content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from django.conf import settings from django.db import models import pyotp class UserPSK(models.Model): """Strores custom secret key per user""" user = models.OneToOneField(settings.AUTH_USER_MODEL, related_name='psk', on_delete=models.CASCADE) secret_key = models.CharField(max_length=16, default=pyotp.random_base32)
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 11748, 12972, 313, 79, 628, 198, 4871, 11787, 3705, 42, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 1273, 305, 411, 2183, 3200, 1994, 583, 2836, 37811, 198, 220, 220, 220, 2836, 796, 4981, 13, 3198, 2514, 3198, 15878, 7, 33692, 13, 32, 24318, 62, 29904, 62, 33365, 3698, 11, 3519, 62, 3672, 11639, 862, 74, 3256, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 628, 220, 220, 220, 3200, 62, 2539, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1433, 11, 4277, 28, 9078, 313, 79, 13, 25120, 62, 8692, 2624, 8, 198 ]
2.87931
116
import sunspec2.modbus.client as client import pytest import socket import sunspec2.tests.mock_socket as MockSocket import serial import sunspec2.tests.mock_port as MockPort if __name__ == "__main__": pass
[ 11748, 4252, 16684, 17, 13, 4666, 10885, 13, 16366, 355, 5456, 198, 11748, 12972, 9288, 198, 11748, 17802, 198, 11748, 4252, 16684, 17, 13, 41989, 13, 76, 735, 62, 44971, 355, 44123, 39105, 198, 11748, 11389, 198, 11748, 4252, 16684, 17, 13, 41989, 13, 76, 735, 62, 634, 355, 44123, 13924, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1208, 628 ]
3.041667
72
import os import glob import numpy as np import networkx as nx import peleffy from frag_pele.constants import SCHRODINGER from peleffy.topology import Topology from peleffy.forcefield import OpenForceField, OPLS2005ForceField from peleffy.topology import Molecule from peleffy.utils import Logger from peleffy.topology import molecule from peleffy.utils.toolkits import RDKitToolkitWrapper class ComputeDihedrals(object): """ A class to produce a library of dihedral angles. """ def __init__(self, pdb_file, forcefield='OPLS2005'): """ Initializes a ComputeDihedrals object Parameters ---------- topology_obj : An peleffy.topology.Topology A Topology object that contains the ligand's information mode: str Whether to extract all dihedrals or only those marked as flexible """ self._pdb_file = pdb_file self._forcefield = forcefield self._topology, self._molecule = self.load_molecule() self.dihedral_library = {} def calculate_cluster_angles(self, dihedral_list): """ Calculate dihedral angles from pdb Parameters ---------- pdb_file: str Path to the cluster representative conformation dihedral_list: list List of the tuples containing the atoms that form the dihedrals match_indexes: bool Whether to use the atom indices from the dihedral list or match to the cluster structure before """ rdkit_wrapper = RDKitToolkitWrapper() pdb_dihedrals = [] # use the input molecule as template since the cluster structures # probably will not have proper stereochemistry mol = molecule.Molecule(self._pdb_file, connectivity_template=self._molecule.rdkit_molecule) # we use substructure matching to ensure that the indices in the # clusters pdb and the input ligand are the same for dihedral in dihedral_list: names = [self._topology.atoms[atom].PDB_name for atom in dihedral] angle = get_dihedral(mol, *dihedral, units="degrees") pdb_dihedrals.append(names+[angle]) self.dihedral_library[self._pdb_file] = pdb_dihedrals def calculate(self): """ Calculate dihedrals library from the bce output """ logger = Logger() logger.info(' - Calculating dihedral library') self._calculate_all_dihedrals() def get_dihedral(mol, atom1, atom2, atom3, atom4, units="radians"): """ It calculates the value of the dihedral angle in the specified units (default radians) Parameters ---------- molecule : an offpele.topology.Molecule The offpele's Molecule object atom1 : int Index of the first atom in the dihedral atom2 : int Index of the second atom in the dihedral atom3 : int Index of the third atom in the dihedral atom4 : int Index of the fourth atom in the dihedral units : str The units in which to calculate the angle (default is radians, can be radians or degrees) """ from rdkit.Chem import rdMolTransforms if units == "degrees": angle = rdMolTransforms.GetDihedralDeg(mol.rdkit_molecule.GetConformer(), atom1, atom2, atom3, atom4) else: angle = rdMolTransforms.GetDihedralRad(mol.rdkit_molecule.GetConformer(), atom1, atom2, atom3, atom4) return angle
[ 11748, 28686, 198, 11748, 15095, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 613, 293, 487, 88, 198, 6738, 7956, 62, 431, 293, 13, 9979, 1187, 1330, 22374, 49, 3727, 2751, 1137, 198, 6738, 613, 293, 487, 88, 13, 4852, 1435, 1330, 5849, 1435, 198, 6738, 613, 293, 487, 88, 13, 3174, 3245, 1330, 4946, 10292, 15878, 11, 440, 6489, 50, 14315, 10292, 15878, 198, 6738, 613, 293, 487, 88, 13, 4852, 1435, 1330, 25726, 23172, 198, 6738, 613, 293, 487, 88, 13, 26791, 1330, 5972, 1362, 198, 6738, 613, 293, 487, 88, 13, 4852, 1435, 1330, 27756, 198, 6738, 613, 293, 487, 88, 13, 26791, 13, 25981, 74, 896, 1330, 31475, 20827, 25391, 15813, 36918, 2848, 198, 198, 4871, 3082, 1133, 18683, 704, 30691, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1398, 284, 4439, 257, 5888, 286, 2566, 21962, 18333, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 279, 9945, 62, 7753, 11, 2700, 3245, 11639, 3185, 6561, 14315, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 4340, 257, 3082, 1133, 18683, 704, 30691, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 1435, 62, 26801, 1058, 1052, 613, 293, 487, 88, 13, 4852, 1435, 13, 9126, 1435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 5849, 1435, 2134, 326, 4909, 262, 26106, 392, 338, 1321, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 284, 7925, 477, 2566, 704, 30691, 393, 691, 883, 7498, 355, 12846, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 79, 9945, 62, 7753, 796, 279, 9945, 62, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3174, 3245, 796, 2700, 3245, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4852, 1435, 11, 2116, 13557, 76, 2305, 23172, 796, 2116, 13, 2220, 62, 76, 2305, 23172, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10989, 21962, 62, 32016, 796, 23884, 628, 220, 220, 220, 825, 15284, 62, 565, 5819, 62, 27787, 7, 944, 11, 2566, 21962, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27131, 378, 2566, 21962, 18333, 422, 279, 9945, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 279, 9945, 62, 7753, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 262, 13946, 8852, 369, 1161, 198, 220, 220, 220, 220, 220, 220, 220, 2566, 21962, 62, 4868, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 262, 12777, 2374, 7268, 262, 23235, 326, 1296, 262, 2566, 704, 30691, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 9630, 274, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 284, 779, 262, 22037, 36525, 422, 262, 2566, 21962, 1351, 393, 2872, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 13946, 4645, 878, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 374, 67, 15813, 62, 48553, 796, 31475, 20827, 25391, 15813, 36918, 2848, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 279, 9945, 62, 10989, 704, 30691, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 262, 5128, 27756, 355, 11055, 1201, 262, 13946, 8573, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2192, 481, 407, 423, 1774, 10268, 37074, 198, 220, 220, 220, 220, 220, 220, 220, 18605, 796, 27756, 13, 44, 2305, 23172, 7, 944, 13557, 79, 9945, 62, 7753, 11, 19843, 62, 28243, 28, 944, 13557, 76, 2305, 23172, 13, 4372, 15813, 62, 76, 2305, 23172, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 779, 3293, 5620, 12336, 284, 4155, 326, 262, 36525, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23163, 279, 9945, 290, 262, 5128, 26106, 392, 389, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2566, 21962, 287, 2566, 21962, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 685, 944, 13557, 4852, 1435, 13, 265, 3150, 58, 37696, 4083, 5760, 33, 62, 3672, 329, 22037, 287, 2566, 21962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 651, 62, 10989, 21962, 7, 43132, 11, 1635, 10989, 21962, 11, 4991, 2625, 13500, 6037, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 9945, 62, 10989, 704, 30691, 13, 33295, 7, 14933, 10, 58, 9248, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10989, 21962, 62, 32016, 58, 944, 13557, 79, 9945, 62, 7753, 60, 796, 279, 9945, 62, 10989, 704, 30691, 628, 198, 220, 220, 220, 825, 15284, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27131, 378, 2566, 704, 30691, 5888, 422, 262, 275, 344, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 796, 5972, 1362, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 532, 27131, 803, 2566, 21962, 5888, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9948, 3129, 378, 62, 439, 62, 10989, 704, 30691, 3419, 198, 198, 4299, 651, 62, 10989, 21962, 7, 43132, 11, 22037, 16, 11, 22037, 17, 11, 22037, 18, 11, 22037, 19, 11, 4991, 2625, 6335, 1547, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 632, 43707, 262, 1988, 286, 262, 2566, 21962, 9848, 287, 262, 7368, 4991, 198, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 2511, 1547, 8, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 27756, 1058, 281, 572, 431, 293, 13, 4852, 1435, 13, 44, 2305, 23172, 198, 220, 220, 220, 220, 220, 220, 220, 383, 572, 431, 293, 338, 25726, 23172, 2134, 198, 220, 220, 220, 22037, 16, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 286, 262, 717, 22037, 287, 262, 2566, 21962, 198, 220, 220, 220, 22037, 17, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 286, 262, 1218, 22037, 287, 262, 2566, 21962, 198, 220, 220, 220, 22037, 18, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 286, 262, 2368, 22037, 287, 262, 2566, 21962, 198, 220, 220, 220, 22037, 19, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 286, 262, 5544, 22037, 287, 262, 2566, 21962, 198, 220, 220, 220, 4991, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4991, 287, 543, 284, 15284, 262, 9848, 357, 12286, 318, 2511, 1547, 11, 460, 198, 220, 220, 220, 220, 220, 220, 220, 307, 2511, 1547, 393, 7370, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 374, 67, 15813, 13, 41829, 1330, 374, 67, 44, 349, 8291, 23914, 198, 220, 220, 220, 611, 4991, 6624, 366, 13500, 6037, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 374, 67, 44, 349, 8291, 23914, 13, 3855, 18683, 21962, 35, 1533, 7, 43132, 13, 4372, 15813, 62, 76, 2305, 23172, 13, 3855, 3103, 16354, 22784, 22037, 16, 11, 22037, 17, 11, 22037, 18, 11, 22037, 19, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 374, 67, 44, 349, 8291, 23914, 13, 3855, 18683, 21962, 15546, 7, 43132, 13, 4372, 15813, 62, 76, 2305, 23172, 13, 3855, 3103, 16354, 22784, 22037, 16, 11, 22037, 17, 11, 22037, 18, 11, 22037, 19, 8, 198, 220, 220, 220, 1441, 9848, 628, 198 ]
2.516547
1,390
import re from unittest.case import TestCase from unittest.mock import MagicMock, patch, ANY from samcli.lib.utils.path_observer import HandlerObserver, PathHandler, StaticFolderWrapper
[ 11748, 302, 198, 6738, 555, 715, 395, 13, 7442, 1330, 6208, 20448, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 6139, 44, 735, 11, 8529, 11, 15529, 198, 6738, 6072, 44506, 13, 8019, 13, 26791, 13, 6978, 62, 672, 15388, 1330, 32412, 31310, 18497, 11, 10644, 25060, 11, 36125, 41092, 36918, 2848, 628, 628 ]
3.436364
55
#!/usr/bin/env python3 # # Copyright IBM Corp. 2016 All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # ########################################################## # # # Disclaimer # # # # The script is provided here is only a sample. # # # # There is no official support on the script by me # # # # or IBM. # # # # Do NOT use the script in the production environment. # # # # You may use the script as guideline to create the # # # # custom action response best suited to your needs. # # # ########################################################## import re import sys import datetime import subprocess ## ** Jump to main() function ** def updatePolicy( lstAction ): """ IN: list( default_ipv4,ipv4,active,1,any,tcp,22,permit,#rules_in_policy ) """ global offence_ip, offence_port, max_rules, dry_run epoch = datetime.datetime.now().strftime('%s') # Add epoch timestamp to policy name. qradar_policy_name = 'qr_{0}' . format(epoch) policy_name,policy_type,p_active,\ rule_id,rule_ip,rule_proto,\ rule_port,rule_action,policy_rule_count = lstAction CLONERULE = 'ipfilter --clone {0} -from {1}' . \ format(qradar_policy_name, policy_name ) DELRULE = 'ipfilter --delrule {0} -rule {1}' . \ format(qradar_policy_name, rule_id ) ADDRULE_DENY = 'ipfilter --addrule {0} -rule {1} -sip {2} -dp {3} -proto {4} -act {5}'. \ format( qradar_policy_name, rule_id, offence_ip, offence_port, rule_proto, 'deny' ) new_rule_id = int(max_rules) + 1 ADDRULE_PERMIT = 'ipfilter --addrule {0} -rule {1} -sip {2} -dp {3} -proto {4} -act {5}'. \ format( qradar_policy_name, new_rule_id, 'any', offence_port, rule_proto, 'permit' ) SAVERULE = 'ipfilter --save {0}' . \ format(qradar_policy_name ) ACTIVATE = 'ipfilter --activate {0}' . \ format(qradar_policy_name ) print('{0}\n{1}\n{2}\n{3}\n{4}\n{5}'. format( CLONERULE, DELRULE, ADDRULE_DENY, ADDRULE_PERMIT, SAVERULE, ACTIVATE ) ) print('Blocking further connections from {0} on port {1}'. format( offence_ip, offence_port ) ) # Add ACTIVATE to following tuple SEQ = ( CLONERULE, DELRULE, ADDRULE_DENY, ADDRULE_PERMIT, SAVERULE, ACTIVATE ) switch_cmds = ' ; ' . join( SEQ ) runCli( switch_cmds ) def loadData( switch_cmd ): """ This function is written to get the currently active rules from the switch configuration. Once the active rules are retrieved, they are flattened in a list. Parameters - IN : Switch command to execute - OUT: list in following format for all rules found for all policies default_ipv4,ipv4,active,1,any,tcp,22,permit """ global active_policies active_policies.clear() spaces = re.compile('\s+') commas = re.compile(',') lst_rules = [] # the user has specified a # output file with switch output # load it (simulation mode) #f = open('switch-output', 'r') #data = f.read() #f.close() data = runCli( switch_cmd ) # Process the output received from # (ipfilter --show) switch command # or loaded from output file for line in data.split('\n'): # Skip empty lines & header line if re.search(r'^$|^Rule', line): continue # Extract policy_name, type and state # from line beginning with Name if re.search(r'^Name',line): line2 = commas.sub('',line) p_name = line2.split(':')[1].split(' ')[1].strip() p_type = line2.split(':')[2].split(' ')[1].strip() p_state = line2.split(':')[3].split(' ')[1].strip() continue # Consider only the active policy if p_state == 'active' and \ p_type == ip_type : # creating a set of policies active_policies.add( p_name ) # convert space to commas csv_line = spaces.sub(',',line.strip()) # create a tuple rec = ( p_name, p_type, p_state, csv_line ) # create a comma separated values record csv_rec = ',' . join( rec ) # store the value in a list lst_rules.append(csv_rec) return lst_rules def getRuleCount( lstRules, policy_name ): """ This function return the rule count for a given policy indicated by policy_name Parameters: - IN : 1. List containing all the rules 2. Name of the policy - Out: # of rules in the policy. """ count = 0 for x in lstRules: if x.split(',')[0] == policy_name: count +=1 return count def checkRules( lstRules ): """ IN: list ( default_ipv4,ipv4,active,1,any,tcp,22,permit ) OUT: list( default_ipv4,ipv4,active,1,any,tcp,22,permit,#rules_in_policy) """ global active_policies, offence_port, ip_type, max_rules lstAction = [] ipAlreadyBlocked = False # Iterate through the set with # active policy name for active_policy in active_policies: rule_count = 0 take_action= False # Iterate through all rules (ipv4 & ipv6) # stored in the list for rule in lstRules: p_name = rule.split(',')[0] p_type = rule.split(',')[1] p_state = rule.split(',')[2] rule_id = rule.split(',')[3] rule_ip = rule.split(',')[4] rule_proto = rule.split(',')[5] # account for port range here if rule.split(',')[7] == '-' : p_begin = rule.split(',')[6] p_end = rule.split(',')[8] rule_port = p_begin + '-' + p_end rule_action= rule.split(',')[9] else: rule_port = rule.split(',')[6] rule_action= rule.split(',')[7] # ip_type can be ipv4 or ipv6 # determined globally if p_type == ip_type and \ p_name == active_policy: # get total rules count for this policy if rule_count == 0: rule_count = getRuleCount( lstRules, p_name ) max_rules = rule_count port_matched = getPortMatch( rule_port ) # check if the offensive ip is alrady blocked # abort the further execution if port_matched and \ rule_ip == offence_ip and \ rule_action == 'deny': print('No policy change required') print('IP {0} is alredy blocked for port {1}'.\ format(offence_ip,rule_port) ) break if port_matched and \ rule_action == 'permit' and \ rule_ip == 'any': tup = ( rule, str(rule_count) ) action_rec = ',' . join( tup ) lstAction = list(action_rec.split(',')) # abort iner loop take_action = True break # abort outer loop if take_action: break return lstAction def runCli( cli_cmd ): """ Purpose: Run any external command and return the output Parameters: - IN 1. cli command to run - OUT 1. output of cli command """ global system, remote_user lst_cmd = [] lst_cmd.append( 'ssh' ) lst_cmd.append( '-o StrictHostKeyChecking=no' ) lst_cmd.append( remote_user + "@" + system ) lst_cmd.append( cli_cmd ) print(cli_cmd) try: # Command execution using subprocess stdout = subprocess.check_output( \ lst_cmd, universal_newlines = True, shell = False ) if stdout != None: return stdout except KeyboardInterrupt: print( "User abort ..\n" ) sys.exit( 1 ) except subprocess.CalledProcessError: print( "Error connecting to remote host !! aborting !!! \n") sys.exit( 1 ) if __name__ == '__main__': argc = len(sys.argv) - 1 if argc == 0 or argc > 3 : Usage() system,ip_address,command = sys.argv[1:] remote_user = 'qradaradmin' active_policies = {'index_ignore'} cmd_to_port_dict = { 'ssh' : 22, 'https' : 443, 'telnet' : 23, 'http' : 80 } max_rules = 0 offence_port = cmd_to_port_dict[command] offence_ip = ip_address dry_run = False if offence_ip.find('.') > 0: ip_type = 'ipv4' else: ip_type = 'ipv6' if dry_run: print('*** Simulation only ***' ) print('Switch IP: {0}\nOffence IP:{1}\nOffence Port:{2}\n'. format(system,ip_address,offence_port) ) MSG = """ NOTE: The current syslog configuration does not write protocol in the event. The switch on the other hand has rules for both tcp and udp protocols. As no protocol information is sent along with the event 1st rule matching the ip / port will be chosen irrespective of the protocol. This may lead to unintended blocking rule. Needs to be fixed in rsyslog event. """ print(MSG) main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 198, 2, 15069, 19764, 11421, 13, 1584, 1439, 6923, 33876, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 2, 198, 220, 198, 29113, 14468, 7804, 2235, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3167, 17111, 220, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 383, 4226, 318, 2810, 994, 318, 691, 257, 6291, 13, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 1318, 318, 645, 1743, 1104, 319, 262, 4226, 416, 502, 220, 220, 220, 220, 1303, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 393, 19764, 13, 220, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 2141, 5626, 779, 262, 4226, 287, 262, 3227, 2858, 13, 1303, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 921, 743, 779, 262, 4226, 355, 40888, 284, 2251, 262, 220, 220, 220, 1303, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 2, 220, 220, 2183, 2223, 2882, 1266, 16662, 284, 534, 2476, 13, 220, 220, 220, 1303, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 220, 1303, 198, 29113, 14468, 7804, 2235, 198, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 4818, 8079, 198, 11748, 850, 14681, 198, 198, 2235, 12429, 15903, 284, 1388, 3419, 2163, 12429, 628, 198, 4299, 4296, 36727, 7, 300, 301, 12502, 15179, 198, 197, 37811, 198, 197, 197, 1268, 25, 1351, 7, 4277, 62, 541, 85, 19, 11, 541, 85, 19, 11, 5275, 11, 16, 11, 1092, 11, 83, 13155, 11, 1828, 11, 525, 2781, 11, 2, 38785, 62, 259, 62, 30586, 1267, 628, 197, 37811, 628, 197, 20541, 14148, 62, 541, 11, 14148, 62, 634, 11, 3509, 62, 38785, 11, 5894, 62, 5143, 628, 197, 538, 5374, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 82, 11537, 628, 197, 2, 3060, 36835, 41033, 284, 2450, 1438, 13, 198, 197, 80, 6335, 283, 62, 30586, 62, 3672, 796, 705, 80, 81, 23330, 15, 92, 6, 764, 5794, 7, 538, 5374, 8, 628, 197, 30586, 62, 3672, 11, 30586, 62, 4906, 11, 79, 62, 5275, 11, 59, 198, 197, 25135, 62, 312, 11, 25135, 62, 541, 11, 25135, 62, 1676, 1462, 11, 59, 198, 197, 25135, 62, 634, 11, 25135, 62, 2673, 11, 30586, 62, 25135, 62, 9127, 796, 300, 301, 12502, 628, 197, 5097, 1340, 1137, 24212, 796, 705, 541, 24455, 1377, 21018, 1391, 15, 92, 532, 6738, 1391, 16, 92, 6, 764, 3467, 198, 197, 197, 18982, 7, 80, 6335, 283, 62, 30586, 62, 3672, 11, 2450, 62, 3672, 1267, 628, 197, 35, 3698, 49, 24212, 796, 705, 541, 24455, 1377, 12381, 25135, 1391, 15, 92, 532, 25135, 1391, 16, 92, 6, 764, 3467, 198, 197, 197, 18982, 7, 80, 6335, 283, 62, 30586, 62, 3672, 11, 3896, 62, 312, 1267, 628, 197, 2885, 7707, 24212, 62, 41819, 56, 796, 705, 541, 24455, 1377, 2860, 25135, 1391, 15, 92, 532, 25135, 1391, 16, 92, 532, 82, 541, 1391, 17, 92, 532, 26059, 1391, 18, 92, 532, 1676, 1462, 1391, 19, 92, 532, 529, 1391, 20, 92, 4458, 3467, 198, 197, 18982, 7, 198, 197, 197, 80, 6335, 283, 62, 30586, 62, 3672, 11, 198, 197, 197, 25135, 62, 312, 11, 198, 197, 197, 2364, 594, 62, 541, 11, 198, 197, 197, 2364, 594, 62, 634, 11, 198, 197, 197, 25135, 62, 1676, 1462, 11, 198, 197, 197, 1549, 28558, 6, 198, 197, 8, 628, 197, 3605, 62, 25135, 62, 312, 796, 493, 7, 9806, 62, 38785, 8, 1343, 352, 198, 197, 2885, 7707, 24212, 62, 18973, 36393, 796, 705, 541, 24455, 1377, 2860, 25135, 1391, 15, 92, 532, 25135, 1391, 16, 92, 532, 82, 541, 1391, 17, 92, 532, 26059, 1391, 18, 92, 532, 1676, 1462, 1391, 19, 92, 532, 529, 1391, 20, 92, 4458, 3467, 198, 197, 18982, 7, 198, 197, 197, 80, 6335, 283, 62, 30586, 62, 3672, 11, 198, 197, 197, 3605, 62, 25135, 62, 312, 11, 198, 197, 197, 6, 1092, 3256, 198, 197, 197, 2364, 594, 62, 634, 11, 198, 197, 197, 25135, 62, 1676, 1462, 11, 198, 197, 197, 6, 525, 2781, 6, 198, 197, 8, 628, 197, 4090, 5959, 24212, 220, 796, 705, 541, 24455, 1377, 21928, 1391, 15, 92, 6, 764, 3467, 198, 197, 220, 197, 18982, 7, 80, 6335, 283, 62, 30586, 62, 3672, 1267, 628, 197, 10659, 3824, 6158, 220, 796, 705, 541, 24455, 1377, 39022, 1391, 15, 92, 6, 764, 3467, 198, 197, 197, 18982, 7, 80, 6335, 283, 62, 30586, 62, 3672, 1267, 628, 197, 4798, 10786, 90, 15, 32239, 77, 90, 16, 32239, 77, 90, 17, 32239, 77, 90, 18, 32239, 77, 90, 19, 32239, 77, 90, 20, 92, 4458, 220, 198, 197, 197, 18982, 7, 7852, 1340, 1137, 24212, 11, 28163, 49, 24212, 11, 5984, 7707, 24212, 62, 41819, 56, 11, 5984, 7707, 24212, 62, 18973, 36393, 11, 14719, 5959, 24212, 11, 11741, 3824, 6158, 1267, 198, 197, 8, 628, 197, 4798, 10786, 3629, 8629, 2252, 8787, 422, 1391, 15, 92, 319, 2493, 1391, 16, 92, 4458, 198, 197, 197, 18982, 7, 14148, 62, 541, 11, 14148, 62, 634, 1267, 198, 197, 8, 628, 197, 2, 3060, 11741, 3824, 6158, 284, 1708, 46545, 628, 197, 5188, 48, 796, 357, 7852, 1340, 1137, 24212, 11, 28163, 49, 24212, 11, 5984, 7707, 24212, 62, 41819, 56, 11, 5984, 7707, 24212, 62, 18973, 36393, 11, 14719, 5959, 24212, 11, 11741, 3824, 6158, 1267, 628, 197, 31943, 62, 28758, 82, 796, 705, 2162, 705, 764, 4654, 7, 7946, 48, 1267, 628, 197, 5143, 2601, 72, 7, 5078, 62, 28758, 82, 1267, 628, 198, 4299, 3440, 6601, 7, 5078, 62, 28758, 15179, 198, 197, 37811, 198, 197, 197, 1212, 2163, 318, 3194, 284, 651, 262, 3058, 4075, 3173, 198, 197, 197, 6738, 262, 5078, 8398, 13, 628, 197, 197, 7454, 262, 4075, 3173, 389, 29517, 11, 484, 389, 45096, 198, 197, 197, 259, 257, 1351, 13, 220, 628, 197, 197, 48944, 198, 197, 197, 532, 3268, 1058, 14645, 3141, 284, 12260, 198, 197, 197, 532, 16289, 25, 1351, 287, 1708, 5794, 329, 477, 3173, 1043, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 477, 4788, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 541, 85, 19, 11, 541, 85, 19, 11, 5275, 11, 16, 11, 1092, 11, 83, 13155, 11, 1828, 11, 525, 2781, 198, 197, 37811, 628, 197, 20541, 4075, 62, 79, 4160, 444, 628, 197, 5275, 62, 79, 4160, 444, 13, 20063, 3419, 628, 197, 2777, 2114, 796, 302, 13, 5589, 576, 10786, 59, 82, 10, 11537, 198, 197, 785, 5356, 796, 302, 13, 5589, 576, 7, 3256, 11537, 628, 197, 75, 301, 62, 38785, 796, 17635, 628, 197, 2, 262, 2836, 468, 7368, 257, 198, 197, 2, 5072, 2393, 351, 5078, 5072, 198, 197, 2, 3440, 340, 357, 14323, 1741, 4235, 8, 628, 197, 2, 69, 796, 1280, 10786, 31943, 12, 22915, 3256, 705, 81, 11537, 198, 197, 2, 7890, 796, 277, 13, 961, 3419, 198, 197, 2, 69, 13, 19836, 3419, 628, 197, 7890, 796, 1057, 2601, 72, 7, 5078, 62, 28758, 1267, 628, 197, 2, 10854, 262, 5072, 2722, 422, 198, 197, 2, 357, 541, 24455, 1377, 12860, 8, 5078, 3141, 198, 197, 2, 393, 9639, 422, 5072, 2393, 628, 197, 1640, 1627, 287, 1366, 13, 35312, 10786, 59, 77, 6, 2599, 628, 197, 197, 2, 32214, 6565, 3951, 1222, 13639, 1627, 198, 197, 197, 361, 302, 13, 12947, 7, 81, 6, 61, 3, 91, 61, 31929, 3256, 1627, 2599, 198, 197, 197, 197, 43043, 628, 197, 197, 2, 29677, 2450, 62, 3672, 11, 2099, 290, 1181, 198, 197, 197, 2, 422, 1627, 3726, 351, 6530, 198, 197, 197, 361, 302, 13, 12947, 7, 81, 6, 61, 5376, 3256, 1370, 2599, 628, 197, 197, 197, 1370, 17, 796, 725, 292, 13, 7266, 10786, 3256, 1370, 8, 197, 628, 197, 197, 197, 79, 62, 3672, 220, 796, 1627, 17, 13, 35312, 7, 10354, 11537, 58, 16, 4083, 35312, 10786, 705, 38381, 16, 4083, 36311, 3419, 198, 197, 197, 197, 79, 62, 4906, 220, 796, 1627, 17, 13, 35312, 7, 10354, 11537, 58, 17, 4083, 35312, 10786, 705, 38381, 16, 4083, 36311, 3419, 198, 197, 197, 197, 79, 62, 5219, 796, 1627, 17, 13, 35312, 7, 10354, 11537, 58, 18, 4083, 35312, 10786, 705, 38381, 16, 4083, 36311, 3419, 628, 197, 197, 197, 43043, 628, 197, 197, 2, 12642, 691, 262, 4075, 2450, 198, 197, 197, 361, 279, 62, 5219, 6624, 705, 5275, 6, 290, 3467, 198, 197, 197, 197, 79, 62, 4906, 6624, 20966, 62, 4906, 1058, 220, 628, 197, 197, 197, 2, 4441, 257, 900, 286, 4788, 198, 197, 197, 197, 5275, 62, 79, 4160, 444, 13, 2860, 7, 279, 62, 3672, 1267, 628, 197, 197, 197, 2, 10385, 2272, 284, 725, 292, 198, 197, 197, 197, 40664, 62, 1370, 796, 9029, 13, 7266, 7, 3256, 3256, 1370, 13, 36311, 28955, 198, 197, 197, 197, 2, 2251, 257, 46545, 198, 197, 197, 197, 8344, 220, 220, 220, 220, 220, 796, 357, 279, 62, 3672, 11, 279, 62, 4906, 11, 279, 62, 5219, 11, 269, 21370, 62, 1370, 1267, 198, 197, 197, 197, 2, 2251, 257, 39650, 11266, 3815, 1700, 198, 197, 197, 197, 40664, 62, 8344, 220, 796, 705, 4032, 764, 4654, 7, 664, 1267, 198, 197, 197, 197, 2, 3650, 262, 1988, 287, 257, 1351, 198, 197, 197, 197, 75, 301, 62, 38785, 13, 33295, 7, 40664, 62, 8344, 8, 628, 197, 7783, 300, 301, 62, 38785, 198, 198, 4299, 651, 31929, 12332, 7, 300, 301, 37766, 11, 2450, 62, 3672, 15179, 198, 197, 37811, 198, 197, 197, 1212, 2163, 1441, 262, 3896, 954, 329, 257, 1813, 2450, 198, 197, 197, 521, 3474, 416, 2450, 62, 3672, 628, 197, 197, 48944, 25, 220, 628, 197, 197, 12, 3268, 1058, 220, 197, 16, 13, 7343, 7268, 477, 262, 3173, 198, 197, 197, 197, 197, 17, 13, 6530, 286, 262, 2450, 628, 197, 197, 12, 3806, 25, 1303, 286, 3173, 287, 262, 2450, 13, 198, 197, 37811, 628, 197, 9127, 796, 657, 628, 197, 1640, 2124, 287, 300, 301, 37766, 25, 198, 197, 197, 361, 2124, 13, 35312, 7, 3256, 11537, 58, 15, 60, 6624, 2450, 62, 3672, 25, 198, 197, 197, 197, 9127, 15853, 16, 628, 197, 7783, 954, 628, 198, 4299, 2198, 37766, 7, 300, 301, 37766, 15179, 198, 197, 37811, 628, 197, 197, 1268, 25, 1351, 357, 4277, 62, 541, 85, 19, 11, 541, 85, 19, 11, 5275, 11, 16, 11, 1092, 11, 83, 13155, 11, 1828, 11, 525, 2781, 1267, 198, 197, 197, 12425, 25, 1351, 7, 4277, 62, 541, 85, 19, 11, 541, 85, 19, 11, 5275, 11, 16, 11, 1092, 11, 83, 13155, 11, 1828, 11, 525, 2781, 11, 2, 38785, 62, 259, 62, 30586, 8, 628, 197, 37811, 628, 197, 20541, 4075, 62, 79, 4160, 444, 11, 14148, 62, 634, 11, 20966, 62, 4906, 11, 3509, 62, 38785, 198, 197, 198, 197, 75, 301, 12502, 796, 17635, 198, 197, 541, 37447, 3629, 3543, 796, 10352, 628, 197, 2, 40806, 378, 832, 262, 900, 351, 198, 197, 2, 4075, 2450, 1438, 198, 197, 1640, 4075, 62, 30586, 287, 4075, 62, 79, 4160, 444, 25, 198, 197, 197, 198, 197, 197, 25135, 62, 9127, 796, 657, 198, 197, 197, 20657, 62, 2673, 28, 10352, 628, 197, 197, 2, 40806, 378, 832, 477, 3173, 357, 541, 85, 19, 1222, 20966, 85, 21, 8, 198, 197, 197, 2, 8574, 287, 262, 1351, 198, 197, 197, 1640, 3896, 287, 300, 301, 37766, 25, 628, 197, 197, 197, 79, 62, 3672, 220, 220, 220, 220, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 15, 60, 198, 197, 197, 197, 79, 62, 4906, 220, 220, 220, 220, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 16, 60, 198, 197, 197, 197, 79, 62, 5219, 220, 220, 220, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 17, 60, 198, 197, 197, 197, 25135, 62, 312, 220, 220, 220, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 18, 60, 198, 197, 197, 197, 25135, 62, 541, 220, 220, 220, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 19, 60, 198, 197, 197, 197, 25135, 62, 1676, 1462, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 20, 60, 198, 197, 197, 197, 198, 197, 197, 197, 2, 1848, 329, 2493, 2837, 994, 198, 197, 197, 197, 361, 3896, 13, 35312, 7, 3256, 11537, 58, 22, 60, 6624, 705, 19355, 1058, 628, 197, 197, 197, 197, 79, 62, 27471, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 21, 60, 198, 197, 197, 197, 197, 79, 62, 437, 220, 220, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 23, 60, 628, 197, 197, 197, 197, 25135, 62, 634, 220, 796, 279, 62, 27471, 1343, 705, 19355, 1343, 279, 62, 437, 198, 197, 197, 197, 197, 25135, 62, 2673, 28, 3896, 13, 35312, 7, 3256, 11537, 58, 24, 60, 628, 197, 197, 197, 17772, 25, 628, 197, 197, 197, 197, 25135, 62, 634, 220, 796, 3896, 13, 35312, 7, 3256, 11537, 58, 21, 60, 198, 197, 197, 197, 197, 25135, 62, 2673, 28, 3896, 13, 35312, 7, 3256, 11537, 58, 22, 60, 628, 197, 197, 197, 2, 20966, 62, 4906, 460, 307, 20966, 85, 19, 393, 20966, 85, 21, 198, 197, 197, 197, 2, 5295, 18309, 198, 197, 197, 197, 361, 279, 62, 4906, 6624, 20966, 62, 4906, 290, 3467, 198, 197, 197, 197, 197, 79, 62, 3672, 6624, 4075, 62, 30586, 25, 628, 197, 197, 197, 197, 2, 651, 2472, 3173, 954, 329, 428, 2450, 198, 197, 197, 197, 197, 361, 3896, 62, 9127, 6624, 657, 25, 198, 197, 197, 197, 197, 197, 25135, 62, 9127, 796, 651, 31929, 12332, 7, 300, 301, 37766, 11, 279, 62, 3672, 1267, 198, 197, 197, 197, 197, 197, 9806, 62, 38785, 220, 796, 3896, 62, 9127, 628, 197, 197, 197, 197, 634, 62, 31409, 796, 651, 13924, 23850, 7, 3896, 62, 634, 1267, 628, 197, 197, 197, 197, 2, 2198, 611, 262, 5859, 20966, 318, 435, 81, 4597, 10226, 220, 198, 197, 197, 197, 197, 2, 15614, 262, 2252, 9706, 220, 198, 197, 197, 197, 197, 361, 2493, 62, 31409, 290, 3467, 198, 197, 197, 197, 197, 197, 25135, 62, 541, 6624, 14148, 62, 541, 290, 3467, 198, 197, 197, 197, 197, 197, 25135, 62, 2673, 6624, 705, 6559, 88, 10354, 197, 628, 197, 197, 197, 197, 197, 4798, 10786, 2949, 2450, 1487, 2672, 11537, 198, 197, 197, 197, 197, 197, 4798, 10786, 4061, 1391, 15, 92, 318, 435, 445, 88, 10226, 329, 2493, 1391, 16, 92, 4458, 59, 198, 197, 197, 197, 197, 197, 197, 18982, 7, 2364, 594, 62, 541, 11, 25135, 62, 634, 8, 198, 197, 197, 197, 197, 197, 8, 198, 197, 197, 197, 198, 197, 197, 197, 197, 197, 9032, 628, 197, 197, 197, 197, 361, 2493, 62, 31409, 290, 3467, 198, 197, 197, 197, 197, 197, 25135, 62, 2673, 6624, 705, 525, 2781, 6, 290, 3467, 198, 197, 197, 197, 197, 197, 25135, 62, 541, 6624, 705, 1092, 10354, 628, 197, 197, 197, 197, 197, 83, 929, 796, 357, 3896, 11, 965, 7, 25135, 62, 9127, 8, 1267, 198, 197, 197, 197, 197, 197, 2673, 62, 8344, 796, 705, 4032, 764, 4654, 7, 256, 929, 1267, 198, 197, 197, 197, 197, 197, 197, 197, 198, 197, 197, 197, 197, 197, 75, 301, 12502, 796, 1351, 7, 2673, 62, 8344, 13, 35312, 7, 41707, 4008, 220, 198, 197, 197, 198, 197, 197, 197, 197, 197, 2, 15614, 287, 263, 9052, 198, 197, 197, 197, 197, 197, 20657, 62, 2673, 796, 6407, 198, 197, 197, 197, 197, 197, 9032, 628, 197, 197, 2, 15614, 12076, 9052, 198, 197, 197, 361, 1011, 62, 2673, 25, 198, 197, 197, 197, 9032, 198, 197, 197, 197, 197, 197, 198, 197, 7783, 300, 301, 12502, 197, 198, 198, 4299, 1057, 2601, 72, 7, 537, 72, 62, 28758, 15179, 198, 197, 37811, 198, 197, 197, 30026, 3455, 25, 5660, 597, 7097, 3141, 290, 1441, 262, 5072, 628, 197, 197, 48944, 25, 198, 197, 197, 197, 12, 3268, 198, 197, 197, 197, 197, 16, 13, 537, 72, 3141, 284, 1057, 198, 197, 197, 197, 12, 16289, 198, 197, 197, 197, 197, 16, 13, 5072, 286, 537, 72, 3141, 198, 197, 37811, 628, 197, 20541, 1080, 11, 6569, 62, 7220, 628, 197, 75, 301, 62, 28758, 796, 17635, 198, 197, 75, 301, 62, 28758, 13, 33295, 7, 705, 45824, 6, 1267, 198, 197, 75, 301, 62, 28758, 13, 33295, 7, 705, 12, 78, 520, 2012, 17932, 9218, 9787, 278, 28, 3919, 6, 1267, 198, 197, 75, 301, 62, 28758, 13, 33295, 7, 6569, 62, 7220, 1343, 44212, 1, 1343, 1080, 1267, 198, 197, 75, 301, 62, 28758, 13, 33295, 7, 537, 72, 62, 28758, 1267, 628, 197, 4798, 7, 44506, 62, 28758, 8, 628, 197, 28311, 25, 198, 197, 197, 2, 9455, 9706, 1262, 850, 14681, 198, 197, 197, 19282, 448, 796, 850, 14681, 13, 9122, 62, 22915, 7, 3467, 198, 197, 197, 197, 197, 75, 301, 62, 28758, 11, 220, 198, 197, 197, 197, 197, 40082, 62, 3605, 6615, 796, 6407, 11, 198, 197, 197, 197, 197, 29149, 796, 10352, 220, 198, 197, 197, 8, 628, 197, 197, 361, 14367, 448, 14512, 6045, 25, 198, 197, 197, 197, 7783, 14367, 448, 198, 197, 197, 198, 197, 16341, 31973, 9492, 3622, 25, 198, 197, 197, 4798, 7, 366, 12982, 15614, 11485, 59, 77, 1, 1267, 198, 197, 197, 17597, 13, 37023, 7, 352, 1267, 628, 197, 16341, 850, 14681, 13, 34, 4262, 18709, 12331, 25, 198, 197, 197, 4798, 7, 366, 12331, 14320, 284, 6569, 2583, 37867, 15614, 278, 220, 10185, 3467, 77, 4943, 198, 197, 197, 17597, 13, 37023, 7, 352, 1267, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 197, 853, 66, 796, 18896, 7, 17597, 13, 853, 85, 8, 532, 352, 628, 197, 361, 1822, 66, 6624, 657, 393, 1822, 66, 1875, 513, 1058, 628, 197, 197, 28350, 3419, 628, 197, 10057, 11, 541, 62, 21975, 11, 21812, 796, 25064, 13, 853, 85, 58, 16, 47715, 198, 197, 198, 197, 47960, 62, 7220, 796, 705, 80, 6335, 283, 28482, 6, 628, 197, 5275, 62, 79, 4160, 444, 796, 1391, 6, 9630, 62, 46430, 6, 92, 628, 197, 28758, 62, 1462, 62, 634, 62, 11600, 796, 1391, 705, 45824, 6, 1058, 2534, 11, 705, 5450, 6, 1058, 40384, 11, 705, 37524, 3262, 6, 1058, 2242, 11, 705, 4023, 6, 1058, 4019, 1782, 628, 197, 9806, 62, 38785, 220, 220, 220, 796, 657, 198, 197, 2364, 594, 62, 634, 796, 23991, 62, 1462, 62, 634, 62, 11600, 58, 21812, 60, 198, 197, 2364, 594, 62, 541, 220, 220, 796, 20966, 62, 21975, 628, 197, 39140, 62, 5143, 796, 10352, 628, 197, 361, 14148, 62, 541, 13, 19796, 10786, 2637, 8, 1875, 657, 25, 198, 197, 197, 541, 62, 4906, 796, 705, 541, 85, 19, 6, 198, 197, 17772, 25, 198, 197, 197, 541, 62, 4906, 796, 705, 541, 85, 21, 6, 628, 197, 361, 5894, 62, 5143, 25, 198, 197, 197, 4798, 10786, 8162, 41798, 691, 17202, 6, 1267, 198, 197, 197, 4798, 10786, 38978, 6101, 25, 1391, 15, 32239, 77, 9362, 594, 6101, 29164, 16, 32239, 77, 9362, 594, 4347, 29164, 17, 32239, 77, 4458, 198, 197, 197, 197, 18982, 7, 10057, 11, 541, 62, 21975, 11, 2364, 594, 62, 634, 8, 198, 197, 197, 8, 628, 197, 5653, 38, 796, 37227, 24550, 25, 220, 628, 197, 464, 1459, 25064, 6404, 8398, 857, 407, 3551, 8435, 287, 198, 197, 1169, 1785, 13, 383, 5078, 319, 262, 584, 1021, 468, 3173, 329, 220, 198, 197, 16885, 48265, 290, 334, 26059, 19565, 13, 628, 197, 1722, 645, 8435, 1321, 318, 1908, 1863, 351, 262, 1785, 198, 197, 16, 301, 3896, 12336, 262, 20966, 1220, 2493, 481, 307, 7147, 40611, 198, 197, 1659, 262, 8435, 13, 628, 197, 1212, 743, 1085, 284, 30261, 12013, 3896, 13, 628, 197, 23037, 82, 284, 307, 5969, 287, 374, 17597, 6404, 1785, 13, 198, 197, 37811, 628, 197, 4798, 7, 5653, 38, 8, 628, 197, 12417, 3419, 198, 197, 198 ]
2.421168
3,647
"""Tools to plot basemaps""" import warnings import numpy as np from . import providers from xyzservices import TileProvider from .tile import bounds2img, _sm2ll, warp_tiles, _warper from rasterio.enums import Resampling from rasterio.warp import transform_bounds from matplotlib import patheffects from matplotlib.pyplot import draw INTERPOLATION = "bilinear" ZOOM = "auto" ATTRIBUTION_SIZE = 8 def add_basemap( ax, zoom=ZOOM, source=None, interpolation=INTERPOLATION, attribution=None, attribution_size=ATTRIBUTION_SIZE, reset_extent=True, crs=None, resampling=Resampling.bilinear, **extra_imshow_args ): """ Add a (web/local) basemap to `ax`. Parameters ---------- ax : AxesSubplot Matplotlib axes object on which to add the basemap. The extent of the axes is assumed to be in Spherical Mercator (EPSG:3857), unless the `crs` keyword is specified. zoom : int or 'auto' [Optional. Default='auto'] Level of detail for the basemap. If 'auto', it is calculated automatically. Ignored if `source` is a local file. source : xyzservices.TileProvider object or str [Optional. Default: Stamen Terrain web tiles] The tile source: web tile provider or path to local file. The web tile provider can be in the form of a :class:`xyzservices.TileProvider` object or a URL. The placeholders for the XYZ in the URL need to be `{x}`, `{y}`, `{z}`, respectively. For local file paths, the file is read with `rasterio` and all bands are loaded into the basemap. IMPORTANT: tiles are assumed to be in the Spherical Mercator projection (EPSG:3857), unless the `crs` keyword is specified. interpolation : str [Optional. Default='bilinear'] Interpolation algorithm to be passed to `imshow`. See `matplotlib.pyplot.imshow` for further details. attribution : str [Optional. Defaults to attribution specified by the source] Text to be added at the bottom of the axis. This defaults to the attribution of the provider specified in `source` if available. Specify False to not automatically add an attribution, or a string to pass a custom attribution. attribution_size : int [Optional. Defaults to `ATTRIBUTION_SIZE`]. Font size to render attribution text with. reset_extent : bool [Optional. Default=True] If True, the extent of the basemap added is reset to the original extent (xlim, ylim) of `ax` crs : None or str or CRS [Optional. Default=None] coordinate reference system (CRS), expressed in any format permitted by rasterio, to use for the resulting basemap. If None (default), no warping is performed and the original Spherical Mercator (EPSG:3857) is used. resampling : <enum 'Resampling'> [Optional. Default=Resampling.bilinear] Resampling method for executing warping, expressed as a `rasterio.enums.Resampling` method **extra_imshow_args : Other parameters to be passed to `imshow`. Examples -------- >>> import geopandas >>> import contextily as ctx >>> db = geopandas.read_file(ps.examples.get_path('virginia.shp')) Ensure the data is in Spherical Mercator: >>> db = db.to_crs(epsg=3857) Add a web basemap: >>> ax = db.plot(alpha=0.5, color='k', figsize=(6, 6)) >>> ctx.add_basemap(ax, source=url) >>> plt.show() Or download a basemap to a local file and then plot it: >>> source = 'virginia.tiff' >>> _ = ctx.bounds2raster(*db.total_bounds, zoom=6, source=source) >>> ax = db.plot(alpha=0.5, color='k', figsize=(6, 6)) >>> ctx.add_basemap(ax, source=source) >>> plt.show() """ xmin, xmax, ymin, ymax = ax.axis() # If web source if ( source is None or isinstance(source, (dict, TileProvider)) or (isinstance(source, str) and source[:4] == "http") ): # Extent left, right, bottom, top = xmin, xmax, ymin, ymax # Convert extent from `crs` into WM for tile query if crs is not None: left, right, bottom, top = _reproj_bb( left, right, bottom, top, crs, {"init": "epsg:3857"} ) # Download image image, extent = bounds2img( left, bottom, right, top, zoom=zoom, source=source, ll=False ) # Warping if crs is not None: image, extent = warp_tiles(image, extent, t_crs=crs, resampling=resampling) # Check if overlay if _is_overlay(source) and 'zorder' not in extra_imshow_args: # If zorder was not set then make it 9 otherwise leave it extra_imshow_args['zorder'] = 9 # If local source else: import rasterio as rio # Read file with rio.open(source) as raster: if reset_extent: from rasterio.mask import mask as riomask # Read window if crs: left, bottom, right, top = rio.warp.transform_bounds( crs, raster.crs, xmin, ymin, xmax, ymax ) else: left, bottom, right, top = xmin, ymin, xmax, ymax window = [ { "type": "Polygon", "coordinates": ( ( (left, bottom), (right, bottom), (right, top), (left, top), (left, bottom), ), ), } ] image, img_transform = riomask(raster, window, crop=True) extent = left, right, bottom, top else: # Read full image = np.array([band for band in raster.read()]) img_transform = raster.transform bb = raster.bounds extent = bb.left, bb.right, bb.bottom, bb.top # Warp if (crs is not None) and (raster.crs != crs): image, bounds, _ = _warper( image, img_transform, raster.crs, crs, resampling ) extent = bounds.left, bounds.right, bounds.bottom, bounds.top image = image.transpose(1, 2, 0) # Plotting if image.shape[2] == 1: image = image[:, :, 0] img = ax.imshow( image, extent=extent, interpolation=interpolation, **extra_imshow_args ) if reset_extent: ax.axis((xmin, xmax, ymin, ymax)) else: max_bounds = ( min(xmin, extent[0]), max(xmax, extent[1]), min(ymin, extent[2]), max(ymax, extent[3]), ) ax.axis(max_bounds) # Add attribution text if source is None: source = providers.Stamen.Terrain if isinstance(source, (dict, TileProvider)) and attribution is None: attribution = source.get("attribution") if attribution: add_attribution(ax, attribution, font_size=attribution_size) return def _is_overlay(source): """ Check if the identified source is an overlay (partially transparent) layer. Parameters ---------- source : dict The tile source: web tile provider. Must be preprocessed as into a dictionary, not just a string. Returns ------- bool Notes ----- This function is based on a very similar javascript version found in leaflet: https://github.com/leaflet-extras/leaflet-providers/blob/9eb968f8442ea492626c9c8f0dac8ede484e6905/preview/preview.js#L56-L70 """ if not isinstance(source, dict): return False if source.get('opacity', 1.0) < 1.0: return True overlayPatterns = [ '^(OpenWeatherMap|OpenSeaMap)', 'OpenMapSurfer.(Hybrid|AdminBounds|ContourLines|Hillshade|ElementsAtRisk)', 'Stamen.Toner(Hybrid|Lines|Labels)', 'CartoDB.(Positron|DarkMatter|Voyager)OnlyLabels', 'Hydda.RoadsAndLabels', '^JusticeMap', 'OpenPtMap', 'OpenRailwayMap', 'OpenFireMap', 'SafeCast' ] import re return bool(re.match('(' + '|'.join(overlayPatterns) + ')', source.get('name', ''))) def add_attribution(ax, text, font_size=ATTRIBUTION_SIZE, **kwargs): """ Utility to add attribution text. Parameters ---------- ax : AxesSubplot Matplotlib axes object on which to add the attribution text. text : str Text to be added at the bottom of the axis. font_size : int [Optional. Defaults to 8] Font size in which to render the attribution text. **kwargs : Additional keywords to pass to the matplotlib `text` method. Returns ------- matplotlib.text.Text Matplotlib Text object added to the plot. """ # Add draw() as it resizes the axis and allows the wrapping to work as # expected. See https://github.com/darribas/contextily/issues/95 for some # details on the issue draw() text_artist = ax.text( 0.005, 0.005, text, transform=ax.transAxes, size=font_size, path_effects=[patheffects.withStroke(linewidth=2, foreground="w")], wrap=True, **kwargs, ) # hack to have the text wrapped in the ax extent, for some explanation see # https://stackoverflow.com/questions/48079364/wrapping-text-not-working-in-matplotlib wrap_width = ax.get_window_extent().width * 0.99 text_artist._get_wrap_line_width = lambda: wrap_width return text_artist
[ 37811, 33637, 284, 7110, 1615, 368, 1686, 37811, 198, 198, 11748, 14601, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 764, 1330, 9549, 198, 6738, 2124, 45579, 30416, 1330, 47870, 29495, 198, 6738, 764, 40927, 1330, 22303, 17, 9600, 11, 4808, 5796, 17, 297, 11, 25825, 62, 83, 2915, 11, 4808, 5767, 525, 198, 6738, 374, 1603, 952, 13, 268, 5700, 1330, 1874, 321, 11347, 198, 6738, 374, 1603, 952, 13, 86, 5117, 1330, 6121, 62, 65, 3733, 198, 6738, 2603, 29487, 8019, 1330, 1458, 258, 4812, 82, 198, 6738, 2603, 29487, 8019, 13, 9078, 29487, 1330, 3197, 198, 198, 41358, 45472, 6234, 796, 366, 33473, 259, 451, 1, 198, 57, 46, 2662, 796, 366, 23736, 1, 198, 1404, 5446, 9865, 35354, 62, 33489, 796, 807, 628, 198, 4299, 751, 62, 12093, 368, 499, 7, 198, 220, 220, 220, 7877, 11, 198, 220, 220, 220, 19792, 28, 57, 46, 2662, 11, 198, 220, 220, 220, 2723, 28, 14202, 11, 198, 220, 220, 220, 39555, 341, 28, 41358, 45472, 6234, 11, 198, 220, 220, 220, 39629, 28, 14202, 11, 198, 220, 220, 220, 39629, 62, 7857, 28, 1404, 5446, 9865, 35354, 62, 33489, 11, 198, 220, 220, 220, 13259, 62, 2302, 298, 28, 17821, 11, 198, 220, 220, 220, 1067, 82, 28, 14202, 11, 198, 220, 220, 220, 581, 321, 11347, 28, 4965, 321, 11347, 13, 33473, 259, 451, 11, 198, 220, 220, 220, 12429, 26086, 62, 320, 12860, 62, 22046, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3060, 257, 357, 12384, 14, 12001, 8, 1615, 368, 499, 284, 4600, 897, 44646, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 7877, 1058, 12176, 274, 7004, 29487, 198, 220, 220, 220, 220, 220, 220, 220, 6550, 29487, 8019, 34197, 2134, 319, 543, 284, 751, 262, 1615, 368, 499, 13, 383, 6287, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 34197, 318, 9672, 284, 307, 287, 1338, 37910, 12185, 1352, 357, 36, 3705, 38, 25, 2548, 3553, 828, 4556, 262, 4600, 66, 3808, 63, 198, 220, 220, 220, 220, 220, 220, 220, 21179, 318, 7368, 13, 198, 220, 220, 220, 19792, 1058, 493, 393, 705, 23736, 6, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 15161, 11639, 23736, 20520, 5684, 286, 3703, 329, 262, 1615, 368, 499, 13, 1002, 705, 23736, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 340, 318, 10488, 6338, 13, 16583, 1850, 611, 4600, 10459, 63, 318, 257, 1957, 2393, 13, 198, 220, 220, 220, 2723, 1058, 2124, 45579, 30416, 13, 35103, 29495, 2134, 393, 965, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 15161, 25, 30097, 268, 3813, 3201, 3992, 19867, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 17763, 2723, 25, 3992, 17763, 10131, 393, 3108, 284, 1957, 2393, 13, 383, 3992, 17763, 198, 220, 220, 220, 220, 220, 220, 220, 10131, 460, 307, 287, 262, 1296, 286, 257, 1058, 4871, 25, 63, 5431, 89, 30416, 13, 35103, 29495, 63, 2134, 393, 257, 198, 220, 220, 220, 220, 220, 220, 220, 10289, 13, 383, 1295, 10476, 329, 262, 41420, 57, 287, 262, 10289, 761, 284, 307, 4600, 90, 87, 92, 47671, 4600, 90, 88, 92, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 90, 89, 92, 47671, 8148, 13, 1114, 1957, 2393, 13532, 11, 262, 2393, 318, 1100, 351, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 81, 1603, 952, 63, 290, 477, 11760, 389, 9639, 656, 262, 1615, 368, 499, 13, 198, 220, 220, 220, 220, 220, 220, 220, 30023, 9863, 8643, 25, 19867, 389, 9672, 284, 307, 287, 262, 1338, 37910, 12185, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 20128, 357, 36, 3705, 38, 25, 2548, 3553, 828, 4556, 262, 4600, 66, 3808, 63, 21179, 318, 7368, 13, 198, 220, 220, 220, 39555, 341, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 15161, 11639, 33473, 259, 451, 20520, 4225, 16104, 341, 11862, 284, 307, 3804, 198, 220, 220, 220, 220, 220, 220, 220, 284, 4600, 320, 12860, 44646, 4091, 4600, 6759, 29487, 8019, 13, 9078, 29487, 13, 320, 12860, 63, 329, 2252, 3307, 13, 198, 220, 220, 220, 39629, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 2896, 13185, 284, 39629, 7368, 416, 262, 2723, 60, 198, 220, 220, 220, 220, 220, 220, 220, 8255, 284, 307, 2087, 379, 262, 4220, 286, 262, 16488, 13, 770, 198, 220, 220, 220, 220, 220, 220, 220, 26235, 284, 262, 39629, 286, 262, 10131, 7368, 198, 220, 220, 220, 220, 220, 220, 220, 287, 4600, 10459, 63, 611, 1695, 13, 18291, 1958, 10352, 284, 407, 198, 220, 220, 220, 220, 220, 220, 220, 6338, 751, 281, 39629, 11, 393, 257, 4731, 284, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2183, 39629, 13, 198, 220, 220, 220, 39629, 62, 7857, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 2896, 13185, 284, 4600, 1404, 5446, 9865, 35354, 62, 33489, 63, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 24060, 2546, 284, 8543, 39629, 2420, 351, 13, 198, 220, 220, 220, 13259, 62, 2302, 298, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 15161, 28, 17821, 60, 1002, 6407, 11, 262, 6287, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1615, 368, 499, 2087, 318, 13259, 284, 262, 2656, 6287, 357, 87, 2475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 331, 2475, 8, 286, 4600, 897, 63, 198, 220, 220, 220, 1067, 82, 1058, 6045, 393, 965, 393, 327, 6998, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 15161, 28, 14202, 60, 20435, 4941, 1080, 357, 34, 6998, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6241, 287, 597, 5794, 10431, 416, 374, 1603, 952, 11, 284, 779, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 7186, 1615, 368, 499, 13, 1002, 6045, 357, 12286, 828, 645, 1175, 13886, 318, 6157, 198, 220, 220, 220, 220, 220, 220, 220, 290, 262, 2656, 1338, 37910, 12185, 1352, 357, 36, 3705, 38, 25, 2548, 3553, 8, 318, 973, 13, 198, 220, 220, 220, 581, 321, 11347, 1058, 1279, 44709, 705, 4965, 321, 11347, 44167, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 15161, 28, 4965, 321, 11347, 13, 33473, 259, 451, 60, 1874, 321, 11347, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 329, 23710, 1175, 13886, 11, 6241, 355, 257, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 81, 1603, 952, 13, 268, 5700, 13, 4965, 321, 11347, 63, 2446, 198, 220, 220, 220, 12429, 26086, 62, 320, 12860, 62, 22046, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3819, 10007, 284, 307, 3804, 284, 4600, 320, 12860, 44646, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 628, 220, 220, 220, 13163, 1330, 30324, 392, 292, 198, 220, 220, 220, 13163, 1330, 4732, 813, 355, 269, 17602, 198, 220, 220, 220, 13163, 20613, 796, 30324, 392, 292, 13, 961, 62, 7753, 7, 862, 13, 1069, 12629, 13, 1136, 62, 6978, 10786, 85, 4672, 544, 13, 1477, 79, 6, 4008, 628, 220, 220, 220, 48987, 262, 1366, 318, 287, 1338, 37910, 12185, 1352, 25, 628, 220, 220, 220, 13163, 20613, 796, 20613, 13, 1462, 62, 66, 3808, 7, 25386, 70, 28, 2548, 3553, 8, 628, 220, 220, 220, 3060, 257, 3992, 1615, 368, 499, 25, 628, 220, 220, 220, 13163, 7877, 796, 20613, 13, 29487, 7, 26591, 28, 15, 13, 20, 11, 3124, 11639, 74, 3256, 2336, 7857, 16193, 21, 11, 718, 4008, 198, 220, 220, 220, 13163, 269, 17602, 13, 2860, 62, 12093, 368, 499, 7, 897, 11, 2723, 28, 6371, 8, 198, 220, 220, 220, 13163, 458, 83, 13, 12860, 3419, 628, 220, 220, 220, 1471, 4321, 257, 1615, 368, 499, 284, 257, 1957, 2393, 290, 788, 7110, 340, 25, 628, 220, 220, 220, 13163, 2723, 796, 705, 85, 4672, 544, 13, 83, 733, 6, 198, 220, 220, 220, 13163, 4808, 796, 269, 17602, 13, 65, 3733, 17, 81, 1603, 46491, 9945, 13, 23350, 62, 65, 3733, 11, 19792, 28, 21, 11, 2723, 28, 10459, 8, 198, 220, 220, 220, 13163, 7877, 796, 20613, 13, 29487, 7, 26591, 28, 15, 13, 20, 11, 3124, 11639, 74, 3256, 2336, 7857, 16193, 21, 11, 718, 4008, 198, 220, 220, 220, 13163, 269, 17602, 13, 2860, 62, 12093, 368, 499, 7, 897, 11, 2723, 28, 10459, 8, 198, 220, 220, 220, 13163, 458, 83, 13, 12860, 3419, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 1084, 11, 2124, 9806, 11, 331, 1084, 11, 331, 9806, 796, 7877, 13, 22704, 3419, 198, 220, 220, 220, 1303, 1002, 3992, 2723, 198, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 318, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 393, 318, 39098, 7, 10459, 11, 357, 11600, 11, 47870, 29495, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 393, 357, 271, 39098, 7, 10459, 11, 965, 8, 290, 2723, 58, 25, 19, 60, 6624, 366, 4023, 4943, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5683, 298, 198, 220, 220, 220, 220, 220, 220, 220, 1364, 11, 826, 11, 4220, 11, 1353, 796, 2124, 1084, 11, 2124, 9806, 11, 331, 1084, 11, 331, 9806, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 6287, 422, 4600, 66, 3808, 63, 656, 30376, 329, 17763, 12405, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1067, 82, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 11, 826, 11, 4220, 11, 1353, 796, 4808, 260, 1676, 73, 62, 11848, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 11, 826, 11, 4220, 11, 1353, 11, 1067, 82, 11, 19779, 15003, 1298, 366, 25386, 70, 25, 2548, 3553, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10472, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 11, 6287, 796, 22303, 17, 9600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 11, 4220, 11, 826, 11, 1353, 11, 19792, 28, 89, 4207, 11, 2723, 28, 10459, 11, 32660, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1810, 13886, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1067, 82, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 11, 6287, 796, 25825, 62, 83, 2915, 7, 9060, 11, 6287, 11, 256, 62, 66, 3808, 28, 66, 3808, 11, 581, 321, 11347, 28, 411, 321, 11347, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 33345, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 271, 62, 2502, 10724, 7, 10459, 8, 290, 705, 89, 2875, 6, 407, 287, 3131, 62, 320, 12860, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 1976, 2875, 373, 407, 900, 788, 787, 340, 860, 4306, 2666, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 320, 12860, 62, 22046, 17816, 89, 2875, 20520, 796, 860, 198, 220, 220, 220, 1303, 1002, 1957, 2723, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 374, 1603, 952, 355, 374, 952, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 351, 374, 952, 13, 9654, 7, 10459, 8, 355, 374, 1603, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13259, 62, 2302, 298, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 374, 1603, 952, 13, 27932, 1330, 9335, 355, 374, 29005, 2093, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 4324, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1067, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 11, 4220, 11, 826, 11, 1353, 796, 374, 952, 13, 86, 5117, 13, 35636, 62, 65, 3733, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1067, 82, 11, 374, 1603, 13, 66, 3808, 11, 2124, 1084, 11, 331, 1084, 11, 2124, 9806, 11, 331, 9806, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 11, 4220, 11, 826, 11, 1353, 796, 2124, 1084, 11, 331, 1084, 11, 2124, 9806, 11, 331, 9806, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4324, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 34220, 14520, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37652, 17540, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9464, 11, 4220, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3506, 11, 4220, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3506, 11, 1353, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9464, 11, 1353, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9464, 11, 4220, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 11, 33705, 62, 35636, 796, 374, 29005, 2093, 7, 81, 1603, 11, 4324, 11, 13833, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 796, 1364, 11, 826, 11, 4220, 11, 1353, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 45941, 13, 18747, 26933, 3903, 329, 4097, 287, 374, 1603, 13, 961, 3419, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 35636, 796, 374, 1603, 13, 35636, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 65, 796, 374, 1603, 13, 65, 3733, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 796, 275, 65, 13, 9464, 11, 275, 65, 13, 3506, 11, 275, 65, 13, 22487, 11, 275, 65, 13, 4852, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 31382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 66, 3808, 318, 407, 6045, 8, 290, 357, 81, 1603, 13, 66, 3808, 14512, 1067, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 11, 22303, 11, 4808, 796, 4808, 5767, 525, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 11, 33705, 62, 35636, 11, 374, 1603, 13, 66, 3808, 11, 1067, 82, 11, 581, 321, 11347, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 796, 22303, 13, 9464, 11, 22303, 13, 3506, 11, 22303, 13, 22487, 11, 22303, 13, 4852, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 13, 7645, 3455, 7, 16, 11, 362, 11, 657, 8, 628, 220, 220, 220, 1303, 28114, 889, 198, 220, 220, 220, 611, 2939, 13, 43358, 58, 17, 60, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 58, 45299, 1058, 11, 657, 60, 198, 220, 220, 220, 33705, 796, 7877, 13, 320, 12860, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 11, 6287, 28, 2302, 298, 11, 39555, 341, 28, 3849, 16104, 341, 11, 12429, 26086, 62, 320, 12860, 62, 22046, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 611, 13259, 62, 2302, 298, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 22704, 19510, 87, 1084, 11, 2124, 9806, 11, 331, 1084, 11, 331, 9806, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 65, 3733, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 7, 87, 1084, 11, 6287, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 87, 9806, 11, 6287, 58, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 7, 88, 1084, 11, 6287, 58, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 4948, 897, 11, 6287, 58, 18, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 22704, 7, 9806, 62, 65, 3733, 8, 628, 220, 220, 220, 1303, 3060, 39629, 2420, 198, 220, 220, 220, 611, 2723, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 9549, 13, 1273, 41763, 13, 15156, 3201, 198, 220, 220, 220, 611, 318, 39098, 7, 10459, 11, 357, 11600, 11, 47870, 29495, 4008, 290, 39629, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 39629, 796, 2723, 13, 1136, 7203, 1078, 3890, 4943, 198, 220, 220, 220, 611, 39629, 25, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 1078, 3890, 7, 897, 11, 39629, 11, 10369, 62, 7857, 28, 1078, 3890, 62, 7857, 8, 628, 220, 220, 220, 1441, 628, 198, 4299, 4808, 271, 62, 2502, 10724, 7, 10459, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 611, 262, 5174, 2723, 318, 281, 33345, 357, 3911, 1927, 13245, 8, 7679, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2723, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 383, 17763, 2723, 25, 3992, 17763, 10131, 13, 220, 12039, 307, 662, 14681, 276, 355, 198, 220, 220, 220, 220, 220, 220, 220, 656, 257, 22155, 11, 407, 655, 257, 4731, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 20512, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 770, 2163, 318, 1912, 319, 257, 845, 2092, 44575, 2196, 1043, 287, 12835, 1616, 25, 198, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 33201, 1616, 12, 2302, 8847, 14, 33201, 1616, 12, 15234, 4157, 14, 2436, 672, 14, 24, 1765, 38956, 69, 23, 39506, 18213, 2920, 2075, 2075, 66, 24, 66, 23, 69, 15, 67, 330, 23, 18654, 34137, 68, 3388, 2713, 14, 3866, 1177, 14, 3866, 1177, 13, 8457, 2, 43, 3980, 12, 43, 2154, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 10459, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 611, 2723, 13, 1136, 10786, 404, 4355, 3256, 352, 13, 15, 8, 1279, 352, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 33345, 47546, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 61, 7, 11505, 41865, 13912, 91, 11505, 37567, 13912, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11505, 13912, 14214, 2232, 12195, 21217, 10236, 91, 46787, 33, 3733, 91, 4264, 454, 43, 1127, 91, 36369, 1477, 671, 91, 36, 3639, 2953, 49, 1984, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1273, 41763, 13, 51, 14491, 7, 21217, 10236, 91, 43, 1127, 91, 17822, 1424, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 43476, 78, 11012, 12195, 47, 7434, 1313, 91, 17367, 44, 1436, 91, 53, 726, 3536, 8, 10049, 17822, 1424, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21217, 1860, 64, 13, 29197, 82, 1870, 17822, 1424, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 61, 28447, 13912, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11505, 47, 83, 13912, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11505, 44631, 1014, 13912, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11505, 13543, 13912, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31511, 19248, 6, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 1330, 302, 198, 220, 220, 220, 1441, 20512, 7, 260, 13, 15699, 10786, 10786, 1343, 705, 91, 4458, 22179, 7, 2502, 10724, 47546, 82, 8, 1343, 705, 8, 3256, 2723, 13, 1136, 10786, 3672, 3256, 10148, 22305, 628, 198, 4299, 751, 62, 1078, 3890, 7, 897, 11, 2420, 11, 10369, 62, 7857, 28, 1404, 5446, 9865, 35354, 62, 33489, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 34030, 284, 751, 39629, 2420, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 7877, 1058, 12176, 274, 7004, 29487, 198, 220, 220, 220, 220, 220, 220, 220, 6550, 29487, 8019, 34197, 2134, 319, 543, 284, 751, 262, 39629, 2420, 13, 198, 220, 220, 220, 2420, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8255, 284, 307, 2087, 379, 262, 4220, 286, 262, 16488, 13, 198, 220, 220, 220, 10369, 62, 7857, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 685, 30719, 13, 2896, 13185, 284, 807, 60, 24060, 2546, 287, 543, 284, 8543, 198, 220, 220, 220, 220, 220, 220, 220, 262, 39629, 2420, 13, 198, 220, 220, 220, 12429, 46265, 22046, 1058, 15891, 26286, 284, 1208, 284, 262, 2603, 29487, 8019, 4600, 5239, 63, 2446, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2603, 29487, 8019, 13, 5239, 13, 8206, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6550, 29487, 8019, 8255, 2134, 2087, 284, 262, 7110, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3060, 3197, 3419, 355, 340, 581, 4340, 262, 16488, 290, 3578, 262, 27074, 284, 670, 355, 198, 220, 220, 220, 1303, 2938, 13, 4091, 3740, 1378, 12567, 13, 785, 14, 27455, 822, 292, 14, 22866, 813, 14, 37165, 14, 3865, 329, 617, 198, 220, 220, 220, 1303, 3307, 319, 262, 2071, 198, 220, 220, 220, 3197, 3419, 628, 220, 220, 220, 2420, 62, 49016, 796, 7877, 13, 5239, 7, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 22544, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 22544, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 897, 13, 7645, 31554, 274, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 10331, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 34435, 41888, 8071, 258, 4812, 82, 13, 4480, 1273, 305, 365, 7, 2815, 413, 5649, 28, 17, 11, 36282, 2625, 86, 4943, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 14441, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 8156, 284, 423, 262, 2420, 12908, 287, 262, 7877, 6287, 11, 329, 617, 7468, 766, 198, 220, 220, 220, 1303, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 22148, 3720, 26780, 14, 29988, 2105, 12, 5239, 12, 1662, 12, 16090, 12, 259, 12, 6759, 29487, 8019, 198, 220, 220, 220, 14441, 62, 10394, 796, 7877, 13, 1136, 62, 17497, 62, 2302, 298, 22446, 10394, 1635, 657, 13, 2079, 198, 220, 220, 220, 2420, 62, 49016, 13557, 1136, 62, 37150, 62, 1370, 62, 10394, 796, 37456, 25, 14441, 62, 10394, 198, 220, 220, 220, 1441, 2420, 62, 49016, 198 ]
2.224881
4,429
