content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
#!/usr/bin/python -u import argparse import sys import re import os import traceback from operator import itemgetter, attrgetter from biokbase.probabilistic_annotation.Client import _read_inifile from biokbase.workspaceService.Client import * desc = ''' Given a JSON object calculate the false positive, negative rates. Optionally omit everything that isn't in the specified media. ''' separator ='///' rolesToRxnsFileName = 'roles_to_reactions' if __name__ == "__main__": parser = argparse.ArgumentParser(prog='GeneratePhenotypeROCCurve.py', description=desc) parser.add_argument('genome', help='ID of genome to analyze', action='store', default=None) parser.add_argument('model', help='ID of integrated gap filled model to analyze', action='store', default=None) parser.add_argument('phenosimset', help='ID of PhenotypeSimulationSet object to analyze', action='store', default=None) parser.add_argument('workspace', help='ID of workspace containing objects to analyze', action='store', default=None) parser.add_argument('--solution', help='index number of solution in integrated gap filled model', action='store', default='0') parser.add_argument('--phenosimsetws', help='workspace containing PhenotypeSimulationSet object (same as workspace if not specified)', action='store', default=None) parser.add_argument('--media', help='limit analysis to only this media condition', action='store', dest='media', default=None) parser.add_argument('--probanno', help='ID of ProbAnno object for genome', action='store', dest='probanno', default=None) parser.add_argument('--probannows', help='workspace containing ProbAnno object (same as workspace if not specified)', action='store', dest='probannows', default=None) parser.add_argument('--rxnprobs', help='ID of RxnProbs object for genome', action='store', dest='rxnprobs', default=None) parser.add_argument('--rxnprobsws', help='workspace containing RxnProbs object (same as workspace if not specified)', action='store', dest='rxnprobsws', default=None) parser.add_argument('--script-dir', help='path to directory with analysis scripts', action='store', dest='scriptDir', default='.') parser.add_argument('--fba-url', help='url for fba modeling service', action='store', dest='fbaurl', default='http://bio-data-1.mcs.anl.gov/services/fba') parser.add_argument('--ws-url', help='url for workspace service', action='store', dest='wsurl', default='http://kbase.us/services/workspace/') args = parser.parse_args() if args.probanno is None: args.probanno = args.genome + '.probanno' if args.probannows is None: args.probannows = args.workspace if args.rxnprobs is None: args.rxnprobs = args.genome + '.rxnprobs' if args.rxnprobsws is None: args.rxnprobsws = args.workspace if args.phenosimsetws is None: args.phenosimsetws = args.workspace # Create the clients for the services we need. authdata = _read_inifile() token = authdata['token'] wsClient = workspaceService(args.wsurl) # Build roles to reactions dictionary. step = 1 print "+++ Step %d: Build reactions to roles dictionary +++" %(step) if not os.path.exists(rolesToRxnsFileName): os.system("all_roles_used_in_models | roles_to_complexes | get_relationship_HasStep -to id >%s" %(rolesToRxnsFileName)) rolesToReactions = dict() reactionsToRoles = dict() # Each line of the file has four fields: (1) role, (2) hypothetical flag, (3) complex id, (4) reaction id rolesToRxnsFile = open(rolesToRxnsFileName, 'r') for line in rolesToRxnsFile: fields = line.strip('\r\n').split('\t') reaction = fields[3] if reaction not in reactionsToRoles: reactionsToRoles[reaction] = list() reactionsToRoles[reaction].append(fields[0]) rolesToRxnsFile.close() print " %d reactions in reactions to roles dictionary" %(len(reactionsToRoles)) # Analyze the gap fill results for the specified model. step += 1 print "+++ Step %d: Run AnalyzeGapfillResults.py for model '%s/%s' +++" %(step, args.workspace, args.model) rxnprobs = args.rxnprobs resultsFileName = args.model + '.results' os.system("%s/AnalyzeGapfillResults.py -m %s -w %s --rxnprobs %s --url %s >%s" \ %(args.scriptDir, args.model, args.workspace, rxnprobs, args.fbaurl, resultsFileName)) genesToReactions = dict() resultsFile = open(resultsFileName, 'r') resultsFile.readline() # Throw away header line for line in resultsFile: fields = line.strip('\r\n').split('\t') if fields[0] == args.solution: if fields[5] == '0': # Only keep reactions that are not a reversibility change if fields[6]: # Only keep reactions that have a GPR rxnid = re.sub(r'rxn0*(\d+)', r'kb|rxn.\1', fields[1]) geneList = re.findall('fig\|\d+\.\d+\.peg\.\d+', fields[6]) for index in range(len(geneList)): if geneList[index] not in genesToReactions: genesToReactions[geneList[index]] = dict() genesToReactions[geneList[index]][rxnid] = 0.0 resultsFile.close() print " %d genes in genes to reactions dictionary" %(len(genesToReactions)) # Get the ProbAnno object from the workspace. step += 1 probanno = args.probanno print "+++ Step %d: Get ProbAnno object '%s/%s'" %(step, args.probannows, probanno) paObject = wsClient.get_object( { 'id': probanno, 'workspace': args.probannows, 'type': 'ProbAnno', 'auth': token } ) probAnno = paObject['data'] print " %d genes in ProbAnno roleset probabilities dictionary" %(len(probAnno['roleset_probabilities'])) # Need to go through rolesets dictionary # If an entry has more than one role, split into parts # Then run the array and combine any duplicate roles by adding probs # Parse the roleset probabilities from the ProbAnno object. step += 1 print "+++ Step %d: Parse rolesets into roles and adjust probabilities for duplicates +++" %(step) rolesetProbabilities = dict() for gene in probAnno['roleset_probabilities']: geneRoleList = probAnno['roleset_probabilities'][gene] geneRoleDict = dict() for index in range(len(geneRoleList)): prob = geneRoleList[index][1] # Probability for this roleset # Split multiple roles in roleset for this gene roleList = geneRoleList[index][0].split(separator) # If role occurs more than once, add up the probabilities for j in range(len(roleList)): if roleList[j] in geneRoleDict: geneRoleDict[roleList[j]] += prob else: geneRoleDict[roleList[j]] = prob rolesetProbabilities[gene] = geneRoleDict print " %d genes in parsed roleset probabilities dictionary" %(len(rolesetProbabilities)) # for each reaction in the reactions dictionary, find the roles in the rolesToReactions dictionary # then find the roles in the probanno object for the gene step += 1 print "+++ Step %d: Find maximum probability of reaction given gene +++" %(step) probsFile = open(args.model+'.probs', 'w') numProbs = 0 for gene in genesToReactions: if gene in rolesetProbabilities: geneRoleDict = rolesetProbabilities[gene] for reaction in genesToReactions[gene]: if reaction not in reactionsToRoles: print 'Why is reaction %s not in the reactionToRoles dictionary?' %(reaction) roleList = reactionsToRoles[reaction] for index in range(0,len(roleList)): for role in geneRoleDict: if role == roleList[index]: probsFile.write('P(%s | %s) = %f\n' %(reaction, gene, geneRoleDict[role])) genesToReactions[gene][reaction] = max(geneRoleDict[role], genesToReactions[gene][reaction]) numProbs += 1 else: print 'Gene %s not found in ProbAnno object' %(gene) probsFile.close() print " %d reaction probabilities set in genesToReactions dictionary" %(numProbs) # Get the PhenotypeSimulationSet object. step += 1 print "+++ Step %d: Get phenotype simulation set %s/%s +++" %(step, args.phenosimsetws, args.phenosimset) pssObject = wsClient.get_object( { 'id': args.phenosimset, 'workspace': args.phenosimsetws, 'type': 'PhenotypeSimulationSet', 'auth': token } ) phenoSimSet = pssObject['data'] # Make