, 62, 4873, 25, 2494, 326, 1637, 875, 592, 11, 583, 614, 357, 292, 32465, 11, 304, 13, 70, 1539, 764, 3312, 8, 198, 220, 220, 220, 220, 220, 640, 62, 12626, 62, 16, 25, 640, 11506, 618, 1575, 23436, 357, 259, 4991, 286, 812, 8, 198, 220, 220, 220, 220, 220, 640, 62, 12626, 62, 17, 25, 640, 11506, 284, 36804, 27976, 1575, 357, 259, 4991, 286, 812, 8, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 6446, 36804, 50027, 284, 640, 62, 12626, 62, 17, 11, 4991, 286, 7395, 13, 628, 220, 220, 220, 9104, 10007, 389, 3484, 625, 640, 32727, 13, 1114, 1672, 11, 262, 3512, 198, 220, 220, 220, 743, 307, 257, 640, 2168, 326, 20374, 352, 614, 13, 383, 7885, 1575, 284, 14658, 198, 220, 220, 220, 326, 3512, 561, 788, 307, 329, 352, 614, 286, 4905, 13, 2102, 11, 262, 198, 220, 220, 220, 24846, 17633, 318, 4385, 284, 24061, 262, 2472, 1575, 625, 257, 2392, 640, 198, 220, 220, 220, 11506, 357, 68, 13, 70, 1539, 1542, 812, 737, 628, 220, 220, 220, 1002, 612, 547, 645, 640, 1988, 286, 1637, 11, 262, 36804, 50027, 1575, 561, 307, 198, 220, 220, 220, 262, 8064, 286, 640, 62, 12626, 62, 17, 284, 640, 62, 12626, 62, 16, 357, 68, 13, 70, 1539, 1542, 287, 262, 198, 220, 220, 220, 1672, 737, 2102, 11, 7524, 287, 262, 2003, 389, 1342, 16378, 621, 198, 220, 220, 220, 7524, 287, 262, 1944, 13, 220, 775, 36804, 27976, 262, 1575, 416, 717, 4917, 198, 220, 220, 220, 262, 7548, 12948, 4269, 286, 7524, 625, 640, 62, 12626, 62, 16, 326, 198, 220, 220, 220, 318, 7548, 284, 262, 1575, 11, 788, 7048, 326, 4269, 286, 7524, 198, 220, 220, 220, 8833, 625, 640, 62, 12626, 62, 17, 11, 2427, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 3349, 62, 4873, 796, 352, 13, 15, 1343, 9780, 62, 4873, 198, 220, 220, 220, 1988, 62, 12501, 323, 62, 16, 796, 7182, 7, 27922, 62, 4873, 11, 532, 2435, 62, 12626, 62, 17, 8, 198, 220, 220, 220, 1988, 62, 12501, 323, 62, 17, 796, 7182, 7, 27922, 62, 4873, 11, 532, 2435, 62, 12626, 62, 16, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1575, 1635, 357, 16, 13, 15, 532, 1988, 62, 12501, 323, 62, 16, 8, 1220, 357, 16, 13, 15, 532, 1988, 62, 12501, 323, 62, 17, 8, 198, 220, 220, 220, 2845, 12169, 24095, 1166, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1575, 198 ]
2.328012
28,627
import dedupe import unittest if __name__ == "__main__": unittest.main()
[ 11748, 4648, 48722, 198, 11748, 555, 715, 395, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.548387
31
#get_data.py #234567890123456789012345678901234567890123456789012345678901234567890123456789 # Imports here import torch from torchvision import datasets, transforms # The command line parser for train.py
[ 2, 1136, 62, 7890, 13, 9078, 198, 2, 1954, 2231, 3134, 4531, 486, 1954, 2231, 3134, 4531, 486, 1954, 2231, 3134, 4531, 486, 1954, 2231, 3134, 4531, 486, 1954, 2231, 3134, 4531, 486, 1954, 2231, 3134, 4531, 486, 1954, 2231, 3134, 4531, 486, 1954, 2231, 3134, 4531, 198, 198, 2, 1846, 3742, 994, 198, 11748, 28034, 198, 6738, 28034, 10178, 1330, 40522, 11, 31408, 198, 198, 2, 383, 3141, 1627, 30751, 329, 4512, 13, 9078 ]
2.746667
75
"""create bed_capacity table Revision ID: f8791d49d830 Revises: b84312f6532e Create Date: 2020-11-26 15:22:19.299937 """ from alembic import op # revision identifiers, used by Alembic. revision = 'f8791d49d830' down_revision = '4fcda072e8c6' branch_labels = None depends_on = None
[ 37811, 17953, 3996, 62, 42404, 3084, 198, 198, 18009, 1166, 4522, 25, 277, 23, 3720, 16, 67, 2920, 67, 48341, 198, 18009, 2696, 25, 275, 23, 3559, 1065, 69, 2996, 2624, 68, 198, 16447, 7536, 25, 12131, 12, 1157, 12, 2075, 1315, 25, 1828, 25, 1129, 13, 1959, 2079, 2718, 198, 198, 37811, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 69, 23, 3720, 16, 67, 2920, 67, 48341, 6, 198, 2902, 62, 260, 10178, 796, 705, 19, 16072, 6814, 2998, 17, 68, 23, 66, 21, 6, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 628, 198 ]
2.383333
120
# Copyright 2019 Jij Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import openjij class Response: """A class of response from samplers. Args: var_type (str): Type of variables: 'SPIN' or 'BINARY' which mean {-1, 1} or {0, 1}. indices (int): Indices of `openjij.sampler.response.Response` object. Attributes: states (list): States of the system. energies (list): Energies for the states. q_states (list): Quantum states of the system. q_energies (list): Quantum energies for the quantum states. min_samples (list): Samples with minimum energy. info (dict): Other information. """ def update_ising_states_energies(self, states, energies): """Update states and energies. Args: states (list): Updated states. energies (list): Updated energies. Attributes: min_samples (dict): Minimun energies, states, and number of occurrences. """ if self.var_type == openjij.SPIN: self.states = states else: self.states = [ list(np.array((np.array(state) + 1)/2).astype(np.int)) for state in states] self.energies = energies self.min_samples = self._minimum_sample() def update_trotter_ising_states_energies(self, trotter_states, q_energies): """Update quantum states and energies. Args: trotter_states (list): Updated trotter states. q_energies (list): Updated quantum energies. Attributes: min_samples (dict): Minimun energies, states, and number of occurrences. """ if self.var_type == openjij.SPIN: self.q_states = list(np.array(trotter_states).astype(np.int)) else: self.q_states = [[list(np.array((np.array(state) + 1)/2).astype(np.int)) for state in t_state] for t_state in trotter_states] self.q_energies = q_energies # save minimum energy of each trotter_state min_e_indices = np.argmin(q_energies, axis=1) self.energies = [q_e[min_ind] for min_ind, q_e in zip(min_e_indices, q_energies)] self.states = [list(t_state[min_ind]) for min_ind, t_state in zip(min_e_indices, self.q_states)] self.min_samples = self._minimum_sample() @property def samples(self): """Returns samples as list. Returns: list: all the samples. """ return [dict(zip(self.indices, state)) for state in self.states]
[ 2, 15069, 13130, 449, 2926, 3457, 13, 198, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1280, 73, 2926, 628, 198, 4871, 18261, 25, 198, 220, 220, 220, 37227, 32, 1398, 286, 2882, 422, 6072, 489, 364, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 4906, 357, 2536, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 286, 9633, 25, 705, 4303, 1268, 6, 393, 705, 33, 1268, 13153, 6, 543, 1612, 1391, 12, 16, 11, 352, 92, 393, 1391, 15, 11, 352, 27422, 628, 220, 220, 220, 220, 220, 220, 220, 36525, 357, 600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1423, 1063, 286, 4600, 9654, 73, 2926, 13, 37687, 20053, 13, 26209, 13, 31077, 63, 2134, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2585, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1829, 286, 262, 1080, 13, 628, 220, 220, 220, 220, 220, 220, 220, 27598, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 25649, 444, 329, 262, 2585, 13, 628, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 27219, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29082, 2585, 286, 262, 1080, 13, 628, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 877, 70, 444, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29082, 27598, 329, 262, 14821, 2585, 13, 628, 220, 220, 220, 220, 220, 220, 220, 949, 62, 82, 12629, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3409, 2374, 351, 5288, 2568, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7508, 357, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3819, 1321, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4296, 62, 1710, 62, 27219, 62, 877, 70, 444, 7, 944, 11, 2585, 11, 27598, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 2585, 290, 27598, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2585, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19433, 2585, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27598, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19433, 27598, 13, 628, 220, 220, 220, 220, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 82, 12629, 357, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1855, 320, 403, 27598, 11, 2585, 11, 290, 1271, 286, 40279, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 7785, 62, 4906, 6624, 1280, 73, 2926, 13, 4303, 1268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27219, 796, 2585, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27219, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 7, 37659, 13, 18747, 19510, 37659, 13, 18747, 7, 5219, 8, 1343, 352, 20679, 17, 737, 459, 2981, 7, 37659, 13, 600, 4008, 329, 1181, 287, 2585, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 877, 70, 444, 796, 27598, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1084, 62, 82, 12629, 796, 2116, 13557, 39504, 62, 39873, 3419, 628, 220, 220, 220, 825, 4296, 62, 83, 10599, 353, 62, 1710, 62, 27219, 62, 877, 70, 444, 7, 944, 11, 4161, 83, 353, 62, 27219, 11, 10662, 62, 877, 70, 444, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 14821, 2585, 290, 27598, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4161, 83, 353, 62, 27219, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19433, 4161, 83, 353, 2585, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 877, 70, 444, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19433, 14821, 27598, 13, 628, 220, 220, 220, 220, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 82, 12629, 357, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1855, 320, 403, 27598, 11, 2585, 11, 290, 1271, 286, 40279, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 7785, 62, 4906, 6624, 1280, 73, 2926, 13, 4303, 1268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 80, 62, 27219, 796, 1351, 7, 37659, 13, 18747, 7, 83, 10599, 353, 62, 27219, 737, 459, 2981, 7, 37659, 13, 600, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 80, 62, 27219, 796, 16410, 4868, 7, 37659, 13, 18747, 19510, 37659, 13, 18747, 7, 5219, 8, 1343, 352, 20679, 17, 737, 459, 2981, 7, 37659, 13, 600, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1181, 287, 256, 62, 5219, 60, 329, 256, 62, 5219, 287, 4161, 83, 353, 62, 27219, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 80, 62, 877, 70, 444, 796, 10662, 62, 877, 70, 444, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 5288, 2568, 286, 1123, 4161, 83, 353, 62, 5219, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 68, 62, 521, 1063, 796, 45941, 13, 853, 1084, 7, 80, 62, 877, 70, 444, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 877, 70, 444, 796, 685, 80, 62, 68, 58, 1084, 62, 521, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 949, 62, 521, 11, 10662, 62, 68, 287, 19974, 7, 1084, 62, 68, 62, 521, 1063, 11, 10662, 62, 877, 70, 444, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27219, 796, 685, 4868, 7, 83, 62, 5219, 58, 1084, 62, 521, 12962, 329, 949, 62, 521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 5219, 287, 19974, 7, 1084, 62, 68, 62, 521, 1063, 11, 2116, 13, 80, 62, 27219, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1084, 62, 82, 12629, 796, 2116, 13557, 39504, 62, 39873, 3419, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 8405, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 8405, 355, 1351, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 25, 477, 262, 8405, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 11600, 7, 13344, 7, 944, 13, 521, 1063, 11, 1181, 4008, 329, 1181, 287, 2116, 13, 27219, 60, 198 ]
2.219853
1,501
B()
[ 198, 33, 3419 ]
1.333333
3
# # add_numbers() # x = add_numbers_version_01(20,30) # print(x) # ? # not returning anything to you # add_numbers_version_01(50, 10) # add_numbers_version_01(300, 29) # add_numbers_version_01(20.78, 56.89) # # Average of two numbers # Add 2 nos and then divide the sum with nos. of value # no_one = 50 # no_two = 60 # nos_sum = no_one + no_two # nos_sum = add_numbers_version_01(50, 50) ### This particular line of code will throw error # avg = nos_sum/2 # 50.0 # print(avg) ## # nos_sum = add_numbers_version_01(40, 50) ### This particular line of code will throw error # avg = nos_sum/2 # 50.0 # print(avg) ## # nos_sum = add_numbers_version_01(140, 150) ### This particular line of code will throw error # avg = nos_sum/2 # 50.0 # print(avg) ## output = calculate_avg_of_two_numbers() print(output) output = calculate_avg_of_two_numbers_version_01(30, 30) print(output) output = calculate_avg_of_two_numbers_version_01(40, 50) print(output) output = calculate_avg_of_two_numbers_version_01(140, 150) print(output) output = calculate_avg_of_two_numbers_version_01(230, 30) print(output)
[ 2, 220, 198, 198, 2, 751, 62, 77, 17024, 3419, 198, 198, 2, 2124, 796, 751, 62, 77, 17024, 62, 9641, 62, 486, 7, 1238, 11, 1270, 8, 198, 2, 3601, 7, 87, 8, 220, 1303, 5633, 628, 197, 2, 407, 8024, 1997, 284, 345, 220, 198, 198, 2, 751, 62, 77, 17024, 62, 9641, 62, 486, 7, 1120, 11, 838, 8, 198, 2, 751, 62, 77, 17024, 62, 9641, 62, 486, 7, 6200, 11, 2808, 8, 198, 2, 751, 62, 77, 17024, 62, 9641, 62, 486, 7, 1238, 13, 3695, 11, 7265, 13, 4531, 8, 628, 198, 2, 1303, 13475, 286, 734, 3146, 220, 198, 2, 3060, 362, 43630, 290, 788, 14083, 262, 2160, 351, 43630, 13, 286, 1988, 220, 198, 198, 2, 645, 62, 505, 796, 2026, 220, 198, 2, 645, 62, 11545, 796, 3126, 220, 198, 2, 43630, 62, 16345, 796, 645, 62, 505, 1343, 645, 62, 11545, 198, 198, 2, 43630, 62, 16345, 796, 751, 62, 77, 17024, 62, 9641, 62, 486, 7, 1120, 11, 2026, 8, 220, 220, 44386, 770, 1948, 1627, 286, 2438, 481, 3714, 4049, 198, 198, 2, 42781, 220, 796, 43630, 62, 16345, 14, 17, 220, 1303, 2026, 13, 15, 198, 198, 2, 3601, 7, 615, 70, 8, 220, 22492, 220, 198, 198, 2, 43630, 62, 16345, 796, 751, 62, 77, 17024, 62, 9641, 62, 486, 7, 1821, 11, 2026, 8, 220, 220, 44386, 770, 1948, 1627, 286, 2438, 481, 3714, 4049, 198, 198, 2, 42781, 220, 796, 43630, 62, 16345, 14, 17, 220, 1303, 2026, 13, 15, 198, 198, 2, 3601, 7, 615, 70, 8, 220, 22492, 220, 628, 198, 2, 43630, 62, 16345, 796, 751, 62, 77, 17024, 62, 9641, 62, 486, 7, 15187, 11, 6640, 8, 220, 220, 44386, 770, 1948, 1627, 286, 2438, 481, 3714, 4049, 198, 198, 2, 42781, 220, 796, 43630, 62, 16345, 14, 17, 220, 1303, 2026, 13, 15, 198, 198, 2, 3601, 7, 615, 70, 8, 220, 22492, 220, 628, 198, 198, 22915, 796, 15284, 62, 615, 70, 62, 1659, 62, 11545, 62, 77, 17024, 3419, 198, 4798, 7, 22915, 8, 628, 628, 198, 198, 22915, 796, 15284, 62, 615, 70, 62, 1659, 62, 11545, 62, 77, 17024, 62, 9641, 62, 486, 7, 1270, 11, 1542, 8, 198, 4798, 7, 22915, 8, 198, 198, 22915, 796, 15284, 62, 615, 70, 62, 1659, 62, 11545, 62, 77, 17024, 62, 9641, 62, 486, 7, 1821, 11, 2026, 8, 198, 4798, 7, 22915, 8, 198, 198, 22915, 796, 15284, 62, 615, 70, 62, 1659, 62, 11545, 62, 77, 17024, 62, 9641, 62, 486, 7, 15187, 11, 6640, 8, 198, 4798, 7, 22915, 8, 198, 198, 22915, 796, 15284, 62, 615, 70, 62, 1659, 62, 11545, 62, 77, 17024, 62, 9641, 62, 486, 7, 19214, 11, 1542, 8, 198, 4798, 7, 22915, 8, 628, 628 ]
2.456103
467
# Note: # 1. Need dependency autoinstall # 2. GDAL import os os.environ['PATH'] import gtfs2gmns as gg gtfs_path = "H:\\ChromeDownload\\gtfscota" gmns_path = "H:\\ChromeDownload\\gtfscota\\output" node_transit,link_transit = gg.Convert_GTFS(gtfs_path,gmns_path)
[ 2, 5740, 25, 198, 2, 352, 13, 10664, 20203, 8295, 17350, 198, 2, 362, 13, 27044, 1847, 198, 198, 11748, 28686, 198, 418, 13, 268, 2268, 17816, 34219, 20520, 198, 11748, 308, 83, 9501, 17, 39870, 5907, 355, 308, 70, 198, 198, 13655, 9501, 62, 6978, 796, 366, 39, 25, 6852, 1925, 5998, 10002, 6852, 13655, 69, 1416, 4265, 1, 198, 39870, 5907, 62, 6978, 796, 366, 39, 25, 6852, 1925, 5998, 10002, 6852, 13655, 69, 1416, 4265, 6852, 22915, 1, 198, 198, 17440, 62, 7645, 270, 11, 8726, 62, 7645, 270, 796, 308, 70, 13, 3103, 1851, 62, 38, 10234, 50, 7, 13655, 9501, 62, 6978, 11, 39870, 5907, 62, 6978, 8 ]
2.336283
113
import numpy as np from .arpack import _arpack # type: ignore[attr-defined] from . import eigsh from scipy.sparse.linalg.interface import LinearOperator from scipy.sparse import isspmatrix from scipy.sparse.sputils import is_pydata_spmatrix from scipy.sparse.linalg.eigen.lobpcg import lobpcg # type: ignore[no-redef] arpack_int = _arpack.timing.nbx.dtype __all__ = ['svds'] def svds(A, k=6, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack', options=None): """ Partial singular value decomposition of a sparse matrix. Compute the largest or smallest `k` singular values and corresponding singular vectors of a sparse matrix `A`. The order in which the singular values are returned is not guaranteed. In the descriptions below, let ``M, N = A.shape``. Parameters ---------- A : sparse matrix or LinearOperator Matrix to decompose. k : int, default: 6 Number of singular values and singular vectors to compute. Must satisfy ``1 <= k < min(M, N)``. ncv : int, optional When ``solver='arpack'``, this is the number of Lanczos vectors generated. See :ref:`'arpack' <sparse.linalg.svds-arpack>` for details. When ``solver='lobpcg'``, this parameter is ignored. tol : float, optional Tolerance for singular values. Zero (default) means machine precision. which : {'LM', 'SM'} Which `k` singular values to find: either the largest magnitude ('LM') or smallest magnitude ('SM') singular values. v0 : ndarray, optional The starting vector for iteration; see method-specific documentation (:ref:`'arpack' <sparse.linalg.svds-arpack>` or :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`) for details. maxiter : int, optional Maximum number of iterations; see method-specific documentation (:ref:`'arpack' <sparse.linalg.svds-arpack>` or :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`) for details. return_singular_vectors : bool or str, optional Singular values are always computed and returned; this parameter controls the computation and return of singular vectors. - ``True``: return singular vectors. - ``False``: do not return singular vectors. - ``"u"``: only return the left singular values, without computing the right singular vectors (if ``N > M``). - ``"vh"``: only return the right singular values, without computing the left singular vectors (if ``N <= M``). solver : str, optional The solver used. :ref:`'arpack' <sparse.linalg.svds-arpack>` and :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>` are supported. Default: `'arpack'`. options : dict, optional A dictionary of solver-specific options. No solver-specific options are currently supported; this parameter is reserved for future use. Returns ------- u : ndarray, shape=(M, k) Unitary matrix having left singular vectors as columns. If `return_singular_vectors` is ``"vh"``, this variable is not computed, and ``None`` is returned instead. s : ndarray, shape=(k,) The singular values. vh : ndarray, shape=(k, N) Unitary matrix having right singular vectors as rows. If `return_singular_vectors` is ``"u"``, this variable is not computed, and ``None`` is returned instead. Notes ----- This is a naive implementation using ARPACK or LOBPCG as an eigensolver on ``A.conj().T @ A`` or ``A @ A.conj().T``, depending on which one is more efficient. Examples -------- Construct a matrix ``A`` from singular values and vectors. >>> from scipy.stats import ortho_group >>> from scipy.sparse import csc_matrix, diags >>> from scipy.sparse.linalg import svds >>> rng = np.random.default_rng() >>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng)) >>> s = [0.0001, 0.001, 3, 4, 5] # singular values >>> u = orthogonal[:, :5] # left singular vectors >>> vT = orthogonal[:, 5:].T # right singular vectors >>> A = u @ diags(s) @ vT With only three singular values/vectors, the SVD approximates the original matrix. >>> u2, s2, vT2 = svds(A, k=3) >>> A2 = u2 @ np.diag(s2) @ vT2 >>> np.allclose(A2, A.todense(), atol=1e-3) True With all five singular values/vectors, we can reproduce the original matrix. >>> u3, s3, vT3 = svds(A, k=5) >>> A3 = u3 @ np.diag(s3) @ vT3 >>> np.allclose(A3, A.todense()) True The singular values match the expected singular values, and the singular values are as expected up to a difference in sign. Consequently, the returned arrays of singular vectors must also be orthogonal. >>> (np.allclose(s3, s) and ... np.allclose(np.abs(u3), np.abs(u.todense())) and ... np.allclose(np.abs(vT3), np.abs(vT.todense()))) True """ if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if (not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A))): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. # This is not a stable way to approach the problem. if solver == 'lobpcg': if k == 1 and v0 is not None: X = np.reshape(v0, (-1, 1)) else: X = np.random.RandomState(52).randn(min(A.shape), k) eigvals, eigvec = lobpcg(XH_X, X, tol=tol ** 2, maxiter=maxiter, largest=largest) elif solver == 'arpack' or solver is None: eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) else: raise ValueError("solver must be either 'arpack', or 'lobpcg'.") # Gramian matrices have real non-negative eigenvalues. eigvals = np.maximum(eigvals.real, 0) # Use the sophisticated detection of small eigenvalues from pinvh. t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) # Get a mask indicating which eigenpairs are not degenerately tiny, # and create the re-ordered array of thresholded singular values. above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = (X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None) vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = (_herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None) u = (_augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None) vh = (_augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None) indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 764, 5117, 441, 1330, 4808, 5117, 441, 220, 1303, 2099, 25, 8856, 58, 35226, 12, 23211, 60, 198, 6738, 764, 1330, 304, 328, 1477, 198, 198, 6738, 629, 541, 88, 13, 82, 29572, 13, 75, 1292, 70, 13, 39994, 1330, 44800, 18843, 1352, 198, 6738, 629, 541, 88, 13, 82, 29572, 1330, 1189, 4426, 265, 8609, 198, 6738, 629, 541, 88, 13, 82, 29572, 13, 82, 1996, 4487, 1330, 318, 62, 79, 5173, 1045, 62, 2777, 6759, 8609, 198, 6738, 629, 541, 88, 13, 82, 29572, 13, 75, 1292, 70, 13, 68, 9324, 13, 75, 672, 14751, 70, 1330, 6804, 14751, 70, 220, 1303, 2099, 25, 8856, 58, 3919, 12, 445, 891, 60, 198, 198, 5117, 441, 62, 600, 796, 4808, 5117, 441, 13, 16514, 278, 13, 46803, 87, 13, 67, 4906, 198, 834, 439, 834, 796, 37250, 21370, 9310, 20520, 628, 628, 198, 198, 4299, 38487, 9310, 7, 32, 11, 479, 28, 21, 11, 299, 33967, 28, 14202, 11, 284, 75, 28, 15, 11, 543, 11639, 31288, 3256, 410, 15, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 2676, 28, 14202, 11, 1441, 62, 12215, 934, 62, 303, 5217, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1540, 332, 11639, 5117, 441, 3256, 3689, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43689, 18032, 1988, 26969, 9150, 286, 257, 29877, 17593, 13, 628, 220, 220, 220, 3082, 1133, 262, 4387, 393, 18197, 4600, 74, 63, 18032, 3815, 290, 11188, 198, 220, 220, 220, 18032, 30104, 286, 257, 29877, 17593, 4600, 32, 44646, 383, 1502, 287, 543, 262, 18032, 198, 220, 220, 220, 3815, 389, 4504, 318, 407, 11462, 13, 628, 220, 220, 220, 554, 262, 16969, 2174, 11, 1309, 7559, 44, 11, 399, 796, 317, 13, 43358, 15506, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 317, 1058, 29877, 17593, 393, 44800, 18843, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 24936, 284, 26969, 3455, 13, 198, 220, 220, 220, 479, 1058, 493, 11, 4277, 25, 718, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 18032, 3815, 290, 18032, 30104, 284, 24061, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12039, 15959, 7559, 16, 19841, 479, 1279, 949, 7, 44, 11, 399, 8, 15506, 13, 198, 220, 220, 220, 299, 33967, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 7559, 82, 14375, 11639, 5117, 441, 6, 15506, 11, 428, 318, 262, 1271, 286, 21534, 37925, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 13, 4091, 1058, 5420, 25, 63, 6, 5117, 441, 6, 1279, 82, 29572, 13, 75, 1292, 70, 13, 21370, 9310, 12, 5117, 441, 29, 63, 329, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 7559, 82, 14375, 11639, 75, 672, 14751, 70, 6, 15506, 11, 428, 11507, 318, 9514, 13, 198, 220, 220, 220, 284, 75, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 309, 37668, 329, 18032, 3815, 13, 12169, 357, 12286, 8, 1724, 4572, 15440, 13, 198, 220, 220, 220, 543, 1058, 1391, 6, 31288, 3256, 705, 12310, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 9022, 4600, 74, 63, 18032, 3815, 284, 1064, 25, 2035, 262, 4387, 14735, 19203, 31288, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 393, 18197, 14735, 19203, 12310, 11537, 18032, 3815, 13, 198, 220, 220, 220, 410, 15, 1058, 299, 67, 18747, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3599, 15879, 329, 24415, 26, 766, 2446, 12, 11423, 198, 220, 220, 220, 220, 220, 220, 220, 10314, 357, 25, 5420, 25, 63, 6, 5117, 441, 6, 1279, 82, 29572, 13, 75, 1292, 70, 13, 21370, 9310, 12, 5117, 441, 29, 63, 393, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 5420, 25, 63, 6, 75, 672, 14751, 70, 6, 1279, 82, 29572, 13, 75, 1292, 70, 13, 21370, 9310, 12, 75, 672, 14751, 70, 29, 63, 8, 329, 3307, 13, 198, 220, 220, 220, 3509, 2676, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 22246, 1271, 286, 34820, 26, 766, 2446, 12, 11423, 198, 220, 220, 220, 220, 220, 220, 220, 10314, 357, 25, 5420, 25, 63, 6, 5117, 441, 6, 1279, 82, 29572, 13, 75, 1292, 70, 13, 21370, 9310, 12, 5117, 441, 29, 63, 393, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 5420, 25, 63, 6, 75, 672, 14751, 70, 6, 1279, 82, 29572, 13, 75, 1292, 70, 13, 21370, 9310, 12, 75, 672, 14751, 70, 29, 63, 8, 329, 3307, 13, 198, 220, 220, 220, 1441, 62, 12215, 934, 62, 303, 5217, 1058, 20512, 393, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 5573, 934, 3815, 389, 1464, 29231, 290, 4504, 26, 428, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 6973, 262, 29964, 290, 1441, 286, 18032, 30104, 13, 628, 220, 220, 220, 220, 220, 220, 220, 532, 7559, 17821, 15506, 25, 1441, 18032, 30104, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 7559, 25101, 15506, 25, 466, 407, 1441, 18032, 30104, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 7559, 1, 84, 1, 15506, 25, 691, 1441, 262, 1364, 18032, 3815, 11, 1231, 14492, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 826, 18032, 30104, 357, 361, 7559, 45, 1875, 337, 15506, 737, 198, 220, 220, 220, 220, 220, 220, 220, 532, 7559, 1, 85, 71, 1, 15506, 25, 691, 1441, 262, 826, 18032, 3815, 11, 1231, 14492, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1364, 18032, 30104, 357, 361, 7559, 45, 19841, 337, 15506, 737, 628, 220, 220, 220, 1540, 332, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1540, 332, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 5420, 25, 63, 6, 5117, 441, 6, 1279, 82, 29572, 13, 75, 1292, 70, 13, 21370, 9310, 12, 5117, 441, 29, 63, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 5420, 25, 63, 6, 75, 672, 14751, 70, 6, 1279, 82, 29572, 13, 75, 1292, 70, 13, 21370, 9310, 12, 75, 672, 14751, 70, 29, 63, 389, 4855, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 25, 4600, 6, 5117, 441, 6, 44646, 198, 220, 220, 220, 3689, 1058, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 317, 22155, 286, 1540, 332, 12, 11423, 3689, 13, 1400, 1540, 332, 12, 11423, 3689, 198, 220, 220, 220, 220, 220, 220, 220, 389, 3058, 4855, 26, 428, 11507, 318, 10395, 329, 2003, 779, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 334, 1058, 299, 67, 18747, 11, 5485, 16193, 44, 11, 479, 8, 198, 220, 220, 220, 220, 220, 220, 220, 791, 9331, 17593, 1719, 1364, 18032, 30104, 355, 15180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 7783, 62, 12215, 934, 62, 303, 5217, 63, 318, 7559, 1, 85, 71, 1, 15506, 11, 428, 7885, 318, 407, 198, 220, 220, 220, 220, 220, 220, 220, 29231, 11, 290, 7559, 14202, 15506, 318, 4504, 2427, 13, 198, 220, 220, 220, 264, 1058, 299, 67, 18747, 11, 5485, 16193, 74, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 383, 18032, 3815, 13, 198, 220, 220, 220, 410, 71, 1058, 299, 67, 18747, 11, 5485, 16193, 74, 11, 399, 8, 198, 220, 220, 220, 220, 220, 220, 220, 791, 9331, 17593, 1719, 826, 18032, 30104, 355, 15274, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 7783, 62, 12215, 934, 62, 303, 5217, 63, 318, 7559, 1, 84, 1, 15506, 11, 428, 7885, 318, 407, 29231, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 7559, 14202, 15506, 318, 4504, 2427, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 770, 318, 257, 24354, 7822, 1262, 5923, 47, 8120, 393, 406, 9864, 5662, 38, 355, 281, 304, 328, 641, 14375, 198, 220, 220, 220, 319, 7559, 32, 13, 1102, 73, 22446, 51, 2488, 317, 15506, 393, 7559, 32, 2488, 317, 13, 1102, 73, 22446, 51, 15506, 11, 6906, 319, 543, 530, 318, 517, 198, 220, 220, 220, 6942, 13, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 28407, 257, 17593, 7559, 32, 15506, 422, 18032, 3815, 290, 30104, 13, 628, 220, 220, 220, 13163, 422, 629, 541, 88, 13, 34242, 1330, 29617, 78, 62, 8094, 198, 220, 220, 220, 13163, 422, 629, 541, 88, 13, 82, 29572, 1330, 269, 1416, 62, 6759, 8609, 11, 2566, 3775, 198, 220, 220, 220, 13163, 422, 629, 541, 88, 13, 82, 29572, 13, 75, 1292, 70, 1330, 38487, 9310, 198, 220, 220, 220, 13163, 374, 782, 796, 45941, 13, 25120, 13, 12286, 62, 81, 782, 3419, 198, 220, 220, 220, 13163, 29617, 519, 20996, 796, 269, 1416, 62, 6759, 8609, 7, 1506, 78, 62, 8094, 13, 81, 14259, 7, 940, 11, 4738, 62, 5219, 28, 81, 782, 4008, 198, 220, 220, 220, 13163, 264, 796, 685, 15, 13, 18005, 11, 657, 13, 8298, 11, 513, 11, 604, 11, 642, 60, 220, 1303, 18032, 3815, 198, 220, 220, 220, 13163, 334, 796, 29617, 519, 20996, 58, 45299, 1058, 20, 60, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1364, 18032, 30104, 198, 220, 220, 220, 13163, 410, 51, 796, 29617, 519, 20996, 58, 45299, 642, 25, 4083, 51, 220, 220, 220, 220, 220, 1303, 826, 18032, 30104, 198, 220, 220, 220, 13163, 317, 796, 334, 2488, 2566, 3775, 7, 82, 8, 2488, 410, 51, 628, 220, 220, 220, 2080, 691, 1115, 18032, 3815, 14, 303, 5217, 11, 262, 311, 8898, 5561, 26748, 262, 2656, 198, 220, 220, 220, 17593, 13, 628, 220, 220, 220, 13163, 334, 17, 11, 264, 17, 11, 410, 51, 17, 796, 38487, 9310, 7, 32, 11, 479, 28, 18, 8, 198, 220, 220, 220, 13163, 317, 17, 796, 334, 17, 2488, 45941, 13, 10989, 363, 7, 82, 17, 8, 2488, 410, 51, 17, 198, 220, 220, 220, 13163, 45941, 13, 439, 19836, 7, 32, 17, 11, 317, 13, 83, 375, 1072, 22784, 379, 349, 28, 16, 68, 12, 18, 8, 198, 220, 220, 220, 6407, 628, 220, 220, 220, 2080, 477, 1936, 18032, 3815, 14, 303, 5217, 11, 356, 460, 22919, 262, 2656, 198, 220, 220, 220, 17593, 13, 628, 220, 220, 220, 13163, 334, 18, 11, 264, 18, 11, 410, 51, 18, 796, 38487, 9310, 7, 32, 11, 479, 28, 20, 8, 198, 220, 220, 220, 13163, 317, 18, 796, 334, 18, 2488, 45941, 13, 10989, 363, 7, 82, 18, 8, 2488, 410, 51, 18, 198, 220, 220, 220, 13163, 45941, 13, 439, 19836, 7, 32, 18, 11, 317, 13, 83, 375, 1072, 28955, 198, 220, 220, 220, 6407, 628, 220, 220, 220, 383, 18032, 3815, 2872, 262, 2938, 18032, 3815, 11, 290, 262, 18032, 198, 220, 220, 220, 3815, 389, 355, 2938, 510, 284, 257, 3580, 287, 1051, 13, 24982, 11, 262, 198, 220, 220, 220, 4504, 26515, 286, 18032, 30104, 1276, 635, 307, 29617, 519, 20996, 13, 628, 220, 220, 220, 13163, 357, 37659, 13, 439, 19836, 7, 82, 18, 11, 264, 8, 290, 198, 220, 220, 220, 2644, 220, 45941, 13, 439, 19836, 7, 37659, 13, 8937, 7, 84, 18, 828, 45941, 13, 8937, 7, 84, 13, 83, 375, 1072, 3419, 4008, 290, 198, 220, 220, 220, 2644, 220, 45941, 13, 439, 19836, 7, 37659, 13, 8937, 7, 85, 51, 18, 828, 45941, 13, 8937, 7, 85, 51, 13, 83, 375, 1072, 3419, 22305, 198, 220, 220, 220, 6407, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 543, 6624, 705, 31288, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4387, 796, 6407, 198, 220, 220, 220, 1288, 361, 543, 6624, 705, 12310, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4387, 796, 10352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 4758, 1276, 307, 2035, 705, 31288, 6, 393, 705, 12310, 6, 19570, 628, 220, 220, 220, 611, 357, 1662, 357, 271, 39098, 7, 32, 11, 44800, 18843, 1352, 8, 393, 1189, 4426, 265, 8609, 7, 32, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 318, 62, 79, 5173, 1045, 62, 2777, 6759, 8609, 7, 32, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 317, 796, 45941, 13, 292, 18747, 7, 32, 8, 628, 220, 220, 220, 299, 11, 285, 796, 317, 13, 43358, 628, 220, 220, 220, 611, 479, 19841, 657, 393, 479, 18189, 949, 7, 77, 11, 285, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 74, 1276, 307, 1022, 352, 290, 949, 7, 32, 13, 43358, 828, 479, 28, 4, 67, 1, 4064, 479, 8, 628, 220, 220, 220, 611, 318, 39098, 7, 32, 11, 44800, 18843, 1352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 1875, 285, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 26518, 796, 317, 13, 6759, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 6759, 6759, 796, 317, 13, 6759, 6759, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 39, 62, 26518, 796, 317, 13, 81, 6759, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 39, 62, 6759, 796, 317, 13, 81, 6759, 6759, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 26518, 796, 317, 13, 81, 6759, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 6759, 6759, 796, 317, 13, 81, 6759, 6759, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 39, 62, 26518, 796, 317, 13, 6759, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 39, 62, 6759, 796, 317, 13, 6759, 6759, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 651, 35226, 7, 32, 11, 705, 67, 4906, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 317, 13, 26518, 7, 37659, 13, 9107, 418, 26933, 76, 11, 352, 12962, 737, 67, 4906, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 1875, 285, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 26518, 796, 1395, 62, 6759, 6759, 796, 317, 13, 26518, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 39, 62, 26518, 796, 1395, 39, 62, 6759, 796, 4808, 372, 76, 7, 32, 737, 26518, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 39, 62, 26518, 796, 1395, 39, 62, 6759, 796, 317, 13, 26518, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 26518, 796, 1395, 62, 6759, 6759, 796, 4808, 372, 76, 7, 32, 737, 26518, 628, 220, 220, 220, 1395, 39, 62, 55, 796, 44800, 18843, 1352, 7, 6759, 35138, 28, 6759, 35138, 62, 55, 39, 62, 55, 11, 288, 4906, 28, 32, 13, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 6759, 28, 6759, 6759, 62, 55, 39, 62, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 1084, 7, 32, 13, 43358, 828, 949, 7, 32, 13, 43358, 22305, 628, 220, 220, 220, 1303, 3497, 257, 1877, 4279, 40874, 286, 262, 31821, 5447, 14599, 666, 17593, 13, 198, 220, 220, 220, 1303, 770, 318, 407, 257, 8245, 835, 284, 3164, 262, 1917, 13, 198, 220, 220, 220, 611, 1540, 332, 6624, 705, 75, 672, 14751, 70, 10354, 628, 220, 220, 220, 220, 220, 220, 220, 611, 479, 6624, 352, 290, 410, 15, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 45941, 13, 3447, 1758, 7, 85, 15, 11, 13841, 16, 11, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 45941, 13, 25120, 13, 29531, 9012, 7, 4309, 737, 25192, 77, 7, 1084, 7, 32, 13, 43358, 828, 479, 8, 628, 220, 220, 220, 220, 220, 220, 220, 304, 328, 12786, 11, 304, 328, 35138, 796, 6804, 14751, 70, 7, 55, 39, 62, 55, 11, 1395, 11, 284, 75, 28, 83, 349, 12429, 362, 11, 3509, 2676, 28, 9806, 2676, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4387, 28, 28209, 8, 628, 220, 220, 220, 1288, 361, 1540, 332, 6624, 705, 5117, 441, 6, 393, 1540, 332, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 304, 328, 12786, 11, 304, 328, 35138, 796, 304, 328, 1477, 7, 55, 39, 62, 55, 11, 479, 28, 74, 11, 284, 75, 28, 83, 349, 12429, 362, 11, 3509, 2676, 28, 9806, 2676, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 33967, 28, 10782, 85, 11, 543, 28, 4758, 11, 410, 15, 28, 85, 15, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 82, 14375, 1276, 307, 2035, 705, 5117, 441, 3256, 393, 705, 75, 672, 14751, 70, 6, 19570, 628, 220, 220, 220, 1303, 20159, 666, 2603, 45977, 423, 1103, 1729, 12, 31591, 304, 9324, 27160, 13, 198, 220, 220, 220, 304, 328, 12786, 796, 45941, 13, 47033, 7, 68, 328, 12786, 13, 5305, 11, 657, 8, 628, 220, 220, 220, 1303, 5765, 262, 13767, 13326, 286, 1402, 304, 9324, 27160, 422, 6757, 85, 71, 13, 198, 220, 220, 220, 256, 796, 304, 328, 35138, 13, 67, 4906, 13, 10641, 13, 21037, 3419, 198, 220, 220, 220, 5766, 796, 1391, 6, 69, 10354, 352, 36, 18, 11, 705, 67, 10354, 352, 36, 21, 92, 198, 220, 220, 220, 1779, 796, 5766, 58, 83, 60, 1635, 45941, 13, 69, 10951, 7, 83, 737, 25386, 198, 220, 220, 220, 45616, 796, 1779, 1635, 45941, 13, 9806, 7, 68, 328, 12786, 8, 628, 220, 220, 220, 1303, 3497, 257, 9335, 12739, 543, 304, 9324, 79, 3468, 389, 407, 25419, 1286, 7009, 11, 198, 220, 220, 220, 1303, 290, 2251, 262, 302, 12, 24071, 7177, 286, 11387, 276, 18032, 3815, 13, 198, 220, 220, 220, 2029, 62, 8968, 2364, 796, 357, 68, 328, 12786, 1875, 45616, 8, 198, 220, 220, 220, 299, 11664, 796, 2029, 62, 8968, 2364, 13, 16345, 3419, 198, 220, 220, 220, 299, 17470, 796, 479, 532, 299, 11664, 198, 220, 220, 220, 1017, 1376, 796, 45941, 13, 31166, 17034, 7, 68, 328, 12786, 58, 29370, 62, 8968, 2364, 12962, 198, 220, 220, 220, 264, 796, 45941, 13, 9107, 418, 62, 2339, 7, 68, 328, 12786, 8, 198, 220, 220, 220, 264, 58, 25, 77, 11664, 60, 796, 1017, 1376, 198, 220, 220, 220, 611, 407, 1441, 62, 12215, 934, 62, 303, 5217, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 30619, 7, 82, 8, 628, 220, 220, 220, 611, 299, 1875, 285, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 11664, 796, 304, 328, 35138, 58, 45299, 2029, 62, 8968, 2364, 60, 198, 220, 220, 220, 220, 220, 220, 220, 334, 11664, 796, 357, 55, 62, 6759, 6759, 7, 85, 11664, 8, 1220, 1017, 1376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 12215, 934, 62, 303, 5217, 14512, 705, 85, 71, 6, 2073, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 71, 11664, 796, 4808, 372, 76, 7, 85, 11664, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 334, 11664, 796, 304, 328, 35138, 58, 45299, 2029, 62, 8968, 2364, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 71, 11664, 796, 44104, 372, 76, 7, 55, 62, 6759, 6759, 7, 934, 469, 8, 1220, 1017, 1376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 12215, 934, 62, 303, 5217, 14512, 705, 84, 6, 2073, 6045, 8, 628, 220, 220, 220, 334, 796, 44104, 559, 5154, 276, 62, 1506, 261, 6636, 62, 4033, 82, 7, 934, 469, 11, 299, 17470, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 611, 334, 11664, 318, 407, 6045, 2073, 6045, 8, 198, 220, 220, 220, 410, 71, 796, 44104, 559, 5154, 276, 62, 1506, 261, 6636, 62, 8516, 7, 85, 71, 11664, 11, 299, 17470, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 71, 11664, 318, 407, 6045, 2073, 6045, 8, 628, 220, 220, 220, 39199, 62, 82, 9741, 796, 45941, 13, 22046, 419, 7, 82, 8, 198, 220, 220, 220, 264, 796, 264, 58, 9630, 274, 62, 82, 9741, 60, 198, 220, 220, 220, 611, 334, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 334, 796, 334, 58, 45299, 39199, 62, 82, 9741, 60, 198, 220, 220, 220, 611, 410, 71, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 71, 796, 410, 71, 58, 9630, 274, 62, 82, 9741, 60, 628, 220, 220, 220, 1441, 334, 11, 264, 11, 410, 71, 198 ]
2.259536
3,749
from __future__ import absolute_import __author__ = 'Shyue Ping Ong' __copyright__ = 'Copyright 2013, The Materials Project' __version__ = '0.1' __maintainer__ = 'Shyue Ping Ong' __email__ = '[email protected]' __date__ = '1/24/14' import os from contextlib import contextmanager @contextmanager def cd(path): """ A Fabric-inspired cd context that temporarily changes directory for performing some tasks, and returns to the original working directory afterwards. E.g., with cd("/my/path/"): do_something() Args: path: Path to cd to. """ cwd = os.getcwd() os.chdir(path) try: yield finally: os.chdir(cwd)
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 834, 9800, 834, 796, 705, 2484, 88, 518, 34263, 48041, 6, 198, 834, 22163, 4766, 834, 796, 705, 15269, 2211, 11, 383, 24310, 4935, 6, 198, 834, 9641, 834, 796, 705, 15, 13, 16, 6, 198, 834, 76, 2913, 10613, 834, 796, 705, 2484, 88, 518, 34263, 48041, 6, 198, 834, 12888, 834, 796, 705, 506, 2777, 31, 1229, 21282, 13, 15532, 6, 198, 834, 4475, 834, 796, 705, 16, 14, 1731, 14, 1415, 6, 198, 198, 11748, 28686, 198, 198, 6738, 4732, 8019, 1330, 4732, 37153, 628, 198, 31, 22866, 37153, 198, 4299, 22927, 7, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 37759, 12, 24194, 22927, 4732, 326, 13413, 2458, 8619, 329, 198, 220, 220, 220, 9489, 617, 8861, 11, 290, 5860, 284, 262, 2656, 1762, 8619, 198, 220, 220, 220, 12979, 13, 412, 13, 70, 1539, 628, 220, 220, 220, 220, 220, 220, 220, 351, 22927, 7203, 14, 1820, 14, 6978, 30487, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 466, 62, 18927, 3419, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 25, 10644, 284, 22927, 284, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 269, 16993, 796, 28686, 13, 1136, 66, 16993, 3419, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 6978, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 66, 16993, 8 ]
2.521898
274
""" Infinite evaluation loop going through the checkpoints in the model directory as they appear and evaluating them. Accuracy and average loss are printed and added as tensorboard summaries. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import json import math import os import sys import time import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from model import Model from pgd_attack import LinfPGDAttack # Global constants with open('config.json') as config_file: config = json.load(config_file) num_eval_examples = config['num_eval_examples'] eval_batch_size = config['eval_batch_size'] eval_on_cpu = config['eval_on_cpu'] model_dir = config['model_dir'] # Set upd the data, hyperparameters, and the model mnist = input_data.read_data_sets('MNIST_data', one_hot=False) if eval_on_cpu: with tf.device("/cpu:0"): model = Model() attack = LinfPGDAttack(model, config['epsilon'], config['k'], config['a'], config['random_start'], config['loss_func']) else: model = Model() attack = LinfPGDAttack(model, config['epsilon'], config['k'], config['a'], config['random_start'], config['loss_func']) global_step = tf.contrib.framework.get_or_create_global_step() # Setting up the Tensorboard and checkpoint outputs if not os.path.exists(model_dir): os.makedirs(model_dir) eval_dir = os.path.join(model_dir, 'eval') if not os.path.exists(eval_dir): os.makedirs(eval_dir) last_checkpoint_filename = '' already_seen_state = False saver = tf.train.Saver() summary_writer = tf.summary.FileWriter(eval_dir) # A function for evaluating a single checkpoint # Infinite eval loop while True: cur_checkpoint = tf.train.latest_checkpoint(model_dir) # Case 1: No checkpoint yet if cur_checkpoint is None: if not already_seen_state: print('No checkpoint yet, waiting ...', end='') already_seen_state = True else: print('.', end='') sys.stdout.flush() time.sleep(10) # Case 2: Previously unseen checkpoint elif cur_checkpoint != last_checkpoint_filename: print('\nCheckpoint {}, evaluating ... ({})'.format(cur_checkpoint, datetime.now())) sys.stdout.flush() last_checkpoint_filename = cur_checkpoint already_seen_state = False evaluate_checkpoint(cur_checkpoint) # Case 3: Previously evaluated checkpoint else: if not already_seen_state: print('Waiting for the next checkpoint ... ({}) '.format( datetime.now()), end='') already_seen_state = True else: print('.', end='') sys.stdout.flush() time.sleep(10)
[ 37811, 201, 198, 18943, 9504, 12660, 9052, 1016, 832, 262, 36628, 287, 262, 2746, 8619, 201, 198, 292, 484, 1656, 290, 22232, 606, 13, 33222, 290, 2811, 2994, 389, 10398, 290, 201, 198, 29373, 355, 11192, 273, 3526, 30114, 3166, 13, 201, 198, 37811, 201, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 201, 198, 6738, 11593, 37443, 834, 1330, 7297, 201, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 201, 198, 201, 198, 6738, 4818, 8079, 1330, 4818, 8079, 201, 198, 11748, 33918, 201, 198, 11748, 10688, 201, 198, 11748, 28686, 201, 198, 11748, 25064, 201, 198, 11748, 640, 201, 198, 201, 198, 11748, 11192, 273, 11125, 355, 48700, 201, 198, 6738, 11192, 273, 11125, 13, 1069, 12629, 13, 83, 44917, 82, 13, 10295, 396, 1330, 5128, 62, 7890, 201, 198, 201, 198, 6738, 2746, 1330, 9104, 201, 198, 6738, 279, 21287, 62, 20358, 1330, 5164, 69, 6968, 5631, 926, 441, 201, 198, 201, 198, 2, 8060, 38491, 201, 198, 4480, 1280, 10786, 11250, 13, 17752, 11537, 355, 4566, 62, 7753, 25, 201, 198, 220, 220, 220, 4566, 796, 33918, 13, 2220, 7, 11250, 62, 7753, 8, 201, 198, 22510, 62, 18206, 62, 1069, 12629, 796, 4566, 17816, 22510, 62, 18206, 62, 1069, 12629, 20520, 201, 198, 18206, 62, 43501, 62, 7857, 796, 4566, 17816, 18206, 62, 43501, 62, 7857, 20520, 201, 198, 18206, 62, 261, 62, 36166, 796, 4566, 17816, 18206, 62, 261, 62, 36166, 20520, 201, 198, 201, 198, 19849, 62, 15908, 796, 4566, 17816, 19849, 62, 15908, 20520, 201, 198, 201, 198, 2, 5345, 2325, 262, 1366, 11, 8718, 17143, 7307, 11, 290, 262, 2746, 201, 198, 10295, 396, 796, 5128, 62, 7890, 13, 961, 62, 7890, 62, 28709, 10786, 39764, 8808, 62, 7890, 3256, 530, 62, 8940, 28, 25101, 8, 201, 198, 201, 198, 361, 5418, 62, 261, 62, 36166, 25, 201, 198, 220, 220, 220, 351, 48700, 13, 25202, 7203, 14, 36166, 25, 15, 1, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 9104, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1368, 796, 5164, 69, 6968, 5631, 926, 441, 7, 19849, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 538, 18217, 261, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 74, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 64, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 25120, 62, 9688, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 22462, 62, 20786, 6, 12962, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 2746, 796, 9104, 3419, 201, 198, 220, 220, 220, 1368, 796, 5164, 69, 6968, 5631, 926, 441, 7, 19849, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 538, 18217, 261, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 74, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 64, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 25120, 62, 9688, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 22462, 62, 20786, 6, 12962, 201, 198, 201, 198, 20541, 62, 9662, 796, 48700, 13, 3642, 822, 13, 30604, 13, 1136, 62, 273, 62, 17953, 62, 20541, 62, 9662, 3419, 201, 198, 201, 198, 2, 25700, 510, 262, 309, 22854, 3526, 290, 26954, 23862, 201, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 19849, 62, 15908, 2599, 201, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 19849, 62, 15908, 8, 201, 198, 18206, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 19849, 62, 15908, 11, 705, 18206, 11537, 201, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 18206, 62, 15908, 2599, 201, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 18206, 62, 15908, 8, 201, 198, 201, 198, 12957, 62, 9122, 4122, 62, 34345, 796, 10148, 201, 198, 282, 1493, 62, 15898, 62, 5219, 796, 10352, 201, 198, 201, 198, 82, 8770, 796, 48700, 13, 27432, 13, 50, 8770, 3419, 201, 198, 49736, 62, 16002, 796, 48700, 13, 49736, 13, 8979, 34379, 7, 18206, 62, 15908, 8, 201, 198, 201, 198, 201, 198, 2, 317, 2163, 329, 22232, 257, 2060, 26954, 201, 198, 201, 198, 201, 198, 2, 22380, 5418, 9052, 201, 198, 4514, 6407, 25, 201, 198, 220, 220, 220, 1090, 62, 9122, 4122, 796, 48700, 13, 27432, 13, 42861, 62, 9122, 4122, 7, 19849, 62, 15908, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 8913, 352, 25, 1400, 26954, 1865, 201, 198, 220, 220, 220, 611, 1090, 62, 9122, 4122, 318, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1541, 62, 15898, 62, 5219, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2949, 26954, 1865, 11, 4953, 2644, 3256, 886, 28, 7061, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1541, 62, 15898, 62, 5219, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2637, 11, 886, 28, 7061, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 940, 8, 201, 198, 220, 220, 220, 1303, 8913, 362, 25, 29875, 29587, 26954, 201, 198, 220, 220, 220, 1288, 361, 1090, 62, 9122, 4122, 14512, 938, 62, 9122, 4122, 62, 34345, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 9787, 4122, 1391, 5512, 22232, 2644, 220, 220, 37913, 30072, 4458, 18982, 7, 22019, 62, 9122, 4122, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 2197, 3419, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 9122, 4122, 62, 34345, 796, 1090, 62, 9122, 4122, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1541, 62, 15898, 62, 5219, 796, 10352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 13446, 62, 9122, 4122, 7, 22019, 62, 9122, 4122, 8, 201, 198, 220, 220, 220, 1303, 8913, 513, 25, 29875, 16726, 26954, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1541, 62, 15898, 62, 5219, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 33484, 1780, 329, 262, 1306, 26954, 2644, 220, 220, 37913, 30072, 220, 220, 45302, 18982, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 2197, 3419, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 28, 7061, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1541, 62, 15898, 62, 5219, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2637, 11, 886, 28, 7061, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 940, 8, 201, 198 ]
2.146518
1,522
from unittest import TestCase import pandas as pd from pytz import UTC from exchange_calendars.exchange_calendar_xbse import XBSEExchangeCalendar from .test_exchange_calendar import ExchangeCalendarTestBase
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 12972, 22877, 1330, 18119, 198, 198, 6738, 5163, 62, 9948, 44942, 13, 1069, 3803, 62, 9948, 9239, 62, 30894, 325, 1330, 1395, 4462, 36, 3109, 3803, 9771, 9239, 198, 198, 6738, 764, 9288, 62, 1069, 3803, 62, 9948, 9239, 1330, 12516, 9771, 9239, 14402, 14881, 628 ]
3.349206
63
# author: kagemeka # created: 2019-11-06 12:47:30(JST) import sys # import collections # import math # import string # import bisect # import re # import itertools # import statistics if __name__ == "__main__": # execute only if run as a script main()
[ 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1772, 25, 220, 479, 363, 368, 38001, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2727, 25, 13130, 12, 1157, 12, 3312, 1105, 25, 2857, 25, 1270, 7, 41, 2257, 8, 201, 198, 11748, 25064, 201, 198, 201, 198, 2, 1330, 17268, 201, 198, 2, 1330, 10688, 201, 198, 2, 1330, 4731, 201, 198, 2, 1330, 47457, 478, 201, 198, 2, 1330, 302, 201, 198, 2, 1330, 340, 861, 10141, 201, 198, 2, 1330, 7869, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1303, 12260, 691, 611, 1057, 355, 257, 4226, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
2.075472
159
# This an autogenerated file # # Generated with PlotNode from typing import Dict,Sequence,List from dmt.entity import Entity from dmt.blueprint import Blueprint from .blueprints.plotnode import PlotNodeBlueprint from typing import Dict from sima.post.controlsignalinputslot import ControlSignalInputSlot from sima.post.figuretemplate import FigureTemplate from sima.post.inputslot import InputSlot from sima.post.outputnode import OutputNode from sima.post.outputslot import OutputSlot from sima.post.traceconfiguration import TraceConfiguration from sima.sima.scriptablevalue import ScriptableValue class PlotNode(OutputNode): """ Keyword arguments ----------------- name : str (default "") description : str (default "") _id : str (default "") scriptableValues : List[ScriptableValue] x : int (default 0) y : int (default 0) h : int (default 0) w : int (default 0) controlSignalInputSlots : List[ControlSignalInputSlot] inputSlot : InputSlot figureTemplate : FigureTemplate traces : List[TraceConfiguration] fixed : bool (default False) title : str (default "") xLabel : str (default "") yLabel : str (default "") selectAll : bool Will export all signals as plot(default False) outputSlot : OutputSlot createImages : bool Create images and store these to disk. The output will then be the paths to the images(default True) """ @property def blueprint(self) -> Blueprint: """Return blueprint that this entity represents""" return PlotNodeBlueprint() @property def name(self) -> str: """""" return self.__name @name.setter def name(self, value: str): """Set name""" self.__name = str(value) @property def description(self) -> str: """""" return self.__description @description.setter def description(self, value: str): """Set description""" self.__description = str(value) @property def _id(self) -> str: """""" return self.___id @_id.setter def _id(self, value: str): """Set _id""" self.___id = str(value) @property def scriptableValues(self) -> List[ScriptableValue]: """""" return self.__scriptableValues @scriptableValues.setter def scriptableValues(self, value: List[ScriptableValue]): """Set scriptableValues""" if not isinstance(value, Sequence): raise Exception("Expected sequense, but was " , type(value)) self.__scriptableValues = value @property def x(self) -> int: """""" return self.__x @x.setter def x(self, value: int): """Set x""" self.__x = int(value) @property def y(self) -> int: """""" return self.__y @y.setter def y(self, value: int): """Set y""" self.__y = int(value) @property def h(self) -> int: """""" return self.__h @h.setter def h(self, value: int): """Set h""" self.__h = int(value) @property def w(self) -> int: """""" return self.__w @w.setter def w(self, value: int): """Set w""" self.__w = int(value) @property def controlSignalInputSlots(self) -> List[ControlSignalInputSlot]: """""" return self.__controlSignalInputSlots @controlSignalInputSlots.setter def controlSignalInputSlots(self, value: List[ControlSignalInputSlot]): """Set controlSignalInputSlots""" if not isinstance(value, Sequence): raise Exception("Expected sequense, but was " , type(value)) self.__controlSignalInputSlots = value @property def inputSlot(self) -> InputSlot: """""" return self.__inputSlot @inputSlot.setter def inputSlot(self, value: InputSlot): """Set inputSlot""" self.__inputSlot = value @property def figureTemplate(self) -> FigureTemplate: """""" return self.__figureTemplate @figureTemplate.setter def figureTemplate(self, value: FigureTemplate): """Set figureTemplate""" self.__figureTemplate = value @property def traces(self) -> List[TraceConfiguration]: """""" return self.__traces @traces.setter def traces(self, value: List[TraceConfiguration]): """Set traces""" if not isinstance(value, Sequence): raise Exception("Expected sequense, but was " , type(value)) self.__traces = value @property def fixed(self) -> bool: """""" return self.__fixed @fixed.setter def fixed(self, value: bool): """Set fixed""" self.__fixed = bool(value) @property def title(self) -> str: """""" return self.__title @title.setter def title(self, value: str): """Set title""" self.__title = str(value) @property def xLabel(self) -> str: """""" return self.__xLabel @xLabel.setter def xLabel(self, value: str): """Set xLabel""" self.__xLabel = str(value) @property def yLabel(self) -> str: """""" return self.__yLabel @yLabel.setter def yLabel(self, value: str): """Set yLabel""" self.__yLabel = str(value) @property def selectAll(self) -> bool: """Will export all signals as plot""" return self.__selectAll @selectAll.setter def selectAll(self, value: bool): """Set selectAll""" self.__selectAll = bool(value) @property def outputSlot(self) -> OutputSlot: """""" return self.__outputSlot @outputSlot.setter def outputSlot(self, value: OutputSlot): """Set outputSlot""" self.__outputSlot = value @property def createImages(self) -> bool: """Create images and store these to disk. The output will then be the paths to the images""" return self.__createImages @createImages.setter def createImages(self, value: bool): """Set createImages""" self.__createImages = bool(value)
[ 2, 770, 281, 1960, 519, 877, 515, 2393, 198, 2, 220, 198, 2, 2980, 515, 351, 28114, 19667, 198, 6738, 19720, 1330, 360, 713, 11, 44015, 594, 11, 8053, 198, 6738, 288, 16762, 13, 26858, 1330, 20885, 198, 6738, 288, 16762, 13, 17585, 4798, 1330, 39932, 198, 6738, 764, 17585, 17190, 13, 29487, 17440, 1330, 28114, 19667, 14573, 4798, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 985, 64, 13, 7353, 13, 13716, 12683, 14414, 1996, 43384, 1330, 6779, 11712, 282, 20560, 38963, 198, 6738, 985, 64, 13, 7353, 13, 26875, 28243, 1330, 11291, 30800, 198, 6738, 985, 64, 13, 7353, 13, 15414, 43384, 1330, 23412, 38963, 198, 6738, 985, 64, 13, 7353, 13, 22915, 17440, 1330, 25235, 19667, 198, 6738, 985, 64, 13, 7353, 13, 22915, 43384, 1330, 25235, 38963, 198, 6738, 985, 64, 13, 7353, 13, 40546, 11250, 3924, 1330, 34912, 38149, 198, 6738, 985, 64, 13, 82, 8083, 13, 12048, 540, 8367, 1330, 12327, 540, 11395, 198, 198, 4871, 28114, 19667, 7, 26410, 19667, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7383, 4775, 7159, 198, 220, 220, 220, 34400, 12, 198, 220, 220, 220, 1438, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 366, 4943, 198, 220, 220, 220, 6764, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 366, 4943, 198, 220, 220, 220, 4808, 312, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 366, 4943, 198, 220, 220, 220, 4226, 540, 40161, 1058, 7343, 58, 7391, 540, 11395, 60, 198, 220, 220, 220, 2124, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 657, 8, 198, 220, 220, 220, 331, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 657, 8, 198, 220, 220, 220, 289, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 657, 8, 198, 220, 220, 220, 266, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 657, 8, 198, 220, 220, 220, 1630, 11712, 282, 20560, 11122, 1747, 1058, 7343, 58, 15988, 11712, 282, 20560, 38963, 60, 198, 220, 220, 220, 5128, 38963, 1058, 23412, 38963, 198, 220, 220, 220, 3785, 30800, 1058, 11291, 30800, 198, 220, 220, 220, 20675, 1058, 7343, 58, 2898, 558, 38149, 60, 198, 220, 220, 220, 5969, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 10352, 8, 198, 220, 220, 220, 3670, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 366, 4943, 198, 220, 220, 220, 2124, 33986, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 366, 4943, 198, 220, 220, 220, 331, 33986, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 366, 4943, 198, 220, 220, 220, 2922, 3237, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2561, 10784, 477, 10425, 355, 7110, 7, 12286, 10352, 8, 198, 220, 220, 220, 5072, 38963, 1058, 25235, 38963, 198, 220, 220, 220, 2251, 29398, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 13610, 4263, 290, 3650, 777, 284, 11898, 13, 383, 5072, 481, 788, 307, 262, 13532, 284, 262, 4263, 7, 12286, 6407, 8, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 30881, 7, 944, 8, 4613, 39932, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 30881, 326, 428, 9312, 6870, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 28114, 19667, 14573, 4798, 3419, 628, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 3672, 628, 220, 220, 220, 2488, 3672, 13, 2617, 353, 198, 220, 220, 220, 825, 1438, 7, 944, 11, 1988, 25, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 1438, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 3672, 796, 965, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 6764, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 11213, 628, 220, 220, 220, 2488, 11213, 13, 2617, 353, 198, 220, 220, 220, 825, 6764, 7, 944, 11, 1988, 25, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 6764, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11213, 796, 965, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4808, 312, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17569, 312, 628, 220, 220, 220, 2488, 62, 312, 13, 2617, 353, 198, 220, 220, 220, 825, 4808, 312, 7, 944, 11, 1988, 25, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 4808, 312, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17569, 312, 796, 965, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4226, 540, 40161, 7, 944, 8, 4613, 7343, 58, 7391, 540, 11395, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 12048, 540, 40161, 628, 220, 220, 220, 2488, 12048, 540, 40161, 13, 2617, 353, 198, 220, 220, 220, 825, 4226, 540, 40161, 7, 944, 11, 1988, 25, 7343, 58, 7391, 540, 11395, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 4226, 540, 40161, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 8367, 11, 45835, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 3109, 7254, 4726, 1072, 11, 475, 373, 366, 837, 2099, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 12048, 540, 40161, 796, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2124, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 87, 628, 220, 220, 220, 2488, 87, 13, 2617, 353, 198, 220, 220, 220, 825, 2124, 7, 944, 11, 1988, 25, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 2124, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 87, 796, 493, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 331, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 88, 628, 220, 220, 220, 2488, 88, 13, 2617, 353, 198, 220, 220, 220, 825, 331, 7, 944, 11, 1988, 25, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 331, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 88, 796, 493, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 289, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 71, 628, 220, 220, 220, 2488, 71, 13, 2617, 353, 198, 220, 220, 220, 825, 289, 7, 944, 11, 1988, 25, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 289, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 71, 796, 493, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 266, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 86, 628, 220, 220, 220, 2488, 86, 13, 2617, 353, 198, 220, 220, 220, 825, 266, 7, 944, 11, 1988, 25, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 266, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 86, 796, 493, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1630, 11712, 282, 20560, 11122, 1747, 7, 944, 8, 4613, 7343, 58, 15988, 11712, 282, 20560, 38963, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 13716, 11712, 282, 20560, 11122, 1747, 628, 220, 220, 220, 2488, 13716, 11712, 282, 20560, 11122, 1747, 13, 2617, 353, 198, 220, 220, 220, 825, 1630, 11712, 282, 20560, 11122, 1747, 7, 944, 11, 1988, 25, 7343, 58, 15988, 11712, 282, 20560, 38963, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 1630, 11712, 282, 20560, 11122, 1747, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 8367, 11, 45835, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 3109, 7254, 4726, 1072, 11, 475, 373, 366, 837, 2099, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 13716, 11712, 282, 20560, 11122, 1747, 796, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5128, 38963, 7, 944, 8, 4613, 23412, 38963, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 15414, 38963, 628, 220, 220, 220, 2488, 15414, 38963, 13, 2617, 353, 198, 220, 220, 220, 825, 5128, 38963, 7, 944, 11, 1988, 25, 23412, 38963, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 5128, 38963, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 15414, 38963, 796, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3785, 30800, 7, 944, 8, 4613, 11291, 30800, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 26875, 30800, 628, 220, 220, 220, 2488, 26875, 30800, 13, 2617, 353, 198, 220, 220, 220, 825, 3785, 30800, 7, 944, 11, 1988, 25, 11291, 30800, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 3785, 30800, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 26875, 30800, 796, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 20675, 7, 944, 8, 4613, 7343, 58, 2898, 558, 38149, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2213, 2114, 628, 220, 220, 220, 2488, 2213, 2114, 13, 2617, 353, 198, 220, 220, 220, 825, 20675, 7, 944, 11, 1988, 25, 7343, 58, 2898, 558, 38149, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 20675, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 8367, 11, 45835, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 3109, 7254, 4726, 1072, 11, 475, 373, 366, 837, 2099, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 2213, 2114, 796, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5969, 7, 944, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 34021, 628, 220, 220, 220, 2488, 34021, 13, 2617, 353, 198, 220, 220, 220, 825, 5969, 7, 944, 11, 1988, 25, 20512, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 5969, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 34021, 796, 20512, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3670, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 7839, 628, 220, 220, 220, 2488, 7839, 13, 2617, 353, 198, 220, 220, 220, 825, 3670, 7, 944, 11, 1988, 25, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 3670, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 7839, 796, 965, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2124, 33986, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 87, 33986, 628, 220, 220, 220, 2488, 87, 33986, 13, 2617, 353, 198, 220, 220, 220, 825, 2124, 33986, 7, 944, 11, 1988, 25, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 2124, 33986, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 87, 33986, 796, 965, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 331, 33986, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 88, 33986, 628, 220, 220, 220, 2488, 88, 33986, 13, 2617, 353, 198, 220, 220, 220, 825, 331, 33986, 7, 944, 11, 1988, 25, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 331, 33986, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 88, 33986, 796, 965, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2922, 3237, 7, 944, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8743, 10784, 477, 10425, 355, 7110, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 19738, 3237, 628, 220, 220, 220, 2488, 19738, 3237, 13, 2617, 353, 198, 220, 220, 220, 825, 2922, 3237, 7, 944, 11, 1988, 25, 20512, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 2922, 3237, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 19738, 3237, 796, 20512, 7, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5072, 38963, 7, 944, 8, 4613, 25235, 38963, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 22915, 38963, 628, 220, 220, 220, 2488, 22915, 38963, 13, 2617, 353, 198, 220, 220, 220, 825, 5072, 38963, 7, 944, 11, 1988, 25, 25235, 38963, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 5072, 38963, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 22915, 38963, 796, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2251, 29398, 7, 944, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 4263, 290, 3650, 777, 284, 11898, 13, 383, 5072, 481, 788, 307, 262, 13532, 284, 262, 4263, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 17953, 29398, 628, 220, 220, 220, 2488, 17953, 29398, 13, 2617, 353, 198, 220, 220, 220, 825, 2251, 29398, 7, 944, 11, 1988, 25, 20512, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 2251, 29398, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 17953, 29398, 796, 20512, 7, 8367, 8, 198 ]