# -*- coding: utf-8 -*-# ''' # Name: math_graph # Description: # Author: neu # Date: 2020/7/28 ''' import numpy as np import pandas as pd from scipy.sparse.linalg import eigs import scipy.sparse as sp from scipy.sparse.linalg.eigen.arpack import eigsh, ArpackNoConvergence def weight_matrix(file_path, sigma2=0.1, epsilon=0.5, scaling=True): ''' Load weight matrix function. 加载权重矩阵 :param file_path: str, the path of saved weight matrix file. :param sigma2: float, scalar of matrix W. :param epsilon: float, thresholds to control the sparsity of matrix W. :param scaling: bool, whether applies numerical scaling on W. :return: np.ndarray, [n_route, n_route]. ''' try: W = pd.read_csv(file_path, header=None).values except FileNotFoundError: print(f'ERROR: input file was not found in {file_path}.') # check whether W is a 0/1 matrix. if set(np.unique(W)) == {0, 1}: print('The input graph is a 0/1 matrix; set "scaling" to False.') scaling = False if scaling: # 根据真实距离计算邻接矩阵 n = W.shape[0] W = W / 10000. W2, W_mask = W * W, np.ones([n, n]) - np.identity(n) # refer to Eq.10 return np.exp(-W2 / sigma2) * (np.exp(-W2 / sigma2) >= epsilon) * W_mask else: return W # 对邻接矩阵进行归一化处理 # 在邻接矩阵中加入自连接 # 对拉普拉斯矩阵进行归一化处理 def scaled_laplacian(W): ''' Normalized graph Laplacian function. 归一化图拉普拉斯矩阵 :param W: np.ndarray, [n_route, n_route], weighted adjacency matrix of G. :return: np.matrix, [n_route, n_route]. ''' # d -> diagonal degree matrix n, d = np.shape(W)[0], np.sum(W, axis=1) # L -> graph Laplacian L = -W L[np.diag_indices_from(L)] = d for i in range(n): for j in range(n): if (d[i] > 0) and (d[j] > 0): L[i, j] = L[i, j] / np.sqrt(d[i] * d[j]) # lambda_max \approx 2.0, the largest eigenvalues of L. lambda_max = eigs(L, k=1, which='LR')[0][0].real return np.mat(2 * L / lambda_max - np.identity(n)) # 重新调整对称归一化的图拉普拉斯矩阵,得到其简化版本 def first_approx(W, n): ''' 1st-order approximation function. 1阶近似函数 :param W: np.ndarray, [n_route, n_route], weighted adjacency matrix of G. :param n: int, number of routes / size of graph. :return: np.ndarray, [n_route, n_route]. ''' A = W + np.identity(n) d = np.sum(A, axis=1) sinvD = np.sqrt(np.mat(np.diag(d)).I) # refer to Eq.5 return np.mat(np.identity(n) + sinvD * A * sinvD) # 计算直到k阶的切比雪夫多项式 def chebyshev_polynomial(X, k): # 返回一个稀疏矩阵列表 """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices.""" print("Calculating Chebyshev polynomials up to order {}...".format(k)) T_k = list() T_k.append(sp.eye(X.shape[0]).tocsr()) # T0(X) = I T_k.append(X) # T1(X) = L~ # 定义切比雪夫递归公式 def chebyshev_recurrence(T_k_minus_one, T_k_minus_two, X): """ :param T_k_minus_one: T(k-1)(L~) :param T_k_minus_two: T(k-2)(L~) :param X: L~ :return: Tk(L~) """ # 将输入转化为csr矩阵(压缩稀疏行矩阵) X_ = sp.csr_matrix(X, copy=True) # 递归公式:Tk(L~) = 2L~ * T(k-1)(L~) - T(k-2)(L~) return 2 * X_.dot(T_k_minus_one) - T_k_minus_two for i in range(2, k + 1): T_k.append(chebyshev_recurrence(T_k[-1], T_k[-2], X)) # 返回切比雪夫多项式列表 return T_k def cheb_poly_approx(L, Ks, n): ''' Chebyshev polynomials approximation function. 切比雪夫多项式近似 :param L: np.matrix, [n_route, n_route], graph Laplacian. :param Ks: int, kernel size of spatial convolution. :param n: int, number of routes / size of graph. :return: np.ndarray, [n_route, Ks*n_route]. ''' L0, L1 = np.mat(np.identity(n)), np.mat(np.copy(L)) if Ks > 1: L_list = [np.copy(L0), np.copy(L1)] for i in range(Ks - 2): Ln = np.mat(2 * L * L1 - L0) L_list.append(np.copy(Ln)) L0, L1 = np.matrix(np.copy(L1)), np.matrix(np.copy(Ln)) # L_lsit [Ks, n*n], Lk [n, Ks*n] return np.concatenate(L_list, axis=-1) elif Ks == 1: return np.asarray(L0) else: raise ValueError(f'ERROR: the size of spatial kernel must be greater than 1, but received "{Ks}".') # 将稀疏矩阵转化为元组表示
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 2, 198, 7061, 6, 198, 2, 6530, 25, 220, 220, 220, 220, 220, 220, 220, 220, 10688, 62, 34960, 198, 2, 12489, 25, 220, 220, 198, 2, 6434, 25, 220, 220, 220, 220, 220, 220, 497, 84, 198, 2, 7536, 25, 220, 220, 220, 220, 220, 220, 220, 220, 12131, 14, 22, 14, 2078, 198, 7061, 6, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 629, 541, 88, 13, 82, 29572, 13, 75, 1292, 70, 1330, 304, 9235, 198, 198, 11748, 629, 541, 88, 13, 82, 29572, 355, 599, 198, 6738, 629, 541, 88, 13, 82, 29572, 13, 75, 1292, 70, 13, 68, 9324, 13, 5117, 441, 1330, 304, 328, 1477, 11, 943, 8002, 2949, 3103, 332, 12745, 628, 198, 4299, 3463, 62, 6759, 8609, 7, 7753, 62, 6978, 11, 264, 13495, 17, 28, 15, 13, 16, 11, 304, 862, 33576, 28, 15, 13, 20, 11, 20796, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 8778, 3463, 17593, 2163, 13, 198, 220, 220, 220, 10263, 232, 254, 164, 121, 121, 30266, 225, 34932, 235, 163, 253, 102, 165, 246, 113, 198, 220, 220, 220, 1058, 17143, 2393, 62, 6978, 25, 965, 11, 262, 3108, 286, 7448, 3463, 17593, 2393, 13, 198, 220, 220, 220, 1058, 17143, 264, 13495, 17, 25, 12178, 11, 16578, 283, 286, 17593, 370, 13, 198, 220, 220, 220, 1058, 17143, 304, 862, 33576, 25, 12178, 11, 40885, 284, 1630, 262, 599, 45826, 286, 17593, 370, 13, 198, 220, 220, 220, 1058, 17143, 20796, 25, 20512, 11, 1771, 8991, 29052, 20796, 319, 370, 13, 198, 220, 220, 220, 1058, 7783, 25, 45941, 13, 358, 18747, 11, 685, 77, 62, 38629, 11, 299, 62, 38629, 4083, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 370, 796, 279, 67, 13, 961, 62, 40664, 7, 7753, 62, 6978, 11, 13639, 28, 14202, 737, 27160, 198, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 24908, 25, 5128, 2393, 373, 407, 1043, 287, 1391, 7753, 62, 6978, 92, 2637, 8, 628, 220, 220, 220, 1303, 2198, 1771, 370, 318, 257, 657, 14, 16, 17593, 13, 198, 220, 220, 220, 611, 900, 7, 37659, 13, 34642, 7, 54, 4008, 6624, 1391, 15, 11, 352, 38362, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 464, 5128, 4823, 318, 257, 657, 14, 16, 17593, 26, 900, 366, 1416, 4272, 1, 284, 10352, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20796, 796, 10352, 628, 220, 220, 220, 611, 20796, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 254, 117, 162, 235, 106, 40367, 253, 22522, 252, 164, 115, 251, 163, 99, 119, 164, 106, 94, 163, 106, 245, 165, 224, 119, 162, 236, 98, 163, 253, 102, 165, 246, 113, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 370, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 370, 796, 370, 1220, 33028, 13, 198, 220, 220, 220, 220, 220, 220, 220, 370, 17, 11, 370, 62, 27932, 796, 370, 1635, 370, 11, 45941, 13, 1952, 26933, 77, 11, 299, 12962, 532, 45941, 13, 738, 414, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3522, 284, 412, 80, 13, 940, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 11201, 32590, 54, 17, 1220, 264, 13495, 17, 8, 1635, 357, 37659, 13, 11201, 32590, 54, 17, 1220, 264, 13495, 17, 8, 18189, 304, 862, 33576, 8, 1635, 370, 62, 27932, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 370, 628, 198, 2, 10263, 107, 117, 165, 224, 119, 162, 236, 98, 163, 253, 102, 165, 246, 113, 32573, 249, 26193, 234, 37605, 240, 31660, 44293, 244, 13783, 226, 49426, 228, 628, 198, 2, 10263, 250, 101, 165, 224, 119, 162, 236, 98, 163, 253, 102, 165, 246, 113, 40792, 27950, 254, 17739, 98, 164, 229, 103, 32573, 252, 162, 236, 98, 628, 198, 2, 10263, 107, 117, 162, 233, 231, 162, 247, 106, 162, 233, 231, 23877, 107, 163, 253, 102, 165, 246, 113, 32573, 249, 26193, 234, 37605, 240, 31660, 44293, 244, 13783, 226, 49426, 228, 628, 198, 4299, 27464, 62, 5031, 489, 330, 666, 7, 54, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 14435, 1143, 4823, 4689, 489, 330, 666, 2163, 13, 198, 220, 220, 220, 10263, 121, 240, 31660, 44293, 244, 32368, 122, 162, 233, 231, 162, 247, 106, 162, 233, 231, 23877, 107, 163, 253, 102, 165, 246, 113, 198, 220, 220, 220, 1058, 17143, 370, 25, 45941, 13, 358, 18747, 11, 685, 77, 62, 38629, 11, 299, 62, 38629, 4357, 26356, 9224, 330, 1387, 17593, 286, 402, 13, 198, 220, 220, 220, 1058, 7783, 25, 45941, 13, 6759, 8609, 11, 685, 77, 62, 38629, 11, 299, 62, 38629, 4083, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 288, 4613, 220, 40039, 4922, 17593, 198, 220, 220, 220, 299, 11, 288, 796, 45941, 13, 43358, 7, 54, 38381, 15, 4357, 45941, 13, 16345, 7, 54, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 1303, 406, 4613, 4823, 4689, 489, 330, 666, 198, 220, 220, 220, 406, 796, 532, 54, 198, 220, 220, 220, 406, 58, 37659, 13, 10989, 363, 62, 521, 1063, 62, 6738, 7, 43, 15437, 796, 288, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 67, 58, 72, 60, 1875, 657, 8, 290, 357, 67, 58, 73, 60, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 58, 72, 11, 474, 60, 796, 406, 58, 72, 11, 474, 60, 1220, 45941, 13, 31166, 17034, 7, 67, 58, 72, 60, 1635, 288, 58, 73, 12962, 198, 220, 220, 220, 1303, 37456, 62, 9806, 3467, 1324, 13907, 362, 13, 15, 11, 262, 4387, 304, 9324, 27160, 286, 406, 13, 198, 220, 220, 220, 37456, 62, 9806, 796, 304, 9235, 7, 43, 11, 479, 28, 16, 11, 543, 11639, 35972, 11537, 58, 15, 7131, 15, 4083, 5305, 198, 220, 220, 220, 1441, 45941, 13, 6759, 7, 17, 1635, 406, 1220, 37456, 62, 9806, 532, 45941, 13, 738, 414, 7, 77, 4008, 628, 198, 2, 16268, 229, 235, 23877, 108, 164, 108, 225, 46763, 112, 43380, 117, 163, 100, 108, 37605, 240, 31660, 44293, 244, 21410, 32368, 122, 162, 233, 231, 162, 247, 106, 162, 233, 231, 23877, 107, 163, 253, 102, 165, 246, 113, 171, 120, 234, 36181, 245, 26344, 108, 17739, 114, 163, 106, 222, 44293, 244, 48304, 17312, 105, 628, 198, 4299, 717, 62, 1324, 13907, 7, 54, 11, 299, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 352, 301, 12, 2875, 40874, 2163, 13, 198, 220, 220, 220, 352, 165, 246, 114, 32573, 239, 27670, 120, 49035, 121, 46763, 108, 198, 220, 220, 220, 1058, 17143, 370, 25, 45941, 13, 358, 18747, 11, 685, 77, 62, 38629, 11, 299, 62, 38629, 4357, 26356, 9224, 330, 1387, 17593, 286, 402, 13, 198, 220, 220, 220, 1058, 17143, 299, 25, 493, 11, 1271, 286, 11926, 1220, 2546, 286, 4823, 13, 198, 220, 220, 220, 1058, 7783, 25, 45941, 13, 358, 18747, 11, 685, 77, 62, 38629, 11, 299, 62, 38629, 4083, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 317, 796, 370, 1343, 45941, 13, 738, 414, 7, 77, 8, 198, 220, 220, 220, 288, 796, 45941, 13, 16345, 7, 32, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 7813, 85, 35, 796, 45941, 13, 31166, 17034, 7, 37659, 13, 6759, 7, 37659, 13, 10989, 363, 7, 67, 29720, 40, 8, 198, 220, 220, 220, 1303, 3522, 284, 412, 80, 13, 20, 198, 220, 220, 220, 1441, 45941, 13, 6759, 7, 37659, 13, 738, 414, 7, 77, 8, 1343, 7813, 85, 35, 1635, 317, 1635, 7813, 85, 35, 8, 628, 198, 2, 5525, 106, 94, 163, 106, 245, 33566, 112, 26344, 108, 74, 165, 246, 114, 21410, 26344, 229, 162, 107, 242, 37239, 103, 13783, 104, 13783, 21253, 94, 117, 28156, 237, 198, 4299, 1125, 48209, 258, 85, 62, 35428, 26601, 498, 7, 55, 11, 479, 2599, 198, 220, 220, 220, 1303, 5525, 123, 242, 32368, 252, 31660, 10310, 103, 163, 101, 222, 163, 244, 237, 163, 253, 102, 165, 246, 113, 26344, 245, 26193, 101, 198, 220, 220, 220, 37227, 9771, 3129, 378, 2580, 48209, 258, 85, 745, 6213, 296, 8231, 510, 284, 1502, 479, 13, 8229, 257, 1351, 286, 29877, 2603, 45977, 526, 15931, 198, 220, 220, 220, 3601, 7203, 9771, 3129, 803, 2580, 48209, 258, 85, 745, 6213, 296, 8231, 510, 284, 1502, 23884, 9313, 13, 18982, 7, 74, 4008, 628, 220, 220, 220, 309, 62, 74, 796, 1351, 3419, 198, 220, 220, 220, 309, 62, 74, 13, 33295, 7, 2777, 13, 25379, 7, 55, 13, 43358, 58, 15, 35944, 40301, 27891, 28955, 220, 1303, 309, 15, 7, 55, 8, 796, 314, 198, 220, 220, 220, 309, 62, 74, 13, 33295, 7, 55, 8, 220, 1303, 309, 16, 7, 55, 8, 796, 406, 93, 628, 220, 220, 220, 1303, 10263, 106, 248, 20046, 231, 26344, 229, 162, 107, 242, 37239, 103, 13783, 104, 34460, 240, 37605, 240, 17739, 105, 28156, 237, 198, 220, 220, 220, 825, 1125, 48209, 258, 85, 62, 8344, 33928, 7, 51, 62, 74, 62, 40191, 62, 505, 11, 309, 62, 74, 62, 40191, 62, 11545, 11, 1395, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 309, 62, 74, 62, 40191, 62, 505, 25, 309, 7, 74, 12, 16, 5769, 43, 93, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 309, 62, 74, 62, 40191, 62, 11545, 25, 309, 7, 74, 12, 17, 5769, 43, 93, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1395, 25, 406, 93, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 309, 74, 7, 43, 93, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 108, 228, 164, 122, 241, 17739, 98, 164, 121, 105, 44293, 244, 10310, 118, 6359, 81, 163, 253, 102, 165, 246, 113, 171, 120, 230, 161, 23329, 163, 120, 102, 163, 101, 222, 163, 244, 237, 26193, 234, 163, 253, 102, 165, 246, 113, 171, 120, 231, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 796, 599, 13, 6359, 81, 62, 6759, 8609, 7, 55, 11, 4866, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16268, 222, 240, 37605, 240, 17739, 105, 28156, 237, 171, 120, 248, 51, 74, 7, 43, 93, 8, 796, 362, 43, 93, 1635, 309, 7, 74, 12, 16, 5769, 43, 93, 8, 532, 309, 7, 74, 12, 17, 5769, 43, 93, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 1635, 1395, 44807, 26518, 7, 51, 62, 74, 62, 40191, 62, 505, 8, 532, 309, 62, 74, 62, 40191, 62, 11545, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 11, 479, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 309, 62, 74, 13, 33295, 7, 2395, 48209, 258, 85, 62, 8344, 33928, 7, 51, 62, 74, 58, 12, 16, 4357, 309, 62, 74, 58, 12, 17, 4357, 1395, 4008, 628, 220, 220, 220, 1303, 5525, 123, 242, 32368, 252, 26344, 229, 162, 107, 242, 37239, 103, 13783, 104, 13783, 21253, 94, 117, 28156, 237, 26344, 245, 26193, 101, 198, 220, 220, 220, 1441, 309, 62, 74, 198, 198, 4299, 1125, 65, 62, 35428, 62, 1324, 13907, 7, 43, 11, 509, 82, 11, 299, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2580, 48209, 258, 85, 745, 6213, 296, 8231, 40874, 2163, 13, 198, 220, 220, 220, 10263, 230, 229, 162, 107, 242, 37239, 103, 13783, 104, 13783, 21253, 94, 117, 28156, 237, 32573, 239, 27670, 120, 198, 220, 220, 220, 1058, 17143, 406, 25, 45941, 13, 6759, 8609, 11, 685, 77, 62, 38629, 11, 299, 62, 38629, 4357, 4823, 4689, 489, 330, 666, 13, 198, 220, 220, 220, 1058, 17143, 509, 82, 25, 493, 11, 9720, 2546, 286, 21739, 3063, 2122, 13, 198, 220, 220, 220, 1058, 17143, 299, 25, 493, 11, 1271, 286, 11926, 1220, 2546, 286, 4823, 13, 198, 220, 220, 220, 1058, 7783, 25, 45941, 13, 358, 18747, 11, 685, 77, 62, 38629, 11, 509, 82, 9, 77, 62, 38629, 4083, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 406, 15, 11, 406, 16, 796, 45941, 13, 6759, 7, 37659, 13, 738, 414, 7, 77, 36911, 45941, 13, 6759, 7, 37659, 13, 30073, 7, 43, 4008, 628, 220, 220, 220, 611, 509, 82, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 406, 62, 4868, 796, 685, 37659, 13, 30073, 7, 43, 15, 828, 45941, 13, 30073, 7, 43, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 42, 82, 532, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 77, 796, 45941, 13, 6759, 7, 17, 1635, 406, 1635, 406, 16, 532, 406, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 62, 4868, 13, 33295, 7, 37659, 13, 30073, 7, 43, 77, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 15, 11, 406, 16, 796, 45941, 13, 6759, 8609, 7, 37659, 13, 30073, 7, 43, 16, 36911, 45941, 13, 6759, 8609, 7, 37659, 13, 30073, 7, 43, 77, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 406, 62, 7278, 270, 685, 42, 82, 11, 299, 9, 77, 4357, 406, 74, 685, 77, 11, 509, 82, 9, 77, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 1102, 9246, 268, 378, 7, 43, 62, 4868, 11, 16488, 10779, 16, 8, 198, 220, 220, 220, 1288, 361, 509, 82, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 292, 18747, 7, 43, 15, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 24908, 25, 262, 2546, 286, 21739, 9720, 1276, 307, 3744, 621, 352, 11, 475, 2722, 45144, 42, 82, 92, 1911, 11537, 628, 198, 198, 2, 10263, 108, 228, 163, 101, 222, 163, 244, 237, 163, 253, 102, 165, 246, 113, 164, 121, 105, 44293, 244, 10310, 118, 17739, 225, 163, 119, 226, 26193, 101, 163, 97, 118 ]
1.736568
2,494
# This script illustrates the stability of learning vITL # for emotion transfer in the presence of missing data # Runtime ~1h on laptop # ---------------------------------- # Imports # ---------------------------------- import os import torch import matplotlib.pyplot as plt import sys import importlib if importlib.util.find_spec('torch_itl') is None: path_to_lib = os.getcwd()[:-23] sys.path.append(path_to_lib) from torch_itl.sampler import CircularEmoSampler from torch_itl.model import DecomposableIdentity from torch_itl.kernel import Gaussian from torch_itl.estimator import EmoTransfer from torch_itl.datasets import get_data_landmarks # %% # ---------------------------------- # Reading input/output data # ---------------------------------- # Please replace those values with the right path to # the extracted landmarks on your computer. # See utils/README.md path_to_rafd = '../../torch_itl/datasets/Rafd_Aligned/Rafd_LANDMARKS' path_to_kdef = '../../torch_itl/datasets/KDEF_Aligned/KDEF_LANDMARKS' # test of import data_train, data_test = get_data_landmarks('KDEF', path_to_kdef) n, m, nf = data_train.shape print('Testing import, data dimensions:', n, m, nf) # %% # ---------------------------------- # Defining our model # ---------------------------------- print('Defining the model') # define Landmarks kernel gamma_inp = 0.07 kernel_input = Gaussian(gamma_inp) # define emotion kernel gamma_out = 0.4 kernel_output = Gaussian(gamma_out) # define functional model model = DecomposableIdentity(kernel_input, kernel_output, nf) # define emotion sampler sampler = CircularEmoSampler() # define regularization lbda = 2e-5 # define the emotion transfer estimator est = EmoTransfer(model, lbda, sampler, inp_emotion='joint') #%% # ---------------------------------- # Learning in the presence of missing data -KDEF # ---------------------------------- print('Learning with missing data KDEF') # number of random masks of each size n_loops = 4 # results tensor test_losses_kdef = torch.zeros(10, n_loops, n) for kfold in range(10): get_data_landmarks('KDEF', path_to_kdef, kfold=kfold) mask_list = [torch.randperm(n * m).reshape(n, m) for j in range(n_loops)] for j in range(n_loops): mask_level = mask_list[j] for i in torch.arange(n * m)[::7]: mask = (mask_level >= i) est.fit_partial(data_train, mask) test_losses_kdef[kfold, j, i // 7] = est.risk(data_test) print('done with kfold ', kfold) # %% #torch.save(test_losses_kdef, 'kdef_partial.pt') # %% # ---------------------------------- # Learning in the presence of missing data -Rafd # ---------------------------------- print('Learning with missing data RaFD') # number of random masks of each size n_loops = 4 # results tensor n = 61 test_losses_rafd = torch.zeros(10, n_loops, n) for kfold in range(1, 11): get_data_landmarks('RaFD', path_to_rafd, kfold=kfold) n, m, _ = data_train.shape mask_list = [torch.randperm(n * m).reshape(n, m) for j in range(n_loops)] for j in range(n_loops): mask_level = mask_list[j] for i in torch.arange(n * m)[::7]: mask = (mask_level >= i) est.fit_partial(data_train, mask) test_losses_rafd[kfold - 1, j, i // 7] = est.risk(data_test) #%% #torch.save(test_losses_rafd, 'rafd_partial.pt') #%% idx_kdef = torch.arange(test_losses_kdef.shape[2]*m)[::7].float() / test_losses_kdef.shape[2] / m idx_rafd = torch.arange(test_losses_rafd.shape[2]*m)[::7].float() / n/m #%% mean_kdef = test_losses_kdef.mean(1).mean(0) max_kdef , _ = test_losses_kdef.mean(1).max(axis=0) min_kdef , _ = test_losses_kdef.mean(1).min(axis=0) mean_rafd = test_losses_rafd.mean(1).mean(0) max_rafd , _ = test_losses_rafd.mean(1).max(axis=0) min_rafd , _ = test_losses_rafd.mean(1).min(axis=0) #%% plt.figure() plt.xlabel("% of missing data") plt.ylabel("$\log_{10}$ Test MSE") plt.plot(idx_kdef, torch.log(mean_kdef), c='black', label='KDEF mean', marker=',') plt.plot(idx_kdef, torch.log(min_kdef), c='black', label='KDEF min-max', linestyle='--') plt.plot(idx_kdef, torch.log(max_kdef), c='black', linestyle='--') plt.plot(idx_rafd, torch.log(mean_rafd), c='grey', label='RaFD mean', marker=',') plt.plot(idx_rafd, torch.log(min_rafd), c='grey', label='RaFD min-max', linestyle='--') plt.plot(idx_rafd, torch.log(max_rafd), c='grey', linestyle='--') plt.legend(loc='upper left') plt.savefig('partial_observation.pdf') plt.show()
[ 2, 770, 4226, 21290, 262, 10159, 286, 4673, 410, 2043, 43, 198, 2, 329, 9942, 4351, 287, 262, 4931, 286, 4814, 1366, 198, 2, 43160, 5299, 16, 71, 319, 13224, 198, 2, 20368, 438, 198, 2, 1846, 3742, 198, 2, 20368, 438, 198, 11748, 28686, 198, 11748, 28034, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 25064, 198, 11748, 1330, 8019, 198, 198, 361, 1330, 8019, 13, 22602, 13, 19796, 62, 16684, 10786, 13165, 354, 62, 270, 75, 11537, 318, 6045, 25, 198, 220, 220, 220, 3108, 62, 1462, 62, 8019, 796, 28686, 13, 1136, 66, 16993, 3419, 58, 21912, 1954, 60, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 7, 6978, 62, 1462, 62, 8019, 8, 198, 198, 6738, 28034, 62, 270, 75, 13, 37687, 20053, 1330, 7672, 934, 36, 5908, 16305, 20053, 198, 6738, 28034, 62, 270, 75, 13, 19849, 1330, 4280, 296, 1930, 540, 7390, 26858, 198, 6738, 28034, 62, 270, 75, 13, 33885, 1330, 12822, 31562, 198, 6738, 28034, 62, 270, 75, 13, 395, 320, 1352, 1330, 2295, 78, 43260, 198, 6738, 28034, 62, 270, 75, 13, 19608, 292, 1039, 1330, 651, 62, 7890, 62, 1044, 14306, 198, 2, 43313, 198, 2, 20368, 438, 198, 2, 11725, 5128, 14, 22915, 1366, 198, 2, 20368, 438, 198, 2, 4222, 6330, 883, 3815, 351, 262, 826, 3108, 284, 198, 2, 262, 21242, 41532, 319, 534, 3644, 13, 198, 2, 4091, 3384, 4487, 14, 15675, 11682, 13, 9132, 220, 198, 6978, 62, 1462, 62, 430, 16344, 796, 705, 40720, 40720, 13165, 354, 62, 270, 75, 14, 19608, 292, 1039, 14, 49, 1878, 67, 62, 2348, 3916, 14, 49, 1878, 67, 62, 28182, 44, 14175, 50, 6, 198, 6978, 62, 1462, 62, 74, 4299, 796, 705, 40720, 40720, 13165, 354, 62, 270, 75, 14, 19608, 292, 1039, 14, 42, 32988, 62, 2348, 3916, 14, 42, 32988, 62, 28182, 44, 14175, 50, 6, 198, 2, 1332, 286, 1330, 198, 7890, 62, 27432, 11, 1366, 62, 9288, 796, 651, 62, 7890, 62, 1044, 14306, 10786, 42, 32988, 3256, 3108, 62, 1462, 62, 74, 4299, 8, 198, 77, 11, 285, 11, 299, 69, 796, 1366, 62, 27432, 13, 43358, 198, 4798, 10786, 44154, 1330, 11, 1366, 15225, 25, 3256, 299, 11, 285, 11, 299, 69, 8, 198, 2, 43313, 198, 2, 20368, 438, 198, 2, 2896, 3191, 674, 2746, 198, 2, 20368, 438, 198, 4798, 10786, 7469, 3191, 262, 2746, 11537, 198, 2, 8160, 6379, 14306, 9720, 198, 28483, 2611, 62, 259, 79, 796, 657, 13, 2998, 198, 33885, 62, 15414, 796, 12822, 31562, 7, 28483, 2611, 62, 259, 79, 8, 198, 2, 8160, 9942, 9720, 198, 28483, 2611, 62, 448, 796, 657, 13, 19, 198, 33885, 62, 22915, 796, 12822, 31562, 7, 28483, 2611, 62, 448, 8, 198, 2, 8160, 10345, 2746, 198, 19849, 796, 4280, 296, 1930, 540, 7390, 26858, 7, 33885, 62, 15414, 11, 9720, 62, 22915, 11, 299, 69, 8, 198, 2, 8160, 9942, 6072, 20053, 198, 37687, 20053, 796, 7672, 934, 36, 5908, 16305, 20053, 3419, 198, 2, 8160, 3218, 1634, 198, 23160, 6814, 796, 362, 68, 12, 20, 198, 2, 8160, 262, 9942, 4351, 3959, 1352, 198, 395, 796, 2295, 78, 43260, 7, 19849, 11, 18360, 6814, 11, 220, 6072, 20053, 11, 287, 79, 62, 368, 9650, 11639, 73, 1563, 11537, 198, 2, 16626, 198, 2, 20368, 438, 198, 2, 18252, 287, 262, 4931, 286, 4814, 1366, 532, 42, 32988, 198, 2, 20368, 438, 198, 4798, 10786, 41730, 351, 4814, 1366, 509, 32988, 11537, 198, 2, 1271, 286, 4738, 20680, 286, 1123, 2546, 198, 77, 62, 5439, 2840, 796, 604, 198, 2, 2482, 11192, 273, 198, 9288, 62, 22462, 274, 62, 74, 4299, 796, 28034, 13, 9107, 418, 7, 940, 11, 299, 62, 5439, 2840, 11, 299, 8, 198, 198, 1640, 479, 11379, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 651, 62, 7890, 62, 1044, 14306, 10786, 42, 32988, 3256, 3108, 62, 1462, 62, 74, 4299, 11, 479, 11379, 28, 74, 11379, 8, 198, 220, 220, 220, 9335, 62, 4868, 796, 685, 13165, 354, 13, 25192, 16321, 7, 77, 1635, 285, 737, 3447, 1758, 7, 77, 11, 285, 8, 329, 474, 287, 2837, 7, 77, 62, 5439, 2840, 15437, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 77, 62, 5439, 2840, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 5715, 796, 9335, 62, 4868, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 28034, 13, 283, 858, 7, 77, 1635, 285, 38381, 3712, 22, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 357, 27932, 62, 5715, 18189, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 13, 11147, 62, 47172, 7, 7890, 62, 27432, 11, 9335, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 22462, 274, 62, 74, 4299, 58, 74, 11379, 11, 474, 11, 1312, 3373, 767, 60, 796, 1556, 13, 19121, 7, 7890, 62, 9288, 8, 198, 220, 220, 220, 3601, 10786, 28060, 351, 479, 11379, 46083, 479, 11379, 8, 198, 2, 43313, 198, 2, 13165, 354, 13, 21928, 7, 9288, 62, 22462, 274, 62, 74, 4299, 11, 705, 74, 4299, 62, 47172, 13, 457, 11537, 198, 2, 43313, 198, 2, 20368, 438, 198, 2, 18252, 287, 262, 4931, 286, 4814, 1366, 532, 49, 1878, 67, 198, 2, 20368, 438, 198, 4798, 10786, 41730, 351, 4814, 1366, 7567, 26009, 11537, 198, 2, 1271, 286, 4738, 20680, 286, 1123, 2546, 198, 77, 62, 5439, 2840, 796, 604, 198, 2, 2482, 11192, 273, 198, 77, 796, 8454, 198, 9288, 62, 22462, 274, 62, 430, 16344, 796, 28034, 13, 9107, 418, 7, 940, 11, 299, 62, 5439, 2840, 11, 299, 8, 198, 198, 1640, 479, 11379, 287, 2837, 7, 16, 11, 1367, 2599, 198, 220, 220, 220, 651, 62, 7890, 62, 1044, 14306, 10786, 21762, 26009, 3256, 3108, 62, 1462, 62, 430, 16344, 11, 479, 11379, 28, 74, 11379, 8, 198, 220, 220, 220, 299, 11, 285, 11, 4808, 796, 1366, 62, 27432, 13, 43358, 198, 220, 220, 220, 9335, 62, 4868, 796, 685, 13165, 354, 13, 25192, 16321, 7, 77, 1635, 285, 737, 3447, 1758, 7, 77, 11, 285, 8, 329, 474, 287, 2837, 7, 77, 62, 5439, 2840, 15437, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 77, 62, 5439, 2840, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 5715, 796, 9335, 62, 4868, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 28034, 13, 283, 858, 7, 77, 1635, 285, 38381, 3712, 22, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 357, 27932, 62, 5715, 18189, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 13, 11147, 62, 47172, 7, 7890, 62, 27432, 11, 9335, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 22462, 274, 62, 430, 16344, 58, 74, 11379, 532, 352, 11, 474, 11, 1312, 3373, 767, 60, 796, 1556, 13, 19121, 7, 7890, 62, 9288, 8, 198, 2, 16626, 198, 2, 13165, 354, 13, 21928, 7, 9288, 62, 22462, 274, 62, 430, 16344, 11, 705, 430, 16344, 62, 47172, 13, 457, 11537, 198, 2, 16626, 198, 312, 87, 62, 74, 4299, 796, 28034, 13, 283, 858, 7, 9288, 62, 22462, 274, 62, 74, 4299, 13, 43358, 58, 17, 60, 9, 76, 38381, 3712, 22, 4083, 22468, 3419, 1220, 1332, 62, 22462, 274, 62, 74, 4299, 13, 43358, 58, 17, 60, 1220, 285, 198, 312, 87, 62, 430, 16344, 796, 28034, 13, 283, 858, 7, 9288, 62, 22462, 274, 62, 430, 16344, 13, 43358, 58, 17, 60, 9, 76, 38381, 3712, 22, 4083, 22468, 3419, 1220, 299, 14, 76, 198, 2, 16626, 198, 32604, 62, 74, 4299, 796, 1332, 62, 22462, 274, 62, 74, 4299, 13, 32604, 7, 16, 737, 32604, 7, 15, 8, 198, 9806, 62, 74, 4299, 837, 4808, 796, 1332, 62, 22462, 274, 62, 74, 4299, 13, 32604, 7, 16, 737, 9806, 7, 22704, 28, 15, 8, 198, 1084, 62, 74, 4299, 837, 4808, 796, 1332, 62, 22462, 274, 62, 74, 4299, 13, 32604, 7, 16, 737, 1084, 7, 22704, 28, 15, 8, 198, 198, 32604, 62, 430, 16344, 796, 1332, 62, 22462, 274, 62, 430, 16344, 13, 32604, 7, 16, 737, 32604, 7, 15, 8, 198, 9806, 62, 430, 16344, 837, 4808, 796, 1332, 62, 22462, 274, 62, 430, 16344, 13, 32604, 7, 16, 737, 9806, 7, 22704, 28, 15, 8, 198, 1084, 62, 430, 16344, 837, 4808, 796, 1332, 62, 22462, 274, 62, 430, 16344, 13, 32604, 7, 16, 737, 1084, 7, 22704, 28, 15, 8, 198, 2, 16626, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 87, 18242, 7203, 4, 286, 4814, 1366, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 3, 59, 6404, 23330, 940, 92, 3, 6208, 337, 5188, 4943, 198, 489, 83, 13, 29487, 7, 312, 87, 62, 74, 4299, 11, 28034, 13, 6404, 7, 32604, 62, 74, 4299, 828, 269, 11639, 13424, 3256, 6167, 11639, 42, 32988, 1612, 3256, 18364, 28, 3256, 11537, 198, 489, 83, 13, 29487, 7, 312, 87, 62, 74, 4299, 11, 28034, 13, 6404, 7, 1084, 62, 74, 4299, 828, 269, 11639, 13424, 3256, 6167, 11639, 42, 32988, 949, 12, 9806, 3256, 9493, 10992, 11639, 438, 11537, 198, 489, 83, 13, 29487, 7, 312, 87, 62, 74, 4299, 11, 28034, 13, 6404, 7, 9806, 62, 74, 4299, 828, 269, 11639, 13424, 3256, 9493, 10992, 11639, 438, 11537, 198, 489, 83, 13, 29487, 7, 312, 87, 62, 430, 16344, 11, 28034, 13, 6404, 7, 32604, 62, 430, 16344, 828, 269, 11639, 49502, 3256, 6167, 11639, 21762, 26009, 1612, 3256, 18364, 28, 3256, 11537, 198, 489, 83, 13, 29487, 7, 312, 87, 62, 430, 16344, 11, 28034, 13, 6404, 7, 1084, 62, 430, 16344, 828, 269, 11639, 49502, 3256, 6167, 11639, 21762, 26009, 949, 12, 9806, 3256, 9493, 10992, 11639, 438, 11537, 198, 489, 83, 13, 29487, 7, 312, 87, 62, 430, 16344, 11, 28034, 13, 6404, 7, 9806, 62, 430, 16344, 828, 269, 11639, 49502, 3256, 9493, 10992, 11639, 438, 11537, 198, 489, 83, 13, 1455, 437, 7, 17946, 11639, 45828, 1364, 11537, 198, 489, 83, 13, 21928, 5647, 10786, 47172, 62, 672, 3168, 341, 13, 12315, 11537, 198, 489, 83, 13, 12860, 3419, 198 ]
2.57011
1,733
# -*- coding: utf-8 -*- # Copyright (c) 2015, Frappe Technologies and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest # test_records = frappe.get_test_records('Integration Service')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 66, 8, 1853, 11, 39313, 27768, 21852, 290, 25767, 669, 198, 2, 4091, 5964, 13, 14116, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 5306, 27768, 198, 11748, 555, 715, 395, 198, 198, 2, 1332, 62, 8344, 3669, 796, 5306, 27768, 13, 1136, 62, 9288, 62, 8344, 3669, 10786, 34500, 1358, 4809, 11537, 198 ]
3.077922
77
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: containerd/events/content.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from containerd.vendor.gogoproto import gogo_pb2 as containerd_dot_vendor_dot_gogoproto_dot_gogo__pb2 from containerd.protobuf.plugin import fieldpath_pb2 as containerd_dot_protobuf_dot_plugin_dot_fieldpath__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='containerd/events/content.proto', package='containerd.events', syntax='proto3', serialized_options=b'Z2github.com/containerd/containerd/api/events;events\240\364\036\001', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x1f\x63ontainerd/events/content.proto\x12\x11\x63ontainerd.events\x1a&containerd/vendor/gogoproto/gogo.proto\x1a*containerd/protobuf/plugin/fieldpath.proto\"S\n\rContentDelete\x12\x42\n\x06\x64igest\x18\x01 \x01(\tB2\xda\xde\x1f*github.com/opencontainers/go-digest.Digest\xc8\xde\x1f\x00\x42\x38Z2github.com/containerd/containerd/api/events;events\xa0\xf4\x1e\x01X\x00X\x01\x62\x06proto3' , dependencies=[containerd_dot_vendor_dot_gogoproto_dot_gogo__pb2.DESCRIPTOR,containerd_dot_protobuf_dot_plugin_dot_fieldpath__pb2.DESCRIPTOR,]) _CONTENTDELETE = _descriptor.Descriptor( name='ContentDelete', full_name='containerd.events.ContentDelete', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='digest', full_name='containerd.events.ContentDelete.digest', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\332\336\037*github.com/opencontainers/go-digest.Digest\310\336\037\000', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=138, serialized_end=221, ) DESCRIPTOR.message_types_by_name['ContentDelete'] = _CONTENTDELETE _sym_db.RegisterFileDescriptor(DESCRIPTOR) ContentDelete = _reflection.GeneratedProtocolMessageType('ContentDelete', (_message.Message,), { 'DESCRIPTOR' : _CONTENTDELETE, '__module__' : 'containerd.events.content_pb2' # @@protoc_insertion_point(class_scope:containerd.events.ContentDelete) }) _sym_db.RegisterMessage(ContentDelete) DESCRIPTOR._options = None _CONTENTDELETE.fields_by_name['digest']._options = None # @@protoc_insertion_point(module_scope)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 262, 8435, 11876, 17050, 13, 220, 8410, 5626, 48483, 0, 198, 2, 2723, 25, 9290, 67, 14, 31534, 14, 11299, 13, 1676, 1462, 198, 37811, 8645, 515, 8435, 11876, 2438, 526, 15931, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 355, 4808, 20147, 1968, 273, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 3275, 355, 4808, 20500, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 14580, 355, 4808, 5420, 1564, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 6194, 62, 48806, 355, 4808, 1837, 23650, 62, 48806, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 320, 3742, 8, 198, 198, 62, 37047, 62, 9945, 796, 4808, 1837, 23650, 62, 48806, 13, 19463, 3419, 628, 198, 6738, 9290, 67, 13, 85, 18738, 13, 70, 519, 404, 305, 1462, 1330, 467, 2188, 62, 40842, 17, 355, 9290, 67, 62, 26518, 62, 85, 18738, 62, 26518, 62, 70, 519, 404, 305, 1462, 62, 26518, 62, 70, 24076, 834, 40842, 17, 198, 6738, 9290, 67, 13, 11235, 672, 3046, 13, 33803, 1330, 2214, 6978, 62, 40842, 17, 355, 9290, 67, 62, 26518, 62, 11235, 672, 3046, 62, 26518, 62, 33803, 62, 26518, 62, 3245, 6978, 834, 40842, 17, 628, 198, 30910, 36584, 32961, 796, 4808, 20147, 1968, 273, 13, 8979, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 34924, 67, 14, 31534, 14, 11299, 13, 1676, 1462, 3256, 198, 220, 5301, 11639, 34924, 67, 13, 31534, 3256, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 11389, 1143, 62, 25811, 28, 65, 6, 57, 17, 12567, 13, 785, 14, 34924, 67, 14, 34924, 67, 14, 15042, 14, 31534, 26, 31534, 59, 16102, 59, 26780, 59, 48597, 59, 8298, 3256, 198, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 11, 198, 220, 11389, 1143, 62, 40842, 28, 65, 6, 59, 77, 59, 87, 16, 69, 59, 87, 5066, 756, 10613, 67, 14, 31534, 14, 11299, 13, 1676, 1462, 59, 87, 1065, 59, 87, 1157, 59, 87, 5066, 756, 10613, 67, 13, 31534, 59, 87, 16, 64, 5, 34924, 67, 14, 85, 18738, 14, 70, 519, 404, 305, 1462, 14, 70, 24076, 13, 1676, 1462, 59, 87, 16, 64, 9, 34924, 67, 14, 11235, 672, 3046, 14, 33803, 14, 3245, 6978, 13, 1676, 1462, 7879, 50, 59, 77, 59, 81, 19746, 38727, 59, 87, 1065, 59, 87, 3682, 59, 77, 59, 87, 3312, 59, 87, 2414, 328, 395, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 83, 33, 17, 59, 87, 6814, 59, 87, 2934, 59, 87, 16, 69, 9, 12567, 13, 785, 14, 9654, 3642, 50221, 14, 2188, 12, 12894, 395, 13, 19511, 395, 59, 25306, 23, 59, 87, 2934, 59, 87, 16, 69, 59, 87, 405, 59, 87, 3682, 59, 87, 2548, 57, 17, 12567, 13, 785, 14, 34924, 67, 14, 34924, 67, 14, 15042, 14, 31534, 26, 31534, 59, 27865, 15, 59, 26152, 19, 59, 87, 16, 68, 59, 87, 486, 55, 59, 87, 405, 55, 59, 87, 486, 59, 87, 5237, 59, 87, 3312, 1676, 1462, 18, 6, 198, 220, 837, 198, 220, 20086, 41888, 34924, 67, 62, 26518, 62, 85, 18738, 62, 26518, 62, 70, 519, 404, 305, 1462, 62, 26518, 62, 70, 24076, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 34924, 67, 62, 26518, 62, 11235, 672, 3046, 62, 26518, 62, 33803, 62, 26518, 62, 3245, 6978, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 12962, 628, 628, 198, 62, 37815, 3525, 7206, 2538, 9328, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 19746, 38727, 3256, 198, 220, 1336, 62, 3672, 11639, 34924, 67, 13, 31534, 13, 19746, 38727, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 12894, 395, 3256, 1336, 62, 3672, 11639, 34924, 67, 13, 31534, 13, 19746, 38727, 13, 12894, 395, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 65, 1, 1911, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 11389, 1143, 62, 25811, 28, 65, 6, 59, 32148, 59, 29211, 59, 15, 2718, 9, 12567, 13, 785, 14, 9654, 3642, 50221, 14, 2188, 12, 12894, 395, 13, 19511, 395, 59, 26717, 59, 29211, 59, 15, 2718, 59, 830, 3256, 2393, 28, 30910, 36584, 32961, 11, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 25811, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 20107, 11, 198, 220, 11389, 1143, 62, 437, 28, 26115, 11, 198, 8, 198, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 19746, 38727, 20520, 796, 4808, 37815, 3525, 7206, 2538, 9328, 198, 62, 37047, 62, 9945, 13, 38804, 8979, 24564, 1968, 273, 7, 30910, 36584, 32961, 8, 198, 198, 19746, 38727, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 19746, 38727, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 37815, 3525, 7206, 2538, 9328, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 34924, 67, 13, 31534, 13, 11299, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 34924, 67, 13, 31534, 13, 19746, 38727, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 19746, 38727, 8, 628, 198, 30910, 36584, 32961, 13557, 25811, 796, 6045, 198, 62, 37815, 3525, 7206, 2538, 9328, 13, 25747, 62, 1525, 62, 3672, 17816, 12894, 395, 6, 4083, 62, 25811, 796, 6045, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 21412, 62, 29982, 8, 198 ]
2.592561
1,156
#Embedded_ImageProcessing, Just for StyleGAN_v1 FFHQ import numpy as np import math import torch import torchvision import model.E.E_Blur as BE from model.stylegan1.net import Generator, Mapping #StyleGANv1 #Params use_gpu = False device = torch.device("cuda" if use_gpu else "cpu") img_size = 1024 GAN_path = './checkpoint/stylegan_v1/ffhq1024/' direction = 'eyeglasses' #smile, eyeglasses, pose, age, gender direction_path = './latentvectors/directions/stylegan_ffhq_%s_w_boundary.npy'%direction w_path = './latentvectors/faces/i3_cxx2.pt' #Loading Pre-trained Model, Directions Gs = Generator(startf=16, maxf=512, layer_count=int(math.log(img_size,2)-1), latent_size=512, channels=3) Gs.load_state_dict(torch.load(GAN_path+'Gs_dict.pth', map_location=device)) # E = BE.BE() # E.load_state_dict(torch.load('./checkpoint/E/styleganv1.pth',map_location=torch.device('cpu'))) direction = np.load(direction_path) #[[1, 512] interfaceGAN direction = torch.tensor(direction).float() direction = direction.expand(18,512) print(direction.shape) w = torch.load(w_path, map_location=device).clone().squeeze(0) print(w.shape) # discovering face semantic attribute dirrections bonus= 70 #bonus (-10) <- (-5) <- 0 ->5 ->10 start= 0 # default 0, if not 0, will be bed performance end= 3 # default 3 or 4. if 3, it will keep face features (glasses). if 4, it will keep dirrection features (Smile). w[start:start+end] = (w+bonus*direction)[start:start+end] #w = w + bonus*direction w = w.reshape(1,18,512) with torch.no_grad(): img = Gs.forward(w,8) # 8->1024 torchvision.utils.save_image(img*0.5+0.5, './img_bonus%d_start%d_end%d.png'%(bonus,start,end)) ## end=3 人物ID的特征明显,end=4 direction的特征明显, end>4 空间纠缠严重 #smile: bonue*100, start=0, end=4(end不到4作用不大,end或bonus越大越猖狂) #glass: bonue*200, start=0, end=4(end超过6开始崩,bonus也不宜过大) #pose: bonue*5-10, start=0, end=3
[ 2, 31567, 47238, 62, 5159, 18709, 278, 11, 2329, 329, 17738, 45028, 62, 85, 16, 18402, 41275, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 11748, 28034, 198, 11748, 28034, 10178, 198, 11748, 2746, 13, 36, 13, 36, 62, 3629, 333, 355, 9348, 198, 6738, 2746, 13, 7635, 1030, 16, 13, 3262, 1330, 35986, 11, 337, 5912, 1303, 21466, 45028, 85, 16, 198, 198, 2, 10044, 4105, 198, 1904, 62, 46999, 796, 10352, 198, 25202, 796, 28034, 13, 25202, 7203, 66, 15339, 1, 611, 779, 62, 46999, 2073, 366, 36166, 4943, 198, 9600, 62, 7857, 796, 28119, 198, 45028, 62, 6978, 796, 705, 19571, 9122, 4122, 14, 7635, 1030, 62, 85, 16, 14, 487, 71, 80, 35500, 14, 6, 198, 37295, 796, 705, 2959, 1533, 28958, 6, 1303, 5796, 576, 11, 1926, 1533, 28958, 11, 12705, 11, 2479, 11, 5279, 198, 37295, 62, 6978, 796, 705, 19571, 15460, 298, 303, 5217, 14, 12942, 507, 14, 7635, 1030, 62, 487, 71, 80, 62, 4, 82, 62, 86, 62, 7784, 560, 13, 77, 9078, 6, 4, 37295, 198, 86, 62, 6978, 796, 705, 19571, 15460, 298, 303, 5217, 14, 32186, 14, 72, 18, 62, 66, 5324, 17, 13, 457, 6, 198, 198, 2, 19031, 3771, 12, 35311, 9104, 11, 47426, 198, 33884, 796, 35986, 7, 9688, 69, 28, 1433, 11, 3509, 69, 28, 25836, 11, 7679, 62, 9127, 28, 600, 7, 11018, 13, 6404, 7, 9600, 62, 7857, 11, 17, 13219, 16, 828, 41270, 62, 7857, 28, 25836, 11, 9619, 28, 18, 8, 198, 33884, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 45028, 62, 6978, 10, 6, 33884, 62, 11600, 13, 79, 400, 3256, 3975, 62, 24886, 28, 25202, 4008, 198, 198, 2, 412, 796, 9348, 13, 12473, 3419, 198, 2, 412, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 4458, 14, 9122, 4122, 14, 36, 14, 7635, 1030, 85, 16, 13, 79, 400, 3256, 8899, 62, 24886, 28, 13165, 354, 13, 25202, 10786, 36166, 6, 22305, 198, 198, 37295, 796, 45941, 13, 2220, 7, 37295, 62, 6978, 8, 1303, 30109, 16, 11, 22243, 60, 7071, 45028, 198, 37295, 796, 28034, 13, 83, 22854, 7, 37295, 737, 22468, 3419, 198, 37295, 796, 4571, 13, 11201, 392, 7, 1507, 11, 25836, 8, 220, 198, 4798, 7, 37295, 13, 43358, 8, 198, 198, 86, 796, 28034, 13, 2220, 7, 86, 62, 6978, 11, 3975, 62, 24886, 28, 25202, 737, 21018, 22446, 16485, 1453, 2736, 7, 15, 8, 198, 4798, 7, 86, 13, 43358, 8, 198, 198, 2, 21611, 1986, 37865, 11688, 26672, 2554, 507, 220, 198, 4189, 385, 28, 4317, 1303, 4189, 385, 220, 220, 13841, 940, 8, 24293, 13841, 20, 8, 24293, 657, 4613, 20, 4613, 940, 198, 9688, 28, 657, 1303, 4277, 657, 11, 611, 407, 657, 11, 481, 307, 3996, 2854, 198, 437, 28, 513, 1303, 4277, 513, 393, 604, 13, 611, 513, 11, 340, 481, 1394, 1986, 3033, 357, 4743, 13978, 737, 611, 604, 11, 340, 481, 1394, 26672, 8243, 3033, 357, 7556, 576, 737, 198, 86, 58, 9688, 25, 9688, 10, 437, 60, 796, 357, 86, 10, 4189, 385, 9, 37295, 38381, 9688, 25, 9688, 10, 437, 60, 198, 2, 86, 796, 266, 1343, 7202, 9, 37295, 198, 86, 796, 266, 13, 3447, 1758, 7, 16, 11, 1507, 11, 25836, 8, 198, 4480, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 33705, 796, 402, 82, 13, 11813, 7, 86, 11, 23, 8, 1303, 807, 3784, 35500, 198, 13165, 354, 10178, 13, 26791, 13, 21928, 62, 9060, 7, 9600, 9, 15, 13, 20, 10, 15, 13, 20, 11, 705, 19571, 9600, 62, 4189, 385, 4, 67, 62, 9688, 4, 67, 62, 437, 4, 67, 13, 11134, 6, 4, 7, 4189, 385, 11, 9688, 11, 437, 4008, 198, 198, 2235, 886, 28, 18, 220, 21689, 31965, 102, 2389, 21410, 31965, 117, 36181, 223, 23626, 236, 23626, 122, 171, 120, 234, 437, 28, 19, 4571, 21410, 31965, 117, 36181, 223, 23626, 236, 23626, 122, 11, 886, 29, 19, 13328, 102, 118, 29785, 112, 163, 118, 254, 163, 120, 254, 10310, 98, 34932, 235, 198, 2, 5796, 576, 25, 5351, 518, 9, 3064, 11, 923, 28, 15, 11, 886, 28, 19, 7, 437, 38834, 26344, 108, 19, 43291, 18796, 101, 38834, 32014, 11, 437, 22755, 244, 4189, 385, 164, 114, 232, 32014, 164, 114, 232, 163, 234, 244, 45379, 224, 171, 120, 231, 198, 2, 20721, 25, 5351, 518, 9, 2167, 11, 923, 28, 15, 11, 886, 28, 19, 7, 437, 164, 41678, 32573, 229, 21, 28156, 222, 34650, 233, 161, 112, 102, 11, 4189, 385, 20046, 253, 38834, 22522, 250, 32573, 229, 32014, 8, 198, 2, 3455, 25, 5351, 518, 9, 20, 12, 940, 11, 923, 28, 15, 11, 886, 28, 18 ]
2.348925
791
from django.conf.urls import url from . import views from board.views import PostDelete urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^login/$', views.login, name='login'), url(r'^logout/$', views.logout, name='logout'), url(r'^register/$', views.register, name='register'), url(r'^delete/(?P<pk>\d+)$', PostDelete.as_view(), name='delete') ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 764, 1330, 5009, 198, 6738, 3096, 13, 33571, 1330, 2947, 38727, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 5009, 13, 9630, 11, 1438, 11639, 9630, 33809, 198, 197, 6371, 7, 81, 6, 61, 38235, 32624, 3256, 5009, 13, 38235, 11, 1438, 11639, 38235, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 6404, 448, 32624, 3256, 5009, 13, 6404, 448, 11, 1438, 11639, 6404, 448, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 30238, 32624, 3256, 5009, 13, 30238, 11, 1438, 11639, 30238, 33809, 198, 197, 6371, 7, 81, 6, 61, 33678, 29006, 30, 47, 27, 79, 74, 29, 59, 67, 28988, 3, 3256, 2947, 38727, 13, 292, 62, 1177, 22784, 1438, 11639, 33678, 11537, 198, 60, 198 ]
2.590278
144
# -*- coding: utf-8 -*- from app.common.target_urls import SHOP_GX_ID from app.planes.jet_plane import JetPlane
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 598, 13, 11321, 13, 16793, 62, 6371, 82, 1330, 6006, 3185, 62, 38, 55, 62, 2389, 198, 6738, 598, 13, 22587, 13, 31173, 62, 14382, 1330, 19013, 3646, 1531, 628 ]
2.511111
45
from uuid import uuid4 from ckeditor_uploader.fields import RichTextUploadingField from django.conf import settings from django.db import models from question.models import * User = settings.AUTH_USER_MODEL
[ 6738, 334, 27112, 1330, 334, 27112, 19, 198, 198, 6738, 269, 9091, 2072, 62, 25850, 263, 13, 25747, 1330, 3998, 8206, 41592, 278, 15878, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 6738, 1808, 13, 27530, 1330, 1635, 198, 198, 12982, 796, 6460, 13, 32, 24318, 62, 29904, 62, 33365, 3698, 628 ]
3.403226
62
>>> ' '.join(''.join(''.join(['' if i%3 else 'F', '' if i%5 else 'B']) or str('00')) for i in range(1,16)) '00 00 F 00 B F 00 00 F B 00 F 00 00 FB' >>> _ '00 00 F 00 B F 00 00 F B 00 F 00 00 FB' >>> _.replace('FB','11').replace('F','01').replace('B','10').split()[::-1] ['11', '00', '00', '01', '00', '10', '01', '00', '00', '01', '10', '00', '01', '00', '00'] >>> '0b' + ''.join(_) '0b110000010010010000011000010000' >>> eval(_) 810092048 >>>
[ 33409, 705, 45302, 22179, 10786, 4458, 22179, 10786, 4458, 22179, 26933, 7061, 611, 1312, 4, 18, 2073, 705, 37, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10148, 611, 1312, 4, 20, 2073, 705, 33, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 965, 10786, 405, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 1433, 4008, 198, 6, 405, 3571, 376, 3571, 347, 376, 3571, 3571, 376, 347, 3571, 376, 3571, 3571, 13186, 6, 198, 33409, 4808, 198, 6, 405, 3571, 376, 3571, 347, 376, 3571, 3571, 376, 347, 3571, 376, 3571, 3571, 13186, 6, 198, 33409, 4808, 13, 33491, 10786, 26001, 41707, 1157, 27691, 33491, 10786, 37, 41707, 486, 27691, 33491, 10786, 33, 41707, 940, 27691, 35312, 3419, 58, 3712, 12, 16, 60, 198, 17816, 1157, 3256, 705, 405, 3256, 705, 405, 3256, 705, 486, 3256, 705, 405, 3256, 705, 940, 3256, 705, 486, 3256, 705, 405, 3256, 705, 405, 3256, 705, 486, 3256, 705, 940, 3256, 705, 405, 3256, 705, 486, 3256, 705, 405, 3256, 705, 405, 20520, 198, 33409, 705, 15, 65, 6, 1343, 705, 4458, 22179, 28264, 8, 198, 6, 15, 65, 1157, 2388, 39103, 47705, 2388, 28555, 2388, 49388, 6, 198, 33409, 5418, 28264, 8, 198, 23, 3064, 37128, 2780, 198, 33409, 198 ]
1.866667
285
# -*- coding: utf-8 -*- from flask import Flask, request, render_template, g, session, redirect, current_app from flask_locale import Locale, _ app = Flask(__name__) # DEFAULT_LOCALE is the language used for keys ins translation files: app.config['DEFAULT_LOCALE'] = 'tr_TR' app.config['LOCALE_PATH'] = 'translations' app.config['SECRET_KEY'] = 'translations****' locale = Locale(app) @locale.localeselector @app.route("/") @app.route("/locale") if __name__ == '__main__': app.run(debug=True)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 42903, 1330, 46947, 11, 2581, 11, 8543, 62, 28243, 11, 308, 11, 6246, 11, 18941, 11, 1459, 62, 1324, 198, 6738, 42903, 62, 17946, 1000, 1330, 15181, 1000, 11, 4808, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 2, 5550, 38865, 62, 29701, 21358, 318, 262, 3303, 973, 329, 8251, 1035, 11059, 3696, 25, 198, 1324, 13, 11250, 17816, 7206, 38865, 62, 29701, 21358, 20520, 796, 705, 2213, 62, 5446, 6, 198, 1324, 13, 11250, 17816, 29701, 21358, 62, 34219, 20520, 796, 705, 7645, 49905, 6, 198, 1324, 13, 11250, 17816, 23683, 26087, 62, 20373, 20520, 796, 705, 7645, 49905, 2466, 6, 198, 198, 17946, 1000, 796, 15181, 1000, 7, 1324, 8, 628, 198, 31, 17946, 1000, 13, 17946, 2040, 9509, 273, 628, 198, 31, 1324, 13, 38629, 7203, 14, 4943, 628, 198, 31, 1324, 13, 38629, 7203, 14, 17946, 1000, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.731183
186
import os import torch import numpy as np import nn.vnn as vnn import collections from torch import nn from torch.nn import functional as F from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence from model.seq2seq import Module as Base from models.utils.metric import compute_f1, compute_exact from nltk.translate.bleu_score import sentence_bleu # time import time from collections import defaultdict
[ 11748, 28686, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 299, 77, 13, 85, 20471, 355, 410, 20471, 198, 11748, 17268, 198, 6738, 28034, 1330, 299, 77, 198, 6738, 28034, 13, 20471, 1330, 10345, 355, 376, 198, 6738, 28034, 13, 20471, 13, 26791, 13, 81, 20471, 1330, 14841, 62, 43167, 11, 2353, 62, 79, 29373, 62, 43167, 11, 14841, 62, 34860, 62, 43167, 198, 6738, 2746, 13, 41068, 17, 41068, 1330, 19937, 355, 7308, 198, 6738, 4981, 13, 26791, 13, 4164, 1173, 1330, 24061, 62, 69, 16, 11, 24061, 62, 1069, 529, 198, 6738, 299, 2528, 74, 13, 7645, 17660, 13, 903, 84, 62, 26675, 1330, 6827, 62, 903, 84, 198, 198, 2, 640, 198, 11748, 640, 198, 6738, 17268, 1330, 4277, 11600, 198 ]
3.417323
127
import logging import requests from stellar_base.builder import Builder from stellar_base.keypair import Keypair logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 198, 11748, 7007, 198, 6738, 25041, 62, 8692, 13, 38272, 1330, 35869, 198, 6738, 25041, 62, 8692, 13, 2539, 24874, 1330, 7383, 24874, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628 ]
3.627907
43
import torch parameters = [torch.autograd.Variable(torch.FloatTensor([0, 0, 0]), requires_grad=True)] optimizer = torch.optim.SGD(parameters, lr=0.1, momentum=0.9) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, verbose=True) for _ in range(100): scheduler.step(.1) lrs = get_lrs() lr_str = ','.join(['{:.2g}'.format(lr) for lr in lrs]) # print(lr_str)
[ 198, 198, 11748, 28034, 198, 198, 17143, 7307, 796, 685, 13165, 354, 13, 2306, 519, 6335, 13, 43015, 7, 13165, 354, 13, 43879, 51, 22854, 26933, 15, 11, 657, 11, 657, 46570, 4433, 62, 9744, 28, 17821, 15437, 198, 40085, 7509, 796, 28034, 13, 40085, 13, 38475, 35, 7, 17143, 7307, 11, 300, 81, 28, 15, 13, 16, 11, 12858, 28, 15, 13, 24, 8, 198, 1416, 704, 18173, 796, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 13, 7738, 7234, 35972, 2202, 3646, 378, 559, 7, 40085, 7509, 11, 15942, 577, 28, 17821, 8, 628, 198, 198, 1640, 4808, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 6038, 18173, 13, 9662, 7, 13, 16, 8, 198, 220, 220, 220, 300, 3808, 796, 651, 62, 75, 3808, 3419, 198, 220, 220, 220, 300, 81, 62, 2536, 796, 705, 4032, 13, 22179, 7, 17816, 90, 25, 13, 17, 70, 92, 4458, 18982, 7, 14050, 8, 329, 300, 81, 287, 300, 3808, 12962, 198, 220, 220, 220, 1303, 3601, 7, 14050, 62, 2536, 8, 198 ]
2.245714
175
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Sequence, Tuple, List import collections import json import re from fairdiplomacy.models.consts import POWERS, N_SCS GameScores = collections.namedtuple( "GameScores", [ "center_ratio", # Ratio of the player's SCs to N_SCS. "draw_score", # 1. / num alive players, but 1/0 if clear win/loss. "square_ratio", # Ratio of the squure of the SCs to sum of squares. "square_score", # Same as square_ratio, but 1 if is_clear_win. "is_complete_unroll", # 0/1 whether last phase is complete. "is_clear_win", # 0/1 whether the player has more than half SC. "is_clear_loss", # 0/1 whether another player has more than half SC. "is_eliminated", # 0/1 whether has 0 SC. "is_leader", # 0/1 whether the player has at least as many SCs as anyone else. "can_draw", # 0/1 whether the player is alive and nobody wins solo. "num_games", # Number of games being averaged ], ) def get_power_one(game_json_path): """This function is depreccated. Use fairdiplomacy.compare_agents_array.""" name = re.findall("game.*\.json", game_json_path)[0] for power in POWERS: if power[:3] in name: return power raise ValueError(f"Couldn't parse power name from {name}") def get_game_result_from_json(game_json_path): """This function is depreccated. Use fairdiplomacy.compare_agents_array.""" power_one = get_power_one(game_json_path) try: with open(game_json_path) as f: j = json.load(f) except Exception as e: print(e) return None rl_rewards = compute_game_scores(POWERS.index(power_one), j) counts = {k: len(v) for k, v in j["phases"][-1]["state"]["centers"].items()} for p in POWERS: if p not in counts: counts[p] = 0 powers_won = {p for p, v in counts.items() if v == max(counts.values())} power_won = power_one if power_one in powers_won else powers_won.pop() if counts[power_one] == 0: return "six", power_one, power_won, rl_rewards winner_count, winner = max([(c, p) for p, c in counts.items()]) if winner_count < 18: return "draw", power_one, power_won, rl_rewards if winner == power_one: return "one", power_one, power_won, rl_rewards else: return "six", power_one, power_won, rl_rewards
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 17168, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 6738, 19720, 1330, 360, 713, 11, 45835, 11, 309, 29291, 11, 7343, 198, 11748, 17268, 198, 11748, 33918, 198, 11748, 302, 198, 198, 6738, 3148, 10989, 7302, 1590, 13, 27530, 13, 1102, 6448, 1330, 24148, 4877, 11, 399, 62, 6173, 50, 628, 198, 8777, 3351, 2850, 796, 17268, 13, 13190, 83, 29291, 7, 198, 220, 220, 220, 366, 8777, 3351, 2850, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 16159, 62, 10366, 952, 1600, 220, 1303, 33956, 286, 262, 2137, 338, 6374, 82, 284, 399, 62, 6173, 50, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19334, 62, 26675, 1600, 220, 1303, 352, 13, 1220, 997, 6776, 1938, 11, 475, 352, 14, 15, 611, 1598, 1592, 14, 22462, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23415, 62, 10366, 952, 1600, 220, 1303, 33956, 286, 262, 2809, 495, 286, 262, 6374, 82, 284, 2160, 286, 24438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23415, 62, 26675, 1600, 220, 1303, 16766, 355, 6616, 62, 10366, 952, 11, 475, 352, 611, 318, 62, 20063, 62, 5404, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 20751, 62, 403, 2487, 1600, 220, 1303, 657, 14, 16, 1771, 938, 7108, 318, 1844, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 20063, 62, 5404, 1600, 220, 1303, 657, 14, 16, 1771, 262, 2137, 468, 517, 621, 2063, 6374, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 20063, 62, 22462, 1600, 220, 1303, 657, 14, 16, 1771, 1194, 2137, 468, 517, 621, 2063, 6374, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 417, 320, 3898, 1600, 220, 1303, 657, 14, 16, 1771, 468, 657, 6374, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 27940, 1600, 220, 1303, 657, 14, 16, 1771, 262, 2137, 468, 379, 1551, 355, 867, 6374, 82, 355, 2687, 2073, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5171, 62, 19334, 1600, 220, 1303, 657, 14, 16, 1771, 262, 2137, 318, 6776, 290, 8168, 7864, 12199, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 19966, 1600, 220, 1303, 7913, 286, 1830, 852, 16449, 198, 220, 220, 220, 16589, 198, 8, 628, 628, 628, 628, 198, 4299, 651, 62, 6477, 62, 505, 7, 6057, 62, 17752, 62, 6978, 2599, 198, 220, 220, 220, 37227, 1212, 2163, 318, 1207, 260, 535, 515, 13, 5765, 3148, 10989, 7302, 1590, 13, 5589, 533, 62, 49638, 62, 18747, 526, 15931, 198, 220, 220, 220, 1438, 796, 302, 13, 19796, 439, 7203, 6057, 15885, 17405, 17752, 1600, 983, 62, 17752, 62, 6978, 38381, 15, 60, 198, 220, 220, 220, 329, 1176, 287, 24148, 4877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1176, 58, 25, 18, 60, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1176, 628, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 23722, 77, 470, 21136, 1176, 1438, 422, 1391, 3672, 92, 4943, 628, 198, 4299, 651, 62, 6057, 62, 20274, 62, 6738, 62, 17752, 7, 6057, 62, 17752, 62, 6978, 2599, 198, 220, 220, 220, 37227, 1212, 2163, 318, 1207, 260, 535, 515, 13, 5765, 3148, 10989, 7302, 1590, 13, 5589, 533, 62, 49638, 62, 18747, 526, 15931, 198, 220, 220, 220, 1176, 62, 505, 796, 651, 62, 6477, 62, 505, 7, 6057, 62, 17752, 62, 6978, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6057, 62, 17752, 62, 6978, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 33918, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 374, 75, 62, 260, 2017, 796, 24061, 62, 6057, 62, 1416, 2850, 7, 47, 3913, 4877, 13, 9630, 7, 6477, 62, 505, 828, 474, 8, 628, 220, 220, 220, 9853, 796, 1391, 74, 25, 18896, 7, 85, 8, 329, 479, 11, 410, 287, 474, 14692, 746, 1386, 1, 7131, 12, 16, 7131, 1, 5219, 1, 7131, 1, 1087, 364, 1, 4083, 23814, 3419, 92, 198, 220, 220, 220, 329, 279, 287, 24148, 4877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 407, 287, 9853, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9853, 58, 79, 60, 796, 657, 198, 220, 220, 220, 5635, 62, 26502, 796, 1391, 79, 329, 279, 11, 410, 287, 9853, 13, 23814, 3419, 611, 410, 6624, 3509, 7, 9127, 82, 13, 27160, 28955, 92, 198, 220, 220, 220, 1176, 62, 26502, 796, 1176, 62, 505, 611, 1176, 62, 505, 287, 5635, 62, 26502, 2073, 5635, 62, 26502, 13, 12924, 3419, 628, 220, 220, 220, 611, 9853, 58, 6477, 62, 505, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 19412, 1600, 1176, 62, 505, 11, 1176, 62, 26502, 11, 374, 75, 62, 260, 2017, 628, 220, 220, 220, 8464, 62, 9127, 11, 8464, 796, 3509, 26933, 7, 66, 11, 279, 8, 329, 279, 11, 269, 287, 9853, 13, 23814, 3419, 12962, 198, 220, 220, 220, 611, 8464, 62, 9127, 1279, 1248, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 19334, 1600, 1176, 62, 505, 11, 1176, 62, 26502, 11, 374, 75, 62, 260, 2017, 628, 220, 220, 220, 611, 8464, 6624, 1176, 62, 505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 505, 1600, 1176, 62, 505, 11, 1176, 62, 26502, 11, 374, 75, 62, 260, 2017, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 19412, 1600, 1176, 62, 505, 11, 1176, 62, 26502, 11, 374, 75, 62, 260, 2017, 198 ]
2.473583
1,041
# -------------- # Import packages import numpy as np import pandas as pd from scipy.stats import mode bank=pd.read_csv(path) #print(bank) # code starts here categorical_var=bank.select_dtypes(include = 'object') print(categorical_var) numerical_var=bank.select_dtypes(include = 'number') print(numerical_var) # code ends here # -------------- # code starts here #code ends here banks=bank.drop('Loan_ID', axis=1) #print(banks) sums=banks.isnull().sum() print(sums) bank_mode=banks.mode print(bank_mode) banks=banks.fillna(bank_mode) print(banks) # -------------- # code starts here # check the avg_loan_amount avg_loan_amount = banks.pivot_table(index=["Gender","Married","Self_Employed"],values="LoanAmount") print (avg_loan_amount) # code ends here # -------------- # code starts here loan_approved_se=len(banks[(banks['Self_Employed'] == 'Yes') & (banks['Loan_Status']== 'Y')]) loan_approved_nse=len(banks[(banks['Self_Employed'] == 'No') & (banks['Loan_Status']== 'Y')]) # code ends here percentage_se=(loan_approved_se/614)*100 print(percentage_se) percentage_nse=(loan_approved_nse/614)*100 print(percentage_nse) # -------------- # code starts here loan_term=banks['Loan_Amount_Term'].apply(lambda x:x/12) #print(loan_term) big_loan_term=len(loan_term[loan_term >=25]) print(big_loan_term) # code ends here # -------------- # code starts here loan_groupby =banks.groupby('Loan_Status')['ApplicantIncome', 'Credit_History'] mean_values=loan_groupby.agg(np.mean) # code ends here
[ 2, 220, 26171, 198, 2, 17267, 10392, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 629, 541, 88, 13, 34242, 1330, 4235, 220, 198, 220, 628, 198, 17796, 28, 30094, 13, 961, 62, 40664, 7, 6978, 8, 198, 2, 4798, 7, 17796, 8, 198, 2, 2438, 4940, 994, 198, 198, 66, 2397, 12409, 62, 7785, 28, 17796, 13, 19738, 62, 67, 19199, 7, 17256, 796, 705, 15252, 11537, 198, 198, 4798, 7, 66, 2397, 12409, 62, 7785, 8, 198, 198, 77, 6975, 605, 62, 7785, 28, 17796, 13, 19738, 62, 67, 19199, 7, 17256, 796, 705, 17618, 11537, 198, 198, 4798, 7, 77, 6975, 605, 62, 7785, 8, 628, 628, 198, 198, 2, 2438, 5645, 994, 628, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 628, 198, 2, 8189, 5645, 994, 198, 43558, 28, 17796, 13, 14781, 10786, 43, 24611, 62, 2389, 3256, 16488, 28, 16, 8, 198, 2, 4798, 7, 43558, 8, 198, 198, 82, 5700, 28, 43558, 13, 271, 8423, 22446, 16345, 3419, 198, 4798, 7, 82, 5700, 8, 198, 198, 17796, 62, 14171, 28, 43558, 13, 14171, 198, 4798, 7, 17796, 62, 14171, 8, 198, 198, 43558, 28, 43558, 13, 20797, 2616, 7, 17796, 62, 14171, 8, 198, 4798, 7, 43558, 8, 628, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 628, 628, 198, 198, 2, 2198, 262, 42781, 62, 5439, 272, 62, 17287, 198, 615, 70, 62, 5439, 272, 62, 17287, 796, 6341, 13, 79, 45785, 62, 11487, 7, 9630, 28, 14692, 41394, 2430, 7676, 2228, 2430, 24704, 62, 29733, 276, 33116, 27160, 2625, 43, 24611, 31264, 4943, 628, 198, 4798, 357, 615, 70, 62, 5439, 272, 62, 17287, 8, 198, 2, 2438, 5645, 994, 628, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 628, 628, 198, 198, 5439, 272, 62, 29137, 62, 325, 28, 11925, 7, 43558, 58, 7, 43558, 17816, 24704, 62, 29733, 276, 20520, 6624, 705, 5297, 11537, 1222, 357, 43558, 17816, 43, 24611, 62, 19580, 20520, 855, 705, 56, 11537, 12962, 198, 198, 5439, 272, 62, 29137, 62, 77, 325, 28, 11925, 7, 43558, 58, 7, 43558, 17816, 24704, 62, 29733, 276, 20520, 6624, 705, 2949, 11537, 1222, 357, 43558, 17816, 43, 24611, 62, 19580, 20520, 855, 705, 56, 11537, 12962, 198, 2, 2438, 5645, 994, 198, 198, 25067, 496, 62, 325, 16193, 5439, 272, 62, 29137, 62, 325, 14, 46841, 27493, 3064, 198, 4798, 7, 25067, 496, 62, 325, 8, 198, 198, 25067, 496, 62, 77, 325, 16193, 5439, 272, 62, 29137, 62, 77, 325, 14, 46841, 27493, 3064, 198, 4798, 7, 25067, 496, 62, 77, 325, 8, 628, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 198, 198, 5439, 272, 62, 4354, 28, 43558, 17816, 43, 24611, 62, 31264, 62, 40596, 6, 4083, 39014, 7, 50033, 2124, 25, 87, 14, 1065, 8, 198, 198, 2, 4798, 7, 5439, 272, 62, 4354, 8, 628, 198, 14261, 62, 5439, 272, 62, 4354, 28, 11925, 7, 5439, 272, 62, 4354, 58, 5439, 272, 62, 4354, 18189, 1495, 12962, 198, 198, 4798, 7, 14261, 62, 5439, 272, 62, 4354, 8, 198, 2, 2438, 5645, 994, 628, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 628, 198, 5439, 272, 62, 8094, 1525, 796, 43558, 13, 8094, 1525, 10786, 43, 24611, 62, 19580, 11537, 17816, 33583, 415, 818, 2958, 3256, 705, 23690, 62, 18122, 20520, 198, 198, 32604, 62, 27160, 28, 5439, 272, 62, 8094, 1525, 13, 9460, 7, 37659, 13, 32604, 8, 198, 198, 2, 2438, 5645, 994, 628, 198 ]
2.623509
587
import torch import torch.nn.functional as F from torch.utils.data import Sampler import math def top_filtering(logits, top_k=0, top_p=0.0, threshold=-float('Inf'), filter_value=-float('Inf')): """ Filter a distribution of logits using top-k, top-p (nucleus) and/or threshold filtering Args: logits: logits distribution shape (..., vocabulary size) top_k: <=0: no filtering, >0: keep only top k tokens with highest probability. top_p: <=0.0: no filtering, >0.0: keep only a subset S of candidates, where S is the smallest subset whose total probability mass is greater than or equal to the threshold top_p. In practice, we select the highest probability tokens whose cumulative probability mass exceeds the threshold top_p. threshold: a minimal threshold to keep logits """ top_k = min(top_k, logits.size(-1)) if top_k > 0: # Remove all tokens with a probability less than the last token in the top-k tokens indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: # Compute cumulative probabilities of sorted tokens sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probabilities > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # Back to unsorted indices and set them to -infinity indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value indices_to_remove = logits < threshold logits[indices_to_remove] = filter_value return logits class SequentialDistributedSampler(Sampler): """ Distributed Sampler that subsamples indicies sequentially, making it easier to collate all results at the end. Even though we only use this sampler for eval and predict (no training), which means that the model params won't have to be synced (i.e. will not hang for synchronization even if varied number of forward passes), we still add extra samples to the sampler to make it evenly divisible (like in `DistributedSampler`) to make it easy to `gather` or `reduce` resulting tensors at the end of the loop. """
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 3409, 20053, 198, 11748, 10688, 198, 198, 4299, 1353, 62, 10379, 20212, 7, 6404, 896, 11, 1353, 62, 74, 28, 15, 11, 1353, 62, 79, 28, 15, 13, 15, 11, 11387, 10779, 22468, 10786, 18943, 33809, 8106, 62, 8367, 10779, 22468, 10786, 18943, 11537, 2599, 198, 220, 37227, 25853, 257, 6082, 286, 2604, 896, 1262, 1353, 12, 74, 11, 1353, 12, 79, 357, 77, 14913, 385, 8, 290, 14, 273, 11387, 25431, 198, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 25, 2604, 896, 6082, 5485, 357, 986, 11, 25818, 2546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 74, 25, 19841, 15, 25, 645, 25431, 11, 1875, 15, 25, 1394, 691, 1353, 479, 16326, 351, 4511, 12867, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 79, 25, 19841, 15, 13, 15, 25, 645, 25431, 11, 1875, 15, 13, 15, 25, 1394, 691, 257, 24637, 311, 286, 5871, 11, 810, 311, 318, 262, 18197, 24637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3025, 2472, 12867, 2347, 318, 3744, 621, 393, 4961, 284, 262, 11387, 1353, 62, 79, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 554, 3357, 11, 356, 2922, 262, 4511, 12867, 16326, 3025, 23818, 12867, 2347, 21695, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 11387, 1353, 62, 79, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 25, 257, 10926, 11387, 284, 1394, 2604, 896, 198, 220, 37227, 198, 220, 1353, 62, 74, 796, 949, 7, 4852, 62, 74, 11, 2604, 896, 13, 7857, 32590, 16, 4008, 198, 220, 611, 1353, 62, 74, 1875, 657, 25, 198, 220, 220, 220, 1303, 17220, 477, 16326, 351, 257, 12867, 1342, 621, 262, 938, 11241, 287, 262, 1353, 12, 74, 16326, 198, 220, 220, 220, 36525, 62, 1462, 62, 28956, 796, 2604, 896, 1279, 28034, 13, 4852, 74, 7, 6404, 896, 11, 1353, 62, 74, 38381, 15, 7131, 986, 11, 532, 16, 11, 6045, 60, 198, 220, 220, 220, 2604, 896, 58, 521, 1063, 62, 1462, 62, 28956, 60, 796, 8106, 62, 8367, 628, 220, 611, 1353, 62, 79, 1875, 657, 13, 15, 25, 198, 220, 220, 220, 1303, 3082, 1133, 23818, 39522, 286, 23243, 16326, 198, 220, 220, 220, 23243, 62, 6404, 896, 11, 23243, 62, 521, 1063, 796, 28034, 13, 30619, 7, 6404, 896, 11, 31491, 28, 17821, 8, 198, 220, 220, 220, 23818, 62, 1676, 65, 5738, 796, 28034, 13, 66, 5700, 388, 7, 37, 13, 4215, 9806, 7, 82, 9741, 62, 6404, 896, 11, 5391, 10779, 16, 828, 5391, 10779, 16, 8, 628, 220, 220, 220, 1303, 17220, 16326, 351, 23818, 12867, 2029, 262, 11387, 198, 220, 220, 220, 23243, 62, 521, 1063, 62, 1462, 62, 28956, 796, 23818, 62, 1676, 65, 5738, 1875, 1353, 62, 79, 198, 220, 220, 220, 1303, 15576, 262, 36525, 284, 262, 826, 284, 1394, 635, 262, 717, 11241, 2029, 262, 11387, 198, 220, 220, 220, 23243, 62, 521, 1063, 62, 1462, 62, 28956, 58, 986, 11, 352, 47715, 796, 23243, 62, 521, 1063, 62, 1462, 62, 28956, 58, 986, 11, 1058, 12, 16, 4083, 21018, 3419, 198, 220, 220, 220, 23243, 62, 521, 1063, 62, 1462, 62, 28956, 58, 986, 11, 657, 60, 796, 657, 628, 220, 220, 220, 1303, 5157, 284, 5576, 9741, 36525, 290, 900, 606, 284, 532, 10745, 6269, 198, 220, 220, 220, 36525, 62, 1462, 62, 28956, 796, 23243, 62, 521, 1063, 58, 82, 9741, 62, 521, 1063, 62, 1462, 62, 28956, 60, 198, 220, 220, 220, 2604, 896, 58, 521, 1063, 62, 1462, 62, 28956, 60, 796, 8106, 62, 8367, 628, 220, 36525, 62, 1462, 62, 28956, 796, 2604, 896, 1279, 11387, 198, 220, 2604, 896, 58, 521, 1063, 62, 1462, 62, 28956, 60, 796, 8106, 62, 8367, 628, 220, 1441, 2604, 896, 628, 198, 4871, 24604, 1843, 20344, 6169, 16305, 20053, 7, 16305, 20053, 2599, 198, 220, 37227, 198, 220, 4307, 6169, 3409, 20053, 326, 6352, 12629, 2699, 444, 4726, 3746, 11, 198, 220, 1642, 340, 4577, 284, 2927, 378, 477, 2482, 379, 262, 886, 13, 628, 220, 3412, 996, 356, 691, 779, 428, 6072, 20053, 329, 5418, 290, 4331, 357, 3919, 3047, 828, 198, 220, 543, 1724, 326, 262, 2746, 42287, 1839, 470, 423, 284, 307, 6171, 771, 357, 72, 13, 68, 13, 481, 407, 8181, 198, 220, 329, 42133, 772, 611, 15641, 1271, 286, 2651, 8318, 828, 356, 991, 751, 3131, 198, 220, 8405, 284, 262, 6072, 20053, 284, 787, 340, 21894, 2659, 12843, 357, 2339, 287, 4600, 20344, 6169, 16305, 20053, 63, 8, 198, 220, 284, 787, 340, 2562, 284, 4600, 70, 1032, 63, 393, 4600, 445, 7234, 63, 7186, 11192, 669, 379, 262, 886, 286, 262, 9052, 13, 198, 220, 37227 ]
3.058612
836
if __name__ == '__main__': # first we have to create the vertices (nodes) node1 = Node("A") node2 = Node("B") node3 = Node("C") node4 = Node("D") node5 = Node("E") # handle and set the neighbors accordingly node1.adjacency_list.append(node2) node1.adjacency_list.append(node3) node2.adjacency_list.append(node4) node4.adjacency_list.append(node5) # run the DFS depth_first_search(node1)
[ 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 1303, 717, 356, 423, 284, 2251, 262, 9421, 1063, 357, 77, 4147, 8, 198, 220, 220, 220, 10139, 16, 796, 19081, 7203, 32, 4943, 198, 220, 220, 220, 10139, 17, 796, 19081, 7203, 33, 4943, 198, 220, 220, 220, 10139, 18, 796, 19081, 7203, 34, 4943, 198, 220, 220, 220, 10139, 19, 796, 19081, 7203, 35, 4943, 198, 220, 220, 220, 10139, 20, 796, 19081, 7203, 36, 4943, 628, 220, 220, 220, 1303, 5412, 290, 900, 262, 12020, 16062, 198, 220, 220, 220, 10139, 16, 13, 324, 30482, 1387, 62, 4868, 13, 33295, 7, 17440, 17, 8, 198, 220, 220, 220, 10139, 16, 13, 324, 30482, 1387, 62, 4868, 13, 33295, 7, 17440, 18, 8, 198, 220, 220, 220, 10139, 17, 13, 324, 30482, 1387, 62, 4868, 13, 33295, 7, 17440, 19, 8, 198, 220, 220, 220, 10139, 19, 13, 324, 30482, 1387, 62, 4868, 13, 33295, 7, 17440, 20, 8, 628, 220, 220, 220, 1303, 1057, 262, 360, 10652, 198, 220, 220, 220, 6795, 62, 11085, 62, 12947, 7, 17440, 16, 8, 198 ]
2.342105
190
#!/usr/bin/env python2.7 import sys import json data = load_seeds(sys.stdin) n = len(data) intervals = [] for (a, b, count) in make_bins(data): intervals.append({'start': a, 'stop': b, 'prob': (100.0*count)/n}) print(json.dumps(intervals))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 13, 22, 198, 198, 11748, 25064, 198, 11748, 33918, 198, 198, 7890, 796, 3440, 62, 325, 5379, 7, 17597, 13, 19282, 259, 8, 198, 77, 796, 18896, 7, 7890, 8, 198, 3849, 12786, 796, 17635, 198, 1640, 357, 64, 11, 275, 11, 954, 8, 287, 787, 62, 65, 1040, 7, 7890, 2599, 198, 220, 20016, 13, 33295, 15090, 6, 9688, 10354, 257, 11, 705, 11338, 10354, 275, 11, 705, 1676, 65, 10354, 357, 3064, 13, 15, 9, 9127, 20679, 77, 30072, 198, 198, 4798, 7, 17752, 13, 67, 8142, 7, 3849, 12786, 4008, 198 ]
2.378641
103
from flask import Flask from flask_restly import FlaskRestly from flask_restly.decorator import resource, get app = Flask(__name__) # json is default serializer # from flask_restly.serializer import json # app.config['RESTLY_SERIALIZER'] = json rest = FlaskRestly(app) rest.init_app(app) @resource(name='employees') with app.app_context(): EmployeesResource() if __name__ == "__main__": app.run(host='127.0.0.1', port=5001, debug=True)
[ 6738, 42903, 1330, 46947, 198, 6738, 42903, 62, 2118, 306, 1330, 46947, 19452, 306, 198, 6738, 42903, 62, 2118, 306, 13, 12501, 273, 1352, 1330, 8271, 11, 651, 628, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 2, 33918, 318, 4277, 11389, 7509, 198, 2, 422, 42903, 62, 2118, 306, 13, 46911, 7509, 1330, 33918, 198, 2, 598, 13, 11250, 17816, 49, 6465, 11319, 62, 35009, 12576, 14887, 1137, 20520, 796, 33918, 198, 198, 2118, 796, 46947, 19452, 306, 7, 1324, 8, 198, 2118, 13, 15003, 62, 1324, 7, 1324, 8, 628, 198, 31, 31092, 7, 3672, 11639, 7033, 2841, 11537, 628, 198, 4480, 598, 13, 1324, 62, 22866, 33529, 198, 220, 220, 220, 30260, 26198, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 11639, 16799, 13, 15, 13, 15, 13, 16, 3256, 2493, 28, 4059, 16, 11, 14257, 28, 17821, 8, 198 ]
2.83125
160
# -*- coding: utf-8 -*- # # Copyright (c) 2018~2999 - Cologler <[email protected]> # ---------- # # ---------- from abc import abstractmethod, ABC from enum import Enum from inspect import signature, Parameter from typing import Any from threading import RLock import inspect import contextlib from .symbols import Symbols from .utils import update_wrapper class ServiceInfo(IServiceInfo): '''generic `IServiceInfo`.''' __slots__ = ( '_key', '_lifetime', '_factory', # for not transient '_lock', # for singleton '_cache_value', '_service_provider', # options '_options', ) def _create(self, provider): ''' return the finally service instance. ''' service = self._factory(provider) if self._options['auto_enter']: wrapped = getattr(self._factory, '__anyioc_wrapped__', self._factory) if isinstance(wrapped, type) and hasattr(wrapped, '__enter__') and hasattr(wrapped, '__exit__'): service = provider.enter(service) return service class ProviderServiceInfo(IServiceInfo): '''a `IServiceInfo` use for get current `ServiceProvider`.''' __slots__ = () class GetAttrServiceInfo(IServiceInfo): '''getattr from current `ServiceProvider`.''' __slots__ = ('_attr_info') class ValueServiceInfo(IServiceInfo): '''a `IServiceInfo` use for get fixed value.''' __slots__ = ('_value') class GroupedServiceInfo(IServiceInfo): '''a `IServiceInfo` use for get multi values as a tuple from keys list.''' __slots__ = ('_keys') class BindedServiceInfo(IServiceInfo): '''a `IServiceInfo` use for get value from target key.''' __slots__ = ('_target_key') class CallerFrameServiceInfo(IServiceInfo): 'a `IServiceInfo` use for get caller frameinfo' __slots__ = ()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 66, 8, 2864, 93, 1959, 2079, 532, 327, 928, 1754, 1279, 15688, 1659, 75, 86, 31, 14816, 13, 785, 29, 198, 2, 24200, 438, 198, 2, 198, 2, 24200, 438, 198, 198, 6738, 450, 66, 1330, 12531, 24396, 11, 9738, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 10104, 1330, 9877, 11, 25139, 2357, 198, 6738, 19720, 1330, 4377, 198, 6738, 4704, 278, 1330, 371, 25392, 198, 11748, 10104, 198, 11748, 4732, 8019, 198, 198, 6738, 764, 1837, 2022, 10220, 1330, 41327, 10220, 198, 6738, 764, 26791, 1330, 4296, 62, 48553, 628, 628, 198, 4871, 4809, 12360, 7, 1797, 712, 501, 12360, 2599, 198, 220, 220, 220, 705, 7061, 41357, 4600, 1797, 712, 501, 12360, 63, 2637, 7061, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 62, 2539, 3256, 705, 62, 36195, 8079, 3256, 705, 62, 69, 9548, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 407, 32361, 198, 220, 220, 220, 220, 220, 220, 220, 705, 62, 5354, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 2060, 1122, 198, 220, 220, 220, 220, 220, 220, 220, 705, 62, 23870, 62, 8367, 3256, 705, 62, 15271, 62, 15234, 1304, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3689, 198, 220, 220, 220, 220, 220, 220, 220, 705, 62, 25811, 3256, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 17953, 7, 944, 11, 10131, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 262, 3443, 2139, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2139, 796, 2116, 13557, 69, 9548, 7, 15234, 1304, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 25811, 17816, 23736, 62, 9255, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12908, 796, 651, 35226, 7, 944, 13557, 69, 9548, 11, 705, 834, 1092, 72, 420, 62, 29988, 1496, 834, 3256, 2116, 13557, 69, 9548, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 29988, 1496, 11, 2099, 8, 290, 468, 35226, 7, 29988, 1496, 11, 705, 834, 9255, 834, 11537, 290, 468, 35226, 7, 29988, 1496, 11, 705, 834, 37023, 834, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 796, 10131, 13, 9255, 7, 15271, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2139, 628, 198, 4871, 32549, 16177, 12360, 7, 1797, 712, 501, 12360, 2599, 198, 220, 220, 220, 705, 7061, 64, 4600, 1797, 712, 501, 12360, 63, 779, 329, 651, 1459, 4600, 16177, 29495, 63, 2637, 7061, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 198, 4871, 3497, 8086, 81, 16177, 12360, 7, 1797, 712, 501, 12360, 2599, 198, 220, 220, 220, 705, 7061, 1136, 35226, 422, 1459, 4600, 16177, 29495, 63, 2637, 7061, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 62, 35226, 62, 10951, 11537, 628, 198, 4871, 11052, 16177, 12360, 7, 1797, 712, 501, 12360, 2599, 198, 220, 220, 220, 705, 7061, 64, 4600, 1797, 712, 501, 12360, 63, 779, 329, 651, 5969, 1988, 2637, 7061, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 62, 8367, 11537, 628, 198, 4871, 4912, 276, 16177, 12360, 7, 1797, 712, 501, 12360, 2599, 198, 220, 220, 220, 705, 7061, 64, 4600, 1797, 712, 501, 12360, 63, 779, 329, 651, 5021, 3815, 355, 257, 46545, 422, 8251, 1351, 2637, 7061, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 62, 13083, 11537, 628, 198, 4871, 41211, 276, 16177, 12360, 7, 1797, 712, 501, 12360, 2599, 198, 220, 220, 220, 705, 7061, 64, 4600, 1797, 712, 501, 12360, 63, 779, 329, 651, 1988, 422, 2496, 1994, 2637, 7061, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 62, 16793, 62, 2539, 11537, 628, 198, 4871, 10244, 19778, 16177, 12360, 7, 1797, 712, 501, 12360, 2599, 198, 220, 220, 220, 705, 64, 4600, 1797, 712, 501, 12360, 63, 779, 329, 651, 24955, 5739, 10951, 6, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 198 ]
2.558743
732
from ctzzy._version import __version__
[ 6738, 269, 83, 31570, 13557, 9641, 1330, 11593, 9641, 834 ]
3.8
10
