content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import setuptools with open("README.md", "r", encoding="utf-8") as f: long_description = f.read() setuptools.setup( name="cause2e", version="0.2.0", author="Daniel Gruenbaum", author_email="[email protected]", description="A package for end-to-end causal analysis", license="MIT", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/MLResearchAtOSRAM/cause2e", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "License :: OSI Approved :: MIT License", "Operating System :: POSIX :: Linux", "Operating System :: Microsoft :: Windows" ], python_requires='>=3.7', install_requires=[ "dowhy", "ipython", "jinja2", "pillow", "pyarrow", "pycausal", "seaborn" ] )
[ 11748, 900, 37623, 10141, 201, 198, 201, 198, 201, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 1600, 21004, 2625, 40477, 12, 23, 4943, 355, 277, 25, 201, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 13, 961, 3419, 201, 198, 201, 198, 2617, 37623, 10141, 13, 40406, 7, 201, 198, 220, 220, 220, 1438, 2625, 25587, 17, 68, 1600, 201, 198, 220, 220, 220, 2196, 2625, 15, 13, 17, 13, 15, 1600, 201, 198, 220, 220, 220, 1772, 2625, 19962, 25665, 268, 24738, 1600, 201, 198, 220, 220, 220, 1772, 62, 12888, 2625, 67, 6321, 13, 48929, 268, 24738, 31, 4105, 12, 418, 859, 13, 785, 1600, 201, 198, 220, 220, 220, 6764, 2625, 32, 5301, 329, 886, 12, 1462, 12, 437, 26558, 3781, 1600, 201, 198, 220, 220, 220, 5964, 2625, 36393, 1600, 201, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 201, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 201, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 5805, 25104, 2953, 2640, 24115, 14, 25587, 17, 68, 1600, 201, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 22784, 201, 198, 220, 220, 220, 1398, 13350, 41888, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 24, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 28069, 10426, 7904, 7020, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 5413, 7904, 3964, 1, 201, 198, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 22, 3256, 201, 198, 220, 220, 220, 2721, 62, 47911, 41888, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 322, 12114, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 541, 7535, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18594, 6592, 17, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27215, 322, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9078, 6018, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9078, 6888, 6775, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 325, 397, 1211, 1, 201, 198, 220, 220, 220, 2361, 201, 198, 8, 201, 198 ]
2.251599
469
import cPickle model=cPickle.load(open('lstm_tanh_relu_[1468202263.38]_2_0.610.p')) cPickle.dump(model,open('model.bin.nlg','wb'))
[ 11748, 269, 31686, 293, 201, 198, 19849, 28, 66, 31686, 293, 13, 2220, 7, 9654, 10786, 75, 301, 76, 62, 38006, 71, 62, 260, 2290, 62, 58, 1415, 3104, 1238, 1828, 5066, 13, 2548, 60, 62, 17, 62, 15, 13, 39132, 13, 79, 6, 4008, 201, 198, 66, 31686, 293, 13, 39455, 7, 19849, 11, 9654, 10786, 19849, 13, 8800, 13, 21283, 70, 41707, 39346, 6, 4008 ]
1.970149
67
#! /usr/bin/python3 from . import get_best from . import math_helper
[ 2, 0, 1220, 14629, 14, 8800, 14, 29412, 18, 198, 198, 6738, 764, 1330, 651, 62, 13466, 198, 6738, 764, 1330, 10688, 62, 2978, 525, 198 ]
2.692308
26
from pathlib import Path from typing import Callable, Optional import numpy as np import torch from torch_geometric.data import Data, InMemoryDataset, download_url class Twitch(InMemoryDataset): r"""The Twitch Gamer networks introduced in the `"Multi-scale Attributed Node Embedding" <https://arxiv.org/abs/1909.13021>`_ paper. Nodes represent gamers on Twitch and edges are followerships between them. Node features represent embeddings of games played by the Twitch users. The task is to predict whether a user streams mature content. Args: root (string): Root directory where the dataset should be saved. name (string): The name of the dataset (:obj:`"DE"`, :obj:`"EN"`, :obj:`"ES"`, :obj:`"FR"`, :obj:`"PT"`, :obj:`"RU"`). transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before every access. (default: :obj:`None`) pre_transform (callable, optional): A function/transform that takes in an :obj:`torch_geometric.data.Data` object and returns a transformed version. The data object will be transformed before being saved to disk. (default: :obj:`None`) """ url = 'https://graphmining.ai/datasets/ptg/twitch' @property @property @property @property
[ 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 4889, 540, 11, 32233, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 198, 6738, 28034, 62, 469, 16996, 13, 7890, 1330, 6060, 11, 554, 30871, 27354, 292, 316, 11, 4321, 62, 6371, 628, 198, 4871, 23835, 7, 818, 30871, 27354, 292, 316, 2599, 198, 220, 220, 220, 374, 37811, 464, 23835, 19576, 7686, 5495, 287, 262, 198, 220, 220, 220, 4600, 1, 29800, 12, 9888, 3460, 6169, 19081, 13302, 6048, 278, 1, 198, 220, 220, 220, 1279, 5450, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1129, 2931, 13, 12952, 2481, 29, 63, 62, 3348, 13, 198, 220, 220, 220, 399, 4147, 2380, 15072, 319, 23835, 290, 13015, 389, 10569, 5748, 1022, 606, 13, 198, 220, 220, 220, 19081, 3033, 2380, 11525, 67, 654, 286, 1830, 2826, 416, 262, 23835, 2985, 13, 198, 220, 220, 220, 383, 4876, 318, 284, 4331, 1771, 257, 2836, 15190, 15345, 2695, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 357, 8841, 2599, 20410, 8619, 810, 262, 27039, 815, 307, 7448, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 357, 8841, 2599, 383, 1438, 286, 262, 27039, 357, 25, 26801, 25, 63, 1, 7206, 1, 47671, 1058, 26801, 25, 63, 1, 1677, 1, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 26801, 25, 63, 1, 1546, 1, 47671, 1058, 26801, 25, 63, 1, 10913, 1, 47671, 1058, 26801, 25, 63, 1, 11571, 1, 47671, 1058, 26801, 25, 63, 1, 49, 52, 1, 63, 737, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 357, 13345, 540, 11, 11902, 2599, 317, 2163, 14, 35636, 326, 2753, 287, 281, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 26801, 25, 63, 13165, 354, 62, 469, 16996, 13, 7890, 13, 6601, 63, 2134, 290, 5860, 257, 14434, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2196, 13, 383, 1366, 2134, 481, 307, 14434, 878, 790, 1895, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 25, 1058, 26801, 25, 63, 14202, 63, 8, 198, 220, 220, 220, 220, 220, 220, 220, 662, 62, 35636, 357, 13345, 540, 11, 11902, 2599, 317, 2163, 14, 35636, 326, 2753, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 1058, 26801, 25, 63, 13165, 354, 62, 469, 16996, 13, 7890, 13, 6601, 63, 2134, 290, 5860, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14434, 2196, 13, 383, 1366, 2134, 481, 307, 14434, 878, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 852, 7448, 284, 11898, 13, 357, 12286, 25, 1058, 26801, 25, 63, 14202, 63, 8, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 19016, 796, 705, 5450, 1378, 34960, 45374, 13, 1872, 14, 19608, 292, 1039, 14, 457, 70, 14, 31844, 6, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 198 ]
2.779468
526
import json from enum import Enum, unique @unique video_mapper = {item.value: item for item in Video.__members__.values() if item.enable} video_mapper_json = [] for item in Video.__members__.values(): if not item.enable: continue video_mapper_json.append({ 'label': item.label, 'value': item.value, }) video_mapper_json = json.dumps(video_mapper_json, ensure_ascii=False)
[ 11748, 33918, 198, 6738, 33829, 1330, 2039, 388, 11, 3748, 628, 198, 31, 34642, 628, 198, 15588, 62, 76, 11463, 796, 1391, 9186, 13, 8367, 25, 2378, 329, 2378, 287, 7623, 13, 834, 30814, 834, 13, 27160, 3419, 611, 2378, 13, 21633, 92, 198, 198, 15588, 62, 76, 11463, 62, 17752, 796, 17635, 198, 1640, 2378, 287, 7623, 13, 834, 30814, 834, 13, 27160, 33529, 198, 220, 220, 220, 611, 407, 2378, 13, 21633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 2008, 62, 76, 11463, 62, 17752, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18242, 10354, 2378, 13, 18242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 2378, 13, 8367, 11, 198, 220, 220, 220, 220, 32092, 198, 15588, 62, 76, 11463, 62, 17752, 796, 33918, 13, 67, 8142, 7, 15588, 62, 76, 11463, 62, 17752, 11, 4155, 62, 292, 979, 72, 28, 25101, 8, 198 ]
2.555556
162
# -*- coding: utf-8 -*- # # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Flags for commands in cloudasset.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import arg_parsers def AddContentTypeArgs(parser, required): """--content-type argument for asset export and get-history.""" if required: help_text = ( 'Asset content type. Choices are `resource`, `iam-policy`. ' 'Specifying `resource` will export resource metadata, and specifying ' '`iam-policy` will export IAM policy set on assets.') else: help_text = ( 'Asset content type. If specified, only content matching the ' 'specified type will be returned. Otherwise, no content but the ' 'asset name will be returned. Choices are `resource`, ' '`iam-policy`. Specifying `resource` will export resource ' 'metadata, and specifying `iam-policy` will export IAM policy set ' 'on assets.') parser.add_argument( '--content-type', required=required, choices=['resource', 'iam-policy'], help=help_text)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 1303, 198, 2, 15069, 2864, 3012, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 40053, 329, 9729, 287, 6279, 562, 316, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 23645, 17721, 21282, 74, 13, 13345, 72, 3008, 1330, 1822, 62, 79, 945, 364, 628, 628, 198, 198, 4299, 3060, 19746, 6030, 42035, 7, 48610, 11, 2672, 2599, 198, 220, 37227, 438, 11299, 12, 4906, 4578, 329, 11171, 10784, 290, 651, 12, 23569, 526, 15931, 198, 220, 611, 2672, 25, 198, 220, 220, 220, 1037, 62, 5239, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 45869, 2695, 2099, 13, 10031, 1063, 389, 4600, 31092, 47671, 4600, 1789, 12, 30586, 44646, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22882, 4035, 4600, 31092, 63, 481, 10784, 8271, 20150, 11, 290, 31577, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 63, 1789, 12, 30586, 63, 481, 10784, 314, 2390, 2450, 900, 319, 6798, 2637, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 1037, 62, 5239, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 45869, 2695, 2099, 13, 1002, 7368, 11, 691, 2695, 12336, 262, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 23599, 2099, 481, 307, 4504, 13, 15323, 11, 645, 2695, 475, 262, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 562, 316, 1438, 481, 307, 4504, 13, 10031, 1063, 389, 4600, 31092, 47671, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 63, 1789, 12, 30586, 44646, 220, 18291, 4035, 4600, 31092, 63, 481, 10784, 8271, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 38993, 11, 290, 31577, 4600, 1789, 12, 30586, 63, 481, 10784, 314, 2390, 2450, 900, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 261, 6798, 2637, 8, 628, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 705, 438, 11299, 12, 4906, 3256, 198, 220, 220, 220, 220, 220, 2672, 28, 35827, 11, 198, 220, 220, 220, 220, 220, 7747, 28, 17816, 31092, 3256, 705, 1789, 12, 30586, 6, 4357, 198, 220, 220, 220, 220, 220, 1037, 28, 16794, 62, 5239, 8, 628, 628, 628 ]
3.182994
541
""" Reading and writing JGF format graphs. """ ### IMPORTS import json ### CONSTANTS & DEFINES ### CODE ### # XXX: maybe look at a custom decoder/loader?
[ 37811, 198, 36120, 290, 3597, 449, 21713, 5794, 28770, 13, 198, 37811, 198, 198, 21017, 30023, 33002, 198, 198, 11748, 33918, 628, 198, 21017, 7102, 2257, 1565, 4694, 1222, 5550, 20032, 1546, 198, 198, 21017, 42714, 44386, 198, 220, 220, 1303, 27713, 25, 3863, 804, 379, 257, 2183, 875, 12342, 14, 29356, 30, 198 ]
3
54
#!/usr/bin/env python """ Test module for VOF with EV """ from __future__ import absolute_import from builtins import object from proteus.iproteus import * from proteus import Comm comm = Comm.get() Profiling.logLevel=2 Profiling.verbose=True import numpy as np import tables from . import thelper_vof from . import thelper_vof_p from . import thelper_vof_n
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 14402, 8265, 329, 569, 19238, 351, 8696, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 6738, 3170, 1040, 1330, 2134, 198, 6738, 5915, 385, 13, 541, 2519, 385, 1330, 1635, 198, 6738, 5915, 385, 1330, 1520, 198, 9503, 796, 1520, 13, 1136, 3419, 198, 15404, 4386, 13, 6404, 4971, 28, 17, 198, 15404, 4386, 13, 19011, 577, 28, 17821, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 8893, 198, 6738, 764, 1330, 262, 75, 525, 62, 85, 1659, 198, 6738, 764, 1330, 262, 75, 525, 62, 85, 1659, 62, 79, 198, 6738, 764, 1330, 262, 75, 525, 62, 85, 1659, 62, 77, 198 ]
3.016807
119
# Copyright (c) 2020 Mobvoi Inc. (authors: Fangjun Kuang) # Xiaomi Corporation (authors: Haowen Qiu) # # See ../../../LICENSE for clarification regarding multiple authors import torch # noqa import _k2 # The FSA properties are a bit-field; these constants can be used # with '&' to determine the properties. VALID = 0x01 # Valid from a formatting perspective NONEMPTY = 0x02 # Nonempty as in, has at least one arc. TOPSORTED = 0x04, # FSA is top-sorted, but possibly with # self-loops, dest_state >= src_state TOPSORTED_AND_ACYCLIC = 0x08 # Fsa is topsorted, dest_state > src_state ARC_SORTED = 0x10 # Fsa is arc-sorted: arcs leaving a state are are sorted by # label first and then on `dest_state`, see operator< in # struct Arc in /k2/csrc/fsa.h (Note: labels are treated as # uint32 for purpose of sorting!) ARC_SORTED_AND_DETERMINISTIC = 0x20 # Arcs leaving a given state are *strictly* # sorted by label, i.e. no duplicates with # the same label. EPSILON_FREE = 0x40 # Label zero (epsilon) is not present.. ACCESSIBLE = 0x80 # True if there are no obvious signs # of states not being accessible or # co-accessible, i.e. states with no # arcs entering them COACCESSIBLE = 0x0100 # True if there are no obvious signs of # states not being co-accessible, i.e. # i.e. states with no arcs leaving them ALL = 0x01FF def to_str(p: int) -> str: '''Convert properties to a string for debug purpose. Args: p: An integer returned by :func:`get_properties`. Returns: A string representation of the input properties. ''' return _k2.fsa_properties_as_str(p)
[ 2, 15069, 357, 66, 8, 220, 12131, 220, 16540, 13038, 72, 3457, 13, 220, 220, 220, 220, 220, 220, 220, 357, 41617, 25, 24468, 29741, 12554, 648, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46726, 10501, 357, 41617, 25, 9398, 322, 268, 1195, 16115, 8, 198, 2, 198, 2, 4091, 11485, 14, 40720, 40720, 43, 2149, 24290, 329, 31321, 5115, 3294, 7035, 198, 198, 11748, 28034, 220, 1303, 645, 20402, 198, 11748, 4808, 74, 17, 198, 198, 2, 383, 42894, 6608, 389, 257, 1643, 12, 3245, 26, 777, 38491, 460, 307, 973, 198, 2, 351, 705, 5, 6, 284, 5004, 262, 6608, 13, 198, 198, 23428, 2389, 796, 657, 87, 486, 220, 1303, 48951, 422, 257, 33313, 6650, 198, 45, 1340, 39494, 9936, 796, 657, 87, 2999, 220, 1303, 8504, 28920, 355, 287, 11, 468, 379, 1551, 530, 10389, 13, 198, 51, 30737, 9863, 1961, 796, 657, 87, 3023, 11, 220, 1303, 42894, 318, 1353, 12, 82, 9741, 11, 475, 5457, 351, 198, 2, 2116, 12, 5439, 2840, 11, 2244, 62, 5219, 18189, 12351, 62, 5219, 198, 51, 30737, 9863, 1961, 62, 6981, 62, 43300, 5097, 2149, 796, 657, 87, 2919, 220, 1303, 376, 11400, 318, 21246, 9741, 11, 2244, 62, 5219, 1875, 12351, 62, 5219, 198, 25793, 62, 50, 9863, 1961, 796, 657, 87, 940, 220, 1303, 376, 11400, 318, 10389, 12, 82, 9741, 25, 44606, 4305, 257, 1181, 389, 389, 23243, 416, 198, 2, 6167, 717, 290, 788, 319, 4600, 16520, 62, 5219, 47671, 766, 10088, 27, 287, 198, 2, 2878, 10173, 287, 1220, 74, 17, 14, 6359, 6015, 14, 9501, 64, 13, 71, 357, 6425, 25, 14722, 389, 5716, 355, 198, 2, 20398, 2624, 329, 4007, 286, 29407, 8133, 198, 198, 25793, 62, 50, 9863, 1961, 62, 6981, 62, 35, 2767, 1137, 23678, 8808, 2149, 796, 657, 87, 1238, 220, 1303, 943, 6359, 4305, 257, 1813, 1181, 389, 1635, 301, 2012, 306, 9, 198, 2, 23243, 416, 6167, 11, 1312, 13, 68, 13, 645, 14184, 16856, 351, 198, 2, 262, 976, 6167, 13, 198, 36, 3705, 4146, 1340, 62, 39274, 796, 657, 87, 1821, 220, 1303, 36052, 6632, 357, 538, 18217, 261, 8, 318, 407, 1944, 492, 198, 26861, 7597, 34563, 796, 657, 87, 1795, 220, 1303, 6407, 611, 612, 389, 645, 3489, 5895, 198, 2, 286, 2585, 407, 852, 9857, 393, 198, 2, 763, 12, 33780, 11, 1312, 13, 68, 13, 2585, 351, 645, 198, 2, 44606, 8218, 606, 198, 8220, 26861, 7597, 34563, 796, 657, 87, 39103, 220, 1303, 6407, 611, 612, 389, 645, 3489, 5895, 286, 198, 2, 2585, 407, 852, 763, 12, 33780, 11, 1312, 13, 68, 13, 198, 2, 1312, 13, 68, 13, 2585, 351, 645, 44606, 4305, 606, 198, 7036, 796, 657, 87, 486, 5777, 628, 198, 4299, 284, 62, 2536, 7, 79, 25, 493, 8, 4613, 965, 25, 198, 220, 220, 220, 705, 7061, 3103, 1851, 6608, 284, 257, 4731, 329, 14257, 4007, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 279, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 18253, 4504, 416, 1058, 20786, 25, 63, 1136, 62, 48310, 44646, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 317, 4731, 10552, 286, 262, 5128, 6608, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1441, 4808, 74, 17, 13, 9501, 64, 62, 48310, 62, 292, 62, 2536, 7, 79, 8, 198 ]
2.80789
583
# Database info MONGODB_DB_NAME = "NXS" MONGODB_MODELS_COLLECTION_NAME = "Models" MONGODB_PIPELINES_COLLECTION_NAME = "Pipelines" MONGODB_W4_MODEL_PROFILES_COLLECTION_NAME = "W4Profiles" # Storage info STORAGE_MODEL_PATH = "models" STORAGE_PREPROC_PATH = "preprocessing" STORAGE_POSTPROC_PATH = "postprocessing" STORAGE_TRANSFORM_PATH = "transforming" STORAGE_PREDEFINED_PREPROC_PATH = "w4preprocessing" STORAGE_PREDEFINED_POSTPROC_PATH = "w4postprocessing" STORAGE_PREDEFINED_TRANSFORM_PATH = "w4transforming" STORAGE_PREDEFINED_EXTRAS_PATH = "w4extras" # QUEUE INFO
[ 2, 24047, 7508, 198, 44, 18494, 3727, 33, 62, 11012, 62, 20608, 796, 366, 45, 55, 50, 1, 198, 44, 18494, 3727, 33, 62, 33365, 37142, 62, 25154, 16779, 2849, 62, 20608, 796, 366, 5841, 1424, 1, 198, 44, 18494, 3727, 33, 62, 47, 4061, 3698, 1268, 1546, 62, 25154, 16779, 2849, 62, 20608, 796, 366, 47, 541, 20655, 1, 198, 44, 18494, 3727, 33, 62, 54, 19, 62, 33365, 3698, 62, 4805, 19238, 4146, 1546, 62, 25154, 16779, 2849, 62, 20608, 796, 366, 54, 19, 15404, 2915, 1, 198, 198, 2, 20514, 7508, 198, 2257, 1581, 11879, 62, 33365, 3698, 62, 34219, 796, 366, 27530, 1, 198, 2257, 1581, 11879, 62, 46437, 4805, 4503, 62, 34219, 796, 366, 3866, 36948, 1, 198, 2257, 1581, 11879, 62, 32782, 4805, 4503, 62, 34219, 796, 366, 7353, 36948, 1, 198, 2257, 1581, 11879, 62, 5446, 15037, 21389, 62, 34219, 796, 366, 7645, 15464, 1, 198, 2257, 1581, 11879, 62, 4805, 1961, 36, 20032, 1961, 62, 46437, 4805, 4503, 62, 34219, 796, 366, 86, 19, 3866, 36948, 1, 198, 2257, 1581, 11879, 62, 4805, 1961, 36, 20032, 1961, 62, 32782, 4805, 4503, 62, 34219, 796, 366, 86, 19, 7353, 36948, 1, 198, 2257, 1581, 11879, 62, 4805, 1961, 36, 20032, 1961, 62, 5446, 15037, 21389, 62, 34219, 796, 366, 86, 19, 7645, 15464, 1, 198, 2257, 1581, 11879, 62, 4805, 1961, 36, 20032, 1961, 62, 6369, 5446, 1921, 62, 34219, 796, 366, 86, 19, 2302, 8847, 1, 198, 198, 2, 1195, 8924, 8924, 24890, 628, 628 ]
2.264822
253
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. class NetworkController(object): """Control network settings and servers to simulate the Web. Network changes include forwarding device ports to host platform ports. Web Page Replay is used to record and replay HTTP/HTTPS responses. """ def SetReplayArgs(self, archive_path, wpr_mode, netsim, extra_wpr_args, make_javascript_deterministic=False): """Save the arguments needed for replay.""" self._network_controller_backend.SetReplayArgs( archive_path, wpr_mode, netsim, extra_wpr_args, make_javascript_deterministic) def UpdateReplayForExistingBrowser(self): """Restart replay if needed for an existing browser. TODO(slamm): Drop this method when the browser_backend dependencies are moved to the platform. https://crbug.com/423962 """ self._network_controller_backend.UpdateReplay()
[ 2, 15069, 1946, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 628, 198, 4871, 7311, 22130, 7, 15252, 2599, 198, 220, 37227, 15988, 3127, 6460, 290, 9597, 284, 29308, 262, 5313, 13, 628, 220, 7311, 2458, 2291, 43448, 3335, 14090, 284, 2583, 3859, 14090, 13, 198, 220, 5313, 7873, 23635, 318, 973, 284, 1700, 290, 24788, 14626, 14, 6535, 28820, 9109, 13, 198, 220, 37227, 628, 220, 825, 5345, 3041, 1759, 42035, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15424, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 1050, 62, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31720, 320, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 86, 1050, 62, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 787, 62, 37495, 62, 67, 2357, 49228, 28, 25101, 2599, 198, 220, 220, 220, 37227, 16928, 262, 7159, 2622, 329, 24788, 526, 15931, 198, 220, 220, 220, 2116, 13557, 27349, 62, 36500, 62, 1891, 437, 13, 7248, 3041, 1759, 42035, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15424, 62, 6978, 11, 266, 1050, 62, 14171, 11, 31720, 320, 11, 3131, 62, 86, 1050, 62, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 787, 62, 37495, 62, 67, 2357, 49228, 8, 628, 220, 825, 10133, 3041, 1759, 1890, 3109, 9665, 46532, 7, 944, 2599, 198, 220, 220, 220, 37227, 19452, 433, 24788, 611, 2622, 329, 281, 4683, 6444, 13, 628, 220, 220, 220, 16926, 46, 7, 82, 11199, 2599, 14258, 428, 2446, 618, 262, 6444, 62, 1891, 437, 20086, 389, 198, 220, 220, 220, 3888, 284, 262, 3859, 13, 3740, 1378, 6098, 25456, 13, 785, 14, 43356, 4846, 17, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 27349, 62, 36500, 62, 1891, 437, 13, 10260, 3041, 1759, 3419, 198 ]
2.786432
398
import OPEN_WEATHER_KEYS from requests import get, exceptions from datetime import datetime # ---------------------------------------------------------------------------- """ Use the datetime library to convert an integer unix timestamp and a unix timezone offset to calculate string formated time and date. Inputs: dt -> Int unix time-code tz -> Int unix time-code timexone offset AM_PM -> Bool True: Convert to 12 hour clock Flase: Convert to 24 hour clock Output: Returns given time data as a formated string """ # ---------------------------------------------------------------------------- """ Use the requests library to make an API call to Open Weather. If the request is successful, return the requestd data as a JSON data set. If the request fails, return None data type. The None response is to be handled by the caller of the function """ # ---------------------------------------------------------------------------- """ When 'weather-bot.py' is run as a program, this is where the program starts. If another python file is currently the active project, this section is ignored. This is where I will test the weather-bot before it is added to the main Hermes Project. """ if __name__ == '__main__': weather_json = get_weather_json(OPEN_WEATHER_KEYS.lat, OPEN_WEATHER_KEYS.lon) if weather_json is not None: if 'current' in weather_json: print('Current Weather Forecast:') # Format available items # Format time data if 'dt' in weather_json['current']: print('\tCurrent Time:\t'+convert_time(weather_json['current']['dt'], weather_json['timezone_offset'], True)[11:]) if 'sunrise' in weather_json['current']: print('\tSunrise:\t'+convert_time(weather_json['current']['sunrise'], weather_json['timezone_offset'], True)[11:]) if 'sunset' in weather_json['current']: print('\tSunset:\t\t'+convert_time(weather_json['current']['sunset'], weather_json['timezone_offset'], True)[11:]) # Add line between time and temp data print(' ') # Format temperature data if 'temp' in weather_json['current']: print('\tCurrent Temp:\t'+str(weather_json['current']['temp'])+' F') if 'feels_like' in weather_json['current']: print('\tFeels Like:\t'+str(weather_json['current']['feels_like'])+' F') if 'dew_point' in weather_json['current']: print('\tDew Point:\t'+str(weather_json['current']['dew_point'])+' F') if 'pressure' in weather_json['current']: print('\tPressure:\t'+str(weather_json['current']['pressure'])+' hPa') # Add line between temp and sky data print(' ') # Format Sky Data if 'uvi' in weather_json['current']: print('\tUV Index:\t'+str(weather_json['current']['uvi'])+' ') if 'clouds' in weather_json['current']: print('\tCloud Cover:\t'+str(weather_json['current']['clouds'])+' %') if 'humidity' in weather_json['current']: print('\tHumidity:\t'+str(weather_json['current']['humidity'])+' %') if 'visibility' in weather_json['current']: print('\tVisibility:\t'+str(weather_json['current']['visibility'])+' meters') if 'weather' in weather_json['current']: if 'icon' in weather_json['current']['weather'][0]: icon_url = 'http://openweathermap.org/img/wn/' + \ weather_json['current']['weather'][0]['icon'] + \ '@2x.png' print(icon_url)
[ 11748, 38303, 62, 8845, 45226, 62, 7336, 16309, 198, 6738, 7007, 1330, 651, 11, 13269, 198, 6738, 4818, 8079, 1330, 4818, 8079, 628, 198, 2, 16529, 10541, 198, 37811, 198, 220, 220, 220, 5765, 262, 4818, 8079, 5888, 284, 10385, 281, 18253, 555, 844, 41033, 290, 257, 555, 844, 198, 220, 220, 220, 220, 220, 220, 220, 640, 11340, 11677, 284, 15284, 4731, 1296, 515, 640, 290, 3128, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 220, 220, 220, 220, 220, 4613, 2558, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 844, 640, 12, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 256, 89, 220, 220, 220, 220, 220, 4613, 2558, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 844, 640, 12, 8189, 640, 87, 505, 11677, 198, 220, 220, 220, 220, 220, 220, 220, 3001, 62, 5868, 220, 220, 4613, 347, 970, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 220, 38240, 284, 1105, 1711, 8801, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1610, 589, 25, 38240, 284, 1987, 1711, 8801, 198, 220, 220, 220, 25235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 1813, 640, 1366, 355, 257, 1296, 515, 4731, 198, 37811, 628, 198, 2, 16529, 10541, 198, 37811, 198, 220, 220, 220, 5765, 262, 7007, 5888, 284, 787, 281, 7824, 869, 284, 4946, 15615, 13, 1002, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 318, 4388, 11, 1441, 262, 2581, 67, 1366, 355, 257, 19449, 1366, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2581, 10143, 11, 1441, 6045, 1366, 2099, 13, 383, 6045, 2882, 318, 284, 198, 220, 220, 220, 220, 220, 220, 220, 307, 12118, 416, 262, 24955, 286, 262, 2163, 198, 37811, 628, 198, 2, 16529, 10541, 198, 37811, 198, 220, 220, 220, 1649, 705, 23563, 12, 13645, 13, 9078, 6, 318, 1057, 355, 257, 1430, 11, 428, 318, 810, 262, 1430, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4940, 13, 1002, 1194, 21015, 2393, 318, 3058, 262, 4075, 1628, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 428, 2665, 318, 9514, 13, 628, 220, 220, 220, 770, 318, 810, 314, 481, 1332, 262, 6193, 12, 13645, 878, 340, 318, 2087, 284, 262, 1388, 220, 198, 220, 220, 220, 220, 220, 220, 220, 41167, 4935, 13, 198, 37811, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 6193, 62, 17752, 796, 651, 62, 23563, 62, 17752, 7, 3185, 1677, 62, 8845, 45226, 62, 7336, 16309, 13, 15460, 11, 38303, 62, 8845, 45226, 62, 7336, 16309, 13, 14995, 8, 628, 220, 220, 220, 611, 6193, 62, 17752, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 14421, 6, 287, 6193, 62, 17752, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 11297, 15615, 4558, 2701, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18980, 1695, 3709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18980, 640, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 28664, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 11297, 3862, 7479, 83, 6, 10, 1102, 1851, 62, 2435, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 28664, 6, 4357, 6193, 62, 17752, 17816, 2435, 11340, 62, 28968, 6, 4357, 6407, 38381, 1157, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 19155, 17163, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 16012, 17163, 7479, 83, 6, 10, 1102, 1851, 62, 2435, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 19155, 17163, 6, 4357, 6193, 62, 17752, 17816, 2435, 11340, 62, 28968, 6, 4357, 6407, 38381, 1157, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 19155, 2617, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 16012, 2617, 7479, 83, 59, 83, 6, 10, 1102, 1851, 62, 2435, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 19155, 2617, 6, 4357, 6193, 62, 17752, 17816, 2435, 11340, 62, 28968, 6, 4357, 6407, 38381, 1157, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1627, 1022, 640, 290, 20218, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 705, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18980, 5951, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 29510, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 11297, 24189, 7479, 83, 6, 10, 2536, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 29510, 6, 12962, 10, 6, 376, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 5036, 1424, 62, 2339, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 14304, 1424, 4525, 7479, 83, 6, 10, 2536, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 5036, 1424, 62, 2339, 6, 12962, 10, 6, 376, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 67, 413, 62, 4122, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 35, 413, 6252, 7479, 83, 6, 10, 2536, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 67, 413, 62, 4122, 6, 12962, 10, 6, 376, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 36151, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 13800, 495, 7479, 83, 6, 10, 2536, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 36151, 6, 12962, 10, 6, 289, 28875, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1627, 1022, 20218, 290, 6766, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 705, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18980, 5274, 6060, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 84, 8903, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 31667, 12901, 7479, 83, 6, 10, 2536, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 84, 8903, 6, 12962, 10, 6, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 17721, 82, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 18839, 17546, 7479, 83, 6, 10, 2536, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 17721, 82, 6, 12962, 10, 6, 4064, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 17047, 17995, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 32661, 17995, 7479, 83, 6, 10, 2536, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 17047, 17995, 6, 12962, 10, 6, 4064, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 4703, 2247, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 15854, 2247, 7479, 83, 6, 10, 2536, 7, 23563, 62, 17752, 17816, 14421, 6, 7131, 6, 4703, 2247, 6, 12962, 10, 6, 10700, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 23563, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 4749, 6, 287, 6193, 62, 17752, 17816, 14421, 6, 7131, 6, 23563, 6, 7131, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7196, 62, 6371, 796, 705, 4023, 1378, 9654, 23563, 8899, 13, 2398, 14, 9600, 14, 675, 14, 6, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6193, 62, 17752, 17816, 14421, 6, 7131, 6, 23563, 6, 7131, 15, 7131, 6, 4749, 20520, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 17, 87, 13, 11134, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 4749, 62, 6371, 8 ]
2.290772
1,723
#!/usr/bin/env python############################################################################## #!/usr/bin/env python3 ############################################################################## # EVOLIFE http://evolife.telecom-paris.fr Jean-Louis Dessalles # # Telecom Paris 2021 www.dessalles.fr # # -------------------------------------------------------------------------- # # License: Creative Commons BY-NC-SA # ############################################################################## ############################################################################## # Alliances # ############################################################################## """ EVOLIFE: Module Alliances: Individuals inherit this class which determines who is friend with whom """ import sys if __name__ == '__main__': sys.path.append('../..') # for tests from Evolife.Tools.Tools import error class club: """ class club: list of individuals associated with their performance. The performance is used to decide who gets acquainted with whom. """ # def members(self): return self.__members def minimal(self): " returns the minimal performance among members " if self.size(): return min([T[1] for T in self]) return -1 def maximal(self): " returns the maximal performance among members " if self.size(): return max([T[1] for T in self]) return -1 def best(self): " returns the member with the best performance " # if self.size(): return self.ordered()[0] # if self.size(): return max([T for T in self.__members], key=lambda x: x[1])[0] if self.size(): return max(self, key=lambda x: x[1])[0] return None def worst(self): " returns the member with the worst performance " if self.size(): return self.ordered()[-1] return None def accepts(self, performance, conservative=True): " signals that the new individual can be accepted into the club " if self.size() >= self.sizeMax: if conservative and performance <= self.minimal(): return -1 # equality: priority given to former members elif performance < self.minimal(): return -1 # returning the rank that the candidate would be assigned # return sorted([performance] + self.performances(),reverse=True).index(performance) rank = self.size() - sorted([performance] + self.performances()).index(performance) if rank <= self.sizeMax: return rank error('Alliances', 'accept') def exits(self, oldMember): " a member goes out from the club " for (M,Perf) in self.__members[:]: # safe to copy the list as it is changed within the loop if M == oldMember: self.__members.remove((oldMember,Perf)) return True print('exiled: %s' % str(oldMember)) error('Alliances: non-member attempting to quit a club') return False def weakening(self, Factor = 0.9): # temporary value " all performances are reduced (represents temporal erosion) " for (M,Perf) in self.__members[:]: # safe to copy the list as it is changed within the loop self.__members.remove((M, Perf)) self.__members.append((M, Perf * Factor)) class Friend: """ class Friend: defines an individual's acqaintances """ ################################# # asymmetrical links # ################################# def affiliable(self, F_perf, conservative=True): " Checks whether affiliation is possible " return self.friends.accepts(F_perf, conservative=conservative) >= 0 def follow(self, F, F_perf, conservative=True, Quit=None): """ the individual wants to be F's disciple due to F's performance """ # print self.ID, "wants to follows", (F.ID, F_perf) if self.affiliable(F_perf, conservative=conservative): # the new friend is good enough RF = self.friends.enters(F, F_perf, conservative=conservative) # returns ejected old friend if RF is not None: # print('redundant friend of %s: %s' % (self, RF)) # print('self: %s' % self, ">>> self's friends: %s " % map(str, Friend.social_signature(self))) if Quit is None: Quit = self.quit_ Quit(RF) # some redundant friend is disowned return True else: return False # R = Friend in self.friends.names() # if R: print self.ID, 'is already following', Friend.ID def quit_(self, Friend=None): """ the individual no longer follows its friend """ if Friend is None: Friend = self.friends.worst() if Friend is not None: # print(self, 'quits ', Friend) self.friends.exits(Friend) def checkNetwork(self, membershipFunction=None): " updates links by forgetting friends that are gone " for F in self: if not membershipFunction(F): self.quit_(F) def detach(self): """ The individual quits all its friends """ for F in self: self.quit_(F) ################################# # symmetrical links # ################################# def get_friend(self, Offer, Partner, PartnerOffer): " Checks mutual acceptance before establishing friendship " if self.acquaintable(Offer, Partner, PartnerOffer): if not self.follow(Partner, PartnerOffer, Quit=self.end_friendship): error("Friend: self changed mind") if not Partner.follow(self, Offer, Quit=Partner.end_friendship): error("Friend: Partner changed mind") return True return False def acquainted(self, Partner): " same as get_friend/3 with no performance " return self.get_friend(0, Partner, 0) def end_friendship(self, Partner): " Partners remove each other from their address book " # print('\nsplitting up', self.ID, Partner.ID) self.quit_(Partner) Partner.quit_(self) def forgetAll(self): """ The individual quits its friends """ for F in self: self.end_friendship(F) class Follower(Friend): """ Augmented version of Friends for asymmetrical links - replaces 'Alliances'. 'Follower' in addition knows about who is following self """ def F_affiliable(self, perf, Guru, G_perf, conservative=True): " Checks whether affiliation is possible " A = self.affiliable(G_perf, conservative=conservative) # Guru is acceptable and ... if self.followers is not None: A &= Guru.followers.affiliable(perf, conservative=conservative) # ...self acceptable to Guru return A def F_follow(self, perf, G, G_perf, conservative=True): """ the individual wants to be G's disciple because of some of G's performance G may evaluate the individual's performance too """ # print '.', if self.F_affiliable(perf, G, G_perf, conservative=conservative): # ------ the new guru is good enough and the individual is good enough for the guru # print('%s (%s) is about to follow %s (%s)' % (self, list(map(str, self.social_signature())), G, list(map(str, G.social_signature())))) if not self.follow(G, G_perf, conservative=conservative, Quit=self.G_quit_): error("Alliances", "inconsistent guru") if G.followers is not None: if not G.followers.follow(self, perf, conservative=conservative, Quit=G.F_quit_): error('Alliances', "inconsistent self") # self.consistency() # G.consistency() return True else: return False def G_quit_(self, Guru): """ the individual no longer follows its guru """ # self.consistency() # Guru.consistency() self.quit_(Guru) if Guru.followers is not None: Guru.followers.quit_(self) def F_quit_(self, Follower): """ the individual does not want its disciple any longer """ if self.followers is not None: self.followers.quit_(Follower) Follower.quit_(self) else: error('Alliances', 'No Follower whatsoever') def get_friend(self, Offer, Partner, PartnerOffer): " Checks mutual acceptance before establishing friendship " if self.acquaintable(Offer, Partner, PartnerOffer): if not self.F_follow(Offer, Partner, PartnerOffer): error("Friend: self changed mind") if not Partner.F_follow(PartnerOffer, self, Offer): error("Friend: Partner changed mind") return True return False def end_friendship(self, Partner): " Partners remove each other from their address book " # print('\nsplitting up', self.ID, Partner.ID) # print(self.consistency(), Partner.consistency()) self.G_quit_(Partner) Partner.G_quit_(self) def detach(self): """ The individual quits its guru and its followers """ for G in self.names(): self.G_quit_(G) # G is erased from self's guru list if self.names() != []: error("Alliances: recalcitrant guru") if self.followers is not None: for F in self.followers.names(): self.F_quit_(F) # self is erased from F's guru list if self.followers.names() != []: error("Alliances: sticky followers") # # # # class Alliances(object): # # # # """ class Alliances: each agent stores both its gurus and its followers # # # # (This is an old class, kept for compatibility (and not tested) """ # # # # def __init__(self, MaxGurus, MaxFollowers): # # # # self.gurus = Friend(MaxGurus) # # # # self.followers = Friend(MaxFollowers) # # # # ################################# # # # # # hierarchical links # # # # # ################################# # # # # def affiliable(self, perf, Guru, G_perf, conservative=True): # # # # " Checks whether affiliation is possible " # # # # return self.gurus.affiliable(G_perf, conservative=conservative) \ # # # # and Guru.followers.affiliable(perf, conservative=conservative) # # # # def follow(self, perf, G, G_perf, conservative=True): # # # # """ the individual wants to be G's disciple because of some of G's performance # # # # G may evaluate the individual's performance too # # # # """ # # # # if self.affiliable(perf, G, G_perf, conservative=conservative): # # # # # the new guru is good enough and the individual is good enough for the guru # # # # self.gurus.follow(G, G_perf, conservative=conservative, Quit=self.quit_) # # # # G.followers.follow(self, perf, conservative=conservative, Quit=G.quit_) # # # # return True # # # # else: return False # # # # def quit_(self, Guru): # # # # """ the individual no longer follows its guru # # # # """ # # # # Guru.followers.quit_(self) # # # # self.gurus.quit_(Guru) # # # # def best_friend(self): return self.gurus.best_friend() # # # # def friends(self, ordered=True): return self.gurus.Friends(ordered=ordered) # # # # def nbFriends(self): return self.gurus.nbFriends() # # # # def nbFollowers(self): return self.followers.nbFriends() # # # # def lessening_friendship(self, Factor=0.9): # # # # self.gurus.lessening_friendship(Factor) # # # # def forgetAll(self): # # # # self.gurus.forgetAll() # # # # self.followers.forgetAll() # # # # ################################# # # # # # symmetrical links # # # # # ################################# # # # # def acquaintable(self, Partner, Deal): # # # # return self.affiliable(Deal, Partner, Deal) and Partner.affiliable(Deal, self, Deal) # # # # def get_friend(self, Offer, Partner, Return=None): # # # # " Checks mutual acceptance before establishing friendship " # # # # if Return is None: Return = Offer # # # # if self.affiliable(Offer, Partner, Return) and Partner.affiliable(Return, self, Offer): # # # # self.follow(Offer, Partner, Return) # # # # Partner.follow(Return, self, Offer) # # # # return True # # # # return False # # # # def best_friend_symmetry(self): # # # # " Checks whether self is its best friend's friend " # # # # BF = self.best_friend() # # # # if BF: return self == BF.best_friend() # # # # return False # # # # def restore_symmetry(self): # # # # " Makes sure that self is its friends' friend - Useful for symmmtrical relations " # # # # for F in self.gurus.names()[:]: # need to copy the list, as it is modified within the loop # # # # #print 'checking symmetry for %d' % F.ID, F.gurus.names() # # # # if self not in F.gurus.names(): # # # # print('%s quits %s ***** because absent from %s' % (self.ID, F.ID, str(F.gurus.names()))) # # # # self.quit_(F) # no hard feelings # # # # ################################# # # # # # link processing # # # # # ################################# # # # # def detach(self): # # # # """ The individual quits its guru and its followers # # # # """ # # # # for G in self.gurus.names(): self.quit_(G) # # # # for F in self.followers.names(): F.quit_(self) # # # # if self.gurus.names() != []: error("Alliances: recalcitrant guru") # # # # if self.followers.names() != []: error("Alliances: sticky followers") # # # # def consistency(self): # # # # if self.gurus.size() > self.gurus.sizeMax(): # # # # error("Alliances", "too many gurus: %d" % self.gurus.size()) # # # # if self.followers.size() > self.followers.sizeMax(): # # # # error("Alliances", "too many followers: %d" % self.followers.size()) # # # # for F in self.followers.names(): # # # # if self not in F.gurus.names(): # # # # error("Alliances: non following followers") # # # # if self == F: error("Alliances: Narcissism") # # # # ## print self.ID, ' is in ', F.ID, "'s guru list: ", [G.ID for G in F.gurus.names()] # # # # for G in self.gurus.names(): # # # # if self not in G.followers.names(): # # # # # print 'self: ',str(self), "self's gurus: ",Alliances.social_signature(self) # # # # # print 'guru: ',str(G), 'its followers: ',[str(F) for F in G.followers.names()] # # # # error("Alliances: unaware guru") # # # # if self == G: error("Alliances: narcissism") # # # # ## print self.ID, ' is in ', G.ID, "'s follower list: ", [F.ID for F in G.followers.names()] # # # # ## print '\t', self.ID, ' OK' # # # # if self.gurus.size() > 0: # # # # if not self.gurus.friends.present((self.gurus.best(), self.gurus.friends.maximal())): # # # # error("Alliances: best guru is ghost") # # # # def social_signature(self): # # # # ## return [F.ID for F in self.gurus.names()] # # # # return self.gurus.Friends() # # # # def signature(self): return self.social_signature() ############################### # Local Test # ############################### if __name__ == "__main__": print(__doc__ + '\n') print(Friend.__doc__ + '\n\n') raw_input('[Return]') __author__ = 'Dessalles'
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 29113, 29113, 7804, 4242, 2235, 198, 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 29113, 29113, 7804, 4242, 2235, 198, 2, 8696, 3535, 29150, 220, 2638, 1378, 1990, 349, 901, 13, 46813, 785, 12, 1845, 271, 13, 8310, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11320, 12, 32117, 360, 408, 439, 274, 220, 1303, 198, 2, 44021, 6342, 220, 33448, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7324, 13, 67, 408, 439, 274, 13, 8310, 220, 1303, 198, 2, 16529, 35937, 1303, 198, 2, 13789, 25, 220, 17404, 13815, 11050, 12, 7792, 12, 4090, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 29113, 29113, 7804, 4242, 2235, 628, 198, 29113, 29113, 7804, 4242, 2235, 198, 2, 220, 1439, 16097, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 29113, 29113, 7804, 4242, 2235, 198, 198, 37811, 8696, 3535, 29150, 25, 19937, 1439, 16097, 25, 198, 197, 197, 35392, 82, 16955, 428, 1398, 198, 197, 197, 4758, 15947, 508, 318, 1545, 351, 4150, 198, 37811, 198, 198, 11748, 25064, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 220, 25064, 13, 6978, 13, 33295, 10786, 40720, 492, 11537, 220, 1303, 329, 5254, 628, 198, 6738, 4319, 349, 901, 13, 33637, 13, 33637, 1330, 4049, 198, 198, 4871, 3430, 25, 198, 197, 37811, 1398, 3430, 25, 1351, 286, 3925, 3917, 351, 511, 2854, 13, 198, 197, 197, 464, 2854, 318, 973, 284, 5409, 508, 3011, 36620, 351, 4150, 13, 198, 197, 37811, 198, 197, 197, 198, 197, 2, 825, 1866, 7, 944, 2599, 197, 7783, 2116, 13, 834, 30814, 628, 197, 4299, 10926, 7, 944, 2599, 198, 197, 197, 1, 5860, 262, 10926, 2854, 1871, 1866, 366, 198, 197, 197, 361, 2116, 13, 7857, 33529, 197, 7783, 949, 26933, 51, 58, 16, 60, 329, 309, 287, 2116, 12962, 198, 197, 197, 7783, 532, 16, 628, 197, 4299, 40708, 7, 944, 2599, 198, 197, 197, 1, 5860, 262, 40708, 2854, 1871, 1866, 366, 197, 197, 198, 197, 197, 361, 2116, 13, 7857, 33529, 197, 7783, 3509, 26933, 51, 58, 16, 60, 329, 309, 287, 2116, 12962, 198, 197, 197, 7783, 532, 16, 628, 197, 4299, 1266, 7, 944, 2599, 198, 197, 197, 1, 5860, 262, 2888, 351, 262, 1266, 2854, 366, 198, 197, 197, 2, 611, 2116, 13, 7857, 33529, 197, 7783, 2116, 13, 24071, 3419, 58, 15, 60, 198, 197, 197, 2, 611, 2116, 13, 7857, 33529, 197, 7783, 3509, 26933, 51, 329, 309, 287, 2116, 13, 834, 30814, 4357, 1994, 28, 50033, 2124, 25, 2124, 58, 16, 12962, 58, 15, 60, 198, 197, 197, 361, 2116, 13, 7857, 33529, 197, 7783, 3509, 7, 944, 11, 1994, 28, 50033, 2124, 25, 2124, 58, 16, 12962, 58, 15, 60, 198, 197, 197, 7783, 6045, 628, 197, 4299, 5290, 7, 944, 2599, 198, 197, 197, 1, 5860, 262, 2888, 351, 262, 5290, 2854, 366, 198, 197, 197, 361, 2116, 13, 7857, 33529, 197, 7783, 2116, 13, 24071, 3419, 58, 12, 16, 60, 198, 197, 197, 7783, 6045, 628, 197, 4299, 18178, 7, 944, 11, 2854, 11, 5940, 28, 17821, 2599, 198, 197, 197, 1, 10425, 326, 262, 649, 1981, 460, 307, 6292, 656, 262, 3430, 366, 198, 197, 197, 361, 2116, 13, 7857, 3419, 18189, 2116, 13, 7857, 11518, 25, 198, 197, 197, 197, 361, 5940, 290, 2854, 19841, 2116, 13, 1084, 4402, 33529, 198, 197, 197, 197, 197, 7783, 532, 16, 220, 220, 1303, 10537, 25, 8475, 1813, 284, 1966, 1866, 198, 197, 197, 197, 417, 361, 2854, 1279, 2116, 13, 1084, 4402, 33529, 197, 7783, 532, 16, 198, 197, 197, 2, 8024, 262, 4279, 326, 262, 4540, 561, 307, 8686, 198, 197, 197, 2, 220, 1441, 23243, 26933, 26585, 60, 1343, 2116, 13, 525, 687, 1817, 22784, 50188, 28, 17821, 737, 9630, 7, 26585, 8, 198, 197, 197, 43027, 796, 2116, 13, 7857, 3419, 532, 23243, 26933, 26585, 60, 1343, 2116, 13, 525, 687, 1817, 3419, 737, 9630, 7, 26585, 8, 198, 197, 197, 361, 4279, 19841, 2116, 13, 7857, 11518, 25, 197, 7783, 4279, 198, 197, 197, 18224, 10786, 3237, 16097, 3256, 705, 13635, 11537, 628, 197, 4299, 30151, 7, 944, 11, 1468, 27608, 2599, 198, 197, 197, 1, 257, 2888, 2925, 503, 422, 262, 3430, 366, 198, 197, 197, 1640, 357, 44, 11, 5990, 69, 8, 287, 2116, 13, 834, 30814, 58, 25, 5974, 220, 1303, 3338, 284, 4866, 262, 1351, 355, 340, 318, 3421, 1626, 262, 9052, 198, 197, 197, 197, 361, 337, 6624, 1468, 27608, 25, 198, 197, 197, 197, 197, 944, 13, 834, 30814, 13, 28956, 19510, 727, 27608, 11, 5990, 69, 4008, 198, 197, 197, 197, 197, 7783, 6407, 198, 197, 197, 4798, 10786, 1069, 3902, 25, 4064, 82, 6, 4064, 965, 7, 727, 27608, 4008, 198, 197, 197, 18224, 10786, 3237, 16097, 25, 1729, 12, 19522, 9361, 284, 11238, 257, 3430, 11537, 198, 197, 197, 7783, 10352, 628, 197, 4299, 34992, 7, 944, 11, 27929, 796, 657, 13, 24, 2599, 220, 1303, 8584, 1988, 198, 197, 197, 1, 477, 13289, 389, 5322, 357, 7856, 6629, 21964, 29337, 8, 220, 366, 198, 197, 197, 1640, 357, 44, 11, 5990, 69, 8, 287, 2116, 13, 834, 30814, 58, 25, 5974, 220, 1303, 3338, 284, 4866, 262, 1351, 355, 340, 318, 3421, 1626, 262, 9052, 198, 197, 197, 197, 944, 13, 834, 30814, 13, 28956, 19510, 44, 11, 2448, 69, 4008, 198, 197, 197, 197, 944, 13, 834, 30814, 13, 33295, 19510, 44, 11, 2448, 69, 1635, 27929, 4008, 198, 198, 4871, 9182, 25, 198, 197, 37811, 197, 4871, 9182, 25, 15738, 281, 1981, 338, 936, 80, 2913, 1817, 220, 198, 197, 37811, 198, 197, 198, 197, 29113, 2, 198, 197, 2, 30372, 34546, 6117, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 197, 29113, 2, 198, 197, 198, 197, 4299, 8349, 540, 7, 944, 11, 376, 62, 525, 69, 11, 5940, 28, 17821, 2599, 198, 197, 197, 1, 47719, 1771, 26218, 318, 1744, 366, 198, 197, 197, 7783, 197, 944, 13, 36154, 13, 13635, 82, 7, 37, 62, 525, 69, 11, 5940, 28, 43218, 8, 18189, 657, 628, 197, 4299, 1061, 7, 944, 11, 376, 11, 376, 62, 525, 69, 11, 5940, 28, 17821, 11, 48887, 28, 14202, 2599, 198, 197, 197, 37811, 262, 1981, 3382, 284, 307, 376, 338, 35567, 2233, 284, 376, 338, 2854, 198, 197, 197, 37811, 198, 197, 197, 2, 3601, 2116, 13, 2389, 11, 366, 86, 1187, 284, 5679, 1600, 357, 37, 13, 2389, 11, 376, 62, 525, 69, 8, 198, 197, 197, 361, 2116, 13, 2001, 2403, 540, 7, 37, 62, 525, 69, 11, 5940, 28, 43218, 2599, 198, 197, 197, 197, 2, 262, 649, 1545, 318, 922, 1576, 198, 197, 197, 197, 32754, 796, 2116, 13, 36154, 13, 298, 364, 7, 37, 11, 376, 62, 525, 69, 11, 5940, 28, 43218, 8, 197, 2, 5860, 38632, 1468, 1545, 198, 197, 197, 197, 361, 20445, 318, 407, 6045, 25, 198, 197, 197, 197, 197, 2, 3601, 10786, 445, 917, 415, 1545, 286, 4064, 82, 25, 4064, 82, 6, 4064, 357, 944, 11, 20445, 4008, 198, 197, 197, 197, 197, 2, 3601, 10786, 944, 25, 4064, 82, 6, 4064, 2116, 11, 366, 33409, 2116, 338, 2460, 25, 4064, 82, 366, 4064, 3975, 7, 2536, 11, 9182, 13, 14557, 62, 12683, 1300, 7, 944, 22305, 198, 197, 197, 197, 197, 361, 48887, 318, 6045, 25, 48887, 796, 2116, 13, 47391, 62, 198, 197, 197, 197, 197, 4507, 270, 7, 32754, 8, 220, 220, 1303, 617, 30806, 1545, 318, 595, 11990, 198, 197, 197, 197, 7783, 6407, 198, 197, 197, 17772, 25, 197, 7783, 10352, 198, 197, 197, 2, 371, 796, 9182, 287, 2116, 13, 36154, 13, 14933, 3419, 198, 197, 197, 2, 611, 371, 25, 3601, 2116, 13, 2389, 11, 705, 271, 1541, 1708, 3256, 9182, 13, 2389, 198, 197, 198, 197, 4299, 11238, 41052, 944, 11, 9182, 28, 14202, 2599, 198, 197, 197, 37811, 262, 1981, 645, 2392, 5679, 663, 1545, 198, 197, 197, 37811, 198, 197, 197, 361, 9182, 318, 6045, 25, 9182, 796, 2116, 13, 36154, 13, 41430, 3419, 198, 197, 197, 361, 9182, 318, 407, 6045, 25, 198, 197, 197, 197, 2, 3601, 7, 944, 11, 705, 421, 896, 46083, 9182, 8, 198, 197, 197, 197, 944, 13, 36154, 13, 1069, 896, 7, 23331, 8, 628, 197, 4299, 2198, 26245, 7, 944, 11, 9931, 22203, 28, 14202, 2599, 198, 197, 197, 1, 5992, 6117, 416, 32012, 2460, 326, 389, 3750, 366, 198, 197, 197, 1640, 376, 287, 2116, 25, 198, 197, 197, 197, 361, 407, 9931, 22203, 7, 37, 2599, 197, 944, 13, 47391, 41052, 37, 8, 198, 197, 197, 198, 197, 4299, 48224, 7, 944, 2599, 198, 197, 197, 37811, 383, 1981, 627, 896, 477, 663, 2460, 197, 37811, 198, 197, 197, 1640, 376, 287, 2116, 25, 197, 944, 13, 47391, 41052, 37, 8, 198, 197, 197, 198, 197, 29113, 2, 198, 197, 2, 23606, 34546, 6117, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 197, 29113, 2, 198, 197, 198, 197, 4299, 651, 62, 6726, 7, 944, 11, 33085, 11, 35532, 11, 35532, 9362, 263, 2599, 198, 197, 197, 1, 47719, 13584, 13427, 878, 15010, 14738, 366, 198, 197, 197, 361, 2116, 13, 43561, 2913, 540, 7, 9362, 263, 11, 35532, 11, 35532, 9362, 263, 2599, 198, 197, 197, 197, 361, 407, 2116, 13, 27780, 7, 7841, 1008, 11, 35532, 9362, 263, 11, 48887, 28, 944, 13, 437, 62, 6726, 6720, 2599, 198, 197, 197, 197, 197, 18224, 7203, 23331, 25, 2116, 3421, 2000, 4943, 198, 197, 197, 197, 361, 407, 35532, 13, 27780, 7, 944, 11, 33085, 11, 48887, 28, 7841, 1008, 13, 437, 62, 6726, 6720, 2599, 198, 197, 197, 197, 197, 18224, 7203, 23331, 25, 35532, 3421, 2000, 4943, 198, 197, 197, 197, 7783, 6407, 198, 197, 197, 7783, 10352, 198, 197, 197, 198, 197, 4299, 36620, 7, 944, 11, 35532, 2599, 198, 197, 197, 1, 976, 355, 651, 62, 6726, 14, 18, 351, 645, 2854, 366, 198, 197, 197, 7783, 2116, 13, 1136, 62, 6726, 7, 15, 11, 35532, 11, 657, 8, 198, 197, 197, 198, 197, 4299, 886, 62, 6726, 6720, 7, 944, 11, 35532, 2599, 198, 197, 197, 1, 14205, 4781, 1123, 584, 422, 511, 2209, 1492, 366, 198, 197, 197, 2, 3601, 10786, 59, 5907, 489, 2535, 510, 3256, 2116, 13, 2389, 11, 35532, 13, 2389, 8, 198, 197, 197, 944, 13, 47391, 41052, 7841, 1008, 8, 198, 197, 197, 7841, 1008, 13, 47391, 41052, 944, 8, 628, 197, 4299, 6044, 3237, 7, 944, 2599, 198, 197, 197, 37811, 383, 1981, 627, 896, 663, 2460, 197, 37811, 198, 197, 197, 1640, 376, 287, 2116, 25, 197, 944, 13, 437, 62, 6726, 6720, 7, 37, 8, 198, 198, 4871, 376, 47030, 7, 23331, 2599, 198, 197, 37811, 2447, 12061, 2196, 286, 14213, 329, 30372, 34546, 6117, 532, 24020, 705, 3237, 16097, 4458, 198, 197, 197, 6, 