sure the model matches in the phenotype simulation set. if phenoSimSet['model'] != args.model or phenoSimSet['model_workspace'] != args.workspace: print 'Specified model %s/%s does not match model %s/%s in phenotype simulation set' \ %(args.workspace, args.model, phenoSimSet['model_workspace'], phenoSimSet['model']) print " %d simulations in phenotype simulation set" %(len(phenoSimSet['phenotypeSimulations'])) # Go through the list of simulations, for each gene and see if the gene is in the genesToReactions # dictionary. If so, mark it as known and include the probability. Otherwise, mark it as unknown # and set the probability to 0.5. In both cases, set a flag indicating if the simulation was # correct or incorrect. step += 1 print "+++ Step %d: Analyze phenotype simulation set results +++" %(step) numKnown = 0 resultList = list() for sim in phenoSimSet['phenotypeSimulations']: if sim[3] == 'CP' or sim[3] == 'CN': right = 1 else: right = 0 geneList = sim[0][0] for gene in geneList: if gene in genesToReactions: for reaction in genesToReactions[gene]: resultList.append( (gene, reaction, genesToReactions[gene][reaction], right ) ) numKnown += 1 else: resultList.append( (gene, 'unknown', 0.5, right) ) print " %d genes had reactions with known probabilities" %(numKnown) step += 1 print "+++ Step %d: Save analysis to file +++" %(step) resultList.sort(key=itemgetter(2), reverse=True) resultFile = open(args.phenosimset+'.results.csv', 'w') resultFile.write('prob,true,reaction\n') for index in range(len(resultList)): resultFile.write('%f,%d,%s\n' %(resultList[index][2], resultList[index][3], resultList[index][1])) print " Saved analysis to %s" %(resultFile.name) resultFile.close() exit(0)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 532, 84, 198, 198, 11748, 1822, 29572, 198, 11748, 25064, 198, 11748, 302, 198, 11748, 28686, 198, 11748, 12854, 1891, 198, 6738, 10088, 1330, 2378, 1136, 353, 11, 708, 81, 1136, 353, 198, 6738, 3182, 482, 8692, 13, 1676, 65, 14991, 2569, 62, 1236, 14221, 13, 11792, 1330, 4808, 961, 62, 259, 361, 576, 198, 6738, 3182, 482, 8692, 13, 5225, 10223, 16177, 13, 11792, 1330, 1635, 198, 198, 20147, 796, 705, 7061, 198, 15056, 257, 19449, 2134, 15284, 262, 3991, 3967, 11, 4633, 3965, 13, 16018, 453, 42848, 2279, 326, 2125, 470, 198, 259, 262, 7368, 2056, 13, 198, 7061, 6, 198, 25512, 1352, 796, 6, 20379, 6, 198, 305, 829, 2514, 49, 87, 5907, 8979, 5376, 796, 705, 305, 829, 62, 1462, 62, 260, 4658, 6, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 1676, 70, 11639, 8645, 378, 47, 831, 8690, 13252, 4093, 333, 303, 13, 9078, 3256, 6764, 28, 20147, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 5235, 462, 3256, 1037, 11639, 2389, 286, 19270, 284, 16602, 3256, 2223, 11639, 8095, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 19849, 3256, 1037, 11639, 2389, 286, 11521, 7625, 5901, 2746, 284, 16602, 3256, 2223, 11639, 8095, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 31024, 418, 320, 2617, 3256, 1037, 11639, 2389, 286, 34828, 8690, 8890, 1741, 7248, 2134, 284, 16602, 3256, 2223, 11639, 8095, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 5225, 10223, 3256, 1037, 11639, 2389, 286, 44573, 7268, 5563, 284, 16602, 3256, 2223, 11639, 8095, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 82, 2122, 3256, 1037, 11639, 9630, 1271, 286, 4610, 287, 11521, 7625, 5901, 2746, 3256, 2223, 11639, 8095, 3256, 4277, 11639, 15, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 31024, 418, 320, 2617, 18504, 3256, 1037, 11639, 5225, 10223, 7268, 34828, 8690, 8890, 1741, 7248, 2134, 357, 31642, 355, 44573, 611, 407, 7368, 8, 3256, 2223, 11639, 8095, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 11431, 3256, 1037, 11639, 32374, 3781, 284, 691, 428, 2056, 4006, 3256, 2223, 11639, 8095, 3256, 2244, 11639, 11431, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 1676, 65, 1236, 78, 3256, 1037, 11639, 2389, 286, 30873, 2025, 3919, 2134, 329, 19270, 3256, 2223, 11639, 8095, 3256, 2244, 11639, 1676, 65, 1236, 78, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 1676, 65, 1236, 1666, 3256, 1037, 11639, 5225, 10223, 7268, 30873, 2025, 3919, 2134, 357, 31642, 355, 44573, 611, 407, 7368, 8, 3256, 2223, 11639, 8095, 3256, 2244, 11639, 1676, 65, 1236, 1666, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 40914, 77, 1676, 1443, 3256, 1037, 11639, 2389, 286, 49715, 77, 2964, 1443, 2134, 329, 19270, 3256, 2223, 11639, 8095, 3256, 2244, 11639, 40914, 77, 1676, 1443, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 40914, 77, 1676, 1443, 18504, 3256, 1037, 11639, 5225, 10223, 7268, 49715, 77, 2964, 1443, 2134, 357, 31642, 355, 44573, 611, 407, 7368, 8, 3256, 2223, 11639, 8095, 3256, 2244, 11639, 40914, 77, 1676, 1443, 18504, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 12048, 12, 15908, 3256, 1037, 11639, 6978, 284, 8619, 351, 3781, 14750, 3256, 2223, 11639, 8095, 3256, 2244, 11639, 12048, 35277, 3256, 4277, 11639, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 69, 7012, 12, 6371, 3256, 1037, 11639, 6371, 329, 277, 7012, 21128, 2139, 3256, 2223, 11639, 8095, 3256, 2244, 11639, 21855, 2899, 75, 3256, 4277, 11639, 4023, 1378, 65, 952, 12, 7890, 12, 16, 13, 76, 6359, 13, 272, 75, 13, 9567, 14, 30416, 14, 69, 7012, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 18504, 12, 6371, 3256, 1037, 11639, 6371, 329, 44573, 2139, 3256, 2223, 11639, 8095, 3256, 2244, 11639, 18504, 6371, 3256, 4277, 11639, 4023, 1378, 74, 8692, 13, 385, 14, 30416, 14, 5225, 10223, 14, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 26498, 13, 1676, 65, 1236, 78, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 1676, 65, 1236, 78, 796, 26498, 13, 5235, 462, 1343, 45302, 1676, 65, 1236, 78, 6, 198, 220, 220, 220, 611, 26498, 13, 1676, 65, 1236, 1666, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 1676, 65, 1236, 1666, 796, 26498, 13, 5225, 10223, 198, 220, 220, 220, 611, 26498, 13, 40914, 77, 1676, 1443, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 40914, 77, 1676, 1443, 796, 26498, 13, 5235, 462, 1343, 45302, 40914, 77, 1676, 1443, 6, 198, 220, 220, 220, 611, 26498, 13, 40914, 77, 1676, 1443, 18504, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 40914, 77, 1676, 1443, 18504, 796, 26498, 13, 5225, 10223, 198, 220, 220, 220, 611, 26498, 13, 31024, 418, 320, 2617, 18504, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 31024, 418, 320, 2617, 18504, 796, 26498, 13, 5225, 10223, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 13610, 262, 7534, 329, 262, 2594, 356, 761, 13, 198, 220, 220, 220, 6284, 7890, 796, 4808, 961, 62, 259, 361, 576, 3419, 198, 220, 220, 220, 11241, 796, 6284, 7890, 17816, 30001, 20520, 198, 220, 220, 220, 266, 82, 11792, 796, 44573, 16177, 7, 22046, 13, 18504, 6371, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 10934, 9176, 284, 12737, 22155, 13, 198, 220, 220, 220, 2239, 796, 352, 198, 220, 220, 220, 3601, 366, 45340, 5012, 4064, 67, 25, 10934, 12737, 284, 9176, 22155, 49954, 1, 4064, 7, 9662, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 305, 829, 2514, 49, 87, 5907, 8979, 5376, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 7203, 439, 62, 305, 829, 62, 1484, 62, 259, 62, 27530, 930, 9176, 62, 1462, 62, 41887, 274, 930, 651, 62, 39468, 1056, 62, 19242, 8600, 532, 1462, 4686, 1875, 4, 82, 1, 4064, 7, 305, 829, 2514, 49, 87, 5907, 8979, 5376, 4008, 198, 220, 220, 220, 9176, 2514, 3041, 4658, 796, 8633, 3419, 198, 220, 220, 220, 12737, 2514, 49, 4316, 796, 8633, 3419, 198, 220, 220, 220, 1303, 5501, 1627, 286, 262, 2393, 468, 1440, 7032, 25, 357, 16, 8, 2597, 11, 357, 17, 8, 25345, 6056, 11, 357, 18, 8, 3716, 4686, 11, 357, 19, 8, 6317, 4686, 198, 220, 220, 220, 