#!/usr/bin/env python import getopt import sys import dpkt import pcap if __name__.rpartition(".")[-1] == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 651, 8738, 198, 11748, 25064, 198, 198, 11748, 288, 79, 21841, 198, 11748, 279, 11128, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 13, 81, 3911, 653, 7203, 19570, 58, 12, 16, 60, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.37931
58
""" Consumer factories. """ from microcosm.api import defaults from microcosm.object_graph import ObjectGraph from microcosm_sagemaker.artifact import RootInputArtifact @defaults( perform_load=True, ) def load_active_bundle_and_dependencies(graph: ObjectGraph): """ Loads the active bundle and its dependencies immediately upon instantation. """ if not graph.config.load_active_bundle_and_dependencies.perform_load: return root_input_artifact = RootInputArtifact(graph.config.root_input_artifact_path) graph.bundle_and_dependencies_loader( bundle=graph.active_bundle, root_input_artifact=root_input_artifact, ) def configure_sagemaker(graph): """ Instantiates all the necessary sagemaker factories. """ graph.use( "active_bundle", "active_evaluation", "bundle_and_dependencies_loader", "bundle_and_dependencies_trainer", "random", "training_initializers", "experiment_metrics", )
[ 37811, 198, 49106, 17590, 13, 198, 198, 37811, 198, 6738, 4580, 6966, 76, 13, 15042, 1330, 26235, 198, 6738, 4580, 6966, 76, 13, 15252, 62, 34960, 1330, 9515, 37065, 198, 198, 6738, 4580, 6966, 76, 62, 82, 363, 32174, 13, 433, 29660, 1330, 20410, 20560, 8001, 29660, 628, 628, 198, 31, 12286, 82, 7, 198, 220, 220, 220, 1620, 62, 2220, 28, 17821, 11, 198, 8, 198, 4299, 3440, 62, 5275, 62, 65, 31249, 62, 392, 62, 45841, 3976, 7, 34960, 25, 9515, 37065, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8778, 82, 262, 4075, 18537, 290, 663, 20086, 3393, 2402, 9113, 341, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 4823, 13, 11250, 13, 2220, 62, 5275, 62, 65, 31249, 62, 392, 62, 45841, 3976, 13, 525, 687, 62, 2220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 6808, 62, 15414, 62, 433, 29660, 796, 20410, 20560, 8001, 29660, 7, 34960, 13, 11250, 13, 15763, 62, 15414, 62, 433, 29660, 62, 6978, 8, 628, 220, 220, 220, 4823, 13, 65, 31249, 62, 392, 62, 45841, 3976, 62, 29356, 7, 198, 220, 220, 220, 220, 220, 220, 220, 18537, 28, 34960, 13, 5275, 62, 65, 31249, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 15414, 62, 433, 29660, 28, 15763, 62, 15414, 62, 433, 29660, 11, 198, 220, 220, 220, 1267, 628, 198, 4299, 17425, 62, 82, 363, 32174, 7, 34960, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2262, 17096, 689, 477, 262, 3306, 45229, 32174, 17590, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 4823, 13, 1904, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5275, 62, 65, 31249, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5275, 62, 18206, 2288, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 65, 31249, 62, 392, 62, 45841, 3976, 62, 29356, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 65, 31249, 62, 392, 62, 45841, 3976, 62, 2213, 10613, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25120, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34409, 62, 36733, 11341, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23100, 3681, 62, 4164, 10466, 1600, 198, 220, 220, 220, 1267, 198 ]
2.605598
393
#!/usr/bin/python3 # Copyright (C) 2021 Sam Steele # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio, json, sys from brother import Brother, SnmpError, UnsupportedModel loop = asyncio.get_event_loop() loop.run_until_complete(main()) loop.close()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 2, 220, 15069, 357, 34, 8, 33448, 3409, 28549, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 198, 11748, 30351, 952, 11, 33918, 11, 25064, 198, 6738, 3956, 1330, 8402, 11, 5489, 3149, 12331, 11, 791, 15999, 17633, 628, 198, 26268, 796, 30351, 952, 13, 1136, 62, 15596, 62, 26268, 3419, 198, 26268, 13, 5143, 62, 28446, 62, 20751, 7, 12417, 28955, 198, 26268, 13, 19836, 3419 ]
3.553488
215
# -*- coding: utf-8 -*- import unittest import numpy as np import pandas as pd import random from collections import OrderedDict from testfixtures import TempDirectory import os from .. import excel def test_suite(): """Test suite including all test suites""" testSuite = unittest.TestSuite() testSuite.addTest(test_excel("test_dataframe")) testSuite.addTest(test_excel("test_save")) return testSuite if __name__ == "__main__": import sys mysuite = test_suite() runner = unittest.TextTestRunner() if not runner.run(mysuite).wasSuccessful(): sys.exit(1)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 555, 715, 395, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 4738, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 1332, 69, 25506, 1330, 24189, 43055, 198, 11748, 28686, 198, 198, 6738, 11485, 1330, 27336, 628, 198, 198, 4299, 1332, 62, 2385, 578, 33529, 198, 220, 220, 220, 37227, 14402, 18389, 1390, 477, 1332, 45861, 37811, 198, 220, 220, 220, 1332, 5606, 578, 796, 555, 715, 395, 13, 14402, 5606, 578, 3419, 198, 220, 220, 220, 1332, 5606, 578, 13, 2860, 14402, 7, 9288, 62, 1069, 5276, 7203, 9288, 62, 7890, 14535, 48774, 198, 220, 220, 220, 1332, 5606, 578, 13, 2860, 14402, 7, 9288, 62, 1069, 5276, 7203, 9288, 62, 21928, 48774, 198, 220, 220, 220, 1441, 1332, 5606, 578, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 25064, 628, 220, 220, 220, 616, 2385, 578, 796, 1332, 62, 2385, 578, 3419, 198, 220, 220, 220, 17490, 796, 555, 715, 395, 13, 8206, 14402, 49493, 3419, 198, 220, 220, 220, 611, 407, 17490, 13, 5143, 7, 28744, 84, 578, 737, 9776, 33244, 913, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198 ]
2.700893
224
import paho.mqtt.client as mqtt import ssl import json import utils #======================================================================= # program that replaces te physical potentiometer # it sends a value between 0 and 255 that emulates the signal from potentiometer # to the topic sub_topic defined in the general section of this file # demo1.py listens on this topic and uses the sent value to control the rest of simulation #======================================================================= # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # ================================================================== # ================================================================== # ================================================================== # ================================================================== # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- #####mqtt_username = "rvksim" #####mqtt_password = "7TvpyxEQBsMHSHaF7E8m6Hd7Sux2mpQx" #####mqtt_endpoint = "fiware.n5geh.de" #####mqtt_endpoint = "127.0.0.1" #####mqtt_port = 1026 #####TLS_CONNECTION = True #####TLS_CONNECTION = False #####ACT_AUTH = False ##### #####sub_topic = "/rvksim/lastgang/cmd" #####pub_topic = "/rvksim/lastgang/attrs" ##### #####filepath = "./static_lastgang.dat" ##### ###### persistent data object #####data = {} if __name__ == "__main__": main()
[ 11748, 279, 17108, 13, 76, 80, 926, 13, 16366, 355, 285, 80, 926, 198, 11748, 264, 6649, 198, 11748, 33918, 198, 11748, 3384, 4487, 198, 2, 23926, 1421, 18604, 198, 2, 1430, 326, 24020, 573, 3518, 16739, 72, 15635, 198, 2, 340, 12800, 257, 1988, 1022, 657, 290, 14280, 326, 795, 15968, 262, 6737, 422, 16739, 72, 15635, 198, 2, 284, 262, 7243, 850, 62, 26652, 5447, 287, 262, 2276, 2665, 286, 428, 2393, 198, 2, 13605, 16, 13, 9078, 35019, 319, 428, 7243, 290, 3544, 262, 1908, 1988, 284, 1630, 262, 1334, 286, 18640, 198, 2, 23926, 1421, 18604, 628, 198, 2, 16529, 23031, 198, 198, 2, 16529, 23031, 198, 2, 16529, 23031, 198, 2, 38093, 28, 198, 198, 2, 38093, 28, 198, 198, 2, 38093, 28, 198, 198, 2, 38093, 28, 198, 198, 2, 16529, 23031, 198, 2, 16529, 23031, 198, 2, 16529, 23031, 198, 198, 4242, 2, 76, 80, 926, 62, 29460, 796, 366, 81, 85, 591, 320, 1, 198, 4242, 2, 76, 80, 926, 62, 28712, 796, 366, 22, 51, 85, 9078, 87, 36, 48, 37000, 44, 7998, 23303, 37, 22, 36, 23, 76, 21, 39, 67, 22, 50, 2821, 17, 3149, 48, 87, 1, 198, 4242, 2, 76, 80, 926, 62, 437, 4122, 796, 366, 12463, 1574, 13, 77, 20, 469, 71, 13, 2934, 1, 198, 4242, 2, 76, 80, 926, 62, 437, 4122, 796, 366, 16799, 13, 15, 13, 15, 13, 16, 1, 198, 4242, 2, 76, 80, 926, 62, 634, 796, 838, 2075, 198, 4242, 2, 51, 6561, 62, 10943, 45, 24565, 796, 6407, 198, 4242, 2, 51, 6561, 62, 10943, 45, 24565, 796, 10352, 198, 4242, 2, 10659, 62, 32, 24318, 796, 10352, 198, 4242, 2, 198, 4242, 2, 7266, 62, 26652, 796, 12813, 81, 85, 591, 320, 14, 12957, 28284, 14, 28758, 1, 198, 4242, 2, 12984, 62, 26652, 796, 12813, 81, 85, 591, 320, 14, 12957, 28284, 14, 1078, 3808, 1, 198, 4242, 2, 198, 4242, 2, 7753, 6978, 796, 366, 19571, 12708, 62, 12957, 28284, 13, 19608, 1, 198, 4242, 2, 198, 4242, 2235, 16218, 1366, 2134, 198, 4242, 2, 7890, 796, 23884, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
4.581769
373
"""Feature temporal aggregation functions""" from abc import ABC import numpy as np class Aggregator(): """Aggregates temporal values""" def update_statistics(self, instances): """Identify statistics to standardize each feature""" for fidx, _ in enumerate(self._aggregation_fns): left, right = self._windows[fidx] vec = self.operate_on_feature(fidx, instances[:, fidx, left: right + 1]) self._means[fidx] = np.mean(vec) self._stds[fidx] = np.std(vec) if self._stds[fidx] < 1e-10: # FIXME: features can pass the variance test earlier but fail it here, since the samples used are different self._stds[fidx] = 1 def operate_on_feature(self, fidx, sequences): """Operate on sequences for given feature""" return (self._aggregation_fns[fidx].operate(sequences) - self._means[fidx]) / self._stds[fidx] # sequences: instances X timesteps def operate(self, sequences): """Apply feature-wise operations to sequence data""" # TODO: when perturbing a feature, other values do not need to be recomputed. # But this seems unavoidable under the current design (analysis only calls model.predict, doesn't provide other info) num_instances, num_features, _ = sequences.shape # sequences: instances X features X timesteps matrix = np.zeros((num_instances, num_features)) for fidx in range(num_features): (left, right) = self._windows[fidx] matrix[:, fidx] = self.operate_on_feature(fidx, sequences[:, fidx, left: right + 1]) return matrix class TabularAggregator(Aggregator): """Returns input as-is without aggregation (for tabular features)""" class AggregationFunction(ABC): """Aggregation function base class""" NONLINEARITY_OPERATORS = [lambda x: x, np.abs, np.square] def operate(self, sequences): """Operate on sequences for given feature""" return self._nonlinearity_operator(np.apply_along_axis(self._sequence_operator, 1, sequences)) # sequences: instances X timesteps class Max(AggregationFunction): """Computes max of inputs""" class Average(AggregationFunction): """Computes average of inputs""" class MonotonicWeightedAverage(AggregationFunction): """Computes weighted average of inputs with monotically increasing weights""" class RandomWeightedAverage(AggregationFunction): """Computes weighted average of inputs with random weights""" AGGREGATION_OPERATORS = [Max, Average, MonotonicWeightedAverage, RandomWeightedAverage] def get_aggregation_fn_cls(rng): """Sample aggregation function for feature""" return rng.choice(AGGREGATION_OPERATORS)
[ 37811, 38816, 21964, 46500, 5499, 37811, 198, 198, 6738, 450, 66, 1330, 9738, 198, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4871, 19015, 2301, 1352, 33529, 198, 220, 220, 220, 37227, 46384, 2301, 689, 21964, 3815, 37811, 628, 220, 220, 220, 825, 4296, 62, 14269, 3969, 7, 944, 11, 10245, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 33234, 1958, 7869, 284, 3210, 1096, 1123, 3895, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 329, 49909, 87, 11, 4808, 287, 27056, 378, 7, 944, 13557, 9460, 43068, 62, 69, 5907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 11, 826, 796, 2116, 13557, 28457, 58, 69, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43030, 796, 2116, 13, 3575, 378, 62, 261, 62, 30053, 7, 69, 312, 87, 11, 10245, 58, 45299, 49909, 87, 11, 1364, 25, 826, 1343, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1326, 504, 58, 69, 312, 87, 60, 796, 45941, 13, 32604, 7, 35138, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 301, 9310, 58, 69, 312, 87, 60, 796, 45941, 13, 19282, 7, 35138, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 301, 9310, 58, 69, 312, 87, 60, 1279, 352, 68, 12, 940, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 44855, 11682, 25, 3033, 460, 1208, 262, 24198, 1332, 2961, 475, 2038, 340, 994, 11, 1201, 262, 8405, 973, 389, 1180, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 301, 9310, 58, 69, 312, 87, 60, 796, 352, 628, 220, 220, 220, 825, 8076, 62, 261, 62, 30053, 7, 944, 11, 49909, 87, 11, 16311, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18843, 378, 319, 16311, 329, 1813, 3895, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13557, 9460, 43068, 62, 69, 5907, 58, 69, 312, 87, 4083, 3575, 378, 7, 3107, 3007, 8, 532, 2116, 13557, 1326, 504, 58, 69, 312, 87, 12962, 1220, 2116, 13557, 301, 9310, 58, 69, 312, 87, 60, 220, 1303, 16311, 25, 10245, 1395, 4628, 395, 25386, 628, 220, 220, 220, 825, 8076, 7, 944, 11, 16311, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44836, 3895, 12, 3083, 4560, 284, 8379, 1366, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 618, 22146, 333, 4623, 257, 3895, 11, 584, 3815, 466, 407, 761, 284, 307, 664, 296, 17128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 887, 428, 2331, 37645, 739, 262, 1459, 1486, 357, 20930, 691, 3848, 2746, 13, 79, 17407, 11, 1595, 470, 2148, 584, 7508, 8, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 8625, 1817, 11, 997, 62, 40890, 11, 4808, 796, 16311, 13, 43358, 220, 1303, 16311, 25, 10245, 1395, 3033, 1395, 4628, 395, 25386, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 8625, 1817, 11, 997, 62, 40890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 49909, 87, 287, 2837, 7, 22510, 62, 40890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9464, 11, 826, 8, 796, 2116, 13557, 28457, 58, 69, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17593, 58, 45299, 49909, 87, 60, 796, 2116, 13, 3575, 378, 62, 261, 62, 30053, 7, 69, 312, 87, 11, 16311, 58, 45299, 49909, 87, 11, 1364, 25, 826, 1343, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17593, 628, 198, 4871, 16904, 934, 46384, 2301, 1352, 7, 46384, 2301, 1352, 2599, 198, 220, 220, 220, 37227, 35561, 5128, 355, 12, 271, 1231, 46500, 357, 1640, 7400, 934, 3033, 8, 37811, 628, 198, 4871, 19015, 43068, 22203, 7, 24694, 2599, 198, 220, 220, 220, 37227, 46384, 43068, 2163, 2779, 1398, 37811, 198, 220, 220, 220, 44521, 24027, 1503, 9050, 62, 31054, 1404, 20673, 796, 685, 50033, 2124, 25, 2124, 11, 45941, 13, 8937, 11, 45941, 13, 23415, 60, 628, 220, 220, 220, 825, 8076, 7, 944, 11, 16311, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18843, 378, 319, 16311, 329, 1813, 3895, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 13159, 29127, 414, 62, 46616, 7, 37659, 13, 39014, 62, 24176, 62, 22704, 7, 944, 13557, 43167, 62, 46616, 11, 352, 11, 16311, 4008, 220, 1303, 16311, 25, 10245, 1395, 4628, 395, 25386, 628, 198, 4871, 5436, 7, 46384, 43068, 22203, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 3509, 286, 17311, 37811, 628, 198, 4871, 13475, 7, 46384, 43068, 22203, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 2811, 286, 17311, 37811, 628, 198, 4871, 2892, 313, 9229, 25844, 276, 26287, 7, 46384, 43068, 22203, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 26356, 2811, 286, 17311, 351, 937, 313, 1146, 3649, 19590, 37811, 628, 198, 4871, 14534, 25844, 276, 26287, 7, 46384, 43068, 22203, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 26356, 2811, 286, 17311, 351, 4738, 19590, 37811, 628, 198, 4760, 28934, 38, 6234, 62, 31054, 1404, 20673, 796, 685, 11518, 11, 13475, 11, 2892, 313, 9229, 25844, 276, 26287, 11, 14534, 25844, 276, 26287, 60, 628, 198, 4299, 651, 62, 9460, 43068, 62, 22184, 62, 565, 82, 7, 81, 782, 2599, 198, 220, 220, 220, 37227, 36674, 46500, 2163, 329, 3895, 37811, 198, 220, 220, 220, 1441, 374, 782, 13, 25541, 7, 4760, 28934, 38, 6234, 62, 31054, 1404, 20673, 8, 198 ]
2.829897
970
#!/usr/bin/python3 import getpass import subprocess import glob import time import os import re import socket from datetime import datetime from pprint import pprint """ Pull Charlesreid1.com - Rojo This script pulls the latest version of charlesreid1.com source. """ if __name__=="__main__": host = socket.gethostname() user = getpass.getuser() if(host!="rojo"): print("You aren't on rojo - you probably didn't mean to run this script!") elif(user!="charles"): print("You aren't charles - you should run this script as charles!") else: pull()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 11748, 651, 6603, 198, 11748, 850, 14681, 198, 11748, 15095, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 17802, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 279, 4798, 1330, 279, 4798, 628, 198, 37811, 198, 42940, 7516, 260, 312, 16, 13, 785, 532, 5564, 7639, 198, 198, 1212, 4226, 16194, 262, 3452, 2196, 286, 1149, 829, 260, 312, 16, 13, 785, 2723, 13, 198, 37811, 628, 628, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 628, 220, 220, 220, 2583, 796, 17802, 13, 1136, 4774, 3672, 3419, 198, 220, 220, 220, 2836, 796, 651, 6603, 13, 1136, 7220, 3419, 628, 220, 220, 220, 611, 7, 4774, 0, 2625, 305, 7639, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1639, 3588, 470, 319, 686, 7639, 532, 345, 2192, 1422, 470, 1612, 284, 1057, 428, 4226, 2474, 8, 198, 220, 220, 220, 1288, 361, 7, 7220, 0, 2625, 10641, 829, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1639, 3588, 470, 1149, 829, 532, 345, 815, 1057, 428, 4226, 355, 1149, 829, 2474, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2834, 3419, 628 ]
2.794393
214
a1=1 a2=1+a<caret>
[ 64, 16, 28, 16, 198, 64, 17, 28, 16, 10, 64, 27, 6651, 83, 29 ]
1.2
15
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- from Kamaelia.UI.Pygame.EventHandler import EventHandler from Axon.Component import component import pygame from Kamaelia.UI.Pygame.KeyEvent import KeyEvent
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 3050, 3517, 32250, 10501, 290, 509, 1689, 25418, 25767, 669, 7, 16, 8, 198, 2, 198, 2, 357, 16, 8, 509, 1689, 25418, 25767, 669, 389, 5610, 287, 262, 37195, 20673, 2393, 290, 379, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 74, 1689, 25418, 13, 2398, 14, 32, 24318, 20673, 532, 3387, 9117, 428, 2393, 11, 198, 2, 220, 220, 220, 220, 407, 428, 4003, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 16529, 45537, 628, 198, 6738, 509, 1689, 25418, 13, 10080, 13, 20519, 6057, 13, 9237, 25060, 1330, 8558, 25060, 198, 6738, 12176, 261, 13, 21950, 1330, 7515, 198, 11748, 12972, 6057, 198, 198, 6738, 509, 1689, 25418, 13, 10080, 13, 20519, 6057, 13, 9218, 9237, 1330, 7383, 9237, 198 ]
3.684028
288
from typing import List PRICES = { 1: 800, 2: 1520, 3: 2160, 4: 2560, 5: 3000, }
[ 6738, 19720, 1330, 7343, 198, 198, 4805, 34444, 796, 1391, 198, 220, 220, 220, 352, 25, 10460, 11, 198, 220, 220, 220, 362, 25, 1315, 1238, 11, 198, 220, 220, 220, 513, 25, 362, 14198, 11, 198, 220, 220, 220, 604, 25, 1679, 1899, 11, 198, 220, 220, 220, 642, 25, 20343, 11, 198, 198, 92, 628, 198 ]
1.810345
58
from FrEIA import framework as fr from FrEIA import modules as la import torch import torchvision.models as models import torch.nn as nn import numpy as np def get_vgg16(): """ Get features from pretrained VGG16 model. :return: partial VGG16 model, which takes ImageNet images and return feature0 """ vgg = models.vgg16(pretrained=True) vgg_feature = vgg.features[:17] return vgg_feature def inn_model(img_dims=4): """ Return INN model. :param img_dims: size of the model input images. Default: Size of MNIST images :return: INN model """ inp = fr.InputNode(img_dims, name='input') fc1 = fr.Node([inp.out0], la.GLOWCouplingBlock, {'subnet_constructor': fc_constr, 'clamp': 2}, name='fc1') fc2 = fr.Node([fc1.out0], la.GLOWCouplingBlock, {'subnet_constructor': fc_constr, 'clamp': 2}, name='fc2') fc3 = fr.Node([fc2.out0], la.GLOWCouplingBlock, {'subnet_constructor': fc_constr, 'clamp': 2}, name='fc3') outp = fr.OutputNode([fc3.out0], name='output') nodes = [inp, outp, fc1, fc2, fc3] model = fr.ReversibleGraphNet(nodes) return model fc_width = 512 conv_width = 256 n_coupling_blocks_fc = 12 n_coupling_blocks_conv_0 = 2 n_coupling_blocks_conv_1 = 2 clamp = 2.0
[ 6738, 1305, 36, 3539, 1330, 9355, 355, 1216, 198, 6738, 1305, 36, 3539, 1330, 13103, 355, 8591, 198, 11748, 28034, 198, 11748, 28034, 10178, 13, 27530, 355, 4981, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4299, 651, 62, 85, 1130, 1433, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 3033, 422, 2181, 13363, 569, 11190, 1433, 2746, 13, 628, 220, 220, 220, 1058, 7783, 25, 13027, 569, 11190, 1433, 2746, 11, 543, 2753, 7412, 7934, 4263, 290, 1441, 3895, 15, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 410, 1130, 796, 4981, 13, 85, 1130, 1433, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 410, 1130, 62, 30053, 796, 410, 1130, 13, 40890, 58, 25, 1558, 60, 628, 220, 220, 220, 1441, 410, 1130, 62, 30053, 628, 198, 4299, 3527, 62, 19849, 7, 9600, 62, 67, 12078, 28, 19, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 3268, 45, 2746, 13, 628, 220, 220, 220, 1058, 17143, 33705, 62, 67, 12078, 25, 2546, 286, 262, 2746, 5128, 4263, 13, 15161, 25, 12849, 286, 29060, 8808, 4263, 198, 220, 220, 220, 1058, 7783, 25, 3268, 45, 2746, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 287, 79, 796, 1216, 13, 20560, 19667, 7, 9600, 62, 67, 12078, 11, 1438, 11639, 15414, 11537, 628, 220, 220, 220, 277, 66, 16, 796, 1216, 13, 19667, 26933, 259, 79, 13, 448, 15, 4357, 8591, 13, 8763, 3913, 34, 280, 11347, 12235, 11, 1391, 6, 7266, 3262, 62, 41571, 273, 10354, 277, 66, 62, 1102, 2536, 11, 705, 565, 696, 10354, 362, 5512, 1438, 11639, 16072, 16, 11537, 198, 220, 220, 220, 277, 66, 17, 796, 1216, 13, 19667, 26933, 16072, 16, 13, 448, 15, 4357, 8591, 13, 8763, 3913, 34, 280, 11347, 12235, 11, 1391, 6, 7266, 3262, 62, 41571, 273, 10354, 277, 66, 62, 1102, 2536, 11, 705, 565, 696, 10354, 362, 5512, 1438, 11639, 16072, 17, 11537, 198, 220, 220, 220, 277, 66, 18, 796, 1216, 13, 19667, 26933, 16072, 17, 13, 448, 15, 4357, 8591, 13, 8763, 3913, 34, 280, 11347, 12235, 11, 1391, 6, 7266, 3262, 62, 41571, 273, 10354, 277, 66, 62, 1102, 2536, 11, 705, 565, 696, 10354, 362, 5512, 1438, 11639, 16072, 18, 11537, 628, 220, 220, 220, 38701, 796, 1216, 13, 26410, 19667, 26933, 16072, 18, 13, 448, 15, 4357, 1438, 11639, 22915, 11537, 628, 220, 220, 220, 13760, 796, 685, 259, 79, 11, 38701, 11, 277, 66, 16, 11, 277, 66, 17, 11, 277, 66, 18, 60, 628, 220, 220, 220, 2746, 796, 1216, 13, 3041, 37393, 37065, 7934, 7, 77, 4147, 8, 628, 220, 220, 220, 1441, 2746, 628, 198, 16072, 62, 10394, 796, 22243, 198, 42946, 62, 10394, 796, 17759, 198, 77, 62, 66, 280, 11347, 62, 27372, 62, 16072, 796, 1105, 198, 77, 62, 66, 280, 11347, 62, 27372, 62, 42946, 62, 15, 796, 362, 198, 77, 62, 66, 280, 11347, 62, 27372, 62, 42946, 62, 16, 796, 362, 198, 565, 696, 796, 362, 13, 15, 628, 628, 628, 628, 628 ]
2.447876
518
""" Sets up reverse proxy in the application - app's reverse proxy dynamically reroutes communication between web-server's client and dynamic-backend services (or dyb's) - couples director with reverse_proxy subsystems Use case - All requests to `/x/{serviceId}/{proxyPath}` are re-routed to a dyb service - dy-services are managed by the director service who monitors and controls its lifetime """ import logging import os import attr from aiohttp import web from aiohttp.client import ClientSession from yarl import URL from servicelib.rest_responses import unwrap_envelope from .director.config import APP_DIRECTOR_API_KEY from .reverse_proxy import setup_reverse_proxy from .reverse_proxy.abc import ServiceResolutionPolicy THIS_CLIENT_SESSION = __name__ + ".session" logger = logging.getLogger(__name__) @attr.s(auto_attribs=True) # alias setup_app_proxy = setup __all__ = ( 'setup_app_proxy' )
[ 37811, 21394, 510, 9575, 15741, 287, 262, 3586, 628, 220, 220, 220, 532, 598, 338, 9575, 15741, 32366, 302, 81, 448, 274, 6946, 1022, 3992, 12, 15388, 338, 5456, 198, 220, 220, 220, 290, 8925, 12, 1891, 437, 2594, 220, 357, 273, 20268, 65, 338, 8, 198, 220, 220, 220, 532, 11886, 3437, 351, 9575, 62, 36436, 39335, 82, 628, 5765, 1339, 198, 220, 220, 220, 532, 1439, 7007, 284, 4600, 14, 87, 14, 90, 15271, 7390, 92, 14, 90, 36436, 15235, 92, 63, 389, 302, 12, 81, 18534, 284, 257, 20268, 65, 2139, 198, 220, 220, 220, 532, 20268, 12, 30416, 389, 5257, 416, 262, 3437, 2139, 508, 19374, 290, 6973, 663, 10869, 198, 198, 37811, 198, 11748, 18931, 198, 11748, 28686, 198, 198, 11748, 708, 81, 198, 6738, 257, 952, 4023, 1330, 3992, 198, 6738, 257, 952, 4023, 13, 16366, 1330, 20985, 36044, 198, 6738, 331, 7063, 1330, 10289, 198, 198, 6738, 37756, 417, 571, 13, 2118, 62, 16733, 274, 1330, 7379, 2416, 62, 268, 1091, 68, 198, 198, 6738, 764, 35248, 13, 11250, 1330, 43504, 62, 17931, 23988, 1581, 62, 17614, 62, 20373, 198, 6738, 764, 50188, 62, 36436, 1330, 9058, 62, 50188, 62, 36436, 198, 6738, 764, 50188, 62, 36436, 13, 39305, 1330, 4809, 4965, 2122, 36727, 198, 198, 43559, 62, 5097, 28495, 62, 50, 47621, 796, 11593, 3672, 834, 1343, 27071, 29891, 1, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 8, 628, 198, 198, 2, 16144, 198, 40406, 62, 1324, 62, 36436, 796, 9058, 628, 198, 834, 439, 834, 796, 357, 198, 220, 220, 220, 705, 40406, 62, 1324, 62, 36436, 6, 198, 8, 198 ]
3.219178
292
import re from therandy.utils import for_app regex = re.compile(r'Run "(.*)" instead') @for_app('yarn', at_least=1)
[ 11748, 302, 198, 6738, 10811, 10757, 13, 26791, 1330, 329, 62, 1324, 198, 198, 260, 25636, 796, 302, 13, 5589, 576, 7, 81, 6, 10987, 30629, 15885, 16725, 2427, 11537, 628, 198, 31, 1640, 62, 1324, 10786, 88, 1501, 3256, 379, 62, 293, 459, 28, 16, 8, 628 ]
2.5
48
import torch import functools __all__ = [ "VisibilityFOV", "VisibilityHeatmap" ]
[ 11748, 28034, 198, 198, 11748, 1257, 310, 10141, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 15854, 2247, 6080, 53, 1600, 198, 220, 220, 220, 366, 15854, 2247, 39596, 8899, 1, 198, 60, 628, 198 ]
2.384615
39
from __future__ import absolute_import from __future__ import print_function from __future__ import division from mwptoolkit.module.Embedder import basic_embedder,bert_embedder,position_embedder,roberta_embedder
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 285, 86, 457, 970, 15813, 13, 21412, 13, 31567, 276, 1082, 1330, 4096, 62, 20521, 1082, 11, 4835, 62, 20521, 1082, 11, 9150, 62, 20521, 1082, 11, 305, 4835, 64, 62, 20521, 1082 ]
3.576271
59
#!/usr/bin/env python # -*- coding: utf-8 -*- """ CIE UCS Colourspace =================== Defines the *CIE UCS* colourspace transformations: - :func:`XYZ_to_UCS` - :func:`UCS_to_XYZ` - :func:`UCS_to_uv` - :func:`UCS_uv_to_xy` See Also -------- `CIE UCS Colourspace IPython Notebook <http://nbviewer.ipython.org/github/colour-science/colour-ipython/blob/master/notebooks/models/cie_ucs.ipynb>`_ # noqa References ---------- .. [1] http://en.wikipedia.org/wiki/CIE_1960_color_space (Last accessed 24 February 2014) """ from __future__ import division, unicode_literals import numpy as np __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013 - 2014 - Colour Developers' __license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = ['XYZ_to_UCS', 'UCS_to_XYZ', 'UCS_to_uv', 'UCS_uv_to_xy'] def XYZ_to_UCS(XYZ): """ Converts from *CIE XYZ* colourspace to *CIE UCS* colourspace. Parameters ---------- XYZ : array_like, (3,) *CIE XYZ* colourspace matrix. Returns ------- ndarray, (3,) *CIE UCS* colourspace matrix. Notes ----- - Input *CIE XYZ* colourspace matrix is in domain [0, 1]. - Output *CIE UCS* colourspace matrix is in domain [0, 1]. References ---------- .. [2] http://en.wikipedia.org/wiki/CIE_1960_color_space#Relation_to_CIEXYZ # noqa (Last accessed 24 February 2014) Examples -------- >>> XYZ = np.array([0.1180583421, 0.1034, 0.0515089229]) >>> XYZ_to_UCS(XYZ) # doctest: +ELLIPSIS array([ 0.0787055..., 0.1034 , 0.1218252...]) """ X, Y, Z = np.ravel(XYZ) return np.array([2 / 3 * X, Y, 1 / 2 * (-X + 3 * Y + Z)]) def UCS_to_XYZ(UVW): """ Converts from *CIE UCS* colourspace to *CIE XYZ* colourspace. Parameters ---------- UVW : array_like, (3,) *CIE UCS* colourspace matrix. Returns ------- ndarray, (3,) *CIE XYZ* colourspace matrix. Notes ----- - Input *CIE UCS* colourspace matrix is in domain [0, 1]. - Output *CIE XYZ* colourspace matrix is in domain [0, 1]. References ---------- .. [3] http://en.wikipedia.org/wiki/CIE_1960_color_space#Relation_to_CIEXYZ # noqa (Last accessed 24 February 2014) Examples -------- >>> UCS = np.array([0.07870556, 0.1034, 0.12182529]) >>> UCS_to_XYZ(UCS) # doctest: +ELLIPSIS array([ 0.1180583..., 0.1034 , 0.0515089...]) """ U, V, W = np.ravel(UVW) return np.array( [3 / 2 * U, V, 3 / 2 * U - (3 * V) + (2 * W)]) def UCS_to_uv(UVW): """ Returns the *uv* chromaticity coordinates from given *CIE UCS* colourspace matrix. Parameters ---------- UVW : array_like, (3,) *CIE UCS* colourspace matrix. Returns ------- tuple *uv* chromaticity coordinates. Notes ----- - Input *CIE UCS* colourspace matrix is in domain [0, 1]. - Output *uv* chromaticity coordinates are in domain [0, 1]. References ---------- .. [4] http://en.wikipedia.org/wiki/CIE_1960_color_space#Relation_to_CIEXYZ # noqa (Last accessed 24 February 2014) Examples -------- >>> UCS = np.array([0.1180583421, 0.1034, 0.0515089229]) >>> UCS_to_uv(UCS) # doctest: +ELLIPSIS (0.4324999..., 0.3788000...) """ U, V, W = np.ravel(UVW) return U / (U + V + W), V / (U + V + W) def UCS_uv_to_xy(uv): """ Returns the *xy* chromaticity coordinates from given *CIE UCS* colourspace *uv* chromaticity coordinates. Parameters ---------- uv : array_like *CIE UCS uv* chromaticity coordinates. Returns ------- tuple *xy* chromaticity coordinates. Notes ----- - Input *uv* chromaticity coordinates are in domain [0, 1]. - Output *xy* chromaticity coordinates are in domain [0, 1]. References ---------- .. [5] http://en.wikipedia.org/wiki/CIE_1960_color_space#Relation_to_CIEXYZ # noqa (Last accessed 24 February 2014) Examples -------- >>> uv = (0.43249999995420696, 0.378800000065942) >>> UCS_uv_to_xy(uv) # doctest: +ELLIPSIS (0.7072386..., 0.4129510...) """ return (3 * uv[0] / (2 * uv[0] - 8 * uv[1] + 4), 2 * uv[1] / (2 * uv[0] - 8 * uv[1] + 4))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 34, 10008, 49553, 38773, 13200, 198, 4770, 18604, 198, 198, 7469, 1127, 262, 1635, 34, 10008, 49553, 9, 9568, 13200, 38226, 25, 198, 198, 12, 220, 220, 1058, 20786, 25, 63, 34278, 57, 62, 1462, 62, 52, 7902, 63, 198, 12, 220, 220, 1058, 20786, 25, 63, 52, 7902, 62, 1462, 62, 34278, 57, 63, 198, 12, 220, 220, 1058, 20786, 25, 63, 52, 7902, 62, 1462, 62, 14795, 63, 198, 12, 220, 220, 1058, 20786, 25, 63, 52, 7902, 62, 14795, 62, 1462, 62, 5431, 63, 198, 198, 6214, 4418, 198, 982, 198, 63, 34, 10008, 49553, 38773, 13200, 6101, 7535, 5740, 2070, 198, 27, 4023, 1378, 46803, 1177, 263, 13, 541, 7535, 13, 2398, 14, 12567, 14, 49903, 12, 16801, 14, 49903, 12, 541, 7535, 14, 2436, 672, 14, 9866, 14, 11295, 12106, 14, 27530, 14, 66, 494, 62, 1229, 82, 13, 541, 2047, 65, 29, 63, 62, 220, 1303, 645, 20402, 198, 198, 19927, 198, 35937, 198, 492, 685, 16, 60, 220, 2638, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 34, 10008, 62, 38503, 62, 8043, 62, 13200, 198, 220, 220, 220, 220, 220, 220, 220, 357, 5956, 17535, 1987, 3945, 1946, 8, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 834, 9800, 834, 796, 705, 5216, 454, 34152, 6, 198, 834, 22163, 4766, 834, 796, 705, 15269, 357, 34, 8, 2211, 532, 1946, 532, 38773, 34152, 6, 198, 834, 43085, 834, 796, 705, 3791, 347, 10305, 13789, 532, 2638, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 21800, 12, 18, 12, 2601, 682, 6, 198, 834, 76, 2913, 10613, 834, 796, 705, 5216, 454, 34152, 6, 198, 834, 12888, 834, 796, 705, 49903, 12, 16801, 31, 2188, 519, 1455, 14459, 13, 785, 6, 198, 834, 13376, 834, 796, 705, 35027, 6, 198, 198, 834, 439, 834, 796, 37250, 34278, 57, 62, 1462, 62, 52, 7902, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 52, 7902, 62, 1462, 62, 34278, 57, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 52, 7902, 62, 1462, 62, 14795, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 52, 7902, 62, 14795, 62, 1462, 62, 5431, 20520, 628, 198, 4299, 41420, 57, 62, 1462, 62, 52, 7902, 7, 34278, 57, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 422, 1635, 34, 10008, 41420, 57, 9, 9568, 13200, 284, 1635, 34, 10008, 49553, 9, 9568, 13200, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 41420, 57, 1058, 7177, 62, 2339, 11, 357, 18, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 34, 10008, 41420, 57, 9, 9568, 13200, 17593, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 299, 67, 18747, 11, 357, 18, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 34, 10008, 49553, 9, 9568, 13200, 17593, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 532, 220, 220, 23412, 1635, 34, 10008, 41420, 57, 9, 9568, 13200, 17593, 318, 287, 7386, 685, 15, 11, 352, 4083, 198, 220, 220, 220, 532, 220, 220, 25235, 1635, 34, 10008, 49553, 9, 9568, 13200, 17593, 318, 287, 7386, 685, 15, 11, 352, 4083, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 17, 60, 220, 2638, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 34, 10008, 62, 38503, 62, 8043, 62, 13200, 2, 6892, 341, 62, 1462, 62, 25690, 6369, 56, 57, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 5956, 17535, 1987, 3945, 1946, 8, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 41420, 57, 796, 45941, 13, 18747, 26933, 15, 13, 1157, 1795, 3365, 2682, 2481, 11, 657, 13, 940, 2682, 11, 657, 13, 2713, 8628, 4531, 23539, 12962, 198, 220, 220, 220, 13163, 41420, 57, 62, 1462, 62, 52, 7902, 7, 34278, 57, 8, 220, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 7177, 26933, 657, 13, 2998, 46951, 2816, 986, 11, 220, 657, 13, 940, 2682, 220, 220, 220, 837, 220, 657, 13, 1065, 1507, 22800, 986, 12962, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1395, 11, 575, 11, 1168, 796, 45941, 13, 25843, 7, 34278, 57, 8, 628, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 17, 1220, 513, 1635, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 1220, 362, 1635, 13841, 55, 1343, 513, 1635, 575, 1343, 1168, 8, 12962, 628, 198, 4299, 49553, 62, 1462, 62, 34278, 57, 7, 52, 30133, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 422, 1635, 34, 10008, 49553, 9, 9568, 13200, 284, 1635, 34, 10008, 41420, 57, 9, 9568, 13200, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 22033, 54, 1058, 7177, 62, 2339, 11, 357, 18, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 34, 10008, 49553, 9, 9568, 13200, 17593, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 299, 67, 18747, 11, 357, 18, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 34, 10008, 41420, 57, 9, 9568, 13200, 17593, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 532, 220, 220, 23412, 1635, 34, 10008, 49553, 9, 9568, 13200, 17593, 318, 287, 7386, 685, 15, 11, 352, 4083, 198, 220, 220, 220, 532, 220, 220, 25235, 1635, 34, 10008, 41420, 57, 9, 9568, 13200, 17593, 318, 287, 7386, 685, 15, 11, 352, 4083, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 18, 60, 220, 2638, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 34, 10008, 62, 38503, 62, 8043, 62, 13200, 2, 6892, 341, 62, 1462, 62, 25690, 6369, 56, 57, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 5956, 17535, 1987, 3945, 1946, 8, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 49553, 796, 45941, 13, 18747, 26933, 15, 13, 2998, 46951, 37864, 11, 657, 13, 940, 2682, 11, 657, 13, 1065, 1507, 1495, 1959, 12962, 198, 220, 220, 220, 13163, 49553, 62, 1462, 62, 34278, 57, 7, 52, 7902, 8, 220, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 7177, 26933, 657, 13, 1157, 1795, 46239, 986, 11, 220, 657, 13, 940, 2682, 220, 220, 220, 837, 220, 657, 13, 2713, 8628, 4531, 986, 12962, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 471, 11, 569, 11, 370, 796, 45941, 13, 25843, 7, 52, 30133, 8, 628, 220, 220, 220, 1441, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 18, 1220, 362, 1635, 471, 11, 569, 11, 513, 1220, 362, 1635, 471, 532, 357, 18, 1635, 569, 8, 1343, 357, 17, 1635, 370, 8, 12962, 628, 198, 4299, 49553, 62, 1462, 62, 14795, 7, 52, 30133, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 1635, 14795, 9, 15358, 1512, 414, 22715, 422, 1813, 1635, 34, 10008, 49553, 9, 9568, 13200, 198, 220, 220, 220, 17593, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 22033, 54, 1058, 7177, 62, 2339, 11, 357, 18, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 34, 10008, 49553, 9, 9568, 13200, 17593, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 14795, 9, 15358, 1512, 414, 22715, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 532, 220, 220, 23412, 1635, 34, 10008, 49553, 9, 9568, 13200, 17593, 318, 287, 7386, 685, 15, 11, 352, 4083, 198, 220, 220, 220, 532, 220, 220, 25235, 1635, 14795, 9, 15358, 1512, 414, 22715, 389, 287, 7386, 685, 15, 11, 352, 4083, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 19, 60, 220, 2638, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 34, 10008, 62, 38503, 62, 8043, 62, 13200, 2, 6892, 341, 62, 1462, 62, 25690, 6369, 56, 57, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 5956, 17535, 1987, 3945, 1946, 8, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 49553, 796, 45941, 13, 18747, 26933, 15, 13, 1157, 1795, 3365, 2682, 2481, 11, 657, 13, 940, 2682, 11, 657, 13, 2713, 8628, 4531, 23539, 12962, 198, 220, 220, 220, 13163, 49553, 62, 1462, 62, 14795, 7, 52, 7902, 8, 220, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 357, 15, 13, 3559, 1731, 17032, 986, 11, 657, 13, 2718, 3459, 830, 23029, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 471, 11, 569, 11, 370, 796, 45941, 13, 25843, 7, 52, 30133, 8, 628, 220, 220, 220, 1441, 471, 1220, 357, 52, 1343, 569, 1343, 370, 828, 569, 1220, 357, 52, 1343, 569, 1343, 370, 8, 628, 198, 4299, 49553, 62, 14795, 62, 1462, 62, 5431, 7, 14795, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 1635, 5431, 9, 15358, 1512, 414, 22715, 422, 1813, 1635, 34, 10008, 49553, 9, 9568, 13200, 198, 220, 220, 220, 1635, 14795, 9, 15358, 1512, 414, 22715, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 334, 85, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 34, 10008, 49553, 334, 85, 9, 15358, 1512, 414, 22715, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 5431, 9, 15358, 1512, 414, 22715, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 532, 220, 220, 23412, 1635, 14795, 9, 15358, 1512, 414, 22715, 389, 287, 7386, 685, 15, 11, 352, 4083, 198, 220, 220, 220, 532, 220, 220, 25235, 1635, 5431, 9, 15358, 1512, 414, 22715, 389, 287, 7386, 685, 15, 11, 352, 4083, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 20, 60, 220, 2638, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 34, 10008, 62, 38503, 62, 8043, 62, 13200, 2, 6892, 341, 62, 1462, 62, 25690, 6369, 56, 57, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 5956, 17535, 1987, 3945, 1946, 8, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 334, 85, 796, 357, 15, 13, 3559, 1731, 24214, 2079, 4051, 1238, 38205, 11, 657, 13, 2718, 3459, 10535, 36445, 3682, 8, 198, 220, 220, 220, 13163, 49553, 62, 14795, 62, 1462, 62, 5431, 7, 14795, 8, 220, 1303, 10412, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 357, 15, 13, 24038, 1954, 4521, 986, 11, 657, 13, 39226, 3865, 940, 23029, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 357, 18, 1635, 334, 85, 58, 15, 60, 1220, 357, 17, 1635, 334, 85, 58, 15, 60, 532, 807, 1635, 334, 85, 58, 16, 60, 1343, 604, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1635, 334, 85, 58, 16, 60, 1220, 357, 17, 1635, 334, 85, 58, 15, 60, 532, 807, 1635, 334, 85, 58, 16, 60, 1343, 604, 4008, 198 ]
2.226277
2,055
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence # from config import burn_in_length
[ 11748, 299, 32152, 355, 45941, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 6738, 28034, 13, 20471, 13, 26791, 13, 81, 20471, 1330, 14841, 62, 43167, 11, 2353, 62, 79, 29373, 62, 43167, 11, 14841, 62, 34860, 62, 43167, 198, 198, 2, 422, 4566, 1330, 4245, 62, 259, 62, 13664, 198 ]
3.212121
66
import psutil import time import GPUtil import csv import pandas as pd # process_name = 'LiDAR360.exe' name = psutil.Process(15500) name_1 = psutil.Process(9996) name_2 = psutil.Process(1476) name_3 = psutil.Process(14976) print(name.pid) # print("Hello") sleep_time = 2 mins = 60 # start = time.time() with open('Resource_Usage3.csv', 'w') as f: header = ['PID','Process Name', 'CPU Usage', 'GPU Usage', 'Memory Usage','IO_Usage','Timestamp'] writer = csv.writer(f) writer.writerow(header) lst_name = [name,name_1,name_2,name_3] for i in range(int(mins*60/sleep_time)): for j in range(len(lst_name)): count = 0 cpu_total = 0 cpu_usage, process_name, memory_usage, io_usage, gpu_usage,pid = res_info(lst_name[j]) cpu_total =+cpu_usage lst_info = [pid,process_name, cpu_usage, gpu_usage, memory_usage, io_usage,time.time()] print("Process Name: " + str(process_name)) print("CPU Usage: " + str(cpu_usage)) print("memory_usage: " + str(memory_usage)) print("IO Usage: " + str(io_usage)) print("GPU Usage: " + str(gpu_usage)) count =+ 1 if count == 4: print("Total CPU: "+str(cpu_total)) print("----------------------------") # with open('Resource_Usage3.csv', 'a', newline='') as d: # writer = csv.writer(d) # writer.writerow(lst_info) # # writer.writerow([]) # if count == 4: # cpu_total = 0 # count = 0 # # del lst_info # time.sleep(sleep_time) # # df = pd.read_csv('Resource_Usage3.csv') # # for i in range(4): # name = 'PID'+str(i) # df[name]='' # # for i in range(4): # if i == 1: # df['PID1'] = df.loc[df['PID']==df['PID'][0],'CPU Usage'].sum # for i in range(int((mins * 60) / sleep_time)): # cpu = name.cpu_percent(interval=2) / psutil.cpu_count() # name1 = name.name() # memory = name.memory_percent() # # print("Name % = " + str(name1)) # abc = GPUtil.showUtilization(useOldCode=True) # print(abc) # # print(GPUtil.showUtilization()) # print("CPU % = " + str(cpu)) # print("Memory % = " + str(memory)) # # print("----------------------") # lst = [name1, cpu, abc, memory] # with open('Resource_Usage.csv', 'a', newline='') as d: # writer = csv.writer(d) # writer.writerow(lst) # del lst # for creating list for new row entry # time.sleep(sleep_time)
[ 11748, 26692, 22602, 201, 198, 11748, 640, 201, 198, 11748, 11362, 47163, 201, 198, 11748, 269, 21370, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 2, 1429, 62, 3672, 796, 705, 32304, 35, 1503, 15277, 13, 13499, 6, 201, 198, 3672, 796, 26692, 22602, 13, 18709, 7, 1314, 4059, 8, 201, 198, 3672, 62, 16, 796, 26692, 22602, 13, 18709, 7, 2079, 4846, 8, 201, 198, 3672, 62, 17, 796, 26692, 22602, 13, 18709, 7, 1415, 4304, 8, 201, 198, 3672, 62, 18, 796, 26692, 22602, 13, 18709, 7, 19442, 4304, 8, 201, 198, 201, 198, 4798, 7, 3672, 13, 35317, 8, 201, 198, 2, 3601, 7203, 15496, 4943, 201, 198, 42832, 62, 2435, 796, 362, 201, 198, 42951, 796, 3126, 201, 198, 2, 923, 796, 640, 13, 2435, 3419, 201, 198, 4480, 1280, 10786, 26198, 62, 28350, 18, 13, 40664, 3256, 705, 86, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 13639, 796, 37250, 47, 2389, 41707, 18709, 6530, 3256, 705, 36037, 29566, 3256, 705, 33346, 29566, 3256, 705, 30871, 29566, 41707, 9399, 62, 28350, 41707, 14967, 27823, 20520, 201, 198, 220, 220, 220, 6260, 796, 269, 21370, 13, 16002, 7, 69, 8, 201, 198, 220, 220, 220, 6260, 13, 16002, 322, 7, 25677, 8, 201, 198, 201, 198, 75, 301, 62, 3672, 796, 685, 3672, 11, 3672, 62, 16, 11, 3672, 62, 17, 11, 3672, 62, 18, 60, 201, 198, 201, 198, 201, 198, 1640, 1312, 287, 2837, 7, 600, 7, 42951, 9, 1899, 14, 42832, 62, 2435, 8, 2599, 201, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 7, 75, 301, 62, 3672, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 62, 23350, 796, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 62, 26060, 11, 1429, 62, 3672, 11, 4088, 62, 26060, 11, 33245, 62, 26060, 11, 308, 19944, 62, 26060, 11, 35317, 796, 581, 62, 10951, 7, 75, 301, 62, 3672, 58, 73, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 62, 23350, 796, 10, 36166, 62, 26060, 201, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 62, 10951, 796, 685, 35317, 11, 14681, 62, 3672, 11, 42804, 62, 26060, 11, 308, 19944, 62, 26060, 11, 4088, 62, 26060, 11, 33245, 62, 26060, 11, 2435, 13, 2435, 3419, 60, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18709, 6530, 25, 366, 1343, 965, 7, 14681, 62, 3672, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 36037, 29566, 25, 366, 1343, 965, 7, 36166, 62, 26060, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 31673, 62, 26060, 25, 366, 1343, 965, 7, 31673, 62, 26060, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9399, 29566, 25, 366, 1343, 965, 7, 952, 62, 26060, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33346, 29566, 25, 366, 1343, 965, 7, 46999, 62, 26060, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 10, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 6624, 604, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14957, 9135, 25, 43825, 2536, 7, 36166, 62, 23350, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1783, 10541, 4943, 201, 198, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 10786, 26198, 62, 28350, 18, 13, 40664, 3256, 705, 64, 3256, 649, 1370, 28, 7061, 8, 355, 288, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 269, 21370, 13, 16002, 7, 67, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 7, 75, 301, 62, 10951, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6260, 13, 16002, 322, 26933, 12962, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 6624, 604, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42804, 62, 23350, 796, 657, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 300, 301, 62, 10951, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 42832, 62, 2435, 8, 201, 198, 2, 201, 198, 2, 47764, 796, 279, 67, 13, 961, 62, 40664, 10786, 26198, 62, 28350, 18, 13, 40664, 11537, 201, 198, 2, 201, 198, 2, 329, 1312, 287, 2837, 7, 19, 2599, 201, 198, 2, 220, 220, 220, 220, 1438, 796, 705, 47, 2389, 6, 10, 2536, 7, 72, 8, 201, 198, 2, 220, 220, 220, 220, 47764, 58, 3672, 22241, 7061, 201, 198, 2, 201, 198, 2, 329, 1312, 287, 2837, 7, 19, 2599, 201, 198, 2, 220, 220, 220, 220, 611, 1312, 6624, 352, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 17816, 47, 2389, 16, 20520, 796, 47764, 13, 17946, 58, 7568, 17816, 47, 2389, 20520, 855, 7568, 17816, 47, 2389, 6, 7131, 15, 60, 4032, 36037, 29566, 6, 4083, 16345, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 2, 329, 1312, 287, 2837, 7, 600, 19510, 42951, 1635, 3126, 8, 1220, 3993, 62, 2435, 8, 2599, 201, 198, 2, 220, 220, 220, 220, 42804, 796, 1438, 13, 36166, 62, 25067, 7, 3849, 2100, 28, 17, 8, 1220, 26692, 22602, 13, 36166, 62, 9127, 3419, 201, 198, 2, 220, 220, 220, 220, 1438, 16, 796, 1438, 13, 3672, 3419, 201, 198, 2, 220, 220, 220, 220, 4088, 796, 1438, 13, 31673, 62, 25067, 3419, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 3601, 7203, 5376, 4064, 796, 366, 1343, 965, 7, 3672, 16, 4008, 201, 198, 2, 220, 220, 220, 220, 450, 66, 796, 11362, 47163, 13, 12860, 18274, 346, 1634, 7, 1904, 19620, 10669, 28, 17821, 8, 201, 198, 2, 220, 220, 220, 220, 3601, 7, 39305, 8, 201, 198, 2, 220, 220, 220, 220, 1303, 3601, 7, 33346, 47163, 13, 12860, 18274, 346, 1634, 28955, 201, 198, 2, 220, 220, 220, 220, 3601, 7203, 36037, 4064, 796, 366, 1343, 965, 7, 36166, 4008, 201, 198, 2, 220, 220, 220, 220, 3601, 7203, 30871, 4064, 796, 366, 1343, 965, 7, 31673, 4008, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 3601, 7203, 19351, 438, 4943, 201, 198, 2, 220, 220, 220, 220, 300, 301, 796, 685, 3672, 16, 11, 42804, 11, 450, 66, 11, 4088, 60, 201, 198, 2, 220, 220, 220, 220, 351, 1280, 10786, 26198, 62, 28350, 13, 40664, 3256, 705, 64, 3256, 649, 1370, 28, 7061, 8, 355, 288, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 269, 21370, 13, 16002, 7, 67, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 7, 75, 301, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 300, 301, 220, 1303, 329, 4441, 1351, 329, 649, 5752, 5726, 201, 198, 2, 220, 220, 220, 220, 640, 13, 42832, 7, 42832, 62, 2435, 8, 201, 198, 201, 198, 201, 198 ]
2.039185
1,276
#!/usr/bin/env python # Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START imports] import os import urllib from google.appengine.api import users from google.appengine.ext import ndb import jinja2 import webapp2 JINJA_ENVIRONMENT = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(__file__)), extensions=['jinja2.ext.autoescape'], autoescape=True) # [END imports] DEFAULT_GENRE = 'action' genrer = "" genre2 = "" # We set a parent key on the 'Greetings' to ensure that they are all # in the same entity group. Queries across the single entity group # will be consistent. However, the write rate should be limited to # ~1/second. def genre_key(genre=DEFAULT_GENRE): """Constructs a Datastore key for a Guestbook entity. We use guestbook_name as the key. """ return ndb.Key('Guestbook', genre) # [START Movie] class Author(ndb.Model): """Sub model for representing an author.""" identity = ndb.StringProperty(indexed=False) email = ndb.StringProperty(indexed=False) class Movie(ndb.Model): """A main model for representing an individual movie entry.""" author = ndb.StructuredProperty(Author) name = ndb.StringProperty(indexed=False) director = ndb.StringProperty(indexed=False) actor = ndb.StringProperty(indexed=False) actor2 = ndb.StringProperty(indexed=False) year = ndb.StringProperty(indexed=False) duration = ndb.StringProperty(indexed=False) date = ndb.DateTimeProperty(auto_now_add=True) # [END Movie] # [START main_page] # [END main_page] # [START movieinfo] # [START app] app = webapp2.WSGIApplication([ ('/', MainPager), ('/sign', DisplayPage),('/search', SearchPage),('/enter', EnterPage), ], debug=True) # [END app]
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 15069, 1584, 3012, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 2, 685, 2257, 7227, 17944, 60, 198, 11748, 28686, 198, 11748, 2956, 297, 571, 198, 198, 6738, 23645, 13, 1324, 18392, 13, 15042, 1330, 2985, 198, 6738, 23645, 13, 1324, 18392, 13, 2302, 1330, 299, 9945, 198, 198, 11748, 474, 259, 6592, 17, 198, 11748, 3992, 1324, 17, 198, 198, 41, 1268, 37048, 62, 1677, 53, 4663, 1340, 10979, 796, 474, 259, 6592, 17, 13, 31441, 7, 198, 220, 220, 220, 40213, 28, 18594, 6592, 17, 13, 8979, 11964, 17401, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 198, 220, 220, 220, 18366, 28, 17816, 18594, 6592, 17, 13, 2302, 13, 2306, 3028, 36435, 6, 4357, 198, 220, 220, 220, 1960, 3028, 36435, 28, 17821, 8, 198, 2, 685, 10619, 17944, 60, 198, 198, 7206, 38865, 62, 35353, 2200, 796, 705, 2673, 6, 198, 5235, 11751, 796, 13538, 198, 35850, 17, 796, 13538, 198, 198, 2, 775, 900, 257, 2560, 1994, 319, 262, 705, 38, 46648, 6, 284, 4155, 326, 484, 389, 477, 198, 2, 287, 262, 976, 9312, 1448, 13, 2264, 10640, 1973, 262, 2060, 9312, 1448, 198, 2, 481, 307, 6414, 13, 2102, 11, 262, 3551, 2494, 815, 307, 3614, 284, 198, 2, 5299, 16, 14, 12227, 13, 198, 198, 4299, 12121, 62, 2539, 7, 35850, 28, 7206, 38865, 62, 35353, 2200, 2599, 198, 220, 220, 220, 37227, 42316, 82, 257, 16092, 459, 382, 1994, 329, 257, 22358, 2070, 9312, 13, 198, 220, 220, 220, 775, 779, 8319, 2070, 62, 3672, 355, 262, 1994, 13, 198, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 299, 9945, 13, 9218, 10786, 42481, 2070, 3256, 12121, 8, 628, 198, 2, 685, 2257, 7227, 15875, 60, 198, 4871, 6434, 7, 358, 65, 13, 17633, 2599, 198, 220, 220, 220, 37227, 7004, 2746, 329, 10200, 281, 1772, 526, 15931, 198, 220, 220, 220, 5369, 796, 299, 9945, 13, 10100, 21746, 7, 9630, 276, 28, 25101, 8, 198, 220, 220, 220, 3053, 796, 299, 9945, 13, 10100, 21746, 7, 9630, 276, 28, 25101, 8, 628, 198, 4871, 15875, 7, 358, 65, 13, 17633, 2599, 198, 220, 220, 220, 37227, 32, 1388, 2746, 329, 10200, 281, 1981, 3807, 5726, 526, 15931, 198, 220, 220, 220, 1772, 796, 299, 9945, 13, 44909, 1522, 21746, 7, 13838, 8, 198, 220, 220, 220, 1438, 796, 299, 9945, 13, 10100, 21746, 7, 9630, 276, 28, 25101, 8, 198, 220, 220, 220, 3437, 796, 299, 9945, 13, 10100, 21746, 7, 9630, 276, 28, 25101, 8, 198, 220, 220, 220, 8674, 796, 299, 9945, 13, 10100, 21746, 7, 9630, 276, 28, 25101, 8, 198, 220, 220, 220, 8674, 17, 796, 299, 9945, 13, 10100, 21746, 7, 9630, 276, 28, 25101, 8, 198, 220, 220, 220, 614, 796, 299, 9945, 13, 10100, 21746, 7, 9630, 276, 28, 25101, 8, 198, 220, 220, 220, 9478, 796, 299, 9945, 13, 10100, 21746, 7, 9630, 276, 28, 25101, 8, 198, 220, 220, 220, 3128, 796, 299, 9945, 13, 10430, 7575, 21746, 7, 23736, 62, 2197, 62, 2860, 28, 17821, 8, 198, 2, 685, 10619, 15875, 60, 628, 628, 198, 198, 2, 685, 2257, 7227, 1388, 62, 7700, 60, 198, 2, 685, 10619, 1388, 62, 7700, 60, 628, 198, 2, 685, 2257, 7227, 3807, 10951, 60, 628, 198, 198, 2, 685, 2257, 7227, 598, 60, 198, 1324, 796, 3992, 1324, 17, 13, 19416, 38, 3539, 381, 10142, 26933, 198, 220, 220, 220, 19203, 14, 3256, 8774, 47, 3536, 828, 198, 220, 220, 220, 19203, 14, 12683, 3256, 16531, 9876, 828, 10786, 14, 12947, 3256, 11140, 9876, 828, 10786, 14, 9255, 3256, 6062, 9876, 828, 198, 4357, 14257, 28, 17821, 8, 198, 2, 685, 10619, 598, 60, 198 ]
2.966321
772
# ____ _ _ # | _ \ _ __ ___ (_) ___ ___| |_ # | |_) | '__/ _ \| |/ _ \/ __| __| # | __/| | | (_) | | __/ (__| |_ # |_| _|_| \___// |\___|\___|\__| # | | | | __ _ _|__/ ___| |_ __ _ ___| | __ # | |_| |/ _` | | | / __| __/ _` |/ __| |/ / # | _ | (_| | |_| \__ \ || (_| | (__| < # |_| |_|\__,_|\__, |___/\__\__,_|\___|_|\_\ # |___/ # # QueryShannonEntropyBolt - # # Calculates the shannon entropy of the query minus any known # domain suffix and emits a tuple of the query + shannon entropy # value to the topology as a floating point number. # # from collections import namedtuple import logging import math from pyleus.storm import SimpleBolt from haystack_topology.parse_event_bolt import Record log = logging.getLogger('query_shannon-entropy_bolt') QEntropy = namedtuple("QEntropy", "eventid query qentropy") if __name__ == '__main__': logging.basicConfig( level=logging.DEBUG, filename='/var/log/haystack/query_shannon-entropy_bolt.log', format="%(message)s", filemode='a', ) QueryShannonEntropyBolt().run()
[ 2, 220, 220, 220, 220, 1427, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 220, 220, 220, 198, 2, 220, 220, 930, 220, 4808, 3467, 4808, 11593, 46444, 44104, 8, 46444, 220, 46444, 91, 930, 62, 220, 198, 2, 220, 220, 930, 930, 62, 8, 930, 705, 834, 14, 4808, 3467, 91, 930, 14, 4808, 3467, 14, 11593, 91, 11593, 91, 198, 2, 220, 220, 930, 220, 11593, 14, 91, 930, 930, 44104, 8, 930, 930, 220, 11593, 14, 357, 834, 91, 930, 62, 220, 198, 2, 220, 220, 930, 62, 91, 220, 4808, 91, 62, 91, 220, 3467, 17569, 1003, 930, 59, 17569, 91, 59, 17569, 91, 59, 834, 91, 198, 2, 220, 220, 930, 930, 930, 930, 11593, 4808, 4808, 91, 834, 14, 46444, 91, 930, 62, 11593, 4808, 220, 46444, 91, 930, 11593, 198, 2, 220, 220, 930, 930, 62, 91, 930, 14, 4808, 63, 930, 930, 930, 1220, 11593, 91, 11593, 14, 4808, 63, 930, 14, 11593, 91, 930, 14, 1220, 198, 2, 220, 220, 930, 220, 4808, 220, 930, 44104, 91, 930, 930, 62, 91, 3467, 834, 3467, 8614, 44104, 91, 930, 357, 834, 91, 220, 220, 1279, 220, 198, 2, 220, 220, 930, 62, 91, 930, 62, 91, 59, 834, 11, 62, 91, 59, 834, 11, 930, 17569, 14, 59, 834, 59, 834, 11, 62, 91, 59, 17569, 91, 62, 91, 59, 62, 59, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 17569, 14, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 198, 2, 43301, 2484, 8825, 14539, 28338, 33, 5978, 532, 198, 2, 220, 198, 2, 27131, 689, 262, 427, 8825, 40709, 286, 262, 12405, 20208, 597, 1900, 198, 2, 7386, 35488, 290, 48300, 257, 46545, 286, 262, 12405, 1343, 427, 8825, 40709, 220, 198, 2, 1988, 284, 262, 1353, 1435, 355, 257, 12462, 966, 1271, 13, 198, 2, 198, 2, 198, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 11748, 18931, 198, 11748, 10688, 198, 198, 6738, 279, 2349, 385, 13, 12135, 1330, 17427, 33, 5978, 198, 198, 6738, 27678, 25558, 62, 4852, 1435, 13, 29572, 62, 15596, 62, 25593, 1330, 13266, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 10786, 22766, 62, 1477, 8825, 12, 298, 28338, 62, 25593, 11537, 198, 198, 48, 14539, 28338, 796, 3706, 83, 29291, 7203, 48, 14539, 28338, 1600, 366, 15596, 312, 12405, 10662, 298, 28338, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 6404, 2667, 13, 30531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 11639, 14, 7785, 14, 6404, 14, 71, 323, 25558, 14, 22766, 62, 1477, 8825, 12, 298, 28338, 62, 25593, 13, 6404, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 5794, 2625, 4, 7, 20500, 8, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 14171, 11639, 64, 3256, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 43301, 2484, 8825, 14539, 28338, 33, 5978, 22446, 5143, 3419, 628 ]
2.107078
551
# (C) Copyright 2017 IBM Corp. # (C) Copyright 2017 Inova Development Inc. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Mixin class that adds methods to WBEMConnection and FakeWBEMConnection for pywbemcli usage This contains only methods that use the iter<...> operations but also execute the complete iterations so that we can use these as common operations for pywbemcli instead of having to execute an algorithm of pull vs non-pull everywhere xa WBEMConnection possible pull operation is called. It also adds a method to FakeWBEMConnection to build the repository. """ from __future__ import absolute_import, print_function import os import io import errno import glob import hashlib import pickle import click import packaging.version import pywbem import pywbem_mock from .config import DEFAULT_MAXPULLCNT from .._utils import ensure_bytes, ensure_unicode, DEFAULT_CONNECTIONS_FILE from . import mockscripts PYWBEM_VERSION = packaging.version.parse(pywbem.__version__) # __all__ = ['PYWBEMCLIConnection', 'PYWBEMCLIFakedConnection'] # pylint: disable=useless-object-inheritance class PYWBEMCLIConnectionMixin(object): """ Mixin class to extend WBEMConnection with a set of methods that use the iter<...> methods as the basis for getting Instances, etc. but add the generator processing to retrieve the instances. These can be used within pywbemcli to allow one method call to ack as either a pull or traditional operation pushing the differences into this mixin. These methods do not resolve the core issues between the traditional and pull operations such as the fact that only the pull operations pass the FilterQuery parameter. They are a pywbemcli convience to simplify the individual action processing methods to a single call. """ def PyWbemcliEnumerateInstancePaths(self, ClassName, namespace=None, FilterQueryLanguage=None, FilterQuery=None, OperationTimeout=None, ContinueOnError=None, MaxObjectCount=DEFAULT_MAXPULLCNT, **extra): # pylint: disable=unused-argument # pylint: disable=invalid-name """ Execute IterEnumerateInstancePaths and retrieve the instances. Returns the returned instances. Uses the same parameters as the IterEnumerateInstancePaths method. All exceptions from the underlying command are passed through this method. """ result = self.IterEnumerateInstancePaths( ClassName, namespace=namespace, FilterQueryLanguage=FilterQueryLanguage, FilterQuery=FilterQuery, OperationTimeout=OperationTimeout, ContinueOnError=ContinueOnError, MaxObjectCount=MaxObjectCount) return list(result) def PyWbemcliEnumerateInstances(self, ClassName, namespace=None, LocalOnly=None, DeepInheritance=None, IncludeQualifiers=None, IncludeClassOrigin=None, PropertyList=None, FilterQueryLanguage=None, FilterQuery=None, OperationTimeout=None, ContinueOnError=None, MaxObjectCount=DEFAULT_MAXPULLCNT, **extra): # pylint: disable=unused-argument # pylint: disable=invalid-name """ Execute IterEnumerateInstances and retrieve the instances. Returns the returned instances. Uses the same parameters as the IterEnumerateInstances method. All exceptions from the underlying method are passed through this method. """ result = self.IterEnumerateInstances( ClassName, namespace=namespace, LocalOnly=LocalOnly, DeepInheritance=DeepInheritance, IncludeQualifiers=IncludeQualifiers, IncludeClassOrigin=IncludeClassOrigin, PropertyList=PropertyList, FilterQueryLanguage=FilterQueryLanguage, FilterQuery=FilterQuery, OperationTimeout=OperationTimeout, ContinueOnError=ContinueOnError, MaxObjectCount=MaxObjectCount) return list(result) def PyWbemcliReferenceInstancePaths(self, InstanceName, ResultClass=None, Role=None, FilterQueryLanguage=None, FilterQuery=None, OperationTimeout=None, ContinueOnError=None, MaxObjectCount=DEFAULT_MAXPULLCNT, **extra): # pylint: disable=unused-argument # pylint: disable=invalid-name """ Execute IterReferemceInstancePaths and retrieve the instances. Returns the paths that result from iterating the IterReferenceInstancePaths. Uses the same parameters as the IterReferemceInstancePaths method. All exceptions from the underlying method are passed through this method. """ result = self.IterReferenceInstancePaths( InstanceName, ResultClass=ResultClass, Role=Role, FilterQueryLanguage=FilterQueryLanguage, FilterQuery=FilterQuery, OperationTimeout=OperationTimeout, ContinueOnError=ContinueOnError, MaxObjectCount=MaxObjectCount) return list(result) def PyWbemcliReferenceInstances(self, InstanceName, ResultClass=None, Role=None, IncludeQualifiers=None, IncludeClassOrigin=None, PropertyList=None, FilterQueryLanguage=None, FilterQuery=None, OperationTimeout=None, ContinueOnError=None, MaxObjectCount=DEFAULT_MAXPULLCNT, **extra): # pylint: disable=unused-argument # pylint: disable=invalid-name """ Execute IterReferencesInstances and retrieve the instances. Returns the returned instances. Uses the same parameters as the IterReferencesInstances method. All exceptions from the underlying method are passed through this method. """ result = self.IterReferenceInstances( InstanceName, ResultClass=ResultClass, Role=Role, IncludeQualifiers=IncludeQualifiers, IncludeClassOrigin=IncludeClassOrigin, PropertyList=PropertyList, FilterQueryLanguage=FilterQueryLanguage, FilterQuery=FilterQuery, OperationTimeout=OperationTimeout, ContinueOnError=ContinueOnError, MaxObjectCount=MaxObjectCount) return list(result) def PyWbemcliAssociatorInstancePaths(self, InstanceName, AssocClass=None, ResultClass=None, Role=None, ResultRole=None, FilterQueryLanguage=None, FilterQuery=None, OperationTimeout=None, ContinueOnError=None, MaxObjectCount=DEFAULT_MAXPULLCNT, **extra): # pylint: disable=unused-argument # pylint: disable=invalid-name """ Execute IterAssociatorInstancePaths and retrieve the paths. Returns the paths that result from iterating the IterAssociatorInstancePaths. Uses the same parameters as the IterAssociatorInstancePaths method. All exceptions from the underlying method are passed through this method. """ result = self.IterAssociatorInstancePaths( InstanceName, AssocClass=AssocClass, ResultClass=ResultClass, Role=Role, ResultRole=ResultRole, FilterQueryLanguage=FilterQueryLanguage, FilterQuery=FilterQuery, OperationTimeout=OperationTimeout, ContinueOnError=ContinueOnError, MaxObjectCount=MaxObjectCount) return list(result) def PyWbemcliAssociatorInstances(self, InstanceName, AssocClass=None, ResultClass=None, Role=None, ResultRole=None, IncludeQualifiers=None, IncludeClassOrigin=None, PropertyList=None, FilterQueryLanguage=None, FilterQuery=None, OperationTimeout=None, ContinueOnError=None, MaxObjectCount=DEFAULT_MAXPULLCNT, **extra): # pylint: disable=unused-argument # pylint: disable=invalid-name """ Execute IterAssociatorInstances and retrieve the instances. Returns the instances that result from iterating the IterAssociatorInstances. Uses the same parameters as the IterAssociatorInstances method. All exceptions from the underlying method are passed through this method. """ result = self.IterAssociatorInstances( InstanceName, AssocClass=AssocClass, ResultClass=ResultClass, Role=Role, ResultRole=ResultRole, IncludeQualifiers=IncludeQualifiers, IncludeClassOrigin=IncludeClassOrigin, PropertyList=PropertyList, FilterQueryLanguage=FilterQueryLanguage, FilterQuery=FilterQuery, OperationTimeout=OperationTimeout, ContinueOnError=ContinueOnError, MaxObjectCount=MaxObjectCount) return list(result) def PyWbemcliQueryInstances(self, FilterQueryLanguage, FilterQuery, namespace=None, ReturnQueryResultClass=None, OperationTimeout=None, ContinueOnError=None, MaxObjectCount=DEFAULT_MAXPULLCNT, **extra): # pylint: disable=unused-argument # pylint: disable=invalid-name """ Execute IterQueryInstances and retrieve the instances. Returns the instances that result from iterating the IterQueryInstances. Uses the same parameters as the IterQueryInstances method. All exceptions from the underlying method are passed through this method. """ result = self.IterQueryInstances( FilterQueryLanguage, FilterQuery, namespace=namespace, ReturnQueryResultClass=ReturnQueryResultClass, OperationTimeout=OperationTimeout, ContinueOnError=ContinueOnError, MaxObjectCount=MaxObjectCount) return list(result) class BuildMockenvMixin(object): # pylint: disable=too-few-public-methods """ Mixin class for pywbem_mock.FakedWBEMConnection that adds the ability to build the mock environment of a connection from a connection definition in a connections file. """ def build_mockenv(self, server, file_path_list, connections_file, connection_name, verbose): """ Builds the mock environment of the 'self' connection from the input files, or from the mock cache of the connection if it is up to date. If the mock environment was built from the input files, the mock environment of the connection is dumped to its cache. The input files for building the mock environment are: * MOF files with a suffix of '.mof'. These files are compiled into the default namespace of the connection. * Python files with a suffix of '.py'. These files are mock scripts that are imported and thereby executed. The mock scripts can be used for any kind of setup of the mock environment, for example for creating namespaces, for defining provider classes and registering providers, or for adding CIM objects either directly through add_cimobjects() or by compiling MOF files. Mock scripts support two approaches for passing the connection and server objects they should operate on: * via a setup() function defined in the mock script. This is the recommended approach, and it supports caching. The setup() function has the following parameters: conn (pywbem_mock.FakedWBEMConnection): The mock connection. server (pywbem.WBEMServer): The server object for the mock connection. verbose (bool): Verbose flag from the command line. * via global variables made available to the mock script. This approach prevents caching. The following global variables are made available: CONN (pywbem_mock.FakedWBEMConnection): The mock connection. SERVER (pywbem.WBEMServer): The server object for the mock connection. VERBOSE (bool): Verbose flag from the command line. Parameters: self (pywbem_mock.FakedWBEMConnection): The mock connection. server (pywbem.WBEMServer): The server object for the mock connection. file_path_list (list of string): The path names of the input files for building the mock environment, from the connection definition. connections_file (string): Path name of the connections file. connection_name (string): The name of the connection definition in the connections file. verbose (bool): Verbose flag from the command line. Raises: MockFileError: Mock file does not exist. MockMOFCompileError: Mock MOF file fails to compile. MockScriptError: Mock script fails to execute. SetupNotSupportedError (py<3.5): New-style setup in mock script not supported. """ # Check that the input files exist. Since we loop through them multiple # times, we check that once. for file_path in file_path_list: if not os.path.exists(file_path): raise mockscripts.MockFileError( "Mock file does not exist: {}".format(file_path)) # The connections file is set if a named connection is used, i.e. # when specifying the -n general option. It is not set when the -s or -m # general options were specified. When no connections file is set, no # caching happens because there is no connection definition context # which is required for caching. if connections_file == DEFAULT_CONNECTIONS_FILE: cache_rootdir = mockcache_rootdir() if not os.path.isdir(cache_rootdir): os.mkdir(cache_rootdir) cache_dir = mockcache_cachedir( cache_rootdir, connections_file, connection_name) if not os.path.isdir(cache_dir): os.mkdir(cache_dir) # The mockenv pickle file contains the pickled state of the mock # environment. mockenv_pickle_file = os.path.join(cache_dir, 'mockenv.pkl') # The depreg pickle file contains the provider dependents # registry of the connection. It is used to look up the dependent # files of a mock script. The content of these dependent files is # also taken into account when determining whether the cache is up # to date. This needs to go into a separate pickle file because # it needs to be loaded and examined before the mckenv pickle # file is loaded. depreg_pickle_file = os.path.join(cache_dir, 'depreg.pkl') # The md5 file contains the MD5 hash value of the content of the # input files for the mock environment, and also taken into account # when determining whether the cache is up to date. md5_file = os.path.join(cache_dir, 'mockfiles.md5') # Flag indicating that the mock environment needs to be built # (or re-built). If False, the mock environment cache can be used. need_rebuild = False # Determine whether the mock environment needs to be rebuilt based # on the (non-)existence of the cache files. if not os.path.isfile(mockenv_pickle_file) \ or not os.path.isfile(depreg_pickle_file) \ or not os.path.isfile(md5_file): if verbose: click.echo("Mock environment for connection definition " "'{}' will be built because it was not cached.". format(connection_name)) need_rebuild = True try: depreg = self._load_depreg(depreg_pickle_file) except (IOError, OSError) as exc: if exc.errno == errno.ENOENT: depreg = pywbem_mock.ProviderDependentRegistry() else: raise # Calculate the MD5 hash value of the content of the input files md5 = hashlib.md5() for file_path in file_path_list: with io.open(file_path, 'rb') as fp: file_source = fp.read() md5.update(file_source) # For mock scripts, take their dependent files into account if file_path.endswith('.py'): dep_files = depreg.iter_dependents(file_path) for dep_file in dep_files: with io.open(dep_file, 'rb') as fp: file_source = fp.read() md5.update(file_source) # Add the cache dir, so that manual tweaks on the cache files # invalidates the cache. md5.update(ensure_bytes(cache_dir)) new_md5_value = ensure_unicode(md5.hexdigest()) # Determine whether the mock environment needs to be rebuilt based # on the MD5 hash value of the input file content. if not need_rebuild: with io.open(md5_file, 'r', encoding='utf-8') as fp: cached_md5_value = fp.read() if new_md5_value != cached_md5_value: if verbose: click.echo("Mock environment for connection " "definition '{}' is cached but will be " "rebuilt because the mock files have " "changed.".format(connection_name)) need_rebuild = True cache_it = True elif connections_file: # User-specified connections file used. if verbose: click.echo("Mock environment for connection definition '{}' " "will be built because user-specified connections " "files are not cached.".format(connection_name)) need_rebuild = True cache_it = False else: # No connections file context. if verbose: click.echo("Mock environment for connection definition '{}' " "will be built because no connections file is " "known.".format(connection_name)) need_rebuild = True cache_it = False if need_rebuild: try: self._build_mockenv(server, file_path_list, verbose) except mockscripts.NotCacheable as exc: if verbose: click.echo("Mock environment for connection definition " "'{}' will be built because it is not " "cacheable: {}.".format(connection_name, exc)) else: if connections_file and cache_it: self._dump_mockenv(mockenv_pickle_file) self._dump_depreg( self.provider_dependent_registry, depreg_pickle_file) with io.open(md5_file, 'w', encoding='utf-8') as fp: fp.write(new_md5_value) if verbose: click.echo("Mock environment for connection " "definition '{}' has been written to " "cache.".format(connection_name)) else: # When no rebuild is needed, there must have been a connections # file set. assert connections_file try: self._load_mockenv(mockenv_pickle_file, file_path_list) if verbose: click.echo("Mock environment for connection definition " "'{}' has been loaded from cache.". format(connection_name)) except mockscripts.NotCacheable as exc: if verbose: click.echo("Mock environment for connection definition " "'{}' will be rebuilt because it is not " "cacheable: {}.".format(connection_name, exc)) self._build_mockenv(server, file_path_list, verbose) def _build_mockenv(self, server, file_path_list, verbose): """ Build the mock environment from the input files. Parameters: self (pywbem_mock.FakedWBEMConnection): The mock connection. server (pywbem.WBEMServer): The server object for the mock connection. file_path_list (list of string): The path names of the input files for building the mock environment, from the connection definition. verbose (bool): Verbose flag from the command line. Raises: NotCacheable (py<3.5): Mock environment is not cacheable. MockMOFCompileError: Mock MOF file fails to compile. MockScriptError: Mock script fails to execute. SetupNotSupportedError (py<3.5): New-style setup in mock script not supported. """ for file_path in file_path_list: ext = os.path.splitext(file_path)[1] if ext == '.mof': try: # Displays any MOFParseError already self.compile_mof_file(file_path, verbose=verbose) except pywbem.Error as er: # Abort the entire pywbemcli command because the # MOF compilation might have caused inconsistencies in # the mock repository. if PYWBEM_VERSION.release >= (1, 0, 0): # display just the exception. msg = "MOF compile failed:\n{0}".format(er) else: # display file name. Error text displayed already. if isinstance(er, pywbem.MOFParseError): msg = "MOF compile failed: File: '{0}'" \ "(see above)".format(file_path) else: # not parse error, display exception msg = "MOF compile failed: File: {0} " \ "Error: {1}".format(file_path, er) new_exc = mockscripts.MockMOFCompileError(msg) new_exc.