37, 47030, 6, 287, 3090, 4206, 546, 508, 318, 1708, 2116, 198, 197, 37811, 198, 197, 198, 197, 4299, 376, 62, 2001, 2403, 540, 7, 944, 11, 23035, 11, 38749, 11, 402, 62, 525, 69, 11, 5940, 28, 17821, 2599, 198, 197, 197, 1, 47719, 1771, 26218, 318, 1744, 366, 198, 197, 197, 32, 796, 2116, 13, 2001, 2403, 540, 7, 38, 62, 525, 69, 11, 5940, 28, 43218, 8, 197, 2, 38749, 318, 10909, 290, 2644, 198, 197, 197, 361, 2116, 13, 27780, 364, 318, 407, 6045, 25, 197, 198, 197, 197, 197, 32, 1222, 28, 38749, 13, 27780, 364, 13, 2001, 2403, 540, 7, 525, 69, 11, 5940, 28, 43218, 8, 197, 2, 2644, 944, 10909, 284, 38749, 198, 197, 197, 7783, 317, 198, 197, 198, 197, 4299, 376, 62, 27780, 7, 944, 11, 23035, 11, 402, 11, 402, 62, 525, 69, 11, 5940, 28, 17821, 2599, 198, 197, 197, 37811, 262, 1981, 3382, 284, 307, 402, 338, 35567, 780, 286, 617, 286, 402, 338, 2854, 198, 197, 197, 197, 38, 743, 13446, 262, 1981, 338, 2854, 1165, 198, 197, 197, 37811, 198, 197, 197, 2, 3601, 705, 2637, 11, 198, 197, 197, 361, 2116, 13, 37, 62, 2001, 2403, 540, 7, 525, 69, 11, 402, 11, 402, 62, 525, 69, 11, 5940, 28, 43218, 2599, 198, 197, 197, 197, 2, 40103, 262, 649, 35730, 318, 922, 1576, 290, 262, 1981, 318, 922, 1576, 329, 262, 35730, 198, 197, 197, 197, 2, 3601, 10786, 4, 82, 37633, 82, 8, 318, 546, 284, 1061, 4064, 82, 37633, 82, 33047, 4064, 357, 944, 11, 1351, 7, 8899, 7, 2536, 11, 2116, 13, 14557, 62, 12683, 1300, 28955, 828, 402, 11, 1351, 7, 8899, 7, 2536, 11, 402, 13, 14557, 62, 12683, 1300, 3419, 35514, 198, 197, 197, 197, 361, 407, 2116, 13, 27780, 7, 38, 11, 402, 62, 525, 69, 11, 5940, 28, 43218, 11, 48887, 28, 944, 13, 38, 62, 47391, 62, 2599, 198, 197, 197, 197, 197, 18224, 7203, 3237, 16097, 1600, 366, 1939, 684, 7609, 35730, 4943, 198, 197, 197, 197, 361, 402, 13, 27780, 364, 318, 407, 6045, 25, 197, 198, 197, 197, 197, 197, 361, 407, 402, 13, 27780, 364, 13, 27780, 7, 944, 11, 23035, 11, 5940, 28, 43218, 11, 48887, 28, 38, 13, 37, 62, 47391, 62, 2599, 198, 197, 197, 197, 197, 197, 18224, 10786, 3237, 16097, 3256, 366, 1939, 684, 7609, 2116, 4943, 198, 197, 197, 197, 197, 2, 2116, 13, 5936, 396, 1387, 3419, 198, 197, 197, 197, 197, 2, 402, 13, 5936, 396, 1387, 3419, 198, 197, 197, 197, 7783, 6407, 198, 197, 197, 17772, 25, 197, 7783, 10352, 628, 197, 4299, 402, 62, 47391, 41052, 944, 11, 38749, 2599, 198, 197, 197, 37811, 262, 1981, 645, 2392, 5679, 663, 35730, 198, 197, 197, 37811, 198, 197, 197, 2, 2116, 13, 5936, 396, 1387, 3419, 198, 197, 197, 2, 38749, 13, 5936, 396, 1387, 3419, 198, 197, 197, 944, 13, 47391, 41052, 38, 14717, 8, 198, 197, 197, 361, 38749, 13, 27780, 364, 318, 407, 6045, 25, 220, 197, 38, 14717, 13, 27780, 364, 13, 47391, 41052, 944, 8, 628, 197, 4299, 376, 62, 47391, 41052, 944, 11, 376, 47030, 2599, 198, 197, 197, 37811, 262, 1981, 857, 407, 765, 663, 35567, 597, 2392, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 27780, 364, 318, 407, 6045, 25, 220, 197, 198, 197, 197, 197, 944, 13, 27780, 364, 13, 47391, 41052, 37, 47030, 8, 198, 197, 197, 197, 37, 47030, 13, 47391, 41052, 944, 8, 198, 197, 197, 17772, 25, 197, 18224, 10786, 3237, 16097, 3256, 705, 2949, 376, 47030, 16014, 11537, 628, 197, 4299, 651, 62, 6726, 7, 944, 11, 33085, 11, 35532, 11, 35532, 9362, 263, 2599, 198, 197, 197, 1, 47719, 13584, 13427, 878, 15010, 14738, 366, 198, 197, 197, 361, 2116, 13, 43561, 2913, 540, 7, 9362, 263, 11, 35532, 11, 35532, 9362, 263, 2599, 198, 197, 197, 197, 361, 407, 2116, 13, 37, 62, 27780, 7, 9362, 263, 11, 35532, 11, 35532, 9362, 263, 2599, 198, 197, 197, 197, 197, 18224, 7203, 23331, 25, 2116, 3421, 2000, 4943, 198, 197, 197, 197, 361, 407, 35532, 13, 37, 62, 27780, 7, 7841, 1008, 9362, 263, 11, 2116, 11, 33085, 2599, 198, 197, 197, 197, 197, 18224, 7203, 23331, 25, 35532, 3421, 2000, 4943, 198, 197, 197, 197, 7783, 6407, 198, 197, 197, 7783, 10352, 198, 197, 197, 198, 197, 4299, 886, 62, 6726, 6720, 7, 944, 11, 35532, 2599, 198, 197, 197, 1, 14205, 4781, 1123, 584, 422, 511, 2209, 1492, 366, 198, 197, 197, 2, 3601, 10786, 59, 5907, 489, 2535, 510, 3256, 2116, 13, 2389, 11, 35532, 13, 2389, 8, 198, 197, 197, 2, 3601, 7, 944, 13, 5936, 396, 1387, 22784, 35532, 13, 5936, 396, 1387, 28955, 197, 197, 198, 197, 197, 944, 13, 38, 62, 47391, 41052, 7841, 1008, 8, 198, 197, 197, 7841, 1008, 13, 38, 62, 47391, 41052, 944, 8, 628, 197, 4299, 48224, 7, 944, 2599, 198, 197, 197, 37811, 383, 1981, 627, 896, 663, 35730, 290, 663, 10569, 198, 197, 197, 37811, 198, 197, 197, 1640, 402, 287, 2116, 13, 14933, 33529, 197, 197, 944, 13, 38, 62, 47391, 41052, 38, 8, 197, 2, 402, 318, 33588, 422, 2116, 338, 35730, 1351, 198, 197, 197, 361, 2116, 13, 14933, 3419, 14512, 685, 5974, 197, 197, 18224, 7203, 3237, 16097, 25, 42653, 47992, 5250, 35730, 4943, 198, 197, 197, 361, 2116, 13, 27780, 364, 318, 407, 6045, 25, 198, 197, 197, 197, 1640, 376, 287, 2116, 13, 27780, 364, 13, 14933, 33529, 197, 944, 13, 37, 62, 47391, 41052, 37, 8, 197, 2, 2116, 318, 33588, 422, 376, 338, 35730, 1351, 198, 197, 197, 197, 361, 2116, 13, 27780, 364, 13, 14933, 3419, 14512, 685, 5974, 197, 18224, 7203, 3237, 16097, 25, 23408, 220, 10569, 4943, 198, 197, 197, 198, 2, 1303, 1303, 1303, 1398, 1439, 16097, 7, 15252, 2599, 198, 197, 2, 1303, 1303, 1303, 37227, 197, 4871, 1439, 16097, 25, 1123, 5797, 7000, 1111, 663, 308, 31891, 290, 663, 10569, 220, 198, 197, 197, 2, 1303, 1303, 1303, 357, 1212, 318, 281, 1468, 1398, 11, 4030, 329, 17764, 357, 392, 407, 6789, 8, 197, 37811, 628, 197, 2, 1303, 1303, 1303, 825, 11593, 15003, 834, 7, 944, 11, 5436, 38, 31891, 11, 5436, 7155, 364, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 70, 31891, 796, 9182, 7, 11518, 38, 31891, 8, 198, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 27780, 364, 796, 9182, 7, 11518, 7155, 364, 8, 628, 197, 2, 1303, 1303, 1303, 1303, 29113, 198, 197, 2, 1303, 1303, 1303, 1303, 38958, 6117, 197, 197, 197, 2, 198, 197, 2, 1303, 1303, 1303, 1303, 29113, 198, 197, 198, 197, 2, 1303, 1303, 1303, 825, 8349, 540, 7, 944, 11, 23035, 11, 38749, 11, 402, 62, 525, 69, 11, 5940, 28, 17821, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 366, 47719, 1771, 26218, 318, 1744, 366, 198, 197, 197, 2, 1303, 1303, 1303, 1441, 197, 944, 13, 70, 31891, 13, 2001, 2403, 540, 7, 38, 62, 525, 69, 11, 5940, 28, 43218, 8, 3467, 198, 197, 197, 197, 2, 1303, 1303, 1303, 290, 197, 38, 14717, 13, 27780, 364, 13, 2001, 2403, 540, 7, 525, 69, 11, 5940, 28, 43218, 8, 198, 197, 198, 197, 2, 1303, 1303, 1303, 825, 1061, 7, 944, 11, 23035, 11, 402, 11, 402, 62, 525, 69, 11, 5940, 28, 17821, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 37227, 262, 1981, 3382, 284, 307, 402, 338, 35567, 780, 286, 617, 286, 402, 338, 2854, 198, 197, 197, 197, 2, 1303, 1303, 1303, 402, 743, 13446, 262, 1981, 338, 2854, 1165, 198, 197, 197, 2, 1303, 1303, 1303, 37227, 198, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 13, 2001, 2403, 540, 7, 525, 69, 11, 402, 11, 402, 62, 525, 69, 11, 5940, 28, 43218, 2599, 198, 197, 197, 197, 2, 1303, 1303, 1303, 1303, 262, 649, 35730, 318, 922, 1576, 290, 262, 1981, 318, 922, 1576, 329, 262, 35730, 198, 197, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 70, 31891, 13, 27780, 7, 38, 11, 402, 62, 525, 69, 11, 5940, 28, 43218, 11, 48887, 28, 944, 13, 47391, 62, 8, 198, 197, 197, 197, 2, 1303, 1303, 1303, 402, 13, 27780, 364, 13, 27780, 7, 944, 11, 23035, 11, 5940, 28, 43218, 11, 48887, 28, 38, 13, 47391, 62, 8, 198, 197, 197, 197, 2, 1303, 1303, 1303, 1441, 6407, 198, 197, 197, 2, 1303, 1303, 1303, 2073, 25, 197, 7783, 10352, 628, 197, 2, 1303, 1303, 1303, 825, 11238, 41052, 944, 11, 38749, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 37227, 262, 1981, 645, 2392, 5679, 663, 35730, 198, 197, 197, 2, 1303, 1303, 1303, 37227, 198, 197, 197, 2, 1303, 1303, 1303, 38749, 13, 27780, 364, 13, 47391, 41052, 944, 8, 198, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 70, 31891, 13, 47391, 41052, 38, 14717, 8, 628, 197, 2, 1303, 1303, 1303, 825, 1266, 62, 6726, 7, 944, 2599, 197, 7783, 2116, 13, 70, 31891, 13, 13466, 62, 6726, 3419, 198, 197, 198, 197, 2, 1303, 1303, 1303, 825, 2460, 7, 944, 11, 6149, 28, 17821, 2599, 197, 7783, 2116, 13, 70, 31891, 13, 36705, 7, 24071, 28, 24071, 8, 628, 197, 2, 1303, 1303, 1303, 825, 299, 65, 36705, 7, 944, 2599, 197, 7783, 2116, 13, 70, 31891, 13, 46803, 36705, 3419, 628, 197, 2, 1303, 1303, 1303, 825, 299, 65, 7155, 364, 7, 944, 2599, 197, 7783, 2116, 13, 27780, 364, 13, 46803, 36705, 3419, 628, 197, 2, 1303, 1303, 1303, 825, 1342, 3101, 62, 6726, 6720, 7, 944, 11, 27929, 28, 15, 13, 24, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 70, 31891, 13, 1203, 3101, 62, 6726, 6720, 7, 41384, 8, 197, 197, 197, 197, 197, 628, 197, 2, 1303, 1303, 1303, 825, 6044, 3237, 7, 944, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 70, 31891, 13, 1640, 1136, 3237, 3419, 198, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 27780, 364, 13, 1640, 1136, 3237, 3419, 628, 197, 2, 1303, 1303, 1303, 1303, 29113, 198, 197, 2, 1303, 1303, 1303, 1303, 23606, 34546, 6117, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 197, 2, 1303, 1303, 1303, 1303, 29113, 198, 197, 198, 197, 2, 1303, 1303, 1303, 825, 24852, 540, 7, 944, 11, 35532, 11, 15138, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 1441, 2116, 13, 2001, 2403, 540, 7, 45776, 11, 35532, 11, 15138, 8, 290, 35532, 13, 2001, 2403, 540, 7, 45776, 11, 2116, 11, 15138, 8, 198, 197, 198, 197, 2, 1303, 1303, 1303, 825, 651, 62, 6726, 7, 944, 11, 33085, 11, 35532, 11, 8229, 28, 14202, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 366, 47719, 13584, 13427, 878, 15010, 14738, 366, 198, 197, 197, 2, 1303, 1303, 1303, 611, 8229, 318, 6045, 25, 197, 13615, 796, 33085, 198, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 13, 2001, 2403, 540, 7, 9362, 263, 11, 35532, 11, 8229, 8, 290, 35532, 13, 2001, 2403, 540, 7, 13615, 11, 2116, 11, 33085, 2599, 198, 197, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 27780, 7, 9362, 263, 11, 35532, 11, 8229, 8, 198, 197, 197, 197, 2, 1303, 1303, 1303, 35532, 13, 27780, 7, 13615, 11, 2116, 11, 33085, 8, 198, 197, 197, 197, 2, 1303, 1303, 1303, 1441, 6407, 198, 197, 197, 2, 1303, 1303, 1303, 1441, 10352, 198, 197, 198, 197, 2, 1303, 1303, 1303, 825, 1266, 62, 6726, 62, 1837, 3020, 11973, 7, 944, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 366, 47719, 1771, 2116, 318, 663, 1266, 1545, 338, 1545, 366, 198, 197, 197, 2, 1303, 1303, 1303, 41646, 796, 2116, 13, 13466, 62, 6726, 3419, 198, 197, 197, 2, 1303, 1303, 1303, 611, 41646, 25, 220, 1441, 2116, 6624, 41646, 13, 13466, 62, 6726, 3419, 198, 197, 197, 2, 1303, 1303, 1303, 1441, 10352, 198, 197, 198, 197, 2, 1303, 1303, 1303, 825, 11169, 62, 1837, 3020, 11973, 7, 944, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 366, 27433, 1654, 326, 2116, 318, 663, 2460, 6, 1545, 532, 49511, 329, 23606, 76, 2213, 605, 2316, 366, 198, 197, 197, 2, 1303, 1303, 1303, 329, 376, 287, 2116, 13, 70, 31891, 13, 14933, 3419, 58, 25, 5974, 197, 1303, 761, 284, 4866, 262, 1351, 11, 355, 340, 318, 9518, 1626, 262, 9052, 198, 197, 197, 197, 2, 1303, 1303, 1303, 1303, 4798, 705, 41004, 40686, 329, 4064, 67, 6, 4064, 376, 13, 2389, 11, 376, 13, 70, 31891, 13, 14933, 3419, 198, 197, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 407, 287, 376, 13, 70, 31891, 13, 14933, 33529, 198, 197, 197, 197, 197, 2, 1303, 1303, 1303, 3601, 10786, 4, 82, 627, 896, 4064, 82, 25998, 9, 220, 780, 13717, 422, 4064, 82, 6, 4064, 357, 944, 13, 2389, 11, 376, 13, 2389, 11, 965, 7, 37, 13, 70, 31891, 13, 14933, 3419, 22305, 198, 197, 197, 197, 197, 2, 1303, 1303, 1303, 2116, 13, 47391, 41052, 37, 8, 220, 220, 1303, 645, 1327, 7666, 220, 628, 197, 197, 198, 197, 2, 1303, 1303, 1303, 1303, 29113, 198, 197, 2, 1303, 1303, 1303, 1303, 2792, 7587, 197, 197, 197, 220, 220, 1303, 198, 197, 2, 1303, 1303, 1303, 1303, 29113, 198, 197, 2, 1303, 1303, 1303, 825, 48224, 7, 944, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 37227, 383, 1981, 627, 896, 663, 35730, 290, 663, 10569, 198, 197, 197, 2, 1303, 1303, 1303, 37227, 198, 197, 197, 2, 1303, 1303, 1303, 329, 402, 287, 2116, 13, 70, 31891, 13, 14933, 33529, 197, 197, 944, 13, 47391, 41052, 38, 8, 198, 197, 197, 2, 1303, 1303, 1303, 329, 376, 287, 2116, 13, 27780, 364, 13, 14933, 33529, 197, 37, 13, 47391, 41052, 944, 8, 198, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 13, 70, 31891, 13, 14933, 3419, 14512, 685, 5974, 197, 197, 18224, 7203, 3237, 16097, 25, 42653, 47992, 5250, 35730, 4943, 198, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 13, 27780, 364, 13, 14933, 3419, 14512, 685, 5974, 197, 18224, 7203, 3237, 16097, 25, 23408, 10569, 4943, 198, 197, 197, 198, 197, 2, 1303, 1303, 1303, 825, 15794, 7, 944, 2599, 198, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 13, 70, 31891, 13, 7857, 3419, 1875, 2116, 13, 70, 31891, 13, 7857, 11518, 33529, 198, 197, 197, 197, 2, 1303, 1303, 1303, 4049, 7203, 3237, 16097, 1600, 366, 18820, 867, 308, 31891, 25, 4064, 67, 1, 4064, 2116, 13, 70, 31891, 13, 7857, 28955, 198, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 13, 27780, 364, 13, 7857, 3419, 1875, 2116, 13, 27780, 364, 13, 7857, 11518, 33529, 198, 197, 197, 197, 2, 1303, 1303, 1303, 4049, 7203, 3237, 16097, 1600, 366, 18820, 867, 10569, 25, 4064, 67, 1, 4064, 2116, 13, 27780, 364, 13, 7857, 28955, 198, 197, 197, 2, 1303, 1303, 1303, 329, 376, 287, 2116, 13, 27780, 364, 13, 14933, 33529, 198, 197, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 407, 287, 376, 13, 70, 31891, 13, 14933, 33529, 198, 197, 197, 197, 197, 2, 1303, 1303, 1303, 4049, 7203, 3237, 16097, 25, 1729, 1708, 10569, 4943, 198, 197, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 6624, 376, 25, 197, 18224, 7203, 3237, 16097, 25, 31987, 747, 1042, 4943, 198, 2, 1303, 1303, 1303, 22492, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 2116, 13, 2389, 11, 705, 318, 287, 46083, 376, 13, 2389, 11, 24018, 82, 35730, 1351, 25, 33172, 685, 38, 13, 2389, 329, 402, 287, 376, 13, 70, 31891, 13, 14933, 3419, 60, 198, 197, 197, 2, 1303, 1303, 1303, 329, 402, 287, 2116, 13, 70, 31891, 13, 14933, 33529, 198, 197, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 407, 287, 402, 13, 27780, 364, 13, 14933, 33529, 198, 197, 197, 197, 197, 2, 1303, 1303, 1303, 1303, 3601, 705, 944, 25, 46083, 2536, 7, 944, 828, 366, 944, 338, 308, 31891, 25, 33172, 3237, 16097, 13, 14557, 62, 12683, 1300, 7, 944, 8, 198, 197, 197, 197, 197, 2, 1303, 1303, 1303, 1303, 3601, 705, 70, 14717, 25, 46083, 2536, 7, 38, 828, 705, 896, 10569, 25, 705, 17414, 2536, 7, 37, 8, 329, 376, 287, 402, 13, 27780, 364, 13, 14933, 3419, 60, 198, 197, 197, 197, 197, 2, 1303, 1303, 1303, 4049, 7203, 3237, 16097, 25, 17261, 35730, 4943, 198, 197, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 6624, 402, 25, 197, 18224, 7203, 3237, 16097, 25, 24753, 1042, 4943, 198, 2, 1303, 1303, 1303, 22492, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 2116, 13, 2389, 11, 705, 318, 287, 46083, 402, 13, 2389, 11, 24018, 82, 33040, 1351, 25, 33172, 685, 37, 13, 2389, 329, 376, 287, 402, 13, 27780, 364, 13, 14933, 3419, 60, 198, 2, 1303, 1303, 1303, 22492, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 59, 83, 3256, 2116, 13, 2389, 11, 705, 7477, 6, 198, 197, 197, 2, 1303, 1303, 1303, 611, 2116, 13, 70, 31891, 13, 7857, 3419, 1875, 657, 25, 198, 197, 197, 197, 2, 1303, 1303, 1303, 611, 407, 2116, 13, 70, 31891, 13, 36154, 13, 25579, 19510, 944, 13, 70, 31891, 13, 13466, 22784, 2116, 13, 70, 31891, 13, 36154, 13, 9806, 4402, 28955, 2599, 198, 197, 197, 197, 197, 197, 2, 1303, 1303, 1303, 4049, 7203, 3237, 16097, 25, 1266, 35730, 318, 10905, 4943, 628, 197, 2, 1303, 1303, 1303, 825, 1919, 62, 12683, 1300, 7, 944, 2599, 198, 2, 1303, 1303, 1303, 22492, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 37, 13, 2389, 329, 376, 287, 2116, 13, 70, 31891, 13, 14933, 3419, 60, 198, 197, 197, 2, 1303, 1303, 1303, 1441, 2116, 13, 70, 31891, 13, 36705, 3419, 198, 197, 197, 197, 198, 197, 2, 1303, 1303, 1303, 825, 9877, 7, 944, 2599, 197, 7783, 2116, 13, 14557, 62, 12683, 1300, 3419, 198, 197, 198, 14468, 7804, 4242, 21017, 198, 2, 10714, 6208, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 14468, 7804, 4242, 21017, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 4798, 7, 834, 15390, 834, 1343, 705, 59, 77, 11537, 198, 197, 4798, 7, 23331, 13, 834, 15390, 834, 1343, 705, 59, 77, 59, 77, 11537, 198, 197, 1831, 62, 15414, 10786, 58, 13615, 60, 11537, 628, 198, 834, 9800, 834, 796, 705, 35, 408, 439, 274, 6, 198 ]
2.843316
5,042
#!//Users/tkirke/anaconda/bin/python # -*- coding: utf-8 -*- import re import sys,os import codecs from math import sqrt,log from scipy.io.wavfile import read,write from scipy import signal import numpy import matplotlib import pylab from lame import * # Remove chunks more -27 db down from peak to remove audio 'gaps' # optional plot envelope mp = re.compile('\.mp3') files = [] show_plot = False if (len(sys.argv) > 1): files.append(sys.argv[1]) if (len(sys.argv) > 2): show_plot = True else: files = os.listdir('.') debug = False PB = open('mp3_levels.txt','w') count = 0 for fil in files: if (mp.search(fil)): audio_in = decode_mp3(fil) samples = len(audio_in) seg = 1024 intvl = samples/seg k = 0 minsig = 0 for i in xrange(intvl): sum = 0.0 for j in xrange(seg): s = float(audio_in[k]) sum += (s*s) k = k+1 rms = sqrt(sum/seg)/16384.0 if (rms > 0): rms_db = 20.0*log(rms)/log(10.0) if (rms_db < minsig): minsig = rms_db db10 = '%02d' % int(-minsig) if (minsig > -20): s = "Minimum level is -"+db10+" dB in "+str(seg)+" sample segments over "+str(0.1*int(samples/4410))+" seconds for "+fil PB.write(s+"\n") cmd = 'mv \"'+fil+"\" ./levels/" os.system(cmd) print s PB.close()
[ 2, 0, 1003, 14490, 14, 30488, 343, 365, 14, 272, 330, 13533, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 302, 198, 11748, 25064, 11, 418, 198, 11748, 40481, 82, 198, 6738, 10688, 1330, 19862, 17034, 11, 6404, 198, 6738, 629, 541, 88, 13, 952, 13, 45137, 7753, 1330, 1100, 11, 13564, 198, 6738, 629, 541, 88, 1330, 6737, 198, 11748, 299, 32152, 198, 11748, 2603, 29487, 8019, 198, 11748, 279, 2645, 397, 198, 6738, 30248, 1330, 1635, 198, 198, 2, 17220, 22716, 517, 532, 1983, 20613, 866, 422, 9103, 284, 4781, 6597, 705, 70, 1686, 6, 198, 2, 11902, 7110, 22878, 198, 198, 3149, 796, 302, 13, 5589, 576, 10786, 17405, 3149, 18, 11537, 198, 198, 16624, 796, 17635, 198, 12860, 62, 29487, 796, 10352, 198, 361, 357, 11925, 7, 17597, 13, 853, 85, 8, 1875, 352, 2599, 198, 220, 220, 220, 3696, 13, 33295, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 611, 357, 11925, 7, 17597, 13, 853, 85, 8, 1875, 362, 2599, 905, 62, 29487, 796, 6407, 198, 17772, 25, 198, 220, 220, 220, 3696, 796, 28686, 13, 4868, 15908, 10786, 2637, 8, 198, 198, 24442, 796, 10352, 198, 49079, 796, 1280, 10786, 3149, 18, 62, 46170, 13, 14116, 41707, 86, 11537, 198, 198, 9127, 796, 657, 198, 1640, 1226, 287, 3696, 25, 198, 220, 220, 220, 611, 357, 3149, 13, 12947, 7, 10379, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6597, 62, 259, 796, 36899, 62, 3149, 18, 7, 10379, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8405, 796, 18896, 7, 24051, 62, 259, 8, 198, 220, 220, 220, 220, 220, 220, 220, 384, 70, 796, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 493, 19279, 796, 8405, 14, 325, 70, 198, 220, 220, 220, 220, 220, 220, 220, 479, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 23550, 328, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2124, 9521, 7, 600, 19279, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2124, 9521, 7, 325, 70, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 12178, 7, 24051, 62, 259, 58, 74, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 15853, 357, 82, 9, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 796, 479, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 907, 796, 19862, 17034, 7, 16345, 14, 325, 70, 20679, 1433, 22842, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 81, 907, 1875, 657, 2599, 374, 907, 62, 9945, 796, 1160, 13, 15, 9, 6404, 7, 81, 907, 20679, 6404, 7, 940, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 81, 907, 62, 9945, 1279, 23550, 328, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23550, 328, 796, 374, 907, 62, 9945, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 940, 796, 705, 4, 2999, 67, 6, 4064, 493, 32590, 42951, 328, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 42951, 328, 1875, 532, 1238, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 366, 44046, 1241, 318, 532, 1, 10, 9945, 940, 10, 1, 30221, 287, 43825, 2536, 7, 325, 70, 47762, 1, 6291, 17894, 625, 43825, 2536, 7, 15, 13, 16, 9, 600, 7, 82, 12629, 14, 2598, 940, 4008, 10, 1, 4201, 329, 43825, 10379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30524, 13, 13564, 7, 82, 10, 1, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 76, 85, 19990, 6, 10, 10379, 10, 1, 7879, 24457, 46170, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 7, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 264, 198, 198, 49079, 13, 19836, 3419, 628, 628 ]
1.941489
752
""" Bills routes """ from flask import Blueprint, render_template, redirect, request, url_for, flash from flask_login import login_required, current_user from application import db from .bill_forms import BillForm from ..models import Bill bills_bp = Blueprint('bills', __name__, url_prefix='/user', template_folder='templates') @bills_bp.route('/bills', methods=['GET', 'POST']) @login_required def bills_display(): """ Show and add bills """ bill_form = BillForm() user_bills = Bill.query.filter_by(user_id=str(current_user.id)).all() total_amount_due = round( sum([bill.bill_amount for bill in user_bills if bill.is_paid == 'Not Paid']), 2) if bill_form.validate_on_submit(): new_bill = Bill(bill_name=bill_form.bill_name.data, bill_due_date=bill_form.bill_due_date.data, bill_amount=bill_form.bill_amount.data, user_id=str(current_user.id)) db.session.add(new_bill) db.session.commit() flash('Successfully added bill', 'success') return redirect(url_for('bills.bills_display')) return render_template('bills/bills.jinja', bill_form=bill_form, bills=user_bills, total_amount_due=total_amount_due) @bills_bp.route('/bills/paid', methods=['POST']) @login_required def mark_bill_paid(): """ Marks a bill as paid """ bill_ids = request.json['idArr'] for id in bill_ids: bill = Bill.query.get(id) if bill.is_paid == 'Not Paid': bill.is_paid = 'Paid' else: bill.is_paid = 'Not Paid' db.session.commit() return {"msg": "success"} @bills_bp.route('/bills/edit/<bill_id>', methods=['GET', 'POST']) @login_required def edit_bill(bill_id): """ Handle bill edit """ bill = Bill.query.get(bill_id) bill_form = BillForm(obj=bill) if bill_form.validate_on_submit(): bill.bill_name = bill_form.bill_name.data bill.bill_due_date = bill_form.bill_due_date.data bill.bill_amount = bill_form.bill_amount.data db.session.commit() flash('Successfully edited bill', 'info') return redirect(url_for('bills.bills_display')) return render_template('bills/edit_bill.jinja', form=bill_form, bill=bill) @bills_bp.route('/bills/delete', methods=['POST']) @login_required def delete_bills(): """ Handle bill deletion """ bill_ids = request.json['idArr'] for id in bill_ids: bill = Bill.query.get(id) db.session.delete(bill) db.session.commit() flash('Bill successfully deleted', 'warning') return {"msg": "success"}
[ 37811, 20209, 11926, 37227, 198, 198, 6738, 42903, 1330, 39932, 11, 8543, 62, 28243, 11, 18941, 11, 2581, 11, 19016, 62, 1640, 11, 7644, 198, 6738, 42903, 62, 38235, 1330, 17594, 62, 35827, 11, 1459, 62, 7220, 198, 6738, 3586, 1330, 20613, 198, 6738, 764, 35546, 62, 23914, 1330, 3941, 8479, 198, 6738, 11485, 27530, 1330, 3941, 198, 198, 65, 2171, 62, 46583, 796, 39932, 10786, 65, 2171, 3256, 11593, 3672, 834, 11, 19016, 62, 40290, 11639, 14, 7220, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 43551, 11639, 11498, 17041, 11537, 628, 198, 31, 65, 2171, 62, 46583, 13, 38629, 10786, 14, 65, 2171, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 38235, 62, 35827, 198, 4299, 9024, 62, 13812, 33529, 198, 220, 220, 220, 37227, 5438, 290, 751, 9024, 220, 37227, 628, 220, 220, 220, 2855, 62, 687, 796, 3941, 8479, 3419, 628, 220, 220, 220, 2836, 62, 65, 2171, 796, 3941, 13, 22766, 13, 24455, 62, 1525, 7, 7220, 62, 312, 28, 2536, 7, 14421, 62, 7220, 13, 312, 29720, 439, 3419, 628, 220, 220, 220, 2472, 62, 17287, 62, 23301, 796, 2835, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 26933, 35546, 13, 35546, 62, 17287, 329, 2855, 287, 2836, 62, 65, 2171, 611, 2855, 13, 271, 62, 20333, 6624, 705, 3673, 47355, 20520, 828, 362, 8, 628, 220, 220, 220, 611, 2855, 62, 687, 13, 12102, 378, 62, 261, 62, 46002, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35546, 796, 3941, 7, 35546, 62, 3672, 28, 35546, 62, 687, 13, 35546, 62, 3672, 13, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2855, 62, 23301, 62, 4475, 28, 35546, 62, 687, 13, 35546, 62, 23301, 62, 4475, 13, 7890, 11, 2855, 62, 17287, 28, 35546, 62, 687, 13, 35546, 62, 17287, 13, 7890, 11, 2836, 62, 312, 28, 2536, 7, 14421, 62, 7220, 13, 312, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 3605, 62, 35546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 7644, 10786, 33244, 2759, 2087, 2855, 3256, 705, 13138, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 65, 2171, 13, 65, 2171, 62, 13812, 6, 4008, 628, 220, 220, 220, 1441, 8543, 62, 28243, 10786, 65, 2171, 14, 65, 2171, 13, 18594, 6592, 3256, 2855, 62, 687, 28, 35546, 62, 687, 11, 9024, 28, 7220, 62, 65, 2171, 11, 2472, 62, 17287, 62, 23301, 28, 23350, 62, 17287, 62, 23301, 8, 628, 198, 31, 65, 2171, 62, 46583, 13, 38629, 10786, 14, 65, 2171, 14, 20333, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 31, 38235, 62, 35827, 198, 4299, 1317, 62, 35546, 62, 20333, 33529, 198, 220, 220, 220, 37227, 27366, 257, 2855, 355, 3432, 37227, 628, 220, 220, 220, 2855, 62, 2340, 796, 2581, 13, 17752, 17816, 312, 3163, 81, 20520, 628, 220, 220, 220, 329, 4686, 287, 2855, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2855, 796, 3941, 13, 22766, 13, 1136, 7, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2855, 13, 271, 62, 20333, 6624, 705, 3673, 47355, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2855, 13, 271, 62, 20333, 796, 705, 47, 1698, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2855, 13, 271, 62, 20333, 796, 705, 3673, 47355, 6, 628, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 628, 220, 220, 220, 1441, 19779, 19662, 1298, 366, 13138, 20662, 628, 198, 31, 65, 2171, 62, 46583, 13, 38629, 10786, 14, 65, 2171, 14, 19312, 14, 27, 35546, 62, 312, 29, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 38235, 62, 35827, 198, 4299, 4370, 62, 35546, 7, 35546, 62, 312, 2599, 198, 220, 220, 220, 37227, 33141, 2855, 4370, 37227, 628, 220, 220, 220, 2855, 796, 3941, 13, 22766, 13, 1136, 7, 35546, 62, 312, 8, 628, 220, 220, 220, 2855, 62, 687, 796, 3941, 8479, 7, 26801, 28, 35546, 8, 628, 220, 220, 220, 611, 2855, 62, 687, 13, 12102, 378, 62, 261, 62, 46002, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2855, 13, 35546, 62, 3672, 796, 2855, 62, 687, 13, 35546, 62, 3672, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2855, 13, 35546, 62, 23301, 62, 4475, 796, 2855, 62, 687, 13, 35546, 62, 23301, 62, 4475, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2855, 13, 35546, 62, 17287, 796, 2855, 62, 687, 13, 35546, 62, 17287, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 7644, 10786, 33244, 2759, 13012, 2855, 3256, 705, 10951, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 65, 2171, 13, 65, 2171, 62, 13812, 6, 4008, 628, 220, 220, 220, 1441, 8543, 62, 28243, 10786, 65, 2171, 14, 19312, 62, 35546, 13, 18594, 6592, 3256, 1296, 28, 35546, 62, 687, 11, 2855, 28, 35546, 8, 628, 198, 31, 65, 2171, 62, 46583, 13, 38629, 10786, 14, 65, 2171, 14, 33678, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 31, 38235, 62, 35827, 198, 4299, 12233, 62, 65, 2171, 33529, 198, 220, 220, 220, 37227, 33141, 2855, 39948, 37227, 628, 220, 220, 220, 2855, 62, 2340, 796, 2581, 13, 17752, 17816, 312, 3163, 81, 20520, 628, 220, 220, 220, 329, 4686, 287, 2855, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2855, 796, 3941, 13, 22766, 13, 1136, 7, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 33678, 7, 35546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 628, 220, 220, 220, 7644, 10786, 17798, 7675, 13140, 3256, 705, 43917, 11537, 198, 220, 220, 220, 1441, 19779, 19662, 1298, 366, 13138, 20662, 198 ]
2.457786
1,066
# Licensed under the MIT license # http://opensource.org/licenses/mit-license.php # Copyright 2007 - Frank Scholz <[email protected]> from twisted.web import server, resource from twisted.python import failure from twisted.internet import defer from coherence import log, SERVER_ID from coherence.extern.et import ET, namespace_map_update from coherence.upnp.core.utils import parse_xml from coherence.upnp.core import soap_lite import coherence.extern.louie as louie class UPnPPublisher(resource.Resource, log.Loggable): """ Based upon twisted.web.soap.SOAPPublisher and extracted to remove the SOAPpy dependency UPnP requires headers and OUT parameters to be returned in a slightly different way than the SOAPPublisher class does. """ logCategory = 'soap' isLeaf = 1 encoding = "UTF-8" envelope_attrib = None def render(self, request): """Handle a SOAP command.""" data = request.content.read() headers = request.getAllHeaders() self.info('soap_request: %s', headers) # allow external check of data louie.send('UPnPTest.Control.Client.CommandReceived', None, headers, data) tree = parse_xml(data) #root = tree.getroot() #print_c(root) body = tree.find('{http://schemas.xmlsoap.org/soap/envelope/}Body') method = body.getchildren()[0] methodName = method.tag ns = None if methodName.startswith('{') and methodName.rfind('}') > 1: ns, methodName = methodName[1:].split('}') args = [] kwargs = {} for child in method.getchildren(): kwargs[child.tag] = soap_lite.decode_result(child) args.append(kwargs[child.tag]) #p, header, body, attrs = SOAPpy.parseSOAPRPC(data, 1, 1, 1) #methodName, args, kwargs, ns = p._name, p._aslist, p._asdict, p._ns try: headers['content-type'].index('text/xml') except: self._gotError(failure.Failure(errorCode(415)), request, methodName) return server.NOT_DONE_YET self.debug('headers: %r', headers) function, useKeywords = self.lookupFunction(methodName) #print 'function', function, 'keywords', useKeywords, 'args', args, 'kwargs', kwargs if not function: self._methodNotFound(request, methodName) return server.NOT_DONE_YET else: keywords = {'soap_methodName': methodName} if(headers.has_key('user-agent') and headers['user-agent'].find('Xbox/') == 0): keywords['X_UPnPClient'] = 'XBox' #if(headers.has_key('user-agent') and # headers['user-agent'].startswith("""Mozilla/4.0 (compatible; UPnP/1.0; Windows""")): # keywords['X_UPnPClient'] = 'XBox' if(headers.has_key('x-av-client-info') and headers['x-av-client-info'].find('"PLAYSTATION3') > 0): keywords['X_UPnPClient'] = 'PLAYSTATION3' if(headers.has_key('user-agent') and headers['user-agent'].find('Philips-Software-WebClient/4.32') == 0): keywords['X_UPnPClient'] = 'Philips-TV' for k, v in kwargs.items(): keywords[str(k)] = v self.info('call %s %s', methodName, keywords) if hasattr(function, "useKeywords"): d = defer.maybeDeferred(function, **keywords) else: d = defer.maybeDeferred(function, *args, **keywords) d.addCallback(self._gotResult, request, methodName, ns) d.addErrback(self._gotError, request, methodName, ns) return server.NOT_DONE_YET
[ 2, 49962, 739, 262, 17168, 5964, 198, 2, 2638, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 2781, 12, 43085, 13, 10121, 198, 198, 2, 15069, 4343, 532, 5278, 3059, 349, 89, 1279, 1073, 23545, 31, 1350, 1765, 896, 13, 3262, 29, 198, 198, 6738, 19074, 13, 12384, 1330, 4382, 11, 8271, 198, 6738, 19074, 13, 29412, 1330, 5287, 198, 6738, 19074, 13, 37675, 1330, 29135, 198, 198, 6738, 763, 23545, 1330, 2604, 11, 18871, 5959, 62, 2389, 198, 198, 6738, 763, 23545, 13, 1069, 759, 13, 316, 1330, 12152, 11, 25745, 62, 8899, 62, 19119, 198, 198, 6738, 763, 23545, 13, 929, 37659, 13, 7295, 13, 26791, 1330, 21136, 62, 19875, 198, 198, 6738, 763, 23545, 13, 929, 37659, 13, 7295, 1330, 19533, 62, 36890, 198, 198, 11748, 763, 23545, 13, 1069, 759, 13, 75, 280, 494, 355, 21081, 494, 628, 198, 198, 4871, 15958, 77, 10246, 549, 8191, 7, 31092, 13, 26198, 11, 2604, 13, 43, 10332, 540, 2599, 198, 220, 220, 220, 37227, 13403, 2402, 19074, 13, 12384, 13, 568, 499, 13, 15821, 2969, 46471, 290, 198, 220, 220, 220, 220, 220, 220, 220, 21242, 284, 4781, 262, 12809, 2969, 9078, 20203, 628, 220, 220, 220, 220, 220, 220, 220, 15958, 77, 47, 4433, 24697, 290, 16289, 10007, 284, 307, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 287, 257, 4622, 198, 220, 220, 220, 220, 220, 220, 220, 1180, 835, 621, 262, 12809, 2969, 46471, 1398, 857, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2604, 27313, 796, 705, 568, 499, 6, 198, 220, 220, 220, 318, 3123, 1878, 796, 352, 198, 220, 220, 220, 21004, 796, 366, 48504, 12, 23, 1, 198, 220, 220, 220, 22878, 62, 1078, 822, 796, 6045, 628, 220, 220, 220, 825, 8543, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37508, 257, 12809, 2969, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2581, 13, 11299, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 2581, 13, 1136, 3237, 13847, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 10786, 568, 499, 62, 25927, 25, 4064, 82, 3256, 24697, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1249, 7097, 2198, 286, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 21081, 494, 13, 21280, 10786, 8577, 77, 11571, 395, 13, 15988, 13, 11792, 13, 21575, 3041, 6471, 3256, 6045, 11, 24697, 11, 1366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 21136, 62, 19875, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15763, 796, 5509, 13, 1136, 15763, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 62, 66, 7, 15763, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 796, 5509, 13, 19796, 10786, 90, 4023, 1378, 1416, 4411, 292, 13, 19875, 568, 499, 13, 2398, 14, 568, 499, 14, 268, 1091, 68, 14, 92, 25842, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 796, 1767, 13, 1136, 17197, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 5376, 796, 2446, 13, 12985, 198, 220, 220, 220, 220, 220, 220, 220, 36545, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2446, 5376, 13, 9688, 2032, 342, 10786, 90, 11537, 290, 2446, 5376, 13, 81, 19796, 10786, 92, 11537, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36545, 11, 2446, 5376, 796, 2446, 5376, 58, 16, 25, 4083, 35312, 10786, 92, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1200, 287, 2446, 13, 1136, 17197, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 58, 9410, 13, 12985, 60, 796, 19533, 62, 36890, 13, 12501, 1098, 62, 20274, 7, 9410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 33295, 7, 46265, 22046, 58, 9410, 13, 12985, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 79, 11, 13639, 11, 1767, 11, 708, 3808, 796, 12809, 2969, 9078, 13, 29572, 15821, 2969, 49, 5662, 7, 7890, 11, 352, 11, 352, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24396, 5376, 11, 26498, 11, 479, 86, 22046, 11, 36545, 796, 279, 13557, 3672, 11, 279, 13557, 292, 4868, 11, 279, 13557, 292, 11600, 11, 279, 13557, 5907, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 17816, 11299, 12, 4906, 6, 4083, 9630, 10786, 5239, 14, 19875, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 23442, 12331, 7, 32165, 495, 13, 50015, 7, 18224, 10669, 7, 35038, 36911, 2581, 11, 2446, 5376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4382, 13, 11929, 62, 35, 11651, 62, 56, 2767, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 10786, 50145, 25, 4064, 81, 3256, 24697, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2163, 11, 779, 9218, 10879, 796, 2116, 13, 5460, 929, 22203, 7, 24396, 5376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 705, 8818, 3256, 2163, 11, 705, 2539, 10879, 3256, 779, 9218, 10879, 11, 705, 22046, 3256, 26498, 11, 705, 46265, 22046, 3256, 479, 86, 22046, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2163, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 24396, 3673, 21077, 7, 25927, 11, 2446, 5376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4382, 13, 11929, 62, 35, 11651, 62, 56, 2767, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26286, 796, 1391, 6, 568, 499, 62, 24396, 5376, 10354, 2446, 5376, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 50145, 13, 10134, 62, 2539, 10786, 7220, 12, 25781, 11537, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 17816, 7220, 12, 25781, 6, 4083, 19796, 10786, 43377, 14, 11537, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26286, 17816, 55, 62, 8577, 77, 47, 11792, 20520, 796, 705, 55, 14253, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 7, 50145, 13, 10134, 62, 2539, 10786, 7220, 12, 25781, 11537, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 24697, 17816, 7220, 12, 25781, 6, 4083, 9688, 2032, 342, 7203, 15931, 44, 8590, 5049, 14, 19, 13, 15, 357, 38532, 26, 15958, 77, 47, 14, 16, 13, 15, 26, 3964, 15931, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 26286, 17816, 55, 62, 8577, 77, 47, 11792, 20520, 796, 705, 55, 14253, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 50145, 13, 10134, 62, 2539, 10786, 87, 12, 615, 12, 16366, 12, 10951, 11537, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 17816, 87, 12, 615, 12, 16366, 12, 10951, 6, 4083, 19796, 10786, 1, 31519, 2257, 6234, 18, 11537, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26286, 17816, 55, 62, 8577, 77, 47, 11792, 20520, 796, 705, 31519, 2257, 6234, 18, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 50145, 13, 10134, 62, 2539, 10786, 7220, 12, 25781, 11537, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 17816, 7220, 12, 25781, 6, 4083, 19796, 10786, 18673, 2419, 12, 25423, 12, 13908, 11792, 14, 19, 13, 2624, 11537, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26286, 17816, 55, 62, 8577, 77, 47, 11792, 20520, 796, 705, 18673, 2419, 12, 6849, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 479, 86, 22046, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26286, 58, 2536, 7, 74, 15437, 796, 410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 10786, 13345, 4064, 82, 4064, 82, 3256, 2446, 5376, 11, 26286, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 8818, 11, 366, 1904, 9218, 10879, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 29135, 13, 25991, 7469, 17436, 7, 8818, 11, 12429, 2539, 10879, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 29135, 13, 25991, 7469, 17436, 7, 8818, 11, 1635, 22046, 11, 12429, 2539, 10879, 8, 628, 220, 220, 220, 220, 220, 220, 220, 288, 13, 2860, 47258, 7, 944, 13557, 23442, 23004, 11, 2581, 11, 2446, 5376, 11, 36545, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 13, 2860, 9139, 81, 1891, 7, 944, 13557, 23442, 12331, 11, 2581, 11, 2446, 5376, 11, 36545, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4382, 13, 11929, 62, 35, 11651, 62, 56, 2767, 628 ]
2.224526
1,688
from setuptools import setup, find_packages VERSION = "0.0.5" setup( name="mkdocs-bulma", version=VERSION, url="https://github.com/rajasimon/mkdocs-bulma", license="MIT", description="Bulma for mkdocs", author="Raja Simon", author_email="[email protected]", packages=find_packages(), include_package_data=True, entry_points={"mkdocs.themes": ["bulma = bulma",]}, zip_safe=False, )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 43717, 796, 366, 15, 13, 15, 13, 20, 1, 628, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 28015, 31628, 12, 15065, 2611, 1600, 198, 220, 220, 220, 2196, 28, 43717, 11, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 430, 28121, 20473, 14, 28015, 31628, 12, 15065, 2611, 1600, 198, 220, 220, 220, 5964, 2625, 36393, 1600, 198, 220, 220, 220, 6764, 2625, 33481, 2611, 329, 33480, 31628, 1600, 198, 220, 220, 220, 1772, 2625, 49, 27792, 11288, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 430, 28121, 20473, 31, 291, 75, 2778, 13, 785, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 5726, 62, 13033, 28, 4895, 28015, 31628, 13, 1169, 6880, 1298, 14631, 15065, 2611, 796, 4807, 2611, 1600, 60, 5512, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 8, 198 ]
2.477011
174
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """GUI module generated by PAGE version 4.14. # In conjunction with Tcl version 8.6 # Jun 04, 2018 08:42:31 PM """ import base64 import sys from GaQueens import GaQueens try: from Tkinter import * except ImportError: from tkinter import * try: import ttk py3 = False except ImportError: import tkinter.ttk as ttk py3 = True # spinbox = StringVar(root, '4') # spinbox2 = StringVar(root, '10') # spinbox3 = StringVar(root, '-1') with open("7735732.png", "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) root = Tk() player1 = PhotoImage(data=encoded_string) player1 = player1.subsample(3) def vp_start_gui(): """Start point when module is the main routine.""" global val, w, root, spinbox, spinbox2, spinbox3 # root = Tk() spinbox = StringVar(root, '6') spinbox2 = StringVar(root, '10') spinbox3 = StringVar(root, '-1') top = Algoritmo_gen_tico_con_N_reinas(root) init(root, top) root.mainloop() w = None def create_Algoritmo_gen_tico_con_N_reinas(root, *args, **kwargs): """Start point when module is imported by another program.""" global w, w_win, rt rt = root w = Toplevel(root) top = Algoritmo_gen_tico_con_N_reinas(w) init(w, top, *args, **kwargs) return (w, top) # The following code is added to facilitate the Scrolled widgets you specified. class AutoScroll(object): """Configure the scrollbars for a widget.""" @staticmethod def _autoscroll(sbar): """Hide and show scrollbar as needed.""" return wrapped def _create_container(func): """Creates a ttk Frame with a given master, and use this new frame to place the scrollbars and the widget.""" return wrapped class ScrolledTreeView(AutoScroll, ttk.Treeview): """A standard ttk Treeview widget with scrollbars that will automatically show/hide as needed.""" @_create_container
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 220, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 40156, 8265, 7560, 416, 48488, 2196, 604, 13, 1415, 13, 198, 2, 554, 17856, 351, 309, 565, 2196, 807, 13, 21, 198, 2, 220, 220, 220, 7653, 8702, 11, 2864, 8487, 25, 3682, 25, 3132, 3122, 198, 37811, 198, 198, 11748, 2779, 2414, 198, 11748, 25064, 198, 198, 6738, 12822, 15681, 641, 1330, 12822, 15681, 641, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 309, 74, 3849, 1330, 1635, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 256, 74, 3849, 1330, 1635, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 256, 30488, 198, 220, 220, 220, 12972, 18, 796, 10352, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 256, 74, 3849, 13, 926, 74, 355, 256, 30488, 198, 220, 220, 220, 12972, 18, 796, 6407, 198, 198, 2, 7906, 3524, 796, 10903, 19852, 7, 15763, 11, 705, 19, 11537, 198, 2, 7906, 3524, 17, 796, 10903, 19852, 7, 15763, 11, 705, 940, 11537, 198, 2, 7906, 3524, 18, 796, 10903, 19852, 7, 15763, 11, 705, 12, 16, 11537, 198, 198, 4480, 1280, 7203, 3324, 27277, 2624, 13, 11134, 1600, 366, 26145, 4943, 355, 2939, 62, 7753, 25, 198, 220, 220, 220, 30240, 62, 8841, 796, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 9060, 62, 7753, 13, 961, 28955, 198, 198, 15763, 796, 309, 74, 3419, 198, 198, 7829, 16, 796, 5555, 5159, 7, 7890, 28, 12685, 9043, 62, 8841, 8, 198, 7829, 16, 796, 2137, 16, 13, 7266, 39873, 7, 18, 8, 628, 198, 4299, 410, 79, 62, 9688, 62, 48317, 33529, 198, 220, 220, 220, 37227, 10434, 966, 618, 8265, 318, 262, 1388, 8027, 526, 15931, 198, 220, 220, 220, 3298, 1188, 11, 266, 11, 6808, 11, 7906, 3524, 11, 7906, 3524, 17, 11, 7906, 3524, 18, 198, 220, 220, 220, 1303, 6808, 796, 309, 74, 3419, 198, 220, 220, 220, 7906, 3524, 796, 10903, 19852, 7, 15763, 11, 705, 21, 11537, 198, 220, 220, 220, 7906, 3524, 17, 796, 10903, 19852, 7, 15763, 11, 705, 940, 11537, 198, 220, 220, 220, 7906, 3524, 18, 796, 10903, 19852, 7, 15763, 11, 705, 12, 16, 11537, 198, 220, 220, 220, 1353, 796, 978, 7053, 270, 5908, 62, 5235, 62, 83, 3713, 62, 1102, 62, 45, 62, 260, 24252, 7, 15763, 8, 198, 220, 220, 220, 2315, 7, 15763, 11, 1353, 8, 198, 220, 220, 220, 6808, 13, 12417, 26268, 3419, 628, 198, 86, 796, 6045, 628, 198, 4299, 2251, 62, 2348, 7053, 270, 5908, 62, 5235, 62, 83, 3713, 62, 1102, 62, 45, 62, 260, 24252, 7, 15763, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 10434, 966, 618, 8265, 318, 17392, 416, 1194, 1430, 526, 15931, 198, 220, 220, 220, 3298, 266, 11, 266, 62, 5404, 11, 374, 83, 198, 220, 220, 220, 374, 83, 796, 6808, 198, 220, 220, 220, 266, 796, 309, 643, 626, 7, 15763, 8, 198, 220, 220, 220, 1353, 796, 978, 7053, 270, 5908, 62, 5235, 62, 83, 3713, 62, 1102, 62, 45, 62, 260, 24252, 7, 86, 8, 198, 220, 220, 220, 2315, 7, 86, 11, 1353, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 1441, 357, 86, 11, 1353, 8, 628, 628, 198, 2, 383, 1708, 2438, 318, 2087, 284, 15570, 262, 1446, 8375, 40803, 345, 7368, 13, 198, 4871, 11160, 29261, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16934, 495, 262, 10743, 34046, 329, 257, 26295, 526, 15931, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 2306, 17500, 2487, 7, 82, 5657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38518, 290, 905, 10743, 5657, 355, 2622, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12908, 628, 198, 4299, 4808, 17953, 62, 34924, 7, 20786, 2599, 198, 220, 220, 220, 37227, 16719, 274, 257, 256, 30488, 25184, 351, 257, 1813, 4958, 11, 290, 779, 428, 649, 5739, 284, 198, 220, 220, 220, 1295, 262, 10743, 34046, 290, 262, 26295, 526, 15931, 198, 220, 220, 220, 1441, 12908, 628, 198, 4871, 1446, 8375, 27660, 7680, 7, 27722, 29261, 11, 256, 30488, 13, 27660, 1177, 2599, 198, 220, 220, 220, 37227, 32, 3210, 256, 30488, 12200, 1177, 26295, 351, 10743, 34046, 326, 481, 198, 220, 220, 220, 6338, 905, 14, 24717, 355, 2622, 526, 15931, 198, 220, 220, 220, 2488, 62, 17953, 62, 34924, 628, 198 ]
2.610818
758
from django.contrib import admin # Register your models here. from apps.medicamento.models import Medicamento #admin.site.register(Medicamento) @admin.register(Medicamento)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 198, 2, 17296, 534, 4981, 994, 13, 198, 198, 6738, 6725, 13, 1150, 291, 3263, 78, 13, 27530, 1330, 5786, 3263, 78, 198, 2, 28482, 13, 15654, 13, 30238, 7, 39112, 3263, 78, 8, 198, 198, 31, 28482, 13, 30238, 7, 39112, 3263, 78, 8 ]
3.240741
54
# Generated by Django 2.2.4 on 2019-09-14 13:12 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 19, 319, 13130, 12, 2931, 12, 1415, 1511, 25, 1065, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
from Dealer import Dealer from Player import Player dealer = Dealer() player_name = input('Ingrese el nombre del jugador \n|>> ') player = Player(player_name) players = player.make_players() players.append(player) dealer.shuffle() dealer.deal_cards(players) for player in players: print(player) for card in player.show_hand(): print(card)
[ 6738, 44480, 1330, 44480, 198, 6738, 7853, 1330, 7853, 198, 198, 31769, 263, 796, 44480, 3419, 198, 198, 7829, 62, 3672, 796, 5128, 10786, 27682, 260, 325, 1288, 299, 2381, 260, 1619, 45808, 7079, 3467, 77, 91, 4211, 705, 8, 198, 198, 7829, 220, 796, 7853, 7, 7829, 62, 3672, 8, 198, 32399, 796, 2137, 13, 15883, 62, 32399, 3419, 198, 198, 32399, 13, 33295, 7, 7829, 8, 198, 198, 31769, 263, 13, 1477, 18137, 3419, 198, 31769, 263, 13, 31769, 62, 27761, 7, 32399, 8, 198, 198, 1640, 2137, 287, 1938, 25, 198, 220, 220, 220, 3601, 7, 7829, 8, 628, 220, 220, 220, 329, 2657, 287, 220, 2137, 13, 12860, 62, 4993, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9517, 8, 198 ]
2.84375
128
from test_all_fixers import lib3to2FixerTestCase
[ 6738, 1332, 62, 439, 62, 13049, 364, 1330, 9195, 18, 1462, 17, 22743, 263, 14402, 20448, 628 ]
2.941176
17
#!/usr/bin/env python # 1. Run .omero files from /opt/omero/server/config/ # 2. Set omero config properties from CONFIG_ envvars # Variable names should replace "." with "_" and "_" with "__" # E.g. CONFIG_omero_web_public_enabled=false import os from subprocess import call from re import sub CONFIG_OMERO = '/opt/omero/server/config/omero-server-config-update.sh' OMERO = '/opt/omero/server/venv3/bin/omero' if os.access(CONFIG_OMERO, os.X_OK): rc = call([CONFIG_OMERO]) assert rc == 0 for (k, v) in os.environ.items(): if k.startswith('CONFIG_'): prop = k[7:] prop = sub('([^_])_([^_])', r'\1.\2', prop) prop = sub('__', '_', prop) value = v rc = call([OMERO, 'config', 'set', '--', prop, value]) assert rc == 0
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 352, 13, 5660, 764, 296, 3529, 3696, 422, 1220, 8738, 14, 296, 3529, 14, 15388, 14, 11250, 14, 198, 2, 362, 13, 5345, 267, 647, 78, 4566, 6608, 422, 25626, 62, 17365, 85, 945, 198, 2, 220, 220, 220, 35748, 3891, 815, 6330, 366, 526, 351, 45434, 1, 290, 45434, 1, 351, 366, 834, 1, 198, 2, 220, 220, 220, 412, 13, 70, 13, 25626, 62, 296, 3529, 62, 12384, 62, 11377, 62, 25616, 28, 9562, 198, 198, 11748, 28686, 198, 6738, 850, 14681, 1330, 869, 198, 6738, 302, 1330, 850, 628, 198, 10943, 16254, 62, 2662, 34812, 796, 31051, 8738, 14, 296, 3529, 14, 15388, 14, 11250, 14, 296, 3529, 12, 15388, 12, 11250, 12, 19119, 13, 1477, 6, 198, 2662, 34812, 796, 31051, 8738, 14, 296, 3529, 14, 15388, 14, 574, 85, 18, 14, 8800, 14, 296, 3529, 6, 198, 198, 361, 28686, 13, 15526, 7, 10943, 16254, 62, 2662, 34812, 11, 28686, 13, 55, 62, 11380, 2599, 198, 220, 220, 220, 48321, 796, 869, 26933, 10943, 16254, 62, 2662, 34812, 12962, 198, 220, 220, 220, 6818, 48321, 6624, 657, 198, 198, 1640, 357, 74, 11, 410, 8, 287, 28686, 13, 268, 2268, 13, 23814, 33529, 198, 220, 220, 220, 611, 479, 13, 9688, 2032, 342, 10786, 10943, 16254, 62, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2632, 796, 479, 58, 22, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 2632, 796, 850, 10786, 26933, 61, 62, 12962, 62, 26933, 61, 62, 12962, 3256, 374, 6, 59, 16, 13, 59, 17, 3256, 2632, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2632, 796, 850, 10786, 834, 3256, 705, 62, 3256, 2632, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 410, 198, 220, 220, 220, 220, 220, 220, 220, 48321, 796, 869, 26933, 2662, 34812, 11, 705, 11250, 3256, 705, 2617, 3256, 705, 438, 3256, 2632, 11, 1988, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 48321, 6624, 657, 198 ]
2.304985
341