9176, 2514, 49, 87, 5907, 8979, 796, 1280, 7, 305, 829, 2514, 49, 87, 5907, 8979, 5376, 11, 705, 81, 11537, 198, 220, 220, 220, 329, 1627, 287, 9176, 2514, 49, 87, 5907, 8979, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 1627, 13, 36311, 10786, 59, 81, 59, 77, 27691, 35312, 10786, 59, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6317, 796, 7032, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6317, 407, 287, 12737, 2514, 49, 4316, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12737, 2514, 49, 4316, 58, 260, 2673, 60, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 12737, 2514, 49, 4316, 58, 260, 2673, 4083, 33295, 7, 25747, 58, 15, 12962, 198, 220, 220, 220, 9176, 2514, 49, 87, 5907, 8979, 13, 19836, 3419, 198, 220, 220, 220, 3601, 366, 220, 4064, 67, 12737, 287, 12737, 284, 9176, 22155, 1, 4064, 7, 11925, 7, 260, 4658, 2514, 49, 4316, 4008, 628, 220, 220, 220, 1303, 16213, 2736, 262, 7625, 6070, 2482, 329, 262, 7368, 2746, 13, 198, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 3601, 366, 45340, 5012, 4064, 67, 25, 5660, 16213, 2736, 38, 499, 20797, 25468, 13, 9078, 329, 2746, 705, 4, 82, 14, 4, 82, 6, 49954, 1, 4064, 7, 9662, 11, 26498, 13, 5225, 10223, 11, 26498, 13, 19849, 8, 198, 220, 220, 220, 374, 87, 77, 1676, 1443, 796, 26498, 13, 40914, 77, 1676, 1443, 198, 220, 220, 220, 2482, 8979, 5376, 796, 26498, 13, 19849, 1343, 45302, 43420, 6, 198, 220, 220, 220, 28686, 13, 10057, 7203, 4, 82, 14, 37702, 2736, 38, 499, 20797, 25468, 13, 9078, 532, 76, 4064, 82, 532, 86, 4064, 82, 1377, 40914, 77, 1676, 1443, 4064, 82, 1377, 6371, 4064, 82, 1875, 4, 82, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 7, 22046, 13, 12048, 35277, 11, 26498, 13, 19849, 11, 26498, 13, 5225, 10223, 11, 374, 87, 77, 1676, 1443, 11, 26498, 13, 21855, 2899, 75, 11, 2482, 8979, 5376, 4008, 198, 220, 220, 220, 10812, 2514, 3041, 4658, 796, 8633, 3419, 198, 220, 220, 220, 2482, 8979, 796, 1280, 7, 43420, 8979, 5376, 11, 705, 81, 11537, 198, 220, 220, 220, 2482, 8979, 13, 961, 1370, 3419, 1303, 22481, 1497, 13639, 1627, 198, 220, 220, 220, 329, 1627, 287, 2482, 8979, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 1627, 13, 36311, 10786, 59, 81, 59, 77, 27691, 35312, 10786, 59, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7032, 58, 15, 60, 6624, 26498, 13, 82, 2122, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7032, 58, 20, 60, 6624, 705, 15, 10354, 1303, 5514, 1394, 12737, 326, 389, 407, 257, 10372, 2247, 1487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7032, 58, 21, 5974, 1303, 5514, 1394, 12737, 326, 423, 257, 402, 4805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 87, 77, 312, 796, 302, 13, 7266, 7, 81, 6, 40914, 77, 15, 9, 38016, 67, 28988, 3256, 374, 6, 32812, 91, 40914, 77, 13, 59, 16, 3256, 7032, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 8053, 796, 302, 13, 19796, 439, 10786, 5647, 59, 91, 59, 67, 10, 17405, 59, 67, 10, 17405, 22071, 17405, 59, 67, 10, 3256, 7032, 58, 21, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 287, 2837, 7, 11925, 7, 70, 1734, 8053, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9779, 8053, 58, 9630, 60, 407, 287, 10812, 2514, 3041, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10812, 2514, 3041, 4658, 58, 70, 1734, 8053, 58, 9630, 11907, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10812, 2514, 3041, 4658, 58, 70, 1734, 8053, 58, 9630, 60, 7131, 40914, 77, 312, 60, 796, 657, 13, 15, 628, 220, 220, 220, 220, 198, 220, 220, 220, 2482, 8979, 13, 19836, 3419, 198, 220, 220, 220, 3601, 366, 220, 4064, 67, 10812, 287, 10812, 284, 12737, 22155, 1, 4064, 7, 11925, 7, 5235, 274, 2514, 3041, 4658, 4008, 628, 220, 220, 220, 1303, 3497, 262, 30873, 2025, 3919, 2134, 422, 262, 44573, 13, 198, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 1861, 1236, 78, 796, 26498, 13, 1676, 65, 1236, 78, 198, 220, 220, 220, 3601, 366, 45340, 5012, 4064, 67, 25, 3497, 30873, 2025, 3919, 2134, 705, 4, 82, 14, 4, 82, 29653, 4064, 7, 9662, 11, 26498, 13, 1676, 65, 1236, 1666, 11, 1861, 1236, 78, 8, 198, 220, 220, 220, 14187, 10267, 796, 266, 82, 11792, 13, 1136, 62, 15252, 7, 1391, 705, 312, 10354, 1861, 1236, 78, 11, 705, 5225, 10223, 10354, 26498, 13, 1676, 65, 1236, 1666, 11, 705, 4906, 10354, 705, 2964, 65, 2025, 3919, 3256, 705, 18439, 10354, 11241, 1782, 1267, 198, 220, 220, 220, 1861, 2025, 3919, 796, 14187, 10267, 17816, 7890, 20520, 198, 220, 220, 220, 3601, 366, 220, 4064, 67, 10812, 287, 30873, 2025, 3919, 9176, 316, 39522, 22155, 1, 4064, 7, 11925, 7, 1676, 65, 2025, 3919, 17816, 305, 829, 316, 62, 1676, 65, 5738, 20520, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 10664, 284, 467, 832, 9176, 1039, 22155, 198, 220, 220, 220, 1303, 1002, 281, 5726, 468, 517, 621, 530, 2597, 11, 6626, 656, 3354, 198, 220, 220, 220, 1303, 3244, 1057, 262, 7177, 290, 12082, 597, 23418, 9176, 416, 4375, 386, 1443, 198, 220, 220, 220, 1303, 2547, 325, 262, 9176, 316, 39522, 422, 262, 30873, 2025, 3919, 2134, 13, 198, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 3601, 366, 45340, 5012, 4064, 67, 25, 2547, 325, 9176, 1039, 656, 9176, 290, 4532, 39522, 329, 14184, 16856, 49954, 1, 4064, 7, 9662, 8, 198, 220, 220, 220, 9176, 316, 2964, 65, 5738, 796, 8633, 3419, 198, 220, 220, 220, 329, 9779, 287, 1861, 2025, 3919, 17816, 305, 829, 316, 62, 1676, 65, 5738, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 47445, 8053, 796, 1861, 2025, 3919, 17816, 305, 829, 316, 62, 1676, 65, 5738, 6, 7131, 70, 1734, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 47445, 35, 713, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 287, 2837, 7, 11925, 7, 70, 1734, 47445, 8053, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1861, 796, 9779, 47445, 8053, 58, 9630, 7131, 16, 60, 1303, 30873, 1799, 329, 428, 9176, 316, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27758, 3294, 9176, 287, 9176, 316, 329, 428, 9779, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2597, 8053, 796, 9779, 47445, 8053, 58, 9630, 7131, 15, 4083, 35312, 7, 25512, 1352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 2597, 8833, 517, 621, 1752, 11, 751, 510, 262, 39522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 7, 18090, 8053, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2597, 8053, 58, 73, 60, 287, 9779, 47445, 35, 713, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 47445, 35, 713, 58, 18090, 8053, 58, 73, 11907, 15853, 1861, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 47445, 35, 713, 58, 18090, 8053, 58, 73, 11907, 796, 1861, 198, 220, 220, 220, 220, 220, 220, 220, 9176, 316, 2964, 65, 5738, 58, 70, 1734, 60, 796, 9779, 47445, 35, 713, 198, 220, 220, 220, 3601, 366, 220, 4064, 67, 10812, 287, 44267, 9176, 316, 39522, 22155, 1, 4064, 7, 11925, 7, 305, 829, 316, 2964, 65, 5738, 4008, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 329, 1123, 6317, 287, 262, 12737, 22155, 11, 1064, 262, 9176, 287, 262, 9176, 2514, 3041, 4658, 22155, 198, 220, 220, 220, 1303, 788, 1064, 262, 9176, 287, 262, 1861, 1236, 78, 2134, 329, 262, 9779, 198, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 3601, 366, 45340, 5012, 4064, 67, 25, 9938, 5415, 12867, 286, 6317, 1813, 9779, 49954, 1, 4064, 7, 9662, 8, 198, 220, 220, 220, 386, 1443, 8979, 796, 1280, 7, 22046, 13, 19849, 10, 4458, 1676, 1443, 3256, 705, 86, 11537, 198, 220, 220, 220, 997, 2964, 1443, 796, 657, 198, 220, 220, 220, 329, 9779, 287, 10812, 2514, 3041, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9779, 287, 9176, 316, 2964, 65, 5738, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 47445, 35, 713, 796, 9176, 316, 2964, 65, 5738, 58, 70, 1734, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6317, 