2.39818
2,637
# pylint: disable=invalid-name """ Tests for photo.utils """ import uuid from django.test import TestCase from photo import utils # pylint: disable=too-few-public-methods class DummyInstance: """ Dummy instance object for passing into UploadToPathAndRename """ pk = None class UploadToPathAndRenameTestCase(TestCase): """ Tests for utils.UploadToPathAndRename """ def test_extension_preserved(self): """ Verify that UploadToPathAndRename preserves file extensions. """ result = self.upload_to_path_and_rename(self.instance, "filename.jpg") ext = result.split('.')[-1] self.assertEqual(ext, 'jpg', "New filename has wrong extension") def test_path_appended(self): """ Verify that UploadToPathAndRename appends specified path. """ result = self.upload_to_path_and_rename(self.instance, "filename.jpg") path = result.split('/')[0] self.assertEqual(path, 'test', "New filename has wrong path") def test_instance_with_no_pk(self): """ Verify handling when instance does not have a primary key """ result = self.upload_to_path_and_rename(self.instance, "filename.jpg") generated_uuid_string = result.split('/')[1].split('.')[0] generated_uuid = uuid.UUID(generated_uuid_string, version=4) self.assertNotEqual(generated_uuid, self.instance.pk, "New filename did not get a random UUID") def test_instance_with_uuid_pk(self): """ Verify handling when instance has a UUID primary key """ self.instance.pk = uuid.uuid4() result = self.upload_to_path_and_rename(self.instance, "filename.jpg") generated_uuid_string = result.split('/')[1].split('.')[0] generated_uuid = uuid.UUID(generated_uuid_string, version=4) self.assertEqual(generated_uuid, self.instance.pk, "New filename does not match UUID of instance") def test_insance_with_non_uuid_pk(self): """ Verify handling when instance has a non-UUID primary key """ self.instance.pk = "test" with self.assertRaises(TypeError): self.upload_to_path_and_rename(self.instance, "filename.jpg") class StopTimeConversionTestCase(TestCase): """Tests for utils.StopTimeConversion.""" def test_exception_time_difference_in_stops(self): """ Verify exception for invalid values in StopTimeConversion.time_difference_in_stops. """ with self.assertRaises(ValueError): utils.StopTimeConversion.time_difference_in_stops(0, 1) with self.assertRaises(ValueError): utils.StopTimeConversion.time_difference_in_stops(1, 0) with self.assertRaises(ValueError): utils.StopTimeConversion.time_difference_in_stops(0, 0) with self.assertRaises(ValueError): utils.StopTimeConversion.time_difference_in_stops(-1, -1) def test_exception_adjust_time_by_points(self): """ Verify exception for invalid values in StopTimeConversion.adjust_time_by_points. """ with self.assertRaises(ValueError): utils.StopTimeConversion.adjust_time_by_points(0, 1) with self.assertRaises(ValueError): utils.StopTimeConversion.adjust_time_by_points(-1, 1) def test_exception_adjust_time_by_stops(self): """ Verify exception for invalid values in StopTimeConversion.adjust_time_by_stops. """ with self.assertRaises(ValueError): utils.StopTimeConversion.adjust_time_by_stops(0, 1) with self.assertRaises(ValueError): utils.StopTimeConversion.adjust_time_by_stops(-1, 1) def test_time_difference_in_stops(self): """ Verify values returned by StopTimeConversion.time_difference_in_stops. """ self.assertEqual( utils.StopTimeConversion.time_difference_in_stops(6, 12), 1) self.assertEqual( utils.StopTimeConversion.time_difference_in_stops(12, 12), 0) self.assertEqual( utils.StopTimeConversion.time_difference_in_stops(12, 6), -1) def test_time_difference_in_points(self): """ Verify values returned by StopTimeConversion.time_difference_in_points. """ self.assertEqual( utils.StopTimeConversion.time_difference_in_points(6, 12), 12) self.assertEqual( utils.StopTimeConversion.time_difference_in_points(12, 12), 0) self.assertEqual( utils.StopTimeConversion.time_difference_in_points(12, 6), -12) def test_stop_difference_to_multiplier(self): """ Verify values returned by StopTimeConversion.stop_difference_to_multiplier. """ self.assertEqual( utils.StopTimeConversion.stop_difference_to_multiplier(1), 2) self.assertEqual( utils.StopTimeConversion.stop_difference_to_multiplier(0), 1) self.assertEqual( utils.StopTimeConversion.stop_difference_to_multiplier(-1), 0.5) def test_point_difference_to_multiplier(self): """ Verify values returned by StopTimeConversion.point_difference_to_multiplier. """ self.assertEqual( utils.StopTimeConversion.point_difference_to_multiplier(12), 2) self.assertEqual( utils.StopTimeConversion.point_difference_to_multiplier(0), 1) self.assertEqual( utils.StopTimeConversion.point_difference_to_multiplier(-12), 0.5) def test_adjust_time_by_stops(self): """ Verify values returned by StopTimeConversion.adjust_time_by_stops. """ self.assertEqual( utils.StopTimeConversion.adjust_time_by_stops(12, 1), 24) self.assertEqual( utils.StopTimeConversion.adjust_time_by_stops(12, 0), 12) self.assertEqual( utils.StopTimeConversion.adjust_time_by_stops(12, -1), 6) def test_adjust_time_by_points(self): """ Verify values returned by StopTimeConversion.adjust_time_by_points. """ self.assertEqual( utils.StopTimeConversion.adjust_time_by_points(12, 12), 24) self.assertEqual( utils.StopTimeConversion.adjust_time_by_points(12, 0), 12) self.assertEqual( utils.StopTimeConversion.adjust_time_by_points(12, -12), 6) def test_resize_print_enlarge(self): """ Verify values returned by StopTimeConversion.resize_print, for a constant-aspect enlargement. """ old_print = {'x':4, 'y':6} new_print = {'x':8, 'y':12} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), 2) def test_resize_print_same(self): """ Verify values returned by StopTimeConversion.resize_print, for a constant-aspect print of same size. """ old_print = {'x':4, 'y':6} new_print = {'x':4, 'y':6} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), 0) def test_resize_print_reduce(self): """ Verify values returned by StopTimeConversion.resize_print, for a constant-aspect reduction. """ old_print = {'x':8, 'y':12} new_print = {'x':4, 'y':6} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), - 2) def test_resize_print_enlarge_high_aspect(self): """ Verify values returned by StopTimeConversion.resize_print, for a higher-aspect ratio enlargement. """ old_print = {'x':4, 'y':6} new_print = {'x':8, 'y':10} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), 2) def test_resize_print_same_high_aspect(self): """ Verify values returned by StopTimeConversion.resize_print, for a higher-aspect ratio print of same size. """ old_print = {'x':4, 'y':6} new_print = {'x':4, 'y':5} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), 0) def test_resize_print_reduce_high_aspect(self): """ Verify values returned by StopTimeConversion.resize_print, for a higher-aspect ratio reduction. """ old_print = {'x':8, 'y':12} new_print = {'x':4, 'y':5} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), - 2) def test_resize_print_enlarge_low_aspect(self): """ Verify values returned by StopTimeConversion.resize_print, for a lower-aspect ratio enlargement. """ old_print = {'x':4, 'y':6} new_print = {'x':7, 'y':12} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), 2) def test_resize_print_same_low_aspect(self): """ Verify values returned by StopTimeConversion.resize_print, for a lower-aspect ratio print of same size. """ old_print = {'x':4, 'y':6} new_print = {'x':3, 'y':6} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), 0) def test_resize_print_reduce_low_aspect(self): """ Verify values returned by StopTimeConversion.resize_print, for a higher-aspect ratio reduction. """ old_print = {'x':8, 'y':12} new_print = {'x':3, 'y':6} self.assertEqual( utils.StopTimeConversion.resize_print_in_stops( old_print, new_print), - 2)
[ 2, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 37811, 198, 51, 3558, 329, 4590, 13, 26791, 198, 37811, 198, 11748, 334, 27112, 198, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 198, 6738, 4590, 1330, 3384, 4487, 628, 198, 2, 279, 2645, 600, 25, 15560, 28, 18820, 12, 32146, 12, 11377, 12, 24396, 82, 198, 4871, 360, 13513, 33384, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 360, 13513, 4554, 2134, 329, 6427, 656, 36803, 2514, 15235, 1870, 49, 12453, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 279, 74, 796, 6045, 198, 198, 4871, 36803, 2514, 15235, 1870, 49, 12453, 14402, 20448, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 3384, 4487, 13, 41592, 2514, 15235, 1870, 49, 12453, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 2302, 3004, 62, 18302, 8520, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 326, 36803, 2514, 15235, 1870, 49, 12453, 43759, 2393, 18366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 25850, 62, 1462, 62, 6978, 62, 392, 62, 918, 480, 7, 944, 13, 39098, 11, 366, 34345, 13, 9479, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1070, 796, 1255, 13, 35312, 10786, 2637, 38381, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 2302, 11, 705, 9479, 3256, 366, 3791, 29472, 468, 2642, 7552, 4943, 628, 220, 220, 220, 825, 1332, 62, 6978, 62, 1324, 1631, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 326, 36803, 2514, 15235, 1870, 49, 12453, 598, 2412, 7368, 3108, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 25850, 62, 1462, 62, 6978, 62, 392, 62, 918, 480, 7, 944, 13, 39098, 11, 366, 34345, 13, 9479, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 1255, 13, 35312, 10786, 14, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 6978, 11, 705, 9288, 3256, 366, 3791, 29472, 468, 2642, 3108, 4943, 628, 220, 220, 220, 825, 1332, 62, 39098, 62, 4480, 62, 3919, 62, 79, 74, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 9041, 618, 4554, 857, 407, 423, 257, 4165, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 25850, 62, 1462, 62, 6978, 62, 392, 62, 918, 480, 7, 944, 13, 39098, 11, 366, 34345, 13, 9479, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 62, 12303, 312, 62, 8841, 796, 1255, 13, 35312, 10786, 14, 11537, 58, 16, 4083, 35312, 10786, 2637, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 62, 12303, 312, 796, 334, 27112, 13, 52, 27586, 7, 27568, 62, 12303, 312, 62, 8841, 11, 2196, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3673, 36, 13255, 7, 27568, 62, 12303, 312, 11, 2116, 13, 39098, 13, 79, 74, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3791, 29472, 750, 407, 651, 257, 4738, 471, 27586, 4943, 628, 220, 220, 220, 825, 1332, 62, 39098, 62, 4480, 62, 12303, 312, 62, 79, 74, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 9041, 618, 4554, 468, 257, 471, 27586, 4165, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39098, 13, 79, 74, 796, 334, 27112, 13, 12303, 312, 19, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 25850, 62, 1462, 62, 6978, 62, 392, 62, 918, 480, 7, 944, 13, 39098, 11, 366, 34345, 13, 9479, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 62, 12303, 312, 62, 8841, 796, 1255, 13, 35312, 10786, 14, 11537, 58, 16, 4083, 35312, 10786, 2637, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 62, 12303, 312, 796, 334, 27112, 13, 52, 27586, 7, 27568, 62, 12303, 312, 62, 8841, 11, 2196, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 27568, 62, 12303, 312, 11, 2116, 13, 39098, 13, 79, 74, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3791, 29472, 857, 407, 2872, 471, 27586, 286, 4554, 4943, 628, 220, 220, 220, 825, 1332, 62, 1040, 590, 62, 4480, 62, 13159, 62, 12303, 312, 62, 79, 74, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 9041, 618, 4554, 468, 257, 1729, 12, 52, 27586, 4165, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39098, 13, 79, 74, 796, 366, 9288, 1, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25850, 62, 1462, 62, 6978, 62, 392, 62, 918, 480, 7, 944, 13, 39098, 11, 366, 34345, 13, 9479, 4943, 198, 198, 4871, 13707, 7575, 3103, 9641, 14402, 20448, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 51, 3558, 329, 3384, 4487, 13, 19485, 7575, 3103, 9641, 526, 15931, 198, 220, 220, 220, 825, 1332, 62, 1069, 4516, 62, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 6631, 329, 12515, 3815, 287, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 7, 15, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 7, 16, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 7, 15, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 32590, 16, 11, 532, 16, 8, 628, 220, 220, 220, 825, 1332, 62, 1069, 4516, 62, 23032, 62, 2435, 62, 1525, 62, 13033, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 6631, 329, 12515, 3815, 287, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 13033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 13033, 7, 15, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 13033, 32590, 16, 11, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 1069, 4516, 62, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 6631, 329, 12515, 3815, 287, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 7, 15, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 32590, 16, 11, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 7, 21, 11, 1105, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 7, 1065, 11, 1105, 828, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 301, 2840, 7, 1065, 11, 718, 828, 532, 16, 8, 628, 220, 220, 220, 825, 1332, 62, 2435, 62, 26069, 1945, 62, 259, 62, 13033, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 13033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 13033, 7, 21, 11, 1105, 828, 1105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 13033, 7, 1065, 11, 1105, 828, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 2435, 62, 26069, 1945, 62, 259, 62, 13033, 7, 1065, 11, 718, 828, 532, 1065, 8, 628, 220, 220, 220, 825, 1332, 62, 11338, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 11338, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 11338, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 7, 16, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 11338, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 7, 15, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 11338, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 32590, 16, 828, 657, 13, 20, 8, 628, 220, 220, 220, 825, 1332, 62, 4122, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 4122, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 4122, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 7, 1065, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 4122, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 7, 15, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 4122, 62, 26069, 1945, 62, 1462, 62, 47945, 959, 32590, 1065, 828, 657, 13, 20, 8, 628, 220, 220, 220, 825, 1332, 62, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 7, 1065, 11, 352, 828, 1987, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 7, 1065, 11, 657, 828, 1105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 301, 2840, 7, 1065, 11, 532, 16, 828, 718, 8, 628, 220, 220, 220, 825, 1332, 62, 23032, 62, 2435, 62, 1525, 62, 13033, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 198, 220, 220, 220, 220, 220, 220, 220, 13707, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 13033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 13033, 7, 1065, 11, 1105, 828, 1987, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 13033, 7, 1065, 11, 657, 828, 1105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 23032, 62, 2435, 62, 1525, 62, 13033, 7, 1065, 11, 532, 1065, 828, 718, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 268, 11664, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 6937, 12, 292, 806, 26537, 972, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 23, 11, 705, 88, 10354, 1065, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 31642, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 6937, 12, 292, 806, 3601, 286, 976, 2546, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 445, 7234, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 6937, 12, 292, 806, 7741, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 23, 11, 705, 88, 10354, 1065, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 362, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 268, 11664, 62, 8929, 62, 292, 806, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2440, 12, 292, 806, 8064, 26537, 972, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 23, 11, 705, 88, 10354, 940, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 31642, 62, 8929, 62, 292, 806, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2440, 12, 292, 806, 8064, 3601, 286, 976, 2546, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 20, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 445, 7234, 62, 8929, 62, 292, 806, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2440, 12, 292, 806, 8064, 7741, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 23, 11, 705, 88, 10354, 1065, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 20, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 362, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 268, 11664, 62, 9319, 62, 292, 806, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2793, 12, 292, 806, 8064, 26537, 972, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 22, 11, 705, 88, 10354, 1065, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 31642, 62, 9319, 62, 292, 806, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2793, 12, 292, 806, 8064, 3601, 286, 976, 2546, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 19, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 18, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 1096, 62, 4798, 62, 445, 7234, 62, 9319, 62, 292, 806, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49899, 3815, 4504, 416, 13707, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2440, 12, 292, 806, 8064, 7741, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 796, 1391, 6, 87, 10354, 23, 11, 705, 88, 10354, 1065, 92, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4798, 796, 1391, 6, 87, 10354, 18, 11, 705, 88, 10354, 21, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 19485, 7575, 3103, 9641, 13, 411, 1096, 62, 4798, 62, 259, 62, 301, 2840, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 4798, 11, 649, 62, 4798, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 362, 8, 198 ]
2.109238
4,806
# Copyright (c) 2021 - present, Timur Shenkao # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from typing import Optional from python_code.helper.linked_lists import MultiDoubleListNode # 430. Flatten a Multilevel Doubly Linked List https://leetcode.com/problems/flatten-a-multilevel-doubly-linked-list/ # You are given a doubly linked list, which contains nodes that have a next pointer, a previous pointer, and an # additional child pointer. This child pointer may or may not point to a separate doubly linked list, also containing # these special nodes. These child lists may have one or more children of their own, and so on, to produce a multilevel # data structure. # Given the head of the first level of the list, flatten the list so that all the nodes appear in a single-level, doubly # linked list. Let curr be a node with a child list. The nodes in the child list should appear after curr and before # curr.next in the flattened list. # Return the head of the flattened list. The nodes in the list must have all of their child pointers set to null. # The number of Nodes will not exceed 1000. # 1 <= Node.val <= 105
[ 2, 15069, 357, 66, 8, 33448, 532, 1944, 11, 5045, 333, 22323, 4914, 78, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 29113, 29113, 7804, 4242, 2235, 198, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 21015, 62, 8189, 13, 2978, 525, 13, 25614, 62, 20713, 1330, 15237, 25628, 8053, 19667, 198, 198, 2, 35090, 13, 1610, 41769, 257, 7854, 576, 626, 5728, 36874, 7502, 276, 7343, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 2704, 41769, 12, 64, 12, 16680, 576, 626, 12, 67, 12944, 306, 12, 25614, 12, 4868, 14, 198, 2, 921, 389, 1813, 257, 3385, 306, 6692, 1351, 11, 543, 4909, 13760, 326, 423, 257, 1306, 17562, 11, 257, 2180, 17562, 11, 290, 281, 198, 2, 3224, 1200, 17562, 13, 770, 1200, 17562, 743, 393, 743, 407, 966, 284, 257, 4553, 3385, 306, 6692, 1351, 11, 635, 7268, 198, 2, 777, 2041, 13760, 13, 2312, 1200, 8341, 743, 423, 530, 393, 517, 1751, 286, 511, 898, 11, 290, 523, 319, 11, 284, 4439, 257, 1963, 576, 626, 198, 2, 1366, 4645, 13, 198, 2, 11259, 262, 1182, 286, 262, 717, 1241, 286, 262, 1351, 11, 27172, 268, 262, 1351, 523, 326, 477, 262, 13760, 1656, 287, 257, 2060, 12, 5715, 11, 3385, 306, 198, 2, 6692, 1351, 13, 3914, 1090, 81, 307, 257, 10139, 351, 257, 1200, 1351, 13, 383, 13760, 287, 262, 1200, 1351, 815, 1656, 706, 1090, 81, 290, 878, 198, 2, 1090, 81, 13, 19545, 287, 262, 45096, 1351, 13, 198, 2, 8229, 262, 1182, 286, 262, 45096, 1351, 13, 383, 13760, 287, 262, 1351, 1276, 423, 477, 286, 511, 1200, 32007, 900, 284, 9242, 13, 198, 2, 383, 1271, 286, 399, 4147, 481, 407, 7074, 8576, 13, 198, 2, 352, 19841, 19081, 13, 2100, 19841, 13343, 628 ]
3.967816
435
#!/usr/bin/env python """Searches specified directory for miss named files.""" import os class bcolors: """Color text in terminal.""" HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class FileForensics: """Identify miss named files.""" def __init__(self): """Initialize object without processing any files.""" self.filelist = list() def scan_dir(self, dir): """Scan dir looking for files and performs basic checks.""" import pathlib import magic for filename in find_all_files(dir): self.filelist.append({ "filename": filename, "mime": magic.from_file(filename, mime=True), "size_bytes": os.path.getsize(filename), "ext": pathlib.Path(filename).suffix }) def get_lenght(self): """Return number of processed files.""" return len(self.filelist) def get_big_files(self, size_threshold=10): """Return list of file bigger than X MB (size in MB).""" for f in self.filelist: if f["size_bytes"] > size_threshold*(1024*1024): yield f["size_bytes"]/(1024*1024), f["mime"], f["filename"] def get_keyword_files( self, filename_keywords="keywords", read_size=1024*1024, offset=50): """Return list of files matching keywords with matched information.""" import ahocorasick A = ahocorasick.Automaton() with open(filename_keywords, "r") as f: while True: word = f.readline() if not word: break A.add_word(word.strip(), word.strip()) A.make_automaton() for file in self.filelist: with open(file["filename"], "r") as f: matches = list() buff = f.read(read_size) for match in A.iter(buff): pos_cur = match[0] pos_start = max(match[0]-offset, 0) pos_end = min(match[0]+offset, read_size) offset_start = buff[ pos_start:pos_cur-len(match[1])+1 ].find("\n") offset_end = buff[pos_cur+1:pos_end].rfind("\n") if offset_start >= offset: offset_start = 0 if offset_end <= 0: offset_end = offset offset_end = offset - offset_end matched_text = buff[ pos_start+offset_start:pos_cur-len(match[1])+1 ] + \ bcolors.FAIL + \ buff[pos_cur-len(match[1])+1:pos_cur+1] + \ bcolors.ENDC + \ buff[pos_cur+1:pos_end-offset_end] matches.append((matched_text.replace("\n", " "), match[1])) if len(matches) > 0: yield (file, matches) def get_highentropy_files(self, ent_threshold=0.7): """Return list of files with higher entropy (encrypted, compressed).""" import entropy ignored_mimetypes = [ "application/x-shockwave-flash", "application/x-font-", "application/pdf", "image/" ] for file in self.filelist: with open(file["filename"], "r") as f: buff = f.read(1024*1024) skip = False for mime in ignored_mimetypes: if file["mime"].startswith(mime): skip = True break if not skip: ent = entropy.shannon_entropy(buff) if ent >= ent_threshold: yield (file, ent) def find_all_files(path): """Find all files in specified directory and yields them.""" for root, dirs, files in os.walk(os.path.join(path)): for filename in files: yield os.path.join(root, filename) def main(): """Analyze directory from command line looking for suspicious files.""" ff = FileForensics() # ff.scan_dir("/Users/ns/notes") # FIXME ff.scan_dir("/Users/ns/work/termination_data") print "\n--- BIG FILES ---" for (size, mime, filename) in ff.get_big_files(): print (bcolors.FAIL+"{:>10} MB"+bcolors.ENDC+" {:<20} {:<10}").\ format(size, mime, filename) print "\n--- FOUND KEYWORDS ---" for (file, matches) in ff.get_keyword_files(): print "{:<5} {:<20} ({:<10})".format( len(matches), file["mime"], file["filename"]) for position, match in matches: print "\t- {:<10} {:<10}".format(position, match) print print "\n--- HIGH ENTROPY FILES ---" for (file, ent) in ff.get_highentropy_files(): print (bcolors.FAIL+"\t {:.2f}"+bcolors.ENDC+" ({:<10}) {:<10}").\ format(ent, file["mime"], file["filename"]) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 50, 451, 2052, 7368, 8619, 329, 2051, 3706, 3696, 526, 15931, 628, 198, 11748, 28686, 628, 198, 4871, 275, 4033, 669, 25, 198, 220, 220, 220, 37227, 10258, 2420, 287, 12094, 526, 15931, 628, 220, 220, 220, 39837, 1137, 796, 705, 59, 44427, 58, 3865, 76, 6, 198, 220, 220, 220, 7477, 9148, 8924, 796, 705, 59, 44427, 58, 5824, 76, 6, 198, 220, 220, 220, 7477, 43016, 796, 705, 59, 44427, 58, 5892, 76, 6, 198, 220, 220, 220, 39410, 796, 705, 59, 44427, 58, 6052, 76, 6, 198, 220, 220, 220, 9677, 4146, 796, 705, 59, 44427, 58, 6420, 76, 6, 198, 220, 220, 220, 23578, 34, 796, 705, 59, 44427, 58, 15, 76, 6, 198, 220, 220, 220, 347, 15173, 796, 705, 59, 44427, 58, 16, 76, 6, 198, 220, 220, 220, 35219, 24027, 796, 705, 59, 44427, 58, 19, 76, 6, 628, 198, 4871, 9220, 16351, 49242, 25, 198, 220, 220, 220, 37227, 33234, 1958, 2051, 3706, 3696, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 2134, 1231, 7587, 597, 3696, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 4868, 796, 1351, 3419, 628, 220, 220, 220, 825, 9367, 62, 15908, 7, 944, 11, 26672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 33351, 26672, 2045, 329, 3696, 290, 17706, 4096, 8794, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 3108, 8019, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 5536, 628, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 1064, 62, 439, 62, 16624, 7, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 4868, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34345, 1298, 29472, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 76, 524, 1298, 5536, 13, 6738, 62, 7753, 7, 34345, 11, 285, 524, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7857, 62, 33661, 1298, 28686, 13, 6978, 13, 11407, 1096, 7, 34345, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2302, 1298, 3108, 8019, 13, 15235, 7, 34345, 737, 37333, 844, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 825, 651, 62, 11925, 456, 83, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1271, 286, 13686, 3696, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13, 7753, 4868, 8, 628, 220, 220, 220, 825, 651, 62, 14261, 62, 16624, 7, 944, 11, 2546, 62, 400, 10126, 28, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1351, 286, 2393, 5749, 621, 1395, 10771, 357, 7857, 287, 10771, 21387, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 2116, 13, 7753, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 14692, 7857, 62, 33661, 8973, 1875, 2546, 62, 400, 10126, 9, 7, 35500, 9, 35500, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 277, 14692, 7857, 62, 33661, 8973, 29006, 35500, 9, 35500, 828, 277, 14692, 76, 524, 33116, 277, 14692, 34345, 8973, 628, 220, 220, 220, 825, 651, 62, 2539, 4775, 62, 16624, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 62, 2539, 10879, 2625, 2539, 10879, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1100, 62, 7857, 28, 35500, 9, 35500, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 28, 1120, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1351, 286, 3696, 12336, 26286, 351, 14451, 1321, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 29042, 420, 41043, 624, 628, 220, 220, 220, 220, 220, 220, 220, 317, 796, 29042, 420, 41043, 624, 13, 38062, 13951, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 34345, 62, 2539, 10879, 11, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 277, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1573, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 13, 2860, 62, 4775, 7, 4775, 13, 36311, 22784, 1573, 13, 36311, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 317, 13, 15883, 62, 2306, 296, 13951, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 2116, 13, 7753, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 14692, 34345, 33116, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7466, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6940, 796, 277, 13, 961, 7, 961, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2872, 287, 317, 13, 2676, 7, 36873, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 22019, 796, 2872, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 9688, 796, 3509, 7, 15699, 58, 15, 45297, 28968, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 437, 796, 949, 7, 15699, 58, 15, 48688, 28968, 11, 1100, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 9688, 796, 6940, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 9688, 25, 1930, 62, 22019, 12, 11925, 7, 15699, 58, 16, 12962, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20740, 19796, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 437, 796, 6940, 58, 1930, 62, 22019, 10, 16, 25, 1930, 62, 437, 4083, 81, 19796, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11677, 62, 9688, 18189, 11677, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 9688, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11677, 62, 437, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 437, 796, 11677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 437, 796, 11677, 532, 11677, 62, 437, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14451, 62, 5239, 796, 6940, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 9688, 10, 28968, 62, 9688, 25, 1930, 62, 22019, 12, 11925, 7, 15699, 58, 16, 12962, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 4033, 669, 13, 7708, 4146, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6940, 58, 1930, 62, 22019, 12, 11925, 7, 15699, 58, 16, 12962, 10, 16, 25, 1930, 62, 22019, 10, 16, 60, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 4033, 669, 13, 1677, 9697, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6940, 58, 1930, 62, 22019, 10, 16, 25, 1930, 62, 437, 12, 28968, 62, 437, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7466, 13, 33295, 19510, 31409, 62, 5239, 13, 33491, 7203, 59, 77, 1600, 366, 366, 828, 2872, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 6759, 2052, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 357, 7753, 11, 7466, 8, 628, 220, 220, 220, 825, 651, 62, 25196, 6925, 28338, 62, 16624, 7, 944, 11, 920, 62, 400, 10126, 28, 15, 13, 22, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1351, 286, 3696, 351, 2440, 40709, 357, 43628, 11, 25388, 21387, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 40709, 628, 220, 220, 220, 220, 220, 220, 220, 9514, 62, 76, 320, 2963, 12272, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31438, 14, 87, 12, 39563, 19204, 12, 34167, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31438, 14, 87, 12, 10331, 12, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31438, 14, 12315, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9060, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 2116, 13, 7753, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 14692, 34345, 33116, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6940, 796, 277, 13, 961, 7, 35500, 9, 35500, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 285, 524, 287, 9514, 62, 76, 320, 2963, 12272, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 14692, 76, 524, 1, 4083, 9688, 2032, 342, 7, 76, 524, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 14267, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 920, 796, 40709, 13, 1477, 8825, 62, 298, 28338, 7, 36873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 920, 18189, 920, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 357, 7753, 11, 920, 8, 628, 198, 4299, 1064, 62, 439, 62, 16624, 7, 6978, 2599, 198, 220, 220, 220, 37227, 16742, 477, 3696, 287, 7368, 8619, 290, 19299, 606, 526, 15931, 198, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 418, 13, 6978, 13, 22179, 7, 6978, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 29472, 8, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 37702, 2736, 8619, 422, 3141, 1627, 2045, 329, 13678, 3696, 526, 15931, 198, 220, 220, 220, 31246, 796, 9220, 16351, 49242, 3419, 198, 220, 220, 220, 1303, 31246, 13, 35836, 62, 15908, 7203, 14, 14490, 14, 5907, 14, 17815, 4943, 220, 1303, 44855, 11682, 198, 220, 220, 220, 31246, 13, 35836, 62, 15908, 7203, 14, 14490, 14, 5907, 14, 1818, 14, 41382, 62, 7890, 4943, 628, 220, 220, 220, 3601, 37082, 77, 6329, 26746, 34020, 1546, 11420, 1, 198, 220, 220, 220, 329, 357, 7857, 11, 285, 524, 11, 29472, 8, 287, 31246, 13, 1136, 62, 14261, 62, 16624, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 65, 4033, 669, 13, 7708, 4146, 10, 1, 90, 25, 29, 940, 92, 10771, 1, 10, 65, 4033, 669, 13, 1677, 9697, 10, 1, 220, 220, 46110, 27, 1238, 92, 46110, 27, 940, 92, 11074, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 7, 7857, 11, 285, 524, 11, 29472, 8, 628, 220, 220, 220, 3601, 37082, 77, 6329, 376, 15919, 35374, 45359, 5258, 11420, 1, 198, 220, 220, 220, 329, 357, 7753, 11, 7466, 8, 287, 31246, 13, 1136, 62, 2539, 4775, 62, 16624, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 45144, 25, 27, 20, 92, 46110, 27, 1238, 92, 37913, 25, 27, 940, 30072, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 6759, 2052, 828, 2393, 14692, 76, 524, 33116, 2393, 14692, 34345, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2292, 11, 2872, 287, 7466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 37082, 83, 12, 46110, 27, 940, 92, 46110, 27, 940, 92, 1911, 18982, 7, 9150, 11, 2872, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 628, 220, 220, 220, 3601, 37082, 77, 6329, 34677, 12964, 5446, 3185, 56, 34020, 1546, 11420, 1, 198, 220, 220, 220, 329, 357, 7753, 11, 920, 8, 287, 31246, 13, 1136, 62, 25196, 6925, 28338, 62, 16624, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 65, 4033, 669, 13, 7708, 4146, 10, 1, 59, 83, 46110, 13, 17, 69, 36786, 10, 65, 4033, 669, 13, 1677, 9697, 10, 1, 37913, 25, 27, 940, 30072, 46110, 27, 940, 92, 11074, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 7, 298, 11, 2393, 14692, 76, 524, 33116, 2393, 14692, 34345, 8973, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
1.917
2,747
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ openSMILE_dir_to_csv.py Script to format openSMILE emobase *.csv output for a given set of files into a single csv. Also returns the data as a pandas dataframe. Created on Mon Jan 23 10:43:34 2017 Author: – Jon Clucas, 2017 ([email protected]) © 2017, Child Mind Institute, Apache v2.0 License """ import argparse, csv, os, pandas as pd, subprocess def oS_csv_reformat(oS_csv, first): """ Function to get features from openSMILE emobase configuration file csv outputs. Parameters ---------- csv_file : string absolute path to a *.csv openSMILE output file first : boolean if this is the first csv of the set, `True`; otherwise, `False` Returns ------- data : pandas dataframe or list if `first`, a dataframe with feature names, types, and csv values; if !`first`, a list of csv values. """ print(oS_csv) if first: header = [] # type_header = [] temp_list = [] # initialize data_flag data_flag = False # read file at_at = "@attribute " with open(oS_csv, 'r') as f: # open file for reading reader = csv.reader(f) for index, row in enumerate(reader): if first: header_element = ''.join(row) if header_element.startswith(at_at): he1, he2 = str(header_element.split(at_at)[1]).split(' ') header.append(str(he1)) # if he2 != "unknown": # type_header.append(str(he2)) # else: # type_header.append("string") if data_flag: # read data row temp_list.append(row) if ''.join(row).startswith("@data"): data_flag = True if first: data = pd.DataFrame(data=temp_list[1], index=header, columns=[ os.path.basename(oS_csv).rstrip('.csv').casefold( )]) return(data) else: return(temp_list[1]) def oS_dir_to_csv(top_dir): """ Function collect all openSMILE output csv files in a given top-level directory into a single csv file that also includes some summary columns with one column for each csv in the original directory. Parameters ---------- top_dir : string absolute path to a directory of *.csv openSMILE output files Outputs ------- (top_dir + `/collected/all-collected.csv`) : csv file a csv file containing all of the data from the input files and some added summary columns Returns ------- collected_data : pandas dataframe the exported *.csv as a pandas dataframe """ cols = [] col_dir = os.path.join(top_dir, "collected") if not os.path.exists(col_dir): os.makedirs(col_dir) collected_data = None for i, file in enumerate(os.listdir(top_dir)): if file.casefold().endswith('.csv'.casefold()): if i == 0: collected_data = oS_csv_reformat(os.path.join(top_dir, file), True) else: collected_data[os.path.basename(file).rstrip('.csv').casefold( )] = oS_csv_reformat(os.path.join(top_dir, file), False) collected_data = collected_data.apply(pd.to_numeric, errors='coerce') for index, column in enumerate(list(collected_data)): if index > 0: cols.append(column) collected_data['mean'] = collected_data[cols].mean(axis=1) collected_data['median'] = collected_data[cols].median(axis=1) collected_data['std'] = collected_data[cols].std(axis=1) collected_data['mad'] = collected_data[cols].mad(axis=1) collected_data.sort_values(by='mad', axis=0, ascending=False, inplace=True) collected_data.to_csv(os.path.join(col_dir, "all_collected.csv")) return collected_data # ============================================================================ if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 9654, 50, 8895, 2538, 62, 15908, 62, 1462, 62, 40664, 13, 9078, 198, 198, 7391, 284, 5794, 1280, 50, 8895, 2538, 795, 672, 589, 46866, 40664, 5072, 329, 257, 1813, 900, 286, 3696, 656, 257, 198, 29762, 269, 21370, 13, 4418, 5860, 262, 1366, 355, 257, 19798, 292, 1366, 14535, 13, 198, 198, 41972, 319, 2892, 2365, 2242, 838, 25, 3559, 25, 2682, 2177, 198, 198, 13838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 784, 5966, 1012, 1229, 292, 11, 2177, 357, 46286, 13, 565, 1229, 292, 31, 9410, 10155, 13, 2398, 8, 198, 198, 16224, 2177, 11, 5932, 10175, 5136, 11, 24843, 410, 17, 13, 15, 13789, 198, 37811, 198, 198, 11748, 1822, 29572, 11, 269, 21370, 11, 28686, 11, 19798, 292, 355, 279, 67, 11, 850, 14681, 198, 198, 4299, 267, 50, 62, 40664, 62, 260, 18982, 7, 34049, 62, 40664, 11, 717, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 284, 651, 3033, 422, 1280, 50, 8895, 2538, 795, 672, 589, 8398, 2393, 269, 21370, 198, 220, 220, 220, 23862, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 269, 21370, 62, 7753, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 4112, 3108, 284, 257, 46866, 40664, 1280, 50, 8895, 2538, 5072, 2393, 628, 220, 220, 220, 717, 1058, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 611, 428, 318, 262, 717, 269, 21370, 286, 262, 900, 11, 4600, 17821, 63, 26, 4306, 11, 4600, 25101, 63, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1366, 1058, 19798, 292, 1366, 14535, 393, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4600, 11085, 47671, 257, 1366, 14535, 351, 3895, 3891, 11, 3858, 11, 290, 269, 21370, 3815, 26, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5145, 63, 11085, 47671, 257, 1351, 286, 269, 21370, 3815, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7, 34049, 62, 40664, 8, 198, 220, 220, 220, 611, 717, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 796, 17635, 198, 220, 220, 220, 1303, 220, 220, 220, 2099, 62, 25677, 796, 17635, 198, 220, 220, 220, 20218, 62, 4868, 796, 17635, 198, 220, 220, 220, 1303, 41216, 1366, 62, 32109, 198, 220, 220, 220, 1366, 62, 32109, 796, 10352, 198, 220, 220, 220, 1303, 1100, 2393, 198, 220, 220, 220, 379, 62, 265, 796, 44212, 42348, 366, 198, 220, 220, 220, 351, 1280, 7, 34049, 62, 40664, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1280, 2393, 329, 3555, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 5752, 287, 27056, 378, 7, 46862, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 717, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 30854, 796, 705, 4458, 22179, 7, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13639, 62, 30854, 13, 9688, 2032, 342, 7, 265, 62, 265, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 16, 11, 339, 17, 796, 965, 7, 25677, 62, 30854, 13, 35312, 7, 265, 62, 265, 38381, 16, 35944, 35312, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 13, 33295, 7, 2536, 7, 258, 16, 4008, 198, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 339, 17, 14512, 366, 34680, 1298, 198, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 25677, 13, 33295, 7, 2536, 7, 258, 17, 4008, 198, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 25677, 13, 33295, 7203, 8841, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 62, 32109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1100, 1366, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 4868, 13, 33295, 7, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 4458, 22179, 7, 808, 737, 9688, 2032, 342, 7203, 31, 7890, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 32109, 796, 6407, 198, 220, 220, 220, 611, 717, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 279, 67, 13, 6601, 19778, 7, 7890, 28, 29510, 62, 4868, 58, 16, 4357, 6376, 28, 25677, 11, 15180, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 12093, 12453, 7, 34049, 62, 40664, 737, 81, 36311, 7, 4458, 40664, 27691, 7442, 11379, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7, 7890, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7, 29510, 62, 4868, 58, 16, 12962, 628, 198, 4299, 267, 50, 62, 15908, 62, 1462, 62, 40664, 7, 4852, 62, 15908, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 2824, 477, 1280, 50, 8895, 2538, 5072, 269, 21370, 3696, 287, 257, 1813, 1353, 12, 5715, 198, 220, 220, 220, 8619, 656, 257, 2060, 269, 21370, 2393, 326, 635, 3407, 617, 10638, 15180, 198, 220, 220, 220, 351, 530, 5721, 329, 1123, 269, 21370, 287, 262, 2656, 8619, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1353, 62, 15908, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 4112, 3108, 284, 257, 8619, 286, 46866, 40664, 1280, 50, 8895, 2538, 5072, 3696, 628, 220, 220, 220, 25235, 82, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 357, 4852, 62, 15908, 1343, 4600, 14, 4033, 12609, 14, 439, 12, 4033, 12609, 13, 40664, 63, 8, 1058, 269, 21370, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 257, 269, 21370, 2393, 7268, 477, 286, 262, 1366, 422, 262, 5128, 3696, 290, 617, 198, 220, 220, 220, 220, 220, 220, 220, 2087, 10638, 15180, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7723, 62, 7890, 1058, 19798, 292, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 262, 29050, 46866, 40664, 355, 257, 19798, 292, 1366, 14535, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 951, 82, 796, 17635, 198, 220, 220, 220, 951, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 4852, 62, 15908, 11, 366, 4033, 12609, 4943, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 4033, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 4033, 62, 15908, 8, 198, 220, 220, 220, 7723, 62, 7890, 796, 6045, 198, 220, 220, 220, 329, 1312, 11, 2393, 287, 27056, 378, 7, 418, 13, 4868, 15908, 7, 4852, 62, 15908, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 13, 7442, 11379, 22446, 437, 2032, 342, 7, 4458, 40664, 4458, 7442, 11379, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7723, 62, 7890, 796, 267, 50, 62, 40664, 62, 260, 18982, 7, 418, 13, 6978, 13, 22179, 7, 4852, 62, 15908, 11, 2393, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7723, 62, 7890, 58, 418, 13, 6978, 13, 12093, 12453, 7, 7753, 737, 81, 36311, 7, 4458, 40664, 27691, 7442, 11379, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48600, 796, 267, 50, 62, 40664, 62, 260, 18982, 7, 418, 13, 6978, 13, 22179, 7, 4852, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 828, 10352, 8, 198, 220, 220, 220, 7723, 62, 7890, 796, 7723, 62, 7890, 13, 39014, 7, 30094, 13, 1462, 62, 77, 39223, 11, 8563, 11639, 1073, 263, 344, 11537, 198, 220, 220, 220, 329, 6376, 11, 5721, 287, 27056, 378, 7, 4868, 7, 4033, 12609, 62, 7890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 82, 13, 33295, 7, 28665, 8, 198, 220, 220, 220, 7723, 62, 7890, 17816, 32604, 20520, 796, 7723, 62, 7890, 58, 4033, 82, 4083, 32604, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 7723, 62, 7890, 17816, 1150, 666, 20520, 796, 7723, 62, 7890, 58, 4033, 82, 4083, 1150, 666, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 7723, 62, 7890, 17816, 19282, 20520, 796, 7723, 62, 7890, 58, 4033, 82, 4083, 19282, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 7723, 62, 7890, 17816, 9937, 20520, 796, 7723, 62, 7890, 58, 4033, 82, 4083, 9937, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 7723, 62, 7890, 13, 30619, 62, 27160, 7, 1525, 11639, 9937, 3256, 16488, 28, 15, 11, 41988, 28, 25101, 11, 287, 5372, 28, 17821, 8, 198, 220, 220, 220, 7723, 62, 7890, 13, 1462, 62, 40664, 7, 418, 13, 6978, 13, 22179, 7, 4033, 62, 15908, 11, 366, 439, 62, 4033, 12609, 13, 40664, 48774, 198, 220, 220, 220, 1441, 7723, 62, 7890, 198, 198, 2, 38093, 2559, 18604, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 3419 ]
2.212573
1,877
# ClearML - Example of CatBoost training, saving model and loading model # import argparse from catboost import CatBoostRegressor, Pool from catboost.datasets import msrank from clearml import Task import numpy as np from sklearn.model_selection import train_test_split if __name__ == "__main__": Task.init(project_name="examples", task_name="CatBoost simple example") parser = argparse.ArgumentParser() parser.add_argument("--iterations", default=200) args = parser.parse_args() main(args.iterations)
[ 2, 11459, 5805, 532, 17934, 286, 5181, 45686, 3047, 11, 8914, 2746, 290, 11046, 2746, 198, 2, 198, 11748, 1822, 29572, 198, 198, 6738, 3797, 39521, 1330, 5181, 45686, 8081, 44292, 11, 19850, 198, 6738, 3797, 39521, 13, 19608, 292, 1039, 1330, 13845, 43027, 198, 198, 6738, 1598, 4029, 1330, 15941, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 15941, 13, 15003, 7, 16302, 62, 3672, 2625, 1069, 12629, 1600, 4876, 62, 3672, 2625, 21979, 45686, 2829, 1672, 4943, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 2676, 602, 1600, 4277, 28, 2167, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1388, 7, 22046, 13, 2676, 602, 8, 198 ]
3.206061
165
from django.template.defaultfilters import slugify def slug_generator(sender, instance, *args, **kwargs): ''' capitalize first letter of each word and generates slug ''' instance.name = instance.name.title() slug = slugify(instance.name) exists = sender.objects.filter(slug=slug).exists() if not exists: instance.slug = slug else: instance.slug = "%s-%s" % (slug, instance.id)
[ 6738, 42625, 14208, 13, 28243, 13, 12286, 10379, 1010, 1330, 31065, 1958, 628, 198, 4299, 31065, 62, 8612, 1352, 7, 82, 2194, 11, 4554, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 705, 7061, 35160, 717, 3850, 286, 1123, 1573, 290, 18616, 31065, 705, 7061, 628, 220, 220, 4554, 13, 3672, 796, 4554, 13, 3672, 13, 7839, 3419, 198, 220, 220, 31065, 796, 31065, 1958, 7, 39098, 13, 3672, 8, 198, 220, 220, 7160, 796, 29788, 13, 48205, 13, 24455, 7, 6649, 1018, 28, 6649, 1018, 737, 1069, 1023, 3419, 198, 220, 220, 611, 407, 7160, 25, 198, 220, 220, 220, 220, 220, 4554, 13, 6649, 1018, 796, 31065, 198, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 4554, 13, 6649, 1018, 796, 36521, 82, 12, 4, 82, 1, 4064, 357, 6649, 1018, 11, 4554, 13, 312, 8, 628 ]
2.854167
144
# -*- coding: utf-8 -*- import unittest import os import re from iktomi.utils import html from lxml.html import Element from lxml import etree import lxml.html as h class TestSanitizer(unittest.TestCase): '''Tests for sanitizer based on lxml''' @unittest.skip('lxml does not provide css filtration') def test_safe_css(self): u'''Ensure that sanitizer does not remove safe css''' self.attrs['allowed_attributes'].append('style') res = self.sanitize('<p style="color: #000; background-color: red; font-size: 1.2em">p</p>') assert 'color: #000; background-color: red; font-size: 1.2em' in res @unittest.skip('not supported') @unittest.skip('lxml does not provide css filtration') def test_unsafe_css(self): u'''Special test for html5: html5lib has very ultimate css cleanup with gauntlets''' self.attrs['allowed_attributes'].append('style') res = self.sanitize('<p style="background: url(javascript:void); ' 'color: #000; width: e/**/xpression(alert());">p</p>') self.assertEqual(res, '<p>p</p>') def test_on_real_data(self): ''' Compare with logged genshi output to ensure that there are no new errors ''' return None skips = 10 if os.path.isdir('clean_html'): self.attrs['string_callbacks'] = [html.remove_TinyMCE_trash, html.strip_empty_tags_nested, spaceless] for dir, dirs, files in os.walk('clean_html'): for file in filter(lambda x: x.endswith('.in'), files): path = os.path.join(dir, file) in_ = open(path, 'r').read().decode('utf-8') out = open(path[:-3] + '.out', 'r').read().decode('utf-8') out = html.remove_TinyMCE_trash(out) # Old sanitizer can't do this #out = self.sanitize(out).strip() res = self.sanitize(in_).strip() if res != out: if skips < 10: print(in_, '\n----------\n', res + '---\n!=\n' + out + '---\n\n\n') skips -= 1 if not skips: return #print "asserted" @unittest.skip('lxml does not support this option') # cannot create Cleaner with wrong parameters
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 555, 715, 395, 198, 11748, 28686, 198, 11748, 302, 198, 6738, 220, 1134, 83, 12753, 13, 26791, 1330, 27711, 198, 6738, 300, 19875, 13, 6494, 1330, 11703, 198, 6738, 300, 19875, 1330, 2123, 631, 198, 11748, 300, 19875, 13, 6494, 355, 289, 198, 198, 4871, 6208, 15017, 3029, 263, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 705, 7061, 51, 3558, 329, 5336, 3029, 263, 1912, 319, 300, 19875, 7061, 6, 628, 220, 220, 220, 2488, 403, 715, 395, 13, 48267, 10786, 75, 19875, 857, 407, 2148, 269, 824, 1226, 83, 1358, 11537, 198, 220, 220, 220, 825, 1332, 62, 21230, 62, 25471, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 334, 7061, 6, 4834, 19532, 326, 5336, 3029, 263, 857, 407, 4781, 3338, 269, 824, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1078, 3808, 17816, 40845, 62, 1078, 7657, 6, 4083, 33295, 10786, 7635, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 12807, 270, 1096, 10786, 27, 79, 3918, 2625, 8043, 25, 1303, 830, 26, 4469, 12, 8043, 25, 2266, 26, 10369, 12, 7857, 25, 352, 13, 17, 368, 5320, 79, 3556, 79, 29, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 705, 8043, 25, 1303, 830, 26, 4469, 12, 8043, 25, 2266, 26, 10369, 12, 7857, 25, 352, 13, 17, 368, 6, 287, 581, 628, 220, 220, 220, 2488, 403, 715, 395, 13, 48267, 10786, 1662, 4855, 11537, 628, 220, 220, 220, 2488, 403, 715, 395, 13, 48267, 10786, 75, 19875, 857, 407, 2148, 269, 824, 1226, 83, 1358, 11537, 198, 220, 220, 220, 825, 1332, 62, 13271, 8635, 62, 25471, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 334, 7061, 6, 13409, 1332, 329, 27711, 20, 25, 27711, 20, 8019, 468, 845, 8713, 269, 824, 27425, 351, 308, 39695, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1078, 3808, 17816, 40845, 62, 1078, 7657, 6, 4083, 33295, 10786, 7635, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 12807, 270, 1096, 10786, 27, 79, 3918, 2625, 25249, 25, 19016, 7, 37495, 25, 19382, 1776, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8043, 25, 1303, 830, 26, 9647, 25, 304, 35343, 14, 42372, 2234, 7, 44598, 35430, 5320, 79, 3556, 79, 29, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 411, 11, 705, 27, 79, 29, 79, 3556, 79, 29, 11537, 628, 220, 220, 220, 825, 1332, 62, 261, 62, 5305, 62, 7890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27814, 351, 18832, 308, 641, 5303, 5072, 284, 4155, 326, 612, 389, 645, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 8563, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1341, 2419, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 10786, 27773, 62, 6494, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1078, 3808, 17816, 8841, 62, 13345, 10146, 20520, 796, 685, 6494, 13, 28956, 62, 51, 3541, 44, 5222, 62, 2213, 1077, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 13, 36311, 62, 28920, 62, 31499, 62, 77, 7287, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34752, 5321, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 10786, 27773, 62, 6494, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 8106, 7, 50033, 2124, 25, 2124, 13, 437, 2032, 342, 7, 4458, 259, 33809, 3696, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 796, 1280, 7, 6978, 11, 705, 81, 27691, 961, 22446, 12501, 1098, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 796, 1280, 7, 6978, 58, 21912, 18, 60, 1343, 45302, 448, 3256, 705, 81, 27691, 961, 22446, 12501, 1098, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 796, 27711, 13, 28956, 62, 51, 3541, 44, 5222, 62, 2213, 1077, 7, 448, 8, 1303, 5706, 5336, 3029, 263, 460, 470, 466, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 448, 796, 2116, 13, 12807, 270, 1096, 7, 448, 737, 36311, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 12807, 270, 1096, 7, 259, 62, 737, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 581, 14512, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1341, 2419, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 259, 62, 11, 705, 59, 77, 35937, 59, 77, 3256, 581, 1343, 705, 6329, 59, 77, 0, 28, 59, 77, 6, 1343, 220, 503, 1343, 705, 6329, 59, 77, 59, 77, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1341, 2419, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1341, 2419, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 366, 30493, 276, 1, 628, 220, 220, 220, 2488, 403, 715, 395, 13, 48267, 10786, 75, 19875, 857, 407, 1104, 428, 3038, 11537, 628, 198, 220, 220, 220, 1303, 2314, 2251, 5985, 263, 351, 2642, 10007, 628, 628 ]
1.97082
1,268
#!/usr/bin/env python # from any given string, remove all vowels # NON REGEX VERSION sample_string='Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?' en_vowels='aeiouAEIOU' target_string = sample_string for char in en_vowels: target_string = target_string.replace(char,'') print(target_string) # REGEX VERSION import re vowels = re.compile(r'[aeiouAEIOU]') print(vowels.sub('',sample_string))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 422, 597, 1813, 4731, 11, 4781, 477, 23268, 1424, 198, 198, 2, 44521, 23337, 6369, 44156, 2849, 198, 39873, 62, 8841, 11639, 50, 276, 3384, 2774, 16564, 5375, 271, 44192, 22284, 271, 318, 660, 299, 7240, 4049, 1650, 2322, 37623, 23900, 10458, 415, 1505, 288, 349, 29625, 4188, 28907, 415, 1505, 11, 2006, 321, 816, 257, 525, 1789, 11, 304, 18251, 220, 2419, 64, 627, 3609, 450, 2801, 78, 8067, 382, 3326, 270, 37749, 2123, 32551, 7068, 78, 307, 1045, 68, 9090, 3609, 8633, 64, 264, 2797, 1193, 291, 34748, 13, 22547, 78, 551, 320, 220, 2419, 321, 2322, 37623, 23900, 627, 544, 2322, 37623, 292, 1650, 355, 525, 77, 2541, 1960, 267, 5266, 1960, 31497, 270, 11, 10081, 627, 544, 4937, 2797, 333, 7842, 72, 288, 349, 2850, 304, 418, 45567, 36535, 68, 2322, 37623, 23900, 4726, 72, 299, 274, 979, 2797, 13, 3169, 4188, 16964, 305, 627, 271, 421, 321, 1556, 11, 45567, 288, 349, 29625, 220, 2419, 388, 627, 544, 288, 45621, 1650, 716, 316, 11, 369, 8831, 316, 333, 11, 31659, 271, 979, 11555, 270, 11, 10081, 627, 544, 1729, 997, 421, 321, 304, 3754, 953, 72, 10042, 64, 753, 312, 2797, 3384, 2248, 382, 2123, 288, 349, 382, 2153, 7402, 435, 1557, 321, 627, 25534, 265, 2322, 37623, 23900, 13, 7273, 551, 320, 512, 949, 8083, 8710, 1789, 11, 627, 271, 18216, 6582, 4208, 3780, 368, 334, 297, 321, 3990, 271, 2341, 66, 541, 270, 4827, 4267, 321, 11, 299, 23267, 3384, 435, 6394, 409, 304, 64, 13088, 72, 4937, 2541, 30, 2264, 271, 1960, 368, 11555, 304, 388, 1312, 495, 1128, 260, 258, 681, 270, 45567, 287, 304, 64, 2322, 37623, 378, 11555, 270, 1658, 325, 627, 321, 49413, 18605, 395, 33100, 4937, 2541, 11, 11555, 16116, 45567, 288, 349, 29625, 304, 388, 31497, 5375, 18658, 2322, 37623, 292, 9242, 64, 1582, 72, 2541, 8348, 198, 198, 268, 62, 85, 322, 1424, 11639, 3609, 72, 280, 14242, 40, 2606, 6, 198, 16793, 62, 8841, 796, 6291, 62, 8841, 198, 1640, 1149, 287, 551, 62, 85, 322, 1424, 25, 198, 197, 16793, 62, 8841, 796, 2496, 62, 8841, 13, 33491, 7, 10641, 4032, 11537, 198, 198, 4798, 7, 16793, 62, 8841, 8, 628, 198, 2, 23337, 6369, 44156, 2849, 198, 11748, 302, 198, 85, 322, 1424, 796, 302, 13, 5589, 576, 7, 81, 6, 58, 3609, 72, 280, 14242, 40, 2606, 60, 11537, 198, 4798, 7, 85, 322, 1424, 13, 7266, 10786, 3256, 39873, 62, 8841, 4008 ]
2.874704
423