# # Copyright (c) 2021 The GPflux Contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A kernel's features and coefficients using Random Fourier Features (RFF). """ from typing import Mapping, Optional import numpy as np import tensorflow as tf import gpflow from gpflow.base import DType, TensorType from gpflux.layers.basis_functions.fourier_features.base import FourierFeaturesBase from gpflux.layers.basis_functions.fourier_features.utils import ( ORF_SUPPORTED_KERNELS, RFF_SUPPORTED_KERNELS, _bases_concat, _bases_cosine, _ceil_divide, _matern_number, _sample_chi, _sample_students_t, ) from gpflux.types import ShapeType class RandomFourierFeatures(RandomFourierFeaturesBase): r""" Random Fourier features (RFF) is a method for approximating kernels. The essential element of the RFF approach :cite:p:`rahimi2007random` is the realization that Bochner's theorem for stationary kernels can be approximated by a Monte Carlo sum. We will approximate the kernel :math:`k(\mathbf{x}, \mathbf{x}')` by :math:`\Phi(\mathbf{x})^\top \Phi(\mathbf{x}')` where :math:`\Phi: \mathbb{R}^{D} \to \mathbb{R}^{M}` is a finite-dimensional feature map. The feature map is defined as: .. math:: \Phi(\mathbf{x}) = \sqrt{\frac{2 \sigma^2}{\ell}} \begin{bmatrix} \cos(\boldsymbol{\theta}_1^\top \mathbf{x}) \\ \sin(\boldsymbol{\theta}_1^\top \mathbf{x}) \\ \vdots \\ \cos(\boldsymbol{\theta}_{\frac{M}{2}}^\top \mathbf{x}) \\ \sin(\boldsymbol{\theta}_{\frac{M}{2}}^\top \mathbf{x}) \end{bmatrix} where :math:`\sigma^2` is the kernel variance. The features are parameterised by random weights: - :math:`\boldsymbol{\theta} \sim p(\boldsymbol{\theta})` where :math:`p(\boldsymbol{\theta})` is the spectral density of the kernel. At least for the squared exponential kernel, this variant of the feature mapping has more desirable theoretical properties than its counterpart form from phase-shifted cosines :class:`RandomFourierFeaturesCosine` :cite:p:`sutherland2015error`. """ def _compute_bases(self, inputs: TensorType) -> tf.Tensor: """ Compute basis functions. :return: A tensor with the shape ``[N, 2M]``. """ return _bases_concat(inputs, self.W) def _compute_constant(self) -> tf.Tensor: """ Compute normalizing constant for basis functions. :return: A tensor with the shape ``[]`` (i.e. a scalar). """ return self.rff_constant(self.kernel.variance, output_dim=2 * self.n_components) class RandomFourierFeaturesCosine(RandomFourierFeaturesBase): r""" Random Fourier Features (RFF) is a method for approximating kernels. The essential element of the RFF approach :cite:p:`rahimi2007random` is the realization that Bochner's theorem for stationary kernels can be approximated by a Monte Carlo sum. We will approximate the kernel :math:`k(\mathbf{x}, \mathbf{x}')` by :math:`\Phi(\mathbf{x})^\top \Phi(\mathbf{x}')` where :math:`\Phi: \mathbb{R}^{D} \to \mathbb{R}^{M}` is a finite-dimensional feature map. The feature map is defined as: .. math:: \Phi(\mathbf{x}) = \sqrt{\frac{2 \sigma^2}{\ell}} \begin{bmatrix} \cos(\boldsymbol{\theta}_1^\top \mathbf{x} + \tau) \\ \vdots \\ \cos(\boldsymbol{\theta}_M^\top \mathbf{x} + \tau) \end{bmatrix} where :math:`\sigma^2` is the kernel variance. The features are parameterised by random weights: - :math:`\boldsymbol{\theta} \sim p(\boldsymbol{\theta})` where :math:`p(\boldsymbol{\theta})` is the spectral density of the kernel - :math:`\tau \sim \mathcal{U}(0, 2\pi)` Equivalent to :class:`RandomFourierFeatures` by elementary trigonometric identities. """ def build(self, input_shape: ShapeType) -> None: """ Creates the variables of the layer. See `tf.keras.layers.Layer.build() <https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer#build>`_. """ self._bias_build(n_components=self.n_components) super(RandomFourierFeaturesCosine, self).build(input_shape) def _compute_bases(self, inputs: TensorType) -> tf.Tensor: """ Compute basis functions. :return: A tensor with the shape ``[N, M]``. """ return _bases_cosine(inputs, self.W, self.b) def _compute_constant(self) -> tf.Tensor: """ Compute normalizing constant for basis functions. :return: A tensor with the shape ``[]`` (i.e. a scalar). """ return self.rff_constant(self.kernel.variance, output_dim=self.n_components) class OrthogonalRandomFeatures(RandomFourierFeatures): r""" Orthogonal random Fourier features (ORF) :cite:p:`yu2016orthogonal` for more efficient and accurate kernel approximations than :class:`RandomFourierFeatures`. """
[ 2, 198, 2, 15069, 357, 66, 8, 33448, 383, 14714, 69, 22564, 25767, 669, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 37811, 317, 9720, 338, 3033, 290, 44036, 1262, 14534, 34296, 5277, 17571, 357, 49, 5777, 737, 37227, 198, 198, 6738, 19720, 1330, 337, 5912, 11, 32233, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 11748, 27809, 11125, 198, 6738, 27809, 11125, 13, 8692, 1330, 360, 6030, 11, 309, 22854, 6030, 198, 198, 6738, 27809, 69, 22564, 13, 75, 6962, 13, 12093, 271, 62, 12543, 2733, 13, 69, 280, 5277, 62, 40890, 13, 8692, 1330, 34296, 5277, 23595, 14881, 198, 6738, 27809, 69, 22564, 13, 75, 6962, 13, 12093, 271, 62, 12543, 2733, 13, 69, 280, 5277, 62, 40890, 13, 26791, 1330, 357, 198, 220, 220, 220, 6375, 37, 62, 40331, 15490, 1961, 62, 42, 28778, 37142, 11, 198, 220, 220, 220, 371, 5777, 62, 40331, 15490, 1961, 62, 42, 28778, 37142, 11, 198, 220, 220, 220, 4808, 65, 1386, 62, 1102, 9246, 11, 198, 220, 220, 220, 4808, 65, 1386, 62, 6966, 500, 11, 198, 220, 220, 220, 4808, 344, 346, 62, 7146, 485, 11, 198, 220, 220, 220, 4808, 76, 9205, 62, 17618, 11, 198, 220, 220, 220, 4808, 39873, 62, 11072, 11, 198, 220, 220, 220, 4808, 39873, 62, 19149, 658, 62, 83, 11, 198, 8, 198, 6738, 27809, 69, 22564, 13, 19199, 1330, 25959, 6030, 628, 198, 198, 4871, 14534, 37, 280, 5277, 23595, 7, 29531, 37, 280, 5277, 23595, 14881, 2599, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 14534, 34296, 5277, 3033, 357, 49, 5777, 8, 318, 257, 2446, 329, 5561, 39204, 50207, 13, 383, 6393, 198, 220, 220, 220, 5002, 286, 262, 371, 5777, 3164, 1058, 66, 578, 25, 79, 25, 63, 11392, 25236, 12726, 25120, 63, 318, 262, 23258, 326, 3248, 354, 1008, 338, 44728, 198, 220, 220, 220, 329, 31607, 50207, 460, 307, 5561, 15655, 416, 257, 22489, 40089, 2160, 13, 628, 220, 220, 220, 775, 481, 27665, 262, 9720, 1058, 11018, 25, 63, 74, 38016, 11018, 19881, 90, 87, 5512, 3467, 11018, 19881, 90, 87, 92, 11537, 63, 198, 220, 220, 220, 416, 1058, 11018, 25, 63, 59, 2725, 72, 38016, 11018, 19881, 90, 87, 30072, 61, 59, 4852, 3467, 2725, 72, 38016, 11018, 19881, 90, 87, 92, 11537, 63, 198, 220, 220, 220, 810, 1058, 11018, 25, 63, 59, 2725, 72, 25, 3467, 11018, 11848, 90, 49, 92, 36796, 35, 92, 3467, 1462, 3467, 11018, 11848, 90, 49, 92, 36796, 44, 92, 63, 318, 257, 27454, 12, 19577, 3895, 3975, 13, 628, 220, 220, 220, 383, 3895, 3975, 318, 5447, 355, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 3467, 2725, 72, 38016, 11018, 19881, 90, 87, 30072, 796, 3467, 31166, 17034, 31478, 31944, 90, 17, 3467, 82, 13495, 61, 17, 18477, 59, 695, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 27471, 90, 65, 6759, 8609, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 6966, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 92, 62, 16, 61, 59, 4852, 3467, 11018, 19881, 90, 87, 30072, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 31369, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 92, 62, 16, 61, 59, 4852, 3467, 11018, 19881, 90, 87, 30072, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 20306, 1747, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 6966, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 92, 23330, 59, 31944, 90, 44, 18477, 17, 11709, 61, 59, 4852, 3467, 11018, 19881, 90, 87, 30072, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 31369, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 92, 23330, 59, 31944, 90, 44, 18477, 17, 11709, 61, 59, 4852, 3467, 11018, 19881, 90, 87, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 437, 90, 65, 6759, 8609, 92, 628, 220, 220, 220, 810, 1058, 11018, 25, 63, 59, 82, 13495, 61, 17, 63, 318, 262, 9720, 24198, 13, 198, 220, 220, 220, 383, 3033, 389, 11507, 1417, 416, 4738, 19590, 25, 628, 220, 220, 220, 532, 1058, 11018, 25, 63, 59, 36575, 1837, 23650, 31478, 1169, 8326, 92, 3467, 14323, 279, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 30072, 63, 198, 220, 220, 220, 220, 220, 810, 1058, 11018, 25, 63, 79, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 30072, 63, 318, 262, 37410, 12109, 286, 262, 9720, 13, 628, 220, 220, 220, 1629, 1551, 329, 262, 44345, 39682, 9720, 11, 428, 15304, 286, 262, 3895, 198, 220, 220, 220, 16855, 468, 517, 18763, 16200, 6608, 621, 663, 11283, 1296, 198, 220, 220, 220, 422, 7108, 12, 1477, 21715, 8615, 1127, 1058, 4871, 25, 63, 29531, 37, 280, 5277, 23595, 36734, 500, 63, 1058, 66, 578, 25, 79, 25, 63, 82, 45384, 4626, 18224, 44646, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 5589, 1133, 62, 65, 1386, 7, 944, 11, 17311, 25, 309, 22854, 6030, 8, 4613, 48700, 13, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 4308, 5499, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 11192, 273, 351, 262, 5485, 7559, 58, 45, 11, 362, 44, 60, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 65, 1386, 62, 1102, 9246, 7, 15414, 82, 11, 2116, 13, 54, 8, 628, 220, 220, 220, 825, 4808, 5589, 1133, 62, 9979, 415, 7, 944, 8, 4613, 48700, 13, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 3487, 2890, 6937, 329, 4308, 5499, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 11192, 273, 351, 262, 5485, 7559, 21737, 15506, 357, 72, 13, 68, 13, 257, 16578, 283, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 81, 487, 62, 9979, 415, 7, 944, 13, 33885, 13, 25641, 590, 11, 5072, 62, 27740, 28, 17, 1635, 2116, 13, 77, 62, 5589, 3906, 8, 628, 198, 4871, 14534, 37, 280, 5277, 23595, 36734, 500, 7, 29531, 37, 280, 5277, 23595, 14881, 2599, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 14534, 34296, 5277, 17571, 357, 49, 5777, 8, 318, 257, 2446, 329, 5561, 39204, 50207, 13, 383, 6393, 198, 220, 220, 220, 5002, 286, 262, 371, 5777, 3164, 1058, 66, 578, 25, 79, 25, 63, 11392, 25236, 12726, 25120, 63, 318, 262, 23258, 326, 3248, 354, 1008, 338, 44728, 198, 220, 220, 220, 329, 31607, 50207, 460, 307, 5561, 15655, 416, 257, 22489, 40089, 2160, 13, 628, 220, 220, 220, 775, 481, 27665, 262, 9720, 1058, 11018, 25, 63, 74, 38016, 11018, 19881, 90, 87, 5512, 3467, 11018, 19881, 90, 87, 92, 11537, 63, 198, 220, 220, 220, 416, 1058, 11018, 25, 63, 59, 2725, 72, 38016, 11018, 19881, 90, 87, 30072, 61, 59, 4852, 3467, 2725, 72, 38016, 11018, 19881, 90, 87, 92, 11537, 63, 810, 198, 220, 220, 220, 1058, 11018, 25, 63, 59, 2725, 72, 25, 3467, 11018, 11848, 90, 49, 92, 36796, 35, 92, 3467, 1462, 3467, 11018, 11848, 90, 49, 92, 36796, 44, 92, 63, 318, 257, 27454, 12, 19577, 3895, 3975, 13, 628, 220, 220, 220, 383, 3895, 3975, 318, 5447, 355, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 3467, 2725, 72, 38016, 11018, 19881, 90, 87, 30072, 796, 3467, 31166, 17034, 31478, 31944, 90, 17, 3467, 82, 13495, 61, 17, 18477, 59, 695, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 27471, 90, 65, 6759, 8609, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 6966, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 92, 62, 16, 61, 59, 4852, 3467, 11018, 19881, 90, 87, 92, 1343, 3467, 83, 559, 8, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 20306, 1747, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 6966, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 92, 62, 44, 61, 59, 4852, 3467, 11018, 19881, 90, 87, 92, 1343, 3467, 83, 559, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 437, 90, 65, 6759, 8609, 92, 628, 220, 220, 220, 810, 1058, 11018, 25, 63, 59, 82, 13495, 61, 17, 63, 318, 262, 9720, 24198, 13, 198, 220, 220, 220, 383, 3033, 389, 11507, 1417, 416, 4738, 19590, 25, 628, 220, 220, 220, 532, 1058, 11018, 25, 63, 59, 36575, 1837, 23650, 31478, 1169, 8326, 92, 3467, 14323, 279, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 30072, 63, 198, 220, 220, 220, 220, 220, 810, 1058, 11018, 25, 63, 79, 38016, 36575, 1837, 23650, 31478, 1169, 8326, 30072, 63, 318, 262, 37410, 12109, 286, 262, 9720, 198, 220, 220, 220, 532, 1058, 11018, 25, 63, 59, 83, 559, 3467, 14323, 3467, 11018, 9948, 90, 52, 92, 7, 15, 11, 362, 59, 14415, 8, 63, 628, 220, 220, 220, 7889, 29540, 284, 1058, 4871, 25, 63, 29531, 37, 280, 5277, 23595, 63, 416, 19823, 5192, 261, 16996, 18413, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1382, 7, 944, 11, 5128, 62, 43358, 25, 25959, 6030, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 262, 9633, 286, 262, 7679, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4091, 4600, 27110, 13, 6122, 292, 13, 75, 6962, 13, 49925, 13, 11249, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 5450, 1378, 2503, 13, 83, 22854, 11125, 13, 2398, 14, 15042, 62, 31628, 14, 29412, 14, 27110, 14, 6122, 292, 14, 75, 6962, 14, 49925, 2, 11249, 29, 63, 44807, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 65, 4448, 62, 11249, 7, 77, 62, 5589, 3906, 28, 944, 13, 77, 62, 5589, 3906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 29531, 37, 280, 5277, 23595, 36734, 500, 11, 2116, 737, 11249, 7, 15414, 62, 43358, 8, 628, 220, 220, 220, 825, 4808, 5589, 1133, 62, 65, 1386, 7, 944, 11, 17311, 25, 309, 22854, 6030, 8, 4613, 48700, 13, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 4308, 5499, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 11192, 273, 351, 262, 5485, 7559, 58, 45, 11, 337, 60, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 65, 1386, 62, 6966, 500, 7, 15414, 82, 11, 2116, 13, 54, 11, 2116, 13, 65, 8, 628, 220, 220, 220, 825, 4808, 5589, 1133, 62, 9979, 415, 7, 944, 8, 4613, 48700, 13, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 3487, 2890, 6937, 329, 4308, 5499, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 11192, 273, 351, 262, 5485, 7559, 21737, 15506, 357, 72, 13, 68, 13, 257, 16578, 283, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 81, 487, 62, 9979, 415, 7, 944, 13, 33885, 13, 25641, 590, 11, 5072, 62, 27740, 28, 944, 13, 77, 62, 5589, 3906, 8, 628, 198, 4871, 47664, 519, 20996, 29531, 23595, 7, 29531, 37, 280, 5277, 23595, 2599, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 47664, 519, 20996, 4738, 34296, 5277, 3033, 357, 1581, 37, 8, 1058, 66, 578, 25, 79, 25, 63, 24767, 5304, 1506, 519, 20996, 63, 329, 517, 198, 220, 220, 220, 6942, 290, 7187, 9720, 5561, 320, 602, 621, 1058, 4871, 25, 63, 29531, 37, 280, 5277, 23595, 44646, 198, 220, 220, 220, 37227, 198 ]
2.541112
2,177
import editdistance import re
[ 11748, 4370, 30246, 198, 11748, 302, 628, 628 ]
4.125
8
import os TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
[ 11748, 28686, 198, 198, 51, 6465, 62, 26947, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 366, 7890, 4943, 198 ]
2.34375
32
import numpy as np import pandas as pd import matplotlib.pyplot as plt np.random.seed(3) Data = pd.read_csv('AMZN.csv',header=0, usecols=['Date', 'Close'],parse_dates=True,index_col='Date') print(Data.info()) print(Data.head()) print(Data.describe()) plt.figure(figsize=(10,5)) plt.plot(Data) plt.show() DataPCh = Data.pct_change() LogReturns = np.log(1 + DataPCh) print(LogReturns.tail(10)) plt.figure(figsize=(10,5)) plt.plot(LogReturns) plt.show() from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() DataScaled = scaler.fit_transform(Data) TrainLen = int(len(DataScaled) * 0.70) TestLen = len(DataScaled) - TrainLen TrainData = DataScaled[0:TrainLen,:] TestData = DataScaled[TrainLen:len(DataScaled),:] print(len(TrainData), len(TestData)) TimeStep = 1 TrainX, TrainY = DatasetCreation(TrainData, TimeStep) TestX, TestY = DatasetCreation(TestData, TimeStep) TrainX = np.reshape(TrainX, (TrainX.shape[0], 1, TrainX.shape[1])) TestX = np.reshape(TestX, (TestX.shape[0], 1, TestX.shape[1])) from keras.models import Sequential from keras.layers import LSTM from keras.layers import Dense from tensorflow import set_random_seed set_random_seed(3) model = Sequential() model.add(LSTM(256, input_shape=(1, TimeStep))) model.add(Dense(1)) model.compile(loss='mean_squared_error',optimizer='adam',metrics=['accuracy']) model.fit(TrainX, TrainY, epochs=10, batch_size=1, verbose=1) model.summary() score = model.evaluate(TrainX, TrainY, verbose=0) print('Keras Model Loss = ',score[0]) print('Keras Model Accuracy = ',score[1]) TrainPred = model.predict(TrainX) TestPred = model.predict(TestX) TrainPred = scaler.inverse_transform(TrainPred) TrainY = scaler.inverse_transform([TrainY]) TestPred = scaler.inverse_transform(TestPred) TestY = scaler.inverse_transform([TestY]) TrainPredictPlot = np.empty_like(DataScaled) TrainPredictPlot[:, :] = np.nan TrainPredictPlot[1:len(TrainPred)+1, :] = TrainPred TestPredictPlot = np.empty_like(DataScaled) TestPredictPlot[:, :] = np.nan TestPredictPlot[len(TrainPred)+(1*2)+1:len(DataScaled)-1, :] = TestPred plt.plot(scaler.inverse_transform(DataScaled)) plt.plot(TrainPredictPlot) plt.plot(TestPredictPlot) plt.show()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 37659, 13, 25120, 13, 28826, 7, 18, 8, 198, 198, 6601, 796, 279, 67, 13, 961, 62, 40664, 10786, 2390, 57, 45, 13, 40664, 3256, 25677, 28, 15, 11, 779, 4033, 82, 28, 17816, 10430, 3256, 198, 6, 26125, 6, 4357, 29572, 62, 19581, 28, 17821, 11, 9630, 62, 4033, 11639, 10430, 11537, 198, 198, 4798, 7, 6601, 13, 10951, 28955, 198, 4798, 7, 6601, 13, 2256, 28955, 198, 4798, 7, 6601, 13, 20147, 4892, 28955, 198, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 940, 11, 20, 4008, 198, 489, 83, 13, 29487, 7, 6601, 8, 198, 489, 83, 13, 12860, 3419, 198, 198, 6601, 47, 1925, 796, 6060, 13, 79, 310, 62, 3803, 3419, 198, 198, 11187, 35561, 796, 45941, 13, 6404, 7, 16, 1343, 6060, 47, 1925, 8, 220, 198, 4798, 7, 11187, 35561, 13, 13199, 7, 940, 4008, 198, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 940, 11, 20, 4008, 198, 489, 83, 13, 29487, 7, 11187, 35561, 8, 198, 489, 83, 13, 12860, 3419, 198, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 1855, 11518, 3351, 36213, 198, 198, 1416, 36213, 796, 1855, 11518, 3351, 36213, 3419, 198, 198, 6601, 3351, 3021, 796, 16578, 263, 13, 11147, 62, 35636, 7, 6601, 8, 198, 198, 44077, 30659, 796, 493, 7, 11925, 7, 6601, 3351, 3021, 8, 1635, 657, 13, 2154, 8, 198, 14402, 30659, 796, 18896, 7, 6601, 3351, 3021, 8, 532, 16835, 30659, 198, 44077, 6601, 796, 6060, 3351, 3021, 58, 15, 25, 44077, 30659, 11, 47715, 198, 14402, 6601, 796, 6060, 3351, 3021, 58, 44077, 30659, 25, 11925, 7, 6601, 3351, 3021, 828, 47715, 198, 198, 4798, 7, 11925, 7, 44077, 6601, 828, 18896, 7, 14402, 6601, 4008, 198, 198, 7575, 8600, 796, 352, 198, 44077, 55, 11, 16835, 56, 796, 16092, 292, 316, 12443, 341, 7, 44077, 6601, 11, 3862, 8600, 8, 198, 14402, 55, 11, 6208, 56, 796, 16092, 292, 316, 12443, 341, 7, 14402, 6601, 11, 3862, 8600, 8, 628, 198, 44077, 55, 796, 45941, 13, 3447, 1758, 7, 44077, 55, 11, 357, 44077, 55, 13, 43358, 58, 15, 4357, 352, 11, 16835, 55, 13, 43358, 58, 16, 60, 4008, 198, 14402, 55, 796, 45941, 13, 3447, 1758, 7, 14402, 55, 11, 357, 14402, 55, 13, 43358, 58, 15, 4357, 352, 11, 6208, 55, 13, 43358, 58, 16, 60, 4008, 628, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 406, 2257, 44, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 360, 1072, 198, 6738, 11192, 273, 11125, 1330, 900, 62, 25120, 62, 28826, 198, 2617, 62, 25120, 62, 28826, 7, 18, 8, 198, 198, 19849, 796, 24604, 1843, 3419, 198, 19849, 13, 2860, 7, 43, 2257, 44, 7, 11645, 11, 5128, 62, 43358, 16193, 16, 11, 3862, 8600, 22305, 198, 19849, 13, 2860, 7, 35, 1072, 7, 16, 4008, 198, 19849, 13, 5589, 576, 7, 22462, 11639, 32604, 62, 16485, 1144, 62, 18224, 3256, 40085, 7509, 11639, 324, 321, 3256, 4164, 10466, 28, 17816, 4134, 23843, 6, 12962, 198, 198, 19849, 13, 11147, 7, 44077, 55, 11, 16835, 56, 11, 36835, 82, 28, 940, 11, 15458, 62, 7857, 28, 16, 11, 15942, 577, 28, 16, 8, 198, 198, 19849, 13, 49736, 3419, 198, 198, 26675, 796, 2746, 13, 49786, 7, 44077, 55, 11, 16835, 56, 11, 15942, 577, 28, 15, 8, 198, 4798, 10786, 42, 263, 292, 9104, 22014, 796, 46083, 26675, 58, 15, 12962, 198, 4798, 10786, 42, 263, 292, 9104, 33222, 796, 46083, 26675, 58, 16, 12962, 198, 198, 44077, 39156, 796, 2746, 13, 79, 17407, 7, 44077, 55, 8, 198, 14402, 39156, 796, 2746, 13, 79, 17407, 7, 14402, 55, 8, 198, 198, 44077, 39156, 796, 16578, 263, 13, 259, 4399, 62, 35636, 7, 44077, 39156, 8, 198, 44077, 56, 796, 16578, 263, 13, 259, 4399, 62, 35636, 26933, 44077, 56, 12962, 198, 14402, 39156, 796, 16578, 263, 13, 259, 4399, 62, 35636, 7, 14402, 39156, 8, 198, 14402, 56, 796, 16578, 263, 13, 259, 4399, 62, 35636, 26933, 14402, 56, 12962, 198, 198, 44077, 47, 17407, 43328, 796, 45941, 13, 28920, 62, 2339, 7, 6601, 3351, 3021, 8, 198, 44077, 47, 17407, 43328, 58, 45299, 1058, 60, 796, 45941, 13, 12647, 198, 44077, 47, 17407, 43328, 58, 16, 25, 11925, 7, 44077, 39156, 47762, 16, 11, 1058, 60, 796, 16835, 39156, 198, 198, 14402, 47, 17407, 43328, 796, 45941, 13, 28920, 62, 2339, 7, 6601, 3351, 3021, 8, 198, 14402, 47, 17407, 43328, 58, 45299, 1058, 60, 796, 45941, 13, 12647, 198, 14402, 47, 17407, 43328, 58, 11925, 7, 44077, 39156, 8, 33747, 16, 9, 17, 47762, 16, 25, 11925, 7, 6601, 3351, 3021, 13219, 16, 11, 1058, 60, 796, 6208, 39156, 198, 198, 489, 83, 13, 29487, 7, 1416, 36213, 13, 259, 4399, 62, 35636, 7, 6601, 3351, 3021, 4008, 198, 489, 83, 13, 29487, 7, 44077, 47, 17407, 43328, 8, 198, 489, 83, 13, 29487, 7, 14402, 47, 17407, 43328, 8, 198, 489, 83, 13, 12860, 3419, 198 ]
2.559302
860
from seq2annotation.trainer.train_model import train_model from seq2annotation.algorithms.BiLSTM_CRF_model import BilstmCrfModel from seq2annotation.algorithms.IDCNN_CRF_model import IdcnnCrfModel # train_model(data_dir='./data', result_dir='./result', model_fn=IdcnnCrfModel.model_fn, **IdcnnCrfModel.default_params()) result = train_model( data_dir='./data', result_dir='./results', train_spec={'max_steps': None}, hook={ 'stop_if_no_increase': { 'min_steps': 100, 'run_every_secs': 60, 'max_steps_without_increase': 10000 } }, use_gpu=True, tpu_config={ 'tpu_name': 'u1mail2me', }, model=BilstmCrfModel, **BilstmCrfModel.default_params() ) print(result)
[ 6738, 33756, 17, 1236, 14221, 13, 2213, 10613, 13, 27432, 62, 19849, 1330, 4512, 62, 19849, 198, 6738, 33756, 17, 1236, 14221, 13, 282, 7727, 907, 13, 23286, 43, 2257, 44, 62, 9419, 37, 62, 19849, 1330, 347, 11750, 76, 13916, 69, 17633, 198, 6738, 33756, 17, 1236, 14221, 13, 282, 7727, 907, 13, 2389, 18474, 62, 9419, 37, 62, 19849, 1330, 5121, 66, 20471, 13916, 69, 17633, 628, 198, 2, 4512, 62, 19849, 7, 7890, 62, 15908, 28, 4458, 14, 7890, 3256, 1255, 62, 15908, 28, 4458, 14, 20274, 3256, 2746, 62, 22184, 28, 7390, 66, 20471, 13916, 69, 17633, 13, 19849, 62, 22184, 11, 12429, 7390, 66, 20471, 13916, 69, 17633, 13, 12286, 62, 37266, 28955, 198, 20274, 796, 4512, 62, 19849, 7, 198, 220, 220, 220, 1366, 62, 15908, 28, 4458, 14, 7890, 3256, 1255, 62, 15908, 28, 4458, 14, 43420, 3256, 198, 220, 220, 220, 4512, 62, 16684, 34758, 6, 9806, 62, 20214, 10354, 6045, 5512, 198, 220, 220, 220, 8011, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11338, 62, 361, 62, 3919, 62, 24988, 589, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1084, 62, 20214, 10354, 1802, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5143, 62, 16833, 62, 2363, 82, 10354, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 20214, 62, 19419, 62, 24988, 589, 10354, 33028, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 779, 62, 46999, 28, 17821, 11, 198, 220, 220, 220, 256, 19944, 62, 11250, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 83, 19944, 62, 3672, 10354, 705, 84, 16, 4529, 17, 1326, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 2746, 28, 33, 11750, 76, 13916, 69, 17633, 11, 12429, 33, 11750, 76, 13916, 69, 17633, 13, 12286, 62, 37266, 3419, 198, 8, 198, 198, 4798, 7, 20274, 8, 198 ]
2.19883
342
""" Your chance to explore Loops and Turtles! Authors: David Mutchler, Dave Fisher, Vibha Alangar, Amanda Stouder, their colleagues and Jasmine Scott """ ############################################################################### # COMPLETED: 1. # On Line 5 above, replace PUT_YOUR_NAME_HERE with your own name. ############################################################################### ############################################################################### # COMPLETED: 2. # You should have RUN the m5e_loopy_turtles module and READ its code. # (Do so now if you have not already done so.) # # Below this comment, add ANY CODE THAT YOU WANT, as long as: # 1. You construct at least 2 rg.SimpleTurtle objects. # 2. Each rg.SimpleTurtle object draws something # (by moving, using its rg.Pen). ANYTHING is fine! # 3. Each rg.SimpleTurtle moves inside a LOOP. # # Be creative! Strive for way-cool pictures! Abstract pictures rule! # # If you make syntax (notational) errors, no worries -- get help # fixing them at either this session OR at the NEXT session. # # Don't forget to COMMIT-and-PUSH when you are done with this module. ############################################################################### import rosegraphics as rg window = rg.TurtleWindow() son_goku = rg.SimpleTurtle('arrow') son_goku.pen = rg.Pen('orange',5) son_goku.speed = 2 for k in range(3): son_goku.forward(100) son_goku.pen_up() son_goku.right(90) son_goku.forward(50) son_goku.pen_down() son_goku.right(90) son_goku.forward(100) son_goku.pen_up() son_goku.left(90) son_goku.forward(50) son_goku.left(90) son_goku.pen_down() prince_vegeta = rg.SimpleTurtle('arrow') prince_vegeta.pen = rg.Pen('blue',5) prince_vegeta.speed = 2 prince_vegeta.right(90) prince_vegeta.pen_up() prince_vegeta.forward(25) for k in range(3): prince_vegeta.pen_down() prince_vegeta.left(90) prince_vegeta.forward(100) prince_vegeta.pen_up() prince_vegeta.right(90) prince_vegeta.forward(50) prince_vegeta.pen_down() prince_vegeta.right(90) prince_vegeta.forward(100) prince_vegeta.pen_up() prince_vegeta.left(90) prince_vegeta.forward(50) window.close_on_mouse_click()
[ 37811, 198, 7120, 2863, 284, 7301, 6706, 2840, 290, 44356, 0, 198, 198, 30515, 669, 25, 3271, 337, 7140, 1754, 11, 9935, 14388, 11, 569, 571, 3099, 978, 648, 283, 11, 23040, 520, 280, 1082, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 511, 7810, 290, 21961, 3810, 4746, 198, 37811, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 49269, 36493, 25, 352, 13, 198, 2, 220, 220, 1550, 6910, 642, 2029, 11, 6330, 220, 350, 3843, 62, 56, 11698, 62, 20608, 62, 39, 9338, 220, 351, 534, 898, 1438, 13, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 49269, 36493, 25, 362, 13, 198, 2, 220, 220, 921, 815, 423, 32494, 262, 220, 285, 20, 68, 62, 5439, 11081, 62, 83, 25195, 220, 8265, 290, 20832, 663, 2438, 13, 198, 2, 220, 220, 357, 5211, 523, 783, 611, 345, 423, 407, 1541, 1760, 523, 2014, 198, 2, 198, 2, 220, 220, 10383, 428, 2912, 11, 751, 15529, 42714, 14603, 7013, 41300, 11, 355, 890, 355, 25, 198, 2, 220, 220, 220, 220, 352, 13, 921, 5678, 379, 1551, 362, 48670, 13, 26437, 51, 17964, 5563, 13, 198, 2, 220, 220, 220, 220, 362, 13, 5501, 48670, 13, 26437, 51, 17964, 2134, 14293, 1223, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1525, 3867, 11, 1262, 663, 48670, 13, 25553, 737, 220, 15529, 39356, 318, 3734, 0, 198, 2, 220, 220, 220, 220, 513, 13, 5501, 48670, 13, 26437, 51, 17964, 6100, 2641, 257, 17579, 3185, 13, 198, 2, 198, 2, 220, 220, 1355, 7325, 0, 220, 520, 11590, 329, 835, 12, 24494, 5986, 0, 220, 27741, 5986, 3896, 0, 198, 2, 198, 2, 220, 220, 1002, 345, 787, 15582, 357, 1662, 864, 8, 8563, 11, 645, 18572, 1377, 651, 1037, 198, 2, 220, 220, 18682, 606, 379, 2035, 428, 6246, 6375, 379, 262, 39726, 6246, 13, 198, 2, 198, 2, 220, 220, 2094, 470, 6044, 284, 22240, 2043, 12, 392, 12, 47, 27143, 618, 345, 389, 1760, 351, 428, 8265, 13, 198, 29113, 29113, 7804, 4242, 21017, 198, 11748, 8278, 70, 11549, 355, 48670, 198, 17497, 796, 48670, 13, 51, 17964, 27703, 3419, 198, 198, 1559, 62, 70, 11601, 796, 48670, 13, 26437, 51, 17964, 10786, 6018, 11537, 198, 1559, 62, 70, 11601, 13, 3617, 796, 48670, 13, 25553, 10786, 43745, 3256, 20, 8, 198, 1559, 62, 70, 11601, 13, 12287, 796, 362, 198, 198, 1640, 479, 287, 2837, 7, 18, 2599, 628, 220, 220, 220, 3367, 62, 70, 11601, 13, 11813, 7, 3064, 8, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 3617, 62, 929, 3419, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 3506, 7, 3829, 8, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 11813, 7, 1120, 8, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 3617, 62, 2902, 3419, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 3506, 7, 3829, 8, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 11813, 7, 3064, 8, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 3617, 62, 929, 3419, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 9464, 7, 3829, 8, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 11813, 7, 1120, 8, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 9464, 7, 3829, 8, 198, 220, 220, 220, 3367, 62, 70, 11601, 13, 3617, 62, 2902, 3419, 198, 198, 1050, 924, 62, 303, 1136, 64, 796, 48670, 13, 26437, 51, 17964, 10786, 6018, 11537, 198, 1050, 924, 62, 303, 1136, 64, 13, 3617, 796, 48670, 13, 25553, 10786, 17585, 3256, 20, 8, 198, 1050, 924, 62, 303, 1136, 64, 13, 12287, 796, 362, 198, 198, 1050, 924, 62, 303, 1136, 64, 13, 3506, 7, 3829, 8, 198, 1050, 924, 62, 303, 1136, 64, 13, 3617, 62, 929, 3419, 198, 1050, 924, 62, 303, 1136, 64, 13, 11813, 7, 1495, 8, 198, 198, 1640, 479, 287, 2837, 7, 18, 2599, 628, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 3617, 62, 2902, 3419, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 9464, 7, 3829, 8, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 11813, 7, 3064, 8, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 3617, 62, 929, 3419, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 3506, 7, 3829, 8, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 11813, 7, 1120, 8, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 3617, 62, 2902, 3419, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 3506, 7, 3829, 8, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 11813, 7, 3064, 8, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 3617, 62, 929, 3419, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 9464, 7, 3829, 8, 198, 220, 220, 220, 19716, 62, 303, 1136, 64, 13, 11813, 7, 1120, 8, 198, 198, 17497, 13, 19836, 62, 261, 62, 35888, 62, 12976, 3419 ]
2.726303
844
import pandas as pd # Load dataset https://storage.googleapis.com/dqlab-dataset/LO4/global_air_quality_4000rows.csv gaq = pd.read_csv('https://storage.googleapis.com/dqlab-dataset/LO4/global_air_quality_4000rows.csv', parse_dates=True, index_col='timestamp') # Cetak 5 data teratas print(gaq.head()) # Cetak info dari dataframe gaq print('info') print(gaq.info())
[ 11748, 19798, 292, 355, 279, 67, 198, 2, 8778, 27039, 3740, 1378, 35350, 13, 13297, 499, 271, 13, 785, 14, 67, 13976, 397, 12, 19608, 292, 316, 14, 21982, 19, 14, 20541, 62, 958, 62, 13237, 62, 27559, 8516, 13, 40664, 198, 4908, 80, 796, 279, 67, 13, 961, 62, 40664, 10786, 5450, 1378, 35350, 13, 13297, 499, 271, 13, 785, 14, 67, 13976, 397, 12, 19608, 292, 316, 14, 21982, 19, 14, 20541, 62, 958, 62, 13237, 62, 27559, 8516, 13, 40664, 3256, 21136, 62, 19581, 28, 17821, 11, 6376, 62, 4033, 11639, 16514, 27823, 11537, 198, 2, 327, 316, 461, 642, 1366, 1059, 265, 292, 198, 4798, 7, 4908, 80, 13, 2256, 28955, 198, 2, 327, 316, 461, 7508, 288, 2743, 1366, 14535, 308, 30188, 198, 4798, 10786, 10951, 11537, 198, 4798, 7, 4908, 80, 13, 10951, 28955 ]
2.592857
140
# Copyright 2022 Garda Technologies, LLC. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Originally written by Valery Korolyov <[email protected]> # Partially overwrites original class DefectDojoAPI in # defectdojo_api library which is licensed under the MIT License # For more details on defectdojo_api visit https://github.com/DefectDojo/defectdojo_api import json import requests from defectdojo_api.defectdojo_apiv2 import DefectDojoAPIv2 from .abc import DefectDojoAPIError, DefectDojoResponse from .factory import DefectDojoAPIFactory from .official import DefectDojoAPI_official @DefectDojoAPIFactory.register("official_customized")
[ 2, 15069, 33160, 12790, 64, 21852, 11, 11419, 13, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 19486, 3194, 416, 3254, 1924, 14769, 3366, 709, 1279, 69, 4715, 993, 31, 83, 29822, 13, 952, 29, 198, 198, 2, 2142, 1927, 6993, 23156, 2656, 1398, 2896, 478, 5211, 7639, 17614, 287, 198, 2, 11855, 4598, 7639, 62, 15042, 5888, 543, 318, 11971, 739, 262, 17168, 13789, 198, 2, 1114, 517, 3307, 319, 11855, 4598, 7639, 62, 15042, 3187, 3740, 1378, 12567, 13, 785, 14, 7469, 478, 5211, 7639, 14, 4299, 478, 4598, 7639, 62, 15042, 198, 198, 11748, 33918, 198, 11748, 7007, 198, 198, 6738, 11855, 4598, 7639, 62, 15042, 13, 4299, 478, 4598, 7639, 62, 499, 452, 17, 1330, 2896, 478, 5211, 7639, 17614, 85, 17, 198, 198, 6738, 764, 39305, 1330, 2896, 478, 5211, 7639, 17614, 12331, 11, 2896, 478, 5211, 7639, 31077, 198, 6738, 764, 69, 9548, 1330, 2896, 478, 5211, 7639, 2969, 5064, 9548, 198, 6738, 764, 16841, 1330, 2896, 478, 5211, 7639, 17614, 62, 16841, 628, 198, 31, 7469, 478, 5211, 7639, 2969, 5064, 9548, 13, 30238, 7203, 16841, 62, 23144, 1143, 4943, 628 ]
3.539394
330
#!/usr/bin/python import numpy as np from scipy import optimize from sympy import * import matplotlib.pyplot as plt import random import pdb import os # Symbolic function to evaluate shape functions shape_functions=lambda x,y: np.array([(1.-x)*(1.-y)/4.,(1.+x)*(1.-y)/4.,(1.+x)*(1.+y)/4.,(1.-x)*(1.+y)/4.]) grad_xi=lambda y:np.array([-(1.-y)/4.,(1.-y)/4.,(1.+y)/4.,-(1.+y)/4.]) grad_eta=lambda x:np.array([-(1.-x)/4.,-(1.+x)/4.,(1.+x)/4.,(1.-x)/4.]) # shapes=| N1(Xp1) N1(Xp2) ... N1(XNp) | # | N2(Xp1) N2(Xp2) ... N2(XNp) | # | N3(Xp1) N3(Xp2) ... N3(XNp) | # | N4(Xp1) N4(Xp2) ... N4(XNp) | # grad_z=| N1_z(Xp1) N1_z(Xp2) ... N1_z(XNp) | # | N2_z(Xp1) N2_z(Xp2) ... N2_z(XNp) | # | N3_z(Xp1) N3_z(Xp2) ... N3_z(XNp) | # | N4_z(Xp1) N4_z(Xp2) ... N4_z(XNp) | # where Ni(Xj) is the shape function of node i evaluated at the jth particles position # samples=20 # cx=np.linspace(2.,80.,samples) # cy=cx[0] cx=2. cy=2. dx=2. samples=1000 number_left = Rand(1, 4, samples) position_left = RandPosition(number_left) number_bott = Rand(1, 4, samples) position_bott = RandPosition(number_bott) number_curr = Rand(1, 4, samples) position_curr = RandPosition(number_curr) number_botle = Rand(1, 4, samples) position_botle = RandPosition(number_botle) if not os.path.exists('dcuRandom.npy'): dcuSolution=[] dcuSolution_id=[] ctuSolution=[] ctuSolution_id=[] for i in range(samples): print "Computing critical CFL for sample ",i,": ",number_curr[i]," particles" solution_dcu=[] solution_dcu_id=[] solution_ctu=[] solution_ctu_id=[] for k in range(number_curr[i]): # if number_curr[i]<number_prev[i] : # print "Attention ca va merder !!!!!!" # else: # print "Ca va le faire..." XL = position_left[i][:,0] ; YL = position_left[i][:,1] XB = position_bott[i][:,0] ; YB = position_bott[i][:,1] XBL = position_botle[i][:,0] ; YBL = position_botle[i][:,1] XC = position_curr[i][:,0] ; YC = position_curr[i][:,1] res=symbolResidual(k,dx,cx,cy,(XC,YC),(XB,YB),(XL,YL)) solution_dcu.append(gridSearch(res,dx,cx)) res=symbolResidual(k,dx,cx,cy,(XC,YC),(XC,YC),(XC,YC)) solution_dcu_id.append(gridSearch(res,dx,cx)) res=symbolResidual(k,dx,cx,cy,(XC,YC),(XB,YB),(XL,YL),(XBL,YBL)) solution_ctu.append(gridSearch(res,dx,cx)) res=symbolResidual(k,dx,cx,cy,(XC,YC),(XC,YC),(XC,YC),(XC,YC)) solution_ctu_id.append(gridSearch(res,dx,cx)) dcuSolution.append(min(solution_dcu)) dcuSolution_id.append(min(solution_dcu_id)) ctuSolution.append(min(solution_ctu)) ctuSolution_id.append(min(solution_ctu_id)) np.save('dcuRandom.npy',dcuSolution) np.save('dcuRandom_id.npy',dcuSolution_id) np.save('ctuRandom.npy',ctuSolution) np.save('ctuRandom_id.npy',ctuSolution_id) else : dcuSolution=np.load('dcuRandom.npy') dcuSolution_id=np.load('dcuRandom_id.npy') ctuSolution=np.load('ctuRandom.npy') ctuSolution_id=np.load('ctuRandom_id.npy') import statistics plt.figure() plt.hist(dcuSolution,bins='auto',color='blue') plt.grid() plt.figure() plt.hist(dcuSolution_id,bins='auto',color='red') plt.grid() plt.show() pdb.set_trace() plt.figure() plt.hist(ctuSolution,bins='auto',color='blue') plt.grid() plt.figure() plt.hist(ctuSolution_id,bins='auto',color='red') plt.grid() plt.show()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 27183, 198, 6738, 10558, 88, 1330, 1635, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 4738, 198, 11748, 279, 9945, 198, 11748, 28686, 628, 198, 2, 41327, 4160, 2163, 284, 13446, 5485, 5499, 198, 43358, 62, 12543, 2733, 28, 50033, 2124, 11, 88, 25, 45941, 13, 18747, 26933, 7, 16, 7874, 87, 27493, 7, 16, 7874, 88, 20679, 19, 1539, 7, 16, 13, 10, 87, 27493, 7, 16, 7874, 88, 20679, 19, 1539, 7, 16, 13, 10, 87, 27493, 7, 16, 13, 10, 88, 20679, 19, 1539, 7, 16, 7874, 87, 27493, 7, 16, 13, 10, 88, 20679, 19, 8183, 8, 198, 9744, 62, 29992, 28, 50033, 331, 25, 37659, 13, 18747, 26933, 30420, 16, 7874, 88, 20679, 19, 1539, 7, 16, 7874, 88, 20679, 19, 1539, 7, 16, 13, 10, 88, 20679, 19, 1539, 30420, 16, 13, 10, 88, 20679, 19, 8183, 8, 198, 9744, 62, 17167, 28, 50033, 2124, 25, 37659, 13, 18747, 26933, 30420, 16, 7874, 87, 20679, 19, 1539, 30420, 16, 13, 10, 87, 20679, 19, 1539, 7, 16, 13, 10, 87, 20679, 19, 1539, 7, 16, 7874, 87, 20679, 19, 8183, 8, 198, 198, 2, 15268, 28, 91, 399, 16, 7, 55, 79, 16, 8, 399, 16, 7, 55, 79, 17, 8, 2644, 399, 16, 7, 55, 45, 79, 8, 930, 198, 2, 220, 220, 220, 220, 220, 220, 220, 930, 399, 17, 7, 55, 79, 16, 8, 399, 17, 7, 55, 79, 17, 8, 2644, 399, 17, 7, 55, 45, 79, 8, 930, 198, 2, 220, 220, 220, 220, 220, 220, 220, 930, 399, 18, 7, 55, 79, 16, 8, 399, 18, 7, 55, 79, 17, 8, 2644, 399, 18, 7, 55, 45, 79, 8, 930, 198, 2, 220, 220, 220, 220, 220, 220, 220, 930, 399, 19, 7, 55, 79, 16, 8, 399, 19, 7, 55, 79, 17, 8, 2644, 399, 19, 7, 55, 45, 79, 8, 930, 198, 198, 2, 3915, 62, 89, 28, 91, 399, 16, 62, 89, 7, 55, 79, 16, 8, 399, 16, 62, 89, 7, 55, 79, 17, 8, 2644, 399, 16, 62, 89, 7, 55, 45, 79, 8, 930, 198, 2, 220, 220, 220, 220, 220, 220, 220, 930, 399, 17, 62, 89, 7, 55, 79, 16, 8, 399, 17, 62, 89, 7, 55, 79, 17, 8, 2644, 399, 17, 62, 89, 7, 55, 45, 79, 8, 930, 198, 2, 220, 220, 220, 220, 220, 220, 220, 930, 399, 18, 62, 89, 7, 55, 79, 16, 8, 399, 18, 62, 89, 7, 55, 79, 17, 8, 2644, 399, 18, 62, 89, 7, 55, 45, 79, 8, 930, 198, 2, 220, 220, 220, 220, 220, 220, 220, 930, 399, 19, 62, 89, 7, 55, 79, 16, 8, 399, 19, 62, 89, 7, 55, 79, 17, 8, 2644, 399, 19, 62, 89, 7, 55, 45, 79, 8, 930, 198, 198, 2, 810, 11556, 7, 55, 73, 8, 318, 262, 5485, 2163, 286, 10139, 1312, 16726, 379, 262, 474, 400, 13166, 2292, 628, 198, 198, 2, 8405, 28, 1238, 198, 2, 43213, 28, 37659, 13, 21602, 10223, 7, 17, 1539, 1795, 1539, 82, 12629, 8, 198, 2, 3075, 28, 66, 87, 58, 15, 60, 198, 66, 87, 28, 17, 13, 198, 948, 28, 17, 13, 198, 34350, 28, 17, 13, 198, 198, 82, 12629, 28, 12825, 198, 17618, 62, 9464, 796, 8790, 7, 16, 11, 604, 11, 8405, 8, 198, 9150, 62, 9464, 796, 8790, 26545, 7, 17618, 62, 9464, 8, 198, 198, 17618, 62, 10985, 796, 8790, 7, 16, 11, 604, 11, 8405, 8, 198, 9150, 62, 10985, 796, 8790, 26545, 7, 17618, 62, 10985, 8, 198, 198, 17618, 62, 22019, 81, 796, 8790, 7, 16, 11, 604, 11, 8405, 8, 198, 9150, 62, 22019, 81, 796, 8790, 26545, 7, 17618, 62, 22019, 81, 8, 198, 198, 17618, 62, 13645, 293, 796, 8790, 7, 16, 11, 604, 11, 8405, 8, 198, 9150, 62, 13645, 293, 796, 8790, 26545, 7, 17618, 62, 13645, 293, 8, 198, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 10786, 17896, 84, 29531, 13, 77, 9078, 6, 2599, 198, 220, 220, 220, 288, 27399, 46344, 28, 21737, 198, 220, 220, 220, 288, 27399, 46344, 62, 312, 28, 21737, 198, 220, 220, 220, 269, 28047, 46344, 28, 21737, 198, 220, 220, 220, 269, 28047, 46344, 62, 312, 28, 21737, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 82, 12629, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 5377, 48074, 4688, 45239, 329, 6291, 33172, 72, 553, 25, 33172, 17618, 62, 22019, 81, 58, 72, 17241, 13166, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 17896, 84, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 17896, 84, 62, 312, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 310, 84, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 310, 84, 62, 312, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 17618, 62, 22019, 81, 58, 72, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1271, 62, 22019, 81, 58, 72, 60, 27, 17618, 62, 47050, 58, 72, 60, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 366, 8086, 1463, 1275, 46935, 4017, 1082, 37867, 10185, 2474, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 366, 24334, 46935, 443, 37063, 9313, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16276, 796, 2292, 62, 9464, 58, 72, 7131, 45299, 15, 60, 2162, 575, 43, 796, 2292, 62, 9464, 58, 72, 7131, 45299, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 33, 796, 2292, 62, 10985, 58, 72, 7131, 45299, 15, 60, 2162, 575, 33, 796, 2292, 62, 10985, 58, 72, 7131, 45299, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 9148, 796, 2292, 62, 13645, 293, 58, 72, 7131, 45299, 15, 60, 2162, 575, 9148, 796, 2292, 62, 13645, 293, 58, 72, 7131, 45299, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 34, 796, 2292, 62, 22019, 81, 58, 72, 7131, 45299, 15, 60, 2162, 575, 34, 796, 2292, 62, 22019, 81, 58, 72, 7131, 45299, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 28, 1837, 23650, 4965, 312, 723, 7, 74, 11, 34350, 11, 66, 87, 11, 948, 11, 7, 55, 34, 11, 44816, 828, 7, 55, 33, 11, 56, 33, 828, 7, 32457, 11, 45448, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 17896, 84, 13, 33295, 7, 25928, 18243, 7, 411, 11, 34350, 11, 66, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 28, 1837, 23650, 4965, 312, 723, 7, 74, 11, 34350, 11, 66, 87, 11, 948, 11, 7, 55, 34, 11, 44816, 828, 7, 55, 34, 11, 44816, 828, 7, 55, 34, 11, 44816, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 17896, 84, 62, 312, 13, 33295, 7, 25928, 18243, 7, 411, 11, 34350, 11, 66, 87, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 28, 1837, 23650, 4965, 312, 723, 7, 74, 11, 34350, 11, 66, 87, 11, 948, 11, 7, 55, 34, 11, 44816, 828, 7, 55, 33, 11, 56, 33, 828, 7, 32457, 11, 45448, 828, 7, 55, 9148, 11, 56, 9148, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 310, 84, 13, 33295, 7, 25928, 18243, 7, 411, 11, 34350, 11, 66, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 28, 1837, 23650, 4965, 312, 723, 7, 74, 11, 34350, 11, 66, 87, 11, 948, 11, 7, 55, 34, 11, 44816, 828, 7, 55, 34, 11, 44816, 828, 7, 55, 34, 11, 44816, 828, 7, 55, 34, 11, 44816, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 310, 84, 62, 312, 13, 33295, 7, 25928, 18243, 7, 411, 11, 34350, 11, 66, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 27399, 46344, 13, 33295, 7, 1084, 7, 82, 2122, 62, 17896, 84, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 288, 27399, 46344, 62, 312, 13, 33295, 7, 1084, 7, 82, 2122, 62, 17896, 84, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 269, 28047, 46344, 13, 33295, 7, 1084, 7, 82, 2122, 62, 310, 84, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 269, 28047, 46344, 62, 312, 13, 33295, 7, 1084, 7, 82, 2122, 62, 310, 84, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 45941, 13, 21928, 10786, 17896, 84, 29531, 13, 77, 9078, 3256, 17896, 84, 46344, 8, 198, 220, 220, 220, 45941, 13, 21928, 10786, 17896, 84, 29531, 62, 312, 13, 77, 9078, 3256, 17896, 84, 46344, 62, 312, 8, 198, 220, 220, 220, 45941, 13, 21928, 10786, 310, 84, 29531, 13, 77, 9078, 3256, 310, 84, 46344, 8, 198, 220, 220, 220, 45941, 13, 21928, 10786, 310, 84, 29531, 62, 312, 13, 77, 9078, 3256, 310, 84, 46344, 62, 312, 8, 198, 17772, 1058, 198, 220, 220, 220, 288, 27399, 46344, 28, 37659, 13, 2220, 10786, 17896, 84, 29531, 13, 77, 9078, 11537, 198, 220, 220, 220, 288, 27399, 46344, 62, 312, 28, 37659, 13, 2220, 10786, 17896, 84, 29531, 62, 312, 13, 77, 9078, 11537, 198, 220, 220, 220, 269, 28047, 46344, 28, 37659, 13, 2220, 10786, 310, 84, 29531, 13, 77, 9078, 11537, 198, 220, 220, 220, 269, 28047, 46344, 62, 312, 28, 37659, 13, 2220, 10786, 310, 84, 29531, 62, 312, 13, 77, 9078, 11537, 198, 198, 11748, 7869, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 10034, 7, 17896, 84, 46344, 11, 65, 1040, 11639, 23736, 3256, 8043, 11639, 17585, 11537, 198, 489, 83, 13, 25928, 3419, 198, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 10034, 7, 17896, 84, 46344, 62, 312, 11, 65, 1040, 11639, 23736, 3256, 8043, 11639, 445, 11537, 198, 489, 83, 13, 25928, 3419, 198, 198, 489, 83, 13, 12860, 3419, 198, 79, 9945, 13, 2617, 62, 40546, 3419, 198, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 10034, 7, 310, 84, 46344, 11, 65, 1040, 11639, 23736, 3256, 8043, 11639, 17585, 11537, 198, 489, 83, 13, 25928, 3419, 198, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 10034, 7, 310, 84, 46344, 62, 312, 11, 65, 1040, 11639, 23736, 3256, 8043, 11639, 445, 11537, 198, 489, 83, 13, 25928, 3419, 198, 198, 489, 83, 13, 12860, 3419, 198 ]
1.891534
1,890
# pylint: disable=redefined-outer-name,no-member import json import os import shutil import subprocess import time import pytest from parse import parse from sqlalchemy import create_engine from alembic_utils.testbase import TEST_VERSIONS_ROOT, reset_event_listener_registry PYTEST_DB = "postgresql://alem_user:password@localhost:5680/alem_db" @pytest.fixture(scope="session") def maybe_start_pg() -> None: """Creates a postgres 12 docker container that can be connected to using the PYTEST_DB connection string""" container_name = "alembic_utils_pg" image = "postgres:12" connection_template = "postgresql://{user}:{pw}@{host}:{port:d}/{db}" conn_args = parse(connection_template, PYTEST_DB) # Don't attempt to instantiate a container if # we're on CI if "GITHUB_SHA" in os.environ: yield return try: is_running = ( subprocess.check_output( ["docker", "inspect", "-f", "{{.State.Running}}", container_name] ) .decode() .strip() == "true" ) except subprocess.CalledProcessError: # Can't inspect container if it isn't running is_running = False if is_running: yield return subprocess.call( [ "docker", "run", "--rm", "--name", container_name, "-p", f"{conn_args['port']}:5432", "-d", "-e", f"POSTGRES_DB={conn_args['db']}", "-e", f"POSTGRES_PASSWORD={conn_args['pw']}", "-e", f"POSTGRES_USER={conn_args['user']}", "--health-cmd", "pg_isready", "--health-interval", "3s", "--health-timeout", "3s", "--health-retries", "15", image, ] ) # Wait for postgres to become healthy for _ in range(10): out = subprocess.check_output(["docker", "inspect", container_name]) inspect_info = json.loads(out)[0] health_status = inspect_info["State"]["Health"]["Status"] if health_status == "healthy": break else: time.sleep(1) else: raise Exception("Could not reach postgres comtainer. Check docker installation") yield # subprocess.call(["docker", "stop", container_name]) return @pytest.fixture(scope="session") def raw_engine(maybe_start_pg: None): """sqlalchemy engine fixture""" eng = create_engine(PYTEST_DB) yield eng eng.dispose() @pytest.fixture(scope="function") def engine(raw_engine): """Engine that has been reset between tests""" run_cleaners() yield raw_engine run_cleaners()
[ 2, 279, 2645, 600, 25, 15560, 28, 445, 18156, 12, 39605, 12, 3672, 11, 3919, 12, 19522, 198, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 640, 198, 198, 11748, 12972, 9288, 198, 6738, 21136, 1330, 21136, 198, 6738, 44161, 282, 26599, 1330, 2251, 62, 18392, 198, 198, 6738, 31341, 2022, 291, 62, 26791, 13, 9288, 8692, 1330, 43001, 62, 28884, 11053, 62, 13252, 2394, 11, 13259, 62, 15596, 62, 4868, 877, 62, 2301, 4592, 198, 198, 47, 56, 51, 6465, 62, 11012, 796, 366, 7353, 34239, 13976, 1378, 282, 368, 62, 7220, 25, 28712, 31, 36750, 25, 3980, 1795, 14, 282, 368, 62, 9945, 1, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 29891, 4943, 198, 4299, 3863, 62, 9688, 62, 6024, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 16719, 274, 257, 1281, 34239, 1105, 36253, 9290, 326, 460, 307, 5884, 198, 220, 220, 220, 284, 1262, 262, 350, 56, 51, 6465, 62, 11012, 4637, 4731, 37811, 628, 220, 220, 220, 9290, 62, 3672, 796, 366, 282, 24419, 291, 62, 26791, 62, 6024, 1, 198, 220, 220, 220, 2939, 796, 366, 7353, 34239, 25, 1065, 1, 628, 220, 220, 220, 4637, 62, 28243, 796, 366, 7353, 34239, 13976, 1378, 90, 7220, 92, 29164, 79, 86, 92, 31, 90, 4774, 92, 29164, 634, 25, 67, 92, 14, 90, 9945, 36786, 198, 220, 220, 220, 48260, 62, 22046, 796, 21136, 7, 38659, 62, 28243, 11, 350, 56, 51, 6465, 62, 11012, 8, 628, 220, 220, 220, 1303, 2094, 470, 2230, 284, 9113, 9386, 257, 9290, 611, 198, 220, 220, 220, 1303, 356, 821, 319, 14514, 198, 220, 220, 220, 611, 366, 38, 10554, 10526, 62, 37596, 1, 287, 28686, 13, 268, 2268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 20270, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 14681, 13, 9122, 62, 22915, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 45986, 1600, 366, 1040, 806, 1600, 27444, 69, 1600, 366, 27007, 13, 9012, 13, 28768, 11709, 1600, 9290, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 12501, 1098, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 366, 7942, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2845, 850, 14681, 13, 34, 4262, 18709, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1680, 470, 10104, 9290, 611, 340, 2125, 470, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 20270, 796, 10352, 628, 220, 220, 220, 611, 318, 62, 20270, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 850, 14681, 13, 13345, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45986, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5143, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 26224, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9290, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 79, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 37043, 62, 22046, 17816, 634, 20520, 38362, 4051, 2624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 67, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 68, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 32782, 10761, 1546, 62, 11012, 34758, 37043, 62, 22046, 17816, 9945, 20520, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 68, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 32782, 10761, 1546, 62, 47924, 54, 12532, 34758, 37043, 62, 22046, 17816, 79, 86, 20520, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 68, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 32782, 10761, 1546, 62, 29904, 34758, 37043, 62, 22046, 17816, 7220, 20520, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 13948, 12, 28758, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6024, 62, 271, 1493, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 13948, 12, 3849, 2100, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 13948, 12, 48678, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 13948, 12, 1186, 1678, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1314, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 16314, 329, 1281, 34239, 284, 1716, 5448, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 850, 14681, 13, 9122, 62, 22915, 7, 14692, 45986, 1600, 366, 1040, 806, 1600, 9290, 62, 3672, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 10104, 62, 10951, 796, 33918, 13, 46030, 7, 448, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1535, 62, 13376, 796, 10104, 62, 10951, 14692, 9012, 1, 7131, 1, 18081, 1, 7131, 1, 19580, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1535, 62, 13376, 6624, 366, 22796, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 23722, 407, 3151, 1281, 34239, 401, 3153, 263, 13, 6822, 36253, 9988, 4943, 198, 220, 220, 220, 7800, 198, 220, 220, 220, 1303, 850, 14681, 13, 13345, 7, 14692, 45986, 1600, 366, 11338, 1600, 9290, 62, 3672, 12962, 198, 220, 220, 220, 1441, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 29891, 4943, 198, 4299, 8246, 62, 18392, 7, 25991, 62, 9688, 62, 6024, 25, 6045, 2599, 198, 220, 220, 220, 37227, 25410, 282, 26599, 3113, 29220, 37811, 198, 220, 220, 220, 1786, 796, 2251, 62, 18392, 7, 47, 56, 51, 6465, 62, 11012, 8, 198, 220, 220, 220, 7800, 1786, 198, 220, 220, 220, 1786, 13, 6381, 3455, 3419, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 8818, 4943, 198, 4299, 3113, 7, 1831, 62, 18392, 2599, 198, 220, 220, 220, 37227, 13798, 326, 468, 587, 13259, 1022, 5254, 37811, 628, 220, 220, 220, 1057, 62, 27773, 364, 3419, 628, 220, 220, 220, 7800, 8246, 62, 18392, 628, 220, 220, 220, 1057, 62, 27773, 364, 3419, 198 ]
2.120846
1,324
# -*- coding: utf-8 -*- import sys import dotenv # 打印系统信息 print("Python %s on %s" % (sys.version, sys.platform)) sys.path.extend([WORKING_DIR_AND_PYTHON_PATHS]) # 导入环境变量 dotenv.load_dotenv(dotenv_path=PROJECT_ROOT + "/env/dc_dev.env")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 25064, 198, 198, 11748, 16605, 24330, 198, 198, 2, 10545, 231, 241, 39355, 108, 163, 111, 119, 163, 119, 253, 46479, 94, 162, 223, 107, 198, 4798, 7203, 37906, 4064, 82, 319, 4064, 82, 1, 4064, 357, 17597, 13, 9641, 11, 25064, 13, 24254, 4008, 198, 198, 17597, 13, 6978, 13, 2302, 437, 26933, 33249, 2751, 62, 34720, 62, 6981, 62, 47, 56, 4221, 1340, 62, 47, 1404, 7998, 12962, 198, 198, 2, 10263, 107, 120, 17739, 98, 163, 236, 107, 161, 95, 225, 20998, 246, 34932, 237, 198, 26518, 24330, 13, 2220, 62, 26518, 24330, 7, 26518, 24330, 62, 6978, 28, 31190, 23680, 62, 13252, 2394, 1343, 12813, 24330, 14, 17896, 62, 7959, 13, 24330, 4943, 198 ]
1.796992
133
#!/usr/bin/env python # # Copyright 2014 Tuenti Technologies S.L. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import getpass import socket
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 15069, 1946, 16749, 298, 72, 21852, 311, 13, 43, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 11748, 651, 6603, 198, 11748, 17802, 628 ]
3.685714
175
from django.test import tag from test import cases as case from test import fixtures as data @tag('pool')
[ 6738, 42625, 14208, 13, 9288, 1330, 7621, 198, 198, 6738, 1332, 1330, 2663, 355, 1339, 198, 6738, 1332, 1330, 34609, 355, 1366, 628, 198, 31, 12985, 10786, 7742, 11537, 198 ]
3.633333
30
import os from time import sleep print('***********************') a = 1 pid = os.fork() if pid < 0: print("创建进程失败") elif pid == 0: print('这是新的进程') print("a =",a) a = 10000 else: sleep(1) print("这是原有进程") print("psarent a =",a) print("演示完毕")
[ 11748, 28686, 198, 6738, 640, 1330, 3993, 198, 198, 4798, 10786, 8412, 2466, 8162, 11537, 198, 64, 796, 352, 198, 198, 35317, 796, 28686, 13, 32523, 3419, 198, 198, 361, 46514, 1279, 657, 25, 198, 220, 220, 220, 3601, 7203, 26344, 249, 161, 119, 118, 32573, 249, 163, 101, 233, 13783, 109, 164, 112, 98, 4943, 198, 417, 361, 46514, 6624, 657, 25, 198, 220, 220, 220, 3601, 10786, 32573, 247, 42468, 23877, 108, 21410, 32573, 249, 163, 101, 233, 11537, 198, 220, 220, 220, 3601, 7203, 64, 796, 1600, 64, 8, 198, 220, 220, 220, 257, 796, 33028, 198, 17772, 25, 198, 220, 220, 220, 3993, 7, 16, 8, 198, 220, 220, 220, 3601, 7203, 32573, 247, 42468, 43889, 253, 17312, 231, 32573, 249, 163, 101, 233, 4943, 198, 220, 220, 220, 3601, 7203, 862, 1580, 257, 796, 1600, 64, 8, 198, 198, 4798, 7203, 162, 120, 242, 163, 97, 118, 22522, 234, 162, 107, 243, 4943, 198 ]
1.710692
159
import glob import os import unittest import sys if __name__ == "__main__": suite = build_test_suite() runner = unittest.TextTestRunner() result = runner.run(suite) sys.exit(not result.wasSuccessful())
[ 11748, 15095, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 11748, 25064, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 18389, 796, 1382, 62, 9288, 62, 2385, 578, 3419, 198, 220, 220, 220, 17490, 796, 555, 715, 395, 13, 8206, 14402, 49493, 3419, 628, 220, 220, 220, 1255, 796, 17490, 13, 5143, 7, 2385, 578, 8, 198, 220, 220, 220, 25064, 13, 37023, 7, 1662, 1255, 13, 9776, 33244, 913, 28955, 198 ]
2.728395
81