287, 10812, 2514, 3041, 4658, 58, 70, 1734, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6317, 407, 287, 12737, 2514, 49, 4316, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 5195, 318, 6317, 4064, 82, 407, 287, 262, 6317, 2514, 49, 4316, 22155, 8348, 4064, 7, 260, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2597, 8053, 796, 12737, 2514, 49, 4316, 58, 260, 2673, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 287, 2837, 7, 15, 11, 11925, 7, 18090, 8053, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2597, 287, 9779, 47445, 35, 713, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2597, 6624, 2597, 8053, 58, 9630, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 386, 1443, 8979, 13, 13564, 10786, 47, 7, 4, 82, 930, 4064, 82, 8, 796, 4064, 69, 59, 77, 6, 4064, 7, 260, 2673, 11, 9779, 11, 9779, 47445, 35, 713, 58, 18090, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10812, 2514, 3041, 4658, 58, 70, 1734, 7131, 260, 2673, 60, 796, 3509, 7, 70, 1734, 47445, 35, 713, 58, 18090, 4357, 10812, 2514, 3041, 4658, 58, 70, 1734, 7131, 260, 2673, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 2964, 1443, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 39358, 4064, 82, 407, 1043, 287, 30873, 2025, 3919, 2134, 6, 4064, 7, 70, 1734, 8, 198, 220, 220, 220, 386, 1443, 8979, 13, 19836, 3419, 198, 220, 220, 220, 3601, 366, 220, 4064, 67, 6317, 39522, 900, 287, 10812, 2514, 3041, 4658, 22155, 1, 4064, 7, 22510, 2964, 1443, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3497, 262, 34828, 8690, 8890, 1741, 7248, 2134, 13, 198, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 3601, 366, 45340, 5012, 4064, 67, 25, 3497, 47174, 18640, 900, 4064, 82, 14, 4, 82, 49954, 1, 4064, 7, 9662, 11, 26498, 13, 31024, 418, 320, 2617, 18504, 11, 26498, 13, 31024, 418, 320, 2617, 8, 198, 220, 220, 220, 279, 824, 10267, 796, 266, 82, 11792, 13, 1136, 62, 15252, 7, 1391, 705, 312, 10354, 26498, 13, 31024, 418, 320, 2617, 11, 705, 5225, 10223, 10354, 26498, 13, 31024, 418, 320, 2617, 18504, 11, 705, 4906, 10354, 705, 47, 831, 8690, 8890, 1741, 7248, 3256, 705, 18439, 10354, 11241, 1782, 1267, 198, 220, 220, 220, 6566, 78, 8890, 7248, 796, 279, 824, 10267, 17816, 7890, 20520, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6889, 1654, 262, 2746, 7466, 287, 262, 47174, 18640, 900, 13, 198, 220, 220, 220, 611, 6566, 78, 8890, 7248, 17816, 19849, 20520, 14512, 26498, 13, 19849, 393, 6566, 78, 8890, 7248, 17816, 19849, 62, 5225, 10223, 20520, 14512, 26498, 13, 5225, 10223, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 22882, 1431, 2746, 4064, 82, 14, 4, 82, 857, 407, 2872, 2746, 4064, 82, 14, 4, 82, 287, 47174, 18640, 900, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 7, 22046, 13, 5225, 10223, 11, 26498, 13, 19849, 11, 6566, 78, 8890, 7248, 17816, 19849, 62, 5225, 10223, 6, 4357, 6566, 78, 8890, 7248, 17816, 19849, 6, 12962, 198, 220, 220, 220, 3601, 366, 220, 4064, 67, 27785, 287, 47174, 18640, 900, 1, 4064, 7, 11925, 7, 31024, 78, 8890, 7248, 17816, 31024, 8690, 8890, 5768, 20520, 4008, 628, 220, 220, 220, 1303, 1514, 832, 262, 1351, 286, 27785, 11, 329, 1123, 9779, 290, 766, 611, 262, 9779, 318, 287, 262, 10812, 2514, 3041, 4658, 198, 220, 220, 220, 1303, 22155, 13, 220, 1002, 523, 11, 1317, 340, 355, 1900, 290, 2291, 262, 12867, 13, 220, 15323, 11, 1317, 340, 355, 6439, 198, 220, 220, 220, 1303, 290, 900, 262, 12867, 284, 657, 13, 20, 13, 220, 554, 1111, 2663, 11, 900, 257, 6056, 12739, 611, 262, 18640, 373, 198, 220, 220, 220, 1303, 3376, 393, 11491, 13, 198, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 3601, 366, 45340, 5012, 4064, 67, 25, 16213, 2736, 47174, 18640, 900, 2482, 49954, 1, 4064, 7, 9662, 8, 198, 220, 220, 220, 997, 29870, 796, 657, 198, 220, 220, 220, 1255, 8053, 796, 1351, 3419, 198, 220, 220, 220, 329, 985, 287, 6566, 78, 8890, 7248, 17816, 31024, 8690, 8890, 5768, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 985, 58, 18, 60, 6624, 705, 8697, 6, 393, 985, 58, 18, 60, 6624, 705, 44175, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 826, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 826, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 8053, 796, 985, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 9779, 287, 9779, 8053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9779, 287, 10812, 2514, 3041, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6317, 287, 10812, 2514, 3041, 4658, 58, 70, 1734, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 8053, 13, 33295, 7, 357, 70, 1734, 11, 6317, 11, 10812, 2514, 3041, 4658, 58, 70, 1734, 7131, 260, 2673, 4357, 826, 1267, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 29870, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 8053, 13, 33295, 7, 357, 70, 1734, 11, 705, 34680, 3256, 657, 13, 20, 11, 826, 8, 1267, 198, 220, 220, 220, 3601, 366, 220, 4064, 67, 10812, 550, 12737, 351, 1900, 39522, 1, 4064, 7, 22510, 29870, 8, 628, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 3601, 366, 45340, 5012, 4064, 67, 25, 12793, 3781, 284, 2393, 49954, 1, 4064, 7, 9662, 8, 198, 220, 220, 220, 1255, 8053, 13, 30619, 7, 2539, 28, 9186, 1136, 353, 7, 17, 828, 9575, 28, 17821, 8, 198, 220, 220, 220, 1255, 8979, 796, 1280, 7, 22046, 13, 31024, 418, 320, 2617, 10, 4458, 43420, 13, 40664, 3256, 705, 86, 11537, 198, 220, 220, 220, 1255, 8979, 13, 13564, 10786, 1676, 65, 11, 7942, 11, 260, 2673, 59, 77, 11537, 198, 220, 220, 220, 329, 6376, 287, 2837, 7, 11925, 7, 20274, 8053, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 8979, 13, 13564, 10786, 4, 69, 11, 4, 67, 11, 4, 82, 59, 77, 6, 4064, 7, 20274, 8053, 58, 9630, 7131, 17, 4357, 1255, 8053, 58, 9630, 7131, 18, 4357, 1255, 8053, 58, 9630, 7131, 16, 60, 4008, 198, 220, 220, 220, 3601, 366, 220, 8858, 276, 3781, 284, 4064, 82, 1, 4064, 7, 20274, 8979, 13, 3672, 8, 198, 220, 220, 220, 1255, 8979, 13, 19836, 3419, 198, 220, 220, 220, 8420, 7, 15, 8, 198, 220, 220, 220, 220, 198 ]
2.539645
4,225
# Imports the Google Cloud client library from google.cloud import language from google.cloud.language import enums from google.cloud.language import types import json import re
[ 2, 1846, 3742, 262, 3012, 10130, 5456, 5888, 198, 6738, 23645, 13, 17721, 1330, 3303, 198, 6738, 23645, 13, 17721, 13, 16129, 1330, 551, 5700, 198, 6738, 23645, 13, 17721, 13, 16129, 1330, 3858, 198, 198, 11748, 33918, 198, 11748, 302, 198 ]
4.261905
42
from requests_ntlm import HttpNtlmAuth __all__ = [HttpNtlmAuth]
[ 6738, 7007, 62, 429, 75, 76, 1330, 367, 29281, 45, 28781, 76, 30515, 198, 198, 834, 439, 834, 796, 685, 43481, 45, 28781, 76, 30515, 60 ]
2.461538
26
# Generated by Django 3.0.7 on 2020-06-30 14:42 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 22, 319, 12131, 12, 3312, 12, 1270, 1478, 25, 3682, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
"""Tutorial: Guess the Number, by Al Sweigart [email protected] Part 1 of a tutorial to make a "Guess the Number" game, bit by bit.""" # Try copying the code in this program on your own and running the # program before moving on to part 2. (You don't have to copy the # comments.) # Everything after a # is a "comment" and is ignored by the computer. # You can use comments to write notes and reminders in your code. # This program really only has three lines of actual code. # Programs start executing instructions at the top of the file # and go down. # The print() function displays text on the screen. Notice that # the ' single quotes are not printed: print('Hello! What is your name?') # The input() function lets the player type text in and press Enter. The # text is stored in a variable named playerName: playerName = input() # This displays the name that the player typed in: print('It is good to meet you, ' + playerName)