__cause__ = None raise new_exc else: assert ext == '.py' # already checked # May raise various mockscripts.MockError exceptions. # NotCacheable will be handled by the caller by building the # mock env. mockscripts.setup_script(file_path, self, server, verbose) def _dump_mockenv(self, mockenv_pickle_file): """ Dump the mock environment of the connection to the mockenv pickle file. Parameters: self (pywbem_mock.FakedWBEMConnection): The mock connection. mockenv_pickle_file (pywbem.WBEMServer): Path name of the mockenv pickle file. """ # Save the provider registry and the CIM repository # We construct a single object, because the CIM repository is # referenced from each provider, and pickle properly handles # multiple references to the same object. mockenv = dict( cimrepository=self.cimrepository, # pylint: disable=protected-access provider_registry=self._provider_registry, ) with io.open(mockenv_pickle_file, 'wb') as fp: pickle.dump(mockenv, fp) def _load_mockenv(self, mockenv_pickle_file, file_path_list): """ Load the mock environment from the mockenv pickle file. This method also imports the Python scripts from the input files in order to re-establish any class definitions that may be needed, for example provider classes. Parameters: self (pywbem_mock.FakedWBEMConnection): The mock connection. mockenv_pickle_file (pywbem.WBEMServer): Path name of the mockenv pickle file. file_path_list (list of string): The path names of the input files for building the mock environment, from the connection definition. Raises: NotCacheable (py<3.5): Mock environment is not cacheable. """ # Restore the provider classes for file_path in file_path_list: ext = os.path.splitext(file_path)[1] if ext == '.py': # May raise mockscripts.NotCacheable which will be handled by # the caller by building the mock env. mockscripts.import_script(file_path) # Restore the provider registry and the CIM repository with io.open(mockenv_pickle_file, 'rb') as fp: mockenv = pickle.load(fp) # Others have references to the self._cimrepository object, so we are # not replacing that object, but are rather replacing the state of # that object. cimrepository = mockenv['cimrepository'] assert isinstance(cimrepository, pywbem_mock.InMemoryRepository) # pylint: disable=protected-access self._cimrepository.load(cimrepository) provider_registry = mockenv['provider_registry'] assert isinstance(provider_registry, pywbem_mock.ProviderRegistry) # pylint: disable=protected-access self._provider_registry.load(provider_registry) @staticmethod def _dump_depreg(depreg, depreg_pickle_file): """ Dump a provider dependent registry to a pickle file. Parameters: depreg (pywbem_mock.ProviderDependentRegistry): Provider dependent registry to be dumped. depreg_pickle_file (string): Path name of the pickle file. """ with io.open(depreg_pickle_file, 'wb') as fp: pickle.dump(depreg, fp) @staticmethod def _load_depreg(depreg_pickle_file): """ Load a provider dependent registry from a pickle file and return it. Parameters: depreg_pickle_file (string): Path name of the pickle file to be loaded. Returns: pywbem_mock.ProviderDependentRegistry: Provider dependent registry. """ with io.open(depreg_pickle_file, 'rb') as fp: depreg = pickle.load(fp) return depreg class PYWBEMCLIConnection(pywbem.WBEMConnection, PYWBEMCLIConnectionMixin): """ PyWBEMCLIConnection subclass adds the methods added by PYWBEMCLIConnectionMixin """ def __init__(self, *args, **kwargs): """ ctor passes all input parameters to superclass """ super(PYWBEMCLIConnection, self).__init__(*args, **kwargs) class PYWBEMCLIFakedConnection(BuildMockenvMixin, PYWBEMCLIConnectionMixin, pywbem_mock.FakedWBEMConnection): """ PyWBEMCLIFakedConnection subclass adds the methods added by PYWBEMCLIConnectionMixin """ def __init__(self, *args, **kwargs): """ ctor passes all input parameters to superclass """ super(PYWBEMCLIFakedConnection, self).__init__(*args, **kwargs) def mockcache_rootdir(): """ Return the directory path of the mock cache root directory. """ dir_path = os.path.join(os.path.expanduser('~'), '.pywbemcli_mockcache') return dir_path def mockcache_cachedir(rootdir, connections_file, connection_name): """ Return the directory path of the mock cache directory for a connection. """ # Construct a (reproducible) cache ID from connections file path and # connection definition name. # Example: 6048a3da1a34a3ec605825a1493c7bb5.simple try: connections_file = os.path.relpath( connections_file, os.path.expanduser('~')) except ValueError: # On Windows, os.path.relpath() raises ValueError when the paths # are on different drives pass md5 = hashlib.md5() md5.update(connections_file.encode("utf-8")) cache_id = "{}.{}".format(md5.hexdigest(), connection_name) dir_path = os.path.join(rootdir, cache_id) return dir_path def delete_mock_cache(connections_file, connection_name): """ Delete the mock cache of the connection, if it exists. Parameters: self (pywbem_mock.FakedWBEMConnection): The mock connection. connections_file (string): Path name of the connections file. connection_name (string): The name of the connection definition in the connections file. Raises: OSError: Mock cache cannot be deleted. """ cache_dir = mockcache_cachedir( mockcache_rootdir(), connections_file, connection_name) if os.path.isdir(cache_dir): file_list = glob.glob(os.path.join(cache_dir, '*')) for _file in file_list: os.remove(_file) os.rmdir(cache_dir)
[ 2, 357, 34, 8, 15069, 2177, 19764, 11421, 13, 198, 2, 357, 34, 8, 15069, 2177, 554, 10071, 7712, 3457, 13, 198, 2, 1439, 6923, 33876, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 198, 35608, 259, 1398, 326, 6673, 5050, 284, 36245, 3620, 32048, 290, 33482, 45607, 3620, 32048, 329, 198, 9078, 39346, 368, 44506, 8748, 198, 198, 1212, 4909, 691, 5050, 326, 779, 262, 11629, 27, 986, 29, 4560, 220, 475, 635, 12260, 198, 1169, 1844, 34820, 523, 326, 356, 460, 779, 777, 355, 2219, 4560, 329, 198, 9078, 39346, 368, 44506, 2427, 286, 1719, 284, 12260, 281, 11862, 286, 2834, 3691, 1729, 12, 31216, 198, 16833, 3003, 2124, 64, 36245, 3620, 32048, 1744, 2834, 4905, 318, 1444, 13, 198, 198, 1026, 635, 6673, 257, 2446, 284, 33482, 45607, 3620, 32048, 284, 1382, 262, 16099, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 33245, 198, 11748, 11454, 3919, 198, 11748, 15095, 198, 11748, 12234, 8019, 198, 11748, 2298, 293, 198, 11748, 3904, 198, 11748, 16846, 13, 9641, 198, 11748, 12972, 39346, 368, 198, 11748, 12972, 39346, 368, 62, 76, 735, 198, 198, 6738, 764, 11250, 1330, 5550, 38865, 62, 22921, 5105, 3069, 34, 11251, 198, 6738, 11485, 62, 26791, 1330, 4155, 62, 33661, 11, 4155, 62, 46903, 1098, 11, 5550, 38865, 62, 10943, 48842, 11053, 62, 25664, 198, 6738, 764, 1330, 285, 3320, 6519, 82, 198, 198, 47, 56, 45607, 3620, 62, 43717, 796, 16846, 13, 9641, 13, 29572, 7, 9078, 39346, 368, 13, 834, 9641, 834, 8, 628, 198, 2, 220, 11593, 439, 834, 796, 37250, 47, 56, 45607, 3620, 5097, 2149, 261, 1606, 295, 3256, 705, 47, 56, 45607, 3620, 5097, 5064, 4335, 32048, 20520, 628, 198, 2, 279, 2645, 600, 25, 15560, 28, 84, 10950, 12, 15252, 12, 259, 372, 42942, 198, 4871, 350, 56, 45607, 3620, 5097, 2149, 261, 1606, 295, 35608, 259, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15561, 259, 1398, 284, 9117, 36245, 3620, 32048, 351, 257, 900, 286, 5050, 326, 779, 262, 198, 220, 220, 220, 11629, 27, 986, 29, 5050, 355, 262, 4308, 329, 1972, 2262, 1817, 11, 3503, 13, 475, 751, 262, 198, 220, 220, 220, 17301, 7587, 284, 19818, 262, 10245, 13, 220, 2312, 460, 307, 973, 1626, 198, 220, 220, 220, 12972, 39346, 368, 44506, 284, 1249, 530, 2446, 869, 284, 257, 694, 355, 2035, 257, 2834, 393, 4569, 198, 220, 220, 220, 4905, 7796, 262, 5400, 656, 428, 5022, 259, 13, 628, 220, 220, 220, 2312, 5050, 466, 407, 10568, 262, 4755, 2428, 1022, 262, 4569, 290, 198, 220, 220, 220, 2834, 4560, 884, 355, 262, 1109, 326, 691, 262, 2834, 4560, 1208, 198, 220, 220, 220, 262, 25853, 20746, 11507, 13, 628, 220, 220, 220, 1119, 389, 257, 12972, 39346, 368, 44506, 3063, 1240, 284, 30276, 262, 1981, 2223, 7587, 198, 220, 220, 220, 5050, 284, 257, 2060, 869, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 9485, 54, 65, 368, 44506, 4834, 6975, 378, 33384, 15235, 82, 7, 944, 11, 5016, 5376, 11, 25745, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 7206, 38865, 62, 22921, 5105, 3069, 34, 11251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 26086, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 40806, 4834, 6975, 378, 33384, 15235, 82, 290, 19818, 262, 10245, 13, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4504, 10245, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 976, 10007, 355, 262, 40806, 4834, 6975, 378, 33384, 15235, 82, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1439, 13269, 422, 262, 10238, 3141, 389, 3804, 832, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 29993, 4834, 6975, 378, 33384, 15235, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5016, 5376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 28, 14933, 10223, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 22417, 20746, 32065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 22417, 20746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 32180, 48031, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 29453, 2202, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 11518, 10267, 12332, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 20274, 8, 628, 220, 220, 220, 825, 9485, 54, 65, 368, 44506, 4834, 6975, 378, 6310, 1817, 7, 944, 11, 5016, 5376, 11, 25745, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10714, 10049, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10766, 818, 372, 42942, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 46181, 13350, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 9487, 39688, 28, 14202, 11, 14161, 8053, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 14202, 11, 25853, 20746, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 14202, 11, 10054, 2202, 12331, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 7206, 38865, 62, 22921, 5105, 3069, 34, 11251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 26086, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 40806, 4834, 6975, 378, 6310, 1817, 290, 19818, 262, 10245, 13, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4504, 10245, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 976, 10007, 355, 262, 40806, 4834, 6975, 378, 6310, 1817, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1439, 13269, 422, 262, 10238, 2446, 389, 3804, 832, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 29993, 4834, 6975, 378, 6310, 1817, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5016, 5376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 28, 14933, 10223, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10714, 10049, 28, 14565, 10049, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10766, 818, 372, 42942, 28, 29744, 818, 372, 42942, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 46181, 13350, 28, 818, 9152, 46181, 13350, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 9487, 39688, 28, 818, 9152, 9487, 39688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14161, 8053, 28, 21746, 8053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 22417, 20746, 32065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 22417, 20746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 32180, 48031, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 29453, 2202, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 11518, 10267, 12332, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 20274, 8, 628, 220, 220, 220, 825, 9485, 54, 65, 368, 44506, 26687, 33384, 15235, 82, 7, 944, 11, 2262, 590, 5376, 11, 25414, 9487, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20934, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 7206, 38865, 62, 22921, 5105, 3069, 34, 11251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 26086, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 40806, 8134, 567, 76, 344, 33384, 15235, 82, 290, 19818, 262, 10245, 13, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 262, 13532, 326, 1255, 422, 11629, 803, 262, 40806, 26687, 33384, 15235, 82, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 976, 10007, 355, 262, 40806, 8134, 567, 76, 344, 33384, 15235, 82, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1439, 13269, 422, 262, 10238, 2446, 389, 3804, 832, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 29993, 26687, 33384, 15235, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2262, 590, 5376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 9487, 28, 23004, 9487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20934, 28, 47445, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 22417, 20746, 32065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 22417, 20746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 32180, 48031, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 29453, 2202, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 11518, 10267, 12332, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 20274, 8, 628, 220, 220, 220, 825, 9485, 54, 65, 368, 44506, 26687, 6310, 1817, 7, 944, 11, 2262, 590, 5376, 11, 25414, 9487, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20934, 28, 14202, 11, 40348, 46181, 13350, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 9487, 39688, 28, 14202, 11, 14161, 8053, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 14202, 11, 25853, 20746, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 14202, 11, 10054, 2202, 12331, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 7206, 38865, 62, 22921, 5105, 3069, 34, 11251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 26086, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 40806, 19927, 6310, 1817, 290, 19818, 262, 10245, 13, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4504, 10245, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 976, 10007, 355, 262, 40806, 19927, 6310, 1817, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1439, 13269, 422, 262, 10238, 2446, 389, 3804, 832, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 29993, 26687, 6310, 1817, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2262, 590, 5376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 9487, 28, 23004, 9487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20934, 28, 47445, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 46181, 13350, 28, 818, 9152, 46181, 13350, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 9487, 39688, 28, 818, 9152, 9487, 39688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14161, 8053, 28, 21746, 8053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 22417, 20746, 32065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 22417, 20746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 32180, 48031, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 29453, 2202, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 11518, 10267, 12332, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 20274, 8, 628, 220, 220, 220, 825, 9485, 54, 65, 368, 44506, 8021, 1733, 1352, 33384, 15235, 82, 7, 944, 11, 2262, 590, 5376, 11, 2195, 420, 9487, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 9487, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20934, 28, 14202, 11, 25414, 47445, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 7206, 38865, 62, 22921, 5105, 3069, 34, 11251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 26086, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 40806, 8021, 1733, 1352, 33384, 15235, 82, 290, 19818, 262, 13532, 13, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 262, 13532, 326, 1255, 422, 11629, 803, 262, 40806, 8021, 1733, 1352, 33384, 15235, 82, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 976, 10007, 355, 262, 40806, 8021, 1733, 1352, 33384, 15235, 82, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1439, 13269, 422, 262, 10238, 2446, 389, 3804, 832, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 29993, 8021, 1733, 1352, 33384, 15235, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2262, 590, 5376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2195, 420, 9487, 28, 8021, 420, 9487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 9487, 28, 23004, 9487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20934, 28, 47445, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 47445, 28, 23004, 47445, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 22417, 20746, 32065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 22417, 20746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 32180, 48031, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 29453, 2202, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 11518, 10267, 12332, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 20274, 8, 628, 220, 220, 220, 825, 9485, 54, 65, 368, 44506, 8021, 1733, 1352, 6310, 1817, 7, 944, 11, 2262, 590, 5376, 11, 2195, 420, 9487, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 9487, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20934, 28, 14202, 11, 25414, 47445, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 46181, 13350, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 9487, 39688, 28, 14202, 11, 14161, 8053, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 14202, 11, 25853, 20746, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 7206, 38865, 62, 22921, 5105, 3069, 34, 11251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 26086, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 40806, 8021, 1733, 1352, 6310, 1817, 290, 19818, 262, 10245, 13, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 262, 10245, 326, 1255, 422, 11629, 803, 262, 40806, 8021, 1733, 1352, 6310, 1817, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 976, 10007, 355, 262, 40806, 8021, 1733, 1352, 6310, 1817, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1439, 13269, 422, 262, 10238, 2446, 389, 3804, 832, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 29993, 8021, 1733, 1352, 6310, 1817, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2262, 590, 5376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2195, 420, 9487, 28, 8021, 420, 9487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 9487, 28, 23004, 9487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20934, 28, 47445, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 47445, 28, 23004, 47445, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 46181, 13350, 28, 818, 9152, 46181, 13350, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40348, 9487, 39688, 28, 818, 9152, 9487, 39688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14161, 8053, 28, 21746, 8053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 28, 22417, 20746, 32065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 28, 22417, 20746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 32180, 48031, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 29453, 2202, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 11518, 10267, 12332, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 20274, 8, 628, 220, 220, 220, 825, 9485, 54, 65, 368, 44506, 20746, 6310, 1817, 7, 944, 11, 25853, 20746, 32065, 11, 25853, 20746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 28, 14202, 11, 8229, 20746, 23004, 9487, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 14202, 11, 10054, 2202, 12331, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 7206, 38865, 62, 22921, 5105, 3069, 34, 11251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 26086, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 40806, 20746, 6310, 1817, 290, 19818, 262, 10245, 13, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 262, 10245, 326, 1255, 422, 11629, 803, 262, 40806, 20746, 6310, 1817, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 976, 10007, 355, 262, 40806, 20746, 6310, 1817, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1439, 13269, 422, 262, 10238, 2446, 389, 3804, 832, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 29993, 20746, 6310, 1817, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 32065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25853, 20746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 28, 14933, 10223, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8229, 20746, 23004, 9487, 28, 13615, 20746, 23004, 9487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 48031, 28, 32180, 48031, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10054, 2202, 12331, 28, 29453, 2202, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 10267, 12332, 28, 11518, 10267, 12332, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 20274, 8, 628, 198, 4871, 10934, 44, 735, 24330, 35608, 259, 7, 15252, 2599, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 18820, 12, 32146, 12, 11377, 12, 24396, 82, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15561, 259, 1398, 329, 12972, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 326, 6673, 262, 2694, 284, 198, 220, 220, 220, 1382, 262, 15290, 2858, 286, 257, 4637, 422, 257, 4637, 6770, 287, 198, 220, 220, 220, 257, 8787, 2393, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1382, 62, 76, 735, 24330, 7, 944, 11, 4382, 11, 2393, 62, 6978, 62, 4868, 11, 8787, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 62, 3672, 11, 15942, 577, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10934, 82, 262, 15290, 2858, 286, 262, 705, 944, 6, 4637, 422, 262, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 11, 393, 422, 262, 15290, 12940, 286, 262, 4637, 611, 340, 318, 510, 284, 3128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 15290, 2858, 373, 3170, 422, 262, 5128, 3696, 11, 262, 15290, 198, 220, 220, 220, 220, 220, 220, 220, 2858, 286, 262, 4637, 318, 24105, 284, 663, 12940, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 3696, 329, 2615, 262, 15290, 2858, 389, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 13070, 37, 3696, 351, 257, 35488, 286, 45302, 76, 1659, 4458, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2312, 3696, 389, 14102, 656, 262, 4277, 25745, 286, 262, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 11361, 3696, 351, 257, 35488, 286, 45302, 9078, 4458, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2312, 3696, 389, 15290, 14750, 326, 389, 17392, 290, 12839, 10945, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 15290, 14750, 460, 307, 973, 329, 597, 1611, 286, 9058, 286, 262, 15290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2858, 11, 329, 1672, 329, 4441, 3891, 43076, 11, 329, 16215, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10131, 6097, 290, 28336, 9549, 11, 393, 329, 4375, 327, 3955, 5563, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2035, 3264, 832, 751, 62, 66, 320, 48205, 3419, 393, 416, 33393, 13070, 37, 3696, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44123, 14750, 1104, 734, 10581, 329, 6427, 262, 4637, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4382, 5563, 484, 815, 8076, 319, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2884, 257, 9058, 3419, 2163, 5447, 287, 262, 15290, 4226, 13, 770, 318, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7151, 3164, 11, 290, 340, 6971, 40918, 13, 383, 9058, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 468, 262, 1708, 10007, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48260, 357, 9078, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 2599, 383, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4382, 357, 9078, 39346, 368, 13, 45607, 3620, 10697, 2599, 383, 4382, 2134, 329, 262, 15290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 357, 30388, 2599, 49973, 577, 6056, 422, 262, 3141, 1627, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2884, 3298, 9633, 925, 1695, 284, 262, 15290, 4226, 13, 770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3164, 15174, 40918, 13, 383, 1708, 3298, 9633, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 925, 1695, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7102, 45, 357, 9078, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 2599, 383, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18871, 5959, 357, 9078, 39346, 368, 13, 45607, 3620, 10697, 2599, 383, 4382, 2134, 329, 262, 15290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33310, 33, 14058, 357, 30388, 2599, 49973, 577, 6056, 422, 262, 3141, 1627, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 357, 9078, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 2599, 383, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4382, 357, 9078, 39346, 368, 13, 45607, 3620, 10697, 2599, 383, 4382, 2134, 329, 262, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 62, 4868, 357, 4868, 286, 4731, 2599, 383, 3108, 3891, 286, 262, 5128, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2615, 262, 15290, 2858, 11, 422, 262, 4637, 6770, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8787, 62, 7753, 357, 8841, 2599, 10644, 1438, 286, 262, 8787, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 62, 3672, 357, 8841, 2599, 383, 1438, 286, 262, 4637, 6770, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8787, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 357, 30388, 2599, 49973, 577, 6056, 422, 262, 3141, 1627, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44123, 8979, 12331, 25, 44123, 2393, 857, 407, 2152, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44123, 11770, 4851, 3361, 576, 12331, 25, 44123, 13070, 37, 2393, 10143, 284, 17632, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44123, 7391, 12331, 25, 44123, 4226, 10143, 284, 12260, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31122, 3673, 48181, 12331, 357, 9078, 27, 18, 13, 20, 2599, 968, 12, 7635, 9058, 287, 15290, 4226, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4855, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 262, 5128, 3696, 2152, 13, 4619, 356, 9052, 832, 606, 3294, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1661, 11, 356, 2198, 326, 1752, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 6978, 287, 2393, 62, 6978, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 7753, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 285, 3320, 6519, 82, 13, 44, 735, 8979, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44, 735, 2393, 857, 407, 2152, 25, 23884, 1911, 18982, 7, 7753, 62, 6978, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 8787, 2393, 318, 900, 611, 257, 3706, 4637, 318, 973, 11, 1312, 13, 68, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 618, 31577, 262, 532, 77, 2276, 3038, 13, 632, 318, 407, 900, 618, 262, 532, 82, 393, 532, 76, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2276, 3689, 547, 7368, 13, 1649, 645, 8787, 2393, 318, 900, 11, 645, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 40918, 4325, 780, 612, 318, 645, 4637, 6770, 4732, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 543, 318, 2672, 329, 40918, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8787, 62, 7753, 6624, 5550, 38865, 62, 10943, 48842, 11053, 62, 25664, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 15763, 15908, 796, 15290, 23870, 62, 15763, 15908, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 23870, 62, 15763, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 23870, 62, 15763, 15908, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 15908, 796, 15290, 23870, 62, 66, 2317, 343, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 15763, 15908, 11, 8787, 62, 7753, 11, 4637, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 23870, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 23870, 62, 15908, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 15290, 24330, 2298, 293, 2393, 4909, 262, 2298, 992, 1181, 286, 262, 15290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2858, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15290, 24330, 62, 27729, 293, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 23870, 62, 15908, 11, 705, 76, 735, 24330, 13, 79, 41582, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 1207, 2301, 2298, 293, 2393, 4909, 262, 10131, 4745, 658, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20478, 286, 262, 4637, 13, 632, 318, 973, 284, 804, 510, 262, 10795, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3696, 286, 257, 15290, 4226, 13, 383, 2695, 286, 777, 10795, 3696, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 635, 2077, 656, 1848, 618, 13213, 1771, 262, 12940, 318, 510, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 3128, 13, 770, 2476, 284, 467, 656, 257, 4553, 2298, 293, 2393, 780, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 2476, 284, 307, 9639, 290, 11068, 878, 262, 285, 694, 24330, 2298, 293, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2393, 318, 9639, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1207, 2301, 62, 27729, 293, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 23870, 62, 15908, 11, 705, 10378, 2301, 13, 79, 41582, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 45243, 20, 2393, 4909, 262, 10670, 20, 12234, 1988, 286, 262, 2695, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5128, 3696, 329, 262, 15290, 2858, 11, 290, 635, 2077, 656, 1848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 618, 13213, 1771, 262, 12940, 318, 510, 284, 3128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 23870, 62, 15908, 11, 705, 76, 735, 16624, 13, 9132, 20, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19762, 12739, 326, 262, 15290, 2858, 2476, 284, 307, 3170, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 273, 302, 12, 18780, 737, 1002, 10352, 11, 262, 15290, 2858, 12940, 460, 307, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 761, 62, 260, 11249, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 45559, 3810, 1771, 262, 15290, 2858, 2476, 284, 307, 30080, 1912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 319, 262, 357, 13159, 25106, 41084, 286, 262, 12940, 3696, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 76, 735, 24330, 62, 27729, 293, 62, 7753, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 407, 28686, 13, 6978, 13, 4468, 576, 7, 10378, 2301, 62, 27729, 293, 62, 7753, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 407, 28686, 13, 6978, 13, 4468, 576, 7, 9132, 20, 62, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 44, 735, 2858, 329, 4637, 6770, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 90, 92, 6, 481, 307, 3170, 780, 340, 373, 407, 39986, 526, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 7, 38659, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 761, 62, 260, 11249, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1207, 2301, 796, 2116, 13557, 2220, 62, 10378, 2301, 7, 10378, 2301, 62, 27729, 293, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 9399, 12331, 11, 440, 5188, 81, 1472, 8, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2859, 13, 8056, 3919, 6624, 11454, 3919, 13, 1677, 46, 3525, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1207, 2301, 796, 12972, 39346, 368, 62, 76, 735, 13, 29495, 35, 8682, 8081, 4592, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 262, 10670, 20, 12234, 1988, 286, 262, 2695, 286, 262, 5128, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 796, 12234, 8019, 13, 9132, 20, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 6978, 287, 2393, 62, 6978, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 7753, 62, 6978, 11, 705, 26145, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 10459, 796, 277, 79, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 13, 19119, 7, 7753, 62, 10459, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 15290, 14750, 11, 1011, 511, 10795, 3696, 656, 1848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 62, 6978, 13, 437, 2032, 342, 7, 4458, 9078, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1207, 62, 16624, 796, 1207, 2301, 13, 2676, 62, 45841, 658, 7, 7753, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1207, 62, 7753, 287, 1207, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 10378, 62, 7753, 11, 705, 26145, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 10459, 796, 277, 79, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 13, 19119, 7, 7753, 62, 10459, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 12940, 26672, 11, 523, 326, 10107, 26957, 319, 262, 12940, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12515, 689, 262, 12940, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 13, 19119, 7, 641, 495, 62, 33661, 7, 23870, 62, 15908, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 9132, 20, 62, 8367, 796, 4155, 62, 46903, 1098, 7, 9132, 20, 13, 33095, 12894, 395, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 45559, 3810, 1771, 262, 15290, 2858, 2476, 284, 307, 30080, 1912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 319, 262, 10670, 20, 12234, 1988, 286, 262, 5128, 2393, 2695, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 761, 62, 260, 11249, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 9132, 20, 62, 7753, 11, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39986, 62, 9132, 20, 62, 8367, 796, 277, 79, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 9132, 20, 62, 8367, 14512, 39986, 62, 9132, 20, 62, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 44, 735, 2858, 329, 4637, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46758, 705, 90, 92, 6, 318, 39986, 475, 481, 307, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 260, 18780, 780, 262, 15290, 3696, 423, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40985, 526, 13, 18982, 7, 38659, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 761, 62, 260, 11249, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 270, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 8787, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11787, 12, 23599, 8787, 2393, 973, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 44, 735, 2858, 329, 4637, 6770, 705, 90, 92, 6, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10594, 307, 3170, 780, 2836, 12, 23599, 8787, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16624, 389, 407, 39986, 526, 13, 18982, 7, 38659, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 761, 62, 260, 11249, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 270, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 8787, 2393, 4732, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 44, 735, 2858, 329, 4637, 6770, 705, 90, 92, 6, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10594, 307, 3170, 780, 645, 8787, 2393, 318, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4002, 526, 13, 18982, 7, 38659, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 761, 62, 260, 11249, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 270, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 761, 62, 260, 11249, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11249, 62, 76, 735, 24330, 7, 15388, 11, 2393, 62, 6978, 62, 4868, 11, 15942, 577, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 285, 3320, 6519, 82, 13, 3673, 30562, 540, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 44, 735, 2858, 329, 4637, 6770, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 90, 92, 6, 481, 307, 3170, 780, 340, 318, 407, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23870, 540, 25, 23884, 526, 13, 18982, 7, 38659, 62, 3672, 11, 2859, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8787, 62, 7753, 290, 12940, 62, 270, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 39455, 62, 76, 735, 24330, 7, 76, 735, 24330, 62, 27729, 293, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 39455, 62, 10378, 2301, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15234, 1304, 62, 21186, 62, 2301, 4592, 11, 1207, 2301, 62, 27729, 293, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 9132, 20, 62, 7753, 11, 705, 86, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 13564, 7, 3605, 62, 9132, 20, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 44, 735, 2858, 329, 4637, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46758, 705, 90, 92, 6, 468, 587, 3194, 284, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23870, 526, 13, 18982, 7, 38659, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1649, 645, 17884, 318, 2622, 11, 612, 1276, 423, 587, 257, 8787, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2393, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 8787, 62, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2220, 62, 76, 735, 24330, 7, 76, 735, 24330, 62, 27729, 293, 62, 7753, 11, 2393, 62, 6978, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 44, 735, 2858, 329, 4637, 6770, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 90, 92, 6, 468, 587, 9639, 422, 12940, 526, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 7, 38659, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 285, 3320, 6519, 82, 13, 3673, 30562, 540, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 44, 735, 2858, 329, 4637, 6770, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 90, 92, 6, 481, 307, 30080, 780, 340, 318, 407, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23870, 540, 25, 23884, 526, 13, 18982, 7, 38659, 62, 3672, 11, 2859, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11249, 62, 76, 735, 24330, 7, 15388, 11, 2393, 62, 6978, 62, 4868, 11, 15942, 577, 8, 628, 220, 220, 220, 825, 4808, 11249, 62, 76, 735, 24330, 7, 944, 11, 4382, 11, 2393, 62, 6978, 62, 4868, 11, 15942, 577, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10934, 262, 15290, 2858, 422, 262, 5128, 3696, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 357, 9078, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 2599, 383, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4382, 357, 9078, 39346, 368, 13, 45607, 3620, 10697, 2599, 383, 4382, 2134, 329, 262, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 62, 4868, 357, 4868, 286, 4731, 2599, 383, 3108, 3891, 286, 262, 5128, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2615, 262, 15290, 2858, 11, 422, 262, 4637, 6770, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 357, 30388, 2599, 49973, 577, 6056, 422, 262, 3141, 1627, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1892, 30562, 540, 357, 9078, 27, 18, 13, 20, 2599, 44123, 2858, 318, 407, 12940, 540, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44123, 11770, 4851, 3361, 576, 12331, 25, 44123, 13070, 37, 2393, 10143, 284, 17632, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44123, 7391, 12331, 25, 44123, 4226, 10143, 284, 12260, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31122, 3673, 48181, 12331, 357, 9078, 27, 18, 13, 20, 2599, 968, 12, 7635, 9058, 287, 15290, 4226, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4855, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 6978, 287, 2393, 62, 6978, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1070, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 7753, 62, 6978, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1070, 6624, 45302, 76, 1659, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3167, 26024, 597, 13070, 5837, 17208, 12331, 1541, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5589, 576, 62, 76, 1659, 62, 7753, 7, 7753, 62, 6978, 11, 15942, 577, 28, 19011, 577, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12972, 39346, 368, 13, 12331, 355, 1931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2275, 419, 262, 2104, 12972, 39346, 368, 44506, 3141, 780, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13070, 37, 23340, 1244, 423, 4073, 40467, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 15290, 16099, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 350, 56, 45607, 3620, 62, 43717, 13, 20979, 18189, 357, 16, 11, 657, 11, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3359, 655, 262, 6631, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 11770, 37, 17632, 4054, 7479, 77, 90, 15, 92, 1911, 18982, 7, 263, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3359, 2393, 1438, 13, 220, 13047, 2420, 9066, 1541, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 263, 11, 12972, 39346, 368, 13, 11770, 5837, 17208, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 11770, 37, 17632, 4054, 25, 9220, 25, 705, 90, 15, 92, 29653, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 3826, 2029, 8, 1911, 18982, 7, 7753, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 1303, 407, 21136, 4049, 11, 3359, 6631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 11770, 37, 17632, 4054, 25, 9220, 25, 1391, 15, 92, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12331, 25, 1391, 16, 92, 1911, 18982, 7, 7753, 62, 6978, 11, 1931, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 41194, 796, 285, 3320, 6519, 82, 13, 44, 735, 11770, 4851, 3361, 576, 12331, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 41194, 13, 834, 25587, 834, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 649, 62, 41194, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 1070, 6624, 45302, 9078, 6, 220, 1303, 1541, 10667, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1737, 5298, 2972, 285, 3320, 6519, 82, 13, 44, 735, 12331, 13269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1892, 30562, 540, 481, 307, 12118, 416, 262, 24955, 416, 2615, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15290, 17365, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 3320, 6519, 82, 13, 40406, 62, 12048, 7, 7753, 62, 6978, 11, 2116, 11, 4382, 11, 15942, 577, 8, 628, 220, 220, 220, 825, 4808, 39455, 62, 76, 735, 24330, 7, 944, 11, 15290, 24330, 62, 27729, 293, 62, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 931, 262, 15290, 2858, 286, 262, 4637, 284, 262, 15290, 24330, 2298, 293, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 357, 9078, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 2599, 383, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15290, 24330, 62, 27729, 293, 62, 7753, 357, 9078, 39346, 368, 13, 45607, 3620, 10697, 2599, 10644, 1438, 286, 262, 15290, 24330, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 262, 10131, 20478, 290, 262, 327, 3955, 16099, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 5678, 257, 2060, 2134, 11, 780, 262, 327, 3955, 16099, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20717, 422, 1123, 10131, 11, 290, 2298, 293, 6105, 17105, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3294, 10288, 284, 262, 976, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 24330, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 320, 260, 1930, 37765, 28, 944, 13, 66, 320, 260, 1930, 37765, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10131, 62, 2301, 4592, 28, 944, 13557, 15234, 1304, 62, 2301, 4592, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 76, 735, 24330, 62, 27729, 293, 62, 7753, 11, 705, 39346, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 76, 735, 24330, 11, 277, 79, 8, 628, 220, 220, 220, 825, 4808, 2220, 62, 76, 735, 24330, 7, 944, 11, 15290, 24330, 62, 27729, 293, 62, 7753, 11, 2393, 62, 6978, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 262, 15290, 2858, 422, 262, 15290, 24330, 2298, 293, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 635, 17944, 262, 11361, 14750, 422, 262, 5128, 3696, 287, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 284, 302, 12, 40037, 597, 1398, 17336, 326, 743, 307, 2622, 11, 329, 198, 220, 220, 220, 220, 220, 220, 220, 1672, 10131, 6097, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 357, 9078, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 2599, 383, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15290, 24330, 62, 27729, 293, 62, 7753, 357, 9078, 39346, 368, 13, 45607, 3620, 10697, 2599, 10644, 1438, 286, 262, 15290, 24330, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 62, 4868, 357, 4868, 286, 4731, 2599, 383, 3108, 3891, 286, 262, 5128, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2615, 262, 15290, 2858, 11, 422, 262, 4637, 6770, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1892, 30562, 540, 357, 9078, 27, 18, 13, 20, 2599, 44123, 2858, 318, 407, 12940, 540, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42019, 262, 10131, 6097, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 6978, 287, 2393, 62, 6978, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1070, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 7753, 62, 6978, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1070, 6624, 45302, 9078, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1737, 5298, 285, 3320, 6519, 82, 13, 3673, 30562, 540, 543, 481, 307, 12118, 416, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 24955, 416, 2615, 262, 15290, 17365, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 3320, 6519, 82, 13, 11748, 62, 12048, 7, 7753, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42019, 262, 10131, 20478, 290, 262, 327, 3955, 16099, 198, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 76, 735, 24330, 62, 27729, 293, 62, 7753, 11, 705, 26145, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15290, 24330, 796, 2298, 293, 13, 2220, 7, 46428, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12691, 423, 10288, 284, 262, 2116, 13557, 66, 320, 260, 1930, 37765, 2134, 11, 523, 356, 389, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 13586, 326, 2134, 11, 475, 389, 2138, 13586, 262, 1181, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 326, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 269, 320, 260, 1930, 37765, 796, 15290, 24330, 17816, 66, 320, 260, 1930, 37765, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 66, 320, 260, 1930, 37765, 11, 12972, 39346, 368, 62, 76, 735, 13, 818, 30871, 6207, 13264, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 66, 320, 260, 1930, 37765, 13, 2220, 7, 66, 320, 260, 1930, 37765, 8, 628, 220, 220, 220, 220, 220, 220, 220, 10131, 62, 2301, 4592, 796, 15290, 24330, 17816, 15234, 1304, 62, 2301, 4592, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 15234, 1304, 62, 2301, 4592, 11, 12972, 39346, 368, 62, 76, 735, 13, 29495, 8081, 4592, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15234, 1304, 62, 2301, 4592, 13, 2220, 7, 15234, 1304, 62, 2301, 4592, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 39455, 62, 10378, 2301, 7, 10378, 2301, 11, 1207, 2301, 62, 27729, 293, 62, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 931, 257, 10131, 10795, 20478, 284, 257, 2298, 293, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1207, 2301, 357, 9078, 39346, 368, 62, 76, 735, 13, 29495, 35, 8682, 8081, 4592, 2599, 32549, 10795, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20478, 284, 307, 24105, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1207, 2301, 62, 27729, 293, 62, 7753, 357, 8841, 2599, 10644, 1438, 286, 262, 2298, 293, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 10378, 2301, 62, 27729, 293, 62, 7753, 11, 705, 39346, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 10378, 2301, 11, 277, 79, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 2220, 62, 10378, 2301, 7, 10378, 2301, 62, 27729, 293, 62, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 257, 10131, 10795, 20478, 422, 257, 2298, 293, 2393, 290, 1441, 340, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1207, 2301, 62, 27729, 293, 62, 7753, 357, 8841, 2599, 10644, 1438, 286, 262, 2298, 293, 2393, 284, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9639, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 39346, 368, 62, 76, 735, 13, 29495, 35, 8682, 8081, 4592, 25, 32549, 10795, 20478, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 10378, 2301, 62, 27729, 293, 62, 7753, 11, 705, 26145, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1207, 2301, 796, 2298, 293, 13, 2220, 7, 46428, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1207, 2301, 628, 198, 4871, 350, 56, 45607, 3620, 5097, 2149, 261, 1606, 295, 7, 9078, 39346, 368, 13, 45607, 3620, 32048, 11, 350, 56, 45607, 3620, 5097, 2149, 261, 1606, 295, 35608, 259, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9485, 45607, 3620, 5097, 2149, 261, 1606, 295, 47611, 6673, 262, 5050, 2087, 416, 198, 220, 220, 220, 350, 56, 45607, 3620, 5097, 2149, 261, 1606, 295, 35608, 259, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 269, 13165, 8318, 477, 5128, 10007, 284, 2208, 4871, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 47, 56, 45607, 3620, 5097, 2149, 261, 1606, 295, 11, 2116, 737, 834, 15003, 834, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 198, 4871, 350, 56, 45607, 3620, 5097, 5064, 4335, 32048, 7, 15580, 44, 735, 24330, 35608, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 56, 45607, 3620, 5097, 2149, 261, 1606, 295, 35608, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9485, 45607, 3620, 5097, 5064, 4335, 32048, 47611, 6673, 262, 5050, 2087, 416, 198, 220, 220, 220, 350, 56, 45607, 3620, 5097, 2149, 261, 1606, 295, 35608, 259, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 269, 13165, 8318, 477, 5128, 10007, 284, 2208, 4871, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 47, 56, 45607, 3620, 5097, 5064, 4335, 32048, 11, 2116, 737, 834, 15003, 834, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 15290, 23870, 62, 15763, 15908, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 8619, 3108, 286, 262, 15290, 12940, 6808, 8619, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26672, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 33809, 45302, 9078, 39346, 368, 44506, 62, 76, 735, 23870, 11537, 198, 220, 220, 220, 1441, 26672, 62, 6978, 628, 198, 4299, 15290, 23870, 62, 66, 2317, 343, 7, 15763, 15908, 11, 8787, 62, 7753, 11, 4637, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 8619, 3108, 286, 262, 15290, 12940, 8619, 329, 257, 4637, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 28407, 257, 357, 260, 1676, 6077, 856, 8, 12940, 4522, 422, 8787, 2393, 3108, 290, 198, 220, 220, 220, 1303, 4637, 6770, 1438, 13, 198, 220, 220, 220, 1303, 17934, 25, 3126, 2780, 64, 18, 6814, 16, 64, 2682, 64, 18, 721, 1899, 3365, 1495, 64, 1415, 6052, 66, 22, 11848, 20, 13, 36439, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8787, 62, 7753, 796, 28686, 13, 6978, 13, 2411, 6978, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8787, 62, 7753, 11, 28686, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 6, 4008, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1550, 3964, 11, 28686, 13, 6978, 13, 2411, 6978, 3419, 12073, 11052, 12331, 618, 262, 13532, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 389, 319, 1180, 10182, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 45243, 20, 796, 12234, 8019, 13, 9132, 20, 3419, 198, 220, 220, 220, 45243, 20, 13, 19119, 7, 8443, 507, 62, 7753, 13, 268, 8189, 7203, 40477, 12, 23, 48774, 198, 220, 220, 220, 12940, 62, 312, 796, 45144, 27422, 90, 92, 1911, 18982, 7, 9132, 20, 13, 33095, 12894, 395, 22784, 4637, 62, 3672, 8, 198, 220, 220, 220, 26672, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 15908, 11, 12940, 62, 312, 8, 198, 220, 220, 220, 1441, 26672, 62, 6978, 628, 198, 4299, 12233, 62, 76, 735, 62, 23870, 7, 8443, 507, 62, 7753, 11, 4637, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23520, 262, 15290, 12940, 286, 262, 4637, 11, 611, 340, 7160, 13, 628, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 2116, 357, 9078, 39346, 368, 62, 76, 735, 13, 37, 4335, 45607, 3620, 32048, 2599, 383, 15290, 4637, 13, 628, 220, 220, 220, 220, 220, 8787, 62, 7753, 357, 8841, 2599, 10644, 1438, 286, 262, 8787, 2393, 13, 628, 220, 220, 220, 220, 220, 4637, 62, 3672, 357, 8841, 2599, 383, 1438, 286, 262, 4637, 6770, 287, 198, 220, 220, 220, 220, 220, 220, 220, 262, 8787, 2393, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 440, 5188, 81, 1472, 25, 44123, 12940, 2314, 307, 13140, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12940, 62, 15908, 796, 15290, 23870, 62, 66, 2317, 343, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 23870, 62, 15763, 15908, 22784, 8787, 62, 7753, 11, 4637, 62, 3672, 8, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 23870, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 796, 15095, 13, 4743, 672, 7, 418, 13, 6978, 13, 22179, 7, 23870, 62, 15908, 11, 705, 9, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 7753, 287, 2393, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 28264, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 81, 9132, 343, 7, 23870, 62, 15908, 8, 198 ]
2.206144
14,257
from setuptools import setup packages = ["atop_raw", "atop_raw.headers"] install_requires = ["numpy"] extras_require = {"pycstruct": ["pycstruct >= 0.9"]} package_data = {"atop_raw.headers": ["*.h"]} setup( name="atop_raw", version="2", packages=packages, extras_require=extras_require, package_data=package_data, license="MIT", description="Reader of raw files from atop", install_requires=install_requires, )
[ 6738, 900, 37623, 10141, 1330, 9058, 628, 198, 43789, 796, 14631, 265, 404, 62, 1831, 1600, 366, 265, 404, 62, 1831, 13, 50145, 8973, 198, 198, 17350, 62, 47911, 796, 14631, 77, 32152, 8973, 198, 198, 2302, 8847, 62, 46115, 796, 19779, 9078, 66, 7249, 1298, 14631, 9078, 66, 7249, 18189, 657, 13, 24, 8973, 92, 198, 198, 26495, 62, 7890, 796, 19779, 265, 404, 62, 1831, 13, 50145, 1298, 14631, 24620, 71, 8973, 92, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 265, 404, 62, 1831, 1600, 198, 220, 220, 220, 2196, 2625, 17, 1600, 198, 220, 220, 220, 10392, 28, 43789, 11, 198, 220, 220, 220, 33849, 62, 46115, 28, 2302, 8847, 62, 46115, 11, 198, 220, 220, 220, 5301, 62, 7890, 28, 26495, 62, 7890, 11, 198, 220, 220, 220, 5964, 2625, 36393, 1600, 198, 220, 220, 220, 6764, 2625, 33634, 286, 8246, 3696, 422, 20156, 1600, 198, 220, 220, 220, 2721, 62, 47911, 28, 17350, 62, 47911, 11, 198, 8, 198 ]
2.688623
167
import time import numpy as np from equipment.custom import mmwave_source from equipment.srs import lockin from equipment.hittite import signal_generator from kid_readout.interactive import * from kid_readout.equipment import hardware from kid_readout.measurement import acquire from kid_readout.roach import analog # fg = FunctionGenerator() hittite = signal_generator.Hittite(ipaddr='192.168.0.200') hittite.set_power(0) hittite.on() lockin = lockin.Lockin(LOCKIN_SERIAL_PORT) tic = time.time() print lockin.identification source = mmwave_source.MMWaveSource() source.set_attenuator_turns(3.0,3.0) source.multiplier_input = 'hittite' source.waveguide_twist_angle = 45 source.ttl_modulation_source = 'roach' ifboard = analog.HeterodyneMarkI() setup = hardware.Hardware(source, lockin, ifboard,hittite) setup.hittite.set_freq(148e9/12.) ri = hardware_tools.r2_with_mk1() ri.set_fft_gain(8) #initial_f0s = np.load('/data/readout/resonances/2016-06-18-jpl-hex-271-32-high-qi-lo-1210-resonances.npy') #initial_f0s = initial_f0s/1e6 initial_lo = 1210. bbtones = np.linspace(5,220,256) initial_f0s = np.hstack((initial_lo-bbtones-0.2,initial_lo+bbtones)) initial_f0s.sort() nsamp = 2**15 step = 1 nstep = 24 offset_bins = np.arange(-(nstep + 1), (nstep + 1)) * step offsets = offset_bins * 512.0 / nsamp print (initial_f0s[1]-initial_f0s[0])*1e6, offsets.ptp() for (lo,f0s) in [(initial_lo,initial_f0s)]: ri.set_lo(lo) for dac_atten in [0]: ncf = new_nc_file(suffix='off_on_cw_%d_dB_dac' % dac_atten) ri.set_modulation_output('high') swpa = acquire.run_sweep(ri, tone_banks=f0s[None,:] + offsets[:,None], num_tone_samples=nsamp, length_seconds=0.5, state=setup.state(), verbose=True, description='source off sweep') print "resonance sweep done", (time.time()-tic)/60. ncf.write(swpa) #print "sweep written", (time.time()-tic)/60. current_f0s = [] for sidx in range(f0s.shape[0]): swp = swpa.sweep(sidx) res = swp.resonator print res.f_0, res.Q, res.current_result.redchi, (f0s[sidx]*1e6-res.f_0) if np.abs(res.f_0 - f0s[sidx]*1e6) > 0.9*(initial_f0s[1]-initial_f0s[0])*1e6: current_f0s.append(f0s[sidx]*1e6) print "using original frequency for ",f0s[sidx] else: current_f0s.append(res.f_0) print "fits complete", (time.time()-tic)/60. current_f0s = np.array(current_f0s)/1e6 current_f0s.sort() if np.any(np.diff(current_f0s)<0.25): print "problematic resonator collision:",current_f0s print "deltas:",np.diff(current_f0s) ri.set_tone_freqs(current_f0s,nsamp) ri.select_fft_bins(range(f0s.shape[0])) meas = ri.get_measurement(num_seconds=30., state=setup.state(),description='source off stream') ncf.write(meas) ri.set_modulation_output('low') meas = ri.get_measurement(num_seconds=30., state=setup.state(),description='source on stream') ncf.write(meas) ri.set_modulation_output(7) time.sleep(1) # wait for source modulation to stabilize meas = ri.get_measurement(num_seconds=4., state=setup.state(),description='source modulated stream') ncf.write(meas) print "dac_atten %f done in %.1f minutes" % (dac_atten, (time.time()-tic)/60.) ncf.close()
[ 11748, 640, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 5112, 13, 23144, 1330, 8085, 19204, 62, 10459, 198, 6738, 5112, 13, 82, 3808, 1330, 5793, 259, 198, 6738, 5112, 13, 71, 715, 578, 1330, 6737, 62, 8612, 1352, 198, 198, 6738, 5141, 62, 961, 448, 13, 3849, 5275, 1330, 1635, 198, 6738, 5141, 62, 961, 448, 13, 4853, 4667, 1330, 6890, 198, 6738, 5141, 62, 961, 448, 13, 1326, 5015, 434, 1330, 12831, 198, 6738, 5141, 62, 961, 448, 13, 28562, 1330, 15075, 198, 198, 2, 277, 70, 796, 15553, 8645, 1352, 3419, 198, 71, 715, 578, 796, 6737, 62, 8612, 1352, 13, 39, 715, 578, 7, 541, 29851, 11639, 17477, 13, 14656, 13, 15, 13, 2167, 11537, 198, 71, 715, 578, 13, 2617, 62, 6477, 7, 15, 8, 198, 71, 715, 578, 13, 261, 3419, 198, 5354, 259, 796, 5793, 259, 13, 25392, 259, 7, 36840, 1268, 62, 35009, 12576, 62, 15490, 8, 198, 13370, 796, 640, 13, 2435, 3419, 198, 4798, 5793, 259, 13, 738, 2649, 198, 198, 10459, 796, 8085, 19204, 62, 10459, 13, 12038, 39709, 7416, 3419, 198, 10459, 13, 2617, 62, 41769, 84, 1352, 62, 15344, 82, 7, 18, 13, 15, 11, 18, 13, 15, 8, 198, 10459, 13, 47945, 959, 62, 15414, 796, 705, 71, 715, 578, 6, 198, 10459, 13, 19204, 41311, 62, 4246, 396, 62, 9248, 796, 4153, 198, 10459, 13, 926, 75, 62, 4666, 1741, 62, 10459, 796, 705, 28562, 6, 198, 198, 361, 3526, 796, 15075, 13, 39, 2357, 1118, 710, 9704, 40, 3419, 198, 198, 40406, 796, 6890, 13, 49865, 7, 10459, 11, 5793, 259, 11, 611, 3526, 11, 71, 715, 578, 8, 198, 40406, 13, 71, 715, 578, 13, 2617, 62, 19503, 80, 7, 18294, 68, 24, 14, 1065, 2014, 198, 198, 380, 796, 6890, 62, 31391, 13, 81, 17, 62, 4480, 62, 28015, 16, 3419, 198, 380, 13, 2617, 62, 487, 83, 62, 48544, 7, 23, 8, 198, 198, 2, 36733, 62, 69, 15, 82, 796, 45941, 13, 2220, 10786, 14, 7890, 14, 961, 448, 14, 411, 261, 1817, 14, 5304, 12, 3312, 12, 1507, 12, 73, 489, 12, 33095, 12, 28977, 12, 2624, 12, 8929, 12, 40603, 12, 5439, 12, 1065, 940, 12, 411, 261, 1817, 13, 77, 9078, 11537, 198, 2, 36733, 62, 69, 15, 82, 796, 4238, 62, 69, 15, 82, 14, 16, 68, 21, 198, 36733, 62, 5439, 796, 1105, 940, 13, 198, 11848, 36257, 796, 45941, 13, 21602, 10223, 7, 20, 11, 17572, 11, 11645, 8, 198, 36733, 62, 69, 15, 82, 796, 45941, 13, 71, 25558, 19510, 36733, 62, 5439, 12, 11848, 36257, 12, 15, 13, 17, 11, 36733, 62, 5439, 10, 11848, 36257, 4008, 198, 36733, 62, 69, 15, 82, 13, 30619, 3419, 198, 198, 5907, 696, 796, 362, 1174, 1314, 198, 9662, 796, 352, 198, 77, 9662, 796, 1987, 198, 28968, 62, 65, 1040, 796, 45941, 13, 283, 858, 7, 30420, 77, 9662, 1343, 352, 828, 357, 77, 9662, 1343, 352, 4008, 1635, 2239, 198, 8210, 1039, 796, 11677, 62, 65, 1040, 1635, 22243, 13, 15, 1220, 36545, 696, 198, 4798, 357, 36733, 62, 69, 15, 82, 58, 16, 45297, 36733, 62, 69, 15, 82, 58, 15, 12962, 9, 16, 68, 21, 11, 49005, 13, 457, 79, 3419, 628, 198, 1640, 357, 5439, 11, 69, 15, 82, 8, 287, 47527, 36733, 62, 5439, 11, 36733, 62, 69, 15, 82, 8, 5974, 198, 220, 220, 220, 374, 72, 13, 2617, 62, 5439, 7, 5439, 8, 198, 220, 220, 220, 329, 288, 330, 62, 41769, 287, 685, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 299, 12993, 796, 649, 62, 10782, 62, 7753, 7, 37333, 844, 11639, 2364, 62, 261, 62, 66, 86, 62, 4, 67, 62, 36077, 62, 67, 330, 6, 4064, 288, 330, 62, 41769, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 72, 13, 2617, 62, 4666, 1741, 62, 22915, 10786, 8929, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1509, 8957, 796, 12831, 13, 5143, 62, 46280, 538, 7, 380, 11, 8216, 62, 43558, 28, 69, 15, 82, 58, 14202, 11, 47715, 1343, 49005, 58, 45299, 14202, 4357, 997, 62, 41527, 62, 82, 12629, 28, 5907, 696, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 43012, 28, 15, 13, 20, 11, 1181, 28, 40406, 13, 5219, 22784, 15942, 577, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 10459, 572, 16085, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 411, 261, 590, 16085, 1760, 1600, 357, 2435, 13, 2435, 3419, 12, 13370, 20679, 1899, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 12993, 13, 13564, 7, 2032, 8957, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 366, 46280, 538, 3194, 1600, 357, 2435, 13, 2435, 3419, 12, 13370, 20679, 1899, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 69, 15, 82, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 36929, 287, 2837, 7, 69, 15, 82, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1509, 79, 796, 1509, 8957, 13, 46280, 538, 7, 30255, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 1509, 79, 13, 411, 261, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 581, 13, 69, 62, 15, 11, 581, 13, 48, 11, 581, 13, 14421, 62, 20274, 13, 445, 11072, 11, 357, 69, 15, 82, 58, 30255, 87, 60, 9, 16, 68, 21, 12, 411, 13, 69, 62, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 8937, 7, 411, 13, 69, 62, 15, 532, 277, 15, 82, 58, 30255, 87, 60, 9, 16, 68, 21, 8, 1875, 657, 13, 24, 9, 7, 36733, 62, 69, 15, 82, 58, 16, 45297, 36733, 62, 69, 15, 82, 58, 15, 12962, 9, 16, 68, 21, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 69, 15, 82, 13, 33295, 7, 69, 15, 82, 58, 30255, 87, 60, 9, 16, 68, 21, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 3500, 2656, 8373, 329, 33172, 69, 15, 82, 58, 30255, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 69, 15, 82, 13, 33295, 7, 411, 13, 69, 62, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 21013, 1844, 1600, 357, 2435, 13, 2435, 3419, 12, 13370, 20679, 1899, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 69, 15, 82, 796, 45941, 13, 18747, 7, 14421, 62, 69, 15, 82, 20679, 16, 68, 21, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 69, 15, 82, 13, 30619, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1092, 7, 37659, 13, 26069, 7, 14421, 62, 69, 15, 82, 8, 27, 15, 13, 1495, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 45573, 1512, 14309, 1352, 17661, 25, 1600, 14421, 62, 69, 15, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 67, 2120, 292, 25, 1600, 37659, 13, 26069, 7, 14421, 62, 69, 15, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 72, 13, 2617, 62, 41527, 62, 19503, 48382, 7, 14421, 62, 69, 15, 82, 11, 5907, 696, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 72, 13, 19738, 62, 487, 83, 62, 65, 1040, 7, 9521, 7, 69, 15, 82, 13, 43358, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2212, 796, 374, 72, 13, 1136, 62, 1326, 5015, 434, 7, 22510, 62, 43012, 28, 1270, 1539, 1181, 28, 40406, 13, 5219, 22784, 11213, 11639, 10459, 572, 4269, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 12993, 13, 13564, 7, 1326, 292, 8, 628, 220, 220, 220, 220, 220, 220, 220, 374, 72, 13, 2617, 62, 4666, 1741, 62, 22915, 10786, 9319, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2212, 796, 374, 72, 13, 1136, 62, 1326, 5015, 434, 7, 22510, 62, 43012, 28, 1270, 1539, 1181, 28, 40406, 13, 5219, 22784, 11213, 11639, 10459, 319, 4269, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 12993, 13, 13564, 7, 1326, 292, 8, 628, 220, 220, 220, 220, 220, 220, 220, 374, 72, 13, 2617, 62, 4666, 1741, 62, 22915, 7, 22, 8, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 1303, 4043, 329, 2723, 39007, 284, 32411, 198, 220, 220, 220, 220, 220, 220, 220, 2212, 796, 374, 72, 13, 1136, 62, 1326, 5015, 434, 7, 22510, 62, 43012, 28, 19, 1539, 1181, 28, 40406, 13, 5219, 22784, 11213, 11639, 10459, 953, 4817, 4269, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 12993, 13, 13564, 7, 1326, 292, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 67, 330, 62, 41769, 4064, 69, 1760, 287, 4064, 13, 16, 69, 2431, 1, 4064, 357, 67, 330, 62, 41769, 11, 357, 2435, 13, 2435, 3419, 12, 13370, 20679, 1899, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 299, 12993, 13, 19836, 3419, 628 ]
2.107795
1,642
from logging import getLogger from re import match from time import time from django.conf import settings from django.contrib.auth import get_user_model from django.core.exceptions import ValidationError from django.core.validators import MinValueValidator, MaxValueValidator from django.db import models, transaction from django.urls import reverse from django.utils.timezone import now from passlib.hash import md5_crypt, sha256_crypt, sha512_crypt log = getLogger(__name__) # Existing modeemiuserdb models that have been created manually and previously handled by the custom database router. # Feel free to rename the models, but don't rename db_table values or field names. # Do not change model properties unless you know what you are doing, they are used by other programs.