# Copyright 2014-present PlatformIO <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Arduino Arduino Wiring-based Framework allows writing cross-platform software to control devices attached to a wide range of Arduino boards to create all kinds of creative coding, interactive objects, spaces or physical experiences. http://arduino.cc/en/Reference/HomePage """ import os from SCons.Script import DefaultEnvironment env = DefaultEnvironment() platform = env.PioPlatform() board = env.BoardConfig() framework_package = "framework-arduino-sensebox" if board.get("build.core", "").lower() != "arduino": framework_package += "-%s" % board.get("build.core").lower() FRAMEWORK_DIR = platform.get_package_dir(framework_package) assert os.path.isdir(FRAMEWORK_DIR) env.Append( ASFLAGS=["-x", "assembler-with-cpp"], CFLAGS=[ "-std=gnu11" ], CCFLAGS=[ "-Os", # optimize for size "-ffunction-sections", # place each function in its own section "-fdata-sections", "-Wall", "-mcpu=%s" % board.get("build.cpu"), "-mthumb", "-nostdlib", "--param", "max-inline-insns-single=500" ], CXXFLAGS=[ "-fno-rtti", "-fno-exceptions", "-std=gnu++11", "-fno-threadsafe-statics" ], CPPDEFINES=[ ("ARDUINO", 10805), ("F_CPU", "$BOARD_F_CPU"), "USBCON" ], LIBSOURCE_DIRS=[ os.path.join(FRAMEWORK_DIR, "libraries") ], LINKFLAGS=[ "-Os", "-mcpu=%s" % board.get("build.cpu"), "-mthumb", "-Wl,--gc-sections", "-Wl,--check-sections", "-Wl,--unresolved-symbols=report-all", "-Wl,--warn-common", "-Wl,--warn-section-align" ], LIBS=["m"] ) variants_dir = os.path.join( "$PROJECT_DIR", board.get("build.variants_dir")) if board.get( "build.variants_dir", "") else os.path.join(FRAMEWORK_DIR, "variants") if not board.get("build.ldscript", ""): env.Append( LIBPATH=[ os.path.join(variants_dir, board.get("build.variant"), "linker_scripts", "gcc") ] ) env.Replace( LDSCRIPT_PATH=board.get("build.arduino.ldscript", "") ) if "build.usb_product" in board: env.Append( CPPDEFINES=[ ("USB_VID", board.get("build.hwids")[0][0]), ("USB_PID", board.get("build.hwids")[0][1]), ("USB_PRODUCT", '\\"%s\\"' % board.get("build.usb_product", "").replace('"', "")), ("USB_MANUFACTURER", '\\"%s\\"' % board.get("vendor", "").replace('"', "")) ] )
[ 2, 15069, 1946, 12, 25579, 19193, 9399, 1279, 32057, 31, 24254, 952, 13, 2398, 29, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 3163, 24493, 198, 198, 3163, 24493, 370, 3428, 12, 3106, 25161, 3578, 3597, 3272, 12, 24254, 3788, 284, 198, 13716, 4410, 7223, 284, 257, 3094, 2837, 286, 27634, 11490, 284, 2251, 477, 198, 11031, 82, 286, 7325, 19617, 11, 14333, 5563, 11, 9029, 393, 3518, 6461, 13, 198, 198, 4023, 1378, 446, 84, 2879, 13, 535, 14, 268, 14, 26687, 14, 16060, 9876, 198, 37811, 198, 198, 11748, 28686, 198, 198, 6738, 6374, 684, 13, 7391, 1330, 15161, 31441, 198, 198, 24330, 796, 15161, 31441, 3419, 198, 24254, 796, 17365, 13, 47, 952, 37148, 3419, 198, 3526, 796, 17365, 13, 29828, 16934, 3419, 198, 198, 30604, 62, 26495, 796, 366, 30604, 12, 446, 84, 2879, 12, 33819, 3524, 1, 198, 361, 3096, 13, 1136, 7203, 11249, 13, 7295, 1600, 366, 11074, 21037, 3419, 14512, 366, 446, 84, 2879, 1298, 198, 220, 220, 220, 9355, 62, 26495, 15853, 27444, 4, 82, 1, 4064, 3096, 13, 1136, 7203, 11249, 13, 7295, 11074, 21037, 3419, 198, 10913, 2390, 6217, 14670, 62, 34720, 796, 3859, 13, 1136, 62, 26495, 62, 15908, 7, 30604, 62, 26495, 8, 198, 198, 30493, 28686, 13, 6978, 13, 9409, 343, 7, 10913, 2390, 6217, 14670, 62, 34720, 8, 198, 198, 24330, 13, 4677, 437, 7, 198, 220, 220, 220, 7054, 38948, 50, 28, 14692, 12, 87, 1600, 366, 34455, 1754, 12, 4480, 12, 20322, 33116, 628, 220, 220, 220, 327, 38948, 50, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 19282, 28, 41791, 1157, 1, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 12624, 38948, 50, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 16748, 1600, 220, 1303, 27183, 329, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 487, 4575, 12, 23946, 1600, 220, 1303, 1295, 1123, 2163, 287, 663, 898, 2665, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 69, 7890, 12, 23946, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 22401, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 76, 36166, 28, 4, 82, 1, 4064, 3096, 13, 1136, 7203, 11249, 13, 36166, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 76, 400, 2178, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 77, 455, 67, 8019, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 17143, 1600, 366, 9806, 12, 45145, 12, 1040, 5907, 12, 29762, 28, 4059, 1, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 327, 8051, 38948, 50, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 69, 3919, 12, 81, 35671, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 69, 3919, 12, 1069, 11755, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 19282, 28, 41791, 4880, 1157, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 69, 3919, 12, 16663, 21230, 12, 14269, 873, 1, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 16932, 5760, 36, 20032, 1546, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 9795, 52, 46016, 1600, 17729, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 37, 62, 36037, 1600, 17971, 8202, 9795, 62, 37, 62, 36037, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2937, 2749, 1340, 1, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 24653, 4462, 31033, 62, 34720, 50, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 10913, 2390, 6217, 14670, 62, 34720, 11, 366, 75, 11127, 4943, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 34426, 38948, 50, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 16748, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 76, 36166, 28, 4, 82, 1, 4064, 3096, 13, 1136, 7203, 11249, 13, 36166, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 76, 400, 2178, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 54, 75, 11, 438, 36484, 12, 23946, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 54, 75, 11, 438, 9122, 12, 23946, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 54, 75, 11, 438, 403, 411, 5634, 12, 1837, 2022, 10220, 28, 13116, 12, 439, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 54, 75, 11, 438, 40539, 12, 11321, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 54, 75, 11, 438, 40539, 12, 5458, 12, 31494, 1, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 24653, 4462, 28, 14692, 76, 8973, 198, 8, 198, 198, 25641, 1187, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 17971, 31190, 23680, 62, 34720, 1600, 3096, 13, 1136, 7203, 11249, 13, 25641, 1187, 62, 15908, 48774, 611, 3096, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11249, 13, 25641, 1187, 62, 15908, 1600, 366, 4943, 2073, 28686, 13, 6978, 13, 22179, 7, 10913, 2390, 6217, 14670, 62, 34720, 11, 366, 25641, 1187, 4943, 198, 198, 361, 407, 3096, 13, 1136, 7203, 11249, 13, 335, 12048, 1600, 13538, 2599, 198, 220, 220, 220, 17365, 13, 4677, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45651, 34219, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 25641, 1187, 62, 15908, 11, 3096, 13, 1136, 7203, 11249, 13, 25641, 415, 12340, 366, 8726, 263, 62, 46521, 1600, 366, 70, 535, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 17365, 13, 3041, 5372, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28377, 36584, 51, 62, 34219, 28, 3526, 13, 1136, 7203, 11249, 13, 446, 84, 2879, 13, 335, 12048, 1600, 366, 4943, 198, 220, 220, 220, 1267, 198, 198, 361, 366, 11249, 13, 43319, 62, 11167, 1, 287, 3096, 25, 198, 220, 220, 220, 17365, 13, 4677, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16932, 5760, 36, 20032, 1546, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 27155, 62, 11008, 1600, 3096, 13, 1136, 7203, 11249, 13, 36599, 2340, 4943, 58, 15, 7131, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 27155, 62, 47, 2389, 1600, 3096, 13, 1136, 7203, 11249, 13, 36599, 2340, 4943, 58, 15, 7131, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 27155, 62, 4805, 28644, 1600, 705, 6852, 1, 4, 82, 6852, 30543, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3096, 13, 1136, 7203, 11249, 13, 43319, 62, 11167, 1600, 366, 11074, 33491, 10786, 1, 3256, 366, 4943, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 27155, 62, 10725, 36820, 10659, 4261, 1137, 1600, 705, 6852, 1, 4, 82, 6852, 30543, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3096, 13, 1136, 7203, 85, 18738, 1600, 366, 11074, 33491, 10786, 1, 3256, 13538, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1267, 198 ]
2.333087
1,354
#!/usr/bin/python ##################################################################################################################################### # # # The purpose of this script is to collect data generated from parallel computation of parton level cross sections into one # # dat file. This file should contain the average matched cross section (after PYTHIA) and all events over all runs. The script also # # creates a repository to store this dat file and all root files for sharing with collaborators. # # # ##################################################################################################################################### # Imports import os.path import sys import re import numpy as np # Define the background to collect results for BG = 'jjWZ' # Create an event repository for the results repoBase = '/fdata/hepx/store/user/pwinslow/' + BG + '_Results/' if os.path.isdir(repoBase) == True: sys.exit('Repository already exists...') else: os.system('mkdir ' + repoBase) # Loop through MG5 run folders and populate the repository with the corresponding pythia log files and delphes root + lhco files print '\nPopulating event repository...' for run in range(1,21,1): # Define path to run files EventBase = '/fdata/hepx/store/user/pwinslow/MGRecord/100TeV_LNV_Results/DiBoson/' + BG + 'BG/job{0}/MG5_aMC_v2_3_3/'.format(run) + BG + 'BG_100TeV/Events/' # Copy relevant files to event repository os.system('cp ' + EventBase + 'pythia_output.log' + ' ' + repoBase + 'pythia_output_job{0}.log'.format(run)) os.system('cp ' + EventBase + 'delphes_events.root' + ' ' + repoBase + 'delphes_events_job{0}.root'.format(run)) os.system('cp ' + EventBase + 'delphes_events.lhco' + ' ' + repoBase + 'delphes_events_job{0}.lhco'.format(run)) print 'Done populating repository.' # Enter event repository os.chdir(repoBase) # Open a dat file to hold the full set of amalgamated events and averaged matched cross section information print 'Amalgamating full LHCO events...' with open('full_' + BG + '_lhco_events.dat', 'w') as full_event_file: # Create list to store all matched cross sections sigma_list = [] # Loop through all MG5 run folders and extract the average matched cross section for arg in range(1,21,1): # Define pythia file pythia_file = 'pythia_output_job{0}.log'.format(arg) # Check if pythia file exists if os.path.isfile(pythia_file) == False: print 'File not found...' # Open pythia log file and extract the matched cross section, saving them all to a single list with open(pythia_file, 'r+') as File: sigma_string = File.readlines()[-1] sigma = float(re.findall("-?\ *[0-9]+\.?[0-9]*(?:[Ee]\ *-?\ *[0-9]+)?", sigma_string)[0]) sigma_list.append(sigma) # Write the average of all the matched cross sections to the dat file full_event_file.write('Average matched cross section (pb): {0}\n'.format(np.mean(sigma_list))) # Indicate beginning of event info full_event_file.write('Begin event output...\n\n') # Include header info for events full_event_file.write(' # typ eta phi pt jmas ntrk btag had/em dum1 dum2\n') # Loop through all MG5 runs again, this time extracting all events from all delphes event files for run in range(1,21,1): # Define delphes file delphes_file = 'delphes_events_job{0}.lhco'.format(run) # Check if delphes file exists if os.path.isfile(delphes_file) == False: print 'File not found...' # Open delphes file and read in all events with open(delphes_file, 'r+') as File: delphes_events = File.readlines() # While skipping header info, parse all events, printing each event separated by a line with a single 0 line = 1 while line < len(delphes_events): if float(delphes_events[line].strip().split()[0]) != 0: full_event_file.write(delphes_events[line]) line += 1 else: full_event_file.write('0\n') line += 1 # Delete individual leftover lhco files print 'Cleaning repository...' os.system('rm *.lhco') print 'Full LHCO events collected and stored in repository.' print 'Repository is complete.\n'
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 29113, 29113, 29113, 29113, 4242, 2, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 1303, 198, 2, 383, 4007, 286, 428, 4226, 318, 284, 2824, 1366, 7560, 422, 10730, 29964, 286, 636, 261, 1241, 3272, 9004, 656, 530, 220, 197, 220, 220, 220, 1303, 198, 2, 4818, 2393, 13, 770, 2393, 815, 3994, 262, 2811, 14451, 3272, 2665, 357, 8499, 350, 56, 4221, 3539, 8, 290, 477, 2995, 625, 477, 4539, 13, 383, 4226, 635, 1303, 198, 2, 8075, 257, 16099, 284, 3650, 428, 4818, 2393, 290, 477, 6808, 3696, 329, 7373, 351, 37886, 13, 197, 197, 197, 197, 220, 220, 220, 1303, 198, 2, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 220, 1303, 198, 29113, 29113, 29113, 29113, 4242, 2, 628, 198, 198, 2, 1846, 3742, 198, 11748, 28686, 13, 6978, 198, 11748, 25064, 198, 11748, 302, 198, 11748, 299, 32152, 355, 45941, 628, 198, 2, 2896, 500, 262, 4469, 284, 2824, 2482, 329, 198, 40469, 796, 705, 41098, 54, 57, 6, 198, 198, 2, 13610, 281, 1785, 16099, 329, 262, 2482, 198, 260, 7501, 14881, 796, 31051, 69, 7890, 14, 258, 8416, 14, 8095, 14, 7220, 14, 79, 86, 1040, 9319, 14, 6, 1343, 34839, 1343, 705, 62, 25468, 14, 6, 198, 361, 28686, 13, 6978, 13, 9409, 343, 7, 260, 7501, 14881, 8, 6624, 6407, 25, 198, 197, 17597, 13, 37023, 10786, 6207, 13264, 1541, 7160, 986, 11537, 198, 17772, 25, 198, 197, 418, 13, 10057, 10786, 28015, 15908, 705, 1343, 29924, 14881, 8, 628, 198, 2, 26304, 832, 34809, 20, 1057, 24512, 290, 48040, 262, 16099, 351, 262, 11188, 279, 5272, 544, 2604, 3696, 290, 1619, 79, 956, 6808, 1343, 300, 71, 1073, 3696, 198, 4798, 705, 59, 77, 16979, 8306, 1785, 16099, 986, 6, 198, 1640, 1057, 287, 2837, 7, 16, 11, 2481, 11, 16, 2599, 628, 197, 2, 2896, 500, 3108, 284, 1057, 3696, 197, 198, 197, 9237, 14881, 796, 31051, 69, 7890, 14, 258, 8416, 14, 8095, 14, 7220, 14, 79, 86, 1040, 9319, 14, 20474, 23739, 14, 3064, 6767, 53, 62, 43, 27159, 62, 25468, 14, 18683, 33, 418, 261, 14, 6, 1343, 34839, 1343, 705, 40469, 14, 21858, 90, 15, 92, 14, 20474, 20, 62, 64, 9655, 62, 85, 17, 62, 18, 62, 18, 14, 4458, 18982, 7, 5143, 8, 1343, 34839, 1343, 705, 40469, 62, 3064, 6767, 53, 14, 37103, 14, 6, 628, 197, 2, 17393, 5981, 3696, 284, 1785, 16099, 198, 197, 418, 13, 10057, 10786, 13155, 705, 1343, 8558, 14881, 1343, 705, 79, 5272, 544, 62, 22915, 13, 6404, 6, 1343, 705, 705, 1343, 29924, 14881, 1343, 705, 79, 5272, 544, 62, 22915, 62, 21858, 90, 15, 27422, 6404, 4458, 18982, 7, 5143, 4008, 198, 197, 418, 13, 10057, 10786, 13155, 705, 1343, 8558, 14881, 1343, 705, 12381, 79, 956, 62, 31534, 13, 15763, 6, 1343, 705, 705, 1343, 29924, 14881, 1343, 705, 12381, 79, 956, 62, 31534, 62, 21858, 90, 15, 27422, 15763, 4458, 18982, 7, 5143, 4008, 197, 198, 197, 418, 13, 10057, 10786, 13155, 705, 1343, 8558, 14881, 1343, 705, 12381, 79, 956, 62, 31534, 13, 75, 71, 1073, 6, 1343, 705, 705, 1343, 29924, 14881, 1343, 705, 12381, 79, 956, 62, 31534, 62, 21858, 90, 15, 27422, 75, 71, 1073, 4458, 18982, 7, 5143, 4008, 197, 198, 4798, 705, 45677, 1461, 8306, 16099, 2637, 198, 198, 2, 6062, 1785, 16099, 220, 198, 418, 13, 354, 15908, 7, 260, 7501, 14881, 8, 628, 198, 2, 4946, 257, 4818, 2393, 284, 1745, 262, 1336, 900, 286, 45541, 321, 515, 2995, 290, 16449, 14451, 3272, 2665, 1321, 198, 4798, 705, 5840, 14016, 321, 803, 1336, 49730, 8220, 2995, 986, 6, 198, 4480, 1280, 10786, 12853, 62, 6, 1343, 34839, 1343, 705, 62, 75, 71, 1073, 62, 31534, 13, 19608, 3256, 705, 86, 11537, 355, 1336, 62, 15596, 62, 7753, 25, 628, 197, 2, 13610, 1351, 284, 3650, 477, 14451, 3272, 9004, 198, 197, 82, 13495, 62, 4868, 796, 17635, 628, 197, 2, 26304, 832, 477, 34809, 20, 1057, 24512, 290, 7925, 262, 2811, 14451, 3272, 2665, 198, 197, 1640, 1822, 287, 2837, 7, 16, 11, 2481, 11, 16, 2599, 628, 197, 197, 2, 2896, 500, 279, 5272, 544, 2393, 198, 197, 197, 79, 5272, 544, 62, 7753, 796, 705, 79, 5272, 544, 62, 22915, 62, 21858, 90, 15, 27422, 6404, 4458, 18982, 7, 853, 8, 197, 197, 628, 197, 197, 2, 6822, 611, 279, 5272, 544, 2393, 7160, 198, 197, 197, 361, 28686, 13, 6978, 13, 4468, 576, 7, 79, 5272, 544, 62, 7753, 8, 6624, 10352, 25, 198, 197, 197, 197, 4798, 705, 8979, 407, 1043, 986, 6, 628, 197, 197, 2, 4946, 279, 5272, 544, 2604, 2393, 290, 7925, 262, 14451, 3272, 2665, 11, 8914, 606, 477, 284, 257, 2060, 1351, 220, 198, 197, 197, 4480, 1280, 7, 79, 5272, 544, 62, 7753, 11, 705, 81, 10, 11537, 355, 9220, 25, 198, 197, 197, 198, 197, 197, 197, 82, 13495, 62, 8841, 796, 9220, 13, 961, 6615, 3419, 58, 12, 16, 60, 198, 197, 197, 197, 82, 13495, 796, 12178, 7, 260, 13, 19796, 439, 7203, 12, 30, 59, 1635, 58, 15, 12, 24, 48688, 17405, 30, 58, 15, 12, 24, 60, 9, 7, 27514, 58, 36, 68, 60, 59, 1635, 12, 30, 59, 1635, 58, 15, 12, 24, 48688, 19427, 1600, 264, 13495, 62, 8841, 38381, 15, 12962, 198, 197, 197, 197, 82, 13495, 62, 4868, 13, 33295, 7, 82, 13495, 8, 220, 628, 197, 2, 19430, 262, 2811, 286, 477, 262, 14451, 3272, 9004, 284, 262, 4818, 2393, 198, 197, 12853, 62, 15596, 62, 7753, 13, 13564, 10786, 26287, 14451, 3272, 2665, 357, 40842, 2599, 1391, 15, 32239, 77, 4458, 18982, 7, 37659, 13, 32604, 7, 82, 13495, 62, 4868, 22305, 198, 197, 2, 1423, 5344, 3726, 286, 1785, 7508, 220, 198, 197, 12853, 62, 15596, 62, 7753, 13, 13564, 10786, 44140, 1785, 5072, 986, 59, 77, 59, 77, 11537, 198, 197, 2, 40348, 13639, 7508, 329, 2995, 198, 197, 12853, 62, 15596, 62, 7753, 13, 13564, 10786, 220, 220, 1303, 220, 2170, 220, 220, 220, 220, 220, 2123, 64, 220, 220, 220, 220, 220, 872, 72, 220, 220, 220, 220, 220, 42975, 220, 220, 220, 474, 5356, 220, 220, 299, 2213, 74, 220, 220, 275, 12985, 220, 550, 14, 368, 220, 220, 288, 388, 16, 220, 220, 288, 388, 17, 59, 77, 11537, 628, 628, 197, 2, 26304, 832, 477, 34809, 20, 4539, 757, 11, 428, 640, 37895, 477, 2995, 422, 477, 1619, 79, 956, 1785, 3696, 198, 197, 1640, 1057, 287, 2837, 7, 16, 11, 2481, 11, 16, 2599, 628, 197, 197, 2, 2896, 500, 1619, 79, 956, 2393, 198, 197, 197, 12381, 79, 956, 62, 7753, 796, 705, 12381, 79, 956, 62, 31534, 62, 21858, 90, 15, 27422, 75, 71, 1073, 4458, 18982, 7, 5143, 8, 197, 197, 628, 197, 197, 2, 6822, 611, 1619, 79, 956, 2393, 7160, 198, 197, 197, 361, 28686, 13, 6978, 13, 4468, 576, 7, 12381, 79, 956, 62, 7753, 8, 6624, 10352, 25, 198, 197, 197, 197, 4798, 705, 8979, 407, 1043, 986, 6, 628, 197, 197, 2, 4946, 1619, 79, 956, 2393, 290, 1100, 287, 477, 2995, 198, 197, 197, 4480, 1280, 7, 12381, 79, 956, 62, 7753, 11, 705, 81, 10, 11537, 355, 9220, 25, 198, 197, 197, 197, 12381, 79, 956, 62, 31534, 796, 9220, 13, 961, 6615, 3419, 628, 197, 197, 2, 2893, 31017, 13639, 7508, 11, 21136, 477, 2995, 11, 13570, 1123, 1785, 11266, 416, 257, 1627, 351, 257, 2060, 657, 198, 197, 197, 1370, 796, 352, 198, 197, 197, 4514, 1627, 1279, 18896, 7, 12381, 79, 956, 62, 31534, 2599, 628, 197, 197, 197, 361, 12178, 7, 12381, 79, 956, 62, 31534, 58, 1370, 4083, 36311, 22446, 35312, 3419, 58, 15, 12962, 14512, 657, 25, 628, 197, 197, 197, 197, 12853, 62, 15596, 62, 7753, 13, 13564, 7, 12381, 79, 956, 62, 31534, 58, 1370, 12962, 197, 198, 197, 197, 197, 197, 1370, 15853, 352, 198, 197, 197, 197, 17772, 25, 198, 197, 198, 197, 197, 197, 197, 12853, 62, 15596, 62, 7753, 13, 13564, 10786, 15, 59, 77, 11537, 198, 197, 197, 197, 197, 1370, 15853, 352, 198, 198, 2, 23520, 1981, 39191, 300, 71, 1073, 3696, 198, 4798, 705, 34, 25909, 16099, 986, 6, 198, 418, 13, 10057, 10786, 26224, 46866, 75, 71, 1073, 11537, 198, 198, 4798, 705, 13295, 49730, 8220, 2995, 7723, 290, 8574, 287, 16099, 2637, 198, 4798, 705, 6207, 13264, 318, 1844, 13, 59, 77, 6, 198 ]
2.899861
1,438
from django.db import models from django.utils import timezone
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198 ]
3.705882
17
import os from copy import deepcopy from abc import ABCMeta, abstractmethod, abstractproperty import numpy as np import pandas as pd from rdkit import Chem from rdkit.Chem.Descriptors import ExactMolWt from rdkit.Chem import AllChem from rdkit import DataStructs from scipy import sparse as sp from ..utils.tools import property_getter class MolFragmentsLabel: """ Label atoms in a molecule with the fragments they belong to. The fragment library is built from PubChem fingerprint section 3 to section 7. The labels are fingerprint like vectors for each atom of the molecule. Args: ref_file (str): path to the reference file (csv format) that contains the SMARTS strings to match molecular fragments. """ ref_smarts = None @classmethod def create_labels_for(self, mol, sparse=True): """ Create fragment labels for a molecule: Args: mol (SMILES str or RDKit Mol object): the molecule to create labels for. sparse (bool): return the matrix in sparse format. Default: True. """ if isinstance(mol, str): mol = Chem.MolFromSmiles(mol) if mol is None: raise ValueError(f"{mol} is not a valid SMILES string.") # add hydrogens to the molecule mol = Chem.AddHs(mol) # initiate the vectors labels = np.zeros((len(self.ref_smarts), mol.GetNumAtoms()), dtype=np.int) # search for the fragments in the molecule for i, pattern in enumerate(self.ref_smarts): mat_substructs = mol.GetSubstructMatches(pattern) # convert tuple of tuples to a set mat_atoms = set() for atoms in mat_substructs: mat_atoms = mat_atoms.union(set(atoms)) mat_atoms = list(mat_atoms) labels[i, mat_atoms] = 1 if sparse: labels = sp.coo_matrix(labels) return labels
[ 11748, 28686, 198, 6738, 4866, 1330, 2769, 30073, 198, 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 11, 12531, 26745, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 374, 67, 15813, 1330, 12870, 198, 6738, 374, 67, 15813, 13, 41829, 13, 24564, 1968, 669, 1330, 1475, 529, 44, 349, 54, 83, 198, 6738, 374, 67, 15813, 13, 41829, 1330, 1439, 41829, 198, 6738, 374, 67, 15813, 1330, 6060, 44909, 82, 198, 6738, 629, 541, 88, 1330, 29877, 355, 599, 198, 198, 6738, 11485, 26791, 13, 31391, 1330, 3119, 62, 1136, 353, 628, 198, 4871, 17958, 42974, 902, 33986, 25, 198, 220, 220, 220, 37227, 36052, 23235, 287, 257, 27756, 351, 262, 21441, 484, 5594, 284, 13, 383, 24225, 198, 220, 220, 220, 5888, 318, 3170, 422, 8525, 41829, 25338, 2665, 513, 284, 2665, 767, 13, 383, 14722, 389, 198, 220, 220, 220, 25338, 588, 30104, 329, 1123, 22037, 286, 262, 27756, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 7753, 357, 2536, 2599, 3108, 284, 262, 4941, 2393, 357, 40664, 5794, 8, 326, 4909, 262, 9447, 1503, 4694, 198, 220, 220, 220, 220, 220, 220, 220, 13042, 284, 2872, 18955, 21441, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1006, 62, 5796, 5889, 796, 6045, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 2251, 62, 23912, 1424, 62, 1640, 7, 944, 11, 18605, 11, 29877, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13610, 24225, 14722, 329, 257, 27756, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18605, 357, 12310, 4146, 1546, 965, 393, 31475, 20827, 17958, 2134, 2599, 262, 27756, 284, 2251, 14722, 329, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29877, 357, 30388, 2599, 1441, 262, 17593, 287, 29877, 5794, 13, 15161, 25, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 43132, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18605, 796, 12870, 13, 44, 349, 4863, 7556, 2915, 7, 43132, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18605, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 90, 43132, 92, 318, 407, 257, 4938, 9447, 4146, 1546, 4731, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 7409, 48686, 284, 262, 27756, 198, 220, 220, 220, 220, 220, 220, 220, 18605, 796, 12870, 13, 4550, 39, 82, 7, 43132, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 22118, 262, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 45941, 13, 9107, 418, 19510, 11925, 7, 944, 13, 5420, 62, 5796, 5889, 828, 18605, 13, 3855, 33111, 2953, 3150, 3419, 828, 288, 4906, 28, 37659, 13, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2989, 329, 262, 21441, 287, 262, 27756, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 3912, 287, 27056, 378, 7, 944, 13, 5420, 62, 5796, 5889, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 62, 7266, 7249, 82, 796, 18605, 13, 3855, 7004, 7249, 19044, 2052, 7, 33279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10385, 46545, 286, 12777, 2374, 284, 257, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 62, 265, 3150, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 23235, 287, 2603, 62, 7266, 7249, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 62, 265, 3150, 796, 2603, 62, 265, 3150, 13, 24592, 7, 2617, 7, 265, 3150, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 62, 265, 3150, 796, 1351, 7, 6759, 62, 265, 3150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 58, 72, 11, 2603, 62, 265, 3150, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 599, 13, 1073, 78, 62, 6759, 8609, 7, 23912, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 14722, 628, 198 ]
2.469697
792
import cv2 import numpy as np import matplotlib.pyplot as plt import pandas as pd import openpyxl #Get pixel/distance (using ImageJ software) to output actual diameters of circles dp = 1 accum_ratio = 1 min_dist = 5 p1 = 40 p2 = 30 minDiam = 1 maxDiam = 30 scalebar = 10 min_range = 0 max_range = 100 intervals = 10 rad_list =[] detected_circles = [] dataForTable = {} # pd.DataFrame(rad_list).to_excel('emulsions_D50_list_1.xlsx',header=False, index=False)
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 1280, 9078, 87, 75, 198, 198, 2, 3855, 17465, 14, 30246, 357, 3500, 7412, 41, 3788, 8, 284, 5072, 4036, 48428, 7307, 286, 13332, 198, 198, 26059, 796, 352, 198, 4134, 388, 62, 10366, 952, 796, 352, 198, 1084, 62, 17080, 796, 642, 198, 79, 16, 796, 2319, 198, 79, 17, 796, 1542, 198, 1084, 35, 1789, 796, 352, 198, 9806, 35, 1789, 796, 1542, 198, 9888, 5657, 796, 838, 198, 1084, 62, 9521, 796, 657, 198, 9806, 62, 9521, 796, 1802, 198, 3849, 12786, 796, 838, 198, 6335, 62, 4868, 796, 21737, 198, 15255, 11197, 62, 66, 343, 5427, 796, 17635, 198, 7890, 1890, 10962, 796, 23884, 628, 198, 220, 220, 220, 220, 628, 198, 220, 220, 1303, 279, 67, 13, 6601, 19778, 7, 6335, 62, 4868, 737, 1462, 62, 1069, 5276, 10786, 368, 5753, 507, 62, 35, 1120, 62, 4868, 62, 16, 13, 87, 7278, 87, 3256, 25677, 28, 25101, 11, 6376, 28, 25101, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.441624
197
import numpy as np import os, json, util if __name__ == "__main__": fit_whitepoint_matrices(util.find_data_directory())
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 11, 33918, 11, 7736, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 4197, 62, 1929, 270, 538, 1563, 62, 6759, 45977, 7, 22602, 13, 19796, 62, 7890, 62, 34945, 28955, 198 ]
2.645833
48
from django.db import models from django.conf import settings
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 201, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 201, 198, 220, 220, 220, 220 ]
3.090909
22
# Inital char for detecting incoming order's String. INITIALCHAR = '$' # Separates order string from device id. IDENTIFIERCHART = ":" # Device Id and function separator in order's String. DEFUSEPARATOR = '/' # Variable separator VARSEPARATOR = '&' # Final char for detecting the final order's string. STOPCHAR = ';'
[ 2, 554, 1287, 1149, 329, 31521, 15619, 1502, 338, 10903, 13, 198, 1268, 2043, 12576, 38019, 796, 705, 3, 6, 198, 198, 2, 8621, 283, 689, 1502, 4731, 422, 3335, 4686, 13, 198, 25256, 5064, 38311, 3398, 7227, 796, 366, 11097, 198, 198, 2, 16232, 5121, 290, 2163, 2880, 1352, 287, 1502, 338, 10903, 13, 198, 32988, 2937, 8905, 1503, 25633, 796, 31051, 6, 198, 198, 2, 35748, 2880, 1352, 198, 53, 1503, 5188, 27082, 25633, 796, 705, 5, 6, 198, 198, 2, 8125, 1149, 329, 31521, 262, 2457, 1502, 338, 4731, 13, 198, 2257, 3185, 38019, 796, 705, 26, 6 ]
3.158416
101
from .chance import by_chance # noqa from .django import get_random_instance # noqa from .django import get_random_instances # noqa from .exceptions import EmptyListError # noqa from .exceptions import NoObjectsError # noqa from .generate import randint # noqa from .generate import random_birthday # noqa from .generate import random_number_str # noqa from .generate import random_phone # noqa from .generate import random_string # noqa from .lists import pick_random_entry # noqa from .lists import pop_random_entry # noqa from .lists import randomly_filter # noqa from .lists import scramble # noqa
[ 6738, 764, 39486, 1330, 416, 62, 39486, 220, 1303, 645, 20402, 198, 6738, 764, 28241, 14208, 1330, 651, 62, 25120, 62, 39098, 220, 1303, 645, 20402, 198, 6738, 764, 28241, 14208, 1330, 651, 62, 25120, 62, 8625, 1817, 220, 1303, 645, 20402, 198, 6738, 764, 1069, 11755, 1330, 33523, 8053, 12331, 220, 1303, 645, 20402, 198, 6738, 764, 1069, 11755, 1330, 1400, 10267, 82, 12331, 220, 1303, 645, 20402, 198, 6738, 764, 8612, 378, 1330, 43720, 600, 220, 1303, 645, 20402, 198, 6738, 764, 8612, 378, 1330, 4738, 62, 24280, 820, 220, 1303, 645, 20402, 198, 6738, 764, 8612, 378, 1330, 4738, 62, 17618, 62, 2536, 220, 1303, 645, 20402, 198, 6738, 764, 8612, 378, 1330, 4738, 62, 4862, 220, 1303, 645, 20402, 198, 6738, 764, 8612, 378, 1330, 4738, 62, 8841, 220, 1303, 645, 20402, 198, 6738, 764, 20713, 1330, 2298, 62, 25120, 62, 13000, 220, 1303, 645, 20402, 198, 6738, 764, 20713, 1330, 1461, 62, 25120, 62, 13000, 220, 1303, 645, 20402, 198, 6738, 764, 20713, 1330, 15456, 62, 24455, 220, 1303, 645, 20402, 198, 6738, 764, 20713, 1330, 36755, 220, 1303, 645, 20402, 198 ]
3.294118
187
import json import uuid from datetime import datetime from unittest import mock from urllib.parse import urlencode import responses from django.contrib.messages import get_messages from django.test import TestCase from django.urls import reverse from registrations.forms import RegistrationDetailsForm from registrations.models import ReferralLink from registrations.tasks import ( send_registration_to_openhim, send_registration_to_rapidpro, )
[ 11748, 33918, 198, 11748, 334, 27112, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 555, 715, 395, 1330, 15290, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 2956, 11925, 8189, 198, 198, 11748, 9109, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 37348, 1095, 1330, 651, 62, 37348, 1095, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 198, 6738, 47997, 13, 23914, 1330, 24610, 24259, 8479, 198, 6738, 47997, 13, 27530, 1330, 33973, 1373, 11280, 198, 6738, 47997, 13, 83, 6791, 1330, 357, 198, 220, 220, 220, 3758, 62, 2301, 33397, 62, 1462, 62, 9654, 38400, 11, 198, 220, 220, 220, 3758, 62, 2301, 33397, 62, 1462, 62, 2416, 312, 1676, 11, 198, 8, 628, 628, 198 ]
3.55814
129
#imports import csv import json import requests import requests.utils import requests.sessions import urllib3 import sys import traceback import configparser import logging from urllib3.exceptions import InsecureRequestWarning urllib3.disable_warnings(InsecureRequestWarning) logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) config = configparser.ConfigParser() config.read('config.ini') if __name__ == '__main__': main()
[ 2, 320, 3742, 198, 11748, 269, 21370, 198, 11748, 33918, 198, 11748, 7007, 198, 11748, 7007, 13, 26791, 198, 11748, 7007, 13, 82, 6202, 198, 11748, 2956, 297, 571, 18, 198, 11748, 25064, 198, 11748, 12854, 1891, 198, 11748, 4566, 48610, 198, 11748, 18931, 198, 198, 6738, 2956, 297, 571, 18, 13, 1069, 11755, 1330, 554, 22390, 18453, 20361, 198, 333, 297, 571, 18, 13, 40223, 62, 40539, 654, 7, 818, 22390, 18453, 20361, 8, 628, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 5715, 3672, 8, 82, 25, 4, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 30531, 8, 198, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 11250, 13, 961, 10786, 11250, 13, 5362, 11537, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 12417, 3419 ]
3.257143
140
#!/usr/bin/env python # # Copyright 2014 Corgan Labs # See LICENSE.txt for distribution terms # from hashlib import sha256 __base58_alphabet = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' __base58_radix = len(__base58_alphabet) def __string_to_int(data): "Convert string of bytes Python integer, MSB" val = 0 for (i, c) in enumerate(data[::-1]): val += (256**i)*ord(c) return val def encode(data): "Encode string into Bitcoin base58" enc = '' val = __string_to_int(data) while val >= __base58_radix: val, mod = divmod(val, __base58_radix) enc = __base58_alphabet[mod] + enc if val: enc = __base58_alphabet[val] + enc # Pad for leading zeroes n = len(data)-len(data.lstrip('\0')) return __base58_alphabet[0]*n + enc def check_encode(raw): "Encode raw string into Bitcoin base58 with checksum" chk = sha256(sha256(raw).digest()).digest()[:4] return encode(raw+chk) def decode(data): "Decode Bitcoin base58 format to string" val = 0 for (i, c) in enumerate(data[::-1]): val += __base58_alphabet.find(c) * (__base58_radix**i) dec = '' while val >= 256: val, mod = divmod(val, 256) dec = chr(mod) + dec if val: dec = chr(val) + dec return dec def check_decode(enc): "Decode string from Bitcoin base58 and test checksum" dec = decode(enc) raw, chk = dec[:-4], dec[-4:] if chk != sha256(sha256(raw).digest()).digest()[:4]: raise ValueError("base58 decoding checksum error") else: return raw if __name__ == '__main__': assert(__base58_radix == 58) data = 'now is the time for all good men to come to the aid of their country' enc = check_encode(data) assert(check_decode(enc) == data)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 15069, 1946, 2744, 1030, 23500, 198, 2, 4091, 38559, 24290, 13, 14116, 329, 6082, 2846, 198, 2, 198, 198, 6738, 12234, 8019, 1330, 427, 64, 11645, 198, 198, 834, 8692, 3365, 62, 17307, 8380, 796, 705, 10163, 2231, 3134, 4531, 24694, 32988, 17511, 41, 42, 31288, 22182, 48, 49, 2257, 52, 30133, 34278, 57, 39305, 4299, 456, 45961, 10295, 404, 80, 81, 301, 14795, 86, 5431, 89, 6, 198, 834, 8692, 3365, 62, 6335, 844, 796, 18896, 7, 834, 8692, 3365, 62, 17307, 8380, 8, 628, 198, 4299, 11593, 8841, 62, 1462, 62, 600, 7, 7890, 2599, 198, 220, 220, 220, 366, 3103, 1851, 4731, 286, 9881, 11361, 18253, 11, 6579, 33, 1, 198, 220, 220, 220, 1188, 796, 657, 198, 220, 220, 220, 329, 357, 72, 11, 269, 8, 287, 27056, 378, 7, 7890, 58, 3712, 12, 16, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 15853, 357, 11645, 1174, 72, 27493, 585, 7, 66, 8, 198, 220, 220, 220, 1441, 1188, 628, 198, 4299, 37773, 7, 7890, 2599, 198, 220, 220, 220, 366, 4834, 8189, 4731, 656, 6185, 2779, 3365, 1, 198, 220, 220, 220, 2207, 796, 10148, 198, 220, 220, 220, 1188, 796, 11593, 8841, 62, 1462, 62, 600, 7, 7890, 8, 198, 220, 220, 220, 981, 1188, 18189, 11593, 8692, 3365, 62, 6335, 844, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 11, 953, 796, 2659, 4666, 7, 2100, 11, 11593, 8692, 3365, 62, 6335, 844, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 796, 11593, 8692, 3365, 62, 17307, 8380, 58, 4666, 60, 1343, 2207, 198, 220, 220, 220, 611, 1188, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 796, 11593, 8692, 3365, 62, 17307, 8380, 58, 2100, 60, 1343, 2207, 628, 220, 220, 220, 1303, 15744, 329, 3756, 1976, 263, 3028, 198, 220, 220, 220, 299, 796, 18896, 7, 7890, 13219, 11925, 7, 7890, 13, 75, 36311, 10786, 59, 15, 6, 4008, 198, 220, 220, 220, 1441, 11593, 8692, 3365, 62, 17307, 8380, 58, 15, 60, 9, 77, 1343, 2207, 628, 198, 4299, 2198, 62, 268, 8189, 7, 1831, 2599, 198, 220, 220, 220, 366, 4834, 8189, 8246, 4731, 656, 6185, 2779, 3365, 351, 8794, 388, 1, 198, 220, 220, 220, 442, 74, 796, 427, 64, 11645, 7, 26270, 11645, 7, 1831, 737, 12894, 395, 3419, 737, 12894, 395, 3419, 58, 25, 19, 60, 198, 220, 220, 220, 1441, 37773, 7, 1831, 10, 354, 74, 8, 628, 198, 4299, 36899, 7, 7890, 2599, 198, 220, 220, 220, 366, 10707, 1098, 6185, 2779, 3365, 5794, 284, 4731, 1, 198, 220, 220, 220, 1188, 796, 657, 198, 220, 220, 220, 329, 357, 72, 11, 269, 8, 287, 27056, 378, 7, 7890, 58, 3712, 12, 16, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 15853, 11593, 8692, 3365, 62, 17307, 8380, 13, 19796, 7, 66, 8, 1635, 357, 834, 8692, 3365, 62, 6335, 844, 1174, 72, 8, 198, 220, 220, 220, 875, 796, 10148, 198, 220, 220, 220, 981, 1188, 18189, 17759, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 11, 953, 796, 2659, 4666, 7, 2100, 11, 17759, 8, 198, 220, 220, 220, 220, 220, 220, 220, 875, 796, 442, 81, 7, 4666, 8, 1343, 875, 198, 220, 220, 220, 611, 1188, 25, 198, 220, 220, 220, 220, 220, 220, 220, 875, 796, 442, 81, 7, 2100, 8, 1343, 875, 198, 220, 220, 220, 1441, 875, 628, 198, 4299, 2198, 62, 12501, 1098, 7, 12685, 2599, 198, 220, 220, 220, 366, 10707, 1098, 4731, 422, 6185, 2779, 3365, 290, 1332, 8794, 388, 1, 198, 220, 220, 220, 875, 796, 36899, 7, 12685, 8, 198, 220, 220, 220, 8246, 11, 442, 74, 796, 875, 58, 21912, 19, 4357, 875, 58, 12, 19, 47715, 198, 220, 220, 220, 611, 442, 74, 14512, 427, 64, 11645, 7, 26270, 11645, 7, 1831, 737, 12894, 395, 3419, 737, 12894, 395, 3419, 58, 25, 19, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 8692, 3365, 39938, 8794, 388, 4049, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8246, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 6818, 7, 834, 8692, 3365, 62, 6335, 844, 6624, 7618, 8, 198, 220, 220, 220, 1366, 796, 705, 2197, 318, 262, 640, 329, 477, 922, 1450, 284, 1282, 284, 262, 6133, 286, 511, 1499, 6, 198, 220, 220, 220, 2207, 796, 2198, 62, 268, 8189, 7, 7890, 8, 198, 220, 220, 220, 6818, 7, 9122, 62, 12501, 1098, 7, 12685, 8, 6624, 1366, 8, 198 ]
2.305344
786
import pytest from aiodisque import Disque, Job from aiodisque.iterators import JobsIterator @pytest.mark.asyncio @pytest.mark.asyncio @pytest.mark.asyncio @pytest.mark.asyncio
[ 11748, 12972, 9288, 198, 6738, 257, 2101, 271, 4188, 1330, 3167, 4188, 11, 15768, 198, 6738, 257, 2101, 271, 4188, 13, 2676, 2024, 1330, 19161, 37787, 628, 198, 31, 9078, 9288, 13, 4102, 13, 292, 13361, 952, 628, 198, 31, 9078, 9288, 13, 4102, 13, 292, 13361, 952, 628, 198, 31, 9078, 9288, 13, 4102, 13, 292, 13361, 952, 628, 198, 31, 9078, 9288, 13, 4102, 13, 292, 13361, 952, 198 ]
2.605634
71
import os from shutil import rmtree from uuid import uuid1 from django.conf import settings from django.core.cache import cache from django.core.files.uploadedfile import SimpleUploadedFile from django.test import TestCase, Client from django.urls import reverse from posts.models import Post, Group, User, Comment
[ 11748, 28686, 198, 6738, 4423, 346, 1330, 374, 16762, 631, 198, 6738, 334, 27112, 1330, 334, 27112, 16, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 13, 23870, 1330, 12940, 198, 6738, 42625, 14208, 13, 7295, 13, 16624, 13, 25850, 276, 7753, 1330, 17427, 41592, 276, 8979, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 11, 20985, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 198, 6738, 6851, 13, 27530, 1330, 2947, 11, 4912, 11, 11787, 11, 18957, 628 ]
3.573034
89
import numpy as np import pandas as pd import matplotlib.pyplot as plt data = np.loadtxt('Data1.txt') dataset = pd.DataFrame({'No.':data[:]}) dataset.sort_values('No.',inplace=True) dataset.hist(bins=50) # Exploring data plt.show() dataset.boxplot(vert=False) plt.show() Q1=np.percentile(dataset, [25]) # Calculating Quartiles Q2=np.percentile(dataset, [50]) Q3=np.percentile(dataset, [75]) Iqr=np.percentile(dataset, [75])-np.percentile(dataset, [25]) print("1st quartile:",Q1,"\n2nd quartile:",Q2,"\n3rd quartile:",Q3) print("Inter-quartile range:",Iqr) x1= 1.5 * Iqr # Calculating Boundary for Outlier x2= 3 * Iqr # Calculating Boundary for Extreme Outlier w1= Q1 - x1 #Setting Outlier Whisker w2= Q3 + x1 Ew1= Q1 - x2 # Setting Extreme Outlier Whisker Ew2= Q3 + x2 o =[] # Outliers points Eo=[] # Extreme Outlier points for i in range(len(dataset)): if dataset['No.'][i] >= w2 and dataset['No.'][i] <= Ew2: o.append(dataset['No.'][i]) if dataset['No.'][i] <= w1 and dataset['No.'][i] >= Ew1: o.append(dataset['No.'][i]) if dataset['No.'][i] >= Ew2 or dataset['No.'][i] <= Ew1 : Eo.append(dataset['No.'][i]) print("Outlier points: ", len(o)) print("Extreme Outlier points: ", len(Eo))
[ 11748, 299, 32152, 355, 45941, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 201, 198, 7890, 796, 45941, 13, 2220, 14116, 10786, 6601, 16, 13, 14116, 11537, 201, 198, 19608, 292, 316, 796, 279, 67, 13, 6601, 19778, 15090, 6, 2949, 2637, 25, 7890, 58, 47715, 30072, 201, 198, 19608, 292, 316, 13, 30619, 62, 27160, 10786, 2949, 2637, 11, 259, 5372, 28, 17821, 8, 201, 198, 201, 198, 19608, 292, 316, 13, 10034, 7, 65, 1040, 28, 1120, 8, 1303, 5905, 3255, 1366, 201, 198, 489, 83, 13, 12860, 3419, 201, 198, 19608, 292, 316, 13, 3524, 29487, 7, 1851, 28, 25101, 8, 201, 198, 489, 83, 13, 12860, 3419, 201, 198, 201, 198, 48, 16, 28, 37659, 13, 25067, 576, 7, 19608, 292, 316, 11, 685, 1495, 12962, 1303, 27131, 803, 48748, 2915, 201, 198, 48, 17, 28, 37659, 13, 25067, 576, 7, 19608, 292, 316, 11, 685, 1120, 12962, 201, 198, 48, 18, 28, 37659, 13, 25067, 576, 7, 19608, 292, 316, 11, 685, 2425, 12962, 201, 198, 40, 80, 81, 28, 37659, 13, 25067, 576, 7, 19608, 292, 316, 11, 685, 2425, 12962, 12, 37659, 13, 25067, 576, 7, 19608, 292, 316, 11, 685, 1495, 12962, 201, 198, 4798, 7203, 16, 301, 28176, 576, 25, 1600, 48, 16, 553, 59, 77, 17, 358, 28176, 576, 25, 1600, 48, 17, 553, 59, 77, 18, 4372, 28176, 576, 25, 1600, 48, 18, 8, 201, 198, 4798, 7203, 9492, 12, 36008, 576, 2837, 25, 1600, 40, 80, 81, 8, 201, 198, 201, 198, 87, 16, 28, 352, 13, 20, 1635, 314, 80, 81, 220, 220, 1303, 27131, 803, 30149, 560, 329, 3806, 2505, 201, 198, 87, 17, 28, 513, 1635, 314, 80, 81, 220, 220, 220, 220, 1303, 27131, 803, 30149, 560, 329, 18111, 3806, 2505, 201, 198, 201, 198, 86, 16, 28, 1195, 16, 532, 2124, 16, 220, 220, 220, 220, 1303, 34149, 3806, 2505, 854, 1984, 263, 201, 198, 86, 17, 28, 1195, 18, 1343, 2124, 16, 201, 198, 201, 198, 36, 86, 16, 28, 1195, 16, 532, 2124, 17, 220, 220, 220, 1303, 25700, 18111, 3806, 2505, 854, 1984, 263, 201, 198, 36, 86, 17, 28, 1195, 18, 1343, 2124, 17, 220, 201, 198, 201, 198, 78, 796, 21737, 1303, 3806, 75, 3183, 2173, 201, 198, 36, 78, 28, 21737, 1303, 18111, 3806, 2505, 2173, 201, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 19608, 292, 316, 8, 2599, 201, 198, 220, 220, 220, 611, 27039, 17816, 2949, 2637, 7131, 72, 60, 18189, 266, 17, 290, 27039, 17816, 2949, 2637, 7131, 72, 60, 19841, 412, 86, 17, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 267, 13, 33295, 7, 19608, 292, 316, 17816, 2949, 2637, 7131, 72, 12962, 201, 198, 220, 220, 220, 611, 27039, 17816, 2949, 2637, 7131, 72, 60, 19841, 266, 16, 290, 27039, 17816, 2949, 2637, 7131, 72, 60, 18189, 412, 86, 16, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 267, 13, 33295, 7, 19608, 292, 316, 17816, 2949, 2637, 7131, 72, 12962, 201, 198, 220, 220, 220, 611, 27039, 17816, 2949, 2637, 7131, 72, 60, 18189, 412, 86, 17, 393, 27039, 17816, 2949, 2637, 7131, 72, 60, 19841, 412, 86, 16, 1058, 201, 198, 220, 220, 220, 220, 220, 220, 220, 412, 78, 13, 33295, 7, 19608, 292, 316, 17816, 2949, 2637, 7131, 72, 12962, 201, 198, 220, 220, 220, 220, 201, 198, 4798, 7203, 7975, 2505, 2173, 25, 33172, 18896, 7, 78, 4008, 201, 198, 4798, 7203, 36716, 3806, 2505, 2173, 25, 33172, 18896, 7, 36, 78, 4008, 201, 198 ]
2.123355
608
import cv2 import numpy as np
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198 ]
2.727273
11
from abc import abstractmethod from ROAR.planning_module.abstract_planner import AbstractPlanner from ROAR.control_module.controller import Controller from ROAR.planning_module.behavior_planner.behavior_planner import BehaviorPlanner from ROAR.planning_module.mission_planner.mission_planner import MissionPlanner from typing import Optional from ROAR.utilities_module.vehicle_models import VehicleControl from collections import deque
[ 6738, 450, 66, 1330, 12531, 24396, 198, 6738, 15107, 1503, 13, 11578, 768, 62, 21412, 13, 397, 8709, 62, 11578, 1008, 1330, 27741, 20854, 1008, 198, 6738, 15107, 1503, 13, 13716, 62, 21412, 13, 36500, 1330, 22741, 198, 6738, 15107, 1503, 13, 11578, 768, 62, 21412, 13, 46571, 62, 11578, 1008, 13, 46571, 62, 11578, 1008, 1330, 20181, 20854, 1008, 198, 6738, 15107, 1503, 13, 11578, 768, 62, 21412, 13, 3411, 62, 11578, 1008, 13, 3411, 62, 11578, 1008, 1330, 12633, 20854, 1008, 198, 6738, 19720, 1330, 32233, 198, 6738, 15107, 1503, 13, 315, 2410, 62, 21412, 13, 33892, 1548, 62, 27530, 1330, 21501, 15988, 198, 6738, 17268, 1330, 390, 4188, 628 ]
3.901786
112
import argparse import csv import re from datetime import datetime, timedelta from decimal import Decimal import pytz from core_data_modules.logging import Logger from dateutil.parser import isoparse from rapid_pro_tools.rapid_pro_client import RapidProClient from storage.google_cloud import google_cloud_utils log = Logger(__name__) TARGET_SHORTCODE = "378" if __name__ == "__main__": parser = argparse.ArgumentParser( description="Uses Rapid Pro's message logs to filter a Hormuud recovery csv for incoming messages on this " "short code that aren't in Rapid Pro. Attempts to identify messages that have already been " "received in Rapid Pro by (i) looking for exact text matches, then (ii) looking for matches after " "applying Excel's data-mangling algorithms, then (iii) matching by timestamp. " "Matches made by method (iii) are exported for manual review") parser.add_argument("google_cloud_credentials_file_path", metavar="google-cloud-credentials-file-path", help="Path to a Google Cloud service account credentials file to use to access the " "credentials bucket") parser.add_argument("rapid_pro_domain", metavar="rapid-pro-domain", help="URL of the Rapid Pro server to download data from") parser.add_argument("rapid_pro_token_file_url", metavar="rapid-pro-token-file-url", help="GS URL of a text file containing the authorisation token for the Rapid Pro server") parser.add_argument("start_date", metavar="start-date", help="Timestamp to filter both datasets by (inclusive), as an ISO8601 str") parser.add_argument("end_date", metavar="end-date", help="Timestamp to filter both datasets by (exclusive), as an ISO8601 str") parser.add_argument("hormuud_csv_input_path", metavar="hormuud-csv-input-path", help="Path to a CSV file issued by Hormuud to recover messages from") parser.add_argument("timestamp_matches_log_output_csv_path", metavar="timestamp-matches-log-output-csv-path", help="File to log the matches made between the Rapid Pro and recovery datasets by timestamp, " "for manual review and approval") parser.add_argument("output_csv_path", metavar="output-csv-path", help="File to write the filtered, recovered data to, in a format ready for de-identification " "and integration into the pipeline") args = parser.parse_args() google_cloud_credentials_file_path = args.google_cloud_credentials_file_path rapid_pro_domain = args.rapid_pro_domain rapid_pro_token_file_url = args.rapid_pro_token_file_url start_date = isoparse(args.start_date) end_date = isoparse(args.end_date) hormuud_csv_input_path = args.hormuud_csv_input_path timestamp_matches_log_output_csv_path = args.timestamp_matches_log_output_csv_path output_csv_path = args.output_csv_path # Get messages from Rapid Pro and from the recovery csv rapid_pro_messages = get_incoming_hormuud_messages_from_rapid_pro( google_cloud_credentials_file_path, rapid_pro_domain, rapid_pro_token_file_url, created_after_inclusive=start_date, created_before_exclusive=end_date, ) all_rapid_pro_messages = rapid_pro_messages recovered_messages = get_incoming_hormuud_messages_from_recovery_csv( hormuud_csv_input_path, received_after_inclusive=start_date, received_before_exclusive=end_date ) # Group the messages by the sender's urn, and store in container dicts where we can write the best matching Rapid # Pro message to when we find it. recovered_lut = dict() # of urn -> list of recovered message dict recovered_messages.sort(key=lambda msg: msg["timestamp"]) for msg in recovered_messages: urn = msg["Sender"] if urn not in recovered_lut: recovered_lut[urn] = [] recovered_lut[urn].append({ "recovered_message": msg, "rapid_pro_message": None }) # Search the recovered messages for exact text matches to each of the Rapid Pro messages. # A Rapid Pro message matches a message in the recovery csv if: # (i) the recovery csv message has no match yet, # (ii) the text exactly matches, and # (iii) the time at Hormuud differs from the time at Rapid Pro by < 5 minutes (experimental analysis of this # dataset showed the mean lag to be roughly 3-4 mins, with >99.99% of messages received within 4 minutes) log.info(f"Attempting to match the Rapid Pro messages with the recovered messages...") rapid_pro_messages.sort(key=lambda msg: msg.sent_on) unmatched_messages = [] skipped_messages = [] for rapid_pro_msg in rapid_pro_messages: rapid_pro_text = rapid_pro_msg.text if rapid_pro_msg.urn not in recovered_lut: log.warning(f"URN {rapid_pro_msg.urn} not found in the recovered_lut") skipped_messages.append(rapid_pro_msg) continue for recovery_item in recovered_lut[rapid_pro_msg.urn]: if recovery_item["rapid_pro_message"] is None and \ recovery_item["recovered_message"]["Message"] == rapid_pro_text and \ rapid_pro_msg.sent_on - recovery_item["recovered_message"]["timestamp"] < timedelta(minutes=5): recovery_item["rapid_pro_message"] = rapid_pro_msg break else: unmatched_messages.append(rapid_pro_msg) log.info(f"Attempted to perform exact matches for {len(rapid_pro_messages)} Rapid Pro messages: " f"{len(rapid_pro_messages) - len(unmatched_messages)} matched successfully, " f"{len(skipped_messages)} messages skipped due to their urns not being present in the recovery csv, " f"{len(unmatched_messages)} unmatched messages remain") # Attempt to find matches after simulating Excel-mangling of some of the data. rapid_pro_messages = unmatched_messages unmatched_messages = [] for rapid_pro_msg in rapid_pro_messages: rapid_pro_text = rapid_pro_msg.text rapid_pro_text = rapid_pro_text.replace("\n", " ") # newlines -> spaces if re.compile("^\\s*[0-9][0-9]*\\s*$").match(rapid_pro_text): rapid_pro_text = rapid_pro_text.strip() # numbers with whitespace -> just the number if rapid_pro_text.startswith("0"): rapid_pro_text = rapid_pro_text[1:] # replace leading 0 if Decimal(rapid_pro_text) > 1000000000: rapid_pro_text = f"{Decimal(rapid_pro_text):.14E}" # big numbers -> scientific notation if re.compile("^\".*\"$").match(rapid_pro_text): rapid_pro_text = rapid_pro_text.replace("\"", "") # strictly quoted text -> just the text rapid_pro_text = rapid_pro_text.encode("ascii", "replace").decode("ascii") # non-ascii characters -> '?' for recovery_item in recovered_lut[rapid_pro_msg.urn]: if recovery_item["rapid_pro_message"] is None and \ recovery_item["recovered_message"]["Message"] == rapid_pro_text and \ rapid_pro_msg.sent_on - recovery_item["recovered_message"]["timestamp"] < timedelta(minutes=5): recovery_item["rapid_pro_message"] = rapid_pro_msg break else: unmatched_messages.append(rapid_pro_msg) log.info(f"Attempted to perform Excel-mangled matches for {len(rapid_pro_messages)} Rapid Pro messages: " f"{len(rapid_pro_messages) - len(unmatched_messages)} matched successfully, " f"{len(unmatched_messages)} unmatched messages remain") # Finally, search by timestamp, and export these to a log file for manual review. # This covers all sorts of weird edge cases, mostly around Hormuud/Excel's handling of special characters. rapid_pro_messages = unmatched_messages unmatched_messages = [] with open(timestamp_matches_log_output_csv_path, "w") as f: writer = csv.DictWriter(f, fieldnames=["Rapid Pro", "Hormuud Recovery"]) writer.writeheader() for rapid_pro_msg in rapid_pro_messages: for recovery_item in recovered_lut[rapid_pro_msg.urn]: if recovery_item["rapid_pro_message"] is None and \ rapid_pro_msg.sent_on - recovery_item["recovered_message"]["timestamp"] < timedelta(minutes=5): writer.writerow({ "Rapid Pro": rapid_pro_msg.text, "Hormuud Recovery": recovery_item["recovered_message"]["Message"] }) recovery_item["rapid_pro_message"] = rapid_pro_msg break else: unmatched_messages.append(rapid_pro_msg) log.info(f"Attempted to perform timestamp matching for {len(rapid_pro_messages)} Rapid Pro messages: " f"{len(rapid_pro_messages) - len(unmatched_messages)} matched successfully, " f"{len(unmatched_messages)} unmatched messages remain") log.info(f"Wrote the timestamp-based matches to {timestamp_matches_log_output_csv_path} for manual verification. " f"Please check these carefully") if len(unmatched_messages) > 0: log.error(f"{len(unmatched_messages)} unmatched messages remain after attempting all automated matching " f"techniques") print(unmatched_messages[0].serialize()) exit(1) # Get the recovered messages that don't have a matching message from Rapid Pro unmatched_recovered_messages = [] matched_recovered_messages = [] for urn in recovered_lut: for recovery_item in recovered_lut[urn]: if recovery_item["rapid_pro_message"] is None: unmatched_recovered_messages.append(recovery_item["recovered_message"]) else: matched_recovered_messages.append(recovery_item["recovered_message"]) log.info(f"Found {len(unmatched_recovered_messages)} recovered messages that had no match in Rapid Pro " f"(and {len(matched_recovered_messages)} that did have a match)") expected_unmatched_messages_count = len(recovered_messages) - len(all_rapid_pro_messages) + len(skipped_messages) log.info(f"Total expected unmatched messages was {expected_unmatched_messages_count}") if expected_unmatched_messages_count != len(unmatched_recovered_messages): log.error("Number of unmatched messages != expected number of unmatched messages") exit(1) # Export to a csv that can be processed by de_identify_csv.py log.info(f"Exporting unmatched recovered messages to {output_csv_path}") with open(output_csv_path, "w") as f: writer = csv.DictWriter(f, fieldnames=["Sender", "Receiver", "Message", "ReceivedOn"]) writer.writeheader() for msg in unmatched_recovered_messages: writer.writerow({ "Sender": msg["Sender"], "Receiver": msg["Receiver"], "Message": msg["Message"], "ReceivedOn": msg["ReceivedOn"] })