[ 37811, 51, 44917, 25, 37571, 262, 7913, 11, 416, 978, 19372, 328, 433, 435, 31, 259, 1151, 4480, 29412, 13, 785, 198, 198, 7841, 352, 286, 257, 11808, 284, 787, 257, 366, 8205, 408, 262, 7913, 1, 983, 11, 1643, 416, 1643, 526, 15931, 198, 198, 2, 9993, 23345, 262, 2438, 287, 428, 1430, 319, 534, 898, 290, 2491, 262, 198, 2, 1430, 878, 3867, 319, 284, 636, 362, 13, 357, 1639, 836, 470, 423, 284, 4866, 262, 198, 2, 3651, 2014, 198, 198, 2, 11391, 706, 257, 1303, 318, 257, 366, 23893, 1, 290, 318, 9514, 416, 262, 3644, 13, 198, 2, 921, 460, 779, 3651, 284, 3551, 4710, 290, 40687, 287, 534, 2438, 13, 198, 2, 770, 1430, 1107, 691, 468, 1115, 3951, 286, 4036, 2438, 13, 198, 198, 2, 26179, 923, 23710, 7729, 379, 262, 1353, 286, 262, 2393, 198, 2, 290, 467, 866, 13, 198, 198, 2, 383, 3601, 3419, 2163, 11298, 2420, 319, 262, 3159, 13, 17641, 326, 198, 2, 262, 705, 2060, 13386, 389, 407, 10398, 25, 198, 4798, 10786, 15496, 0, 1867, 318, 534, 1438, 8348, 8, 198, 198, 2, 383, 5128, 3419, 2163, 8781, 262, 2137, 2099, 2420, 287, 290, 1803, 6062, 13, 383, 198, 2, 2420, 318, 8574, 287, 257, 7885, 3706, 2137, 5376, 25, 198, 7829, 5376, 796, 5128, 3419, 198, 198, 2, 770, 11298, 262, 1438, 326, 262, 2137, 25683, 287, 25, 198, 4798, 10786, 1026, 318, 922, 284, 1826, 345, 11, 705, 1343, 2137, 5376, 8, 198 ]
3.799197
249
from economic.auth import Authentication import pytest from _pytest.fixtures import SubRequest @pytest.fixture
[ 6738, 3034, 13, 18439, 1330, 48191, 198, 11748, 12972, 9288, 198, 6738, 4808, 9078, 9288, 13, 69, 25506, 1330, 3834, 18453, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
3.766667
30
#!/usr/bin/env python # -*- coding: utf-8 -*- """Description Christopher J.C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to Rank with Nonsmooth Cost Functions. In Proceedings of NIPS conference. 193–200. """ import torch import torch.nn.functional as F from ptranking.data.data_utils import LABEL_TYPE from ptranking.metric.metric_utils import get_delta_ndcg from ptranking.base.adhoc_ranker import AdhocNeuralRanker from ptranking.ltr_adhoc.eval.parameter import ModelParameter from ptranking.ltr_adhoc.util.lambda_utils import get_pairwise_comp_probs class LambdaRank(AdhocNeuralRanker): ''' Christopher J.C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to Rank with Nonsmooth Cost Functions. In Proceedings of NIPS conference. 193–200. ''' def custom_loss_function(self, batch_preds, batch_std_labels, **kwargs): ''' @param batch_preds: [batch, ranking_size] each row represents the relevance predictions for documents associated with the same query @param batch_std_labels: [batch, ranking_size] each row represents the standard relevance grades for documents associated with the same query @param kwargs: @return: ''' assert 'label_type' in kwargs and LABEL_TYPE.MultiLabel == kwargs['label_type'] label_type = kwargs['label_type'] assert 'presort' in kwargs and kwargs['presort'] is True # aiming for direct usage of ideal ranking # sort documents according to the predicted relevance batch_descending_preds, batch_pred_desc_inds = torch.sort(batch_preds, dim=1, descending=True) # reorder batch_stds correspondingly so as to make it consistent. # BTW, batch_stds[batch_preds_sorted_inds] only works with 1-D tensor batch_predict_rankings = torch.gather(batch_std_labels, dim=1, index=batch_pred_desc_inds) batch_p_ij, batch_std_p_ij = get_pairwise_comp_probs(batch_preds=batch_descending_preds, batch_std_labels=batch_predict_rankings, sigma=self.sigma) batch_delta_ndcg = get_delta_ndcg(batch_ideal_rankings=batch_std_labels, batch_predict_rankings=batch_predict_rankings, label_type=label_type, device=self.device) _batch_loss = F.binary_cross_entropy(input=torch.triu(batch_p_ij, diagonal=1), target=torch.triu(batch_std_p_ij, diagonal=1), weight=torch.triu(batch_delta_ndcg, diagonal=1), reduction='none') batch_loss = torch.sum(torch.sum(_batch_loss, dim=(2, 1))) self.optimizer.zero_grad() batch_loss.backward() self.optimizer.step() return batch_loss ###### Parameter of LambdaRank ###### class LambdaRankParameter(ModelParameter): ''' Parameter class for LambdaRank ''' def default_para_dict(self): """ Default parameter setting for LambdaRank :return: """ self.lambda_para_dict = dict(model_id=self.model_id, sigma=1.0) return self.lambda_para_dict def to_para_string(self, log=False, given_para_dict=None): """ String identifier of parameters :param log: :param given_para_dict: a given dict, which is used for maximum setting w.r.t. grid-search :return: """ # using specified para-dict or inner para-dict lambda_para_dict = given_para_dict if given_para_dict is not None else self.lambda_para_dict s1, s2 = (':', '\n') if log else ('_', '_') lambdarank_para_str = s1.join(['Sigma', '{:,g}'.format(lambda_para_dict['sigma'])]) return lambdarank_para_str def grid_search(self): """ Iterator of parameter settings for LambdaRank """ if self.use_json: choice_sigma = self.json_dict['sigma'] else: choice_sigma = [5.0, 1.0] if self.debug else [1.0] # 1.0, 10.0, 50.0, 100.0 for sigma in choice_sigma: self.lambda_para_dict = dict(model_id=self.model_id, sigma=sigma) yield self.lambda_para_dict
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 11828, 198, 38025, 449, 13, 34, 13, 5481, 3212, 11, 5199, 38000, 3919, 11, 290, 2264, 420, 8730, 1004, 13, 4793, 13, 198, 41730, 284, 10916, 351, 399, 684, 76, 5226, 6446, 40480, 13, 554, 30641, 286, 24947, 3705, 4495, 13, 29691, 1906, 2167, 13, 198, 37811, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 6738, 50116, 15230, 13, 7890, 13, 7890, 62, 26791, 1330, 406, 6242, 3698, 62, 25216, 198, 6738, 50116, 15230, 13, 4164, 1173, 13, 4164, 1173, 62, 26791, 1330, 651, 62, 67, 12514, 62, 358, 66, 70, 198, 6738, 50116, 15230, 13, 8692, 13, 24411, 420, 62, 43027, 263, 1330, 1215, 71, 420, 8199, 1523, 27520, 263, 198, 6738, 50116, 15230, 13, 75, 2213, 62, 24411, 420, 13, 18206, 13, 17143, 2357, 1330, 9104, 36301, 198, 6738, 50116, 15230, 13, 75, 2213, 62, 24411, 420, 13, 22602, 13, 50033, 62, 26791, 1330, 651, 62, 24874, 3083, 62, 5589, 62, 1676, 1443, 198, 198, 4871, 21114, 6814, 27520, 7, 2782, 71, 420, 8199, 1523, 27520, 263, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 12803, 449, 13, 34, 13, 5481, 3212, 11, 5199, 38000, 3919, 11, 290, 2264, 420, 8730, 1004, 13, 4793, 13, 198, 220, 220, 220, 18252, 284, 10916, 351, 399, 684, 76, 5226, 6446, 40480, 13, 554, 30641, 286, 24947, 3705, 4495, 13, 29691, 1906, 2167, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 2183, 62, 22462, 62, 8818, 7, 944, 11, 15458, 62, 28764, 82, 11, 15458, 62, 19282, 62, 23912, 1424, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 15458, 62, 28764, 82, 25, 685, 43501, 11, 12759, 62, 7857, 60, 1123, 5752, 6870, 262, 23082, 16277, 329, 4963, 3917, 351, 262, 976, 12405, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 15458, 62, 19282, 62, 23912, 1424, 25, 685, 43501, 11, 12759, 62, 7857, 60, 1123, 5752, 6870, 262, 3210, 23082, 19051, 329, 4963, 3917, 351, 262, 976, 12405, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 705, 18242, 62, 4906, 6, 287, 479, 86, 22046, 290, 406, 6242, 3698, 62, 25216, 13, 29800, 33986, 6624, 479, 86, 22046, 17816, 18242, 62, 4906, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 4906, 796, 479, 86, 22046, 17816, 18242, 62, 4906, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 705, 18302, 419, 6, 287, 479, 86, 22046, 290, 479, 86, 22046, 17816, 18302, 419, 20520, 318, 6407, 220, 1303, 17272, 329, 1277, 8748, 286, 7306, 12759, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3297, 4963, 1864, 284, 262, 11001, 23082, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 