[ 6738, 18931, 1330, 651, 11187, 1362, 198, 6738, 302, 1330, 2872, 198, 6738, 640, 1330, 640, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 7295, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 6738, 42625, 14208, 13, 7295, 13, 12102, 2024, 1330, 1855, 11395, 47139, 1352, 11, 5436, 11395, 47139, 1352, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 11, 8611, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 6738, 42625, 14208, 13, 26791, 13, 2435, 11340, 1330, 783, 198, 198, 6738, 1208, 8019, 13, 17831, 1330, 45243, 20, 62, 29609, 11, 427, 64, 11645, 62, 29609, 11, 427, 64, 25836, 62, 29609, 198, 198, 6404, 796, 651, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 628, 628, 198, 198, 2, 1475, 9665, 4235, 368, 3754, 263, 9945, 4981, 326, 423, 587, 2727, 14500, 290, 4271, 12118, 416, 262, 2183, 6831, 20264, 13, 198, 2, 18571, 1479, 284, 36265, 262, 4981, 11, 475, 836, 470, 36265, 20613, 62, 11487, 3815, 393, 2214, 3891, 13, 198, 2, 2141, 407, 1487, 2746, 6608, 4556, 345, 760, 644, 345, 389, 1804, 11, 484, 389, 973, 416, 584, 4056, 13, 628, 628, 628, 198 ]
3.728972
214
# 1. Ask for user input # 2. Create a dynamic URL based on step 1 # 3. Fetch data from using url # 4. Convert json to dictionary # 5. Print Pokemon data import requests while True: # getting Pokemon name from the user user_pokemon_input = input( 'Please type name of pokemon you want to learn about? ') # getting url with a name entered by user pokemon_url = f'https://pokeapi.co/api/v2/pokemon/{user_pokemon_input.lower()}/' req = requests.get(pokemon_url) abilities = {} ability_name = [] # checking if entered Pokemon name exists if req.status_code != 200: print('Incorrect Pokemon name, try again!') continue # if entered name exists, we get data and display some information about that Pokemon else: pokemon_character = req.json() pokemon_name = pokemon_character['name'].capitalize() print("******* DETAILS ABOUT POKEMON ******") print(f"Entered name: {pokemon_name}") print(f"{pokemon_name} weight: {pokemon_character['weight']}") print(f"{pokemon_name} height: {pokemon_character['height']}") # getting list of Pokemin abilities for value in pokemon_character['abilities']: # appending ability_name list ability_name.append(value['ability']['name']) # print(f"List of {pokemon_name} abilities: {ability_name}\n") print(f"List of {pokemon_name} abilities:") for index, ability in enumerate(ability_name): print(f'{index + 1}. {ability}') break
[ 2, 352, 13, 16981, 329, 2836, 5128, 198, 2, 362, 13, 13610, 257, 8925, 10289, 1912, 319, 2239, 352, 198, 2, 513, 13, 376, 7569, 1366, 422, 1262, 19016, 198, 2, 604, 13, 38240, 33918, 284, 22155, 198, 2, 642, 13, 12578, 14878, 1366, 198, 11748, 7007, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 1303, 1972, 14878, 1438, 422, 262, 2836, 198, 220, 220, 220, 2836, 62, 79, 12717, 62, 15414, 796, 5128, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5492, 2099, 1438, 286, 43962, 345, 765, 284, 2193, 546, 30, 705, 8, 628, 220, 220, 220, 1303, 1972, 19016, 351, 257, 1438, 5982, 416, 2836, 198, 220, 220, 220, 43962, 62, 6371, 796, 277, 6, 5450, 1378, 35924, 15042, 13, 1073, 14, 15042, 14, 85, 17, 14, 79, 12717, 14, 90, 7220, 62, 79, 12717, 62, 15414, 13, 21037, 3419, 92, 14, 6, 628, 220, 220, 220, 43089, 796, 7007, 13, 1136, 7, 79, 12717, 62, 6371, 8, 198, 220, 220, 220, 7883, 796, 23884, 198, 220, 220, 220, 2694, 62, 3672, 796, 17635, 628, 220, 220, 220, 1303, 10627, 611, 5982, 14878, 1438, 7160, 198, 220, 220, 220, 611, 43089, 13, 13376, 62, 8189, 14512, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 818, 30283, 14878, 1438, 11, 1949, 757, 0, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 1303, 611, 5982, 1438, 7160, 11, 356, 651, 1366, 290, 3359, 617, 1321, 546, 326, 14878, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 43962, 62, 22769, 796, 43089, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 43962, 62, 3672, 796, 43962, 62, 22769, 17816, 3672, 6, 4083, 27544, 1096, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2466, 8162, 360, 20892, 45484, 33478, 350, 11380, 3620, 1340, 25998, 1174, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 14539, 1068, 1438, 25, 1391, 79, 12717, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 79, 12717, 62, 3672, 92, 3463, 25, 1391, 79, 12717, 62, 22769, 17816, 6551, 20520, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 79, 12717, 62, 3672, 92, 6001, 25, 1391, 79, 12717, 62, 22769, 17816, 17015, 20520, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1972, 1351, 286, 41163, 1084, 7883, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1988, 287, 43962, 62, 22769, 17816, 5738, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 598, 1571, 2694, 62, 3672, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2694, 62, 3672, 13, 33295, 7, 8367, 17816, 1799, 6, 7131, 6, 3672, 6, 12962, 198, 220, 220, 220, 1303, 3601, 7, 69, 1, 8053, 286, 1391, 79, 12717, 62, 3672, 92, 7883, 25, 1391, 1799, 62, 3672, 32239, 77, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 8053, 286, 1391, 79, 12717, 62, 3672, 92, 7883, 25, 4943, 198, 220, 220, 220, 329, 6376, 11, 2694, 287, 27056, 378, 7, 1799, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 90, 9630, 1343, 352, 27422, 1391, 1799, 92, 11537, 198, 220, 220, 220, 2270, 198 ]
2.697715
569
if __name__ == '__main__': say()
[ 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 910, 3419 ]
2.111111
18
bind = "0.0.0.0:8085" workers = 2 threads = 2 timeout = 120
[ 21653, 796, 366, 15, 13, 15, 13, 15, 13, 15, 25, 1795, 5332, 1, 198, 22896, 796, 362, 198, 16663, 82, 796, 362, 198, 48678, 796, 7982 ]
2.185185
27
import re import nbformat from nbconvert import PythonExporter import warnings warnings.filterwarnings('ignore') def nbconverter(notebookPath,directionPath=None): """method name is the same as jupyter default converter name : Nbconvert(notebookPath,directionPath) :param notebookPath: source path of the ipynb file you want to convert :param direction Path : direction path of the formatted .py file """ try: with open(notebookPath,'r',encoding='utf-8') as fh: nb = nbformat.reads(fh.read(), nbformat.NO_CONVERT) except FileNotFoundError: if '.ipynb' not in notebookPath: notebookPath += '.ipynb' with open(notebookPath,'r',encoding='utf-8') as fh: nb = nbformat.reads(fh.read(), nbformat.NO_CONVERT) if directionPath == None: directionPath = notebookPath.replace('.ipynb','.py') pattern_input = r'# In\[[\d\s]*\]:' pattern_comment = '^#.+' pattern_variables = r'^[a-zA-Z0-9_]+\[?[ |0-9]*\]? *$' pattern_square_bracket = r'^\[.*\]$' pattern_string = r"^[\'|\"].*[\'|\"] *$" pattern_number = r'^\d+ *[\+|\-|\*|\/]? *\d* *$' exporter = PythonExporter() source, meta = exporter.from_notebook_node(nb) source = source.split('\n')[2:] source = [ t for t in source if t and not re.match(pattern_input,t)] source = [ '\n' + t if re.match(pattern_comment,t) else t for t in source ] source = [re.sub(pattern=pattern_variables,repl=print_match,string=t) for t in source] source = [re.sub(pattern=pattern_square_bracket,repl=print_match,string=t) for t in source] source = [re.sub(pattern=pattern_string,repl=print_match,string=t) for t in source] source = '\n'.join(source) + '\n\n' with open(directionPath, 'w+',encoding='utf-8') as fh: fh.write(source) print('{} has been saved'.format(directionPath)) nbconverter(r"C:\Users\Administrator.DG-11030335\Scripts\voc_alarm\外销意见反馈预警监控\convert2alarm.ipynb")
[ 11748, 302, 220, 201, 198, 11748, 299, 65, 18982, 201, 198, 6738, 299, 65, 1102, 1851, 1330, 11361, 3109, 26634, 201, 198, 11748, 14601, 220, 201, 198, 201, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 11537, 201, 198, 201, 198, 4299, 299, 65, 1102, 332, 353, 7, 11295, 2070, 15235, 11, 37295, 15235, 28, 14202, 2599, 201, 198, 197, 37811, 24396, 1438, 318, 262, 976, 355, 474, 929, 88, 353, 4277, 38394, 1438, 1058, 201, 198, 197, 220, 220, 399, 65, 1102, 1851, 7, 11295, 2070, 15235, 11, 37295, 15235, 8, 220, 201, 198, 197, 25, 17143, 20922, 15235, 25, 2723, 3108, 286, 262, 20966, 2047, 65, 2393, 345, 765, 284, 10385, 201, 198, 197, 25, 17143, 4571, 10644, 1058, 4571, 3108, 286, 262, 39559, 764, 9078, 2393, 220, 201, 198, 197, 37811, 201, 198, 197, 28311, 25, 201, 198, 197, 197, 4480, 1280, 7, 11295, 2070, 15235, 4032, 81, 3256, 12685, 7656, 11639, 40477, 12, 23, 11537, 355, 277, 71, 25, 201, 198, 197, 197, 197, 46803, 796, 299, 65, 18982, 13, 40779, 7, 69, 71, 13, 961, 22784, 299, 65, 18982, 13, 15285, 62, 10943, 15858, 8, 201, 198, 197, 16341, 9220, 3673, 21077, 12331, 25, 201, 198, 197, 197, 361, 45302, 541, 2047, 65, 6, 407, 287, 20922, 15235, 25, 201, 198, 197, 197, 197, 11295, 2070, 15235, 15853, 220, 45302, 541, 2047, 65, 6, 201, 198, 197, 197, 4480, 1280, 7, 11295, 2070, 15235, 4032, 81, 3256, 12685, 7656, 11639, 40477, 12, 23, 11537, 355, 277, 71, 25, 201, 198, 197, 197, 197, 46803, 796, 299, 65, 18982, 13, 40779, 7, 69, 71, 13, 961, 22784, 299, 65, 18982, 13, 15285, 62, 10943, 15858, 8, 201, 198, 201, 198, 197, 361, 4571, 15235, 6624, 6045, 25, 201, 198, 197, 197, 37295, 15235, 796, 20922, 15235, 13, 33491, 7, 4458, 541, 2047, 65, 3256, 4458, 9078, 11537, 201, 198, 201, 198, 197, 33279, 62, 15414, 796, 374, 6, 2, 554, 59, 30109, 59, 67, 59, 82, 60, 9, 59, 5974, 6, 201, 198, 197, 33279, 62, 23893, 796, 705, 61, 2, 13, 10, 6, 201, 198, 197, 33279, 62, 25641, 2977, 796, 374, 6, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 62, 48688, 59, 58, 30, 58, 930, 15, 12, 24, 60, 9, 59, 60, 30, 1635, 3, 6, 201, 198, 197, 33279, 62, 23415, 62, 1671, 8317, 796, 374, 6, 61, 59, 58, 15885, 59, 60, 3, 6, 201, 198, 197, 33279, 62, 8841, 796, 374, 1, 61, 58, 43054, 91, 7879, 4083, 9, 58, 43054, 91, 7879, 60, 1635, 3, 1, 201, 198, 197, 33279, 62, 17618, 796, 374, 6, 61, 59, 67, 10, 1635, 58, 59, 10, 91, 59, 22831, 59, 9, 91, 11139, 60, 30, 1635, 59, 67, 9, 1635, 3, 6, 201, 198, 201, 198, 197, 1069, 26634, 796, 220, 220, 220, 220, 11361, 3109, 26634, 3419, 201, 198, 197, 10459, 11, 13634, 796, 1033, 4337, 13, 6738, 62, 11295, 2070, 62, 17440, 7, 46803, 8, 201, 198, 201, 198, 197, 10459, 796, 2723, 13, 35312, 10786, 59, 77, 11537, 58, 17, 47715, 201, 198, 197, 10459, 796, 685, 256, 329, 256, 287, 2723, 611, 256, 290, 407, 302, 13, 15699, 7, 33279, 62, 15414, 11, 83, 15437, 201, 198, 197, 10459, 796, 685, 705, 59, 77, 6, 1343, 256, 611, 302, 13, 15699, 7, 33279, 62, 23893, 11, 83, 8, 2073, 256, 329, 256, 287, 2723, 2361, 201, 198, 197, 10459, 796, 685, 260, 13, 7266, 7, 33279, 28, 33279, 62, 25641, 2977, 11, 35666, 28, 4798, 62, 15699, 11, 8841, 28, 83, 8, 329, 256, 287, 2723, 60, 201, 198, 197, 10459, 796, 685, 260, 13, 7266, 7, 33279, 28, 33279, 62, 23415, 62, 1671, 8317, 11, 35666, 28, 4798, 62, 15699, 11, 8841, 28, 83, 8, 329, 256, 287, 2723, 60, 201, 198, 197, 10459, 796, 685, 260, 13, 7266, 7, 33279, 28, 33279, 62, 8841, 11, 35666, 28, 4798, 62, 15699, 11, 8841, 28, 83, 8, 329, 256, 287, 2723, 60, 201, 198, 201, 198, 197, 10459, 796, 705, 59, 77, 4458, 22179, 7, 10459, 8, 1343, 705, 59, 77, 59, 77, 6, 201, 198, 197, 4480, 1280, 7, 37295, 15235, 11, 705, 86, 10, 3256, 12685, 7656, 11639, 40477, 12, 23, 11537, 355, 277, 71, 25, 201, 198, 197, 197, 69, 71, 13, 13564, 7, 10459, 8, 201, 198, 197, 197, 4798, 10786, 90, 92, 468, 587, 7448, 4458, 18982, 7, 37295, 15235, 4008, 201, 198, 201, 198, 201, 198, 201, 198, 46803, 1102, 332, 353, 7, 81, 1, 34, 7479, 14490, 59, 41862, 12392, 13, 35, 38, 12, 11442, 1270, 27326, 59, 7391, 82, 59, 18893, 62, 282, 1670, 59, 13783, 244, 165, 242, 222, 35707, 237, 164, 100, 223, 20998, 235, 165, 99, 230, 165, 95, 226, 164, 255, 99, 33566, 239, 162, 236, 100, 59, 1102, 1851, 17, 282, 1670, 13, 541, 2047, 65, 4943 ]
2.337821
817
# encoding: utf-8 import bisect import collections import json import math import queue import heapq from typing import (Any, Callable, Counter, DefaultDict, Dict, Iterable, List, Set, Tuple) data: Dict[str, List[Any]] = json.loads(''' {"inputs":[[7],[10],[19]],"outputs":[2,2,3]} ''') fib = [1, 1] while True: x = fib[-2] + fib[-1] if x > 0x7fffffff: break fib.append(x) s = Solution() for args, eq in zip(data['inputs'], data['outputs']): assert_equal(s.findMinFibonacciNumbers(*args), eq)
[ 2, 21004, 25, 3384, 69, 12, 23, 198, 11748, 47457, 478, 198, 11748, 17268, 198, 11748, 33918, 198, 11748, 10688, 198, 11748, 16834, 198, 11748, 24575, 80, 198, 6738, 19720, 1330, 357, 7149, 11, 4889, 540, 11, 15034, 11, 15161, 35, 713, 11, 360, 713, 11, 40806, 540, 11, 7343, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 11, 309, 29291, 8, 628, 198, 198, 7890, 25, 360, 713, 58, 2536, 11, 7343, 58, 7149, 11907, 796, 33918, 13, 46030, 7, 7061, 6, 198, 4895, 15414, 82, 20598, 58, 22, 38430, 940, 38430, 1129, 11907, 553, 22915, 82, 20598, 17, 11, 17, 11, 18, 48999, 198, 7061, 11537, 628, 198, 69, 571, 796, 685, 16, 11, 352, 60, 198, 4514, 6407, 25, 198, 220, 220, 220, 2124, 796, 12900, 58, 12, 17, 60, 1343, 12900, 58, 12, 16, 60, 198, 220, 220, 220, 611, 2124, 1875, 657, 87, 22, 12927, 20972, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 12900, 13, 33295, 7, 87, 8, 628, 198, 82, 796, 28186, 3419, 198, 1640, 26498, 11, 37430, 287, 19974, 7, 7890, 17816, 15414, 82, 6, 4357, 1366, 17816, 22915, 82, 20520, 2599, 198, 220, 220, 220, 6818, 62, 40496, 7, 82, 13, 19796, 9452, 37, 571, 261, 44456, 49601, 46491, 22046, 828, 37430, 8, 198 ]
2.320513
234
import sys n = int(sys.stdin.readline().rstrip("\n")) distance = list(map(int,sys.stdin.readline().rstrip("\n").split(" "))) price = list(map(int,sys.stdin.readline().rstrip("\n").split(" "))) money = 0 curr_price = price[0] for i in range(len(price)-1): if curr_price > price[i]: curr_price = price[i] else: price[i]= curr_price money += price[i]*distance[i] print(money)
[ 11748, 25064, 198, 198, 77, 796, 493, 7, 17597, 13, 19282, 259, 13, 961, 1370, 22446, 81, 36311, 7203, 59, 77, 48774, 198, 30246, 796, 1351, 7, 8899, 7, 600, 11, 17597, 13, 19282, 259, 13, 961, 1370, 22446, 81, 36311, 7203, 59, 77, 11074, 35312, 7203, 366, 22305, 198, 20888, 796, 1351, 7, 8899, 7, 600, 11, 17597, 13, 19282, 259, 13, 961, 1370, 22446, 81, 36311, 7203, 59, 77, 11074, 35312, 7203, 366, 22305, 198, 198, 26316, 796, 657, 198, 22019, 81, 62, 20888, 796, 2756, 58, 15, 60, 198, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 20888, 13219, 16, 2599, 198, 220, 220, 220, 611, 1090, 81, 62, 20888, 1875, 2756, 58, 72, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 20888, 796, 2756, 58, 72, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2756, 58, 72, 22241, 1090, 81, 62, 20888, 198, 220, 220, 220, 1637, 15853, 2756, 58, 72, 60, 9, 30246, 58, 72, 60, 198, 198, 4798, 7, 26316, 8, 198 ]
2.26257
179
# Generated by Django 3.2.12 on 2022-02-14 16:39 import cvat.apps.dataset_repo.models from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 1065, 319, 33160, 12, 2999, 12, 1415, 1467, 25, 2670, 198, 198, 11748, 269, 85, 265, 13, 18211, 13, 19608, 292, 316, 62, 260, 7501, 13, 27530, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.7
60
# Copyright 2018 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.6+ and Openssl 1.0+ # import base64 import binascii import errno as errno import glob import random import string import subprocess import tempfile import uuid import azurelinuxagent.common.conf as conf import azurelinuxagent.common.utils.shellutil as shellutil from azurelinuxagent.common.future import ustr from azurelinuxagent.common.utils.cryptutil import CryptUtil from azurelinuxagent.common.exception import CryptError from azurelinuxagent.common.version import PY_VERSION_MAJOR from tests.tools import * from subprocess import CalledProcessError if __name__ == '__main__': unittest.main()
[ 2, 15069, 2864, 5413, 10501, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 26848, 11361, 362, 13, 21, 10, 290, 8670, 641, 6649, 352, 13, 15, 10, 198, 2, 198, 198, 11748, 2779, 2414, 198, 11748, 9874, 292, 979, 72, 198, 11748, 11454, 3919, 355, 11454, 3919, 198, 11748, 15095, 198, 11748, 4738, 198, 11748, 4731, 198, 11748, 850, 14681, 198, 11748, 20218, 7753, 198, 11748, 334, 27112, 198, 198, 11748, 35560, 495, 23289, 25781, 13, 11321, 13, 10414, 355, 1013, 198, 11748, 35560, 495, 23289, 25781, 13, 11321, 13, 26791, 13, 29149, 22602, 355, 7582, 22602, 198, 6738, 35560, 495, 23289, 25781, 13, 11321, 13, 37443, 1330, 334, 2536, 198, 6738, 35560, 495, 23289, 25781, 13, 11321, 13, 26791, 13, 29609, 22602, 1330, 15126, 18274, 346, 198, 6738, 35560, 495, 23289, 25781, 13, 11321, 13, 1069, 4516, 1330, 15126, 12331, 198, 6738, 35560, 495, 23289, 25781, 13, 11321, 13, 9641, 1330, 350, 56, 62, 43717, 62, 5673, 41, 1581, 198, 6738, 5254, 13, 31391, 1330, 1635, 198, 6738, 850, 14681, 1330, 34099, 18709, 12331, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.604167
336
#!/usr/bin/env python import sys import math import numpy as np from optparse import OptionParser def choose(n, k): """ A fast way to calculate binomial coefficients by Andrew Dalke (contrib). """ if 0 <= k <= n: ntok = 1 ktok = 1 for t in xrange(1, min(k, n - k) + 1): ntok *= n ktok *= t n -= 1 return ntok // ktok else: return 0 if __name__ == "__main__": sys.exit(main()) (END)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 25064, 198, 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 198, 4299, 3853, 7, 77, 11, 479, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 3049, 835, 284, 15284, 9874, 49070, 44036, 416, 6858, 12348, 365, 357, 3642, 822, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 657, 19841, 479, 19841, 299, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 482, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 479, 83, 482, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2124, 9521, 7, 16, 11, 949, 7, 74, 11, 299, 532, 479, 8, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 83, 482, 1635, 28, 299, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 83, 482, 1635, 28, 256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 299, 83, 482, 3373, 479, 83, 482, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 28955, 198, 220, 220, 220, 357, 10619, 8, 198 ]
2.004098
244
#!/usr/bin/env python # coding: utf-8 # ### 1 - SET UP THE API # In[1]: import requests import sys import os sys.path.insert(0, "/home/admin/ansible/fwd_python_api") sys.path.append("..") import fwd_json from fwd_json import fwdApi username = os.environ['fwd_saas_user'] token = os.environ['fwd_saas_token'] network = 137407 fwd = fwdApi("https://fwd.app/api", username, token,network, {}, verify=True) nqeUrl = "https://fwd.app/api/nqe?networkId={}".format(network) # In[2]: print(fwd.get_all_networks) #start collection fwd.start_collection(network).text # In[3]: #get the latest snapshot id latest_snap = fwd.get_snapshot_latest(network).json()['id'] print(latest_snap) # In[4]: #basic NQE to get a report of the network query = ''' foreach d in network.devices select { name: d.name, mgmtIP: d.platform.managementIps, model: d.platform.model, osType: d.platform.os, osVersion: d.platform.osVersion, serial: (foreach c in d.platform.components where isPresent(c.serialNumber) select c.serialNumber) }''' # In[5]: fwd.post_nqe_check(query) # ### 2 - METHOD 1 OF RUNNING NQE: define the query as a string # In[20]: #define a block blockConfig=''' block=``` ip access-list standard BASELINE_ACL 10 permit 192.168.252.94/31 20 {"permit" | "deny"} host 192.168.252.220 ```; foreach d in network.devices where isPresent(d.platform.osVersion) where d.platform.os == OS.ARISTA_EOS let diff = blockDiff_alpha1(d.files.config, block) //where diff.diffCount != 0 select { name: d.name, model: d.platform.model, missing_config: diff.blocks } ''' # In[21]: fwd.post_nqe_check(blockConfig) # ### 3 - METHOD 2 OF RUNNING NQE: define the API within NQE # In[22]: #check baseline CONFIG for all devices config = open('baseline_acl.txt', 'r').read() config = "test" queryId = "Q_e6ec1965d99271ce3e3a7223897469efc253468f" payload = {"config": config} response = fwd.post_nqe_para_check(queryId, payload) missingConfig = response print(missingConfig) # In[23]: #check BASELINE CONFIG for subset of devices config = open('baseline_acl.txt', 'r').read() config = "test" queryId = "Q_b7ed24370895b73d6ddbef0b81cffe04d22ae6f5" #define which device to check inputDevice = ["leaf1"] payload = {"config": config, "deviceList": inputDevice} response = fwd.post_nqe_para_check(queryId, payload) missingConfig = response print(missingConfig) # In[26]: #parameterized NQE for BGP neighbor queryId = "Q_8178355cfc658ab46cac0f07f2b033f68fa92c80" payload = {"deviceList": ["leaf4", "leaf2"]} response = fwd.post_nqe_para_check(queryId, payload) print(response) # In[27]: #parameterized NQE for interfaces that are down queryId = "Q_37cac69e9e54556d97b175d8392fa307d7a7afc8" payload = {"deviceList": ["leaf4"]} response = fwd.post_nqe_para_check(queryId, payload) print(response) # ### 4 - PATH SEARCH API # In[28]: #simple path search api srcIP = "192.168.100.1" dstIP = "192.168.100.4" fwd.get_path_search(latest_snap,srcIP, dstIP).json() # In[29]: #advanced use - define a path search and add as "Existential" intent check sourceIp = fwd_json.gen_location(SubnetLocationFilter="192.168.100.1/32") destIp = fwd_json.gen_location(SubnetLocationFilter="192.168.100.4/32") fwd.post_existance_check(snapshotID=latest_snap, FROM=(sourceIp), TO=(destIp)) # In[30]: #get results for all "Existential" intent check result = fwd.get_intent_checks(latest_snap, "Existential").json() print(result) # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 44386, 352, 532, 25823, 15958, 3336, 7824, 198, 198, 2, 554, 58, 16, 5974, 628, 198, 11748, 7007, 198, 11748, 25064, 198, 11748, 28686, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 12813, 11195, 14, 28482, 14, 504, 856, 14, 69, 16993, 62, 29412, 62, 15042, 4943, 198, 17597, 13, 6978, 13, 33295, 7203, 492, 4943, 198, 11748, 277, 16993, 62, 17752, 198, 6738, 277, 16993, 62, 17752, 1330, 277, 16993, 32, 14415, 198, 29460, 796, 28686, 13, 268, 2268, 17816, 69, 16993, 62, 11400, 292, 62, 7220, 20520, 198, 30001, 796, 28686, 13, 268, 2268, 17816, 69, 16993, 62, 11400, 292, 62, 30001, 20520, 198, 27349, 796, 21643, 30120, 198, 69, 16993, 796, 277, 16993, 32, 14415, 7203, 5450, 1378, 69, 16993, 13, 1324, 14, 15042, 1600, 20579, 11, 11241, 11, 27349, 11, 1391, 5512, 11767, 28, 17821, 8, 198, 77, 80, 68, 28165, 796, 366, 5450, 1378, 69, 16993, 13, 1324, 14, 15042, 14, 77, 80, 68, 30, 27349, 7390, 34758, 92, 1911, 18982, 7, 27349, 8, 628, 198, 2, 554, 58, 17, 5974, 198, 4798, 7, 69, 16993, 13, 1136, 62, 439, 62, 3262, 5225, 8, 198, 198, 2, 9688, 4947, 198, 69, 16993, 13, 9688, 62, 43681, 7, 27349, 737, 5239, 628, 198, 2, 554, 58, 18, 5974, 628, 198, 2, 1136, 262, 3452, 27479, 4686, 220, 198, 42861, 62, 45380, 796, 277, 16993, 13, 1136, 62, 45380, 9442, 62, 42861, 7, 27349, 737, 17752, 3419, 17816, 312, 20520, 198, 4798, 7, 42861, 62, 45380, 8, 628, 198, 2, 554, 58, 19, 5974, 628, 198, 2, 35487, 399, 48, 36, 284, 651, 257, 989, 286, 262, 3127, 198, 22766, 796, 705, 7061, 198, 754, 620, 288, 287, 3127, 13, 42034, 198, 19738, 1391, 198, 220, 1438, 25, 288, 13, 3672, 11, 220, 198, 220, 10527, 16762, 4061, 25, 288, 13, 24254, 13, 27604, 40, 862, 11, 198, 220, 2746, 25, 288, 13, 24254, 13, 19849, 11, 198, 220, 28686, 6030, 25, 288, 13, 24254, 13, 418, 11, 198, 220, 28686, 14815, 25, 288, 13, 24254, 13, 418, 14815, 11, 198, 220, 11389, 25, 357, 754, 620, 269, 287, 288, 13, 24254, 13, 5589, 3906, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 318, 34695, 7, 66, 13, 46911, 15057, 8, 2922, 269, 13, 46911, 15057, 8, 198, 92, 7061, 6, 628, 198, 2, 554, 58, 20, 5974, 628, 198, 69, 16993, 13, 7353, 62, 77, 80, 68, 62, 9122, 7, 22766, 8, 628, 198, 2, 44386, 362, 532, 220, 337, 36252, 352, 3963, 32494, 15871, 399, 48, 36, 25, 8160, 262, 12405, 355, 257, 4731, 198, 198, 2, 554, 58, 1238, 5974, 628, 198, 198, 2, 13086, 257, 2512, 220, 198, 9967, 16934, 28, 7061, 6, 198, 9967, 28, 15506, 63, 198, 541, 1895, 12, 4868, 3210, 29809, 3698, 8881, 62, 2246, 43, 198, 220, 838, 220, 220, 8749, 17817, 13, 14656, 13, 22800, 13, 5824, 14, 3132, 198, 220, 1160, 220, 220, 19779, 525, 2781, 1, 930, 366, 6559, 88, 20662, 2583, 17817, 13, 14656, 13, 22800, 13, 17572, 198, 198, 15506, 63, 26, 198, 754, 620, 288, 287, 3127, 13, 42034, 198, 3003, 318, 34695, 7, 67, 13, 24254, 13, 418, 14815, 8, 198, 3003, 288, 13, 24254, 13, 418, 6624, 7294, 13, 1503, 1797, 5603, 62, 36, 2640, 198, 1616, 814, 796, 2512, 28813, 62, 26591, 16, 7, 67, 13, 16624, 13, 11250, 11, 2512, 8, 198, 1003, 3003, 814, 13, 26069, 12332, 14512, 657, 198, 19738, 1391, 198, 220, 1438, 25, 288, 13, 3672, 11, 220, 198, 220, 2746, 25, 288, 13, 24254, 13, 19849, 11, 198, 220, 4814, 62, 11250, 25, 814, 13, 27372, 198, 92, 198, 7061, 6, 628, 198, 2, 554, 58, 2481, 5974, 628, 198, 69, 16993, 13, 7353, 62, 77, 80, 68, 62, 9122, 7, 9967, 16934, 8, 628, 198, 2, 44386, 513, 532, 220, 337, 36252, 362, 3963, 32494, 15871, 399, 48, 36, 25, 8160, 262, 7824, 1626, 399, 48, 36, 198, 198, 2, 554, 58, 1828, 5974, 628, 198, 2, 9122, 14805, 25626, 329, 477, 4410, 220, 198, 11250, 796, 1280, 10786, 12093, 4470, 62, 37779, 13, 14116, 3256, 705, 81, 27691, 961, 3419, 198, 11250, 796, 366, 9288, 1, 198, 22766, 7390, 796, 366, 48, 62, 68, 21, 721, 45271, 67, 2079, 28977, 344, 18, 68, 18, 64, 22, 1828, 29769, 4524, 3388, 891, 66, 1495, 2682, 3104, 69, 1, 198, 15577, 2220, 796, 19779, 11250, 1298, 4566, 92, 198, 220, 220, 220, 220, 198, 26209, 796, 277, 16993, 13, 7353, 62, 77, 80, 68, 62, 1845, 64, 62, 9122, 7, 22766, 7390, 11, 21437, 8, 198, 45688, 16934, 796, 2882, 198, 4798, 7, 45688, 16934, 8, 628, 198, 2, 554, 58, 1954, 5974, 628, 198, 2, 9122, 29809, 3698, 8881, 25626, 329, 24637, 286, 4410, 220, 198, 11250, 796, 1280, 10786, 12093, 4470, 62, 37779, 13, 14116, 3256, 705, 81, 27691, 961, 3419, 198, 11250, 796, 366, 9288, 1, 198, 22766, 7390, 796, 366, 48, 62, 65, 22, 276, 1731, 20167, 23, 3865, 65, 4790, 67, 21, 1860, 65, 891, 15, 65, 6659, 66, 16658, 3023, 67, 1828, 3609, 21, 69, 20, 1, 198, 2, 13086, 543, 3335, 284, 2198, 198, 15414, 24728, 796, 14631, 33201, 16, 8973, 198, 15577, 2220, 796, 19779, 11250, 1298, 4566, 11, 366, 25202, 8053, 1298, 5128, 24728, 92, 198, 26209, 796, 277, 16993, 13, 7353, 62, 77, 80, 68, 62, 1845, 64, 62, 9122, 7, 22766, 7390, 11, 21437, 8, 198, 45688, 16934, 796, 2882, 198, 4798, 7, 45688, 16934, 8, 628, 198, 2, 554, 58, 2075, 5974, 628, 198, 2, 17143, 2357, 1143, 399, 48, 36, 329, 347, 16960, 4780, 220, 198, 22766, 7390, 796, 366, 48, 62, 23, 23188, 28567, 12993, 66, 38431, 397, 3510, 66, 330, 15, 69, 2998, 69, 17, 65, 44427, 69, 3104, 13331, 5892, 66, 1795, 1, 198, 15577, 2220, 796, 19779, 25202, 8053, 1298, 14631, 33201, 19, 1600, 366, 33201, 17, 8973, 92, 198, 26209, 796, 277, 16993, 13, 7353, 62, 77, 80, 68, 62, 1845, 64, 62, 9122, 7, 22766, 7390, 11, 21437, 8, 198, 4798, 7, 26209, 8, 628, 198, 2, 554, 58, 1983, 5974, 628, 198, 2, 17143, 2357, 1143, 399, 48, 36, 329, 20314, 326, 389, 866, 220, 198, 22766, 7390, 796, 366, 48, 62, 2718, 66, 330, 3388, 68, 24, 68, 45326, 3980, 67, 5607, 65, 17430, 67, 23, 32321, 13331, 22996, 67, 22, 64, 22, 1878, 66, 23, 1, 198, 15577, 2220, 796, 19779, 25202, 8053, 1298, 14631, 33201, 19, 8973, 92, 198, 26209, 796, 277, 16993, 13, 7353, 62, 77, 80, 68, 62, 1845, 64, 62, 9122, 7, 22766, 7390, 11, 21437, 8, 198, 4798, 7, 26209, 8, 628, 198, 2, 44386, 604, 532, 46490, 7946, 31315, 7824, 198, 198, 2, 554, 58, 2078, 5974, 628, 198, 2, 36439, 3108, 2989, 40391, 220, 198, 10677, 4061, 796, 366, 17477, 13, 14656, 13, 3064, 13, 16, 1, 198, 67, 301, 4061, 796, 366, 17477, 13, 14656, 13, 3064, 13, 19, 1, 198, 69, 16993, 13, 1136, 62, 6978, 62, 12947, 7, 42861, 62, 45380, 11, 10677, 4061, 11, 29636, 4061, 737, 17752, 3419, 628, 198, 2, 554, 58, 1959, 5974, 628, 198, 2, 32225, 2903, 779, 532, 8160, 257, 3108, 2989, 290, 751, 355, 366, 3109, 396, 1843, 1, 6824, 2198, 198, 198, 10459, 40, 79, 796, 277, 16993, 62, 17752, 13, 5235, 62, 24886, 7, 7004, 3262, 14749, 22417, 2625, 17477, 13, 14656, 13, 3064, 13, 16, 14, 2624, 4943, 198, 16520, 40, 79, 796, 277, 16993, 62, 17752, 13, 5235, 62, 24886, 7, 7004, 3262, 14749, 22417, 2625, 17477, 13, 14656, 13, 3064, 13, 19, 14, 2624, 4943, 198, 69, 16993, 13, 7353, 62, 1069, 9311, 62, 9122, 7, 45380, 9442, 2389, 28, 42861, 62, 45380, 11, 16034, 16193, 10459, 40, 79, 828, 5390, 16193, 16520, 40, 79, 4008, 628, 198, 2, 554, 58, 1270, 5974, 628, 198, 2, 1136, 2482, 329, 477, 366, 3109, 396, 1843, 1, 6824, 2198, 198, 20274, 796, 277, 16993, 13, 1136, 62, 48536, 62, 42116, 7, 42861, 62, 45380, 11, 366, 3109, 396, 1843, 11074, 17752, 3419, 198, 4798, 7, 20274, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198 ]
2.526087
1,380
hiddenimports = ['sip', 'PyQt4._qt']
[ 30342, 320, 3742, 796, 37250, 82, 541, 3256, 705, 20519, 48, 83, 19, 13557, 39568, 20520, 198 ]
2.176471
17
from configparser import ConfigParser, ExtendedInterpolation from pathlib import Path default_snet_folder = Path("~").expanduser().joinpath(".snet")
[ 6738, 4566, 48610, 1330, 17056, 46677, 11, 24204, 9492, 16104, 341, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 12286, 62, 82, 3262, 62, 43551, 796, 10644, 7203, 93, 11074, 11201, 392, 7220, 22446, 22179, 6978, 7, 1911, 82, 3262, 4943, 628, 628, 628, 198 ]
3.466667
45
############################################################################### ## ## Copyright (C) 2014-2016, New York University. ## Copyright (C) 2013-2014, NYU-Poly. ## All rights reserved. ## Contact: [email protected] ## ## This file is part of VisTrails. ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## - Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## - Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## - Neither the name of the New York University nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ############################################################################### from __future__ import division import datetime from distutils.version import LooseVersion import re import time import warnings from vistrails.core.modules.vistrails_module import Module, ModuleError from vistrails.core.bundles import py_import from vistrails.core.utils import VistrailsWarning PYTZ_MIN_VER = LooseVersion('2012') utc = UTC() _decimal_fmt = re.compile( r'^' '([-+]?)' # + means we are advancing compared to UTC '([0-9]?[0-9])' # hours '([0-9][0-9])?$') # minutes class TimestampsToDates(Module): """ Converts a List or numpy array of timestamps into datetime objects. A UNIX timestamp represents the number of seconds since Jan 1 1970 0:00, UTC. It represents a specific point in time that is not dependent on a timezone. The returned datetime objects are in the UTC timezone. """ _input_ports = [ ('timestamps', '(org.vistrails.vistrails.basic:List)')] _output_ports = [ ('dates', '(org.vistrails.vistrails.basic:List)')] @staticmethod class StringsToDates(Module): """ Converts a List of dates (as strings) into datetime objects. If no format is given, the dateutil.parser module will be used to guess what each string refers to; else, it is passed to strptime() to read each date. For example: '%Y-%m-%d %H:%M:%S'. The 'timezone' parameter indicates which timezone these dates are expressed in. It can be either: * 'local', in which case each date is interpreted as being in whatever timezone the system is set to use; * an offset in hours/minutes from UTC, for instance '-0400' for DST (eastern America time, when daylight saving is in effect). Note that in this case, the same offset is used for every date, without regard for daylight saving (if a date falls in winter, '-0500' will not be used instead). * if pytz is available, anything else will be passed to pytz.timezone(), so you would be able to use strings such as 'US/Eastern' or 'Europe/Amsterdam'. """ _input_ports = [ ('strings', '(org.vistrails.vistrails.basic:List)'), ('format', '(org.vistrails.vistrails.basic:String)', {'optional': True, 'defaults': "['']"}), ('timezone', '(org.vistrails.vistrails.basic:String)', {'optional': True, 'defaults': "['']"})] _output_ports = [ ('dates', '(org.vistrails.vistrails.basic:List)')] @staticmethod class DatesToMatplotlib(Module): """ Converts a List of Python's datetime objects to an array for matplotlib. """ _input_ports = [('datetimes', '(org.vistrails.vistrails.basic:List)')] _output_ports = [('dates', '(org.vistrails.vistrails.basic:List)')] @staticmethod class TimestampsToMatplotlib(Module): """ Converts a List or numpy array of timestamps into an array for matplotlib. """ _input_ports = [ ('timestamps', '(org.vistrails.vistrails.basic:List)')] _output_ports = [ ('dates', '(org.vistrails.vistrails.basic:List)')] @staticmethod class StringsToMatplotlib(Module): """ Converts a List of dates (as strings) to an array accepted by matplotlib. """ _input_ports = [ ('strings', '(org.vistrails.vistrails.basic:List)'), ('format', '(org.vistrails.vistrails.basic:String)', {'optional': True, 'defaults': "['']"}), ('timezone', '(org.vistrails.vistrails.basic:String)', {'optional': True, 'defaults': "['']"})] _output_ports = [ ('dates', '(org.vistrails.vistrails.basic:List)')] @staticmethod _modules = {'dates': [ TimestampsToDates, StringsToDates, DatesToMatplotlib, TimestampsToMatplotlib, StringsToMatplotlib]} ############################################################################### import unittest from vistrails.tests.utils import execute, intercept_result from ..identifiers import identifier
[ 29113, 29113, 7804, 4242, 21017, 198, 2235, 198, 2235, 15069, 357, 34, 8, 1946, 12, 5304, 11, 968, 1971, 2059, 13, 198, 2235, 15069, 357, 34, 8, 2211, 12, 4967, 11, 48166, 12, 34220, 13, 198, 2235, 1439, 2489, 10395, 13, 198, 2235, 14039, 25, 2800, 31, 85, 396, 430, 4487, 13, 2398, 198, 2235, 198, 2235, 770, 2393, 318, 636, 286, 6911, 15721, 4487, 13, 198, 2235, 198, 2235, 366, 7738, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2235, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2235, 198, 2235, 220, 532, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 198, 2235, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2235, 220, 532, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 198, 2235, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 198, 2235, 220, 220, 220, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2235, 220, 532, 16126, 262, 1438, 286, 262, 968, 1971, 2059, 4249, 262, 3891, 286, 663, 198, 2235, 220, 220, 220, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 198, 2235, 220, 220, 220, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2235, 198, 2235, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 198, 2235, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 198, 2235, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 198, 2235, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 198, 2235, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 198, 2235, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 198, 2235, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 198, 2235, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 198, 2235, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 198, 2235, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 198, 2235, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 526, 198, 2235, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 198, 11748, 4818, 8079, 198, 6738, 1233, 26791, 13, 9641, 1330, 6706, 577, 14815, 198, 11748, 302, 198, 11748, 640, 198, 11748, 14601, 198, 198, 6738, 410, 396, 430, 4487, 13, 7295, 13, 18170, 13, 85, 396, 430, 4487, 62, 21412, 1330, 19937, 11, 19937, 12331, 198, 6738, 410, 396, 430, 4487, 13, 7295, 13, 65, 917, 829, 1330, 12972, 62, 11748, 198, 6738, 410, 396, 430, 4487, 13, 7295, 13, 26791, 1330, 569, 396, 430, 4487, 20361, 628, 198, 47, 56, 51, 57, 62, 23678, 62, 5959, 796, 6706, 577, 14815, 10786, 6999, 11537, 628, 198, 315, 66, 796, 18119, 3419, 628, 628, 198, 62, 12501, 4402, 62, 69, 16762, 796, 302, 13, 5589, 576, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 61, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26933, 19529, 60, 10091, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1343, 1724, 356, 389, 19988, 3688, 284, 18119, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26933, 15, 12, 24, 60, 30, 58, 15, 12, 24, 12962, 6, 220, 220, 220, 220, 1303, 2250, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26933, 15, 12, 24, 7131, 15, 12, 24, 12962, 30, 3, 11537, 220, 220, 1303, 2431, 628, 198, 4871, 5045, 395, 9430, 2514, 35, 689, 7, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 257, 7343, 393, 299, 32152, 7177, 286, 4628, 395, 9430, 656, 4818, 8079, 5563, 13, 628, 220, 220, 220, 317, 4725, 10426, 41033, 6870, 262, 1271, 286, 4201, 1201, 2365, 352, 8069, 657, 25, 405, 11, 198, 220, 220, 220, 18119, 13, 632, 6870, 257, 2176, 966, 287, 640, 326, 318, 407, 10795, 319, 257, 198, 220, 220, 220, 640, 11340, 13, 198, 220, 220, 220, 383, 4504, 4818, 8079, 5563, 389, 287, 262, 18119, 640, 11340, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 15414, 62, 3742, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 16514, 395, 9430, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 8, 11537, 60, 198, 220, 220, 220, 4808, 22915, 62, 3742, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 19581, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 8, 11537, 60, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 4285, 654, 2514, 35, 689, 7, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 257, 7343, 286, 9667, 357, 292, 13042, 8, 656, 4818, 8079, 5563, 13, 628, 220, 220, 220, 1002, 645, 5794, 318, 1813, 11, 262, 3128, 22602, 13, 48610, 8265, 481, 307, 973, 284, 4724, 198, 220, 220, 220, 644, 1123, 4731, 10229, 284, 26, 2073, 11, 340, 318, 3804, 284, 965, 457, 524, 3419, 284, 1100, 1123, 198, 220, 220, 220, 3128, 13, 1114, 1672, 25, 705, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4458, 198, 220, 220, 220, 383, 705, 2435, 11340, 6, 11507, 9217, 543, 640, 11340, 777, 9667, 389, 6241, 198, 220, 220, 220, 287, 13, 632, 460, 307, 2035, 25, 198, 220, 220, 220, 220, 220, 1635, 705, 12001, 3256, 287, 543, 1339, 1123, 3128, 318, 16173, 355, 852, 287, 4232, 198, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 262, 1080, 318, 900, 284, 779, 26, 198, 220, 220, 220, 220, 220, 1635, 281, 11677, 287, 2250, 14, 1084, 1769, 422, 18119, 11, 329, 4554, 705, 12, 3023, 405, 6, 329, 360, 2257, 198, 220, 220, 220, 220, 220, 220, 220, 357, 68, 6470, 2253, 640, 11, 618, 26010, 8914, 318, 287, 1245, 737, 5740, 326, 287, 198, 220, 220, 220, 220, 220, 220, 220, 428, 1339, 11, 262, 976, 11677, 318, 973, 329, 790, 3128, 11, 1231, 2754, 329, 198, 220, 220, 220, 220, 220, 220, 220, 26010, 8914, 357, 361, 257, 3128, 8953, 287, 7374, 11, 705, 12, 2713, 405, 6, 481, 407, 307, 973, 198, 220, 220, 220, 220, 220, 220, 220, 2427, 737, 198, 220, 220, 220, 220, 220, 1635, 611, 12972, 22877, 318, 1695, 11, 1997, 2073, 481, 307, 3804, 284, 12972, 22877, 13, 2435, 11340, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 523, 345, 561, 307, 1498, 284, 779, 13042, 884, 355, 705, 2937, 14, 46109, 6, 393, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16112, 14, 5840, 22506, 4458, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 15414, 62, 3742, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 37336, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 33047, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18982, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 10100, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 25968, 10354, 6407, 11, 705, 12286, 82, 10354, 12878, 7061, 60, 20662, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 2435, 11340, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 10100, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 25968, 10354, 6407, 11, 705, 12286, 82, 10354, 12878, 7061, 60, 20662, 15437, 198, 220, 220, 220, 4808, 22915, 62, 3742, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 19581, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 8, 11537, 60, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 44712, 2514, 19044, 29487, 8019, 7, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 257, 7343, 286, 11361, 338, 4818, 8079, 5563, 284, 281, 7177, 329, 2603, 29487, 8019, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 15414, 62, 3742, 796, 685, 10786, 19608, 46874, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 8, 11537, 60, 198, 220, 220, 220, 4808, 22915, 62, 3742, 796, 685, 10786, 19581, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 8, 11537, 60, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 5045, 395, 9430, 2514, 19044, 29487, 8019, 7, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 257, 7343, 393, 299, 32152, 7177, 286, 4628, 395, 9430, 656, 281, 7177, 329, 2603, 29487, 8019, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 15414, 62, 3742, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 16514, 395, 9430, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 8, 11537, 60, 198, 220, 220, 220, 4808, 22915, 62, 3742, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 19581, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 8, 11537, 60, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 4285, 654, 2514, 19044, 29487, 8019, 7, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 257, 7343, 286, 9667, 357, 292, 13042, 8, 284, 281, 7177, 6292, 416, 2603, 29487, 8019, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 15414, 62, 3742, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 37336, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 33047, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 18982, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 10100, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 25968, 10354, 6407, 11, 705, 12286, 82, 10354, 12878, 7061, 60, 20662, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 2435, 11340, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 10100, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 25968, 10354, 6407, 11, 705, 12286, 82, 10354, 12878, 7061, 60, 20662, 15437, 198, 220, 220, 220, 4808, 22915, 62, 3742, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 19581, 3256, 29513, 2398, 13, 85, 396, 430, 4487, 13, 85, 396, 430, 4487, 13, 35487, 25, 8053, 8, 11537, 60, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 62, 18170, 796, 1391, 6, 19581, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 5045, 395, 9430, 2514, 35, 689, 11, 4285, 654, 2514, 35, 689, 11, 198, 220, 220, 220, 220, 220, 220, 220, 44712, 2514, 19044, 29487, 8019, 11, 5045, 395, 9430, 2514, 19044, 29487, 8019, 11, 4285, 654, 2514, 19044, 29487, 8019, 48999, 628, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 11748, 555, 715, 395, 198, 6738, 410, 396, 430, 4487, 13, 41989, 13, 26791, 1330, 12260, 11, 15788, 62, 20274, 198, 6738, 11485, 738, 13350, 1330, 27421, 628, 628, 628 ]
2.824144
2,104
import sys import plotly.graph_objects as go import numpy as np from plotly.subplots import make_subplots from scipy import interpolate sys.path += ['src/01_data_processing', 'src/02_modelling', 'src/03_modell_evaluation', 'src/00_utils'] import spectrogram as spec import train_test_split as splt import train_model_autoencoder as train import naming import eval_model_autoencoder as eval def make_mel_trace(mel, colorbar_len=0.3, colorbar_y=1.01): """ Make heatmap trace of mel spectrogram """ mel_trace = dict(visible=True, type='heatmap', x=np.array(range(mel.shape[0])), y=np.array(range(mel.shape[1])), z=mel, colorscale='inferno', colorbar=dict(len=colorbar_len, y=colorbar_y, yanchor='top', thickness=10)) return mel_trace def make_invisible_error_traces(timewise_recon_error, times, thresh): """ Make invisible traces showing error over time and threshold. """ above_thresh = timewise_recon_error.copy() below_thresh = timewise_recon_error.copy() above_thresh[above_thresh < thresh] = np.nan below_thresh[below_thresh > thresh] = np.nan thresh_trace = dict(visible=False, type='scatter', x=[0, 10], y=[thresh, thresh], marker=dict(color='black'), mode='lines', showlegend=False) above_trace = dict(visible=False, type='scatter', x=times, y=above_thresh, marker=dict(color='red'), mode='lines', showlegend=False) below_trace = dict(visible=False, type='scatter', x=times, y=below_thresh, marker=dict(color='green'), mode='lines', showlegend=False) return above_trace, below_trace, thresh_trace def make_ref_thresh_trace_error(ref_thresh, thresh_range): """ Make dashed horizontal line for reference threshold """ assert thresh_range[0] <= ref_thresh <= thresh_range[-1], 'reference threshold outside of threshold range' ref_step = np.abs(ref_thresh - thresh_range).argmin() ref_thresh = thresh_range[ref_step] ref_thresh_trace = dict(visible=True, type='scatter', x=[0, 10], y=[ref_thresh, ref_thresh], marker=dict(color='black'), mode='lines', line=dict(color='black', dash='dash', width=1), showlegend=False) return ref_thresh_trace, ref_step def make_mean_error_trace(mean_recon_error): """ Sert marker for mean error of sample file """ mean_error_trace = dict(visible=True, type='scatter', x=[mean_recon_error], y=[5], mode='markers', marker_symbol='x-thin', marker=dict(size=8, color='black', line=dict(width=2, color='black')), name='mean error of<br>sample + percentile', showlegend=True) return mean_error_trace def make_hist_traces(reco_loss_train, ref_thresh, thresh_range): """ Make visible traces for histogram """ # Histogram trace hist_trace = dict(visible=True, type='histogram', x=reco_loss_train, marker=dict(color='green'), histnorm='probability density', opacity=0.3, showlegend=False) # Probability distribution trace from sklearn.neighbors import KernelDensity kde = KernelDensity(kernel='gaussian', bandwidth=0.001).fit(reco_loss_train.reshape(-1, 1)) errors = np.arange(0, 0.1, 0.0001) prob_density = np.exp(kde.score_samples(errors.reshape(-1, 1))) dist_trace = dict(visible=True, type='scatter', x=errors, y=prob_density, mode='lines', line=dict(color='green', width=1), showlegend=False) # Ref threshold trace assert thresh_range[0] <= ref_thresh <= thresh_range[-1], 'reference threshold outside of threshold range' ref_step = np.abs(ref_thresh - thresh_range).argmin() ref_thresh = thresh_range[ref_step] ref_thresh_trace = dict(visible=True, type='scatter', x=[ref_thresh, ref_thresh], y=[0, 100], mode='lines', line=dict(color='black', dash='dash', width=1), name='recommended<br>threshold', showlegend=True) return hist_trace, dist_trace, ref_thresh_trace def make_sliders(thresh_range, active_step, num_visible, num_invisible): """ Make slider to select error trace based on threshold. """ steps = [] imgs_per_step = int(num_invisible / len(thresh_range)) for i, thr in enumerate(thresh_range): # import pdb; pdb.set_trace() step = dict(label=round(thr, 2), method="update", args=[{"visible": [True] * num_visible + [False] * num_invisible}]) for j in range(imgs_per_step): step["args"][0]["visible"][num_visible + i * imgs_per_step + j] = True steps.append(step) sliders = [dict(currentvalue=dict(visible=False), active=active_step, steps=steps)] return sliders def make_figure_layout(fig, sliders, mel, thresh_range, width=600, height=1000): """ Make layout for figure with three subplots for mel spectrogram, error over time and training error distribution. """ fig.update_layout( height=height, width=width, xaxis1=dict( tickmode='array', tickvals=np.linspace(0, mel.shape[1] - 1, 6), ticktext=[0, 2, 4, 6, 8, 10]), yaxis1=dict( tickmode='array', tickvals=np.linspace(0, mel.shape[0], 6), ticktext=[0, 512, 1024, 2048, 4096, 8000], title='Hz'), yaxis2=dict(range=[0, 0.2]), xaxis3=dict(range=[thresh_range[0], thresh_range[-1]]), yaxis3=dict(range=[0, 100]), sliders=sliders, legend=dict( traceorder='reversed', font=dict(size=10), yanchor="top", y=0.275, xanchor="right", x=0.99)) def make_eval_visualisation(mel_file, model, scaler, reco_loss_train, dim, step, thresh_range, ref_thresh, width=600, height=1000, status_bar_width=0.025, as_images=True): """ Call functions in this module to make a visualization for a given mel spectrogram file. """ times, timewise_recon_error = eval.reco_loss_over_time(model=model, scaler=scaler, mel_file=mel_file, dim=dim, step=step, as_images=as_images) mean_recon_error = timewise_recon_error.mean() # Interpolate linearly between point for plotting f = interpolate.interp1d(times, timewise_recon_error) times = np.arange(times[0], times[-1], 0.005) timewise_recon_error = f(times) # Generate figure with two subplots fig = make_subplots(rows=3, cols=1, vertical_spacing=0.05, subplot_titles=( 'spectrogram', 'reconstruction error over time', 'mean error distribution training'), shared_xaxes=False) ######################## # VISIBLE TRACES FIRST # ######################## num_visible = 0 # First row: Spectrogram mel = np.load(mel_file) mel_trace = make_mel_trace(mel) fig.add_trace(mel_trace, row=1, col=1) num_visible += 1 # Second row: Reference threshold ref_thresh_trace, ref_step = make_ref_thresh_trace_error(ref_thresh, thresh_range) fig.add_trace(ref_thresh_trace, row=2, col=1) active_step = ref_step num_visible += 1 # Third row: mean error mean_error_trace = make_mean_error_trace(mean_recon_error) fig.add_trace(mean_error_trace, row=3, col=1) num_visible += 1 # Third row: histogram and distribution hist_traces = make_hist_traces(reco_loss_train, ref_thresh, thresh_range) for trace in hist_traces: fig.add_trace(trace, row=3, col=1) num_visible += 1 # Third row: percentile label x_range = thresh_range[-1] - thresh_range[0] xlo = mean_recon_error - 0.055*x_range xhi = mean_recon_error + 0.055*x_range ylo = 9 yhi = 15 percentage_box_trace = dict(visible=True, showlegend=False, type='scatter', mode='lines', x=[xlo, xlo, xhi, xhi, xlo], y=[ylo, yhi, yhi, ylo, ylo], fill='toself', fillcolor='white', line=dict(width=0)) percentage = str(round(sum(sorted(reco_loss_train) < mean_recon_error) / len(reco_loss_train) * 100, 2)) percentage_text_trace = dict(visible=True, type='scatter', x=[(xhi + xlo) / 2], y=[(yhi + ylo) / 2], mode='text', text=percentage + '%', textposition='middle center', showlegend=False) fig.add_trace(percentage_box_trace, row=3, col=1) fig.add_trace(percentage_text_trace, row=3, col=1) num_visible += 1 # Second row: status box xlo = 7.5 xhi = 9.5 yhi = 0.185 ylo = yhi-status_bar_width status_box_trace = dict(visible=True, showlegend=False, type='scatter', mode='lines', x=[xlo, xlo, xhi, xhi, xlo], y=[ylo, yhi, yhi, ylo, ylo], fill='toself', fillcolor='white', line=dict(width=0)) fig.add_trace(status_box_trace, row=2, col=1) num_visible += 1 status_text_trace = dict(visible=True, type='scatter', x=[xlo + 0.1 * (xhi - xlo)], y=[ylo + 0.5 * (yhi - ylo)], mode='text', text='Status', textposition='middle right', showlegend=False) fig.add_trace(status_text_trace, row=2, col=1) num_visible += 2 ######################### # INVISIBLE TRACES LAST # ######################### num_invisible = 0 # Add invsisible error traces to the second row for thresh in thresh_range: # Second row: colored error traces and horizontal threshold line invisible_error_traces = make_invisible_error_traces(timewise_recon_error, times, thresh) for trace in invisible_error_traces: fig.add_trace(trace, row=2, col=1) num_invisible += 1 # Second row: status if mean_recon_error > thresh: color = 'red' else: color = 'green' status_trace = dict(visible=False, type='scatter', x=[xlo + 0.8 * (xhi - xlo)], y=[ylo + 0.5 * (yhi - ylo)], mode='markers', marker=dict(size=18, color=color, line=dict(width=0)), showlegend=False) fig.add_trace(status_trace, row=2, col=1) num_invisible += 1 # Third row: vertical threshold line invisible_hist_trace = dict(visible=False, type='scatter', x=[thresh, thresh], y=[0, 100], mode='lines', line=dict(color='black', width=2), name='threshold', showlegend=True) fig.add_trace(invisible_hist_trace, row=3, col=1) num_invisible += 1 ############################ # MAKE ACTIVE STEP VISIBLE # ############################ imgs_per_step = int(num_invisible / len(thresh_range)) for data in fig.data[num_visible + imgs_per_step * active_step: num_visible + imgs_per_step * (active_step + 1)]: data.visible = True ################################# # SLIDERS TO CONTROL VISIBILITY # ################################# sliders = make_sliders(thresh_range, active_step, num_visible, num_invisible) # Make figure layout and show make_figure_layout(fig, sliders, mel, thresh_range, width, height) return fig
[ 11748, 25064, 198, 11748, 7110, 306, 13, 34960, 62, 48205, 355, 467, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 7110, 306, 13, 7266, 489, 1747, 1330, 787, 62, 7266, 489, 1747, 198, 6738, 629, 541, 88, 1330, 39555, 378, 198, 198, 17597, 13, 6978, 15853, 37250, 10677, 14, 486, 62, 7890, 62, 36948, 3256, 705, 10677, 14, 2999, 62, 4666, 9417, 3256, 705, 10677, 14, 3070, 62, 4666, 695, 62, 18206, 2288, 3256, 705, 10677, 14, 405, 62, 26791, 20520, 198, 198, 11748, 5444, 39529, 355, 1020, 198, 11748, 4512, 62, 9288, 62, 35312, 355, 4328, 83, 198, 11748, 4512, 62, 19849, 62, 2306, 6571, 66, 12342, 355, 4512, 198, 11748, 19264, 198, 11748, 5418, 62, 19849, 62, 2306, 6571, 66, 12342, 355, 5418, 628, 198, 4299, 787, 62, 17694, 62, 40546, 7, 17694, 11, 3124, 5657, 62, 11925, 28, 15, 13, 18, 11, 3124, 5657, 62, 88, 28, 16, 13, 486, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 4894, 8899, 12854, 286, 7758, 5444, 39529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7758, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 25080, 8899, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 37659, 13, 18747, 7, 9521, 7, 17694, 13, 43358, 58, 15, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 37659, 13, 18747, 7, 9521, 7, 17694, 13, 43358, 58, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 28, 17694, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 38765, 11639, 10745, 24100, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 5657, 28, 11600, 7, 11925, 28, 8043, 5657, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 8043, 5657, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 3702, 273, 11639, 4852, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20735, 28, 940, 4008, 198, 220, 220, 220, 1441, 7758, 62, 40546, 628, 198, 4299, 787, 62, 259, 23504, 62, 18224, 62, 2213, 2114, 7, 16514, 413, 786, 62, 260, 1102, 62, 18224, 11, 1661, 11, 294, 3447, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 14836, 20675, 4478, 4049, 625, 640, 290, 11387, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2029, 62, 400, 3447, 796, 4628, 413, 786, 62, 260, 1102, 62, 18224, 13, 30073, 3419, 198, 220, 220, 220, 2174, 62, 400, 3447, 796, 4628, 413, 786, 62, 260, 1102, 62, 18224, 13, 30073, 3419, 198, 220, 220, 220, 2029, 62, 400, 3447, 58, 29370, 62, 400, 3447, 1279, 294, 3447, 60, 796, 45941, 13, 12647, 198, 220, 220, 220, 2174, 62, 400, 3447, 58, 35993, 62, 400, 3447, 1875, 294, 3447, 60, 796, 45941, 13, 12647, 628, 220, 220, 220, 294, 3447, 62, 40546, 796, 8633, 7, 23504, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 15, 11, 838, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 400, 3447, 11, 294, 3447, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 8043, 11639, 13424, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 628, 220, 220, 220, 2029, 62, 40546, 796, 8633, 7, 23504, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 22355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 29370, 62, 400, 3447, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 8043, 11639, 445, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 628, 220, 220, 220, 2174, 62, 40546, 796, 8633, 7, 23504, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 22355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 35993, 62, 400, 3447, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 8043, 11639, 14809, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 628, 220, 220, 220, 1441, 2029, 62, 40546, 11, 2174, 62, 40546, 11, 294, 3447, 62, 40546, 628, 198, 4299, 787, 62, 5420, 62, 400, 3447, 62, 40546, 62, 18224, 7, 5420, 62, 400, 3447, 11, 294, 3447, 62, 9521, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 37901, 16021, 1627, 329, 4941, 11387, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 294, 3447, 62, 9521, 58, 15, 60, 19841, 1006, 62, 400, 3447, 19841, 294, 3447, 62, 9521, 58, 12, 16, 4357, 705, 35790, 11387, 2354, 286, 11387, 2837, 6, 198, 220, 220, 220, 1006, 62, 9662, 796, 45941, 13, 8937, 7, 5420, 62, 400, 3447, 532, 294, 3447, 62, 9521, 737, 853, 1084, 3419, 198, 220, 220, 220, 1006, 62, 400, 3447, 796, 294, 3447, 62, 9521, 58, 5420, 62, 9662, 60, 198, 220, 220, 220, 1006, 62, 400, 3447, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 15, 11, 838, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 5420, 62, 400, 3447, 11, 1006, 62, 400, 3447, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 8043, 11639, 13424, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 8043, 11639, 13424, 3256, 14470, 11639, 42460, 3256, 9647, 28, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 198, 220, 220, 220, 1441, 1006, 62, 400, 3447, 62, 40546, 11, 1006, 62, 9662, 628, 198, 4299, 787, 62, 32604, 62, 18224, 62, 40546, 7, 32604, 62, 260, 1102, 62, 18224, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 311, 861, 18364, 329, 1612, 4049, 286, 6291, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1612, 62, 18224, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 32604, 62, 260, 1102, 62, 18224, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 20, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 4102, 364, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 62, 1837, 23650, 11639, 87, 12, 40871, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 7857, 28, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 13424, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 10394, 28, 17, 11, 3124, 11639, 13424, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 32604, 4049, 286, 27, 1671, 29, 39873, 1343, 37894, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 17821, 8, 198, 220, 220, 220, 1441, 1612, 62, 18224, 62, 40546, 628, 198, 4299, 787, 62, 10034, 62, 2213, 2114, 7, 260, 1073, 62, 22462, 62, 27432, 11, 1006, 62, 400, 3447, 11, 294, 3447, 62, 9521, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 7424, 20675, 329, 1554, 21857, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 5590, 21857, 12854, 198, 220, 220, 220, 1554, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 10034, 21857, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 260, 1073, 62, 22462, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 8043, 11639, 14809, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 27237, 11639, 1676, 65, 1799, 12109, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45912, 28, 15, 13, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 628, 220, 220, 220, 1303, 30873, 1799, 6082, 12854, 198, 220, 220, 220, 422, 1341, 35720, 13, 710, 394, 32289, 1330, 32169, 35, 6377, 198, 220, 220, 220, 479, 2934, 796, 32169, 35, 6377, 7, 33885, 11639, 4908, 31562, 3256, 19484, 28, 15, 13, 8298, 737, 11147, 7, 260, 1073, 62, 22462, 62, 27432, 13, 3447, 1758, 32590, 16, 11, 352, 4008, 198, 220, 220, 220, 8563, 796, 45941, 13, 283, 858, 7, 15, 11, 657, 13, 16, 11, 657, 13, 18005, 8, 198, 220, 220, 220, 1861, 62, 43337, 796, 45941, 13, 11201, 7, 74, 2934, 13, 26675, 62, 82, 12629, 7, 48277, 13, 3447, 1758, 32590, 16, 11, 352, 22305, 198, 220, 220, 220, 1233, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 48277, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 1676, 65, 62, 43337, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 8043, 11639, 14809, 3256, 9647, 28, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 628, 220, 220, 220, 1303, 6524, 11387, 12854, 198, 220, 220, 220, 6818, 294, 3447, 62, 9521, 58, 15, 60, 19841, 1006, 62, 400, 3447, 19841, 294, 3447, 62, 9521, 58, 12, 16, 4357, 705, 35790, 11387, 2354, 286, 11387, 2837, 6, 198, 220, 220, 220, 1006, 62, 9662, 796, 45941, 13, 8937, 7, 5420, 62, 400, 3447, 532, 294, 3447, 62, 9521, 737, 853, 1084, 3419, 198, 220, 220, 220, 1006, 62, 400, 3447, 796, 294, 3447, 62, 9521, 58, 5420, 62, 9662, 60, 198, 220, 220, 220, 1006, 62, 400, 3447, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 5420, 62, 400, 3447, 11, 1006, 62, 400, 3447, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 15, 11, 1802, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 8043, 11639, 13424, 3256, 14470, 11639, 42460, 3256, 9647, 28, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 47335, 1631, 27, 1671, 29, 400, 10126, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 17821, 8, 628, 220, 220, 220, 1441, 1554, 62, 40546, 11, 1233, 62, 40546, 11, 1006, 62, 400, 3447, 62, 40546, 628, 198, 4299, 787, 62, 6649, 4157, 7, 400, 3447, 62, 9521, 11, 4075, 62, 9662, 11, 997, 62, 23504, 11, 997, 62, 259, 23504, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 28982, 284, 2922, 4049, 12854, 1912, 319, 11387, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4831, 796, 17635, 198, 220, 220, 220, 545, 14542, 62, 525, 62, 9662, 796, 493, 7, 22510, 62, 259, 23504, 1220, 18896, 7, 400, 3447, 62, 9521, 4008, 198, 220, 220, 220, 329, 1312, 11, 5636, 287, 27056, 378, 7, 400, 3447, 62, 9521, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1330, 279, 9945, 26, 279, 9945, 13, 2617, 62, 40546, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 796, 8633, 7, 18242, 28, 744, 7, 400, 81, 11, 362, 828, 2446, 2625, 19119, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 41888, 4895, 23504, 1298, 685, 17821, 60, 1635, 997, 62, 23504, 1343, 685, 25101, 60, 1635, 997, 62, 259, 23504, 92, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 9600, 82, 62, 525, 62, 9662, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 14692, 22046, 1, 7131, 15, 7131, 1, 23504, 1, 7131, 22510, 62, 23504, 1343, 1312, 1635, 545, 14542, 62, 525, 62, 9662, 1343, 474, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 13, 33295, 7, 9662, 8, 628, 220, 220, 220, 1017, 4157, 796, 685, 11600, 7, 14421, 8367, 28, 11600, 7, 23504, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4075, 28, 5275, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4831, 28, 20214, 15437, 198, 220, 220, 220, 1441, 1017, 4157, 628, 198, 4299, 787, 62, 26875, 62, 39786, 7, 5647, 11, 1017, 4157, 11, 7758, 11, 294, 3447, 62, 9521, 11, 9647, 28, 8054, 11, 6001, 28, 12825, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 12461, 329, 3785, 351, 1115, 850, 489, 1747, 329, 7758, 5444, 39529, 11, 4049, 625, 640, 290, 3047, 4049, 