[ 11748, 1822, 29572, 198, 11748, 269, 21370, 198, 11748, 302, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 32465, 1330, 4280, 4402, 198, 198, 11748, 12972, 22877, 198, 6738, 4755, 62, 7890, 62, 18170, 13, 6404, 2667, 1330, 5972, 1362, 198, 6738, 3128, 22602, 13, 48610, 1330, 318, 404, 17208, 198, 6738, 5801, 62, 1676, 62, 31391, 13, 2416, 312, 62, 1676, 62, 16366, 1330, 26430, 2964, 11792, 198, 6738, 6143, 13, 13297, 62, 17721, 1330, 23645, 62, 17721, 62, 26791, 198, 198, 6404, 796, 5972, 1362, 7, 834, 3672, 834, 8, 198, 198, 51, 46095, 62, 9693, 1581, 4825, 16820, 796, 366, 30695, 1, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 5842, 274, 26430, 1041, 338, 3275, 17259, 284, 8106, 257, 367, 579, 84, 463, 7628, 269, 21370, 329, 15619, 6218, 319, 428, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19509, 2438, 326, 3588, 470, 287, 26430, 1041, 13, 25770, 82, 284, 5911, 6218, 326, 423, 1541, 587, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47844, 287, 26430, 1041, 416, 357, 72, 8, 2045, 329, 2748, 2420, 7466, 11, 788, 357, 4178, 8, 2045, 329, 7466, 706, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1324, 3157, 24134, 338, 1366, 12, 76, 27499, 16113, 11, 788, 357, 15479, 8, 12336, 416, 41033, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19044, 2052, 925, 416, 2446, 357, 15479, 8, 389, 29050, 329, 10107, 2423, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 13297, 62, 17721, 62, 66, 445, 14817, 62, 7753, 62, 6978, 1600, 1138, 615, 283, 2625, 13297, 12, 17721, 12, 66, 445, 14817, 12, 7753, 12, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 257, 3012, 10130, 2139, 1848, 18031, 2393, 284, 779, 284, 1895, 262, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 445, 14817, 19236, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 2416, 312, 62, 1676, 62, 27830, 1600, 1138, 615, 283, 2625, 2416, 312, 12, 1676, 12, 27830, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 21886, 286, 262, 26430, 1041, 4382, 284, 4321, 1366, 422, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 2416, 312, 62, 1676, 62, 30001, 62, 7753, 62, 6371, 1600, 1138, 615, 283, 2625, 2416, 312, 12, 1676, 12, 30001, 12, 7753, 12, 6371, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 14313, 10289, 286, 257, 2420, 2393, 7268, 262, 1772, 5612, 11241, 329, 262, 26430, 1041, 4382, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 9688, 62, 4475, 1600, 1138, 615, 283, 2625, 9688, 12, 4475, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 14967, 27823, 284, 8106, 1111, 40522, 416, 357, 259, 5731, 828, 355, 281, 19694, 4521, 486, 965, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 437, 62, 4475, 1600, 1138, 615, 283, 2625, 437, 12, 4475, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 14967, 27823, 284, 8106, 1111, 40522, 416, 357, 41195, 828, 355, 281, 19694, 4521, 486, 965, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 71, 579, 84, 463, 62, 40664, 62, 15414, 62, 6978, 1600, 1138, 615, 283, 2625, 71, 579, 84, 463, 12, 40664, 12, 15414, 12, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 257, 44189, 2393, 4884, 416, 367, 579, 84, 463, 284, 8551, 6218, 422, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 16514, 27823, 62, 6759, 2052, 62, 6404, 62, 22915, 62, 40664, 62, 6978, 1600, 1138, 615, 283, 2625, 16514, 27823, 12, 6759, 2052, 12, 6404, 12, 22915, 12, 40664, 12, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8979, 284, 2604, 262, 7466, 925, 1022, 262, 26430, 1041, 290, 7628, 40522, 416, 41033, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1640, 10107, 2423, 290, 7546, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 22915, 62, 40664, 62, 6978, 1600, 1138, 615, 283, 2625, 22915, 12, 40664, 12, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8979, 284, 3551, 262, 29083, 11, 11911, 1366, 284, 11, 287, 257, 5794, 3492, 329, 390, 12, 738, 2649, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 392, 11812, 656, 262, 11523, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 23645, 62, 17721, 62, 66, 445, 14817, 62, 7753, 62, 6978, 796, 26498, 13, 13297, 62, 17721, 62, 66, 445, 14817, 62, 7753, 62, 6978, 198, 220, 220, 220, 5801, 62, 1676, 62, 27830, 796, 26498, 13, 2416, 312, 62, 1676, 62, 27830, 198, 220, 220, 220, 5801, 62, 1676, 62, 30001, 62, 7753, 62, 6371, 796, 26498, 13, 2416, 312, 62, 1676, 62, 30001, 62, 7753, 62, 6371, 198, 220, 220, 220, 923, 62, 4475, 796, 318, 404, 17208, 7, 22046, 13, 9688, 62, 4475, 8, 198, 220, 220, 220, 886, 62, 4475, 796, 318, 404, 17208, 7, 22046, 13, 437, 62, 4475, 8, 198, 220, 220, 220, 12241, 84, 463, 62, 40664, 62, 15414, 62, 6978, 796, 26498, 13, 71, 579, 84, 463, 62, 40664, 62, 15414, 62, 6978, 198, 220, 220, 220, 41033, 62, 6759, 2052, 62, 6404, 62, 22915, 62, 40664, 62, 6978, 796, 26498, 13, 16514, 27823, 62, 6759, 2052, 62, 6404, 62, 22915, 62, 40664, 62, 6978, 198, 220, 220, 220, 5072, 62, 40664, 62, 6978, 796, 26498, 13, 22915, 62, 40664, 62, 6978, 628, 220, 220, 220, 1303, 3497, 6218, 422, 26430, 1041, 290, 422, 262, 7628, 269, 21370, 198, 220, 220, 220, 5801, 62, 1676, 62, 37348, 1095, 796, 651, 62, 259, 4976, 62, 71, 579, 84, 463, 62, 37348, 1095, 62, 6738, 62, 2416, 312, 62, 1676, 7, 198, 220, 220, 220, 220, 220, 220, 220, 23645, 62, 17721, 62, 66, 445, 14817, 62, 7753, 62, 6978, 11, 5801, 62, 1676, 62, 27830, 11, 5801, 62, 1676, 62, 30001, 62, 7753, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 8499, 62, 259, 5731, 28, 9688, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 19052, 62, 41195, 28, 437, 62, 4475, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 477, 62, 2416, 312, 62, 1676, 62, 37348, 1095, 796, 5801, 62, 1676, 62, 37348, 1095, 628, 220, 220, 220, 11911, 62, 37348, 1095, 796, 651, 62, 259, 4976, 62, 71, 579, 84, 463, 62, 37348, 1095, 62, 6738, 62, 260, 1073, 548, 62, 40664, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12241, 84, 463, 62, 40664, 62, 15414, 62, 6978, 11, 2722, 62, 8499, 62, 259, 5731, 28, 9688, 62, 4475, 11, 2722, 62, 19052, 62, 41195, 28, 437, 62, 4475, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 4912, 262, 6218, 416, 262, 29788, 338, 220, 700, 11, 290, 3650, 287, 9290, 8633, 82, 810, 356, 460, 3551, 262, 1266, 12336, 26430, 198, 220, 220, 220, 1303, 1041, 3275, 284, 618, 356, 1064, 340, 13, 198, 220, 220, 220, 11911, 62, 75, 315, 796, 8633, 3419, 220, 1303, 286, 220, 700, 4613, 1351, 286, 11911, 3275, 8633, 198, 220, 220, 220, 11911, 62, 37348, 1095, 13, 30619, 7, 2539, 28, 50033, 31456, 25, 31456, 14692, 16514, 27823, 8973, 8, 198, 220, 220, 220, 329, 31456, 287, 11911, 62, 37348, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 700, 796, 31456, 14692, 50, 2194, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 220, 700, 407, 287, 11911, 62, 75, 315, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 75, 315, 58, 700, 60, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 75, 315, 58, 700, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8344, 2557, 62, 20500, 1298, 31456, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2416, 312, 62, 1676, 62, 20500, 1298, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 1303, 11140, 262, 11911, 6218, 329, 2748, 2420, 7466, 284, 1123, 286, 262, 26430, 1041, 6218, 13, 198, 220, 220, 220, 1303, 317, 26430, 1041, 3275, 7466, 257, 3275, 287, 262, 7628, 269, 21370, 611, 25, 198, 220, 220, 220, 1303, 357, 72, 8, 220, 220, 262, 7628, 269, 21370, 3275, 468, 645, 2872, 1865, 11, 198, 220, 220, 220, 1303, 357, 4178, 8, 220, 262, 2420, 3446, 7466, 11, 290, 198, 220, 220, 220, 1303, 357, 15479, 8, 262, 640, 379, 367, 579, 84, 463, 24242, 422, 262, 640, 379, 26430, 1041, 416, 1279, 642, 2431, 357, 23100, 9134, 3781, 286, 428, 198, 220, 220, 220, 1303, 27039, 3751, 262, 1612, 19470, 284, 307, 7323, 513, 12, 19, 23550, 11, 351, 1875, 2079, 13, 2079, 4, 286, 6218, 2722, 1626, 604, 2431, 8, 198, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 37177, 278, 284, 2872, 262, 26430, 1041, 6218, 351, 262, 11911, 6218, 9313, 8, 198, 220, 220, 220, 5801, 62, 1676, 62, 37348, 1095, 13, 30619, 7, 2539, 28, 50033, 31456, 25, 31456, 13, 34086, 62, 261, 8, 198, 220, 220, 220, 48621, 62, 37348, 1095, 796, 17635, 198, 220, 220, 220, 26684, 62, 37348, 1095, 796, 17635, 198, 220, 220, 220, 329, 5801, 62, 1676, 62, 19662, 287, 5801, 62, 1676, 62, 37348, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 5239, 796, 5801, 62, 1676, 62, 19662, 13, 5239, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5801, 62, 1676, 62, 19662, 13, 700, 407, 287, 11911, 62, 75, 315, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 43917, 7, 69, 1, 27064, 1391, 2416, 312, 62, 1676, 62, 19662, 13, 700, 92, 407, 1043, 287, 262, 11911, 62, 75, 315, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26684, 62, 37348, 1095, 13, 33295, 7, 2416, 312, 62, 1676, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 329, 7628, 62, 9186, 287, 11911, 62, 75, 315, 58, 2416, 312, 62, 1676, 62, 19662, 13, 700, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7628, 62, 9186, 14692, 2416, 312, 62, 1676, 62, 20500, 8973, 318, 6045, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7628, 62, 9186, 14692, 8344, 2557, 62, 20500, 1, 7131, 1, 12837, 8973, 6624, 5801, 62, 1676, 62, 5239, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 19662, 13, 34086, 62, 261, 532, 7628, 62, 9186, 14692, 8344, 2557, 62, 20500, 1, 7131, 1, 16514, 27823, 8973, 1279, 28805, 12514, 7, 1084, 1769, 28, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7628, 62, 9186, 14692, 2416, 312, 62, 1676, 62, 20500, 8973, 796, 5801, 62, 1676, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48621, 62, 37348, 1095, 13, 33295, 7, 2416, 312, 62, 1676, 62, 19662, 8, 198, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 37177, 276, 284, 1620, 2748, 7466, 329, 1391, 11925, 7, 2416, 312, 62, 1676, 62, 37348, 1095, 38165, 26430, 1041, 6218, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 11925, 7, 2416, 312, 62, 1676, 62, 37348, 1095, 8, 532, 18896, 7, 403, 31409, 62, 37348, 1095, 38165, 14451, 7675, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 11925, 7, 8135, 3949, 62, 37348, 1095, 38165, 6218, 26684, 2233, 284, 511, 220, 700, 82, 407, 852, 1944, 287, 262, 7628, 269, 21370, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 11925, 7, 403, 31409, 62, 37348, 1095, 38165, 48621, 6218, 3520, 4943, 628, 220, 220, 220, 1303, 25770, 284, 1064, 7466, 706, 985, 8306, 24134, 12, 76, 27499, 286, 617, 286, 262, 1366, 13, 198, 220, 220, 220, 5801, 62, 1676, 62, 37348, 1095, 796, 48621, 62, 37348, 1095, 198, 220, 220, 220, 48621, 62, 37348, 1095, 796, 17635, 198, 220, 220, 220, 329, 5801, 62, 1676, 62, 19662, 287, 5801, 62, 1676, 62, 37348, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 5239, 796, 5801, 62, 1676, 62, 19662, 13, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 5239, 796, 5801, 62, 1676, 62, 5239, 13, 33491, 7203, 59, 77, 1600, 366, 366, 8, 220, 1303, 649, 6615, 4613, 9029, 198, 220, 220, 220, 220, 220, 220, 220, 611, 302, 13, 5589, 576, 7203, 61, 6852, 82, 9, 58, 15, 12, 24, 7131, 15, 12, 24, 60, 9, 6852, 82, 9, 3, 11074, 15699, 7, 2416, 312, 62, 1676, 62, 5239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 5239, 796, 5801, 62, 1676, 62, 5239, 13, 36311, 3419, 220, 1303, 3146, 351, 13216, 10223, 4613, 655, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5801, 62, 1676, 62, 5239, 13, 9688, 2032, 342, 7203, 15, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 5239, 796, 5801, 62, 1676, 62, 5239, 58, 16, 47715, 220, 1303, 6330, 3756, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4280, 4402, 7, 2416, 312, 62, 1676, 62, 5239, 8, 1875, 1802, 24598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 5239, 796, 277, 1, 90, 10707, 4402, 7, 2416, 312, 62, 1676, 62, 5239, 2599, 13, 1415, 36, 36786, 220, 1303, 1263, 3146, 4613, 5654, 33274, 198, 220, 220, 220, 220, 220, 220, 220, 611, 302, 13, 5589, 576, 7203, 61, 59, 1911, 9, 7879, 3, 11074, 15699, 7, 2416, 312, 62, 1676, 62, 5239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 5239, 796, 5801, 62, 1676, 62, 5239, 13, 33491, 7203, 7879, 1600, 366, 4943, 220, 1303, 14084, 10947, 2420, 4613, 655, 262, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 5239, 796, 5801, 62, 1676, 62, 5239, 13, 268, 8189, 7203, 292, 979, 72, 1600, 366, 33491, 11074, 12501, 1098, 7203, 292, 979, 72, 4943, 220, 1303, 1729, 12, 292, 979, 72, 3435, 4613, 705, 8348, 628, 220, 220, 220, 220, 220, 220, 220, 329, 7628, 62, 9186, 287, 11911, 62, 75, 315, 58, 2416, 312, 62, 1676, 62, 19662, 13, 700, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7628, 62, 9186, 14692, 2416, 312, 62, 1676, 62, 20500, 8973, 318, 6045, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7628, 62, 9186, 14692, 8344, 2557, 62, 20500, 1, 7131, 1, 12837, 8973, 6624, 5801, 62, 1676, 62, 5239, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 19662, 13, 34086, 62, 261, 532, 7628, 62, 9186, 14692, 8344, 2557, 62, 20500, 1, 7131, 1, 16514, 27823, 8973, 1279, 28805, 12514, 7, 1084, 1769, 28, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7628, 62, 9186, 14692, 2416, 312, 62, 1676, 62, 20500, 8973, 796, 5801, 62, 1676, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48621, 62, 37348, 1095, 13, 33295, 7, 2416, 312, 62, 1676, 62, 19662, 8, 198, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 37177, 276, 284, 1620, 24134, 12, 76, 22393, 7466, 329, 1391, 11925, 7, 2416, 312, 62, 1676, 62, 37348, 1095, 38165, 26430, 1041, 6218, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 11925, 7, 2416, 312, 62, 1676, 62, 37348, 1095, 8, 532, 18896, 7, 403, 31409, 62, 37348, 1095, 38165, 14451, 7675, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 11925, 7, 403, 31409, 62, 37348, 1095, 38165, 48621, 6218, 3520, 4943, 628, 220, 220, 220, 1303, 9461, 11, 2989, 416, 41033, 11, 290, 10784, 777, 284, 257, 2604, 2393, 329, 10107, 2423, 13, 198, 220, 220, 220, 1303, 770, 8698, 477, 10524, 286, 7650, 5743, 2663, 11, 4632, 1088, 367, 579, 84, 463, 14, 3109, 5276, 338, 9041, 286, 2041, 3435, 13, 198, 220, 220, 220, 5801, 62, 1676, 62, 37348, 1095, 796, 48621, 62, 37348, 1095, 198, 220, 220, 220, 48621, 62, 37348, 1095, 796, 17635, 198, 220, 220, 220, 351, 1280, 7, 16514, 27823, 62, 6759, 2052, 62, 6404, 62, 22915, 62, 40664, 62, 6978, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 269, 21370, 13, 35, 713, 34379, 7, 69, 11, 2214, 14933, 28, 14692, 35230, 312, 1041, 1600, 366, 39, 579, 84, 463, 21007, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 25677, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 5801, 62, 1676, 62, 19662, 287, 5801, 62, 1676, 62, 37348, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7628, 62, 9186, 287, 11911, 62, 75, 315, 58, 2416, 312, 62, 1676, 62, 19662, 13, 700, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7628, 62, 9186, 14692, 2416, 312, 62, 1676, 62, 20500, 8973, 318, 6045, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5801, 62, 1676, 62, 19662, 13, 34086, 62, 261, 532, 7628, 62, 9186, 14692, 8344, 2557, 62, 20500, 1, 7131, 1, 16514, 27823, 8973, 1279, 28805, 12514, 7, 1084, 1769, 28, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35230, 312, 1041, 1298, 5801, 62, 1676, 62, 19662, 13, 5239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39, 579, 84, 463, 21007, 1298, 7628, 62, 9186, 14692, 8344, 2557, 62, 20500, 1, 7131, 1, 12837, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7628, 62, 9186, 14692, 2416, 312, 62, 1676, 62, 20500, 8973, 796, 5801, 62, 1676, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48621, 62, 37348, 1095, 13, 33295, 7, 2416, 312, 62, 1676, 62, 19662, 8, 198, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 37177, 276, 284, 1620, 41033, 12336, 329, 1391, 11925, 7, 2416, 312, 62, 1676, 62, 37348, 1095, 38165, 26430, 1041, 6218, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 11925, 7, 2416, 312, 62, 1676, 62, 37348, 1095, 8, 532, 18896, 7, 403, 31409, 62, 37348, 1095, 38165, 14451, 7675, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 11925, 7, 403, 31409, 62, 37348, 1095, 38165, 48621, 6218, 3520, 4943, 198, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 54, 2519, 262, 41033, 12, 3106, 7466, 284, 1391, 16514, 27823, 62, 6759, 2052, 62, 6404, 62, 22915, 62, 40664, 62, 6978, 92, 329, 10107, 19637, 13, 366, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 5492, 2198, 777, 7773, 4943, 628, 220, 220, 220, 611, 18896, 7, 403, 31409, 62, 37348, 1095, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 7, 69, 1, 90, 11925, 7, 403, 31409, 62, 37348, 1095, 38165, 48621, 6218, 3520, 706, 9361, 477, 16359, 12336, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 23873, 6368, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 403, 31409, 62, 37348, 1095, 58, 15, 4083, 46911, 1096, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 220, 220, 1303, 3497, 262, 11911, 6218, 326, 836, 470, 423, 257, 12336, 3275, 422, 26430, 1041, 198, 220, 220, 220, 48621, 62, 8344, 2557, 62, 37348, 1095, 796, 17635, 198, 220, 220, 220, 14451, 62, 8344, 2557, 62, 37348, 1095, 796, 17635, 198, 220, 220, 220, 329, 220, 700, 287, 11911, 62, 75, 315, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7628, 62, 9186, 287, 11911, 62, 75, 315, 58, 700, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7628, 62, 9186, 14692, 2416, 312, 62, 1676, 62, 20500, 8973, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48621, 62, 8344, 2557, 62, 37348, 1095, 13, 33295, 7, 260, 1073, 548, 62, 9186, 14692, 8344, 2557, 62, 20500, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14451, 62, 8344, 2557, 62, 37348, 1095, 13, 33295, 7, 260, 1073, 548, 62, 9186, 14692, 8344, 2557, 62, 20500, 8973, 8, 198, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 21077, 1391, 11925, 7, 403, 31409, 62, 8344, 2557, 62, 37348, 1095, 38165, 11911, 6218, 326, 550, 645, 2872, 287, 26430, 1041, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 18109, 392, 1391, 11925, 7, 31409, 62, 8344, 2557, 62, 37348, 1095, 38165, 326, 750, 423, 257, 2872, 8, 4943, 198, 220, 220, 220, 2938, 62, 403, 31409, 62, 37348, 1095, 62, 9127, 796, 18896, 7, 8344, 2557, 62, 37348, 1095, 8, 532, 18896, 7, 439, 62, 2416, 312, 62, 1676, 62, 37348, 1095, 8, 1343, 18896, 7, 8135, 3949, 62, 37348, 1095, 8, 198, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 14957, 2938, 48621, 6218, 373, 1391, 40319, 62, 403, 31409, 62, 37348, 1095, 62, 9127, 92, 4943, 628, 220, 220, 220, 611, 2938, 62, 403, 31409, 62, 37348, 1095, 62, 9127, 14512, 18896, 7, 403, 31409, 62, 8344, 2557, 62, 37348, 1095, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 7203, 15057, 286, 48621, 6218, 14512, 2938, 1271, 286, 48621, 6218, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 220, 220, 1303, 36472, 284, 257, 269, 21370, 326, 460, 307, 13686, 416, 390, 62, 738, 1958, 62, 40664, 13, 9078, 198, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 3109, 26527, 48621, 11911, 6218, 284, 1391, 22915, 62, 40664, 62, 6978, 92, 4943, 198, 220, 220, 220, 351, 1280, 7, 22915, 62, 40664, 62, 6978, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 269, 21370, 13, 35, 713, 34379, 7, 69, 11, 2214, 14933, 28, 14692, 50, 2194, 1600, 366, 3041, 39729, 1600, 366, 12837, 1600, 366, 3041, 6471, 2202, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 25677, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 31456, 287, 48621, 62, 8344, 2557, 62, 37348, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 50, 2194, 1298, 31456, 14692, 50, 2194, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3041, 39729, 1298, 31456, 14692, 3041, 39729, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12837, 1298, 31456, 14692, 12837, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3041, 6471, 2202, 1298, 31456, 14692, 3041, 6471, 2202, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198 ]
2.457837
4,613
#!/usr/bin/python # # Copyright 2018-2020 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import TestCase from django.conf import settings from polyaxon import types from polycommon.conf.exceptions import ConfException from polycommon.conf.service import ConfService from polycommon.options.option import Option, OptionScope, OptionStores from polycommon.options.option_manager import OptionManager
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 198, 2, 15069, 2864, 12, 42334, 12280, 897, 261, 11, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 28686, 198, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 198, 6738, 7514, 897, 261, 1330, 3858, 198, 6738, 7514, 11321, 13, 10414, 13, 1069, 11755, 1330, 7326, 16922, 198, 6738, 7514, 11321, 13, 10414, 13, 15271, 1330, 7326, 16177, 198, 6738, 7514, 11321, 13, 25811, 13, 18076, 1330, 16018, 11, 16018, 43642, 11, 16018, 1273, 2850, 198, 6738, 7514, 11321, 13, 25811, 13, 18076, 62, 37153, 1330, 16018, 13511, 628, 628, 628, 628, 628, 198 ]
3.758893
253
try: import ROOT except ImportError: collect_ignore_glob = ["*/root/*"] # otherwise will have problems either with tox, # or when executing pytest directly collect_ignore_glob += ["root/*"]
[ 28311, 25, 198, 220, 220, 220, 1330, 15107, 2394, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 2824, 62, 46430, 62, 4743, 672, 796, 14631, 16208, 15763, 15211, 8973, 198, 220, 220, 220, 1303, 4306, 481, 423, 2761, 2035, 351, 8293, 11, 198, 220, 220, 220, 1303, 393, 618, 23710, 12972, 9288, 3264, 198, 220, 220, 220, 2824, 62, 46430, 62, 4743, 672, 15853, 14631, 15763, 15211, 8973, 198 ]
3
70
# Generated by Django 3.2.9 on 2021-11-21 07:57 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 24, 319, 33448, 12, 1157, 12, 2481, 8753, 25, 3553, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import numpy as np import math from humpday.objectives.deapobjectives import schwefel, schaffer, bohachevsky, griewank, rastrigin, shekel, rosenbrock # Some test objective functions to help guide optimizer choices # ------------------------------------------------------------- # # We'll use DEAP's set of groovy benchmarks, and landscapes, swarmpackagepy also # # See pretty pictures at https://deap.readthedocs.io/en/master/api/benchmarks.html#deap.benchmarks # Some hardness assessment is at https://github.com/nathanrooy/landscapes#available-functions-from-single_objective but we'll do our own ## Basis of tricky functions import datetime DAY = datetime.datetime.today().day OFFSET = DAY / 50 POWER = 1 + (DAY % 3) / 3.0 SHIFT = DAY / 100 def smoosh(ui): """ Distort the interval to avoid obvious minima and avoid memorization """ ui_rotate = ui + SHIFT % 1.0 ui_shift = ui_rotate + SHIFT xi = ui_shift ** POWER low = SHIFT ** POWER high = (1 + SHIFT) ** POWER yi = (xi - low) / (high - low) return yi ** POWER ## Combinations DEAP_OBJECTIVES = [schwefel_on_cube, rastrigin_on_cube, griewank_on_cube, bohachevsky_on_cube, rosenbrock_on_cube, shaffer_on_cube, shekel_on_cube, deap_combo1_on_cube, deap_combo2_on_cube, deap_combo3_on_cube] # By hand... def rosenbrock_modified_on_cube(u: [float]) -> float: """ https://en.wikipedia.org/wiki/Rosenbrock_function """ u_scaled = [4 * ui - 2 for ui in u] if len(u) == 1: return (0.25 - u_scaled[0]) ** 2 else: return 5 + 0.001 * np.sum( [100 * (ui_plus - ui * ui) + (1 - ui) * (1 - ui) for ui, ui_plus in zip(u_scaled[1:], u_scaled)]) # According to http://infinity77.net/global_optimization/test_functions.html#test-functions-index # there are some really hard ones # See https://github.com/andyfaff/ampgo/blob/master/%20ampgo%20--username%20andrea.gavana%40gmail.com/go_benchmark.py # See also https://arxiv.org/pdf/1308.4008v1.pdf def damavandi_on_cube(u: [float]) -> float: """ A trivial multi-dimensional extension of Damavandi's function """ return 0.01 * damavandi2(u[0], u[1]) - 0.46 def damavandi2(u1, u2) -> float: """ Pretty evil function this one """ # http://infinity77.net/global_optimization/test_functions_nd_D.html#go_benchmark.Damavandi x1 = u1 / 14. x2 = u2 / 14. numerator = math.sin(math.pi * (x1 - 2.0)) * math.sin(math.pi * (x2 - 2.0)) denumerator = (math.pi ** 2) * (x1 - 2.0) * (x2 - 2.0) factor1 = 1.0 - (abs(numerator / denumerator)) ** 5.0 factor2 = 2 + (x1 - 7.0) ** 2.0 + 2 * (x2 - 7.0) ** 2.0 return factor1 * factor2 # Landscapes from landscapes.single_objective import styblinski_tang, zakharov, salomon, rotated_hyper_ellipsoid, qing, michalewicz LANDSCAPES_OBJECTIVES = [styblinski_tang_on_cube, zakharov_on_cube, salomon_on_cube, rotated_hyper_ellipsoid_on_cube, qing_on_cube, michaelewicz_on_cube, landscapes_combo1_on_cube, landscapes_combo2_on_cube, landscapes_combo3_on_cube] # Some copied from peabox # https://github.com/stromatolith/peabox/blob/master/peabox/peabox_testfuncs.py # as that isn't deployed to PyPI as far as I can determine # Adapted from https://github.com/SISDevelop/SwarmPackagePy/blob/master/SwarmPackagePy/testFunctions.py SWARM_OBJECTIVES = [cross_on_cube, powers_on_cube, booth_on_cube, matyas_on_cube, drop_wave_on_cube] A_CLASSIC_OBJECTIVE = rastrigin_on_cube # Just pick one for testing MISC_OBJECTIVES = [paviani_on_cube, damavandi_on_cube, rosenbrock_modified_on_cube, ackley_on_cube] CLASSIC_OBJECTIVES = DEAP_OBJECTIVES + LANDSCAPES_OBJECTIVES + MISC_OBJECTIVES + SWARM_OBJECTIVES if __name__ == "__main__": for objective in CLASSIC_OBJECTIVES: objective(u=[0.0, 0.5, 1.0]) objective(u=[0.0, 0.5, 0.0, 0.0, 1.0]) print(len(CLASSIC_OBJECTIVES))
[ 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 6738, 49779, 820, 13, 15252, 1083, 13, 2934, 499, 15252, 1083, 1330, 5513, 732, 69, 417, 11, 5513, 31183, 11, 275, 1219, 4891, 14259, 2584, 11, 11120, 413, 962, 11, 374, 459, 4359, 259, 11, 673, 7750, 11, 686, 6248, 7957, 694, 198, 198, 2, 2773, 1332, 9432, 5499, 284, 1037, 5698, 6436, 7509, 7747, 198, 2, 20368, 1783, 32501, 198, 2, 198, 2, 775, 1183, 779, 5550, 2969, 338, 900, 286, 7128, 27796, 31747, 11, 290, 32964, 11, 30077, 26495, 9078, 635, 198, 2, 198, 2, 4091, 2495, 5986, 379, 3740, 1378, 2934, 499, 13, 961, 83, 704, 420, 82, 13, 952, 14, 268, 14, 9866, 14, 15042, 14, 26968, 14306, 13, 6494, 2, 2934, 499, 13, 26968, 14306, 198, 2, 2773, 49604, 8922, 318, 379, 3740, 1378, 12567, 13, 785, 14, 77, 6696, 305, 726, 14, 1044, 1416, 7916, 2, 15182, 12, 12543, 2733, 12, 6738, 12, 29762, 62, 15252, 425, 475, 356, 1183, 466, 674, 898, 628, 198, 2235, 6455, 271, 286, 17198, 5499, 198, 198, 11748, 4818, 8079, 198, 198, 26442, 796, 4818, 8079, 13, 19608, 8079, 13, 40838, 22446, 820, 198, 27977, 28480, 796, 24644, 1220, 2026, 198, 47, 36048, 796, 352, 1343, 357, 26442, 4064, 513, 8, 1220, 513, 13, 15, 198, 9693, 32297, 796, 24644, 1220, 1802, 628, 198, 4299, 895, 78, 3768, 7, 9019, 2599, 198, 220, 220, 220, 37227, 4307, 419, 262, 16654, 284, 3368, 3489, 949, 8083, 290, 3368, 16181, 1634, 37227, 198, 220, 220, 220, 334, 72, 62, 10599, 378, 796, 334, 72, 1343, 6006, 32297, 4064, 352, 13, 15, 198, 220, 220, 220, 334, 72, 62, 30846, 796, 334, 72, 62, 10599, 378, 1343, 6006, 32297, 198, 220, 220, 220, 2124, 72, 796, 334, 72, 62, 30846, 12429, 40295, 198, 220, 220, 220, 1877, 796, 6006, 32297, 12429, 40295, 198, 220, 220, 220, 1029, 796, 357, 16, 1343, 6006, 32297, 8, 12429, 40295, 198, 220, 220, 220, 331, 72, 796, 357, 29992, 532, 1877, 8, 1220, 357, 8929, 532, 1877, 8, 198, 220, 220, 220, 1441, 331, 72, 12429, 40295, 628, 628, 628, 628, 198, 198, 2235, 14336, 7352, 628, 628, 198, 7206, 2969, 62, 9864, 23680, 42472, 796, 685, 20601, 732, 69, 417, 62, 261, 62, 40296, 11, 374, 459, 4359, 259, 62, 261, 62, 40296, 11, 11120, 413, 962, 62, 261, 62, 40296, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 1219, 4891, 14259, 2584, 62, 261, 62, 40296, 11, 686, 6248, 7957, 694, 62, 261, 62, 40296, 11, 427, 31183, 62, 261, 62, 40296, 11, 673, 7750, 62, 261, 62, 40296, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 390, 499, 62, 785, 2127, 16, 62, 261, 62, 40296, 11, 390, 499, 62, 785, 2127, 17, 62, 261, 62, 40296, 11, 390, 499, 62, 785, 2127, 18, 62, 261, 62, 40296, 60, 628, 198, 2, 2750, 1021, 986, 198, 198, 4299, 686, 6248, 7957, 694, 62, 41771, 62, 261, 62, 40296, 7, 84, 25, 685, 22468, 12962, 4613, 12178, 25, 198, 220, 220, 220, 37227, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 49, 5233, 7957, 694, 62, 8818, 37227, 198, 220, 220, 220, 334, 62, 1416, 3021, 796, 685, 19, 1635, 334, 72, 532, 362, 329, 334, 72, 287, 334, 60, 198, 220, 220, 220, 611, 18896, 7, 84, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 15, 13, 1495, 532, 334, 62, 1416, 3021, 58, 15, 12962, 12429, 362, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 642, 1343, 657, 13, 8298, 1635, 45941, 13, 16345, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 3064, 1635, 357, 9019, 62, 9541, 532, 334, 72, 1635, 334, 72, 8, 1343, 357, 16, 532, 334, 72, 8, 1635, 357, 16, 532, 334, 72, 8, 329, 334, 72, 11, 334, 72, 62, 9541, 287, 19974, 7, 84, 62, 1416, 3021, 58, 16, 25, 4357, 334, 62, 1416, 3021, 8, 12962, 628, 198, 2, 4784, 284, 2638, 1378, 10745, 6269, 3324, 13, 3262, 14, 20541, 62, 40085, 1634, 14, 9288, 62, 12543, 2733, 13, 6494, 2, 9288, 12, 12543, 2733, 12, 9630, 198, 2, 612, 389, 617, 1107, 1327, 3392, 198, 2, 4091, 3740, 1378, 12567, 13, 785, 14, 10757, 69, 2001, 14, 696, 2188, 14, 2436, 672, 14, 9866, 14, 4, 1238, 696, 2188, 4, 1238, 438, 29460, 4, 1238, 392, 21468, 13, 70, 615, 2271, 4, 1821, 14816, 13, 785, 14, 2188, 62, 26968, 4102, 13, 9078, 198, 2, 4091, 635, 3740, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 12952, 23, 13, 7029, 23, 85, 16, 13, 12315, 198, 198, 4299, 1801, 615, 26800, 62, 261, 62, 40296, 7, 84, 25, 685, 22468, 12962, 4613, 12178, 25, 198, 220, 220, 220, 37227, 317, 20861, 5021, 12, 19577, 7552, 286, 5245, 615, 26800, 338, 2163, 37227, 198, 220, 220, 220, 1441, 657, 13, 486, 1635, 1801, 615, 26800, 17, 7, 84, 58, 15, 4357, 334, 58, 16, 12962, 532, 657, 13, 3510, 628, 198, 4299, 1801, 615, 26800, 17, 7, 84, 16, 11, 334, 17, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 20090, 6181, 2163, 428, 530, 37227, 198, 220, 220, 220, 1303, 2638, 1378, 10745, 6269, 3324, 13, 3262, 14, 20541, 62, 40085, 1634, 14, 9288, 62, 12543, 2733, 62, 358, 62, 35, 13, 6494, 2, 2188, 62, 26968, 4102, 13, 14550, 615, 26800, 198, 220, 220, 220, 2124, 16, 796, 334, 16, 1220, 1478, 13, 198, 220, 220, 220, 2124, 17, 796, 334, 17, 1220, 1478, 13, 198, 220, 220, 220, 5470, 1352, 796, 10688, 13, 31369, 7, 11018, 13, 14415, 1635, 357, 87, 16, 532, 362, 13, 15, 4008, 1635, 10688, 13, 31369, 7, 11018, 13, 14415, 1635, 357, 87, 17, 532, 362, 13, 15, 4008, 198, 220, 220, 220, 2853, 6975, 1352, 796, 357, 11018, 13, 14415, 12429, 362, 8, 1635, 357, 87, 16, 532, 362, 13, 15, 8, 1635, 357, 87, 17, 532, 362, 13, 15, 8, 198, 220, 220, 220, 5766, 16, 796, 352, 13, 15, 532, 357, 8937, 7, 77, 6975, 1352, 1220, 2853, 6975, 1352, 4008, 12429, 642, 13, 15, 198, 220, 220, 220, 5766, 17, 796, 362, 1343, 357, 87, 16, 532, 767, 13, 15, 8, 12429, 362, 13, 15, 1343, 362, 1635, 357, 87, 17, 532, 767, 13, 15, 8, 12429, 362, 13, 15, 198, 220, 220, 220, 1441, 5766, 16, 1635, 5766, 17, 628, 198, 198, 2, 6379, 1416, 7916, 198, 198, 6738, 32964, 13, 29762, 62, 15252, 425, 1330, 8944, 2436, 21141, 62, 83, 648, 11, 1976, 461, 9869, 709, 11, 3664, 16698, 11, 38375, 62, 49229, 62, 695, 541, 568, 312, 11, 10662, 278, 11, 285, 488, 282, 413, 28051, 628, 628, 628, 628, 628, 198, 198, 25697, 5258, 33177, 1546, 62, 9864, 23680, 42472, 796, 685, 34365, 2436, 21141, 62, 83, 648, 62, 261, 62, 40296, 11, 1976, 461, 9869, 709, 62, 261, 62, 40296, 11, 3664, 16698, 62, 261, 62, 40296, 11, 38375, 62, 49229, 62, 695, 541, 568, 312, 62, 261, 62, 40296, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 278, 62, 261, 62, 40296, 11, 285, 488, 3609, 293, 22664, 89, 62, 261, 62, 40296, 11, 32964, 62, 785, 2127, 16, 62, 261, 62, 40296, 11, 32964, 62, 785, 2127, 17, 62, 261, 62, 40296, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32964, 62, 785, 2127, 18, 62, 261, 62, 40296, 60, 628, 198, 2, 2773, 18984, 422, 613, 397, 1140, 198, 2, 3740, 1378, 12567, 13, 785, 14, 20282, 265, 21446, 14, 431, 397, 1140, 14, 2436, 672, 14, 9866, 14, 431, 397, 1140, 14, 431, 397, 1140, 62, 9288, 12543, 6359, 13, 9078, 198, 2, 355, 326, 2125, 470, 12380, 284, 9485, 11901, 355, 1290, 355, 314, 460, 5004, 628, 198, 198, 2, 30019, 276, 422, 3740, 1378, 12567, 13, 785, 14, 50, 1797, 19246, 14, 10462, 1670, 27813, 20519, 14, 2436, 672, 14, 9866, 14, 10462, 1670, 27813, 20519, 14, 9288, 24629, 2733, 13, 9078, 628, 628, 628, 198, 50, 16279, 44, 62, 9864, 23680, 42472, 796, 685, 19692, 62, 261, 62, 40296, 11, 5635, 62, 261, 62, 40296, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18600, 62, 261, 62, 40296, 11, 2603, 88, 292, 62, 261, 62, 40296, 11, 4268, 62, 19204, 62, 261, 62, 40296, 60, 198, 198, 32, 62, 31631, 2149, 62, 9864, 23680, 9306, 796, 374, 459, 4359, 259, 62, 261, 62, 40296, 220, 1303, 2329, 2298, 530, 329, 4856, 198, 198, 44, 37719, 62, 9864, 23680, 42472, 796, 685, 79, 615, 25111, 62, 261, 62, 40296, 11, 1801, 615, 26800, 62, 261, 62, 40296, 11, 686, 6248, 7957, 694, 62, 41771, 62, 261, 62, 40296, 11, 257, 694, 1636, 62, 261, 62, 40296, 60, 198, 198, 31631, 2149, 62, 9864, 23680, 42472, 796, 5550, 2969, 62, 9864, 23680, 42472, 1343, 24192, 5258, 33177, 1546, 62, 9864, 23680, 42472, 1343, 337, 37719, 62, 9864, 23680, 42472, 1343, 12672, 33456, 62, 9864, 23680, 42472, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 329, 9432, 287, 42715, 2149, 62, 9864, 23680, 42472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9432, 7, 84, 41888, 15, 13, 15, 11, 657, 13, 20, 11, 352, 13, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 9432, 7, 84, 41888, 15, 13, 15, 11, 657, 13, 20, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 12962, 198, 220, 220, 220, 3601, 7, 11925, 7, 31631, 2149, 62, 9864, 23680, 42472, 4008, 198 ]
2.366071
1,680
import datetime import os import shutil from packages.dialogs.auxiliar_dialogs import selfCloseInterface
[ 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 198, 6738, 10392, 13, 38969, 18463, 13, 14644, 4797, 62, 38969, 18463, 1330, 2116, 26125, 39317, 628 ]
3.821429
28
#!/usr/bin/env python3 #### ros import import rospy import std_msgs.msg from rospkg import RosPack from std_msgs.msg import UInt8 from std_msgs.msg import Float32MultiArray #c from sensor_msgs.msg import Image from geometry_msgs.msg import Polygon, Point32 import cv2 from cv_bridge import CvBridge, CvBridgeError # python import import os import argparse import time import math package = RosPack() img_size = (480, 360) if __name__ == "__main__": # Initialize node rospy.init_node("detector_manager_node") dm = DetectorManager()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 4242, 686, 82, 1330, 220, 198, 11748, 686, 2777, 88, 198, 11748, 14367, 62, 907, 14542, 13, 19662, 198, 6738, 686, 2777, 10025, 1330, 10018, 11869, 198, 6738, 14367, 62, 907, 14542, 13, 19662, 1330, 471, 5317, 23, 198, 6738, 14367, 62, 907, 14542, 13, 19662, 1330, 48436, 2624, 29800, 19182, 1303, 66, 198, 6738, 12694, 62, 907, 14542, 13, 19662, 1330, 7412, 198, 6738, 22939, 62, 907, 14542, 13, 19662, 1330, 12280, 14520, 11, 6252, 2624, 198, 11748, 269, 85, 17, 198, 6738, 269, 85, 62, 9458, 1330, 327, 85, 37385, 11, 327, 85, 37385, 12331, 198, 198, 2, 21015, 1330, 220, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 640, 198, 11748, 10688, 198, 198, 26495, 796, 10018, 11869, 3419, 198, 9600, 62, 7857, 796, 357, 22148, 11, 11470, 8, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 20768, 1096, 10139, 198, 220, 220, 220, 686, 2777, 88, 13, 15003, 62, 17440, 7203, 15255, 9250, 62, 37153, 62, 17440, 4943, 198, 220, 220, 220, 288, 76, 796, 4614, 9250, 13511, 3419, 198 ]
2.816327
196
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns( '', url(r'^admin/', include(admin.site.urls)), url(r'^truco/', include('truco.urls', namespace="truco")), url(r'^usuarios/', include('usuarios.urls', namespace="usuarios")), )
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 7572, 11, 2291, 11, 19016, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 28482, 13, 2306, 375, 29392, 3419, 198, 198, 6371, 33279, 82, 796, 7572, 7, 198, 220, 220, 220, 705, 3256, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28482, 14, 3256, 2291, 7, 28482, 13, 15654, 13, 6371, 82, 36911, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 83, 622, 1073, 14, 3256, 2291, 10786, 83, 622, 1073, 13, 6371, 82, 3256, 25745, 2625, 83, 622, 1073, 4943, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 385, 84, 13010, 14, 3256, 2291, 10786, 385, 84, 13010, 13, 6371, 82, 3256, 25745, 2625, 385, 84, 13010, 4943, 828, 198, 8, 198 ]
2.511628
129
#!/usr/bin/env python3 """ Description: Usage: $> roslaunch turtle_nodes.launch $> ./executive_step_02.py Output: [INFO] : State machine starting in initial state 'RESET' with userdata: [] [INFO] : State machine transitioning 'RESET':'succeeded'-->'SPAWN' [INFO] : State machine terminating 'SPAWN':'succeeded':'succeeded' """ import rospy import threading import smach from smach import StateMachine, ServiceState, SimpleActionState import std_srvs.srv import turtlesim.srv if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 11828, 25, 198, 198, 28350, 25, 198, 220, 220, 220, 720, 29, 686, 6649, 11429, 28699, 62, 77, 4147, 13, 35681, 198, 220, 220, 220, 720, 29, 24457, 18558, 8827, 62, 9662, 62, 2999, 13, 9078, 198, 198, 26410, 25, 198, 220, 220, 220, 685, 10778, 60, 1058, 1812, 4572, 3599, 287, 4238, 1181, 705, 19535, 2767, 6, 351, 2836, 7890, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17635, 198, 220, 220, 220, 685, 10778, 60, 1058, 1812, 4572, 37005, 705, 19535, 2767, 10354, 6, 82, 1229, 2707, 276, 6, 46904, 6, 4303, 12298, 45, 6, 198, 220, 220, 220, 685, 10778, 60, 1058, 1812, 4572, 47985, 705, 4303, 12298, 45, 10354, 6, 82, 1229, 2707, 276, 10354, 6, 82, 1229, 2707, 276, 6, 198, 198, 37811, 198, 198, 11748, 686, 2777, 88, 198, 198, 11748, 4704, 278, 198, 198, 11748, 895, 620, 198, 6738, 895, 620, 1330, 1812, 37573, 11, 4809, 9012, 11, 17427, 12502, 9012, 198, 198, 11748, 14367, 62, 27891, 14259, 13, 27891, 85, 198, 11748, 36288, 320, 13, 27891, 85, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.583333
216
import pandas as pd import numpy as np import os from hickit.reader import get_headers, get_chrom_sizes import tensorflow as tf import json import tensorflow_addons as tfa from utils import * import gc from sklearn.metrics import f1_score, average_precision_score def run_output_predictions(run_id, model_stage, threshold, target_dataset_name, target_assembly, chroms, output_path, mode): """ :param run_id: String - The string that specifies the run of experiment :param model_stage: String - can only be 'GNN', 'CNN', or 'Finetune' :param threshold: Float - The probability threshold :param target_dataset_name: String - The name of dataset you want to predict on :param chroms: List - Chromosome list we want to predict on. e.g. ['1', '2', 'X'] :param target_assembly: String - 'hg19' or 'hg38' :param output_path: String - The path to the output file :param mode: String - 'test' or 'realworld'. Test mode means the target cell line has the ground truth ChIA-PET data and the program will calculate the PRAUC for it. 'realworld' mode does not print PRAUC because the target dataset does not have label. :return: Pandas dataframe contains the genome-wide annotations """ dataset_dir = os.path.join('dataset', target_dataset_name) model_path = os.path.join('models', run_id + '_' + model_stage) chrom_size_path = '{}.chrom.sizes'.format(target_assembly) extra_config_path = os.path.join('configs', '{}_extra_settings.json'.format(run_id)) with open(extra_config_path) as fp: saved_upper_bound = json.load(fp)['graph_upper_bound'] pred_dfs = [] ys = [] y_preds = [] for chrom in chroms: model = tf.keras.models.load_model(model_path) indicator_path = os.path.join(dataset_dir, 'indicators.{}.csv'.format(chrom)) identical_path = os.path.join(dataset_dir, 'graph_identical.{}.npy'.format(chrom)) images, graphs, y, features = read_data_with_motif([chrom], dataset_dir, IMAGE_SIZE) graphs = normalise_graphs(scale_hic(graphs, saved_upper_bound)) test_y_pred = np.asarray(model.predict([images, features, graphs])[1]) ys.append(y.flatten()) y_preds.append(test_y_pred.flatten()) chrom_proba, chrom_gt = get_chrom_proba( chrom, get_chrom_sizes(chrom_size_path), 10000, test_y_pred, y, indicator_path, identical_path, IMAGE_SIZE ) current_df = get_chrom_pred_df( chrom, chrom_proba, threshold, get_headers([chrom], get_chrom_sizes(chrom_size_path), 10000), ) pred_dfs.append(current_df) del model gc.collect() tf.keras.backend.clear_session() if mode == 'test': print('PRAUC on the target cell line is {}'.format( average_precision_score(np.concatenate(ys), np.concatenate(y_preds)) )) full_pred_df = pd.concat(pred_dfs) full_pred_df.to_csv(output_path, sep='\t', index=False, header=False) return full_pred_df if __name__ == '__main__': run_output_predictions( 'gm12878_ctcf_50', # Specify the ID of a pre-trained model 'Finetune', # Specify using which stage of the model to make prediction 0.48, # Set the probability threshold 'hela_100', # Specify the name of the dataset you want to predict on 'hg38', # The genome assembly of the target dataset ['1'], # Annotate on which Chromosomes 'predictions/hela_test.bedpe', # The output file path 'test' # Test mode means the target dataset has label; 'realworld' mode # means the target cell line does not have label )
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 6738, 289, 624, 270, 13, 46862, 1330, 651, 62, 50145, 11, 651, 62, 28663, 62, 82, 4340, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 33918, 198, 11748, 11192, 273, 11125, 62, 39996, 355, 256, 13331, 198, 6738, 3384, 4487, 1330, 1635, 198, 11748, 308, 66, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 277, 16, 62, 26675, 11, 2811, 62, 3866, 16005, 62, 26675, 628, 198, 4299, 1057, 62, 22915, 62, 28764, 9278, 7, 5143, 62, 312, 11, 2746, 62, 14247, 11, 11387, 11, 2496, 62, 19608, 292, 316, 62, 3672, 11, 2496, 62, 41873, 11, 15358, 82, 11, 5072, 62, 6978, 11, 4235, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 1057, 62, 312, 25, 10903, 532, 383, 4731, 326, 26052, 262, 1057, 286, 6306, 198, 220, 220, 220, 1058, 17143, 2746, 62, 14247, 25, 10903, 532, 460, 691, 307, 705, 38, 6144, 3256, 705, 18474, 3256, 393, 705, 18467, 316, 1726, 6, 198, 220, 220, 220, 1058, 17143, 11387, 25, 48436, 532, 383, 12867, 11387, 198, 220, 220, 220, 1058, 17143, 2496, 62, 19608, 292, 316, 62, 3672, 25, 10903, 532, 383, 1438, 286, 27039, 345, 765, 284, 4331, 319, 198, 220, 220, 220, 1058, 17143, 15358, 82, 25, 7343, 532, 18255, 418, 462, 1351, 356, 765, 284, 4331, 319, 13, 304, 13, 70, 13, 37250, 16, 3256, 705, 17, 3256, 705, 55, 20520, 198, 220, 220, 220, 1058, 17143, 2496, 62, 41873, 25, 10903, 532, 705, 71, 70, 1129, 6, 393, 705, 71, 70, 2548, 6, 198, 220, 220, 220, 1058, 17143, 5072, 62, 6978, 25, 10903, 532, 383, 3108, 284, 262, 5072, 2393, 198, 220, 220, 220, 1058, 17143, 4235, 25, 10903, 532, 705, 9288, 6, 393, 705, 5305, 6894, 4458, 6208, 4235, 1724, 262, 2496, 2685, 1627, 468, 262, 2323, 3872, 609, 3539, 12, 47731, 198, 220, 220, 220, 1366, 290, 262, 1430, 481, 15284, 262, 350, 3861, 9598, 329, 340, 13, 705, 5305, 6894, 6, 4235, 857, 407, 3601, 350, 3861, 9598, 780, 262, 2496, 198, 220, 220, 220, 27039, 857, 407, 423, 6167, 13, 198, 220, 220, 220, 1058, 7783, 25, 16492, 292, 1366, 14535, 4909, 262, 19270, 12, 4421, 37647, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27039, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 10786, 19608, 292, 316, 3256, 2496, 62, 19608, 292, 316, 62, 3672, 8, 198, 220, 220, 220, 2746, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 10786, 27530, 3256, 1057, 62, 312, 1343, 705, 62, 6, 1343, 2746, 62, 14247, 8, 198, 220, 220, 220, 15358, 62, 7857, 62, 6978, 796, 705, 90, 27422, 28663, 13, 82, 4340, 4458, 18982, 7, 16793, 62, 41873, 8, 198, 220, 220, 220, 3131, 62, 11250, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 10786, 11250, 82, 3256, 705, 90, 92, 62, 26086, 62, 33692, 13, 17752, 4458, 18982, 7, 5143, 62, 312, 4008, 198, 220, 220, 220, 351, 1280, 7, 26086, 62, 11250, 62, 6978, 8, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7448, 62, 45828, 62, 7784, 796, 33918, 13, 2220, 7, 46428, 8, 17816, 34960, 62, 45828, 62, 7784, 20520, 198, 220, 220, 220, 2747, 62, 7568, 82, 796, 17635, 198, 220, 220, 220, 331, 82, 796, 17635, 198, 220, 220, 220, 331, 62, 28764, 82, 796, 17635, 198, 220, 220, 220, 329, 15358, 287, 15358, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 48700, 13, 6122, 292, 13, 27530, 13, 2220, 62, 19849, 7, 19849, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 16916, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 19608, 292, 316, 62, 15908, 11, 705, 521, 44549, 13, 90, 27422, 40664, 4458, 18982, 7, 28663, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 10411, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 19608, 292, 316, 62, 15908, 11, 705, 34960, 62, 738, 605, 13, 90, 27422, 77, 9078, 4458, 18982, 7, 28663, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 11, 28770, 11, 331, 11, 3033, 796, 1100, 62, 7890, 62, 4480, 62, 27926, 361, 26933, 28663, 4357, 27039, 62, 15908, 11, 8959, 11879, 62, 33489, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28770, 796, 3487, 786, 62, 34960, 82, 7, 9888, 62, 71, 291, 7, 34960, 82, 11, 7448, 62, 45828, 62, 7784, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 88, 62, 28764, 796, 45941, 13, 292, 18747, 7, 19849, 13, 79, 17407, 26933, 17566, 11, 3033, 11, 28770, 12962, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 82, 13, 33295, 7, 88, 13, 2704, 41769, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 82, 13, 33295, 7, 9288, 62, 88, 62, 28764, 13, 2704, 41769, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 15358, 62, 1676, 7012, 11, 15358, 62, 13655, 796, 651, 62, 28663, 62, 1676, 7012, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 28663, 62, 82, 4340, 7, 28663, 62, 7857, 62, 6978, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33028, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 88, 62, 28764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16916, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10411, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8959, 11879, 62, 33489, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 7568, 796, 651, 62, 28663, 62, 28764, 62, 7568, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15358, 11, 15358, 62, 1676, 7012, 11, 11387, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 50145, 26933, 28663, 4357, 651, 62, 28663, 62, 82, 4340, 7, 28663, 62, 7857, 62, 6978, 828, 33028, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 7568, 82, 13, 33295, 7, 14421, 62, 7568, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 308, 66, 13, 33327, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 1891, 437, 13, 20063, 62, 29891, 3419, 198, 220, 220, 220, 611, 4235, 6624, 705, 9288, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 47, 3861, 9598, 319, 262, 2496, 2685, 1627, 318, 23884, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 3866, 16005, 62, 26675, 7, 37659, 13, 1102, 9246, 268, 378, 7, 893, 828, 45941, 13, 1102, 9246, 268, 378, 7, 88, 62, 28764, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 1336, 62, 28764, 62, 7568, 796, 279, 67, 13, 1102, 9246, 7, 28764, 62, 7568, 82, 8, 198, 220, 220, 220, 1336, 62, 28764, 62, 7568, 13, 1462, 62, 40664, 7, 22915, 62, 6978, 11, 41767, 11639, 59, 83, 3256, 6376, 28, 25101, 11, 13639, 28, 25101, 8, 198, 220, 220, 220, 1441, 1336, 62, 28764, 62, 7568, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 62, 22915, 62, 28764, 9278, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39870, 12762, 3695, 62, 310, 12993, 62, 1120, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18291, 1958, 262, 4522, 286, 257, 662, 12, 35311, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18467, 316, 1726, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18291, 1958, 1262, 543, 3800, 286, 262, 2746, 284, 787, 17724, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2780, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 262, 12867, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2978, 64, 62, 3064, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18291, 1958, 262, 1438, 286, 262, 27039, 345, 765, 284, 4331, 319, 198, 220, 220, 220, 220, 220, 220, 220, 705, 71, 70, 2548, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 19270, 10474, 286, 262, 2496, 27039, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 16, 6, 4357, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1052, 1662, 378, 319, 543, 18255, 418, 2586, 198, 220, 220, 220, 220, 220, 220, 220, 705, 28764, 9278, 14, 2978, 64, 62, 9288, 13, 3077, 431, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 5072, 2393, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9288, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 4235, 1724, 262, 2496, 27039, 468, 6167, 26, 705, 5305, 6894, 6, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1724, 262, 2496, 2685, 1627, 857, 407, 423, 6167, 198, 220, 220, 220, 1267, 628 ]
2.206074
1,844
""" test elstruct writer/run/reader pipelines """ import warnings import tempfile import numpy import automol import elstruct SCRIPT_DCT = { 'cfour2': None, 'gaussian09': None, 'gaussian16': None, 'molpro2015': None, 'mrcc2018': None, 'nwchem6': None, 'orca4': None, 'psi4': "#!/usr/bin/env bash\n" "psi4 -i run.inp -o run.out >> stdout.log &> stderr.log", } def test__energy(): """ test the energy pipeline """ basis = '6-31g' geom = (('O', (0.0, 0.0, -0.110)), ('H', (0.0, -1.635, 0.876)), ('H', (-0.0, 1.635, 0.876))) mult_vals = [1, 2] charge_vals = [0, 1] for prog in elstruct.writer.programs(): for method in elstruct.program_methods(prog): for mult, charge in zip(mult_vals, charge_vals): for orb_restricted in ( elstruct.program_method_orbital_restrictions( prog, method, singlet=(mult == 1))): vals = _test_pipeline( script_str=SCRIPT_DCT[prog], writer=elstruct.writer.energy, readers=( elstruct.reader.energy_(prog, method), ), args=(geom, charge, mult, method, basis, prog), kwargs={'orb_restricted': orb_restricted}, error=elstruct.Error.SCF_NOCONV, error_kwargs={'scf_options': [ elstruct.option.specify( elstruct.Option.Scf.MAXITER_, 2) ]}, ) print(vals) def test__gradient(): """ test the gradient pipeline """ basis = 'sto-3g' geom = (('O', (0.0, 0.0, -0.110)), ('H', (0.0, -1.635, 0.876)), ('H', (-0.0, 1.635, 0.876))) mult_vals = [1, 2] charge_vals = [0, 1] for prog in elstruct.writer.gradient_programs(): methods = list(elstruct.program_nondft_methods(prog)) dft_methods = list(elstruct.program_dft_methods(prog)) if dft_methods: methods.append(numpy.random.choice(dft_methods)) for method in methods: for mult, charge in zip(mult_vals, charge_vals): for orb_restricted in ( elstruct.program_method_orbital_restrictions( prog, method, singlet=(mult == 1))): vals = _test_pipeline( script_str=SCRIPT_DCT[prog], writer=elstruct.writer.gradient, readers=( elstruct.reader.energy_(prog, method), elstruct.reader.gradient_(prog), ), args=(geom, charge, mult, method, basis, prog), kwargs={'orb_restricted': orb_restricted}, ) print(vals) def test__hessian(): """ test the hessian pipeline """ basis = 'sto-3g' geom = (('O', (0.0, 0.0, -0.110)), ('H', (0.0, -1.635, 0.876)), ('H', (-0.0, 1.635, 0.876))) mult_vals = [1, 2] charge_vals = [0, 1] for prog in elstruct.writer.hessian_programs(): methods = list(elstruct.program_nondft_methods(prog)) dft_methods = list(elstruct.program_dft_methods(prog)) if dft_methods: methods.append(numpy.random.choice(dft_methods)) for method in methods: for mult, charge in zip(mult_vals, charge_vals): for orb_restricted in ( elstruct.program_method_orbital_restrictions( prog, method, singlet=(mult == 1))): vals = _test_pipeline( script_str=SCRIPT_DCT[prog], writer=elstruct.writer.hessian, readers=( elstruct.reader.energy_(prog, method), elstruct.reader.hessian_(prog), ), args=(geom, charge, mult, method, basis, prog), kwargs={'orb_restricted': orb_restricted}, ) print(vals) def test__optimization(): """ test elstruct optimization writes and reads """ method = 'hf' basis = 'sto-3g' geom = ((('C', (None, None, None), (None, None, None)), ('O', (0, None, None), ('R1', None, None)), ('H', (0, 1, None), ('R2', 'A2', None)), ('H', (0, 1, 2), ('R3', 'A3', 'D3')), ('H', (0, 1, 2), ('R4', 'A4', 'D4')), ('H', (1, 0, 2), ('R5', 'A5', 'D5'))), {'R1': 2.6, 'R2': 2.0, 'A2': 1.9, 'R3': 2.0, 'A3': 1.9, 'D3': 2.1, 'R4': 2.0, 'A4': 1.9, 'D4': 4.1, 'R5': 1.8, 'A5': 1.8, 'D5': 5.2}) mult = 1 charge = 0 orb_restricted = True frozen_coordinates = ('R5', 'A5', 'D3') ref_frozen_values = (1.8, 1.8, 2.1) for prog in elstruct.writer.optimization_programs(): script_str = SCRIPT_DCT[prog] # MRCC2018 does not support constrained optimizations if prog != 'mrcc2018': opt_kwargs = {'orb_restricted': orb_restricted, 'frozen_coordinates': frozen_coordinates} else: opt_kwargs = {'orb_restricted': orb_restricted} vals = _test_pipeline( script_str=script_str, writer=elstruct.writer.optimization, readers=( elstruct.reader.energy_(prog, method), elstruct.reader.opt_geometry_(prog), elstruct.reader.opt_zmatrix_(prog), ), args=(geom, charge, mult, method, basis, prog), kwargs=opt_kwargs, error=elstruct.Error.OPT_NOCONV, error_kwargs={'job_options': [ elstruct.option.specify( elstruct.Option.Opt.MAXITER_, 2) ]}, ) print(vals) if script_str is not None: # check that the frozen coordinates didn't change zma = vals[-1] val_dct = automol.zmatrix.values(zma) frozen_values = tuple( map(val_dct.__getitem__, frozen_coordinates)) assert numpy.allclose( frozen_values, ref_frozen_values, rtol=1e-4) if __name__ == '__main__': test__energy() test__gradient() test__hessian() test__optimization()