20147, 1571, 62, 28764, 82, 11, 15458, 62, 28764, 62, 20147, 62, 521, 82, 796, 28034, 13, 30619, 7, 43501, 62, 28764, 82, 11, 5391, 28, 16, 11, 31491, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 302, 2875, 15458, 62, 301, 9310, 6053, 4420, 523, 355, 284, 787, 340, 6414, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 22205, 54, 11, 15458, 62, 301, 9310, 58, 43501, 62, 28764, 82, 62, 82, 9741, 62, 521, 82, 60, 691, 2499, 351, 352, 12, 35, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 79, 17407, 62, 43027, 654, 796, 28034, 13, 70, 1032, 7, 43501, 62, 19282, 62, 23912, 1424, 11, 5391, 28, 16, 11, 6376, 28, 43501, 62, 28764, 62, 20147, 62, 521, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 79, 62, 2926, 11, 15458, 62, 19282, 62, 79, 62, 2926, 796, 651, 62, 24874, 3083, 62, 5589, 62, 1676, 1443, 7, 43501, 62, 28764, 82, 28, 43501, 62, 20147, 1571, 62, 28764, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 19282, 62, 23912, 1424, 28, 43501, 62, 79, 17407, 62, 43027, 654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 28, 944, 13, 82, 13495, 8, 628, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 67, 12514, 62, 358, 66, 70, 796, 651, 62, 67, 12514, 62, 358, 66, 70, 7, 43501, 62, 485, 282, 62, 43027, 654, 28, 43501, 62, 19282, 62, 23912, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 79, 17407, 62, 43027, 654, 28, 43501, 62, 79, 17407, 62, 43027, 654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 4906, 28, 18242, 62, 4906, 11, 3335, 28, 944, 13, 25202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 43501, 62, 22462, 796, 376, 13, 39491, 62, 19692, 62, 298, 28338, 7, 15414, 28, 13165, 354, 13, 28461, 84, 7, 43501, 62, 79, 62, 2926, 11, 40039, 28, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 28, 13165, 354, 13, 28461, 84, 7, 43501, 62, 19282, 62, 79, 62, 2926, 11, 40039, 28, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 28, 13165, 354, 13, 28461, 84, 7, 43501, 62, 67, 12514, 62, 358, 66, 70, 11, 40039, 28, 16, 828, 7741, 11639, 23108, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 22462, 796, 28034, 13, 16345, 7, 13165, 354, 13, 16345, 28264, 43501, 62, 22462, 11, 5391, 16193, 17, 11, 352, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40085, 7509, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 22462, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40085, 7509, 13, 9662, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 15458, 62, 22462, 628, 198, 4242, 2235, 25139, 2357, 286, 21114, 6814, 27520, 46424, 2, 198, 198, 4871, 21114, 6814, 27520, 36301, 7, 17633, 36301, 2599, 198, 220, 220, 220, 705, 7061, 25139, 2357, 1398, 329, 21114, 6814, 27520, 705, 7061, 628, 220, 220, 220, 825, 4277, 62, 1845, 64, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15161, 11507, 4634, 329, 21114, 6814, 27520, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 50033, 62, 1845, 64, 62, 11600, 796, 8633, 7, 19849, 62, 312, 28, 944, 13, 19849, 62, 312, 11, 264, 13495, 28, 16, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 50033, 62, 1845, 64, 62, 11600, 628, 220, 220, 220, 825, 284, 62, 1845, 64, 62, 8841, 7, 944, 11, 2604, 28, 25101, 11, 1813, 62, 1845, 64, 62, 11600, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10903, 27421, 286, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1813, 62, 1845, 64, 62, 11600, 25, 257, 1813, 8633, 11, 543, 318, 973, 329, 5415, 4634, 266, 13, 81, 13, 83, 13, 10706, 12, 12947, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1262, 7368, 31215, 12, 11600, 393, 8434, 31215, 12, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 62, 1845, 64, 62, 11600, 796, 1813, 62, 1845, 64, 62, 11600, 611, 1813, 62, 1845, 64, 62, 11600, 318, 407, 6045, 2073, 2116, 13, 50033, 62, 1845, 64, 62, 11600, 628, 220, 220, 220, 220, 220, 220, 220, 264, 16, 11, 264, 17, 796, 357, 10354, 3256, 705, 59, 77, 11537, 611, 2604, 2073, 19203, 62, 3256, 705, 62, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 19343, 27455, 962, 62, 1845, 64, 62, 2536, 796, 264, 16, 13, 22179, 7, 17816, 50, 13495, 3256, 705, 90, 45299, 70, 92, 4458, 18982, 7, 50033, 62, 1845, 64, 62, 11600, 17816, 82, 13495, 6, 12962, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19343, 27455, 962, 62, 1845, 64, 62, 2536, 628, 220, 220, 220, 825, 10706, 62, 12947, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40806, 1352, 286, 11507, 6460, 329, 21114, 6814, 27520, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1904, 62, 17752, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 62, 82, 13495, 796, 2116, 13, 17752, 62, 11600, 17816, 82, 13495, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 62, 82, 13495, 796, 685, 20, 13, 15, 11, 352, 13, 15, 60, 611, 2116, 13, 24442, 2073, 685, 16, 13, 15, 60, 220, 1303, 352, 13, 15, 11, 838, 13, 15, 11, 2026, 13, 15, 11, 1802, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 329, 264, 13495, 287, 3572, 62, 82, 13495, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 50033, 62, 1845, 64, 62, 11600, 796, 8633, 7, 19849, 62, 312, 28, 944, 13, 19849, 62, 312, 11, 264, 13495, 28, 82, 13495, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 2116, 13, 50033, 62, 1845, 64, 62, 11600, 198 ]
2.236582
1,919
# AUTO GENERATED FILE - DO NOT EDIT from dash.development.base_component import Component, _explicitize_args class TableOfContents(Component): """A TableOfContents component. Build a table of contents list with links to the headers tag. Keyword arguments: - id (string; optional): Unique identifier for the component. - className (string; optional): className for the top ul component. - content_selector (string; optional): Selector to search for building the toc. - headings (list; optional): Headings tag name to search. The table of contents will be leveled according to the order of the headings prop. - table_of_contents (list; optional): The table of content in object form. - style (dict; optional): Style of the parent <ul> - setProps (boolean | number | string | dict | list; optional)""" @_explicitize_args
[ 2, 47044, 46, 24700, 1137, 11617, 45811, 532, 8410, 5626, 48483, 198, 198, 6738, 14470, 13, 31267, 13, 8692, 62, 42895, 1330, 35100, 11, 4808, 20676, 3628, 1096, 62, 22046, 628, 198, 4871, 8655, 5189, 15842, 7, 21950, 2599, 198, 220, 220, 220, 37227, 32, 8655, 5189, 15842, 7515, 13, 198, 15580, 257, 3084, 286, 10154, 1351, 351, 6117, 284, 262, 24697, 7621, 13, 198, 198, 9218, 4775, 7159, 25, 198, 12, 4686, 357, 8841, 26, 11902, 2599, 30015, 27421, 329, 262, 7515, 13, 198, 12, 1398, 5376, 357, 8841, 26, 11902, 2599, 1398, 5376, 329, 262, 1353, 14856, 7515, 13, 198, 12, 2695, 62, 19738, 273, 357, 8841, 26, 11902, 2599, 9683, 273, 284, 2989, 329, 2615, 262, 284, 66, 13, 198, 12, 1182, 654, 357, 4868, 26, 11902, 2599, 7123, 654, 7621, 1438, 284, 2989, 13, 198, 464, 3084, 286, 10154, 481, 307, 33297, 1864, 284, 262, 1502, 286, 198, 1169, 1182, 654, 2632, 13, 198, 12, 3084, 62, 1659, 62, 3642, 658, 357, 4868, 26, 11902, 2599, 383, 3084, 286, 2695, 287, 2134, 1296, 13, 198, 12, 3918, 357, 11600, 26, 11902, 2599, 17738, 286, 262, 2560, 1279, 377, 29, 198, 12, 900, 2964, 862, 357, 2127, 21052, 930, 1271, 930, 4731, 930, 8633, 930, 1351, 26, 11902, 8, 37811, 198, 220, 220, 220, 2488, 62, 20676, 3628, 1096, 62, 22046, 198 ]
3.688889
225
"""Test asyncpraw.models.front.""" from .. import IntegrationTest
[ 37811, 14402, 355, 2047, 13155, 1831, 13, 27530, 13, 8534, 526, 15931, 198, 6738, 11485, 1330, 38410, 14402, 628 ]
3.526316
19
from flask import render_template, flash, redirect, request, url_for from app import app from .forms import ConfigForm from .scrabble_logic import Scrabble tile_draw = [] grouped = {} hasblank = 0 @app.route('/') @app.route('/index') @app.route('/table') @app.route('/config', methods=['GET', 'POST'])