6082, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2336, 13, 19119, 62, 39786, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6001, 28, 17015, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 28, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 22704, 16, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 14171, 11639, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 12786, 28, 37659, 13, 21602, 10223, 7, 15, 11, 7758, 13, 43358, 58, 16, 60, 532, 352, 11, 718, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 5239, 41888, 15, 11, 362, 11, 604, 11, 718, 11, 807, 11, 838, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 331, 22704, 16, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 14171, 11639, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 12786, 28, 37659, 13, 21602, 10223, 7, 15, 11, 7758, 13, 43358, 58, 15, 4357, 718, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4378, 5239, 41888, 15, 11, 22243, 11, 28119, 11, 36117, 11, 42479, 11, 38055, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 7399, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 331, 22704, 17, 28, 11600, 7, 9521, 41888, 15, 11, 657, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 22704, 18, 28, 11600, 7, 9521, 41888, 400, 3447, 62, 9521, 58, 15, 4357, 294, 3447, 62, 9521, 58, 12, 16, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 331, 22704, 18, 28, 11600, 7, 9521, 41888, 15, 11, 1802, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 1017, 4157, 28, 6649, 4157, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8177, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12854, 2875, 11639, 260, 690, 276, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 28, 11600, 7, 7857, 28, 940, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 3702, 273, 2625, 4852, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 15, 13, 23195, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 3702, 273, 2625, 3506, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 15, 13, 2079, 4008, 628, 198, 4299, 787, 62, 18206, 62, 41464, 5612, 7, 17694, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16578, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 78, 62, 22462, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 11, 2239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 294, 3447, 62, 9521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 400, 3447, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 28, 8054, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6001, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 5657, 62, 10394, 28, 15, 13, 36629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 62, 17566, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4889, 5499, 287, 428, 8265, 284, 787, 257, 32704, 329, 257, 1813, 7758, 5444, 39529, 2393, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1661, 11, 4628, 413, 786, 62, 260, 1102, 62, 18224, 796, 5418, 13, 260, 1073, 62, 22462, 62, 2502, 62, 2435, 7, 19849, 28, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16578, 263, 28, 1416, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7758, 62, 7753, 28, 17694, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 28, 27740, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 62, 17566, 28, 292, 62, 17566, 8, 198, 220, 220, 220, 1612, 62, 260, 1102, 62, 18224, 796, 4628, 413, 786, 62, 260, 1102, 62, 18224, 13, 32604, 3419, 628, 220, 220, 220, 1303, 4225, 16104, 378, 9493, 11458, 1022, 966, 329, 29353, 198, 220, 220, 220, 277, 796, 39555, 378, 13, 3849, 79, 16, 67, 7, 22355, 11, 4628, 413, 786, 62, 260, 1102, 62, 18224, 8, 198, 220, 220, 220, 1661, 796, 45941, 13, 283, 858, 7, 22355, 58, 15, 4357, 1661, 58, 12, 16, 4357, 657, 13, 22544, 8, 198, 220, 220, 220, 4628, 413, 786, 62, 260, 1102, 62, 18224, 796, 277, 7, 22355, 8, 628, 220, 220, 220, 1303, 2980, 378, 3785, 351, 734, 850, 489, 1747, 198, 220, 220, 220, 2336, 796, 787, 62, 7266, 489, 1747, 7, 8516, 28, 18, 11, 951, 82, 28, 16, 11, 11723, 62, 2777, 4092, 28, 15, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 29487, 62, 83, 30540, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4443, 39529, 3256, 705, 260, 9979, 2762, 4049, 625, 640, 3256, 705, 32604, 4049, 6082, 3047, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4888, 62, 87, 897, 274, 28, 25101, 8, 628, 220, 220, 220, 1303, 14468, 4242, 21017, 198, 220, 220, 220, 1303, 50035, 34563, 7579, 2246, 1546, 31328, 1303, 198, 220, 220, 220, 1303, 14468, 4242, 21017, 198, 220, 220, 220, 997, 62, 23504, 796, 657, 628, 220, 220, 220, 1303, 3274, 5752, 25, 13058, 39529, 198, 220, 220, 220, 7758, 796, 45941, 13, 2220, 7, 17694, 62, 7753, 8, 198, 220, 220, 220, 7758, 62, 40546, 796, 787, 62, 17694, 62, 40546, 7, 17694, 8, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 17694, 62, 40546, 11, 5752, 28, 16, 11, 951, 28, 16, 8, 198, 220, 220, 220, 997, 62, 23504, 15853, 352, 628, 220, 220, 220, 1303, 5498, 5752, 25, 20984, 11387, 198, 220, 220, 220, 1006, 62, 400, 3447, 62, 40546, 11, 1006, 62, 9662, 796, 787, 62, 5420, 62, 400, 3447, 62, 40546, 62, 18224, 7, 5420, 62, 400, 3447, 11, 294, 3447, 62, 9521, 8, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 5420, 62, 400, 3447, 62, 40546, 11, 5752, 28, 17, 11, 951, 28, 16, 8, 198, 220, 220, 220, 4075, 62, 9662, 796, 1006, 62, 9662, 198, 220, 220, 220, 997, 62, 23504, 15853, 352, 628, 220, 220, 220, 1303, 10467, 5752, 25, 1612, 4049, 198, 220, 220, 220, 1612, 62, 18224, 62, 40546, 796, 787, 62, 32604, 62, 18224, 62, 40546, 7, 32604, 62, 260, 1102, 62, 18224, 8, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 32604, 62, 18224, 62, 40546, 11, 5752, 28, 18, 11, 951, 28, 16, 8, 198, 220, 220, 220, 997, 62, 23504, 15853, 352, 628, 220, 220, 220, 1303, 10467, 5752, 25, 1554, 21857, 290, 6082, 198, 220, 220, 220, 1554, 62, 2213, 2114, 796, 787, 62, 10034, 62, 2213, 2114, 7, 260, 1073, 62, 22462, 62, 27432, 11, 1006, 62, 400, 3447, 11, 294, 3447, 62, 9521, 8, 198, 220, 220, 220, 329, 12854, 287, 1554, 62, 2213, 2114, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 40546, 11, 5752, 28, 18, 11, 951, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 23504, 15853, 352, 628, 220, 220, 220, 1303, 10467, 5752, 25, 37894, 6167, 198, 220, 220, 220, 2124, 62, 9521, 796, 294, 3447, 62, 9521, 58, 12, 16, 60, 532, 294, 3447, 62, 9521, 58, 15, 60, 198, 220, 220, 220, 2124, 5439, 796, 1612, 62, 260, 1102, 62, 18224, 532, 657, 13, 47838, 9, 87, 62, 9521, 198, 220, 220, 220, 2124, 5303, 796, 1612, 62, 260, 1102, 62, 18224, 1343, 657, 13, 47838, 9, 87, 62, 9521, 198, 220, 220, 220, 331, 5439, 796, 860, 198, 220, 220, 220, 331, 5303, 796, 1315, 198, 220, 220, 220, 5873, 62, 3524, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 87, 5439, 11, 2124, 5439, 11, 2124, 5303, 11, 2124, 5303, 11, 2124, 5439, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 2645, 78, 11, 331, 5303, 11, 331, 5303, 11, 331, 5439, 11, 331, 5439, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 11639, 83, 577, 1652, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 8043, 11639, 11186, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 10394, 28, 15, 4008, 628, 220, 220, 220, 5873, 796, 965, 7, 744, 7, 16345, 7, 82, 9741, 7, 260, 1073, 62, 22462, 62, 27432, 8, 1279, 1612, 62, 260, 1102, 62, 18224, 8, 1220, 18896, 7, 260, 1073, 62, 22462, 62, 27432, 8, 1635, 1802, 11, 362, 4008, 198, 220, 220, 220, 5873, 62, 5239, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 7, 87, 5303, 1343, 2124, 5439, 8, 1220, 362, 4357, 331, 41888, 7, 88, 5303, 1343, 331, 5439, 8, 1220, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 28, 25067, 496, 1343, 705, 4, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 9150, 11639, 27171, 3641, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 25067, 496, 62, 3524, 62, 40546, 11, 5752, 28, 18, 11, 951, 28, 16, 8, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 25067, 496, 62, 5239, 62, 40546, 11, 5752, 28, 18, 11, 951, 28, 16, 8, 198, 220, 220, 220, 997, 62, 23504, 15853, 352, 628, 220, 220, 220, 1303, 5498, 5752, 25, 3722, 3091, 198, 220, 220, 220, 2124, 5439, 796, 767, 13, 20, 198, 220, 220, 220, 2124, 5303, 796, 860, 13, 20, 198, 220, 220, 220, 331, 5303, 796, 657, 13, 21652, 198, 220, 220, 220, 331, 5439, 796, 331, 5303, 12, 13376, 62, 5657, 62, 10394, 198, 220, 220, 220, 3722, 62, 3524, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 87, 5439, 11, 2124, 5439, 11, 2124, 5303, 11, 2124, 5303, 11, 2124, 5439, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 2645, 78, 11, 331, 5303, 11, 331, 5303, 11, 331, 5439, 11, 331, 5439, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 11639, 83, 577, 1652, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 8043, 11639, 11186, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 10394, 28, 15, 4008, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 13376, 62, 3524, 62, 40546, 11, 5752, 28, 17, 11, 951, 28, 16, 8, 198, 220, 220, 220, 997, 62, 23504, 15853, 352, 628, 220, 220, 220, 3722, 62, 5239, 62, 40546, 796, 8633, 7, 23504, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 87, 5439, 1343, 657, 13, 16, 1635, 357, 87, 5303, 532, 2124, 5439, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 2645, 78, 1343, 657, 13, 20, 1635, 357, 88, 5303, 532, 331, 5439, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 19580, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 9150, 11639, 27171, 826, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 13376, 62, 5239, 62, 40546, 11, 5752, 28, 17, 11, 951, 28, 16, 8, 198, 220, 220, 220, 997, 62, 23504, 15853, 362, 628, 220, 220, 220, 1303, 14468, 7804, 198, 220, 220, 220, 1303, 3268, 29817, 34563, 7579, 2246, 1546, 41894, 1303, 198, 220, 220, 220, 1303, 14468, 7804, 198, 220, 220, 220, 997, 62, 259, 23504, 796, 657, 628, 220, 220, 220, 1303, 3060, 800, 82, 12843, 4049, 20675, 284, 262, 1218, 5752, 198, 220, 220, 220, 329, 294, 3447, 287, 294, 3447, 62, 9521, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5498, 5752, 25, 16396, 4049, 20675, 290, 16021, 11387, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 14836, 62, 18224, 62, 2213, 2114, 796, 787, 62, 259, 23504, 62, 18224, 62, 2213, 2114, 7, 16514, 413, 786, 62, 260, 1102, 62, 18224, 11, 1661, 11, 294, 3447, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 12854, 287, 14836, 62, 18224, 62, 2213, 2114, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 40546, 11, 5752, 28, 17, 11, 951, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 259, 23504, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5498, 5752, 25, 3722, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1612, 62, 260, 1102, 62, 18224, 1875, 294, 3447, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 705, 445, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 705, 14809, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 40546, 796, 8633, 7, 23504, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 87, 5439, 1343, 657, 13, 23, 1635, 357, 87, 5303, 532, 2124, 5439, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 41888, 2645, 78, 1343, 657, 13, 20, 1635, 357, 88, 5303, 532, 331, 5439, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 4102, 364, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 7857, 28, 1507, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 10394, 28, 15, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 1455, 437, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 13376, 62, 40546, 11, 5752, 28, 17, 11, 951, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 259, 23504, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10467, 5752, 25, 11723, 11387, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 14836, 62, 10034, 62, 40546, 796, 8633, 7, 23504, 28, 25101, 11, 2099, 11639, 1416, 1436, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 41888, 400, 3447, 11, 294, 3447, 4357, 331, 41888, 15, 11, 1802, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 6615, 3256, 1627, 28, 11600, 7, 8043, 11639, 13424, 3256, 9647, 28, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 400, 10126, 3256, 905, 1455, 437, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 259, 23504, 62, 10034, 62, 40546, 11, 5752, 28, 18, 11, 951, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 259, 23504, 15853, 352, 628, 220, 220, 220, 1303, 14468, 7804, 21017, 198, 220, 220, 220, 1303, 39134, 11741, 9306, 49154, 50035, 34563, 1303, 198, 220, 220, 220, 1303, 14468, 7804, 21017, 198, 220, 220, 220, 545, 14542, 62, 525, 62, 9662, 796, 493, 7, 22510, 62, 259, 23504, 1220, 18896, 7, 400, 3447, 62, 9521, 4008, 198, 220, 220, 220, 329, 1366, 287, 2336, 13, 7890, 58, 22510, 62, 23504, 1343, 545, 14542, 62, 525, 62, 9662, 1635, 4075, 62, 9662, 25, 997, 62, 23504, 1343, 545, 14542, 62, 525, 62, 9662, 1635, 357, 5275, 62, 9662, 1343, 352, 8, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 23504, 796, 6407, 628, 220, 220, 220, 1303, 29113, 198, 220, 220, 220, 1303, 12419, 2389, 4877, 5390, 49833, 50035, 40, 25382, 1303, 198, 220, 220, 220, 1303, 29113, 198, 220, 220, 220, 1017, 4157, 796, 787, 62, 6649, 4157, 7, 400, 3447, 62, 9521, 11, 4075, 62, 9662, 11, 997, 62, 23504, 11, 997, 62, 259, 23504, 8, 628, 220, 220, 220, 1303, 6889, 3785, 12461, 290, 905, 198, 220, 220, 220, 787, 62, 26875, 62, 39786, 7, 5647, 11, 1017, 4157, 11, 7758, 11, 294, 3447, 62, 9521, 11, 9647, 11, 6001, 8, 198, 220, 220, 220, 1441, 2336, 198 ]
1.821193
7,729
from typing import Dict, Set from .RF2File import RF2File from .Transitive import Transitive from SNOMEDCTToOWL.TransformationContext import TransformationContext from SNOMEDCTToOWL.SNOMEDToOWLConstants import * class Relationship: """ A RF2 stated relationship or relationship entry Properties: * sourceId -- concept identifier of the subject * typeId -- concept identifier of the predicate (if not IS a) * destinationId -- concept identifier of the target * relationshipGroup -- group the assertion belongs to Filters: * active -- only active relationships (active=='1') are included * characteristicTypeId -- only descendants of 900000000000006009 |Defining relationship| (stated, inferred) are included in the transformation. * moduleId -- NOT used as a filter because fully defined definitions have to be complete to be valid * modifierId -- only the existential modifier, 900000000000451002 |Some|, is included in the transformation """
[ 6738, 19720, 1330, 360, 713, 11, 5345, 198, 198, 6738, 764, 32754, 17, 8979, 1330, 20445, 17, 8979, 198, 6738, 764, 8291, 1800, 1330, 3602, 1800, 198, 6738, 11346, 2662, 1961, 4177, 2514, 3913, 43, 13, 8291, 1161, 21947, 1330, 49127, 21947, 198, 6738, 11346, 2662, 1961, 4177, 2514, 3913, 43, 13, 15571, 2662, 1961, 2514, 3913, 43, 34184, 1187, 1330, 1635, 628, 198, 4871, 39771, 25, 198, 220, 220, 220, 37227, 317, 20445, 17, 5081, 2776, 393, 2776, 5726, 628, 220, 220, 220, 24946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 2723, 7390, 1377, 3721, 27421, 286, 262, 2426, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 2099, 7390, 1377, 3721, 27421, 286, 262, 44010, 357, 361, 407, 3180, 257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 10965, 7390, 1377, 3721, 27421, 286, 262, 2496, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 2776, 13247, 1377, 1448, 262, 19190, 14448, 284, 628, 220, 220, 220, 7066, 1010, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 4075, 1377, 691, 4075, 6958, 357, 5275, 855, 6, 16, 11537, 389, 3017, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 16704, 6030, 7390, 1377, 691, 25321, 286, 860, 8269, 20483, 8054, 24, 930, 7469, 3191, 2776, 91, 357, 21989, 11, 41240, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 3017, 287, 262, 13389, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 8265, 7390, 1377, 220, 5626, 973, 355, 257, 8106, 780, 3938, 5447, 17336, 423, 284, 307, 1844, 284, 307, 4938, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 23157, 7390, 1377, 691, 262, 28954, 23157, 11, 860, 8269, 830, 2231, 3064, 17, 930, 4366, 91, 11, 318, 3017, 287, 262, 13389, 198, 220, 220, 220, 37227, 628 ]
3.267692
325
import base64 import csv import io from utility import Utility class Report(object): """ We use this class to generate text reports. Class based on [email protected]'s Report.py class and modified for this purpose """ @classmethod def create_csv_report(cls, vulnerable_image_check_data): """ Expect a dictionary object, produce text in CSV format. Args: - cls - reference to the current instance of hte class - vulnerable_image_check_data (dict) - dictionary of vulnerability data Return: - result (str) - base64 encoded vulnerability report """ # initialize the list as we will have a list of dicts rows = [] # let's build the output for all sets in the dataset # dataset is vulnerability info for all images in request for set in vulnerable_image_check_data["image_issues"]: # format the data for a cvs report row = cls.format_vulnerable_image_data_csv(set) # append each returned data set to the whole rows.append(row) # the fieldnames for the csv - DictWriter will order by these fieldnames = \ ["registry", "repository", "tag", "package", "version", "image_digest"] # get a stream io object ephemeral_obj = io.BytesIO() # write the csv data csv_writer = csv.DictWriter(ephemeral_obj, fieldnames=fieldnames) csv_writer.writeheader() csv_writer.writerows(rows) # encode to base64 result = base64.b64encode(ephemeral_obj.getvalue()) # clean up ephemeral_obj.close() # return report data return result @classmethod def create_stdout_report(cls, vulnerable_image_check_data): """ Expect a dictionary object, produce text appropriate for stdout. Args: - cls - reference to the current instance of the class - vulnerable_image_check_data (dict) - dictionary of vulnerability data Return: - result (str) - base64 encoded vulnerability report Format of encoded data: Registry: DPR Repository: bkumar89/centos Tag: 7.1.1503 Vulnerabilities: Package: binutils Package Version: 2.23.52.0.1-30.el7 | CVE List: cve-2014-8484 cve-2014-8485 # NOQA """ result = "" # for each data set in all the data for set in vulnerable_image_check_data["image_issues"]: # format data as noted above pieces = cls.format_vulnerable_image_data(set) pieces = pieces.split('\n') pieces = "\n".join(pieces) # build full dataset result += pieces # encode data result = base64.b64encode(result) # return report data return result @classmethod def create_slack_reports(cls, channel_reference, default_channel, routing_rules, instances): """Create a plaintext report for Slack. Args: channel_reference(dict): Keys are channel names, values are channel IDs. default_channel(str): Name of default Slack channel. routing_rules(dict): Rules for routing messages to different Slack channels. Formatted like {"metadata_field_name": {"metadata_field_value_to_match": "slack_channel_name"}} instances(dict): Instance metadata. Returns: dict: {"channel": "report"} where "channel" is the Slack channel ID and "report" is the text of the report. """ organized = {} # Group by target Slack channel. for instance in instances: channel = Utility.get_channel_for_message(channel_reference, instance, routing_rules, default_channel) if channel not in organized: organized[channel] = [] organized[channel].append(instance) # Build report per channel, each sorted by instance ID. report = {} for target, content in organized.items(): x_content = {c.keys()[0]: c.values()[0] for c in content} report[target] = cls.create_stdout_report(x_content) return report @classmethod def format_vulnerable_image_data(cls, vic_data): """Format vulnerability data for reporting. Args: - cls - reference to the current instance of the class - vic_data (dict): Formatted like this: Registry: DPR Repository: bkumar89/centos Tag: 7.1.1503 Vulnerabilities: Package: binutils Package Version: 2.23.52.0.1-30.el7 | CVE List: cve-2014-8484 cve-2014-8485 # NOQA """ registry = \ "\n\nRegistry: {registry}" \ "".format(registry=vic_data["image"]["registry"]["name"]) repository = \ " Repository: {repository}" \ "".format(repository=vic_data["image"]["repository"]["name"]) tags = "" for tag in vic_data["image"]["tags"]: tags += tag tags += " " tag_list = \ " Tag(s): {tag_list}".format(tag_list=tags) vulnerabilities = " Vulnerabilities:" # NOQA package = " Package: {package}".format(package=vic_data["name"]) # build package, package version and cve's into one line package_version = \ " Package Version: {package_version}" \ "".format(package_version=vic_data["version"]) package += package_version cves = "" for cve in vic_data["cves"]: cves += cve["name"] cves += " " cve_list = " | CVE List: {cve_list}".format(cve_list=cves) package += cve_list # order the fields and separate them by a newline ordered_fields = [registry, repository, tag_list, vulnerabilities, package] # return formatted report data return "\n".join(ordered_fields) @classmethod def format_vulnerable_image_data_csv(cls, vic_data): """ Format vulnerability data for reporting in CSV format. Args: vic_data (dict) - vulnerability data Returns: result - (dict) - vulnerability report data """ number_tags = len(vic_data["image"]["tags"]) counter = 0 tags = "" increment = 1 while counter < number_tags: tags += vic_data["image"]["tags"][counter] tags += " " counter = counter + increment result = {"registry": vic_data["image"]["registry"]["name"], "repository": vic_data["image"]["repository"]["name"], "tag": tags, "package": vic_data["name"], "image_digest": vic_data["image"]["image_sha"], "version": vic_data["version"]} return result
[ 11748, 2779, 2414, 198, 11748, 269, 21370, 198, 11748, 33245, 198, 6738, 10361, 1330, 34030, 628, 198, 4871, 6358, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 775, 779, 428, 1398, 284, 7716, 2420, 3136, 13, 198, 220, 220, 220, 5016, 1912, 319, 3253, 346, 1559, 31, 17721, 6603, 496, 13, 785, 338, 6358, 13, 9078, 1398, 290, 9518, 198, 220, 220, 220, 329, 428, 4007, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 2251, 62, 40664, 62, 13116, 7, 565, 82, 11, 8826, 62, 9060, 62, 9122, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23600, 257, 22155, 2134, 11, 4439, 2420, 287, 44189, 5794, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 537, 82, 532, 4941, 284, 262, 1459, 4554, 286, 289, 660, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 8826, 62, 9060, 62, 9122, 62, 7890, 357, 11600, 8, 532, 22155, 286, 15131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1255, 357, 2536, 8, 532, 2779, 2414, 30240, 15131, 989, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 41216, 262, 1351, 355, 356, 481, 423, 257, 1351, 286, 8633, 82, 198, 220, 220, 220, 220, 220, 220, 220, 15274, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1309, 338, 1382, 262, 5072, 329, 477, 5621, 287, 262, 27039, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27039, 318, 15131, 7508, 329, 477, 4263, 287, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 329, 900, 287, 8826, 62, 9060, 62, 9122, 62, 7890, 14692, 9060, 62, 37165, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5794, 262, 1366, 329, 257, 269, 14259, 989, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 537, 82, 13, 18982, 62, 85, 38828, 62, 9060, 62, 7890, 62, 40664, 7, 2617, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24443, 1123, 4504, 1366, 900, 284, 262, 2187, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15274, 13, 33295, 7, 808, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 2214, 14933, 329, 262, 269, 21370, 532, 360, 713, 34379, 481, 1502, 416, 777, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 14933, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 2301, 4592, 1600, 366, 260, 1930, 37765, 1600, 366, 12985, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26495, 1600, 366, 9641, 1600, 366, 9060, 62, 12894, 395, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 257, 4269, 33245, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 2462, 39557, 282, 62, 26801, 796, 33245, 13, 45992, 9399, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3551, 262, 269, 21370, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 16002, 796, 269, 21370, 13, 35, 713, 34379, 7, 538, 39557, 282, 62, 26801, 11, 2214, 14933, 28, 3245, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 16002, 13, 13564, 25677, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 16002, 13, 16002, 1666, 7, 8516, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37773, 284, 2779, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 538, 39557, 282, 62, 26801, 13, 1136, 8367, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3424, 510, 198, 220, 220, 220, 220, 220, 220, 220, 2462, 39557, 282, 62, 26801, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 989, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 2251, 62, 19282, 448, 62, 13116, 7, 565, 82, 11, 8826, 62, 9060, 62, 9122, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23600, 257, 22155, 2134, 11, 4439, 2420, 5035, 329, 14367, 448, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 537, 82, 532, 4941, 284, 262, 1459, 4554, 286, 262, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 8826, 62, 9060, 62, 9122, 62, 7890, 357, 11600, 8, 532, 22155, 286, 15131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1255, 357, 2536, 8, 532, 2779, 2414, 30240, 15131, 989, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18980, 286, 30240, 1366, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33432, 25, 41176, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1432, 13264, 25, 275, 74, 44844, 4531, 14, 1087, 418, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17467, 25, 767, 13, 16, 13, 8628, 18, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 5697, 5738, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15717, 25, 9874, 26791, 15717, 10628, 25, 362, 13, 1954, 13, 4309, 13, 15, 13, 16, 12, 1270, 13, 417, 22, 930, 24640, 7343, 25, 269, 303, 12, 4967, 12, 23, 34137, 269, 303, 12, 4967, 12, 23, 32642, 1303, 8005, 48, 32, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 1123, 1366, 900, 287, 477, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 329, 900, 287, 8826, 62, 9060, 62, 9122, 62, 7890, 14692, 9060, 62, 37165, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5794, 1366, 355, 4367, 2029, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 796, 537, 82, 13, 18982, 62, 85, 38828, 62, 9060, 62, 7890, 7, 2617, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 796, 5207, 13, 35312, 10786, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 796, 37082, 77, 1911, 22179, 7, 34154, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1382, 1336, 27039, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 15853, 5207, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37773, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 20274, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 989, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 2251, 62, 6649, 441, 62, 48922, 7, 565, 82, 11, 6518, 62, 35790, 11, 4277, 62, 17620, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28166, 62, 38785, 11, 10245, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 8631, 5239, 989, 329, 36256, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6518, 62, 35790, 7, 11600, 2599, 26363, 389, 6518, 3891, 11, 3815, 389, 6518, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32373, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 17620, 7, 2536, 2599, 6530, 286, 4277, 36256, 6518, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28166, 62, 38785, 7, 11600, 2599, 14252, 329, 28166, 6218, 284, 1180, 36256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9619, 13, 220, 5178, 16898, 588, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 38993, 62, 3245, 62, 3672, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 38993, 62, 3245, 62, 8367, 62, 1462, 62, 15699, 1298, 366, 6649, 441, 62, 17620, 62, 3672, 1, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10245, 7, 11600, 2599, 2262, 590, 20150, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 25, 19779, 17620, 1298, 366, 13116, 20662, 810, 366, 17620, 1, 318, 262, 36256, 6518, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4522, 290, 366, 13116, 1, 318, 262, 2420, 286, 262, 989, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8389, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4912, 416, 2496, 36256, 6518, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4554, 287, 10245, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6518, 796, 34030, 13, 1136, 62, 17620, 62, 1640, 62, 20500, 7, 17620, 62, 35790, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4554, 11, 28166, 62, 38785, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 17620, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6518, 407, 287, 8389, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8389, 58, 17620, 60, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8389, 58, 17620, 4083, 33295, 7, 39098, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 989, 583, 6518, 11, 1123, 23243, 416, 4554, 4522, 13, 198, 220, 220, 220, 220, 220, 220, 220, 989, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2496, 11, 2695, 287, 8389, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11299, 796, 1391, 66, 13, 13083, 3419, 58, 15, 5974, 269, 13, 27160, 3419, 58, 15, 60, 329, 269, 287, 2695, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 58, 16793, 60, 796, 537, 82, 13, 17953, 62, 19282, 448, 62, 13116, 7, 87, 62, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 989, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 5794, 62, 85, 38828, 62, 9060, 62, 7890, 7, 565, 82, 11, 20429, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26227, 15131, 1366, 329, 6447, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 537, 82, 532, 4941, 284, 262, 1459, 4554, 286, 262, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 20429, 62, 7890, 357, 11600, 2599, 5178, 16898, 588, 428, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33432, 25, 41176, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1432, 13264, 25, 275, 74, 44844, 4531, 14, 1087, 418, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17467, 25, 767, 13, 16, 13, 8628, 18, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 5697, 5738, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15717, 25, 9874, 26791, 15717, 10628, 25, 362, 13, 1954, 13, 4309, 13, 15, 13, 16, 12, 1270, 13, 417, 22, 930, 24640, 7343, 25, 269, 303, 12, 4967, 12, 23, 34137, 269, 303, 12, 4967, 12, 23, 32642, 1303, 8005, 48, 32, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 20478, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37082, 77, 59, 77, 8081, 4592, 25, 1391, 2301, 4592, 36786, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 2301, 4592, 28, 25531, 62, 7890, 14692, 9060, 1, 7131, 1, 2301, 4592, 1, 7131, 1, 3672, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 16099, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 220, 1432, 13264, 25, 1391, 260, 1930, 37765, 36786, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 260, 1930, 37765, 28, 25531, 62, 7890, 14692, 9060, 1, 7131, 1, 260, 1930, 37765, 1, 7131, 1, 3672, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 15940, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7621, 287, 20429, 62, 7890, 14692, 9060, 1, 7131, 1, 31499, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15940, 15853, 7621, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15940, 15853, 366, 366, 628, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 4868, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 17467, 7, 82, 2599, 1391, 12985, 62, 4868, 92, 1911, 18982, 7, 12985, 62, 4868, 28, 31499, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 23805, 796, 366, 220, 220, 220, 220, 220, 569, 5697, 5738, 11097, 220, 1303, 8005, 48, 32, 628, 220, 220, 220, 220, 220, 220, 220, 5301, 796, 366, 220, 220, 220, 220, 220, 220, 220, 15717, 25, 1391, 26495, 92, 1911, 18982, 7, 26495, 28, 25531, 62, 7890, 14692, 3672, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1382, 5301, 11, 5301, 2196, 290, 269, 303, 338, 656, 530, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 62, 9641, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 220, 15717, 10628, 25, 1391, 26495, 62, 9641, 36786, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 26495, 62, 9641, 28, 25531, 62, 7890, 14692, 9641, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 15853, 5301, 62, 9641, 628, 220, 220, 220, 220, 220, 220, 220, 269, 1158, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 303, 287, 20429, 62, 7890, 14692, 66, 1158, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 1158, 15853, 269, 303, 14692, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 1158, 15853, 366, 366, 628, 220, 220, 220, 220, 220, 220, 220, 269, 303, 62, 4868, 796, 366, 930, 24640, 7343, 25, 1391, 66, 303, 62, 4868, 92, 1911, 18982, 7, 66, 303, 62, 4868, 28, 66, 1158, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5301, 15853, 269, 303, 62, 4868, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1502, 262, 7032, 290, 4553, 606, 416, 257, 649, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 6149, 62, 25747, 796, 685, 2301, 4592, 11, 16099, 11, 7621, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23805, 11, 5301, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 39559, 989, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37082, 77, 1911, 22179, 7, 24071, 62, 25747, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 5794, 62, 85, 38828, 62, 9060, 62, 7890, 62, 40664, 7, 565, 82, 11, 20429, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 18980, 15131, 1366, 329, 6447, 287, 44189, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20429, 62, 7890, 357, 11600, 8, 532, 15131, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 532, 357, 11600, 8, 532, 15131, 989, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 31499, 796, 18896, 7, 25531, 62, 7890, 14692, 9060, 1, 7131, 1, 31499, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 15940, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 18703, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 981, 3753, 1279, 1271, 62, 31499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15940, 15853, 20429, 62, 7890, 14692, 9060, 1, 7131, 1, 31499, 1, 7131, 24588, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15940, 15853, 366, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 796, 3753, 1343, 18703, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 19779, 2301, 4592, 1298, 20429, 62, 7890, 14692, 9060, 1, 7131, 1, 2301, 4592, 1, 7131, 1, 3672, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 260, 1930, 37765, 1298, 20429, 62, 7890, 14692, 9060, 1, 7131, 1, 260, 1930, 37765, 1, 7131, 1, 3672, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12985, 1298, 15940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26495, 1298, 20429, 62, 7890, 14692, 3672, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9060, 62, 12894, 395, 1298, 20429, 62, 7890, 14692, 9060, 1, 7131, 1, 9060, 62, 26270, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1298, 20429, 62, 7890, 14692, 9641, 8973, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 198 ]
2.171861
3,369
#!/usr/bin/env python3 from build import ninja_common build = ninja_common.Build('webserver') build.webpack('static/bundle.js', 'webpack.config.js', 'src', 'webserver/package.json') build.install('auv-webserver', f='webserver/auv-webserver.py')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 1382, 1330, 37049, 62, 11321, 198, 11249, 796, 37049, 62, 11321, 13, 15580, 10786, 732, 1443, 18497, 11537, 198, 198, 11249, 13, 12384, 8002, 10786, 12708, 14, 65, 31249, 13, 8457, 3256, 705, 12384, 8002, 13, 11250, 13, 8457, 3256, 705, 10677, 3256, 705, 732, 1443, 18497, 14, 26495, 13, 17752, 11537, 198, 198, 11249, 13, 17350, 10786, 559, 85, 12, 732, 1443, 18497, 3256, 277, 11639, 732, 1443, 18497, 14, 559, 85, 12, 732, 1443, 18497, 13, 9078, 11537, 198 ]
2.666667
93
import sys if __name__ == '__main__': print(''.join(main(sys.stdin)), end='')
[ 11748, 25064, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 10786, 4458, 22179, 7, 12417, 7, 17597, 13, 19282, 259, 36911, 886, 28, 7061, 8, 198 ]
2.351351
37
#! /usr/bin/env python """ Modul zawiera testy klasy AvgSizeOfHoleFeature """ import unittest from bitmap.bitmap_grayscale import BitmapGrayscale from feature.simple_features.avg_size_of_hole_feature import AvgSizeOfHoleFeature from tests.bitmap_generator import BitmapGenerator class TestAvgSizeOfHoleFeature(unittest.TestCase): """ Klasa testująca klase AvgSizeOfHoleFeature """ def count_feature(self, bitmap: BitmapGrayscale) -> float: """ Prawidłowo wylicza wartośc feature :param bitmap: Bitmapa, dla której wyliczamy feature :return: Wyliczony feature """ self.feature.prepare(bitmap) return self.feature.calculate() def test_reorder_calculate_prepare(self): """ Test sprawdza, czy wywołanie w złej kolejności metody prepare i calculate zgłaszaja wyjątek. Oczekujemy zgłoszenia wyjątku AttributeError. :return: """ with self.assertRaises(AttributeError): self.feature.calculate() def test_white_plain(self): """ Dostarczamy bitmapę wypełniona tylko białym kolorem. Oczekujemy Liczby -1 jako informacji o braku dziur. :return: """ size = 5 bitmap = BitmapGenerator.plain_white(size, size) res = self.count_feature(bitmap) self.assertIs(-1, res) def test_white_plain_one_hole_of_size_1(self): """ Dostarczamy bitmapę wypełniona tylko białym kolorem, poza jednym pikselem. Oczekujemy Liczby 1 jako informacji o jednej dziurze o rozmiarze 1. :return: """ size = 5 bitmap = BitmapGenerator.plain_white(size, size) bitmap.set_cell_value(1, 1, 0.0) res = self.count_feature(bitmap) self.assertAlmostEqual(1.0, res) def test_white_plain_one_hole_of_size_2(self): """ Dostarczamy bitmapę wypełniona tylko białym kolorem, poza dwoma czarnymi pikselami. Oczekujemy Liczby 2 jako informacji o jednej dziurze o rozmiarze 2. :return: """ size = 5 bitmap = BitmapGenerator.plain_white(size, size) bitmap.set_cell_value(1, 1, 0.0) bitmap.set_cell_value(1, 2, 0.0) res = self.count_feature(bitmap) self.assertAlmostEqual(2.0, res) def test_white_plain_two_holes_of_size_1(self): """ Dostarczamy bitmapę wypełniona tylko białym kolorem, poza jednym pikselem. Oczekujemy Liczby 1 jako informacji o dwórch dziurach o rozmiarze 1. :return: """ size = 5 bitmap = BitmapGenerator.plain_white(size, size) bitmap.set_cell_value(1, 1, 0.0) bitmap.set_cell_value(3, 3, 0.0) res = self.count_feature(bitmap) self.assertAlmostEqual(1.0, res) def test_white_plain_two_holes_of_size_1_and_2(self): """ Dostarczamy bitmapę wypełniona tylko białym kolorem, poza dwoma dziurami o rozmiarach 1 i 2. Oczekujemy Liczby 1.5. :return: """ size = 5 bitmap = BitmapGenerator.plain_white(size, size) bitmap.set_cell_value(1, 1, 0.0) bitmap.set_cell_value(3, 3, 0.0) bitmap.set_cell_value(3, 4, 0.0) res = self.count_feature(bitmap) self.assertAlmostEqual(1.5, res)
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 198, 5841, 377, 1976, 707, 41976, 1332, 88, 479, 75, 4107, 33455, 10699, 5189, 39, 2305, 38816, 198, 37811, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 1643, 8899, 13, 2545, 8899, 62, 2164, 592, 38765, 1330, 4722, 8899, 8642, 592, 38765, 198, 6738, 3895, 13, 36439, 62, 40890, 13, 615, 70, 62, 7857, 62, 1659, 62, 13207, 62, 30053, 1330, 33455, 10699, 5189, 39, 2305, 38816, 198, 6738, 5254, 13, 2545, 8899, 62, 8612, 1352, 1330, 4722, 8899, 8645, 1352, 628, 198, 4871, 6208, 48997, 10699, 5189, 39, 2305, 38816, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14770, 15462, 1332, 23577, 128, 227, 6888, 479, 75, 589, 33455, 10699, 5189, 39, 2305, 38816, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 954, 62, 30053, 7, 944, 11, 1643, 8899, 25, 4722, 8899, 8642, 592, 38765, 8, 4613, 12178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 350, 1831, 312, 41615, 322, 78, 266, 88, 677, 4496, 32943, 78, 129, 249, 66, 3895, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1643, 8899, 25, 4722, 8899, 64, 11, 288, 5031, 479, 83, 10205, 260, 73, 266, 88, 677, 89, 14814, 3895, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 12958, 677, 89, 1647, 3895, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30053, 13, 46012, 533, 7, 2545, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 30053, 13, 9948, 3129, 378, 3419, 628, 220, 220, 220, 825, 1332, 62, 260, 2875, 62, 9948, 3129, 378, 62, 46012, 533, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 599, 1831, 67, 4496, 11, 269, 7357, 266, 88, 21638, 41615, 34166, 266, 1976, 41615, 68, 73, 479, 2305, 73, 3919, 129, 249, 979, 1138, 1118, 8335, 1312, 15284, 1976, 70, 41615, 292, 89, 27792, 266, 88, 73, 128, 227, 35424, 13, 198, 220, 220, 220, 220, 220, 220, 220, 440, 26691, 988, 23577, 3065, 1976, 70, 41615, 418, 4801, 544, 266, 88, 73, 128, 227, 83, 23063, 3460, 4163, 12331, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 33682, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30053, 13, 9948, 3129, 378, 3419, 628, 220, 220, 220, 825, 1332, 62, 11186, 62, 25638, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 455, 5605, 89, 14814, 1643, 8899, 128, 247, 266, 2981, 41615, 77, 32792, 1259, 75, 7204, 275, 544, 41615, 4948, 479, 349, 29625, 13, 198, 220, 220, 220, 220, 220, 220, 220, 440, 26691, 988, 23577, 3065, 10483, 89, 1525, 532, 16, 474, 25496, 4175, 330, 7285, 267, 8290, 23063, 288, 17027, 333, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 642, 628, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 796, 4722, 8899, 8645, 1352, 13, 25638, 62, 11186, 7, 7857, 11, 2546, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 9127, 62, 30053, 7, 2545, 8899, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 32590, 16, 11, 581, 8, 628, 220, 220, 220, 825, 1332, 62, 11186, 62, 25638, 62, 505, 62, 13207, 62, 1659, 62, 7857, 62, 16, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 455, 5605, 89, 14814, 1643, 8899, 128, 247, 266, 2981, 41615, 77, 32792, 1259, 75, 7204, 275, 544, 41615, 4948, 479, 349, 29625, 11, 745, 4496, 474, 276, 3281, 76, 279, 1134, 325, 10671, 13, 198, 220, 220, 220, 220, 220, 220, 220, 440, 26691, 988, 23577, 3065, 10483, 89, 1525, 352, 474, 25496, 4175, 330, 7285, 267, 474, 276, 710, 73, 288, 17027, 333, 2736, 267, 686, 89, 11632, 283, 2736, 352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 642, 628, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 796, 4722, 8899, 8645, 1352, 13, 25638, 62, 11186, 7, 7857, 11, 2546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 13, 2617, 62, 3846, 62, 8367, 7, 16, 11, 352, 11, 657, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 9127, 62, 30053, 7, 2545, 8899, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 16, 13, 15, 11, 581, 8, 628, 220, 220, 220, 825, 1332, 62, 11186, 62, 25638, 62, 505, 62, 13207, 62, 1659, 62, 7857, 62, 17, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 455, 5605, 89, 14814, 1643, 8899, 128, 247, 266, 2981, 41615, 77, 32792, 1259, 75, 7204, 275, 544, 41615, 4948, 479, 349, 29625, 11, 745, 4496, 43756, 6086, 24785, 1501, 4948, 72, 279, 1134, 741, 6277, 13, 198, 220, 220, 220, 220, 220, 220, 220, 440, 26691, 988, 23577, 3065, 10483, 89, 1525, 362, 474, 25496, 4175, 330, 7285, 267, 474, 276, 710, 73, 288, 17027, 333, 2736, 267, 686, 89, 11632, 283, 2736, 362, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 642, 628, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 796, 4722, 8899, 8645, 1352, 13, 25638, 62, 11186, 7, 7857, 11, 2546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 13, 2617, 62, 3846, 62, 8367, 7, 16, 11, 352, 11, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 13, 2617, 62, 3846, 62, 8367, 7, 16, 11, 362, 11, 657, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 9127, 62, 30053, 7, 2545, 8899, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 17, 13, 15, 11, 581, 8, 628, 220, 220, 220, 825, 1332, 62, 11186, 62, 25638, 62, 11545, 62, 28439, 62, 1659, 62, 7857, 62, 16, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 455, 5605, 89, 14814, 1643, 8899, 128, 247, 266, 2981, 41615, 77, 32792, 1259, 75, 7204, 275, 544, 41615, 4948, 479, 349, 29625, 11, 745, 4496, 474, 276, 3281, 76, 279, 1134, 325, 10671, 13, 198, 220, 220, 220, 220, 220, 220, 220, 440, 26691, 988, 23577, 3065, 10483, 89, 1525, 352, 474, 25496, 4175, 330, 7285, 267, 43756, 10205, 81, 354, 288, 17027, 333, 620, 267, 686, 89, 11632, 283, 2736, 352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 642, 628, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 796, 4722, 8899, 8645, 1352, 13, 25638, 62, 11186, 7, 7857, 11, 2546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 13, 2617, 62, 3846, 62, 8367, 7, 16, 11, 352, 11, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 13, 2617, 62, 3846, 62, 8367, 7, 18, 11, 513, 11, 657, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 9127, 62, 30053, 7, 2545, 8899, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 16, 13, 15, 11, 581, 8, 628, 220, 220, 220, 825, 1332, 62, 11186, 62, 25638, 62, 11545, 62, 28439, 62, 1659, 62, 7857, 62, 16, 62, 392, 62, 17, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 455, 5605, 89, 14814, 1643, 8899, 128, 247, 266, 2981, 41615, 77, 32792, 1259, 75, 7204, 275, 544, 41615, 4948, 479, 349, 29625, 11, 745, 4496, 43756, 6086, 288, 17027, 333, 6277, 267, 686, 89, 11632, 283, 620, 352, 1312, 362, 13, 198, 220, 220, 220, 220, 220, 220, 220, 440, 26691, 988, 23577, 3065, 10483, 89, 1525, 352, 13, 20, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 642, 628, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 796, 4722, 8899, 8645, 1352, 13, 25638, 62, 11186, 7, 7857, 11, 2546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 13, 2617, 62, 3846, 62, 8367, 7, 16, 11, 352, 11, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 13, 2617, 62, 3846, 62, 8367, 7, 18, 11, 513, 11, 657, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1643, 8899, 13, 2617, 62, 3846, 62, 8367, 7, 18, 11, 604, 11, 657, 13, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 9127, 62, 30053, 7, 2545, 8899, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 16, 13, 20, 11, 581, 8, 628, 198 ]
2.002999
1,667
def read_input_file(input_file_address) -> dict: """ Takes a string as input file address and returns the base strings along indices for each base string """ res = dict() res['first_base_string'] = '' res['first_base_string_indices'] = [] res['second_base_string'] = '' res['second_base_string_indices'] = [] with open(input_file_address, 'r') as f: input_file_lines = [line.strip() for line in f.readlines()] is_first_base_string = True for line in input_file_lines: # isnumeric complexity if not line.isnumeric() and res['first_base_string'] == '': res['first_base_string'] = line elif line.isnumeric() and is_first_base_string: res['first_base_string_indices'].append(int(line)) elif not line.isnumeric() and res['first_base_string'] != '': is_first_base_string = False res['second_base_string'] = line elif line.isnumeric() and not is_first_base_string: res['second_base_string_indices'].append(int(line)) return res
[ 4299, 1100, 62, 15414, 62, 7753, 7, 15414, 62, 7753, 62, 21975, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 257, 4731, 355, 5128, 2393, 2209, 290, 5860, 262, 2779, 13042, 1863, 36525, 329, 1123, 2779, 4731, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 581, 796, 8633, 3419, 198, 220, 220, 220, 581, 17816, 11085, 62, 8692, 62, 8841, 20520, 796, 10148, 198, 220, 220, 220, 581, 17816, 11085, 62, 8692, 62, 8841, 62, 521, 1063, 20520, 796, 17635, 198, 220, 220, 220, 581, 17816, 12227, 62, 8692, 62, 8841, 20520, 796, 10148, 198, 220, 220, 220, 581, 17816, 12227, 62, 8692, 62, 8841, 62, 521, 1063, 20520, 796, 17635, 198, 220, 220, 220, 351, 1280, 7, 15414, 62, 7753, 62, 21975, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7753, 62, 6615, 796, 685, 1370, 13, 36311, 3419, 329, 1627, 287, 277, 13, 961, 6615, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 11085, 62, 8692, 62, 8841, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 5128, 62, 7753, 62, 6615, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2125, 39223, 13357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1627, 13, 271, 77, 39223, 3419, 290, 581, 17816, 11085, 62, 8692, 62, 8841, 20520, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 17816, 11085, 62, 8692, 62, 8841, 20520, 796, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 13, 271, 77, 39223, 3419, 290, 318, 62, 11085, 62, 8692, 62, 8841, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 17816, 11085, 62, 8692, 62, 8841, 62, 521, 1063, 6, 4083, 33295, 7, 600, 7, 1370, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 1627, 13, 271, 77, 39223, 3419, 290, 581, 17816, 11085, 62, 8692, 62, 8841, 20520, 14512, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 11085, 62, 8692, 62, 8841, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 17816, 12227, 62, 8692, 62, 8841, 20520, 796, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 13, 271, 77, 39223, 3419, 290, 407, 318, 62, 11085, 62, 8692, 62, 8841, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 17816, 12227, 62, 8692, 62, 8841, 62, 521, 1063, 6, 4083, 33295, 7, 600, 7, 1370, 4008, 628, 220, 220, 220, 1441, 581, 198 ]
2.293279
491
# -*- coding: UTF-8 -*- # 基于 sqlite4dummy 的基本架构重新写了一个超简易版本的 sqlite 数据库管理库 # 本程序提供必要的sqlite操作方法,并对一个sqlite数据库进行初始化 # 本程序从自己启动,外部只能调用其方法 # 本程序的主入口程序为 main() # 请填写下面几个参数: # 第一个参数为数据库名称 DB_NAME='' import os import sqlite3 import sqlite4dummy import psycopg2 class Column(): """Represent a Column in a :class:`Table`. Construct a Column object:: >>> from sqlite4dummy import * >>> c = Column("employee_id", dtype.TEXT, primary_key=True) >>> c Column('employee_id', dtype.TEXT, nullable=True, default=None, primary_key=True) :param column_name: the column name, alpha, digit and understore only. Can't start with digit. :type column_name: string :param data_type: Data type object. :param nullable: (default True) whether it is allow None value. :type nullable: boolean :param default: (default None) default value. :type default: any Python types :param primary_key: (default False) whether it is a primary_key. :type primary_key: boolean For usage example, go :mod:`unittest page<sqlite4dummy.tests.test_Column>` and read the testcase source code. """ class Table(object): """Represent a table in a database. Define a Table:: >>> from sqlite4dummy import * >>> metadata = MetaData() >>> mytable = Table("mytable", metadata, Column("mytable_id", dtype.INTEGER, primary_key=True), Column("value", dtype.TEXT), ) columns can be accessed by table.c.column_name:: >>> mytable.c.mytable_id # return a Column object _id :param table_name: the table name, alpha, digit and understore only. Can't start with digit. :type table_name: string :param metadata: Data type object. :type metadata: :class:`MetaData` :param args: list of Column object :type args: :class:`Column` For usage example, go :mod:`unittest page<sqlite4dummy.tests.test_Table>` and read the testcase source code. **中文文档** :class:`sqlite4dummy.schema.Table` 是抽象数据表对象类。 定义Table的方法如下:: >>> from sqlite4dummy import * >>> metadata = MetaData() # 定义metadata >>> mytable = Table("mytable", metadata, # 定义表名, metadata和列 Column("mytable_id", dtype.INTEGER, primary_key=True), Column("value", dtype.TEXT), ) 从Table中获得Column对象有如下两种方法:: >>> mytable.c._id _id >>> mytable.get_column("_id") _id """ class CreateTable(object): """Generate 'CREATE TABLE' SQL statement. Example:: CREATE TABLE table_name ( column_name1 dtype1 CONSTRAINS, column_name2 dtype2 CONSTRAINS, PRIMARY KEY (column, ...), FOREIGN KEY (table_column, ...) ) **中文文档** 创建Table的抽象类, 用于根据Schema生成CREATE TABLE ...的SQL语句。目前不支持 FOREIGN KEY语法。 """
[ 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 2, 10263, 253, 118, 12859, 236, 44161, 578, 19, 67, 13513, 13328, 248, 226, 161, 253, 118, 17312, 105, 162, 252, 35050, 252, 226, 34932, 235, 23877, 108, 37863, 247, 12859, 228, 31660, 10310, 103, 164, 41678, 163, 106, 222, 23626, 241, 48304, 17312, 105, 21410, 44161, 578, 10545, 243, 108, 162, 235, 106, 41753, 241, 163, 106, 94, 49426, 228, 41753, 241, 198, 2, 42164, 105, 163, 101, 233, 41753, 237, 162, 237, 238, 160, 122, 249, 33232, 227, 17358, 223, 21410, 25410, 578, 162, 241, 235, 43291, 43095, 37345, 243, 171, 120, 234, 33176, 114, 43380, 117, 31660, 10310, 103, 25410, 578, 46763, 108, 162, 235, 106, 41753, 241, 32573, 249, 26193, 234, 26344, 251, 34650, 233, 44293, 244, 198, 2, 42164, 105, 163, 101, 233, 41753, 237, 20015, 236, 164, 229, 103, 32432, 109, 28938, 107, 27950, 101, 171, 120, 234, 13783, 244, 32849, 101, 20998, 103, 47797, 121, 164, 108, 225, 18796, 101, 17739, 114, 43095, 37345, 243, 198, 2, 42164, 105, 163, 101, 233, 41753, 237, 21410, 10310, 119, 17739, 98, 20998, 96, 163, 101, 233, 41753, 237, 10310, 118, 1388, 3419, 198, 198, 2, 5525, 107, 115, 161, 94, 104, 37863, 247, 10310, 233, 165, 251, 95, 49035, 254, 10310, 103, 20998, 224, 46763, 108, 171, 120, 248, 198, 2, 13328, 105, 105, 31660, 10310, 103, 20998, 224, 46763, 108, 10310, 118, 46763, 108, 162, 235, 106, 41753, 241, 28938, 235, 163, 100, 108, 198, 11012, 62, 20608, 28, 7061, 628, 198, 11748, 28686, 198, 11748, 44161, 578, 18, 198, 11748, 44161, 578, 19, 67, 13513, 198, 11748, 17331, 22163, 70, 17, 198, 198, 4871, 29201, 33529, 198, 220, 220, 220, 37227, 40171, 257, 29201, 287, 257, 1058, 4871, 25, 63, 10962, 44646, 628, 220, 220, 220, 28407, 257, 29201, 2134, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 44161, 578, 19, 67, 13513, 1330, 1635, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 269, 796, 29201, 7203, 7033, 1453, 62, 312, 1600, 288, 4906, 13, 32541, 11, 4165, 62, 2539, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 269, 198, 220, 220, 220, 220, 220, 220, 220, 29201, 10786, 7033, 1453, 62, 312, 3256, 288, 4906, 13, 32541, 11, 9242, 540, 28, 17821, 11, 4277, 28, 14202, 11, 4165, 62, 2539, 28, 17821, 8, 628, 220, 220, 220, 1058, 17143, 5721, 62, 3672, 25, 262, 5721, 1438, 11, 17130, 11, 16839, 290, 739, 8095, 691, 13, 198, 220, 220, 220, 220, 220, 1680, 470, 923, 351, 16839, 13, 198, 220, 220, 220, 1058, 4906, 5721, 62, 3672, 25, 4731, 628, 220, 220, 220, 1058, 17143, 1366, 62, 4906, 25, 6060, 2099, 2134, 13, 628, 220, 220, 220, 1058, 17143, 9242, 540, 25, 357, 12286, 6407, 8, 1771, 340, 318, 1249, 6045, 1988, 13, 198, 220, 220, 220, 1058, 4906, 9242, 540, 25, 25131, 628, 220, 220, 220, 1058, 17143, 4277, 25, 357, 12286, 6045, 8, 4277, 1988, 13, 198, 220, 220, 220, 1058, 4906, 4277, 25, 597, 11361, 3858, 628, 220, 220, 220, 1058, 17143, 4165, 62, 2539, 25, 357, 12286, 10352, 8, 1771, 340, 318, 257, 4165, 62, 2539, 13, 198, 220, 220, 220, 1058, 4906, 4165, 62, 2539, 25, 25131, 628, 220, 220, 220, 1114, 8748, 1672, 11, 467, 1058, 4666, 25, 63, 403, 715, 395, 2443, 27, 25410, 578, 19, 67, 13513, 13, 41989, 13, 9288, 62, 39470, 29, 63, 198, 220, 220, 220, 290, 1100, 262, 1332, 7442, 2723, 2438, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 8655, 7, 15252, 2599, 198, 220, 220, 220, 37227, 40171, 257, 3084, 287, 257, 6831, 13, 628, 220, 220, 220, 2896, 500, 257, 8655, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 44161, 578, 19, 67, 13513, 1330, 1635, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20150, 796, 30277, 6601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 616, 11487, 796, 8655, 7203, 1820, 11487, 1600, 20150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 1820, 11487, 62, 312, 1600, 288, 4906, 13, 12394, 7156, 1137, 11, 4165, 62, 2539, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 8367, 1600, 288, 4906, 13, 32541, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 15180, 460, 307, 17535, 416, 3084, 13, 66, 13, 28665, 62, 3672, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 616, 11487, 13, 66, 13, 1820, 11487, 62, 312, 1303, 1441, 257, 29201, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 312, 628, 220, 220, 220, 1058, 17143, 3084, 62, 3672, 25, 262, 3084, 1438, 11, 17130, 11, 16839, 290, 739, 8095, 691, 13, 198, 220, 220, 220, 220, 220, 1680, 470, 923, 351, 16839, 13, 198, 220, 220, 220, 1058, 4906, 3084, 62, 3672, 25, 4731, 628, 220, 220, 220, 1058, 17143, 20150, 25, 6060, 2099, 2134, 13, 198, 220, 220, 220, 1058, 4906, 20150, 25, 1058, 4871, 25, 63, 48526, 6601, 63, 628, 220, 220, 220, 1058, 17143, 26498, 25, 1351, 286, 29201, 2134, 198, 220, 220, 220, 1058, 4906, 26498, 25, 1058, 4871, 25, 63, 39470, 63, 628, 220, 220, 220, 1114, 8748, 1672, 11, 467, 1058, 4666, 25, 63, 403, 715, 395, 2443, 27, 25410, 578, 19, 67, 13513, 13, 41989, 13, 9288, 62, 10962, 29, 63, 198, 220, 220, 220, 290, 1100, 262, 1332, 7442, 2723, 2438, 13, 628, 220, 220, 220, 12429, 40792, 23877, 229, 23877, 229, 162, 94, 96, 1174, 628, 220, 220, 220, 1058, 4871, 25, 63, 25410, 578, 19, 67, 13513, 13, 15952, 2611, 13, 10962, 63, 10545, 246, 107, 162, 232, 121, 164, 109, 94, 46763, 108, 162, 235, 106, 26193, 101, 43380, 117, 164, 109, 94, 163, 109, 119, 16764, 628, 220, 220, 220, 10263, 106, 248, 20046, 231, 10962, 21410, 43095, 37345, 243, 36685, 224, 10310, 233, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 44161, 578, 19, 67, 13513, 1330, 1635, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20150, 796, 30277, 6601, 3419, 1303, 10263, 106, 248, 20046, 231, 38993, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 616, 11487, 796, 8655, 7203, 1820, 11487, 1600, 20150, 11, 1303, 10263, 106, 248, 20046, 231, 26193, 101, 28938, 235, 11, 20150, 161, 240, 234, 26344, 245, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 1820, 11487, 62, 312, 1600, 288, 4906, 13, 12394, 7156, 1137, 11, 4165, 62, 2539, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 8367, 1600, 288, 4906, 13, 32541, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 20015, 236, 10962, 40792, 164, 236, 115, 36181, 245, 39470, 43380, 117, 164, 109, 94, 17312, 231, 36685, 224, 10310, 233, 10310, 97, 163, 100, 235, 43095, 37345, 243, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 616, 11487, 13, 66, 13557, 312, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 312, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 616, 11487, 13, 1136, 62, 28665, 7203, 62, 312, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 312, 198, 220, 220, 220, 37227, 628, 198, 198, 4871, 13610, 10962, 7, 15252, 2599, 198, 220, 220, 220, 37227, 8645, 378, 705, 43387, 6158, 43679, 6, 16363, 2643, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 29244, 6158, 43679, 3084, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 16, 288, 4906, 16, 7102, 2257, 3861, 20913, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 17, 288, 4906, 17, 7102, 2257, 3861, 20913, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4810, 3955, 13153, 35374, 357, 28665, 11, 2644, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 6965, 16284, 35374, 357, 11487, 62, 28665, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 12429, 40792, 23877, 229, 23877, 229, 162, 94, 96, 1174, 628, 220, 220, 220, 10263, 230, 249, 161, 119, 118, 10962, 21410, 162, 232, 121, 164, 109, 94, 163, 109, 119, 11, 13328, 242, 101, 12859, 236, 43718, 117, 162, 235, 106, 27054, 2611, 37955, 22755, 238, 43387, 6158, 43679, 2644, 21410, 17861, 46237, 255, 20998, 98, 16764, 33566, 106, 30298, 235, 38834, 162, 242, 107, 162, 234, 223, 198, 220, 220, 220, 376, 6965, 16284, 35374, 46237, 255, 37345, 243, 16764, 198, 220, 220, 220, 37227, 198 ]
1.941914
1,515
from .base_creator import BaseCreator
[ 6738, 764, 8692, 62, 45382, 1330, 7308, 16719, 273 ]
4.111111
9
################################################################################ # Project : AuShadha # Description : URLS for Immunisation History # Author : Dr. Easwar T.R # Date : 21-09-2013 # License : GNU-GPL Version 3, see AuShadha/LICENSE.txt ################################################################################ from django.conf.urls import * from django.contrib import admin import AuShadha.settings from immunisation.views import * from .dijit_widgets.pane import render_immunisation_pane admin.autodiscover() urlpatterns = patterns('', url(r'json/(?P<patient_id>\d+)/$', 'immunisation.views.immunisation_json', name='immunisation_json' ), url(r'json/$', 'immunisation.views.immunisation_json', name='immunisation_json_without_id' ), url(r'pane/(?P<patient_id>\d+)/$', render_immunisation_pane, name='render_immunisation_pane_with_id' ), url(r'pane/$', render_immunisation_pane, name='render_immunisation_pane_without_id' ), # url(r'list/(?P<patient_id>\d+)/$', #'immunisation.views.immunisation_list', #name = 'immunisation_list' #), # url(r'list/$', #'immunisation.views.immunisation_list', #name = 'immunisation_list_without_id' #), url(r'add/(?P<patient_id>\d+)/$', 'immunisation.views.immunisation_add', name='immunisation_add' ), url(r'add/$', 'immunisation.views.immunisation_add', name='immunisation_add_without_id' ), url(r'edit/(?P<immunisation_id>\d+)/$', 'immunisation.views.immunisation_edit', name='immunisation_edit' ), url(r'edit/$', 'immunisation.views.immunisation_edit', name='immunisation_edit_without_id' ), url(r'del/(?P<immunisation_id>\d+)/$', 'immunisation.views.immunisation_del', name='immunisation_del' ), url(r'del/$', 'immunisation.views.immunisation_del', name='immunisation_del_without_id' ), )