# -*- coding: utf-8 -*- # This file is part of CairoSVG # Copyright © 2010-2012 Kozea # # This library is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # This library is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with CairoSVG. If not, see <http://www.gnu.org/licenses/>. """ SVG Parser. """ # Fallbacks for Python 2/3 and lxml/ElementTree # pylint: disable=E0611,F0401,W0611 try: import lxml.etree as ElementTree from lxml.etree import XMLSyntaxError as ParseError HAS_LXML = True except ImportError: from xml.etree import ElementTree from xml.parsers import expat # ElementTree's API changed between 2.6 and 2.7 # pylint: disable=C0103 ParseError = getattr(ElementTree, 'ParseError', expat.ExpatError) # pylint: enable=C0103 HAS_LXML = False try: from urllib import urlopen import urlparse except ImportError: from urllib.request import urlopen from urllib import parse as urlparse # Python 3 # pylint: enable=E0611,F0401,W0611 from .css import apply_stylesheets # Python 2/3 compat try: basestring except NameError: basestring = str class Node(dict): """SVG node with dict-like properties and children.""" def __init__(self, node, parent=None): """Create the Node from ElementTree ``node``, with ``parent`` Node.""" super(Node, self).__init__() self.children = () self.root = False self.tag = node.tag.split("}", 1)[-1] self.text = node.text # Handle the CSS style = node.attrib.get("style") if style: for attribute in style.split(";"): if ":" in attribute: name, value = attribute.split(":", 1) node.attrib[name.strip()] = value.strip() del node.attrib["style"] # Inherits from parent properties if parent is not None: items = parent.copy() not_inherited = ("transform", "opacity") if self.tag == "tspan": not_inherited += ("x", "y") for attribute in not_inherited: if attribute in items: del items[attribute] # TODO: drop other attributes that should not be inherited self.update(items) self.url = parent.url self.xml_tree = parent.xml_tree self.parent = parent self.update(dict(node.attrib.items())) # Manage text by creating children if self.tag == "text" or self.tag == "textPath": self.children = self.text_children(node) if not self.children: self.children = tuple( Node(child, self) for child in node if isinstance(child.tag, basestring)) def text_children(self, node): """Create children and return them.""" children = [] for child in node: children.append(Node(child, parent=self)) if child.tail: anonymous = ElementTree.Element('tspan') anonymous.text = child.tail children.append(Node(anonymous, parent=self)) return list(children) class Tree(Node): """SVG tree.""" def __init__(self, **kwargs): """Create the Tree from SVG ``text``.""" # Make the parameters keyword-only: bytestring = kwargs.pop('bytestring', None) file_obj = kwargs.pop('file_obj', None) url = kwargs.pop('url', None) parent = kwargs.pop('parent', None) if bytestring is not None: tree = ElementTree.fromstring(bytestring) self.url = url elif file_obj is not None: tree = ElementTree.parse(file_obj).getroot() self.url = getattr(file_obj, 'name', url) elif url is not None: if "#" in url: url, element_id = url.split("#", 1) else: element_id = None if parent and parent.url: if url: url = urlparse.urljoin(parent.url, url) elif element_id: url = parent.url self.url = url if url: if urlparse.urlparse(url).scheme: input_ = urlopen(url) else: input_ = url # filename tree = ElementTree.parse(input_).getroot() else: tree = parent.xml_tree if element_id: iterator = ( tree.iter() if hasattr(tree, 'iter') else tree.getiterator()) for element in iterator: if element.get("id") == element_id: tree = element break else: raise TypeError( 'No input. Use one of bytestring, file_obj or url.') apply_stylesheets(tree) self.xml_tree = tree super(Tree, self).__init__(tree, parent) self.root = True
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 770, 2393, 318, 636, 286, 23732, 50, 43490, 198, 2, 15069, 10673, 3050, 12, 6999, 17634, 2736, 64, 198, 2, 198, 2, 770, 5888, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 739, 198, 2, 262, 2846, 286, 262, 22961, 12892, 263, 3611, 5094, 13789, 355, 3199, 416, 262, 3232, 198, 2, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 357, 265, 534, 3038, 8, 597, 198, 2, 1568, 2196, 13, 198, 2, 198, 2, 770, 5888, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 475, 42881, 198, 2, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 198, 2, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 22961, 12892, 263, 3611, 5094, 13789, 329, 517, 198, 2, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 12892, 263, 3611, 5094, 13789, 198, 2, 1863, 351, 23732, 50, 43490, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 198, 37811, 198, 50, 43490, 23042, 263, 13, 198, 198, 37811, 198, 198, 2, 7218, 10146, 329, 11361, 362, 14, 18, 290, 300, 19875, 14, 20180, 27660, 198, 2, 279, 2645, 600, 25, 15560, 28, 36, 3312, 1157, 11, 37, 3023, 486, 11, 54, 3312, 1157, 198, 28311, 25, 198, 220, 220, 220, 1330, 300, 19875, 13, 316, 631, 355, 11703, 27660, 198, 220, 220, 220, 422, 300, 19875, 13, 316, 631, 1330, 23735, 13940, 41641, 12331, 355, 2547, 325, 12331, 198, 220, 220, 220, 33930, 62, 43, 55, 5805, 796, 6407, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 35555, 13, 316, 631, 1330, 11703, 27660, 198, 220, 220, 220, 422, 35555, 13, 79, 945, 364, 1330, 1033, 265, 198, 220, 220, 220, 1303, 11703, 27660, 338, 7824, 3421, 1022, 362, 13, 21, 290, 362, 13, 22, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 34, 486, 3070, 198, 220, 220, 220, 2547, 325, 12331, 796, 651, 35226, 7, 20180, 27660, 11, 705, 10044, 325, 12331, 3256, 1033, 265, 13, 3109, 8071, 12331, 8, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 7139, 28, 34, 486, 3070, 198, 220, 220, 220, 33930, 62, 43, 55, 5805, 796, 10352, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 2956, 297, 571, 1330, 19016, 9654, 198, 220, 220, 220, 1330, 19016, 29572, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 2956, 297, 571, 13, 25927, 1330, 19016, 9654, 198, 220, 220, 220, 422, 2956, 297, 571, 1330, 21136, 355, 19016, 29572, 220, 1303, 11361, 513, 198, 2, 279, 2645, 600, 25, 7139, 28, 36, 3312, 1157, 11, 37, 3023, 486, 11, 54, 3312, 1157, 628, 198, 6738, 764, 25471, 1330, 4174, 62, 47720, 258, 1039, 628, 198, 2, 11361, 362, 14, 18, 8330, 198, 28311, 25, 198, 220, 220, 220, 1615, 395, 1806, 198, 16341, 6530, 12331, 25, 198, 220, 220, 220, 1615, 395, 1806, 796, 965, 628, 198, 4871, 19081, 7, 11600, 2599, 198, 220, 220, 220, 37227, 50, 43490, 10139, 351, 8633, 12, 2339, 6608, 290, 1751, 526, 15931, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 10139, 11, 2560, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 262, 19081, 422, 11703, 27660, 7559, 17440, 15506, 11, 351, 7559, 8000, 15506, 19081, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 19667, 11, 2116, 737, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17197, 796, 7499, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12985, 796, 10139, 13, 12985, 13, 35312, 7203, 92, 1600, 352, 38381, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5239, 796, 10139, 13, 5239, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 33141, 262, 17391, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 796, 10139, 13, 1078, 822, 13, 1136, 7203, 7635, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3918, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11688, 287, 3918, 13, 35312, 7203, 26033, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 11097, 287, 11688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 1988, 796, 11688, 13, 35312, 7, 1298, 1600, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 1078, 822, 58, 3672, 13, 36311, 3419, 60, 796, 1988, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 10139, 13, 1078, 822, 14692, 7635, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 47025, 896, 422, 2560, 6608, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2560, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3709, 796, 2560, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 62, 259, 372, 863, 796, 5855, 35636, 1600, 366, 404, 4355, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 12985, 6624, 366, 912, 6839, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 62, 259, 372, 863, 15853, 5855, 87, 1600, 366, 88, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11688, 287, 407, 62, 259, 372, 863, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11688, 287, 3709, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 3709, 58, 42348, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 4268, 584, 12608, 326, 815, 407, 307, 19552, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 7, 23814, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6371, 796, 2560, 13, 6371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19875, 62, 21048, 796, 2560, 13, 19875, 62, 21048, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8000, 796, 2560, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 7, 11600, 7, 17440, 13, 1078, 822, 13, 23814, 3419, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1869, 496, 2420, 416, 4441, 1751, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 12985, 6624, 366, 5239, 1, 393, 2116, 13, 12985, 6624, 366, 5239, 15235, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17197, 796, 2116, 13, 5239, 62, 17197, 7, 17440, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17197, 796, 46545, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19081, 7, 9410, 11, 2116, 8, 329, 1200, 287, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 9410, 13, 12985, 11, 1615, 395, 1806, 4008, 628, 220, 220, 220, 825, 2420, 62, 17197, 7, 944, 11, 10139, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 1751, 290, 1441, 606, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1751, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1200, 287, 10139, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1751, 13, 33295, 7, 19667, 7, 9410, 11, 2560, 28, 944, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1200, 13, 13199, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11614, 796, 11703, 27660, 13, 20180, 10786, 912, 6839, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11614, 13, 5239, 796, 1200, 13, 13199, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1751, 13, 33295, 7, 19667, 7, 272, 6704, 11, 2560, 28, 944, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 17197, 8, 628, 198, 4871, 12200, 7, 19667, 2599, 198, 220, 220, 220, 37227, 50, 43490, 5509, 526, 15931, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 262, 12200, 422, 45809, 7559, 5239, 15506, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 262, 10007, 21179, 12, 8807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 416, 9288, 1806, 796, 479, 86, 22046, 13, 12924, 10786, 1525, 9288, 1806, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 26801, 796, 479, 86, 22046, 13, 12924, 10786, 7753, 62, 26801, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 479, 86, 22046, 13, 12924, 10786, 6371, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 796, 479, 86, 22046, 13, 12924, 10786, 8000, 3256, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 416, 9288, 1806, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 11703, 27660, 13, 6738, 8841, 7, 1525, 9288, 1806, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6371, 796, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2393, 62, 26801, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 11703, 27660, 13, 29572, 7, 7753, 62, 26801, 737, 1136, 15763, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6371, 796, 651, 35226, 7, 7753, 62, 26801, 11, 705, 3672, 3256, 19016, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19016, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 1, 287, 19016, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11, 5002, 62, 312, 796, 19016, 13, 35312, 7203, 2, 1600, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5002, 62, 312, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2560, 290, 2560, 13, 6371, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19016, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 19016, 29572, 13, 6371, 22179, 7, 8000, 13, 6371, 11, 19016, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5002, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 2560, 13, 6371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6371, 796, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19016, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19016, 29572, 13, 6371, 29572, 7, 6371, 737, 15952, 1326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 796, 19016, 9654, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 796, 19016, 220, 1303, 29472, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 11703, 27660, 13, 29572, 7, 15414, 62, 737, 1136, 15763, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 2560, 13, 19875, 62, 21048, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41313, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 2676, 3419, 611, 468, 35226, 7, 21048, 11, 705, 2676, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 5509, 13, 1136, 48727, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5002, 287, 41313, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 13, 1136, 7203, 312, 4943, 6624, 5002, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 5002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2949, 5128, 13, 5765, 530, 286, 416, 9288, 1806, 11, 2393, 62, 26801, 393, 19016, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4174, 62, 47720, 258, 1039, 7, 21048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19875, 62, 21048, 796, 5509, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 27660, 11, 2116, 737, 834, 15003, 834, 7, 21048, 11, 2560, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 796, 6407, 198 ]
2.176844
2,522
from onegov.core.security import Private, Public from onegov.form import FormCollection, FormDefinition from onegov.org.forms.form_definition import FormDefinitionUrlForm from onegov.org.views.form_definition import get_form_class, \ handle_new_definition, handle_edit_definition, handle_defined_form, \ handle_change_form_name from onegov.town6 import TownApp from onegov.town6.layout import FormEditorLayout, FormSubmissionLayout @TownApp.form(model=FormDefinition, template='form.pt', permission=Public, form=lambda self, request: self.form_class) @TownApp.form(model=FormCollection, name='new', template='form.pt', permission=Private, form=get_form_class) @TownApp.form(model=FormDefinition, template='form.pt', permission=Private, form=get_form_class, name='edit') @TownApp.form( model=FormDefinition, form=FormDefinitionUrlForm, template='form.pt', permission=Private, name='change-url' )
[ 6738, 530, 9567, 13, 7295, 13, 12961, 1330, 15348, 11, 5094, 198, 6738, 530, 9567, 13, 687, 1330, 5178, 36307, 11, 5178, 36621, 198, 6738, 530, 9567, 13, 2398, 13, 23914, 13, 687, 62, 46758, 1330, 5178, 36621, 28165, 8479, 198, 6738, 530, 9567, 13, 2398, 13, 33571, 13, 687, 62, 46758, 1330, 651, 62, 687, 62, 4871, 11, 3467, 198, 220, 220, 220, 5412, 62, 3605, 62, 46758, 11, 5412, 62, 19312, 62, 46758, 11, 5412, 62, 23211, 62, 687, 11, 3467, 198, 220, 220, 220, 5412, 62, 3803, 62, 687, 62, 3672, 198, 6738, 530, 9567, 13, 12735, 21, 1330, 8329, 4677, 198, 6738, 530, 9567, 13, 12735, 21, 13, 39786, 1330, 5178, 17171, 32517, 11, 5178, 7004, 3411, 32517, 628, 198, 31, 38097, 4677, 13, 687, 7, 19849, 28, 8479, 36621, 11, 11055, 11639, 687, 13, 457, 3256, 7170, 28, 15202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 28, 50033, 2116, 11, 2581, 25, 2116, 13, 687, 62, 4871, 8, 628, 198, 31, 38097, 4677, 13, 687, 7, 19849, 28, 8479, 36307, 11, 1438, 11639, 3605, 3256, 11055, 11639, 687, 13, 457, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7170, 28, 29067, 11, 1296, 28, 1136, 62, 687, 62, 4871, 8, 628, 198, 31, 38097, 4677, 13, 687, 7, 19849, 28, 8479, 36621, 11, 11055, 11639, 687, 13, 457, 3256, 7170, 28, 29067, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 28, 1136, 62, 687, 62, 4871, 11, 1438, 11639, 19312, 11537, 628, 198, 31, 38097, 4677, 13, 687, 7, 198, 220, 220, 220, 2746, 28, 8479, 36621, 11, 1296, 28, 8479, 36621, 28165, 8479, 11, 198, 220, 220, 220, 11055, 11639, 687, 13, 457, 3256, 7170, 28, 29067, 11, 198, 220, 220, 220, 1438, 11639, 3803, 12, 6371, 6, 198, 8, 198 ]
3.006231
321
import cv2 from time import time from random import randint from object_manager import DefaultCircleManager, PackmanManager, MoovingCircleManager from utils import log, Joint from drawing import draw_objects from config import config
[ 11748, 269, 85, 17, 198, 6738, 640, 1330, 640, 198, 6738, 4738, 1330, 43720, 600, 198, 6738, 2134, 62, 37153, 1330, 15161, 31560, 293, 13511, 11, 6400, 805, 13511, 11, 4270, 5165, 31560, 293, 13511, 198, 6738, 3384, 4487, 1330, 2604, 11, 16798, 198, 6738, 8263, 1330, 3197, 62, 48205, 198, 6738, 4566, 1330, 4566, 628, 628, 198 ]
4.103448
58
from __future__ import print_function, absolute_import, division import sys import os.path import re from contextlib import contextmanager import subprocess import numpy as np from numba import unittest_support as unittest from numba import config from ..support import captured_stdout from ..test_dispatcher import BaseCacheTest class UfuncCacheTest(BaseCacheTest): """ Since the cache stats is not exposed by ufunc, we test by looking at the cache debug log. """ here = os.path.dirname(__file__) usecases_file = os.path.join(here, "cache_usecases.py") modname = "ufunc_caching_test_fodder" regex_data_saved = re.compile(r'\[cache\] data saved to') regex_index_saved = re.compile(r'\[cache\] index saved to') regex_data_loaded = re.compile(r'\[cache\] data loaded from') regex_index_loaded = re.compile(r'\[cache\] index loaded from') @contextmanager def check_cache_saved(self, cachelog, count): """ Check number of cache-save were issued """ data_saved = self.regex_data_saved.findall(cachelog) index_saved = self.regex_index_saved.findall(cachelog) self.assertEqual(len(data_saved), count) self.assertEqual(len(index_saved), count) def check_cache_loaded(self, cachelog, count): """ Check number of cache-load were issued """ data_loaded = self.regex_data_loaded.findall(cachelog) index_loaded = self.regex_index_loaded.findall(cachelog) self.assertEqual(len(data_loaded), count) self.assertEqual(len(index_loaded), count) def check_ufunc_cache(self, usecase_name, n_overloads, **kwargs): """ Check number of cache load/save. There should be one per overloaded version. """ mod = self.import_module() usecase = getattr(mod, usecase_name) # New cache entry saved with self.capture_cache_log() as out: new_ufunc = usecase(**kwargs) cachelog = out.getvalue() self.check_cache_saved(cachelog, count=n_overloads) # Use cached version with self.capture_cache_log() as out: cached_ufunc = usecase(**kwargs) cachelog = out.getvalue() self.check_cache_loaded(cachelog, count=n_overloads) return new_ufunc, cached_ufunc # Note: DUFunc doesn't support parallel target yet # # The following test issue #2198 that loading cached (g)ufunc first # bypasses some target context initialization. # if __name__ == '__main__': unittest.main()
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 4112, 62, 11748, 11, 7297, 198, 198, 11748, 25064, 198, 11748, 28686, 13, 6978, 198, 11748, 302, 198, 6738, 4732, 8019, 1330, 4732, 37153, 198, 11748, 850, 14681, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 997, 7012, 1330, 555, 715, 395, 62, 11284, 355, 555, 715, 395, 198, 6738, 997, 7012, 1330, 4566, 198, 198, 6738, 11485, 11284, 1330, 7907, 62, 19282, 448, 198, 6738, 11485, 9288, 62, 6381, 8071, 2044, 1330, 7308, 30562, 14402, 628, 198, 4871, 471, 20786, 30562, 14402, 7, 14881, 30562, 14402, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4619, 262, 12940, 9756, 318, 407, 7362, 416, 334, 20786, 11, 356, 1332, 416, 2045, 379, 262, 198, 220, 220, 220, 12940, 14257, 2604, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 994, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 220, 220, 220, 779, 33964, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 1456, 11, 366, 23870, 62, 1904, 33964, 13, 9078, 4943, 198, 220, 220, 220, 953, 3672, 796, 366, 3046, 19524, 62, 66, 8103, 62, 9288, 62, 69, 35346, 1, 628, 220, 220, 220, 40364, 62, 7890, 62, 82, 9586, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 58, 23870, 59, 60, 1366, 7448, 284, 11537, 198, 220, 220, 220, 40364, 62, 9630, 62, 82, 9586, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 58, 23870, 59, 60, 6376, 7448, 284, 11537, 628, 220, 220, 220, 40364, 62, 7890, 62, 14578, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 58, 23870, 59, 60, 1366, 9639, 422, 11537, 198, 220, 220, 220, 40364, 62, 9630, 62, 14578, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 58, 23870, 59, 60, 6376, 9639, 422, 11537, 628, 220, 220, 220, 2488, 22866, 37153, 628, 220, 220, 220, 825, 2198, 62, 23870, 62, 82, 9586, 7, 944, 11, 269, 9636, 519, 11, 954, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 1271, 286, 12940, 12, 21928, 547, 4884, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 82, 9586, 796, 2116, 13, 260, 25636, 62, 7890, 62, 82, 9586, 13, 19796, 439, 7, 66, 9636, 519, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 82, 9586, 796, 2116, 13, 260, 25636, 62, 9630, 62, 82, 9586, 13, 19796, 439, 7, 66, 9636, 519, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 7890, 62, 82, 9586, 828, 954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 9630, 62, 82, 9586, 828, 954, 8, 628, 220, 220, 220, 825, 2198, 62, 23870, 62, 14578, 7, 944, 11, 269, 9636, 519, 11, 954, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 1271, 286, 12940, 12, 2220, 547, 4884, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 14578, 796, 2116, 13, 260, 25636, 62, 7890, 62, 14578, 13, 19796, 439, 7, 66, 9636, 519, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 14578, 796, 2116, 13, 260, 25636, 62, 9630, 62, 14578, 13, 19796, 439, 7, 66, 9636, 519, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 7890, 62, 14578, 828, 954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 9630, 62, 14578, 828, 954, 8, 628, 220, 220, 220, 825, 2198, 62, 3046, 19524, 62, 23870, 7, 944, 11, 779, 7442, 62, 3672, 11, 299, 62, 2502, 46030, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 1271, 286, 12940, 3440, 14, 21928, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1318, 815, 307, 530, 583, 50068, 2196, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 953, 796, 2116, 13, 11748, 62, 21412, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 779, 7442, 796, 651, 35226, 7, 4666, 11, 779, 7442, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 968, 12940, 5726, 7448, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 27144, 495, 62, 23870, 62, 6404, 3419, 355, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3046, 19524, 796, 779, 7442, 7, 1174, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 9636, 519, 796, 503, 13, 1136, 8367, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 23870, 62, 82, 9586, 7, 66, 9636, 519, 11, 954, 28, 77, 62, 2502, 46030, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 39986, 2196, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 27144, 495, 62, 23870, 62, 6404, 3419, 355, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39986, 62, 3046, 19524, 796, 779, 7442, 7, 1174, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 9636, 519, 796, 503, 13, 1136, 8367, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 23870, 62, 14578, 7, 66, 9636, 519, 11, 954, 28, 77, 62, 2502, 46030, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 3046, 19524, 11, 39986, 62, 3046, 19524, 628, 198, 220, 220, 220, 1303, 5740, 25, 35480, 37, 19524, 1595, 470, 1104, 10730, 2496, 1865, 628, 628, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 383, 1708, 1332, 2071, 1303, 17, 22337, 326, 11046, 39986, 357, 70, 8, 3046, 19524, 717, 198, 220, 220, 220, 1303, 17286, 274, 617, 2496, 4732, 37588, 13, 198, 220, 220, 220, 1303, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.472779
1,047
""" this is an attempt to convert a readable patt format (similar to the ones compatible with arbitrarypatterngenerator) into the 4-word format that can be cat into pattern generator v2 it reads pattfile written in the following format and generate the corresponding dpatt: #triggered input_line use_table threshold_counts_per_second if_success_table if_failure_table time_to_trigger [bits to turn on(0-25)] #sequential [repeat_table(at least 0)] use_table end_table time [bits to turn on(0-25)] #conditional input_line use_table if_success_table trigger_width [bits to turn on(0-25)] in this version, 1) internal counters 0 and 1 are always loaded with 10 and 100 to deal with '>3ms' and '>30ms' scale signal counters 2 and 3 is used if sequential repeats (which means only two sequential can repeat currently) 2) toupper func is not implemented, so the comparison is case-sensitive 3) triggered accepts only 1-line pattern 4) hooks are not implemented yet 5) fixed directory to save dpatt 7) always start from row 0 and table 0 8) at sequential loops, the loading of counter will introduce a 10ns shift; if next-table existed, the additional line to jump to next-table will also introduce 10ns shift 9) conditional is implemented 10) check number of lines before the file is being cat'ed updated on 10/7/2019 Update on 2/1/2020 by Chin Chean: 1) table_dic, table_lst, and rep_count are cleared every time generator is called from the GUI. 2) When uploading scripts multiple times, adding a config 0; at the start of the .word file might prevent crashing of device. This command is now appended on the generated file. @author: Chang Hoong QO LAB, NUS """ mode_list = ['','.','triggered','sequential','conditional'] unit_list = ['','ns','us','ms'] error_list = ['no error (0)','invalid token (1)','too many sequential loop (2)', 'invalid output (3)', 'invalid number (4)', 'no unit found (5)', 'shorter than clock cycle (6)', 'repeated output warning (7)', 'invalid termination (8)','null error (9)','repeated table number (10)','multiple thresholds for same input (11)', 'pattern too long (12)'] table_dic = {} #contains information about address of each table for branching table_lst = [] #contains all patterns to be applied rep_count = [] #contains additional internal counters being used # format of table_lst # (if triggered) [table_no, success_table_no, fail_table_no, input_line, threshold_counts, num_clock_cycle, output] (7 components) # (if sequential) [table_no, next_table, repeat, num_clock_cycle, output] (5 components) # (if conditional) [table_no success_table_no, NULL, input_line, num_clock_cycle, output] (6 components) # number of components can decide mode type # 'output' consists of a two-element array (left right word) # find token and return token_nb, ptr_in_str # return the readout number + remaining string # if number not found, output -1 and '' # need old token so that 2nd line of sequential can be interpredated as sequential # return the old token and the remaining argument Max_cyclenumber_per_line = 65536 # output the remaining string # should read duration and output bits # output the remaining string # should read input_line use_table threshold_counts_per_second if_success_table if_failure_table time_to_trigger [bits to turn on(0-25)] # output the remaining string # should read input_line use_table if_success_table if_failure_table time_to_trigger [bits to turn on(0-25)] # return chain of str for this table, and the new addr_ptr # if __name__ == '__main__': # import argparse # parser = argparse.ArgumentParser(description='Generate dpatt from patt') # parser.add_argument('-i','--inputstr',type=str,default='load_atom_redu.patt') # parser.add_argument('-o','--outputstr',type=str,default='isto.dat') # args = parser.parse_args() # pattfile = open(args.inputstr,'r') # outputfile = open(args.outputstr,'w+') # # output = main(pattfile) # outputfile.write(output) # # pattfile.close() # outputfile.close() # # num_lines = sum(1 for line in open(args.outputstr,'r')) # #print(num_lines-len(table_dic)-4) #for debugging # if (num_lines-len(table_dic)-4) > 256: # raise Exception(error_list[12])
[ 37811, 201, 198, 5661, 318, 281, 2230, 284, 10385, 257, 31744, 279, 1078, 5794, 357, 38610, 284, 262, 3392, 11670, 351, 14977, 33279, 8612, 1352, 8, 656, 262, 604, 12, 4775, 5794, 326, 460, 307, 3797, 656, 3912, 17301, 410, 17, 201, 198, 270, 9743, 279, 1078, 7753, 3194, 287, 262, 1708, 5794, 290, 7716, 262, 11188, 288, 79, 1078, 25, 201, 198, 197, 2, 2213, 328, 10446, 5128, 62, 1370, 779, 62, 11487, 11387, 62, 9127, 82, 62, 525, 62, 12227, 611, 62, 13138, 62, 11487, 611, 62, 32165, 495, 62, 11487, 640, 62, 1462, 62, 46284, 685, 9895, 284, 1210, 319, 7, 15, 12, 1495, 15437, 201, 198, 197, 2, 3107, 1843, 685, 44754, 62, 11487, 7, 265, 1551, 657, 15437, 779, 62, 11487, 886, 62, 11487, 640, 685, 9895, 284, 1210, 319, 7, 15, 12, 1495, 15437, 201, 198, 197, 2, 17561, 1859, 5128, 62, 1370, 779, 62, 11487, 611, 62, 13138, 62, 11487, 7616, 62, 10394, 685, 9895, 284, 1210, 319, 7, 15, 12, 1495, 15437, 201, 198, 259, 428, 2196, 11, 220, 201, 198, 16, 8, 5387, 21154, 657, 290, 352, 389, 1464, 9639, 351, 838, 290, 1802, 284, 1730, 351, 705, 29, 18, 907, 6, 290, 705, 29, 1270, 907, 6, 5046, 6737, 201, 198, 66, 15044, 362, 290, 513, 318, 973, 611, 35582, 29819, 357, 4758, 1724, 691, 734, 35582, 460, 9585, 3058, 8, 201, 198, 17, 8, 2819, 2848, 25439, 318, 407, 9177, 11, 523, 262, 7208, 318, 1339, 12, 30176, 201, 198, 18, 8, 13973, 18178, 691, 352, 12, 1370, 3912, 201, 198, 19, 8, 26569, 389, 407, 9177, 1865, 201, 198, 20, 8, 5969, 8619, 284, 3613, 288, 79, 1078, 201, 198, 22, 8, 1464, 923, 422, 5752, 657, 290, 3084, 657, 201, 198, 23, 8, 379, 35582, 23607, 11, 262, 11046, 286, 3753, 481, 10400, 257, 838, 5907, 6482, 26, 611, 1306, 12, 11487, 11196, 11, 262, 3224, 1627, 284, 4391, 284, 1306, 12, 11487, 481, 635, 10400, 838, 5907, 6482, 201, 198, 24, 8, 26340, 318, 9177, 201, 198, 940, 8, 2198, 1271, 286, 3951, 878, 262, 2393, 318, 852, 3797, 6, 276, 201, 198, 43162, 319, 838, 14, 22, 14, 23344, 201, 198, 201, 198, 10260, 319, 362, 14, 16, 14, 42334, 416, 22604, 2580, 272, 25, 201, 198, 16, 8, 3084, 62, 67, 291, 11, 3084, 62, 75, 301, 11, 290, 1128, 62, 9127, 389, 12539, 790, 640, 17301, 318, 1444, 422, 262, 25757, 13, 201, 198, 17, 8, 1649, 33794, 14750, 3294, 1661, 11, 4375, 257, 4566, 657, 26, 379, 262, 923, 286, 262, 764, 4775, 2393, 1244, 2948, 21899, 286, 3335, 13, 770, 3141, 318, 783, 598, 1631, 319, 262, 7560, 2393, 13, 201, 198, 201, 198, 31, 9800, 25, 22597, 9544, 506, 220, 1195, 46, 406, 6242, 11, 399, 2937, 201, 198, 37811, 201, 198, 201, 198, 14171, 62, 4868, 796, 37250, 41707, 2637, 4032, 2213, 328, 10446, 41707, 3107, 1843, 41707, 17561, 1859, 20520, 201, 198, 20850, 62, 4868, 796, 37250, 41707, 5907, 41707, 385, 41707, 907, 20520, 201, 198, 18224, 62, 4868, 796, 37250, 3919, 4049, 357, 15, 8, 41707, 259, 12102, 11241, 357, 16, 8, 41707, 18820, 867, 35582, 9052, 357, 17, 8, 3256, 705, 259, 12102, 5072, 357, 18, 8, 3256, 705, 259, 12102, 1271, 357, 19, 8, 3256, 705, 3919, 4326, 1043, 357, 20, 8, 3256, 705, 1477, 4337, 621, 8801, 6772, 357, 21, 8, 3256, 705, 45956, 515, 5072, 6509, 357, 22, 8, 3256, 705, 259, 12102, 19883, 357, 23, 8, 41707, 8423, 4049, 357, 24, 8, 41707, 45956, 515, 3084, 1271, 357, 940, 8, 41707, 48101, 40885, 329, 976, 5128, 357, 1157, 8, 3256, 705, 33279, 1165, 890, 357, 1065, 8, 20520, 201, 198, 201, 198, 201, 198, 11487, 62, 67, 291, 796, 23884, 197, 2, 3642, 1299, 1321, 546, 2209, 286, 1123, 3084, 329, 49526, 201, 198, 11487, 62, 75, 301, 796, 17635, 197, 2, 3642, 1299, 477, 7572, 284, 307, 5625, 201, 198, 7856, 62, 9127, 796, 17635, 197, 2, 3642, 1299, 3224, 5387, 21154, 852, 973, 201, 198, 2, 5794, 286, 3084, 62, 75, 301, 201, 198, 2, 357, 361, 13973, 8, 685, 11487, 62, 3919, 11, 1943, 62, 11487, 62, 3919, 11, 2038, 62, 11487, 62, 3919, 11, 5128, 62, 1370, 11, 11387, 62, 9127, 82, 11, 997, 62, 15750, 62, 13696, 11, 5072, 60, 357, 22, 6805, 8, 201, 198, 2, 357, 361, 35582, 8, 685, 11487, 62, 3919, 11, 1306, 62, 11487, 11, 9585, 11, 997, 62, 15750, 62, 13696, 11, 5072, 60, 357, 20, 6805, 8, 201, 198, 2, 357, 361, 26340, 8, 685, 11487, 62, 3919, 1943, 62, 11487, 62, 3919, 11, 15697, 11, 5128, 62, 1370, 11, 997, 62, 15750, 62, 13696, 11, 5072, 60, 357, 21, 6805, 8, 201, 198, 2, 1271, 286, 6805, 460, 5409, 4235, 2099, 201, 198, 2, 705, 22915, 6, 10874, 286, 257, 734, 12, 30854, 7177, 357, 9464, 826, 1573, 8, 201, 198, 201, 198, 2, 1064, 11241, 290, 1441, 11241, 62, 46803, 11, 50116, 62, 259, 62, 2536, 220, 201, 198, 201, 198, 2, 1441, 262, 1100, 448, 1271, 1343, 5637, 4731, 201, 198, 2, 611, 1271, 407, 1043, 11, 5072, 532, 16, 290, 10148, 201, 198, 197, 201, 198, 2, 761, 1468, 11241, 523, 326, 362, 358, 1627, 286, 35582, 460, 307, 987, 28764, 515, 355, 35582, 201, 198, 2, 1441, 262, 1468, 11241, 290, 262, 5637, 4578, 201, 198, 201, 198, 201, 198, 11518, 62, 15539, 268, 4494, 62, 525, 62, 1370, 796, 45021, 2623, 201, 198, 201, 198, 2, 5072, 262, 5637, 4731, 201, 198, 2, 815, 1100, 9478, 290, 5072, 10340, 201, 198, 201, 198, 2, 5072, 262, 5637, 4731, 201, 198, 2, 815, 1100, 5128, 62, 1370, 779, 62, 11487, 11387, 62, 9127, 82, 62, 525, 62, 12227, 611, 62, 13138, 62, 11487, 611, 62, 32165, 495, 62, 11487, 640, 62, 1462, 62, 46284, 685, 9895, 284, 1210, 319, 7, 15, 12, 1495, 15437, 201, 198, 201, 198, 2, 5072, 262, 5637, 4731, 201, 198, 2, 815, 1100, 5128, 62, 1370, 779, 62, 11487, 611, 62, 13138, 62, 11487, 611, 62, 32165, 495, 62, 11487, 640, 62, 1462, 62, 46284, 685, 9895, 284, 1210, 319, 7, 15, 12, 1495, 15437, 201, 198, 201, 198, 2, 1441, 6333, 286, 965, 329, 428, 3084, 11, 290, 262, 649, 37817, 62, 20692, 201, 198, 201, 198, 201, 198, 201, 198, 2, 611, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 2, 220, 197, 11748, 1822, 29572, 201, 198, 2, 220, 197, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 8645, 378, 288, 79, 1078, 422, 279, 1078, 11537, 201, 198, 2, 220, 197, 48610, 13, 2860, 62, 49140, 10786, 12, 72, 41707, 438, 15414, 2536, 3256, 4906, 28, 2536, 11, 12286, 11639, 2220, 62, 37696, 62, 445, 84, 13, 79, 1078, 11537, 201, 198, 2, 220, 197, 48610, 13, 2860, 62, 49140, 10786, 12, 78, 41707, 438, 22915, 2536, 3256, 4906, 28, 2536, 11, 12286, 11639, 396, 78, 13, 19608, 11537, 201, 198, 2, 220, 197, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 2, 220, 197, 79, 1078, 7753, 796, 1280, 7, 22046, 13, 15414, 2536, 4032, 81, 11537, 201, 198, 2, 220, 197, 22915, 7753, 796, 1280, 7, 22046, 13, 22915, 2536, 4032, 86, 10, 11537, 201, 198, 2, 201, 198, 2, 220, 197, 22915, 796, 1388, 7, 79, 1078, 7753, 8, 201, 198, 2, 220, 197, 22915, 7753, 13, 13564, 7, 22915, 8, 201, 198, 2, 201, 198, 2, 220, 197, 79, 1078, 7753, 13, 19836, 3419, 201, 198, 2, 220, 197, 22915, 7753, 13, 19836, 3419, 201, 198, 2, 201, 198, 2, 220, 197, 22510, 62, 6615, 796, 2160, 7, 16, 329, 1627, 287, 1280, 7, 22046, 13, 22915, 2536, 4032, 81, 6, 4008, 201, 198, 2, 220, 197, 2, 4798, 7, 22510, 62, 6615, 12, 11925, 7, 11487, 62, 67, 291, 13219, 19, 8, 1303, 1640, 28769, 201, 198, 2, 220, 197, 361, 357, 22510, 62, 6615, 12, 11925, 7, 11487, 62, 67, 291, 13219, 19, 8, 1875, 17759, 25, 201, 198, 2, 220, 197, 197, 40225, 35528, 7, 18224, 62, 4868, 58, 1065, 12962, 201, 198 ]
3.13069
1,362
# Create your tasks here from __future__ import absolute_import, unicode_literals from celery import shared_task import time @shared_task @shared_task
[ 198, 2, 13610, 534, 8861, 994, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 28000, 1098, 62, 17201, 874, 198, 6738, 18725, 1924, 1330, 4888, 62, 35943, 198, 11748, 640, 198, 198, 31, 28710, 62, 35943, 628, 198, 31, 28710, 62, 35943 ]
3.5
44
from rest_framework import serializers from .models import Course
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 764, 27530, 1330, 20537 ]
5
13
# Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. """Evaluation score abstract class and implementations. """ from __future__ import division import logging import os import re import subprocess from . import data_access from . import exceptions from . import signal_processing @EvaluationScore.RegisterClass class AudioLevelPeakScore(EvaluationScore): """Peak audio level score. Defined as the difference between the peak audio level of the tested and the reference signals. Unit: dB Ideal: 0 dB Worst case: +/-inf dB """ NAME = 'audio_level_peak' @EvaluationScore.RegisterClass class MeanAudioLevelScore(EvaluationScore): """Mean audio level score. Defined as the difference between the mean audio level of the tested and the reference signals. Unit: dB Ideal: 0 dB Worst case: +/-inf dB """ NAME = 'audio_level_mean' @EvaluationScore.RegisterClass class PolqaScore(EvaluationScore): """POLQA score. See http://www.polqa.info/. Unit: MOS Ideal: 4.5 Worst case: 1.0 """ NAME = 'polqa' @classmethod def _ParseOutputFile(cls, polqa_out_filepath): """ Parses the POLQA tool output formatted as a table ('-t' option). Args: polqa_out_filepath: path to the POLQA tool output file. Returns: A dict. """ data = [] with open(polqa_out_filepath) as f: for line in f: line = line.strip() if len(line) == 0 or line.startswith('*'): # Ignore comments. continue # Read fields. data.append(re.split(r'\t+', line)) # Two rows expected (header and values). assert len(data) == 2, 'Cannot parse POLQA output' number_of_fields = len(data[0]) assert number_of_fields == len(data[1]) # Build and return a dictionary with field names (header) as keys and the # corresponding field values as values. return {data[0][index]: data[1][index] for index in range(number_of_fields)}
[ 2, 15069, 357, 66, 8, 2177, 383, 5313, 49, 4825, 1628, 7035, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 198, 2, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 287, 262, 6808, 286, 262, 2723, 198, 2, 5509, 13, 1052, 3224, 9028, 3119, 2489, 7264, 460, 307, 1043, 198, 2, 287, 262, 2393, 28748, 15365, 13, 220, 1439, 14329, 1628, 7035, 743, 198, 2, 307, 1043, 287, 262, 37195, 20673, 2393, 287, 262, 6808, 286, 262, 2723, 5509, 13, 198, 198, 37811, 36, 2100, 2288, 4776, 12531, 1398, 290, 25504, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 850, 14681, 198, 198, 6738, 764, 1330, 1366, 62, 15526, 198, 6738, 764, 1330, 13269, 198, 6738, 764, 1330, 6737, 62, 36948, 628, 198, 198, 31, 36, 2100, 2288, 26595, 13, 38804, 9487, 198, 4871, 13491, 4971, 6435, 461, 26595, 7, 36, 2100, 2288, 26595, 2599, 198, 220, 37227, 6435, 461, 6597, 1241, 4776, 13, 628, 220, 2896, 1389, 355, 262, 3580, 1022, 262, 9103, 6597, 1241, 286, 262, 6789, 290, 198, 220, 262, 4941, 10425, 13, 628, 220, 11801, 25, 30221, 198, 220, 41765, 25, 657, 30221, 198, 220, 33443, 1339, 25, 29694, 10745, 30221, 198, 220, 37227, 628, 220, 36751, 796, 705, 24051, 62, 5715, 62, 36729, 6, 628, 198, 31, 36, 2100, 2288, 26595, 13, 38804, 9487, 198, 4871, 22728, 21206, 4971, 26595, 7, 36, 2100, 2288, 26595, 2599, 198, 220, 37227, 5308, 272, 6597, 1241, 4776, 13, 628, 220, 2896, 1389, 355, 262, 3580, 1022, 262, 1612, 6597, 1241, 286, 262, 6789, 290, 198, 220, 262, 4941, 10425, 13, 628, 220, 11801, 25, 30221, 198, 220, 41765, 25, 657, 30221, 198, 220, 33443, 1339, 25, 29694, 10745, 30221, 198, 220, 37227, 628, 220, 36751, 796, 705, 24051, 62, 5715, 62, 32604, 6, 628, 198, 31, 36, 2100, 2288, 26595, 13, 38804, 9487, 198, 4871, 2165, 20402, 26595, 7, 36, 2100, 2288, 26595, 2599, 198, 220, 37227, 45472, 48, 32, 4776, 13, 628, 220, 4091, 2638, 1378, 2503, 13, 16104, 20402, 13, 10951, 11757, 628, 220, 11801, 25, 337, 2640, 198, 220, 41765, 25, 604, 13, 20, 198, 220, 33443, 1339, 25, 352, 13, 15, 198, 220, 37227, 628, 220, 36751, 796, 705, 16104, 20402, 6, 628, 220, 2488, 4871, 24396, 198, 220, 825, 4808, 10044, 325, 26410, 8979, 7, 565, 82, 11, 755, 20402, 62, 448, 62, 7753, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23042, 274, 262, 20634, 48, 32, 2891, 5072, 39559, 355, 257, 3084, 19203, 12, 83, 6, 3038, 737, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 755, 20402, 62, 448, 62, 7753, 6978, 25, 3108, 284, 262, 20634, 48, 32, 2891, 5072, 2393, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 317, 8633, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 351, 1280, 7, 16104, 20402, 62, 448, 62, 7753, 6978, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1370, 8, 6624, 657, 393, 1627, 13, 9688, 2032, 342, 10786, 9, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 3651, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 7032, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 260, 13, 35312, 7, 81, 6, 59, 83, 10, 3256, 1627, 4008, 628, 220, 220, 220, 1303, 4930, 15274, 2938, 357, 25677, 290, 3815, 737, 198, 220, 220, 220, 6818, 18896, 7, 7890, 8, 6624, 362, 11, 705, 34, 34574, 21136, 20634, 48, 32, 5072, 6, 198, 220, 220, 220, 1271, 62, 1659, 62, 25747, 796, 18896, 7, 7890, 58, 15, 12962, 198, 220, 220, 220, 6818, 1271, 62, 1659, 62, 25747, 6624, 18896, 7, 7890, 58, 16, 12962, 628, 220, 220, 220, 1303, 10934, 290, 1441, 257, 22155, 351, 2214, 3891, 357, 25677, 8, 355, 8251, 290, 262, 198, 220, 220, 220, 1303, 11188, 2214, 3815, 355, 3815, 13, 198, 220, 220, 220, 1441, 1391, 7890, 58, 15, 7131, 9630, 5974, 1366, 58, 16, 7131, 9630, 60, 329, 6376, 287, 2837, 7, 17618, 62, 1659, 62, 25747, 38165, 198 ]
3.005229
765
ICAO = { "Anaa": "NTGA", "Apalachicola Regional": "KAAF", "Malamala": "FAMD", "Al Ain International": "OMAL", "Atlantic City": "KACY", "Albany International": "KBAL", "Baise Youjiang": "ZGBS", "Albuquerque International Sunport": "KABQ", "RAF Abisko": "EAAK", "RAF Leuchars": "EGQL", "Santiago de Compostela": "LEST", "Seve Ballesteros-Santander": "LEXJ", }
[ 25241, 46, 796, 1391, 198, 220, 220, 220, 366, 2025, 7252, 1298, 366, 11251, 9273, 1600, 198, 220, 220, 220, 366, 32, 18596, 620, 291, 5708, 15994, 1298, 366, 42, 38540, 1600, 198, 220, 220, 220, 366, 15029, 321, 6081, 1298, 366, 37, 28075, 1600, 198, 220, 220, 220, 366, 2348, 31899, 4037, 1298, 366, 2662, 1847, 1600, 198, 220, 220, 220, 366, 41120, 2254, 1298, 366, 42, 43300, 1600, 198, 220, 220, 220, 366, 2348, 65, 1092, 4037, 1298, 366, 22764, 1847, 1600, 198, 220, 220, 220, 366, 34458, 786, 921, 39598, 1298, 366, 57, 38, 4462, 1600, 198, 220, 220, 220, 366, 2348, 36461, 4037, 3825, 634, 1298, 366, 42, 6242, 48, 1600, 198, 220, 220, 220, 366, 3861, 37, 2275, 1984, 78, 1298, 366, 36, 3838, 42, 1600, 198, 220, 220, 220, 366, 3861, 37, 1004, 794, 945, 1298, 366, 7156, 9711, 1600, 198, 220, 220, 220, 366, 50, 17096, 3839, 390, 3082, 455, 10304, 1298, 366, 43, 6465, 1600, 198, 220, 220, 220, 366, 4653, 303, 6932, 7834, 418, 12, 50, 415, 4066, 1298, 366, 2538, 55, 41, 1600, 198, 92, 628 ]
2.188172
186
import sys import logging import ply.lex logger = logging.getLogger(__name__) class Lexer(object): ''' A Lexical analyzer for Python Typelanguage. ''' def tokenize(self, string): ''' Maps a string to an iterator over tokens. In other words: [char] -> [token] ''' new_lexer = ply.lex.lex(module=self, debug=self.debug, errorlog=logger) new_lexer.latest_newline = 0 new_lexer.input(string) while True: t = new_lexer.token() if t is None: break t.col = t.lexpos - new_lexer.latest_newline yield t # ============== PLY Lexer specification ================== # # This probably should be private but: # - the parser requires access to `tokens` (perhaps they should be defined in a third, shared dependency) # - things like `literals` might be a legitimate part of the public interface. # # Anyhow, it is pythonic to give some rope to hang oneself with :-) literals = ['|', '(', ')', '{', '}', '[', ']', ':', '*', ',', ';'] reserved_words = { 'object': 'OBJECT' } tokens = ['ID', 'TYVAR', 'ARROW', 'KWARG', 'ANY'] + reserved_words.values() t_ARROW = r'->' t_KWARG = r'\*\*' t_ANY = r'\?\?' t_ignore = ' \t' def t_ID(self, t): r'~?[a-zA-Z_][a-zA-Z0-9_]*' if t.value[0] == '~': t.type = 'TYVAR' t.value = t.value[1:] elif t.value in self.reserved_words: t.type = self.reserved_words[t.value] else: t.type = 'ID' return t def t_newline(self, t): r'\n' t.lexer.lineno += 1 t.lexer.latest_newline = t.lexpos if __name__ == '__main__': logging.basicConfig() lexer = Lexer(debug=True) for token in lexer.tokenize(sys.stdin.read()): print '%-20s%s' % (token.value, token.type)
[ 11748, 25064, 198, 11748, 18931, 198, 198, 11748, 35960, 13, 2588, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 4871, 17210, 263, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 317, 17210, 605, 4284, 9107, 329, 11361, 17134, 417, 9000, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 11241, 1096, 7, 944, 11, 4731, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 20347, 257, 4731, 284, 281, 41313, 625, 16326, 13, 554, 584, 2456, 25, 685, 10641, 60, 4613, 685, 30001, 60, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2588, 263, 796, 35960, 13, 2588, 13, 2588, 7, 21412, 28, 944, 11, 14257, 28, 944, 13, 24442, 11, 4049, 6404, 28, 6404, 1362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2588, 263, 13, 42861, 62, 3605, 1370, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2588, 263, 13, 15414, 7, 8841, 8, 628, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 649, 62, 2588, 263, 13, 30001, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 318, 6045, 25, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 4033, 796, 256, 13, 2588, 1930, 532, 649, 62, 2588, 263, 13, 42861, 62, 3605, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 256, 628, 220, 220, 220, 1303, 796, 25609, 28, 9297, 56, 17210, 263, 20855, 36658, 28, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 770, 2192, 815, 307, 2839, 475, 25, 198, 220, 220, 220, 1303, 220, 220, 532, 262, 30751, 4433, 1895, 284, 4600, 83, 482, 641, 63, 357, 28998, 484, 815, 307, 5447, 287, 257, 2368, 11, 4888, 20203, 8, 198, 220, 220, 220, 1303, 220, 220, 532, 1243, 588, 4600, 17201, 874, 63, 1244, 307, 257, 9829, 636, 286, 262, 1171, 7071, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4377, 4919, 11, 340, 318, 21015, 291, 284, 1577, 617, 17182, 284, 8181, 27186, 351, 47226, 628, 220, 220, 220, 4187, 874, 796, 37250, 91, 3256, 29513, 3256, 705, 8, 3256, 705, 90, 3256, 705, 92, 3256, 44438, 3256, 705, 60, 3256, 705, 25, 3256, 705, 9, 3256, 46083, 3256, 705, 26, 20520, 198, 220, 220, 220, 220, 198, 220, 220, 220, 10395, 62, 10879, 796, 1391, 705, 15252, 10354, 705, 9864, 23680, 6, 1782, 628, 220, 220, 220, 16326, 796, 37250, 2389, 3256, 705, 9936, 53, 1503, 3256, 705, 26465, 3913, 3256, 705, 42, 16279, 38, 3256, 705, 31827, 20520, 1343, 10395, 62, 10879, 13, 27160, 3419, 628, 220, 220, 220, 256, 62, 26465, 3913, 796, 374, 6, 3784, 6, 198, 220, 220, 220, 256, 62, 42, 16279, 38, 796, 374, 6, 59, 9, 59, 9, 6, 198, 220, 220, 220, 256, 62, 31827, 796, 374, 6, 59, 30, 59, 8348, 198, 220, 220, 220, 256, 62, 46430, 796, 705, 3467, 83, 6, 628, 220, 220, 220, 825, 256, 62, 2389, 7, 944, 11, 256, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 93, 30, 58, 64, 12, 89, 32, 12, 57, 62, 7131, 64, 12, 89, 32, 12, 57, 15, 12, 24, 62, 60, 9, 6, 628, 220, 220, 220, 220, 220, 220, 220, 611, 256, 13, 8367, 58, 15, 60, 6624, 705, 93, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 4906, 796, 705, 9936, 53, 1503, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 8367, 796, 256, 13, 8367, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 256, 13, 8367, 287, 2116, 13, 411, 8520, 62, 10879, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 4906, 796, 2116, 13, 411, 8520, 62, 10879, 58, 83, 13, 8367, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 4906, 796, 705, 2389, 6, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 256, 628, 220, 220, 220, 825, 256, 62, 3605, 1370, 7, 944, 11, 256, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 256, 13, 2588, 263, 13, 2815, 23397, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 256, 13, 2588, 263, 13, 42861, 62, 3605, 1370, 796, 256, 13, 2588, 1930, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 18931, 13, 35487, 16934, 3419, 198, 220, 220, 220, 31191, 263, 796, 17210, 263, 7, 24442, 28, 17821, 8, 198, 220, 220, 220, 329, 11241, 287, 31191, 263, 13, 30001, 1096, 7, 17597, 13, 19282, 259, 13, 961, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 33963, 1238, 82, 4, 82, 6, 4064, 357, 30001, 13, 8367, 11, 11241, 13, 4906, 8, 198 ]
2.119867
901
from output.models.nist_data.list_pkg.normalized_string.schema_instance.nistschema_sv_iv_list_normalized_string_length_5_xsd.nistschema_sv_iv_list_normalized_string_length_5 import NistschemaSvIvListNormalizedStringLength5 __all__ = [ "NistschemaSvIvListNormalizedStringLength5", ]
[ 6738, 5072, 13, 27530, 13, 77, 396, 62, 7890, 13, 4868, 62, 35339, 13, 11265, 1143, 62, 8841, 13, 15952, 2611, 62, 39098, 13, 77, 1023, 2395, 2611, 62, 21370, 62, 452, 62, 4868, 62, 11265, 1143, 62, 8841, 62, 13664, 62, 20, 62, 87, 21282, 13, 77, 1023, 2395, 2611, 62, 21370, 62, 452, 62, 4868, 62, 11265, 1143, 62, 8841, 62, 13664, 62, 20, 1330, 399, 1023, 2395, 2611, 50, 85, 45766, 8053, 26447, 1143, 10100, 24539, 20, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 45, 1023, 2395, 2611, 50, 85, 45766, 8053, 26447, 1143, 10100, 24539, 20, 1600, 198, 60, 198 ]
2.633028
109
from __future__ import print_function from orphics import maps,io,cosmology,catalogs from pixell import enmap import numpy as np import os,sys ifile = "paper/E-D56Clusters.fits" #catalogs.convert_hilton_catalog_to_enplot_annotate_file('public_clusters.csv',ifile,radius=15,width=3,color='red') catalogs.convert_hilton_catalog_to_enplot_annotate_file('paper/test_public_clusters.csv',ifile,radius=15,width=3,color='red')
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 393, 746, 873, 1330, 8739, 11, 952, 11, 6966, 29126, 11, 9246, 11794, 82, 198, 6738, 279, 844, 695, 1330, 551, 8899, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 11, 17597, 198, 198, 361, 576, 796, 366, 20189, 14, 36, 12, 35, 3980, 2601, 13654, 13, 21013, 1, 198, 198, 2, 9246, 11794, 82, 13, 1102, 1851, 62, 71, 9044, 62, 9246, 11794, 62, 1462, 62, 268, 29487, 62, 34574, 378, 62, 7753, 10786, 11377, 62, 565, 13654, 13, 40664, 3256, 361, 576, 11, 42172, 28, 1314, 11, 10394, 28, 18, 11, 8043, 11639, 445, 11537, 198, 9246, 11794, 82, 13, 1102, 1851, 62, 71, 9044, 62, 9246, 11794, 62, 1462, 62, 268, 29487, 62, 34574, 378, 62, 7753, 10786, 20189, 14, 9288, 62, 11377, 62, 565, 13654, 13, 40664, 3256, 361, 576, 11, 42172, 28, 1314, 11, 10394, 28, 18, 11, 8043, 11639, 445, 11537, 628 ]
2.660377
159
import glfw from glfw import gl import numpy as np def opengl_supported(major, minor): '''Determines if opengl is supported for the version provided''' assert glfw.core.init() != 0 version = (major, minor) glfw.core.window_hint(glfw.CONTEXT_VERSION_MAJOR, major) glfw.core.window_hint(glfw.CONTEXT_VERSION_MINOR, minor) profile = glfw.OPENGL_ANY_PROFILE if version < (3, 2) else glfw.OPENGL_CORE_PROFILE glfw.core.window_hint(glfw.OPENGL_PROFILE, profile) # Setup forward compatibility if able forward_compat = gl.FALSE if version < (3, 0) else gl.TRUE glfw.core.window_hint(glfw.OPENGL_FORWARD_COMPAT, forward_compat) # Keep the window invisible glfw.core.window_hint(glfw.VISIBLE, gl.FALSE) glfw.core.window_hint(glfw.FOCUSED, gl.FALSE) win = glfw.create_window(title='test', width=1, height=1) return win is not None # TODO: Fill this out or automate it. uniform_mapping = { 'vec1': gl.uniform_1f, 'vec2': gl.uniform_2f, 'vec3': gl.uniform_3f, 'vec4': gl.uniform_4f, 'mat4': gl.uniform_matrix_4fv, }
[ 11748, 1278, 44482, 198, 6738, 1278, 44482, 1330, 1278, 198, 11748, 299, 32152, 355, 45941, 628, 198, 198, 4299, 1280, 4743, 62, 15999, 7, 22478, 11, 4159, 2599, 198, 220, 220, 220, 705, 7061, 35, 13221, 274, 611, 1280, 4743, 318, 4855, 329, 262, 2196, 2810, 7061, 6, 198, 220, 220, 220, 6818, 1278, 44482, 13, 7295, 13, 15003, 3419, 14512, 657, 198, 220, 220, 220, 2196, 796, 357, 22478, 11, 4159, 8, 198, 220, 220, 220, 1278, 44482, 13, 7295, 13, 17497, 62, 71, 600, 7, 70, 1652, 86, 13, 10943, 32541, 62, 43717, 62, 5673, 41, 1581, 11, 1688, 8, 198, 220, 220, 220, 1278, 44482, 13, 7295, 13, 17497, 62, 71, 600, 7, 70, 1652, 86, 13, 10943, 32541, 62, 43717, 62, 23678, 1581, 11, 4159, 8, 198, 220, 220, 220, 7034, 796, 1278, 44482, 13, 3185, 1677, 8763, 62, 31827, 62, 31190, 25664, 611, 2196, 1279, 357, 18, 11, 362, 8, 2073, 1278, 44482, 13, 3185, 1677, 8763, 62, 34, 6965, 62, 31190, 25664, 198, 220, 220, 220, 1278, 44482, 13, 7295, 13, 17497, 62, 71, 600, 7, 70, 1652, 86, 13, 3185, 1677, 8763, 62, 31190, 25664, 11, 7034, 8, 198, 220, 220, 220, 1303, 31122, 2651, 17764, 611, 1498, 198, 220, 220, 220, 2651, 62, 5589, 265, 796, 1278, 13, 37, 23719, 611, 2196, 1279, 357, 18, 11, 657, 8, 2073, 1278, 13, 5446, 8924, 198, 220, 220, 220, 1278, 44482, 13, 7295, 13, 17497, 62, 71, 600, 7, 70, 1652, 86, 13, 3185, 1677, 8763, 62, 13775, 39743, 62, 9858, 47, 1404, 11, 2651, 62, 5589, 265, 8, 198, 220, 220, 220, 1303, 220, 9175, 262, 4324, 14836, 198, 220, 220, 220, 1278, 44482, 13, 7295, 13, 17497, 62, 71, 600, 7, 70, 1652, 86, 13, 29817, 34563, 11, 1278, 13, 37, 23719, 8, 198, 220, 220, 220, 1278, 44482, 13, 7295, 13, 17497, 62, 71, 600, 7, 70, 1652, 86, 13, 37, 4503, 2937, 1961, 11, 1278, 13, 37, 23719, 8, 198, 220, 220, 220, 1592, 796, 1278, 44482, 13, 17953, 62, 17497, 7, 7839, 11639, 9288, 3256, 9647, 28, 16, 11, 6001, 28, 16, 8, 198, 220, 220, 220, 1441, 1592, 318, 407, 6045, 198, 198, 2, 16926, 46, 25, 220, 27845, 428, 503, 393, 43511, 340, 13, 198, 403, 6933, 62, 76, 5912, 796, 1391, 198, 220, 220, 220, 705, 35138, 16, 10354, 1278, 13, 403, 6933, 62, 16, 69, 11, 198, 220, 220, 220, 705, 35138, 17, 10354, 1278, 13, 403, 6933, 62, 17, 69, 11, 198, 220, 220, 220, 705, 35138, 18, 10354, 1278, 13, 403, 6933, 62, 18, 69, 11, 198, 220, 220, 220, 705, 35138, 19, 10354, 1278, 13, 403, 6933, 62, 19, 69, 11, 198, 220, 220, 220, 705, 6759, 19, 10354, 1278, 13, 403, 6933, 62, 6759, 8609, 62, 19, 69, 85, 11, 198, 92, 198 ]
2.307203
472
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys import os import exceptions import itertools import re def GetNinjaOutputDirectory(chrome_root): """Returns <chrome_root>/<output_dir>/(Release|Debug|<other>). If either of the following environment variables are set, their value is used to determine the output directory: 1. CHROMIUM_OUT_DIR environment variable. 2. GYP_GENERATOR_FLAGS environment variable output_dir property. Otherwise, all directories starting with the word out are examined. The configuration chosen is the one most recently generated/built. """ output_dirs = [] if ('CHROMIUM_OUT_DIR' in os.environ and os.path.isdir(os.path.join(chrome_root, os.environ['CHROMIUM_OUT_DIR']))): output_dirs = [os.environ['CHROMIUM_OUT_DIR']] if not output_dirs: generator_flags = os.getenv('GYP_GENERATOR_FLAGS', '').split(' ') for flag in generator_flags: name_value = flag.split('=', 1) if (len(name_value) == 2 and name_value[0] == 'output_dir' and os.path.isdir(os.path.join(chrome_root, name_value[1]))): output_dirs = [name_value[1]] if not output_dirs: for f in os.listdir(chrome_root): if re.match(r'out(\b|_)', f): out = os.path.realpath(os.path.join(chrome_root, f)) if os.path.isdir(out): output_dirs.append(os.path.relpath(out, start = chrome_root)) try: return max(generate_paths(), key=approx_directory_mtime) except ValueError: raise exceptions.RuntimeError( 'Unable to find a valid ninja output directory.') if __name__ == '__main__': if len(sys.argv) != 2: raise exceptions.RuntimeError('Expected a single path argument.') print GetNinjaOutputDirectory(sys.argv[1])
[ 2, 15069, 1946, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 628, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 13269, 198, 11748, 340, 861, 10141, 198, 11748, 302, 628, 198, 4299, 3497, 36091, 6592, 26410, 43055, 7, 46659, 62, 15763, 2599, 198, 220, 37227, 35561, 1279, 46659, 62, 15763, 29, 14, 27, 22915, 62, 15908, 29, 29006, 26362, 91, 27509, 91, 27, 847, 29, 737, 628, 220, 1002, 2035, 286, 262, 1708, 2858, 9633, 389, 900, 11, 511, 198, 220, 1988, 318, 973, 284, 5004, 262, 5072, 8619, 25, 198, 220, 220, 220, 352, 13, 32567, 2662, 41796, 62, 12425, 62, 34720, 2858, 7885, 13, 198, 220, 220, 220, 362, 13, 402, 48232, 62, 35353, 1137, 25633, 62, 38948, 50, 2858, 7885, 5072, 62, 15908, 3119, 13, 628, 220, 15323, 11, 477, 29196, 3599, 351, 262, 1573, 503, 389, 11068, 13, 628, 220, 383, 8398, 7147, 318, 262, 530, 749, 2904, 7560, 14, 18780, 13, 198, 220, 37227, 628, 220, 5072, 62, 15908, 82, 796, 17635, 198, 220, 611, 19203, 3398, 33676, 41796, 62, 12425, 62, 34720, 6, 287, 28686, 13, 268, 2268, 290, 198, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 9409, 343, 7, 418, 13, 6978, 13, 22179, 7, 46659, 62, 15763, 11, 28686, 13, 268, 2268, 17816, 3398, 33676, 41796, 62, 12425, 62, 34720, 20520, 4008, 2599, 198, 220, 220, 220, 5072, 62, 15908, 82, 796, 685, 418, 13, 268, 2268, 17816, 3398, 33676, 41796, 62, 12425, 62, 34720, 6, 11907, 198, 220, 611, 407, 5072, 62, 15908, 82, 25, 198, 220, 220, 220, 17301, 62, 33152, 796, 28686, 13, 1136, 24330, 10786, 31212, 47, 62, 35353, 1137, 25633, 62, 38948, 50, 3256, 10148, 737, 35312, 10786, 705, 8, 198, 220, 220, 220, 329, 6056, 287, 17301, 62, 33152, 25, 198, 220, 220, 220, 220, 220, 1438, 62, 8367, 796, 6056, 13, 35312, 10786, 28, 3256, 352, 8, 198, 220, 220, 220, 220, 220, 611, 357, 11925, 7, 3672, 62, 8367, 8, 6624, 362, 290, 1438, 62, 8367, 58, 15, 60, 6624, 705, 22915, 62, 15908, 6, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 9409, 343, 7, 418, 13, 6978, 13, 22179, 7, 46659, 62, 15763, 11, 1438, 62, 8367, 58, 16, 60, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 82, 796, 685, 3672, 62, 8367, 58, 16, 11907, 198, 220, 611, 407, 5072, 62, 15908, 82, 25, 198, 220, 220, 220, 329, 277, 287, 28686, 13, 4868, 15908, 7, 46659, 62, 15763, 2599, 198, 220, 220, 220, 220, 220, 611, 302, 13, 15699, 7, 81, 6, 448, 38016, 65, 91, 62, 8, 3256, 277, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 28686, 13, 6978, 13, 5305, 6978, 7, 418, 13, 6978, 13, 22179, 7, 46659, 62, 15763, 11, 277, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 448, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 82, 13, 33295, 7, 418, 13, 6978, 13, 2411, 6978, 7, 448, 11, 923, 796, 32030, 62, 15763, 4008, 628, 220, 1949, 25, 198, 220, 220, 220, 1441, 3509, 7, 8612, 378, 62, 6978, 82, 22784, 1994, 28, 1324, 13907, 62, 34945, 62, 76, 2435, 8, 198, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 5298, 13269, 13, 41006, 12331, 7, 198, 220, 220, 220, 220, 220, 705, 3118, 540, 284, 1064, 257, 4938, 37049, 5072, 8619, 2637, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 14512, 362, 25, 198, 220, 220, 220, 5298, 13269, 13, 41006, 12331, 10786, 3109, 7254, 257, 2060, 3108, 4578, 2637, 8, 198, 220, 3601, 3497, 36091, 6592, 26410, 43055, 7, 17597, 13, 853, 85, 58, 16, 12962, 198 ]
2.757037
675
from tkinter import * import PySimpleGUI as sg window = Tk() window.title("Kill Confirm Calculator") global oppKilPer promptLabel = Label(window, text="Select your Opponents Rival").grid(row=1, column=4) promptLabel1 = Label(window, text="by clicking a Button").grid(row=2, column=4) #Functions containing each characters different kill percent values #calculation of final percent #individual character buttons for users to choose zetButton = Button(window, text="Zetterburn", command=zet) zetButton.grid(row=2, column=3) forsButton = Button(window, text="Forsburn", command=fors) forsButton.grid(row=2, column=2) claButton = Button(window, text="Clairen", command=cla) claButton.grid(row=2, column=1) orcButton = Button(window, text="Orcane", command=orc) orcButton.grid(row=3, column=5) etaButton = Button(window, text="Etalus", command=eta) etaButton.grid(row=3, column=6) ranButton = Button(window, text="Ranno", command=ran) ranButton.grid(row=3, column=7) wraButton = Button(window, text="Wrastor", command=wra) wraButton.grid(row=2, column=5) absaButton = Button(window, text="Absa", command=absa) absaButton.grid(row=2, column=6) ellButton = Button(window, text="Ellianna", command=ell) ellButton.grid(row=2, column=7) kraButton = Button(window, text="Kragg", command=kra) kraButton.grid(row=3, column=3) mayButton = Button(window, text="Maypul", command=may) mayButton.grid(row=3, column=2) sylButton = Button(window, text="Sylvanos", command=syl) sylButton.grid(row=3, column=1) oriButton = Button(window, text="Ori and Sein", command=ori) oriButton.grid(row=4, column=3) shoButton = Button(window, text="Shovel Knight", command=sho) shoButton.grid(row=4, column=5) #Entry widget for opponents percent oppPercentLabel = Label(window, text="Enter your Opponents Percent").grid(row=6,column=4) conOfPer = StringVar() entPercent = Entry(window, width=20, textvariable=conOfPer).grid(row=7, column=4) #result button that will display if the kill confirm was succesful submitButton = Button(window, text="Result", command=calOppPer).grid(row=9, column=4) window.mainloop()
[ 6738, 256, 74, 3849, 1330, 1635, 201, 198, 11748, 9485, 26437, 40156, 355, 264, 70, 201, 198, 17497, 796, 309, 74, 3419, 201, 198, 17497, 13, 7839, 7203, 27100, 7326, 2533, 43597, 4943, 201, 198, 201, 198, 20541, 1269, 42, 346, 5990, 201, 198, 201, 198, 16963, 457, 33986, 796, 36052, 7, 17497, 11, 2420, 2625, 17563, 534, 9385, 3906, 371, 2473, 11074, 25928, 7, 808, 28, 16, 11, 5721, 28, 19, 8, 201, 198, 16963, 457, 33986, 16, 796, 36052, 7, 17497, 11, 2420, 2625, 1525, 12264, 257, 20969, 11074, 25928, 7, 808, 28, 17, 11, 5721, 28, 19, 8, 201, 198, 201, 198, 2, 24629, 2733, 7268, 1123, 3435, 1180, 1494, 1411, 3815, 201, 198, 201, 198, 2, 9948, 14902, 286, 2457, 1411, 201, 198, 201, 198, 2, 43129, 2095, 12163, 329, 2985, 284, 3853, 220, 201, 198, 89, 316, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 57, 40088, 10899, 1600, 3141, 28, 89, 316, 8, 201, 198, 89, 316, 21864, 13, 25928, 7, 808, 28, 17, 11, 5721, 28, 18, 8, 201, 198, 69, 669, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 37, 669, 10899, 1600, 3141, 28, 69, 669, 8, 201, 198, 69, 669, 21864, 13, 25928, 7, 808, 28, 17, 11, 5721, 28, 17, 8, 201, 198, 565, 64, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 2601, 7626, 77, 1600, 3141, 28, 565, 64, 8, 201, 198, 565, 64, 21864, 13, 25928, 7, 808, 28, 17, 11, 5721, 28, 16, 8, 201, 198, 24449, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 5574, 66, 1531, 1600, 3141, 28, 24449, 8, 201, 198, 24449, 21864, 13, 25928, 7, 808, 28, 18, 11, 5721, 28, 20, 8, 201, 198, 17167, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 36, 39240, 385, 1600, 3141, 28, 17167, 8, 201, 198, 17167, 21864, 13, 25928, 7, 808, 28, 18, 11, 5721, 28, 21, 8, 201, 198, 2596, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 49, 1236, 78, 1600, 3141, 28, 2596, 8, 201, 198, 2596, 21864, 13, 25928, 7, 808, 28, 18, 11, 5721, 28, 22, 8, 201, 198, 29988, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 54, 5685, 273, 1600, 3141, 28, 29988, 8, 201, 198, 29988, 21864, 13, 25928, 7, 808, 28, 17, 11, 5721, 28, 20, 8, 201, 198, 8937, 64, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 24849, 64, 1600, 3141, 28, 8937, 64, 8, 201, 198, 8937, 64, 21864, 13, 25928, 7, 808, 28, 17, 11, 5721, 28, 21, 8, 201, 198, 695, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 30639, 666, 2616, 1600, 3141, 28, 695, 8, 201, 198, 695, 21864, 13, 25928, 7, 808, 28, 17, 11, 5721, 28, 22, 8, 201, 198, 74, 430, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 42, 81, 9460, 1600, 3141, 28, 74, 430, 8, 201, 198, 74, 430, 21864, 13, 25928, 7, 808, 28, 18, 11, 5721, 28, 18, 8, 201, 198, 11261, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 6747, 79, 377, 1600, 3141, 28, 11261, 8, 201, 198, 11261, 21864, 13, 25928, 7, 808, 28, 18, 11, 5721, 28, 17, 8, 201, 198, 1837, 75, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 50, 2645, 10438, 418, 1600, 3141, 28, 1837, 75, 8, 201, 198, 1837, 75, 21864, 13, 25928, 7, 808, 28, 18, 11, 5721, 28, 16, 8, 201, 198, 10145, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 46, 380, 290, 1001, 259, 1600, 3141, 28, 10145, 8, 201, 198, 10145, 21864, 13, 25928, 7, 808, 28, 19, 11, 5721, 28, 18, 8, 201, 198, 1477, 78, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 2484, 78, 626, 6700, 1600, 3141, 28, 1477, 78, 8, 201, 198, 1477, 78, 21864, 13, 25928, 7, 808, 28, 19, 11, 5721, 28, 20, 8, 201, 198, 2, 30150, 26295, 329, 7691, 1411, 220, 201, 198, 10365, 31905, 33986, 796, 36052, 7, 17497, 11, 2420, 2625, 17469, 534, 9385, 3906, 22512, 11074, 25928, 7, 808, 28, 21, 11, 28665, 28, 19, 8, 201, 198, 1102, 5189, 5990, 796, 10903, 19852, 3419, 201, 198, 298, 31905, 796, 21617, 7, 17497, 11, 9647, 28, 1238, 11, 2420, 45286, 28, 1102, 5189, 5990, 737, 25928, 7, 808, 28, 22, 11, 5721, 28, 19, 8, 201, 198, 220, 220, 220, 201, 198, 201, 198, 2, 20274, 4936, 326, 481, 3359, 611, 262, 1494, 6216, 373, 17458, 274, 913, 201, 198, 46002, 21864, 796, 20969, 7, 17497, 11, 2420, 2625, 23004, 1600, 3141, 28, 9948, 27524, 5990, 737, 25928, 7, 808, 28, 24, 11, 5721, 28, 19, 8, 201, 198, 201, 198, 17497, 13, 12417, 26268, 3419, 201, 198 ]
2.760618
777
import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from Bio import SeqIO from Bio.Seq import Seq import numpy as np import random import itertools from textwrap import wrap from collections import defaultdict if __name__ == '__main__': # s = Seq('TTATGACCC') # encoder = KMerEncoder(2, 50, 'constant') # e = encoder.encode(s) # print(s) # print(encoder.char_to_int) # print(e) # encoder = KMerEncoder(3, 50, 'random') # e = encoder.encode(s) # print(s) # print(encoder.char_to_int) # print(e) # encoder = OneHotEncoder(2, 50, 'constant') # e = encoder.encode(s) # print(s) # print(encoder.char_to_int) # print(e) # from pprint import pprint # e = RandomEncoder('../datasets/fixture.fasta') # s = e.encode(2, 2) # print(len(s)) # print(s) # print() # pprint(e.archieve) from pprint import pprint e = NoisyEncoder('../datasets/fixture.fasta') s = e.encode(10) pprint(s)
[ 198, 11748, 14601, 198, 40539, 654, 13, 36439, 24455, 7, 2673, 11639, 46430, 3256, 6536, 28, 29783, 20361, 8, 198, 198, 6738, 16024, 1330, 1001, 80, 9399, 198, 6738, 16024, 13, 4653, 80, 1330, 1001, 80, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 11748, 340, 861, 10141, 198, 6738, 2420, 37150, 1330, 14441, 198, 6738, 17268, 1330, 4277, 11600, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 264, 796, 1001, 80, 10786, 15751, 1404, 38, 2246, 4093, 11537, 198, 220, 220, 220, 1303, 2207, 12342, 796, 509, 13102, 27195, 12342, 7, 17, 11, 2026, 11, 705, 9979, 415, 11537, 198, 220, 220, 220, 1303, 304, 796, 2207, 12342, 13, 268, 8189, 7, 82, 8, 198, 220, 220, 220, 1303, 3601, 7, 82, 8, 198, 220, 220, 220, 1303, 3601, 7, 12685, 12342, 13, 10641, 62, 1462, 62, 600, 8, 198, 220, 220, 220, 1303, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2207, 12342, 796, 509, 13102, 27195, 12342, 7, 18, 11, 2026, 11, 705, 25120, 11537, 198, 220, 220, 220, 1303, 304, 796, 2207, 12342, 13, 268, 8189, 7, 82, 8, 198, 220, 220, 220, 1303, 3601, 7, 82, 8, 198, 220, 220, 220, 1303, 3601, 7, 12685, 12342, 13, 10641, 62, 1462, 62, 600, 8, 198, 220, 220, 220, 1303, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2207, 12342, 796, 1881, 21352, 27195, 12342, 7, 17, 11, 2026, 11, 705, 9979, 415, 11537, 198, 220, 220, 220, 1303, 304, 796, 2207, 12342, 13, 268, 8189, 7, 82, 8, 198, 220, 220, 220, 1303, 3601, 7, 82, 8, 198, 220, 220, 220, 1303, 3601, 7, 12685, 12342, 13, 10641, 62, 1462, 62, 600, 8, 198, 220, 220, 220, 1303, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 422, 279, 4798, 1330, 279, 4798, 198, 220, 220, 220, 1303, 304, 796, 14534, 27195, 12342, 10786, 40720, 19608, 292, 1039, 14, 69, 9602, 13, 7217, 64, 11537, 198, 220, 220, 220, 1303, 264, 796, 304, 13, 268, 8189, 7, 17, 11, 362, 8, 198, 220, 220, 220, 1303, 3601, 7, 11925, 7, 82, 4008, 198, 220, 220, 220, 1303, 3601, 7, 82, 8, 198, 220, 220, 220, 1303, 3601, 3419, 198, 220, 220, 220, 1303, 279, 4798, 7, 68, 13, 998, 12311, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 422, 279, 4798, 1330, 279, 4798, 198, 220, 220, 220, 304, 796, 1400, 13560, 27195, 12342, 10786, 40720, 19608, 292, 1039, 14, 69, 9602, 13, 7217, 64, 11537, 198, 220, 220, 220, 264, 796, 304, 13, 268, 8189, 7, 940, 8, 628, 220, 220, 220, 279, 4798, 7, 82, 8, 198, 220, 220, 220, 220 ]
2.092486
519
import requests from utils.time_utils import get_target_date_as_timestamp if __name__ == "__main__": main()
[ 11748, 7007, 198, 198, 6738, 3384, 4487, 13, 2435, 62, 26791, 1330, 651, 62, 16793, 62, 4475, 62, 292, 62, 16514, 27823, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.75
44
from __future__ import print_function import sys import traceback import inspect import types from ConfigParser import ConfigParser import os from functools import partial from pox.boot import _do_imports from pox.core import core from pox.lib.revent.revent import EventHalt log = core.getLogger("ComponentLauncher") CONFIG = ["debugger/component_launcher/component_config/", "ext/debugger/component_launcher/component_config/", "pox/ext/debugger/component_launcher/component_config/", "adapters/pox/ext/debugger/component_launcher/component_config/"] HIGHEST_PRIORITY = 1000000 # This function is stolen from pox/boot.py
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 25064, 198, 11748, 12854, 1891, 198, 11748, 10104, 198, 11748, 3858, 198, 6738, 17056, 46677, 1330, 17056, 46677, 198, 11748, 28686, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 6738, 745, 87, 13, 18769, 1330, 4808, 4598, 62, 320, 3742, 198, 6738, 745, 87, 13, 7295, 1330, 4755, 198, 6738, 745, 87, 13, 8019, 13, 260, 1151, 13, 260, 1151, 1330, 8558, 39, 2501, 628, 198, 6404, 796, 4755, 13, 1136, 11187, 1362, 7203, 21950, 46182, 2044, 4943, 198, 10943, 16254, 796, 14631, 24442, 1362, 14, 42895, 62, 38722, 2044, 14, 42895, 62, 11250, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2302, 14, 24442, 1362, 14, 42895, 62, 38722, 2044, 14, 42895, 62, 11250, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 42557, 14, 2302, 14, 24442, 1362, 14, 42895, 62, 38722, 2044, 14, 42895, 62, 11250, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 324, 12126, 14, 42557, 14, 2302, 14, 24442, 1362, 14, 42895, 62, 38722, 2044, 14, 42895, 62, 11250, 14, 8973, 198, 39, 18060, 6465, 62, 4805, 41254, 9050, 796, 1802, 2388, 628, 628, 198, 2, 770, 2163, 318, 9909, 422, 745, 87, 14, 18769, 13, 9078, 628 ]
3.004545
220
from django.views.generic.base import RedirectView from rest_framework.generics import RetrieveAPIView from rest_framework.settings import api_settings from wagtail.core.models import Page from wagtail.core.views import serve as serve_page from wagtail.documents.views.serve import serve as serve_doc from wagtail.images.views.serve import ServeView, generate_signature from wagtailnest.utils import (get_image_filter_spec, get_root_relative_url, import_setting) _permissions = { name: import_setting( '{}_PERMISSION_CLASSES'.format(name), api_settings.DEFAULT_PERMISSION_CLASSES) for name in ['PAGE', 'DOCUMENT', 'IMAGE'] } class DraftRedirectView(RedirectView): """View that redirects to the correct URL for a draft.""" # pylint: disable=unused-argument class RevisionRedirectView(RedirectView): """View that redirects to the correct URL for a revision.""" # pylint: disable=unused-argument class PageServeView(RetrieveAPIView): """View which serves a rendered page.""" permission_classes = _permissions['PAGE'] # pylint: disable=no-self-use,arguments-differ class DocumentServeView(RetrieveAPIView): """View which serves a document.""" permission_classes = _permissions['DOCUMENT'] # pylint: disable=no-self-use,arguments-differ class ImageServeView(RetrieveAPIView): """View which serves an image.""" permission_classes = _permissions['IMAGE']