[ 37811, 1332, 1288, 7249, 6260, 14, 5143, 14, 46862, 31108, 198, 37811, 198, 11748, 14601, 198, 11748, 20218, 7753, 198, 11748, 299, 32152, 198, 11748, 3557, 349, 198, 11748, 1288, 7249, 628, 198, 6173, 46023, 62, 35, 4177, 796, 1391, 198, 220, 220, 220, 705, 12993, 454, 17, 10354, 6045, 11, 198, 220, 220, 220, 705, 4908, 31562, 2931, 10354, 6045, 11, 198, 220, 220, 220, 705, 4908, 31562, 1433, 10354, 6045, 11, 198, 220, 220, 220, 705, 43132, 1676, 4626, 10354, 6045, 11, 198, 220, 220, 220, 705, 43395, 535, 7908, 10354, 6045, 11, 198, 220, 220, 220, 705, 47516, 15245, 21, 10354, 6045, 11, 198, 220, 220, 220, 705, 273, 6888, 19, 10354, 6045, 11, 198, 220, 220, 220, 705, 862, 72, 19, 10354, 25113, 48443, 14629, 14, 8800, 14, 24330, 27334, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 862, 72, 19, 532, 72, 1057, 13, 259, 79, 532, 78, 1057, 13, 448, 9609, 14367, 448, 13, 6404, 1222, 29, 336, 1082, 81, 13, 6404, 1600, 198, 92, 628, 198, 4299, 1332, 834, 22554, 33529, 198, 220, 220, 220, 37227, 1332, 262, 2568, 11523, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4308, 796, 705, 21, 12, 3132, 70, 6, 198, 220, 220, 220, 4903, 296, 796, 357, 10786, 46, 3256, 357, 15, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 11442, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 357, 15, 13, 15, 11, 532, 16, 13, 48250, 11, 657, 13, 23, 4304, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 13841, 15, 13, 15, 11, 352, 13, 48250, 11, 657, 13, 23, 4304, 22305, 198, 220, 220, 220, 1963, 62, 12786, 796, 685, 16, 11, 362, 60, 198, 220, 220, 220, 3877, 62, 12786, 796, 685, 15, 11, 352, 60, 628, 220, 220, 220, 329, 1172, 287, 1288, 7249, 13, 16002, 13, 23065, 82, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2446, 287, 1288, 7249, 13, 23065, 62, 24396, 82, 7, 1676, 70, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1963, 11, 3877, 287, 19974, 7, 16680, 62, 12786, 11, 3877, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 15769, 62, 49343, 287, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 23065, 62, 24396, 62, 27688, 1287, 62, 2118, 2012, 507, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1172, 11, 2446, 11, 1702, 1616, 16193, 16680, 6624, 352, 4008, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 4808, 9288, 62, 79, 541, 4470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4226, 62, 2536, 28, 6173, 46023, 62, 35, 4177, 58, 1676, 70, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28, 417, 7249, 13, 16002, 13, 22554, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7183, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 46862, 13, 22554, 41052, 1676, 70, 11, 2446, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 16193, 469, 296, 11, 3877, 11, 1963, 11, 2446, 11, 4308, 11, 1172, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 34758, 6, 27688, 62, 49343, 10354, 15769, 62, 49343, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 28, 417, 7249, 13, 12331, 13, 6173, 37, 62, 45, 4503, 1340, 53, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 46265, 22046, 34758, 6, 1416, 69, 62, 25811, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 18076, 13, 16684, 1958, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 19722, 13, 3351, 69, 13, 22921, 2043, 1137, 62, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 12786, 8, 628, 198, 4299, 1332, 834, 49607, 33529, 198, 220, 220, 220, 37227, 1332, 262, 31312, 11523, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4308, 796, 705, 301, 78, 12, 18, 70, 6, 198, 220, 220, 220, 4903, 296, 796, 357, 10786, 46, 3256, 357, 15, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 11442, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 357, 15, 13, 15, 11, 532, 16, 13, 48250, 11, 657, 13, 23, 4304, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 13841, 15, 13, 15, 11, 352, 13, 48250, 11, 657, 13, 23, 4304, 22305, 198, 220, 220, 220, 1963, 62, 12786, 796, 685, 16, 11, 362, 60, 198, 220, 220, 220, 3877, 62, 12786, 796, 685, 15, 11, 352, 60, 628, 220, 220, 220, 329, 1172, 287, 1288, 7249, 13, 16002, 13, 49607, 62, 23065, 82, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5050, 796, 1351, 7, 417, 7249, 13, 23065, 62, 77, 623, 701, 62, 24396, 82, 7, 1676, 70, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 288, 701, 62, 24396, 82, 796, 1351, 7, 417, 7249, 13, 23065, 62, 67, 701, 62, 24396, 82, 7, 1676, 70, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 701, 62, 24396, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5050, 13, 33295, 7, 77, 32152, 13, 25120, 13, 25541, 7, 67, 701, 62, 24396, 82, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2446, 287, 5050, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1963, 11, 3877, 287, 19974, 7, 16680, 62, 12786, 11, 3877, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 15769, 62, 49343, 287, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 23065, 62, 24396, 62, 27688, 1287, 62, 2118, 2012, 507, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1172, 11, 2446, 11, 1702, 1616, 16193, 16680, 6624, 352, 4008, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 4808, 9288, 62, 79, 541, 4470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4226, 62, 2536, 28, 6173, 46023, 62, 35, 4177, 58, 1676, 70, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28, 417, 7249, 13, 16002, 13, 49607, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7183, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 46862, 13, 22554, 41052, 1676, 70, 11, 2446, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 46862, 13, 49607, 41052, 1676, 70, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 16193, 469, 296, 11, 3877, 11, 1963, 11, 2446, 11, 4308, 11, 1172, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 34758, 6, 27688, 62, 49343, 10354, 15769, 62, 49343, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 12786, 8, 628, 198, 4299, 1332, 834, 33979, 666, 33529, 198, 220, 220, 220, 37227, 1332, 262, 339, 824, 666, 11523, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4308, 796, 705, 301, 78, 12, 18, 70, 6, 198, 220, 220, 220, 4903, 296, 796, 357, 10786, 46, 3256, 357, 15, 13, 15, 11, 657, 13, 15, 11, 532, 15, 13, 11442, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 357, 15, 13, 15, 11, 532, 16, 13, 48250, 11, 657, 13, 23, 4304, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 13841, 15, 13, 15, 11, 352, 13, 48250, 11, 657, 13, 23, 4304, 22305, 198, 220, 220, 220, 1963, 62, 12786, 796, 685, 16, 11, 362, 60, 198, 220, 220, 220, 3877, 62, 12786, 796, 685, 15, 11, 352, 60, 628, 220, 220, 220, 329, 1172, 287, 1288, 7249, 13, 16002, 13, 33979, 666, 62, 23065, 82, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5050, 796, 1351, 7, 417, 7249, 13, 23065, 62, 77, 623, 701, 62, 24396, 82, 7, 1676, 70, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 288, 701, 62, 24396, 82, 796, 1351, 7, 417, 7249, 13, 23065, 62, 67, 701, 62, 24396, 82, 7, 1676, 70, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 701, 62, 24396, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5050, 13, 33295, 7, 77, 32152, 13, 25120, 13, 25541, 7, 67, 701, 62, 24396, 82, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2446, 287, 5050, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1963, 11, 3877, 287, 19974, 7, 16680, 62, 12786, 11, 3877, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 15769, 62, 49343, 287, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 23065, 62, 24396, 62, 27688, 1287, 62, 2118, 2012, 507, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1172, 11, 2446, 11, 1702, 1616, 16193, 16680, 6624, 352, 4008, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 4808, 9288, 62, 79, 541, 4470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4226, 62, 2536, 28, 6173, 46023, 62, 35, 4177, 58, 1676, 70, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28, 417, 7249, 13, 16002, 13, 33979, 666, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7183, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 46862, 13, 22554, 41052, 1676, 70, 11, 2446, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 46862, 13, 33979, 666, 41052, 1676, 70, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 16193, 469, 296, 11, 3877, 11, 1963, 11, 2446, 11, 4308, 11, 1172, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 34758, 6, 27688, 62, 49343, 10354, 15769, 62, 49343, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 12786, 8, 628, 198, 4299, 1332, 834, 40085, 1634, 33529, 198, 220, 220, 220, 37227, 1332, 1288, 7249, 23989, 6797, 290, 9743, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2446, 796, 705, 71, 69, 6, 198, 220, 220, 220, 4308, 796, 705, 301, 78, 12, 18, 70, 6, 198, 220, 220, 220, 4903, 296, 796, 14808, 10786, 34, 3256, 357, 14202, 11, 6045, 11, 6045, 828, 357, 14202, 11, 6045, 11, 6045, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 46, 3256, 357, 15, 11, 6045, 11, 6045, 828, 19203, 49, 16, 3256, 6045, 11, 6045, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 357, 15, 11, 352, 11, 6045, 828, 19203, 49, 17, 3256, 705, 32, 17, 3256, 6045, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 357, 15, 11, 352, 11, 362, 828, 19203, 49, 18, 3256, 705, 32, 18, 3256, 705, 35, 18, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 357, 15, 11, 352, 11, 362, 828, 19203, 49, 19, 3256, 705, 32, 19, 3256, 705, 35, 19, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 3256, 357, 16, 11, 657, 11, 362, 828, 19203, 49, 20, 3256, 705, 32, 20, 3256, 705, 35, 20, 6, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 49, 16, 10354, 362, 13, 21, 11, 705, 49, 17, 10354, 362, 13, 15, 11, 705, 32, 17, 10354, 352, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 49, 18, 10354, 362, 13, 15, 11, 705, 32, 18, 10354, 352, 13, 24, 11, 705, 35, 18, 10354, 362, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 49, 19, 10354, 362, 13, 15, 11, 705, 32, 19, 10354, 352, 13, 24, 11, 705, 35, 19, 10354, 604, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 49, 20, 10354, 352, 13, 23, 11, 705, 32, 20, 10354, 352, 13, 23, 11, 705, 35, 20, 10354, 642, 13, 17, 30072, 198, 220, 220, 220, 1963, 796, 352, 198, 220, 220, 220, 3877, 796, 657, 198, 220, 220, 220, 15769, 62, 49343, 796, 6407, 198, 220, 220, 220, 12912, 62, 37652, 17540, 796, 19203, 49, 20, 3256, 705, 32, 20, 3256, 705, 35, 18, 11537, 198, 220, 220, 220, 1006, 62, 69, 42005, 62, 27160, 796, 357, 16, 13, 23, 11, 352, 13, 23, 11, 362, 13, 16, 8, 198, 220, 220, 220, 329, 1172, 287, 1288, 7249, 13, 16002, 13, 40085, 1634, 62, 23065, 82, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 4226, 62, 2536, 796, 6374, 46023, 62, 35, 4177, 58, 1676, 70, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17242, 4093, 7908, 857, 407, 1104, 31070, 41446, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1172, 14512, 705, 43395, 535, 7908, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 62, 46265, 22046, 796, 1391, 6, 27688, 62, 49343, 10354, 15769, 62, 49343, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 42005, 62, 37652, 17540, 10354, 220, 12912, 62, 37652, 17540, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 62, 46265, 22046, 796, 1391, 6, 27688, 62, 49343, 10354, 15769, 62, 49343, 92, 628, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 4808, 9288, 62, 79, 541, 4470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4226, 62, 2536, 28, 12048, 62, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28, 417, 7249, 13, 16002, 13, 40085, 1634, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7183, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 46862, 13, 22554, 41052, 1676, 70, 11, 2446, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 46862, 13, 8738, 62, 469, 15748, 41052, 1676, 70, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 46862, 13, 8738, 62, 89, 6759, 8609, 41052, 1676, 70, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 16193, 469, 296, 11, 3877, 11, 1963, 11, 2446, 11, 4308, 11, 1172, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 28, 8738, 62, 46265, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 28, 417, 7249, 13, 12331, 13, 3185, 51, 62, 45, 4503, 1340, 53, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 46265, 22046, 34758, 6, 21858, 62, 25811, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 18076, 13, 16684, 1958, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 7249, 13, 19722, 13, 27871, 13, 22921, 2043, 1137, 62, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 12786, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4226, 62, 2536, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 326, 262, 12912, 22715, 1422, 470, 1487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2611, 796, 410, 874, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 67, 310, 796, 3557, 349, 13, 89, 6759, 8609, 13, 27160, 7, 89, 2611, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12912, 62, 27160, 796, 46545, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 7, 2100, 62, 67, 310, 13, 834, 1136, 9186, 834, 11, 12912, 62, 37652, 17540, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 299, 32152, 13, 439, 19836, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12912, 62, 27160, 11, 1006, 62, 69, 42005, 62, 27160, 11, 374, 83, 349, 28, 16, 68, 12, 19, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 834, 22554, 3419, 198, 220, 220, 220, 1332, 834, 49607, 3419, 198, 220, 220, 220, 1332, 834, 33979, 666, 3419, 198, 220, 220, 220, 1332, 834, 40085, 1634, 3419, 198 ]
1.780455
3,735
from setuptools import setup setup( name = 'tnn', version = '0.0.4', description = 'Tensorflow Neural Network Framework for Algorithmic Traders', url = 'http://github.com/Savahi/tnn', author = 'Savahi', author_email = '[email protected]', license = 'MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', ], packages = ['tnn'], keywords = 'neural network tensorflow algorithmic trading stock exchange', install_requires = ['tensorflow', 'numpy', 'datetime', 'shelve', 'os', 'taft'], zip_safe = False )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 40406, 7, 220, 198, 197, 3672, 796, 705, 83, 20471, 3256, 198, 197, 9641, 796, 705, 15, 13, 15, 13, 19, 3256, 198, 197, 11213, 796, 705, 51, 22854, 11125, 47986, 7311, 25161, 329, 978, 7727, 9383, 8397, 364, 3256, 198, 197, 6371, 796, 705, 4023, 1378, 12567, 13, 785, 14, 47362, 32810, 14, 83, 20471, 3256, 198, 197, 9800, 796, 705, 47362, 32810, 3256, 198, 197, 9800, 62, 12888, 796, 705, 1477, 31, 2213, 4980, 1734, 13, 622, 3256, 198, 197, 43085, 796, 705, 36393, 3256, 198, 197, 4871, 13350, 41888, 198, 197, 220, 220, 220, 705, 41206, 12678, 7904, 513, 532, 12995, 3256, 198, 197, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 34152, 3256, 198, 197, 4357, 197, 198, 197, 43789, 796, 37250, 83, 20471, 6, 4357, 198, 197, 2539, 10879, 796, 705, 710, 1523, 3127, 11192, 273, 11125, 8385, 9383, 7313, 4283, 5163, 3256, 198, 197, 17350, 62, 47911, 796, 37250, 83, 22854, 11125, 3256, 705, 77, 32152, 3256, 705, 19608, 8079, 3256, 705, 82, 2978, 303, 3256, 705, 418, 3256, 705, 8326, 701, 6, 4357, 198, 197, 13344, 62, 21230, 796, 10352, 1267, 628, 198 ]
2.834171
199
import pandas as pd import numpy as np
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941 ]
3.166667
12
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime from django.db import models
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 4818, 8079, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 628 ]
2.583333
36
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
import unittest from hypothesis import given, example from . import pyliza_strategies as liza_st from pyliza.transformation import DecompositionRule from pyliza.processing import ProcessingWord as PW from pyliza.processing import ProcessingPhrase as PPhrase
[ 11748, 555, 715, 395, 198, 6738, 14078, 1330, 1813, 11, 1672, 198, 198, 6738, 764, 1330, 279, 2645, 23638, 62, 2536, 2397, 444, 355, 300, 23638, 62, 301, 198, 6738, 279, 2645, 23638, 13, 7645, 1161, 1330, 4280, 296, 9150, 31929, 198, 6738, 279, 2645, 23638, 13, 36948, 1330, 28403, 26449, 355, 44141, 198, 6738, 279, 2645, 23638, 13, 36948, 1330, 28403, 2725, 22789, 355, 350, 2725, 22789, 628 ]
3.768116
69
# -*- coding: utf-8 -*- # # Copyright © 2012 Zulip, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # See zulip_trac.py for installation and configuration instructions # Change these constants to configure the plugin: ZULIP_USER = "[email protected]" ZULIP_API_KEY = "0123456789abcdef0123456789abcdef" STREAM_FOR_NOTIFICATIONS = "trac" TRAC_BASE_TICKET_URL = "https://trac.example.com/ticket" # Most people find that having every change in Trac result in a # notification is too noisy -- in particular, when someone goes # through recategorizing a bunch of tickets, that can often be noisy # and annoying. We solve this issue by only sending a notification # for changes to the fields listed below. # # TRAC_NOTIFY_FIELDS lets you specify which fields will trigger a # Zulip notification in response to a trac update; you should change # this list to match your team's workflow. The complete list of # possible fields is: # # (priority, milestone, cc, owner, keywords, component, severity, # type, versions, description, resolution, summary, comment) TRAC_NOTIFY_FIELDS = ["description", "summary", "resolution", "comment", "owner"] ## If properly installed, the Zulip API should be in your import ## path, but if not, set a custom path below ZULIP_API_PATH = None # Set this to your Zulip API server URI ZULIP_SITE = "https://zulip.example.com"
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 10673, 2321, 1168, 377, 541, 11, 3457, 13, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 2, 3336, 47466, 13, 198, 198, 2, 4091, 1976, 377, 541, 62, 2213, 330, 13, 9078, 329, 9988, 290, 8398, 7729, 198, 198, 2, 9794, 777, 38491, 284, 17425, 262, 13877, 25, 198, 57, 6239, 4061, 62, 29904, 796, 366, 2213, 330, 12, 13645, 31, 20688, 13, 785, 1, 198, 57, 6239, 4061, 62, 17614, 62, 20373, 796, 366, 486, 1954, 2231, 3134, 4531, 39305, 4299, 486, 1954, 2231, 3134, 4531, 39305, 4299, 1, 198, 2257, 32235, 62, 13775, 62, 11929, 30643, 18421, 796, 366, 2213, 330, 1, 198, 5446, 2246, 62, 33, 11159, 62, 51, 11860, 2767, 62, 21886, 796, 366, 5450, 1378, 2213, 330, 13, 20688, 13, 785, 14, 43350, 1, 198, 198, 2, 4042, 661, 1064, 326, 1719, 790, 1487, 287, 833, 330, 1255, 287, 257, 198, 2, 14483, 318, 1165, 31210, 1377, 287, 1948, 11, 618, 2130, 2925, 198, 2, 832, 664, 47467, 2890, 257, 7684, 286, 8587, 11, 326, 460, 1690, 307, 31210, 198, 2, 290, 15774, 13, 220, 775, 8494, 428, 2071, 416, 691, 7216, 257, 14483, 198, 2, 329, 2458, 284, 262, 7032, 5610, 2174, 13, 198, 2, 198, 2, 7579, 2246, 62, 11929, 5064, 56, 62, 11674, 3698, 5258, 8781, 345, 11986, 543, 7032, 481, 7616, 257, 198, 2, 1168, 377, 541, 14483, 287, 2882, 284, 257, 491, 330, 4296, 26, 345, 815, 1487, 198, 2, 428, 1351, 284, 2872, 534, 1074, 338, 30798, 13, 220, 383, 1844, 1351, 286, 198, 2, 1744, 7032, 318, 25, 198, 2, 198, 2, 357, 49336, 11, 23554, 11, 36624, 11, 4870, 11, 26286, 11, 7515, 11, 19440, 11, 198, 2, 220, 2099, 11, 6300, 11, 6764, 11, 6323, 11, 10638, 11, 2912, 8, 198, 5446, 2246, 62, 11929, 5064, 56, 62, 11674, 3698, 5258, 796, 14631, 11213, 1600, 366, 49736, 1600, 366, 29268, 1600, 366, 23893, 1600, 366, 18403, 8973, 198, 198, 2235, 1002, 6105, 6589, 11, 262, 1168, 377, 541, 7824, 815, 307, 287, 534, 1330, 198, 2235, 3108, 11, 475, 611, 407, 11, 900, 257, 2183, 3108, 2174, 198, 57, 6239, 4061, 62, 17614, 62, 34219, 796, 6045, 198, 198, 2, 5345, 428, 284, 534, 1168, 377, 541, 7824, 4382, 43975, 198, 57, 6239, 4061, 62, 50, 12709, 796, 366, 5450, 1378, 89, 377, 541, 13, 20688, 13, 785, 1, 198 ]
3.528274
672
"""Update invoice profile API method.""" from ibsng.handler.handler import Handler class updateInvoiceProfile(Handler): """Update invoice profile method class.""" def control(self): """Validate inputs after setup method. :return: None :rtype: None """ self.is_valid(self.profile_id, int) self.is_valid(self.profile_name, str) self.is_valid(self.isp_name, str, False) self.is_valid(self.rules, list, False) self.is_valid(self.comment, str, False) def setup(self, profile_id, profile_name, isp_name="", rules=[], comment=""): """Setup required parameters. :param int profile_id: profile id :param str profile_name: new profile name :param str isp_name: new isp name :param list rules: new rules :param str comment: new comment :return: None :rtype: None """ self.profile_id = profile_id self.profile_name = profile_name self.isp_name = isp_name self.rules = rules self.comment = comment
[ 37811, 10260, 45458, 7034, 7824, 2446, 526, 15931, 198, 6738, 24283, 82, 782, 13, 30281, 13, 30281, 1330, 32412, 628, 198, 4871, 4296, 19904, 2942, 37046, 7, 25060, 2599, 198, 220, 220, 220, 37227, 10260, 45458, 7034, 2446, 1398, 526, 15931, 628, 220, 220, 220, 825, 1630, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7762, 20540, 17311, 706, 9058, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 12102, 7, 944, 13, 13317, 62, 312, 11, 493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 12102, 7, 944, 13, 13317, 62, 3672, 11, 965, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 12102, 7, 944, 13, 8802, 62, 3672, 11, 965, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 12102, 7, 944, 13, 38785, 11, 1351, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 12102, 7, 944, 13, 23893, 11, 965, 11, 10352, 8, 628, 220, 220, 220, 825, 9058, 7, 944, 11, 7034, 62, 312, 11, 7034, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 79, 62, 3672, 2625, 1600, 3173, 41888, 4357, 2912, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 2672, 10007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 493, 7034, 62, 312, 25, 7034, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 7034, 62, 3672, 25, 649, 7034, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 318, 79, 62, 3672, 25, 649, 318, 79, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1351, 3173, 25, 649, 3173, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 2912, 25, 649, 2912, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13317, 62, 312, 796, 7034, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13317, 62, 3672, 796, 7034, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8802, 62, 3672, 796, 318, 79, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 38785, 796, 3173, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23893, 796, 2912, 198 ]
2.364807
466
import pytest from api import API @pytest.fixture
[ 11748, 12972, 9288, 198, 6738, 40391, 1330, 7824, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 628, 198 ]
2.9
20
from dataclasses import dataclass from . import rte @dataclass @dataclass @dataclass @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 198, 6738, 764, 1330, 374, 660, 628, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 628 ]
2.65
40
# coding: utf-8 import unittest import os from asn1crypto import x509, pem from pyhanko_certvalidator.fetchers import aiohttp_fetchers, requests_fetchers from pyhanko_certvalidator.context import ValidationContext from pyhanko_certvalidator.validate import verify_crl from .constants import TEST_REQUEST_TIMEOUT tests_root = os.path.dirname(__file__) fixtures_dir = os.path.join(tests_root, 'fixtures')
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 11748, 555, 715, 395, 198, 11748, 28686, 198, 198, 6738, 355, 77, 16, 29609, 78, 1330, 2124, 29022, 11, 279, 368, 198, 6738, 12972, 71, 962, 78, 62, 22583, 12102, 1352, 13, 34045, 3533, 1330, 257, 952, 4023, 62, 34045, 3533, 11, 7007, 62, 34045, 3533, 198, 6738, 12972, 71, 962, 78, 62, 22583, 12102, 1352, 13, 22866, 1330, 3254, 24765, 21947, 198, 6738, 12972, 71, 962, 78, 62, 22583, 12102, 1352, 13, 12102, 378, 1330, 11767, 62, 6098, 75, 198, 6738, 764, 9979, 1187, 1330, 43001, 62, 2200, 35780, 62, 34694, 12425, 198, 198, 41989, 62, 15763, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 69, 25506, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 41989, 62, 15763, 11, 705, 69, 25506, 11537, 628 ]
2.907143
140
import os import sys from datetime import datetime from typing import List, Tuple, Union import clr import pandas as pd PISDKHOME = os.getenv("PISDKHOME") sys.path.append(PISDKHOME) clr.AddReference("OSIsoft.PISDK") from PISDK import PISDK, PISubBatch, PIUnitBatch UnitBatches = pd.DataFrame SubBatches = pd.DataFrame class PIBatch: """ Class for querying PIBatch data via the PISDK Args - server (str): the name of the PIServer to connect to Raises - PIBatchError: an error occurred trying to connect to server """ def search( self, unit_id: str, start_time: Union[datetime, str] = "-100d", end_time: Union[datetime, str] = "*", batch_id: Union[List[str], str] = "*", product: Union[List[str], str] = "*", procedure: Union[List[str], str] = "*", sub_batches: Union[List[str], str] = "*" ) -> Tuple[UnitBatches, SubBatches]: """ Query batches for a given unit_id Args - unit_id (str): Wildcard string of a PIModule name to match - start_time (Union[datetime, str]): The search start time. datetime.datetime objects are converted to ISOFormat strings - end_time (Union[datetime, str]): The search end time. datetime.datetime objects are converted to ISOFormat strings. Defaults to "*" - batch_id (Union[List[str], str]): Wildcard string of BatchID to match. List instances are concatenated to a single string separated by commas ",". Defaults to "*" - product (Union[List[str], str]): Wildcard string of Product to match. List instances are concatenated to a single string separated by commas ",". Defaults to "*" - procedure (Union[List[str], str]): Wildcard string of Procedure to match. List instances are concatenated to a single string separated by commas ",". Defaults to "*" - sub_batches (Union[List[str], str]): Wildcard string of SubBatch to match. List instances are concatenated to a single string separated by commas ",". Defaults to "*" Returns - UnitBatches (pd.DataFrame): DataFrame of unit batches with schema "BatchID": str "Product": str "Name": str "StartTime": str "EndTime": str "Procedure": str "UniqueID": str "SubBatchCount": int - SubBatches (pd.DataFrame): Dataframe of sub batches with schema "ParentID": str (PIUnitBatch.UniqueID) "Name": str "StartTime": str "EndTime": str "UniqueID": str (PISubBatch.UniqueID) Raises - PIBatchError: An error occurred in connecting to server or during query - NoBatchesFound: Query returned no results """ start_time, end_time, batch_id, product, procedure, sub_batches = self._prep_search_criteria( start_time, end_time, batch_id, product, procedure, sub_batches ) try: unit_batches_raw = [ PIUnitBatch(batch) for batch in self._db.PIUnitBatchSearch( start_time, end_time, unit_id, batch_id, product, procedure, sub_batches ) ] except BaseException as err: raise PIBatchError( "Unable to retrieve unit batches" ) from err if not unit_batches_raw: raise NoBatchesFound sub_batches_raw = {unit_batch.UniqueID: unit_batch.PISubBatches for unit_batch in unit_batches_raw} # parse unit batches and sub batches to dataframes self.now = datetime.now().strftime("%m/%d/%Y %H:%M:%S %p") unit_batches: UnitBatches = self._parse_unit_batches(unit_batches_raw) sub_batches: SubBatches = self._parse_sub_batches(sub_batches_raw) return unit_batches, sub_batches def _prep_search_criteria( self, start_time: Union[datetime, str], end_time: Union[datetime, str], batch_id: Union[List[str], str], product: Union[List[str], str], procedure: Union[List[str], str], sub_batches: Union[List[str], str] ) -> Tuple: """ Properly format variables for query """ start_time = start_time.isoformat() if isinstance(start_time, datetime) else start_time end_time = end_time.isoformat() if isinstance(end_time, datetime) else end_time batch_id = ','.join(batch_id) if isinstance(batch_id, list) else batch_id product = ','.join(product) if isinstance(product, list) else product procedure = ','.join(procedure) if isinstance(procedure, list) else procedure sub_batches = ','.join(sub_batches) if isinstance(sub_batches, list) else sub_batches return start_time, end_time, batch_id, product, procedure, sub_batches def _parse_unit_batches(self, unit_batches: list) -> UnitBatches: """ Parse returned unit batches to required schema Args - unit_batches (list): List of PIUnitBatch objects Returns - UnitBatches (pd.DataFrame): DataFrame of unit batches with schema "BatchID": str "Product": str "Name": str "StartTime": str "EndTime": str "Procedure": str "UniqueID": str "SubBatchCount": int """ batch_ids = [unit_batch.BatchID for unit_batch in unit_batches] products = [unit_batch.Product for unit_batch in unit_batches] unit_names = [unit_batch.PIUnit.Name for unit_batch in unit_batches] start_times = [unit_batch.StartTime.LocalDate.ToString() for unit_batch in unit_batches] end_times = [] procedure_names = [unit_batch.ProcedureName for unit_batch in unit_batches] unique_ids = [unit_batch.UniqueID for unit_batch in unit_batches] sub_batch_counts = [unit_batch.PISubBatches.Count for unit_batch in unit_batches] for unit_batch in unit_batches: try: end_times.append(unit_batch.EndTime.LocalDate.ToString()) except AttributeError: end_times.append(self.now) parsed = { "BatchID": batch_ids, "Product": products, "Name": unit_names, "StartTime": start_times, "EndTime": end_times, "Procedure": procedure_names, "UniqueID": unique_ids, "SubBatchCount": sub_batch_counts } return pd.DataFrame.from_dict(parsed) def _parse_sub_batches(self, sub_batches: dict) -> SubBatches: """ Format returned sub batches to required schema Args - sub_batches (dict): key:value pair of objects PIUnitBatch.UniqueID: PIUnitBatch.PISubBatches Returns - SubBatches (pd.DataFrame): Dataframe of sub batches with schema "ParentID": str (PIUnitBatch.UniqueID) "Name": str "StartTime": str "EndTime": str "UniqueID": str (PISubBatch.UniqueID) """ parent_ids = [] names = [] start_times = [] end_times = [] unique_ids = [] for parent_id, sub_batch in sub_batches.items(): unit_sub_batches = [PISubBatch(unit_sub_batch) for unit_sub_batch in sub_batch] for unit_sub_batch in unit_sub_batches: parent_ids.append(parent_id) names.append(unit_sub_batch.Name) start_times.append(unit_sub_batch.StartTime.LocalDate.ToString()) try: end_times.append(unit_sub_batch.EndTime.LocalDate.ToString()) except AttributeError: end_times.append(self.now) unique_ids.append(unit_sub_batch.UniqueID) parsed = { "ParentID": parent_ids, "Name": names, "StartTime": start_times, "EndTime": end_times, "UniqueID": unique_ids } return pd.DataFrame.from_dict(parsed)
[ 11748, 28686, 198, 11748, 25064, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 7343, 11, 309, 29291, 11, 4479, 198, 198, 11748, 537, 81, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 47, 1797, 48510, 39069, 796, 28686, 13, 1136, 24330, 7203, 47, 1797, 48510, 39069, 4943, 198, 17597, 13, 6978, 13, 33295, 7, 47, 1797, 48510, 39069, 8, 198, 198, 565, 81, 13, 4550, 26687, 7203, 2640, 40, 4215, 13, 47, 1797, 48510, 4943, 198, 198, 6738, 350, 1797, 48510, 1330, 350, 1797, 48510, 11, 350, 1797, 549, 33, 963, 11, 30434, 26453, 33, 963, 198, 198, 26453, 33, 20981, 796, 279, 67, 13, 6601, 19778, 198, 7004, 33, 20981, 796, 279, 67, 13, 6601, 19778, 628, 628, 198, 4871, 350, 9865, 963, 25, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 329, 42517, 1112, 350, 9865, 963, 1366, 2884, 262, 350, 1797, 48510, 198, 220, 220, 220, 220, 198, 220, 220, 220, 943, 14542, 198, 220, 220, 220, 220, 220, 220, 220, 532, 4382, 357, 2536, 2599, 262, 1438, 286, 262, 350, 1797, 18497, 284, 2018, 284, 628, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 532, 350, 9865, 963, 12331, 25, 281, 4049, 5091, 2111, 284, 2018, 284, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2989, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 312, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 25, 4479, 58, 19608, 8079, 11, 965, 60, 796, 27444, 3064, 67, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 25, 4479, 58, 19608, 8079, 11, 965, 60, 796, 366, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 312, 25, 4479, 58, 8053, 58, 2536, 4357, 965, 60, 796, 366, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1720, 25, 4479, 58, 8053, 58, 2536, 4357, 965, 60, 796, 366, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 8771, 25, 4479, 58, 8053, 58, 2536, 4357, 965, 60, 796, 366, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 8664, 2052, 25, 4479, 58, 8053, 58, 2536, 4357, 965, 60, 796, 366, 9, 1, 198, 220, 220, 220, 1267, 4613, 309, 29291, 58, 26453, 33, 20981, 11, 3834, 33, 20981, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43301, 37830, 329, 257, 1813, 4326, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 4326, 62, 312, 357, 2536, 2599, 6183, 9517, 4731, 286, 257, 350, 3955, 375, 2261, 1438, 284, 2872, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 923, 62, 2435, 357, 38176, 58, 19608, 8079, 11, 965, 60, 2599, 383, 2989, 923, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 5563, 389, 11513, 284, 19694, 26227, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 886, 62, 2435, 357, 38176, 58, 19608, 8079, 11, 965, 60, 2599, 383, 2989, 886, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 5563, 389, 11513, 284, 19694, 26227, 13042, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 366, 9, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 15458, 62, 312, 357, 38176, 58, 8053, 58, 2536, 4357, 965, 60, 2599, 6183, 9517, 4731, 286, 347, 963, 2389, 284, 2872, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 10245, 389, 1673, 36686, 515, 284, 257, 2060, 4731, 11266, 416, 725, 292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 553, 13, 2896, 13185, 284, 366, 9, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1720, 357, 38176, 58, 8053, 58, 2536, 4357, 965, 60, 2599, 6183, 9517, 4731, 286, 8721, 284, 2872, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 10245, 389, 1673, 36686, 515, 284, 257, 2060, 4731, 11266, 416, 725, 292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 553, 13, 2896, 13185, 284, 366, 9, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 8771, 357, 38176, 58, 8053, 58, 2536, 4357, 965, 60, 2599, 6183, 9517, 4731, 286, 34997, 284, 2872, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 10245, 389, 1673, 36686, 515, 284, 257, 2060, 4731, 11266, 416, 725, 292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 553, 13, 2896, 13185, 284, 366, 9, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 850, 62, 8664, 2052, 357, 38176, 58, 8053, 58, 2536, 4357, 965, 60, 2599, 6183, 9517, 4731, 286, 3834, 33, 963, 284, 2872, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 10245, 389, 1673, 36686, 515, 284, 257, 2060, 4731, 11266, 416, 725, 292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 553, 13, 2896, 13185, 284, 366, 9, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11801, 33, 20981, 357, 30094, 13, 6601, 19778, 2599, 6060, 19778, 286, 4326, 37830, 351, 32815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33, 963, 2389, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15667, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5376, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10434, 7575, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12915, 7575, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2964, 771, 495, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40257, 2389, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7004, 33, 963, 12332, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3834, 33, 20981, 357, 30094, 13, 6601, 19778, 2599, 6060, 14535, 286, 850, 37830, 351, 32815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24546, 2389, 1298, 965, 357, 11901, 26453, 33, 963, 13, 40257, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5376, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10434, 7575, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12915, 7575, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40257, 2389, 1298, 965, 357, 47, 1797, 549, 33, 963, 13, 40257, 2389, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 350, 9865, 963, 12331, 25, 1052, 4049, 5091, 287, 14320, 284, 4382, 393, 1141, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1400, 33, 20981, 21077, 25, 43301, 4504, 645, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 11, 886, 62, 2435, 11, 15458, 62, 312, 11, 1720, 11, 8771, 11, 850, 62, 8664, 2052, 796, 2116, 13557, 46012, 62, 12947, 62, 22213, 5142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8771, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 62, 8664, 2052, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 8664, 2052, 62, 1831, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30434, 26453, 33, 963, 7, 43501, 8, 329, 15458, 287, 2116, 13557, 9945, 13, 11901, 26453, 33, 963, 18243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 11, 886, 62, 2435, 11, 4326, 62, 312, 11, 15458, 62, 312, 11, 1720, 11, 8771, 11, 850, 62, 8664, 2052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7308, 16922, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 350, 9865, 963, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3118, 540, 284, 19818, 4326, 37830, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 422, 11454, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4326, 62, 8664, 2052, 62, 1831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1400, 33, 20981, 21077, 628, 220, 220, 220, 220, 220, 220, 220, 850, 62, 8664, 2052, 62, 1831, 796, 1391, 20850, 62, 43501, 13, 40257, 2389, 25, 4326, 62, 43501, 13, 47, 1797, 549, 33, 20981, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 62, 1831, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 21136, 4326, 37830, 290, 850, 37830, 284, 1366, 37805, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2197, 796, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 76, 14, 4, 67, 14, 4, 56, 4064, 39, 25, 4, 44, 25, 4, 50, 4064, 79, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 8664, 2052, 25, 11801, 33, 20981, 796, 2116, 13557, 29572, 62, 20850, 62, 8664, 2052, 7, 20850, 62, 8664, 2052, 62, 1831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 8664, 2052, 25, 3834, 33, 20981, 796, 2116, 13557, 29572, 62, 7266, 62, 8664, 2052, 7, 7266, 62, 8664, 2052, 62, 1831, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4326, 62, 8664, 2052, 11, 850, 62, 8664, 2052, 628, 220, 220, 220, 825, 4808, 46012, 62, 12947, 62, 22213, 5142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 25, 4479, 58, 19608, 8079, 11, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 25, 4479, 58, 19608, 8079, 11, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 312, 25, 4479, 58, 8053, 58, 2536, 4357, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1720, 25, 4479, 58, 8053, 58, 2536, 4357, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 8771, 25, 4479, 58, 8053, 58, 2536, 4357, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 8664, 2052, 25, 4479, 58, 8053, 58, 2536, 4357, 965, 60, 198, 220, 220, 220, 1267, 4613, 309, 29291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 45989, 306, 5794, 9633, 329, 12405, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 923, 62, 2435, 13, 26786, 18982, 3419, 611, 318, 39098, 7, 9688, 62, 2435, 11, 4818, 8079, 8, 2073, 923, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 886, 62, 2435, 13, 26786, 18982, 3419, 611, 318, 39098, 7, 437, 62, 2435, 11, 4818, 8079, 8, 2073, 886, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 312, 796, 705, 4032, 13, 22179, 7, 43501, 62, 312, 8, 611, 318, 39098, 7, 43501, 62, 312, 11, 1351, 8, 2073, 15458, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1720, 796, 705, 4032, 13, 22179, 7, 11167, 8, 611, 318, 39098, 7, 11167, 11, 1351, 8, 2073, 1720, 198, 220, 220, 220, 220, 220, 220, 220, 8771, 796, 705, 4032, 13, 22179, 7, 1676, 771, 495, 8, 611, 318, 39098, 7, 1676, 771, 495, 11, 1351, 8, 2073, 8771, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 8664, 2052, 796, 705, 4032, 13, 22179, 7, 7266, 62, 8664, 2052, 8, 611, 318, 39098, 7, 7266, 62, 8664, 2052, 11, 1351, 8, 2073, 850, 62, 8664, 2052, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 923, 62, 2435, 11, 886, 62, 2435, 11, 15458, 62, 312, 11, 1720, 11, 8771, 11, 850, 62, 8664, 2052, 628, 220, 220, 220, 825, 4808, 29572, 62, 20850, 62, 8664, 2052, 7, 944, 11, 4326, 62, 8664, 2052, 25, 1351, 8, 4613, 11801, 33, 20981, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2547, 325, 4504, 4326, 37830, 284, 2672, 32815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 4326, 62, 8664, 2052, 357, 4868, 2599, 7343, 286, 30434, 26453, 33, 963, 5563, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11801, 33, 20981, 357, 30094, 13, 6601, 19778, 2599, 6060, 19778, 286, 4326, 37830, 351, 32815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33, 963, 2389, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15667, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5376, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10434, 7575, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12915, 7575, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2964, 771, 495, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40257, 2389, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7004, 33, 963, 12332, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 2340, 796, 685, 20850, 62, 43501, 13, 33, 963, 2389, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3186, 796, 685, 20850, 62, 43501, 13, 15667, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 14933, 796, 685, 20850, 62, 43501, 13, 11901, 26453, 13, 5376, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 60, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 22355, 796, 685, 20850, 62, 43501, 13, 10434, 7575, 13, 14565, 10430, 13, 2514, 10100, 3419, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 60, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 22355, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 8771, 62, 14933, 796, 685, 20850, 62, 43501, 13, 2964, 771, 495, 5376, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 62, 2340, 796, 685, 20850, 62, 43501, 13, 40257, 2389, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 60, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 43501, 62, 9127, 82, 796, 685, 20850, 62, 43501, 13, 47, 1797, 549, 33, 20981, 13, 12332, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4326, 62, 43501, 287, 4326, 62, 8664, 2052, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 22355, 13, 33295, 7, 20850, 62, 43501, 13, 12915, 7575, 13, 14565, 10430, 13, 2514, 10100, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 22355, 13, 33295, 7, 944, 13, 2197, 8, 628, 220, 220, 220, 220, 220, 220, 220, 44267, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33, 963, 2389, 1298, 15458, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15667, 1298, 3186, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5376, 1298, 4326, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10434, 7575, 1298, 923, 62, 22355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12915, 7575, 1298, 886, 62, 22355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2964, 771, 495, 1298, 8771, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40257, 2389, 1298, 3748, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7004, 33, 963, 12332, 1298, 850, 62, 43501, 62, 9127, 82, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 13, 6738, 62, 11600, 7, 79, 945, 276, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 4808, 29572, 62, 7266, 62, 8664, 2052, 7, 944, 11, 850, 62, 8664, 2052, 25, 8633, 8, 4613, 3834, 33, 20981, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 18980, 4504, 850, 37830, 284, 2672, 32815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 850, 62, 8664, 2052, 357, 11600, 2599, 1994, 25, 8367, 5166, 286, 5563, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30434, 26453, 33, 963, 13, 40257, 2389, 25, 30434, 26453, 33, 963, 13, 47, 1797, 549, 33, 20981, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3834, 33, 20981, 357, 30094, 13, 6601, 19778, 2599, 6060, 14535, 286, 850, 37830, 351, 32815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24546, 2389, 1298, 965, 357, 11901, 26453, 33, 963, 13, 40257, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5376, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10434, 7575, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12915, 7575, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40257, 2389, 1298, 965, 357, 47, 1797, 549, 33, 963, 13, 40257, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 2340, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 22355, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 22355, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 62, 2340, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2560, 62, 312, 11, 850, 62, 43501, 287, 850, 62, 8664, 2052, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 7266, 62, 8664, 2052, 796, 685, 47, 1797, 549, 33, 963, 7, 20850, 62, 7266, 62, 43501, 8, 329, 4326, 62, 7266, 62, 43501, 287, 850, 62, 43501, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4326, 62, 7266, 62, 43501, 287, 4326, 62, 7266, 62, 8664, 2052, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 2340, 13, 33295, 7, 8000, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 13, 33295, 7, 20850, 62, 7266, 62, 43501, 13, 5376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 22355, 13, 33295, 7, 20850, 62, 7266, 62, 43501, 13, 10434, 7575, 13, 14565, 10430, 13, 2514, 10100, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 22355, 13, 33295, 7, 20850, 62, 7266, 62, 43501, 13, 12915, 7575, 13, 14565, 10430, 13, 2514, 10100, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 22355, 13, 33295, 7, 944, 13, 2197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3748, 62, 2340, 13, 33295, 7, 20850, 62, 7266, 62, 43501, 13, 40257, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 44267, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24546, 2389, 1298, 2560, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5376, 1298, 3891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10434, 7575, 1298, 923, 62, 22355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12915, 7575, 1298, 886, 62, 22355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40257, 2389, 1298, 3748, 62, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 13, 6738, 62, 11600, 7, 79, 945, 276, 8 ]
2.088106
4,086
#!/usr/bin/env python3.7 import numpy as np import pandas as pd import tinydb as db import matplotlib.pyplot as plt from scipy.integrate import simps from pygama import DataSet import pygama.utils as pgu import pygama.analysis.histograms as pgh import pygama.analysis.peak_fitting as pga from numpy import diff """"" This is a script to fit the 60keV, 99keV and 103keV lines of an 241Am scan. This script is based on the pygama version from December 2019 and is a bit outdated. An update will be done soon You need to have done a Calibration before and the output must be in the ds.calDB file The function takes a DataSet (December version) and a t2-level file Then a fit on the 60kev line and on the 99/103 keV lines is performed, the integrals are caluclated and the ratio is determind A.Zschocke """ if __name__=="__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 13, 22, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 7009, 9945, 355, 20613, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 629, 541, 88, 13, 18908, 4873, 1330, 985, 862, 198, 6738, 12972, 70, 1689, 1330, 6060, 7248, 198, 11748, 12972, 70, 1689, 13, 26791, 355, 279, 5162, 198, 11748, 12972, 70, 1689, 13, 20930, 13, 10034, 26836, 355, 279, 456, 198, 11748, 12972, 70, 1689, 13, 20930, 13, 36729, 62, 32232, 355, 279, 4908, 198, 6738, 299, 32152, 1330, 814, 628, 220, 198, 198, 15931, 37811, 198, 1212, 318, 257, 4226, 284, 4197, 262, 3126, 365, 53, 11, 7388, 365, 53, 290, 15349, 365, 53, 3951, 286, 281, 35150, 5840, 9367, 13, 198, 1212, 4226, 318, 1912, 319, 262, 12972, 70, 1689, 2196, 422, 3426, 13130, 290, 318, 257, 1643, 23572, 13, 220, 198, 2025, 4296, 481, 307, 1760, 2582, 198, 198, 1639, 761, 284, 423, 1760, 257, 2199, 571, 1358, 878, 290, 262, 5072, 1276, 307, 287, 262, 288, 82, 13, 9948, 11012, 2393, 198, 198, 464, 2163, 2753, 257, 6060, 7248, 357, 20588, 2196, 8, 290, 257, 256, 17, 12, 5715, 2393, 220, 198, 6423, 257, 4197, 319, 262, 3126, 365, 85, 1627, 290, 319, 262, 7388, 14, 15197, 885, 53, 3951, 318, 6157, 11, 262, 198, 18908, 30691, 389, 2386, 36616, 515, 290, 262, 8064, 318, 2206, 10155, 198, 198, 32, 13, 57, 20601, 420, 365, 198, 37811, 628, 628, 220, 220, 220, 220, 220, 628, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.067857
280
from ..ex.relational import IRelationalRow from . import xivrow, XivSubRow, IXivSheet from .interfaces import IShopListing, IShopListingItem from .shop_listing_item import ShopListingItem @xivrow
[ 6738, 11485, 1069, 13, 2411, 864, 1330, 314, 6892, 864, 25166, 198, 6738, 764, 1330, 2124, 452, 808, 11, 1395, 452, 7004, 25166, 11, 22631, 452, 3347, 316, 198, 6738, 764, 3849, 32186, 1330, 314, 29917, 8053, 278, 11, 314, 29917, 8053, 278, 7449, 198, 6738, 764, 24643, 62, 4868, 278, 62, 9186, 1330, 13705, 8053, 278, 7449, 628, 198, 31, 87, 452, 808, 198 ]
3.046154
65
#!/usr/bin/env python3 """ **experimental** a graphical retro-style version of `ask` - because we can. :D asks a yes/no question via audio (text-to-speech). returncode reflects answer in common unix-style (0 == yes/ok, 1 == nope) Usage: xask [<msg>] [--yes=<reply_yes>] [--no=<reply_no>] [--engine=<tts-engine>] [--yes-exec=<yes-exec>] [--no-exec=<no-exec>] Options: --engine=<str> TTS-engine to use {'google', 'espeak', 'festival'} [default: espeak] --no=<str> Message for negative answer --no-exec=<str> execute given command by negative answer --yes=<str> Message for positive answer --yes-exec=<str> execute given command by positive answer -h, --help Print this --version Print version Examples: $ xask "Do you want to play a game?" && echo "Splendid! :)" $ xask "Do you want to play a game?" --yes="Splendid, let's play!" --no="Okidoki. Maybe another time." $ xask "Reboot universe?" --yes="rebooting now." --yes-exec "init 6" --no="Ok. Maybe another time." """ import logging import os import subprocess import sys import threading import time logger = logging.getLogger(__name__) #logger.setLevel(logging.INFO) logger.setLevel(logging.WARNING) handler = logging.StreamHandler() # console-handler formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) from docopt import docopt os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1' # no "Hello from the pygame community..." on stdout. try: import pygame import pygame.freetype from pygame.locals import * except ImportError: logger.critical("whuuups. no pygame import possible :/") sys.exit(1) from say import __version__, available_engines, ENGINE_DEFAULT, say _VERBOSITY = 0 WINDOW_SIZE = (1200, 800) FULLSCREEN=True # if set, the previously defined WINDOW_SIZE is ignored #FULLSCREEN=False # if set, the previously defined WINDOW_SIZE is ignored FONT_ZOOM=0.75 MARGIN = [0,0,0,0] # top, left, right, bottom VT100 = (80,24) # https://de.wikipedia.org/wiki/VT100 #PAGE_SIZE=VT100 PAGE_SIZE=(20,6) # === THEME / COLOR SCHEME # --- day #BACKGROUND_COLOR = (255,255,255) #TEXT_COLOR = (0,0,0) #CURSOR_COLOR=GRAY # --- night BACKGROUND_COLOR = (0,0,0) TEXT_COLOR = (255,255,255) CURSOR_COLOR= (0,128,0) # https://docs.oracle.com/cd/E19728-01/820-2550/term_em_colormaps.html # === THEME / COLOR SCHEME def get_font_for_page(surface=None, page_size = (80,24), font = "FreeMono, Monospace", margin=(0,0,0,0), monospace=True): """ calculates the (monospace) fontsize for page_size (<columns_char_N>,<rows_char_N>) returns FontInstance """ assert(isinstance(font,str)) font_name = font FONT_SIZE_MIN = 1 width, height = surface.get_size() width -= MARGIN[1] + MARGIN[2] # left + right height -= MARGIN[0] + MARGIN[3] # top + bottom font_size = 101 ref_char = ' ' assert(FONT_SIZE_MIN > 0) ref_size_x = None ref_size_y = None font = None running = True while running: if font_size > (FONT_SIZE_MIN + 1): font_size -= 1 else: raise Exception("Ouch! Fontsize required for page_size={} < {} :-/".format(page_size,FONT_SIZE_MIN)) font = pygame.freetype.SysFont(font_name, font_size) font.origin = True #ref_size_x = font.get_rect(ref_char).width ref_size_x = font.get_rect(ref_char).width + 1 # WORKAROUND: add one pixel per char to be safe ? ref_size_y = font.get_sized_height() + 2 if (ref_size_x * page_size[0] > width) or (ref_size_y * page_size[1] > height): logger.debug("fontsize={} : ref_char's size_x={} size_y={}".format(font_size, ref_size_x,ref_size_y)) continue else: # got fitting fontsize running = False logger.info("found fontsize={} (font={}) suiting for page_size={} # ref_char's ('{}') size_x={} size_y={}".format(font_size, font_name, page_size, ref_char, ref_size_x,ref_size_y)) return font def word_wrap(surf = None, text = None, stop_pos = None, font = None, color=(0, 0, 0), render=True): """ throws text onto screen/surface (if render=True). if render is set to False only the positioning is calculated - handy for calculating the position of a cursor onto content already drawn by an earlier call (return values can be used for setting the cursor to a specific position (stop_pos) of the text) :args: text a "page" as string which should be printed on durface stop_pos the position in text where printing to surface shoud stop (default == None == len(text) render nothing is printed onto surface. but the positioning calculations are done (see retunrn values) returns x,y # position of the last processed character of the text # (the x-position is the position where the pixelrepresentation of the char ends) **TODO: `color=random_color()` option** """ assert(isinstance(render,bool)) assert(isinstance(stop_pos,int) or stop_pos == None) if not(isinstance(stop_pos,int)): stop_pos = len(text) - 1 pos = 0 font.origin = True words = text.split(' ') width, height = surf.get_size() width -= MARGIN[1] + MARGIN[2] # left + right height -= MARGIN[0] + MARGIN[3] # top + bottom line_spacing = font.get_sized_height() + 2 x, y = MARGIN[1], line_spacing + MARGIN[0] space = font.get_rect(' ') i_pos = -1 # position in text-stream linebreaks = 0 # nr. of linebreaks in text-stream lines = text.split('\n') trimmed = False # if stop_pos is reached we set this to true and end the loop for i, line in enumerate(lines): logger.debug("line {} : '{}'".format(i, line)) if len(line) > 0: # cause ''.split(' ') => [''] words = line.split(' ') else: words = [] logger.debug("words of line {}: {}".format(line, words)) for i2, word in enumerate(words): logger.debug("word_wrap-func line nr. {} word nr. {}".format(i,i2)) if i2 < len(words) - 1: if set(words[i2+1:]) != set(['']): # FIX-20011822-01: don't append whitespace if last word in line only followed by whitespaces word += ' ' if stop_pos != None and (i_pos + len(word) >= stop_pos): logger.debug("trimming word '{}' to pos length {} @ i_pos {}".format(word,stop_pos,i_pos)) # trim word to pos length too_long = (i_pos + len(word)-1) - stop_pos tmpi = len(word) - too_long word = word[:tmpi] logger.debug("trimmed to '{}' @ i_pos {}".format(word,i_pos)) trimmed=True if word=='' and not trimmed: word = ' ' logger.debug("word == ' ' @ i_pos: {}".format(i_pos)) i_pos += len(word) bounds = font.get_rect(word) logger.debug("assume: {} <= {}".format(bounds.width,space.width * len(word))) if not (bounds.width <= (space.width * len(word))): logger.debug("WARNING ASSERTION WRONG. MAYBE WE CAN USE A TRESHOLD IN WHICH IT IS OKAY?") logger.debug('{}'.format(word)) if x + bounds.width > width: x, y = MARGIN[1], y + line_spacing if x + bounds.width > width: raise ValueError("word {} px to wide (x) for the surface".format(width - (x + bounds.width))) else: logger.debug("word width (x) fits into surface. {}px left".format(width - (x + bounds.width))) if y + bounds.height - bounds.y > height: logger.critical("FIXME: text to long (y) for the surface") raise ValueError("text to long (y) for the surface") if render: logger.debug("render word '{}' on pos {},{}".format(word, x,y)) font.render_to(surf, (x, y), None, color) x += bounds.width if trimmed: break if trimmed: break # add linebreak if i < len(lines) - 1: x = MARGIN[1]; y += line_spacing i_pos += 1 # the '\n' of the .split() linebreaks += 1 logger.info("word_wrap: i_pos {} lines {} linebreaks done {}".format(i_pos,len(lines),linebreaks)) logger.info("word_wrap: i_pos={} stop_pos={} (should be same)".format(i_pos,stop_pos)) if stop_pos < len(text): #assert(i_pos == stop_pos) assert(abs(i_pos - stop_pos) < 2) if abs(i_pos - stop_pos) >= 2: logger.warning("word_wrap : abs(i_pos - stop_pos) is {} (but should be zero)".format(abs(i_pos - stop_pos))) return x, y def _show_message(surf=None, page="Do you want to play a game?", page_from_pos=0, show_cursor=True, wait_for_keypress=True): """ shows message (question) char by char (full-)screen returns key pressed by user # e.g "y", "n" """ SHOW_CURSOR=show_cursor font = get_font_for_page(surface=surf, page_size = PAGE_SIZE, margin=MARGIN) # ** page_in_transition = True page_transition_pos = page_from_pos page_transition_state = "" # ** running = True user_pressed_key = None clock = pygame.time.Clock() while running: for event in pygame.event.get(): # === event handler === if event.type == KEYDOWN: if (event.key == K_ESCAPE): events = pygame.event.get() user_pressed_key = event running = False break; else: user_pressed_key = event.unicode running = False break; # === show content surf.fill(BACKGROUND_COLOR) if page_in_transition: page_transition_state = page[0:page_transition_pos + 1] x,y = word_wrap(surf, page_transition_state, None, font, TEXT_COLOR) if page_transition_pos == len(page): # transition finished page_in_transition = False #if time.time() % 1 > 0.2: # speed of transition progress # page_transition_pos += 1 page_transition_pos += 1 else: x,y = word_wrap(surf, page, None, font, TEXT_COLOR) if