[ 29113, 29113, 14468, 198, 2, 4935, 220, 220, 220, 220, 220, 1058, 40666, 2484, 324, 3099, 198, 2, 12489, 220, 1058, 37902, 6561, 329, 25445, 5612, 7443, 198, 2, 6434, 220, 220, 220, 220, 220, 220, 1058, 1583, 13, 38647, 5767, 309, 13, 49, 198, 2, 7536, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 2310, 12, 2931, 12, 6390, 198, 2, 13789, 220, 220, 220, 220, 220, 1058, 22961, 12, 38, 6489, 10628, 513, 11, 766, 40666, 2484, 324, 3099, 14, 43, 2149, 24290, 13, 14116, 198, 29113, 29113, 14468, 198, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 1635, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 11748, 40666, 2484, 324, 3099, 13, 33692, 198, 198, 6738, 16217, 5612, 13, 33571, 1330, 1635, 198, 6738, 764, 67, 2926, 270, 62, 28029, 11407, 13, 79, 1531, 1330, 8543, 62, 320, 6199, 5612, 62, 79, 1531, 198, 198, 28482, 13, 2306, 375, 29392, 3419, 198, 198, 6371, 33279, 82, 796, 7572, 10786, 3256, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 17752, 29006, 30, 47, 27, 26029, 62, 312, 29, 59, 67, 10, 20679, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 320, 6199, 5612, 62, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 17752, 32624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 320, 6199, 5612, 62, 17752, 62, 19419, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 79, 1531, 29006, 30, 47, 27, 26029, 62, 312, 29, 59, 67, 10, 20679, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8543, 62, 320, 6199, 5612, 62, 79, 1531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 13287, 62, 320, 6199, 5612, 62, 79, 1531, 62, 4480, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 79, 1531, 32624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8543, 62, 320, 6199, 5612, 62, 79, 1531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 13287, 62, 320, 6199, 5612, 62, 79, 1531, 62, 19419, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19016, 7, 81, 6, 4868, 29006, 30, 47, 27, 26029, 62, 312, 29, 59, 67, 10, 20679, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 4868, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3672, 796, 705, 320, 6199, 5612, 62, 4868, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 828, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19016, 7, 81, 6, 4868, 32624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 4868, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3672, 796, 705, 320, 6199, 5612, 62, 4868, 62, 19419, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 828, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 2860, 29006, 30, 47, 27, 26029, 62, 312, 29, 59, 67, 10, 20679, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 2860, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 320, 6199, 5612, 62, 2860, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 2860, 32624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 2860, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 320, 6199, 5612, 62, 2860, 62, 19419, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 19312, 29006, 30, 47, 27, 320, 6199, 5612, 62, 312, 29, 59, 67, 10, 20679, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 19312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 320, 6199, 5612, 62, 19312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 19312, 32624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 19312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 320, 6199, 5612, 62, 19312, 62, 19419, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 1549, 417, 29006, 30, 47, 27, 320, 6199, 5612, 62, 312, 29, 59, 67, 10, 20679, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 12381, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 320, 6199, 5612, 62, 12381, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 1549, 417, 32624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 6199, 5612, 13, 33571, 13, 320, 6199, 5612, 62, 12381, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 320, 6199, 5612, 62, 12381, 62, 19419, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 198, 8, 198 ]
1.712786
1,619
from dataclasses import dataclass from typing import List, Tuple, Dict from jsondataclass import from_json, to_json @dataclass movie = Movie(["comedy", "crime"], (5.6, 100), {"en": "WALL-E", "de": "WALL-E"}) json_str = to_json(movie) print(json_str) # {"genres": ["comedy", "crime"], "rating": [5.6, 100], "name": {"en": "WALL-E", "de": "WALL-E"}} json_str = '{"genres": ["comedy", "crime"], "rating": [5.6, 100], "name": {"en": "WALL-E", "de": "WALL-E"}}' movie = from_json(json_str, Movie) print(movie) # Movie(genres=['comedy', 'crime'], rating=(5.6, 100), name={'en': 'WALL-E', 'de': 'WALL-E'})
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 7343, 11, 309, 29291, 11, 360, 713, 198, 6738, 44804, 623, 265, 330, 31172, 1330, 422, 62, 17752, 11, 284, 62, 17752, 628, 198, 31, 19608, 330, 31172, 628, 198, 41364, 796, 15875, 7, 14692, 785, 4716, 1600, 366, 28126, 33116, 357, 20, 13, 21, 11, 1802, 828, 19779, 268, 1298, 366, 54, 7036, 12, 36, 1600, 366, 2934, 1298, 366, 54, 7036, 12, 36, 20662, 8, 198, 17752, 62, 2536, 796, 284, 62, 17752, 7, 41364, 8, 198, 4798, 7, 17752, 62, 2536, 8, 198, 2, 19779, 5235, 411, 1298, 14631, 785, 4716, 1600, 366, 28126, 33116, 366, 8821, 1298, 685, 20, 13, 21, 11, 1802, 4357, 366, 3672, 1298, 19779, 268, 1298, 366, 54, 7036, 12, 36, 1600, 366, 2934, 1298, 366, 54, 7036, 12, 36, 1, 11709, 198, 198, 17752, 62, 2536, 796, 705, 4895, 5235, 411, 1298, 14631, 785, 4716, 1600, 366, 28126, 33116, 366, 8821, 1298, 685, 20, 13, 21, 11, 1802, 4357, 366, 3672, 1298, 19779, 268, 1298, 366, 54, 7036, 12, 36, 1600, 366, 2934, 1298, 366, 54, 7036, 12, 36, 1, 11709, 6, 198, 41364, 796, 422, 62, 17752, 7, 17752, 62, 2536, 11, 15875, 8, 198, 4798, 7, 41364, 8, 198, 2, 15875, 7, 5235, 411, 28, 17816, 785, 4716, 3256, 705, 28126, 6, 4357, 7955, 16193, 20, 13, 21, 11, 1802, 828, 1438, 34758, 6, 268, 10354, 705, 54, 7036, 12, 36, 3256, 705, 2934, 10354, 705, 54, 7036, 12, 36, 6, 30072, 198 ]
2.359375
256
# -*- coding: utf-8 -*- """ @Project : @FileName: @Author :penghr @Time :202x/xx/xx xx:xx @Desc : """ import math import cv2 import numpy as np import scipy.spatial import torch import torch.nn as nn import torch.nn.functional as F def generate_point_map(kpoint, f_loc, rate=1): '''obtain the location coordinates''' pred_coord = np.nonzero(kpoint) point_map = np.zeros((int(kpoint.shape[0] * rate), int(kpoint.shape[1] * rate), 3), dtype="uint8") + 255 # 22 # count = len(pred_coor[0]) coord_list = [] for i in range(0, len(pred_coord[0])): h = int(pred_coord[0][i] * rate) w = int(pred_coord[1][i] * rate) coord_list.append([w, h]) cv2.circle(point_map, (w, h), 2, (0, 0, 0), -1) for data in coord_list: f_loc.write('{} {} '.format(math.floor(data[0]), math.floor(data[1]))) f_loc.write('\n') return point_map def generate_bounding_boxes(kpoint, fname, resize): '''change the data path''' Img_data = cv2.imread(fname) # ori_Img_data = Img_data.copy() Img_data = cv2.resize(Img_data, resize) '''generate sigma''' pts = np.array(list(zip(np.nonzero(kpoint)[1], np.nonzero(kpoint)[0]))) leafsize = 2048 # build kdtree tree = scipy.spatial.KDTree(pts.copy(), leafsize=leafsize) distances, locations = tree.query(pts, k=4) for index, pt in enumerate(pts): pt2d = np.zeros(kpoint.shape, dtype=np.float32) pt2d[pt[1], pt[0]] = 1. if np.sum(kpoint) > 1: sigma = (distances[index][1] + distances[index][2] + distances[index][3]) * 0.1 else: sigma = np.average(np.array(kpoint.shape)) / 2. / 2. # case: 1 point sigma = min(sigma, min(Img_data.shape[0], Img_data.shape[1]) * 0.05) if sigma < 6: t = 2 else: t = 2 Img_data = cv2.rectangle(Img_data, ( int((pt[0] * Img_data.shape[1] / resize[0] - sigma)), int((pt[1] * Img_data.shape[0] / resize[1] - sigma))), (int((pt[0] * Img_data.shape[1] / resize[0] + sigma)), int((pt[1] * Img_data.shape[0] / resize[1] + sigma))), (0, 255, 0), t) return Img_data
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 31, 16775, 1058, 220, 198, 31, 8979, 5376, 25, 220, 198, 31, 13838, 220, 1058, 3617, 456, 81, 220, 198, 31, 7575, 220, 220, 220, 1058, 19004, 87, 14, 5324, 14, 5324, 31383, 25, 5324, 198, 31, 24564, 220, 1058, 220, 198, 37811, 198, 11748, 10688, 198, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 2777, 34961, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 628, 198, 198, 4299, 7716, 62, 4122, 62, 8899, 7, 74, 4122, 11, 277, 62, 17946, 11, 2494, 28, 16, 2599, 198, 220, 220, 220, 705, 7061, 672, 3153, 262, 4067, 22715, 7061, 6, 198, 220, 220, 220, 2747, 62, 37652, 796, 45941, 13, 13159, 22570, 7, 74, 4122, 8, 628, 220, 220, 220, 966, 62, 8899, 796, 45941, 13, 9107, 418, 19510, 600, 7, 74, 4122, 13, 43358, 58, 15, 60, 1635, 2494, 828, 493, 7, 74, 4122, 13, 43358, 58, 16, 60, 1635, 2494, 828, 513, 828, 288, 4906, 2625, 28611, 23, 4943, 1343, 14280, 220, 1303, 2534, 198, 220, 220, 220, 1303, 954, 796, 18896, 7, 28764, 62, 1073, 273, 58, 15, 12962, 198, 220, 220, 220, 6349, 62, 4868, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 28764, 62, 37652, 58, 15, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 289, 796, 493, 7, 28764, 62, 37652, 58, 15, 7131, 72, 60, 1635, 2494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 266, 796, 493, 7, 28764, 62, 37652, 58, 16, 7131, 72, 60, 1635, 2494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6349, 62, 4868, 13, 33295, 26933, 86, 11, 289, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 4122, 62, 8899, 11, 357, 86, 11, 289, 828, 362, 11, 357, 15, 11, 657, 11, 657, 828, 532, 16, 8, 628, 220, 220, 220, 329, 1366, 287, 6349, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 17946, 13, 13564, 10786, 90, 92, 23884, 45302, 18982, 7, 11018, 13, 28300, 7, 7890, 58, 15, 46570, 10688, 13, 28300, 7, 7890, 58, 16, 60, 22305, 198, 220, 220, 220, 277, 62, 17946, 13, 13564, 10786, 59, 77, 11537, 628, 220, 220, 220, 1441, 966, 62, 8899, 628, 198, 4299, 7716, 62, 7784, 278, 62, 29305, 7, 74, 4122, 11, 277, 3672, 11, 47558, 2599, 198, 220, 220, 220, 705, 7061, 3803, 262, 1366, 3108, 7061, 6, 198, 220, 220, 220, 1846, 70, 62, 7890, 796, 269, 85, 17, 13, 320, 961, 7, 69, 3672, 8, 198, 220, 220, 220, 1303, 22812, 62, 3546, 70, 62, 7890, 796, 1846, 70, 62, 7890, 13, 30073, 3419, 198, 220, 220, 220, 1846, 70, 62, 7890, 796, 269, 85, 17, 13, 411, 1096, 7, 3546, 70, 62, 7890, 11, 47558, 8, 628, 220, 220, 220, 705, 7061, 8612, 378, 264, 13495, 7061, 6, 198, 220, 220, 220, 43344, 796, 45941, 13, 18747, 7, 4868, 7, 13344, 7, 37659, 13, 13159, 22570, 7, 74, 4122, 38381, 16, 4357, 45941, 13, 13159, 22570, 7, 74, 4122, 38381, 15, 60, 22305, 198, 220, 220, 220, 12835, 7857, 796, 36117, 198, 220, 220, 220, 1303, 1382, 479, 67, 21048, 198, 220, 220, 220, 5509, 796, 629, 541, 88, 13, 2777, 34961, 13, 42, 24544, 631, 7, 457, 82, 13, 30073, 22784, 12835, 7857, 28, 33201, 7857, 8, 198, 220, 220, 220, 18868, 11, 7064, 796, 5509, 13, 22766, 7, 457, 82, 11, 479, 28, 19, 8, 198, 220, 220, 220, 329, 6376, 11, 42975, 287, 27056, 378, 7, 457, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42975, 17, 67, 796, 45941, 13, 9107, 418, 7, 74, 4122, 13, 43358, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42975, 17, 67, 58, 457, 58, 16, 4357, 42975, 58, 15, 11907, 796, 352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 16345, 7, 74, 4122, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 357, 17080, 1817, 58, 9630, 7131, 16, 60, 1343, 18868, 58, 9630, 7131, 17, 60, 1343, 18868, 58, 9630, 7131, 18, 12962, 1635, 657, 13, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 45941, 13, 23913, 7, 37659, 13, 18747, 7, 74, 4122, 13, 43358, 4008, 1220, 362, 13, 1220, 362, 13, 220, 1303, 1339, 25, 352, 966, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 949, 7, 82, 13495, 11, 949, 7, 3546, 70, 62, 7890, 13, 43358, 58, 15, 4357, 1846, 70, 62, 7890, 13, 43358, 58, 16, 12962, 1635, 657, 13, 2713, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 264, 13495, 1279, 718, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 1846, 70, 62, 7890, 796, 269, 85, 17, 13, 2554, 9248, 7, 3546, 70, 62, 7890, 11, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 19510, 457, 58, 15, 60, 1635, 1846, 70, 62, 7890, 13, 43358, 58, 16, 60, 1220, 47558, 58, 15, 60, 532, 264, 13495, 36911, 493, 19510, 457, 58, 16, 60, 1635, 1846, 70, 62, 7890, 13, 43358, 58, 15, 60, 1220, 47558, 58, 16, 60, 532, 264, 13495, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 19510, 457, 58, 15, 60, 1635, 1846, 70, 62, 7890, 13, 43358, 58, 16, 60, 1220, 47558, 58, 15, 60, 1343, 264, 13495, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 19510, 457, 58, 16, 60, 1635, 1846, 70, 62, 7890, 13, 43358, 58, 15, 60, 1220, 47558, 58, 16, 60, 1343, 264, 13495, 4008, 828, 357, 15, 11, 14280, 11, 657, 828, 256, 8, 628, 220, 220, 220, 1441, 1846, 70, 62, 7890, 198 ]
1.996419
1,117
#!/usr/bin/env python """ ================================================================ rsfMRI: AFNI, ANTS, DicomStack, FreeSurfer, FSL, Nipy, aCompCorr ================================================================ A preprocessing workflow for Siemens resting state data. This workflow makes use of: - AFNI - ANTS - C3D_Affine_Tool - DicomStack - FreeSurfer - FSL - NiPy For example:: python rsfmri_preprocessing.py -d /data/12345-34-1.dcm -f /data/Resting.nii -s subj001 -n 2 --despike -o output -p PBS --plugin_args "dict(qsub_args='-q many')" This workflow takes resting timeseries and a Siemens dicom file corresponding to it and preprocesses it to produce timeseries coordinates or grayordinates. This workflow also requires 2mm subcortical atlas and templates that are available from: http://mindboggle.info/data.html specifically the 2mm versions of: - `Joint Fusion Atlas <http://mindboggle.info/data/atlases/jointfusion/OASIS-TRT-20_jointfusion_DKT31_CMA_labels_in_MNI152_2mm.nii.gz>`_ - `MNI template <http://mindboggle.info/data/templates/ants/OASIS-30_Atropos_template_in_MNI152_2mm.nii.gz>`_ The 2mm version was generated with:: >>> from nipype import freesurfer as fs >>> rs = fs.Resample() >>> rs.inputs.in_file = 'OASIS-TRT-20_jointfusion_DKT31_CMA_labels_in_MNI152.nii.gz' >>> rs.inputs.resampled_file = 'OASIS-TRT-20_jointfusion_DKT31_CMA_labels_in_MNI152_2mm.nii.gz' >>> rs.inputs.voxel_size = (2., 2., 2.) >>> rs.inputs.args = '-rt nearest -ns 1' >>> res = rs.run() """ import os from nipype.interfaces.base import CommandLine CommandLine.set_default_terminal_output('file') from nipype import config config.enable_provenance() from nipype import (ants, afni, fsl, freesurfer, nipy, Function, DataSink) from nipype import Workflow, Node, MapNode from nipype.algorithms.rapidart import ArtifactDetect from nipype.algorithms.misc import TSNR from nipype.interfaces.fsl import EPIDeWarp from nipype.interfaces.io import FreeSurferSource from nipype.interfaces.c3 import C3dAffineTool from nipype.interfaces.utility import Merge, IdentityInterface from nipype.utils.filemanip import filename_to_list import numpy as np import scipy as sp import nibabel as nb from dcmstack.extract import default_extractor from dicom import read_file imports = ['import os', 'import nibabel as nb', 'import numpy as np', 'import scipy as sp', 'from nipype.utils.filemanip import filename_to_list' ] def get_info(dicom_files): """Given a Siemens dicom file return metadata Returns ------- RepetitionTime Slice Acquisition Times Spacing between slices """ meta = default_extractor(read_file(filename_to_list(dicom_files)[0], stop_before_pixels=True, force=True)) return (meta['RepetitionTime']/1000., meta['CsaImage.MosaicRefAcqTimes'], meta['SpacingBetweenSlices']) def median(in_files): """Computes an average of the median of each realigned timeseries Parameters ---------- in_files: one or more realigned Nifti 4D time series Returns ------- out_file: a 3D Nifti file """ average = None for idx, filename in enumerate(filename_to_list(in_files)): img = nb.load(filename) data = np.median(img.get_data(), axis=3) if not average: average = data else: average = average + data median_img = nb.Nifti1Image(average/float(idx + 1), img.get_affine(), img.get_header()) filename = os.path.join(os.getcwd(), 'median.nii.gz') median_img.to_filename(filename) return filename def get_aparc_aseg(files): """Return the aparc+aseg.mgz file""" for name in files: if 'aparc+aseg.mgz' in name: return name raise ValueError('aparc+aseg.mgz not found') def motion_regressors(motion_params, order=2, derivatives=2): """Compute motion regressors upto given order and derivative motion + d(motion)/dt + d2(motion)/dt2 (linear + quadratic) """ out_files = [] for idx, filename in enumerate(filename_to_list(motion_params)): params = np.genfromtxt(filename) out_params = params for d in range(1, derivatives + 1): cparams = np.vstack((np.repeat(params[0, :][None, :], d, axis=0), params)) out_params = np.hstack((out_params, np.diff(cparams, d, axis=0))) out_params2 = out_params for i in range(2, order + 1): out_params2 = np.hstack((out_params2, np.power(out_params, i))) filename = os.path.join(os.getcwd(), "motion_regressor%02d.txt" % idx) np.savetxt(filename, out_params2, fmt="%.10f") out_files.append(filename) return out_files def build_filter1(motion_params, comp_norm, outliers): """Builds a regressor set comparison motion parameters, composite norm and outliers The outliers are added as a single time point column for each outlier Parameters ---------- motion_params: a text file containing motion parameters and its derivatives comp_norm: a text file containing the composite norm outliers: a text file containing 0-based outlier indices Returns ------- components_file: a text file containing all the regressors """ out_files = [] for idx, filename in enumerate(filename_to_list(motion_params)): params = np.genfromtxt(filename) norm_val = np.genfromtxt(filename_to_list(comp_norm)[idx]) out_params = np.hstack((params, norm_val[:, None])) try: outlier_val = np.genfromtxt(filename_to_list(outliers)[idx]) except IOError: outlier_val = np.empty((0)) for index in np.atleast_1d(outlier_val): outlier_vector = np.zeros((out_params.shape[0], 1)) outlier_vector[index] = 1 out_params = np.hstack((out_params, outlier_vector)) filename = os.path.join(os.getcwd(), "filter_regressor%02d.txt" % idx) np.savetxt(filename, out_params, fmt="%.10f") out_files.append(filename) return out_files def extract_noise_components(realigned_file, mask_file, num_components=6): """Derive components most reflective of physiological noise Parameters ---------- realigned_file: a 4D Nifti file containing realigned volumes mask_file: a 3D Nifti file containing white matter + ventricular masks num_components: number of components to use for noise decomposition Returns ------- components_file: a text file containing the noise components """ imgseries = nb.load(realigned_file) noise_mask = nb.load(mask_file) voxel_timecourses = imgseries.get_data()[np.nonzero(noise_mask.get_data())] voxel_timecourses = voxel_timecourses.byteswap().newbyteorder() voxel_timecourses[np.isnan(np.sum(voxel_timecourses, axis=1)), :] = 0 _, _, v = sp.linalg.svd(voxel_timecourses, full_matrices=False) components_file = os.path.join(os.getcwd(), 'noise_components.txt') np.savetxt(components_file, v[:num_components, :].T) return components_file def extract_subrois(timeseries_file, label_file, indices): """Extract voxel time courses for each subcortical roi index Parameters ---------- timeseries_file: a 4D Nifti file label_file: a 3D file containing rois in the same space/size of the 4D file indices: a list of indices for ROIs to extract. Returns ------- out_file: a text file containing time courses for each voxel of each roi The first four columns are: freesurfer index, i, j, k positions in the label file """ img = nb.load(timeseries_file) data = img.get_data() roiimg = nb.load(label_file) rois = roiimg.get_data() out_ts_file = os.path.join(os.getcwd(), 'subcortical_timeseries.txt') with open(out_ts_file, 'wt') as fp: for fsindex in indices: ijk = np.nonzero(rois == fsindex) ts = data[ijk] for i0, row in enumerate(ts): fp.write('%d,%d,%d,%d,' % (fsindex, ijk[0][i0], ijk[1][i0], ijk[2][i0]) + ','.join(['%.10f' % val for val in row]) + '\n') return out_ts_file def combine_hemi(left, right): """Combine left and right hemisphere time series into a single text file """ lh_data = nb.load(left).get_data() rh_data = nb.load(right).get_data() indices = np.vstack((1000000 + np.arange(0, lh_data.shape[0])[:, None], 2000000 + np.arange(0, rh_data.shape[0])[:, None])) all_data = np.hstack((indices, np.vstack((lh_data.squeeze(), rh_data.squeeze())))) filename = 'combined_surf.txt' np.savetxt(filename, all_data, fmt=','.join(['%d'] + ['%.10f'] * (all_data.shape[1] - 1))) return os.path.abspath(filename) """ Creates the main preprocessing workflow """ """ Creates the full workflow including getting information from dicom files """ if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("-d", "--dicom_file", dest="dicom_file", help="an example dicom file from the resting series") parser.add_argument("-f", "--files", dest="files", nargs="+", help="4d nifti files for resting state", required=True) parser.add_argument("-s", "--subject_id", dest="subject_id", help="FreeSurfer subject id", required=True) parser.add_argument("-n", "--n_vol", dest="n_vol", default=0, type=int, help="Volumes to skip at the beginning") parser.add_argument("--despike", dest="despike", default=False, action="store_true", help="Use despiked data") parser.add_argument("--TR", dest="TR", default=None, help="TR if dicom not provided in seconds") parser.add_argument("--slice_times", dest="slice_times", nargs="+", type=float, help="Slice times in seconds") parser.add_argument("-l", "--lowpass_freq", dest="lowpass_freq", default=-1, help="Low pass frequency (Hz)") parser.add_argument("-u", "--highpass_freq", dest="highpass_freq", default=-1, help="High pass frequency (Hz)") parser.add_argument("-o", "--output_dir", dest="sink", help="Output directory base") parser.add_argument("-w", "--work_dir", dest="work_dir", help="Output directory base") parser.add_argument("-p", "--plugin", dest="plugin", default='Linear', help="Plugin to use") parser.add_argument("--plugin_args", dest="plugin_args", help="Plugin arguments") parser.add_argument("--field_maps", dest="field_maps", nargs="+", help="field map niftis") parser.add_argument("--fm_echospacing", dest="echo_spacing", type=float, help="field map echo spacing") parser.add_argument("--fm_TE_diff", dest='TE_diff', type=float, help="field map echo time difference") parser.add_argument("--fm_sigma", dest='sigma', type=float, help="field map sigma value") args = parser.parse_args() wf = create_resting_workflow(args) if args.work_dir: work_dir = os.path.abspath(args.work_dir) else: work_dir = os.getcwd() wf.base_dir = work_dir if args.plugin_args: wf.run(args.plugin, plugin_args=eval(args.plugin_args)) else: wf.run(args.plugin)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 23926, 198, 3808, 69, 40952, 25, 12341, 22125, 11, 3537, 4694, 11, 360, 291, 296, 25896, 11, 3232, 14214, 2232, 11, 376, 8634, 11, 399, 541, 88, 11, 257, 7293, 10606, 81, 198, 23926, 628, 198, 32, 662, 36948, 30798, 329, 45196, 641, 19186, 1181, 1366, 13, 198, 198, 1212, 30798, 1838, 779, 286, 25, 198, 198, 12, 12341, 22125, 198, 12, 3537, 4694, 198, 12, 327, 18, 35, 62, 35191, 500, 62, 25391, 198, 12, 360, 291, 296, 25896, 198, 12, 3232, 14214, 2232, 198, 12, 376, 8634, 198, 12, 11556, 20519, 198, 198, 1890, 1672, 3712, 628, 220, 21015, 374, 28202, 76, 380, 62, 3866, 36948, 13, 9078, 532, 67, 1220, 7890, 14, 10163, 2231, 12, 2682, 12, 16, 13, 67, 11215, 532, 69, 1220, 7890, 14, 19452, 278, 13, 77, 4178, 198, 220, 220, 220, 220, 220, 532, 82, 850, 73, 8298, 532, 77, 362, 1377, 8906, 79, 522, 532, 78, 5072, 198, 220, 220, 220, 220, 220, 532, 79, 30051, 1377, 33803, 62, 22046, 366, 11600, 7, 80, 7266, 62, 22046, 11639, 12, 80, 867, 11537, 1, 198, 198, 1212, 30798, 2753, 19186, 1661, 10640, 290, 257, 45196, 641, 288, 291, 296, 2393, 11188, 198, 1462, 340, 290, 662, 14681, 274, 340, 284, 4439, 1661, 10640, 22715, 393, 12768, 585, 17540, 13, 198, 198, 1212, 30798, 635, 4433, 362, 3020, 850, 66, 419, 605, 379, 21921, 290, 24019, 326, 389, 198, 15182, 422, 25, 198, 198, 4023, 1378, 10155, 65, 20258, 13, 10951, 14, 7890, 13, 6494, 198, 198, 11423, 453, 262, 362, 3020, 6300, 286, 25, 198, 198, 12, 4600, 41, 1563, 21278, 22494, 1279, 4023, 1378, 10155, 65, 20258, 13, 10951, 14, 7890, 14, 25864, 1386, 14, 73, 1563, 69, 4241, 14, 46, 1921, 1797, 12, 5446, 51, 12, 1238, 62, 73, 1563, 69, 4241, 62, 35, 42176, 3132, 62, 34, 5673, 62, 23912, 1424, 62, 259, 62, 44, 22125, 17827, 62, 17, 3020, 13, 77, 4178, 13, 34586, 29, 63, 62, 198, 12, 4600, 44, 22125, 11055, 1279, 4023, 1378, 10155, 65, 20258, 13, 10951, 14, 7890, 14, 11498, 17041, 14, 1187, 14, 46, 1921, 1797, 12, 1270, 62, 2953, 1773, 418, 62, 28243, 62, 259, 62, 44, 22125, 17827, 62, 17, 3020, 13, 77, 4178, 13, 34586, 29, 63, 62, 198, 198, 464, 362, 3020, 2196, 373, 7560, 351, 3712, 628, 220, 220, 13163, 422, 299, 541, 2981, 1330, 2030, 274, 333, 2232, 355, 43458, 198, 220, 220, 13163, 44608, 796, 43458, 13, 4965, 1403, 3419, 198, 220, 220, 13163, 44608, 13, 15414, 82, 13, 259, 62, 7753, 796, 705, 46, 1921, 1797, 12, 5446, 51, 12, 1238, 62, 73, 1563, 69, 4241, 62, 35, 42176, 3132, 62, 34, 5673, 62, 23912, 1424, 62, 259, 62, 44, 22125, 17827, 13, 77, 4178, 13, 34586, 6, 198, 220, 220, 13163, 44608, 13, 15414, 82, 13, 411, 321, 10137, 62, 7753, 796, 705, 46, 1921, 1797, 12, 5446, 51, 12, 1238, 62, 73, 1563, 69, 4241, 62, 35, 42176, 3132, 62, 34, 5673, 62, 23912, 1424, 62, 259, 62, 44, 22125, 17827, 62, 17, 3020, 13, 77, 4178, 13, 34586, 6, 198, 220, 220, 13163, 44608, 13, 15414, 82, 13, 85, 1140, 417, 62, 7857, 796, 357, 17, 1539, 362, 1539, 362, 2014, 198, 220, 220, 13163, 44608, 13, 15414, 82, 13, 22046, 796, 705, 12, 17034, 16936, 532, 5907, 352, 6, 198, 220, 220, 13163, 581, 796, 44608, 13, 5143, 3419, 198, 198, 37811, 198, 198, 11748, 28686, 198, 198, 6738, 299, 541, 2981, 13, 3849, 32186, 13, 8692, 1330, 9455, 13949, 198, 21575, 13949, 13, 2617, 62, 12286, 62, 23705, 282, 62, 22915, 10786, 7753, 11537, 198, 198, 6738, 299, 541, 2981, 1330, 4566, 198, 11250, 13, 21633, 62, 42874, 590, 3419, 198, 198, 6738, 299, 541, 2981, 1330, 357, 1187, 11, 6580, 8461, 11, 277, 6649, 11, 2030, 274, 333, 2232, 11, 299, 541, 88, 11, 15553, 11, 6060, 50, 676, 8, 198, 6738, 299, 541, 2981, 1330, 5521, 11125, 11, 19081, 11, 9347, 19667, 198, 198, 6738, 299, 541, 2981, 13, 282, 7727, 907, 13, 2416, 312, 433, 1330, 45908, 47504, 198, 6738, 299, 541, 2981, 13, 282, 7727, 907, 13, 44374, 1330, 309, 15571, 49, 198, 6738, 299, 541, 2981, 13, 3849, 32186, 13, 69, 6649, 1330, 14724, 2389, 68, 54, 5117, 198, 6738, 299, 541, 2981, 13, 3849, 32186, 13, 952, 1330, 3232, 14214, 2232, 7416, 198, 6738, 299, 541, 2981, 13, 3849, 32186, 13, 66, 18, 1330, 327, 18, 67, 35191, 500, 25391, 198, 6738, 299, 541, 2981, 13, 3849, 32186, 13, 315, 879, 1330, 39407, 11, 27207, 39317, 198, 6738, 299, 541, 2981, 13, 26791, 13, 7753, 805, 541, 1330, 29472, 62, 1462, 62, 4868, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 355, 599, 198, 11748, 33272, 9608, 355, 299, 65, 198, 6738, 288, 11215, 25558, 13, 2302, 974, 1330, 4277, 62, 2302, 40450, 198, 6738, 288, 291, 296, 1330, 1100, 62, 7753, 198, 198, 320, 3742, 796, 37250, 11748, 28686, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11748, 33272, 9608, 355, 299, 65, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11748, 299, 32152, 355, 45941, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11748, 629, 541, 88, 355, 599, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6738, 299, 541, 2981, 13, 26791, 13, 7753, 805, 541, 1330, 29472, 62, 1462, 62, 4868, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 198, 4299, 651, 62, 10951, 7, 67, 291, 296, 62, 16624, 2599, 198, 220, 220, 220, 37227, 15056, 257, 45196, 641, 288, 291, 296, 2393, 1441, 20150, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1432, 15620, 7575, 198, 220, 220, 220, 3454, 501, 44564, 3782, 198, 220, 220, 220, 1338, 4092, 1022, 24314, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13634, 796, 4277, 62, 2302, 40450, 7, 961, 62, 7753, 7, 34345, 62, 1462, 62, 4868, 7, 67, 291, 296, 62, 16624, 38381, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 62, 19052, 62, 79, 14810, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 28, 17821, 4008, 198, 220, 220, 220, 1441, 357, 28961, 17816, 6207, 15620, 7575, 20520, 14, 12825, 1539, 13634, 17816, 34, 11400, 5159, 13, 44, 8546, 291, 8134, 12832, 80, 28595, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 17816, 4561, 4092, 25262, 50, 677, 274, 6, 12962, 628, 198, 4299, 14288, 7, 259, 62, 16624, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 281, 2811, 286, 262, 14288, 286, 1123, 1103, 3916, 1661, 10640, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 287, 62, 16624, 25, 530, 393, 517, 1103, 3916, 399, 2135, 72, 604, 35, 640, 2168, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 628, 220, 220, 220, 503, 62, 7753, 25, 257, 513, 35, 399, 2135, 72, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2811, 796, 6045, 198, 220, 220, 220, 329, 4686, 87, 11, 29472, 287, 27056, 378, 7, 34345, 62, 1462, 62, 4868, 7, 259, 62, 16624, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 299, 65, 13, 2220, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 45941, 13, 1150, 666, 7, 9600, 13, 1136, 62, 7890, 22784, 16488, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2811, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 796, 2811, 1343, 1366, 198, 220, 220, 220, 14288, 62, 9600, 796, 299, 65, 13, 45, 2135, 72, 16, 5159, 7, 23913, 14, 22468, 7, 312, 87, 1343, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 13, 1136, 62, 2001, 500, 22784, 33705, 13, 1136, 62, 25677, 28955, 198, 220, 220, 220, 29472, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 705, 1150, 666, 13, 77, 4178, 13, 34586, 11537, 198, 220, 220, 220, 14288, 62, 9600, 13, 1462, 62, 34345, 7, 34345, 8, 198, 220, 220, 220, 1441, 29472, 628, 198, 4299, 651, 62, 499, 5605, 62, 589, 70, 7, 16624, 2599, 198, 220, 220, 220, 37227, 13615, 262, 257, 1845, 66, 10, 589, 70, 13, 11296, 89, 2393, 37811, 198, 220, 220, 220, 329, 1438, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 499, 5605, 10, 589, 70, 13, 11296, 89, 6, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 198, 220, 220, 220, 5298, 11052, 12331, 10786, 499, 5605, 10, 589, 70, 13, 11296, 89, 407, 1043, 11537, 628, 198, 4299, 6268, 62, 2301, 601, 669, 7, 38714, 62, 37266, 11, 1502, 28, 17, 11, 28486, 28, 17, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 6268, 50252, 669, 18529, 78, 1813, 1502, 290, 27255, 628, 220, 220, 220, 6268, 1343, 288, 7, 38714, 20679, 28664, 1343, 288, 17, 7, 38714, 20679, 28664, 17, 357, 29127, 1343, 15094, 81, 1512, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 62, 16624, 796, 17635, 198, 220, 220, 220, 329, 4686, 87, 11, 29472, 287, 27056, 378, 7, 34345, 62, 1462, 62, 4868, 7, 38714, 62, 37266, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 45941, 13, 5235, 6738, 14116, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 37266, 796, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 2837, 7, 16, 11, 28486, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 37266, 796, 45941, 13, 85, 25558, 19510, 37659, 13, 44754, 7, 37266, 58, 15, 11, 1058, 7131, 14202, 11, 1058, 4357, 288, 11, 16488, 28, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 37266, 796, 45941, 13, 71, 25558, 19510, 448, 62, 37266, 11, 45941, 13, 26069, 7, 66, 37266, 11, 288, 11, 16488, 28, 15, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 37266, 17, 796, 503, 62, 37266, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 11, 1502, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 37266, 17, 796, 45941, 13, 71, 25558, 19510, 448, 62, 37266, 17, 11, 45941, 13, 6477, 7, 448, 62, 37266, 11, 1312, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 366, 38714, 62, 2301, 44292, 4, 2999, 67, 13, 14116, 1, 4064, 4686, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21928, 14116, 7, 34345, 11, 503, 62, 37266, 17, 11, 46996, 2625, 7225, 940, 69, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 16624, 13, 33295, 7, 34345, 8, 198, 220, 220, 220, 1441, 503, 62, 16624, 628, 198, 4299, 1382, 62, 24455, 16, 7, 38714, 62, 37266, 11, 552, 62, 27237, 11, 41528, 3183, 2599, 198, 220, 220, 220, 37227, 15580, 82, 257, 842, 44292, 900, 7208, 6268, 10007, 11, 24185, 2593, 290, 198, 220, 220, 220, 41528, 3183, 628, 220, 220, 220, 383, 41528, 3183, 389, 2087, 355, 257, 2060, 640, 966, 5721, 329, 1123, 503, 2505, 628, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 6268, 62, 37266, 25, 257, 2420, 2393, 7268, 6268, 10007, 290, 663, 28486, 198, 220, 220, 220, 552, 62, 27237, 25, 257, 2420, 2393, 7268, 262, 24185, 2593, 198, 220, 220, 220, 41528, 3183, 25, 257, 2420, 2393, 7268, 657, 12, 3106, 503, 2505, 36525, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 6805, 62, 7753, 25, 257, 2420, 2393, 7268, 477, 262, 50252, 669, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 62, 16624, 796, 17635, 198, 220, 220, 220, 329, 4686, 87, 11, 29472, 287, 27056, 378, 7, 34345, 62, 1462, 62, 4868, 7, 38714, 62, 37266, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 45941, 13, 5235, 6738, 14116, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 2100, 796, 45941, 13, 5235, 6738, 14116, 7, 34345, 62, 1462, 62, 4868, 7, 5589, 62, 27237, 38381, 312, 87, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 37266, 796, 45941, 13, 71, 25558, 19510, 37266, 11, 2593, 62, 2100, 58, 45299, 6045, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 2505, 62, 2100, 796, 45941, 13, 5235, 6738, 14116, 7, 34345, 62, 1462, 62, 4868, 7, 448, 75, 3183, 38381, 312, 87, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 2505, 62, 2100, 796, 45941, 13, 28920, 19510, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 287, 45941, 13, 265, 293, 459, 62, 16, 67, 7, 448, 2505, 62, 2100, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 2505, 62, 31364, 796, 45941, 13, 9107, 418, 19510, 448, 62, 37266, 13, 43358, 58, 15, 4357, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 2505, 62, 31364, 58, 9630, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 37266, 796, 45941, 13, 71, 25558, 19510, 448, 62, 37266, 11, 503, 2505, 62, 31364, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 366, 24455, 62, 2301, 44292, 4, 2999, 67, 13, 14116, 1, 4064, 4686, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21928, 14116, 7, 34345, 11, 503, 62, 37266, 11, 46996, 2625, 7225, 940, 69, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 16624, 13, 33295, 7, 34345, 8, 198, 220, 220, 220, 1441, 503, 62, 16624, 628, 198, 4299, 7925, 62, 3919, 786, 62, 5589, 3906, 7, 5305, 3916, 62, 7753, 11, 9335, 62, 7753, 11, 997, 62, 5589, 3906, 28, 21, 2599, 198, 220, 220, 220, 37227, 28532, 425, 6805, 749, 28962, 286, 25033, 7838, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1103, 3916, 62, 7753, 25, 257, 604, 35, 399, 2135, 72, 2393, 7268, 1103, 3916, 15343, 198, 220, 220, 220, 9335, 62, 7753, 25, 257, 513, 35, 399, 2135, 72, 2393, 7268, 2330, 2300, 1343, 7435, 41001, 20680, 198, 220, 220, 220, 997, 62, 5589, 3906, 25, 1271, 286, 6805, 284, 779, 329, 7838, 26969, 9150, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 6805, 62, 7753, 25, 257, 2420, 2393, 7268, 262, 7838, 6805, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33705, 25076, 796, 299, 65, 13, 2220, 7, 5305, 3916, 62, 7753, 8, 198, 220, 220, 220, 7838, 62, 27932, 796, 299, 65, 13, 2220, 7, 27932, 62, 7753, 8, 198, 220, 220, 220, 410, 1140, 417, 62, 2435, 66, 39975, 796, 33705, 25076, 13, 1136, 62, 7890, 3419, 58, 37659, 13, 13159, 22570, 7, 3919, 786, 62, 27932, 13, 1136, 62, 7890, 3419, 15437, 198, 220, 220, 220, 410, 1140, 417, 62, 2435, 66, 39975, 796, 410, 1140, 417, 62, 2435, 66, 39975, 13, 33661, 86, 499, 22446, 3605, 26327, 2875, 3419, 198, 220, 220, 220, 410, 1140, 417, 62, 2435, 66, 39975, 58, 37659, 13, 271, 12647, 7, 37659, 13, 16345, 7, 85, 1140, 417, 62, 2435, 66, 39975, 11, 16488, 28, 16, 36911, 1058, 60, 796, 657, 198, 220, 220, 220, 4808, 11, 4808, 11, 410, 796, 599, 13, 75, 1292, 70, 13, 82, 20306, 7, 85, 1140, 417, 62, 2435, 66, 39975, 11, 1336, 62, 6759, 45977, 28, 25101, 8, 198, 220, 220, 220, 6805, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 705, 3919, 786, 62, 5589, 3906, 13, 14116, 11537, 198, 220, 220, 220, 45941, 13, 21928, 14116, 7, 5589, 3906, 62, 7753, 11, 410, 58, 25, 22510, 62, 5589, 3906, 11, 1058, 4083, 51, 8, 198, 220, 220, 220, 1441, 6805, 62, 7753, 628, 198, 4299, 7925, 62, 7266, 305, 271, 7, 22355, 10640, 62, 7753, 11, 6167, 62, 7753, 11, 36525, 2599, 198, 220, 220, 220, 37227, 11627, 974, 410, 1140, 417, 640, 10902, 329, 1123, 850, 66, 419, 605, 686, 72, 6376, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 1661, 10640, 62, 7753, 25, 257, 604, 35, 399, 2135, 72, 2393, 198, 220, 220, 220, 6167, 62, 7753, 25, 257, 513, 35, 2393, 7268, 686, 271, 287, 262, 976, 2272, 14, 7857, 286, 262, 604, 35, 2393, 198, 220, 220, 220, 36525, 25, 257, 1351, 286, 36525, 329, 15107, 3792, 284, 7925, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 62, 7753, 25, 257, 2420, 2393, 7268, 640, 10902, 329, 1123, 410, 1140, 417, 286, 1123, 686, 72, 198, 220, 220, 220, 220, 220, 220, 220, 383, 717, 1440, 15180, 389, 25, 2030, 274, 333, 2232, 6376, 11, 1312, 11, 474, 11, 479, 6116, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33705, 796, 299, 65, 13, 2220, 7, 22355, 10640, 62, 7753, 8, 198, 220, 220, 220, 1366, 796, 33705, 13, 1136, 62, 7890, 3419, 198, 220, 220, 220, 686, 72, 9600, 796, 299, 65, 13, 2220, 7, 18242, 62, 7753, 8, 198, 220, 220, 220, 686, 271, 796, 686, 72, 9600, 13, 1136, 62, 7890, 3419, 198, 220, 220, 220, 503, 62, 912, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 705, 7266, 66, 419, 605, 62, 22355, 10640, 13, 14116, 11537, 198, 220, 220, 220, 351, 1280, 7, 448, 62, 912, 62, 7753, 11, 705, 46569, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 43458, 9630, 287, 36525, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 73, 74, 796, 45941, 13, 13159, 22570, 7, 305, 271, 6624, 43458, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40379, 796, 1366, 58, 45961, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 15, 11, 5752, 287, 27056, 378, 7, 912, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 79, 13, 13564, 10786, 4, 67, 11, 4, 67, 11, 4, 67, 11, 4, 67, 4032, 4064, 357, 9501, 9630, 11, 1312, 73, 74, 58, 15, 7131, 72, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 73, 74, 58, 16, 7131, 72, 15, 4357, 1312, 73, 74, 58, 17, 7131, 72, 15, 12962, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4032, 13, 22179, 7, 17816, 7225, 940, 69, 6, 4064, 1188, 329, 1188, 287, 5752, 12962, 1343, 705, 59, 77, 11537, 198, 220, 220, 220, 1441, 503, 62, 912, 62, 7753, 628, 198, 4299, 12082, 62, 4411, 72, 7, 9464, 11, 826, 2599, 198, 220, 220, 220, 37227, 20575, 500, 1364, 290, 826, 33169, 640, 2168, 656, 257, 2060, 2420, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 300, 71, 62, 7890, 796, 299, 65, 13, 2220, 7, 9464, 737, 1136, 62, 7890, 3419, 198, 220, 220, 220, 9529, 62, 7890, 796, 299, 65, 13, 2220, 7, 3506, 737, 1136, 62, 7890, 3419, 628, 220, 220, 220, 36525, 796, 45941, 13, 85, 25558, 19510, 16, 10535, 1343, 45941, 13, 283, 858, 7, 15, 11, 300, 71, 62, 7890, 13, 43358, 58, 15, 12962, 58, 45299, 6045, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 939, 2388, 1343, 45941, 13, 283, 858, 7, 15, 11, 9529, 62, 7890, 13, 43358, 58, 15, 12962, 58, 45299, 6045, 60, 4008, 198, 220, 220, 220, 477, 62, 7890, 796, 45941, 13, 71, 25558, 19510, 521, 1063, 11, 45941, 13, 85, 25558, 19510, 75, 71, 62, 7890, 13, 16485, 1453, 2736, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9529, 62, 7890, 13, 16485, 1453, 2736, 3419, 35514, 198, 220, 220, 220, 29472, 796, 705, 24011, 1389, 62, 11793, 69, 13, 14116, 6, 198, 220, 220, 220, 45941, 13, 21928, 14116, 7, 34345, 11, 477, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46996, 28, 3256, 4458, 22179, 7, 17816, 4, 67, 20520, 1343, 37250, 7225, 940, 69, 20520, 1635, 357, 439, 62, 7890, 13, 43358, 58, 16, 60, 532, 352, 22305, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 397, 2777, 776, 7, 34345, 8, 628, 198, 37811, 198, 16719, 274, 262, 1388, 662, 36948, 30798, 198, 37811, 628, 198, 198, 37811, 198, 16719, 274, 262, 1336, 30798, 1390, 1972, 1321, 422, 288, 291, 296, 3696, 198, 37811, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 422, 1822, 29572, 1330, 45751, 46677, 198, 220, 220, 220, 30751, 796, 45751, 46677, 7, 11213, 28, 834, 15390, 834, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 67, 1600, 366, 438, 67, 291, 296, 62, 7753, 1600, 2244, 2625, 67, 291, 296, 62, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 272, 1672, 288, 291, 296, 2393, 422, 262, 19186, 2168, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 69, 1600, 366, 438, 16624, 1600, 2244, 2625, 16624, 1600, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 19, 67, 299, 2135, 72, 3696, 329, 19186, 1181, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 82, 1600, 366, 438, 32796, 62, 312, 1600, 2244, 2625, 32796, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 11146, 14214, 2232, 2426, 4686, 1600, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 77, 1600, 366, 438, 77, 62, 10396, 1600, 2244, 2625, 77, 62, 10396, 1600, 4277, 28, 15, 11, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 16598, 8139, 284, 14267, 379, 262, 3726, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 8906, 79, 522, 1600, 2244, 2625, 8906, 79, 522, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 1037, 2625, 11041, 11267, 17951, 1366, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 5446, 1600, 2244, 2625, 5446, 1600, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 5446, 611, 288, 291, 296, 407, 2810, 287, 4201, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 48369, 62, 22355, 1600, 2244, 2625, 48369, 62, 22355, 1600, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 22468, 11, 1037, 2625, 11122, 501, 1661, 287, 4201, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 75, 1600, 366, 438, 9319, 6603, 62, 19503, 80, 1600, 2244, 2625, 9319, 6603, 62, 19503, 80, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 10779, 16, 11, 1037, 2625, 20535, 1208, 8373, 357, 7399, 8, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 84, 1600, 366, 438, 8929, 6603, 62, 19503, 80, 1600, 2244, 2625, 8929, 6603, 62, 19503, 80, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 10779, 16, 11, 1037, 2625, 11922, 1208, 8373, 357, 7399, 8, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 78, 1600, 366, 438, 22915, 62, 15908, 1600, 2244, 2625, 82, 676, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 26410, 8619, 2779, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 86, 1600, 366, 438, 1818, 62, 15908, 1600, 2244, 2625, 1818, 62, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 26410, 8619, 2779, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 79, 1600, 366, 438, 33803, 1600, 2244, 2625, 33803, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 14993, 451, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 37233, 284, 779, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 33803, 62, 22046, 1600, 2244, 2625, 33803, 62, 22046, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 37233, 7159, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 3245, 62, 31803, 1600, 2244, 2625, 3245, 62, 31803, 1600, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 3245, 3975, 299, 2135, 271, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 38353, 62, 3055, 2117, 4092, 1600, 2244, 2625, 30328, 62, 2777, 4092, 1600, 2099, 28, 22468, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 3245, 3975, 9809, 31050, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 38353, 62, 9328, 62, 26069, 1600, 2244, 11639, 9328, 62, 26069, 3256, 2099, 28, 22468, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 3245, 3975, 9809, 640, 3580, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 38353, 62, 82, 13495, 1600, 2244, 11639, 82, 13495, 3256, 2099, 28, 22468, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 3245, 3975, 264, 13495, 1988, 4943, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 266, 69, 796, 2251, 62, 2118, 278, 62, 1818, 11125, 7, 22046, 8, 628, 220, 220, 220, 611, 26498, 13, 1818, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 670, 62, 15908, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 22046, 13, 1818, 62, 15908, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 670, 62, 15908, 796, 28686, 13, 1136, 66, 16993, 3419, 628, 220, 220, 220, 266, 69, 13, 8692, 62, 15908, 796, 670, 62, 15908, 198, 220, 220, 220, 611, 26498, 13, 33803, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 266, 69, 13, 5143, 7, 22046, 13, 33803, 11, 13877, 62, 22046, 28, 18206, 7, 22046, 13, 33803, 62, 22046, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 266, 69, 13, 5143, 7, 22046, 13, 33803, 8, 198 ]
2.328583
5,122
import pytest from vdirsyncer.storage.dav import _BAD_XML_CHARS from vdirsyncer.storage.dav import _merge_xml from vdirsyncer.storage.dav import _parse_xml @pytest.mark.parametrize('char', range(32))
[ 11748, 12972, 9288, 198, 198, 6738, 410, 15908, 28869, 2189, 13, 35350, 13, 67, 615, 1330, 4808, 33, 2885, 62, 55, 5805, 62, 3398, 27415, 198, 6738, 410, 15908, 28869, 2189, 13, 35350, 13, 67, 615, 1330, 4808, 647, 469, 62, 19875, 198, 6738, 410, 15908, 28869, 2189, 13, 35350, 13, 67, 615, 1330, 4808, 29572, 62, 19875, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 10641, 3256, 2837, 7, 2624, 4008, 198 ]
2.582278
79
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import math sys.path.extend(["..","../channels/"]) from NaChannel import * from KFastChannel import * from KSlowChannel import * from CaLChannel import * from KAChannel import * ## use KCaChannel instead of KCaMPIChannel, in a non-MPI i.e. non-parallel run, ## to generate the KCaA.dat and KCaB.dat files. #from KCaChannel import * from KCaMPIChannel import * ## use KCaChannel_PG instead of KCaMPIChannel_PG, in a non-MPI i.e. non-parallel run, ## to generate the KCaA_PG.dat and KCaB_PG.dat files. #from KCaChannel_PG import * from KCaMPIChannel_PG import * from CaPool import * from KMChannel import * from CaTChannel import * from NaMitChannelMS import * from KAChannelMS import * from KDRChannelMS import * import moose from moose.neuroml import * FARADAY = 96154.0 # Coulombs # from cadecay.mod : 1/(2*96154.0) = 5.2e-6 which is the Book of Genesis / readcell value #FARADAY = 96485.3415 # Coulombs # from Wikipedia
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 10688, 198, 198, 17597, 13, 6978, 13, 2302, 437, 7, 14692, 492, 2430, 40720, 354, 8961, 14, 8973, 8, 198, 198, 6738, 11013, 29239, 1330, 1635, 198, 6738, 509, 22968, 29239, 1330, 1635, 198, 6738, 34172, 9319, 29239, 1330, 1635, 198, 6738, 6488, 43, 29239, 1330, 1635, 198, 6738, 509, 32, 29239, 1330, 1635, 198, 2235, 779, 509, 24334, 29239, 2427, 286, 509, 24334, 7378, 40, 29239, 11, 287, 257, 1729, 12, 7378, 40, 1312, 13, 68, 13, 1729, 12, 1845, 29363, 1057, 11, 198, 2235, 284, 7716, 262, 509, 24334, 32, 13, 19608, 290, 509, 24334, 33, 13, 19608, 3696, 13, 198, 2, 6738, 509, 24334, 29239, 1330, 1635, 198, 6738, 509, 24334, 7378, 40, 29239, 1330, 1635, 198, 2235, 779, 509, 24334, 29239, 62, 6968, 2427, 286, 509, 24334, 7378, 40, 29239, 62, 6968, 11, 287, 257, 1729, 12, 7378, 40, 1312, 13, 68, 13, 1729, 12, 1845, 29363, 1057, 11, 198, 2235, 284, 7716, 262, 509, 24334, 32, 62, 6968, 13, 19608, 290, 509, 24334, 33, 62, 6968, 13, 19608, 3696, 13, 198, 2, 6738, 509, 24334, 29239, 62, 6968, 1330, 1635, 198, 6738, 509, 24334, 7378, 40, 29239, 62, 6968, 1330, 1635, 198, 6738, 6488, 27201, 1330, 1635, 198, 6738, 46646, 29239, 1330, 1635, 198, 6738, 6488, 51, 29239, 1330, 1635, 198, 198, 6738, 11013, 43339, 29239, 5653, 1330, 1635, 198, 6738, 509, 32, 29239, 5653, 1330, 1635, 198, 6738, 509, 7707, 29239, 5653, 1330, 1635, 198, 198, 11748, 6941, 577, 198, 6738, 6941, 577, 13, 710, 333, 296, 75, 1330, 1635, 198, 198, 37, 1503, 2885, 4792, 796, 9907, 21526, 13, 15, 1303, 27854, 33273, 1303, 422, 269, 671, 66, 323, 13, 4666, 1058, 352, 29006, 17, 9, 4846, 21526, 13, 15, 8, 796, 642, 13, 17, 68, 12, 21, 543, 318, 262, 4897, 286, 18993, 1220, 1100, 3846, 1988, 198, 2, 37, 1503, 2885, 4792, 796, 860, 2414, 5332, 13, 2682, 1314, 1303, 27854, 33273, 1303, 422, 15312, 628, 198 ]
2.792717
357
# -*- coding: utf-8 -*- # @Time : 2021/9/10 14:23 # @Author : WuBingTai from ztest import db from ztest.models import Phone from ztest.utils.common import login_required from ztest.utils.response_code import RET from . import api from flask import jsonify, request, current_app # 测试机列表 @api.route("/phone/list") @login_required # 新增手机 @api.route("/addPhone", methods=["POST"]) @login_required
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 220, 220, 1058, 33448, 14, 24, 14, 940, 1478, 25, 1954, 198, 2, 2488, 13838, 220, 1058, 18027, 33, 278, 47976, 198, 198, 6738, 1976, 9288, 1330, 20613, 198, 6738, 1976, 9288, 13, 27530, 1330, 14484, 198, 6738, 1976, 9288, 13, 26791, 13, 11321, 1330, 17594, 62, 35827, 198, 6738, 1976, 9288, 13, 26791, 13, 26209, 62, 8189, 1330, 30826, 198, 6738, 764, 1330, 40391, 198, 6738, 42903, 1330, 33918, 1958, 11, 2581, 11, 1459, 62, 1324, 628, 198, 2, 10545, 113, 233, 46237, 243, 17312, 118, 26344, 245, 26193, 101, 198, 31, 15042, 13, 38629, 7203, 14, 4862, 14, 4868, 4943, 198, 31, 38235, 62, 35827, 628, 198, 2, 10545, 244, 108, 161, 95, 252, 33699, 233, 17312, 118, 198, 31, 15042, 13, 38629, 7203, 14, 2860, 6132, 1600, 5050, 28, 14692, 32782, 8973, 8, 198, 31, 38235, 62, 35827, 198 ]
2.5125
160
# Example Keplerian fit configuration file # Required packages for setup import os import pandas as pd import numpy as np import radvel # Define global planetary system and dataset parameters starname = 'epic203771098' nplanets = 2 # number of planets in the system instnames = ['j'] # list of instrument names. Can be whatever you like (no spaces) but should match 'tel' column in the input file. ntels = len(instnames) # number of instruments with unique velocity zero-points fitting_basis = 'per tc secosw sesinw k' # Fitting basis, see radvel.basis.BASIS_NAMES for available basis names bjd0 = 2454833. planet_letters = {1: 'b', 2:'c'} # Define prior centers (initial guesses) in a basis of your choice (need not be in the fitting basis) anybasis_params = radvel.Parameters(nplanets,basis='per tc e w k') # initialize Parameters object anybasis_params['per1'] = radvel.Parameter(value=20.885258) # period of 1st planet anybasis_params['tc1'] = radvel.Parameter(value=2072.79438) # time of inferior conjunction of 1st planet anybasis_params['e1'] = radvel.Parameter(value=0.01) # eccentricity of 'per tc secosw sesinw logk'1st planet anybasis_params['w1'] = radvel.Parameter(value=np.pi/2.) # argument of periastron of the star's orbit for 1st planet anybasis_params['k1'] = radvel.Parameter(value=10.0) # velocity semi-amplitude for 1st planet anybasis_params['per2'] = radvel.Parameter(value=42.363011) # same parameters for 2nd planet ... anybasis_params['tc2'] = radvel.Parameter(value=2082.62516) anybasis_params['e2'] = radvel.Parameter(value=0.01) anybasis_params['w2'] = radvel.Parameter(value=np.pi/2.) anybasis_params['k2'] = radvel.Parameter(value=10.0) anybasis_params['dvdt'] = radvel.Parameter(value=0.0) # slope anybasis_params['curv'] = radvel.Parameter(value=0.0) # curvature anybasis_params['gamma_j'] = radvel.Parameter(1.0) # velocity zero-point for hires_rj anybasis_params['jit_j'] = radvel.Parameter(value=2.6) # jitter for hires_rj # Convert input orbital parameters into the fitting basis params = anybasis_params.basis.to_any_basis(anybasis_params,fitting_basis) # Set the 'vary' attributes of each of the parameters in the fitting basis. A parameter's 'vary' attribute should # be set to False if you wish to hold it fixed during the fitting process. By default, all 'vary' parameters # are set to True. params['secosw1'].vary = False params['sesinw1'].vary = False params['secosw2'].vary = False params['sesinw2'].vary = False params['tc1'].vary = False params['per1'].vary = False params['tc2'].vary = False params['per2'].vary = False # Load radial velocity data, in this example the data is contained in an hdf file, # the resulting dataframe or must have 'time', 'mnvel', 'errvel', and 'tel' keys # the velocities are expected to be in m/s path = os.path.join(radvel.DATADIR, 'epic203771098.csv') data = pd.read_csv(path) data['time'] = data.t data['mnvel'] = data.vel data['errvel'] = data.errvel data['tel'] = 'j' # Define prior shapes and widths here. priors = [ radvel.prior.EccentricityPrior( nplanets ), # Keeps eccentricity < 1 radvel.prior.PositiveKPrior( nplanets ), # Keeps K > 0 radvel.prior.Gaussian('tc1', params['tc1'].value, 0.01), # Gaussian prior on tc1 with center at tc1 and width 0.01 days radvel.prior.Gaussian('per1', params['per1'].value, 0.01), radvel.prior.Gaussian('tc2', params['tc2'].value, 0.01), radvel.prior.Gaussian('per2', params['per2'].value, 0.01), radvel.prior.HardBounds('jit_j', 0.0, 15.0) ] # abscissa for slope and curvature terms (should be near mid-point of time baseline) time_base = np.mean([np.min(data.time), np.max(data.time)]) # optional argument that can contain stellar mass in solar units (mstar) and # uncertainty (mstar_err). If not set, mstar will be set to nan. stellar = dict(mstar=1.12, mstar_err= 0.05) # optional argument that can contain planet radii, # used for computing densities. Values should be given # in units of Earth radii planet = dict( rp1=5.68, rp_err1=0.56, rp2=7.82, rp_err2=0.72, )
[ 2, 17934, 40294, 666, 4197, 8398, 2393, 198, 198, 2, 20906, 10392, 329, 9058, 198, 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2511, 626, 198, 198, 2, 2896, 500, 3298, 27047, 1080, 290, 27039, 10007, 198, 301, 1501, 480, 796, 705, 538, 291, 1238, 26514, 940, 4089, 6, 198, 77, 11578, 1039, 796, 362, 220, 220, 220, 1303, 1271, 286, 14705, 287, 262, 1080, 198, 8625, 14933, 796, 37250, 73, 20520, 220, 220, 220, 1303, 1351, 286, 8875, 3891, 13, 1680, 307, 4232, 345, 588, 357, 3919, 9029, 8, 475, 815, 2872, 705, 37524, 6, 5721, 287, 262, 5128, 2393, 13, 198, 429, 1424, 796, 18896, 7, 8625, 14933, 8, 220, 220, 220, 220, 220, 220, 1303, 1271, 286, 12834, 351, 3748, 15432, 6632, 12, 13033, 198, 32232, 62, 12093, 271, 796, 705, 525, 37096, 792, 418, 86, 264, 274, 259, 86, 479, 6, 220, 220, 220, 1303, 376, 2535, 4308, 11, 766, 2511, 626, 13, 12093, 271, 13, 33, 1921, 1797, 62, 45, 29559, 329, 1695, 4308, 3891, 198, 50007, 67, 15, 796, 29637, 2780, 2091, 13, 198, 47427, 62, 15653, 796, 1391, 16, 25, 705, 65, 3256, 362, 32105, 66, 6, 92, 198, 198, 2, 2896, 500, 3161, 10399, 357, 36733, 44774, 8, 287, 257, 4308, 286, 534, 3572, 357, 31227, 407, 307, 287, 262, 15830, 4308, 8, 198, 1092, 12093, 271, 62, 37266, 796, 2511, 626, 13, 48944, 7, 77, 11578, 1039, 11, 12093, 271, 11639, 525, 37096, 304, 266, 479, 11537, 220, 220, 220, 1303, 41216, 40117, 2134, 198, 198, 1092, 12093, 271, 62, 37266, 17816, 525, 16, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 1238, 13, 44230, 25600, 8, 220, 220, 220, 1303, 2278, 286, 352, 301, 5440, 198, 1092, 12093, 271, 62, 37266, 17816, 23047, 16, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 1238, 4761, 13, 3720, 43704, 8, 220, 220, 220, 1303, 640, 286, 18536, 17856, 286, 352, 301, 5440, 198, 1092, 12093, 271, 62, 37266, 17816, 68, 16, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 15, 13, 486, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29303, 414, 286, 705, 525, 37096, 792, 418, 86, 264, 274, 259, 86, 2604, 74, 6, 16, 301, 5440, 198, 1092, 12093, 271, 62, 37266, 17816, 86, 16, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 37659, 13, 14415, 14, 17, 2014, 220, 220, 220, 220, 220, 1303, 4578, 286, 583, 72, 459, 1313, 286, 262, 3491, 338, 13066, 329, 352, 301, 5440, 198, 1092, 12093, 271, 62, 37266, 17816, 74, 16, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 940, 13, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15432, 10663, 12, 321, 489, 3984, 329, 352, 301, 5440, 198, 1092, 12093, 271, 62, 37266, 17816, 525, 17, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 3682, 13, 2623, 18938, 16, 8, 220, 220, 220, 1303, 976, 10007, 329, 362, 358, 5440, 2644, 198, 1092, 12093, 271, 62, 37266, 17816, 23047, 17, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 1238, 6469, 13, 26704, 1433, 8, 198, 1092, 12093, 271, 62, 37266, 17816, 68, 17, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 15, 13, 486, 8, 198, 1092, 12093, 271, 62, 37266, 17816, 86, 17, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 37659, 13, 14415, 14, 17, 2014, 198, 1092, 12093, 271, 62, 37266, 17816, 74, 17, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 940, 13, 15, 8, 198, 198, 1092, 12093, 271, 62, 37266, 17816, 67, 20306, 83, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 15, 13, 15, 8, 220, 220, 220, 220, 220, 220, 220, 1303, 22638, 198, 1092, 12093, 271, 62, 37266, 17816, 22019, 85, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 15, 13, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 46171, 1300, 198, 198, 1092, 12093, 271, 62, 37266, 17816, 28483, 2611, 62, 73, 20520, 796, 2511, 626, 13, 36301, 7, 16, 13, 15, 8, 220, 220, 220, 220, 220, 1303, 15432, 6632, 12, 4122, 329, 37097, 62, 81, 73, 198, 1092, 12093, 271, 62, 37266, 17816, 45051, 62, 73, 20520, 796, 2511, 626, 13, 36301, 7, 8367, 28, 17, 13, 21, 8, 220, 220, 220, 220, 220, 220, 220, 1303, 474, 1967, 329, 37097, 62, 81, 73, 628, 198, 2, 38240, 5128, 32362, 10007, 656, 262, 15830, 4308, 198, 37266, 796, 597, 12093, 271, 62, 37266, 13, 12093, 271, 13, 1462, 62, 1092, 62, 12093, 271, 7, 1092, 12093, 271, 62, 37266, 11, 32232, 62, 12093, 271, 8, 198, 198, 2, 5345, 262, 705, 85, 560, 6, 12608, 286, 1123, 286, 262, 10007, 287, 262, 15830, 4308, 13, 317, 11507, 338, 705, 85, 560, 6, 11688, 815, 198, 2, 220, 197, 1350, 900, 284, 10352, 611, 345, 4601, 284, 1745, 340, 5969, 1141, 262, 15830, 1429, 13, 2750, 4277, 11, 477, 705, 85, 560, 6, 10007, 198, 2, 197, 533, 900, 284, 6407, 13, 198, 37266, 17816, 2363, 418, 86, 16, 6, 4083, 85, 560, 796, 10352, 198, 37266, 17816, 8448, 259, 86, 16, 6, 4083, 85, 560, 796, 10352, 198, 37266, 17816, 2363, 418, 86, 17, 6, 4083, 85, 560, 796, 10352, 198, 37266, 17816, 8448, 259, 86, 17, 6, 4083, 85, 560, 796, 10352, 198, 37266, 17816, 23047, 16, 6, 4083, 85, 560, 796, 10352, 198, 37266, 17816, 525, 16, 6, 4083, 85, 560, 796, 10352, 198, 37266, 17816, 23047, 17, 6, 4083, 85, 560, 796, 10352, 198, 37266, 17816, 525, 17, 6, 4083, 85, 560, 796, 10352, 198, 198, 2, 8778, 44503, 15432, 1366, 11, 287, 428, 1672, 262, 1366, 318, 7763, 287, 281, 289, 7568, 2393, 11, 198, 2, 262, 7186, 1366, 14535, 393, 1276, 423, 705, 2435, 3256, 705, 10295, 626, 3256, 705, 8056, 626, 3256, 290, 705, 37524, 6, 8251, 198, 2, 262, 11555, 420, 871, 389, 2938, 284, 307, 287, 285, 14, 82, 198, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6335, 626, 13, 35, 1404, 2885, 4663, 11, 705, 538, 291, 1238, 26514, 940, 4089, 13, 40664, 11537, 198, 7890, 796, 279, 67, 13, 961, 62, 40664, 7, 6978, 8, 198, 7890, 17816, 2435, 20520, 796, 1366, 13, 83, 198, 7890, 17816, 10295, 626, 20520, 796, 1366, 13, 626, 198, 7890, 17816, 8056, 626, 20520, 796, 1366, 13, 8056, 626, 198, 7890, 17816, 37524, 20520, 796, 705, 73, 6, 198, 198, 2, 2896, 500, 3161, 15268, 290, 9647, 82, 994, 13, 198, 3448, 669, 796, 685, 198, 220, 220, 220, 2511, 626, 13, 3448, 273, 13, 36, 535, 22317, 414, 22442, 7, 299, 11578, 1039, 10612, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9175, 82, 29303, 414, 1279, 352, 198, 220, 220, 220, 2511, 626, 13, 3448, 273, 13, 21604, 1800, 42, 22442, 7, 299, 11578, 1039, 10612, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9175, 82, 509, 1875, 657, 198, 220, 220, 220, 2511, 626, 13, 3448, 273, 13, 35389, 31562, 10786, 23047, 16, 3256, 42287, 17816, 23047, 16, 6, 4083, 8367, 11, 657, 13, 486, 828, 1303, 12822, 31562, 3161, 319, 37096, 16, 351, 3641, 379, 37096, 16, 290, 9647, 657, 13, 486, 1528, 198, 220, 220, 220, 2511, 626, 13, 3448, 273, 13, 35389, 31562, 10786, 525, 16, 3256, 42287, 17816, 525, 16, 6, 4083, 8367, 11, 657, 13, 486, 828, 198, 220, 220, 220, 2511, 626, 13, 3448, 273, 13, 35389, 31562, 10786, 23047, 17, 3256, 42287, 17816, 23047, 17, 6, 4083, 8367, 11, 657, 13, 486, 828, 198, 220, 220, 220, 2511, 626, 13, 3448, 273, 13, 35389, 31562, 10786, 525, 17, 3256, 42287, 17816, 525, 17, 6, 4083, 8367, 11, 657, 13, 486, 828, 198, 220, 220, 220, 2511, 626, 13, 3448, 273, 13, 17309, 33, 3733, 10786, 45051, 62, 73, 3256, 657, 13, 15, 11, 1315, 13, 15, 8, 198, 60, 198, 198, 2, 450, 1416, 13808, 329, 22638, 290, 46171, 1300, 2846, 357, 21754, 307, 1474, 3095, 12, 4122, 286, 640, 14805, 8, 198, 2435, 62, 8692, 796, 45941, 13, 32604, 26933, 37659, 13, 1084, 7, 7890, 13, 2435, 828, 45941, 13, 9806, 7, 7890, 13, 2435, 8, 12962, 628, 198, 2, 11902, 4578, 326, 460, 3994, 25041, 2347, 287, 6591, 4991, 357, 76, 7364, 8, 290, 198, 2, 13479, 357, 76, 7364, 62, 8056, 737, 1002, 407, 900, 11, 285, 7364, 481, 307, 900, 284, 15709, 13, 198, 28732, 796, 8633, 7, 76, 7364, 28, 16, 13, 1065, 11, 285, 7364, 62, 8056, 28, 657, 13, 2713, 8, 198, 198, 2, 11902, 4578, 326, 460, 3994, 5440, 2511, 4178, 11, 198, 2, 973, 329, 14492, 29509, 871, 13, 27068, 815, 307, 1813, 198, 2, 287, 4991, 286, 3668, 2511, 4178, 198, 47427, 796, 8633, 7, 198, 220, 220, 220, 374, 79, 16, 28, 20, 13, 3104, 11, 374, 79, 62, 8056, 16, 28, 15, 13, 3980, 11, 198, 220, 220, 220, 374, 79, 17, 28, 22, 13, 6469, 11, 374, 79, 62, 8056, 17, 28, 15, 13, 4761, 11, 198, 8, 628 ]
2.726974
1,520
from vistautils.iter_utils import only from adam.language import TokenSequenceLinguisticDescription from adam.learner import LearningExample, MemorizingLanguageLearner from adam.perception import ( BagOfFeaturesPerceptualRepresentationFrame, PerceptualRepresentation, )
[ 6738, 410, 396, 2306, 4487, 13, 2676, 62, 26791, 1330, 691, 198, 198, 6738, 23197, 13, 16129, 1330, 29130, 44015, 594, 43, 6680, 2569, 11828, 198, 6738, 23197, 13, 3238, 1008, 1330, 18252, 16281, 11, 41157, 2890, 32065, 14961, 1008, 198, 6738, 23197, 13, 525, 4516, 1330, 357, 198, 220, 220, 220, 20127, 5189, 23595, 5990, 984, 723, 40171, 341, 19778, 11, 198, 220, 220, 220, 2448, 984, 723, 40171, 341, 11, 198, 8, 628 ]
3.733333
75
print('hello') main)
[ 4798, 10786, 31373, 11537, 198, 198, 12417, 8, 628 ]
2.555556
9
# Copyright 2016, 2017 California Institute of Technology # Users must agree to abide by the restrictions listed in the # file "LegalStuff.txt" in the PROPER library directory. # # PROPER developed at Jet Propulsion Laboratory/California Inst. Technology # Original IDL version by John Krist # Python translation by Navtej Saini, with Luis Marchen and Nikta Amiri def prop_get_nyquistsampling(wf, lamx = 0.0): """Funtion determines the Nyquist sampling interval for the current beam, which is focal_ratio * wavelength / 2. Parameters ---------- wf : obj Wavefront class object lamx : float Wavelength to use for computing sampling. By default, the current wavefront's wavelength is used. This parameter can be used when you want to know the Nyquist sampling for a wavelength other than for the current wavefront. Returns ------- float Nyquist sampling interval corresponding to the current wavefront """ if lamx != 0.: return wf.current_fratio * lamx / 2. else: return wf.current_fratio * wf.lamda / 2.