[ 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 8692, 1330, 2297, 1060, 7680, 198, 6738, 1334, 62, 30604, 13, 8612, 873, 1330, 4990, 30227, 2969, 3824, 769, 198, 6738, 1334, 62, 30604, 13, 33692, 1330, 40391, 62, 33692, 198, 6738, 266, 363, 13199, 13, 7295, 13, 27530, 1330, 7873, 198, 6738, 266, 363, 13199, 13, 7295, 13, 33571, 1330, 4691, 355, 4691, 62, 7700, 198, 6738, 266, 363, 13199, 13, 15390, 2886, 13, 33571, 13, 2655, 303, 1330, 4691, 355, 4691, 62, 15390, 198, 6738, 266, 363, 13199, 13, 17566, 13, 33571, 13, 2655, 303, 1330, 35557, 7680, 11, 7716, 62, 12683, 1300, 198, 198, 6738, 266, 363, 13199, 77, 395, 13, 26791, 1330, 357, 1136, 62, 9060, 62, 24455, 62, 16684, 11, 651, 62, 15763, 62, 43762, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 62, 33990, 8, 198, 198, 62, 525, 8481, 796, 1391, 198, 220, 220, 220, 1438, 25, 1330, 62, 33990, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 90, 92, 62, 18973, 44, 40373, 62, 31631, 1546, 4458, 18982, 7, 3672, 828, 198, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 33692, 13, 7206, 38865, 62, 18973, 44, 40373, 62, 31631, 1546, 8, 198, 220, 220, 220, 329, 1438, 287, 37250, 4537, 8264, 3256, 705, 38715, 5883, 3525, 3256, 705, 3955, 11879, 20520, 198, 92, 628, 198, 4871, 13650, 7738, 1060, 7680, 7, 7738, 1060, 7680, 2599, 198, 220, 220, 220, 37227, 7680, 326, 18941, 82, 284, 262, 3376, 10289, 329, 257, 4538, 526, 15931, 628, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 628, 198, 4871, 46604, 7738, 1060, 7680, 7, 7738, 1060, 7680, 2599, 198, 220, 220, 220, 37227, 7680, 326, 18941, 82, 284, 262, 3376, 10289, 329, 257, 18440, 526, 15931, 628, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 628, 198, 4871, 7873, 50, 3760, 7680, 7, 9781, 30227, 2969, 3824, 769, 2599, 198, 220, 220, 220, 37227, 7680, 543, 9179, 257, 15111, 2443, 526, 15931, 628, 220, 220, 220, 7170, 62, 37724, 796, 4808, 525, 8481, 17816, 4537, 8264, 20520, 628, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3919, 12, 944, 12, 1904, 11, 853, 2886, 12, 26069, 263, 628, 198, 4871, 16854, 50, 3760, 7680, 7, 9781, 30227, 2969, 3824, 769, 2599, 198, 220, 220, 220, 37227, 7680, 543, 9179, 257, 3188, 526, 15931, 628, 220, 220, 220, 7170, 62, 37724, 796, 4808, 525, 8481, 17816, 38715, 5883, 3525, 20520, 628, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3919, 12, 944, 12, 1904, 11, 853, 2886, 12, 26069, 263, 628, 198, 4871, 7412, 50, 3760, 7680, 7, 9781, 30227, 2969, 3824, 769, 2599, 198, 220, 220, 220, 37227, 7680, 543, 9179, 281, 2939, 526, 15931, 628, 220, 220, 220, 7170, 62, 37724, 796, 4808, 525, 8481, 17816, 3955, 11879, 20520, 198 ]
2.882353
510
__source__ = 'https://leetcode.com/problems/cheapest-flights-within-k-stops/' # Time: O() # Space: O() # # Description: Leetcode # 787. Cheapest Flights Within K Stops # # There are n cities connected by m flights. # Each fight starts from city u and arrives at v with a price w. # # Now given all the cities and flights, # together with starting city src and the destination dst, # your task is to find the cheapest price from src to dst with up to k stops. # If there is no such route, output -1. # # Example 1: # Input: # n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]] # src = 0, dst = 2, k = 1 # Output: 200 # Explanation: # The graph looks like this: # # # The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture. # Example 2: # Input: # n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]] # src = 0, dst = 2, k = 0 # Output: 500 # Explanation: # The graph looks like this: # # # The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture. # Note: # # The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1. # The size of flights will be in range [0, n * (n - 1) / 2]. # The format of each flight will be (src, dst, price). # The price of each flight will be in the range [1, 10000]. # k is in the range of [0, n - 1]. # There will not be any duplicated flights or self cycles. # import unittest import collections # 73,45% 44ms from heapq import * #96ms 22.03% if __name__ == '__main__': unittest.main() Java = ''' # Thought: https://leetcode.com/problems/cheapest-flights-within-k-stops/solution/ # Approach #1: Maintain Cheapest To Target [Accepted] # Complexity Analysis # Time Complexity: O(E * K), where E is the length of flights. # Space Complexity: O(n), the space used to store dis and pre. # 6ms 100% class Solution { public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) { int[][] dist = new int[2][n]; int INF = Integer.MAX_VALUE / 2; Arrays.fill(dist[0], INF); Arrays.fill(dist[1], INF); dist[0][src] = dist[1][src] = 0; for (int i = 0; i <= K; ++i) for (int[] edge: flights) dist[i&1][edge[1]] = Math.min(dist[i&1][edge[1]], dist[~i&1][edge[0]] + edge[2]); return dist[K&1][dst] < INF ? dist[K&1][dst] : -1; } } # # Approach #2: Dijkstra's [Accepted] # Complexity Analysis # Time Complexity: O(E+nlogn), where E is the total number of flights. # Space Complexity: O(n), the size of the heap. # # 4ms 100% class Solution { private class City implements Comparable<City>{ int id; int costFromSrc; int stopFromSrc; public City(int id, int costFromSrc, int stopFromSrc){ this.id = id; this.costFromSrc = costFromSrc; this.stopFromSrc = stopFromSrc; } public boolean equals(City c){ if (c instanceof City) return this.id == c.id; return false; } public int compareTo(City c){ return this.costFromSrc - c.costFromSrc; } } public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) { int[][] srcToDst = new int[n][n]; for (int i = 0; i < flights.length; i++) { srcToDst[flights[i][0]][flights[i][1]] = flights[i][2]; } PriorityQueue<City> minHeap = new PriorityQueue(); minHeap.offer(new City(src,0,0)); int[] cost = new int[n]; Arrays.fill(cost, Integer.MAX_VALUE); cost[src] = 0; int[] stop = new int[n]; Arrays.fill(stop, Integer.MAX_VALUE); stop[src] = 0; while(!minHeap.isEmpty()){ City curCity = minHeap.poll(); if (curCity.id == dst) return curCity.costFromSrc; if (curCity.stopFromSrc == K + 1) continue; int[] nexts = srcToDst[curCity.id]; for (int i = 0; i < n; i++) { if (nexts[i] != 0) { int newCost = curCity.costFromSrc + nexts[i]; int newStop = curCity.stopFromSrc + 1; if (newCost < cost[i]) { minHeap.offer(new City(i, newCost, newStop)); cost[i] = newCost; } else if (newStop < stop[i]){ minHeap.offer(new City(i, newCost, newStop)); stop[i] = newStop; } } } } return cost[dst] == Integer.MAX_VALUE? -1:cost[dst]; } } '''
[ 834, 10459, 834, 796, 705, 5450, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 2395, 35746, 12, 2704, 2337, 12, 33479, 12, 74, 12, 301, 2840, 14, 6, 198, 2, 3862, 25, 220, 440, 3419, 198, 2, 4687, 25, 440, 3419, 198, 2, 198, 2, 12489, 25, 1004, 316, 8189, 1303, 767, 5774, 13, 2580, 35746, 1610, 2337, 12511, 509, 520, 2840, 198, 2, 198, 2, 1318, 389, 299, 4736, 5884, 416, 285, 13956, 13, 198, 2, 5501, 1907, 4940, 422, 1748, 334, 290, 14443, 379, 410, 351, 257, 2756, 266, 13, 198, 2, 198, 2, 2735, 1813, 477, 262, 4736, 290, 13956, 11, 198, 2, 1978, 351, 3599, 1748, 12351, 290, 262, 10965, 29636, 11, 198, 2, 534, 4876, 318, 284, 1064, 262, 28918, 2756, 422, 12351, 284, 29636, 351, 510, 284, 479, 9911, 13, 198, 2, 1002, 612, 318, 645, 884, 6339, 11, 5072, 532, 16, 13, 198, 2, 198, 2, 17934, 352, 25, 198, 2, 23412, 25, 198, 2, 299, 796, 513, 11, 13015, 796, 16410, 15, 11, 16, 11, 3064, 38430, 16, 11, 17, 11, 3064, 38430, 15, 11, 17, 11, 4059, 11907, 198, 2, 12351, 796, 657, 11, 29636, 796, 362, 11, 479, 796, 352, 198, 2, 25235, 25, 939, 198, 2, 50125, 341, 25, 198, 2, 383, 4823, 3073, 588, 428, 25, 198, 2, 198, 2, 198, 2, 383, 28918, 2756, 422, 1748, 657, 284, 1748, 362, 351, 379, 749, 352, 2245, 3484, 939, 11, 355, 7498, 2266, 287, 262, 4286, 13, 198, 2, 17934, 362, 25, 198, 2, 23412, 25, 198, 2, 299, 796, 513, 11, 13015, 796, 16410, 15, 11, 16, 11, 3064, 38430, 16, 11, 17, 11, 3064, 38430, 15, 11, 17, 11, 4059, 11907, 198, 2, 12351, 796, 657, 11, 29636, 796, 362, 11, 479, 796, 657, 198, 2, 25235, 25, 5323, 198, 2, 50125, 341, 25, 198, 2, 383, 4823, 3073, 588, 428, 25, 198, 2, 198, 2, 198, 2, 383, 28918, 2756, 422, 1748, 657, 284, 1748, 362, 351, 379, 749, 657, 2245, 3484, 5323, 11, 355, 7498, 4171, 287, 262, 4286, 13, 198, 2, 5740, 25, 198, 2, 198, 2, 383, 1271, 286, 13760, 299, 481, 307, 287, 2837, 685, 16, 11, 1802, 4357, 351, 13760, 15494, 422, 657, 284, 299, 532, 352, 13, 198, 2, 383, 2546, 286, 13956, 481, 307, 287, 2837, 685, 15, 11, 299, 1635, 357, 77, 532, 352, 8, 1220, 362, 4083, 198, 2, 383, 5794, 286, 1123, 5474, 481, 307, 357, 10677, 11, 29636, 11, 2756, 737, 198, 2, 383, 2756, 286, 1123, 5474, 481, 307, 287, 262, 2837, 685, 16, 11, 33028, 4083, 198, 2, 479, 318, 287, 262, 2837, 286, 685, 15, 11, 299, 532, 352, 4083, 198, 2, 1318, 481, 407, 307, 597, 14184, 3474, 13956, 393, 2116, 16006, 13, 198, 2, 198, 11748, 555, 715, 395, 198, 11748, 17268, 198, 2, 8854, 11, 2231, 4, 5846, 907, 198, 6738, 24575, 80, 1330, 1635, 198, 198, 2, 4846, 907, 2534, 13, 3070, 4, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198, 198, 29584, 796, 705, 7061, 198, 2, 27522, 25, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 2395, 35746, 12, 2704, 2337, 12, 33479, 12, 74, 12, 301, 2840, 14, 82, 2122, 14, 198, 2, 38066, 1303, 16, 25, 337, 32725, 2580, 35746, 1675, 12744, 685, 38855, 276, 60, 198, 2, 19157, 414, 14691, 198, 2, 3862, 19157, 414, 25, 440, 7, 36, 1635, 509, 828, 810, 412, 318, 262, 4129, 286, 13956, 13, 198, 2, 4687, 19157, 414, 25, 440, 7, 77, 828, 262, 2272, 973, 284, 3650, 595, 290, 662, 13, 198, 198, 2, 718, 907, 1802, 4, 198, 4871, 28186, 1391, 198, 220, 220, 220, 1171, 493, 1064, 7376, 35746, 18124, 7, 600, 299, 11, 493, 58, 7131, 60, 13956, 11, 493, 12351, 11, 493, 29636, 11, 493, 509, 8, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 493, 58, 7131, 60, 1233, 796, 649, 493, 58, 17, 7131, 77, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 493, 45594, 796, 34142, 13, 22921, 62, 39488, 1220, 362, 26, 198, 220, 220, 220, 220, 220, 220, 220, 943, 20477, 13, 20797, 7, 17080, 58, 15, 4357, 45594, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 943, 20477, 13, 20797, 7, 17080, 58, 16, 4357, 45594, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 1233, 58, 15, 7131, 10677, 60, 796, 1233, 58, 16, 7131, 10677, 60, 796, 657, 26, 628, 220, 220, 220, 220, 220, 220, 220, 329, 357, 600, 1312, 796, 657, 26, 1312, 19841, 509, 26, 19969, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 600, 21737, 5743, 25, 13956, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 58, 72, 5, 16, 7131, 14907, 58, 16, 11907, 796, 16320, 13, 1084, 7, 17080, 58, 72, 5, 16, 7131, 14907, 58, 16, 60, 4357, 1233, 58, 93, 72, 5, 16, 7131, 14907, 58, 15, 11907, 1343, 5743, 58, 17, 36563, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1233, 58, 42, 5, 16, 7131, 67, 301, 60, 1279, 45594, 5633, 1233, 58, 42, 5, 16, 7131, 67, 301, 60, 1058, 532, 16, 26, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 2, 198, 2, 38066, 1303, 17, 25, 360, 45961, 12044, 338, 685, 38855, 276, 60, 198, 2, 19157, 414, 14691, 198, 2, 3862, 19157, 414, 25, 440, 7, 36, 10, 21283, 2360, 828, 810, 412, 318, 262, 2472, 1271, 286, 13956, 13, 198, 2, 4687, 19157, 414, 25, 440, 7, 77, 828, 262, 2546, 286, 262, 24575, 13, 198, 2, 198, 198, 2, 604, 907, 1802, 4, 198, 4871, 28186, 1391, 198, 220, 220, 220, 2839, 1398, 2254, 23986, 22565, 540, 27, 14941, 29, 90, 198, 220, 220, 220, 220, 220, 220, 220, 493, 4686, 26, 198, 220, 220, 220, 220, 220, 220, 220, 493, 1575, 4863, 50, 6015, 26, 198, 220, 220, 220, 220, 220, 220, 220, 493, 2245, 4863, 50, 6015, 26, 628, 220, 220, 220, 220, 220, 220, 220, 1171, 2254, 7, 600, 4686, 11, 493, 1575, 4863, 50, 6015, 11, 493, 2245, 4863, 50, 6015, 19953, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 13, 312, 796, 4686, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 13, 15805, 4863, 50, 6015, 796, 1575, 4863, 50, 6015, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 13, 11338, 4863, 50, 6015, 796, 2245, 4863, 50, 6015, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1171, 25131, 21767, 7, 14941, 269, 19953, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 66, 4554, 1659, 2254, 8, 1441, 428, 13, 312, 6624, 269, 13, 312, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3991, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1171, 493, 8996, 2514, 7, 14941, 269, 19953, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 428, 13, 15805, 4863, 50, 6015, 532, 269, 13, 15805, 4863, 50, 6015, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1171, 493, 1064, 7376, 35746, 18124, 7, 600, 299, 11, 493, 58, 7131, 60, 13956, 11, 493, 12351, 11, 493, 29636, 11, 493, 509, 8, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 493, 58, 7131, 60, 12351, 2514, 35, 301, 796, 649, 493, 58, 77, 7131, 77, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 600, 1312, 796, 657, 26, 1312, 1279, 13956, 13, 13664, 26, 1312, 29577, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 2514, 35, 301, 58, 2704, 2337, 58, 72, 7131, 15, 60, 7131, 2704, 2337, 58, 72, 7131, 16, 11907, 796, 13956, 58, 72, 7131, 17, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 34416, 34991, 27, 14941, 29, 949, 1544, 499, 796, 649, 34416, 34991, 9783, 198, 220, 220, 220, 220, 220, 220, 220, 949, 1544, 499, 13, 47895, 7, 3605, 2254, 7, 10677, 11, 15, 11, 15, 18125, 628, 220, 220, 220, 220, 220, 220, 220, 493, 21737, 1575, 796, 649, 493, 58, 77, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 943, 20477, 13, 20797, 7, 15805, 11, 34142, 13, 22921, 62, 39488, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 58, 10677, 60, 796, 657, 26, 198, 220, 220, 220, 220, 220, 220, 220, 493, 21737, 2245, 796, 649, 493, 58, 77, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 943, 20477, 13, 20797, 7, 11338, 11, 34142, 13, 22921, 62, 39488, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 58, 10677, 60, 796, 657, 26, 628, 220, 220, 220, 220, 220, 220, 220, 981, 7, 0, 1084, 1544, 499, 13, 271, 40613, 3419, 19953, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2254, 1090, 14941, 796, 949, 1544, 499, 13, 30393, 9783, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 22019, 14941, 13, 312, 6624, 29636, 8, 1441, 1090, 14941, 13, 15805, 4863, 50, 6015, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 22019, 14941, 13, 11338, 4863, 50, 6015, 6624, 509, 1343, 352, 8, 2555, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 21737, 1306, 82, 796, 12351, 2514, 35, 301, 58, 22019, 14941, 13, 312, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 600, 1312, 796, 657, 26, 1312, 1279, 299, 26, 1312, 29577, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 19545, 82, 58, 72, 60, 14512, 657, 8, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 649, 13729, 796, 1090, 14941, 13, 15805, 4863, 50, 6015, 1343, 1306, 82, 58, 72, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 649, 19485, 796, 1090, 14941, 13, 11338, 4863, 50, 6015, 1343, 352, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 3605, 13729, 1279, 1575, 58, 72, 12962, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 1544, 499, 13, 47895, 7, 3605, 2254, 7, 72, 11, 649, 13729, 11, 649, 19485, 18125, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 58, 72, 60, 796, 649, 13729, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 2073, 611, 357, 3605, 19485, 1279, 2245, 58, 72, 12962, 90, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 1544, 499, 13, 47895, 7, 3605, 2254, 7, 72, 11, 649, 13729, 11, 649, 19485, 18125, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 58, 72, 60, 796, 649, 19485, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1575, 58, 67, 301, 60, 6624, 34142, 13, 22921, 62, 39488, 30, 532, 16, 25, 15805, 58, 67, 301, 11208, 198, 220, 220, 220, 1782, 198, 92, 198, 7061, 6 ]
2.209213
2,084
import json import os import tempfile from modelstore.model_store import ModelStore _DOMAIN_NAME = "example-model-file"
[ 11748, 33918, 198, 11748, 28686, 198, 11748, 20218, 7753, 198, 198, 6738, 2746, 8095, 13, 19849, 62, 8095, 1330, 9104, 22658, 198, 198, 62, 39170, 29833, 62, 20608, 796, 366, 20688, 12, 19849, 12, 7753, 1, 628, 628 ]
3.289474
38
import json import os import numpy as np from tokenizers import BertWordPieceTokenizer from transformers import BertTokenizer class SquadExample: """ Process SQUAD dataset """ def read_data(filename, settings): """ Helper function to read and preprocess SQUAD data for training and validation with Keras. :return: test, training data or validation data and nbr of examples """ slow_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") save_path = "bert_base_uncased/" if not os.path.exists(save_path): os.makedirs(save_path) slow_tokenizer.save_pretrained(save_path) # Load the fast tokenizer from saved file tokenizer = BertWordPieceTokenizer("bert_base_uncased/vocab.txt", lowercase=True) with open(filename) as f: raw_train_data = json.load(f) train_squad_examples = create_squad_examples(raw_train_data, tokenizer, settings) x_train, y_train = create_inputs_targets(train_squad_examples) return x_train, y_train, train_squad_examples
[ 11748, 33918, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11241, 11341, 1330, 22108, 26449, 47, 8535, 30642, 7509, 198, 6738, 6121, 364, 1330, 22108, 30642, 7509, 628, 198, 4871, 11630, 16281, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10854, 45880, 2885, 27039, 198, 220, 220, 220, 37227, 628, 628, 198, 4299, 1100, 62, 7890, 7, 34345, 11, 6460, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 1100, 290, 662, 14681, 45880, 2885, 1366, 329, 3047, 290, 21201, 351, 17337, 292, 13, 198, 220, 220, 220, 1058, 7783, 25, 1332, 11, 3047, 1366, 393, 21201, 1366, 290, 299, 1671, 286, 6096, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3105, 62, 30001, 7509, 796, 22108, 30642, 7509, 13, 6738, 62, 5310, 13363, 7203, 4835, 12, 8692, 12, 19524, 839, 4943, 198, 220, 220, 220, 3613, 62, 6978, 796, 366, 4835, 62, 8692, 62, 19524, 839, 30487, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 21928, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 21928, 62, 6978, 8, 198, 220, 220, 220, 3105, 62, 30001, 7509, 13, 21928, 62, 5310, 13363, 7, 21928, 62, 6978, 8, 628, 220, 220, 220, 1303, 8778, 262, 3049, 11241, 7509, 422, 7448, 2393, 198, 220, 220, 220, 11241, 7509, 796, 22108, 26449, 47, 8535, 30642, 7509, 7203, 4835, 62, 8692, 62, 19524, 839, 14, 18893, 397, 13, 14116, 1600, 2793, 7442, 28, 17821, 8, 198, 220, 220, 220, 351, 1280, 7, 34345, 8, 355, 277, 25, 8246, 62, 27432, 62, 7890, 796, 33918, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 4512, 62, 16485, 324, 62, 1069, 12629, 796, 2251, 62, 16485, 324, 62, 1069, 12629, 7, 1831, 62, 27432, 62, 7890, 11, 11241, 7509, 11, 6460, 8, 198, 220, 220, 220, 2124, 62, 27432, 11, 331, 62, 27432, 796, 2251, 62, 15414, 82, 62, 83, 853, 1039, 7, 27432, 62, 16485, 324, 62, 1069, 12629, 8, 628, 220, 220, 220, 1441, 2124, 62, 27432, 11, 331, 62, 27432, 11, 4512, 62, 16485, 324, 62, 1069, 12629, 198 ]
2.858726
361
import os import random import numpy as np import scipy.misc as misc import imageio from tqdm import tqdm import cv2 from PIL import Image import torch import torch.nn.functional as F IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP'] BINARY_EXTENSIONS = ['.npy'] BENCHMARK = ['Set5', 'Set14', 'B100', 'Urban100', 'Manga109', 'DIV2K', 'DF2K'] #################### # Files & IO #################### #################### #for BD degradation# #################### # image processing # process on numpy image ####################
[ 11748, 28686, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 44374, 355, 12747, 198, 11748, 2939, 952, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 269, 85, 17, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 3955, 38, 62, 13918, 16938, 11053, 796, 685, 4458, 9479, 3256, 45302, 41, 6968, 3256, 45302, 73, 22071, 3256, 45302, 12889, 7156, 3256, 45302, 11134, 3256, 45302, 47, 10503, 3256, 45302, 381, 76, 3256, 45302, 47, 5868, 3256, 45302, 65, 3149, 3256, 45302, 33, 7378, 20520, 198, 33, 1268, 13153, 62, 13918, 16938, 11053, 796, 685, 4458, 77, 9078, 20520, 198, 33, 1677, 3398, 44, 14175, 796, 37250, 7248, 20, 3256, 705, 7248, 1415, 3256, 705, 33, 3064, 3256, 705, 46667, 3064, 3256, 705, 44, 16484, 14454, 3256, 705, 33569, 17, 42, 3256, 705, 8068, 17, 42, 20520, 628, 198, 14468, 4242, 198, 2, 13283, 1222, 24418, 198, 14468, 4242, 628, 628, 628, 198, 14468, 4242, 198, 2, 1640, 28023, 27486, 2, 198, 198, 14468, 4242, 198, 2, 2939, 7587, 198, 2, 1429, 319, 299, 32152, 2939, 198, 14468, 4242, 628, 628 ]
2.930348
201
print("Entre com os dados de um trangulo") lado1 = int(input("Lado 1: ")) lado2 = int(input("Lado 2: ")) lado3 = int(input("Lado 3: ")) if lado1 < lado2 + lado3 and lado2 < lado1 + lado3 and lado3 < lado1 + lado2: if lado1 == lado2 == lado3: print("Triângulo equilatero") elif lado1 != lado2 != lado3 != lado1: print("Triângulo escaleno") else: print("Triângulo isósceles") else: print("Os lados não foram um triangulo")
[ 4798, 7203, 14539, 260, 401, 28686, 9955, 418, 390, 23781, 491, 648, 43348, 4943, 198, 75, 4533, 16, 796, 493, 7, 15414, 7203, 43, 4533, 352, 25, 366, 4008, 198, 75, 4533, 17, 796, 493, 7, 15414, 7203, 43, 4533, 362, 25, 366, 4008, 198, 75, 4533, 18, 796, 493, 7, 15414, 7203, 43, 4533, 513, 25, 366, 4008, 198, 361, 300, 4533, 16, 1279, 300, 4533, 17, 1343, 300, 4533, 18, 290, 300, 4533, 17, 1279, 300, 4533, 16, 1343, 300, 4533, 18, 290, 300, 4533, 18, 1279, 300, 4533, 16, 1343, 300, 4533, 17, 25, 198, 220, 220, 220, 611, 300, 4533, 16, 6624, 300, 4533, 17, 6624, 300, 4533, 18, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14824, 22940, 782, 43348, 1602, 38601, 78, 4943, 198, 220, 220, 220, 1288, 361, 300, 4533, 16, 14512, 300, 4533, 17, 14512, 300, 4533, 18, 14512, 300, 4533, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14824, 22940, 782, 43348, 12221, 23397, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14824, 22940, 782, 43348, 318, 10205, 82, 344, 829, 4943, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 16748, 9717, 418, 299, 28749, 329, 321, 23781, 1333, 648, 43348, 4943 ]
2.110092
218
# -------------------------------------------------------------------- # # game.py # contains main game loop, # including events, drawing, and update # -------------------------------------------------------------------- # # General imports: import sys # Game related imports: import pygame import pyscroll import pytmx from pygame.locals import * # Local imports: from constants import * from player import Player from scene import Scene from solid_platform import Platform # Events: processing input from user via keyboard, mouse, etc # game logic/mechanics here. process user input # Code for what is drawn on screen each frame here # All this function's code could just be put into the draw() function, # but I put it here because I'm tired of scrolling over it. # TODO: rewrite debug drawing code so all text in in a list that is displayed within a for loop. # TODO: that way we can add more debug outputs easily by appending them to the list
[ 2, 16529, 650, 1303, 198, 2, 983, 13, 9078, 198, 2, 220, 220, 4909, 1388, 983, 9052, 11, 198, 2, 197, 8201, 2995, 11, 8263, 11, 290, 4296, 198, 2, 16529, 650, 1303, 198, 198, 2, 3611, 17944, 25, 198, 11748, 25064, 198, 198, 2, 3776, 3519, 17944, 25, 198, 11748, 12972, 6057, 198, 11748, 279, 28349, 2487, 198, 11748, 12972, 17209, 87, 198, 6738, 12972, 6057, 13, 17946, 874, 1330, 1635, 198, 198, 2, 10714, 17944, 25, 198, 6738, 38491, 1330, 1635, 198, 6738, 2137, 1330, 7853, 198, 6738, 3715, 1330, 28315, 198, 6738, 4735, 62, 24254, 1330, 19193, 628, 220, 220, 220, 1303, 18715, 25, 7587, 5128, 422, 2836, 2884, 10586, 11, 10211, 11, 3503, 628, 220, 220, 220, 1303, 983, 9156, 14, 1326, 3147, 873, 994, 13, 1429, 2836, 5128, 628, 220, 220, 220, 1303, 6127, 329, 644, 318, 7428, 319, 3159, 1123, 5739, 994, 628, 220, 220, 220, 1303, 1439, 428, 2163, 338, 2438, 714, 655, 307, 1234, 656, 262, 3197, 3419, 2163, 11, 198, 220, 220, 220, 1303, 475, 314, 1234, 340, 994, 780, 314, 1101, 10032, 286, 28659, 625, 340, 13, 198, 220, 220, 220, 1303, 16926, 46, 25, 28183, 14257, 8263, 2438, 523, 477, 2420, 287, 287, 257, 1351, 326, 318, 9066, 1626, 257, 329, 9052, 13, 198, 220, 220, 220, 1303, 16926, 46, 25, 326, 835, 356, 460, 751, 517, 14257, 23862, 3538, 416, 598, 1571, 606, 284, 262, 1351, 198 ]
4.121339
239
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Auto-anchor utils """ import random import numpy as np import torch import yaml from tqdm import tqdm from utils.general import LOGGER, colorstr, emojis PREFIX = colorstr("AutoAnchor: ") def kmean_anchors( dataset="./data/coco128.yaml", n=9, img_size=640, thr=4.0, gen=1000, verbose=True ): """ Creates kmeans-evolved anchors from training dataset Arguments: dataset: path to data.yaml, or a loaded dataset n: number of anchors img_size: image size used for training thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 gen: generations to evolve anchors using genetic algorithm verbose: print all results Return: k: kmeans evolved anchors Usage: from utils.autoanchor import *; _ = kmean_anchors() """ from scipy.cluster.vq import kmeans thr = 1 / thr if isinstance(dataset, str): # *.yaml file with open(dataset, errors="ignore") as f: data_dict = yaml.safe_load(f) # model dict from utils.datasets import LoadImagesAndLabels dataset = LoadImagesAndLabels(data_dict["train"], augment=True, rect=True) # Get label wh shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh # Filter i = (wh0 < 3.0).any(1).sum() if i: LOGGER.info( f"{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size." ) wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 # Kmeans calculation LOGGER.info(f"{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...") s = wh.std(0) # sigmas for whitening k, dist = kmeans(wh / s, n, iter=30) # points, mean distance assert ( len(k) == n ), f"{PREFIX}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}" k *= s wh = torch.tensor(wh, dtype=torch.float32) # filtered wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered k = print_results(k, verbose=False) # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.savefig('wh.png', dpi=200) # Evolve npr = np.random f, sh, mp, s = ( anchor_fitness(k), k.shape, 0.9, 0.1, ) # fitness, generations, mutation prob, sigma pbar = tqdm( range(gen), desc=f"{PREFIX}Evolving anchors with Genetic Algorithm:" ) # progress bar for _ in pbar: v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip( 0.3, 3.0 ) kg = (k.copy() * v).clip(min=2.0) fg = anchor_fitness(kg) if fg > f: f, k = fg, kg.copy() pbar.desc = ( f"{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}" ) if verbose: print_results(k, verbose) return print_results(k)
[ 2, 575, 3535, 46, 85, 20, 12520, 248, 222, 416, 6172, 1373, 88, 14094, 11, 38644, 12, 18, 13, 15, 5964, 198, 37811, 198, 27722, 12, 3702, 273, 3384, 4487, 198, 37811, 198, 198, 11748, 4738, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 331, 43695, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 6738, 3384, 4487, 13, 24622, 1330, 41605, 30373, 11, 3124, 2536, 11, 795, 13210, 271, 198, 198, 47, 31688, 10426, 796, 3124, 2536, 7203, 27722, 2025, 354, 273, 25, 366, 8, 628, 628, 198, 4299, 479, 32604, 62, 3702, 669, 7, 198, 220, 220, 220, 27039, 28, 1911, 14, 7890, 14, 66, 25634, 12762, 13, 88, 43695, 1600, 299, 28, 24, 11, 33705, 62, 7857, 28, 31102, 11, 5636, 28, 19, 13, 15, 11, 2429, 28, 12825, 11, 15942, 577, 28, 17821, 198, 2599, 198, 220, 220, 220, 37227, 7921, 274, 479, 1326, 504, 12, 1990, 5634, 43360, 422, 3047, 27039, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 25, 3108, 284, 1366, 13, 88, 43695, 11, 393, 257, 9639, 27039, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 25, 1271, 286, 43360, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 25, 2939, 2546, 973, 329, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5636, 25, 18021, 12, 18242, 348, 8064, 11387, 8718, 17143, 2357, 5328, 17816, 3702, 273, 62, 83, 20520, 973, 329, 3047, 11, 4277, 28, 19, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2429, 25, 10439, 284, 18101, 43360, 1262, 8513, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 25, 3601, 477, 2482, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 25, 479, 1326, 504, 12572, 43360, 628, 220, 220, 220, 220, 220, 220, 220, 29566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 3384, 4487, 13, 23736, 3702, 273, 1330, 1635, 26, 4808, 796, 479, 32604, 62, 3702, 669, 3419, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 629, 541, 88, 13, 565, 5819, 13, 85, 80, 1330, 479, 1326, 504, 628, 220, 220, 220, 5636, 796, 352, 1220, 5636, 628, 220, 220, 220, 611, 318, 39098, 7, 19608, 292, 316, 11, 965, 2599, 220, 1303, 46866, 88, 43695, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 19608, 292, 316, 11, 8563, 2625, 46430, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 796, 331, 43695, 13, 21230, 62, 2220, 7, 69, 8, 220, 1303, 2746, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 422, 3384, 4487, 13, 19608, 292, 1039, 1330, 8778, 29398, 1870, 17822, 1424, 628, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 8778, 29398, 1870, 17822, 1424, 7, 7890, 62, 11600, 14692, 27432, 33116, 35016, 28, 17821, 11, 13621, 28, 17821, 8, 628, 220, 220, 220, 1303, 3497, 6167, 348, 198, 220, 220, 220, 15268, 796, 33705, 62, 7857, 1635, 27039, 13, 1477, 7916, 1220, 27039, 13, 1477, 7916, 13, 9806, 7, 16, 11, 1394, 67, 12078, 28, 17821, 8, 198, 220, 220, 220, 348, 15, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 75, 58, 45299, 513, 25, 20, 60, 1635, 264, 329, 264, 11, 300, 287, 19974, 7, 1477, 7916, 11, 27039, 13, 23912, 1424, 8, 12962, 220, 1303, 348, 628, 220, 220, 220, 1303, 25853, 198, 220, 220, 220, 1312, 796, 357, 1929, 15, 1279, 513, 13, 15, 737, 1092, 7, 16, 737, 16345, 3419, 198, 220, 220, 220, 611, 1312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 30373, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 47, 31688, 10426, 92, 31502, 25, 18111, 306, 1402, 5563, 1043, 13, 1391, 72, 92, 286, 1391, 11925, 7, 1929, 15, 38165, 14722, 389, 1279, 513, 17848, 287, 2546, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 348, 796, 348, 15, 58, 7, 1929, 15, 18189, 362, 13, 15, 737, 1092, 7, 16, 15437, 220, 1303, 8106, 1875, 362, 17848, 198, 220, 220, 220, 1303, 348, 796, 348, 1635, 357, 37659, 13, 25120, 13, 25192, 7, 1929, 13, 43358, 58, 15, 4357, 352, 8, 1635, 657, 13, 24, 1343, 657, 13, 16, 8, 220, 1303, 29162, 416, 4738, 5046, 657, 12, 16, 628, 220, 220, 220, 1303, 509, 1326, 504, 17952, 198, 220, 220, 220, 41605, 30373, 13, 10951, 7, 69, 1, 90, 47, 31688, 10426, 92, 28768, 479, 1326, 504, 329, 1391, 77, 92, 43360, 319, 1391, 11925, 7, 1929, 38165, 2173, 9313, 8, 198, 220, 220, 220, 264, 796, 348, 13, 19282, 7, 15, 8, 220, 1303, 43237, 5356, 329, 20542, 3101, 198, 220, 220, 220, 479, 11, 1233, 796, 479, 1326, 504, 7, 1929, 1220, 264, 11, 299, 11, 11629, 28, 1270, 8, 220, 1303, 2173, 11, 1612, 5253, 198, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 74, 8, 6624, 299, 198, 220, 220, 220, 10612, 277, 1, 90, 47, 31688, 10426, 92, 24908, 25, 629, 541, 88, 13, 565, 5819, 13, 85, 80, 13, 74, 1326, 504, 9167, 1391, 77, 92, 2173, 475, 4504, 691, 1391, 11925, 7, 74, 8, 36786, 198, 220, 220, 220, 479, 1635, 28, 264, 198, 220, 220, 220, 348, 796, 28034, 13, 83, 22854, 7, 1929, 11, 288, 4906, 28, 13165, 354, 13, 22468, 2624, 8, 220, 1303, 29083, 198, 220, 220, 220, 348, 15, 796, 28034, 13, 83, 22854, 7, 1929, 15, 11, 288, 4906, 28, 13165, 354, 13, 22468, 2624, 8, 220, 1303, 3684, 346, 4400, 198, 220, 220, 220, 479, 796, 3601, 62, 43420, 7, 74, 11, 15942, 577, 28, 25101, 8, 628, 220, 220, 220, 1303, 28114, 198, 220, 220, 220, 1303, 479, 11, 288, 796, 685, 14202, 60, 1635, 1160, 11, 685, 14202, 60, 1635, 1160, 198, 220, 220, 220, 1303, 329, 1312, 287, 256, 80, 36020, 7, 9521, 7, 16, 11, 2310, 8, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 479, 58, 72, 12, 16, 4357, 288, 58, 72, 12, 16, 60, 796, 479, 1326, 504, 7, 1929, 1220, 264, 11, 1312, 8, 220, 1303, 2173, 11, 1612, 5253, 198, 220, 220, 220, 1303, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 362, 11, 2336, 7857, 16193, 1415, 11, 767, 828, 5381, 62, 39786, 28, 17821, 8, 198, 220, 220, 220, 1303, 7877, 796, 7877, 13, 25843, 3419, 198, 220, 220, 220, 1303, 7877, 58, 15, 4083, 29487, 7, 37659, 13, 283, 858, 7, 16, 11, 2310, 828, 45941, 13, 18747, 7, 67, 8, 12429, 362, 11, 18364, 11639, 2637, 8, 198, 220, 220, 220, 1303, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 362, 11, 2336, 7857, 16193, 1415, 11, 767, 4008, 220, 1303, 7110, 348, 198, 220, 220, 220, 1303, 7877, 58, 15, 4083, 10034, 7, 1929, 58, 1929, 58, 45299, 657, 60, 27, 3064, 11, 657, 4357, 7029, 8, 198, 220, 220, 220, 1303, 7877, 58, 16, 4083, 10034, 7, 1929, 58, 1929, 58, 45299, 352, 60, 27, 3064, 11, 352, 4357, 7029, 8, 198, 220, 220, 220, 1303, 2336, 13, 21928, 5647, 10786, 1929, 13, 11134, 3256, 288, 14415, 28, 2167, 8, 628, 220, 220, 220, 1303, 4319, 6442, 198, 220, 220, 220, 299, 1050, 796, 45941, 13, 25120, 198, 220, 220, 220, 277, 11, 427, 11, 29034, 11, 264, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 18021, 62, 69, 3659, 7, 74, 828, 198, 220, 220, 220, 220, 220, 220, 220, 479, 13, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 16, 11, 198, 220, 220, 220, 1267, 220, 1303, 13547, 11, 10439, 11, 15148, 1861, 11, 264, 13495, 198, 220, 220, 220, 279, 5657, 796, 256, 80, 36020, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2837, 7, 5235, 828, 1715, 28, 69, 1, 90, 47, 31688, 10426, 92, 36, 10396, 1075, 43360, 351, 42295, 978, 42289, 11097, 198, 220, 220, 220, 1267, 220, 1303, 4371, 2318, 198, 220, 220, 220, 329, 4808, 287, 279, 5657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 796, 45941, 13, 1952, 7, 1477, 8, 198, 220, 220, 220, 220, 220, 220, 220, 981, 357, 85, 6624, 352, 737, 439, 33529, 220, 1303, 4517, 378, 1566, 257, 1487, 8833, 357, 3866, 1151, 14184, 16856, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 14808, 77, 1050, 13, 25120, 7, 1477, 8, 1279, 29034, 8, 1635, 4738, 13, 25120, 3419, 1635, 299, 1050, 13, 25192, 77, 46491, 1477, 8, 1635, 264, 1343, 352, 737, 15036, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 18, 11, 513, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 14211, 796, 357, 74, 13, 30073, 3419, 1635, 410, 737, 15036, 7, 1084, 28, 17, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 70, 796, 18021, 62, 69, 3659, 7, 10025, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 70, 1875, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 11, 479, 796, 277, 70, 11, 14211, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 20147, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 47, 31688, 10426, 92, 36, 10396, 1075, 43360, 351, 42295, 978, 42289, 25, 13547, 796, 1391, 69, 25, 13, 19, 69, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 43420, 7, 74, 11, 15942, 577, 8, 628, 220, 220, 220, 1441, 3601, 62, 43420, 7, 74, 8, 198 ]
2.114318
1,767
""" SMTP.sendmail and SMTP.send_message method testing. """ import copy import email.generator import email.header import pytest from aiosmtplib import ( SMTPNotSupported, SMTPRecipientsRefused, SMTPResponseException, SMTPStatus, ) pytestmark = pytest.mark.asyncio() async def test_rset_after_sendmail_error_response_to_mail( smtp_client, smtpd_server, received_commands ): """ If an error response is given to the MAIL command in the sendmail method, test that we reset the server session. """ async with smtp_client: response = await smtp_client.ehlo() assert response.code == SMTPStatus.completed with pytest.raises(SMTPResponseException) as excinfo: await smtp_client.sendmail(">foobar<", ["[email protected]"], "Hello World") assert excinfo.value.code == SMTPStatus.unrecognized_parameters assert received_commands[-1][0] == "RSET" async def test_rset_after_sendmail_error_response_to_rcpt( smtp_client, smtpd_server, received_commands ): """ If an error response is given to the RCPT command in the sendmail method, test that we reset the server session. """ async with smtp_client: response = await smtp_client.ehlo() assert response.code == SMTPStatus.completed with pytest.raises(SMTPRecipientsRefused) as excinfo: await smtp_client.sendmail( "[email protected]", [">not an addr<"], "Hello World" ) assert excinfo.value.recipients[0].code == SMTPStatus.unrecognized_parameters assert received_commands[-1][0] == "RSET" async def test_rset_after_sendmail_error_response_to_data( smtp_client, smtpd_server, smtpd_class, smtpd_response_handler_factory, monkeypatch, error_code, sender_str, recipient_str, message_str, received_commands, ): """ If an error response is given to the DATA command in the sendmail method, test that we reset the server session. """ response_handler = smtpd_response_handler_factory("{} error".format(error_code)) monkeypatch.setattr(smtpd_class, "smtp_DATA", response_handler) async with smtp_client: response = await smtp_client.ehlo() assert response.code == SMTPStatus.completed with pytest.raises(SMTPResponseException) as excinfo: await smtp_client.sendmail(sender_str, [recipient_str], message_str) assert excinfo.value.code == error_code assert received_commands[-1][0] == "RSET"
[ 37811, 198, 12310, 7250, 13, 21280, 4529, 290, 9447, 7250, 13, 21280, 62, 20500, 2446, 4856, 13, 198, 37811, 198, 11748, 4866, 198, 11748, 3053, 13, 8612, 1352, 198, 11748, 3053, 13, 25677, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 257, 4267, 16762, 489, 571, 1330, 357, 198, 220, 220, 220, 9447, 7250, 3673, 48181, 11, 198, 220, 220, 220, 9447, 51, 4805, 721, 541, 2334, 8134, 1484, 11, 198, 220, 220, 220, 9447, 51, 4805, 9774, 2591, 16922, 11, 198, 220, 220, 220, 9447, 7250, 19580, 11, 198, 8, 628, 198, 9078, 9288, 4102, 796, 12972, 9288, 13, 4102, 13, 292, 13361, 952, 3419, 628, 628, 628, 628, 628, 198, 198, 292, 13361, 825, 1332, 62, 81, 2617, 62, 8499, 62, 21280, 4529, 62, 18224, 62, 26209, 62, 1462, 62, 4529, 7, 198, 220, 220, 220, 895, 34788, 62, 16366, 11, 895, 83, 30094, 62, 15388, 11, 2722, 62, 9503, 1746, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1002, 281, 4049, 2882, 318, 1813, 284, 262, 8779, 4146, 3141, 287, 262, 3758, 4529, 2446, 11, 198, 220, 220, 220, 1332, 326, 356, 13259, 262, 4382, 6246, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30351, 351, 895, 34788, 62, 16366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 25507, 895, 34788, 62, 16366, 13, 17231, 5439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2882, 13, 8189, 6624, 9447, 7250, 19580, 13, 785, 16838, 628, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 12310, 51, 4805, 9774, 2591, 16922, 8, 355, 2859, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 895, 34788, 62, 16366, 13, 21280, 4529, 7, 5320, 6513, 30973, 27, 1600, 14631, 9288, 31, 20688, 13, 785, 33116, 366, 15496, 2159, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 2859, 10951, 13, 8367, 13, 8189, 6624, 9447, 7250, 19580, 13, 403, 26243, 1143, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2722, 62, 9503, 1746, 58, 12, 16, 7131, 15, 60, 6624, 366, 6998, 2767, 1, 628, 198, 292, 13361, 825, 1332, 62, 81, 2617, 62, 8499, 62, 21280, 4529, 62, 18224, 62, 26209, 62, 1462, 62, 6015, 457, 7, 198, 220, 220, 220, 895, 34788, 62, 16366, 11, 895, 83, 30094, 62, 15388, 11, 2722, 62, 9503, 1746, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1002, 281, 4049, 2882, 318, 1813, 284, 262, 371, 8697, 51, 3141, 287, 262, 3758, 4529, 2446, 11, 198, 220, 220, 220, 1332, 326, 356, 13259, 262, 4382, 6246, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30351, 351, 895, 34788, 62, 16366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 25507, 895, 34788, 62, 16366, 13, 17231, 5439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2882, 13, 8189, 6624, 9447, 7250, 19580, 13, 785, 16838, 628, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 12310, 51, 4805, 721, 541, 2334, 8134, 1484, 8, 355, 2859, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 895, 34788, 62, 16366, 13, 21280, 4529, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 31, 20688, 13, 785, 1600, 685, 5320, 1662, 281, 37817, 27, 33116, 366, 15496, 2159, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 2859, 10951, 13, 8367, 13, 8344, 541, 2334, 58, 15, 4083, 8189, 6624, 9447, 7250, 19580, 13, 403, 26243, 1143, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2722, 62, 9503, 1746, 58, 12, 16, 7131, 15, 60, 6624, 366, 6998, 2767, 1, 628, 198, 292, 13361, 825, 1332, 62, 81, 2617, 62, 8499, 62, 21280, 4529, 62, 18224, 62, 26209, 62, 1462, 62, 7890, 7, 198, 220, 220, 220, 895, 34788, 62, 16366, 11, 198, 220, 220, 220, 895, 83, 30094, 62, 15388, 11, 198, 220, 220, 220, 895, 83, 30094, 62, 4871, 11, 198, 220, 220, 220, 895, 83, 30094, 62, 26209, 62, 30281, 62, 69, 9548, 11, 198, 220, 220, 220, 21657, 17147, 11, 198, 220, 220, 220, 4049, 62, 8189, 11, 198, 220, 220, 220, 29788, 62, 2536, 11, 198, 220, 220, 220, 17800, 62, 2536, 11, 198, 220, 220, 220, 3275, 62, 2536, 11, 198, 220, 220, 220, 2722, 62, 9503, 1746, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1002, 281, 4049, 2882, 318, 1813, 284, 262, 42865, 3141, 287, 262, 3758, 4529, 2446, 11, 198, 220, 220, 220, 1332, 326, 356, 13259, 262, 4382, 6246, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2882, 62, 30281, 796, 895, 83, 30094, 62, 26209, 62, 30281, 62, 69, 9548, 7203, 90, 92, 4049, 1911, 18982, 7, 18224, 62, 8189, 4008, 198, 220, 220, 220, 21657, 17147, 13, 2617, 35226, 7, 5796, 83, 30094, 62, 4871, 11, 366, 5796, 34788, 62, 26947, 1600, 2882, 62, 30281, 8, 628, 220, 220, 220, 30351, 351, 895, 34788, 62, 16366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 25507, 895, 34788, 62, 16366, 13, 17231, 5439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2882, 13, 8189, 6624, 9447, 7250, 19580, 13, 785, 16838, 628, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 12310, 51, 4805, 9774, 2591, 16922, 8, 355, 2859, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 895, 34788, 62, 16366, 13, 21280, 4529, 7, 82, 2194, 62, 2536, 11, 685, 8344, 48137, 62, 2536, 4357, 3275, 62, 2536, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 2859, 10951, 13, 8367, 13, 8189, 6624, 4049, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2722, 62, 9503, 1746, 58, 12, 16, 7131, 15, 60, 6624, 366, 6998, 2767, 1, 628, 628, 628, 628, 628, 628 ]
2.512695
1,024
from .tool.func import *
[ 6738, 764, 25981, 13, 20786, 1330, 1635 ]
3.428571
7
""" MOON PHASE CLOCK for Adafruit Matrix Portal: displays current time, lunar phase and time of next moonrise or moonset. Requires WiFi internet access. Written by Phil 'PaintYourDragon' Burgess for Adafruit Industries. MIT license, all text above must be included in any redistribution. BDF fonts from the X.Org project. Startup 'splash' images should not be included in derivative projects, thanks. Tall splash images licensed from 123RF.com, wide splash images used with permission of artist Lew Lashmit ([email protected]). Rawr! """ # pylint: disable=import-error import gc import time import math import json import board import busio import displayio from rtc import RTC from adafruit_matrixportal.network import Network from adafruit_matrixportal.matrix import Matrix from adafruit_bitmap_font import bitmap_font import adafruit_display_text.label import adafruit_lis3dh try: from secrets import secrets except ImportError: print('WiFi secrets are kept in secrets.py, please add them there!') raise # CONFIGURABLE SETTINGS ---------------------------------------------------- TWELVE_HOUR = True # If set, use 12-hour time vs 24-hour (e.g. 3:00 vs 15:00) COUNTDOWN = False # If set, show time to (vs time of) next rise/set event MONTH_DAY = True # If set, use MM/DD vs DD/MM (e.g. 31/12 vs 12/31) BITPLANES = 6 # Ideally 6, but can set lower if RAM is tight # SOME UTILITY FUNCTIONS AND CLASSES --------------------------------------- def parse_time(timestring, is_dst=-1): """ Given a string of the format YYYY-MM-DDTHH:MM:SS.SS-HH:MM (and optionally a DST flag), convert to and return an equivalent time.struct_time (strptime() isn't available here). Calling function can use time.mktime() on result if epoch seconds is needed instead. Time string is assumed local time; UTC offset is ignored. If seconds value includes a decimal fraction it's ignored. """ date_time = timestring.split('T') # Separate into date and time year_month_day = date_time[0].split('-') # Separate time into Y/M/D hour_minute_second = date_time[1].split('+')[0].split('-')[0].split(':') return time.struct_time(int(year_month_day[0]), int(year_month_day[1]), int(year_month_day[2]), int(hour_minute_second[0]), int(hour_minute_second[1]), int(hour_minute_second[2].split('.')[0]), -1, -1, is_dst) def update_time(timezone=None): """ Update system date/time from WorldTimeAPI public server; no account required. Pass in time zone string (http://worldtimeapi.org/api/timezone for list) or None to use IP geolocation. Returns current local time as a time.struct_time and UTC offset as string. This may throw an exception on fetch_data() - it is NOT CAUGHT HERE, should be handled in the calling code because different behaviors may be needed in different situations (e.g. reschedule for later). """ if timezone: # Use timezone api time_url = 'http://worldtimeapi.org/api/timezone/' + timezone else: # Use IP geolocation time_url = 'http://worldtimeapi.org/api/ip' time_data = NETWORK.fetch_data(time_url, json_path=[['datetime'], ['dst'], ['utc_offset']]) time_struct = parse_time(time_data[0], time_data[1]) RTC().datetime = time_struct return time_struct, time_data[2] def hh_mm(time_struct): """ Given a time.struct_time, return a string as H:MM or HH:MM, either 12- or 24-hour style depending on global TWELVE_HOUR setting. This is ONLY for 'clock time,' NOT for countdown time, which is handled separately in the one spot where it's needed. """ if TWELVE_HOUR: if time_struct.tm_hour > 12: hour_string = str(time_struct.tm_hour - 12) # 13-23 -> 1-11 (pm) elif time_struct.tm_hour > 0: hour_string = str(time_struct.tm_hour) # 1-12 else: hour_string = '12' # 0 -> 12 (am) else: hour_string = '{0:0>2}'.format(time_struct.tm_hour) return hour_string + ':' + '{0:0>2}'.format(time_struct.tm_min) # pylint: disable=too-few-public-methods class MoonData(): """ Class holding lunar data for a given day (00:00:00 to 23:59:59). App uses two of these -- one for the current day, and one for the following day -- then some interpolations and such can be made. Elements include: age : Moon phase 'age' at midnight (start of period) expressed from 0.0 (new moon) through 0.5 (full moon) to 1.0 (next new moon). midnight : Epoch time in seconds @ midnight (start of period). rise : Epoch time of moon rise within this 24-hour period. set : Epoch time of moon set within this 24-hour period. """ def __init__(self, datetime, hours_ahead, utc_offset): """ Initialize MoonData object elements (see above) from a time.struct_time, hours to skip ahead (typically 0 or 24), and a UTC offset (as a string) and a query to the MET Norway Sunrise API (also provides lunar data), documented at: https://api.met.no/weatherapi/sunrise/2.0/documentation """ if hours_ahead: # Can't change attribute in datetime struct, need to create # a new one which will roll the date ahead as needed. Convert # to epoch seconds and back for the offset to work datetime = time.localtime(time.mktime(time.struct_time( datetime.tm_year, datetime.tm_mon, datetime.tm_mday, datetime.tm_hour + hours_ahead, datetime.tm_min, datetime.tm_sec, -1, -1, -1))) # strftime() not available here url = ('https://api.met.no/weatherapi/sunrise/2.0/.json?lat=' + str(LATITUDE) + '&lon=' + str(LONGITUDE) + '&date=' + str(datetime.tm_year) + '-' + '{0:0>2}'.format(datetime.tm_mon) + '-' + '{0:0>2}'.format(datetime.tm_mday) + '&offset=' + utc_offset) print('Fetching moon data via', url) # pylint: disable=bare-except for _ in range(5): # Retries try: full_data = json.loads(NETWORK.fetch_data(url)) moon_data = full_data['location']['time'][0] #print(moon_data) # Reconstitute JSON data into the elements we need self.age = float(moon_data['moonphase']['value']) / 100 self.midnight = time.mktime(parse_time( moon_data['moonphase']['time'])) if 'moonrise' in moon_data: self.rise = time.mktime( parse_time(moon_data['moonrise']['time'])) else: self.rise = None if 'moonset' in moon_data: self.set = time.mktime( parse_time(moon_data['moonset']['time'])) else: self.set = None return # Success! except: # Moon server error (maybe), try again after 15 seconds. # (Might be a memory error, that should be handled different) time.sleep(15) # ONE-TIME INITIALIZATION -------------------------------------------------- MATRIX = Matrix(bit_depth=BITPLANES) DISPLAY = MATRIX.display ACCEL = adafruit_lis3dh.LIS3DH_I2C(busio.I2C(board.SCL, board.SDA), address=0x19) _ = ACCEL.acceleration # Dummy reading to blow out any startup residue time.sleep(0.1) DISPLAY.rotation = (int(((math.atan2(-ACCEL.acceleration.y, -ACCEL.acceleration.x) + math.pi) / (math.pi * 2) + 0.875) * 4) % 4) * 90 LARGE_FONT = bitmap_font.load_font('/fonts/helvB12.bdf') SMALL_FONT = bitmap_font.load_font('/fonts/helvR10.bdf') SYMBOL_FONT = bitmap_font.load_font('/fonts/6x10.bdf') LARGE_FONT.load_glyphs('0123456789:') SMALL_FONT.load_glyphs('0123456789:/.%') SYMBOL_FONT.load_glyphs('\u21A5\u21A7') # Display group is set up once, then we just shuffle items around later. # Order of creation here determines their stacking order. GROUP = displayio.Group(max_size=10) # Element 0 is a stand-in item, later replaced with the moon phase bitmap # pylint: disable=bare-except try: FILENAME = 'moon/splash-' + str(DISPLAY.rotation) + '.bmp' BITMAP = displayio.OnDiskBitmap(open(FILENAME, 'rb')) TILE_GRID = displayio.TileGrid(BITMAP, pixel_shader=displayio.ColorConverter(),) GROUP.append(TILE_GRID) except: GROUP.append(adafruit_display_text.label.Label(SMALL_FONT, color=0xFF0000, text='AWOO')) GROUP[0].x = (DISPLAY.width - GROUP[0].bounding_box[2] + 1) // 2 GROUP[0].y = DISPLAY.height // 2 - 1 # Elements 1-4 are an outline around the moon percentage -- text labels # offset by 1 pixel up/down/left/right. Initial position is off the matrix, # updated on first refresh. Initial text value must be long enough for # longest anticipated string later. for i in range(4): GROUP.append(adafruit_display_text.label.Label(SMALL_FONT, color=0, text='99.9%', y=-99)) # Element 5 is the moon percentage (on top of the outline labels) GROUP.append(adafruit_display_text.label.Label(SMALL_FONT, color=0xFFFF00, text='99.9%', y=-99)) # Element 6 is the current time GROUP.append(adafruit_display_text.label.Label(LARGE_FONT, color=0x808080, text='12:00', y=-99)) # Element 7 is the current date GROUP.append(adafruit_display_text.label.Label(SMALL_FONT, color=0x808080, text='12/31', y=-99)) # Element 8 is a symbol indicating next rise or set GROUP.append(adafruit_display_text.label.Label(SYMBOL_FONT, color=0x00FF00, text='x', y=-99)) # Element 9 is the time of (or time to) next rise/set event GROUP.append(adafruit_display_text.label.Label(SMALL_FONT, color=0x00FF00, text='12:00', y=-99)) DISPLAY.show(GROUP) NETWORK = Network(status_neopixel=board.NEOPIXEL, debug=False) NETWORK.connect() # LATITUDE, LONGITUDE, TIMEZONE are set up once, constant over app lifetime # Fetch latitude/longitude from secrets.py. If not present, use # IP geolocation. This only needs to be done once, at startup! try: LATITUDE = secrets['latitude'] LONGITUDE = secrets['longitude'] print('Using stored geolocation: ', LATITUDE, LONGITUDE) except KeyError: LATITUDE, LONGITUDE = ( NETWORK.fetch_data('http://www.geoplugin.net/json.gp', json_path=[['geoplugin_latitude'], ['geoplugin_longitude']])) print('Using IP geolocation: ', LATITUDE, LONGITUDE) # Load time zone string from secrets.py, else IP geolocation for this too # (http://worldtimeapi.org/api/timezone for list). try: TIMEZONE = secrets['timezone'] # e.g. 'America/New_York' except: TIMEZONE = None # IP geolocation # Set initial clock time, also fetch initial UTC offset while # here (NOT stored in secrets.py as it may change with DST). # pylint: disable=bare-except try: DATETIME, UTC_OFFSET = update_time(TIMEZONE) except: DATETIME, UTC_OFFSET = time.localtime(), '+00:00' LAST_SYNC = time.mktime(DATETIME) # Poll server for moon data for current 24-hour period and +24 ahead PERIOD = [] for DAY in range(2): PERIOD.append(MoonData(DATETIME, DAY * 24, UTC_OFFSET)) # PERIOD[0] is the current 24-hour time period we're in. PERIOD[1] is the # following 24 hours. Data is shifted down and new data fetched as days # expire. Thought we might need a PERIOD[2] for certain circumstances but # it appears not, that's changed easily enough if needed. # MAIN LOOP ---------------------------------------------------------------- while True: gc.collect() NOW = time.time() # Current epoch time in seconds # Sync with time server every ~12 hours if NOW - LAST_SYNC > 12 * 60 * 60: try: DATETIME, UTC_OFFSET = update_time(TIMEZONE) LAST_SYNC = time.mktime(DATETIME) continue # Time may have changed; refresh NOW value except: # update_time() can throw an exception if time server doesn't # respond. That's OK, keep running with our current time, and # push sync time ahead to retry in 30 minutes (don't overwhelm # the server with repeated queries). LAST_SYNC += 30 * 60 # 30 minutes -> seconds # If PERIOD has expired, move data down and fetch new +24-hour data if NOW >= PERIOD[1].midnight: PERIOD[0] = PERIOD[1] PERIOD[1] = MoonData(time.localtime(), 24, UTC_OFFSET) # Determine weighting of tomorrow's phase vs today's, using current time RATIO = ((NOW - PERIOD[0].midnight) / (PERIOD[1].midnight - PERIOD[0].midnight)) # Determine moon phase 'age' # 0.0 = new moon # 0.25 = first quarter # 0.5 = full moon # 0.75 = last quarter # 1.0 = new moon if PERIOD[0].age < PERIOD[1].age: AGE = (PERIOD[0].age + (PERIOD[1].age - PERIOD[0].age) * RATIO) % 1.0 else: # Handle age wraparound (1.0 -> 0.0) # If tomorrow's age is less than today's, it indicates a new moon # crossover. Add 1 to tomorrow's age when computing age delta. AGE = (PERIOD[0].age + (PERIOD[1].age + 1 - PERIOD[0].age) * RATIO) % 1.0 # AGE can be used for direct lookup to moon bitmap (0 to 99) -- these # images are pre-rendered for a linear timescale (solar terminator moves # nonlinearly across sphere). FRAME = int(AGE * 100) % 100 # Bitmap 0 to 99 # Then use some trig to get percentage lit if AGE <= 0.5: # New -> first quarter -> full PERCENT = (1 - math.cos(AGE * 2 * math.pi)) * 50 else: # Full -> last quarter -> new PERCENT = (1 + math.cos((AGE - 0.5) * 2 * math.pi)) * 50 # Find next rise/set event, complicated by the fact that some 24-hour # periods might not have one or the other (but usually do) due to the # Moon rising ~50 mins later each day. This uses a brute force approach, # working backwards through the time periods to locate rise/set events # that A) exist in that 24-hour period (are not None), B) are still in # the future, and C) are closer than the last guess. What's left at the # end is the next rise or set (and the inverse of the event type tells # us whether Moon's currently risen or not). NEXT_EVENT = PERIOD[1].midnight + 100000 # Force first match for DAY in reversed(PERIOD): if DAY.rise and NEXT_EVENT >= DAY.rise >= NOW: NEXT_EVENT = DAY.rise RISEN = False if DAY.set and NEXT_EVENT >= DAY.set >= NOW: NEXT_EVENT = DAY.set RISEN = True if DISPLAY.rotation in (0, 180): # Horizontal 'landscape' orientation CENTER_X = 48 # Text along right MOON_Y = 0 # Moon at left TIME_Y = 6 # Time at top right EVENT_Y = 26 # Rise/set at bottom right else: # Vertical 'portrait' orientation CENTER_X = 16 # Text down center if RISEN: MOON_Y = 0 # Moon at top EVENT_Y = 38 # Rise/set in middle TIME_Y = 49 # Time/date at bottom else: TIME_Y = 6 # Time/date at top EVENT_Y = 26 # Rise/set in middle MOON_Y = 32 # Moon at bottom print() # Update moon image (GROUP[0]) FILENAME = 'moon/moon' + '{0:0>2}'.format(FRAME) + '.bmp' BITMAP = displayio.OnDiskBitmap(open(FILENAME, 'rb')) TILE_GRID = displayio.TileGrid(BITMAP, pixel_shader=displayio.ColorConverter(),) TILE_GRID.x = 0 TILE_GRID.y = MOON_Y GROUP[0] = TILE_GRID # Update percent value (5 labels: GROUP[1-4] for outline, [5] for text) if PERCENT >= 99.95: STRING = '100%' else: STRING = '{:.1f}'.format(PERCENT + 0.05) + '%' print(NOW, STRING, 'full') # Set element 5 first, use its size and position for setting others GROUP[5].text = STRING GROUP[5].x = 16 - GROUP[5].bounding_box[2] // 2 GROUP[5].y = MOON_Y + 16 for _ in range(1, 5): GROUP[_].text = GROUP[5].text GROUP[1].x, GROUP[1].y = GROUP[5].x, GROUP[5].y - 1 # Up 1 pixel GROUP[2].x, GROUP[2].y = GROUP[5].x - 1, GROUP[5].y # Left GROUP[3].x, GROUP[3].y = GROUP[5].x + 1, GROUP[5].y # Right GROUP[4].x, GROUP[4].y = GROUP[5].x, GROUP[5].y + 1 # Down # Update next-event time (GROUP[8] and [9]) # Do this before time because we need uncorrupted NOW value EVENT_TIME = time.localtime(NEXT_EVENT) # Convert to struct for later if COUNTDOWN: # Show NEXT_EVENT as countdown to event NEXT_EVENT -= NOW # Time until (vs time of) next rise/set MINUTES = NEXT_EVENT // 60 STRING = str(MINUTES // 60) + ':' + '{0:0>2}'.format(MINUTES % 60) else: # Show NEXT_EVENT in clock time STRING = hh_mm(EVENT_TIME) GROUP[9].text = STRING XPOS = CENTER_X - (GROUP[9].bounding_box[2] + 6) // 2 GROUP[8].x = XPOS if RISEN: # Next event is SET GROUP[8].text = '\u21A7' # Downwards arrow from bar GROUP[8].y = EVENT_Y - 2 print('Sets:', STRING) else: # Next event is RISE GROUP[8].text = '\u21A5' # Upwards arrow from bar GROUP[8].y = EVENT_Y - 1 print('Rises:', STRING) GROUP[9].x = XPOS + 6 GROUP[9].y = EVENT_Y # Show event time in green if a.m., amber if p.m. GROUP[8].color = GROUP[9].color = (0x00FF00 if EVENT_TIME.tm_hour < 12 else 0xC04000) # Update time (GROUP[6]) and date (GROUP[7]) NOW = time.localtime() STRING = hh_mm(NOW) GROUP[6].text = STRING GROUP[6].x = CENTER_X - GROUP[6].bounding_box[2] // 2 GROUP[6].y = TIME_Y if MONTH_DAY: STRING = str(NOW.tm_mon) + '/' + str(NOW.tm_mday) else: STRING = str(NOW.tm_mday) + '/' + str(NOW.tm_mon) GROUP[7].text = STRING GROUP[7].x = CENTER_X - GROUP[7].bounding_box[2] // 2 GROUP[7].y = TIME_Y + 10 DISPLAY.refresh() # Force full repaint (splash screen sometimes sticks) time.sleep(5)