not wait_for_keypress: running = False cursor_pos = page_transition_pos + 1 # === cursor positioning font.origin = True line_spacing = font.get_sized_height() + 2 space = font.get_rect(' ') cursor_width = space.width cursor_height_percentage = 100 cursor_height = (line_spacing / 100) * 80 if SHOW_CURSOR: if page_in_transition: x,y = word_wrap(surf=surf, text=page_transition_state, stop_pos=cursor_pos, font = font, color=TEXT_COLOR, render=False) else: x,y = word_wrap(surf=surf, text=page, stop_pos=cursor_pos, font = font, color=TEXT_COLOR, render=False) if x > MARGIN[1]: cursor = Rect((x, y - cursor_height), (cursor_width, cursor_height)) # left, top, width, height else: cursor = Rect((x,y - cursor_height), (cursor_width, cursor_height)) # left, top, width, height if time.time() % 1 > 0.5: # blinking pygame.draw.rect(surf, CURSOR_COLOR, cursor) # --- TODO save a screenshot or gif-animation for docs #if not page_in_transition: # pygame.image.save(surf,'/tmp/screenshot_xask.png') # save screenshot # --- clock.tick(30) pygame.display.update() return user_pressed_key def xsay(msg,engine,surf=None,quit_if_done=False,timeout=None): """ **experimental** a graphical retro-style version of `say`. """ if not surf: surf = _init_screen(fullscreen=FULLSCREEN) t1 = ThreadWithReturnValue(target=_show_message,args=(surf,msg,)) t2 = threading.Thread(target=say,args=(msg,engine)) t1.start() #time.sleep(0.5) t2.start() res = t1.join() t2.join() if quit_if_done: pygame.quit() return res if __name__ == '__main__': s = time.perf_counter() is_yes = main() elapsed = time.perf_counter() - s logger.info(f"{__file__} executed in {elapsed:0.2f} seconds.") yn_rc = 0 if not is_yes: yn_rc = 1 sys.exit(yn_rc)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 1174, 23100, 9134, 1174, 257, 27831, 12175, 12, 7635, 2196, 286, 4600, 2093, 63, 532, 780, 356, 460, 13, 1058, 35, 198, 198, 6791, 257, 3763, 14, 3919, 1808, 2884, 6597, 357, 5239, 12, 1462, 12, 45862, 737, 198, 7783, 8189, 12497, 3280, 287, 2219, 555, 844, 12, 7635, 357, 15, 6624, 3763, 14, 482, 11, 352, 6624, 299, 3008, 8, 198, 198, 28350, 25, 198, 87, 2093, 685, 27, 19662, 37981, 685, 438, 8505, 28, 27, 47768, 62, 8505, 37981, 685, 438, 3919, 28, 27, 47768, 62, 3919, 37981, 685, 438, 18392, 28, 27, 83, 912, 12, 18392, 37981, 198, 220, 220, 220, 220, 685, 438, 8505, 12, 18558, 28, 27, 8505, 12, 18558, 37981, 685, 438, 3919, 12, 18558, 28, 27, 3919, 12, 18558, 37981, 198, 198, 29046, 25, 198, 220, 220, 220, 1377, 18392, 28, 27, 2536, 29, 220, 220, 309, 4694, 12, 18392, 284, 779, 1391, 6, 13297, 3256, 705, 274, 36729, 3256, 705, 69, 6743, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 12286, 25, 1658, 36729, 60, 198, 220, 220, 220, 1377, 3919, 28, 27, 2536, 29, 220, 220, 220, 220, 220, 220, 16000, 329, 4633, 3280, 198, 220, 220, 220, 1377, 3919, 12, 18558, 28, 27, 2536, 29, 220, 12260, 1813, 3141, 416, 4633, 3280, 198, 220, 220, 220, 1377, 8505, 28, 27, 2536, 29, 220, 220, 220, 220, 220, 16000, 329, 3967, 3280, 198, 220, 220, 220, 1377, 8505, 12, 18558, 28, 27, 2536, 29, 12260, 1813, 3141, 416, 3967, 3280, 628, 220, 220, 220, 532, 71, 11, 1377, 16794, 220, 220, 220, 220, 220, 220, 12578, 428, 198, 220, 220, 220, 1377, 9641, 220, 220, 220, 220, 220, 220, 220, 12578, 2196, 198, 198, 27730, 25, 198, 220, 220, 220, 720, 2124, 2093, 366, 5211, 345, 765, 284, 711, 257, 983, 1701, 11405, 9809, 366, 26568, 437, 312, 0, 14373, 1, 198, 220, 220, 220, 720, 2124, 2093, 366, 5211, 345, 765, 284, 711, 257, 983, 1701, 1377, 8505, 2625, 26568, 437, 312, 11, 1309, 338, 711, 2474, 1377, 3919, 2625, 18690, 312, 18228, 13, 6674, 1194, 640, 526, 198, 220, 220, 220, 720, 2124, 2093, 366, 28951, 1025, 6881, 1701, 1377, 8505, 2625, 34806, 12494, 783, 526, 1377, 8505, 12, 18558, 366, 15003, 718, 1, 1377, 3919, 2625, 18690, 13, 6674, 1194, 640, 526, 198, 37811, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 4704, 278, 198, 11748, 640, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 2, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 31502, 8, 198, 30281, 796, 18931, 13, 12124, 25060, 3419, 1303, 8624, 12, 30281, 198, 687, 1436, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 3672, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 11537, 198, 30281, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 6404, 1362, 13, 2860, 25060, 7, 30281, 8, 198, 198, 6738, 2205, 8738, 1330, 2205, 8738, 198, 418, 13, 268, 2268, 17816, 47, 56, 47109, 62, 39, 14114, 62, 40331, 15490, 62, 4805, 2662, 11571, 20520, 796, 705, 16, 6, 1303, 645, 366, 15496, 422, 262, 12972, 6057, 2055, 9313, 319, 14367, 448, 13, 198, 28311, 25, 198, 220, 220, 220, 1330, 12972, 6057, 198, 220, 220, 220, 1330, 12972, 6057, 13, 69, 2871, 2981, 198, 220, 220, 220, 422, 12972, 6057, 13, 17946, 874, 1330, 1635, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 49706, 13, 34666, 7203, 1929, 12303, 4739, 13, 645, 12972, 6057, 1330, 1744, 1058, 14, 4943, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 6738, 910, 1330, 11593, 9641, 834, 11, 1695, 62, 1516, 1127, 11, 36924, 8881, 62, 7206, 38865, 11, 910, 198, 198, 62, 5959, 33, 2640, 9050, 796, 657, 198, 198, 28929, 3913, 62, 33489, 796, 357, 27550, 11, 10460, 8, 198, 37, 9994, 6173, 2200, 1677, 28, 17821, 1303, 611, 900, 11, 262, 4271, 5447, 370, 12115, 3913, 62, 33489, 318, 9514, 198, 2, 37, 9994, 6173, 2200, 1677, 28, 25101, 1303, 611, 900, 11, 262, 4271, 5447, 370, 12115, 3913, 62, 33489, 318, 9514, 198, 37, 35830, 62, 57, 46, 2662, 28, 15, 13, 2425, 198, 40569, 38, 1268, 796, 685, 15, 11, 15, 11, 15, 11, 15, 60, 1303, 1353, 11, 1364, 11, 826, 11, 4220, 198, 36392, 3064, 796, 357, 1795, 11, 1731, 8, 1303, 3740, 1378, 2934, 13, 31266, 13, 2398, 14, 15466, 14, 36392, 3064, 198, 2, 4537, 8264, 62, 33489, 28, 36392, 3064, 198, 4537, 8264, 62, 33489, 16193, 1238, 11, 21, 8, 198, 198, 2, 24844, 3336, 11682, 1220, 20444, 1581, 22374, 3620, 36, 198, 2, 11420, 1110, 198, 2, 31098, 46025, 62, 46786, 796, 357, 13381, 11, 13381, 11, 13381, 8, 198, 2, 32541, 62, 46786, 796, 357, 15, 11, 15, 11, 15, 8, 198, 2, 34, 4261, 50, 1581, 62, 46786, 28, 38, 30631, 198, 2, 11420, 1755, 198, 31098, 46025, 62, 46786, 796, 357, 15, 11, 15, 11, 15, 8, 198, 32541, 62, 46786, 796, 357, 13381, 11, 13381, 11, 13381, 8, 198, 34, 4261, 50, 1581, 62, 46786, 28, 357, 15, 11, 12762, 11, 15, 8, 1303, 3740, 1378, 31628, 13, 273, 6008, 13, 785, 14, 10210, 14, 36, 24991, 2078, 12, 486, 14, 41739, 12, 1495, 1120, 14, 4354, 62, 368, 62, 4033, 579, 1686, 13, 6494, 198, 2, 24844, 3336, 11682, 1220, 20444, 1581, 22374, 3620, 36, 628, 628, 198, 4299, 651, 62, 10331, 62, 1640, 62, 7700, 7, 42029, 28, 14202, 11, 2443, 62, 7857, 796, 357, 1795, 11, 1731, 828, 10369, 796, 366, 11146, 9069, 78, 11, 2892, 24912, 1600, 10330, 16193, 15, 11, 15, 11, 15, 11, 15, 828, 937, 24912, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43707, 262, 357, 2144, 24912, 8, 10369, 7857, 329, 2443, 62, 7857, 38155, 28665, 82, 62, 10641, 62, 45, 22330, 27, 8516, 62, 10641, 62, 45, 43734, 628, 220, 220, 220, 5860, 24060, 33384, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 7, 271, 39098, 7, 10331, 11, 2536, 4008, 198, 220, 220, 220, 10369, 62, 3672, 796, 10369, 198, 220, 220, 220, 376, 35830, 62, 33489, 62, 23678, 796, 352, 198, 220, 220, 220, 9647, 11, 6001, 796, 4417, 13, 1136, 62, 7857, 3419, 198, 220, 220, 220, 9647, 48185, 18805, 38, 1268, 58, 16, 60, 1343, 18805, 38, 1268, 58, 17, 60, 220, 1303, 1364, 1343, 826, 198, 220, 220, 220, 6001, 48185, 18805, 38, 1268, 58, 15, 60, 1343, 18805, 38, 1268, 58, 18, 60, 1303, 1353, 1343, 4220, 198, 220, 220, 220, 10369, 62, 7857, 796, 8949, 198, 220, 220, 220, 1006, 62, 10641, 796, 705, 705, 198, 220, 220, 220, 6818, 7, 37, 35830, 62, 33489, 62, 23678, 1875, 657, 8, 198, 220, 220, 220, 1006, 62, 7857, 62, 87, 796, 6045, 198, 220, 220, 220, 1006, 62, 7857, 62, 88, 796, 6045, 198, 220, 220, 220, 10369, 796, 6045, 198, 220, 220, 220, 2491, 796, 6407, 198, 220, 220, 220, 981, 2491, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10369, 62, 7857, 1875, 357, 37, 35830, 62, 33489, 62, 23678, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 62, 7857, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 46, 794, 0, 24060, 7857, 2672, 329, 2443, 62, 7857, 34758, 92, 1279, 23884, 1058, 12, 14, 1911, 18982, 7, 7700, 62, 7857, 11, 37, 35830, 62, 33489, 62, 23678, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 10369, 796, 12972, 6057, 13, 69, 2871, 2981, 13, 44387, 23252, 7, 10331, 62, 3672, 11, 10369, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10369, 13, 47103, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5420, 62, 7857, 62, 87, 796, 10369, 13, 1136, 62, 2554, 7, 5420, 62, 10641, 737, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 7857, 62, 87, 796, 10369, 13, 1136, 62, 2554, 7, 5420, 62, 10641, 737, 10394, 1343, 352, 1303, 30936, 1503, 15919, 25, 751, 530, 17465, 583, 1149, 284, 307, 3338, 5633, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 7857, 62, 88, 796, 10369, 13, 1136, 62, 13982, 62, 17015, 3419, 1343, 362, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 5420, 62, 7857, 62, 87, 1635, 2443, 62, 7857, 58, 15, 60, 1875, 9647, 8, 393, 357, 5420, 62, 7857, 62, 88, 1635, 2443, 62, 7857, 58, 16, 60, 1875, 6001, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 10331, 7857, 34758, 92, 1058, 1006, 62, 10641, 338, 2546, 62, 87, 34758, 92, 2546, 62, 88, 34758, 92, 1911, 18982, 7, 10331, 62, 7857, 11, 1006, 62, 7857, 62, 87, 11, 5420, 62, 7857, 62, 88, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 1392, 15830, 10369, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 9275, 10369, 7857, 34758, 92, 357, 10331, 34758, 30072, 424, 1780, 329, 2443, 62, 7857, 34758, 92, 1303, 1006, 62, 10641, 338, 19203, 90, 92, 11537, 2546, 62, 87, 34758, 92, 2546, 62, 88, 34758, 92, 1911, 18982, 7, 10331, 62, 7857, 11, 10369, 62, 3672, 11, 2443, 62, 7857, 11, 1006, 62, 10641, 11, 1006, 62, 7857, 62, 87, 11, 5420, 62, 7857, 62, 88, 4008, 198, 220, 220, 220, 1441, 10369, 628, 198, 4299, 1573, 62, 37150, 7, 11793, 69, 796, 6045, 11, 2420, 796, 6045, 11, 2245, 62, 1930, 796, 6045, 11, 10369, 796, 6045, 11, 3124, 16193, 15, 11, 657, 11, 657, 828, 8543, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12542, 2420, 4291, 3159, 14, 42029, 357, 361, 8543, 28, 17821, 737, 628, 220, 220, 220, 611, 8543, 318, 900, 284, 10352, 691, 262, 22097, 318, 10488, 532, 15728, 198, 220, 220, 220, 329, 26019, 262, 2292, 286, 257, 23493, 4291, 2695, 1541, 7428, 198, 220, 220, 220, 416, 281, 2961, 869, 357, 7783, 3815, 460, 307, 973, 329, 4634, 262, 23493, 284, 257, 2176, 198, 220, 220, 220, 2292, 357, 11338, 62, 1930, 8, 286, 262, 2420, 8, 628, 220, 220, 220, 1058, 22046, 25, 628, 220, 220, 220, 220, 220, 220, 2420, 220, 220, 220, 220, 220, 220, 220, 220, 257, 366, 7700, 1, 355, 4731, 543, 815, 307, 10398, 319, 22365, 2550, 198, 220, 220, 220, 220, 220, 220, 2245, 62, 1930, 220, 220, 220, 220, 262, 2292, 287, 2420, 810, 13570, 284, 4417, 427, 2778, 2245, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 6624, 6045, 6624, 18896, 7, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 8543, 220, 220, 220, 220, 220, 220, 2147, 318, 10398, 4291, 4417, 13, 475, 262, 22097, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16765, 389, 1760, 357, 3826, 1005, 403, 35906, 3815, 8, 628, 220, 220, 220, 5860, 2124, 11, 88, 1303, 2292, 286, 262, 938, 13686, 2095, 286, 262, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 1169, 2124, 12, 9150, 318, 262, 2292, 810, 262, 17465, 15603, 341, 286, 262, 1149, 5645, 8, 628, 220, 220, 220, 12429, 51, 3727, 46, 25, 4600, 8043, 28, 25120, 62, 8043, 3419, 63, 3038, 1174, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 7, 271, 39098, 7, 13287, 11, 30388, 4008, 198, 220, 220, 220, 6818, 7, 271, 39098, 7, 11338, 62, 1930, 11, 600, 8, 393, 2245, 62, 1930, 6624, 6045, 8, 198, 220, 220, 220, 611, 407, 7, 271, 39098, 7, 11338, 62, 1930, 11, 600, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 62, 1930, 796, 18896, 7, 5239, 8, 532, 352, 198, 220, 220, 220, 1426, 796, 657, 198, 220, 220, 220, 10369, 13, 47103, 796, 6407, 198, 220, 220, 220, 2456, 796, 2420, 13, 35312, 10786, 705, 8, 198, 220, 220, 220, 9647, 11, 6001, 796, 9053, 13, 1136, 62, 7857, 3419, 198, 220, 220, 220, 9647, 48185, 18805, 38, 1268, 58, 16, 60, 1343, 18805, 38, 1268, 58, 17, 60, 220, 1303, 1364, 1343, 826, 198, 220, 220, 220, 6001, 48185, 18805, 38, 1268, 58, 15, 60, 1343, 18805, 38, 1268, 58, 18, 60, 1303, 1353, 1343, 4220, 198, 220, 220, 220, 1627, 62, 2777, 4092, 796, 10369, 13, 1136, 62, 13982, 62, 17015, 3419, 1343, 362, 198, 220, 220, 220, 2124, 11, 331, 796, 18805, 38, 1268, 58, 16, 4357, 1627, 62, 2777, 4092, 1343, 18805, 38, 1268, 58, 15, 60, 198, 220, 220, 220, 2272, 796, 10369, 13, 1136, 62, 2554, 10786, 705, 8, 198, 220, 220, 220, 1312, 62, 1930, 796, 532, 16, 1303, 2292, 287, 2420, 12, 5532, 198, 220, 220, 220, 1627, 30058, 796, 657, 1303, 299, 81, 13, 286, 1627, 30058, 287, 2420, 12, 5532, 198, 220, 220, 220, 3951, 796, 2420, 13, 35312, 10786, 59, 77, 11537, 198, 220, 220, 220, 40325, 796, 10352, 1303, 611, 2245, 62, 1930, 318, 4251, 356, 900, 428, 284, 2081, 290, 886, 262, 9052, 198, 220, 220, 220, 329, 1312, 11, 1627, 287, 27056, 378, 7, 6615, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 1370, 23884, 1058, 705, 90, 92, 6, 1911, 18982, 7, 72, 11, 1627, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1370, 8, 1875, 657, 25, 1303, 2728, 705, 4458, 35312, 10786, 705, 8, 5218, 685, 7061, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 1627, 13, 35312, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 10879, 286, 1627, 23884, 25, 23884, 1911, 18982, 7, 1370, 11, 2456, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 17, 11, 1573, 287, 27056, 378, 7, 10879, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 4775, 62, 37150, 12, 20786, 1627, 299, 81, 13, 23884, 1573, 299, 81, 13, 23884, 1911, 18982, 7, 72, 11, 72, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 17, 1279, 18896, 7, 10879, 8, 532, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 900, 7, 10879, 58, 72, 17, 10, 16, 25, 12962, 14512, 900, 26933, 7061, 60, 2599, 1303, 44855, 12, 2167, 16817, 1828, 12, 486, 25, 836, 470, 24443, 13216, 10223, 611, 938, 1573, 287, 1627, 691, 3940, 416, 13216, 43076, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 15853, 705, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2245, 62, 1930, 14512, 6045, 290, 357, 72, 62, 1930, 1343, 18896, 7, 4775, 8, 18189, 2245, 62, 1930, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 2213, 27428, 1573, 705, 90, 92, 6, 284, 1426, 4129, 23884, 2488, 1312, 62, 1930, 23884, 1911, 18982, 7, 4775, 11, 11338, 62, 1930, 11, 72, 62, 1930, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15797, 1573, 284, 1426, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1165, 62, 6511, 796, 357, 72, 62, 1930, 1343, 18896, 7, 4775, 13219, 16, 8, 532, 2245, 62, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 72, 796, 18896, 7, 4775, 8, 532, 1165, 62, 6511, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 1573, 58, 25, 22065, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 2213, 320, 1150, 284, 705, 90, 92, 6, 2488, 1312, 62, 1930, 23884, 1911, 18982, 7, 4775, 11, 72, 62, 1930, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40325, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1573, 855, 7061, 290, 407, 40325, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 705, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 4775, 6624, 705, 705, 2488, 1312, 62, 1930, 25, 23884, 1911, 18982, 7, 72, 62, 1930, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 1930, 15853, 18896, 7, 4775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22303, 796, 10369, 13, 1136, 62, 2554, 7, 4775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 562, 2454, 25, 23884, 19841, 23884, 1911, 18982, 7, 65, 3733, 13, 10394, 11, 13200, 13, 10394, 1635, 18896, 7, 4775, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 65, 3733, 13, 10394, 19841, 357, 13200, 13, 10394, 1635, 18896, 7, 4775, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 31502, 24994, 17395, 2849, 11342, 18494, 13, 26720, 12473, 12887, 15628, 23210, 317, 7579, 44011, 15173, 3268, 7655, 20739, 7283, 3180, 7477, 4792, 1701, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 90, 92, 4458, 18982, 7, 4775, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 1343, 22303, 13, 10394, 1875, 9647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 796, 18805, 38, 1268, 58, 16, 4357, 331, 1343, 1627, 62, 2777, 4092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 1343, 22303, 13, 10394, 1875, 9647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 4775, 23884, 279, 87, 284, 3094, 357, 87, 8, 329, 262, 4417, 1911, 18982, 7, 10394, 532, 357, 87, 1343, 22303, 13, 10394, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 4775, 9647, 357, 87, 8, 11414, 656, 4417, 13, 23884, 8416, 1364, 1911, 18982, 7, 10394, 532, 357, 87, 1343, 22303, 13, 10394, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 1343, 22303, 13, 17015, 532, 22303, 13, 88, 1875, 6001, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 34666, 7203, 47084, 11682, 25, 2420, 284, 890, 357, 88, 8, 329, 262, 4417, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 5239, 284, 890, 357, 88, 8, 329, 262, 4417, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8543, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 13287, 1573, 705, 90, 92, 6, 319, 1426, 1391, 5512, 90, 92, 1911, 18982, 7, 4775, 11, 2124, 11, 88, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 13, 13287, 62, 1462, 7, 11793, 69, 11, 357, 87, 11, 331, 828, 6045, 11, 3124, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 15853, 22303, 13, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 40325, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 40325, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 1627, 9032, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1279, 18896, 7, 6615, 8, 532, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 18805, 38, 1268, 58, 16, 11208, 331, 15853, 1627, 62, 2777, 4092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 1930, 15853, 352, 1303, 262, 705, 59, 77, 6, 286, 262, 764, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 30058, 15853, 352, 198, 220, 220, 220, 49706, 13, 10951, 7203, 4775, 62, 37150, 25, 1312, 62, 1930, 23884, 3951, 23884, 1627, 30058, 1760, 23884, 1911, 18982, 7, 72, 62, 1930, 11, 11925, 7, 6615, 828, 1370, 30058, 4008, 198, 220, 220, 220, 49706, 13, 10951, 7203, 4775, 62, 37150, 25, 1312, 62, 1930, 34758, 92, 2245, 62, 1930, 34758, 92, 357, 21754, 307, 976, 8, 1911, 18982, 7, 72, 62, 1930, 11, 11338, 62, 1930, 4008, 198, 220, 220, 220, 611, 2245, 62, 1930, 1279, 18896, 7, 5239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 30493, 7, 72, 62, 1930, 6624, 2245, 62, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 8937, 7, 72, 62, 1930, 532, 2245, 62, 1930, 8, 1279, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 72, 62, 1930, 532, 2245, 62, 1930, 8, 18189, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 4775, 62, 37150, 1058, 2352, 7, 72, 62, 1930, 532, 2245, 62, 1930, 8, 318, 23884, 357, 4360, 815, 307, 6632, 8, 1911, 18982, 7, 8937, 7, 72, 62, 1930, 532, 2245, 62, 1930, 22305, 198, 220, 220, 220, 1441, 2124, 11, 331, 628, 198, 4299, 4808, 12860, 62, 20500, 7, 11793, 69, 28, 14202, 11, 2443, 2625, 5211, 345, 765, 284, 711, 257, 983, 35379, 2443, 62, 6738, 62, 1930, 28, 15, 11, 905, 62, 66, 21471, 28, 17821, 11, 4043, 62, 1640, 62, 2539, 8439, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2523, 3275, 357, 25652, 8, 1149, 416, 1149, 357, 12853, 25106, 9612, 628, 220, 220, 220, 5860, 628, 220, 220, 220, 220, 220, 220, 220, 1994, 12070, 416, 2836, 1303, 304, 13, 70, 366, 88, 1600, 366, 77, 1, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37041, 62, 34, 4261, 50, 1581, 28, 12860, 62, 66, 21471, 198, 220, 220, 220, 10369, 796, 651, 62, 10331, 62, 1640, 62, 7700, 7, 42029, 28, 11793, 69, 11, 2443, 62, 7857, 796, 48488, 62, 33489, 11, 10330, 28, 40569, 38, 1268, 8, 198, 220, 220, 220, 1303, 12429, 198, 220, 220, 220, 2443, 62, 259, 62, 7645, 653, 796, 6407, 198, 220, 220, 220, 2443, 62, 7645, 653, 62, 1930, 796, 2443, 62, 6738, 62, 1930, 198, 220, 220, 220, 2443, 62, 7645, 653, 62, 5219, 796, 13538, 198, 220, 220, 220, 1303, 12429, 198, 220, 220, 220, 2491, 796, 6407, 198, 220, 220, 220, 2836, 62, 45477, 62, 2539, 796, 6045, 198, 220, 220, 220, 8801, 796, 12972, 6057, 13, 2435, 13, 44758, 3419, 198, 220, 220, 220, 981, 2491, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1785, 287, 12972, 6057, 13, 15596, 13, 1136, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24844, 1785, 21360, 24844, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 4906, 6624, 35374, 41925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 15596, 13, 2539, 6624, 509, 62, 1546, 33177, 36, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2995, 796, 12972, 6057, 13, 15596, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 45477, 62, 2539, 796, 1785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 45477, 62, 2539, 796, 1785, 13, 46903, 1098, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24844, 905, 2695, 198, 220, 220, 220, 220, 220, 220, 220, 9053, 13, 20797, 7, 31098, 46025, 62, 46786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2443, 62, 259, 62, 7645, 653, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 7645, 653, 62, 5219, 796, 2443, 58, 15, 25, 7700, 62, 7645, 653, 62, 1930, 1343, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 796, 1573, 62, 37150, 7, 11793, 69, 11, 2443, 62, 7645, 653, 62, 5219, 11, 6045, 11, 10369, 11, 40383, 62, 46786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2443, 62, 7645, 653, 62, 1930, 6624, 18896, 7, 7700, 2599, 1303, 6801, 5201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 259, 62, 7645, 653, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 640, 13, 2435, 3419, 4064, 352, 1875, 657, 13, 17, 25, 1303, 2866, 286, 6801, 4371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 2443, 62, 7645, 653, 62, 1930, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 7645, 653, 62, 1930, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 796, 1573, 62, 37150, 7, 11793, 69, 11, 2443, 11, 6045, 11, 10369, 11, 40383, 62, 46786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4043, 62, 1640, 62, 2539, 8439, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 23493, 62, 1930, 796, 2443, 62, 7645, 653, 62, 1930, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24844, 23493, 22097, 198, 220, 220, 220, 220, 220, 220, 220, 10369, 13, 47103, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2777, 4092, 796, 10369, 13, 1136, 62, 13982, 62, 17015, 3419, 1343, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2272, 796, 10369, 13, 1136, 62, 2554, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 23493, 62, 10394, 796, 2272, 13, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 23493, 62, 17015, 62, 25067, 496, 796, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 23493, 62, 17015, 796, 357, 1370, 62, 2777, 4092, 1220, 1802, 8, 1635, 4019, 198, 220, 220, 220, 220, 220, 220, 220, 611, 37041, 62, 34, 4261, 50, 1581, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2443, 62, 259, 62, 7645, 653, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 796, 1573, 62, 37150, 7, 11793, 69, 28, 11793, 69, 11, 2420, 28, 7700, 62, 7645, 653, 62, 5219, 11, 2245, 62, 1930, 28, 66, 21471, 62, 1930, 11, 10369, 796, 10369, 11, 3124, 28, 32541, 62, 46786, 11, 8543, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 796, 1573, 62, 37150, 7, 11793, 69, 28, 11793, 69, 11, 2420, 28, 7700, 11, 2245, 62, 1930, 28, 66, 21471, 62, 1930, 11, 10369, 796, 10369, 11, 3124, 28, 32541, 62, 46786, 11, 8543, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 1875, 18805, 38, 1268, 58, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23493, 796, 48599, 19510, 87, 11, 331, 532, 23493, 62, 17015, 828, 357, 66, 21471, 62, 10394, 11, 23493, 62, 17015, 4008, 1303, 1364, 11, 1353, 11, 9647, 11, 6001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23493, 796, 48599, 19510, 87, 11, 88, 532, 23493, 62, 17015, 828, 357, 66, 21471, 62, 10394, 11, 23493, 62, 17015, 4008, 1303, 1364, 11, 1353, 11, 9647, 11, 6001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 640, 13, 2435, 3419, 4064, 352, 1875, 657, 13, 20, 25, 1303, 43196, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 19334, 13, 2554, 7, 11793, 69, 11, 327, 4261, 50, 1581, 62, 46786, 11, 23493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11420, 16926, 46, 3613, 257, 22032, 393, 9381, 12, 11227, 341, 329, 34165, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 407, 2443, 62, 259, 62, 7645, 653, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 12972, 6057, 13, 9060, 13, 21928, 7, 11793, 69, 4032, 14, 22065, 14, 1416, 26892, 62, 87, 2093, 13, 11134, 11537, 1303, 3613, 22032, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11420, 198, 220, 220, 220, 220, 220, 220, 220, 8801, 13, 42298, 7, 1270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 13812, 13, 19119, 3419, 198, 220, 220, 220, 1441, 2836, 62, 45477, 62, 2539, 628, 198, 4299, 2124, 16706, 7, 19662, 11, 18392, 11, 11793, 69, 28, 14202, 11, 47391, 62, 361, 62, 28060, 28, 25101, 11, 48678, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12429, 23100, 9134, 1174, 257, 27831, 12175, 12, 7635, 2196, 286, 4600, 16706, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 9053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9053, 796, 4808, 15003, 62, 9612, 7, 12853, 9612, 28, 37, 9994, 6173, 2200, 1677, 8, 198, 220, 220, 220, 256, 16, 796, 14122, 3152, 13615, 11395, 7, 16793, 28, 62, 12860, 62, 20500, 11, 22046, 16193, 11793, 69, 11, 19662, 11, 4008, 198, 220, 220, 220, 256, 17, 796, 4704, 278, 13, 16818, 7, 16793, 28, 16706, 11, 22046, 16193, 19662, 11, 18392, 4008, 198, 220, 220, 220, 256, 16, 13, 9688, 3419, 198, 220, 220, 220, 1303, 2435, 13, 42832, 7, 15, 13, 20, 8, 198, 220, 220, 220, 256, 17, 13, 9688, 3419, 198, 220, 220, 220, 581, 796, 256, 16, 13, 22179, 3419, 198, 220, 220, 220, 256, 17, 13, 22179, 3419, 198, 220, 220, 220, 611, 11238, 62, 361, 62, 28060, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 47391, 3419, 198, 220, 220, 220, 1441, 581, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 264, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 318, 62, 8505, 796, 1388, 3419, 198, 220, 220, 220, 42118, 796, 640, 13, 525, 69, 62, 24588, 3419, 532, 264, 198, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 90, 834, 7753, 834, 92, 10945, 287, 1391, 417, 28361, 25, 15, 13, 17, 69, 92, 4201, 19570, 198, 220, 220, 220, 331, 77, 62, 6015, 796, 657, 198, 220, 220, 220, 611, 407, 318, 62, 8505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 77, 62, 6015, 796, 352, 198, 220, 220, 220, 25064, 13, 37023, 7, 2047, 62, 6015, 8, 198 ]
2.223081
5,693
''' Some people remain old fashioned and John is one of them. He doesn't like the new smart phones with full keypads and still uses the old keypads which require you to tap a key multiple times to type a single letter. For example, if the keyboard has two keys, one with the letters "adef" and the other one with the letters "zyx", then typing 'a' requires one keystroke, typing 'f' requires four keystrokes, typing 'y' requires two keystrokes, and so on. He recently moved to a new country where the language is such that his keypad is not the most efficient. In every language some characters occur more often than others. He wants to create a specific keyboard for this language that uses N different letters. He has a large body of text in this language, and has already analyzed it to find the frequencies of all N letters of its alphabet. You are given an array 'frequencies' with N elements. Each element of frequencies is the number of times one of the letters in the new language appears in the text John has. Each element of frequencies will be strictly positive. (I.e., each of the N letters occurs at least once.) You are also given an array keySize. The number of elements of keySize is the number of keys on the keyboard. Each element of keySize gives the maximal number of letters that maybe put on one of the keys. Find an assignment of letters to keys that minimizes the number of keystrokes needed to type the entire text. Output that minimum number of keystrokes. If there is not enough room on the keys and some letters of the alphabet won't fit, Output -1 instead. Input Format The first line will contain a number 'N' that specifies the size of 'frequencies' array The second line will contain N numbers that form the frequencies array The third line contains a number 'K' that specifies the size of the 'keySize' array The fourth line contains K numbers that form the keySize array Output Format Output a single integer that is answer to the problem. Constraints frequencies will contain between 1 and 50 elements, inclusive. Each element of frequencies will be between 1 and 1,000, inclusive. keySizes will contain between 1 and 50 elements, inclusive. Each element of keySizes will be between 1 and 50, inclusive. SAMPLE INPUT 4 7 3 4 1 2 2 2 SAMPLE OUTPUT 19 ''' n=int(input()) freq=[int(x) for x in input().split()] k=int(input()) keysizes=[int(x) for x in input().split()] if n>sum(keysizes): print('-1') else: freq.sort() total=0 h=1 while len(freq)!=0: for i in range(len(keysizes)): try: total+=freq.pop()*h except IndexError: break keysizes[i] -= 1 for e in keysizes: if e==0: keysizes.remove(e) h+=1 print(total)
[ 7061, 6, 628, 198, 4366, 661, 3520, 1468, 35458, 290, 1757, 318, 530, 286, 606, 13, 679, 1595, 470, 588, 262, 649, 4451, 9512, 351, 1336, 1994, 79, 5643, 290, 991, 3544, 262, 1468, 1994, 79, 5643, 543, 2421, 345, 284, 9814, 257, 1994, 3294, 1661, 284, 2099, 257, 2060, 3850, 13, 1114, 1672, 11, 611, 262, 10586, 468, 734, 8251, 11, 530, 351, 262, 7475, 366, 671, 69, 1, 290, 262, 584, 530, 351, 262, 7475, 366, 7357, 87, 1600, 788, 19720, 705, 64, 6, 4433, 530, 1994, 30757, 11, 19720, 705, 69, 6, 4433, 1440, 1994, 20661, 5209, 11, 19720, 705, 88, 6, 4433, 734, 1994, 20661, 5209, 11, 290, 523, 319, 13, 198, 1544, 2904, 3888, 284, 257, 649, 1499, 810, 262, 3303, 318, 884, 326, 465, 1994, 15636, 318, 407, 262, 749, 6942, 13, 554, 790, 3303, 617, 3435, 3051, 517, 1690, 621, 1854, 13, 679, 3382, 284, 2251, 257, 2176, 10586, 329, 428, 3303, 326, 3544, 399, 1180, 7475, 13, 679, 468, 257, 1588, 1767, 286, 2420, 287, 428, 3303, 11, 290, 468, 1541, 15475, 340, 284, 1064, 262, 19998, 286, 477, 399, 7475, 286, 663, 24830, 13, 198, 1639, 389, 1813, 281, 7177, 705, 69, 8897, 3976, 6, 351, 399, 4847, 13, 5501, 5002, 286, 19998, 318, 262, 1271, 286, 1661, 530, 286, 262, 7475, 287, 262, 649, 3303, 3568, 287, 262, 2420, 1757, 468, 13, 5501, 5002, 286, 19998, 481, 307, 14084, 3967, 13, 357, 40, 13, 68, 1539, 1123, 286, 262, 399, 7475, 8833, 379, 1551, 1752, 2014, 198, 1639, 389, 635, 1813, 281, 7177, 1994, 10699, 13, 383, 1271, 286, 4847, 286, 1994, 10699, 318, 262, 1271, 286, 8251, 319, 262, 10586, 13, 5501, 5002, 286, 1994, 10699, 3607, 262, 40708, 1271, 286, 7475, 326, 3863, 1234, 319, 530, 286, 262, 8251, 13, 198, 16742, 281, 16237, 286, 7475, 284, 8251, 326, 10356, 4340, 262, 1271, 286, 1994, 20661, 5209, 2622, 284, 2099, 262, 2104, 2420, 13, 25235, 326, 5288, 1271, 286, 1994, 20661, 5209, 13, 1002, 612, 318, 407, 1576, 2119, 319, 262, 8251, 290, 617, 7475, 286, 262, 24830, 1839, 470, 4197, 11, 25235, 532, 16, 2427, 13, 198, 198, 20560, 18980, 198, 464, 717, 1627, 481, 3994, 257, 1271, 705, 45, 6, 326, 26052, 262, 2546, 286, 705, 69, 8897, 3976, 6, 7177, 198, 464, 1218, 1627, 481, 3994, 399, 3146, 326, 1296, 262, 19998, 7177, 198, 464, 2368, 1627, 4909, 257, 1271, 705, 42, 6, 326, 26052, 262, 2546, 286, 262, 705, 2539, 10699, 6, 7177, 198, 464, 5544, 1627, 4909, 509, 3146, 326, 1296, 262, 1994, 10699, 7177, 198, 198, 26410, 18980, 198, 26410, 257, 2060, 18253, 326, 318, 3280, 284, 262, 1917, 13, 198, 198, 3103, 2536, 6003, 198, 69, 8897, 3976, 481, 3994, 1022, 352, 290, 2026, 4847, 11, 19889, 13, 198, 10871, 5002, 286, 19998, 481, 307, 1022, 352, 290, 352, 11, 830, 11, 19889, 13, 198, 2539, 50, 4340, 481, 3994, 1022, 352, 290, 2026, 4847, 11, 19889, 13, 198, 10871, 5002, 286, 1994, 50, 4340, 481, 307, 1022, 352, 290, 2026, 11, 19889, 13, 198, 198, 49302, 16437, 3268, 30076, 220, 198, 19, 198, 22, 513, 604, 352, 198, 17, 198, 17, 362, 198, 198, 49302, 16437, 16289, 30076, 220, 198, 1129, 198, 198, 7061, 6, 628, 198, 77, 28, 600, 7, 15414, 28955, 198, 19503, 80, 41888, 600, 7, 87, 8, 329, 2124, 287, 5128, 22446, 35312, 3419, 60, 198, 220, 198, 74, 28, 600, 7, 15414, 28955, 198, 13083, 4340, 41888, 600, 7, 87, 8, 329, 2124, 287, 5128, 22446, 35312, 3419, 60, 197, 198, 220, 198, 361, 299, 29, 16345, 7, 13083, 4340, 2599, 198, 197, 4798, 10786, 12, 16, 11537, 198, 197, 198, 17772, 25, 198, 197, 19503, 80, 13, 30619, 3419, 198, 197, 23350, 28, 15, 198, 197, 71, 28, 16, 198, 197, 198, 197, 4514, 18896, 7, 19503, 80, 31520, 28, 15, 25, 198, 197, 197, 1640, 1312, 287, 2837, 7, 11925, 7, 13083, 4340, 8, 2599, 198, 197, 197, 197, 28311, 25, 198, 197, 197, 197, 197, 23350, 47932, 19503, 80, 13, 12924, 3419, 9, 71, 198, 197, 197, 197, 197, 198, 197, 197, 197, 16341, 12901, 12331, 25, 198, 197, 197, 197, 197, 9032, 198, 197, 197, 197, 197, 198, 197, 197, 197, 13083, 4340, 58, 72, 60, 48185, 352, 198, 197, 197, 1640, 304, 287, 8251, 4340, 25, 198, 197, 197, 197, 361, 304, 855, 15, 25, 198, 197, 197, 197, 197, 13083, 4340, 13, 28956, 7, 68, 8, 198, 197, 197, 197, 197, 198, 197, 197, 71, 47932, 16, 198, 197, 4798, 7, 23350, 8 ]
3.556283
764
import json import pathlib from .._config import CONFIG_FILE_NAME class ConfigData: ''' This class handles access to simulation setup configuration data. ''' # Constructor. def __setitem__( self, index, value ): ''' For setting a configuration value. ''' self.__config_data[index] = value def __getitem__( self, index ): ''' For retrieving a configuration value. ''' return self.__config_data[index] def __contains__( self, item ): ''' Returns a boolean value depending on whether the configuration contains the specified item or not. ''' return item in self.__config_data def write( self ): ''' Save configuration. ''' with open( self.path, 'w' ) as sim_setup_file: json.dump( self.__config_data, sim_setup_file, indent = 2, separators = ( ',', ': ' ) ) sim_setup_file.write( '\n' ) @property def path( self ): ''' Absolute path to configuration file. ''' return self.__sim_setup_file_path @property def data( self ): ''' Configuration data as dict. ''' return self.__config_data def __recursive_del_empty_str_from_lists( self, obj ): ''' Helper function: recursively remove empty strings from lists in dicts. ''' for k,v in obj.items(): if isinstance( v, list ): if '' in v: v.remove( '' ) elif isinstance( v, dict ): self.__recursive_del_empty_str_from_lists( v )
[ 11748, 33918, 201, 198, 11748, 3108, 8019, 201, 198, 201, 198, 6738, 11485, 62, 11250, 1330, 25626, 62, 25664, 62, 20608, 201, 198, 201, 198, 201, 198, 4871, 17056, 6601, 25, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 770, 1398, 17105, 1895, 284, 18640, 9058, 8398, 1366, 13, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 201, 198, 220, 220, 220, 1303, 28407, 273, 13, 201, 198, 201, 198, 201, 198, 220, 220, 220, 825, 11593, 2617, 9186, 834, 7, 2116, 11, 6376, 11, 1988, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 4634, 257, 8398, 1988, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11250, 62, 7890, 58, 9630, 60, 796, 1988, 201, 198, 201, 198, 201, 198, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 2116, 11, 6376, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 50122, 257, 8398, 1988, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 11250, 62, 7890, 58, 9630, 60, 201, 198, 201, 198, 201, 198, 220, 220, 220, 825, 11593, 3642, 1299, 834, 7, 2116, 11, 2378, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 25131, 1988, 6906, 319, 1771, 262, 8398, 4909, 262, 7368, 2378, 393, 407, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2378, 287, 2116, 13, 834, 11250, 62, 7890, 201, 198, 201, 198, 201, 198, 220, 220, 220, 825, 3551, 7, 2116, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 12793, 8398, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 2116, 13, 6978, 11, 705, 86, 6, 1267, 355, 985, 62, 40406, 62, 7753, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11250, 62, 7890, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 40406, 62, 7753, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33793, 796, 362, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2880, 2024, 796, 357, 46083, 3256, 705, 25, 705, 1267, 1267, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 40406, 62, 7753, 13, 13564, 7, 705, 59, 77, 6, 1267, 201, 198, 201, 198, 201, 198, 220, 220, 220, 2488, 26745, 201, 198, 220, 220, 220, 825, 3108, 7, 2116, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 36532, 3108, 284, 8398, 2393, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 14323, 62, 40406, 62, 7753, 62, 6978, 201, 198, 201, 198, 201, 198, 220, 220, 220, 2488, 26745, 201, 198, 220, 220, 220, 825, 1366, 7, 2116, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 28373, 1366, 355, 8633, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 11250, 62, 7890, 201, 198, 201, 198, 201, 198, 220, 220, 220, 825, 11593, 8344, 30753, 62, 12381, 62, 28920, 62, 2536, 62, 6738, 62, 20713, 7, 2116, 11, 26181, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5053, 525, 2163, 25, 664, 1834, 2280, 4781, 6565, 13042, 422, 8341, 287, 8633, 82, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 85, 287, 26181, 13, 23814, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 410, 11, 1351, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10148, 287, 410, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 13, 28956, 7, 10148, 1267, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 410, 11, 8633, 15179, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 8344, 30753, 62, 12381, 62, 28920, 62, 2536, 62, 6738, 62, 20713, 7, 410, 1267, 201, 198 ]
2.010056
895
import numpy as np import scipy.sparse from typing import Union, List from dataclasses import dataclass, field, fields, InitVar import scipy.sparse as sp @dataclass class Subgraph: """ Represents the meta information of sampled subgraphs. """ # data fields indptr : np.ndarray indices : np.ndarray data : np.ndarray node : np.ndarray edge_index : np.ndarray target : np.ndarray hop : np.ndarray ppr : np.ndarray # init fields cap_node_full : InitVar[int]=None cap_edge_full : InitVar[int]=None cap_node_subg : InitVar[int]=None cap_edge_subg : InitVar[int]=None validate : InitVar[bool]=True # summary names_data_fields = ['indptr', 'indices', 'data', 'node', 'edge_index', 'target', 'hop', 'ppr'] def __post_init__(self, cap_node_full, cap_edge_full, cap_node_subg, cap_edge_subg, validate): """ All subgraphs sampled by the same sampler should have the same dtype, since cap_*_subg are an upper bound for all subgraphs under that sampler. """ if cap_node_full is not None and cap_edge_full is not None \ and cap_node_subg is not None and cap_edge_subg is not None: dtype = {'indptr' : np.int64, 'indices' : np.int64, 'data' : np.float32, 'node' : np.int64, 'edge_index': np.int64, 'target' : np.int64, 'hop' : np.int64, 'ppr' : np.float32} f_dtype = lambda n : np.uint16 if n < 2**16 else np.uint32 if cap_node_full < 2**32: dtype['node'] = f_dtype(cap_node_full) if cap_edge_full < 2**32: dtype['edge_index'] = f_dtype(cap_edge_full) if cap_node_subg < 2**32: dtype['indices'] = f_dtype(cap_node_subg) dtype['target'] = f_dtype(cap_node_subg) dtype['hop'] = f_dtype(cap_node_subg) if cap_edge_subg < 2**32: dtype['indptr'] = f_dtype(cap_edge_subg) assert set(dtype.keys()) == set(self.names_data_fields) for n in self.names_data_fields: v = getattr(self, n) if v is not None: setattr(self, n, v.astype(dtype[n], copy=False)) # explicitly handle data -- if it is all 1. if np.all(self.data == 1.): self.data = np.broadcast_to(np.array([1.]), self.data.size) if validate: self.check_valid() @classmethod def cat_to_block_diagonal(cls, subgs : list): """ Concatenate subgraphs into a full adj matrix (i.e., into the block diagonal form) """ offset_indices = np.cumsum([s.node.size for s in subgs]) # always int64 offset_indptr = np.cumsum([s.edge_index.size for s in subgs]) # ^ offset_indices[1:] = offset_indices[:-1] offset_indices[0] = 0 offset_indptr[1:] = offset_indptr[:-1] offset_indptr[0] = 0 node_batch = np.concatenate([s.node for s in subgs]) # keep original dtype edge_index_batch = np.concatenate([s.edge_index for s in subgs]) # ^ data_batch = np.concatenate([s.data for s in subgs]) # ^ hop_batch = np.concatenate([s.hop for s in subgs]) # ^ if subgs[0].ppr.size == 0: ppr_batch = np.array([]) else: # need to explicitly check due to .max() function ppr_batch = np.concatenate([s.ppr/s.ppr.max() for s in subgs]) # renorm ppr target_batch_itr = [s.target.astype(np.int64) for s in subgs] indptr_batch_itr = [s.indptr.astype(np.int64) for s in subgs] indices_batch_itr = [s.indices.astype(np.int64) for s in subgs] target_batch, indptr_batch, indices_batch = [], [], [] for i in range(len(subgs)): target_batch.append(target_batch_itr[i] + offset_indices[i]) if i > 0: # end of indptr1 equals beginning of indptr2. So remove one duplicate to ensure correctness. indptr_batch_itr[i] = indptr_batch_itr[i][1:] indptr_batch.append(indptr_batch_itr[i] + offset_indptr[i]) indices_batch.append(indices_batch_itr[i] + offset_indices[i]) target_batch = np.concatenate(target_batch) indptr_batch = np.concatenate(indptr_batch) indices_batch = np.concatenate(indices_batch) ret_subg = cls( indptr=indptr_batch, indices=indices_batch, data=data_batch, node=node_batch, edge_index=edge_index_batch, target=target_batch, hop=hop_batch, ppr=ppr_batch, cap_node_full=2**63, # just be safe. Note that concated subgraphs are only used for one batch. cap_edge_full=2**63, cap_node_subg=2**63, cap_edge_subg=2**63, validate=True ) return ret_subg class GraphSampler: """ This is the sampler super-class. Any shallow sampler is supposed to perform the following meta-steps: 1. [optional] Preprocessing: e.g., for PPR sampler, we need to calculate the PPR vector for each node in the training graph. This is to be performed only once. ==> Need to override the `preproc()` in sub-class 2. Parallel sampling: launch a batch of graph samplers in parallel and sample subgraphs independently. For efficiency, the actual sampling operation happen in C++. And the classes here is mainly just a wrapper. ==> Need to set self.para_sampler to the appropriate C++ sampler in `__init__()` of the sampler sub-class 3. Post-processing: upon getting the sampled subgraphs, we need to prepare the appropriate information (e.g., subgraph adj with renamed indices) to enable the PyTorch trainer. Also, we need to do data conversion from C++ to Python (or, mostly numpy). Post-processing is handled via PyBind11. """ def __init__(self, adj, node_target, aug_feat, args_preproc): """ Inputs: adj scipy sparse CSR matrix of the training graph node_target 1D np array storing the indices of the training nodes args_preproc dict, addition arguments needed for pre-processing Outputs: None """ self.adj = adj self.node_target = np.unique(node_target) self.aug_feat = aug_feat # size in terms of number of vertices in subgraph self.name_sampler = "None" self.node_subgraph = None self.preproc(**args_preproc) def helper_extract_subgraph(self, node_ids, target_ids=None): """ Used for serial Python sampler (not for the parallel C++ sampler). Return adj of node-induced subgraph and other corresponding data struct. Inputs: node_ids 1D np array, each element is the ID in the original training graph. Outputs: indptr np array, indptr of the subg adj CSR indices np array, indices of the subg adj CSR data np array, data of the subg adj CSR. Since we have aggregator normalization, we can simply set all data values to be 1 subg_nodes np array, i-th element stores the node ID of the original graph for the i-th node in the subgraph. Used to index the full feats and label matrices. subg_edge_index np array, i-th element stores the edge ID of the original graph for the i-th edge in the subgraph. Used to index the full array of aggregation normalization. """ # Let n = num subg nodes; m = num subg edges node_ids = np.unique(node_ids) node_ids.sort() orig2subg = {n: i for i, n in enumerate(node_ids)} n = node_ids.size indptr = np.zeros(node_ids.size + 1) indices = [] subg_edge_index = [] subg_nodes = node_ids for nid in node_ids: idx_s, idx_e = self.adj.indptr[nid], self.adj.indptr[nid + 1] neighs = self.adj.indices[idx_s : idx_e] for i_n, n in enumerate(neighs): if n in orig2subg: indices.append(orig2subg[n]) indptr[orig2subg[nid] + 1] += 1 subg_edge_index.append(idx_s + i_n) indptr = indptr.cumsum().astype(np.int64) indices = np.array(indices) subg_edge_index = np.array(subg_edge_index) data = np.ones(indices.size) assert indptr[-1] == indices.size == subg_edge_index.size if target_ids is not None: return indptr, indices, data, subg_nodes, subg_edge_index,\ np.array([orig2subg[t] for t in target_ids]) else: return indptr, indices, data, subg_nodes, subg_edge_index class KHopSamplingBase(GraphSampler): """ The sampler performs k-hop sampling, by following the steps: 1. Randomly pick `size_root` number of root nodes from all training nodes; 2. Sample hop-`k` neighborhood from the roots. A node at hop-i will fanout to at most `budget` nodes at hop-(i+1) 3. Generate node-induced subgraph from the nodes touched by the random walk. If budget == -1, then we will expand all hop-(i+1) neighbors without any subsampling """ def __init__(self, adj, node_target, aug_feat, size_root, depth, budget): """ Inputs: adj see super-class node_target see super-class size_root int, number of root nodes randomly picked depth int, number of hops to expand budget int, number of hop-(i+1) neighbors to expand Outputs: None """ self.size_root = size_root self.depth = depth self.budget = budget self.name = "khop" super().__init__(adj, node_target, aug_feat, {}) class PPRSamplingBase(GraphSampler): """ The sampler performs sampling based on PPR score """ def __init__(self, adj, node_target, aug_feat, size_root, k, alpha=0.85, epsilon=1e-5, threshold=0): """ Inputs: adj see super-class node_target see super-class size_root int, number of root nodes randomly picked k int, number of hops to expand budget int, number of hop-(i+1) neighbors to expand Outputs: None """ self.size_root = size_root self.k = k self.alpha = alpha self.epsilon = epsilon self.threshold = threshold self.name = "ppr" super().__init__(adj, node_target, aug_feat, {})