[ 2, 220, 220, 15069, 1584, 11, 2177, 3442, 5136, 286, 8987, 198, 2, 220, 220, 18987, 1276, 4236, 284, 27851, 416, 262, 8733, 5610, 287, 262, 198, 2, 220, 220, 2393, 366, 38263, 1273, 1648, 13, 14116, 1, 287, 262, 4810, 31054, 5888, 8619, 13, 198, 2, 198, 2, 220, 220, 4810, 31054, 4166, 379, 19013, 8772, 15204, 18643, 14, 25284, 2262, 13, 8987, 198, 2, 220, 220, 13745, 4522, 43, 2196, 416, 1757, 14912, 198, 2, 220, 220, 11361, 11059, 416, 13244, 660, 73, 311, 391, 72, 11, 351, 20894, 1526, 6607, 290, 11271, 8326, 1703, 14783, 628, 628, 198, 4299, 2632, 62, 1136, 62, 3281, 421, 1023, 321, 11347, 7, 86, 69, 11, 30592, 87, 796, 657, 13, 15, 2599, 198, 220, 220, 220, 37227, 37, 2797, 295, 15947, 262, 17735, 30062, 19232, 16654, 329, 262, 1459, 15584, 11, 198, 220, 220, 220, 543, 318, 25397, 62, 10366, 952, 1635, 28400, 1220, 362, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 266, 69, 1058, 26181, 198, 220, 220, 220, 220, 220, 220, 220, 17084, 8534, 1398, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 30592, 87, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 15329, 26623, 284, 779, 329, 14492, 19232, 13, 2750, 4277, 11, 262, 1459, 198, 220, 220, 220, 220, 220, 220, 220, 6769, 8534, 338, 28400, 318, 973, 13, 770, 11507, 460, 307, 973, 618, 345, 220, 198, 220, 220, 220, 220, 220, 220, 220, 765, 284, 760, 262, 17735, 30062, 19232, 329, 257, 28400, 584, 621, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 6769, 8534, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 17735, 30062, 19232, 16654, 11188, 284, 262, 1459, 6769, 8534, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 30592, 87, 14512, 657, 11207, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 266, 69, 13, 14421, 62, 8310, 39485, 1635, 30592, 87, 1220, 362, 13, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 266, 69, 13, 14421, 62, 8310, 39485, 1635, 266, 69, 13, 2543, 6814, 1220, 362, 13, 198 ]
2.90201
398
from django.conf import settings from django.core import checks from django_google_recaptcha.constants import TEST_PRIVATE_KEY, TEST_PUBLIC_KEY
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 1330, 8794, 198, 198, 6738, 42625, 14208, 62, 13297, 62, 8344, 2373, 11693, 13, 9979, 1187, 1330, 43001, 62, 4805, 3824, 6158, 62, 20373, 11, 43001, 62, 5105, 32936, 62, 20373, 628 ]
3.244444
45
# Generated by Django 3.2.7 on 2021-12-02 04:39 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 22, 319, 33448, 12, 1065, 12, 2999, 8702, 25, 2670, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
# -*- coding: utf-8 -*- from functools import wraps try: from dask.utils import SerializableLock as Lock except ImportError: from threading import Lock def format_code(code): """ Formats some code with line numbers Parameters ---------- code : str Code Returns ------- str Code prefixed with line numbers """ lines = [''] lines.extend(["%-5d %s" % (i, l) for i, l in enumerate(code.split('\n'), 1)]) return '\n'.join(lines) class memoize_on_key(object): """ Memoize based on a key function supplied by the user. The key function should return a custom key for memoizing the decorated function, based on the arguments passed to it. In the following example, the arguments required to generate the `_generate_phase_delay_kernel` function are the types of the `lm`, `uvw` and `frequency` arrays, as well as the number of correlations, `ncorr`. The supplied ``key_fn`` produces a unique key based on these types and the number of correlations, which is used to cache the generated function. .. code-block:: python def key_fn(lm, uvw, frequency, ncorrs=4): ''' Produce a unique key for the arguments of _generate_phase_delay_kernel ''' return (lm.dtype, uvw.dtype, frequency.dtype, ncorrs) _code_template = jinja2.Template(''' #define ncorrs {{ncorrs}} __global__ void phase_delay( const {{lm_type}} * lm, const {{uvw_type}} * uvw, const {{freq_type}} * frequency, {{out_type}} * out) { ... } ''') _type_map = { np.float32: 'float', np.float64: 'double' } @memoize_on_key(key_fn) def _generate_phase_delay_kernel(lm, uvw, frequency, ncorrs=4): ''' Generate the phase delay kernel ''' out_dtype = np.result_type(lm.dtype, uvw.dtype, frequency.dtype) code = _code_template.render(lm_type=_type_map[lm.dtype], uvw_type=_type_map[uvw.dtype], freq_type=_type_map[frequency.dtype], ncorrs=ncorrs) return cp.RawKernel(code, "phase_delay") """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 288, 2093, 13, 26791, 1330, 23283, 13821, 25392, 355, 13656, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 4704, 278, 1330, 13656, 628, 198, 198, 4299, 5794, 62, 8189, 7, 8189, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5178, 1381, 617, 2438, 351, 1627, 3146, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2438, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 6127, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 965, 198, 220, 220, 220, 220, 220, 220, 220, 6127, 7694, 2966, 351, 1627, 3146, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3951, 796, 685, 7061, 60, 198, 220, 220, 220, 3951, 13, 2302, 437, 7, 14692, 33963, 20, 67, 4064, 82, 1, 4064, 357, 72, 11, 300, 8, 329, 1312, 11, 300, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 27056, 378, 7, 8189, 13, 35312, 10786, 59, 77, 33809, 352, 8, 12962, 198, 220, 220, 220, 1441, 705, 59, 77, 4458, 22179, 7, 6615, 8, 628, 198, 4871, 16155, 1096, 62, 261, 62, 2539, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4942, 78, 1096, 1912, 319, 257, 1994, 2163, 14275, 416, 262, 2836, 13, 198, 220, 220, 220, 383, 1994, 2163, 815, 1441, 257, 2183, 1994, 198, 220, 220, 220, 329, 16155, 2890, 262, 24789, 2163, 11, 1912, 319, 262, 7159, 198, 220, 220, 220, 3804, 284, 340, 13, 628, 220, 220, 220, 554, 262, 1708, 1672, 11, 262, 7159, 2672, 284, 7716, 198, 220, 220, 220, 262, 4600, 62, 8612, 378, 62, 40715, 62, 40850, 62, 33885, 63, 2163, 389, 262, 3858, 286, 198, 220, 220, 220, 262, 4600, 75, 76, 47671, 4600, 14795, 86, 63, 290, 4600, 35324, 63, 26515, 11, 355, 880, 355, 262, 1271, 198, 220, 220, 220, 286, 35811, 11, 4600, 77, 10215, 81, 44646, 628, 220, 220, 220, 383, 14275, 7559, 2539, 62, 22184, 15506, 11073, 257, 3748, 1994, 1912, 319, 777, 3858, 198, 220, 220, 220, 290, 262, 1271, 286, 35811, 11, 543, 318, 973, 284, 12940, 262, 198, 220, 220, 220, 7560, 2163, 13, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 825, 1994, 62, 22184, 7, 75, 76, 11, 334, 85, 86, 11, 8373, 11, 299, 10215, 3808, 28, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21522, 344, 257, 3748, 1994, 329, 262, 7159, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 8612, 378, 62, 40715, 62, 40850, 62, 33885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 75, 76, 13, 67, 4906, 11, 334, 85, 86, 13, 67, 4906, 11, 8373, 13, 67, 4906, 11, 299, 10215, 3808, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 8189, 62, 28243, 796, 474, 259, 6592, 17, 13, 30800, 7, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13086, 299, 10215, 3808, 22935, 77, 10215, 3808, 11709, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 20541, 834, 7951, 7108, 62, 40850, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 22935, 75, 76, 62, 4906, 11709, 1635, 300, 76, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 22935, 14795, 86, 62, 4906, 11709, 1635, 334, 85, 86, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 22935, 19503, 80, 62, 4906, 11709, 1635, 8373, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22935, 448, 62, 4906, 11709, 1635, 503, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 4906, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 22468, 2624, 25, 705, 22468, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 22468, 2414, 25, 705, 23352, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 11883, 78, 1096, 62, 261, 62, 2539, 7, 2539, 62, 22184, 8, 198, 220, 220, 220, 220, 220, 220, 220, 825, 4808, 8612, 378, 62, 40715, 62, 40850, 62, 33885, 7, 75, 76, 11, 334, 85, 86, 11, 8373, 11, 299, 10215, 3808, 28, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 2980, 378, 262, 7108, 5711, 9720, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 67, 4906, 796, 45941, 13, 20274, 62, 4906, 7, 75, 76, 13, 67, 4906, 11, 334, 85, 86, 13, 67, 4906, 11, 8373, 13, 67, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2438, 796, 4808, 8189, 62, 28243, 13, 13287, 7, 75, 76, 62, 4906, 28, 62, 4906, 62, 8899, 58, 75, 76, 13, 67, 4906, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 85, 86, 62, 4906, 28, 62, 4906, 62, 8899, 58, 14795, 86, 13, 67, 4906, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 62, 4906, 28, 62, 4906, 62, 8899, 58, 35324, 13, 67, 4906, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 10215, 3808, 28, 77, 10215, 3808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 31396, 13, 27369, 42, 7948, 7, 8189, 11, 366, 40715, 62, 40850, 4943, 198, 220, 220, 220, 37227, 198 ]
2.089721
1,148
from .Climate import Climate
[ 6738, 764, 37649, 1330, 13963 ]
5.6
5
from unittest import TestCase from glob import glob
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 15095, 1330, 15095, 628 ]
4.076923
13
#!/usr/local/bin/python3 input = 1133 power_levels = [] for x in range(1, 301): row = [] for y in range(1, 301): row.append(power_level(x, y)) power_levels.append(row) best_square = None best_power = None for x in range(1, 298): for y in range(1, 298): sum = 0 for i in range(0, 3): for j in range(0, 3): sum += power_levels[x + i - 1][y + j - 1] if best_power is None or sum > best_power: best_power = sum best_square = [x, y] print("best square: %d, %d with power %d" % (best_square[0], best_square[1], best_power))
[ 2, 48443, 14629, 14, 12001, 14, 8800, 14, 29412, 18, 198, 198, 15414, 796, 1367, 2091, 198, 198, 6477, 62, 46170, 796, 17635, 198, 1640, 2124, 287, 2837, 7, 16, 11, 25643, 2599, 198, 197, 808, 796, 17635, 198, 197, 1640, 331, 287, 2837, 7, 16, 11, 25643, 2599, 198, 197, 197, 808, 13, 33295, 7, 6477, 62, 5715, 7, 87, 11, 331, 4008, 198, 197, 6477, 62, 46170, 13, 33295, 7, 808, 8, 198, 198, 13466, 62, 23415, 796, 6045, 198, 13466, 62, 6477, 796, 6045, 198, 198, 1640, 2124, 287, 2837, 7, 16, 11, 37576, 2599, 198, 197, 1640, 331, 287, 2837, 7, 16, 11, 37576, 2599, 197, 197, 198, 197, 197, 16345, 796, 657, 198, 197, 197, 1640, 1312, 287, 2837, 7, 15, 11, 513, 2599, 198, 197, 197, 197, 1640, 474, 287, 2837, 7, 15, 11, 513, 2599, 198, 197, 197, 197, 197, 16345, 15853, 1176, 62, 46170, 58, 87, 1343, 1312, 532, 352, 7131, 88, 1343, 474, 532, 352, 60, 198, 197, 197, 361, 1266, 62, 6477, 318, 6045, 393, 2160, 1875, 1266, 62, 6477, 25, 198, 197, 197, 197, 13466, 62, 6477, 796, 2160, 198, 197, 197, 197, 13466, 62, 23415, 796, 685, 87, 11, 331, 60, 198, 198, 4798, 7203, 13466, 6616, 25, 4064, 67, 11, 4064, 67, 351, 1176, 4064, 67, 1, 4064, 357, 13466, 62, 23415, 58, 15, 4357, 1266, 62, 23415, 58, 16, 4357, 1266, 62, 6477, 4008, 198 ]
2.301255
239
### Base class for Collage plugins ### import math import logging import pygame from plugin import Plugin class Collage(Plugin): """ Base class for collage plugins See simple_resize.py or recursive_split.py for example implementation of a plugin """ @staticmethod def generate(self, size, wallpaper_queue): """ Generates the wallpaper collage """ raise NotImplementedError() def _resize_wallpaper(self, wallpaper, size): """ Resizes wallpaper to set size, conserves aspect ratio Returns crop co-ordinates and scaled image """ # find ratios width_ratio = 1.0*size[0]/wallpaper.get_width() height_ratio = 1.0*size[1]/wallpaper.get_height() # resize to fit width if width_ratio > height_ratio: new_size = (size[0], int(math.ceil(wallpaper.get_height()*width_ratio))) # resize to fit height else: new_size = (int(math.ceil(wallpaper.get_width()*height_ratio)), size[1]) # scale wallpaper according to new_size try: wallpaper = pygame.transform.smoothscale(wallpaper, new_size) except ValueError: logging.debug('bit-depth error, using crappy scaling') wallpaper = pygame.transform.scale(wallpaper, new_size) # Height or width might be too large crop = (0, 0) if wallpaper.get_width() > size[0]+1: overflow = wallpaper.get_width() - size[0] margin = int(overflow / 2) crop = (margin, 0) elif wallpaper.get_height() > size[1]+1: overflow = wallpaper.get_height() - size[1] margin = int(overflow / 2) crop = (0, margin) return crop, wallpaper
[ 21017, 7308, 1398, 329, 7778, 496, 20652, 44386, 198, 11748, 10688, 198, 11748, 18931, 198, 198, 11748, 12972, 6057, 198, 198, 6738, 13877, 1330, 42636, 198, 198, 4871, 7778, 496, 7, 37233, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7308, 1398, 329, 2927, 496, 20652, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 2829, 62, 411, 1096, 13, 9078, 393, 45115, 62, 35312, 13, 9078, 329, 1672, 7822, 286, 257, 13877, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 220, 220, 220, 825, 7716, 7, 944, 11, 2546, 11, 39328, 62, 36560, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2980, 689, 262, 39328, 2927, 496, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 220, 220, 220, 825, 4808, 411, 1096, 62, 11930, 20189, 7, 944, 11, 39328, 11, 2546, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1874, 4340, 39328, 284, 900, 2546, 11, 4055, 274, 4843, 8064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 13833, 763, 12, 585, 17540, 290, 27464, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1064, 22423, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 62, 10366, 952, 796, 352, 13, 15, 9, 7857, 58, 15, 60, 14, 11930, 20189, 13, 1136, 62, 10394, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6001, 62, 10366, 952, 796, 352, 13, 15, 9, 7857, 58, 16, 60, 14, 11930, 20189, 13, 1136, 62, 17015, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 47558, 284, 4197, 9647, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9647, 62, 10366, 952, 1875, 6001, 62, 10366, 952, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7857, 796, 357, 7857, 58, 15, 4357, 493, 7, 11018, 13, 344, 346, 7, 11930, 20189, 13, 1136, 62, 17015, 3419, 9, 10394, 62, 10366, 952, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47558, 284, 4197, 6001, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7857, 796, 357, 600, 7, 11018, 13, 344, 346, 7, 11930, 20189, 13, 1136, 62, 10394, 3419, 9, 17015, 62, 10366, 952, 36911, 2546, 58, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5046, 39328, 1864, 284, 649, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39328, 796, 12972, 6057, 13, 35636, 13, 5796, 5226, 9888, 7, 11930, 20189, 11, 649, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 10786, 2545, 12, 18053, 4049, 11, 1262, 40805, 20796, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39328, 796, 12972, 6057, 13, 35636, 13, 9888, 7, 11930, 20189, 11, 649, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27280, 393, 9647, 1244, 307, 1165, 1588, 198, 220, 220, 220, 220, 220, 220, 220, 13833, 796, 357, 15, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 39328, 13, 1136, 62, 10394, 3419, 1875, 2546, 58, 15, 48688, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30343, 796, 39328, 13, 1136, 62, 10394, 3419, 532, 2546, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10330, 796, 493, 7, 2502, 11125, 1220, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 796, 357, 36153, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 39328, 13, 1136, 62, 17015, 3419, 1875, 2546, 58, 16, 48688, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30343, 796, 39328, 13, 1136, 62, 17015, 3419, 532, 2546, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10330, 796, 493, 7, 2502, 11125, 1220, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 796, 357, 15, 11, 10330, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 13833, 11, 39328, 628 ]
2.304569
788
# -*- coding: utf-8 -*- """ templatetricks.override_autoescaped ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Override which templates are autoescaped http://flask.pocoo.org/snippets/41/ """ import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from flask import Flask app = JHtmlEscapingFlask(__name__)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 220, 220, 220, 2169, 489, 265, 19482, 591, 13, 2502, 13154, 62, 2306, 3028, 66, 5813, 198, 220, 220, 220, 220, 27156, 27156, 4907, 93, 628, 220, 220, 220, 3827, 13154, 543, 24019, 389, 1960, 3028, 66, 5813, 198, 220, 220, 220, 2638, 1378, 2704, 2093, 13, 79, 420, 2238, 13, 2398, 14, 16184, 3974, 1039, 14, 3901, 14, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 35514, 198, 198, 6738, 42903, 1330, 46947, 198, 198, 1324, 796, 449, 39, 20369, 47051, 9269, 7414, 2093, 7, 834, 3672, 834, 8, 198 ]
2.542254
142
# -*- coding: utf-8 -*- import logging import os import pandas as pd import shutil import subprocess import tempfile from multiprocessing.pool import ThreadPool import bg_convert from thirdparty_xentax import phyre if __name__ == '__main__': # get available models chr_path = '/media/rishin/20ACFF83ACFF5230/Users/rishin/Desktop/ffxx/ffx_data/gamedata/ps3data/chr' bg_path = '/home/rishin/workspace/ffx-ai/assets/' dist_path = '/home/rishin/workspace/ffx-ai/dist' map_path = '/home/rishin/workspace/ffx-ai/enemy_map.txt' # angles_front = [15, 30, 45, 60, 75, 345, 330, 315, 300, 285] # [15, 30, 45, 60, 75, -15, -30, -45, -60, -75] angles_back = [105, 120, 135, 150, 165, 255, 240, 225, 210, 195] # [105, 120, 135, 150, 165, -105, -120, -135, -150, -165] all_angles = angles_front + angles_back # model_map = make_model_map(map_path) model_filter = model_map.keys() #print(model_filter) # model_data = model_gather(chr_path, ['mon']) model_data_filtered = [m for m in model_data if m['name'] in model_filter] tmp_dir = model_extract(model_data_filtered) #print(model_data) print(tmp_dir) # bg_tmp_dir = tempfile.mkdtemp() bg_data = make_bgs(bg_path, bg_tmp_dir) #print(bg_data) print(bg_tmp_dir) # parrallelise jobs tp = ThreadPool(12) # render models xy_map = {'id': [], 'cls': []} xxx = 0 for angle, bg, model in get_triplet(all_angles, bg_data, model_data_filtered): model_name = model['name'] obj_path = os.path.join(tmp_dir, model_name + '.obj') texture_path = os.path.join(tmp_dir, model_name + '.dds') bg_alt_path = os.path.join(bg_tmp_dir, bg) out_path = os.path.join(dist_path, '{}_{}_{}.png'.format(model_name, bg, angle)) class_suffix = '_front' if angle in angles_front else '_back' # xy_map['id'].append(out_path) xy_map['cls'].append(model_map[model_name] + class_suffix) # run subprocess tp.apply_async(render_job, (model_name, obj_path, texture_path, bg_alt_path, out_path, str(angle))) tp.close() tp.join() # df = pd.DataFrame(xy_map) df.to_csv(dist_path + '/img_map.csv') # cleanup shutil.rmtree(tmp_dir) shutil.rmtree(bg_tmp_dir)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 11748, 18931, 201, 198, 11748, 28686, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 4423, 346, 201, 198, 11748, 850, 14681, 201, 198, 11748, 20218, 7753, 201, 198, 6738, 18540, 305, 919, 278, 13, 7742, 1330, 14122, 27201, 201, 198, 201, 198, 11748, 275, 70, 62, 1102, 1851, 201, 198, 201, 198, 6738, 2368, 10608, 62, 87, 298, 897, 1330, 872, 35759, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1303, 651, 1695, 4981, 201, 198, 220, 220, 220, 442, 81, 62, 6978, 796, 31051, 11431, 14, 37518, 259, 14, 1238, 2246, 5777, 5999, 2246, 5777, 4309, 1270, 14, 14490, 14, 37518, 259, 14, 36881, 14, 487, 5324, 14, 487, 87, 62, 7890, 14, 70, 2434, 1045, 14, 862, 18, 7890, 14, 354, 81, 6, 201, 198, 220, 220, 220, 275, 70, 62, 6978, 796, 31051, 11195, 14, 37518, 259, 14, 5225, 10223, 14, 487, 87, 12, 1872, 14, 19668, 14, 6, 201, 198, 220, 220, 220, 1233, 62, 6978, 796, 31051, 11195, 14, 37518, 259, 14, 5225, 10223, 14, 487, 87, 12, 1872, 14, 17080, 6, 201, 198, 220, 220, 220, 3975, 62, 6978, 796, 31051, 11195, 14, 37518, 259, 14, 5225, 10223, 14, 487, 87, 12, 1872, 14, 46970, 62, 8899, 13, 14116, 6, 201, 198, 220, 220, 220, 1303, 220, 201, 198, 220, 220, 220, 18333, 62, 8534, 796, 685, 1314, 11, 1542, 11, 4153, 11, 3126, 11, 5441, 11, 39937, 11, 25508, 11, 32647, 11, 5867, 11, 33015, 60, 1303, 685, 1314, 11, 1542, 11, 4153, 11, 3126, 11, 5441, 11, 532, 1314, 11, 532, 1270, 11, 532, 2231, 11, 532, 1899, 11, 532, 2425, 60, 201, 198, 220, 220, 220, 18333, 62, 1891, 796, 685, 13348, 11, 7982, 11, 17501, 11, 6640, 11, 21409, 11, 14280, 11, 14956, 11, 18500, 11, 20064, 11, 24793, 60, 1303, 685, 13348, 11, 7982, 11, 17501, 11, 6640, 11, 21409, 11, 532, 13348, 11, 532, 10232, 11, 532, 17059, 11, 532, 8628, 11, 532, 20986, 60, 201, 198, 220, 220, 220, 477, 62, 27787, 796, 18333, 62, 8534, 1343, 18333, 62, 1891, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 2746, 62, 8899, 796, 787, 62, 19849, 62, 8899, 7, 8899, 62, 6978, 8, 201, 198, 220, 220, 220, 2746, 62, 24455, 796, 2746, 62, 8899, 13, 13083, 3419, 201, 198, 220, 220, 220, 1303, 4798, 7, 19849, 62, 24455, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 2746, 62, 7890, 796, 2746, 62, 70, 1032, 7, 354, 81, 62, 6978, 11, 37250, 2144, 6, 12962, 201, 198, 220, 220, 220, 2746, 62, 7890, 62, 10379, 4400, 796, 685, 76, 329, 285, 287, 2746, 62, 7890, 611, 285, 17816, 3672, 20520, 287, 2746, 62, 24455, 60, 201, 198, 220, 220, 220, 45218, 62, 15908, 796, 2746, 62, 2302, 974, 7, 19849, 62, 7890, 62, 10379, 4400, 8, 201, 198, 220, 220, 220, 1303, 4798, 7, 19849, 62, 7890, 8, 201, 198, 220, 220, 220, 3601, 7, 22065, 62, 15908, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 275, 70, 62, 22065, 62, 15908, 796, 20218, 7753, 13, 28015, 67, 29510, 3419, 201, 198, 220, 220, 220, 275, 70, 62, 7890, 796, 787, 62, 65, 14542, 7, 35904, 62, 6978, 11, 275, 70, 62, 22065, 62, 15908, 8, 201, 198, 220, 220, 220, 1303, 4798, 7, 35904, 62, 7890, 8, 201, 198, 220, 220, 220, 3601, 7, 35904, 62, 22065, 62, 15908, 8, 201, 198, 220, 220, 220, 1303, 1582, 1373, 293, 75, 786, 3946, 201, 198, 220, 220, 220, 256, 79, 796, 14122, 27201, 7, 1065, 8, 201, 198, 220, 220, 220, 1303, 8543, 4981, 201, 198, 220, 220, 220, 2124, 88, 62, 8899, 796, 1391, 6, 312, 10354, 685, 4357, 705, 565, 82, 10354, 17635, 92, 201, 198, 220, 220, 220, 2124, 5324, 796, 657, 201, 198, 220, 220, 220, 329, 9848, 11, 275, 70, 11, 2746, 287, 651, 62, 28461, 37069, 7, 439, 62, 27787, 11, 275, 70, 62, 7890, 11, 2746, 62, 7890, 62, 10379, 4400, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 796, 2746, 17816, 3672, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 22065, 62, 15908, 11, 2746, 62, 3672, 1343, 45302, 26801, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 11743, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 22065, 62, 15908, 11, 2746, 62, 3672, 1343, 45302, 33714, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 275, 70, 62, 2501, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 35904, 62, 22065, 62, 15908, 11, 275, 70, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 17080, 62, 6978, 11, 705, 90, 92, 23330, 92, 23330, 27422, 11134, 4458, 18982, 7, 19849, 62, 3672, 11, 275, 70, 11, 9848, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 37333, 844, 796, 705, 62, 8534, 6, 611, 9848, 287, 18333, 62, 8534, 2073, 705, 62, 1891, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 62, 8899, 17816, 312, 6, 4083, 33295, 7, 448, 62, 6978, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 62, 8899, 17816, 565, 82, 6, 4083, 33295, 7, 19849, 62, 8899, 58, 19849, 62, 3672, 60, 1343, 1398, 62, 37333, 844, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1057, 850, 14681, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 256, 79, 13, 39014, 62, 292, 13361, 7, 13287, 62, 21858, 11, 357, 19849, 62, 3672, 11, 26181, 62, 6978, 11, 11743, 62, 6978, 11, 275, 70, 62, 2501, 62, 6978, 11, 503, 62, 6978, 11, 965, 7, 9248, 22305, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 256, 79, 13, 19836, 3419, 201, 198, 220, 220, 220, 256, 79, 13, 22179, 3419, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 5431, 62, 8899, 8, 201, 198, 220, 220, 220, 47764, 13, 1462, 62, 40664, 7, 17080, 62, 6978, 1343, 31051, 9600, 62, 8899, 13, 40664, 11537, 201, 198, 220, 220, 220, 1303, 27425, 201, 198, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 22065, 62, 15908, 8, 201, 198, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 35904, 62, 22065, 62, 15908, 8, 201, 198 ]
2.07279
1,154
from django.urls import path from cart.views import CartItem, Carts, Checkout, ToggleCartItem app_name = 'cart' urlpatterns = [ path('carts/', Carts.as_view(),name='cart-list'), path('carts/items/<slug:slug>/<size>/', CartItem.as_view(), name='add-remove-cart-item'), path('carts/toggle/items/<slug:slug>/<size>/', ToggleCartItem.as_view(), name='toggle-cart-item'), path('carts/checkout/', Checkout.as_view(), name='checkout'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 6383, 13, 33571, 1330, 13690, 7449, 11, 327, 5889, 11, 6822, 448, 11, 34098, 43476, 7449, 198, 1324, 62, 3672, 796, 705, 26674, 6, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 66, 5889, 14, 3256, 327, 5889, 13, 292, 62, 1177, 22784, 3672, 11639, 26674, 12, 4868, 33809, 198, 220, 220, 220, 3108, 10786, 66, 5889, 14, 23814, 14, 27, 6649, 1018, 25, 6649, 1018, 29, 14, 27, 7857, 29, 14, 3256, 13690, 7449, 13, 292, 62, 1177, 22784, 1438, 11639, 2860, 12, 28956, 12, 26674, 12, 9186, 33809, 198, 220, 220, 220, 3108, 10786, 66, 5889, 14, 44256, 14, 23814, 14, 27, 6649, 1018, 25, 6649, 1018, 29, 14, 27, 7857, 29, 14, 3256, 34098, 43476, 7449, 13, 292, 62, 1177, 22784, 1438, 11639, 44256, 12, 26674, 12, 9186, 33809, 198, 220, 220, 220, 3108, 10786, 66, 5889, 14, 9122, 448, 14, 3256, 6822, 448, 13, 292, 62, 1177, 22784, 1438, 11639, 9122, 448, 33809, 198, 60 ]
2.568966
174
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ All custom model containers are listed here. In Hummingbird we use two types of containers: - containers for input models (e.g., `CommonONNXModelContainer`) used to represent input models in a unified way as DAG of containers - containers for output models (e.g., `SklearnContainer`) used to surface output models as unified API format. """ from abc import ABC, abstractmethod import dill import os import numpy as np from onnxconverter_common.container import CommonSklearnModelContainer import torch from hummingbird.ml.operator_converters import constants from hummingbird.ml._utils import onnx_runtime_installed, tvm_installed, pandas_installed, get_device, from_strings_to_ints if pandas_installed(): from pandas import DataFrame else: DataFrame = None # Input containers class CommonONNXModelContainer(CommonSklearnModelContainer): """ Common container for input ONNX operators. """ class CommonSparkMLModelContainer(CommonSklearnModelContainer): """ Common container for input Spark-ML operators. """ # Output containers. # Abstract containers enabling the Sklearn API. class SklearnContainerTransformer(SklearnContainer): """ Abstract container mirroring Sklearn transformers API. """ @abstractmethod def _transform(self, *input): """ This method contains container-specific implementation of transform. """ pass def transform(self, *inputs): """ Utility functions used to emulate the behavior of the Sklearn API. On data transformers it returns transformed output data """ return self._run(self._transform, *inputs) class SklearnContainerRegression(SklearnContainer): """ Abstract container mirroring Sklearn regressors API. """ @abstractmethod def _predict(self, *input): """ This method contains container-specific implementation of predict. """ pass def predict(self, *inputs): """ Utility functions used to emulate the behavior of the Sklearn API. On regression returns the predicted values. On classification tasks returns the predicted class labels for the input data. On anomaly detection (e.g. isolation forest) returns the predicted classes (-1 or 1). """ return self._run(self._predict, *inputs) class SklearnContainerClassification(SklearnContainerRegression): """ Container mirroring Sklearn classifiers API. """ @abstractmethod def _predict_proba(self, *input): """ This method contains container-specific implementation of predict_proba. """ pass def predict_proba(self, *inputs): """ Utility functions used to emulate the behavior of the Sklearn API. On classification tasks returns the probability estimates. """ return self._run(self._predict_proba, *inputs) class SklearnContainerAnomalyDetection(SklearnContainerRegression): """ Container mirroring Sklearn anomaly detection API. """ @abstractmethod def _decision_function(self, *inputs): """ This method contains container-specific implementation of decision_function. """ pass def decision_function(self, *inputs): """ Utility functions used to emulate the behavior of the Sklearn API. On anomaly detection (e.g. isolation forest) returns the decision function scores. """ scores = self._run(self._decision_function, *inputs) # Backward compatibility for sklearn <= 0.21 if constants.IFOREST_THRESHOLD in self._extra_config: scores += self._extra_config[constants.IFOREST_THRESHOLD] return scores def score_samples(self, *inputs): """ Utility functions used to emulate the behavior of the Sklearn API. On anomaly detection (e.g. isolation forest) returns the decision_function score plus offset_ """ return self.decision_function(*inputs) + self._extra_config[constants.OFFSET] # PyTorch containers. class PyTorchSklearnContainer(SklearnContainer): """ Base container for PyTorch models. """ @staticmethod def load(location): """ Method used to load a container from the file system. Args: location: The location on the file system where to load the model. Returns: The loaded model. """ assert os.path.exists(location), "Model location {} does not exist.".format(location) container = None if os.path.isdir(location): # This is a torch.jit model model = torch.jit.load(os.path.join(location, constants.SAVE_LOAD_TORCH_JIT_PATH)) with open(os.path.join(location, "container.pkl"), "rb") as file: container = dill.load(file) container._model = model else: # This is a pytorch model with open(location, "rb") as file: container = dill.load(file) # Need to set the number of threads to use as set in the original container. if container._n_threads is not None: if torch.get_num_interop_threads() != 1: torch.set_num_interop_threads(1) torch.set_num_threads(container._n_threads) return container class PyTorchSklearnContainerTransformer(SklearnContainerTransformer, PyTorchSklearnContainer): """ Container for PyTorch models mirroring Sklearn transformers API. """ class PyTorchSklearnContainerRegression(SklearnContainerRegression, PyTorchSklearnContainer): """ Container for PyTorch models mirroring Sklearn regressor API. """ class PyTorchSklearnContainerClassification(SklearnContainerClassification, PyTorchSklearnContainerRegression): """ Container for PyTorch models mirroring Sklearn classifiers API. """ class PyTorchSklearnContainerAnomalyDetection(PyTorchSklearnContainerRegression, SklearnContainerAnomalyDetection): """ Container for PyTorch models mirroning the Sklearn anomaly detection API. """ # TorchScript containers. def _torchscript_wrapper(device, function, *inputs, extra_config={}): """ This function contains the code to enable predictions over torchscript models. It is used to translates inputs in the proper torch format. """ inputs = [*inputs] with torch.no_grad(): if type(inputs) == DataFrame and DataFrame is not None: # Split the dataframe into column ndarrays inputs = inputs[0] input_names = list(inputs.columns) splits = [inputs[input_names[idx]] for idx in range(len(input_names))] splits = [df.to_numpy().reshape(-1, 1) for df in splits] inputs = tuple(splits) # Maps data inputs to the expected type and device. for i in range(len(inputs)): if type(inputs[i]) is list: inputs[i] = np.array(inputs[i]) if type(inputs[i]) is np.ndarray: # Convert string arrays into int32. if inputs[i].dtype.kind in constants.SUPPORTED_STRING_TYPES: assert constants.MAX_STRING_LENGTH in extra_config inputs[i] = from_strings_to_ints(inputs[i], extra_config[constants.MAX_STRING_LENGTH]) if inputs[i].dtype == np.float64: # We convert double precision arrays into single precision. Sklearn does the same. inputs[i] = inputs[i].astype("float32") inputs[i] = torch.from_numpy(inputs[i]) elif type(inputs[i]) is not torch.Tensor: raise RuntimeError("Inputer tensor {} of not supported type {}".format(i, type(inputs[i]))) if device.type != "cpu" and device is not None: inputs[i] = inputs[i].to(device) return function(*inputs) class TorchScriptSklearnContainerTransformer(PyTorchSklearnContainerTransformer): """ Container for TorchScript models mirroring Sklearn transformers API. """ class TorchScriptSklearnContainerRegression(PyTorchSklearnContainerRegression): """ Container for TorchScript models mirroring Sklearn regressors API. """ class TorchScriptSklearnContainerClassification(PyTorchSklearnContainerClassification): """ Container for TorchScript models mirroring Sklearn classifiers API. """ class TorchScriptSklearnContainerAnomalyDetection(PyTorchSklearnContainerAnomalyDetection): """ Container for TorchScript models mirroring Sklearn anomaly detection API. """ # ONNX containers. class ONNXSklearnContainer(SklearnContainer): """ Base container for ONNX models. The container allows to mirror the Sklearn API. """ @staticmethod def load(location): """ Method used to load a container from the file system. Args: location: The location on the file system where to load the model. Returns: The loaded model. """ assert os.path.exists(location), "Model location {} does not exist.".format(location) assert onnx_runtime_installed import onnx import onnxruntime as ort container = None model = onnx.load(os.path.join(location, constants.SAVE_LOAD_ONNX_PATH)) with open(os.path.join(location, constants.SAVE_LOAD_CONTAINER_PATH), "rb") as file: container = dill.load(file) container._model = model sess_options = ort.SessionOptions() if container._n_threads is not None: # Need to set the number of threads to use as set in the original container. sess_options.intra_op_num_threads = container._n_threads sess_options.inter_op_num_threads = 1 sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL container._session = ort.InferenceSession(container._model.SerializeToString(), sess_options=sess_options) return container def _get_named_inputs(self, inputs): """ Retrieve the inputs names from the session object. """ if len(inputs) < len(self._input_names): inputs = inputs[0] assert len(inputs) == len(self._input_names) named_inputs = {} for i in range(len(inputs)): input_ = np.array(inputs[i]) if input_.dtype.kind in constants.SUPPORTED_STRING_TYPES: assert constants.MAX_STRING_LENGTH in self._extra_config input_ = from_strings_to_ints(input_, self._extra_config[constants.MAX_STRING_LENGTH]) named_inputs[self._input_names[i]] = input_ return named_inputs class ONNXSklearnContainerTransformer(ONNXSklearnContainer, SklearnContainerTransformer): """ Container for ONNX models mirroring Sklearn transformers API. """ class ONNXSklearnContainerRegression(ONNXSklearnContainer, SklearnContainerRegression): """ Container for ONNX models mirroring Sklearn regressors API. """ class ONNXSklearnContainerClassification(ONNXSklearnContainerRegression, SklearnContainerClassification): """ Container for ONNX models mirroring Sklearn classifiers API. """ class ONNXSklearnContainerAnomalyDetection(ONNXSklearnContainerRegression, SklearnContainerAnomalyDetection): """ Container for ONNX models mirroring Sklearn anomaly detection API. """ # TVM containers. class TVMSklearnContainer(SklearnContainer): """ Base container for TVM models. The container allows to mirror the Sklearn API. The test input size must be the same as the batch size this container is created. """ @staticmethod def load(location): """ Method used to load a container from the file system. Args: location: The location on the file system where to load the model. Returns: The loaded model. """ assert tvm_installed() import tvm from tvm.contrib import util, graph_runtime from tvm import relay container = None assert os.path.exists(location), "Directory {} not found.".format(location) path_lib = os.path.join(location, constants.SAVE_LOAD_TVM_LIB_PATH) graph = open(os.path.join(location, constants.SAVE_LOAD_TVM_GRAPH_PATH)).read() lib = tvm.runtime.module.load_module(path_lib) params = relay.load_param_dict(open(os.path.join(location, constants.SAVE_LOAD_TVM_PARAMS_PATH), "rb").read()) # params = bytearray(open(os.path.join(location, "deploy_param.params"), "rb").read()) with open(os.path.join(location, constants.SAVE_LOAD_CONTAINER_PATH), "rb") as file: container = dill.load(file) assert container is not None, "Failed to load the model container." ctx = tvm.cpu() if container._ctx == "cpu" else tvm.gpu container._model = graph_runtime.create(graph, lib, ctx) container._model.set_input(**params) container._extra_config[constants.TVM_GRAPH] = graph container._extra_config[constants.TVM_LIB] = lib container._extra_config[constants.TVM_PARAMS] = params container._extra_config[constants.TVM_CONTEXT] = ctx container._ctx = ctx # Need to set the number of threads to use as set in the original container. os.environ["TVM_NUM_THREADS"] = str(container._n_threads) return container class TVMSklearnContainerTransformer(TVMSklearnContainer, SklearnContainerTransformer): """ Container for TVM models mirroring Sklearn transformers API. """ class TVMSklearnContainerRegression(TVMSklearnContainer, SklearnContainerRegression): """ Container for TVM models mirroring Sklearn regressors API. """ class TVMSklearnContainerClassification(TVMSklearnContainerRegression, SklearnContainerClassification): """ Container for TVM models mirroring Sklearn classifiers API. """ class TVMSklearnContainerAnomalyDetection(TVMSklearnContainerRegression, SklearnContainerAnomalyDetection): """ Container for TVM models mirroring Sklearn anomaly detection API. """
[ 2, 16529, 45537, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 198, 2, 5964, 1321, 13, 198, 2, 16529, 35937, 198, 198, 37811, 198, 3237, 2183, 2746, 16472, 389, 5610, 994, 13, 198, 818, 11054, 2229, 16944, 356, 779, 734, 3858, 286, 16472, 25, 198, 12, 16472, 329, 5128, 4981, 357, 68, 13, 70, 1539, 4600, 17227, 1340, 45, 55, 17633, 29869, 63, 8, 973, 284, 2380, 5128, 4981, 287, 257, 22706, 835, 355, 360, 4760, 286, 16472, 198, 12, 16472, 329, 5072, 4981, 357, 68, 13, 70, 1539, 4600, 15739, 35720, 29869, 63, 8, 973, 284, 4417, 5072, 4981, 355, 22706, 7824, 5794, 13, 198, 37811, 198, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 11748, 288, 359, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 319, 77, 87, 1102, 332, 353, 62, 11321, 13, 34924, 1330, 8070, 15739, 35720, 17633, 29869, 198, 11748, 28034, 198, 198, 6738, 41465, 16944, 13, 4029, 13, 46616, 62, 1102, 332, 1010, 1330, 38491, 198, 6738, 41465, 16944, 13, 4029, 13557, 26791, 1330, 319, 77, 87, 62, 43282, 62, 37050, 11, 256, 14761, 62, 37050, 11, 19798, 292, 62, 37050, 11, 651, 62, 25202, 11, 422, 62, 37336, 62, 1462, 62, 29503, 198, 198, 361, 19798, 292, 62, 37050, 33529, 198, 220, 220, 220, 422, 19798, 292, 1330, 6060, 19778, 198, 17772, 25, 198, 220, 220, 220, 6060, 19778, 796, 6045, 628, 198, 2, 23412, 16472, 198, 4871, 8070, 1340, 45, 55, 17633, 29869, 7, 17227, 15739, 35720, 17633, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8070, 9290, 329, 5128, 440, 6144, 55, 12879, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 8070, 4561, 668, 5805, 17633, 29869, 7, 17227, 15739, 35720, 17633, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8070, 9290, 329, 5128, 17732, 12, 5805, 12879, 13, 198, 220, 220, 220, 37227, 628, 198, 2, 25235, 16472, 13, 198, 2, 27741, 16472, 15882, 262, 3661, 35720, 7824, 13, 628, 198, 198, 4871, 3661, 35720, 29869, 8291, 16354, 7, 15739, 35720, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 9290, 10162, 278, 3661, 35720, 6121, 364, 7824, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 35636, 7, 944, 11, 1635, 15414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 4909, 9290, 12, 11423, 7822, 286, 6121, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 6121, 7, 944, 11, 1635, 15414, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34030, 5499, 973, 284, 33836, 262, 4069, 286, 262, 3661, 35720, 7824, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1550, 1366, 6121, 364, 340, 5860, 14434, 5072, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 5143, 7, 944, 13557, 35636, 11, 1635, 15414, 82, 8, 628, 198, 4871, 3661, 35720, 29869, 8081, 2234, 7, 15739, 35720, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 9290, 10162, 278, 3661, 35720, 50252, 669, 7824, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 79, 17407, 7, 944, 11, 1635, 15414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 4909, 9290, 12, 11423, 7822, 286, 4331, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 4331, 7, 944, 11, 1635, 15414, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34030, 5499, 973, 284, 33836, 262, 4069, 286, 262, 3661, 35720, 7824, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1550, 20683, 5860, 262, 11001, 3815, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1550, 17923, 8861, 5860, 262, 11001, 1398, 14722, 329, 262, 5128, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1550, 32172, 13326, 357, 68, 13, 70, 13, 15133, 8222, 8, 5860, 262, 11001, 6097, 13841, 16, 393, 352, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 5143, 7, 944, 13557, 79, 17407, 11, 1635, 15414, 82, 8, 628, 198, 4871, 3661, 35720, 29869, 9487, 2649, 7, 15739, 35720, 29869, 8081, 2234, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 10162, 278, 3661, 35720, 1398, 13350, 7824, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 79, 17407, 62, 1676, 7012, 7, 944, 11, 1635, 15414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 4909, 9290, 12, 11423, 7822, 286, 4331, 62, 1676, 7012, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 4331, 62, 1676, 7012, 7, 944, 11, 1635, 15414, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34030, 5499, 973, 284, 33836, 262, 4069, 286, 262, 3661, 35720, 7824, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1550, 17923, 8861, 5860, 262, 12867, 7746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 5143, 7, 944, 13557, 79, 17407, 62, 1676, 7012, 11, 1635, 15414, 82, 8, 628, 198, 4871, 3661, 35720, 29869, 2025, 24335, 11242, 3213, 7, 15739, 35720, 29869, 8081, 2234, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 10162, 278, 3661, 35720, 32172, 13326, 7824, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 12501, 1166, 62, 8818, 7, 944, 11, 1635, 15414, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 4909, 9290, 12, 11423, 7822, 286, 2551, 62, 8818, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 2551, 62, 8818, 7, 944, 11, 1635, 15414, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34030, 5499, 973, 284, 33836, 262, 4069, 286, 262, 3661, 35720, 7824, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1550, 32172, 13326, 357, 68, 13, 70, 13, 15133, 8222, 8, 5860, 262, 2551, 2163, 8198, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 2116, 13557, 5143, 7, 944, 13557, 12501, 1166, 62, 8818, 11, 1635, 15414, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5157, 904, 17764, 329, 1341, 35720, 19841, 657, 13, 2481, 198, 220, 220, 220, 220, 220, 220, 220, 611, 38491, 13, 5064, 1581, 6465, 62, 4221, 19535, 39, 15173, 287, 2116, 13557, 26086, 62, 11250, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 15853, 2116, 13557, 26086, 62, 11250, 58, 9979, 1187, 13, 5064, 1581, 6465, 62, 4221, 19535, 39, 15173, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8198, 628, 220, 220, 220, 825, 4776, 62, 82, 12629, 7, 944, 11, 1635, 15414, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34030, 5499, 973, 284, 33836, 262, 4069, 286, 262, 3661, 35720, 7824, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1550, 32172, 13326, 357, 68, 13, 70, 13, 15133, 8222, 8, 5860, 262, 2551, 62, 8818, 4776, 5556, 11677, 62, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12501, 1166, 62, 8818, 46491, 15414, 82, 8, 1343, 2116, 13557, 26086, 62, 11250, 58, 9979, 1187, 13, 27977, 28480, 60, 628, 198, 2, 9485, 15884, 354, 16472, 13, 198, 4871, 9485, 15884, 354, 15739, 35720, 29869, 7, 15739, 35720, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 9290, 329, 9485, 15884, 354, 4981, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 3440, 7, 24886, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 973, 284, 3440, 257, 9290, 422, 262, 2393, 1080, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 25, 383, 4067, 319, 262, 2393, 1080, 810, 284, 3440, 262, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 9639, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 28686, 13, 6978, 13, 1069, 1023, 7, 24886, 828, 366, 17633, 4067, 23884, 857, 407, 2152, 526, 13, 18982, 7, 24886, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9290, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 24886, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 257, 28034, 13, 45051, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 28034, 13, 45051, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 24886, 11, 38491, 13, 4090, 6089, 62, 35613, 62, 32961, 3398, 62, 41, 2043, 62, 34219, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 24886, 11, 366, 34924, 13, 79, 41582, 12340, 366, 26145, 4943, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9290, 796, 288, 359, 13, 2220, 7, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 19849, 796, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 257, 12972, 13165, 354, 220, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 24886, 11, 366, 26145, 4943, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9290, 796, 288, 359, 13, 2220, 7, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10664, 284, 900, 262, 1271, 286, 14390, 284, 779, 355, 900, 287, 262, 2656, 9290, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9290, 13557, 77, 62, 16663, 82, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28034, 13, 1136, 62, 22510, 62, 3849, 404, 62, 16663, 82, 3419, 14512, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2617, 62, 22510, 62, 3849, 404, 62, 16663, 82, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2617, 62, 22510, 62, 16663, 82, 7, 34924, 13557, 77, 62, 16663, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 9290, 628, 198, 4871, 9485, 15884, 354, 15739, 35720, 29869, 8291, 16354, 7, 15739, 35720, 29869, 8291, 16354, 11, 9485, 15884, 354, 15739, 35720, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 9485, 15884, 354, 4981, 10162, 278, 3661, 35720, 6121, 364, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 9485, 15884, 354, 15739, 35720, 29869, 8081, 2234, 7, 15739, 35720, 29869, 8081, 2234, 11, 9485, 15884, 354, 15739, 35720, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 9485, 15884, 354, 4981, 10162, 278, 3661, 35720, 842, 44292, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 9485, 15884, 354, 15739, 35720, 29869, 9487, 2649, 7, 15739, 35720, 29869, 9487, 2649, 11, 9485, 15884, 354, 15739, 35720, 29869, 8081, 2234, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 9485, 15884, 354, 4981, 10162, 278, 3661, 35720, 1398, 13350, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 9485, 15884, 354, 15739, 35720, 29869, 2025, 24335, 11242, 3213, 7, 20519, 15884, 354, 15739, 35720, 29869, 8081, 2234, 11, 3661, 35720, 29869, 2025, 24335, 11242, 3213, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 9485, 15884, 354, 4981, 5720, 1313, 278, 262, 3661, 35720, 32172, 13326, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 2, 34868, 7391, 16472, 13, 198, 4299, 4808, 13165, 354, 12048, 62, 48553, 7, 25202, 11, 2163, 11, 1635, 15414, 82, 11, 3131, 62, 11250, 34758, 92, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 4909, 262, 2438, 284, 7139, 16277, 625, 28034, 12048, 4981, 13, 198, 220, 220, 220, 632, 318, 973, 284, 23677, 17311, 287, 262, 1774, 28034, 5794, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17311, 796, 30138, 15414, 82, 60, 628, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 15414, 82, 8, 6624, 6060, 19778, 290, 6060, 19778, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27758, 262, 1366, 14535, 656, 5721, 299, 67, 3258, 592, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 17311, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 14933, 796, 1351, 7, 15414, 82, 13, 28665, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30778, 796, 685, 15414, 82, 58, 15414, 62, 14933, 58, 312, 87, 11907, 329, 4686, 87, 287, 2837, 7, 11925, 7, 15414, 62, 14933, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30778, 796, 685, 7568, 13, 1462, 62, 77, 32152, 22446, 3447, 1758, 32590, 16, 11, 352, 8, 329, 47764, 287, 30778, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 46545, 7, 22018, 896, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20347, 1366, 17311, 284, 262, 2938, 2099, 290, 3335, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 15414, 82, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 15414, 82, 58, 72, 12962, 318, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 58, 72, 60, 796, 45941, 13, 18747, 7, 15414, 82, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 15414, 82, 58, 72, 12962, 318, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 4731, 26515, 656, 493, 2624, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17311, 58, 72, 4083, 67, 4906, 13, 11031, 287, 38491, 13, 40331, 15490, 1961, 62, 18601, 2751, 62, 9936, 47, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 38491, 13, 22921, 62, 18601, 2751, 62, 43, 49494, 287, 3131, 62, 11250, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 58, 72, 60, 796, 422, 62, 37336, 62, 1462, 62, 29503, 7, 15414, 82, 58, 72, 4357, 3131, 62, 11250, 58, 9979, 1187, 13, 22921, 62, 18601, 2751, 62, 43, 49494, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17311, 58, 72, 4083, 67, 4906, 6624, 45941, 13, 22468, 2414, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 10385, 4274, 15440, 26515, 656, 2060, 15440, 13, 3661, 35720, 857, 262, 976, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 58, 72, 60, 796, 17311, 58, 72, 4083, 459, 2981, 7203, 22468, 2624, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 58, 72, 60, 796, 28034, 13, 6738, 62, 77, 32152, 7, 15414, 82, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 15414, 82, 58, 72, 12962, 318, 407, 28034, 13, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 818, 10549, 11192, 273, 23884, 286, 407, 4855, 2099, 23884, 1911, 18982, 7, 72, 11, 2099, 7, 15414, 82, 58, 72, 60, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3335, 13, 4906, 14512, 366, 36166, 1, 290, 3335, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 58, 72, 60, 796, 17311, 58, 72, 4083, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2163, 46491, 15414, 82, 8, 628, 198, 4871, 34868, 7391, 15739, 35720, 29869, 8291, 16354, 7, 20519, 15884, 354, 15739, 35720, 29869, 8291, 16354, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 34868, 7391, 4981, 10162, 278, 3661, 35720, 6121, 364, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 34868, 7391, 15739, 35720, 29869, 8081, 2234, 7, 20519, 15884, 354, 15739, 35720, 29869, 8081, 2234, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 34868, 7391, 4981, 10162, 278, 3661, 35720, 50252, 669, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 34868, 7391, 15739, 35720, 29869, 9487, 2649, 7, 20519, 15884, 354, 15739, 35720, 29869, 9487, 2649, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 34868, 7391, 4981, 10162, 278, 3661, 35720, 1398, 13350, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 34868, 7391, 15739, 35720, 29869, 2025, 24335, 11242, 3213, 7, 20519, 15884, 354, 15739, 35720, 29869, 2025, 24335, 11242, 3213, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 34868, 7391, 4981, 10162, 278, 3661, 35720, 32172, 13326, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 2, 440, 6144, 55, 16472, 13, 198, 4871, 440, 6144, 55, 15739, 35720, 29869, 7, 15739, 35720, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 9290, 329, 440, 6144, 55, 4981, 13, 198, 220, 220, 220, 383, 9290, 3578, 284, 10162, 262, 3661, 35720, 7824, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 3440, 7, 24886, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 973, 284, 3440, 257, 9290, 422, 262, 2393, 1080, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 25, 383, 4067, 319, 262, 2393, 1080, 810, 284, 3440, 262, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 9639, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 28686, 13, 6978, 13, 1069, 1023, 7, 24886, 828, 366, 17633, 4067, 23884, 857, 407, 2152, 526, 13, 18982, 7, 24886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 319, 77, 87, 62, 43282, 62, 37050, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 319, 77, 87, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 319, 77, 87, 43282, 355, 393, 83, 628, 220, 220, 220, 220, 220, 220, 220, 9290, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 319, 77, 87, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 24886, 11, 38491, 13, 4090, 6089, 62, 35613, 62, 1340, 45, 55, 62, 34219, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 24886, 11, 38491, 13, 4090, 6089, 62, 35613, 62, 10943, 30339, 1137, 62, 34219, 828, 366, 26145, 4943, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9290, 796, 288, 359, 13, 2220, 7, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 19849, 796, 2746, 628, 220, 220, 220, 220, 220, 220, 220, 264, 408, 62, 25811, 796, 393, 83, 13, 36044, 29046, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9290, 13557, 77, 62, 16663, 82, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10664, 284, 900, 262, 1271, 286, 14390, 284, 779, 355, 900, 287, 262, 2656, 9290, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 62, 25811, 13, 600, 430, 62, 404, 62, 22510, 62, 16663, 82, 796, 9290, 13557, 77, 62, 16663, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 62, 25811, 13, 3849, 62, 404, 62, 22510, 62, 16663, 82, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 62, 25811, 13, 18558, 1009, 62, 14171, 796, 393, 83, 13, 23002, 1009, 19076, 13, 9863, 62, 5188, 10917, 3525, 12576, 198, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 29891, 796, 393, 83, 13, 818, 4288, 36044, 7, 34924, 13557, 19849, 13, 32634, 1096, 2514, 10100, 22784, 264, 408, 62, 25811, 28, 82, 408, 62, 25811, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 9290, 628, 220, 220, 220, 825, 4808, 1136, 62, 13190, 62, 15414, 82, 7, 944, 11, 17311, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4990, 30227, 262, 17311, 3891, 422, 262, 6246, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 15414, 82, 8, 1279, 18896, 7, 944, 13557, 15414, 62, 14933, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 17311, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 15414, 82, 8, 6624, 18896, 7, 944, 13557, 15414, 62, 14933, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3706, 62, 15414, 82, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 15414, 82, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 796, 45941, 13, 18747, 7, 15414, 82, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 44807, 67, 4906, 13, 11031, 287, 38491, 13, 40331, 15490, 1961, 62, 18601, 2751, 62, 9936, 47, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 38491, 13, 22921, 62, 18601, 2751, 62, 43, 49494, 287, 2116, 13557, 26086, 62, 11250, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 796, 422, 62, 37336, 62, 1462, 62, 29503, 7, 15414, 62, 11, 2116, 13557, 26086, 62, 11250, 58, 9979, 1187, 13, 22921, 62, 18601, 2751, 62, 43, 49494, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3706, 62, 15414, 82, 58, 944, 13557, 15414, 62, 14933, 58, 72, 11907, 796, 5128, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3706, 62, 15414, 82, 628, 198, 4871, 440, 6144, 55, 15739, 35720, 29869, 8291, 16354, 7, 1340, 45, 55, 15739, 35720, 29869, 11, 3661, 35720, 29869, 8291, 16354, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 440, 6144, 55, 4981, 10162, 278, 3661, 35720, 6121, 364, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 440, 6144, 55, 15739, 35720, 29869, 8081, 2234, 7, 1340, 45, 55, 15739, 35720, 29869, 11, 3661, 35720, 29869, 8081, 2234, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 440, 6144, 55, 4981, 10162, 278, 3661, 35720, 50252, 669, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 440, 6144, 55, 15739, 35720, 29869, 9487, 2649, 7, 1340, 45, 55, 15739, 35720, 29869, 8081, 2234, 11, 3661, 35720, 29869, 9487, 2649, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 440, 6144, 55, 4981, 10162, 278, 3661, 35720, 1398, 13350, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 440, 6144, 55, 15739, 35720, 29869, 2025, 24335, 11242, 3213, 7, 1340, 45, 55, 15739, 35720, 29869, 8081, 2234, 11, 3661, 35720, 29869, 2025, 24335, 11242, 3213, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 440, 6144, 55, 4981, 10162, 278, 3661, 35720, 32172, 13326, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 2, 3195, 44, 16472, 13, 198, 4871, 3195, 5653, 74, 35720, 29869, 7, 15739, 35720, 29869, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 9290, 329, 3195, 44, 4981, 13, 198, 220, 220, 220, 383, 9290, 3578, 284, 10162, 262, 3661, 35720, 7824, 13, 198, 220, 220, 220, 383, 1332, 5128, 2546, 1276, 307, 262, 976, 355, 262, 15458, 2546, 428, 9290, 318, 2727, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 3440, 7, 24886, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 973, 284, 3440, 257, 9290, 422, 262, 2393, 1080, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 25, 383, 4067, 319, 262, 2393, 1080, 810, 284, 3440, 262, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 9639, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 256, 14761, 62, 37050, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 256, 14761, 198, 220, 220, 220, 220, 220, 220, 220, 422, 256, 14761, 13, 3642, 822, 1330, 7736, 11, 4823, 62, 43282, 198, 220, 220, 220, 220, 220, 220, 220, 422, 256, 14761, 1330, 24248, 628, 220, 220, 220, 220, 220, 220, 220, 9290, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 28686, 13, 6978, 13, 1069, 1023, 7, 24886, 828, 366, 43055, 23884, 407, 1043, 526, 13, 18982, 7, 24886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 8019, 796, 28686, 13, 6978, 13, 22179, 7, 24886, 11, 38491, 13, 4090, 6089, 62, 35613, 62, 6849, 44, 62, 40347, 62, 34219, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4823, 796, 1280, 7, 418, 13, 6978, 13, 22179, 7, 24886, 11, 38491, 13, 4090, 6089, 62, 35613, 62, 6849, 44, 62, 10761, 31300, 62, 34219, 29720, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 9195, 796, 256, 14761, 13, 43282, 13, 21412, 13, 2220, 62, 21412, 7, 6978, 62, 8019, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 24248, 13, 2220, 62, 17143, 62, 11600, 7, 9654, 7, 418, 13, 6978, 13, 22179, 7, 24886, 11, 38491, 13, 4090, 6089, 62, 35613, 62, 6849, 44, 62, 27082, 40834, 62, 34219, 828, 366, 26145, 11074, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 42287, 796, 416, 83, 451, 2433, 7, 9654, 7, 418, 13, 6978, 13, 22179, 7, 24886, 11, 366, 2934, 1420, 62, 17143, 13, 37266, 12340, 366, 26145, 11074, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 24886, 11, 38491, 13, 4090, 6089, 62, 35613, 62, 10943, 30339, 1137, 62, 34219, 828, 366, 26145, 4943, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9290, 796, 288, 359, 13, 2220, 7, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 9290, 318, 407, 6045, 11, 366, 37, 6255, 284, 3440, 262, 2746, 9290, 526, 628, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 796, 256, 14761, 13, 36166, 3419, 611, 9290, 13557, 49464, 6624, 366, 36166, 1, 2073, 256, 14761, 13, 46999, 198, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 19849, 796, 4823, 62, 43282, 13, 17953, 7, 34960, 11, 9195, 11, 269, 17602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 19849, 13, 2617, 62, 15414, 7, 1174, 37266, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 26086, 62, 11250, 58, 9979, 1187, 13, 6849, 44, 62, 10761, 31300, 60, 796, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 26086, 62, 11250, 58, 9979, 1187, 13, 6849, 44, 62, 40347, 60, 796, 9195, 198, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 26086, 62, 11250, 58, 9979, 1187, 13, 6849, 44, 62, 27082, 40834, 60, 796, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 26086, 62, 11250, 58, 9979, 1187, 13, 6849, 44, 62, 10943, 32541, 60, 796, 269, 17602, 198, 220, 220, 220, 220, 220, 220, 220, 9290, 13557, 49464, 796, 269, 17602, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10664, 284, 900, 262, 1271, 286, 14390, 284, 779, 355, 900, 287, 262, 2656, 9290, 13, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 14692, 6849, 44, 62, 41359, 62, 4221, 15675, 50, 8973, 796, 965, 7, 34924, 13557, 77, 62, 16663, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 9290, 628, 198, 4871, 3195, 5653, 74, 35720, 29869, 8291, 16354, 7, 6849, 5653, 74, 35720, 29869, 11, 3661, 35720, 29869, 8291, 16354, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 3195, 44, 4981, 10162, 278, 3661, 35720, 6121, 364, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 3195, 5653, 74, 35720, 29869, 8081, 2234, 7, 6849, 5653, 74, 35720, 29869, 11, 3661, 35720, 29869, 8081, 2234, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 3195, 44, 4981, 10162, 278, 3661, 35720, 50252, 669, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 3195, 5653, 74, 35720, 29869, 9487, 2649, 7, 6849, 5653, 74, 35720, 29869, 8081, 2234, 11, 3661, 35720, 29869, 9487, 2649, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 3195, 44, 4981, 10162, 278, 3661, 35720, 1398, 13350, 7824, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 3195, 5653, 74, 35720, 29869, 2025, 24335, 11242, 3213, 7, 6849, 5653, 74, 35720, 29869, 8081, 2234, 11, 3661, 35720, 29869, 2025, 24335, 11242, 3213, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43101, 329, 3195, 44, 4981, 10162, 278, 3661, 35720, 32172, 13326, 7824, 13, 198, 220, 220, 220, 37227, 198 ]
2.724543
5,362
from .options import PaymentMethod
[ 6738, 764, 25811, 1330, 28784, 17410, 198 ]
5
7
from django.contrib.auth.models import User from rest_framework import authentication from rest_framework import exceptions from django.conf import settings import jwt import requests as r import modules.keycloak_lib as keylib
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 1334, 62, 30604, 1330, 18239, 198, 6738, 1334, 62, 30604, 1330, 13269, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 11748, 474, 46569, 198, 11748, 7007, 355, 374, 198, 11748, 13103, 13, 2539, 565, 15877, 62, 8019, 355, 1994, 8019, 198 ]
4.053571
56
# Call easyblogger # Client secret and authentication is already stored in ~/.easyblogger.credentials # blogid is stored in ~/.easyblogger import subprocess import blogger_modifications
[ 2, 4889, 2562, 14036, 1362, 198, 2, 20985, 3200, 290, 18239, 318, 1541, 8574, 287, 39763, 38171, 14036, 1362, 13, 66, 445, 14817, 198, 2, 4130, 312, 318, 8574, 287, 39763, 38171, 14036, 1362, 198, 198, 11748, 850, 14681, 198, 11748, 23530, 62, 4666, 6637, 628 ]
4.086957
46
# -*- coding: utf-8 -*- from __future__ import absolute_import import blinker import time from gevent import socket try: import simplejson as json except ImportError: import json # pyflakes.ignore from . import protocol as nsq from . import errors from .message import Message from .httpclient import HTTPClient from .states import INIT, CONNECTED, DISCONNECTED from .stream import Stream from .decorators import cached_property from .version import __version__ HOSTNAME = socket.gethostname() SHORTNAME = HOSTNAME.split('.')[0] USERAGENT = 'gnsq/%s' % __version__ class Nsqd(HTTPClient): """Low level object representing a TCP or HTTP connection to nsqd. :param address: the host or ip address of the nsqd :param tcp_port: the nsqd tcp port to connect to :param http_port: the nsqd http port to connect to :param timeout: the timeout for read/write operations (in seconds) :param client_id: an identifier used to disambiguate this client (defaults to the first part of the hostname) :param hostname: the hostname where the client is deployed (defaults to the clients hostname) :param heartbeat_interval: the amount of time in seconds to negotiate with the connected producers to send heartbeats (requires nsqd 0.2.19+) :param output_buffer_size: size of the buffer (in bytes) used by nsqd for buffering writes to this connection :param output_buffer_timeout: timeout (in ms) used by nsqd before flushing buffered writes (set to 0 to disable). Warning: configuring clients with an extremely low (< 25ms) output_buffer_timeout has a significant effect on nsqd CPU usage (particularly with > 50 clients connected). :param tls_v1: enable TLS v1 encryption (requires nsqd 0.2.22+) :param tls_options: dictionary of options to pass to `ssl.wrap_socket() <http://docs.python.org/2/library/ssl.html#ssl.wrap_socket>`_ :param snappy: enable Snappy stream compression (requires nsqd 0.2.23+) :param deflate: enable deflate stream compression (requires nsqd 0.2.23+) :param deflate_level: configure the deflate compression level for this connection (requires nsqd 0.2.23+) :param sample_rate: take only a sample of the messages being sent to the client. Not setting this or setting it to 0 will ensure you get all the messages destined for the client. Sample rate can be greater than 0 or less than 100 and the client will receive that percentage of the message traffic. (requires nsqd 0.2.25+) :param auth_secret: a string passed when using nsq auth (requires nsqd 0.2.29+) :param user_agent: a string identifying the agent for this client in the spirit of HTTP (default: ``<client_library_name>/<version>``) (requires nsqd 0.2.25+) """ @cached_property def on_message(self): """Emitted when a message frame is received. The signal sender is the connection and the `message` is sent as an argument. """ return blinker.Signal(doc='Emitted when a message frame is received.') @cached_property def on_response(self): """Emitted when a response frame is received. The signal sender is the connection and the `response` is sent as an argument. """ return blinker.Signal(doc='Emitted when a response frame is received.') @cached_property def on_error(self): """Emitted when an error frame is received. The signal sender is the connection and the `error` is sent as an argument. """ return blinker.Signal(doc='Emitted when a error frame is received.') @cached_property def on_finish(self): """Emitted after :meth:`finish`. Sent after a message owned by this connection is successfully finished. The signal sender is the connection and the `message_id` is sent as an argument. """ return blinker.Signal(doc='Emitted after the a message is finished.') @cached_property def on_requeue(self): """Emitted after :meth:`requeue`. Sent after a message owned by this connection is requeued. The signal sender is the connection and the `message_id`, `timeout` and `backoff` flag are sent as arguments. """ return blinker.Signal(doc='Emitted after the a message is requeued.') @cached_property def on_auth(self): """Emitted after the connection is successfully authenticated. The signal sender is the connection and the parsed `response` is sent as arguments. """ return blinker.Signal( doc='Emitted after the connection is successfully authenticated.' ) @cached_property def on_close(self): """Emitted after :meth:`close_stream`. Sent after the connection socket has closed. The signal sender is the connection. """ return blinker.Signal(doc='Emitted after the connection is closed.') @property def is_connected(self): """Check if the client is currently connected.""" return self.state == CONNECTED @property def is_starved(self): """Evaluate whether the connection is starved. This property should be used by message handlers to reliably identify when to process a batch of messages. """ return self.in_flight >= max(self.last_ready * 0.85, 1) def connect(self): """Initialize connection to the nsqd.""" if self.state not in (INIT, DISCONNECTED): return stream = Stream(self.address, self.tcp_port, self.timeout) stream.connect() self.stream = stream self.state = CONNECTED self.send(nsq.MAGIC_V2) def close_stream(self): """Close the underlying socket.""" if not self.is_connected: return self.stream.close() self.state = DISCONNECTED self.on_close.send(self) def read_response(self): """Read an individual response from nsqd. :returns: tuple of the frame type and the processed data. """ response = self._read_response() frame, data = nsq.unpack_response(response) self.last_response = time.time() if frame not in self._frame_handlers: raise errors.NSQFrameError('unknown frame %d' % frame) frame_handler = self._frame_handlers[frame] processed_data = frame_handler(data) return frame, processed_data def listen(self): """Listen to incoming responses until the connection closes.""" while self.is_connected: self.read_response() def identify(self): """Update client metadata on the server and negotiate features. :returns: nsqd response data if there was feature negotiation, otherwise `None` """ self.send(nsq.identify({ # nsqd <0.2.28 'short_id': self.client_id, 'long_id': self.hostname, # nsqd 0.2.28+ 'client_id': self.client_id, 'hostname': self.hostname, # nsqd 0.2.19+ 'feature_negotiation': True, 'heartbeat_interval': self.heartbeat_interval, # nsqd 0.2.21+ 'output_buffer_size': self.output_buffer_size, 'output_buffer_timeout': self.output_buffer_timeout, # nsqd 0.2.22+ 'tls_v1': self.tls_v1, # nsqd 0.2.23+ 'snappy': self.snappy, 'deflate': self.deflate, 'deflate_level': self.deflate_level, # nsqd nsqd 0.2.25+ 'sample_rate': self.sample_rate, 'user_agent': self.user_agent, })) frame, data = self.read_response() if frame == nsq.FRAME_TYPE_ERROR: raise data if data == 'OK': return try: data = json.loads(data) except ValueError: self.close_stream() msg = 'failed to parse IDENTIFY response JSON from nsqd: %r' raise errors.NSQException(msg % data) self.max_ready_count = data.get('max_rdy_count', self.max_ready_count) if self.tls_v1 and data.get('tls_v1'): self.upgrade_to_tls() if self.snappy and data.get('snappy'): self.upgrade_to_snappy() elif self.deflate and data.get('deflate'): self.deflate_level = data.get('deflate_level', self.deflate_level) self.upgrade_to_defalte() if self.auth_secret and data.get('auth_required'): self.auth() return data def auth(self): """Send authorization secret to nsqd.""" self.send(nsq.auth(self.auth_secret)) frame, data = self.read_response() if frame == nsq.FRAME_TYPE_ERROR: raise data try: response = json.loads(data) except ValueError: self.close_stream() msg = 'failed to parse AUTH response JSON from nsqd: %r' raise errors.NSQException(msg % data) self.on_auth.send(self, response=response) return response def subscribe(self, topic, channel): """Subscribe to a nsq `topic` and `channel`.""" self.send(nsq.subscribe(topic, channel)) def publish_tcp(self, topic, data): """Publish a message to the given topic over tcp.""" self.send(nsq.publish(topic, data)) def multipublish_tcp(self, topic, messages): """Publish an iterable of messages to the given topic over tcp.""" self.send(nsq.multipublish(topic, messages)) def ready(self, count): """Indicate you are ready to receive `count` messages.""" self.last_ready = count self.ready_count = count self.send(nsq.ready(count)) def finish(self, message_id): """Finish a message (indicate successful processing).""" self.send(nsq.finish(message_id)) self.finish_inflight() self.on_finish.send(self, message_id=message_id) def requeue(self, message_id, timeout=0, backoff=True): """Re-queue a message (indicate failure to process).""" self.send(nsq.requeue(message_id, timeout)) self.finish_inflight() self.on_requeue.send( self, message_id=message_id, timeout=timeout, backoff=backoff ) def touch(self, message_id): """Reset the timeout for an in-flight message.""" self.send(nsq.touch(message_id)) def close(self): """Indicate no more messages should be sent.""" self.send(nsq.close()) def nop(self): """Send no-op to nsqd. Used to keep connection alive.""" self.send(nsq.nop()) @property def publish_http(self, topic, data): """Publish a message to the given topic over http.""" nsq.assert_valid_topic_name(topic) return self.http_post('/put', fields={'topic': topic}, body=data) def multipublish_http(self, topic, messages): """Publish an iterable of messages to the given topic over http.""" nsq.assert_valid_topic_name(topic) return self.http_post( url='/mput', fields={'topic': topic}, body='\n'.join(self._validate_http_mpub(m) for m in messages) ) def create_topic(self, topic): """Create a topic.""" nsq.assert_valid_topic_name(topic) return self.http_post('/create_topic', fields={'topic': topic}) def delete_topic(self, topic): """Delete a topic.""" nsq.assert_valid_topic_name(topic) return self.http_post('/delete_topic', fields={'topic': topic}) def create_channel(self, topic, channel): """Create a channel for an existing topic.""" nsq.assert_valid_topic_name(topic) nsq.assert_valid_channel_name(channel) return self.http_post( url='/create_channel', fields={'topic': topic, 'channel': channel}, ) def delete_channel(self, topic, channel): """Delete an existing channel for an existing topic.""" nsq.assert_valid_topic_name(topic) nsq.assert_valid_channel_name(channel) return self.http_post( url='/delete_channel', fields={'topic': topic, 'channel': channel}, ) def empty_topic(self, topic): """Empty all the queued messages for an existing topic.""" nsq.assert_valid_topic_name(topic) return self.http_post('/empty_topic', fields={'topic': topic}) def empty_channel(self, topic, channel): """Empty all the queued messages for an existing channel.""" nsq.assert_valid_topic_name(topic) nsq.assert_valid_channel_name(channel) return self.http_post( url='/empty_channel', fields={'topic': topic, 'channel': channel}, ) def pause_channel(self, topic, channel): """Pause message flow to all channels on an existing topic. Messages will queue at topic. """ nsq.assert_valid_topic_name(topic) nsq.assert_valid_channel_name(channel) return self.http_post( url='/pause_channel', fields={'topic': topic, 'channel': channel}, ) def unpause_channel(self, topic, channel): """Resume message flow to channels of an existing, paused, topic.""" nsq.assert_valid_topic_name(topic) nsq.assert_valid_channel_name(channel) return self.http_post( url='/unpause_channel', fields={'topic': topic, 'channel': channel}, ) def stats(self): """Return internal instrumented statistics.""" return self.http_get('/stats', fields={'format': 'json'}) def ping(self): """Monitoring endpoint. :returns: should return `"OK"`, otherwise raises an exception. """ return self.http_get('/ping') def info(self): """Returns version information.""" return self.http_get('/info') def publish(self, topic, data): """Publish a message. If connected, the message will be sent over tcp. Otherwise it will fall back to http. """ if self.is_connected: return self.publish_tcp(topic, data) else: return self.publish_http(topic, data) def multipublish(self, topic, messages): """Publish an iterable of messages in one roundtrip. If connected, the messages will be sent over tcp. Otherwise it will fall back to http. """ if self.is_connected: return self.multipublish_tcp(topic, messages) else: return self.multipublish_http(topic, messages)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 21019, 263, 198, 11748, 640, 198, 6738, 4903, 1151, 1330, 17802, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 2829, 17752, 355, 33918, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 33918, 220, 1303, 12972, 2704, 1124, 13, 46430, 198, 198, 6738, 764, 1330, 8435, 355, 299, 31166, 198, 6738, 764, 1330, 8563, 198, 198, 6738, 764, 20500, 1330, 16000, 198, 6738, 764, 4023, 16366, 1330, 14626, 11792, 198, 6738, 764, 27219, 1330, 3268, 2043, 11, 7102, 48842, 1961, 11, 13954, 10943, 48842, 1961, 198, 6738, 764, 5532, 1330, 13860, 198, 6738, 764, 12501, 273, 2024, 1330, 39986, 62, 26745, 198, 6738, 764, 9641, 1330, 11593, 9641, 834, 198, 198, 39, 10892, 20608, 796, 17802, 13, 1136, 4774, 3672, 3419, 198, 9693, 9863, 20608, 796, 367, 10892, 20608, 13, 35312, 10786, 2637, 38381, 15, 60, 198, 29904, 4760, 3525, 796, 705, 4593, 31166, 14, 4, 82, 6, 4064, 11593, 9641, 834, 628, 198, 4871, 399, 31166, 67, 7, 40717, 11792, 2599, 198, 220, 220, 220, 37227, 20535, 1241, 2134, 10200, 257, 23633, 393, 14626, 4637, 284, 299, 31166, 67, 13, 628, 220, 220, 220, 1058, 17143, 2209, 25, 262, 2583, 393, 20966, 2209, 286, 262, 299, 31166, 67, 628, 220, 220, 220, 1058, 17143, 48265, 62, 634, 25, 262, 299, 31166, 67, 48265, 2493, 284, 2018, 284, 628, 220, 220, 220, 1058, 17143, 2638, 62, 634, 25, 262, 299, 31166, 67, 2638, 2493, 284, 2018, 284, 628, 220, 220, 220, 1058, 17143, 26827, 25, 262, 26827, 329, 1100, 14, 13564, 4560, 357, 259, 4201, 8, 628, 220, 220, 220, 1058, 17143, 5456, 62, 312, 25, 281, 27421, 973, 284, 595, 4131, 328, 4985, 428, 5456, 357, 12286, 82, 198, 220, 220, 220, 220, 220, 220, 220, 284, 262, 717, 636, 286, 262, 2583, 3672, 8, 628, 220, 220, 220, 1058, 17143, 2583, 3672, 25, 262, 2583, 3672, 810, 262, 5456, 318, 12380, 357, 12286, 82, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 7534, 2583, 3672, 8, 628, 220, 220, 220, 1058, 17143, 36051, 62, 3849, 2100, 25, 262, 2033, 286, 640, 287, 4201, 284, 16674, 351, 198, 220, 220, 220, 220, 220, 220, 220, 262, 5884, 11408, 284, 3758, 2612, 1350, 1381, 357, 47911, 299, 31166, 67, 657, 13, 17, 13, 1129, 28988, 628, 220, 220, 220, 1058, 17143, 5072, 62, 22252, 62, 7857, 25, 2546, 286, 262, 11876, 357, 259, 9881, 8, 973, 416, 299, 31166, 67, 329, 198, 220, 220, 220, 220, 220, 220, 220, 6940, 1586, 6797, 284, 428, 4637, 628, 220, 220, 220, 1058, 17143, 5072, 62, 22252, 62, 48678, 25, 26827, 357, 259, 13845, 8, 973, 416, 299, 31166, 67, 878, 781, 8023, 198, 220, 220, 220, 220, 220, 220, 220, 6940, 1068, 6797, 357, 2617, 284, 657, 284, 15560, 737, 15932, 25, 4566, 870, 7534, 351, 198, 220, 220, 220, 220, 220, 220, 220, 281, 4457, 1877, 38155, 1679, 907, 8, 5072, 62, 22252, 62, 48678, 468, 257, 2383, 1245, 198, 220, 220, 220, 220, 220, 220, 220, 319, 299, 31166, 67, 9135, 8748, 357, 31722, 351, 1875, 2026, 7534, 5884, 737, 628, 220, 220, 220, 1058, 17143, 256, 7278, 62, 85, 16, 25, 7139, 33855, 410, 16, 15835, 357, 47911, 299, 31166, 67, 657, 13, 17, 13, 1828, 28988, 628, 220, 220, 220, 1058, 17143, 256, 7278, 62, 25811, 25, 22155, 286, 3689, 284, 1208, 284, 4600, 45163, 13, 37150, 62, 44971, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 4023, 1378, 31628, 13, 29412, 13, 2398, 14, 17, 14, 32016, 14, 45163, 13, 6494, 2, 45163, 13, 37150, 62, 44971, 29, 63, 62, 628, 220, 220, 220, 1058, 17143, 3013, 7774, 25, 7139, 5489, 7774, 4269, 19794, 357, 47911, 299, 31166, 67, 657, 13, 17, 13, 1954, 28988, 628, 220, 220, 220, 1058, 17143, 825, 17660, 25, 7139, 825, 17660, 4269, 19794, 357, 47911, 299, 31166, 67, 657, 13, 17, 13, 1954, 28988, 628, 220, 220, 220, 1058, 17143, 825, 17660, 62, 5715, 25, 17425, 262, 825, 17660, 19794, 1241, 329, 428, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 357, 47911, 299, 31166, 67, 657, 13, 17, 13, 1954, 28988, 628, 220, 220, 220, 1058, 17143, 6291, 62, 4873, 25, 1011, 691, 257, 6291, 286, 262, 6218, 852, 1908, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 1892, 4634, 428, 393, 4634, 340, 284, 657, 481, 4155, 345, 651, 477, 262, 198, 220, 220, 220, 220, 220, 220, 220, 6218, 23985, 329, 262, 5456, 13, 27565, 2494, 460, 307, 3744, 621, 657, 393, 198, 220, 220, 220, 220, 220, 220, 220, 1342, 621, 1802, 290, 262, 5456, 481, 3328, 326, 5873, 286, 262, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 4979, 13, 357, 47911, 299, 31166, 67, 657, 13, 17, 13, 1495, 28988, 628, 220, 220, 220, 1058, 17143, 6284, 62, 21078, 25, 257, 4731, 3804, 618, 1262, 299, 31166, 6284, 357, 47911, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 67, 657, 13, 17, 13, 1959, 28988, 628, 220, 220, 220, 1058, 17143, 2836, 62, 25781, 25, 257, 4731, 13720, 262, 5797, 329, 428, 5456, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4437, 286, 14626, 357, 12286, 25, 7559, 27, 16366, 62, 32016, 62, 3672, 29, 14, 27, 9641, 29, 15506, 8, 357, 47911, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 67, 657, 13, 17, 13, 1495, 28988, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 825, 319, 62, 20500, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 3291, 618, 257, 3275, 5739, 318, 2722, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 6737, 29788, 318, 262, 4637, 290, 262, 4600, 20500, 63, 318, 1908, 355, 281, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21019, 263, 13, 11712, 282, 7, 15390, 11639, 36, 3291, 618, 257, 3275, 5739, 318, 2722, 2637, 8, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 825, 319, 62, 26209, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 3291, 618, 257, 2882, 5739, 318, 2722, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 6737, 29788, 318, 262, 4637, 290, 262, 4600, 26209, 63, 318, 1908, 355, 281, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21019, 263, 13, 11712, 282, 7, 15390, 11639, 36, 3291, 618, 257, 2882, 5739, 318, 2722, 2637, 8, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 825, 319, 62, 18224, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 3291, 618, 281, 4049, 5739, 318, 2722, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 6737, 29788, 318, 262, 4637, 290, 262, 4600, 18224, 63, 318, 1908, 355, 281, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21019, 263, 13, 11712, 282, 7, 15390, 11639, 36, 3291, 618, 257, 4049, 5739, 318, 2722, 2637, 8, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 825, 319, 62, 15643, 680, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 3291, 706, 1058, 76, 2788, 25, 63, 15643, 680, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 11352, 706, 257, 3275, 6898, 416, 428, 4637, 318, 7675, 5201, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6737, 29788, 318, 262, 4637, 290, 262, 4600, 20500, 62, 312, 63, 318, 1908, 355, 281, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21019, 263, 13, 11712, 282, 7, 15390, 11639, 36, 3291, 706, 262, 257, 3275, 318, 5201, 2637, 8, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 825, 319, 62, 260, 36560, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 3291, 706, 1058, 76, 2788, 25, 63, 260, 36560, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 11352, 706, 257, 3275, 6898, 416, 428, 4637, 318, 1038, 68, 1739, 13, 383, 6737, 198, 220, 220, 220, 220, 220, 220, 220, 29788, 318, 262, 4637, 290, 262, 4600, 20500, 62, 312, 47671, 4600, 48678, 63, 290, 4600, 1891, 2364, 63, 198, 220, 220, 220, 220, 220, 220, 220, 6056, 389, 1908, 355, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21019, 263, 13, 11712, 282, 7, 15390, 11639, 36, 3291, 706, 262, 257, 3275, 318, 1038, 68, 1739, 2637, 8, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 825, 319, 62, 18439, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 3291, 706, 262, 4637, 318, 7675, 44529, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 6737, 29788, 318, 262, 4637, 290, 262, 44267, 4600, 26209, 63, 318, 1908, 355, 198, 220, 220, 220, 220, 220, 220, 220, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21019, 263, 13, 11712, 282, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 11639, 36, 3291, 706, 262, 4637, 318, 7675, 44529, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 198, 220, 220, 220, 825, 319, 62, 19836, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 3291, 706, 1058, 76, 2788, 25, 63, 19836, 62, 5532, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 11352, 706, 262, 4637, 17802, 468, 4838, 13, 383, 6737, 29788, 318, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21019, 263, 13, 11712, 282, 7, 15390, 11639, 36, 3291, 706, 262, 4637, 318, 4838, 2637, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 318, 62, 15236, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 611, 262, 5456, 318, 3058, 5884, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 5219, 6624, 7102, 48842, 1961, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 318, 62, 7364, 1079, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 2100, 4985, 1771, 262, 4637, 318, 47224, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 3119, 815, 307, 973, 416, 3275, 32847, 284, 26995, 5911, 198, 220, 220, 220, 220, 220, 220, 220, 618, 284, 1429, 257, 15458, 286, 6218, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 259, 62, 22560, 18189, 3509, 7, 944, 13, 12957, 62, 1493, 1635, 657, 13, 5332, 11, 352, 8, 628, 220, 220, 220, 825, 2018, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 4637, 284, 262, 299, 31166, 67, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 5219, 407, 287, 357, 1268, 2043, 11, 13954, 10943, 48842, 1961, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 4269, 796, 13860, 7, 944, 13, 21975, 11, 2116, 13, 83, 13155, 62, 634, 11, 2116, 13, 48678, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 13, 8443, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5532, 796, 4269, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5219, 796, 7102, 48842, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 45820, 2149, 62, 53, 17, 8, 628, 220, 220, 220, 825, 1969, 62, 5532, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26125, 262, 10238, 17802, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 271, 62, 15236, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5532, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5219, 796, 13954, 10943, 48842, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 19836, 13, 21280, 7, 944, 8, 628, 220, 220, 220, 825, 1100, 62, 26209, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5569, 281, 1981, 2882, 422, 299, 31166, 67, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 46545, 286, 262, 5739, 2099, 290, 262, 13686, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13557, 961, 62, 26209, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 11, 1366, 796, 299, 31166, 13, 403, 8002, 62, 26209, 7, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12957, 62, 26209, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 407, 287, 2116, 13557, 14535, 62, 4993, 8116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 8035, 48, 19778, 12331, 10786, 34680, 5739, 4064, 67, 6, 4064, 5739, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5739, 62, 30281, 796, 2116, 13557, 14535, 62, 4993, 8116, 58, 14535, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13686, 62, 7890, 796, 5739, 62, 30281, 7, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5739, 11, 13686, 62, 7890, 628, 220, 220, 220, 825, 6004, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23061, 284, 15619, 9109, 1566, 262, 4637, 20612, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 271, 62, 15236, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 961, 62, 26209, 3419, 628, 220, 220, 220, 825, 5911, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 5456, 20150, 319, 262, 4382, 290, 16674, 3033, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 299, 31166, 67, 2882, 1366, 611, 612, 373, 3895, 24462, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4306, 4600, 14202, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 738, 1958, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 31166, 67, 1279, 15, 13, 17, 13, 2078, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19509, 62, 312, 10354, 2116, 13, 16366, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 312, 10354, 2116, 13, 4774, 3672, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 31166, 67, 657, 13, 17, 13, 2078, 10, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16366, 62, 312, 10354, 2116, 13, 16366, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4774, 3672, 10354, 2116, 13, 4774, 3672, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 31166, 67, 657, 13, 17, 13, 1129, 10, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30053, 62, 12480, 21236, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11499, 12945, 62, 3849, 2100, 10354, 2116, 13, 11499, 12945, 62, 3849, 2100, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 31166, 67, 657, 13, 17, 13, 2481, 10, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22915, 62, 22252, 62, 7857, 10354, 2116, 13, 22915, 62, 22252, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22915, 62, 22252, 62, 48678, 10354, 2116, 13, 22915, 62, 22252, 62, 48678, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 31166, 67, 657, 13, 17, 13, 1828, 10, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 7278, 62, 85, 16, 10354, 2116, 13, 83, 7278, 62, 85, 16, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 31166, 67, 657, 13, 17, 13, 1954, 10, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16184, 7774, 10354, 2116, 13, 16184, 7774, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4299, 17660, 10354, 2116, 13, 4299, 17660, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4299, 17660, 62, 5715, 10354, 2116, 13, 4299, 17660, 62, 5715, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 31166, 67, 299, 31166, 67, 657, 13, 17, 13, 1495, 10, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39873, 62, 4873, 10354, 2116, 13, 39873, 62, 4873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 62, 25781, 10354, 2116, 13, 7220, 62, 25781, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 5739, 11, 1366, 796, 2116, 13, 961, 62, 26209, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 6624, 299, 31166, 13, 10913, 10067, 62, 25216, 62, 24908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 6624, 705, 11380, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 62, 5532, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 705, 47904, 284, 21136, 4522, 3525, 5064, 56, 2882, 19449, 422, 299, 31166, 67, 25, 4064, 81, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 8035, 48, 16922, 7, 19662, 4064, 1366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 1493, 62, 9127, 796, 1366, 13, 1136, 10786, 9806, 62, 4372, 88, 62, 9127, 3256, 2116, 13, 9806, 62, 1493, 62, 9127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 83, 7278, 62, 85, 16, 290, 1366, 13, 1136, 10786, 83, 7278, 62, 85, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 929, 9526, 62, 1462, 62, 83, 7278, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 16184, 7774, 290, 1366, 13, 1136, 10786, 16184, 7774, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 929, 9526, 62, 1462, 62, 16184, 7774, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 4299, 17660, 290, 1366, 13, 1136, 10786, 4299, 17660, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4299, 17660, 62, 5715, 796, 1366, 13, 1136, 10786, 4299, 17660, 62, 5715, 3256, 2116, 13, 4299, 17660, 62, 5715, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 929, 9526, 62, 1462, 62, 4299, 282, 660, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 18439, 62, 21078, 290, 1366, 13, 1136, 10786, 18439, 62, 35827, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 6284, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 19601, 3200, 284, 299, 31166, 67, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 18439, 7, 944, 13, 18439, 62, 21078, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 11, 1366, 796, 2116, 13, 961, 62, 26209, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 6624, 299, 31166, 13, 10913, 10067, 62, 25216, 62, 24908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 33918, 13, 46030, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 62, 5532, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 705, 47904, 284, 21136, 37195, 2882, 19449, 422, 299, 31166, 67, 25, 4064, 81, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 8035, 48, 16922, 7, 19662, 4064, 1366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 18439, 13, 21280, 7, 944, 11, 2882, 28, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 825, 12383, 7, 944, 11, 7243, 11, 6518, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27125, 284, 257, 299, 31166, 4600, 26652, 63, 290, 4600, 17620, 63, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 7266, 12522, 7, 26652, 11, 6518, 4008, 628, 220, 220, 220, 825, 7715, 62, 83, 13155, 7, 944, 11, 7243, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14876, 1836, 257, 3275, 284, 262, 1813, 7243, 625, 48265, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 12984, 1836, 7, 26652, 11, 1366, 4008, 628, 220, 220, 220, 825, 18540, 549, 1836, 62, 83, 13155, 7, 944, 11, 7243, 11, 6218, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14876, 1836, 281, 11629, 540, 286, 6218, 284, 262, 1813, 7243, 625, 48265, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 16680, 541, 549, 1836, 7, 26652, 11, 6218, 4008, 628, 220, 220, 220, 825, 3492, 7, 944, 11, 954, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5497, 5344, 345, 389, 3492, 284, 3328, 4600, 9127, 63, 6218, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12957, 62, 1493, 796, 954, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1493, 62, 9127, 796, 954, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 1493, 7, 9127, 4008, 628, 220, 220, 220, 825, 5461, 7, 944, 11, 3275, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48658, 257, 3275, 357, 521, 5344, 4388, 7587, 21387, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 15643, 680, 7, 20500, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15643, 680, 62, 259, 22560, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 15643, 680, 13, 21280, 7, 944, 11, 3275, 62, 312, 28, 20500, 62, 312, 8, 628, 220, 220, 220, 825, 1038, 68, 518, 7, 944, 11, 3275, 62, 312, 11, 26827, 28, 15, 11, 736, 2364, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3041, 12, 36560, 257, 3275, 357, 521, 5344, 5287, 284, 1429, 21387, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 260, 36560, 7, 20500, 62, 312, 11, 26827, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15643, 680, 62, 259, 22560, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 260, 36560, 13, 21280, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 62, 312, 28, 20500, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 48678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 736, 2364, 28, 1891, 2364, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 3638, 7, 944, 11, 3275, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 262, 26827, 329, 281, 287, 12, 22560, 3275, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 29332, 7, 20500, 62, 312, 4008, 628, 220, 220, 220, 825, 1969, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5497, 5344, 645, 517, 6218, 815, 307, 1908, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 19836, 28955, 628, 220, 220, 220, 825, 299, 404, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 645, 12, 404, 284, 299, 31166, 67, 13, 16718, 284, 1394, 4637, 6776, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21280, 7, 5907, 80, 13, 77, 404, 28955, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 825, 7715, 62, 4023, 7, 944, 11, 7243, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14876, 1836, 257, 3275, 284, 262, 1813, 7243, 625, 2638, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 10786, 14, 1996, 3256, 7032, 34758, 6, 26652, 10354, 7243, 5512, 1767, 28, 7890, 8, 628, 220, 220, 220, 825, 18540, 549, 1836, 62, 4023, 7, 944, 11, 7243, 11, 6218, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14876, 1836, 281, 11629, 540, 286, 6218, 284, 262, 1813, 7243, 625, 2638, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11639, 14, 76, 1996, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 6, 26652, 10354, 7243, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 11639, 59, 77, 4458, 22179, 7, 944, 13557, 12102, 378, 62, 4023, 62, 3149, 549, 7, 76, 8, 329, 285, 287, 6218, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 2251, 62, 26652, 7, 944, 11, 7243, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 7243, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 10786, 14, 17953, 62, 26652, 3256, 7032, 34758, 6, 26652, 10354, 7243, 30072, 628, 220, 220, 220, 825, 12233, 62, 26652, 7, 944, 11, 7243, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 257, 7243, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 10786, 14, 33678, 62, 26652, 3256, 7032, 34758, 6, 26652, 10354, 7243, 30072, 628, 220, 220, 220, 825, 2251, 62, 17620, 7, 944, 11, 7243, 11, 6518, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 6518, 329, 281, 4683, 7243, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 17620, 62, 3672, 7, 17620, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11639, 14, 17953, 62, 17620, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 6, 26652, 10354, 7243, 11, 705, 17620, 10354, 6518, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 12233, 62, 17620, 7, 944, 11, 7243, 11, 6518, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 281, 4683, 6518, 329, 281, 4683, 7243, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 17620, 62, 3672, 7, 17620, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11639, 14, 33678, 62, 17620, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 6, 26652, 10354, 7243, 11, 705, 17620, 10354, 6518, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 6565, 62, 26652, 7, 944, 11, 7243, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40613, 477, 262, 8358, 1739, 6218, 329, 281, 4683, 7243, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 10786, 14, 28920, 62, 26652, 3256, 7032, 34758, 6, 26652, 10354, 7243, 30072, 628, 220, 220, 220, 825, 6565, 62, 17620, 7, 944, 11, 7243, 11, 6518, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40613, 477, 262, 8358, 1739, 6218, 329, 281, 4683, 6518, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 17620, 62, 3672, 7, 17620, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11639, 14, 28920, 62, 17620, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 6, 26652, 10354, 7243, 11, 705, 17620, 10354, 6518, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 14985, 62, 17620, 7, 944, 11, 7243, 11, 6518, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49991, 3275, 5202, 284, 477, 9619, 319, 281, 4683, 7243, 13, 628, 220, 220, 220, 220, 220, 220, 220, 43534, 481, 16834, 379, 7243, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 17620, 62, 3672, 7, 17620, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11639, 14, 32125, 62, 17620, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 6, 26652, 10354, 7243, 11, 705, 17620, 10354, 6518, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 8593, 682, 62, 17620, 7, 944, 11, 7243, 11, 6518, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 2454, 3275, 5202, 284, 9619, 286, 281, 4683, 11, 24487, 11, 7243, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 26652, 62, 3672, 7, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 31166, 13, 30493, 62, 12102, 62, 17620, 62, 3672, 7, 17620, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 11639, 14, 403, 32125, 62, 17620, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 6, 26652, 10354, 7243, 11, 705, 17620, 10354, 6518, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 9756, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 5387, 8875, 276, 7869, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 1136, 10786, 14, 34242, 3256, 7032, 34758, 6, 18982, 10354, 705, 17752, 6, 30072, 628, 220, 220, 220, 825, 29400, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35479, 278, 36123, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 815, 1441, 4600, 1, 11380, 1, 47671, 4306, 12073, 281, 6631, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 1136, 10786, 14, 13886, 11537, 628, 220, 220, 220, 825, 7508, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2196, 1321, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4023, 62, 1136, 10786, 14, 10951, 11537, 628, 220, 220, 220, 825, 7715, 7, 944, 11, 7243, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14876, 1836, 257, 3275, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 5884, 11, 262, 3275, 481, 307, 1908, 625, 48265, 13, 15323, 340, 481, 198, 220, 220, 220, 220, 220, 220, 220, 2121, 736, 284, 2638, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 271, 62, 15236, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12984, 1836, 62, 83, 13155, 7, 26652, 11, 1366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12984, 1836, 62, 4023, 7, 26652, 11, 1366, 8, 628, 220, 220, 220, 825, 18540, 549, 1836, 7, 944, 11, 7243, 11, 6218, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14876, 1836, 281, 11629, 540, 286, 6218, 287, 530, 2835, 39813, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 5884, 11, 262, 6218, 481, 307, 1908, 625, 48265, 13, 15323, 340, 481, 198, 220, 220, 220, 220, 220, 220, 220, 2121, 736, 284, 2638, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 271, 62, 15236, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 16680, 541, 549, 1836, 62, 83, 13155, 7, 26652, 11, 6218, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 16680, 541, 549, 1836, 62, 4023, 7, 26652, 11, 6218, 8, 198 ]
2.43127
6,140
# Generated by Django 3.2.7 on 2021-10-18 12:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 22, 319, 33448, 12, 940, 12, 1507, 1105, 25, 2481, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
3.019231
52