[ 37811, 198, 11770, 1340, 9370, 11159, 7852, 11290, 329, 1215, 1878, 4872, 24936, 25663, 25, 11298, 1459, 640, 11, 25572, 198, 40715, 290, 640, 286, 1306, 8824, 17163, 393, 31093, 316, 13, 26848, 24904, 5230, 1895, 13, 198, 198, 25354, 416, 4543, 705, 47, 2913, 7120, 17808, 6, 46744, 329, 1215, 1878, 4872, 20171, 13, 198, 36393, 5964, 11, 477, 2420, 2029, 1276, 307, 3017, 287, 597, 41425, 13, 198, 198, 33, 8068, 26806, 422, 262, 1395, 13, 46808, 1628, 13, 40472, 705, 22018, 1077, 6, 4263, 815, 407, 307, 198, 259, 10341, 287, 27255, 4493, 11, 5176, 13, 22676, 22870, 4263, 11971, 422, 198, 10163, 32754, 13, 785, 11, 3094, 22870, 4263, 973, 351, 7170, 286, 6802, 8260, 47137, 2781, 198, 7, 49663, 70, 19725, 31, 14816, 13, 785, 737, 16089, 81, 0, 198, 37811, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 11748, 12, 18224, 198, 11748, 308, 66, 198, 11748, 640, 198, 11748, 10688, 198, 11748, 33918, 198, 11748, 3096, 198, 11748, 1323, 952, 198, 11748, 3359, 952, 198, 6738, 374, 23047, 1330, 371, 4825, 198, 6738, 512, 1878, 4872, 62, 6759, 8609, 634, 282, 13, 27349, 1330, 7311, 198, 6738, 512, 1878, 4872, 62, 6759, 8609, 634, 282, 13, 6759, 8609, 1330, 24936, 198, 6738, 512, 1878, 4872, 62, 2545, 8899, 62, 10331, 1330, 1643, 8899, 62, 10331, 198, 11748, 512, 1878, 4872, 62, 13812, 62, 5239, 13, 18242, 198, 11748, 512, 1878, 4872, 62, 27999, 18, 34985, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 13141, 1330, 13141, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 3601, 10786, 31294, 10547, 13141, 389, 4030, 287, 13141, 13, 9078, 11, 3387, 751, 606, 612, 0, 11537, 198, 220, 220, 220, 5298, 198, 198, 2, 25626, 45570, 19146, 25823, 51, 20754, 20368, 19351, 198, 198, 34551, 3698, 6089, 62, 39, 11698, 796, 6407, 1303, 1002, 900, 11, 779, 1105, 12, 9769, 640, 3691, 1987, 12, 9769, 357, 68, 13, 70, 13, 513, 25, 405, 3691, 1315, 25, 405, 8, 198, 34, 28270, 41925, 796, 10352, 220, 1303, 1002, 900, 11, 905, 640, 284, 357, 14259, 640, 286, 8, 1306, 4485, 14, 2617, 1785, 198, 27857, 4221, 62, 26442, 796, 6407, 220, 220, 1303, 1002, 900, 11, 779, 20806, 14, 16458, 3691, 20084, 14, 12038, 357, 68, 13, 70, 13, 3261, 14, 1065, 3691, 1105, 14, 3132, 8, 198, 26094, 6489, 1565, 1546, 796, 718, 220, 220, 220, 220, 220, 1303, 40067, 718, 11, 475, 460, 900, 2793, 611, 13931, 318, 5381, 628, 198, 2, 41670, 19255, 4146, 9050, 29397, 4177, 11053, 5357, 42715, 1546, 20368, 26866, 198, 198, 4299, 21136, 62, 2435, 7, 16514, 395, 1806, 11, 318, 62, 67, 301, 10779, 16, 2599, 198, 220, 220, 220, 37227, 11259, 257, 4731, 286, 262, 5794, 575, 26314, 56, 12, 12038, 12, 16458, 4221, 39, 25, 12038, 25, 5432, 13, 5432, 12, 16768, 25, 12038, 357, 392, 198, 220, 220, 220, 220, 220, 220, 220, 42976, 257, 360, 2257, 6056, 828, 10385, 284, 290, 1441, 281, 7548, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 7249, 62, 2435, 357, 2536, 457, 524, 3419, 2125, 470, 1695, 994, 737, 32677, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 460, 779, 640, 13, 28015, 2435, 3419, 319, 1255, 611, 36835, 4201, 318, 2622, 2427, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 4731, 318, 9672, 1957, 640, 26, 18119, 11677, 318, 9514, 13, 1002, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 3407, 257, 32465, 13390, 340, 338, 9514, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3128, 62, 2435, 796, 4628, 395, 1806, 13, 35312, 10786, 51, 11537, 220, 220, 220, 220, 220, 220, 220, 1303, 8621, 30748, 656, 3128, 290, 640, 198, 220, 220, 220, 614, 62, 8424, 62, 820, 796, 3128, 62, 2435, 58, 15, 4083, 35312, 10786, 12, 11537, 1303, 8621, 30748, 640, 656, 575, 14, 44, 14, 35, 198, 220, 220, 220, 1711, 62, 11374, 62, 12227, 796, 3128, 62, 2435, 58, 16, 4083, 35312, 10786, 10, 11537, 58, 15, 4083, 35312, 10786, 12, 11537, 58, 15, 4083, 35312, 7, 10354, 11537, 198, 220, 220, 220, 1441, 640, 13, 7249, 62, 2435, 7, 600, 7, 1941, 62, 8424, 62, 820, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 1941, 62, 8424, 62, 820, 58, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 1941, 62, 8424, 62, 820, 58, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 9769, 62, 11374, 62, 12227, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 9769, 62, 11374, 62, 12227, 58, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 9769, 62, 11374, 62, 12227, 58, 17, 4083, 35312, 10786, 2637, 38381, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 11, 532, 16, 11, 318, 62, 67, 301, 8, 628, 198, 4299, 4296, 62, 2435, 7, 2435, 11340, 28, 14202, 2599, 198, 220, 220, 220, 37227, 10133, 1080, 3128, 14, 2435, 422, 2159, 7575, 17614, 1171, 4382, 26, 198, 220, 220, 220, 220, 220, 220, 220, 645, 1848, 2672, 13, 6251, 287, 640, 6516, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4023, 1378, 6894, 2435, 15042, 13, 2398, 14, 15042, 14, 2435, 11340, 329, 1351, 8, 198, 220, 220, 220, 220, 220, 220, 220, 393, 6045, 284, 779, 6101, 4903, 349, 5040, 13, 16409, 1459, 1957, 640, 355, 257, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 7249, 62, 2435, 290, 18119, 11677, 355, 4731, 13, 770, 743, 3714, 281, 198, 220, 220, 220, 220, 220, 220, 220, 6631, 319, 21207, 62, 7890, 3419, 532, 340, 318, 5626, 7257, 7340, 6535, 15698, 11, 815, 307, 198, 220, 220, 220, 220, 220, 220, 220, 12118, 287, 262, 4585, 2438, 780, 1180, 14301, 743, 307, 198, 220, 220, 220, 220, 220, 220, 220, 2622, 287, 1180, 7445, 357, 68, 13, 70, 13, 581, 2395, 5950, 329, 1568, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 640, 11340, 25, 1303, 5765, 640, 11340, 40391, 198, 220, 220, 220, 220, 220, 220, 220, 640, 62, 6371, 796, 705, 4023, 1378, 6894, 2435, 15042, 13, 2398, 14, 15042, 14, 2435, 11340, 14, 6, 1343, 640, 11340, 198, 220, 220, 220, 2073, 25, 1303, 5765, 6101, 4903, 349, 5040, 198, 220, 220, 220, 220, 220, 220, 220, 640, 62, 6371, 796, 705, 4023, 1378, 6894, 2435, 15042, 13, 2398, 14, 15042, 14, 541, 6, 628, 220, 220, 220, 640, 62, 7890, 796, 49791, 13, 69, 7569, 62, 7890, 7, 2435, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 6978, 41888, 17816, 19608, 8079, 6, 4357, 37250, 67, 301, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 315, 66, 62, 28968, 6, 11907, 8, 198, 220, 220, 220, 640, 62, 7249, 796, 21136, 62, 2435, 7, 2435, 62, 7890, 58, 15, 4357, 640, 62, 7890, 58, 16, 12962, 198, 220, 220, 220, 371, 4825, 22446, 19608, 8079, 796, 640, 62, 7249, 198, 220, 220, 220, 1441, 640, 62, 7249, 11, 640, 62, 7890, 58, 17, 60, 628, 198, 4299, 289, 71, 62, 3020, 7, 2435, 62, 7249, 2599, 198, 220, 220, 220, 37227, 11259, 257, 640, 13, 7249, 62, 2435, 11, 1441, 257, 4731, 355, 367, 25, 12038, 393, 47138, 25, 12038, 11, 2035, 198, 220, 220, 220, 220, 220, 220, 220, 1105, 12, 393, 1987, 12, 9769, 3918, 6906, 319, 3298, 17306, 3698, 6089, 62, 39, 11698, 4634, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 22224, 329, 705, 15750, 640, 4032, 5626, 329, 33970, 640, 11, 543, 318, 198, 220, 220, 220, 220, 220, 220, 220, 12118, 13869, 287, 262, 530, 4136, 810, 340, 338, 2622, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 17306, 3698, 6089, 62, 39, 11698, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 640, 62, 7249, 13, 17209, 62, 9769, 1875, 1105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 62, 8841, 796, 965, 7, 2435, 62, 7249, 13, 17209, 62, 9769, 532, 1105, 8, 1303, 1511, 12, 1954, 4613, 352, 12, 1157, 357, 4426, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 640, 62, 7249, 13, 17209, 62, 9769, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 62, 8841, 796, 965, 7, 2435, 62, 7249, 13, 17209, 62, 9769, 8, 1303, 352, 12, 1065, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 62, 8841, 796, 705, 1065, 6, 1303, 657, 4613, 1105, 357, 321, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1711, 62, 8841, 796, 705, 90, 15, 25, 15, 29, 17, 92, 4458, 18982, 7, 2435, 62, 7249, 13, 17209, 62, 9769, 8, 198, 220, 220, 220, 1441, 1711, 62, 8841, 1343, 705, 32105, 1343, 705, 90, 15, 25, 15, 29, 17, 92, 4458, 18982, 7, 2435, 62, 7249, 13, 17209, 62, 1084, 8, 628, 198, 2, 279, 2645, 600, 25, 15560, 28, 18820, 12, 32146, 12, 11377, 12, 24396, 82, 198, 4871, 6869, 6601, 33529, 198, 220, 220, 220, 37227, 5016, 4769, 25572, 1366, 329, 257, 1813, 1110, 357, 405, 25, 405, 25, 405, 284, 2242, 25, 3270, 25, 3270, 737, 198, 220, 220, 220, 220, 220, 220, 220, 2034, 3544, 734, 286, 777, 1377, 530, 329, 262, 1459, 1110, 11, 290, 530, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1708, 1110, 1377, 788, 617, 39555, 602, 290, 884, 460, 307, 925, 13, 198, 220, 220, 220, 220, 220, 220, 220, 26632, 2291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2479, 220, 220, 220, 220, 220, 1058, 6869, 7108, 705, 496, 6, 379, 15896, 357, 9688, 286, 2278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6241, 422, 657, 13, 15, 357, 3605, 8824, 8, 832, 657, 13, 20, 357, 12853, 8824, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 352, 13, 15, 357, 19545, 649, 8824, 737, 198, 220, 220, 220, 220, 220, 220, 220, 15896, 1058, 4551, 5374, 640, 287, 4201, 2488, 15896, 357, 9688, 286, 2278, 737, 198, 220, 220, 220, 220, 220, 220, 220, 4485, 220, 220, 220, 220, 1058, 4551, 5374, 640, 286, 8824, 4485, 1626, 428, 1987, 12, 9769, 2278, 13, 198, 220, 220, 220, 220, 220, 220, 220, 900, 220, 220, 220, 220, 220, 1058, 4551, 5374, 640, 286, 8824, 900, 1626, 428, 1987, 12, 9769, 2278, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4818, 8079, 11, 2250, 62, 38204, 11, 3384, 66, 62, 28968, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20768, 1096, 6869, 6601, 2134, 4847, 357, 3826, 2029, 8, 422, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 7249, 62, 2435, 11, 2250, 284, 14267, 4058, 357, 48126, 657, 393, 1987, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 257, 18119, 11677, 357, 292, 257, 4731, 8, 290, 257, 12405, 284, 262, 31243, 15238, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45023, 7824, 357, 14508, 3769, 25572, 1366, 828, 12395, 379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 15042, 13, 4164, 13, 3919, 14, 23563, 15042, 14, 19155, 17163, 14, 17, 13, 15, 14, 22897, 341, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2250, 62, 38204, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1680, 470, 1487, 11688, 287, 4818, 8079, 2878, 11, 761, 284, 2251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 649, 530, 543, 481, 4836, 262, 3128, 4058, 355, 2622, 13, 38240, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 36835, 4201, 290, 736, 329, 262, 11677, 284, 670, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 796, 640, 13, 12001, 2435, 7, 2435, 13, 28015, 2435, 7, 2435, 13, 7249, 62, 2435, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 17209, 62, 1941, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 17209, 62, 2144, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 17209, 62, 76, 820, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 17209, 62, 9769, 1343, 2250, 62, 38204, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 17209, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 17209, 62, 2363, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 11, 532, 16, 11, 532, 16, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 965, 31387, 3419, 407, 1695, 994, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 19203, 5450, 1378, 15042, 13, 4164, 13, 3919, 14, 23563, 15042, 14, 19155, 17163, 14, 17, 13, 15, 11757, 17752, 30, 15460, 11639, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 43, 1404, 2043, 52, 7206, 8, 1343, 705, 5, 14995, 11639, 1343, 965, 7, 43, 18494, 2043, 52, 7206, 8, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5, 4475, 11639, 1343, 965, 7, 19608, 8079, 13, 17209, 62, 1941, 8, 1343, 705, 19355, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 15, 25, 15, 29, 17, 92, 4458, 18982, 7, 19608, 8079, 13, 17209, 62, 2144, 8, 1343, 705, 19355, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 15, 25, 15, 29, 17, 92, 4458, 18982, 7, 19608, 8079, 13, 17209, 62, 76, 820, 8, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5, 28968, 11639, 1343, 3384, 66, 62, 28968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 37, 7569, 278, 8824, 1366, 2884, 3256, 19016, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49382, 12, 16341, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 20, 2599, 1303, 4990, 1678, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 7890, 796, 33918, 13, 46030, 7, 12884, 33249, 13, 69, 7569, 62, 7890, 7, 6371, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8824, 62, 7890, 796, 1336, 62, 7890, 17816, 24886, 6, 7131, 6, 2435, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 22977, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23419, 301, 3678, 19449, 1366, 656, 262, 4847, 356, 761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 496, 796, 12178, 7, 22977, 62, 7890, 17816, 22977, 40715, 6, 7131, 6, 8367, 6, 12962, 1220, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13602, 3847, 796, 640, 13, 28015, 2435, 7, 29572, 62, 2435, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8824, 62, 7890, 17816, 22977, 40715, 6, 7131, 6, 2435, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 22977, 17163, 6, 287, 8824, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17163, 796, 640, 13, 28015, 2435, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 2435, 7, 22977, 62, 7890, 17816, 22977, 17163, 6, 7131, 6, 2435, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17163, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 5908, 684, 316, 6, 287, 8824, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 796, 640, 13, 28015, 2435, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 2435, 7, 22977, 62, 7890, 17816, 5908, 684, 316, 6, 7131, 6, 2435, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1303, 16282, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6869, 4382, 4049, 357, 25991, 828, 1949, 757, 706, 1315, 4201, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 44, 432, 307, 257, 4088, 4049, 11, 326, 815, 307, 12118, 1180, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 1314, 8, 628, 198, 2, 16329, 12, 34694, 3268, 2043, 12576, 14887, 6234, 20368, 1783, 438, 198, 198, 41636, 7112, 55, 796, 24936, 7, 2545, 62, 18053, 28, 26094, 6489, 1565, 1546, 8, 198, 26288, 31519, 796, 36775, 7112, 55, 13, 13812, 198, 26861, 3698, 796, 512, 1878, 4872, 62, 27999, 18, 34985, 13, 43, 1797, 18, 41473, 62, 40, 17, 34, 7, 10885, 952, 13, 40, 17, 34, 7, 3526, 13, 50, 5097, 11, 3096, 13, 50, 5631, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 28, 15, 87, 1129, 8, 198, 62, 796, 15859, 3698, 13, 330, 7015, 341, 1303, 360, 13513, 3555, 284, 6611, 503, 597, 13693, 35186, 198, 2435, 13, 42832, 7, 15, 13, 16, 8, 198, 26288, 31519, 13, 10599, 341, 796, 357, 600, 19510, 7, 11018, 13, 39036, 17, 32590, 26861, 3698, 13, 330, 7015, 341, 13, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 26861, 3698, 13, 330, 7015, 341, 13, 87, 8, 1343, 10688, 13, 14415, 8, 1220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 11018, 13, 14415, 1635, 362, 8, 1343, 657, 13, 31360, 8, 1635, 604, 8, 4064, 604, 8, 1635, 4101, 198, 198, 43, 1503, 8264, 62, 37, 35830, 796, 1643, 8899, 62, 10331, 13, 2220, 62, 10331, 10786, 14, 10331, 82, 14, 2978, 85, 33, 1065, 13, 65, 7568, 11537, 198, 12310, 7036, 62, 37, 35830, 796, 1643, 8899, 62, 10331, 13, 2220, 62, 10331, 10786, 14, 10331, 82, 14, 2978, 85, 49, 940, 13, 65, 7568, 11537, 198, 23060, 10744, 3535, 62, 37, 35830, 796, 1643, 8899, 62, 10331, 13, 2220, 62, 10331, 10786, 14, 10331, 82, 14, 21, 87, 940, 13, 65, 7568, 11537, 198, 43, 1503, 8264, 62, 37, 35830, 13, 2220, 62, 10853, 746, 82, 10786, 486, 1954, 2231, 3134, 4531, 25, 11537, 198, 12310, 7036, 62, 37, 35830, 13, 2220, 62, 10853, 746, 82, 10786, 486, 1954, 2231, 3134, 4531, 25, 11757, 4, 11537, 198, 23060, 10744, 3535, 62, 37, 35830, 13, 2220, 62, 10853, 746, 82, 10786, 59, 84, 2481, 32, 20, 59, 84, 2481, 32, 22, 11537, 198, 198, 2, 16531, 1448, 318, 900, 510, 1752, 11, 788, 356, 655, 36273, 3709, 1088, 1568, 13, 198, 2, 8284, 286, 6282, 994, 15947, 511, 41228, 1502, 13, 198, 46846, 796, 3359, 952, 13, 13247, 7, 9806, 62, 7857, 28, 940, 8, 198, 2, 11703, 657, 318, 257, 1302, 12, 259, 2378, 11, 1568, 6928, 351, 262, 8824, 7108, 1643, 8899, 198, 2, 279, 2645, 600, 25, 15560, 28, 49382, 12, 16341, 198, 28311, 25, 198, 220, 220, 220, 34020, 1677, 10067, 796, 705, 22977, 14, 22018, 1077, 19355, 1343, 965, 7, 26288, 31519, 13, 10599, 341, 8, 1343, 45302, 65, 3149, 6, 198, 220, 220, 220, 36992, 33767, 796, 3359, 952, 13, 2202, 40961, 13128, 8899, 7, 9654, 7, 46700, 1677, 10067, 11, 705, 26145, 6, 4008, 198, 220, 220, 220, 31598, 2538, 62, 10761, 2389, 796, 3359, 952, 13, 35103, 41339, 7, 26094, 33767, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17465, 62, 1477, 5067, 28, 13812, 952, 13, 10258, 3103, 332, 353, 22784, 8, 198, 220, 220, 220, 44441, 13, 33295, 7, 25621, 2538, 62, 10761, 2389, 8, 198, 16341, 25, 198, 220, 220, 220, 44441, 13, 33295, 7, 324, 1878, 4872, 62, 13812, 62, 5239, 13, 18242, 13, 33986, 7, 12310, 7036, 62, 37, 35830, 11, 3124, 28, 15, 87, 5777, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 12298, 6684, 6, 4008, 198, 220, 220, 220, 44441, 58, 15, 4083, 87, 796, 357, 26288, 31519, 13, 10394, 532, 44441, 58, 15, 4083, 7784, 278, 62, 3524, 58, 17, 60, 1343, 352, 8, 3373, 362, 198, 220, 220, 220, 44441, 58, 15, 4083, 88, 796, 13954, 31519, 13, 17015, 3373, 362, 532, 352, 198, 2, 26632, 352, 12, 19, 389, 281, 19001, 1088, 262, 8824, 5873, 1377, 2420, 14722, 198, 2, 11677, 416, 352, 17465, 510, 14, 2902, 14, 9464, 14, 3506, 13, 20768, 2292, 318, 572, 262, 17593, 11, 198, 2, 6153, 319, 717, 14976, 13, 20768, 2420, 1988, 1276, 307, 890, 1576, 329, 198, 2, 14069, 14486, 4731, 1568, 13, 198, 1640, 1312, 287, 2837, 7, 19, 2599, 198, 220, 220, 220, 44441, 13, 33295, 7, 324, 1878, 4872, 62, 13812, 62, 5239, 13, 18242, 13, 33986, 7, 12310, 7036, 62, 37, 35830, 11, 3124, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 2079, 13, 24, 4, 3256, 331, 10779, 2079, 4008, 198, 2, 11703, 642, 318, 262, 8824, 5873, 357, 261, 1353, 286, 262, 19001, 14722, 8, 198, 46846, 13, 33295, 7, 324, 1878, 4872, 62, 13812, 62, 5239, 13, 18242, 13, 33986, 7, 12310, 7036, 62, 37, 35830, 11, 3124, 28, 15, 87, 29312, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 2079, 13, 24, 4, 3256, 331, 10779, 2079, 4008, 198, 2, 11703, 718, 318, 262, 1459, 640, 198, 46846, 13, 33295, 7, 324, 1878, 4872, 62, 13812, 62, 5239, 13, 18242, 13, 33986, 7, 43, 1503, 8264, 62, 37, 35830, 11, 3124, 28, 15, 87, 1795, 1795, 1795, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 1065, 25, 405, 3256, 331, 10779, 2079, 4008, 198, 2, 11703, 767, 318, 262, 1459, 3128, 198, 46846, 13, 33295, 7, 324, 1878, 4872, 62, 13812, 62, 5239, 13, 18242, 13, 33986, 7, 12310, 7036, 62, 37, 35830, 11, 3124, 28, 15, 87, 1795, 1795, 1795, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 1065, 14, 3132, 3256, 331, 10779, 2079, 4008, 198, 2, 11703, 807, 318, 257, 6194, 12739, 1306, 4485, 393, 900, 198, 46846, 13, 33295, 7, 324, 1878, 4872, 62, 13812, 62, 5239, 13, 18242, 13, 33986, 7, 23060, 10744, 3535, 62, 37, 35830, 11, 3124, 28, 15, 87, 405, 5777, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 87, 3256, 331, 10779, 2079, 4008, 198, 2, 11703, 860, 318, 262, 640, 286, 357, 273, 640, 284, 8, 1306, 4485, 14, 2617, 1785, 198, 46846, 13, 33295, 7, 324, 1878, 4872, 62, 13812, 62, 5239, 13, 18242, 13, 33986, 7, 12310, 7036, 62, 37, 35830, 11, 3124, 28, 15, 87, 405, 5777, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 1065, 25, 405, 3256, 331, 10779, 2079, 4008, 198, 26288, 31519, 13, 12860, 7, 46846, 8, 198, 198, 12884, 33249, 796, 7311, 7, 13376, 62, 710, 404, 7168, 28, 3526, 13, 12161, 3185, 10426, 3698, 11, 14257, 28, 25101, 8, 198, 12884, 33249, 13, 8443, 3419, 198, 198, 2, 42355, 2043, 52, 7206, 11, 44533, 2043, 52, 7206, 11, 20460, 57, 11651, 389, 900, 510, 1752, 11, 6937, 625, 598, 10869, 198, 198, 2, 376, 7569, 32477, 14, 6511, 3984, 422, 13141, 13, 9078, 13, 1002, 407, 1944, 11, 779, 198, 2, 6101, 4903, 349, 5040, 13, 770, 691, 2476, 284, 307, 1760, 1752, 11, 379, 13693, 0, 198, 28311, 25, 198, 220, 220, 220, 42355, 2043, 52, 7206, 796, 13141, 17816, 15460, 3984, 20520, 198, 220, 220, 220, 44533, 2043, 52, 7206, 796, 13141, 17816, 6511, 3984, 20520, 198, 220, 220, 220, 3601, 10786, 12814, 8574, 4903, 349, 5040, 25, 46083, 42355, 2043, 52, 7206, 11, 44533, 2043, 52, 7206, 8, 198, 16341, 7383, 12331, 25, 198, 220, 220, 220, 42355, 2043, 52, 7206, 11, 44533, 2043, 52, 7206, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 49791, 13, 69, 7569, 62, 7890, 10786, 4023, 1378, 2503, 13, 469, 20106, 1018, 259, 13, 3262, 14, 17752, 13, 31197, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 6978, 41888, 17816, 469, 20106, 1018, 259, 62, 15460, 3984, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 469, 20106, 1018, 259, 62, 6511, 3984, 6, 11907, 4008, 198, 220, 220, 220, 3601, 10786, 12814, 6101, 4903, 349, 5040, 25, 46083, 42355, 2043, 52, 7206, 11, 44533, 2043, 52, 7206, 8, 198, 198, 2, 8778, 640, 6516, 4731, 422, 13141, 13, 9078, 11, 2073, 6101, 4903, 349, 5040, 329, 428, 1165, 198, 2, 357, 4023, 1378, 6894, 2435, 15042, 13, 2398, 14, 15042, 14, 2435, 11340, 329, 1351, 737, 198, 28311, 25, 198, 220, 220, 220, 20460, 57, 11651, 796, 13141, 17816, 2435, 11340, 20520, 1303, 304, 13, 70, 13, 705, 18165, 14, 3791, 62, 49278, 6, 198, 16341, 25, 198, 220, 220, 220, 20460, 57, 11651, 796, 6045, 1303, 6101, 4903, 349, 5040, 198, 198, 2, 5345, 4238, 8801, 640, 11, 635, 21207, 4238, 18119, 11677, 981, 198, 2, 994, 357, 11929, 8574, 287, 13141, 13, 9078, 355, 340, 743, 1487, 351, 360, 2257, 737, 198, 2, 279, 2645, 600, 25, 15560, 28, 49382, 12, 16341, 198, 28311, 25, 198, 220, 220, 220, 360, 1404, 2767, 12789, 11, 18119, 62, 27977, 28480, 796, 4296, 62, 2435, 7, 34694, 57, 11651, 8, 198, 16341, 25, 198, 220, 220, 220, 360, 1404, 2767, 12789, 11, 18119, 62, 27977, 28480, 796, 640, 13, 12001, 2435, 22784, 705, 10, 405, 25, 405, 6, 198, 43, 11262, 62, 23060, 7792, 796, 640, 13, 28015, 2435, 7, 35, 1404, 2767, 12789, 8, 198, 198, 2, 12868, 4382, 329, 8824, 1366, 329, 1459, 1987, 12, 9769, 2278, 290, 1343, 1731, 4058, 198, 18973, 40, 3727, 796, 17635, 198, 1640, 24644, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 19878, 40, 3727, 13, 33295, 7, 31640, 6601, 7, 35, 1404, 2767, 12789, 11, 24644, 1635, 1987, 11, 18119, 62, 27977, 28480, 4008, 198, 2, 19878, 40, 3727, 58, 15, 60, 318, 262, 1459, 1987, 12, 9769, 640, 2278, 356, 821, 287, 13, 19878, 40, 3727, 58, 16, 60, 318, 262, 198, 2, 1708, 1987, 2250, 13, 6060, 318, 14869, 866, 290, 649, 1366, 11351, 1740, 355, 1528, 198, 2, 24264, 13, 27522, 356, 1244, 761, 257, 19878, 40, 3727, 58, 17, 60, 329, 1728, 5917, 475, 198, 2, 340, 3568, 407, 11, 326, 338, 3421, 3538, 1576, 611, 2622, 13, 628, 198, 2, 8779, 1268, 17579, 3185, 16529, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 308, 66, 13, 33327, 3419, 198, 220, 220, 220, 20229, 796, 640, 13, 2435, 3419, 1303, 9236, 36835, 640, 287, 4201, 628, 220, 220, 220, 1303, 35908, 351, 640, 4382, 790, 5299, 1065, 2250, 198, 220, 220, 220, 611, 20229, 532, 41894, 62, 23060, 7792, 1875, 1105, 1635, 3126, 1635, 3126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 1404, 2767, 12789, 11, 18119, 62, 27977, 28480, 796, 4296, 62, 2435, 7, 34694, 57, 11651, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41894, 62, 23060, 7792, 796, 640, 13, 28015, 2435, 7, 35, 1404, 2767, 12789, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 1303, 3862, 743, 423, 3421, 26, 14976, 20229, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 62, 2435, 3419, 460, 3714, 281, 6631, 611, 640, 4382, 1595, 470, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3031, 13, 1320, 338, 7477, 11, 1394, 2491, 351, 674, 1459, 640, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4574, 17510, 640, 4058, 284, 1005, 563, 287, 1542, 2431, 357, 9099, 470, 43334, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 4382, 351, 5100, 20743, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41894, 62, 23060, 7792, 15853, 1542, 1635, 3126, 1303, 1542, 2431, 4613, 4201, 628, 220, 220, 220, 1303, 1002, 19878, 40, 3727, 468, 21350, 11, 1445, 1366, 866, 290, 21207, 649, 1343, 1731, 12, 9769, 1366, 198, 220, 220, 220, 611, 20229, 18189, 19878, 40, 3727, 58, 16, 4083, 13602, 3847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19878, 40, 3727, 58, 15, 60, 796, 19878, 40, 3727, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 19878, 40, 3727, 58, 16, 60, 796, 6869, 6601, 7, 2435, 13, 12001, 2435, 22784, 1987, 11, 18119, 62, 27977, 28480, 8, 628, 220, 220, 220, 1303, 45559, 3810, 3463, 278, 286, 9439, 338, 7108, 3691, 1909, 338, 11, 1262, 1459, 640, 198, 220, 220, 220, 371, 1404, 9399, 796, 14808, 45669, 532, 19878, 40, 3727, 58, 15, 4083, 13602, 3847, 8, 1220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 18973, 40, 3727, 58, 16, 4083, 13602, 3847, 532, 19878, 40, 3727, 58, 15, 4083, 13602, 3847, 4008, 198, 220, 220, 220, 1303, 45559, 3810, 8824, 7108, 705, 496, 6, 198, 220, 220, 220, 1303, 657, 13, 15, 220, 796, 649, 8824, 198, 220, 220, 220, 1303, 657, 13, 1495, 796, 717, 3860, 198, 220, 220, 220, 1303, 657, 13, 20, 220, 796, 1336, 8824, 198, 220, 220, 220, 1303, 657, 13, 2425, 796, 938, 3860, 198, 220, 220, 220, 1303, 352, 13, 15, 220, 796, 649, 8824, 198, 220, 220, 220, 611, 19878, 40, 3727, 58, 15, 4083, 496, 1279, 19878, 40, 3727, 58, 16, 4083, 496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 8264, 796, 357, 18973, 40, 3727, 58, 15, 4083, 496, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 18973, 40, 3727, 58, 16, 4083, 496, 532, 19878, 40, 3727, 58, 15, 4083, 496, 8, 1635, 371, 1404, 9399, 8, 4064, 352, 13, 15, 198, 220, 220, 220, 2073, 25, 1303, 33141, 2479, 7917, 1845, 633, 357, 16, 13, 15, 4613, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 9439, 338, 2479, 318, 1342, 621, 1909, 338, 11, 340, 9217, 257, 649, 8824, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27668, 13, 3060, 352, 284, 9439, 338, 2479, 618, 14492, 2479, 25979, 13, 198, 220, 220, 220, 220, 220, 220, 220, 317, 8264, 796, 357, 18973, 40, 3727, 58, 15, 4083, 496, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 18973, 40, 3727, 58, 16, 4083, 496, 1343, 352, 532, 19878, 40, 3727, 58, 15, 4083, 496, 8, 1635, 371, 1404, 9399, 8, 4064, 352, 13, 15, 628, 220, 220, 220, 1303, 317, 8264, 460, 307, 973, 329, 1277, 35847, 284, 8824, 1643, 8899, 357, 15, 284, 7388, 8, 1377, 777, 198, 220, 220, 220, 1303, 4263, 389, 662, 12, 26238, 329, 257, 14174, 1661, 38765, 357, 82, 6192, 5651, 1352, 6100, 198, 220, 220, 220, 1303, 1729, 2815, 11458, 1973, 16558, 737, 198, 220, 220, 220, 8782, 10067, 796, 493, 7, 11879, 1635, 1802, 8, 4064, 1802, 1303, 4722, 8899, 657, 284, 7388, 628, 220, 220, 220, 1303, 3244, 779, 617, 5192, 284, 651, 5873, 6578, 198, 220, 220, 220, 611, 317, 8264, 19841, 657, 13, 20, 25, 1303, 968, 4613, 717, 3860, 4613, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 19878, 43960, 796, 357, 16, 532, 10688, 13, 6966, 7, 11879, 1635, 362, 1635, 10688, 13, 14415, 4008, 1635, 2026, 198, 220, 220, 220, 2073, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6462, 4613, 938, 3860, 4613, 649, 198, 220, 220, 220, 220, 220, 220, 220, 19878, 43960, 796, 357, 16, 1343, 10688, 13, 6966, 19510, 11879, 532, 657, 13, 20, 8, 1635, 362, 1635, 10688, 13, 14415, 4008, 1635, 2026, 628, 220, 220, 220, 1303, 9938, 1306, 4485, 14, 2617, 1785, 11, 8253, 416, 262, 1109, 326, 617, 1987, 12, 9769, 198, 220, 220, 220, 1303, 9574, 1244, 407, 423, 530, 393, 262, 584, 357, 4360, 3221, 466, 8, 2233, 284, 262, 198, 220, 220, 220, 1303, 6869, 7396, 5299, 1120, 23550, 1568, 1123, 1110, 13, 770, 3544, 257, 33908, 2700, 3164, 11, 198, 220, 220, 220, 1303, 1762, 16196, 832, 262, 640, 9574, 284, 17276, 4485, 14, 2617, 2995, 198, 220, 220, 220, 1303, 326, 317, 8, 2152, 287, 326, 1987, 12, 9769, 2278, 357, 533, 407, 6045, 828, 347, 8, 389, 991, 287, 198, 220, 220, 220, 1303, 262, 2003, 11, 290, 327, 8, 389, 5699, 621, 262, 938, 4724, 13, 1867, 338, 1364, 379, 262, 198, 220, 220, 220, 1303, 886, 318, 262, 1306, 4485, 393, 900, 357, 392, 262, 34062, 286, 262, 1785, 2099, 4952, 198, 220, 220, 220, 1303, 514, 1771, 6869, 338, 3058, 17450, 393, 407, 737, 198, 220, 220, 220, 39726, 62, 20114, 3525, 796, 19878, 40, 3727, 58, 16, 4083, 13602, 3847, 1343, 1802, 830, 1303, 5221, 717, 2872, 198, 220, 220, 220, 329, 24644, 287, 17687, 7, 18973, 40, 3727, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24644, 13, 17163, 290, 39726, 62, 20114, 3525, 18189, 24644, 13, 17163, 18189, 20229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39726, 62, 20114, 3525, 796, 24644, 13, 17163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45698, 1677, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24644, 13, 2617, 290, 39726, 62, 20114, 3525, 18189, 24644, 13, 2617, 18189, 20229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39726, 62, 20114, 3525, 796, 24644, 13, 2617, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45698, 1677, 796, 6407, 628, 220, 220, 220, 611, 13954, 31519, 13, 10599, 341, 287, 357, 15, 11, 11546, 2599, 1303, 6075, 38342, 705, 1044, 6794, 6, 12852, 198, 220, 220, 220, 220, 220, 220, 220, 33269, 1137, 62, 55, 796, 4764, 220, 220, 220, 220, 220, 1303, 8255, 1863, 826, 198, 220, 220, 220, 220, 220, 220, 220, 13070, 1340, 62, 56, 796, 657, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6869, 379, 1364, 198, 220, 220, 220, 220, 220, 220, 220, 20460, 62, 56, 796, 718, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3862, 379, 1353, 826, 198, 220, 220, 220, 220, 220, 220, 220, 49261, 62, 56, 796, 2608, 220, 220, 220, 220, 220, 220, 1303, 15648, 14, 2617, 379, 4220, 826, 198, 220, 220, 220, 2073, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38937, 705, 634, 12907, 6, 12852, 198, 220, 220, 220, 220, 220, 220, 220, 33269, 1137, 62, 55, 796, 1467, 220, 220, 220, 220, 220, 1303, 8255, 866, 3641, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45698, 1677, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13070, 1340, 62, 56, 796, 657, 220, 220, 220, 220, 1303, 6869, 379, 1353, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49261, 62, 56, 796, 4353, 220, 220, 1303, 15648, 14, 2617, 287, 3504, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20460, 62, 56, 796, 5125, 220, 220, 220, 1303, 3862, 14, 4475, 379, 4220, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20460, 62, 56, 796, 718, 220, 220, 220, 220, 1303, 3862, 14, 4475, 379, 1353, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49261, 62, 56, 796, 2608, 220, 220, 1303, 15648, 14, 2617, 287, 3504, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13070, 1340, 62, 56, 796, 3933, 220, 220, 220, 1303, 6869, 379, 4220, 628, 220, 220, 220, 3601, 3419, 628, 220, 220, 220, 1303, 10133, 8824, 2939, 357, 46846, 58, 15, 12962, 198, 220, 220, 220, 34020, 1677, 10067, 796, 705, 22977, 14, 22977, 6, 1343, 705, 90, 15, 25, 15, 29, 17, 92, 4458, 18982, 7, 10913, 10067, 8, 1343, 45302, 65, 3149, 6, 198, 220, 220, 220, 36992, 33767, 796, 3359, 952, 13, 2202, 40961, 13128, 8899, 7, 9654, 7, 46700, 1677, 10067, 11, 705, 26145, 6, 4008, 198, 220, 220, 220, 31598, 2538, 62, 10761, 2389, 796, 3359, 952, 13, 35103, 41339, 7, 26094, 33767, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17465, 62, 1477, 5067, 28, 13812, 952, 13, 10258, 3103, 332, 353, 22784, 8, 198, 220, 220, 220, 31598, 2538, 62, 10761, 2389, 13, 87, 796, 657, 198, 220, 220, 220, 31598, 2538, 62, 10761, 2389, 13, 88, 796, 13070, 1340, 62, 56, 198, 220, 220, 220, 44441, 58, 15, 60, 796, 31598, 2538, 62, 10761, 2389, 628, 220, 220, 220, 1303, 10133, 1411, 1988, 357, 20, 14722, 25, 44441, 58, 16, 12, 19, 60, 329, 19001, 11, 685, 20, 60, 329, 2420, 8, 198, 220, 220, 220, 611, 19878, 43960, 18189, 7388, 13, 3865, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19269, 2751, 796, 705, 3064, 4, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19269, 2751, 796, 705, 90, 25, 13, 16, 69, 92, 4458, 18982, 7, 18973, 43960, 1343, 657, 13, 2713, 8, 1343, 705, 4, 6, 198, 220, 220, 220, 3601, 7, 45669, 11, 19269, 2751, 11, 705, 12853, 11537, 198, 220, 220, 220, 1303, 5345, 5002, 642, 717, 11, 779, 663, 2546, 290, 2292, 329, 4634, 1854, 198, 220, 220, 220, 44441, 58, 20, 4083, 5239, 796, 19269, 2751, 198, 220, 220, 220, 44441, 58, 20, 4083, 87, 796, 1467, 532, 44441, 58, 20, 4083, 7784, 278, 62, 3524, 58, 17, 60, 3373, 362, 198, 220, 220, 220, 44441, 58, 20, 4083, 88, 796, 13070, 1340, 62, 56, 1343, 1467, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 16, 11, 642, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 44441, 29795, 4083, 5239, 796, 44441, 58, 20, 4083, 5239, 198, 220, 220, 220, 44441, 58, 16, 4083, 87, 11, 44441, 58, 16, 4083, 88, 796, 44441, 58, 20, 4083, 87, 11, 44441, 58, 20, 4083, 88, 532, 352, 1303, 3205, 352, 17465, 198, 220, 220, 220, 44441, 58, 17, 4083, 87, 11, 44441, 58, 17, 4083, 88, 796, 44441, 58, 20, 4083, 87, 532, 352, 11, 44441, 58, 20, 4083, 88, 1303, 9578, 198, 220, 220, 220, 44441, 58, 18, 4083, 87, 11, 44441, 58, 18, 4083, 88, 796, 44441, 58, 20, 4083, 87, 1343, 352, 11, 44441, 58, 20, 4083, 88, 1303, 6498, 198, 220, 220, 220, 44441, 58, 19, 4083, 87, 11, 44441, 58, 19, 4083, 88, 796, 44441, 58, 20, 4083, 87, 11, 44441, 58, 20, 4083, 88, 1343, 352, 1303, 5588, 628, 220, 220, 220, 1303, 10133, 1306, 12, 15596, 640, 357, 46846, 58, 23, 60, 290, 685, 24, 12962, 198, 220, 220, 220, 1303, 2141, 428, 878, 640, 780, 356, 761, 4591, 273, 31590, 20229, 1988, 198, 220, 220, 220, 49261, 62, 34694, 796, 640, 13, 12001, 2435, 7, 45, 13918, 62, 20114, 3525, 8, 1303, 38240, 284, 2878, 329, 1568, 198, 220, 220, 220, 611, 327, 28270, 41925, 25, 1303, 5438, 39726, 62, 20114, 3525, 355, 33970, 284, 1785, 198, 220, 220, 220, 220, 220, 220, 220, 39726, 62, 20114, 3525, 48185, 20229, 1303, 3862, 1566, 357, 14259, 640, 286, 8, 1306, 4485, 14, 2617, 198, 220, 220, 220, 220, 220, 220, 220, 20625, 3843, 1546, 796, 39726, 62, 20114, 3525, 3373, 3126, 198, 220, 220, 220, 220, 220, 220, 220, 19269, 2751, 796, 965, 7, 23678, 3843, 1546, 3373, 3126, 8, 1343, 705, 32105, 1343, 705, 90, 15, 25, 15, 29, 17, 92, 4458, 18982, 7, 23678, 3843, 1546, 4064, 3126, 8, 198, 220, 220, 220, 2073, 25, 1303, 5438, 39726, 62, 20114, 3525, 287, 8801, 640, 198, 220, 220, 220, 220, 220, 220, 220, 19269, 2751, 796, 289, 71, 62, 3020, 7, 20114, 3525, 62, 34694, 8, 198, 220, 220, 220, 44441, 58, 24, 4083, 5239, 796, 19269, 2751, 198, 220, 220, 220, 11961, 2640, 796, 33269, 1137, 62, 55, 532, 357, 46846, 58, 24, 4083, 7784, 278, 62, 3524, 58, 17, 60, 1343, 718, 8, 3373, 362, 198, 220, 220, 220, 44441, 58, 23, 4083, 87, 796, 11961, 2640, 198, 220, 220, 220, 611, 45698, 1677, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7406, 1785, 318, 25823, 198, 220, 220, 220, 220, 220, 220, 220, 44441, 58, 23, 4083, 5239, 796, 705, 59, 84, 2481, 32, 22, 6, 1303, 5588, 2017, 15452, 422, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 44441, 58, 23, 4083, 88, 796, 49261, 62, 56, 532, 362, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 50, 1039, 25, 3256, 19269, 2751, 8, 198, 220, 220, 220, 2073, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7406, 1785, 318, 371, 24352, 198, 220, 220, 220, 220, 220, 220, 220, 44441, 58, 23, 4083, 5239, 796, 705, 59, 84, 2481, 32, 20, 6, 1303, 3205, 2017, 15452, 422, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 44441, 58, 23, 4083, 88, 796, 49261, 62, 56, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 49, 2696, 25, 3256, 19269, 2751, 8, 198, 220, 220, 220, 44441, 58, 24, 4083, 87, 796, 11961, 2640, 1343, 718, 198, 220, 220, 220, 44441, 58, 24, 4083, 88, 796, 49261, 62, 56, 198, 220, 220, 220, 1303, 5438, 1785, 640, 287, 4077, 611, 257, 13, 76, 1539, 36505, 611, 279, 13, 76, 13, 198, 220, 220, 220, 44441, 58, 23, 4083, 8043, 796, 44441, 58, 24, 4083, 8043, 796, 357, 15, 87, 405, 5777, 405, 611, 49261, 62, 34694, 13, 17209, 62, 9769, 1279, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 657, 87, 34, 3023, 830, 8, 628, 220, 220, 220, 1303, 10133, 640, 357, 46846, 58, 21, 12962, 290, 3128, 357, 46846, 58, 22, 12962, 198, 220, 220, 220, 20229, 796, 640, 13, 12001, 2435, 3419, 198, 220, 220, 220, 19269, 2751, 796, 289, 71, 62, 3020, 7, 45669, 8, 198, 220, 220, 220, 44441, 58, 21, 4083, 5239, 796, 19269, 2751, 198, 220, 220, 220, 44441, 58, 21, 4083, 87, 796, 33269, 1137, 62, 55, 532, 44441, 58, 21, 4083, 7784, 278, 62, 3524, 58, 17, 60, 3373, 362, 198, 220, 220, 220, 44441, 58, 21, 4083, 88, 796, 20460, 62, 56, 198, 220, 220, 220, 611, 25000, 4221, 62, 26442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19269, 2751, 796, 965, 7, 45669, 13, 17209, 62, 2144, 8, 1343, 31051, 6, 1343, 965, 7, 45669, 13, 17209, 62, 76, 820, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19269, 2751, 796, 965, 7, 45669, 13, 17209, 62, 76, 820, 8, 1343, 31051, 6, 1343, 965, 7, 45669, 13, 17209, 62, 2144, 8, 198, 220, 220, 220, 44441, 58, 22, 4083, 5239, 796, 19269, 2751, 198, 220, 220, 220, 44441, 58, 22, 4083, 87, 796, 33269, 1137, 62, 55, 532, 44441, 58, 22, 4083, 7784, 278, 62, 3524, 58, 17, 60, 3373, 362, 198, 220, 220, 220, 44441, 58, 22, 4083, 88, 796, 20460, 62, 56, 1343, 838, 628, 220, 220, 220, 13954, 31519, 13, 5420, 3447, 3419, 1303, 5221, 1336, 1128, 2913, 357, 22018, 1077, 3159, 3360, 16461, 8, 198, 220, 220, 220, 640, 13, 42832, 7, 20, 8, 198 ]
2.262004
8,393
from ignite.metrics.metric import Metric from ignite.engine import Events class MetricsLambda(Metric): """ Apply a function to other metrics to obtain a new metric. The result of the new metric is defined to be the result of applying the function to the result of argument metrics. When update, this metric does not recursively update the metrics it depends on. When reset, all its dependency metrics would be resetted. When attach, all its dependencies would be automatically attached. Args: f (callable): the function that defines the computation args (sequence): Sequence of other metrics or something else that will be fed to ``f`` as arguments. Example: .. code-block:: python precision = Precision(average=False) recall = Recall(average=False) def Fbeta(r, p, beta): return torch.mean((1 + beta ** 2) * p * r / (beta ** 2 * p + r + 1e-20)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) F2 = MetricsLambda(Fbeta, recall, precision, 2) F3 = MetricsLambda(Fbeta, recall, precision, 3) F4 = MetricsLambda(Fbeta, recall, precision, 4) """
[ 6738, 44794, 13, 4164, 10466, 13, 4164, 1173, 1330, 3395, 1173, 198, 6738, 44794, 13, 18392, 1330, 18715, 628, 198, 4871, 3395, 10466, 43, 4131, 6814, 7, 9171, 1173, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27967, 257, 2163, 284, 584, 20731, 284, 7330, 257, 649, 18663, 13, 198, 220, 220, 220, 383, 1255, 286, 262, 649, 18663, 318, 5447, 284, 307, 262, 1255, 198, 220, 220, 220, 286, 11524, 262, 2163, 284, 262, 1255, 286, 4578, 20731, 13, 628, 220, 220, 220, 1649, 4296, 11, 428, 18663, 857, 407, 664, 1834, 2280, 4296, 262, 20731, 198, 220, 220, 220, 340, 8338, 319, 13, 1649, 13259, 11, 477, 663, 20203, 20731, 561, 307, 198, 220, 220, 220, 13259, 1513, 13, 1649, 10199, 11, 477, 663, 20086, 561, 307, 6338, 198, 220, 220, 220, 7223, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 357, 13345, 540, 2599, 262, 2163, 326, 15738, 262, 29964, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 357, 43167, 2599, 45835, 286, 584, 20731, 393, 1223, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 326, 481, 307, 11672, 284, 7559, 69, 15506, 355, 7159, 13, 628, 220, 220, 220, 17934, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 15440, 796, 39281, 7, 23913, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10014, 796, 44536, 7, 23913, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 825, 376, 31361, 7, 81, 11, 279, 11, 12159, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 28034, 13, 32604, 19510, 16, 1343, 12159, 12429, 362, 8, 1635, 279, 1635, 374, 1220, 357, 31361, 12429, 362, 1635, 279, 1343, 374, 1343, 352, 68, 12, 1238, 29720, 9186, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 376, 16, 796, 3395, 10466, 43, 4131, 6814, 7, 37, 31361, 11, 10014, 11, 15440, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 376, 17, 796, 3395, 10466, 43, 4131, 6814, 7, 37, 31361, 11, 10014, 11, 15440, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 376, 18, 796, 3395, 10466, 43, 4131, 6814, 7, 37, 31361, 11, 10014, 11, 15440, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 376, 19, 796, 3395, 10466, 43, 4131, 6814, 7, 37, 31361, 11, 10014, 11, 15440, 11, 604, 8, 198, 220, 220, 220, 37227, 198 ]
2.821596
426
#!/usr/bin/python # -*- coding:utf-8 -*- """ 北邮人网关登录脚本: 使用方法: 登录:python loginBuptGw.py i 退出:python loginBuptGw.py o """ import urllib2 import urllib import cookielib import hashlib import os import re import sys reload(sys) sys.setdefaultencoding('utf8') uname = XXXXXX #请正确填写学号 upass = 'XXXXXX' #请正确填写密码 if __name__ == '__main__': if len(sys.argv) < 2 or len(sys.argv) >= 3: usage() else: if sys.argv[1] == "i": u_pass = safe_md5(upass) u_data = login(u_pass).decode('gbk','ignore').encode('utf-8') #print u_data check_success(u_data) elif sys.argv[1] == "o": quit() else: usage()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 44293, 245, 165, 224, 106, 21689, 163, 121, 239, 17739, 111, 163, 247, 119, 37605, 243, 164, 226, 248, 17312, 105, 171, 120, 248, 198, 45635, 18796, 101, 43095, 37345, 243, 171, 120, 248, 198, 163, 247, 119, 37605, 243, 171, 120, 248, 29412, 17594, 33, 37623, 38, 86, 13, 9078, 1312, 198, 34460, 222, 49035, 118, 171, 120, 248, 29412, 17594, 33, 37623, 38, 86, 13, 9078, 267, 198, 37811, 198, 198, 11748, 2956, 297, 571, 17, 198, 11748, 2956, 297, 571, 198, 11748, 4255, 8207, 571, 198, 11748, 12234, 8019, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 25064, 198, 260, 2220, 7, 17597, 8, 198, 17597, 13, 2617, 12286, 12685, 7656, 10786, 40477, 23, 11537, 198, 198, 403, 480, 796, 1395, 24376, 55, 220, 220, 220, 1303, 46237, 115, 29826, 96, 163, 94, 106, 161, 94, 104, 37863, 247, 27764, 99, 20998, 115, 198, 929, 562, 796, 705, 24376, 8051, 6, 220, 1303, 46237, 115, 29826, 96, 163, 94, 106, 161, 94, 104, 37863, 247, 43380, 228, 163, 254, 223, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 361, 18896, 7, 17597, 13, 853, 85, 8, 1279, 362, 393, 18896, 7, 17597, 13, 853, 85, 8, 18189, 513, 25, 198, 197, 197, 26060, 3419, 198, 197, 17772, 25, 198, 197, 197, 361, 25064, 13, 853, 85, 58, 16, 60, 6624, 366, 72, 1298, 198, 197, 197, 197, 84, 62, 6603, 796, 220, 3338, 62, 9132, 20, 7, 929, 562, 8, 198, 197, 197, 197, 84, 62, 7890, 796, 17594, 7, 84, 62, 6603, 737, 12501, 1098, 10786, 22296, 74, 41707, 46430, 27691, 268, 8189, 10786, 40477, 12, 23, 11537, 198, 197, 197, 197, 2, 4798, 334, 62, 7890, 198, 197, 197, 197, 9122, 62, 13138, 7, 84, 62, 7890, 8, 198, 197, 197, 417, 361, 25064, 13, 853, 85, 58, 16, 60, 6624, 366, 78, 1298, 198, 197, 197, 197, 47391, 3419, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 26060, 3419, 628, 198 ]
1.734637
358
from scipy.interpolate import interp1d import numpy as np def vectorize(func_orig): """ A function that takes a function and returns another that can fun on lists and arrays :param func_orig: any functions :return: vectorized function """ return func def get_interp_extrapolate_functions(x, base_model, linear_deviations): """ Get the three interp/extrapolation model functions: base function, deviates function, total model function :param x: the x data :param base_model: model model cvxpy expression :param linear_deviations: list of completed linear_deviations objects :return: base function, deviates function, total model function """ # TODO: this requires mapping to be given, make it work with matrix only interp_base_model_func = interp1d(x, base_model.value, fill_value="extrapolate") return vectorize(func_base), vectorize(func_deviates), vectorize(func)
[ 6738, 629, 541, 88, 13, 3849, 16104, 378, 1330, 987, 79, 16, 67, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4299, 15879, 1096, 7, 20786, 62, 11612, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2163, 326, 2753, 257, 2163, 290, 198, 220, 220, 220, 5860, 1194, 326, 460, 1257, 319, 8341, 290, 26515, 198, 220, 220, 220, 1058, 17143, 25439, 62, 11612, 25, 597, 5499, 198, 220, 220, 220, 1058, 7783, 25, 15879, 1143, 2163, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 25439, 628, 198, 4299, 651, 62, 3849, 79, 62, 2302, 2416, 27976, 62, 12543, 2733, 7, 87, 11, 2779, 62, 19849, 11, 14174, 62, 7959, 40356, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 1115, 987, 79, 14, 2302, 2416, 21417, 2746, 5499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 2163, 11, 1614, 32820, 2163, 11, 2472, 2746, 2163, 198, 220, 220, 220, 1058, 17143, 2124, 25, 262, 2124, 1366, 198, 220, 220, 220, 1058, 17143, 2779, 62, 19849, 25, 2746, 2746, 269, 85, 87, 9078, 5408, 198, 220, 220, 220, 1058, 17143, 14174, 62, 7959, 40356, 25, 1351, 286, 5668, 14174, 62, 7959, 40356, 5563, 198, 220, 220, 220, 1058, 7783, 25, 220, 2779, 2163, 11, 1614, 32820, 2163, 11, 2472, 2746, 2163, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16926, 46, 25, 428, 4433, 16855, 284, 307, 1813, 11, 787, 340, 670, 351, 17593, 691, 198, 220, 220, 220, 987, 79, 62, 8692, 62, 19849, 62, 20786, 796, 987, 79, 16, 67, 7, 87, 11, 2779, 62, 19849, 13, 8367, 11, 6070, 62, 8367, 2625, 2302, 2416, 27976, 4943, 628, 220, 220, 220, 1441, 15879, 1096, 7, 20786, 62, 8692, 828, 15879, 1096, 7, 20786, 62, 7959, 32820, 828, 15879, 1096, 7, 20786, 8, 198 ]
3.091205
307
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\objects\decorative\__init__.py # Compiled at: 2009-11-20 02:49:20 # Size of source mod 2**32: 106 bytes pass
[ 2, 34318, 2349, 21, 2196, 513, 13, 22, 13, 19, 198, 2, 11361, 18022, 8189, 513, 13, 22, 357, 2091, 5824, 8, 198, 2, 4280, 3361, 3902, 422, 25, 11361, 513, 13, 22, 13, 24, 357, 31499, 14, 85, 18, 13, 22, 13, 24, 25, 1485, 66, 24, 2857, 2857, 66, 22, 11, 2447, 1596, 12131, 11, 1248, 25, 3365, 25, 1507, 8, 685, 5653, 34, 410, 13, 48104, 5598, 1643, 357, 28075, 2414, 15437, 198, 2, 13302, 47238, 2393, 1438, 25, 309, 7479, 818, 8777, 59, 43241, 59, 7391, 82, 59, 10697, 59, 48205, 59, 12501, 36478, 59, 834, 15003, 834, 13, 9078, 198, 2, 3082, 3902, 379, 25, 3717, 12, 1157, 12, 1238, 7816, 25, 2920, 25, 1238, 198, 2, 12849, 286, 2723, 953, 362, 1174, 2624, 25, 15696, 9881, 198, 6603 ]
2.447761
134
import random from unittest import TestCase import peb
[ 11748, 4738, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 11748, 613, 65, 628, 198 ]
3.411765
17
# Generated by Django 3.1.2 on 2020-11-04 15:53 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 17, 319, 12131, 12, 1157, 12, 3023, 1315, 25, 4310, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import argparse import matplotlib matplotlib.use('agg') import csv import json import multiprocessing as mp import os import random import re import sys from functools import partial from operator import attrgetter, itemgetter import networkx as nx import numpy as np import pandas as pd import time from sofa_aisi import * from sofa_common import * from sofa_config import * from sofa_print import * from matplotlib import pyplot as plt import grpc import potato_pb2 import potato_pb2_grpc import socket import random import subprocess from sofa_ml import hsg_v2 # input: pfv(performance feature vector), Pandas.DataFrame # output: hint, docker_image
[ 11748, 1822, 29572, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 10786, 9460, 11537, 198, 11748, 269, 21370, 198, 11748, 33918, 198, 11748, 18540, 305, 919, 278, 355, 29034, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 302, 198, 11748, 25064, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 10088, 1330, 708, 81, 1136, 353, 11, 2378, 1136, 353, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 640, 198, 6738, 34902, 62, 15152, 72, 1330, 1635, 198, 6738, 34902, 62, 11321, 1330, 1635, 198, 6738, 34902, 62, 11250, 1330, 1635, 198, 6738, 34902, 62, 4798, 1330, 1635, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 1036, 14751, 198, 11748, 21219, 62, 40842, 17, 198, 11748, 21219, 62, 40842, 17, 62, 2164, 14751, 198, 11748, 17802, 198, 11748, 4738, 198, 11748, 850, 14681, 198, 6738, 34902, 62, 4029, 1330, 289, 45213, 62, 85, 17, 628, 198, 2, 5128, 25, 279, 69, 85, 7, 26585, 3895, 15879, 828, 16492, 292, 13, 6601, 19778, 198, 2, 5072, 25, 9254, 11, 36253, 62, 9060, 220, 220, 628, 198 ]
3.340102
197
import MySQLdb db = MySQLdb.connect("db", "root", "my-secret-pw", "bd_notes") cursor = db.cursor() global resultsExportEtudiants resultsExportEtudiants = []
[ 11748, 33476, 9945, 198, 198, 9945, 796, 33476, 9945, 13, 8443, 7203, 9945, 1600, 366, 15763, 1600, 366, 1820, 12, 21078, 12, 79, 86, 1600, 366, 17457, 62, 17815, 4943, 198, 198, 66, 21471, 796, 20613, 13, 66, 21471, 3419, 198, 20541, 2482, 43834, 36, 83, 463, 17883, 198, 43420, 43834, 36, 83, 463, 17883, 796, 17635, 628 ]
2.758621
58
import abc import asyncio from typing import Any from typing import Dict from typing import Optional from async_blp.enums import ErrorBehaviour from async_blp.utils import log # pylint: disable=ungrouped-imports try: import blpapi except ImportError: from async_blp.utils import env_test as blpapi LOGGER = log.get_logger()
[ 11748, 450, 66, 198, 11748, 30351, 952, 198, 6738, 19720, 1330, 4377, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 30351, 62, 2436, 79, 13, 268, 5700, 1330, 13047, 25267, 37716, 198, 6738, 30351, 62, 2436, 79, 13, 26791, 1330, 2604, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 2150, 3233, 276, 12, 320, 3742, 198, 28311, 25, 198, 220, 220, 220, 1330, 698, 79, 15042, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 30351, 62, 2436, 79, 13, 26791, 1330, 17365, 62, 9288, 355, 698, 79, 15042, 198, 198, 25294, 30373, 796, 2604, 13, 1136, 62, 6404, 1362, 3419, 628 ]
3.054545
110
import collections from typing import Any, Dict, Tuple def format_keyword(keyword: str, val: Any, lop_off: bool = True) -> Tuple[str, str]: """Function to reformat value `val` for `keyword` from python into nwchem-speak.""" # Transform string booleans into " " if val is True: return keyword.lower(), "true" elif val is False: return keyword.lower(), "false" # complete hack # if keyword.upper() == "MEMORY": # return keyword.lower(), f"{val} byte" elif isinstance(val, list): # if it is a list... join the list into a string ??? when is this in play text = " ".join([str(v) for v in val]) elif isinstance(val, dict): # val is a dict... text is list text = [] for k, v in val.items(): merge = [k] merge.extend(str(v) if isinstance(v, (int, float)) else list(map(str, v))) text.append(" ".join(merge)) text = " ".join(text) else: text = str(val) if lop_off: return keyword[7:].lower(), text else: return keyword.lower(), text def format_keywords(keywords: Dict[str, Any]) -> str: """From NWCHEM-directed, non-default `keywords` dictionary, write a NWCHEM deck.""" grouped_options = rec_dd() for group_key, val in keywords.items(): nesting = group_key.split("__") if len(nesting) == 1: key = nesting[0] grouped_options["aaaglobal"][key] = val elif len(nesting) == 2: g1, key = nesting grouped_options[g1][key] = val elif len(nesting) == 3: g1, g2, key = nesting grouped_options[g1][g2][key] = val else: print(nesting) raise ValueError("Nesting N!") grouped_lines = {} for group, opts in sorted(grouped_options.items()): lines = [] group_level_lines = [] for key, val in grouped_options[group].items(): if isinstance(val, dict): g2_level_lines = [] g2_level_lines.append(key.lower()) for k2, v2 in val.items(): line2 = " ".join(format_keyword(k2, v2, lop_off=False)) g2_level_lines.append(line2) g2_level_lines = " ".join(g2_level_lines) lines.append(g2_level_lines) else: line = " ".join(format_keyword(key, val, lop_off=False)) if group.lower() == "basis" and any( [word in line for word in ["spherical", "cartesian", "print", "noprint", "rel"]] ): group_level_lines.append(line) else: lines.append(line) if group == "aaaglobal": grouped_lines[group] = "\n".join(lines) + "\n" else: grouped_lines[group] = ( f"{group.lower()} " + " ".join(group_level_lines) + "\n " + "\n ".join(lines) + "\nend\n" ) return "\n".join(grouped_lines.values()) + "\n"
[ 11748, 17268, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 309, 29291, 628, 198, 4299, 5794, 62, 2539, 4775, 7, 2539, 4775, 25, 965, 11, 1188, 25, 4377, 11, 300, 404, 62, 2364, 25, 20512, 796, 6407, 8, 4613, 309, 29291, 58, 2536, 11, 965, 5974, 198, 220, 220, 220, 37227, 22203, 284, 4975, 265, 1988, 4600, 2100, 63, 329, 4600, 2539, 4775, 63, 422, 21015, 656, 299, 86, 15245, 12, 47350, 526, 15931, 628, 220, 220, 220, 1303, 26981, 4731, 1489, 2305, 504, 656, 366, 366, 198, 220, 220, 220, 611, 1188, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21179, 13, 21037, 22784, 366, 7942, 1, 198, 220, 220, 220, 1288, 361, 1188, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21179, 13, 21037, 22784, 366, 9562, 1, 628, 220, 220, 220, 1303, 1844, 8156, 198, 220, 220, 220, 1303, 611, 21179, 13, 45828, 3419, 6624, 366, 44, 3620, 15513, 1298, 198, 220, 220, 220, 1303, 220, 220, 220, 1441, 21179, 13, 21037, 22784, 277, 1, 90, 2100, 92, 18022, 1, 628, 220, 220, 220, 1288, 361, 318, 39098, 7, 2100, 11, 1351, 2599, 220, 1303, 611, 340, 318, 257, 1351, 986, 4654, 262, 1351, 656, 257, 4731, 34913, 618, 318, 428, 287, 711, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 366, 27071, 22179, 26933, 2536, 7, 85, 8, 329, 410, 287, 1188, 12962, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 2100, 11, 8633, 2599, 220, 1303, 1188, 318, 257, 8633, 986, 2420, 318, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 1188, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20121, 796, 685, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20121, 13, 2302, 437, 7, 2536, 7, 85, 8, 611, 318, 39098, 7, 85, 11, 357, 600, 11, 12178, 4008, 2073, 1351, 7, 8899, 7, 2536, 11, 410, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 13, 33295, 7203, 27071, 22179, 7, 647, 469, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 366, 27071, 22179, 7, 5239, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 965, 7, 2100, 8, 628, 220, 220, 220, 611, 300, 404, 62, 2364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21179, 58, 22, 25, 4083, 21037, 22784, 2420, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21179, 13, 21037, 22784, 2420, 628, 198, 4299, 5794, 62, 2539, 10879, 7, 2539, 10879, 25, 360, 713, 58, 2536, 11, 4377, 12962, 4613, 965, 25, 198, 220, 220, 220, 37227, 4863, 21966, 3398, 3620, 12, 34762, 11, 1729, 12, 12286, 4600, 2539, 10879, 63, 22155, 11, 3551, 257, 21966, 3398, 3620, 6203, 526, 15931, 628, 220, 220, 220, 32824, 62, 25811, 796, 664, 62, 1860, 3419, 628, 220, 220, 220, 329, 1448, 62, 2539, 11, 1188, 287, 26286, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 46282, 796, 1448, 62, 2539, 13, 35312, 7203, 834, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 77, 37761, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 46282, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 25811, 14692, 7252, 363, 75, 2572, 1, 7131, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 77, 37761, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 16, 11, 1994, 796, 46282, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 25811, 58, 70, 16, 7131, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 77, 37761, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 16, 11, 308, 17, 11, 1994, 796, 46282, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 25811, 58, 70, 16, 7131, 70, 17, 7131, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 77, 37761, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 45, 37761, 399, 2474, 8, 628, 220, 220, 220, 32824, 62, 6615, 796, 23884, 198, 220, 220, 220, 329, 1448, 11, 2172, 82, 287, 23243, 7, 8094, 276, 62, 25811, 13, 23814, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 5715, 62, 6615, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 32824, 62, 25811, 58, 8094, 4083, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 2100, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 17, 62, 5715, 62, 6615, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 17, 62, 5715, 62, 6615, 13, 33295, 7, 2539, 13, 21037, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 17, 11, 410, 17, 287, 1188, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 17, 796, 366, 27071, 22179, 7, 18982, 62, 2539, 4775, 7, 74, 17, 11, 410, 17, 11, 300, 404, 62, 2364, 28, 25101, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 17, 62, 5715, 62, 6615, 13, 33295, 7, 1370, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 17, 62, 5715, 62, 6615, 796, 366, 27071, 22179, 7, 70, 17, 62, 5715, 62, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 70, 17, 62, 5715, 62, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 366, 27071, 22179, 7, 18982, 62, 2539, 4775, 7, 2539, 11, 1188, 11, 300, 404, 62, 2364, 28, 25101, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1448, 13, 21037, 3419, 6624, 366, 12093, 271, 1, 290, 597, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 4775, 287, 1627, 329, 1573, 287, 14631, 2777, 37910, 1600, 366, 26674, 35610, 1600, 366, 4798, 1600, 366, 77, 404, 22272, 1600, 366, 2411, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 5715, 62, 6615, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1448, 6624, 366, 7252, 363, 75, 2572, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 6615, 58, 8094, 60, 796, 37082, 77, 1911, 22179, 7, 6615, 8, 1343, 37082, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 6615, 58, 8094, 60, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 8094, 13, 21037, 3419, 92, 366, 1343, 366, 27071, 22179, 7, 8094, 62, 5715, 62, 6615, 8, 1343, 37082, 77, 220, 366, 1343, 37082, 77, 220, 27071, 22179, 7, 6615, 8, 1343, 37082, 77, 437, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 37082, 77, 1911, 22179, 7, 8094, 276, 62, 6615, 13, 27160, 28955, 1343, 37082, 77, 1, 198 ]
2.052632
1,482
from common.file_tools import delete_old_files_directories import time
[ 6738, 2219, 13, 7753, 62, 31391, 1330, 12233, 62, 727, 62, 16624, 62, 12942, 1749, 198, 11748, 640, 198 ]
3.736842
19
from smbus2 import SMBus import time # RPi Channel 1 channel = 1 bus = SMBus(channel) # ADS1115 address and registers address = 0x48 reg_config = 0x01 # Config value: # - Single conversion # - A0 input # - 4.096V reference config = [0xC2, 0xB3] while True: reg_conversion = 0x00 # Start conversion bus.write_i2c_block_data(address, reg_config, config) # Wait for conversion time.sleep(0.01) # Read 16-bit result result = bus.read_i2c_block_data(address, reg_conversion, 2) # Convert from 2-complement value = ((result[0] & 0xFF) << 8) | (result[1] & 0xFF) if value & 0x8000 != 0: value -= 1 << 16 # Convert value to voltage v = value * 4.096 / 32768 print("A0:", v) # Wait a second to start again time.sleep(1) # ADS1115 address and registers address = 0x48 reg_config = 0x01 reg_conversion = 0x01 # Start conversion bus.write_i2c_block_data(address, reg_config, config) # Wait for conversion time.sleep(0.01) # Read 16-bit result result = bus.read_i2c_block_data(address, reg_conversion, 2) # Convert from 2-complement value = ((result[0] & 0xFF) << 8) | (result[1] & 0xFF) if value & 0x8000 != 0: value -= 1 << 16 # Convert value to voltage v = value * 4.096 / 32768 print("A1:", v) # Wait a second to start again time.sleep(1)
[ 198, 6738, 895, 10885, 17, 1330, 9447, 16286, 198, 11748, 640, 198, 198, 2, 25812, 72, 11102, 352, 198, 17620, 796, 352, 198, 198, 10885, 796, 9447, 16286, 7, 17620, 8, 198, 2, 44784, 1157, 1314, 2209, 290, 28441, 198, 21975, 796, 657, 87, 2780, 198, 2301, 62, 11250, 796, 657, 87, 486, 198, 220, 198, 2, 17056, 1988, 25, 198, 2, 532, 14206, 11315, 198, 2, 532, 317, 15, 5128, 198, 2, 532, 604, 13, 2931, 21, 53, 4941, 198, 11250, 796, 685, 15, 87, 34, 17, 11, 657, 87, 33, 18, 60, 198, 198, 4514, 6407, 25, 198, 220, 842, 62, 1102, 9641, 796, 657, 87, 405, 628, 220, 1303, 7253, 11315, 198, 220, 1323, 13, 13564, 62, 72, 17, 66, 62, 9967, 62, 7890, 7, 21975, 11, 842, 62, 11250, 11, 4566, 8, 198, 220, 1303, 16314, 329, 11315, 198, 220, 640, 13, 42832, 7, 15, 13, 486, 8, 198, 220, 1303, 4149, 1467, 12, 2545, 1255, 198, 220, 1255, 796, 1323, 13, 961, 62, 72, 17, 66, 62, 9967, 62, 7890, 7, 21975, 11, 842, 62, 1102, 9641, 11, 362, 8, 198, 220, 1303, 38240, 422, 362, 12, 785, 26908, 198, 220, 1988, 796, 14808, 20274, 58, 15, 60, 1222, 657, 87, 5777, 8, 9959, 807, 8, 930, 357, 20274, 58, 16, 60, 1222, 657, 87, 5777, 8, 198, 220, 611, 1988, 1222, 657, 87, 33942, 14512, 657, 25, 198, 220, 220, 220, 1988, 48185, 352, 9959, 1467, 198, 220, 1303, 38240, 1988, 284, 15004, 198, 220, 410, 796, 1988, 1635, 604, 13, 2931, 21, 1220, 36203, 3104, 198, 220, 3601, 7203, 32, 15, 25, 1600, 410, 8, 198, 220, 1303, 16314, 257, 1218, 284, 923, 757, 198, 220, 640, 13, 42832, 7, 16, 8, 628, 220, 1303, 44784, 1157, 1314, 2209, 290, 28441, 198, 220, 2209, 796, 657, 87, 2780, 198, 220, 842, 62, 11250, 796, 657, 87, 486, 198, 220, 842, 62, 1102, 9641, 796, 657, 87, 486, 628, 220, 1303, 7253, 11315, 198, 220, 1323, 13, 13564, 62, 72, 17, 66, 62, 9967, 62, 7890, 7, 21975, 11, 842, 62, 11250, 11, 4566, 8, 198, 220, 1303, 16314, 329, 11315, 198, 220, 640, 13, 42832, 7, 15, 13, 486, 8, 198, 220, 1303, 4149, 1467, 12, 2545, 1255, 198, 220, 1255, 796, 1323, 13, 961, 62, 72, 17, 66, 62, 9967, 62, 7890, 7, 21975, 11, 842, 62, 1102, 9641, 11, 362, 8, 198, 220, 1303, 38240, 422, 362, 12, 785, 26908, 198, 220, 1988, 796, 14808, 20274, 58, 15, 60, 1222, 657, 87, 5777, 8, 9959, 807, 8, 930, 357, 20274, 58, 16, 60, 1222, 657, 87, 5777, 8, 198, 220, 611, 1988, 1222, 657, 87, 33942, 14512, 657, 25, 198, 220, 220, 220, 1988, 48185, 352, 9959, 1467, 198, 220, 1303, 38240, 1988, 284, 15004, 198, 220, 410, 796, 1988, 1635, 604, 13, 2931, 21, 1220, 36203, 3104, 198, 220, 3601, 7203, 32, 16, 25, 1600, 410, 8, 198, 220, 1303, 16314, 257, 1218, 284, 923, 757, 198, 220, 640, 13, 42832, 7, 16, 8, 628 ]
2.60198
505
import numpy as np import math # Copyright 2020 Joshua Laniado and Todd O. Yeates. __author__ = "Joshua Laniado and Todd O. Yeates" __copyright__ = "Copyright 2020, Nanohedra" __version__ = "1.0" # ROTATION RANGE DEG C2 = 180 C3 = 120 C4 = 90 C5 = 72 C6 = 60 RotRangeDict = {"C2": C2, "C3": C3, "C4": C4, "C5": C5, "C6": C6}
[ 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 628, 198, 2, 15069, 12131, 20700, 406, 3216, 4533, 290, 14377, 440, 13, 11609, 689, 13, 198, 834, 9800, 834, 796, 366, 47740, 406, 3216, 4533, 290, 14377, 440, 13, 11609, 689, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 12131, 11, 33504, 704, 430, 1, 198, 834, 9641, 834, 796, 366, 16, 13, 15, 1, 628, 198, 2, 371, 2394, 6234, 371, 27746, 5550, 38, 198, 34, 17, 796, 11546, 198, 34, 18, 796, 7982, 198, 34, 19, 796, 4101, 198, 34, 20, 796, 7724, 198, 34, 21, 796, 3126, 198, 24864, 17257, 35, 713, 796, 19779, 34, 17, 1298, 327, 17, 11, 366, 34, 18, 1298, 327, 18, 11, 366, 34, 19, 1298, 327, 19, 11, 366, 34, 20, 1298, 327, 20, 11, 366, 34, 21, 1298, 327, 21, 92, 628, 628, 628, 628 ]
2.317241
145
from precious import Value, assign_attributes, copy
[ 6738, 14186, 1330, 11052, 11, 8333, 62, 1078, 7657, 11, 4866, 628, 198 ]
4.153846
13
"""Tests for maven_releases.py.""" # import pytest # TODO enable when new test(s) will be added # from f8a_jobs.handlers.maven_releases import MavenReleasesAnalyses class TestMavenReleasesAnalyses(object): """Tests for MavenReleasesAnalyses class.""" def setup_method(self, method): """Set up any state tied to the execution of the given method in a class.""" assert method def teardown_method(self, method): """Teardown any state that was previously setup with a setup_method call.""" assert method
[ 37811, 51, 3558, 329, 285, 4005, 62, 260, 29329, 13, 9078, 526, 15931, 198, 198, 2, 1330, 12972, 9288, 198, 198, 2, 16926, 46, 7139, 618, 649, 1332, 7, 82, 8, 481, 307, 2087, 198, 2, 422, 277, 23, 64, 62, 43863, 13, 4993, 8116, 13, 2611, 574, 62, 260, 29329, 1330, 337, 4005, 3041, 29329, 2025, 43710, 628, 198, 4871, 6208, 44, 4005, 3041, 29329, 2025, 43710, 7, 15252, 2599, 198, 220, 220, 220, 37227, 51, 3558, 329, 337, 4005, 3041, 29329, 2025, 43710, 1398, 526, 15931, 628, 220, 220, 220, 825, 9058, 62, 24396, 7, 944, 11, 2446, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 510, 597, 1181, 8165, 284, 262, 9706, 286, 262, 1813, 2446, 287, 257, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2446, 628, 220, 220, 220, 825, 573, 446, 593, 62, 24396, 7, 944, 11, 2446, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6767, 446, 593, 597, 1181, 326, 373, 4271, 9058, 351, 257, 9058, 62, 24396, 869, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2446, 198 ]
2.910053
189
#!/usr/bin/env python # −*− coding: UTF−8 −*− import abc if __name__ == '__main__': test()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 9746, 9, 14095, 19617, 25, 41002, 14095, 23, 9746, 9, 14095, 198, 198, 11748, 450, 66, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 3419, 198 ]
2.148936
47
import threading import requests import os import time urls = [ "https://unsplash.com/photos/CTflmHHVrBM/download?force=true", "https://unsplash.com/photos/pWV8HjvHzk8/download?force=true", # "https://unsplash.com/photos/1jn_3WBp60I/download?force=true", # "https://unsplash.com/photos/8E5HawfqCMM/download?force=true", # "https://unsplash.com/photos/yTOkMc2q01o/download?force=true" ] download_path = os.path.join(os.getcwd(),"downloaded_images") if __name__ == "__main__": start= time.time() threads = [] # create and start a thread per each url for url in urls: tr = threading.Thread(target=download_file,args=(url,)) threads.append(tr) tr.start() # result= download_file(url) # join all threads for tr in threads: tr.join() end = time.time() print(f"Procesing time: {end-start}")
[ 11748, 4704, 278, 198, 11748, 7007, 198, 11748, 28686, 198, 11748, 640, 628, 198, 6371, 82, 796, 685, 198, 197, 1, 5450, 1378, 13271, 489, 1077, 13, 785, 14, 24729, 14, 4177, 2704, 76, 16768, 53, 81, 12261, 14, 15002, 30, 3174, 28, 7942, 1600, 198, 197, 1, 5450, 1378, 13271, 489, 1077, 13, 785, 14, 24729, 14, 79, 54, 53, 23, 39, 73, 85, 7399, 74, 23, 14, 15002, 30, 3174, 28, 7942, 1600, 198, 197, 2, 366, 5450, 1378, 13271, 489, 1077, 13, 785, 14, 24729, 14, 16, 73, 77, 62, 18, 45607, 79, 1899, 40, 14, 15002, 30, 3174, 28, 7942, 1600, 198, 197, 2, 366, 5450, 1378, 13271, 489, 1077, 13, 785, 14, 24729, 14, 23, 36, 20, 33055, 69, 80, 34, 12038, 14, 15002, 30, 3174, 28, 7942, 1600, 198, 197, 2, 366, 5450, 1378, 13271, 489, 1077, 13, 785, 14, 24729, 14, 88, 10468, 74, 9742, 17, 80, 486, 78, 14, 15002, 30, 3174, 28, 7942, 1, 198, 60, 198, 198, 15002, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 3419, 553, 2902, 14578, 62, 17566, 4943, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 9688, 28, 640, 13, 2435, 3419, 628, 197, 16663, 82, 796, 17635, 628, 197, 2, 2251, 290, 923, 257, 4704, 583, 1123, 19016, 198, 197, 1640, 19016, 287, 2956, 7278, 25, 198, 197, 197, 2213, 796, 4704, 278, 13, 16818, 7, 16793, 28, 15002, 62, 7753, 11, 22046, 16193, 6371, 11, 4008, 198, 197, 197, 16663, 82, 13, 33295, 7, 2213, 8, 198, 197, 197, 2213, 13, 9688, 3419, 198, 197, 197, 2, 1255, 28, 4321, 62, 7753, 7, 6371, 8, 628, 197, 2, 4654, 477, 14390, 198, 197, 1640, 491, 287, 14390, 25, 198, 197, 197, 2213, 13, 22179, 3419, 628, 197, 437, 796, 640, 13, 2435, 3419, 628, 197, 4798, 7, 69, 1, 2964, 728, 278, 640, 25, 220, 1391, 437, 12, 9688, 92, 4943 ]
2.472727
330
from .ami import prepare_ami from .broadcast_news import prepare_broadcast_news from .librimix import prepare_librimix from .librispeech import prepare_librispeech from .switchboard import prepare_switchboard __all__ = [ 'prepare_ami', 'prepare_broadcast_news', 'prepare_librimix', 'prepare_librispeech', 'prepare_switchboard' ]
[ 6738, 764, 6277, 1330, 8335, 62, 6277, 198, 6738, 764, 36654, 2701, 62, 10827, 1330, 8335, 62, 36654, 2701, 62, 10827, 198, 6738, 764, 75, 2889, 320, 844, 1330, 8335, 62, 75, 2889, 320, 844, 198, 6738, 764, 8019, 2442, 431, 3055, 1330, 8335, 62, 8019, 2442, 431, 3055, 198, 6738, 764, 31943, 3526, 1330, 8335, 62, 31943, 3526, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 46012, 533, 62, 6277, 3256, 198, 220, 220, 220, 705, 46012, 533, 62, 36654, 2701, 62, 10827, 3256, 198, 220, 220, 220, 705, 46012, 533, 62, 75, 2889, 320, 844, 3256, 198, 220, 220, 220, 705, 46012, 533, 62, 8019, 2442, 431, 3055, 3256, 198, 220, 220, 220, 705, 46012, 533, 62, 31943, 3526, 6, 198, 60, 198 ]
2.713178
129
import re from selenium import webdriver from selenium.webdriver.chrome.options import Options import argparse import ncz import chromedriver_binary parser = argparse.ArgumentParser() parser.add_argument('keyword1', help="main_city_name") parser.add_argument('keyword2', help="sub_city_name") parser.add_argument('keyword3', help="file_path") mainCityName = parser.parse_args().keyword1 subCityName = parser.parse_args().keyword2 filePath = re.sub(r"[^./_a-z]","",parser.parse_args().keyword3) if re.search(subCityName, "전체"): subCityName = "" chrome_options = Options() # chrome_options.add_argument('--headless') # 화면 안띄움 #chrome_options.add_argument('--start-maximized') # F11 전체 화면 설정 driver = webdriver.Chrome(options=chrome_options) url = "https://search.naver.com/search.naver?query={}+{}+코로나&where=news&ie=utf8&sm=nws_hty".format( mainCityName, subCityName) driver.get(url) elem = driver.find_element_by_xpath('//*[@id="main_pack"]/section/div/div[2]/ul') articles = elem.find_elements_by_class_name("news_wrap.api_ani_send") # 기사들 ncz.naverArticlePattern(filePath, articles)
[ 11748, 302, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 46659, 13, 25811, 1330, 18634, 198, 11748, 1822, 29572, 198, 11748, 299, 26691, 198, 198, 11748, 15358, 276, 38291, 62, 39491, 628, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 2539, 4775, 16, 3256, 1037, 2625, 12417, 62, 19205, 62, 3672, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 2539, 4775, 17, 3256, 1037, 2625, 7266, 62, 19205, 62, 3672, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 2539, 4775, 18, 3256, 1037, 2625, 7753, 62, 6978, 4943, 198, 198, 12417, 14941, 5376, 796, 30751, 13, 29572, 62, 22046, 22446, 2539, 4775, 16, 198, 7266, 14941, 5376, 796, 30751, 13, 29572, 62, 22046, 22446, 2539, 4775, 17, 198, 7753, 15235, 796, 302, 13, 7266, 7, 81, 17912, 61, 19571, 62, 64, 12, 89, 60, 2430, 1600, 48610, 13, 29572, 62, 22046, 22446, 2539, 4775, 18, 8, 198, 198, 361, 302, 13, 12947, 7, 7266, 14941, 5376, 11, 366, 168, 254, 226, 168, 110, 112, 1, 2599, 198, 220, 220, 220, 850, 14941, 5376, 796, 13538, 198, 198, 46659, 62, 25811, 796, 18634, 3419, 198, 2, 32030, 62, 25811, 13, 2860, 62, 49140, 10786, 438, 2256, 1203, 11537, 220, 1303, 220, 169, 247, 242, 167, 102, 112, 23821, 243, 230, 167, 251, 226, 168, 249, 222, 198, 2, 46659, 62, 25811, 13, 2860, 62, 49140, 10786, 438, 9688, 12, 9806, 320, 1143, 11537, 220, 1303, 376, 1157, 23821, 254, 226, 168, 110, 112, 220, 169, 247, 242, 167, 102, 112, 23821, 226, 97, 168, 254, 243, 198, 26230, 796, 3992, 26230, 13, 1925, 5998, 7, 25811, 28, 46659, 62, 25811, 8, 198, 198, 6371, 796, 366, 5450, 1378, 12947, 13, 2616, 332, 13, 785, 14, 12947, 13, 2616, 332, 30, 22766, 34758, 92, 10, 90, 92, 10, 168, 121, 242, 167, 94, 250, 167, 224, 246, 5, 3003, 28, 10827, 5, 494, 28, 40477, 23, 5, 5796, 28, 77, 18504, 62, 71, 774, 1911, 18982, 7, 198, 220, 220, 220, 1388, 14941, 5376, 11, 850, 14941, 5376, 8, 198, 198, 26230, 13, 1136, 7, 6371, 8, 628, 198, 68, 10671, 796, 4639, 13, 19796, 62, 30854, 62, 1525, 62, 87, 6978, 10786, 1003, 9, 58, 31, 312, 2625, 12417, 62, 8002, 8973, 14, 5458, 14, 7146, 14, 7146, 58, 17, 60, 14, 377, 11537, 198, 26845, 796, 9766, 76, 13, 19796, 62, 68, 3639, 62, 1525, 62, 4871, 62, 3672, 7203, 10827, 62, 37150, 13, 15042, 62, 3216, 62, 21280, 4943, 1303, 220, 166, 116, 108, 168, 8955, 167, 241, 97, 198, 198, 10782, 89, 13, 2616, 332, 14906, 47546, 7, 7753, 15235, 11, 6685, 8, 628, 628, 198 ]
2.432018
456
from tools import loadCmsProcess,writeCfg from addPoolDBESSource import addPoolDBESSource from CmsswTask import CmsswTask import os