[ 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 82, 29572, 198, 6738, 19720, 1330, 4479, 11, 7343, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 11, 7032, 11, 44707, 19852, 198, 11748, 629, 541, 88, 13, 82, 29572, 355, 599, 628, 198, 31, 19608, 330, 31172, 198, 4871, 3834, 34960, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1432, 6629, 262, 13634, 1321, 286, 35846, 850, 34960, 82, 13, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 1366, 7032, 198, 220, 220, 220, 773, 20692, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 36525, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 1366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 10139, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 5743, 62, 9630, 220, 220, 220, 220, 220, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 2496, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 1725, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 279, 1050, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 1303, 2315, 7032, 198, 220, 220, 220, 1451, 62, 17440, 62, 12853, 220, 220, 1058, 44707, 19852, 58, 600, 22241, 14202, 198, 220, 220, 220, 1451, 62, 14907, 62, 12853, 220, 220, 1058, 44707, 19852, 58, 600, 22241, 14202, 198, 220, 220, 220, 1451, 62, 17440, 62, 7266, 70, 220, 220, 1058, 44707, 19852, 58, 600, 22241, 14202, 198, 220, 220, 220, 1451, 62, 14907, 62, 7266, 70, 220, 220, 1058, 44707, 19852, 58, 600, 22241, 14202, 198, 220, 220, 220, 26571, 220, 220, 220, 220, 220, 220, 220, 1058, 44707, 19852, 58, 30388, 22241, 17821, 198, 220, 220, 220, 1303, 10638, 198, 220, 220, 220, 3891, 62, 7890, 62, 25747, 796, 37250, 521, 20692, 3256, 705, 521, 1063, 3256, 705, 7890, 3256, 705, 17440, 3256, 705, 14907, 62, 9630, 3256, 705, 16793, 3256, 705, 8548, 3256, 705, 381, 81, 20520, 628, 220, 220, 220, 825, 11593, 7353, 62, 15003, 834, 7, 944, 11, 1451, 62, 17440, 62, 12853, 11, 1451, 62, 14907, 62, 12853, 11, 1451, 62, 17440, 62, 7266, 70, 11, 1451, 62, 14907, 62, 7266, 70, 11, 26571, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1439, 850, 34960, 82, 35846, 416, 262, 976, 6072, 20053, 815, 423, 262, 976, 288, 4906, 11, 1201, 1451, 62, 9, 62, 7266, 70, 389, 281, 6727, 5421, 198, 220, 220, 220, 220, 220, 220, 220, 329, 477, 850, 34960, 82, 739, 326, 6072, 20053, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1451, 62, 17440, 62, 12853, 318, 407, 6045, 290, 1451, 62, 14907, 62, 12853, 318, 407, 6045, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 1451, 62, 17440, 62, 7266, 70, 318, 407, 6045, 290, 1451, 62, 14907, 62, 7266, 70, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 1391, 6, 521, 20692, 6, 220, 220, 1058, 45941, 13, 600, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 521, 1063, 6, 220, 1058, 45941, 13, 600, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 6, 220, 220, 220, 220, 1058, 45941, 13, 22468, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17440, 6, 220, 220, 220, 220, 1058, 45941, 13, 600, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14907, 62, 9630, 10354, 45941, 13, 600, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16793, 6, 220, 220, 1058, 45941, 13, 600, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8548, 6, 220, 220, 220, 220, 220, 1058, 45941, 13, 600, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 381, 81, 6, 220, 220, 220, 220, 220, 1058, 45941, 13, 22468, 2624, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 67, 4906, 796, 37456, 299, 1058, 45941, 13, 28611, 1433, 611, 299, 1279, 362, 1174, 1433, 2073, 45941, 13, 28611, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1451, 62, 17440, 62, 12853, 1279, 362, 1174, 2624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 17816, 17440, 20520, 796, 277, 62, 67, 4906, 7, 11128, 62, 17440, 62, 12853, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1451, 62, 14907, 62, 12853, 1279, 362, 1174, 2624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 17816, 14907, 62, 9630, 20520, 796, 277, 62, 67, 4906, 7, 11128, 62, 14907, 62, 12853, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1451, 62, 17440, 62, 7266, 70, 1279, 362, 1174, 2624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 17816, 521, 1063, 20520, 796, 277, 62, 67, 4906, 7, 11128, 62, 17440, 62, 7266, 70, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 17816, 16793, 20520, 220, 796, 277, 62, 67, 4906, 7, 11128, 62, 17440, 62, 7266, 70, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 17816, 8548, 20520, 220, 220, 220, 220, 796, 277, 62, 67, 4906, 7, 11128, 62, 17440, 62, 7266, 70, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1451, 62, 14907, 62, 7266, 70, 1279, 362, 1174, 2624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 17816, 521, 20692, 20520, 220, 796, 277, 62, 67, 4906, 7, 11128, 62, 14907, 62, 7266, 70, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 900, 7, 67, 4906, 13, 13083, 28955, 6624, 900, 7, 944, 13, 14933, 62, 7890, 62, 25747, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2116, 13, 14933, 62, 7890, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 651, 35226, 7, 944, 11, 299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 299, 11, 410, 13, 459, 2981, 7, 67, 4906, 58, 77, 4357, 4866, 28, 25101, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11777, 5412, 1366, 1377, 611, 340, 318, 477, 352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 439, 7, 944, 13, 7890, 6624, 352, 47308, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 796, 45941, 13, 36654, 2701, 62, 1462, 7, 37659, 13, 18747, 26933, 16, 8183, 828, 2116, 13, 7890, 13, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 12102, 3419, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 3797, 62, 1462, 62, 9967, 62, 10989, 27923, 7, 565, 82, 11, 850, 14542, 1058, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1482, 9246, 268, 378, 850, 34960, 82, 656, 257, 1336, 9224, 17593, 357, 72, 13, 68, 1539, 656, 262, 2512, 40039, 1296, 8, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 521, 1063, 796, 45941, 13, 66, 5700, 388, 26933, 82, 13, 17440, 13, 7857, 329, 264, 287, 850, 14542, 12962, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1464, 493, 2414, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 521, 20692, 796, 45941, 13, 66, 5700, 388, 26933, 82, 13, 14907, 62, 9630, 13, 7857, 329, 264, 287, 850, 14542, 12962, 220, 220, 220, 220, 220, 220, 1303, 10563, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 521, 1063, 58, 16, 47715, 796, 11677, 62, 521, 1063, 58, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 521, 1063, 58, 15, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 521, 20692, 58, 16, 47715, 796, 11677, 62, 521, 20692, 58, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 521, 20692, 58, 15, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 82, 13, 17440, 329, 264, 287, 850, 14542, 12962, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1394, 2656, 288, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 9630, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 82, 13, 14907, 62, 9630, 329, 264, 287, 850, 14542, 12962, 220, 220, 220, 1303, 10563, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 82, 13, 7890, 329, 264, 287, 850, 14542, 12962, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10563, 198, 220, 220, 220, 220, 220, 220, 220, 1725, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 82, 13, 8548, 329, 264, 287, 850, 14542, 12962, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10563, 198, 220, 220, 220, 220, 220, 220, 220, 611, 850, 14542, 58, 15, 4083, 381, 81, 13, 7857, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 1050, 62, 43501, 796, 45941, 13, 18747, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 220, 220, 220, 220, 220, 1303, 761, 284, 11777, 2198, 2233, 284, 764, 9806, 3419, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 1050, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 82, 13, 381, 81, 14, 82, 13, 381, 81, 13, 9806, 3419, 329, 264, 287, 850, 14542, 12962, 220, 220, 220, 220, 220, 1303, 8851, 579, 279, 1050, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 43501, 62, 270, 81, 220, 796, 685, 82, 13, 16793, 13, 459, 2981, 7, 37659, 13, 600, 2414, 8, 329, 264, 287, 850, 14542, 60, 198, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 62, 43501, 62, 270, 81, 220, 796, 685, 82, 13, 521, 20692, 13, 459, 2981, 7, 37659, 13, 600, 2414, 8, 329, 264, 287, 850, 14542, 60, 198, 220, 220, 220, 220, 220, 220, 220, 36525, 62, 43501, 62, 270, 81, 796, 685, 82, 13, 521, 1063, 13, 459, 2981, 7, 37659, 13, 600, 2414, 8, 329, 264, 287, 850, 14542, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 43501, 11, 773, 20692, 62, 43501, 11, 36525, 62, 43501, 796, 685, 4357, 685, 4357, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 7266, 14542, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 43501, 13, 33295, 7, 16793, 62, 43501, 62, 270, 81, 58, 72, 60, 1343, 11677, 62, 521, 1063, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 25, 220, 220, 220, 220, 220, 220, 1303, 886, 286, 773, 20692, 16, 21767, 3726, 286, 773, 20692, 17, 13, 1406, 4781, 530, 23418, 284, 4155, 29409, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 62, 43501, 62, 270, 81, 58, 72, 60, 796, 773, 20692, 62, 43501, 62, 270, 81, 58, 72, 7131, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 62, 43501, 13, 33295, 7, 521, 20692, 62, 43501, 62, 270, 81, 58, 72, 60, 1343, 11677, 62, 521, 20692, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 62, 43501, 13, 33295, 7, 521, 1063, 62, 43501, 62, 270, 81, 58, 72, 60, 1343, 11677, 62, 521, 1063, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 7, 16793, 62, 43501, 8, 198, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 7, 521, 20692, 62, 43501, 8, 198, 220, 220, 220, 220, 220, 220, 220, 36525, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 7, 521, 1063, 62, 43501, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 7266, 70, 796, 537, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 28, 521, 20692, 62, 43501, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 28, 521, 1063, 62, 43501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 7890, 62, 43501, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 28, 17440, 62, 43501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 9630, 28, 14907, 62, 9630, 62, 43501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 28, 16793, 62, 43501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1725, 28, 8548, 62, 43501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 1050, 28, 381, 81, 62, 43501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1451, 62, 17440, 62, 12853, 28, 17, 1174, 5066, 11, 220, 220, 220, 220, 220, 220, 220, 1303, 655, 307, 3338, 13, 5740, 326, 1673, 515, 850, 34960, 82, 389, 691, 973, 329, 530, 15458, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1451, 62, 14907, 62, 12853, 28, 17, 1174, 5066, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1451, 62, 17440, 62, 7266, 70, 28, 17, 1174, 5066, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1451, 62, 14907, 62, 7266, 70, 28, 17, 1174, 5066, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 62, 7266, 70, 628, 198, 4871, 29681, 16305, 20053, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 262, 6072, 20053, 2208, 12, 4871, 13, 4377, 19337, 6072, 20053, 318, 4385, 284, 1620, 198, 220, 220, 220, 262, 1708, 13634, 12, 20214, 25, 198, 220, 220, 220, 220, 352, 13, 685, 25968, 60, 3771, 36948, 25, 304, 13, 70, 1539, 329, 350, 4805, 6072, 20053, 11, 356, 761, 284, 15284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 4805, 15879, 329, 1123, 10139, 287, 262, 3047, 4823, 13, 770, 318, 284, 307, 6157, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 691, 1752, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 29, 10664, 284, 20957, 262, 4600, 3866, 36942, 3419, 63, 287, 850, 12, 4871, 198, 220, 220, 220, 220, 362, 13, 42945, 19232, 25, 4219, 257, 15458, 286, 4823, 6072, 489, 364, 287, 10730, 290, 6291, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 34960, 82, 14799, 13, 1114, 9332, 11, 262, 4036, 19232, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1645, 287, 327, 4880, 13, 843, 262, 6097, 994, 318, 8384, 655, 257, 29908, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 29, 10664, 284, 900, 2116, 13, 1845, 64, 62, 37687, 20053, 284, 262, 5035, 327, 4880, 6072, 20053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 4600, 834, 15003, 834, 3419, 63, 286, 262, 6072, 20053, 850, 12, 4871, 198, 220, 220, 220, 220, 513, 13, 2947, 12, 36948, 25, 2402, 1972, 262, 35846, 850, 34960, 82, 11, 356, 761, 284, 8335, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5035, 1321, 357, 68, 13, 70, 1539, 850, 34960, 9224, 351, 25121, 36525, 8, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7139, 262, 9485, 15884, 354, 21997, 13, 4418, 11, 356, 761, 284, 466, 1366, 11315, 422, 327, 4880, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 11361, 357, 273, 11, 4632, 299, 32152, 737, 2947, 12, 36948, 318, 12118, 2884, 9485, 36180, 1157, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9224, 11, 10139, 62, 16793, 11, 16339, 62, 27594, 11, 26498, 62, 3866, 36942, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 541, 88, 29877, 9429, 49, 17593, 286, 262, 3047, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 16793, 220, 220, 220, 220, 352, 35, 45941, 7177, 23069, 262, 36525, 286, 262, 3047, 13760, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 62, 3866, 36942, 220, 220, 220, 8633, 11, 3090, 7159, 2622, 329, 662, 12, 36948, 628, 220, 220, 220, 220, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41255, 796, 9224, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17440, 62, 16793, 796, 45941, 13, 34642, 7, 17440, 62, 16793, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7493, 62, 27594, 796, 16339, 62, 27594, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2546, 287, 2846, 286, 1271, 286, 9421, 1063, 287, 850, 34960, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 37687, 20053, 796, 366, 14202, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17440, 62, 7266, 34960, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 36942, 7, 1174, 22046, 62, 3866, 36942, 8, 628, 220, 220, 220, 825, 31904, 62, 2302, 974, 62, 7266, 34960, 7, 944, 11, 10139, 62, 2340, 11, 2496, 62, 2340, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16718, 329, 11389, 11361, 6072, 20053, 357, 1662, 329, 262, 10730, 327, 4880, 6072, 20053, 737, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 9224, 286, 10139, 12, 17223, 850, 34960, 290, 584, 11188, 1366, 2878, 13, 628, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 2340, 220, 220, 220, 220, 220, 220, 220, 352, 35, 45941, 7177, 11, 1123, 5002, 318, 262, 4522, 287, 262, 2656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 4823, 13, 198, 220, 220, 220, 220, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 7177, 11, 773, 20692, 286, 262, 850, 70, 9224, 9429, 49, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 7177, 11, 36525, 286, 262, 850, 70, 9224, 9429, 49, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 7177, 11, 1366, 286, 262, 850, 70, 9224, 9429, 49, 13, 4619, 356, 423, 13262, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1634, 11, 356, 460, 2391, 900, 477, 1366, 3815, 284, 307, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 70, 62, 77, 4147, 220, 220, 220, 220, 220, 45941, 7177, 11, 1312, 12, 400, 5002, 7000, 262, 10139, 4522, 286, 262, 2656, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 262, 1312, 12, 400, 10139, 287, 262, 850, 34960, 13, 16718, 284, 6376, 262, 1336, 35664, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 6167, 2603, 45977, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 70, 62, 14907, 62, 9630, 45941, 7177, 11, 1312, 12, 400, 5002, 7000, 262, 5743, 4522, 286, 262, 2656, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 262, 1312, 12, 400, 5743, 287, 262, 850, 34960, 13, 16718, 284, 6376, 262, 1336, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 46500, 3487, 1634, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3914, 299, 796, 997, 850, 70, 13760, 26, 285, 796, 997, 850, 70, 13015, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 2340, 796, 45941, 13, 34642, 7, 17440, 62, 2340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 2340, 13, 30619, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1796, 17, 7266, 70, 796, 1391, 77, 25, 1312, 329, 1312, 11, 299, 287, 27056, 378, 7, 17440, 62, 2340, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 10139, 62, 2340, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 796, 45941, 13, 9107, 418, 7, 17440, 62, 2340, 13, 7857, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 36525, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 850, 70, 62, 14907, 62, 9630, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 850, 70, 62, 77, 4147, 796, 10139, 62, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 312, 287, 10139, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 82, 11, 4686, 87, 62, 68, 796, 2116, 13, 41255, 13, 521, 20692, 58, 77, 312, 4357, 2116, 13, 41255, 13, 521, 20692, 58, 77, 312, 1343, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3422, 82, 796, 2116, 13, 41255, 13, 521, 1063, 58, 312, 87, 62, 82, 1058, 4686, 87, 62, 68, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 62, 77, 11, 299, 287, 27056, 378, 7, 710, 394, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 287, 1796, 17, 7266, 70, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 13, 33295, 7, 11612, 17, 7266, 70, 58, 77, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 58, 11612, 17, 7266, 70, 58, 77, 312, 60, 1343, 352, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 70, 62, 14907, 62, 9630, 13, 33295, 7, 312, 87, 62, 82, 1343, 1312, 62, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 773, 20692, 796, 773, 20692, 13, 66, 5700, 388, 22446, 459, 2981, 7, 37659, 13, 600, 2414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 36525, 796, 45941, 13, 18747, 7, 521, 1063, 8, 198, 220, 220, 220, 220, 220, 220, 220, 850, 70, 62, 14907, 62, 9630, 796, 45941, 13, 18747, 7, 7266, 70, 62, 14907, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 45941, 13, 1952, 7, 521, 1063, 13, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 773, 20692, 58, 12, 16, 60, 6624, 36525, 13, 7857, 6624, 850, 70, 62, 14907, 62, 9630, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2496, 62, 2340, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 773, 20692, 11, 36525, 11, 1366, 11, 850, 70, 62, 77, 4147, 11, 850, 70, 62, 14907, 62, 9630, 11, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 26933, 11612, 17, 7266, 70, 58, 83, 60, 329, 256, 287, 2496, 62, 2340, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 773, 20692, 11, 36525, 11, 1366, 11, 850, 70, 62, 77, 4147, 11, 850, 70, 62, 14907, 62, 9630, 628, 628, 198, 4871, 509, 23483, 16305, 11347, 14881, 7, 37065, 16305, 20053, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 6072, 20053, 17706, 479, 12, 8548, 19232, 11, 416, 1708, 262, 4831, 25, 198, 220, 220, 220, 220, 352, 13, 14534, 306, 2298, 4600, 7857, 62, 15763, 63, 1271, 286, 6808, 13760, 422, 477, 3047, 13760, 26, 198, 220, 220, 220, 220, 362, 13, 27565, 1725, 12, 63, 74, 63, 6232, 422, 262, 11135, 13, 317, 10139, 379, 1725, 12, 72, 481, 4336, 448, 284, 198, 220, 220, 220, 220, 220, 220, 220, 379, 749, 4600, 37315, 63, 13760, 379, 1725, 30420, 72, 10, 16, 8, 198, 220, 220, 220, 220, 513, 13, 2980, 378, 10139, 12, 17223, 850, 34960, 422, 262, 13760, 12615, 416, 262, 4738, 2513, 13, 198, 220, 220, 220, 1002, 4466, 6624, 532, 16, 11, 788, 356, 481, 4292, 477, 1725, 30420, 72, 10, 16, 8, 12020, 1231, 597, 6352, 321, 11347, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9224, 11, 10139, 62, 16793, 11, 16339, 62, 27594, 11, 2546, 62, 15763, 11, 6795, 11, 4466, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 766, 2208, 12, 4871, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 16793, 220, 220, 220, 220, 766, 2208, 12, 4871, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 15763, 220, 220, 220, 220, 220, 220, 493, 11, 1271, 286, 6808, 13760, 15456, 6497, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6795, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 11, 1271, 286, 29438, 284, 4292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4466, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 11, 1271, 286, 1725, 30420, 72, 10, 16, 8, 12020, 284, 4292, 628, 220, 220, 220, 220, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7857, 62, 15763, 796, 2546, 62, 15763, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18053, 796, 6795, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37315, 796, 4466, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 366, 74, 8548, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 41255, 11, 10139, 62, 16793, 11, 16339, 62, 27594, 11, 23884, 8, 628, 198, 4871, 350, 4805, 16305, 11347, 14881, 7, 37065, 16305, 20053, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 6072, 20053, 17706, 19232, 1912, 319, 350, 4805, 4776, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9224, 11, 10139, 62, 16793, 11, 16339, 62, 27594, 11, 2546, 62, 15763, 11, 479, 11, 17130, 28, 15, 13, 5332, 11, 304, 862, 33576, 28, 16, 68, 12, 20, 11, 11387, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 766, 2208, 12, 4871, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 16793, 220, 220, 220, 220, 766, 2208, 12, 4871, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 15763, 220, 220, 220, 220, 220, 220, 493, 11, 1271, 286, 6808, 13760, 15456, 6497, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 11, 1271, 286, 29438, 284, 4292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4466, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 11, 1271, 286, 1725, 30420, 72, 10, 16, 8, 12020, 284, 4292, 628, 220, 220, 220, 220, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7857, 62, 15763, 796, 2546, 62, 15763, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 74, 796, 479, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26591, 796, 17130, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 538, 18217, 261, 796, 304, 862, 33576, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 400, 10126, 796, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 366, 381, 81, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 41255, 11, 10139, 62, 16793, 11, 16339, 62, 27594, 11, 23884, 8, 628 ]
2.057503
5,478
import os import pathlib from dotenv import load_dotenv # Load .env vars load_dotenv(pathlib.Path('.').parent/'.env') MONGO_URL = os.getenv('MONGO_URL') MONGO_DATABASE = os.getenv('MONGO_DATABASE')
[ 11748, 28686, 198, 11748, 3108, 8019, 198, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 628, 198, 2, 8778, 764, 24330, 410, 945, 198, 2220, 62, 26518, 24330, 7, 6978, 8019, 13, 15235, 10786, 2637, 737, 8000, 14, 4458, 24330, 11537, 198, 198, 27857, 11230, 62, 21886, 796, 28686, 13, 1136, 24330, 10786, 27857, 11230, 62, 21886, 11537, 198, 27857, 11230, 62, 35, 1404, 6242, 11159, 796, 28686, 13, 1136, 24330, 10786, 27857, 11230, 62, 35, 1404, 6242, 11159, 11537, 198 ]
2.463415
82
#Read data inputList = [] with open('inputs\input1.txt') as f: for line in f.readlines(): inputList.append(int(line.strip())) #Define functions import itertools import numpy as np #Solution 1 print(solveProblem(inputList,2)) #Solution 2 print(solveProblem(inputList,3))
[ 2, 5569, 1366, 198, 15414, 8053, 796, 17635, 198, 198, 4480, 1280, 10786, 15414, 82, 59, 15414, 16, 13, 14116, 11537, 355, 277, 25, 198, 220, 220, 220, 329, 1627, 287, 277, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 8053, 13, 33295, 7, 600, 7, 1370, 13, 36311, 3419, 4008, 628, 198, 2, 7469, 500, 5499, 198, 11748, 340, 861, 10141, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 46344, 352, 198, 4798, 7, 82, 6442, 40781, 7, 15414, 8053, 11, 17, 4008, 198, 198, 2, 46344, 362, 198, 4798, 7, 82, 6442, 40781, 7, 15414, 8053, 11, 18, 4008, 628 ]
2.666667
108
#!/usr/bin/python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from __future__ import absolute_import from .common import Test, free_tcp_port, Skipped from proton import Message from proton.handlers import CHandshaker, CFlowController from proton.reactor import Reactor import os import subprocess from threading import Thread import time
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 198, 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 198, 2, 393, 517, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 198, 2, 9387, 351, 428, 670, 329, 3224, 1321, 198, 2, 5115, 6634, 9238, 13, 220, 383, 7054, 37, 16625, 428, 2393, 198, 2, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 2, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 6738, 764, 11321, 1330, 6208, 11, 1479, 62, 83, 13155, 62, 634, 11, 3661, 3949, 198, 6738, 386, 1122, 1330, 16000, 198, 6738, 386, 1122, 13, 4993, 8116, 1330, 5870, 392, 1477, 3110, 11, 327, 37535, 22130, 198, 6738, 386, 1122, 13, 260, 11218, 1330, 797, 11218, 198, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 6738, 4704, 278, 1330, 14122, 198, 11748, 640, 628 ]
3.892473
279
import subprocess import sys # Validate command-line arguments if len(sys.argv) < 2 or (not (sys.argv[1] == "METRICS" and len(sys.argv) == 3) and not (sys.argv[1] == "FULL" and len(sys.argv) == 7 and sys.argv[3].isdigit() and all([x.isdigit() for x in sys.argv[4].split("_")]) and sys.argv[5].lstrip("-").isdigit() and sys.argv[6].lstrip("-").isdigit())): print("Usage:\n python MQLibMaster.py METRICS tag\n [[or]]\n python MQLibMaster.py FULL tag #ITERFORBASELINE SEEDS_SEPARATED_BY_UNDERSCORES MINSECONDS MAXSECONDS") exit(1) # Run until it tells us that we're done while True: if sys.argv[1] == "METRICS": p = subprocess.Popen(["python", "MQLibRunner.py", sys.argv[1], sys.argv[2]], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) else: p = subprocess.Popen(["python", "MQLibRunner.py", sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5], sys.argv[6]], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) for line in p.stdout: sys.stdout.write(line) p.wait() # MQLibRunner.py will terminate this EC2 node if it completes successfully, # so if we're still running then it must have failed. We'll just kick # it off again at the top of the loop.
[ 11748, 850, 14681, 198, 11748, 25064, 198, 198, 2, 3254, 20540, 3141, 12, 1370, 7159, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 1279, 362, 393, 357, 1662, 357, 17597, 13, 853, 85, 58, 16, 60, 6624, 366, 47123, 49, 19505, 1, 290, 18896, 7, 17597, 13, 853, 85, 8, 6624, 513, 8, 290, 407, 357, 17597, 13, 853, 85, 58, 16, 60, 6624, 366, 37, 9994, 1, 290, 18896, 7, 17597, 13, 853, 85, 8, 6624, 767, 290, 25064, 13, 853, 85, 58, 18, 4083, 9409, 328, 270, 3419, 290, 477, 26933, 87, 13, 9409, 328, 270, 3419, 329, 2124, 287, 25064, 13, 853, 85, 58, 19, 4083, 35312, 7203, 62, 4943, 12962, 290, 25064, 13, 853, 85, 58, 20, 4083, 75, 36311, 7203, 12, 11074, 9409, 328, 270, 3419, 290, 25064, 13, 853, 85, 58, 21, 4083, 75, 36311, 7203, 12, 11074, 9409, 328, 270, 28955, 2599, 198, 220, 220, 220, 3601, 7203, 28350, 7479, 77, 220, 21015, 337, 9711, 571, 18254, 13, 9078, 31243, 49, 19505, 7621, 59, 77, 220, 220, 220, 16410, 273, 11907, 59, 77, 220, 21015, 337, 9711, 571, 18254, 13, 9078, 34958, 7621, 1303, 2043, 1137, 13775, 33, 1921, 3698, 8881, 7946, 1961, 50, 62, 5188, 27082, 11617, 62, 17513, 62, 4944, 35, 4877, 44879, 1546, 20625, 23683, 1340, 5258, 25882, 23683, 1340, 5258, 4943, 198, 220, 220, 220, 8420, 7, 16, 8, 198, 198, 2, 5660, 1566, 340, 4952, 514, 326, 356, 821, 1760, 198, 4514, 6407, 25, 198, 220, 220, 220, 611, 25064, 13, 853, 85, 58, 16, 60, 6624, 366, 47123, 49, 19505, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 850, 14681, 13, 47, 9654, 7, 14692, 29412, 1600, 366, 44, 9711, 571, 49493, 13, 9078, 1600, 25064, 13, 853, 85, 58, 16, 4357, 25064, 13, 853, 85, 58, 17, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 336, 1082, 81, 28, 7266, 14681, 13, 36886, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 850, 14681, 13, 47, 9654, 7, 14692, 29412, 1600, 366, 44, 9711, 571, 49493, 13, 9078, 1600, 25064, 13, 853, 85, 58, 16, 4357, 25064, 13, 853, 85, 58, 17, 4357, 25064, 13, 853, 85, 58, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 58, 19, 4357, 25064, 13, 853, 85, 58, 20, 4357, 25064, 13, 853, 85, 58, 21, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 336, 1082, 81, 28, 7266, 14681, 13, 36886, 8, 198, 220, 220, 220, 329, 1627, 287, 279, 13, 19282, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 1370, 8, 198, 220, 220, 220, 279, 13, 17077, 3419, 628, 220, 220, 220, 1303, 337, 9711, 571, 49493, 13, 9078, 481, 23654, 428, 13182, 17, 10139, 611, 340, 32543, 7675, 11, 198, 220, 220, 220, 1303, 523, 611, 356, 821, 991, 2491, 788, 340, 1276, 423, 4054, 13, 775, 1183, 655, 4829, 198, 220, 220, 220, 1303, 340, 572, 757, 379, 262, 1353, 286, 262, 9052, 13, 198 ]
2.175207
605
import matplotlib.pyplot as plt import pandas as pd import numpy as np # X = np.array([[5,3], # [10,15], # [15,12], # [24,10], # [30,30], # [85,70], # [71,80], # [60,78], # [70,55], # [80,91],]) # cluster = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='ward') # cluster.fit_predict(X) # print(cluster.labels_) # plt.scatter(X[:,0],X[:,1], c=cluster.labels_, cmap='rainbow') # plt.show() # %% import matplotlib.pyplot as plt import pandas as pd import numpy as np # %% dates = ['2016-1-1', '2016-1-2', '2016-1-3'] cols = pd.MultiIndex.from_product([dates, ['High', 'Low']]) cols # pd.DataFrame(data=cols) # %% bags = {} pose_x = np.asarray([1,2,3,4]).T pose_y = np.asarray([2,2,3,4]).T t = np.asarray([3,2,3,4]).T col_xy = np.asarray([4,2,3,4]).T subgoal_x = np.asarray([5,2,3,4]).T subgoal_y = np.asarray([6,2,3,4]).T wpg_x = np.asarray([7,2,3,4]).T wpg_y = np.asarray([8,2,3,4]).T bags["run_1"] = [pose_x, pose_y, t, col_xy, subgoal_x, subgoal_y, wpg_x, wpg_y] bags["run_2"] = [pose_x, pose_y, t, col_xy, subgoal_x, subgoal_y, wpg_x, wpg_y] # %% df = pd.DataFrame(data=bags) df2 = df.to_dict() df.to_csv("test.csv",index=False) # %% df # %% df2 # %% runs = pd.read_excel('runs_ex.xlsx',engine='openpyxl') type(runs) runs.to_excel("output.xlsx") # %% df2["run_2"] # %% bags["run_2"] # %% import json data = {} data['run'] = [] data['time'] = [] data['path'] = [] data['velocity'] = [] data['collision'] = [] data['run'].append(0) data['time'].append(1) data['path'].append(2) data['velocity'].append(3) data['collision'].append(4) with open('data.json', 'w') as outfile: json.dump(data, outfile) # %%
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 1395, 796, 45941, 13, 18747, 26933, 58, 20, 11, 18, 4357, 198, 2, 220, 220, 220, 220, 685, 940, 11, 1314, 4357, 198, 2, 220, 220, 220, 220, 685, 1314, 11, 1065, 4357, 198, 2, 220, 220, 220, 220, 685, 1731, 11, 940, 4357, 198, 2, 220, 220, 220, 220, 685, 1270, 11, 1270, 4357, 198, 2, 220, 220, 220, 220, 685, 5332, 11, 2154, 4357, 198, 2, 220, 220, 220, 220, 685, 4869, 11, 1795, 4357, 198, 2, 220, 220, 220, 220, 685, 1899, 11, 3695, 4357, 198, 2, 220, 220, 220, 220, 685, 2154, 11, 2816, 4357, 198, 2, 220, 220, 220, 220, 685, 1795, 11, 6420, 4357, 12962, 628, 198, 198, 2, 13946, 796, 19015, 75, 12057, 876, 2601, 436, 1586, 7, 77, 62, 565, 13654, 28, 17, 11, 28430, 11639, 12496, 565, 485, 272, 3256, 45945, 11639, 904, 11537, 198, 2, 13946, 13, 11147, 62, 79, 17407, 7, 55, 8, 198, 198, 2, 3601, 7, 565, 5819, 13, 23912, 1424, 62, 8, 198, 2, 458, 83, 13, 1416, 1436, 7, 55, 58, 45299, 15, 4357, 55, 58, 45299, 16, 4357, 269, 28, 565, 5819, 13, 23912, 1424, 62, 11, 269, 8899, 11639, 3201, 8176, 11537, 198, 2, 458, 83, 13, 12860, 3419, 198, 198, 2, 43313, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 2, 43313, 198, 19581, 796, 37250, 5304, 12, 16, 12, 16, 3256, 705, 5304, 12, 16, 12, 17, 3256, 705, 5304, 12, 16, 12, 18, 20520, 198, 4033, 82, 796, 279, 67, 13, 29800, 15732, 13, 6738, 62, 11167, 26933, 19581, 11, 37250, 11922, 3256, 705, 20535, 6, 11907, 8, 198, 4033, 82, 198, 2, 279, 67, 13, 6601, 19778, 7, 7890, 28, 4033, 82, 8, 198, 2, 43313, 198, 34005, 796, 23884, 198, 3455, 62, 87, 796, 45941, 13, 292, 18747, 26933, 16, 11, 17, 11, 18, 11, 19, 35944, 51, 198, 198, 3455, 62, 88, 796, 45941, 13, 292, 18747, 26933, 17, 11, 17, 11, 18, 11, 19, 35944, 51, 198, 83, 796, 45941, 13, 292, 18747, 26933, 18, 11, 17, 11, 18, 11, 19, 35944, 51, 198, 4033, 62, 5431, 796, 45941, 13, 292, 18747, 26933, 19, 11, 17, 11, 18, 11, 19, 35944, 51, 198, 7266, 35231, 62, 87, 796, 45941, 13, 292, 18747, 26933, 20, 11, 17, 11, 18, 11, 19, 35944, 51, 198, 7266, 35231, 62, 88, 796, 45941, 13, 292, 18747, 26933, 21, 11, 17, 11, 18, 11, 19, 35944, 51, 198, 86, 6024, 62, 87, 796, 45941, 13, 292, 18747, 26933, 22, 11, 17, 11, 18, 11, 19, 35944, 51, 198, 86, 6024, 62, 88, 796, 45941, 13, 292, 18747, 26933, 23, 11, 17, 11, 18, 11, 19, 35944, 51, 198, 34005, 14692, 5143, 62, 16, 8973, 796, 685, 3455, 62, 87, 11, 12705, 62, 88, 11, 256, 11, 951, 62, 5431, 11, 850, 35231, 62, 87, 11, 850, 35231, 62, 88, 11, 266, 6024, 62, 87, 11, 266, 6024, 62, 88, 60, 198, 34005, 14692, 5143, 62, 17, 8973, 796, 685, 3455, 62, 87, 11, 12705, 62, 88, 11, 256, 11, 951, 62, 5431, 11, 850, 35231, 62, 87, 11, 850, 35231, 62, 88, 11, 266, 6024, 62, 87, 11, 266, 6024, 62, 88, 60, 198, 2, 43313, 198, 7568, 796, 279, 67, 13, 6601, 19778, 7, 7890, 28, 34005, 8, 198, 7568, 17, 796, 47764, 13, 1462, 62, 11600, 3419, 198, 7568, 13, 1462, 62, 40664, 7203, 9288, 13, 40664, 1600, 9630, 28, 25101, 8, 198, 2, 43313, 198, 7568, 198, 2, 43313, 198, 7568, 17, 198, 2, 43313, 198, 48381, 796, 279, 67, 13, 961, 62, 1069, 5276, 10786, 48381, 62, 1069, 13, 87, 7278, 87, 3256, 18392, 11639, 9654, 9078, 87, 75, 11537, 220, 198, 4906, 7, 48381, 8, 198, 48381, 13, 1462, 62, 1069, 5276, 7203, 22915, 13, 87, 7278, 87, 4943, 220, 198, 2, 43313, 198, 7568, 17, 14692, 5143, 62, 17, 8973, 198, 2, 43313, 198, 34005, 14692, 5143, 62, 17, 8973, 198, 2, 43313, 198, 11748, 33918, 198, 198, 7890, 796, 23884, 198, 7890, 17816, 5143, 20520, 220, 220, 220, 220, 220, 220, 796, 17635, 198, 7890, 17816, 2435, 20520, 220, 220, 220, 220, 220, 796, 17635, 198, 7890, 17816, 6978, 20520, 220, 220, 220, 220, 220, 796, 17635, 198, 7890, 17816, 626, 11683, 20520, 220, 796, 17635, 198, 7890, 17816, 26000, 1166, 20520, 796, 17635, 198, 198, 7890, 17816, 5143, 6, 4083, 33295, 7, 15, 8, 198, 7890, 17816, 2435, 6, 4083, 33295, 7, 16, 8, 198, 7890, 17816, 6978, 6, 4083, 33295, 7, 17, 8, 198, 7890, 17816, 626, 11683, 6, 4083, 33295, 7, 18, 8, 198, 7890, 17816, 26000, 1166, 6, 4083, 33295, 7, 19, 8, 628, 198, 198, 4480, 1280, 10786, 7890, 13, 17752, 3256, 705, 86, 11537, 355, 503, 7753, 25, 198, 220, 220, 220, 33918, 13, 39455, 7, 7890, 11, 503, 7753, 8, 198, 2, 43313, 198 ]
1.994118
850
# -*- coding: utf-8 -*- __author__ = 'Stéphane-Poirier' import math from diff_graph import DiffGraph from ferrer import FerrerIterator, ferrer_size import time if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='ramsey : evaluate expected value of Kr presence for a range of sizes') parser.add_argument("-r", "--Kr", type=int, default=5, help="size of Kr to avoid") parser.add_argument("-n", "--size_max", type=int, default=51, help="size max of Kn to measure") parser.add_argument("-m", "--method", type=str, default="triangles", help="method used to evaluate expected value") options = parser.parse_args() if options.method == "test": test() elif options.method.lower() == "erdos": print("Erdös method to evaluate expected value of K{}".format(options.Kr)) evaluate_erdos(options.Kr, options.size_max) elif options.method.lower() == "triangles": print("Triangles method to evaluate expected value of K{}".format(options.Kr)) evaluate_triangles(options.Kr, options.size_max) elif options.method.lower() == "stars": print("Stars method to evaluate expected value of K{}".format(options.Kr)) evaluate_stars(options.Kr, options.size_max) else: print("Method {} is not yet implemented".format(options.method)) # n_graph = graph.Graph.from_diffs(({1, 4}, {2, 3, 5})) # n_graph.set_edge(2, 3, 1) # print("{}".format(n_graph)) # n_cliques = n_graph.count_cliques() # print("nb cliques {}".format(n_cliques)) # d_graph = diff_graph.DiffGraph(({1, 4}, {2, 3, 5})) # print("{}".format(d_graph)) # for lst in FerrerIterator(4, 7, 10): # cur_size = ferrer_size(lst) # print("list {} : size {}".format(lst, cur_size)) # n = 17 # qs0 = quadratic_set(n) # qs1 = set(range(1, n)) - qs0 # d_graph = DiffGraph((qs0, qs1)) # n_cliques = d_graph.count_cliques(isomorphic=True) # expected_cliques(n, n_cliques, 2, 5, isomorphic=True) Gp = [] expectations_dict = {} for n in range(5, 150, 4): if is_prime(n): print(n) start = time.process_time() qs0 = quadratic_set(n) qs1 = set(range(1, n)) - qs0 d_graph = DiffGraph((qs0, qs1)) n_cliques = d_graph.count_cliques(isomorphic=True) print("nb cliques {}".format(n_cliques)) max_cliques = len([x for x in n_cliques[0] if x > 0])-1 Gp.append((n, max_cliques)) min_r = max_cliques+1 for nb_copies in range(2, 3*n+1): for r in range(min_r, (max_cliques*nb_copies)): exp = expected_cliques(n, n_cliques, nb_copies, r, isomorphic=True) if r not in expectations_dict \ or n*nb_copies - math.floor(exp) > expectations_dict[r][1]*expectations_dict[r][2] - math.floor(expectations_dict[r][0]): expectations_dict[r] = (exp, n, nb_copies) if exp < 1.0: break if exp > n * nb_copies: min_r = r + 1 print("time {}".format(time.process_time() - start)) print(Gp) print(expectations_dict)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 834, 9800, 834, 796, 705, 1273, 2634, 746, 1531, 12, 47, 10840, 959, 6, 198, 198, 11748, 10688, 198, 6738, 814, 62, 34960, 1330, 10631, 37065, 198, 6738, 11354, 11751, 1330, 12880, 11751, 37787, 11, 11354, 11751, 62, 7857, 198, 11748, 640, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 1822, 29572, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 859, 4397, 1058, 13446, 2938, 1988, 286, 13685, 4931, 329, 257, 2837, 286, 10620, 11537, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 81, 1600, 366, 438, 42, 81, 1600, 2099, 28, 600, 11, 4277, 28, 20, 11, 1037, 2625, 7857, 286, 13685, 284, 3368, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 77, 1600, 366, 438, 7857, 62, 9806, 1600, 2099, 28, 600, 11, 4277, 28, 4349, 11, 1037, 2625, 7857, 3509, 286, 6102, 284, 3953, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 76, 1600, 366, 438, 24396, 1600, 2099, 28, 2536, 11, 4277, 2625, 28461, 27787, 1600, 1037, 2625, 24396, 973, 284, 13446, 2938, 1988, 4943, 628, 220, 220, 220, 3689, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 3689, 13, 24396, 6624, 366, 9288, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 3419, 198, 220, 220, 220, 1288, 361, 3689, 13, 24396, 13, 21037, 3419, 6624, 366, 263, 37427, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 36, 4372, 9101, 82, 2446, 284, 13446, 2938, 1988, 286, 509, 90, 92, 1911, 18982, 7, 25811, 13, 42, 81, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13446, 62, 263, 37427, 7, 25811, 13, 42, 81, 11, 3689, 13, 7857, 62, 9806, 8, 198, 220, 220, 220, 1288, 361, 3689, 13, 24396, 13, 21037, 3419, 6624, 366, 28461, 27787, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14824, 27787, 2446, 284, 13446, 2938, 1988, 286, 509, 90, 92, 1911, 18982, 7, 25811, 13, 42, 81, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13446, 62, 28461, 27787, 7, 25811, 13, 42, 81, 11, 3689, 13, 7857, 62, 9806, 8, 198, 220, 220, 220, 1288, 361, 3689, 13, 24396, 13, 21037, 3419, 6624, 366, 30783, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 29366, 2446, 284, 13446, 2938, 1988, 286, 509, 90, 92, 1911, 18982, 7, 25811, 13, 42, 81, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13446, 62, 30783, 7, 25811, 13, 42, 81, 11, 3689, 13, 7857, 62, 9806, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 17410, 23884, 318, 407, 1865, 9177, 1911, 18982, 7, 25811, 13, 24396, 4008, 628, 220, 220, 220, 1303, 299, 62, 34960, 796, 4823, 13, 37065, 13, 6738, 62, 67, 10203, 7, 15090, 16, 11, 604, 5512, 1391, 17, 11, 513, 11, 642, 92, 4008, 198, 220, 220, 220, 1303, 299, 62, 34960, 13, 2617, 62, 14907, 7, 17, 11, 513, 11, 352, 8, 198, 220, 220, 220, 1303, 3601, 7203, 90, 92, 1911, 18982, 7, 77, 62, 34960, 4008, 198, 220, 220, 220, 1303, 299, 62, 565, 6368, 796, 299, 62, 34960, 13, 9127, 62, 565, 6368, 3419, 198, 220, 220, 220, 1303, 3601, 7203, 46803, 537, 6368, 23884, 1911, 18982, 7, 77, 62, 565, 6368, 4008, 628, 220, 220, 220, 1303, 288, 62, 34960, 796, 814, 62, 34960, 13, 28813, 37065, 7, 15090, 16, 11, 604, 5512, 1391, 17, 11, 513, 11, 642, 92, 4008, 198, 220, 220, 220, 1303, 3601, 7203, 90, 92, 1911, 18982, 7, 67, 62, 34960, 4008, 628, 220, 220, 220, 1303, 329, 300, 301, 287, 12880, 11751, 37787, 7, 19, 11, 767, 11, 838, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1090, 62, 7857, 796, 11354, 11751, 62, 7857, 7, 75, 301, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7203, 4868, 23884, 1058, 2546, 23884, 1911, 18982, 7, 75, 301, 11, 1090, 62, 7857, 4008, 628, 220, 220, 220, 1303, 299, 796, 1596, 198, 220, 220, 220, 1303, 10662, 82, 15, 796, 15094, 81, 1512, 62, 2617, 7, 77, 8, 198, 220, 220, 220, 1303, 10662, 82, 16, 796, 900, 7, 9521, 7, 16, 11, 299, 4008, 532, 10662, 82, 15, 198, 220, 220, 220, 1303, 288, 62, 34960, 796, 10631, 37065, 19510, 48382, 15, 11, 10662, 82, 16, 4008, 198, 220, 220, 220, 1303, 299, 62, 565, 6368, 796, 288, 62, 34960, 13, 9127, 62, 565, 6368, 7, 271, 46374, 28, 17821, 8, 198, 220, 220, 220, 1303, 2938, 62, 565, 6368, 7, 77, 11, 299, 62, 565, 6368, 11, 362, 11, 642, 11, 318, 46374, 28, 17821, 8, 628, 220, 220, 220, 402, 79, 796, 17635, 198, 220, 220, 220, 9027, 62, 11600, 796, 23884, 198, 220, 220, 220, 329, 299, 287, 2837, 7, 20, 11, 6640, 11, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 35505, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 640, 13, 14681, 62, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 82, 15, 796, 15094, 81, 1512, 62, 2617, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 82, 16, 796, 900, 7, 9521, 7, 16, 11, 299, 4008, 532, 10662, 82, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 34960, 796, 10631, 37065, 19510, 48382, 15, 11, 10662, 82, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 565, 6368, 796, 288, 62, 34960, 13, 9127, 62, 565, 6368, 7, 271, 46374, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 46803, 537, 6368, 23884, 1911, 18982, 7, 77, 62, 565, 6368, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 565, 6368, 796, 18896, 26933, 87, 329, 2124, 287, 299, 62, 565, 6368, 58, 15, 60, 611, 2124, 1875, 657, 12962, 12, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 402, 79, 13, 33295, 19510, 77, 11, 3509, 62, 565, 6368, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 81, 796, 3509, 62, 565, 6368, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 65, 62, 22163, 444, 287, 2837, 7, 17, 11, 513, 9, 77, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 374, 287, 2837, 7, 1084, 62, 81, 11, 357, 9806, 62, 565, 6368, 9, 46803, 62, 22163, 444, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1033, 796, 2938, 62, 565, 6368, 7, 77, 11, 299, 62, 565, 6368, 11, 299, 65, 62, 22163, 444, 11, 374, 11, 318, 46374, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 407, 287, 9027, 62, 11600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 299, 9, 46803, 62, 22163, 444, 532, 10688, 13, 28300, 7, 11201, 8, 1875, 9027, 62, 11600, 58, 81, 7131, 16, 60, 9, 1069, 806, 602, 62, 11600, 58, 81, 7131, 17, 60, 532, 10688, 13, 28300, 7, 1069, 806, 602, 62, 11600, 58, 81, 7131, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9027, 62, 11600, 58, 81, 60, 796, 357, 11201, 11, 299, 11, 299, 65, 62, 22163, 444, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1033, 1279, 352, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1033, 1875, 299, 1635, 299, 65, 62, 22163, 444, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 81, 796, 374, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2435, 23884, 1911, 18982, 7, 2435, 13, 14681, 62, 2435, 3419, 532, 923, 4008, 628, 220, 220, 220, 3601, 7, 38, 79, 8, 198, 220, 220, 220, 3601, 7, 1069, 806, 602, 62, 11600, 8, 198 ]
2.141931
1,543
from conans import AutoToolsBuildEnvironment, ConanFile, tools from conans.errors import ConanInvalidConfiguration import os required_conan_version = ">=1.36.0"
[ 6738, 369, 504, 1330, 11160, 33637, 15580, 31441, 11, 31634, 8979, 11, 4899, 198, 6738, 369, 504, 13, 48277, 1330, 31634, 44651, 38149, 198, 11748, 28686, 198, 198, 35827, 62, 1102, 272, 62, 9641, 796, 366, 29, 28, 16, 13, 2623, 13, 15, 1, 628 ]
3.622222
45
import unittest import os import signal if __name__ == '__main__': unittest.main() os.kill(os.getpid(), signal.SIGKILL)
[ 11748, 555, 715, 395, 198, 11748, 28686, 198, 11748, 6737, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198, 220, 220, 220, 28686, 13, 12728, 7, 418, 13, 1136, 35317, 22784, 6737, 13, 50, 3528, 42, 8267, 8, 198 ]
2.45283
53
import datetime import os import pycurl import sentinel5dl import sentinel5dl.__main__ as executable import tempfile import unittest import logging import sys testpath = os.path.dirname(os.path.abspath(__file__)) if __name__ == '__main__': unittest.main()
[ 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 12972, 66, 6371, 198, 11748, 1908, 20538, 20, 25404, 198, 11748, 1908, 20538, 20, 25404, 13, 834, 12417, 834, 355, 28883, 198, 11748, 20218, 7753, 198, 11748, 555, 715, 395, 198, 11748, 18931, 198, 11748, 25064, 628, 198, 9288, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.891304
92
import time poll_active = False poll = {} allowed_users = set() voted = set()
[ 11748, 640, 198, 198, 30393, 62, 5275, 796, 10352, 198, 30393, 796, 23884, 198, 40845, 62, 18417, 796, 900, 3419, 198, 85, 5191, 796, 900, 3419, 198 ]
2.925926
27
# Copyright 2014 Basho Technologies, Inc. # # This file is provided to you under the Apache License, # Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ distutils commands for generating protocol message-code mappings. """ __all__ = ['build_messages', 'clean_messages'] import re import csv import os from os.path import isfile from distutils import log from distutils.core import Command from distutils.file_util import write_file from datetime import date LICENSE = """# Copyright {0} Basho Technologies, Inc. # # This file is provided to you under the Apache License, # Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """.format(date.today().year) class clean_messages(Command): """ Cleans generated message code mappings. Add to the build process using:: setup(cmd_class={'clean_messages': clean_messages}) """ description = "clean generated protocol message code mappings" user_options = [ ('destination=', None, 'destination Python source file') ] class build_messages(Command): """ Generates message code mappings. Add to the build process using:: setup(cmd_class={'build_messages': build_messages}) """ description = "generate protocol message code mappings" user_options = [ ('source=', None, 'source CSV file containing message code mappings'), ('destination=', None, 'destination Python source file') ] # Used in loading and generating _pb_imports = set() _messages = set() _linesep = os.linesep _indented_item_sep = ',{0} '.format(_linesep) _docstring = [ '' '# This is a generated file. DO NOT EDIT.', '', '"""', 'Constants and mappings between Riak protocol codes and messages.', '"""', '' ] def _format_python2_or_3(self): """ Change the PB files to use full pathnames for Python 3.x and modify the metaclasses to be version agnostic """ pb_files = set() with open(self.source, 'r', buffering=1) as csvfile: reader = csv.reader(csvfile) for row in reader: _, _, proto = row pb_files.add('riak_pb/{0}_pb2.py'.format(proto)) for im in sorted(pb_files): with open(im, 'r', buffering=1) as pbfile: contents = 'from six import *\n' + pbfile.read() contents = re.sub(r'riak_pb2', r'riak_pb.riak_pb2', contents) # Look for this pattern in the protoc-generated file: # # class RpbCounterGetResp(_message.Message): # __metaclass__ = _reflection.GeneratedProtocolMessageType # # and convert it to: # # @add_metaclass(_reflection.GeneratedProtocolMessageType) # class RpbCounterGetResp(_message.Message): contents = re.sub( r'class\s+(\S+)\((\S+)\):\s*\n' '\s+__metaclass__\s+=\s+(\S+)\s*\n', r'@add_metaclass(\3)\nclass \1(\2):\n', contents) with open(im, 'w', buffering=1) as pbfile: pbfile.write(contents)
[ 2, 15069, 1946, 15743, 78, 21852, 11, 3457, 13, 198, 2, 198, 2, 770, 2393, 318, 2810, 284, 345, 739, 262, 24843, 13789, 11, 198, 2, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 198, 2, 2845, 287, 11846, 351, 262, 13789, 13, 220, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 37811, 198, 17080, 26791, 9729, 329, 15453, 8435, 3275, 12, 8189, 285, 39242, 13, 198, 37811, 198, 198, 834, 439, 834, 796, 37250, 11249, 62, 37348, 1095, 3256, 705, 27773, 62, 37348, 1095, 20520, 198, 198, 11748, 302, 198, 11748, 269, 21370, 198, 11748, 28686, 198, 6738, 28686, 13, 6978, 1330, 318, 7753, 198, 6738, 1233, 26791, 1330, 2604, 198, 6738, 1233, 26791, 13, 7295, 1330, 9455, 198, 6738, 1233, 26791, 13, 7753, 62, 22602, 1330, 3551, 62, 7753, 198, 6738, 4818, 8079, 1330, 3128, 198, 198, 43, 2149, 24290, 796, 37227, 2, 15069, 1391, 15, 92, 15743, 78, 21852, 11, 3457, 13, 198, 2, 198, 2, 770, 2393, 318, 2810, 284, 345, 739, 262, 24843, 13789, 11, 198, 2, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 198, 2, 2845, 287, 11846, 351, 262, 13789, 13, 220, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 15931, 1911, 18982, 7, 4475, 13, 40838, 22446, 1941, 8, 628, 628, 198, 4871, 3424, 62, 37348, 1095, 7, 21575, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3779, 504, 7560, 3275, 2438, 285, 39242, 13, 3060, 284, 262, 1382, 1429, 198, 220, 220, 220, 1262, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 9058, 7, 28758, 62, 4871, 34758, 6, 27773, 62, 37348, 1095, 10354, 3424, 62, 37348, 1095, 30072, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6764, 796, 366, 27773, 7560, 8435, 3275, 2438, 285, 39242, 1, 628, 220, 220, 220, 2836, 62, 25811, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 16520, 1883, 28, 3256, 6045, 11, 705, 16520, 1883, 11361, 2723, 2393, 11537, 198, 220, 220, 220, 2361, 628, 198, 4871, 1382, 62, 37348, 1095, 7, 21575, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 689, 3275, 2438, 285, 39242, 13, 3060, 284, 262, 1382, 1429, 1262, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 9058, 7, 28758, 62, 4871, 34758, 6, 11249, 62, 37348, 1095, 10354, 1382, 62, 37348, 1095, 30072, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6764, 796, 366, 8612, 378, 8435, 3275, 2438, 285, 39242, 1, 628, 220, 220, 220, 2836, 62, 25811, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 10459, 28, 3256, 6045, 11, 705, 10459, 44189, 2393, 7268, 3275, 2438, 285, 39242, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 16520, 1883, 28, 3256, 6045, 11, 705, 16520, 1883, 11361, 2723, 2393, 11537, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 1303, 16718, 287, 11046, 290, 15453, 198, 220, 220, 220, 4808, 40842, 62, 320, 3742, 796, 900, 3419, 198, 220, 220, 220, 4808, 37348, 1095, 796, 900, 3419, 198, 220, 220, 220, 4808, 6615, 538, 796, 28686, 13, 6615, 538, 198, 220, 220, 220, 4808, 521, 4714, 62, 9186, 62, 325, 79, 796, 46083, 90, 15, 92, 220, 220, 220, 45302, 18982, 28264, 6615, 538, 8, 628, 220, 220, 220, 4808, 15390, 8841, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2, 770, 318, 257, 7560, 2393, 13, 8410, 5626, 48483, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 37811, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34184, 1187, 290, 285, 39242, 1022, 30385, 461, 8435, 12416, 290, 6218, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 37811, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 10148, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 825, 4808, 18982, 62, 29412, 17, 62, 273, 62, 18, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9794, 262, 30524, 3696, 284, 779, 1336, 3108, 14933, 329, 11361, 513, 13, 87, 198, 220, 220, 220, 220, 220, 220, 220, 290, 13096, 262, 1138, 330, 28958, 284, 307, 2196, 556, 43758, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 16624, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 10459, 11, 705, 81, 3256, 6940, 1586, 28, 16, 8, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 40664, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 4808, 11, 44876, 796, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 16624, 13, 2860, 10786, 380, 461, 62, 40842, 14, 90, 15, 92, 62, 40842, 17, 13, 9078, 4458, 18982, 7, 1676, 1462, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 545, 287, 23243, 7, 40842, 62, 16624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 320, 11, 705, 81, 3256, 6940, 1586, 28, 16, 8, 355, 279, 65, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 705, 6738, 2237, 1330, 1635, 59, 77, 6, 1343, 279, 65, 7753, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 302, 13, 7266, 7, 81, 6, 380, 461, 62, 40842, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 6, 380, 461, 62, 40842, 13, 380, 461, 62, 40842, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6803, 329, 428, 3912, 287, 262, 1237, 420, 12, 27568, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1398, 371, 40842, 31694, 3855, 19309, 28264, 20500, 13, 12837, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 11593, 4164, 330, 31172, 834, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 10385, 340, 284, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2488, 2860, 62, 4164, 330, 31172, 28264, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1398, 371, 40842, 31694, 3855, 19309, 28264, 20500, 13, 12837, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 302, 13, 7266, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 6, 4871, 59, 82, 33747, 59, 50, 10, 19415, 19510, 59, 50, 10, 19415, 2599, 59, 82, 9, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 59, 82, 10, 834, 4164, 330, 31172, 834, 59, 82, 47932, 59, 82, 33747, 59, 50, 10, 19415, 82, 9, 59, 77, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 6, 31, 2860, 62, 4164, 330, 31172, 38016, 18, 19415, 77, 4871, 3467, 16, 38016, 17, 2599, 59, 77, 3256, 10154, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 320, 11, 705, 86, 3256, 6940, 1586, 28, 16, 8, 355, 279, 65, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 7753, 13, 13564, 7, 3642, 658, 8, 198 ]
2.507229
1,660
from isochrones.starmodel import StarModel, BasicStarModel from isochrones import get_ichrone import numpy as np mist = get_ichrone("mist") props = dict(Teff=(5800, 100), logg=(4.5, 0.1), J=(3.58, 0.05), K=(3.22, 0.05), parallax=(100, 0.1)) props_phot = dict(J=(3.58, 0.05), K=(3.22, 0.05), parallax=(100, 0.1)) props_spec = dict(Teff=(5800, 100), logg=(4.5, 0.1), parallax=(100, 0.1))
[ 6738, 318, 5374, 9821, 13, 301, 1670, 375, 417, 1330, 2907, 17633, 11, 14392, 8248, 17633, 198, 6738, 318, 5374, 9821, 1330, 651, 62, 488, 33171, 198, 11748, 299, 32152, 355, 45941, 198, 198, 37980, 796, 651, 62, 488, 33171, 7203, 37980, 4943, 198, 198, 1676, 862, 796, 8633, 7, 6767, 487, 16193, 3365, 405, 11, 1802, 828, 2604, 70, 16193, 19, 13, 20, 11, 657, 13, 16, 828, 449, 16193, 18, 13, 3365, 11, 657, 13, 2713, 828, 509, 16193, 18, 13, 1828, 11, 657, 13, 2713, 828, 1582, 439, 897, 16193, 3064, 11, 657, 13, 16, 4008, 628, 198, 1676, 862, 62, 38611, 796, 8633, 7, 41, 16193, 18, 13, 3365, 11, 657, 13, 2713, 828, 509, 16193, 18, 13, 1828, 11, 657, 13, 2713, 828, 1582, 439, 897, 16193, 3064, 11, 657, 13, 16, 4008, 198, 1676, 862, 62, 16684, 796, 8633, 7, 6767, 487, 16193, 3365, 405, 11, 1802, 828, 2604, 70, 16193, 19, 13, 20, 11, 657, 13, 16, 828, 1582, 439, 897, 16193, 3064, 11, 657, 13, 16, 4008, 628, 628 ]
2.220339
177
import os, fnmatch from functools import partial from PyQt5.QtCore import QProcess from pykeyboard import PyKeyboard from bots.abstract_bot import AbstractBot from bots.action import Action from bots.utility import waitForWindowByTitle from local_settings import VIDEO_DIR
[ 11748, 28686, 11, 24714, 15699, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1195, 18709, 198, 6738, 12972, 2539, 3526, 1330, 9485, 9218, 3526, 198, 198, 6738, 29641, 13, 397, 8709, 62, 13645, 1330, 27741, 20630, 198, 6738, 29641, 13, 2673, 1330, 7561, 198, 6738, 29641, 13, 315, 879, 1330, 4043, 1890, 27703, 3886, 19160, 198, 6738, 1957, 62, 33692, 1330, 35507, 62, 34720, 628 ]
3.631579
76
############################################################# # rename or copy this file to config.py if you make changes # ############################################################# # change this to your fully-qualified domain name to run a # remote server. The default value of localhost will # only allow connections from the same computer. #jsonrpc_servername = "h3.umd.edu" jsonrpc_servername = "localhost" jsonrpc_port = 8001 http_port = 8000 serve_staticfiles = False #use_redis = True use_diskcache = True diskcache_params = {"size_limit": int(4*2**30), "shards": 5} use_msgpack = True data_sources = [ { "name": "ncnr", "url": "https://www.ncnr.nist.gov/pub/", "start_path": "ncnrdata", "file_helper_url": "https://www.ncnr.nist.gov/ipeek/listftpfiles.php" }, ] instruments = ["refl", "ospec", "sans"]
[ 29113, 14468, 7804, 4242, 2, 198, 2, 36265, 393, 4866, 428, 2393, 284, 4566, 13, 9078, 611, 345, 787, 2458, 1303, 198, 29113, 14468, 7804, 4242, 2, 198, 198, 2, 1487, 428, 284, 534, 3938, 12, 22557, 7386, 1438, 284, 1057, 257, 220, 198, 2, 6569, 4382, 13, 220, 383, 4277, 1988, 286, 1957, 4774, 481, 198, 2, 691, 1249, 8787, 422, 262, 976, 3644, 13, 198, 2, 17752, 81, 14751, 62, 2655, 933, 480, 796, 366, 71, 18, 13, 388, 67, 13, 15532, 1, 198, 17752, 81, 14751, 62, 2655, 933, 480, 796, 366, 36750, 1, 198, 17752, 81, 14751, 62, 634, 796, 807, 8298, 198, 4023, 62, 634, 796, 38055, 198, 2655, 303, 62, 12708, 16624, 796, 10352, 198, 2, 1904, 62, 445, 271, 796, 6407, 198, 1904, 62, 39531, 23870, 796, 6407, 198, 39531, 23870, 62, 37266, 796, 19779, 7857, 62, 32374, 1298, 493, 7, 19, 9, 17, 1174, 1270, 828, 366, 1477, 1371, 1298, 642, 92, 198, 1904, 62, 19662, 8002, 796, 6407, 198, 7890, 62, 82, 2203, 796, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 10782, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 366, 5450, 1378, 2503, 13, 10782, 48624, 13, 77, 396, 13, 9567, 14, 12984, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9688, 62, 6978, 1298, 366, 10782, 77, 4372, 1045, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7753, 62, 2978, 525, 62, 6371, 1298, 366, 5450, 1378, 2503, 13, 10782, 48624, 13, 77, 396, 13, 9567, 14, 3757, 988, 14, 4868, 701, 79, 16624, 13, 10121, 1, 198, 220, 220, 220, 8964, 198, 60, 198, 259, 2536, 2886, 796, 14631, 260, 2704, 1600, 366, 418, 43106, 1600, 366, 82, 504, 8973, 198 ]
2.819079
304
# emails.py from django.template import loader from django.core.mail import EmailMultiAlternatives from django.conf import settings mongodb_notification_email = NotificationEmail()
[ 2, 7237, 13, 9078, 198, 198, 6738, 42625, 14208, 13, 28243, 1330, 40213, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 9570, 29800, 23081, 2929, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 628, 198, 31059, 375, 65, 62, 1662, 2649, 62, 12888, 796, 42808, 15333, 3419, 198 ]
3.7
50
# # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations from typing import * import functools from edb import errors from edb.edgeql import qltypes from edb.schema import objtypes as s_objtypes from edb.schema import pointers as s_pointers from edb.ir import ast as irast from edb.ir import utils as irutils from .. import context if TYPE_CHECKING: from edb.schema import constraints as s_constr ONE = qltypes.Cardinality.ONE MANY = qltypes.Cardinality.MANY @functools.singledispatch @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register @_infer_cardinality.register
[ 2, 198, 2, 770, 2723, 2393, 318, 636, 286, 262, 13113, 11012, 1280, 2723, 1628, 13, 198, 2, 198, 2, 15069, 3648, 12, 25579, 6139, 25896, 3457, 13, 290, 262, 13113, 11012, 7035, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 628, 198, 6738, 11593, 37443, 834, 1330, 37647, 198, 6738, 19720, 1330, 1635, 198, 198, 11748, 1257, 310, 10141, 198, 198, 6738, 1225, 65, 1330, 8563, 198, 198, 6738, 1225, 65, 13, 14907, 13976, 1330, 10662, 75, 19199, 198, 198, 6738, 1225, 65, 13, 15952, 2611, 1330, 26181, 19199, 355, 264, 62, 26801, 19199, 198, 6738, 1225, 65, 13, 15952, 2611, 1330, 32007, 355, 264, 62, 47809, 198, 198, 6738, 1225, 65, 13, 343, 1330, 6468, 355, 4173, 459, 198, 6738, 1225, 65, 13, 343, 1330, 3384, 4487, 355, 4173, 26791, 198, 198, 6738, 11485, 1330, 4732, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 1225, 65, 13, 15952, 2611, 1330, 17778, 355, 264, 62, 1102, 2536, 628, 198, 11651, 796, 10662, 75, 19199, 13, 16962, 1292, 414, 13, 11651, 198, 10725, 56, 796, 10662, 75, 19199, 13, 16962, 1292, 414, 13, 10725, 56, 628, 628, 198, 198, 31, 12543, 310, 10141, 13, 12215, 992, 8802, 963, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 628, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628, 198, 31, 62, 259, 2232, 62, 9517, 1292, 414, 13, 30238, 628 ]
3.025316
632
"""added orientation column to pi model Revision ID: 2711340c6d9d Revises: 490d49497045 Create Date: 2015-09-25 09:43:33.202018 """ # revision identifiers, used by Alembic. revision = '2711340c6d9d' down_revision = '490d49497045' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa
[ 37811, 29373, 12852, 5721, 284, 31028, 2746, 198, 198, 18009, 1166, 4522, 25, 2681, 16616, 1821, 66, 21, 67, 24, 67, 198, 18009, 2696, 25, 45601, 67, 2920, 2920, 2154, 2231, 198, 16447, 7536, 25, 1853, 12, 2931, 12, 1495, 7769, 25, 3559, 25, 2091, 13, 1238, 7908, 198, 198, 37811, 198, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 1983, 16616, 1821, 66, 21, 67, 24, 67, 6, 198, 2902, 62, 260, 10178, 796, 705, 31503, 67, 2920, 2920, 2154, 2231, 6, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 198, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 628, 198 ]
2.617886
123