[ 6738, 42903, 1330, 8543, 62, 28243, 11, 7644, 11, 18941, 11, 2581, 11, 19016, 62, 1640, 198, 6738, 598, 1330, 598, 198, 6738, 764, 23914, 1330, 17056, 8479, 198, 6738, 764, 1416, 25619, 903, 62, 6404, 291, 1330, 1446, 25619, 903, 198, 198, 40927, 62, 19334, 796, 17635, 198, 8094, 276, 796, 23884, 198, 10134, 27190, 796, 657, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 9630, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11487, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11250, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198 ]
2.906542
107
import enum from elkconfdparser import errors
[ 11748, 33829, 198, 198, 6738, 1288, 74, 10414, 26059, 28198, 1330, 8563, 628, 628, 628 ]
3.466667
15
#!/usr/bin/env python3 import os import sys LIB_PATH = os.environ['LADYBUG_LIB_PATH'] sys.path.append(LIB_PATH) from build_message_lib import BuildMessage from plot_weather_lib import PlotWeather from send_message_lib import SendMessage # TODO: Error checking needs improvement. # plot_weather() returns True (could create a PNG) or False (PNG of weather # could not be created). Yet, build message assumes multiplart MIME with the # Weather PNG in place. p = PlotWeather() b = BuildMessage() # send margaret a message. False means send detailed data. m = b.build_message('Margaret',False) s = SendMessage() s.send_message('[email protected]',m) m = b.build_message('Thor',True) # Send summary info s.send_message('[email protected]',m)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 40347, 62, 34219, 796, 28686, 13, 268, 2268, 17816, 43, 2885, 56, 12953, 62, 40347, 62, 34219, 20520, 198, 17597, 13, 6978, 13, 33295, 7, 40347, 62, 34219, 8, 198, 6738, 1382, 62, 20500, 62, 8019, 1330, 10934, 12837, 198, 6738, 7110, 62, 23563, 62, 8019, 1330, 28114, 41865, 198, 6738, 3758, 62, 20500, 62, 8019, 1330, 16290, 12837, 198, 2, 16926, 46, 25, 13047, 10627, 2476, 9025, 13, 198, 2, 7110, 62, 23563, 3419, 5860, 6407, 357, 24089, 2251, 257, 36182, 8, 393, 10352, 357, 47, 10503, 286, 6193, 198, 2, 714, 407, 307, 2727, 737, 220, 6430, 11, 1382, 3275, 18533, 15082, 433, 337, 12789, 351, 262, 198, 2, 15615, 36182, 287, 1295, 13, 198, 79, 796, 28114, 41865, 3419, 198, 65, 796, 10934, 12837, 3419, 198, 2, 3758, 6145, 8984, 257, 3275, 13, 220, 10352, 1724, 3758, 6496, 1366, 13, 198, 76, 796, 275, 13, 11249, 62, 20500, 10786, 24428, 8984, 3256, 25101, 8, 198, 82, 796, 16290, 12837, 3419, 198, 82, 13, 21280, 62, 20500, 10786, 34191, 820, 13, 76, 30686, 1559, 31, 14816, 13, 785, 3256, 76, 8, 198, 76, 796, 275, 13, 11249, 62, 20500, 10786, 46765, 3256, 17821, 8, 220, 1303, 16290, 10638, 7508, 198, 82, 13, 21280, 62, 20500, 10786, 400, 273, 62, 30686, 1559, 31, 907, 77, 13, 785, 3256, 76, 8, 198 ]
3.154812
239
''':' autocomplete() { if [ $# != 2 ] then echo "USAGE: autocomplete <command> <config-path>" return 1 fi local COMMAND="$1" local CONFIG_PATH="$(readlink -f "$2")" eval " _complete_$COMMAND() { local THIS_FILE=\"\$(readlink -f \"\${BASH_SOURCE[0]}\")\" COMPREPLY=( \$(python \"\$THIS_FILE\" \"$CONFIG_PATH\" \"\$COMP_LINE\" \"\$COMP_POINT\" \"\$COMP_CWORD\") ); # Some special behaviour (like displaying path autocompletion only from the last slash on) # must be done in bash on-demand, so the first line is reserved for compopt. for FLAG in \$(echo \"\${COMPREPLY[0]}\" | tr ',' '\\n') do if [ \"\$FLAG\" = \".\" ] then continue fi compopt -o \"\$FLAG\" done COMPREPLY=( \"\${COMPREPLY[@]:1}\" ) } complete -F _complete_$COMMAND $COMMAND " } return ''' import collections import os import shlex import sys import traceback import types completers = {} completer_prefix = 'complete_' completers['value'] = complete_value completers['path'] = complete_path if __name__ == '__main__': sys.exit(main(sys.argv))
[ 7061, 10354, 6, 198, 2306, 42829, 6677, 3419, 198, 90, 198, 220, 220, 220, 611, 685, 720, 2, 14512, 362, 2361, 198, 220, 220, 220, 788, 198, 220, 220, 220, 220, 220, 220, 220, 9809, 366, 2937, 11879, 25, 1960, 42829, 6677, 1279, 21812, 29, 1279, 11250, 12, 6978, 24618, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 198, 220, 220, 220, 25912, 198, 220, 220, 220, 1957, 22240, 6981, 2625, 3, 16, 1, 198, 220, 220, 220, 1957, 25626, 62, 34219, 2625, 3, 7, 961, 8726, 532, 69, 17971, 17, 4943, 1, 198, 220, 220, 220, 5418, 366, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 20751, 62, 3, 9858, 44, 6981, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 12680, 62, 25664, 17553, 59, 3, 7, 961, 8726, 532, 69, 19990, 59, 38892, 33, 11211, 62, 47690, 58, 15, 60, 32239, 4943, 7879, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24301, 2200, 6489, 56, 16193, 3467, 3, 7, 29412, 19990, 59, 3, 43559, 62, 25664, 7879, 19990, 3, 10943, 16254, 62, 34219, 7879, 19990, 59, 3, 9858, 47, 62, 24027, 7879, 19990, 59, 3, 9858, 47, 62, 16402, 12394, 7879, 19990, 59, 3, 9858, 47, 62, 43538, 12532, 59, 4943, 5619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2773, 2041, 9172, 357, 2339, 19407, 3108, 1960, 42829, 24547, 691, 422, 262, 938, 24632, 319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1276, 307, 1760, 287, 27334, 319, 12, 28550, 11, 523, 262, 717, 1627, 318, 10395, 329, 552, 8738, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9977, 4760, 287, 3467, 3, 7, 30328, 19990, 59, 38892, 9858, 46437, 6489, 56, 58, 15, 48999, 7879, 930, 491, 705, 4032, 705, 6852, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 466, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 685, 19990, 59, 3, 38948, 7879, 796, 3467, 1911, 7879, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 788, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 552, 8738, 532, 78, 19990, 59, 3, 38948, 7879, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1760, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24301, 2200, 6489, 56, 16193, 19990, 59, 38892, 9858, 46437, 6489, 56, 58, 31, 5974, 16, 92, 7879, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1844, 532, 37, 4808, 20751, 62, 3, 9858, 44, 6981, 720, 9858, 44, 6981, 198, 220, 220, 220, 366, 198, 92, 198, 7783, 198, 7061, 6, 198, 198, 11748, 17268, 198, 11748, 28686, 198, 11748, 427, 2588, 198, 11748, 25064, 198, 11748, 12854, 1891, 198, 11748, 3858, 628, 198, 785, 1154, 1010, 220, 220, 220, 220, 220, 220, 796, 23884, 198, 785, 1154, 353, 62, 40290, 796, 705, 20751, 62, 6, 628, 628, 198, 198, 785, 1154, 1010, 17816, 8367, 20520, 796, 1844, 62, 8367, 198, 198, 785, 1154, 1010, 17816, 6978, 20520, 796, 1844, 62, 6978, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 7, 17597, 13, 853, 85, 4008, 198 ]
2.028302
636
from . import api, cli, extra, core from .core import Habitica
[ 6738, 764, 1330, 40391, 11, 537, 72, 11, 3131, 11, 4755, 198, 6738, 764, 7295, 1330, 41950, 3970, 198 ]
3.315789
19
from ..base import HaravanResource from haravan import mixins import haravan
[ 6738, 11485, 8692, 1330, 2113, 12421, 26198, 198, 6738, 3971, 12421, 1330, 5022, 1040, 198, 11748, 3971, 12421, 628 ]
4.105263
19