[ 6738, 4899, 1330, 3440, 34, 907, 18709, 11, 13564, 34, 40616, 198, 6738, 751, 27201, 11012, 1546, 7416, 1330, 751, 27201, 11012, 1546, 7416, 198, 6738, 327, 76, 824, 86, 25714, 1330, 327, 76, 824, 86, 25714, 198, 11748, 28686, 198 ]
3.219512
41
import networkx as nx import matplotlib.pyplot as plt ## add a node G = nx.Graph() G.add_node(1) G.add_nodes_from([2, 3]) H = nx.path_graph(10) G.add_nodes_from(H) G.add_node(H) G.add_node('shopping') ## edges G.add_edge(1, 2, {'weight': 3.1415}) e = (2, 3) G.add_edge(*e) G.add_edges_from([(1,2), (1,3)]) # G.add_edges_from(H.edges) nx.draw(G, with_labels=True) plt.show() G.clear() edgelist = [('n1','n2'), ('n1','n3'), ('n2','n3')] H = nx.Graph(edgelist) nx.draw(H, with_labels= True) plt.show()
[ 11748, 3127, 87, 355, 299, 87, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 2235, 751, 257, 10139, 220, 198, 38, 796, 299, 87, 13, 37065, 3419, 198, 38, 13, 2860, 62, 17440, 7, 16, 8, 198, 38, 13, 2860, 62, 77, 4147, 62, 6738, 26933, 17, 11, 513, 12962, 198, 198, 39, 796, 299, 87, 13, 6978, 62, 34960, 7, 940, 8, 198, 38, 13, 2860, 62, 77, 4147, 62, 6738, 7, 39, 8, 198, 38, 13, 2860, 62, 17440, 7, 39, 8, 198, 38, 13, 2860, 62, 17440, 10786, 1477, 33307, 11537, 198, 2235, 13015, 198, 38, 13, 2860, 62, 14907, 7, 16, 11, 362, 11, 1391, 6, 6551, 10354, 513, 13, 1415, 1314, 30072, 198, 68, 796, 357, 17, 11, 513, 8, 198, 38, 13, 2860, 62, 14907, 46491, 68, 8, 198, 38, 13, 2860, 62, 276, 3212, 62, 6738, 26933, 7, 16, 11, 17, 828, 357, 16, 11, 18, 8, 12962, 198, 2, 402, 13, 2860, 62, 276, 3212, 62, 6738, 7, 39, 13, 276, 3212, 8, 198, 77, 87, 13, 19334, 7, 38, 11, 351, 62, 23912, 1424, 28, 17821, 8, 198, 489, 83, 13, 12860, 3419, 198, 38, 13, 20063, 3419, 628, 198, 276, 25280, 396, 796, 685, 10786, 77, 16, 41707, 77, 17, 33809, 19203, 77, 16, 41707, 77, 18, 33809, 19203, 77, 17, 41707, 77, 18, 11537, 60, 198, 39, 796, 299, 87, 13, 37065, 7, 276, 25280, 396, 8, 198, 77, 87, 13, 19334, 7, 39, 11, 351, 62, 23912, 1424, 28, 6407, 8, 198, 489, 83, 13, 12860, 3419, 198 ]
1.901887
265
from core.advbase import * from module.template import Adv_INFUTP variants = {None: Mona, "RNG": Mona_RNG, "INFUTP": Mona_INFUTP}
[ 6738, 4755, 13, 32225, 8692, 1330, 1635, 198, 6738, 8265, 13, 28243, 1330, 8007, 62, 1268, 37, 3843, 47, 628, 628, 198, 198, 25641, 1187, 796, 1391, 14202, 25, 2892, 64, 11, 366, 49, 10503, 1298, 2892, 64, 62, 49, 10503, 11, 366, 1268, 37, 3843, 47, 1298, 2892, 64, 62, 1268, 37, 3843, 47, 92, 198 ]
2.368421
57
username = '' #enter your facebook user name password = '' #enter your facebook password
[ 29460, 796, 10148, 1303, 9255, 534, 23960, 2836, 1438, 198, 28712, 796, 10148, 1303, 9255, 534, 23960, 9206, 198 ]
4.684211
19
import sys from datetime import datetime import error_handler import valr UNKNOWN_TREND = "unknown" DOWN_TREND = "down" UP_TREND = "up" if __name__ == "__main__": sys.excepthook = error_handler.excepthook orders = [x for x in valr.get_open_orders() if x["side"].upper() == "BUY"] if len(orders) > 0: log("open orders found: closing") valr.close_open_buys() market_summary = valr.market_summary() base_price = float(market_summary["lastTradedPrice"]) else: sell_price = valr.sell_at_market() log(f"Sold at {sell_price}") base_price = sell_price percentage = 0.33 / 100.0 buy_adjustment = 1 - percentage buy_price = base_price * buy_adjustment log(f"Placing buy order at {buy_price}") valr.buy_order(buy_price) log("Buy order placed")
[ 11748, 25064, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 11748, 4049, 62, 30281, 198, 11748, 1188, 81, 198, 198, 4944, 44706, 62, 5446, 10619, 796, 366, 34680, 1, 198, 41925, 62, 5446, 10619, 796, 366, 2902, 1, 198, 8577, 62, 5446, 10619, 796, 366, 929, 1, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 1069, 344, 79, 400, 566, 796, 4049, 62, 30281, 13, 1069, 344, 79, 400, 566, 628, 220, 220, 220, 6266, 796, 685, 87, 329, 2124, 287, 1188, 81, 13, 1136, 62, 9654, 62, 6361, 3419, 611, 2124, 14692, 1589, 1, 4083, 45828, 3419, 6624, 366, 19499, 56, 8973, 198, 220, 220, 220, 611, 18896, 7, 6361, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 7203, 9654, 6266, 1043, 25, 9605, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 81, 13, 19836, 62, 9654, 62, 11110, 893, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1910, 62, 49736, 796, 1188, 81, 13, 10728, 62, 49736, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20888, 796, 12178, 7, 10728, 62, 49736, 14692, 12957, 2898, 5286, 18124, 8973, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3677, 62, 20888, 796, 1188, 81, 13, 7255, 62, 265, 62, 10728, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 7, 69, 1, 33873, 379, 1391, 7255, 62, 20888, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20888, 796, 3677, 62, 20888, 628, 220, 220, 220, 5873, 796, 657, 13, 2091, 1220, 1802, 13, 15, 198, 220, 220, 220, 2822, 62, 23032, 434, 796, 352, 532, 5873, 198, 220, 220, 220, 2822, 62, 20888, 796, 2779, 62, 20888, 1635, 2822, 62, 23032, 434, 198, 220, 220, 220, 2604, 7, 69, 1, 3646, 4092, 2822, 1502, 379, 1391, 17846, 62, 20888, 92, 4943, 198, 220, 220, 220, 1188, 81, 13, 17846, 62, 2875, 7, 17846, 62, 20888, 8, 198, 220, 220, 220, 2604, 7203, 14518, 1502, 4624, 4943, 198 ]
2.377841
352
import csv from google.cloud import storage import logging def write_tsv(filename, files, fieldnames=None): """ write to tsv file Args: filename(str): file name files(list(dict)): list of file info [ { "GUID": "guid_example", "filename": "example", "size": 100, "acl": "['open']", "md5": "md5_hash", }, ] fieldnames(list(str)): list of column names Returns: filename(str): file name """ if not files: return None # Get column names fieldnames = fieldnames or files[0].keys() # Open tsv file with open(filename, mode="w") as outfile: writer = csv.DictWriter(outfile, delimiter="\t", fieldnames=fieldnames) # write header writer.writeheader() # Write data for f in files: for field in fieldnames: if field not in f: f[field] = None writer.writerow(f) return filename def upload_file(bucket_name, source_file_name, destination_blob_name): """ Upload a file to an gs bucket Args: file_name: File to upload bucket: Bucket to upload to object_name: gs object name. If not specified then file_name is used Returns: Bool: True if file was uploaded, else False """ # Initialize a storage client. storage_client = storage.Client() try: # Initialize a bucket client. bucket = storage_client.bucket(bucket_name) # Create a dest blob. blob = bucket.blob(destination_blob_name) # Upload file to the bucket blob.upload_from_filename(source_file_name) except Exception as e: logging.error( "Fail to upload {} to {}. Detail {}".format( source_file_name, bucket_name, e ) ) return False logging.info( "File {} uploaded to {}/{}.".format(source_file_name, bucket_name, destination_blob_name) ) return True
[ 11748, 269, 21370, 198, 6738, 23645, 13, 17721, 1330, 6143, 198, 198, 11748, 18931, 628, 198, 4299, 3551, 62, 912, 85, 7, 34345, 11, 3696, 11, 2214, 14933, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3551, 284, 256, 21370, 2393, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 7, 2536, 2599, 2393, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 7, 4868, 7, 11600, 8, 2599, 1351, 286, 2393, 7508, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38, 27586, 1298, 366, 5162, 312, 62, 20688, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34345, 1298, 366, 20688, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7857, 1298, 1802, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37779, 1298, 12878, 6, 9654, 20520, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9132, 20, 1298, 366, 9132, 20, 62, 17831, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 14933, 7, 4868, 7, 2536, 8, 2599, 1351, 286, 5721, 3891, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 7, 2536, 2599, 2393, 1438, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 1303, 3497, 5721, 3891, 198, 220, 220, 220, 2214, 14933, 796, 2214, 14933, 393, 3696, 58, 15, 4083, 13083, 3419, 198, 220, 220, 220, 1303, 4946, 256, 21370, 2393, 198, 220, 220, 220, 351, 1280, 7, 34345, 11, 4235, 2625, 86, 4943, 355, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 269, 21370, 13, 35, 713, 34379, 7, 448, 7753, 11, 46728, 2676, 2625, 59, 83, 1600, 2214, 14933, 28, 3245, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3551, 13639, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 25677, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 2214, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 407, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 58, 3245, 60, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 7, 69, 8, 628, 220, 220, 220, 1441, 29472, 628, 198, 4299, 9516, 62, 7753, 7, 27041, 316, 62, 3672, 11, 2723, 62, 7753, 62, 3672, 11, 10965, 62, 2436, 672, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 36803, 257, 2393, 284, 281, 308, 82, 19236, 198, 220, 220, 220, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 25, 9220, 284, 9516, 198, 220, 220, 220, 220, 220, 220, 220, 19236, 25, 48353, 284, 9516, 284, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 3672, 25, 308, 82, 2134, 1438, 13, 1002, 407, 7368, 788, 2393, 62, 3672, 318, 973, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 347, 970, 25, 6407, 611, 2393, 373, 19144, 11, 2073, 10352, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 20768, 1096, 257, 6143, 5456, 13, 198, 220, 220, 220, 6143, 62, 16366, 796, 6143, 13, 11792, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 257, 19236, 5456, 13, 198, 220, 220, 220, 220, 220, 220, 220, 19236, 796, 6143, 62, 16366, 13, 27041, 316, 7, 27041, 316, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 2244, 44812, 13, 198, 220, 220, 220, 220, 220, 220, 220, 44812, 796, 19236, 13, 2436, 672, 7, 16520, 1883, 62, 2436, 672, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 36803, 2393, 284, 262, 19236, 198, 220, 220, 220, 220, 220, 220, 220, 44812, 13, 25850, 62, 6738, 62, 34345, 7, 10459, 62, 7753, 62, 3672, 8, 628, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39044, 284, 9516, 23884, 284, 23884, 13, 42585, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 7753, 62, 3672, 11, 19236, 62, 3672, 11, 304, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 18931, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8979, 23884, 19144, 284, 23884, 14, 90, 92, 526, 13, 18982, 7, 10459, 62, 7753, 62, 3672, 11, 19236, 62, 3672, 11, 10965, 62, 2436, 672, 62, 3672, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1441, 6407, 198 ]
2.16444
973
from sublime_db.core.typecheck import ( Any, Callable, Optional ) import sublime import sublime_plugin from sublime_db import core from sublime_db import ui from sublime_db.main.breakpoints import Breakpoints, Breakpoint, FunctionBreakpoint from .commands import AutoCompleteTextInputHandler @core.async @core.async
[ 6738, 41674, 62, 9945, 13, 7295, 13, 4906, 9122, 1330, 357, 198, 197, 7149, 11, 198, 197, 14134, 540, 11, 198, 197, 30719, 198, 8, 198, 198, 11748, 41674, 198, 11748, 41674, 62, 33803, 198, 198, 6738, 41674, 62, 9945, 1330, 4755, 198, 6738, 41674, 62, 9945, 1330, 334, 72, 198, 6738, 41674, 62, 9945, 13, 12417, 13, 9032, 13033, 1330, 12243, 13033, 11, 12243, 4122, 11, 15553, 31737, 4122, 198, 6738, 764, 9503, 1746, 1330, 11160, 20988, 8206, 20560, 25060, 628, 198, 31, 7295, 13, 292, 13361, 198, 197, 198, 31, 7295, 13, 292, 13361, 628 ]
3.360825
97
__author__ = 'wanglei02' from django import template from django.utils.html import conditional_escape from django.utils.safestring import mark_safe register = template.Library() @register.filter(name='join_link', needs_autoescape=True)
[ 834, 9800, 834, 796, 705, 86, 9248, 72, 2999, 6, 198, 198, 6738, 42625, 14208, 1330, 11055, 198, 6738, 42625, 14208, 13, 26791, 13, 6494, 1330, 26340, 62, 41915, 198, 6738, 42625, 14208, 13, 26791, 13, 49585, 395, 1806, 1330, 1317, 62, 21230, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 628, 198, 31, 30238, 13, 24455, 7, 3672, 11639, 22179, 62, 8726, 3256, 2476, 62, 2306, 3028, 36435, 28, 17821, 8, 198 ]
3.287671
73
import copy from dataclasses import dataclass import dataclasses import functools import io import logging from multiprocessing.connection import wait import uuid from typing import Any, Dict, List, Optional, Tuple, Union from attr import field from concurrent.futures import ProcessPoolExecutor import pandas as pd import pynvml from transformers import ( AutoConfig, HfArgumentParser, T5ForConditionalGeneration, AutoModelForQuestionAnswering, DistilBertForQuestionAnswering, ViTForImageClassification, AutoModelForCausalLM, ) import requests import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7" import torch import time import threading import multiprocessing as mp from multiprocessing import Process, Manager from multiprocessing.managers import BaseManager from fastapi import FastAPI import json from requests import Request import numpy as np from scipy.special import softmax from transformers import AutoTokenizer from tqdm import tqdm import gc import dill # ====== ray serve import ray from ray import data, serve from ray.serve import pipeline from ray.util.metrics import Counter, Gauge, Histogram, Metric # ====== hfutils from hfutils.arg_parser import RayArguments from hfutils.logger import Logger from hfutils.calibration import agg_logits, temperature_scale from hfutils.constants import MODEL_KEYS from hfutils.pipe.t5 import ( T5_ENCODER_INPUTS, T5_ENCODER_OUTPUTS, T5_DECODER_INPUTS, T5_DECODER_OUTPUTS, T5PyTorchPipe, T5PytorchPipeRandom, ) from hfutils.pipe.bert import ( BERT_INPUTS, BERT_OUTPUTS, BertPyTorchPipeForQuestionAnswering, BertPytorchPipeRandom, ) from hfutils.pipe.vit import ( VIT_INPUTS, VIT_OUTPUTS, ViTPyTorchPipeForImageClassification, ViTPytorchPipeRandom, ) from hfutils.pipe.gpt import GPTPytorchPipeRandom from hfutils.pipe.distilbert import ( DISTILBERT_INPUTS, DISTILBERT_OUTPUTS, DistilBertPyTorchPipeForQuestionAnswering, ) from hfutils.pipe.gpt import GPT_INPUTS, GPT_OUTPUTS, GPTLMHeadModelPipe from hfutils.calibration import temperature_scale from hfutils.constants import np_to_torch_dtype from hfutils.options import ( ReplicationOptions, SystemOptions, EnsembleOptions, ParallelOptions, ModelConfig, HostOptions, ) # ======= DEFINE CONSTANTS ========= T5_TASK_LABELS = [1176, 6136, 59] # HACK with GLUE labels m = functools.partial(softmax, axis=1) VISIBLE_GPUS = [str(i) for i in range(torch.cuda.device_count())] m = torch.nn.Softmax(dim=1) @dataclass parser = HfArgumentParser(Arguments) args = parser.parse_args_into_dataclasses()[0] # ======= PARSE CONFIGURATION ========= # with open(args.ensemble_cfg, "r") as fp: # ensemble_config = json.load(fp) with open(args.model_cfg, "r") as fp: model_config = json.load(fp) ensembles = model_config["ensembles"] base_dir = model_config["base_dir"] alpha = model_config["alpha"] type = model_config["type"] instance = model_config["instance"] host_options = { ins["host"]: HostOptions( host=ins["host"], # alpha=alpha, # ens=len(ensembles), type=type, placement={ gid: [ ModelConfig( name=model["name"], path=os.path.join(base_dir, model_config[model["name"]]["path"]), type=model_config[model["name"]]["type"], stages=model_config[model["name"]]["parallel_stages"], ppos=model["stage"], epos=ensembles.index(model["name"]), temp=model_config[model["name"]]["temperature"], util_params=model_config[model["name"]]["util_params"], ray_actor_options={ "num_cpus": 1, "num_gpus": 1 / len(models), "resources": {ins["host"]: 1}, }, key="_".join([ins["host"], model["name"], gid, str(i)]), ) for i, model in enumerate(models) ] for gid, models in ins["placement"].items() }, ) for ins in instance } # host_resource = { # ins["host"]: sum([len(models) for gid, models in ins["placement"].items()]) # for ins in instance # } # model_replicas = { # name: sum( # [ # 1 # for ins in instance # for gid, models in ins["placement"].items() # for model in models # if model["name"] == name # ] # ) # for name in ensembles # } system_options = SystemOptions( alpha=alpha, ens=len(ensembles), type=type, ensemble_options=[ EnsembleOptions( epos=i, th=model_config[name]["threshold"], name=name, parallel_options=[ ParallelOptions( stages=model_config[name]["parallel_stages"], ppos=p, replications=[ model.key for host in host_options.values() for models in host.placement.values() for model in models if model.epos == i and model.ppos == p ], ) for p in range(model_config[name]["parallel_stages"]) ], ) for i, name in enumerate(ensembles) ], ) # for idx, name in enumerate(ensembles): # meta = model_config[name] # path = os.path.join(base_dir, meta["path"]) # threshold = meta["threshold"] # temperature = meta["temperature"] # stages = meta["parallel_stages"] # util_params = meta["util_params"] # instance = meta["instance"] # parallel_options = [ # ParallelOptions( # stages=stages, # ppos=p, # replication_options=[ # ReplicationOptions( # k, # "_".join([name, idx, ins["stage"], k]), # torch.device(ins["device"]), # ) # for k in range(ins["count"]) # for ins in instance # if ins["stage"] == p # ], # ) # for p in range(stages) # ] # for i, ins in enumerate(instance): # for k in range(ins["count"]): # key = "_".join([name, idx, ins["stage"], k]) # replication_options = ReplicationOptions( # k, key, torch.device(ins["device"]) # ) # config = ModelConfig( # name, # path, # type, # stages, # ins["stage"], # idx, # len(ensembles), # alpha, # temperature, # threshold, # util_params, # ins["device"], # k, # ) # deploy_config.append(config) # ====== MODEL DEFINATION ============== @serve.deployment(max_concurrent_queries=100) @serve.deployment(max_concurrent_queries=1000) # ray.init(address="ray://129.215.164.41:10001") import socket # ====== START SERVER ============== # ray.init(namespace=args.namespace, num_cpus=80, num_gpus=torch.cuda.device_count()) host_ip = get_host_ip() ray.init(address=f"ray://{host_ip}:10001", namespace=args.namespace) serve.start(detached=True, http_options=serve.HTTPOptions(port=8888)) # print("ray initialized", args) for host, h_op in host_options.items(): for gid, models in h_op.placement.items(): for i, model in enumerate(models): key = "_".join([host, model.name, gid, str(i)]) HServeModel.options( name=key, ray_actor_options=model.ray_actor_options ).deploy(options=host_options, model_id=i, key=key) # for e_op in system_options.ensemble_options: # for p_op in e_op.parallel_options: # for r_op in p_op.replication_options: # HServeModel.options( # name=r_op.key, ray_actor_options={"num_cpus": 4, "num_gpus": 2}, # ).deploy( # options=system_options, # epos=e_op.epos, # ppos=p_op.ppos, # replica=r_op.replica, # ) for host, _ in host_options.items(): for r in range(1): HybridScheduler.options( name=f"hybrid-scheduler_{host}_{r}", num_replicas=1, ray_actor_options={"num_cpus": 0.1, "resources": {f"{host}": 1}}, ).deploy(system_options, r)
[ 11748, 4866, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 11748, 4818, 330, 28958, 198, 11748, 1257, 310, 10141, 198, 11748, 33245, 198, 11748, 18931, 198, 6738, 18540, 305, 919, 278, 13, 38659, 1330, 4043, 198, 11748, 334, 27112, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 11, 32233, 11, 309, 29291, 11, 4479, 198, 6738, 708, 81, 1330, 2214, 198, 6738, 24580, 13, 69, 315, 942, 1330, 10854, 27201, 23002, 38409, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 279, 2047, 85, 4029, 198, 198, 6738, 6121, 364, 1330, 357, 198, 220, 220, 220, 11160, 16934, 11, 198, 220, 220, 220, 367, 69, 28100, 1713, 46677, 11, 198, 220, 220, 220, 309, 20, 1890, 25559, 1859, 8645, 341, 11, 198, 220, 220, 220, 11160, 17633, 1890, 24361, 2025, 2032, 1586, 11, 198, 220, 220, 220, 4307, 346, 33, 861, 1890, 24361, 2025, 2032, 1586, 11, 198, 220, 220, 220, 16049, 51, 1890, 5159, 9487, 2649, 11, 198, 220, 220, 220, 11160, 17633, 1890, 24334, 6775, 31288, 11, 198, 8, 198, 11748, 7007, 198, 11748, 28686, 198, 198, 418, 13, 268, 2268, 14692, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 8973, 796, 366, 15, 11, 16, 11, 17, 11, 18, 11, 19, 11, 20, 11, 21, 11, 22, 1, 198, 198, 11748, 28034, 198, 11748, 640, 198, 11748, 4704, 278, 198, 11748, 18540, 305, 919, 278, 355, 29034, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 11, 9142, 198, 6738, 18540, 305, 919, 278, 13, 805, 10321, 1330, 7308, 13511, 198, 6738, 3049, 15042, 1330, 12549, 17614, 198, 11748, 33918, 198, 6738, 7007, 1330, 19390, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 20887, 1330, 2705, 9806, 198, 6738, 6121, 364, 1330, 11160, 30642, 7509, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 308, 66, 198, 11748, 288, 359, 198, 198, 2, 29335, 28, 26842, 4691, 198, 11748, 26842, 198, 6738, 26842, 1330, 1366, 11, 4691, 198, 6738, 26842, 13, 2655, 303, 1330, 11523, 198, 6738, 26842, 13, 22602, 13, 4164, 10466, 1330, 15034, 11, 35094, 469, 11, 5590, 21857, 11, 3395, 1173, 198, 198, 2, 29335, 28, 289, 69, 26791, 198, 6738, 289, 69, 26791, 13, 853, 62, 48610, 1330, 7760, 28100, 2886, 198, 6738, 289, 69, 26791, 13, 6404, 1362, 1330, 5972, 1362, 198, 6738, 289, 69, 26791, 13, 9948, 571, 1358, 1330, 4194, 62, 6404, 896, 11, 5951, 62, 9888, 198, 6738, 289, 69, 26791, 13, 9979, 1187, 1330, 19164, 3698, 62, 7336, 16309, 198, 6738, 289, 69, 26791, 13, 34360, 13, 83, 20, 1330, 357, 198, 220, 220, 220, 309, 20, 62, 24181, 3727, 1137, 62, 1268, 30076, 50, 11, 198, 220, 220, 220, 309, 20, 62, 24181, 3727, 1137, 62, 2606, 7250, 3843, 50, 11, 198, 220, 220, 220, 309, 20, 62, 41374, 3727, 1137, 62, 1268, 30076, 50, 11, 198, 220, 220, 220, 309, 20, 62, 41374, 3727, 1137, 62, 2606, 7250, 3843, 50, 11, 198, 220, 220, 220, 309, 20, 20519, 15884, 354, 47, 3757, 11, 198, 220, 220, 220, 309, 20, 20519, 13165, 354, 47, 3757, 29531, 11, 198, 8, 198, 6738, 289, 69, 26791, 13, 34360, 13, 4835, 1330, 357, 198, 220, 220, 220, 347, 17395, 62, 1268, 30076, 50, 11, 198, 220, 220, 220, 347, 17395, 62, 2606, 7250, 3843, 50, 11, 198, 220, 220, 220, 22108, 20519, 15884, 354, 47, 3757, 1890, 24361, 2025, 2032, 1586, 11, 198, 220, 220, 220, 22108, 20519, 13165, 354, 47, 3757, 29531, 11, 198, 8, 198, 6738, 289, 69, 26791, 13, 34360, 13, 85, 270, 1330, 357, 198, 220, 220, 220, 569, 2043, 62, 1268, 30076, 50, 11, 198, 220, 220, 220, 569, 2043, 62, 2606, 7250, 3843, 50, 11, 198, 220, 220, 220, 16049, 7250, 88, 15884, 354, 47, 3757, 1890, 5159, 9487, 2649, 11, 198, 220, 220, 220, 16049, 7250, 88, 13165, 354, 47, 3757, 29531, 11, 198, 8, 198, 6738, 289, 69, 26791, 13, 34360, 13, 70, 457, 1330, 14714, 7250, 88, 13165, 354, 47, 3757, 29531, 198, 6738, 289, 69, 26791, 13, 34360, 13, 17080, 346, 4835, 1330, 357, 198, 220, 220, 220, 360, 8808, 4146, 13246, 51, 62, 1268, 30076, 50, 11, 198, 220, 220, 220, 360, 8808, 4146, 13246, 51, 62, 2606, 7250, 3843, 50, 11, 198, 220, 220, 220, 4307, 346, 33, 861, 20519, 15884, 354, 47, 3757, 1890, 24361, 2025, 2032, 1586, 11, 198, 8, 198, 6738, 289, 69, 26791, 13, 34360, 13, 70, 457, 1330, 402, 11571, 62, 1268, 30076, 50, 11, 402, 11571, 62, 2606, 7250, 3843, 50, 11, 402, 11571, 31288, 13847, 17633, 47, 3757, 198, 6738, 289, 69, 26791, 13, 9948, 571, 1358, 1330, 5951, 62, 9888, 198, 6738, 289, 69, 26791, 13, 9979, 1187, 1330, 45941, 62, 1462, 62, 13165, 354, 62, 67, 4906, 198, 6738, 289, 69, 26791, 13, 25811, 1330, 357, 198, 220, 220, 220, 18407, 3299, 29046, 11, 198, 220, 220, 220, 4482, 29046, 11, 198, 220, 220, 220, 2039, 15140, 29046, 11, 198, 220, 220, 220, 42945, 29046, 11, 198, 220, 220, 220, 9104, 16934, 11, 198, 220, 220, 220, 14504, 29046, 11, 198, 8, 198, 198, 2, 29335, 855, 23449, 8881, 7102, 2257, 1565, 4694, 796, 2559, 198, 51, 20, 62, 51, 1921, 42, 62, 48780, 37142, 796, 685, 1157, 4304, 11, 718, 20809, 11, 7863, 60, 220, 1303, 367, 8120, 351, 10188, 8924, 14722, 198, 76, 796, 1257, 310, 10141, 13, 47172, 7, 4215, 9806, 11, 16488, 28, 16, 8, 198, 29817, 34563, 62, 16960, 2937, 796, 685, 2536, 7, 72, 8, 329, 1312, 287, 2837, 7, 13165, 354, 13, 66, 15339, 13, 25202, 62, 9127, 3419, 15437, 198, 76, 796, 28034, 13, 20471, 13, 18380, 9806, 7, 27740, 28, 16, 8, 628, 198, 31, 19608, 330, 31172, 628, 198, 48610, 796, 367, 69, 28100, 1713, 46677, 7, 28100, 2886, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 62, 20424, 62, 19608, 330, 28958, 3419, 58, 15, 60, 628, 198, 2, 29335, 855, 29463, 5188, 25626, 4261, 6234, 796, 2559, 198, 2, 351, 1280, 7, 22046, 13, 1072, 11306, 62, 37581, 11, 366, 81, 4943, 355, 277, 79, 25, 198, 2, 220, 220, 220, 220, 34549, 62, 11250, 796, 33918, 13, 2220, 7, 46428, 8, 198, 198, 4480, 1280, 7, 22046, 13, 19849, 62, 37581, 11, 366, 81, 4943, 355, 277, 79, 25, 198, 220, 220, 220, 2746, 62, 11250, 796, 33918, 13, 2220, 7, 46428, 8, 198, 198, 1072, 2022, 829, 796, 2746, 62, 11250, 14692, 1072, 2022, 829, 8973, 198, 8692, 62, 15908, 796, 2746, 62, 11250, 14692, 8692, 62, 15908, 8973, 198, 26591, 796, 2746, 62, 11250, 14692, 26591, 8973, 198, 4906, 796, 2746, 62, 11250, 14692, 4906, 8973, 198, 39098, 796, 2746, 62, 11250, 14692, 39098, 8973, 628, 198, 4774, 62, 25811, 796, 1391, 198, 220, 220, 220, 1035, 14692, 4774, 1, 5974, 14504, 29046, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 28, 1040, 14692, 4774, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3140, 28, 11925, 7, 1072, 2022, 829, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13127, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 312, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9104, 16934, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 19849, 14692, 3672, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 28, 418, 13, 6978, 13, 22179, 7, 8692, 62, 15908, 11, 2746, 62, 11250, 58, 19849, 14692, 3672, 8973, 7131, 1, 6978, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 19849, 62, 11250, 58, 19849, 14692, 3672, 8973, 7131, 1, 4906, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9539, 28, 19849, 62, 11250, 58, 19849, 14692, 3672, 8973, 7131, 1, 1845, 29363, 62, 301, 1095, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 1930, 28, 19849, 14692, 14247, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 1930, 28, 1072, 2022, 829, 13, 9630, 7, 19849, 14692, 3672, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 28, 19849, 62, 11250, 58, 19849, 14692, 3672, 8973, 7131, 1, 11498, 21069, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7736, 62, 37266, 28, 19849, 62, 11250, 58, 19849, 14692, 3672, 8973, 7131, 1, 22602, 62, 37266, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26842, 62, 11218, 62, 25811, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 13155, 385, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 31197, 385, 1298, 352, 1220, 18896, 7, 27530, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37540, 1298, 1391, 1040, 14692, 4774, 1, 5974, 352, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 2625, 62, 1911, 22179, 26933, 1040, 14692, 4774, 33116, 2746, 14692, 3672, 33116, 308, 312, 11, 965, 7, 72, 15437, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 2746, 287, 27056, 378, 7, 27530, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 312, 11, 4981, 287, 1035, 14692, 489, 5592, 1, 4083, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 329, 1035, 287, 4554, 198, 92, 198, 198, 2, 2583, 62, 31092, 796, 1391, 198, 2, 220, 220, 220, 220, 1035, 14692, 4774, 1, 5974, 2160, 26933, 11925, 7, 27530, 8, 329, 308, 312, 11, 4981, 287, 1035, 14692, 489, 5592, 1, 4083, 23814, 3419, 12962, 198, 2, 220, 220, 220, 220, 329, 1035, 287, 4554, 198, 2, 1782, 198, 198, 2, 2746, 62, 35666, 44645, 796, 1391, 198, 2, 220, 220, 220, 220, 1438, 25, 2160, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1035, 287, 4554, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 312, 11, 4981, 287, 1035, 14692, 489, 5592, 1, 4083, 23814, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2746, 287, 4981, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2746, 14692, 3672, 8973, 6624, 1438, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 2, 220, 220, 220, 220, 1267, 198, 2, 220, 220, 220, 220, 329, 1438, 287, 551, 4428, 829, 198, 2, 1782, 198, 198, 10057, 62, 25811, 796, 4482, 29046, 7, 198, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 3140, 28, 11925, 7, 1072, 2022, 829, 828, 198, 220, 220, 220, 2099, 28, 4906, 11, 198, 220, 220, 220, 34549, 62, 25811, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 2039, 15140, 29046, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 1930, 28, 72, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 294, 28, 19849, 62, 11250, 58, 3672, 7131, 1, 400, 10126, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10730, 62, 25811, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42945, 29046, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9539, 28, 19849, 62, 11250, 58, 3672, 7131, 1, 1845, 29363, 62, 301, 1095, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 1930, 28, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2186, 3736, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2583, 287, 2583, 62, 25811, 13, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4981, 287, 2583, 13, 489, 5592, 13, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2746, 287, 4981, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2746, 13, 538, 418, 6624, 1312, 290, 2746, 13, 381, 418, 6624, 279, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 19849, 62, 11250, 58, 3672, 7131, 1, 1845, 29363, 62, 301, 1095, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1438, 287, 27056, 378, 7, 1072, 2022, 829, 8, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 2, 329, 4686, 87, 11, 1438, 287, 27056, 378, 7, 1072, 2022, 829, 2599, 198, 2, 220, 220, 220, 220, 13634, 796, 2746, 62, 11250, 58, 3672, 60, 198, 198, 2, 220, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 22179, 7, 8692, 62, 15908, 11, 13634, 14692, 6978, 8973, 8, 198, 2, 220, 220, 220, 220, 11387, 796, 13634, 14692, 400, 10126, 8973, 198, 2, 220, 220, 220, 220, 5951, 796, 13634, 14692, 11498, 21069, 8973, 198, 2, 220, 220, 220, 220, 9539, 796, 13634, 14692, 1845, 29363, 62, 301, 1095, 8973, 198, 2, 220, 220, 220, 220, 7736, 62, 37266, 796, 13634, 14692, 22602, 62, 37266, 8973, 198, 198, 2, 220, 220, 220, 220, 4554, 796, 13634, 14692, 39098, 8973, 198, 198, 2, 220, 220, 220, 220, 10730, 62, 25811, 796, 685, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 42945, 29046, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9539, 28, 301, 1095, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 1930, 28, 79, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30330, 62, 25811, 41888, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18407, 3299, 29046, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 1911, 22179, 26933, 3672, 11, 4686, 87, 11, 1035, 14692, 14247, 33116, 479, 46570, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 25202, 7, 1040, 14692, 25202, 8973, 828, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 1040, 14692, 9127, 8973, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1035, 287, 4554, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1035, 14692, 14247, 8973, 6624, 279, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 301, 1095, 8, 198, 2, 220, 220, 220, 220, 2361, 198, 198, 2, 220, 220, 220, 220, 329, 1312, 11, 1035, 287, 27056, 378, 7, 39098, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 1040, 14692, 9127, 8973, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 45434, 1911, 22179, 26933, 3672, 11, 4686, 87, 11, 1035, 14692, 14247, 33116, 479, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30330, 62, 25811, 796, 18407, 3299, 29046, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 11, 1994, 11, 28034, 13, 25202, 7, 1040, 14692, 25202, 8973, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 9104, 16934, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9539, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1035, 14692, 14247, 33116, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 1072, 2022, 829, 828, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5951, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7736, 62, 37266, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1035, 14692, 25202, 33116, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6061, 62, 11250, 13, 33295, 7, 11250, 8, 198, 198, 2, 29335, 28, 19164, 3698, 5550, 20032, 6234, 796, 25609, 28, 628, 198, 31, 2655, 303, 13, 2934, 1420, 434, 7, 9806, 62, 1102, 14421, 62, 421, 10640, 28, 3064, 8, 628, 198, 31, 2655, 303, 13, 2934, 1420, 434, 7, 9806, 62, 1102, 14421, 62, 421, 10640, 28, 12825, 8, 628, 198, 2, 26842, 13, 15003, 7, 21975, 2625, 2433, 1378, 18741, 13, 23349, 13, 23237, 13, 3901, 25, 3064, 486, 4943, 198, 198, 11748, 17802, 628, 198, 198, 2, 29335, 28, 33303, 18871, 5959, 796, 25609, 28, 198, 2, 26842, 13, 15003, 7, 14933, 10223, 28, 22046, 13, 14933, 10223, 11, 997, 62, 13155, 385, 28, 1795, 11, 997, 62, 31197, 385, 28, 13165, 354, 13, 66, 15339, 13, 25202, 62, 9127, 28955, 198, 4774, 62, 541, 796, 651, 62, 4774, 62, 541, 3419, 198, 2433, 13, 15003, 7, 21975, 28, 69, 1, 2433, 1378, 90, 4774, 62, 541, 38362, 3064, 486, 1600, 25745, 28, 22046, 13, 14933, 10223, 8, 198, 2655, 303, 13, 9688, 7, 15255, 2317, 28, 17821, 11, 2638, 62, 25811, 28, 2655, 303, 13, 40717, 29046, 7, 634, 28, 3459, 3459, 4008, 198, 198, 2, 3601, 7203, 2433, 23224, 1600, 26498, 8, 198, 198, 1640, 2583, 11, 289, 62, 404, 287, 2583, 62, 25811, 13, 23814, 33529, 198, 220, 220, 220, 329, 308, 312, 11, 4981, 287, 289, 62, 404, 13, 489, 5592, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 2746, 287, 27056, 378, 7, 27530, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 45434, 1911, 22179, 26933, 4774, 11, 2746, 13, 3672, 11, 308, 312, 11, 965, 7, 72, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18070, 3760, 17633, 13, 25811, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 2539, 11, 26842, 62, 11218, 62, 25811, 28, 19849, 13, 2433, 62, 11218, 62, 25811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 2934, 1420, 7, 25811, 28, 4774, 62, 25811, 11, 2746, 62, 312, 28, 72, 11, 1994, 28, 2539, 8, 198, 198, 2, 329, 304, 62, 404, 287, 1080, 62, 25811, 13, 1072, 11306, 62, 25811, 25, 198, 2, 220, 220, 220, 220, 329, 279, 62, 404, 287, 304, 62, 404, 13, 1845, 29363, 62, 25811, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 374, 62, 404, 287, 279, 62, 404, 13, 35666, 3299, 62, 25811, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18070, 3760, 17633, 13, 25811, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 81, 62, 404, 13, 2539, 11, 26842, 62, 11218, 62, 25811, 28, 4895, 22510, 62, 13155, 385, 1298, 604, 11, 366, 22510, 62, 31197, 385, 1298, 362, 5512, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 2934, 1420, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 28, 10057, 62, 25811, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 1930, 28, 68, 62, 404, 13, 538, 418, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 1930, 28, 79, 62, 404, 13, 381, 418, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30069, 28, 81, 62, 404, 13, 35666, 3970, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 1640, 2583, 11, 4808, 287, 2583, 62, 25811, 13, 23814, 33529, 198, 220, 220, 220, 329, 374, 287, 2837, 7, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29481, 50, 1740, 18173, 13, 25811, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 69, 1, 12114, 10236, 12, 1416, 704, 18173, 23330, 4774, 92, 23330, 81, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 35666, 44645, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26842, 62, 11218, 62, 25811, 28, 4895, 22510, 62, 13155, 385, 1298, 657, 13, 16, 11, 366, 37540, 1298, 1391, 69, 1, 90, 4774, 92, 1298, 352, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 2934, 1420, 7, 10057, 62, 25811, 11, 374, 8, 198 ]
2.034531
4,257
# -*- coding: utf-8 -*- from functionsex import * from VombatiDB import VombatiDB, showDB, showStats, Workspace from VombatiDB import errors as dbError from importMail import ImportMail_MBox import errors as storeError import api from utils import RepairDialogLinking from libs.plainText import plaintext import textwrap if __name__ == '__main__': # importer=ImportMail_MBox('/home/byaka/Загрузки/gmail_exported/all.mbox') # tMap=set() # i1=i2=i3=i4=0 # print # for _, headers, (body_plain, body_html), attachments in importer: # if headers.get('message-id'): # if headers['message-id'] in tMap: i4+=1 # tMap.add(headers['message-id']) # else: # i2+=1 # i1+=1 # if headers.get('in-reply-to') in tMap: i3+=1 # print console.color.clearLast, i1, i2, i3, i4 # if not headers.get('message-id'): # print _.raw # print '='*30 # print # continue # for k in importer._headers: # print k+':', strUniDecode('%r'%(headers[k],)) # print # # print body_plain or body_html # print # for o in attachments: # o=o.copy() # o['payload']='...' # print o # print '='*40 # print _.defects, raw_input() # print console.color.clearLast, i1, i2, i3, i4, sys.exit() o=MyEnv() o.repairDialogs('John Smith') # o.test_filter({'or':[ # {'key':'from', 'value':'[email protected]', 'match':'=='}, # # {'key':'label', 'value':u'черновики', 'match':'=='}, # ]}, asDialogs=True, returnFull=False, limitDates=30, limitResults=100) o()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 2163, 8044, 1330, 1635, 198, 198, 6738, 569, 2381, 7246, 11012, 1330, 569, 2381, 7246, 11012, 11, 905, 11012, 11, 905, 29668, 11, 10933, 10223, 198, 6738, 569, 2381, 7246, 11012, 1330, 8563, 355, 20613, 12331, 198, 198, 6738, 1330, 25804, 1330, 17267, 25804, 62, 10744, 1140, 198, 11748, 8563, 355, 3650, 12331, 198, 11748, 40391, 198, 6738, 3384, 4487, 1330, 28912, 44204, 43, 8040, 198, 198, 6738, 9195, 82, 13, 25638, 8206, 1330, 8631, 5239, 198, 11748, 2420, 37150, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 1303, 848, 4337, 28, 20939, 25804, 62, 10744, 1140, 10786, 14, 11195, 14, 1525, 8130, 14, 140, 245, 16142, 140, 111, 21169, 35072, 140, 115, 31583, 18849, 14, 14816, 62, 1069, 9213, 14, 439, 13, 2022, 1140, 11537, 198, 220, 220, 1303, 256, 13912, 28, 2617, 3419, 198, 220, 220, 1303, 1312, 16, 28, 72, 17, 28, 72, 18, 28, 72, 19, 28, 15, 198, 220, 220, 1303, 3601, 198, 220, 220, 1303, 329, 4808, 11, 24697, 11, 357, 2618, 62, 25638, 11, 1767, 62, 6494, 828, 32161, 287, 848, 4337, 25, 198, 220, 220, 1303, 220, 220, 220, 611, 24697, 13, 1136, 10786, 20500, 12, 312, 6, 2599, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 611, 24697, 17816, 20500, 12, 312, 20520, 287, 256, 13912, 25, 1312, 19, 47932, 16, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 256, 13912, 13, 2860, 7, 50145, 17816, 20500, 12, 312, 6, 12962, 198, 220, 220, 1303, 220, 220, 220, 2073, 25, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 1312, 17, 47932, 16, 198, 220, 220, 1303, 220, 220, 220, 1312, 16, 47932, 16, 198, 220, 220, 1303, 220, 220, 220, 611, 24697, 13, 1136, 10786, 259, 12, 47768, 12, 1462, 11537, 287, 256, 13912, 25, 1312, 18, 47932, 16, 628, 220, 220, 1303, 220, 220, 220, 3601, 8624, 13, 8043, 13, 20063, 5956, 11, 1312, 16, 11, 1312, 17, 11, 1312, 18, 11, 1312, 19, 628, 220, 220, 1303, 220, 220, 220, 611, 407, 24697, 13, 1136, 10786, 20500, 12, 312, 6, 2599, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 3601, 4808, 13, 1831, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 3601, 705, 11639, 9, 1270, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 3601, 628, 220, 220, 1303, 220, 220, 220, 2555, 628, 220, 220, 1303, 220, 220, 220, 329, 479, 287, 848, 4337, 13557, 50145, 25, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 3601, 479, 10, 10354, 3256, 965, 3118, 72, 10707, 1098, 10786, 4, 81, 6, 4, 7, 50145, 58, 74, 4357, 4008, 198, 220, 220, 1303, 220, 220, 220, 3601, 198, 220, 220, 1303, 220, 220, 220, 1303, 3601, 1767, 62, 25638, 393, 1767, 62, 6494, 198, 220, 220, 1303, 220, 220, 220, 3601, 198, 220, 220, 1303, 220, 220, 220, 329, 267, 287, 32161, 25, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 267, 28, 78, 13, 30073, 3419, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 267, 17816, 15577, 2220, 20520, 11639, 986, 6, 198, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 3601, 267, 198, 220, 220, 1303, 220, 220, 220, 3601, 705, 11639, 9, 1821, 198, 220, 220, 1303, 220, 220, 220, 3601, 4808, 13, 4299, 478, 82, 11, 8246, 62, 15414, 3419, 198, 220, 220, 1303, 3601, 8624, 13, 8043, 13, 20063, 5956, 11, 1312, 16, 11, 1312, 17, 11, 1312, 18, 11, 1312, 19, 11, 25064, 13, 37023, 3419, 628, 220, 220, 267, 28, 3666, 4834, 85, 3419, 628, 220, 220, 267, 13, 49932, 24400, 18463, 10786, 7554, 4176, 11537, 628, 220, 220, 1303, 267, 13, 9288, 62, 24455, 15090, 6, 273, 10354, 58, 198, 220, 220, 1303, 220, 220, 220, 1391, 6, 2539, 10354, 6, 6738, 3256, 705, 8367, 10354, 6, 4529, 31, 1228, 261, 13, 622, 3256, 705, 15699, 10354, 6, 855, 6, 5512, 198, 220, 220, 1303, 220, 220, 220, 1303, 1391, 6, 2539, 10354, 6, 18242, 3256, 705, 8367, 10354, 84, 6, 141, 229, 16843, 21169, 22177, 25443, 110, 18849, 31583, 18849, 3256, 705, 15699, 10354, 6, 855, 6, 5512, 198, 220, 220, 1303, 2361, 5512, 355, 24400, 18463, 28, 17821, 11, 1441, 13295, 28, 25101, 11, 4179, 35, 689, 28, 1270, 11, 4179, 25468, 28, 3064, 8, 628, 220, 220, 267, 3419, 198 ]
2.165113
751
from cytopy.data.gating_strategy import GatingStrategy, DuplicatePopulationError from cytopy.data.gate import ThresholdGate, PolygonGate, EllipseGate from cytopy.data.project import Project import matplotlib.pyplot as plt import pandas as pd import pytest @pytest.mark.parametrize("gate,child_n", [(create_threshold_gate, 4), (create_poly_gate, 1), (create_ellipse_gate, 2)]) @pytest.mark.parametrize("gate,populations", [(create_threshold_gate, ["root", "Top right", "Top left", "Bottom populations"]), (create_poly_gate, ["root", "Big pop"]), (create_ellipse_gate, ["root", "Big pop", "Little pop"])]) @pytest.mark.parametrize("remove_associations", [True, False])
[ 6738, 3075, 4852, 88, 13, 7890, 13, 70, 803, 62, 2536, 4338, 1330, 402, 803, 13290, 4338, 11, 49821, 5344, 45251, 12331, 198, 6738, 3075, 4852, 88, 13, 7890, 13, 10494, 1330, 536, 10126, 22628, 11, 12280, 14520, 22628, 11, 7122, 541, 325, 22628, 198, 6738, 3075, 4852, 88, 13, 7890, 13, 16302, 1330, 4935, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 12972, 9288, 628, 628, 628, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 10494, 11, 9410, 62, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 17953, 62, 400, 10126, 62, 10494, 11, 604, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17953, 62, 35428, 62, 10494, 11, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17953, 62, 695, 541, 325, 62, 10494, 11, 362, 8, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 10494, 11, 12924, 5768, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 17953, 62, 400, 10126, 62, 10494, 11, 14631, 15763, 1600, 366, 9126, 826, 1600, 366, 9126, 1364, 1600, 366, 34104, 9684, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17953, 62, 35428, 62, 10494, 11, 14631, 15763, 1600, 366, 12804, 1461, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17953, 62, 695, 541, 325, 62, 10494, 11, 14631, 15763, 1600, 366, 12804, 1461, 1600, 366, 22253, 1461, 8973, 8, 12962, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 28956, 62, 562, 1733, 602, 1600, 685, 17821, 11, 10352, 12962, 198 ]
2.141058
397
import dotenv dotenv.load_dotenv() from time import sleep import schedule import requests import json from service.image_recognition import check_image_similarity from model import UMKM, UMKMValidator, Verification, Campaign schedule.every().minute.do(process_verifications) while True: try: schedule.run_pending() except: pass finally: sleep(1)
[ 11748, 16605, 24330, 198, 26518, 24330, 13, 2220, 62, 26518, 24330, 3419, 198, 198, 6738, 640, 1330, 3993, 198, 11748, 7269, 198, 11748, 7007, 198, 11748, 33918, 198, 198, 6738, 2139, 13, 9060, 62, 26243, 653, 1330, 2198, 62, 9060, 62, 38610, 414, 198, 6738, 2746, 1330, 471, 33907, 44, 11, 471, 33907, 44, 47139, 1352, 11, 4643, 2649, 11, 13718, 628, 628, 628, 198, 198, 15952, 5950, 13, 16833, 22446, 11374, 13, 4598, 7, 14681, 62, 332, 6637, 8, 628, 198, 4514, 6407, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7269, 13, 5143, 62, 79, 1571, 3419, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 16, 8, 198 ]
2.807143
140
__author__ = '[email protected]' # Module to support custom teacher views in CourseBuilder dashboard # Views include: # Section Roster - list of students in section # Sections - list of sections for current user # Student Dashboard - view of a single student's performance in the course # Teacher Workspace - teacher registration and list of all registered teachers import jinja2 import os import appengine_config from common import tags from common import crypto from models import custom_modules from models import roles from models import transforms from models.models import Student #since we are extending the dashboard, probably want to include dashboard stuff from modules.dashboard import dashboard from modules.dashboard import tabs #import our own modules import teacher_entity import teacher_rest_handlers import teacher_parsers #Setup paths and directories for templates and resources RESOURCES_PATH = '/modules/teacher_dashboard/resources' TEMPLATES_DIR = os.path.join( appengine_config.BUNDLE_ROOT, 'modules', 'teacher_dashboard', 'templates') #setup permissions that will be registered with the dashboard ACCESS_ASSETS_PERMISSION = 'can_access_assets' ACCESS_ASSETS_PERMISSION_DESCRIPTION = 'Can access the Assets Dashboard' ACCESS_SETTINGS_PERMISSION = 'can_access_settings' ACCESS_SETTINGS_PERMISSION_DESCRIPTION = 'Can access the Settings Dashboard' ACCESS_ROLES_PERMISSION = 'can_access_roles' ACCESS_ROLES_PERMISSION_DESCRIPTION = 'Can access the Roles Dashboard' ACCESS_ANALYTICS_PERMISSION = 'can_access_analytics' ACCESS_ANALYTICS_PERMISSION_DESCRIPTION = 'Can access the Analytics Dashboard' ACCESS_SEARCH_PERMISSION = 'can_access_search' ACCESS_SEARCH_PERMISSION_DESCRIPTION = 'Can access the Search Dashboard' ACCESS_PEERREVIEW_PERMISSION = 'can_access_peer_review' ACCESS_PEERREVIEW_PERMISSION_DESCRIPTION = 'Can access the Peer Review Dashboard' ACCESS_SKILLMAP_PERMISSION = 'can_access_skill_map' ACCESS_SKILLMAP_PERMISSION_DESCRIPTION = 'Can access the Skill Map Dashboard' ACCESS_TEACHER_DASHBOARD_PERMISSION = 'can_access_teacher_dashboard' ACCESS_TEACHER_DASHBOARD_PERMISSION_DESCRIPTION = 'Can access the Teacher Dashboard' #setup custom module for, needs to be referenced later custom_module = None class TeacherHandler(dashboard.DashboardHandler): """Handler for everything under the Teacher tab in the CourseBuilder dashboard. Note: Inherits from the DashboardHandler, makes use of many of those functions to integrate with existing dashboard. Attributes: ACTION (str): Value used to handler navigation in the dashboard, top level label. DEFAULT_TAB (str): Default sub-navigation value. URL (str): Path to module from working directory. XSRF_TOKEN_NAME (str): Token used for xsrf security functions. """ ACTION = 'teacher_dashboard' DEFAULT_TAB = 'sections' URL = '/modules/teacher_dashboard' XSRF_TOKEN_NAME = '' @classmethod def register_tabs(cls): """Handles registering all sub-navigation tabs""" def register_tab(key, label, handler, href=None): """Registers tab using the tab registry""" if href: target = '_blank' else: href = 'dashboard?action=teacher_dashboard&tab=%s' % key target = None tabs.Registry.register( cls.ACTION, key, label, contents=handler, href=href, target=target ) register_tab('sections', 'Sections', TeacherHandler) register_tab('student_detail', 'Student Dashboard', TeacherHandler) register_tab('teacher_reg', 'Teacher Workspace', TeacherHandler) def get_teacher_dashboard(self): """Process navigation requests sent to teacher handler. Routers to appropriate function.""" in_tab = self.request.get('tab') or self.DEFAULT_TAB tab_action = self.request.get('tab_action') or None #defined a secondary tab property so I can go load a # separate view in the same tab if in_tab == 'sections': if tab_action == 'roster': return self.get_roster() else: return self.get_sections() elif in_tab == 'teacher_reg': return self.get_teacher_reg() elif in_tab == 'student_detail': return self.get_student_dashboard() def get_sections(self): """Renders Sections view. Javascript handles getting course sections and building the view""" template_values = {} template_values['namespace'] = self.get_course()._namespace.replace('ns_', '') main_content = self.get_template( 'teacher_sections.html', [TEMPLATES_DIR]).render(template_values) self.render_page({ 'page_title': self.format_title('Sections'), 'main_content': jinja2.utils.Markup(main_content)}) def get_student_dashboard(self): """Renders Student Dashboard view. Also gets ALL students in ALL course sections for the registered user to build a jQuery autocomplete dropdown on the view. """ student_email = self.request.get('student') or None #email will be in the request if opened from student list # view, otherwise it will be None #need to go through every course section for the current user and get all unique students students = [] course_sections = teacher_entity.CourseSectionEntity.get_course_sections_for_user() if course_sections and len(course_sections) > 0: for course_section in course_sections.values(): if course_section.students and len(course_section.students) > 0: for student_in_section in course_section.students.values(): if not any(x['user_id'] == student_in_section['user_id'] for x in students): students.append(student_in_section) #check to see if we have a student and if we need to get detailed progress student = None if student_email: student = Student.get_by_email(student_email) if (student): course = self.get_course() units = teacher_parsers.StudentProgressTracker.get_detailed_progress(student, course) scores = teacher_parsers.ActivityScoreParser.get_activity_scores([student.user_id], course) else: units = None scores = None #render the template for the student dashboard view main_content = self.get_template( 'student_detailed_progress.html', [TEMPLATES_DIR]).render( { 'units': units, #unit completion 'student': student, #course defined student object, need email and name 'students': students, #list of students, names and emails, from a course section student list 'scores': scores }) #call DashboardHandler function to render the page self.render_page({ 'page_title': self.format_title('Student Dashboard'), 'main_content': jinja2.utils.Markup(main_content) }) def get_roster(self): """Renders the Roster view. Displays all students in a single course section Also allows user to add students to a course section """ template_values = {} template_values['add_student_xsrf_token'] = crypto.XsrfTokenManager.create_xsrf_token( teacher_rest_handlers.CourseSectionRestHandler.XSRF_TOKEN) #need list of units and lessons for select elements that determine which progress value to display #need a list of units, need the titles, unit ids, types units = self.get_course().get_units() units_filtered = filter(lambda x: x.type == 'U', units) #filter out assessments template_values['units'] = units_filtered #need to get lessons, but only for units that aren't assessments lessons = {} for unit in units_filtered: unit_lessons = self.get_course().get_lessons(unit.unit_id) unit_lessons_filtered = [] for lesson in unit_lessons: unit_lessons_filtered.append({ 'title': lesson.title, 'unit_id': lesson.unit_id, 'lesson_id': lesson.lesson_id }) lessons[unit.unit_id] = unit_lessons_filtered template_values['lessons'] = transforms.dumps(lessons, {}) #passing in JSON to template so it can be used # in JavaScript course_section_id = self.request.get('section') course_section = teacher_entity.CourseSectionEntity.get_course_for_user(course_section_id) students = {} #need to get progress values for ALL students since we show completion for every student if course_section.students and len(course_section.students) > 0: #course_section.students = sorted(course_section.students.values(), key=lambda k: (k['name'])) for student in course_section.students.values(): temp_student = {} temp_student['unit_completion'] = teacher_parsers.StudentProgressTracker.get_unit_completion( Student.get_by_email( student[ 'email']), self.get_course()) temp_student['course_completion'] = teacher_parsers.StudentProgressTracker.get_overall_progress(Student.get_by_email(student[ 'email']), self.get_course()) temp_student['detailed_course_completion'] = teacher_parsers.StudentProgressTracker.get_detailed_progress( Student.get_by_email(student['email']), self.get_course()) temp_student['email'] = student['email'] temp_student['name'] = student['name'] students[student['email']] = temp_student course_section.students = students #passing in students as JSON so JavaScript can handle updating completion values easier template_values['students_json'] = transforms.dumps(course_section.students, {}) template_values['namespace'] = self.get_course()._namespace.replace('ns_', '') if course_section: template_values['section'] = course_section #render student_list.html for Roster view main_content = self.get_template( 'student_list.html', [TEMPLATES_DIR]).render(template_values) #DashboardHandler renders the page self.render_page({ 'page_title': self.format_title('Student List'), 'main_content': jinja2.utils.Markup(main_content)}) def get_teacher_reg(self): """Renders Teacher Workspace view. Displays form to add or update a teacher Also displays all registered teachers. """ alerts = [] disable_form = False if not roles.Roles.is_course_admin(self.app_context): alerts.append('Access denied. Please contact a course admin.') disable_form = True template_values = {} template_values['teacher_reg_xsrf_token'] = self.create_xsrf_token('teacher_reg') template_values['teachers'] = teacher_entity.Teacher.get_all_teachers_for_course() template_values['alert_messages'] = alerts template_values['disable'] = disable_form template_values['action'] = self.get_action_url('teacher_reg') main_content = self.get_template( 'teacher_registration.html', [TEMPLATES_DIR]).render(template_values) self.render_page({ 'page_title': self.format_title('Teacher Registration'), 'main_content': jinja2.utils.Markup(main_content)}) @classmethod def post_teacher_reg(cls, handler): """Handles form submit for teacher registration""" #get values entered on form email = handler.request.get('email').strip() school = handler.request.get('school') #getting checkbox value is a little weird, might look different depending on browser active = handler.request.get('active-teacher') if active == 'on' or len(active) > 0: active = True else: active = False teacher = teacher_entity.Teacher.get_by_email(email) #keep track of any errors we might want to pass back to the UI alerts = [] #check to see if a teacher already exists if teacher: template_values = {} template_values['teacher_reg_xsrf_token'] = handler.create_xsrf_token('teacher_reg') sections = {} #don't let the teacher be deactivated if they have active courses can_inactivate = True if active == False: if teacher.sections: course_sections_decoded = transforms.loads(teacher.sections) for course_section_key in course_sections_decoded: course_section = teacher_entity.CourseSectionEntity(course_sections_decoded[course_section_key]) sections[course_section.section_id] = course_section for section in sections.values(): if section.is_active: can_inactivate = False #let user know if they can't deactivate, but only if they are trying to deactivate the teacher if not can_inactivate and not active: alerts.append('Cannot deactivate teacher. Teacher still has active courses') #go for the update if all is good if can_inactivate: teacher_entity.Teacher.update_teacher_for_user(email, school, active, '', alerts) #let user know all is well if save was successful if len(alerts) == 0: alerts.append('Teacher was successfully updated') #render teacher_registration.html for view, pass alerts in template_values['alert_messages'] = '\n'.join(alerts) main_content = handler.get_template( 'teacher_registration.html', [TEMPLATES_DIR]).render(template_values) #DashboardHandler renders the page handler.render_page({ 'page_title': handler.format_title('Teacher Dashboard'), 'main_content': jinja2.utils.Markup(main_content) }, 'teacher_dashboard' ) else: #go for it if teacher doesn't already exist teacher_entity.Teacher.add_new_teacher_for_user(email, school, '', alerts) template_values = {} template_values['alert_messages'] = '\n'.join(alerts) template_values['teacher_reg_xsrf_token'] = handler.create_xsrf_token('teacher_reg') main_content = handler.get_template( 'teacher_registration.html', [TEMPLATES_DIR]).render(template_values) #DashboardHandler renders the page handler.render_page({ 'page_title': handler.format_title('Teacher Dashboard'), 'main_content': jinja2.utils.Markup(main_content) }, 'teacher_dashboard' ) def notify_module_enabled(): """Handles things after module has been enabled.""" def get_action(handler): """Redirects to teacher_dashboard.""" handler.redirect('/modules/teacher_dashboard?action=teacher_dashboard&tab=%s' % handler.request.get('tab') or TeacherHandler.DEFAULT_TAB) dashboard.DashboardHandler.add_nav_mapping( TeacherHandler.ACTION, 'Teacher') dashboard.DashboardHandler.get_actions.append('teacher_dashboard') setattr(dashboard.DashboardHandler, 'get_teacher_dashboard', get_action) #add post actions dashboard.DashboardHandler.add_custom_post_action('teacher_reg', post_action) setattr(dashboard.DashboardHandler, 'post_teacher_reg', post_action) #add permissions for the dashboard sections dashboard.DashboardHandler.add_external_permission( ACCESS_ASSETS_PERMISSION, ACCESS_ASSETS_PERMISSION_DESCRIPTION) dashboard.DashboardHandler.add_external_permission( ACCESS_SETTINGS_PERMISSION, ACCESS_SETTINGS_PERMISSION_DESCRIPTION) dashboard.DashboardHandler.add_external_permission( ACCESS_ROLES_PERMISSION, ACCESS_ROLES_PERMISSION_DESCRIPTION) dashboard.DashboardHandler.add_external_permission( ACCESS_ANALYTICS_PERMISSION, ACCESS_ANALYTICS_PERMISSION_DESCRIPTION) dashboard.DashboardHandler.add_external_permission( ACCESS_SEARCH_PERMISSION, ACCESS_SEARCH_PERMISSION_DESCRIPTION) dashboard.DashboardHandler.add_external_permission( ACCESS_PEERREVIEW_PERMISSION, ACCESS_PEERREVIEW_PERMISSION_DESCRIPTION) dashboard.DashboardHandler.add_external_permission( ACCESS_SKILLMAP_PERMISSION, ACCESS_SKILLMAP_PERMISSION_DESCRIPTION) dashboard.DashboardHandler.add_external_permission( ACCESS_TEACHER_DASHBOARD_PERMISSION, ACCESS_TEACHER_DASHBOARD_PERMISSION_DESCRIPTION) #map permissions to actions dashboard.DashboardHandler.map_action_to_permission('get_' + str(TeacherHandler.ACTION), ACCESS_TEACHER_DASHBOARD_PERMISSION) nav_mappings = dashboard.DashboardHandler.get_nav_mappings() dashboard.DashboardHandler.map_action_to_permission('get_' + str(nav_mappings[1][0]), ACCESS_ASSETS_PERMISSION) dashboard.DashboardHandler.map_action_to_permission('get_' + str(nav_mappings[2][0]), ACCESS_SETTINGS_PERMISSION) dashboard.DashboardHandler.map_action_to_permission('get_' + str(nav_mappings[3][0]), ACCESS_ROLES_PERMISSION) dashboard.DashboardHandler.map_action_to_permission('get_' + str(nav_mappings[4][0]), ACCESS_ANALYTICS_PERMISSION) dashboard.DashboardHandler.map_action_to_permission('get_' + str(nav_mappings[5][0]), ACCESS_SEARCH_PERMISSION) dashboard.DashboardHandler.map_action_to_permission('get_' + str(nav_mappings[6][0]), ACCESS_PEERREVIEW_PERMISSION) dashboard.DashboardHandler.map_action_to_permission('get_' + str(nav_mappings[7][0]), ACCESS_SKILLMAP_PERMISSION) dashboard.DashboardHandler.EXTRA_JS_HREF_LIST.append( '/modules/teacher_dashboard/resources/js/popup.js') dashboard.DashboardHandler.EXTRA_JS_HREF_LIST.append( '/modules/teacher_dashboard/resources/js/course_section_analytics.js') dashboard.DashboardHandler.EXTRA_JS_HREF_LIST.append( '/modules/teacher_dashboard/resources/js/activity_score_manager.js') dashboard.DashboardHandler.EXTRA_JS_HREF_LIST.append( '/modules/teacher_dashboard/resources/js/student_list_table_manager') dashboard.DashboardHandler.EXTRA_JS_HREF_LIST.append( '/modules/teacher_dashboard/resources/js/student_list_table_rebuild_manager.js') dashboard.DashboardHandler.EXTRA_JS_HREF_LIST.append( '/modules/teacher_dashboard/resources/js/activity_score_table_manager.js') dashboard.DashboardHandler.EXTRA_JS_HREF_LIST.append( '/modules/teacher_dashboard/resources/js/student_score_manager.js') dashboard.DashboardHandler.EXTRA_CSS_HREF_LIST.append( '/modules/teacher_dashboard/resources/css/student_list.css') transforms.CUSTOM_JSON_ENCODERS.append(teacher_entity.CourseSectionEntity.json_encoder) #register tabs TeacherHandler.register_tabs() def register_module(): """Registers this module in the registry.""" global_routes = [ (os.path.join(RESOURCES_PATH, 'js', '.*'), tags.JQueryHandler), (os.path.join(RESOURCES_PATH, '.*'), tags.ResourcesHandler), (RESOURCES_PATH + '/js/popup.js', tags.IifeHandler), (RESOURCES_PATH + '/js/course_section_analytics.js', tags.IifeHandler), (RESOURCES_PATH + '/js/activity_score_manager.js', tags.IifeHandler), (RESOURCES_PATH + '/js/student_list_table_manager', tags.IifeHandler), (RESOURCES_PATH + '/js/student_list_table_rebuild_manager.js', tags.IifeHandler), (RESOURCES_PATH + '/js/activity_score_table_manager.js', tags.IifeHandler), (RESOURCES_PATH + '/js/student_score_manager.js', tags.IifeHandler) ] namespaced_routes = [ (TeacherHandler.URL, TeacherHandler), (teacher_rest_handlers.CourseSectionRestHandler.URL, teacher_rest_handlers.CourseSectionRestHandler), (teacher_rest_handlers.StudentProgressRestHandler.URL, teacher_rest_handlers.StudentProgressRestHandler), (teacher_rest_handlers.ActivityScoreRestHandler.URL, teacher_rest_handlers.ActivityScoreRestHandler) ] global custom_module # pylint: disable=global-statement custom_module = custom_modules.Module( 'Teacher Dashboard Module', 'A module provide teacher workflow.', global_routes, namespaced_routes, notify_module_enabled=notify_module_enabled) return custom_module
[ 834, 9800, 834, 796, 705, 17231, 4665, 31, 25471, 13, 15532, 6, 628, 198, 2, 19937, 284, 1104, 2183, 4701, 5009, 287, 20537, 32875, 30415, 198, 2, 29978, 2291, 25, 198, 2, 220, 220, 220, 220, 220, 220, 7275, 371, 6197, 532, 1351, 286, 2444, 287, 2665, 198, 2, 220, 220, 220, 220, 220, 220, 37703, 532, 1351, 286, 9004, 329, 1459, 2836, 198, 2, 220, 220, 220, 220, 220, 220, 13613, 16189, 3526, 532, 1570, 286, 257, 2060, 3710, 338, 2854, 287, 262, 1781, 198, 2, 220, 220, 220, 220, 220, 220, 32019, 10933, 10223, 532, 4701, 9352, 290, 1351, 286, 477, 6823, 7799, 198, 198, 11748, 474, 259, 6592, 17, 198, 11748, 28686, 198, 198, 11748, 598, 18392, 62, 11250, 198, 198, 6738, 2219, 1330, 15940, 198, 6738, 2219, 1330, 21473, 198, 198, 6738, 4981, 1330, 2183, 62, 18170, 198, 6738, 4981, 1330, 9176, 198, 6738, 4981, 1330, 31408, 198, 6738, 4981, 13, 27530, 1330, 13613, 198, 198, 2, 20777, 356, 389, 16610, 262, 30415, 11, 2192, 765, 284, 2291, 30415, 3404, 198, 6738, 13103, 13, 42460, 3526, 1330, 30415, 198, 6738, 13103, 13, 42460, 3526, 1330, 22524, 198, 198, 2, 11748, 674, 898, 13103, 198, 11748, 4701, 62, 26858, 198, 11748, 4701, 62, 2118, 62, 4993, 8116, 198, 11748, 4701, 62, 79, 945, 364, 198, 198, 2, 40786, 13532, 290, 29196, 329, 24019, 290, 4133, 198, 19535, 2606, 7397, 1546, 62, 34219, 796, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 6, 198, 198, 51, 3620, 6489, 29462, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 598, 18392, 62, 11250, 13, 33, 4944, 35, 2538, 62, 13252, 2394, 11, 705, 18170, 3256, 705, 660, 3493, 62, 42460, 3526, 3256, 705, 11498, 17041, 11537, 198, 198, 2, 40406, 21627, 326, 481, 307, 6823, 351, 262, 30415, 198, 26861, 7597, 62, 10705, 32716, 62, 18973, 44, 40373, 796, 705, 5171, 62, 15526, 62, 19668, 6, 198, 26861, 7597, 62, 10705, 32716, 62, 18973, 44, 40373, 62, 30910, 40165, 796, 705, 6090, 1895, 262, 41059, 16189, 3526, 6, 198, 198, 26861, 7597, 62, 28480, 51, 20754, 62, 18973, 44, 40373, 796, 705, 5171, 62, 15526, 62, 33692, 6, 198, 26861, 7597, 62, 28480, 51, 20754, 62, 18973, 44, 40373, 62, 30910, 40165, 796, 705, 6090, 1895, 262, 16163, 16189, 3526, 6, 198, 198, 26861, 7597, 62, 49, 3535, 1546, 62, 18973, 44, 40373, 796, 705, 5171, 62, 15526, 62, 305, 829, 6, 198, 26861, 7597, 62, 49, 3535, 1546, 62, 18973, 44, 40373, 62, 30910, 40165, 796, 705, 6090, 1895, 262, 371, 4316, 16189, 3526, 6, 198, 198, 26861, 7597, 62, 1565, 1847, 56, 51, 19505, 62, 18973, 44, 40373, 796, 705, 5171, 62, 15526, 62, 38200, 14094, 6, 198, 26861, 7597, 62, 1565, 1847, 56, 51, 19505, 62, 18973, 44, 40373, 62, 30910, 40165, 796, 705, 6090, 1895, 262, 30437, 16189, 3526, 6, 198, 198, 26861, 7597, 62, 5188, 31315, 62, 18973, 44, 40373, 796, 705, 5171, 62, 15526, 62, 12947, 6, 198, 26861, 7597, 62, 5188, 31315, 62, 18973, 44, 40373, 62, 30910, 40165, 796, 705, 6090, 1895, 262, 11140, 16189, 3526, 6, 198, 198, 26861, 7597, 62, 11401, 1137, 2200, 28206, 62, 18973, 44, 40373, 796, 705, 5171, 62, 15526, 62, 33350, 62, 19023, 6, 198, 26861, 7597, 62, 11401, 1137, 2200, 28206, 62, 18973, 44, 40373, 62, 30910, 40165, 796, 705, 6090, 1895, 262, 41139, 6602, 16189, 3526, 6, 198, 198, 26861, 7597, 62, 18831, 8267, 33767, 62, 18973, 44, 40373, 796, 705, 5171, 62, 15526, 62, 42401, 62, 8899, 6, 198, 26861, 7597, 62, 18831, 8267, 33767, 62, 18973, 44, 40373, 62, 30910, 40165, 796, 705, 6090, 1895, 262, 16023, 9347, 16189, 3526, 6, 198, 198, 26861, 7597, 62, 9328, 16219, 1137, 62, 35, 11211, 8202, 9795, 62, 18973, 44, 40373, 796, 705, 5171, 62, 15526, 62, 660, 3493, 62, 42460, 3526, 6, 198, 26861, 7597, 62, 9328, 16219, 1137, 62, 35, 11211, 8202, 9795, 62, 18973, 44, 40373, 62, 30910, 40165, 796, 705, 6090, 1895, 262, 32019, 16189, 3526, 6, 198, 198, 2, 40406, 2183, 8265, 329, 11, 2476, 284, 307, 20717, 1568, 198, 23144, 62, 21412, 796, 6045, 628, 198, 4871, 32019, 25060, 7, 42460, 3526, 13, 43041, 3526, 25060, 2599, 198, 220, 220, 220, 37227, 25060, 329, 2279, 739, 262, 32019, 7400, 287, 262, 20537, 32875, 30415, 13, 628, 220, 220, 220, 5740, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47025, 896, 422, 262, 16189, 3526, 25060, 11, 1838, 779, 286, 867, 286, 883, 5499, 284, 198, 220, 220, 220, 220, 220, 220, 220, 19386, 351, 4683, 30415, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40282, 357, 2536, 2599, 11052, 973, 284, 21360, 16408, 287, 262, 30415, 11, 1353, 1241, 6167, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5550, 38865, 62, 5603, 33, 357, 2536, 2599, 15161, 850, 12, 28341, 7065, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10289, 357, 2536, 2599, 10644, 284, 8265, 422, 1762, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 12562, 37, 62, 10468, 43959, 62, 20608, 357, 2536, 2599, 29130, 973, 329, 2124, 27891, 69, 2324, 5499, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 40282, 796, 705, 660, 3493, 62, 42460, 3526, 6, 198, 220, 220, 220, 5550, 38865, 62, 5603, 33, 796, 705, 23946, 6, 628, 220, 220, 220, 10289, 796, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 6, 628, 220, 220, 220, 1395, 12562, 37, 62, 10468, 43959, 62, 20608, 796, 10148, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 7881, 62, 8658, 82, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12885, 829, 28336, 477, 850, 12, 28341, 7065, 22524, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 825, 7881, 62, 8658, 7, 2539, 11, 6167, 11, 21360, 11, 13291, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 8081, 6223, 7400, 1262, 262, 7400, 20478, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 705, 62, 27190, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13291, 796, 705, 42460, 3526, 30, 2673, 28, 660, 3493, 62, 42460, 3526, 5, 8658, 28, 4, 82, 6, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22524, 13, 8081, 4592, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 44710, 11, 1994, 11, 6167, 11, 10154, 28, 30281, 11, 13291, 28, 33257, 11, 2496, 28, 16793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 8658, 10786, 23946, 3256, 705, 50, 478, 507, 3256, 32019, 25060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 8658, 10786, 50139, 62, 49170, 3256, 705, 38778, 16189, 3526, 3256, 32019, 25060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 8658, 10786, 660, 3493, 62, 2301, 3256, 705, 6767, 3493, 10933, 10223, 3256, 32019, 25060, 8, 628, 220, 220, 220, 825, 651, 62, 660, 3493, 62, 42460, 3526, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18709, 16408, 7007, 1908, 284, 4701, 21360, 13, 13876, 1010, 284, 5035, 2163, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 287, 62, 8658, 796, 2116, 13, 25927, 13, 1136, 10786, 8658, 11537, 393, 2116, 13, 7206, 38865, 62, 5603, 33, 198, 220, 220, 220, 220, 220, 220, 220, 7400, 62, 2673, 796, 2116, 13, 25927, 13, 1136, 10786, 8658, 62, 2673, 11537, 393, 6045, 1303, 23211, 257, 9233, 7400, 3119, 523, 314, 460, 467, 3440, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4553, 1570, 287, 262, 976, 7400, 628, 220, 220, 220, 220, 220, 220, 220, 611, 287, 62, 8658, 6624, 705, 23946, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7400, 62, 2673, 6624, 705, 305, 1706, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1136, 62, 305, 1706, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1136, 62, 23946, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 287, 62, 8658, 6624, 705, 660, 3493, 62, 2301, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1136, 62, 660, 3493, 62, 2301, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 287, 62, 8658, 6624, 705, 50139, 62, 49170, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1136, 62, 50139, 62, 42460, 3526, 3419, 628, 220, 220, 220, 825, 651, 62, 23946, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49, 7338, 37703, 1570, 13, 24711, 17105, 1972, 1781, 9004, 290, 2615, 262, 1570, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 14933, 10223, 20520, 796, 2116, 13, 1136, 62, 17319, 22446, 62, 14933, 10223, 13, 33491, 10786, 5907, 62, 3256, 10148, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 11299, 796, 2116, 13, 1136, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 660, 3493, 62, 23946, 13, 6494, 3256, 685, 51, 3620, 6489, 29462, 62, 34720, 35944, 13287, 7, 28243, 62, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13287, 62, 7700, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7700, 62, 7839, 10354, 2116, 13, 18982, 62, 7839, 10786, 50, 478, 507, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12417, 62, 11299, 10354, 474, 259, 6592, 17, 13, 26791, 13, 9704, 929, 7, 12417, 62, 11299, 8, 30072, 628, 220, 220, 220, 825, 651, 62, 50139, 62, 42460, 3526, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49, 7338, 13613, 16189, 3526, 1570, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4418, 3011, 11096, 2444, 287, 11096, 1781, 9004, 329, 262, 6823, 2836, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 257, 37420, 1960, 42829, 6677, 4268, 2902, 319, 262, 1570, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 3710, 62, 12888, 796, 2116, 13, 25927, 13, 1136, 10786, 50139, 11537, 393, 6045, 1303, 12888, 481, 307, 287, 262, 2581, 611, 4721, 422, 3710, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1570, 11, 4306, 340, 481, 307, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31227, 284, 467, 832, 790, 1781, 2665, 329, 262, 1459, 2836, 290, 651, 477, 3748, 2444, 198, 220, 220, 220, 220, 220, 220, 220, 2444, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1781, 62, 23946, 796, 4701, 62, 26858, 13, 49046, 16375, 32398, 13, 1136, 62, 17319, 62, 23946, 62, 1640, 62, 7220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1781, 62, 23946, 290, 18896, 7, 17319, 62, 23946, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1781, 62, 5458, 287, 1781, 62, 23946, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1781, 62, 5458, 13, 19149, 658, 290, 18896, 7, 17319, 62, 5458, 13, 19149, 658, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3710, 62, 259, 62, 5458, 287, 1781, 62, 5458, 13, 19149, 658, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 597, 7, 87, 17816, 7220, 62, 312, 20520, 6624, 3710, 62, 259, 62, 5458, 17816, 7220, 62, 312, 20520, 329, 2124, 287, 2444, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2444, 13, 33295, 7, 50139, 62, 259, 62, 5458, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9122, 284, 766, 611, 356, 423, 257, 3710, 290, 611, 356, 761, 284, 651, 6496, 4371, 198, 220, 220, 220, 220, 220, 220, 220, 3710, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3710, 62, 12888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3710, 796, 13613, 13, 1136, 62, 1525, 62, 12888, 7, 50139, 62, 12888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 50139, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1781, 796, 2116, 13, 1136, 62, 17319, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 796, 4701, 62, 79, 945, 364, 13, 38778, 32577, 35694, 13, 1136, 62, 15255, 6255, 62, 33723, 7, 50139, 11, 1781, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 4701, 62, 79, 945, 364, 13, 16516, 26595, 46677, 13, 1136, 62, 21797, 62, 1416, 2850, 26933, 50139, 13, 7220, 62, 312, 4357, 1781, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13287, 262, 11055, 329, 262, 3710, 30415, 1570, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 11299, 796, 2116, 13, 1136, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50139, 62, 15255, 6255, 62, 33723, 13, 6494, 3256, 685, 51, 3620, 6489, 29462, 62, 34720, 35944, 13287, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 4991, 11, 1303, 20850, 11939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50139, 10354, 3710, 11, 1303, 17319, 5447, 3710, 2134, 11, 761, 3053, 290, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19149, 658, 10354, 2444, 11, 1303, 4868, 286, 2444, 11, 3891, 290, 7237, 11, 422, 257, 1781, 2665, 3710, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1416, 2850, 10354, 8198, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13345, 16189, 3526, 25060, 2163, 284, 8543, 262, 2443, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13287, 62, 7700, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7700, 62, 7839, 10354, 2116, 13, 18982, 62, 7839, 10786, 38778, 16189, 3526, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12417, 62, 11299, 10354, 474, 259, 6592, 17, 13, 26791, 13, 9704, 929, 7, 12417, 62, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 198, 220, 220, 220, 825, 651, 62, 305, 1706, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49, 7338, 262, 371, 6197, 1570, 13, 3167, 26024, 477, 2444, 287, 257, 2060, 1781, 2665, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4418, 3578, 2836, 284, 751, 2444, 284, 257, 1781, 2665, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 2860, 62, 50139, 62, 87, 27891, 69, 62, 30001, 20520, 796, 21473, 13, 55, 27891, 69, 30642, 13511, 13, 17953, 62, 87, 27891, 69, 62, 30001, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4701, 62, 2118, 62, 4993, 8116, 13, 49046, 16375, 19452, 25060, 13, 55, 12562, 37, 62, 10468, 43959, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31227, 1351, 286, 4991, 290, 11658, 329, 2922, 4847, 326, 5004, 543, 4371, 1988, 284, 3359, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 31227, 257, 1351, 286, 4991, 11, 761, 262, 8714, 11, 4326, 220, 2340, 11, 3858, 198, 220, 220, 220, 220, 220, 220, 220, 4991, 796, 2116, 13, 1136, 62, 17319, 22446, 1136, 62, 41667, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4991, 62, 10379, 4400, 796, 8106, 7, 50033, 2124, 25, 2124, 13, 4906, 6624, 705, 52, 3256, 4991, 8, 1303, 24455, 503, 21837, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 41667, 20520, 796, 4991, 62, 10379, 4400, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31227, 284, 651, 11658, 11, 475, 691, 329, 4991, 326, 3588, 470, 21837, 198, 220, 220, 220, 220, 220, 220, 220, 11658, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4326, 287, 4991, 62, 10379, 4400, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 1203, 684, 796, 2116, 13, 1136, 62, 17319, 22446, 1136, 62, 1203, 684, 7, 20850, 13, 20850, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 1203, 684, 62, 10379, 4400, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11483, 287, 4326, 62, 1203, 684, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 1203, 684, 62, 10379, 4400, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 11483, 13, 7839, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20850, 62, 312, 10354, 11483, 13, 20850, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1203, 261, 62, 312, 10354, 11483, 13, 1203, 261, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11658, 58, 20850, 13, 20850, 62, 312, 60, 796, 4326, 62, 1203, 684, 62, 10379, 4400, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 1203, 684, 20520, 796, 31408, 13, 67, 8142, 7, 1203, 684, 11, 23884, 8, 1303, 6603, 278, 287, 19449, 284, 11055, 523, 340, 460, 307, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 11933, 628, 220, 220, 220, 220, 220, 220, 220, 1781, 62, 5458, 62, 312, 796, 2116, 13, 25927, 13, 1136, 10786, 5458, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1781, 62, 5458, 796, 4701, 62, 26858, 13, 49046, 16375, 32398, 13, 1136, 62, 17319, 62, 1640, 62, 7220, 7, 17319, 62, 5458, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2444, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31227, 284, 651, 4371, 3815, 329, 11096, 2444, 1201, 356, 905, 11939, 329, 790, 3710, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1781, 62, 5458, 13, 19149, 658, 290, 18896, 7, 17319, 62, 5458, 13, 19149, 658, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17319, 62, 5458, 13, 19149, 658, 796, 23243, 7, 17319, 62, 5458, 13, 19149, 658, 13, 27160, 22784, 1994, 28, 50033, 479, 25, 357, 74, 17816, 3672, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3710, 287, 1781, 62, 5458, 13, 19149, 658, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 50139, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 50139, 17816, 20850, 62, 785, 24547, 20520, 796, 4701, 62, 79, 945, 364, 13, 38778, 32577, 35694, 13, 1136, 62, 20850, 62, 785, 24547, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13613, 13, 1136, 62, 1525, 62, 12888, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3710, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12888, 20520, 828, 2116, 13, 1136, 62, 17319, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 50139, 17816, 17319, 62, 785, 24547, 20520, 796, 4701, 62, 79, 945, 364, 13, 38778, 32577, 35694, 13, 1136, 62, 2502, 439, 62, 33723, 7, 38778, 13, 1136, 62, 1525, 62, 12888, 7, 50139, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12888, 20520, 828, 2116, 13, 1136, 62, 17319, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 50139, 17816, 15255, 6255, 62, 17319, 62, 785, 24547, 20520, 796, 4701, 62, 79, 945, 364, 13, 38778, 32577, 35694, 13, 1136, 62, 15255, 6255, 62, 33723, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13613, 13, 1136, 62, 1525, 62, 12888, 7, 50139, 17816, 12888, 20520, 828, 2116, 13, 1136, 62, 17319, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 50139, 17816, 12888, 20520, 796, 3710, 17816, 12888, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 50139, 17816, 3672, 20520, 796, 3710, 17816, 3672, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2444, 58, 50139, 17816, 12888, 6, 11907, 796, 20218, 62, 50139, 628, 220, 220, 220, 220, 220, 220, 220, 1781, 62, 5458, 13, 19149, 658, 796, 2444, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6603, 278, 287, 2444, 355, 19449, 523, 11933, 460, 5412, 19698, 11939, 3815, 4577, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 19149, 658, 62, 17752, 20520, 796, 31408, 13, 67, 8142, 7, 17319, 62, 5458, 13, 19149, 658, 11, 23884, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 14933, 10223, 20520, 796, 2116, 13, 1136, 62, 17319, 22446, 62, 14933, 10223, 13, 33491, 10786, 5907, 62, 3256, 10148, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1781, 62, 5458, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 5458, 20520, 796, 1781, 62, 5458, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13287, 3710, 62, 4868, 13, 6494, 329, 371, 6197, 1570, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 11299, 796, 2116, 13, 1136, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50139, 62, 4868, 13, 6494, 3256, 685, 51, 3620, 6489, 29462, 62, 34720, 35944, 13287, 7, 28243, 62, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 43041, 3526, 25060, 30111, 262, 2443, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13287, 62, 7700, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7700, 62, 7839, 10354, 2116, 13, 18982, 62, 7839, 10786, 38778, 7343, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12417, 62, 11299, 10354, 474, 259, 6592, 17, 13, 26791, 13, 9704, 929, 7, 12417, 62, 11299, 8, 30072, 628, 198, 220, 220, 220, 825, 651, 62, 660, 3493, 62, 2301, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49, 7338, 32019, 10933, 10223, 1570, 13, 3167, 26024, 1296, 284, 751, 393, 4296, 257, 4701, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4418, 11298, 477, 6823, 7799, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 21675, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 15560, 62, 687, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9176, 13, 49, 4316, 13, 271, 62, 17319, 62, 28482, 7, 944, 13, 1324, 62, 22866, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21675, 13, 33295, 10786, 15457, 6699, 13, 4222, 2800, 257, 1781, 13169, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15560, 62, 687, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 660, 3493, 62, 2301, 62, 87, 27891, 69, 62, 30001, 20520, 796, 2116, 13, 17953, 62, 87, 27891, 69, 62, 30001, 10786, 660, 3493, 62, 2301, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 660, 17892, 20520, 796, 4701, 62, 26858, 13, 6767, 3493, 13, 1136, 62, 439, 62, 660, 17892, 62, 1640, 62, 17319, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 44598, 62, 37348, 1095, 20520, 796, 21675, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 40223, 20520, 796, 15560, 62, 687, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 2673, 20520, 796, 2116, 13, 1136, 62, 2673, 62, 6371, 10786, 660, 3493, 62, 2301, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 11299, 796, 2116, 13, 1136, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 660, 3493, 62, 2301, 33397, 13, 6494, 3256, 685, 51, 3620, 6489, 29462, 62, 34720, 35944, 13287, 7, 28243, 62, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13287, 62, 7700, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7700, 62, 7839, 10354, 2116, 13, 18982, 62, 7839, 10786, 6767, 3493, 24610, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12417, 62, 11299, 10354, 474, 259, 6592, 17, 13, 26791, 13, 9704, 929, 7, 12417, 62, 11299, 8, 30072, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 1281, 62, 660, 3493, 62, 2301, 7, 565, 82, 11, 21360, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12885, 829, 1296, 9199, 329, 4701, 9352, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1136, 3815, 5982, 319, 1296, 198, 220, 220, 220, 220, 220, 220, 220, 3053, 796, 21360, 13, 25927, 13, 1136, 10786, 12888, 27691, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1524, 796, 21360, 13, 25927, 13, 1136, 10786, 14347, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37210, 2198, 3524, 1988, 318, 257, 1310, 7650, 11, 1244, 804, 1180, 6906, 319, 6444, 198, 220, 220, 220, 220, 220, 220, 220, 4075, 796, 21360, 13, 25927, 13, 1136, 10786, 5275, 12, 660, 3493, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4075, 6624, 705, 261, 6, 393, 18896, 7, 5275, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4075, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4075, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 4701, 796, 4701, 62, 26858, 13, 6767, 3493, 13, 1136, 62, 1525, 62, 12888, 7, 12888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14894, 2610, 286, 597, 8563, 356, 1244, 765, 284, 1208, 736, 284, 262, 12454, 198, 220, 220, 220, 220, 220, 220, 220, 21675, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9122, 284, 766, 611, 257, 4701, 1541, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4701, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 660, 3493, 62, 2301, 62, 87, 27891, 69, 62, 30001, 20520, 796, 21360, 13, 17953, 62, 87, 27891, 69, 62, 30001, 10786, 660, 3493, 62, 2301, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9004, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9099, 470, 1309, 262, 4701, 307, 390, 33106, 611, 484, 423, 4075, 10902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 62, 259, 39022, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4075, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4701, 13, 23946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1781, 62, 23946, 62, 12501, 9043, 796, 31408, 13, 46030, 7, 660, 3493, 13, 23946, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1781, 62, 5458, 62, 2539, 287, 1781, 62, 23946, 62, 12501, 9043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1781, 62, 5458, 796, 4701, 62, 26858, 13, 49046, 16375, 32398, 7, 17319, 62, 23946, 62, 12501, 9043, 58, 17319, 62, 5458, 62, 2539, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9004, 58, 17319, 62, 5458, 13, 5458, 62, 312, 60, 796, 1781, 62, 5458, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2665, 287, 9004, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2665, 13, 271, 62, 5275, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 62, 259, 39022, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1616, 2836, 760, 611, 484, 460, 470, 390, 39022, 11, 475, 691, 611, 484, 389, 2111, 284, 390, 39022, 262, 4701, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 460, 62, 259, 39022, 290, 407, 4075, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21675, 13, 33295, 10786, 34, 34574, 390, 39022, 4701, 13, 32019, 991, 468, 4075, 10902, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2188, 329, 262, 4296, 611, 477, 318, 922, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 460, 62, 259, 39022, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4701, 62, 26858, 13, 6767, 3493, 13, 19119, 62, 660, 3493, 62, 1640, 62, 7220, 7, 12888, 11, 1524, 11, 4075, 11, 705, 3256, 21675, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1616, 2836, 760, 477, 318, 880, 611, 3613, 373, 4388, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 44598, 82, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21675, 13, 33295, 10786, 6767, 3493, 373, 7675, 6153, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13287, 4701, 62, 2301, 33397, 13, 6494, 329, 1570, 11, 1208, 21675, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 44598, 62, 37348, 1095, 20520, 796, 705, 59, 77, 4458, 22179, 7, 44598, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 11299, 796, 21360, 13, 1136, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 660, 3493, 62, 2301, 33397, 13, 6494, 3256, 685, 51, 3620, 6489, 29462, 62, 34720, 35944, 13287, 7, 28243, 62, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 43041, 3526, 25060, 30111, 262, 2443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21360, 13, 13287, 62, 7700, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7700, 62, 7839, 10354, 21360, 13, 18982, 62, 7839, 10786, 6767, 3493, 16189, 3526, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12417, 62, 11299, 10354, 474, 259, 6592, 17, 13, 26791, 13, 9704, 929, 7, 12417, 62, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 660, 3493, 62, 42460, 3526, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2188, 329, 340, 611, 4701, 1595, 470, 1541, 2152, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4701, 62, 26858, 13, 6767, 3493, 13, 2860, 62, 3605, 62, 660, 3493, 62, 1640, 62, 7220, 7, 12888, 11, 1524, 11, 705, 3256, 21675, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 44598, 62, 37348, 1095, 20520, 796, 705, 59, 77, 4458, 22179, 7, 44598, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 27160, 17816, 660, 3493, 62, 2301, 62, 87, 27891, 69, 62, 30001, 20520, 796, 21360, 13, 17953, 62, 87, 27891, 69, 62, 30001, 10786, 660, 3493, 62, 2301, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 11299, 796, 21360, 13, 1136, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 660, 3493, 62, 2301, 33397, 13, 6494, 3256, 685, 51, 3620, 6489, 29462, 62, 34720, 35944, 13287, 7, 28243, 62, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 43041, 3526, 25060, 30111, 262, 2443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21360, 13, 13287, 62, 7700, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7700, 62, 7839, 10354, 21360, 13, 18982, 62, 7839, 10786, 6767, 3493, 16189, 3526, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12417, 62, 11299, 10354, 474, 259, 6592, 17, 13, 26791, 13, 9704, 929, 7, 12417, 62, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 660, 3493, 62, 42460, 3526, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4299, 19361, 62, 21412, 62, 25616, 33529, 198, 220, 220, 220, 37227, 12885, 829, 1243, 706, 8265, 468, 587, 9343, 526, 15931, 628, 220, 220, 220, 825, 651, 62, 2673, 7, 30281, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7738, 1060, 82, 284, 4701, 62, 42460, 3526, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 21360, 13, 445, 1060, 10786, 14, 18170, 14, 660, 3493, 62, 42460, 3526, 30, 2673, 28, 660, 3493, 62, 42460, 3526, 5, 8658, 28, 4, 82, 6, 4064, 21360, 13, 25927, 13, 1136, 10786, 8658, 11537, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32019, 25060, 13, 7206, 38865, 62, 5603, 33, 8, 628, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 28341, 62, 76, 5912, 7, 198, 220, 220, 220, 220, 220, 220, 220, 32019, 25060, 13, 44710, 11, 705, 6767, 3493, 11537, 628, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 1136, 62, 4658, 13, 33295, 10786, 660, 3493, 62, 42460, 3526, 11537, 198, 220, 220, 220, 900, 35226, 7, 42460, 3526, 13, 43041, 3526, 25060, 11, 705, 1136, 62, 660, 3493, 62, 42460, 3526, 3256, 651, 62, 2673, 8, 628, 220, 220, 220, 1303, 2860, 1281, 4028, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 23144, 62, 7353, 62, 2673, 10786, 660, 3493, 62, 2301, 3256, 1281, 62, 2673, 8, 198, 220, 220, 220, 900, 35226, 7, 42460, 3526, 13, 43041, 3526, 25060, 11, 705, 7353, 62, 660, 3493, 62, 2301, 3256, 1281, 62, 2673, 8, 628, 220, 220, 220, 1303, 2860, 21627, 329, 262, 30415, 9004, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 22615, 62, 525, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 10705, 32716, 62, 18973, 44, 40373, 11, 15859, 7597, 62, 10705, 32716, 62, 18973, 44, 40373, 62, 30910, 40165, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 22615, 62, 525, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 28480, 51, 20754, 62, 18973, 44, 40373, 11, 15859, 7597, 62, 28480, 51, 20754, 62, 18973, 44, 40373, 62, 30910, 40165, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 22615, 62, 525, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 49, 3535, 1546, 62, 18973, 44, 40373, 11, 15859, 7597, 62, 49, 3535, 1546, 62, 18973, 44, 40373, 62, 30910, 40165, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 22615, 62, 525, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 1565, 1847, 56, 51, 19505, 62, 18973, 44, 40373, 11, 15859, 7597, 62, 1565, 1847, 56, 51, 19505, 62, 18973, 44, 40373, 62, 30910, 40165, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 22615, 62, 525, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 5188, 31315, 62, 18973, 44, 40373, 11, 15859, 7597, 62, 5188, 31315, 62, 18973, 44, 40373, 62, 30910, 40165, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 22615, 62, 525, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 11401, 1137, 2200, 28206, 62, 18973, 44, 40373, 11, 15859, 7597, 62, 11401, 1137, 2200, 28206, 62, 18973, 44, 40373, 62, 30910, 40165, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 22615, 62, 525, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 18831, 8267, 33767, 62, 18973, 44, 40373, 11, 15859, 7597, 62, 18831, 8267, 33767, 62, 18973, 44, 40373, 62, 30910, 40165, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 2860, 62, 22615, 62, 525, 3411, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 9328, 16219, 1137, 62, 35, 11211, 8202, 9795, 62, 18973, 44, 40373, 11, 15859, 7597, 62, 9328, 16219, 1137, 62, 35, 11211, 8202, 9795, 62, 18973, 44, 40373, 62, 30910, 40165, 8, 628, 220, 220, 220, 1303, 8899, 21627, 284, 4028, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 8899, 62, 2673, 62, 1462, 62, 525, 3411, 10786, 1136, 62, 6, 1343, 965, 7, 6767, 3493, 25060, 13, 44710, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15859, 7597, 62, 9328, 16219, 1137, 62, 35, 11211, 8202, 9795, 62, 18973, 44, 40373, 8, 198, 220, 220, 220, 6812, 62, 76, 39242, 796, 30415, 13, 43041, 3526, 25060, 13, 1136, 62, 28341, 62, 76, 39242, 3419, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 8899, 62, 2673, 62, 1462, 62, 525, 3411, 10786, 1136, 62, 6, 1343, 965, 7, 28341, 62, 76, 39242, 58, 16, 7131, 15, 46570, 15859, 7597, 62, 10705, 32716, 62, 18973, 44, 40373, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 8899, 62, 2673, 62, 1462, 62, 525, 3411, 10786, 1136, 62, 6, 1343, 965, 7, 28341, 62, 76, 39242, 58, 17, 7131, 15, 46570, 15859, 7597, 62, 28480, 51, 20754, 62, 18973, 44, 40373, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 8899, 62, 2673, 62, 1462, 62, 525, 3411, 10786, 1136, 62, 6, 1343, 965, 7, 28341, 62, 76, 39242, 58, 18, 7131, 15, 46570, 15859, 7597, 62, 49, 3535, 1546, 62, 18973, 44, 40373, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 8899, 62, 2673, 62, 1462, 62, 525, 3411, 10786, 1136, 62, 6, 1343, 965, 7, 28341, 62, 76, 39242, 58, 19, 7131, 15, 46570, 15859, 7597, 62, 1565, 1847, 56, 51, 19505, 62, 18973, 44, 40373, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 8899, 62, 2673, 62, 1462, 62, 525, 3411, 10786, 1136, 62, 6, 1343, 965, 7, 28341, 62, 76, 39242, 58, 20, 7131, 15, 46570, 15859, 7597, 62, 5188, 31315, 62, 18973, 44, 40373, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 8899, 62, 2673, 62, 1462, 62, 525, 3411, 10786, 1136, 62, 6, 1343, 965, 7, 28341, 62, 76, 39242, 58, 21, 7131, 15, 46570, 15859, 7597, 62, 11401, 1137, 2200, 28206, 62, 18973, 44, 40373, 8, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 8899, 62, 2673, 62, 1462, 62, 525, 3411, 10786, 1136, 62, 6, 1343, 965, 7, 28341, 62, 76, 39242, 58, 22, 7131, 15, 46570, 15859, 7597, 62, 18831, 8267, 33767, 62, 18973, 44, 40373, 8, 628, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 13918, 3861, 62, 20120, 62, 39, 31688, 62, 45849, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 14, 8457, 14, 12924, 929, 13, 8457, 11537, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 13918, 3861, 62, 20120, 62, 39, 31688, 62, 45849, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 14, 8457, 14, 17319, 62, 5458, 62, 38200, 14094, 13, 8457, 11537, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 13918, 3861, 62, 20120, 62, 39, 31688, 62, 45849, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 14, 8457, 14, 21797, 62, 26675, 62, 37153, 13, 8457, 11537, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 13918, 3861, 62, 20120, 62, 39, 31688, 62, 45849, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 14, 8457, 14, 50139, 62, 4868, 62, 11487, 62, 37153, 11537, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 13918, 3861, 62, 20120, 62, 39, 31688, 62, 45849, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 14, 8457, 14, 50139, 62, 4868, 62, 11487, 62, 260, 11249, 62, 37153, 13, 8457, 11537, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 13918, 3861, 62, 20120, 62, 39, 31688, 62, 45849, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 14, 8457, 14, 21797, 62, 26675, 62, 11487, 62, 37153, 13, 8457, 11537, 198, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 13918, 3861, 62, 20120, 62, 39, 31688, 62, 45849, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 14, 8457, 14, 50139, 62, 26675, 62, 37153, 13, 8457, 11537, 628, 220, 220, 220, 30415, 13, 43041, 3526, 25060, 13, 13918, 3861, 62, 49155, 62, 39, 31688, 62, 45849, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 18170, 14, 660, 3493, 62, 42460, 3526, 14, 37540, 14, 25471, 14, 50139, 62, 4868, 13, 25471, 11537, 628, 220, 220, 220, 31408, 13, 34, 7759, 2662, 62, 40386, 62, 24181, 3727, 4877, 13, 33295, 7, 660, 3493, 62, 26858, 13, 49046, 16375, 32398, 13, 17752, 62, 12685, 12342, 8, 628, 220, 220, 220, 1303, 30238, 22524, 198, 220, 220, 220, 32019, 25060, 13, 30238, 62, 8658, 82, 3419, 628, 198, 4299, 7881, 62, 21412, 33529, 198, 220, 220, 220, 37227, 8081, 6223, 428, 8265, 287, 262, 20478, 526, 15931, 628, 220, 220, 220, 3298, 62, 81, 448, 274, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 418, 13, 6978, 13, 22179, 7, 19535, 2606, 7397, 1546, 62, 34219, 11, 705, 8457, 3256, 705, 15885, 33809, 15940, 13, 41, 20746, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 418, 13, 6978, 13, 22179, 7, 19535, 2606, 7397, 1546, 62, 34219, 11, 705, 15885, 33809, 15940, 13, 33236, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19535, 2606, 7397, 1546, 62, 34219, 1343, 31051, 8457, 14, 12924, 929, 13, 8457, 3256, 15940, 13, 40, 901, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19535, 2606, 7397, 1546, 62, 34219, 1343, 31051, 8457, 14, 17319, 62, 5458, 62, 38200, 14094, 13, 8457, 3256, 15940, 13, 40, 901, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19535, 2606, 7397, 1546, 62, 34219, 1343, 31051, 8457, 14, 21797, 62, 26675, 62, 37153, 13, 8457, 3256, 15940, 13, 40, 901, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19535, 2606, 7397, 1546, 62, 34219, 1343, 31051, 8457, 14, 50139, 62, 4868, 62, 11487, 62, 37153, 3256, 15940, 13, 40, 901, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19535, 2606, 7397, 1546, 62, 34219, 1343, 31051, 8457, 14, 50139, 62, 4868, 62, 11487, 62, 260, 11249, 62, 37153, 13, 8457, 3256, 15940, 13, 40, 901, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19535, 2606, 7397, 1546, 62, 34219, 1343, 31051, 8457, 14, 21797, 62, 26675, 62, 11487, 62, 37153, 13, 8457, 3256, 15940, 13, 40, 901, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19535, 2606, 7397, 1546, 62, 34219, 1343, 31051, 8457, 14, 50139, 62, 26675, 62, 37153, 13, 8457, 3256, 15940, 13, 40, 901, 25060, 8, 198, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 3891, 32416, 62, 81, 448, 274, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 6767, 3493, 25060, 13, 21886, 11, 32019, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 660, 3493, 62, 2118, 62, 4993, 8116, 13, 49046, 16375, 19452, 25060, 13, 21886, 11, 4701, 62, 2118, 62, 4993, 8116, 13, 49046, 16375, 19452, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 660, 3493, 62, 2118, 62, 4993, 8116, 13, 38778, 32577, 19452, 25060, 13, 21886, 11, 4701, 62, 2118, 62, 4993, 8116, 13, 38778, 32577, 19452, 25060, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 660, 3493, 62, 2118, 62, 4993, 8116, 13, 16516, 26595, 19452, 25060, 13, 21886, 11, 4701, 62, 2118, 62, 4993, 8116, 13, 16516, 26595, 19452, 25060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 3298, 2183, 62, 21412, 220, 1303, 279, 2645, 600, 25, 15560, 28, 20541, 12, 26090, 198, 220, 220, 220, 2183, 62, 21412, 796, 2183, 62, 18170, 13, 26796, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6767, 3493, 16189, 3526, 19937, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32, 8265, 2148, 4701, 30798, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 81, 448, 274, 11, 3891, 32416, 62, 81, 448, 274, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19361, 62, 21412, 62, 25616, 28, 1662, 1958, 62, 21412, 62, 25616, 8, 628, 220, 220, 220, 1441, 2183, 62, 21412, 198 ]
2.469857
8,609
#!/usr/bin/env python # Copyright 2016, 2017 F5 Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import argparse import base64 import fcntl import hashlib import ipaddress import json import logging import os import os.path import sys import time import threading import signal import urllib import pyinotify from urlparse import urlparse from f5_cccl._f5 import CloudBigIP, get_protocol, has_partition, log_sequence from f5_cccl.common import extract_partition_and_name, ipv4_to_mac,\ list_diff_exclusive, IPV4FormatError, PartitionNameError from f5.bigip import ManagementRoot log = logging.getLogger(__name__) console = logging.StreamHandler() console.setFormatter( logging.Formatter("[%(asctime)s %(name)s %(levelname)s] %(message)s")) root_logger = logging.getLogger() root_logger.addHandler(console) root_logger.addFilter(ResponseStatusFilter()) root_logger.addFilter(CertFilter()) root_logger.addFilter(KeyFilter()) DEFAULT_LOG_LEVEL = logging.INFO DEFAULT_VERIFY_INTERVAL = 30.0 class K8sCloudBigIP(CloudBigIP): """K8sCloudBigIP class. Generates a configuration for a BigIP based upon the apps/tasks managed by services/pods/nodes in Kubernetes. - Matches apps/sevices by BigIP partition - Creates a Virtual Server and pool for each service type that matches a BigIP partition - For each backend (task, node, or pod), it creates a pool member and adds the member to the pool - If the app has a Marathon Health Monitor configured, create a corresponding health monitor for the BigIP pool member - Token-based authentication is used by specifying a token named 'tmos'. This will allow non-admin users to use the API (BIG-IP must configure the accounts with proper permissions, for either local or remote auth). Args: hostname: IP address of BIG-IP username: BIG-IP username password: BIG-IP password partitions: List of BIG-IP partitions to manage """ def __init__(self, hostname, port, username, password, partitions, manage_types): """Initialize the K8sCloudBigIP object.""" super(K8sCloudBigIP, self).__init__(hostname, port, username, password, partitions, token="tmos", manage_types=manage_types) def _apply_config(self, config): """Apply the configuration to the BIG-IP. Args: config: BIG-IP config dict """ if 'ltm' in config: CloudBigIP._apply_config(self, config['ltm']) if 'network' in config: self._apply_network_config(config['network']) def _apply_network_config(self, config): """Apply the network configuration to the BIG-IP. Args: config: BIG-IP network config dict """ if 'fdb' in config: self._apply_network_fdb_config(config['fdb']) def _apply_network_fdb_config(self, fdb_config): """Apply the network fdb configuration to the BIG-IP. Args: config: BIG-IP network fdb config dict """ req_vxlan_name = fdb_config['vxlan-name'] req_fdb_record_endpoint_list = fdb_config['vxlan-node-ips'] try: f5_fdb_record_endpoint_list = self.get_fdb_records(req_vxlan_name) log_sequence('req_fdb_record_list', req_fdb_record_endpoint_list) log_sequence('f5_fdb_record_list', f5_fdb_record_endpoint_list) # See if the list of records is different. # If so, update with new list. if list_diff_exclusive(f5_fdb_record_endpoint_list, req_fdb_record_endpoint_list): self.fdb_records_update(req_vxlan_name, req_fdb_record_endpoint_list) except (PartitionNameError, IPV4FormatError) as e: log.error(e) return except Exception as e: log.error('Failed to configure the FDB for VxLAN tunnel ' '{}: {}'.format(req_vxlan_name, e)) def get_vxlan_tunnel(self, vxlan_name): """Get a vxlan tunnel object. Args: vxlan_name: Name of the vxlan tunnel """ partition, name = extract_partition_and_name(vxlan_name) vxlan_tunnel = self.net.fdb.tunnels.tunnel.load( partition=partition, name=urllib.quote(name)) return vxlan_tunnel def get_fdb_records(self, vxlan_name): """Get a list of FDB records (just the endpoint list) for the vxlan. Args: vxlan_name: Name of the vxlan tunnel """ endpoint_list = [] vxlan_tunnel = self.get_vxlan_tunnel(vxlan_name) if hasattr(vxlan_tunnel, 'records'): for record in vxlan_tunnel.records: endpoint_list.append(record['endpoint']) return endpoint_list def fdb_records_update(self, vxlan_name, endpoint_list): """Update the fdb records for a vxlan tunnel. Args: vxlan_name: Name of the vxlan tunnel fdb_record_list: IP address associated with the fdb record """ vxlan_tunnel = self.get_vxlan_tunnel(vxlan_name) data = {'records': []} records = data['records'] for endpoint in endpoint_list: record = {'name': ipv4_to_mac(endpoint), 'endpoint': endpoint} records.append(record) log.debug("Updating records for vxlan tunnel {}: {}".format( vxlan_name, data['records'])) vxlan_tunnel.update(**data) def create_config_kubernetes(bigip, config): """Create a BIG-IP configuration from the Kubernetes configuration. Args: config: Kubernetes BigIP config """ log.debug("Generating config for BIG-IP from Kubernetes state") f5 = {'ltm': {}, 'network': {}} if 'openshift-sdn' in config: f5['network'] = create_network_config_kubernetes(config) if 'resources' in config and 'virtualServers' in config['resources']: f5['ltm'] = create_ltm_config_kubernetes(bigip, config['resources']) return f5 def create_network_config_kubernetes(config): """Create a BIG-IP Network configuration from the Kubernetes config. Args: config: Kubernetes BigIP config which contains openshift-sdn defs """ f5_network = {} if 'openshift-sdn' in config: openshift_sdn = config['openshift-sdn'] f5_network['fdb'] = openshift_sdn return f5_network def create_ltm_config_kubernetes(bigip, config): """Create a BIG-IP LTM configuration from the Kubernetes configuration. Args: config: Kubernetes BigIP config which contains a svc list """ configuration = {} configuration['l7Policies'] = config.get('l7Policies', []) configuration['monitors'] = config.get('monitors', []) configuration['pools'] = [] f5_pools = config.get('pools', []) f5_services = {} # partitions this script is responsible for: partitions = frozenset(bigip.get_partitions()) svcs = config['virtualServers'] for svc in svcs: vs_partition = svc['partition'] # Only handle application if it's partition is one that this script # is responsible for if not has_partition(partitions, vs_partition): continue f5_service = {} vs_name = svc['name'] f5_service['balance'] = svc.get('balance', '') policies = svc.get('policies', []) profiles = svc.get('profiles', []) pool = {} # No address for this port if (('virtualAddress' not in svc or 'bindAddr' not in svc['virtualAddress']) and 'iapp' not in svc): log.debug("Creating pool only for %s", vs_name) elif ('iapp' not in svc and 'bindAddr' not in svc['virtualAddress']): continue f5_service['name'] = vs_name f5_service['partition'] = vs_partition if 'iapp' in svc: f5_service['iapp'] = {'template': svc['iapp'], 'poolMemberTable': svc['iappPoolMemberTable'], 'variables': svc['iappVariables'], 'options': svc['iappOptions']} f5_service['iapp']['tables'] = svc.get('iappTables', {}) else: f5_service['virtual'] = {} f5_service['pool'] = {} f5_service['health'] = [] # Parse the SSL profile into partition and name if 'sslProfile' in svc: # The sslProfile item can be empty or have either # 'f5ProfileName' or 'f5ProfileNames', not both. if 'f5ProfileName' in svc['sslProfile']: append_ssl_profile( profiles, svc['sslProfile']['f5ProfileName']) elif 'f5ProfileNames' in svc['sslProfile']: for profName in svc['sslProfile']['f5ProfileNames']: append_ssl_profile(profiles, profName) # Add appropriate profiles profile_http = {'partition': 'Common', 'name': 'http'} profile_tcp = {'partition': 'Common', 'name': 'tcp'} if str(svc['mode']).lower() == 'http': if profile_http not in profiles: profiles.append(profile_http) elif get_protocol(svc['mode']) == 'tcp': if profile_tcp not in profiles: profiles.append(profile_tcp) if ('virtualAddress' in svc and 'bindAddr' in svc['virtualAddress']): f5_service['virtual_address'] = \ svc['virtualAddress']['bindAddr'] addr = svc['virtualAddress']['bindAddr'] port = svc['virtualAddress']['port'] destination = None if isinstance(ipaddress.ip_address(addr), ipaddress.IPv6Address): destination = ("/%s/%s.%d" % (vs_partition, addr, port)) else: destination = ("/%s/%s:%d" % (vs_partition, addr, port)) f5_service['virtual'].update({ 'enabled': True, 'disabled': False, 'ipProtocol': get_protocol(svc['mode']), 'destination': destination, 'pool': "%s" % (svc['pool']), 'sourceAddressTranslation': {'type': 'automap'}, 'profiles': profiles, 'policies': policies }) f5_services.update({vs_name: f5_service}) configuration['virtualServers'] = f5_services # FIXME(garyr): CCCL presently expects pools slightly differently than # we get from the controller, so convert to the expected format here. for pool in f5_pools: found_svc = False new_pool = {} members = {} pname = pool['name'] new_pool['name'] = pname monitors = None if 'monitor' in pool and pool['monitor']: monitors = ' and '.join(pool['monitor']) new_pool['monitor'] = monitors balance = None vname = pname.rsplit('_', 1)[0] if pname in f5_services: if 'balance' in f5_services[pname]: balance = f5_services[pname]['balance'] elif vname in f5_services: if 'balance' in f5_services[vname]: balance = f5_services[vname]['balance'] new_pool['loadBalancingMode'] = balance new_pool['partition'] = pool['partition'] if pool['name'] in f5_services or vname in f5_services: if pool['poolMemberAddrs'] is not None: found_svc = True for member in pool['poolMemberAddrs']: members.update({member: { 'state': 'user-up', 'session': 'user-enabled' }}) new_pool['members'] = members configuration['pools'].append(new_pool) if not found_svc: log.info( 'Pool "{}" has service "{}", which is empty - ' 'configuring 0 pool members.'.format( pname, pool['serviceName'])) return configuration if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 15069, 1584, 11, 2177, 376, 20, 27862, 11, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 1822, 29572, 198, 11748, 2779, 2414, 198, 11748, 277, 66, 429, 75, 198, 11748, 12234, 8019, 198, 11748, 20966, 21975, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 4704, 278, 198, 11748, 6737, 198, 11748, 2956, 297, 571, 198, 198, 11748, 12972, 259, 313, 1958, 198, 198, 6738, 19016, 29572, 1330, 19016, 29572, 198, 6738, 277, 20, 62, 535, 565, 13557, 69, 20, 1330, 10130, 12804, 4061, 11, 651, 62, 11235, 4668, 11, 468, 62, 3911, 653, 11, 2604, 62, 43167, 198, 6738, 277, 20, 62, 535, 565, 13, 11321, 1330, 7925, 62, 3911, 653, 62, 392, 62, 3672, 11, 20966, 85, 19, 62, 1462, 62, 20285, 11, 59, 198, 220, 220, 220, 1351, 62, 26069, 62, 41195, 11, 6101, 53, 19, 26227, 12331, 11, 2142, 653, 5376, 12331, 198, 6738, 277, 20, 13, 14261, 541, 1330, 8549, 30016, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 41947, 796, 18931, 13, 12124, 25060, 3419, 198, 41947, 13, 2617, 8479, 1436, 7, 198, 220, 220, 220, 18931, 13, 8479, 1436, 7203, 58, 4, 7, 292, 310, 524, 8, 82, 4064, 7, 3672, 8, 82, 4064, 7, 5715, 3672, 8, 82, 60, 4064, 7, 20500, 8, 82, 48774, 198, 15763, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 15763, 62, 6404, 1362, 13, 2860, 25060, 7, 41947, 8, 628, 628, 198, 198, 15763, 62, 6404, 1362, 13, 2860, 22417, 7, 31077, 19580, 22417, 28955, 198, 15763, 62, 6404, 1362, 13, 2860, 22417, 7, 37608, 22417, 28955, 198, 15763, 62, 6404, 1362, 13, 2860, 22417, 7, 9218, 22417, 28955, 198, 198, 7206, 38865, 62, 25294, 62, 2538, 18697, 796, 18931, 13, 10778, 198, 7206, 38865, 62, 5959, 5064, 56, 62, 41358, 23428, 796, 1542, 13, 15, 628, 198, 4871, 509, 23, 82, 18839, 12804, 4061, 7, 18839, 12804, 4061, 2599, 198, 220, 220, 220, 37227, 42, 23, 82, 18839, 12804, 4061, 1398, 13, 628, 220, 220, 220, 2980, 689, 257, 8398, 329, 257, 4403, 4061, 1912, 2402, 262, 6725, 14, 83, 6791, 5257, 198, 220, 220, 220, 416, 2594, 14, 79, 12978, 14, 77, 4147, 287, 12554, 527, 3262, 274, 13, 628, 220, 220, 220, 532, 6550, 2052, 6725, 14, 325, 85, 1063, 416, 4403, 4061, 18398, 198, 220, 220, 220, 532, 7921, 274, 257, 15595, 9652, 290, 5933, 329, 1123, 2139, 2099, 326, 7466, 257, 198, 220, 220, 220, 220, 220, 4403, 4061, 18398, 198, 220, 220, 220, 532, 1114, 1123, 30203, 357, 35943, 11, 10139, 11, 393, 24573, 828, 340, 8075, 257, 5933, 2888, 290, 6673, 198, 220, 220, 220, 220, 220, 262, 2888, 284, 262, 5933, 198, 220, 220, 220, 532, 1002, 262, 598, 468, 257, 24828, 3893, 18289, 17839, 11, 2251, 257, 198, 220, 220, 220, 220, 220, 11188, 1535, 5671, 329, 262, 4403, 4061, 5933, 2888, 198, 220, 220, 220, 532, 29130, 12, 3106, 18239, 318, 973, 416, 31577, 257, 11241, 3706, 705, 83, 16785, 4458, 198, 220, 220, 220, 220, 220, 770, 481, 1249, 1729, 12, 28482, 2985, 284, 779, 262, 7824, 357, 3483, 38, 12, 4061, 1276, 17425, 198, 220, 220, 220, 220, 220, 262, 5504, 351, 1774, 21627, 11, 329, 2035, 1957, 393, 6569, 6284, 737, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 3672, 25, 6101, 2209, 286, 26746, 12, 4061, 198, 220, 220, 220, 220, 220, 220, 220, 20579, 25, 26746, 12, 4061, 20579, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 25, 26746, 12, 4061, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 43869, 25, 7343, 286, 26746, 12, 4061, 43869, 284, 6687, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2583, 3672, 11, 2493, 11, 20579, 11, 9206, 11, 43869, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6687, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 509, 23, 82, 18839, 12804, 4061, 2134, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 42, 23, 82, 18839, 12804, 4061, 11, 2116, 737, 834, 15003, 834, 7, 4774, 3672, 11, 2493, 11, 20579, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 11, 43869, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 2625, 83, 16785, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6687, 62, 19199, 28, 805, 496, 62, 19199, 8, 628, 220, 220, 220, 825, 4808, 39014, 62, 11250, 7, 944, 11, 4566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44836, 262, 8398, 284, 262, 26746, 12, 4061, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 26746, 12, 4061, 4566, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2528, 76, 6, 287, 4566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10130, 12804, 4061, 13557, 39014, 62, 11250, 7, 944, 11, 4566, 17816, 2528, 76, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 27349, 6, 287, 4566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 39014, 62, 27349, 62, 11250, 7, 11250, 17816, 27349, 6, 12962, 628, 220, 220, 220, 825, 4808, 39014, 62, 27349, 62, 11250, 7, 944, 11, 4566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44836, 262, 3127, 8398, 284, 262, 26746, 12, 4061, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 26746, 12, 4061, 3127, 4566, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 69, 9945, 6, 287, 4566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 39014, 62, 27349, 62, 69, 9945, 62, 11250, 7, 11250, 17816, 69, 9945, 6, 12962, 628, 220, 220, 220, 825, 4808, 39014, 62, 27349, 62, 69, 9945, 62, 11250, 7, 944, 11, 277, 9945, 62, 11250, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44836, 262, 3127, 277, 9945, 8398, 284, 262, 26746, 12, 4061, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 26746, 12, 4061, 3127, 277, 9945, 4566, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43089, 62, 85, 87, 9620, 62, 3672, 796, 277, 9945, 62, 11250, 17816, 85, 87, 9620, 12, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 43089, 62, 69, 9945, 62, 22105, 62, 437, 4122, 62, 4868, 796, 277, 9945, 62, 11250, 17816, 85, 87, 9620, 12, 17440, 12, 2419, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 69, 9945, 62, 22105, 62, 437, 4122, 62, 4868, 796, 2116, 13, 1136, 62, 69, 9945, 62, 8344, 3669, 7, 42180, 62, 85, 87, 9620, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 43167, 10786, 42180, 62, 69, 9945, 62, 22105, 62, 4868, 3256, 43089, 62, 69, 9945, 62, 22105, 62, 437, 4122, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 43167, 10786, 69, 20, 62, 69, 9945, 62, 22105, 62, 4868, 3256, 277, 20, 62, 69, 9945, 62, 22105, 62, 437, 4122, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 611, 262, 1351, 286, 4406, 318, 1180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 523, 11, 4296, 351, 649, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1351, 62, 26069, 62, 41195, 7, 69, 20, 62, 69, 9945, 62, 22105, 62, 437, 4122, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43089, 62, 69, 9945, 62, 22105, 62, 437, 4122, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9945, 62, 8344, 3669, 62, 19119, 7, 42180, 62, 85, 87, 9620, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43089, 62, 69, 9945, 62, 22105, 62, 437, 4122, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 7841, 653, 5376, 12331, 11, 6101, 53, 19, 26227, 12331, 8, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 10786, 37, 6255, 284, 17425, 262, 376, 11012, 329, 569, 87, 25697, 13275, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 38362, 23884, 4458, 18982, 7, 42180, 62, 85, 87, 9620, 62, 3672, 11, 304, 4008, 628, 220, 220, 220, 825, 651, 62, 85, 87, 9620, 62, 28286, 4954, 7, 944, 11, 410, 87, 9620, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 257, 410, 87, 9620, 13275, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 87, 9620, 62, 3672, 25, 6530, 286, 262, 410, 87, 9620, 13275, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 18398, 11, 1438, 796, 7925, 62, 3911, 653, 62, 392, 62, 3672, 7, 85, 87, 9620, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 87, 9620, 62, 28286, 4954, 796, 2116, 13, 3262, 13, 69, 9945, 13, 28286, 19423, 13, 28286, 4954, 13, 2220, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18398, 28, 3911, 653, 11, 1438, 28, 333, 297, 571, 13, 22708, 7, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 410, 87, 9620, 62, 28286, 4954, 628, 220, 220, 220, 825, 651, 62, 69, 9945, 62, 8344, 3669, 7, 944, 11, 410, 87, 9620, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 257, 1351, 286, 376, 11012, 4406, 357, 3137, 262, 36123, 1351, 8, 329, 262, 410, 87, 9620, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 87, 9620, 62, 3672, 25, 6530, 286, 262, 410, 87, 9620, 13275, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 410, 87, 9620, 62, 28286, 4954, 796, 2116, 13, 1136, 62, 85, 87, 9620, 62, 28286, 4954, 7, 85, 87, 9620, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 85, 87, 9620, 62, 28286, 4954, 11, 705, 8344, 3669, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1700, 287, 410, 87, 9620, 62, 28286, 4954, 13, 8344, 3669, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 4868, 13, 33295, 7, 22105, 17816, 437, 4122, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 36123, 62, 4868, 628, 220, 220, 220, 825, 277, 9945, 62, 8344, 3669, 62, 19119, 7, 944, 11, 410, 87, 9620, 62, 3672, 11, 36123, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 277, 9945, 4406, 329, 257, 410, 87, 9620, 13275, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 87, 9620, 62, 3672, 25, 6530, 286, 262, 410, 87, 9620, 13275, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 9945, 62, 22105, 62, 4868, 25, 6101, 2209, 3917, 351, 262, 277, 9945, 1700, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 410, 87, 9620, 62, 28286, 4954, 796, 2116, 13, 1136, 62, 85, 87, 9620, 62, 28286, 4954, 7, 85, 87, 9620, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 6, 8344, 3669, 10354, 17635, 92, 198, 220, 220, 220, 220, 220, 220, 220, 4406, 796, 1366, 17816, 8344, 3669, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 329, 36123, 287, 36123, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 796, 1391, 6, 3672, 10354, 20966, 85, 19, 62, 1462, 62, 20285, 7, 437, 4122, 828, 705, 437, 4122, 10354, 36123, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4406, 13, 33295, 7, 22105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 4933, 38734, 4406, 329, 410, 87, 9620, 13275, 23884, 25, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 87, 9620, 62, 3672, 11, 1366, 17816, 8344, 3669, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 410, 87, 9620, 62, 28286, 4954, 13, 19119, 7, 1174, 7890, 8, 628, 628, 198, 198, 4299, 2251, 62, 11250, 62, 74, 18478, 3262, 274, 7, 14261, 541, 11, 4566, 2599, 198, 220, 220, 220, 37227, 16447, 257, 26746, 12, 4061, 8398, 422, 262, 12554, 527, 3262, 274, 8398, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 12554, 527, 3262, 274, 4403, 4061, 4566, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2604, 13, 24442, 7203, 8645, 803, 4566, 329, 26746, 12, 4061, 422, 12554, 527, 3262, 274, 1181, 4943, 198, 220, 220, 220, 277, 20, 796, 1391, 6, 2528, 76, 10354, 1391, 5512, 705, 27349, 10354, 1391, 11709, 198, 220, 220, 220, 611, 705, 44813, 29323, 12, 21282, 77, 6, 287, 4566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20, 17816, 27349, 20520, 796, 2251, 62, 27349, 62, 11250, 62, 74, 18478, 3262, 274, 7, 11250, 8, 198, 220, 220, 220, 611, 705, 37540, 6, 287, 4566, 290, 705, 32844, 7089, 690, 6, 287, 4566, 17816, 37540, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20, 17816, 2528, 76, 20520, 796, 2251, 62, 2528, 76, 62, 11250, 62, 74, 18478, 3262, 274, 7, 14261, 541, 11, 4566, 17816, 37540, 6, 12962, 628, 220, 220, 220, 1441, 277, 20, 628, 198, 4299, 2251, 62, 27349, 62, 11250, 62, 74, 18478, 3262, 274, 7, 11250, 2599, 198, 220, 220, 220, 37227, 16447, 257, 26746, 12, 4061, 7311, 8398, 422, 262, 12554, 527, 3262, 274, 4566, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 12554, 527, 3262, 274, 4403, 4061, 4566, 543, 4909, 9808, 29323, 12, 21282, 77, 825, 82, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 20, 62, 27349, 796, 23884, 198, 220, 220, 220, 611, 705, 44813, 29323, 12, 21282, 77, 6, 287, 4566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9808, 29323, 62, 21282, 77, 796, 4566, 17816, 44813, 29323, 12, 21282, 77, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 27349, 17816, 69, 9945, 20520, 796, 9808, 29323, 62, 21282, 77, 198, 220, 220, 220, 1441, 277, 20, 62, 27349, 628, 198, 198, 4299, 2251, 62, 2528, 76, 62, 11250, 62, 74, 18478, 3262, 274, 7, 14261, 541, 11, 4566, 2599, 198, 220, 220, 220, 37227, 16447, 257, 26746, 12, 4061, 406, 15972, 8398, 422, 262, 12554, 527, 3262, 274, 8398, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 25, 12554, 527, 3262, 274, 4403, 4061, 4566, 543, 4909, 257, 264, 28435, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8398, 796, 23884, 198, 220, 220, 220, 8398, 17816, 75, 22, 47, 4160, 444, 20520, 796, 4566, 13, 1136, 10786, 75, 22, 47, 4160, 444, 3256, 685, 12962, 198, 220, 220, 220, 8398, 17816, 2144, 6742, 20520, 796, 4566, 13, 1136, 10786, 2144, 6742, 3256, 685, 12962, 198, 220, 220, 220, 8398, 17816, 7742, 82, 20520, 796, 17635, 628, 220, 220, 220, 277, 20, 62, 7742, 82, 796, 4566, 13, 1136, 10786, 7742, 82, 3256, 685, 12962, 198, 220, 220, 220, 277, 20, 62, 30416, 796, 23884, 628, 220, 220, 220, 1303, 43869, 428, 4226, 318, 4497, 329, 25, 198, 220, 220, 220, 43869, 796, 8400, 8247, 316, 7, 14261, 541, 13, 1136, 62, 3911, 1756, 28955, 628, 220, 220, 220, 38487, 6359, 796, 4566, 17816, 32844, 7089, 690, 20520, 198, 220, 220, 220, 329, 264, 28435, 287, 38487, 6359, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3691, 62, 3911, 653, 796, 264, 28435, 17816, 3911, 653, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5514, 5412, 3586, 611, 340, 338, 18398, 318, 530, 326, 428, 4226, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 4497, 329, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 468, 62, 3911, 653, 7, 3911, 1756, 11, 3691, 62, 3911, 653, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 3691, 62, 3672, 796, 264, 28435, 17816, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 20427, 20520, 796, 264, 28435, 13, 1136, 10786, 20427, 3256, 10148, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4788, 796, 264, 28435, 13, 1136, 10786, 79, 4160, 444, 3256, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 16545, 796, 264, 28435, 13, 1136, 10786, 5577, 2915, 3256, 685, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 5933, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 2209, 329, 428, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10786, 32844, 20231, 6, 407, 287, 264, 28435, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21653, 4550, 81, 6, 407, 287, 264, 28435, 17816, 32844, 20231, 6, 12962, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 544, 381, 6, 407, 287, 264, 28435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 32071, 5933, 691, 329, 4064, 82, 1600, 3691, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19203, 544, 381, 6, 407, 287, 264, 28435, 290, 705, 21653, 4550, 81, 6, 407, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 28435, 17816, 32844, 20231, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 3672, 20520, 796, 3691, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 3911, 653, 20520, 796, 3691, 62, 3911, 653, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 544, 381, 6, 287, 264, 28435, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 544, 381, 20520, 796, 1391, 6, 28243, 10354, 264, 28435, 17816, 544, 381, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7742, 27608, 10962, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 28435, 17816, 544, 381, 27201, 27608, 10962, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25641, 2977, 10354, 264, 28435, 17816, 544, 381, 23907, 2977, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25811, 10354, 264, 28435, 17816, 544, 381, 29046, 20520, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 544, 381, 6, 7131, 6, 83, 2977, 20520, 796, 264, 28435, 13, 1136, 10786, 544, 381, 51, 2977, 3256, 23884, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 32844, 20520, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 7742, 20520, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 13948, 20520, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2547, 325, 262, 25952, 7034, 656, 18398, 290, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 45163, 37046, 6, 287, 264, 28435, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 264, 6649, 37046, 2378, 460, 307, 6565, 393, 423, 2035, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 69, 20, 37046, 5376, 6, 393, 705, 69, 20, 37046, 36690, 3256, 407, 1111, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 69, 20, 37046, 5376, 6, 287, 264, 28435, 17816, 45163, 37046, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24443, 62, 45163, 62, 13317, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16545, 11, 264, 28435, 17816, 45163, 37046, 6, 7131, 6, 69, 20, 37046, 5376, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 69, 20, 37046, 36690, 6, 287, 264, 28435, 17816, 45163, 37046, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1534, 5376, 287, 264, 28435, 17816, 45163, 37046, 6, 7131, 6, 69, 20, 37046, 36690, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24443, 62, 45163, 62, 13317, 7, 5577, 2915, 11, 1534, 5376, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 5035, 16545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7034, 62, 4023, 796, 1391, 6, 3911, 653, 10354, 705, 17227, 3256, 705, 3672, 10354, 705, 4023, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7034, 62, 83, 13155, 796, 1391, 6, 3911, 653, 10354, 705, 17227, 3256, 705, 3672, 10354, 705, 83, 13155, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 965, 7, 21370, 66, 17816, 14171, 20520, 737, 21037, 3419, 6624, 705, 4023, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7034, 62, 4023, 407, 287, 16545, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16545, 13, 33295, 7, 13317, 62, 4023, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 651, 62, 11235, 4668, 7, 21370, 66, 17816, 14171, 6, 12962, 6624, 705, 83, 13155, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7034, 62, 83, 13155, 407, 287, 16545, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16545, 13, 33295, 7, 13317, 62, 83, 13155, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 32844, 20231, 6, 287, 264, 28435, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21653, 4550, 81, 6, 287, 264, 28435, 17816, 32844, 20231, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 32844, 62, 21975, 20520, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 28435, 17816, 32844, 20231, 6, 7131, 6, 21653, 4550, 81, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37817, 796, 264, 28435, 17816, 32844, 20231, 6, 7131, 6, 21653, 4550, 81, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 796, 264, 28435, 17816, 32844, 20231, 6, 7131, 6, 634, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10965, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 541, 21975, 13, 541, 62, 21975, 7, 29851, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 21975, 13, 4061, 85, 21, 20231, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10965, 796, 5855, 14, 4, 82, 14, 4, 82, 13, 4, 67, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 14259, 62, 3911, 653, 11, 37817, 11, 2493, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10965, 796, 5855, 14, 4, 82, 14, 4, 82, 25, 4, 67, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 14259, 62, 3911, 653, 11, 37817, 11, 2493, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 15271, 17816, 32844, 6, 4083, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25616, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47730, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 19703, 4668, 10354, 651, 62, 11235, 4668, 7, 21370, 66, 17816, 14171, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16520, 1883, 10354, 10965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7742, 10354, 36521, 82, 1, 4064, 357, 21370, 66, 17816, 7742, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10459, 20231, 48313, 10354, 1391, 6, 4906, 10354, 705, 2306, 296, 499, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5577, 2915, 10354, 16545, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 4160, 444, 10354, 4788, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20, 62, 30416, 13, 19119, 15090, 14259, 62, 3672, 25, 277, 20, 62, 15271, 30072, 198, 220, 220, 220, 8398, 17816, 32844, 7089, 690, 20520, 796, 277, 20, 62, 30416, 628, 220, 220, 220, 1303, 44855, 11682, 7, 14849, 81, 2599, 327, 4093, 43, 27606, 13423, 20354, 4622, 10338, 621, 198, 220, 220, 220, 1303, 356, 651, 422, 262, 10444, 11, 523, 10385, 284, 262, 2938, 5794, 994, 13, 198, 220, 220, 220, 329, 5933, 287, 277, 20, 62, 7742, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 62, 21370, 66, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7742, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 1866, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 279, 3672, 796, 5933, 17816, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7742, 17816, 3672, 20520, 796, 279, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 19374, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 41143, 6, 287, 5933, 290, 5933, 17816, 41143, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19374, 796, 705, 290, 45302, 22179, 7, 7742, 17816, 41143, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7742, 17816, 41143, 20520, 796, 19374, 628, 220, 220, 220, 220, 220, 220, 220, 5236, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 410, 3672, 796, 279, 3672, 13, 3808, 489, 270, 10786, 62, 3256, 352, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 3672, 287, 277, 20, 62, 30416, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 20427, 6, 287, 277, 20, 62, 30416, 58, 79, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5236, 796, 277, 20, 62, 30416, 58, 79, 3672, 7131, 6, 20427, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 410, 3672, 287, 277, 20, 62, 30416, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 20427, 6, 287, 277, 20, 62, 30416, 58, 85, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5236, 796, 277, 20, 62, 30416, 58, 85, 3672, 7131, 6, 20427, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7742, 17816, 2220, 24597, 5077, 19076, 20520, 796, 5236, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7742, 17816, 3911, 653, 20520, 796, 5933, 17816, 3911, 653, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5933, 17816, 3672, 20520, 287, 277, 20, 62, 30416, 393, 410, 3672, 287, 277, 20, 62, 30416, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5933, 17816, 7742, 27608, 4550, 3808, 20520, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 62, 21370, 66, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2888, 287, 5933, 17816, 7742, 27608, 4550, 3808, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1866, 13, 19119, 15090, 19522, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5219, 10354, 705, 7220, 12, 929, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29891, 10354, 705, 7220, 12, 25616, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7742, 17816, 30814, 20520, 796, 1866, 198, 220, 220, 220, 220, 220, 220, 220, 8398, 17816, 7742, 82, 6, 4083, 33295, 7, 3605, 62, 7742, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1043, 62, 21370, 66, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27201, 45144, 36786, 468, 2139, 45144, 92, 1600, 543, 318, 6565, 532, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11250, 870, 657, 5933, 1866, 2637, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 3672, 11, 5933, 17816, 15271, 5376, 20520, 4008, 628, 220, 220, 220, 1441, 8398, 628, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.155861
6,108
""" Reads in current year's Arctic sea ice extent from Sea Ice Index 3 (NSIDC) Website : ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/ Author : Zachary M. Labe Date : 5 September 2016 """ ### Import modules import numpy as np import urllib as UL import datetime import matplotlib.pyplot as plt ### Directory and time directoryfigure = '/home/zlabe/Documents/Projects/IceVarFigs/Figures/' now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr currentdoy = now.timetuple().tm_yday ### Load url url = 'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/' \ 'N_seaice_extent_daily_v3.0.csv' ### Read file raw_data = UL.request.urlopen(url) dataset = np.genfromtxt(raw_data, skip_header=2,delimiter=',', usecols=[0,1,2,3,4]) print('\nCompleted: Read sea ice data!') ### Set missing data to nan dataset[np.where(dataset==-9999)] = np.nan ### Variables year = dataset[:,0] month = dataset[:,1] day = dataset[:,2] ice = dataset[:,3] missing = dataset[:,4] ### Call present year yr2018 = np.where(year == 2018)[0] ice18 = ice[yr2018] ### Ice Conversion iceval = ice18 * 1e6 ### Printing info print('\n----- NSIDC Arctic Sea Ice -----') print('Current Date =', now.strftime("%Y-%m-%d %H:%M"), '\n') print('SIE Date = %s/%s/%s' % (int(month[-1]),int(day[-1]),int(year[-1]))) print('Current SIE = %s km^2 \n' % (iceval[-1])) print('1-day change SIE = %s km^2' % (iceval[-1]-iceval[-2])) print('7-day change SIE = %s km^2 \n' % (iceval[-1]-iceval[-8])) ########################################################################### ########################################################################### ########################################################################### ### Reads in 1981-2010 means ### Load url url2 = 'ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/' \ 'N_seaice_extent_climatology_1981-2010_v3.0.csv' ### Read file raw_data2 = UL.request.urlopen(url2) dataset2 = np.genfromtxt(raw_data2, skip_header=2,delimiter=',', usecols=[0,1,2,3,4,5,6,7]) ### Create variables doy = dataset2[:,0] meanice = dataset2[:,1] * 1e6 std = dataset2[:,2] ### Quartiles quartile10 = dataset2[:,3] quartile25 = dataset2[:,4] quartile50 = dataset2[:,5] quartile75 = dataset2[:,6] quartile90 = dataset2[:,7] ### Anomalies currentanom = iceval[-1]-meanice[currentdoy-2] ### Printing info print('Current anomaly = %s km^2 \n' % currentanom) ### Selected other years for comparisons yr2007 = np.where(year == 2007)[0] yr2012 = np.where(year == 2012)[0] yr2016 = np.where(year == 2016)[0] sie7 = ice[yr2007] sie12 = ice[yr2012] sie16 = ice[yr2016] ########################################################################### ########################################################################### ########################################################################### ### Create plot plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) plt.rc('savefig',facecolor='black') plt.rc('axes',edgecolor='white') plt.rc('xtick',color='white') plt.rc('ytick',color='white') plt.rc('axes',labelcolor='white') plt.rc('axes',facecolor='black') fig = plt.figure() ax = plt.subplot(111) xlabels = [r'Jan',r'Feb',r'Mar',r'Apr',r'May',r'Jun',r'Jul', r'Aug',r'Sep',r'Oct',r'Nov',r'Dec',r'Jan'] plt.xticks(np.arange(0,361,30.4),xlabels,rotation=0) ylabels = map(str,np.arange(2,19,2)) plt.yticks(np.arange(2,19,2),ylabels) plt.ylim([2,18]) plt.xlim([0,360]) strmonth = xlabels[int(currentmn)-1] asof = strmonth + ' ' + currentdy + ', ' + currentyr ### Adjust axes in time series plots ax.tick_params('both',length=5.5,width=2,which='major') adjust_spines(ax, ['left','bottom']) ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.spines['bottom'].set_linewidth(2) ax.spines['left'].set_linewidth(2) upper2std = (meanice/1e6)+(std*2) lower2std = (meanice/1e6)-(std*2) ax.grid(zorder=1,color='w',alpha=0.2) plt.plot(ice18,linewidth=1.8,color='aqua',zorder=9,label=r'Current Year (2018)') plt.plot(doy,upper2std,color='white',alpha=0.7,zorder=3,linewidth=0.1) plt.plot(doy,lower2std,color='white',alpha=0.7,zorder=4,linewidth=0.1) plt.plot(doy,quartile10,color='m',alpha=0.7,zorder=3,linewidth=0.4) plt.plot(doy,quartile25,color='cornflowerblue',alpha=0.7,zorder=4,linewidth=0.4) plt.plot(doy,quartile75,color='cornflowerblue',alpha=0.7,zorder=4,linewidth=0.4) plt.plot(doy,quartile90,color='m',alpha=0.7,zorder=3,linewidth=0.4) ax.fill_between(doy, lower2std, upper2std, facecolor='white', alpha=0.35, label=r'$\pm$2 standard deviations',zorder=2) plt.plot(doy,quartile50,color='gold',alpha=1,zorder=3,linewidth=2, label=r'Median (1981-2010)') ax.fill_between(doy, quartile90, quartile75, facecolor='m', alpha=0.55, label=r'10-90th percentiles',zorder=2) ax.fill_between(doy, quartile10, quartile25, facecolor='m', alpha=0.55, zorder=2) ax.fill_between(doy, quartile25, quartile50, facecolor='cornflowerblue', alpha=0.6, zorder=2) ax.fill_between(doy, quartile50, quartile75, facecolor='cornflowerblue', alpha=0.6, label=r'25-75th percentiles',zorder=2) plt.scatter(doy[currentdoy-3],ice[-1],s=10,color='aqua',zorder=9) plt.ylabel(r'\textbf{Extent} [$\times$10$^{6}$ km$^2$]',fontsize=15, color='darkgrey') le = plt.legend(shadow=False,fontsize=6,loc='upper left', bbox_to_anchor=(0.473, 1.011),fancybox=True,ncol=2) for text in le.get_texts(): text.set_color('w') plt.title(r'\textbf{ARCTIC SEA ICE}', fontsize=21,color='darkgrey') plt.text(doy[currentdoy]-5,ice[-1]-1.35,r'\textbf{2018}', fontsize=13.5,rotation='horizontal',ha='left',color='aqua') plt.text(0.5,3.1,r'\textbf{DATA:} National Snow \& Ice Data Center, Boulder CO', fontsize=5.5,rotation='horizontal',ha='left',color='darkgrey') plt.text(0.5,2.6,r'\textbf{SOURCE:} ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/', fontsize=5.5,rotation='horizontal',ha='left',color='darkgrey') plt.text(0.5,2.1,r'\textbf{GRAPHIC:} Zachary Labe (@ZLabe)', fontsize=5.5,rotation='horizontal',ha='left',color='darkgrey') fig.subplots_adjust(top=0.91) ### Save figure plt.savefig(directoryfigure + 'nsidc_sie_quartiles_currentyear.png',dpi=300)
[ 37811, 198, 5569, 82, 287, 1459, 614, 338, 15723, 5417, 4771, 6287, 422, 6896, 6663, 12901, 513, 357, 8035, 2389, 34, 8, 198, 198, 33420, 220, 220, 1058, 10117, 79, 1378, 30255, 5643, 13, 8043, 4533, 13, 15532, 14, 35, 1404, 1921, 32716, 14, 15285, 3838, 14, 38, 2999, 17059, 14, 43588, 14, 29468, 14, 7890, 14, 198, 13838, 220, 220, 220, 1058, 18825, 560, 337, 13, 3498, 68, 198, 10430, 220, 220, 220, 220, 220, 1058, 642, 2693, 1584, 198, 37811, 198, 198, 21017, 17267, 13103, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2956, 297, 571, 355, 44475, 198, 11748, 4818, 8079, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 21017, 27387, 290, 640, 198, 34945, 26875, 796, 31051, 11195, 14, 48274, 11231, 14, 38354, 14, 16775, 82, 14, 23709, 19852, 37, 9235, 14, 14989, 942, 14, 6, 220, 198, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 14421, 10295, 796, 965, 7, 2197, 13, 8424, 8, 198, 14421, 9892, 796, 965, 7, 2197, 13, 820, 8, 198, 14421, 2417, 796, 965, 7, 2197, 13, 1941, 8, 198, 14421, 2435, 796, 1459, 10295, 1343, 705, 62, 6, 1343, 1459, 9892, 1343, 705, 62, 6, 1343, 1459, 2417, 198, 14421, 67, 726, 796, 783, 13, 16514, 316, 29291, 22446, 17209, 62, 88, 820, 198, 198, 21017, 8778, 19016, 198, 6371, 796, 705, 701, 79, 1378, 30255, 5643, 13, 8043, 4533, 13, 15532, 14, 35, 1404, 1921, 32716, 14, 15285, 3838, 14, 38, 2999, 17059, 14, 43588, 14, 29468, 14, 7890, 14, 6, 3467, 198, 220, 220, 220, 705, 45, 62, 8583, 501, 62, 2302, 298, 62, 29468, 62, 85, 18, 13, 15, 13, 40664, 6, 198, 198, 21017, 4149, 2393, 198, 1831, 62, 7890, 796, 44475, 13, 25927, 13, 6371, 9654, 7, 6371, 8, 198, 19608, 292, 316, 796, 45941, 13, 5235, 6738, 14116, 7, 1831, 62, 7890, 11, 14267, 62, 25677, 28, 17, 11, 12381, 320, 2676, 28, 3256, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 4033, 82, 41888, 15, 11, 16, 11, 17, 11, 18, 11, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4798, 10786, 59, 77, 43768, 25, 4149, 5417, 4771, 1366, 0, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 21017, 5345, 4814, 1366, 284, 15709, 198, 19608, 292, 316, 58, 37659, 13, 3003, 7, 19608, 292, 316, 855, 12, 24214, 15437, 796, 45941, 13, 12647, 198, 198, 21017, 15965, 2977, 198, 1941, 796, 27039, 58, 45299, 15, 60, 198, 8424, 796, 27039, 58, 45299, 16, 60, 198, 820, 796, 27039, 58, 45299, 17, 60, 198, 501, 796, 27039, 58, 45299, 18, 60, 198, 45688, 796, 27039, 58, 45299, 19, 60, 198, 198, 21017, 4889, 1944, 614, 198, 2417, 7908, 796, 45941, 13, 3003, 7, 1941, 6624, 2864, 38381, 15, 60, 198, 501, 1507, 796, 4771, 58, 2417, 7908, 60, 198, 198, 21017, 6663, 44101, 198, 501, 2100, 796, 4771, 1507, 1635, 352, 68, 21, 198, 198, 21017, 44118, 7508, 198, 4798, 10786, 59, 77, 30934, 10896, 2389, 34, 15723, 6896, 6663, 37404, 11537, 198, 4798, 10786, 11297, 7536, 796, 3256, 783, 13, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 12340, 705, 59, 77, 11537, 198, 198, 4798, 10786, 50, 10008, 7536, 220, 220, 220, 796, 4064, 82, 14, 4, 82, 14, 4, 82, 6, 4064, 357, 600, 7, 8424, 58, 12, 16, 46570, 600, 7, 820, 58, 12, 16, 46570, 600, 7, 1941, 58, 12, 16, 60, 22305, 198, 4798, 10786, 11297, 311, 10008, 796, 4064, 82, 10571, 61, 17, 3467, 77, 6, 4064, 357, 501, 2100, 58, 12, 16, 60, 4008, 198, 198, 4798, 10786, 16, 12, 820, 1487, 311, 10008, 796, 4064, 82, 10571, 61, 17, 6, 4064, 357, 501, 2100, 58, 12, 16, 45297, 501, 2100, 58, 12, 17, 60, 4008, 198, 4798, 10786, 22, 12, 820, 1487, 311, 10008, 796, 4064, 82, 10571, 61, 17, 3467, 77, 6, 4064, 357, 501, 2100, 58, 12, 16, 45297, 501, 2100, 58, 12, 23, 60, 4008, 198, 220, 220, 220, 220, 198, 29113, 29113, 7804, 21017, 198, 29113, 29113, 7804, 21017, 198, 29113, 29113, 7804, 21017, 198, 21017, 4149, 82, 287, 14745, 12, 10333, 1724, 198, 21017, 8778, 19016, 198, 6371, 17, 796, 705, 701, 79, 1378, 30255, 5643, 13, 8043, 4533, 13, 15532, 14, 35, 1404, 1921, 32716, 14, 15285, 3838, 14, 38, 2999, 17059, 14, 43588, 14, 29468, 14, 7890, 14, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 705, 45, 62, 8583, 501, 62, 2302, 298, 62, 565, 320, 265, 1435, 62, 35411, 12, 10333, 62, 85, 18, 13, 15, 13, 40664, 6, 198, 198, 21017, 4149, 2393, 198, 1831, 62, 7890, 17, 796, 44475, 13, 25927, 13, 6371, 9654, 7, 6371, 17, 8, 198, 19608, 292, 316, 17, 796, 45941, 13, 5235, 6738, 14116, 7, 1831, 62, 7890, 17, 11, 14267, 62, 25677, 28, 17, 11, 12381, 320, 2676, 28, 3256, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 4033, 82, 41888, 15, 11, 16, 11, 17, 11, 18, 11, 19, 11, 20, 11, 21, 11, 22, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 21017, 13610, 9633, 198, 67, 726, 796, 27039, 17, 58, 45299, 15, 60, 198, 32604, 501, 796, 27039, 17, 58, 45299, 16, 60, 1635, 352, 68, 21, 198, 19282, 796, 27039, 17, 58, 45299, 17, 60, 198, 198, 21017, 48748, 2915, 198, 36008, 576, 940, 796, 27039, 17, 58, 45299, 18, 60, 198, 36008, 576, 1495, 796, 27039, 17, 58, 45299, 19, 60, 198, 36008, 576, 1120, 796, 27039, 17, 58, 45299, 20, 60, 198, 36008, 576, 2425, 796, 27039, 17, 58, 45299, 21, 60, 198, 36008, 576, 3829, 796, 27039, 17, 58, 45299, 22, 60, 198, 198, 21017, 1052, 18048, 444, 198, 14421, 272, 296, 796, 4771, 2100, 58, 12, 16, 45297, 32604, 501, 58, 14421, 67, 726, 12, 17, 60, 198, 198, 21017, 44118, 7508, 198, 4798, 10786, 11297, 32172, 796, 4064, 82, 10571, 61, 17, 3467, 77, 6, 4064, 1459, 272, 296, 8, 220, 220, 220, 198, 198, 21017, 41344, 584, 812, 329, 17909, 198, 2417, 12726, 796, 45941, 13, 3003, 7, 1941, 6624, 4343, 38381, 15, 60, 198, 2417, 6999, 796, 45941, 13, 3003, 7, 1941, 6624, 2321, 38381, 15, 60, 198, 2417, 5304, 796, 45941, 13, 3003, 7, 1941, 6624, 1584, 38381, 15, 60, 198, 198, 44524, 22, 796, 4771, 58, 2417, 12726, 60, 198, 44524, 1065, 796, 4771, 58, 2417, 6999, 60, 198, 44524, 1433, 796, 4771, 58, 2417, 5304, 60, 198, 198, 29113, 29113, 7804, 21017, 198, 29113, 29113, 7804, 21017, 198, 29113, 29113, 7804, 21017, 198, 21017, 13610, 7110, 198, 489, 83, 13, 6015, 10786, 5239, 3256, 385, 316, 1069, 28, 17821, 8, 198, 489, 83, 13, 6015, 10786, 10331, 3256, 1174, 90, 6, 17989, 10354, 6, 82, 504, 12, 2655, 361, 41707, 82, 504, 12, 2655, 361, 10354, 17816, 32, 4520, 12790, 68, 20520, 30072, 220, 198, 489, 83, 13, 6015, 10786, 21928, 5647, 3256, 2550, 8043, 11639, 13424, 11537, 198, 489, 83, 13, 6015, 10786, 897, 274, 3256, 14907, 8043, 11639, 11186, 11537, 198, 489, 83, 13, 6015, 10786, 742, 624, 3256, 8043, 11639, 11186, 11537, 198, 489, 83, 13, 6015, 10786, 20760, 624, 3256, 8043, 11639, 11186, 11537, 198, 489, 83, 13, 6015, 10786, 897, 274, 3256, 18242, 8043, 11639, 11186, 11537, 198, 489, 83, 13, 6015, 10786, 897, 274, 3256, 2550, 8043, 11639, 13424, 11537, 198, 198, 5647, 796, 458, 83, 13, 26875, 3419, 198, 897, 796, 458, 83, 13, 7266, 29487, 7, 16243, 8, 198, 198, 87, 23912, 1424, 796, 685, 81, 6, 12128, 3256, 81, 6, 15146, 3256, 81, 6, 7676, 3256, 81, 6, 13680, 3256, 81, 6, 6747, 3256, 81, 6, 22396, 3256, 81, 6, 16980, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 6, 12512, 3256, 81, 6, 19117, 3256, 81, 6, 12349, 3256, 81, 6, 20795, 3256, 81, 6, 10707, 3256, 81, 6, 12128, 20520, 198, 489, 83, 13, 742, 3378, 7, 37659, 13, 283, 858, 7, 15, 11, 35195, 11, 1270, 13, 19, 828, 87, 23912, 1424, 11, 10599, 341, 28, 15, 8, 198, 2645, 397, 1424, 796, 3975, 7, 2536, 11, 37659, 13, 283, 858, 7, 17, 11, 1129, 11, 17, 4008, 198, 489, 83, 13, 20760, 3378, 7, 37659, 13, 283, 858, 7, 17, 11, 1129, 11, 17, 828, 2645, 397, 1424, 8, 198, 489, 83, 13, 88, 2475, 26933, 17, 11, 1507, 12962, 198, 489, 83, 13, 87, 2475, 26933, 15, 11, 15277, 12962, 198, 198, 2536, 8424, 796, 2124, 23912, 1424, 58, 600, 7, 14421, 10295, 13219, 16, 60, 198, 292, 1659, 796, 965, 8424, 1343, 705, 705, 1343, 1459, 9892, 1343, 46083, 705, 1343, 1459, 2417, 198, 198, 21017, 20292, 34197, 287, 640, 2168, 21528, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 897, 13, 42298, 62, 37266, 10786, 16885, 3256, 13664, 28, 20, 13, 20, 11, 10394, 28, 17, 11, 4758, 11639, 22478, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 23032, 62, 2777, 1127, 7, 897, 11, 37250, 9464, 41707, 22487, 6, 12962, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 897, 13, 2777, 1127, 17816, 4852, 6, 4083, 2617, 62, 8043, 10786, 23108, 11537, 198, 897, 13, 2777, 1127, 17816, 3506, 6, 4083, 2617, 62, 8043, 10786, 23108, 11537, 220, 220, 198, 897, 13, 2777, 1127, 17816, 22487, 6, 4083, 2617, 62, 2815, 413, 5649, 7, 17, 8, 198, 897, 13, 2777, 1127, 17816, 9464, 6, 4083, 2617, 62, 2815, 413, 5649, 7, 17, 8, 198, 198, 45828, 17, 19282, 796, 357, 32604, 501, 14, 16, 68, 21, 8, 33747, 19282, 9, 17, 8, 198, 21037, 17, 19282, 796, 357, 32604, 501, 14, 16, 68, 21, 13219, 7, 19282, 9, 17, 8, 198, 198, 897, 13, 25928, 7, 89, 2875, 28, 16, 11, 8043, 11639, 86, 3256, 26591, 28, 15, 13, 17, 8, 198, 198, 489, 83, 13, 29487, 7, 501, 1507, 11, 2815, 413, 5649, 28, 16, 13, 23, 11, 8043, 11639, 36129, 64, 3256, 89, 2875, 28, 24, 11, 18242, 28, 81, 6, 11297, 6280, 357, 7908, 8, 11537, 220, 198, 198, 489, 83, 13, 29487, 7, 67, 726, 11, 45828, 17, 19282, 11, 8043, 11639, 11186, 3256, 26591, 28, 15, 13, 22, 11, 89, 2875, 28, 18, 11, 2815, 413, 5649, 28, 15, 13, 16, 8, 198, 489, 83, 13, 29487, 7, 67, 726, 11, 21037, 17, 19282, 11, 8043, 11639, 11186, 3256, 26591, 28, 15, 13, 22, 11, 89, 2875, 28, 19, 11, 2815, 413, 5649, 28, 15, 13, 16, 8, 198, 489, 83, 13, 29487, 7, 67, 726, 11, 36008, 576, 940, 11, 8043, 11639, 76, 3256, 26591, 28, 15, 13, 22, 11, 89, 2875, 28, 18, 11, 2815, 413, 5649, 28, 15, 13, 19, 8, 198, 489, 83, 13, 29487, 7, 67, 726, 11, 36008, 576, 1495, 11, 8043, 11639, 20772, 25547, 17585, 3256, 26591, 28, 15, 13, 22, 11, 89, 2875, 28, 19, 11, 2815, 413, 5649, 28, 15, 13, 19, 8, 198, 489, 83, 13, 29487, 7, 67, 726, 11, 36008, 576, 2425, 11, 8043, 11639, 20772, 25547, 17585, 3256, 26591, 28, 15, 13, 22, 11, 89, 2875, 28, 19, 11, 2815, 413, 5649, 28, 15, 13, 19, 8, 198, 489, 83, 13, 29487, 7, 67, 726, 11, 36008, 576, 3829, 11, 8043, 11639, 76, 3256, 26591, 28, 15, 13, 22, 11, 89, 2875, 28, 18, 11, 2815, 413, 5649, 28, 15, 13, 19, 8, 198, 198, 897, 13, 20797, 62, 23395, 7, 67, 726, 11, 2793, 17, 19282, 11, 6727, 17, 19282, 11, 1986, 8043, 11639, 11186, 3256, 17130, 28, 15, 13, 2327, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 81, 6, 3, 59, 4426, 3, 17, 3210, 47060, 3256, 89, 2875, 28, 17, 8, 198, 489, 83, 13, 29487, 7, 67, 726, 11, 36008, 576, 1120, 11, 8043, 11639, 24267, 3256, 26591, 28, 16, 11, 89, 2875, 28, 18, 11, 2815, 413, 5649, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 81, 6, 9921, 666, 357, 35411, 12, 10333, 8, 11537, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 897, 13, 20797, 62, 23395, 7, 67, 726, 11, 28176, 576, 3829, 11, 28176, 576, 2425, 11, 1986, 8043, 11639, 76, 3256, 17130, 28, 15, 13, 2816, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 81, 6, 940, 12, 3829, 400, 1411, 2915, 3256, 89, 2875, 28, 17, 8, 198, 897, 13, 20797, 62, 23395, 7, 67, 726, 11, 28176, 576, 940, 11, 28176, 576, 1495, 11, 1986, 8043, 11639, 76, 3256, 17130, 28, 15, 13, 2816, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 17, 8, 220, 220, 198, 897, 13, 20797, 62, 23395, 7, 67, 726, 11, 28176, 576, 1495, 11, 28176, 576, 1120, 11, 1986, 8043, 11639, 20772, 25547, 17585, 3256, 17130, 28, 15, 13, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 17, 8, 220, 220, 198, 897, 13, 20797, 62, 23395, 7, 67, 726, 11, 28176, 576, 1120, 11, 28176, 576, 2425, 11, 1986, 8043, 11639, 20772, 25547, 17585, 3256, 17130, 28, 15, 13, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 81, 6, 1495, 12, 2425, 400, 1411, 2915, 3256, 89, 2875, 28, 17, 8, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 489, 83, 13, 1416, 1436, 7, 67, 726, 58, 14421, 67, 726, 12, 18, 4357, 501, 58, 12, 16, 4357, 82, 28, 940, 11, 8043, 11639, 36129, 64, 3256, 89, 2875, 28, 24, 8, 198, 198, 489, 83, 13, 2645, 9608, 7, 81, 6, 59, 5239, 19881, 90, 11627, 298, 92, 685, 3, 59, 22355, 3, 940, 3, 36796, 21, 92, 3, 10571, 3, 61, 17, 3, 60, 3256, 10331, 7857, 28, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 21953, 49502, 11537, 198, 293, 796, 458, 83, 13, 1455, 437, 7, 19106, 28, 25101, 11, 10331, 7857, 28, 21, 11, 17946, 11639, 45828, 1364, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 1462, 62, 3702, 273, 16193, 15, 13, 37804, 11, 352, 13, 28555, 828, 69, 3883, 3524, 28, 17821, 11, 77, 4033, 28, 17, 8, 198, 1640, 2420, 287, 443, 13, 1136, 62, 5239, 82, 33529, 198, 220, 220, 220, 2420, 13, 2617, 62, 8043, 10786, 86, 11537, 220, 220, 220, 198, 489, 83, 13, 7839, 7, 81, 6, 59, 5239, 19881, 90, 1503, 4177, 2149, 41067, 23358, 92, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 2481, 11, 8043, 11639, 21953, 49502, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 489, 83, 13, 5239, 7, 67, 726, 58, 14421, 67, 726, 45297, 20, 11, 501, 58, 12, 16, 45297, 16, 13, 2327, 11, 81, 6, 59, 5239, 19881, 90, 7908, 92, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 1485, 13, 20, 11, 10599, 341, 11639, 17899, 38342, 3256, 3099, 11639, 9464, 3256, 8043, 11639, 36129, 64, 11537, 198, 489, 83, 13, 5239, 7, 15, 13, 20, 11, 18, 13, 16, 11, 81, 6, 59, 5239, 19881, 90, 26947, 25, 92, 2351, 7967, 3467, 5, 6663, 6060, 3337, 11, 27437, 7375, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 20, 13, 20, 11, 10599, 341, 11639, 17899, 38342, 3256, 3099, 11639, 9464, 3256, 8043, 11639, 21953, 49502, 11537, 198, 489, 83, 13, 5239, 7, 15, 13, 20, 11, 17, 13, 21, 11, 81, 6, 59, 5239, 19881, 90, 47690, 25, 92, 10117, 79, 1378, 30255, 5643, 13, 8043, 4533, 13, 15532, 14, 35, 1404, 1921, 32716, 14, 15285, 3838, 14, 38, 2999, 17059, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 20, 13, 20, 11, 10599, 341, 11639, 17899, 38342, 3256, 3099, 11639, 9464, 3256, 8043, 11639, 21953, 49502, 11537, 198, 489, 83, 13, 5239, 7, 15, 13, 20, 11, 17, 13, 16, 11, 81, 6, 59, 5239, 19881, 90, 10761, 31300, 2149, 25, 92, 18825, 560, 3498, 68, 4275, 57, 43, 11231, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 20, 13, 20, 11, 10599, 341, 11639, 17899, 38342, 3256, 3099, 11639, 9464, 3256, 8043, 11639, 21953, 49502, 11537, 220, 220, 220, 220, 198, 5647, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 6420, 8, 198, 198, 21017, 12793, 3785, 220, 220, 220, 220, 220, 220, 220, 220, 198, 489, 83, 13, 21928, 5647, 7, 34945, 26875, 1343, 705, 5907, 312, 66, 62, 44524, 62, 36008, 2915, 62, 14421, 1941, 13, 11134, 3256, 67, 14415, 28, 6200, 8, 220, 220, 220, 220, 220 ]
2.248232
2,969
import collections import nltk import tensorflow as tf import numpy as np from tensorflow.contrib import rnn from utils import chunks import json import os import shutil def word_indexing(words): """ :param words: a string :return: a vocabulary dictionary {word1: 1, word2: 2, ...} and its reveres {1: word1, 2: word2, ...} """ vocab = collections.Counter(words).most_common() vocab_dict = dict() for word, _ in vocab: vocab_dict[word] = len(vocab_dict) rev_vocab_dict = dict(zip(vocab_dict.values(), vocab_dict.keys())) return vocab_dict, rev_vocab_dict def data_sampling(content, window): """ :param content: Text vocab as string :param window: Window size for sampling, the window moves on the text vocab to build the samples :return: Training vocab includes (input, label) pair and number of classes If the window includes "cats like to chase mice" X is "cats like to chase" and y is "mice" """ words = nltk.tokenize.word_tokenize(content) vocab_dict, rev_vocab_dict = word_indexing(words) with open('vocab/rev_vocab.json', 'w') as fp: json.dump(rev_vocab_dict, fp) with open('vocab/vocab.json', 'w') as fp: json.dump(vocab_dict, fp) training_data = [] samples = chunks(words, window, truncate=True) for sample in samples: training_data.append(([vocab_dict[z] for z in sample[:-1]], vocab_dict[sample[-1:][0]])) return training_data, len(words) with open("data.txt") as f: content = f.read() window = 6 time_steps = window - 1 num_hidden = 512 num_input = 1 batch_size = 100 iteration = 250 training_data, num_classes = data_sampling(content, window=window) # Build the Batches: batches = chunks(training_data, batch_size) # RNN output node weights and biases weights = { 'out': tf.Variable(tf.random_normal([num_hidden, num_classes])) } biases = { 'out': tf.Variable(tf.random_normal([num_classes])) } # tf graph input X = tf.placeholder("float", [None, time_steps, num_input], name='X') Y = tf.placeholder("float", [None, num_classes]) logits = RNN(X, weights, biases) y_pred = tf.argmax(tf.nn.softmax(logits), 1, name='y_pred') y_true = tf.argmax(Y, 1) # Loss and optimizer loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=Y)) train_op = tf.train.RMSPropOptimizer(learning_rate=0.0001).minimize(loss_op) correct_pred = tf.equal(y_pred, y_true) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Initialize the variables with default values init = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as sess: # Run the initializer sess.run(init) for i in range(0, iteration): loss_list = [] acc_list = [] for batch in batches: X_batch = [x[0] for x in batch] Y_batch = [x[1] for x in batch] Y_batch_encoded = [] for x in Y_batch: one_hot_vector = np.zeros([num_classes], dtype=float) one_hot_vector[x] = 1.0 Y_batch_encoded.append(one_hot_vector) Y_batch_encoded = np.vstack(Y_batch_encoded) X_batch = np.vstack(X_batch) X_batch = X_batch.reshape(len(batch), time_steps, num_input) Y_batch_encoded = Y_batch_encoded.reshape(len(batch), num_classes) _, acc, loss, onehot_pred = sess.run( [train_op, accuracy, loss_op, logits], feed_dict={X: X_batch, Y: Y_batch_encoded}) loss_list.append(loss) acc_list.append(acc) loss = sum(loss_list)/len(loss_list) acc = sum(acc_list)/len(acc_list) print("Iteration " + str(i) + ", Loss= " + "{:.4f}".format(loss) + ", Training Accuracy= " + "{:.2f}".format(acc * 100)) inputs = { "X": X, } outputs = {"y_pred": y_pred} if os.path.isdir("model"): shutil.rmtree('model') tf.saved_model.simple_save( sess, 'model/', inputs, outputs )
[ 11748, 17268, 198, 11748, 299, 2528, 74, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11192, 273, 11125, 13, 3642, 822, 1330, 374, 20471, 198, 6738, 3384, 4487, 1330, 22716, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 4423, 346, 628, 198, 4299, 1573, 62, 9630, 278, 7, 10879, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 2456, 25, 257, 4731, 198, 220, 220, 220, 1058, 7783, 25, 257, 25818, 22155, 1391, 4775, 16, 25, 352, 11, 1573, 17, 25, 362, 11, 220, 2644, 92, 290, 198, 220, 220, 220, 220, 663, 2697, 411, 1391, 16, 25, 1573, 16, 11, 362, 25, 1573, 17, 11, 2644, 92, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12776, 397, 796, 17268, 13, 31694, 7, 10879, 737, 1712, 62, 11321, 3419, 198, 220, 220, 220, 12776, 397, 62, 11600, 796, 8633, 3419, 198, 220, 220, 220, 329, 1573, 11, 4808, 287, 12776, 397, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 11600, 58, 4775, 60, 796, 18896, 7, 18893, 397, 62, 11600, 8, 198, 220, 220, 220, 2710, 62, 18893, 397, 62, 11600, 796, 8633, 7, 13344, 7, 18893, 397, 62, 11600, 13, 27160, 22784, 12776, 397, 62, 11600, 13, 13083, 3419, 4008, 198, 220, 220, 220, 1441, 12776, 397, 62, 11600, 11, 2710, 62, 18893, 397, 62, 11600, 628, 198, 4299, 1366, 62, 37687, 11347, 7, 11299, 11, 4324, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 2695, 25, 8255, 12776, 397, 355, 4731, 198, 220, 220, 220, 1058, 17143, 4324, 25, 26580, 2546, 329, 19232, 11, 262, 4324, 6100, 319, 262, 2420, 12776, 397, 284, 1382, 262, 8405, 198, 220, 220, 220, 1058, 7783, 25, 13614, 12776, 397, 3407, 357, 15414, 11, 6167, 8, 5166, 290, 1271, 286, 6097, 628, 220, 220, 220, 1002, 262, 4324, 3407, 366, 24619, 588, 284, 15505, 10693, 1, 1395, 318, 366, 24619, 588, 284, 15505, 1, 290, 331, 318, 366, 76, 501, 1, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2456, 796, 299, 2528, 74, 13, 30001, 1096, 13, 4775, 62, 30001, 1096, 7, 11299, 8, 198, 220, 220, 220, 12776, 397, 62, 11600, 11, 2710, 62, 18893, 397, 62, 11600, 796, 1573, 62, 9630, 278, 7, 10879, 8, 198, 220, 220, 220, 351, 1280, 10786, 18893, 397, 14, 18218, 62, 18893, 397, 13, 17752, 3256, 705, 86, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 18218, 62, 18893, 397, 62, 11600, 11, 277, 79, 8, 198, 220, 220, 220, 351, 1280, 10786, 18893, 397, 14, 18893, 397, 13, 17752, 3256, 705, 86, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 18893, 397, 62, 11600, 11, 277, 79, 8, 198, 220, 220, 220, 3047, 62, 7890, 796, 17635, 198, 220, 220, 220, 8405, 796, 22716, 7, 10879, 11, 4324, 11, 40122, 378, 28, 17821, 8, 198, 220, 220, 220, 329, 6291, 287, 8405, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 7890, 13, 33295, 19510, 58, 18893, 397, 62, 11600, 58, 89, 60, 329, 1976, 287, 6291, 58, 21912, 16, 60, 4357, 12776, 397, 62, 11600, 58, 39873, 58, 12, 16, 25, 7131, 15, 11907, 4008, 198, 220, 220, 220, 1441, 3047, 62, 7890, 11, 18896, 7, 10879, 8, 628, 198, 4480, 1280, 7203, 7890, 13, 14116, 4943, 355, 277, 25, 198, 220, 220, 220, 2695, 796, 277, 13, 961, 3419, 198, 198, 17497, 796, 718, 198, 2435, 62, 20214, 796, 4324, 532, 352, 198, 22510, 62, 30342, 796, 22243, 198, 22510, 62, 15414, 796, 352, 198, 43501, 62, 7857, 796, 1802, 198, 2676, 341, 796, 8646, 198, 198, 34409, 62, 7890, 11, 997, 62, 37724, 796, 1366, 62, 37687, 11347, 7, 11299, 11, 4324, 28, 17497, 8, 198, 2, 10934, 262, 6577, 2052, 25, 198, 8664, 2052, 796, 22716, 7, 34409, 62, 7890, 11, 15458, 62, 7857, 8, 198, 198, 2, 371, 6144, 5072, 10139, 19590, 290, 29275, 198, 43775, 796, 1391, 198, 220, 220, 220, 705, 448, 10354, 48700, 13, 43015, 7, 27110, 13, 25120, 62, 11265, 26933, 22510, 62, 30342, 11, 997, 62, 37724, 60, 4008, 198, 92, 198, 8482, 1386, 796, 1391, 198, 220, 220, 220, 705, 448, 10354, 48700, 13, 43015, 7, 27110, 13, 25120, 62, 11265, 26933, 22510, 62, 37724, 60, 4008, 198, 92, 198, 198, 2, 48700, 4823, 5128, 198, 55, 796, 48700, 13, 5372, 13829, 7203, 22468, 1600, 685, 14202, 11, 640, 62, 20214, 11, 997, 62, 15414, 4357, 1438, 11639, 55, 11537, 198, 56, 796, 48700, 13, 5372, 13829, 7203, 22468, 1600, 685, 14202, 11, 997, 62, 37724, 12962, 628, 198, 198, 6404, 896, 796, 371, 6144, 7, 55, 11, 19590, 11, 29275, 8, 198, 88, 62, 28764, 796, 48700, 13, 853, 9806, 7, 27110, 13, 20471, 13, 4215, 9806, 7, 6404, 896, 828, 352, 11, 1438, 11639, 88, 62, 28764, 11537, 198, 88, 62, 7942, 796, 48700, 13, 853, 9806, 7, 56, 11, 352, 8, 198, 198, 2, 22014, 290, 6436, 7509, 198, 22462, 62, 404, 796, 48700, 13, 445, 7234, 62, 32604, 7, 27110, 13, 20471, 13, 4215, 9806, 62, 19692, 62, 298, 28338, 62, 4480, 62, 6404, 896, 62, 85, 17, 7, 6404, 896, 28, 6404, 896, 11, 14722, 28, 56, 4008, 198, 27432, 62, 404, 796, 48700, 13, 27432, 13, 29138, 4303, 1773, 27871, 320, 7509, 7, 40684, 62, 4873, 28, 15, 13, 18005, 737, 1084, 48439, 7, 22462, 62, 404, 8, 198, 30283, 62, 28764, 796, 48700, 13, 40496, 7, 88, 62, 28764, 11, 331, 62, 7942, 8, 198, 4134, 23843, 796, 48700, 13, 445, 7234, 62, 32604, 7, 27110, 13, 2701, 7, 30283, 62, 28764, 11, 48700, 13, 22468, 2624, 4008, 198, 198, 2, 20768, 1096, 262, 9633, 351, 4277, 3815, 198, 15003, 796, 48700, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 3419, 198, 82, 8770, 796, 48700, 13, 27432, 13, 50, 8770, 3419, 198, 4480, 48700, 13, 36044, 3419, 355, 264, 408, 25, 198, 220, 220, 220, 1303, 5660, 262, 4238, 7509, 198, 220, 220, 220, 264, 408, 13, 5143, 7, 15003, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 24415, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 697, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 15458, 287, 37830, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 43501, 796, 685, 87, 58, 15, 60, 329, 2124, 287, 15458, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 62, 43501, 796, 685, 87, 58, 16, 60, 329, 2124, 287, 15458, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 62, 43501, 62, 12685, 9043, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 575, 62, 43501, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 62, 8940, 62, 31364, 796, 45941, 13, 9107, 418, 26933, 22510, 62, 37724, 4357, 288, 4906, 28, 22468, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 62, 8940, 62, 31364, 58, 87, 60, 796, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 62, 43501, 62, 12685, 9043, 13, 33295, 7, 505, 62, 8940, 62, 31364, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 62, 43501, 62, 12685, 9043, 796, 45941, 13, 85, 25558, 7, 56, 62, 43501, 62, 12685, 9043, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 43501, 796, 45941, 13, 85, 25558, 7, 55, 62, 43501, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 43501, 796, 1395, 62, 43501, 13, 3447, 1758, 7, 11925, 7, 43501, 828, 640, 62, 20214, 11, 997, 62, 15414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 62, 43501, 62, 12685, 9043, 796, 575, 62, 43501, 62, 12685, 9043, 13, 3447, 1758, 7, 11925, 7, 43501, 828, 997, 62, 37724, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 697, 11, 2994, 11, 530, 8940, 62, 28764, 796, 264, 408, 13, 5143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 27432, 62, 404, 11, 9922, 11, 2994, 62, 404, 11, 2604, 896, 4357, 3745, 62, 11600, 34758, 55, 25, 1395, 62, 43501, 11, 575, 25, 575, 62, 43501, 62, 12685, 9043, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 4868, 13, 33295, 7, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 697, 62, 4868, 13, 33295, 7, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 2160, 7, 22462, 62, 4868, 20679, 11925, 7, 22462, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 697, 796, 2160, 7, 4134, 62, 4868, 20679, 11925, 7, 4134, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 29993, 341, 366, 1343, 965, 7, 72, 8, 1343, 33172, 22014, 28, 366, 1343, 45144, 25, 13, 19, 69, 92, 1911, 18982, 7, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 33172, 13614, 33222, 28, 366, 1343, 45144, 25, 13, 17, 69, 92, 1911, 18982, 7, 4134, 1635, 1802, 4008, 198, 220, 220, 220, 17311, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 55, 1298, 1395, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 23862, 796, 19779, 88, 62, 28764, 1298, 331, 62, 28764, 92, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7203, 19849, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 10786, 19849, 11537, 198, 220, 220, 220, 48700, 13, 82, 9586, 62, 19849, 13, 36439, 62, 21928, 7, 198, 220, 220, 220, 220, 220, 220, 220, 264, 408, 11, 705, 19849, 14, 3256, 17311, 11, 23862, 198, 220, 220, 220, 1267 ]
2.323529
1,734
import numpy as np import matplotlib.pyplot as pl from vaccontrib.covid import ( get_covid_matrices ) from vaccontrib.main import ( get_reduced_vaccinated_susceptible_contribution_matrix, get_reduced_vaccinated_susceptible_eigenvector, get_eigenvector, get_next_generation_matrix_from_matrices, get_contribution_matrix, ) from tqdm import tqdm import matplotlib.ticker as mtick import bfmplot as bp colors = [ ['#E75740', '#58BDB2'], ['#F2957D', '#268D7C'], ] uv_colors = [ colors[0][0], colors[1][1] ] reduction = np.linspace(1,0,41) n = len(reduction) matrices = get_covid_matrices('delta','01_upper',('no','vacc')) s0 = np.array(matrices['s']) r0 = np.array(matrices['r']) b0 = np.array(matrices['b']) Cs = np.zeros((2,n,2,2)) for imode, reduce_susc_only in enumerate([True,False]): _v = np.array([1.,1.,1.,1]) for ired, red in enumerate(reduction): s = s0.copy() r = r0.copy() b = b0.copy() s[:,1] = 1 - (1-s0[:,0] ) * (1-(1-red)*_v) if reduce_susc_only: r = r0 b = b0 else: r[:,1] = (1-red)*r0[:,1] b[:,1] = (1-red)*b0[:,1] + red * (b0[:,0]) matrices['s'] = s matrices['r'] = r matrices['b'] = b K = get_next_generation_matrix_from_matrices(1,**matrices) C = get_reduced_vaccinated_susceptible_contribution_matrix(K) C /= C.sum() Cs[imode,ired,:,:] = C fig, ax = pl.subplots(1,1,figsize=(5,3.5)) x = 1 - reduction linestyles = ['-','--'] labels = ['const. breakthrough\ntransmissibility reduction', 'decreasing breakthrough\ntransmissibility reduction', ] ax.plot(x,0.5*np.ones_like(x),c='#aaaaaa',ls='-') ax.plot([0.22,0.22],[0,.5],c='#aaaaaa',ls='-') ax.plot([0.41,0.41],[0,.5],c='#aaaaaa',ls='-') for imode in range(2): unvacc = Cs[imode,:,:,:].sum(axis=1)[:,0] vacc = Cs[imode,:,:,:].sum(axis=1)[:,1] ax.plot(x,unvacc,color=uv_colors[0],label=labels[imode],ls=linestyles[imode]) ax.plot(x,vacc,color=uv_colors[1],ls=linestyles[imode]) ax.set_ylabel('fraction of new infections caused by ...') ax.legend() ax.yaxis.set_major_formatter(mtick.PercentFormatter(1)) ax.xaxis.set_major_formatter(mtick.PercentFormatter(1)) ax.set_yticks([0,.25,.5,.75,1]) ax.set_xlim(0,1) ax.set_ylim(0,1) ax.text(0.85,0.65,'unvaccinated',ha='right',va='top',color=uv_colors[0]) ax.text(0.8,0.1,'vaccinated',ha='right',va='bottom',color=uv_colors[1]) fig.tight_layout() ax.set_xlabel('age-independent vaccine efficacy s') bp.strip_axis(ax) fig.tight_layout() fig.savefig('efficacy_scan.pdf') pl.show()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 628, 198, 6738, 6658, 3642, 822, 13, 66, 709, 312, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 66, 709, 312, 62, 6759, 45977, 198, 220, 220, 220, 1267, 198, 198, 6738, 6658, 3642, 822, 13, 12417, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 445, 19513, 62, 37839, 3898, 62, 82, 385, 984, 856, 62, 3642, 3890, 62, 6759, 8609, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 445, 19513, 62, 37839, 3898, 62, 82, 385, 984, 856, 62, 68, 9324, 31364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 68, 9324, 31364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 19545, 62, 20158, 62, 6759, 8609, 62, 6738, 62, 6759, 45977, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 3642, 3890, 62, 6759, 8609, 11, 198, 220, 220, 220, 1267, 628, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 11748, 2603, 29487, 8019, 13, 83, 15799, 355, 285, 42298, 198, 198, 11748, 275, 38353, 29487, 355, 275, 79, 198, 198, 4033, 669, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 2, 36, 39251, 1821, 3256, 705, 2, 3365, 33, 11012, 17, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 2, 37, 1959, 3553, 35, 3256, 705, 2, 25022, 35, 22, 34, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 198, 14795, 62, 4033, 669, 796, 685, 7577, 58, 15, 7131, 15, 4357, 7577, 58, 16, 7131, 16, 60, 2361, 628, 198, 445, 8110, 796, 45941, 13, 21602, 10223, 7, 16, 11, 15, 11, 3901, 8, 198, 77, 796, 18896, 7, 445, 8110, 8, 198, 198, 6759, 45977, 796, 651, 62, 66, 709, 312, 62, 6759, 45977, 10786, 67, 12514, 41707, 486, 62, 45828, 3256, 10786, 3919, 41707, 37839, 6, 4008, 198, 82, 15, 796, 45941, 13, 18747, 7, 6759, 45977, 17816, 82, 6, 12962, 198, 81, 15, 796, 45941, 13, 18747, 7, 6759, 45977, 17816, 81, 6, 12962, 198, 65, 15, 796, 45941, 13, 18747, 7, 6759, 45977, 17816, 65, 6, 12962, 198, 198, 32274, 796, 45941, 13, 9107, 418, 19510, 17, 11, 77, 11, 17, 11, 17, 4008, 198, 1640, 545, 1098, 11, 4646, 62, 82, 16241, 62, 8807, 287, 27056, 378, 26933, 17821, 11, 25101, 60, 2599, 628, 220, 220, 220, 4808, 85, 796, 45941, 13, 18747, 26933, 16, 1539, 16, 1539, 16, 1539, 16, 12962, 628, 220, 220, 220, 329, 220, 1202, 11, 2266, 287, 27056, 378, 7, 445, 8110, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 264, 15, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 374, 15, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 275, 15, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 58, 45299, 16, 60, 796, 352, 532, 357, 16, 12, 82, 15, 58, 45299, 15, 60, 1267, 1635, 357, 16, 30420, 16, 12, 445, 27493, 62, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4646, 62, 82, 16241, 62, 8807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 374, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 796, 275, 15, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 58, 45299, 16, 60, 796, 357, 16, 12, 445, 27493, 81, 15, 58, 45299, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 58, 45299, 16, 60, 796, 357, 16, 12, 445, 27493, 65, 15, 58, 45299, 16, 60, 1343, 2266, 1635, 357, 65, 15, 58, 45299, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2603, 45977, 17816, 82, 20520, 796, 264, 198, 220, 220, 220, 220, 220, 220, 220, 2603, 45977, 17816, 81, 20520, 796, 374, 198, 220, 220, 220, 220, 220, 220, 220, 2603, 45977, 17816, 65, 20520, 796, 275, 628, 220, 220, 220, 220, 220, 220, 220, 509, 796, 651, 62, 19545, 62, 20158, 62, 6759, 8609, 62, 6738, 62, 6759, 45977, 7, 16, 11, 1174, 6759, 45977, 8, 198, 220, 220, 220, 220, 220, 220, 220, 327, 796, 651, 62, 445, 19513, 62, 37839, 3898, 62, 82, 385, 984, 856, 62, 3642, 3890, 62, 6759, 8609, 7, 42, 8, 198, 220, 220, 220, 220, 220, 220, 220, 327, 1220, 28, 327, 13, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 327, 82, 58, 320, 1098, 11, 1202, 11, 45299, 47715, 796, 327, 198, 198, 5647, 11, 7877, 796, 458, 13, 7266, 489, 1747, 7, 16, 11, 16, 11, 5647, 7857, 16193, 20, 11, 18, 13, 20, 4008, 198, 198, 87, 796, 352, 532, 7741, 198, 198, 2815, 42530, 796, 685, 29001, 41707, 438, 20520, 198, 198, 23912, 1424, 796, 37250, 9979, 13, 19304, 59, 429, 26084, 3927, 2247, 7741, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12501, 260, 2313, 19304, 59, 429, 26084, 3927, 2247, 7741, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 198, 897, 13, 29487, 7, 87, 11, 15, 13, 20, 9, 37659, 13, 1952, 62, 2339, 7, 87, 828, 66, 11639, 2, 24794, 7252, 3256, 7278, 11639, 12, 11537, 198, 897, 13, 29487, 26933, 15, 13, 1828, 11, 15, 13, 1828, 38430, 15, 38508, 20, 4357, 66, 11639, 2, 24794, 7252, 3256, 7278, 11639, 12, 11537, 198, 897, 13, 29487, 26933, 15, 13, 3901, 11, 15, 13, 3901, 38430, 15, 38508, 20, 4357, 66, 11639, 2, 24794, 7252, 3256, 7278, 11639, 12, 11537, 198, 198, 1640, 545, 1098, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 555, 37839, 796, 327, 82, 58, 320, 1098, 11, 45299, 45299, 25, 4083, 16345, 7, 22704, 28, 16, 38381, 45299, 15, 60, 198, 220, 220, 220, 7041, 796, 327, 82, 58, 320, 1098, 11, 45299, 45299, 25, 4083, 16345, 7, 22704, 28, 16, 38381, 45299, 16, 60, 198, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 403, 37839, 11, 8043, 28, 14795, 62, 4033, 669, 58, 15, 4357, 18242, 28, 23912, 1424, 58, 320, 1098, 4357, 7278, 28, 2815, 42530, 58, 320, 1098, 12962, 198, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 37839, 11, 8043, 28, 14795, 62, 4033, 669, 58, 16, 4357, 7278, 28, 2815, 42530, 58, 320, 1098, 12962, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 69, 7861, 286, 649, 16079, 4073, 416, 2644, 11537, 198, 220, 220, 220, 7877, 13, 1455, 437, 3419, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 22478, 62, 687, 1436, 7, 16762, 624, 13, 31905, 8479, 1436, 7, 16, 4008, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 687, 1436, 7, 16762, 624, 13, 31905, 8479, 1436, 7, 16, 4008, 198, 198, 897, 13, 2617, 62, 20760, 3378, 26933, 15, 38508, 1495, 38508, 20, 38508, 2425, 11, 16, 12962, 198, 897, 13, 2617, 62, 87, 2475, 7, 15, 11, 16, 8, 198, 897, 13, 2617, 62, 88, 2475, 7, 15, 11, 16, 8, 198, 198, 897, 13, 5239, 7, 15, 13, 5332, 11, 15, 13, 2996, 4032, 403, 37839, 3898, 3256, 3099, 11639, 3506, 3256, 6862, 11639, 4852, 3256, 8043, 28, 14795, 62, 4033, 669, 58, 15, 12962, 198, 897, 13, 5239, 7, 15, 13, 23, 11, 15, 13, 16, 4032, 37839, 3898, 3256, 3099, 11639, 3506, 3256, 6862, 11639, 22487, 3256, 8043, 28, 14795, 62, 4033, 669, 58, 16, 12962, 198, 198, 5647, 13, 33464, 62, 39786, 3419, 198, 198, 897, 13, 2617, 62, 87, 18242, 10786, 496, 12, 34750, 12319, 20179, 264, 11537, 198, 198, 46583, 13, 36311, 62, 22704, 7, 897, 8, 628, 198, 5647, 13, 33464, 62, 39786, 3419, 198, 198, 5647, 13, 21928, 5647, 10786, 24531, 1590, 62, 35836, 13, 12315, 11537, 628, 198, 489, 13, 12860, 3419, 198 ]
2.005162
1,356
""" 15483 : 최소 편집 URL : https://www.acmicpc.net/problem/15483 Input #1 : abc ab Output #1 : 1 Input #2 : ca abc Output #2 : 3 Input #3 : abc cba Output #3 : 2 Input #4 : abcd bcde Output #4 : 2 Input #5 : abababababa aaaaaaaaaaa Output #5 : 5 Input #6 : for whileforif Output #6 : 7 Input #7 : whilewhile whalewhale Output #7 : 2 Input #8 : aaabaaa acacaca Output #8 : 3 Input #9 : qwerty dvorak Output #9 : 5 Input #10 : asdf asdf Output #10 : 0 """ import sys sys.setrecursionlimit(987654321) MAX_N = 1001 a = input() b = input() cache = [[None for _ in range(MAX_N)] for _ in range(MAX_N)] print(lds(0, 0))
[ 37811, 198, 220, 220, 220, 1315, 38783, 1058, 23821, 113, 250, 168, 228, 234, 220, 169, 236, 116, 168, 100, 239, 198, 220, 220, 220, 10289, 1058, 3740, 1378, 2503, 13, 330, 9383, 14751, 13, 3262, 14, 45573, 14, 1314, 38783, 198, 220, 220, 220, 23412, 1303, 16, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 450, 66, 198, 220, 220, 220, 220, 220, 220, 220, 450, 198, 220, 220, 220, 25235, 1303, 16, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 352, 198, 220, 220, 220, 23412, 1303, 17, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 1275, 198, 220, 220, 220, 220, 220, 220, 220, 450, 66, 198, 220, 220, 220, 25235, 1303, 17, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 513, 198, 220, 220, 220, 23412, 1303, 18, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 450, 66, 198, 220, 220, 220, 220, 220, 220, 220, 269, 7012, 198, 220, 220, 220, 25235, 1303, 18, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 362, 198, 220, 220, 220, 23412, 1303, 19, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 450, 10210, 198, 220, 220, 220, 220, 220, 220, 220, 47125, 2934, 198, 220, 220, 220, 25235, 1303, 19, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 362, 198, 220, 220, 220, 23412, 1303, 20, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 450, 397, 397, 397, 15498, 198, 220, 220, 220, 220, 220, 220, 220, 257, 24794, 24794, 7252, 198, 220, 220, 220, 25235, 1303, 20, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 642, 198, 220, 220, 220, 23412, 1303, 21, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 329, 198, 220, 220, 220, 220, 220, 220, 220, 981, 1640, 361, 198, 220, 220, 220, 25235, 1303, 21, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 767, 198, 220, 220, 220, 23412, 1303, 22, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 981, 4514, 198, 220, 220, 220, 220, 220, 220, 220, 348, 282, 413, 71, 1000, 198, 220, 220, 220, 25235, 1303, 22, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 362, 198, 220, 220, 220, 23412, 1303, 23, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 257, 64, 397, 46071, 198, 220, 220, 220, 220, 220, 220, 220, 936, 330, 22260, 198, 220, 220, 220, 25235, 1303, 23, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 513, 198, 220, 220, 220, 23412, 1303, 24, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 15448, 774, 198, 220, 220, 220, 220, 220, 220, 220, 288, 20867, 461, 198, 220, 220, 220, 25235, 1303, 24, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 642, 198, 220, 220, 220, 23412, 1303, 940, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 355, 7568, 198, 220, 220, 220, 220, 220, 220, 220, 355, 7568, 198, 220, 220, 220, 25235, 1303, 940, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 657, 198, 37811, 198, 198, 11748, 25064, 198, 17597, 13, 2617, 8344, 24197, 32374, 7, 4089, 29143, 3559, 2481, 8, 198, 198, 22921, 62, 45, 796, 1802, 16, 198, 198, 64, 796, 5128, 3419, 198, 65, 796, 5128, 3419, 198, 198, 23870, 796, 16410, 14202, 329, 4808, 287, 2837, 7, 22921, 62, 45, 15437, 329, 4808, 287, 2837, 7, 22921, 62, 45, 15437, 628, 198, 198, 4798, 7, 335, 82, 7, 15, 11, 657, 4008, 198 ]
1.637782
577
#!/usr/bin/env python3 """ Utility functions for JensenLab REST APIs. https://api.jensenlab.org/Textmining?type1=-26&id1=DOID:10652&type2=9606&limit=10&format=json https://api.jensenlab.org/Textmining?query=jetlag[tiab]%20OR%20jet-lag[tiab]&type2=9606&limit=10&format=json https://api.jensenlab.org/Knowledge?type1=-26&id1=DOID:10652&type2=9606&limit=10&format=json https://api.jensenlab.org/Experiments?type1=-26&id1=DOID:10652&type2=9606&limit=10&format=json """ import sys,os,re,json,time,logging import pandas as pd from ..util import rest # API_HOST='api.jensenlab.org' API_BASE_PATH='' BASE_URL='https://'+API_HOST+API_BASE_PATH # ############################################################################## ############################################################################## def GetPubmedComentionGenes(ids, base_url=BASE_URL, fout=None): """Search by co-mentioned terms.""" tags=[]; df=pd.DataFrame(); for id_this in ids: rval = rest.Utils.GetURL(base_url+f'/Textmining?query={id_this}[tiab]&type2=9606&limit=10&format=json', parse_json=True) genes = rval[0] #dict ensgs = list(genes.keys()) flag = rval[1] #? for ensg in ensgs: gene = genes[ensg] logging.debug(json.dumps(gene, indent=2)) if not tags: tags = list(gene.keys()) df = pd.concat([df, pd.DataFrame({tags[j]:[gene[tags[j]]] for j in range(len(tags))})]) if fout: df.to_csv(fout, "\t", index=False) logging.info("n_out: {}".format(df.shape[0])) return df ##############################################################################
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 18274, 879, 5499, 329, 32623, 17822, 30617, 23113, 13, 198, 5450, 1378, 15042, 13, 73, 18756, 23912, 13, 2398, 14, 8206, 45374, 30, 4906, 16, 10779, 2075, 5, 312, 16, 28, 18227, 2389, 25, 940, 43193, 5, 4906, 17, 28, 24, 33206, 5, 32374, 28, 940, 5, 18982, 28, 17752, 198, 5450, 1378, 15042, 13, 73, 18756, 23912, 13, 2398, 14, 8206, 45374, 30, 22766, 28, 31173, 30909, 58, 20259, 397, 60, 4, 1238, 1581, 4, 1238, 31173, 12, 30909, 58, 20259, 397, 60, 5, 4906, 17, 28, 24, 33206, 5, 32374, 28, 940, 5, 18982, 28, 17752, 198, 5450, 1378, 15042, 13, 73, 18756, 23912, 13, 2398, 14, 23812, 2965, 30, 4906, 16, 10779, 2075, 5, 312, 16, 28, 18227, 2389, 25, 940, 43193, 5, 4906, 17, 28, 24, 33206, 5, 32374, 28, 940, 5, 18982, 28, 17752, 198, 5450, 1378, 15042, 13, 73, 18756, 23912, 13, 2398, 14, 20468, 6800, 30, 4906, 16, 10779, 2075, 5, 312, 16, 28, 18227, 2389, 25, 940, 43193, 5, 4906, 17, 28, 24, 33206, 5, 32374, 28, 940, 5, 18982, 28, 17752, 198, 37811, 198, 11748, 25064, 11, 418, 11, 260, 11, 17752, 11, 2435, 11, 6404, 2667, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 11485, 22602, 1330, 1334, 198, 2, 198, 17614, 62, 39, 10892, 11639, 15042, 13, 73, 18756, 23912, 13, 2398, 6, 198, 17614, 62, 33, 11159, 62, 34219, 28, 7061, 198, 33, 11159, 62, 21886, 11639, 5450, 1378, 6, 10, 17614, 62, 39, 10892, 10, 17614, 62, 33, 11159, 62, 34219, 198, 2, 198, 29113, 29113, 7804, 4242, 2235, 198, 198, 29113, 29113, 7804, 4242, 2235, 198, 4299, 3497, 14876, 1150, 5377, 1463, 13746, 274, 7, 2340, 11, 2779, 62, 6371, 28, 33, 11159, 62, 21886, 11, 277, 448, 28, 14202, 2599, 198, 220, 37227, 18243, 416, 763, 12, 17181, 2846, 526, 15931, 198, 220, 15940, 41888, 11208, 47764, 28, 30094, 13, 6601, 19778, 9783, 198, 220, 329, 4686, 62, 5661, 287, 220, 2340, 25, 198, 220, 220, 220, 374, 2100, 796, 1334, 13, 18274, 4487, 13, 3855, 21886, 7, 8692, 62, 6371, 10, 69, 26488, 8206, 45374, 30, 22766, 34758, 312, 62, 5661, 92, 58, 20259, 397, 60, 5, 4906, 17, 28, 24, 33206, 5, 32374, 28, 940, 5, 18982, 28, 17752, 3256, 21136, 62, 17752, 28, 17821, 8, 198, 220, 220, 220, 10812, 796, 374, 2100, 58, 15, 60, 1303, 11600, 198, 220, 220, 220, 3140, 14542, 796, 1351, 7, 5235, 274, 13, 13083, 28955, 198, 220, 220, 220, 6056, 796, 374, 2100, 58, 16, 60, 1303, 30, 198, 220, 220, 220, 329, 3140, 70, 287, 3140, 14542, 25, 198, 220, 220, 220, 220, 220, 9779, 796, 10812, 58, 641, 70, 60, 198, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 17752, 13, 67, 8142, 7, 70, 1734, 11, 33793, 28, 17, 4008, 198, 220, 220, 220, 220, 220, 611, 407, 15940, 25, 15940, 796, 1351, 7, 70, 1734, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 1102, 9246, 26933, 7568, 11, 279, 67, 13, 6601, 19778, 15090, 31499, 58, 73, 5974, 58, 70, 1734, 58, 31499, 58, 73, 11907, 60, 329, 474, 287, 2837, 7, 11925, 7, 31499, 4008, 30072, 12962, 198, 220, 611, 277, 448, 25, 47764, 13, 1462, 62, 40664, 7, 69, 448, 11, 37082, 83, 1600, 6376, 28, 25101, 8, 198, 220, 18931, 13, 10951, 7203, 77, 62, 448, 25, 23884, 1911, 18982, 7, 7568, 13, 43358, 58, 15, 60, 4008, 198, 220, 1441, 47764, 198, 198, 29113, 29113, 7804, 4242, 2235, 198 ]
2.61194
603
import numpy as np import joblib from rllab.sampler.utils import rollout import os from rllab import config from rllab.misc import ext from tqdm import trange, tqdm import IPython import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import itertools from sandbox.finetuning.envs.mujoco.modified.modified_ant_env import ModifiedAntEnv from sandbox.finetuning.envs.mujoco.modified.modified_ant_gather_env import ModifiedAntLowGearGatherEnv from rllab.envs.normalized_env import normalize import math # mutates the policy, but not in a way that matters if __name__ == "__main__": main()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 1693, 8019, 198, 6738, 374, 297, 397, 13, 37687, 20053, 13, 26791, 1330, 38180, 198, 11748, 28686, 198, 6738, 374, 297, 397, 1330, 4566, 198, 6738, 374, 297, 397, 13, 44374, 1330, 1070, 198, 6738, 256, 80, 36020, 1330, 491, 858, 11, 256, 80, 36020, 198, 11748, 6101, 7535, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 7203, 46384, 4943, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 340, 861, 10141, 198, 6738, 35204, 13, 15643, 316, 46493, 13, 268, 14259, 13, 76, 23577, 25634, 13, 41771, 13, 41771, 62, 415, 62, 24330, 1330, 40499, 13217, 4834, 85, 198, 6738, 35204, 13, 15643, 316, 46493, 13, 268, 14259, 13, 76, 23577, 25634, 13, 41771, 13, 41771, 62, 415, 62, 70, 1032, 62, 24330, 1330, 40499, 13217, 20535, 38141, 38, 1032, 4834, 85, 198, 6738, 374, 297, 397, 13, 268, 14259, 13, 11265, 1143, 62, 24330, 1330, 3487, 1096, 198, 11748, 10688, 198, 198, 2, 4517, 689, 262, 2450, 11, 475, 407, 287, 257, 835, 326, 6067, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 628, 628 ]
3.049751
201
from django.shortcuts import render_to_response from django.http import HttpResponseRedirect from django.http import HttpResponse from django.core.urlresolvers import reverse from django.views.decorators.csrf import csrf_exempt from django.template import RequestContext ## The home page.
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 62, 1462, 62, 26209, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 7738, 1060, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 6738, 42625, 14208, 13, 33571, 13, 12501, 273, 2024, 13, 6359, 41871, 1330, 269, 27891, 69, 62, 42679, 198, 6738, 42625, 14208, 13, 28243, 1330, 19390, 21947, 198, 198, 2235, 383, 1363, 2443, 13 ]
3.52439
82
# Generated by Django 2.0.5 on 2018-05-07 00:47 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 13, 20, 319, 2864, 12, 2713, 12, 2998, 3571, 25, 2857, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.766667
30
################################## # Basik-Calc # Calculator for basic operations # Author: Ricardo Dimas ################################## import sys if __name__ == '__main__': try: main() except KeyboardInterrupt: print('\nExiting...') sys.exit()
[ 29113, 2235, 198, 2, 6455, 1134, 12, 9771, 66, 198, 2, 43597, 329, 4096, 4560, 198, 2, 6434, 25, 38847, 14048, 292, 198, 29113, 2235, 198, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 3109, 1780, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 628 ]
3
95
import multiprocessing import os import re import shutil import tempfile import zipfile from datetime import datetime from django.core.management.base import BaseCommand, CommandError import sh from corehq.apps.export.dbaccessors import get_properly_wrapped_export_instance from corehq.apps.export.multiprocess import ( UNPROCESSED_PAGES_DIR, MultiprocessExporter, RetryResult, _add_compressed_page_to_zip, ) from corehq.util.files import safe_filename
[ 11748, 18540, 305, 919, 278, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 4423, 346, 198, 11748, 20218, 7753, 198, 11748, 19974, 7753, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 11, 9455, 12331, 198, 198, 11748, 427, 198, 198, 6738, 4755, 71, 80, 13, 18211, 13, 39344, 13, 9945, 15526, 669, 1330, 651, 62, 1676, 525, 306, 62, 29988, 1496, 62, 39344, 62, 39098, 198, 6738, 4755, 71, 80, 13, 18211, 13, 39344, 13, 16680, 541, 305, 919, 1330, 357, 198, 220, 220, 220, 4725, 4805, 4503, 7597, 1961, 62, 4537, 48075, 62, 34720, 11, 198, 220, 220, 220, 7854, 541, 305, 919, 3109, 26634, 11, 198, 220, 220, 220, 4990, 563, 23004, 11, 198, 220, 220, 220, 4808, 2860, 62, 5589, 2790, 62, 7700, 62, 1462, 62, 13344, 11, 198, 8, 198, 6738, 4755, 71, 80, 13, 22602, 13, 16624, 1330, 3338, 62, 34345, 628, 198 ]
2.944099
161
""" Interface for custom data. This module handles datasets and is the class that you need to inherit from for your custom dataset. This class gives you all the handles so that you can train with a new –dataset=mydataset. The particular configuration of keypoints and skeleton is specified in the headmeta instances """ import argparse import torch import numpy as np try: from pycocotools.coco import COCO except ImportError: COCO = None from openpifpaf.datasets import DataModule from openpifpaf import encoder, headmeta, metric, transforms from openpifpaf.datasets import collate_images_anns_meta, collate_images_targets_meta from openpifpaf.plugins.coco import CocoDataset as CocoLoader from .constants import get_constants, training_weights_local_centrality from .metrics import MeanPixelError class ApolloKp(DataModule): """ DataModule for the Apollocar3d Dataset. """ train_annotations = 'data-apollocar3d/annotations/apollo_keypoints_66_train.json' val_annotations = 'data-apollocar3d/annotations/apollo_keypoints_66_val.json' eval_annotations = val_annotations train_image_dir = 'data-apollocar3d/images/train/' val_image_dir = 'data-apollocar3d/images/val/' eval_image_dir = val_image_dir n_images = None square_edge = 513 extended_scale = False orientation_invariant = 0.0 blur = 0.0 augmentation = True rescale_images = 1.0 upsample_stride = 1 min_kp_anns = 1 b_min = 1 # 1 pixel eval_annotation_filter = True eval_long_edge = 0 # set to zero to deactivate rescaling eval_orientation_invariant = 0.0 eval_extended_scale = False @classmethod @classmethod @classmethod # TODO: make sure that 24kp flag is activated when evaluating a 24kp model
[ 37811, 198, 39317, 329, 2183, 1366, 13, 198, 198, 1212, 8265, 17105, 40522, 290, 318, 262, 1398, 326, 345, 761, 284, 16955, 422, 329, 534, 2183, 27039, 13, 198, 1212, 1398, 3607, 345, 477, 262, 17105, 523, 326, 345, 460, 4512, 351, 257, 649, 784, 19608, 292, 316, 28, 1820, 19608, 292, 316, 13, 198, 464, 1948, 8398, 286, 1994, 13033, 290, 18328, 318, 7368, 287, 262, 1182, 28961, 10245, 198, 37811, 628, 198, 11748, 1822, 29572, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 28311, 25, 198, 220, 220, 220, 422, 12972, 66, 420, 313, 10141, 13, 66, 25634, 1330, 327, 4503, 46, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 327, 4503, 46, 796, 6045, 198, 198, 6738, 1280, 79, 361, 79, 1878, 13, 19608, 292, 1039, 1330, 6060, 26796, 198, 6738, 1280, 79, 361, 79, 1878, 1330, 2207, 12342, 11, 1182, 28961, 11, 18663, 11, 31408, 198, 6738, 1280, 79, 361, 79, 1878, 13, 19608, 292, 1039, 1330, 2927, 378, 62, 17566, 62, 1236, 82, 62, 28961, 11, 2927, 378, 62, 17566, 62, 83, 853, 1039, 62, 28961, 198, 6738, 1280, 79, 361, 79, 1878, 13, 37390, 13, 66, 25634, 1330, 48222, 27354, 292, 316, 355, 48222, 17401, 198, 198, 6738, 764, 9979, 1187, 1330, 651, 62, 9979, 1187, 11, 3047, 62, 43775, 62, 12001, 62, 31463, 414, 198, 6738, 764, 4164, 10466, 1330, 22728, 40809, 12331, 628, 198, 4871, 17508, 42, 79, 7, 6601, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6060, 26796, 329, 262, 5949, 692, 420, 283, 18, 67, 16092, 292, 316, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4512, 62, 34574, 602, 796, 705, 7890, 12, 499, 692, 420, 283, 18, 67, 14, 34574, 602, 14, 499, 15578, 62, 2539, 13033, 62, 2791, 62, 27432, 13, 17752, 6, 198, 220, 220, 220, 1188, 62, 34574, 602, 796, 705, 7890, 12, 499, 692, 420, 283, 18, 67, 14, 34574, 602, 14, 499, 15578, 62, 2539, 13033, 62, 2791, 62, 2100, 13, 17752, 6, 198, 220, 220, 220, 5418, 62, 34574, 602, 796, 1188, 62, 34574, 602, 198, 220, 220, 220, 4512, 62, 9060, 62, 15908, 796, 705, 7890, 12, 499, 692, 420, 283, 18, 67, 14, 17566, 14, 27432, 14, 6, 198, 220, 220, 220, 1188, 62, 9060, 62, 15908, 796, 705, 7890, 12, 499, 692, 420, 283, 18, 67, 14, 17566, 14, 2100, 14, 6, 198, 220, 220, 220, 5418, 62, 9060, 62, 15908, 796, 1188, 62, 9060, 62, 15908, 628, 220, 220, 220, 299, 62, 17566, 796, 6045, 198, 220, 220, 220, 6616, 62, 14907, 796, 642, 1485, 198, 220, 220, 220, 7083, 62, 9888, 796, 10352, 198, 220, 220, 220, 12852, 62, 16340, 2743, 415, 796, 657, 13, 15, 198, 220, 220, 220, 23671, 796, 657, 13, 15, 198, 220, 220, 220, 16339, 14374, 796, 6407, 198, 220, 220, 220, 6811, 1000, 62, 17566, 796, 352, 13, 15, 198, 220, 220, 220, 19649, 1403, 62, 2536, 485, 796, 352, 198, 220, 220, 220, 949, 62, 74, 79, 62, 1236, 82, 796, 352, 198, 220, 220, 220, 275, 62, 1084, 796, 352, 220, 1303, 352, 17465, 628, 220, 220, 220, 5418, 62, 1236, 14221, 62, 24455, 796, 6407, 198, 220, 220, 220, 5418, 62, 6511, 62, 14907, 796, 657, 220, 1303, 900, 284, 6632, 284, 390, 39022, 6811, 4272, 198, 220, 220, 220, 5418, 62, 13989, 341, 62, 16340, 2743, 415, 796, 657, 13, 15, 198, 220, 220, 220, 5418, 62, 2302, 1631, 62, 9888, 796, 10352, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 198, 198, 2, 16926, 46, 25, 787, 1654, 326, 1987, 74, 79, 6056, 318, 13906, 618, 22232, 257, 1987, 74, 79, 2746, 198 ]
2.833068
629
# pydumper.py # # This is being worked on - it does not yet work at all, in ay way # shape or form :-) # # A new script engine, derived from the standard scripting engine, # which dumps information. # This generally can be used to grab all sorts of useful details about # an engine - expose bugs in it or Python, dump the object model, etc. # As it is derived from the standard engine, it fully supports Python # as a scripting language - meaning the dumps produced can be quite dynamic, # and based on the script code you execute. import pyscript from win32com.axscript import axscript from pyscript import RaiseAssert, trace, Exception, SCRIPTTEXT_FORCEEXECUTION PyDump_CLSID = '{ac527e60-c693-11d0-9c25-00aa00125a98}' if __name__=='__main__': Register()
[ 2, 279, 5173, 15829, 13, 9078, 201, 198, 2, 201, 198, 2, 770, 318, 852, 3111, 319, 532, 340, 857, 407, 1865, 670, 379, 477, 11, 287, 38762, 835, 201, 198, 2, 5485, 393, 1296, 47226, 201, 198, 2, 201, 198, 2, 317, 649, 4226, 3113, 11, 10944, 422, 262, 3210, 36883, 3113, 11, 201, 198, 2, 543, 45514, 1321, 13, 201, 198, 201, 198, 2, 770, 4143, 460, 307, 973, 284, 5552, 477, 10524, 286, 4465, 3307, 546, 201, 198, 2, 281, 3113, 532, 15651, 11316, 287, 340, 393, 11361, 11, 10285, 262, 2134, 2746, 11, 3503, 13, 201, 198, 201, 198, 2, 1081, 340, 318, 10944, 422, 262, 3210, 3113, 11, 340, 3938, 6971, 11361, 201, 198, 2, 355, 257, 36883, 3303, 532, 3616, 262, 45514, 4635, 460, 307, 2407, 8925, 11, 201, 198, 2, 290, 1912, 319, 262, 4226, 2438, 345, 12260, 13, 201, 198, 201, 198, 11748, 279, 893, 6519, 201, 198, 6738, 1592, 2624, 785, 13, 897, 12048, 1330, 7877, 12048, 201, 198, 201, 198, 6738, 279, 893, 6519, 1330, 35123, 8021, 861, 11, 12854, 11, 35528, 11, 6374, 32618, 15751, 13918, 62, 13775, 5222, 6369, 2943, 35354, 201, 198, 201, 198, 20519, 35, 931, 62, 5097, 50, 2389, 796, 705, 90, 330, 20, 1983, 68, 1899, 12, 66, 48528, 12, 1157, 67, 15, 12, 24, 66, 1495, 12, 405, 7252, 405, 11623, 64, 4089, 92, 6, 201, 198, 201, 198, 201, 198, 197, 201, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 201, 198, 197, 38804, 3419, 201, 198, 201, 198, 201, 198 ]
3.041985
262
import pandas as pd import numpy as np import csv #################Obtain the List of All bpts that sent Political Tweets [i.e. Political Bots]:####################### dfn = pd.read_csv("/root/.encrypted/.pythonSai/kCoreBots/CoreBotEN/MachineLearning/NaiveBayes/datasets/CoreBotTweetsCombinedEN.csv", sep=",", skiprows=[0], header=None, usecols=[1], names=["userid"]) column_values = dfn[["userid"]].values.ravel() unique_values = pd.unique(column_values) pd.DataFrame(unique_values).to_csv("ListIDS.csv", index=False)
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 21370, 198, 198, 14468, 2, 5944, 3153, 262, 7343, 286, 1439, 275, 457, 82, 326, 1908, 14611, 24205, 1039, 685, 72, 13, 68, 13, 14611, 40946, 5974, 14468, 4242, 21017, 198, 7568, 77, 796, 279, 67, 13, 961, 62, 40664, 7203, 14, 15763, 11757, 43628, 11757, 29412, 50, 1872, 14, 74, 14055, 33, 1747, 14, 14055, 20630, 1677, 14, 37573, 41730, 14, 26705, 425, 15262, 274, 14, 19608, 292, 1039, 14, 14055, 20630, 32665, 1039, 20575, 1389, 1677, 13, 40664, 1600, 41767, 28, 2430, 11, 14267, 8516, 41888, 15, 4357, 13639, 28, 14202, 11, 779, 4033, 82, 41888, 16, 4357, 3891, 28, 14692, 7220, 312, 8973, 8, 198, 28665, 62, 27160, 796, 288, 22184, 58, 14692, 7220, 312, 8973, 4083, 27160, 13, 25843, 3419, 198, 34642, 62, 27160, 796, 220, 279, 67, 13, 34642, 7, 28665, 62, 27160, 8, 198, 30094, 13, 6601, 19778, 7, 34642, 62, 27160, 737, 1462, 62, 40664, 7203, 8053, 14255, 13, 40664, 1600, 6376, 28, 25101, 8, 198 ]
2.926966
178