# https://atcoder.jp/contests/abc229/tasks/abc229_d S = input() K = int(input()) ans = 0 tail_idx = 0 cum_dot = [0] * (len(S) + 1) for i in range(len(S)): if S[i] == '.': cum_dot[i + 1] = cum_dot[i] + 1 else: cum_dot[i + 1] = cum_dot[i] for head_idx in range(len(S)): while tail_idx <= len(S) - 1 and can_swap_to_x(head_idx, tail_idx + 1): tail_idx += 1 ans = max(ans, tail_idx - head_idx) print(ans)
[ 2, 3740, 1378, 265, 66, 12342, 13, 34523, 14, 3642, 3558, 14, 39305, 23539, 14, 83, 6791, 14, 39305, 23539, 62, 67, 198, 50, 796, 5128, 3419, 198, 42, 796, 493, 7, 15414, 28955, 198, 504, 796, 657, 198, 13199, 62, 312, 87, 796, 657, 198, 198, 36340, 62, 26518, 796, 685, 15, 60, 1635, 357, 11925, 7, 50, 8, 1343, 352, 8, 198, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 50, 8, 2599, 198, 220, 220, 220, 611, 311, 58, 72, 60, 6624, 705, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10973, 62, 26518, 58, 72, 1343, 352, 60, 796, 10973, 62, 26518, 58, 72, 60, 1343, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10973, 62, 26518, 58, 72, 1343, 352, 60, 796, 10973, 62, 26518, 58, 72, 60, 628, 198, 198, 1640, 1182, 62, 312, 87, 287, 2837, 7, 11925, 7, 50, 8, 2599, 198, 220, 220, 220, 981, 7894, 62, 312, 87, 19841, 18896, 7, 50, 8, 532, 352, 290, 460, 62, 2032, 499, 62, 1462, 62, 87, 7, 2256, 62, 312, 87, 11, 7894, 62, 312, 87, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7894, 62, 312, 87, 15853, 352, 198, 220, 220, 220, 9093, 796, 3509, 7, 504, 11, 7894, 62, 312, 87, 532, 1182, 62, 312, 87, 8, 198, 198, 4798, 7, 504, 8, 198 ]
1.886076
237
# Copyright 2015-2017 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function, unicode_literals from botocore.exceptions import ClientError from c7n.actions import BaseAction from c7n.filters import Filter from c7n.manager import resources from c7n.query import QueryResourceManager from c7n.utils import local_session, type_schema @resources.register('shield-protection') @resources.register('shield-attack') class SetShieldProtection(BaseAction): """Enable shield protection on applicable resource. """ permissions = ('shield:CreateProtection', 'shield:ListProtections',) schema = type_schema( 'set-shield', state={'type': 'boolean'})
[ 2, 15069, 1853, 12, 5539, 9747, 1881, 6168, 11, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 10214, 420, 382, 13, 1069, 11755, 1330, 20985, 12331, 198, 6738, 269, 22, 77, 13, 4658, 1330, 7308, 12502, 198, 6738, 269, 22, 77, 13, 10379, 1010, 1330, 25853, 198, 6738, 269, 22, 77, 13, 37153, 1330, 4133, 198, 6738, 269, 22, 77, 13, 22766, 1330, 43301, 26198, 13511, 198, 6738, 269, 22, 77, 13, 26791, 1330, 1957, 62, 29891, 11, 2099, 62, 15952, 2611, 628, 198, 31, 37540, 13, 30238, 10786, 26662, 12, 42846, 11537, 628, 198, 31, 37540, 13, 30238, 10786, 26662, 12, 20358, 11537, 628, 198, 198, 4871, 5345, 33651, 19703, 3213, 7, 14881, 12502, 2599, 198, 220, 220, 220, 37227, 36695, 7614, 4800, 319, 9723, 8271, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 21627, 796, 19203, 26662, 25, 16447, 19703, 3213, 3256, 705, 26662, 25, 8053, 41426, 507, 3256, 8, 198, 220, 220, 220, 32815, 796, 2099, 62, 15952, 2611, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2617, 12, 26662, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 34758, 6, 4906, 10354, 705, 2127, 21052, 6, 30072, 198 ]
3.565341
352
from django.shortcuts import render, redirect from newDjangoProject.todo_app.forms import TodoForm from newDjangoProject.todo_app.models import Todo
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 18941, 198, 198, 6738, 649, 35, 73, 14208, 16775, 13, 83, 24313, 62, 1324, 13, 23914, 1330, 309, 24313, 8479, 198, 6738, 649, 35, 73, 14208, 16775, 13, 83, 24313, 62, 1324, 13, 27530, 1330, 309, 24313, 628, 628, 198 ]
3.142857
49
temp = [] princ = [] c = maior = menor = 0 continuar = ' ' while continuar not in 'Nn': c += 1 print(f'{c}º PESSOA') print('-' * 10) temp.append(str(input(f'Digite o seu nome: '))) temp.append(float(input(f'Digite o seu peso: '))) if c == 1: maior = menor = temp[1] else: if temp[1] > maior: maior = temp[1] if temp[1] < menor: menor = temp[1] princ.append(temp[:]) temp.clear() while True: continuar = str(input('Quer continuar? [S/N]:')) if continuar in 'NnSs': break print('Tente novamente!', end=' ') print(f'Foram cadastradas {c} pessoas.') print(f'O maior peso foi de {maior}',end=' ') for p in princ: if p[1] == maior: print(p[0]) print(f'O menor peso foi de {menor}',end=' ') for p in princ: if p[1] == menor: print(p[0])
[ 29510, 796, 17635, 198, 1050, 1939, 796, 17635, 198, 66, 796, 17266, 1504, 796, 1450, 273, 796, 657, 198, 18487, 84, 283, 796, 705, 705, 198, 4514, 11143, 283, 407, 287, 705, 45, 77, 10354, 198, 220, 220, 220, 269, 15853, 352, 198, 220, 220, 220, 3601, 7, 69, 6, 90, 66, 92, 36165, 350, 7597, 23621, 11537, 198, 220, 220, 220, 3601, 10786, 19355, 1635, 838, 8, 198, 220, 220, 220, 20218, 13, 33295, 7, 2536, 7, 15414, 7, 69, 6, 19511, 578, 267, 384, 84, 299, 462, 25, 705, 22305, 198, 220, 220, 220, 20218, 13, 33295, 7, 22468, 7, 15414, 7, 69, 6, 19511, 578, 267, 384, 84, 32317, 78, 25, 705, 22305, 198, 220, 220, 220, 611, 269, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17266, 1504, 796, 1450, 273, 796, 20218, 58, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 20218, 58, 16, 60, 1875, 17266, 1504, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17266, 1504, 796, 20218, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 20218, 58, 16, 60, 1279, 1450, 273, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1450, 273, 796, 20218, 58, 16, 60, 198, 220, 220, 220, 5144, 13, 33295, 7, 29510, 58, 25, 12962, 198, 220, 220, 220, 20218, 13, 20063, 3419, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11143, 283, 796, 965, 7, 15414, 10786, 4507, 263, 11143, 283, 30, 685, 50, 14, 45, 5974, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 11143, 283, 287, 705, 45, 77, 50, 82, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 51, 21872, 645, 85, 3263, 68, 0, 3256, 886, 11639, 705, 8, 198, 4798, 7, 69, 6, 1890, 321, 20603, 459, 6335, 292, 1391, 66, 92, 279, 408, 78, 292, 2637, 8, 198, 4798, 7, 69, 6, 46, 17266, 1504, 32317, 78, 11511, 72, 390, 1391, 2611, 1504, 92, 3256, 437, 11639, 705, 8, 198, 1640, 279, 287, 5144, 25, 198, 220, 220, 220, 611, 279, 58, 16, 60, 6624, 17266, 1504, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 79, 58, 15, 12962, 198, 4798, 7, 69, 6, 46, 1450, 273, 32317, 78, 11511, 72, 390, 1391, 3653, 273, 92, 3256, 437, 11639, 705, 8, 198, 1640, 279, 287, 5144, 25, 198, 220, 220, 220, 611, 279, 58, 16, 60, 6624, 1450, 273, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 79, 58, 15, 12962, 628, 628, 628 ]
1.915401
461
#! /usr/bin/env python3 import os import sys import time import json import os.path import hashlib import logging import threading from decimal import Decimal from flask_socketio import SocketIO from flask import Flask, render_template, url_for, request from binance_api import api_master_rest_caller from binance_api import api_master_socket_caller from . import trader MULTI_DEPTH_INDICATORS = ['ema', 'sma', 'rma', 'order'] # Initilize globals. ## Setup flask app/socket APP = Flask(__name__) SOCKET_IO = SocketIO(APP) ## Initilize base core object. core_object = None started_updater = False ## Initilize IP/port pair globals. host_ip = '' host_port = '' ## Set traders cache file name. CAHCE_FILES = 'traders.json' @APP.context_processor @APP.route('/', methods=['GET']) @APP.route('/rest-api/v1/trader_update', methods=['POST']) @APP.route('/rest-api/v1/get_trader_charting', methods=['GET']) @APP.route('/rest-api/v1/get_trader_indicators', methods=['GET']) @APP.route('/rest-api/v1/get_trader_candles', methods=['GET']) @APP.route('/rest-api/v1/test', methods=['GET'])
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 33918, 198, 11748, 28686, 13, 6978, 198, 11748, 12234, 8019, 198, 11748, 18931, 198, 11748, 4704, 278, 198, 6738, 32465, 1330, 4280, 4402, 198, 6738, 42903, 62, 44971, 952, 1330, 47068, 9399, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 19016, 62, 1640, 11, 2581, 198, 198, 6738, 9874, 590, 62, 15042, 1330, 40391, 62, 9866, 62, 2118, 62, 13345, 263, 198, 6738, 9874, 590, 62, 15042, 1330, 40391, 62, 9866, 62, 44971, 62, 13345, 263, 198, 198, 6738, 764, 1330, 31791, 198, 198, 44, 16724, 40, 62, 46162, 4221, 62, 12115, 2149, 1404, 20673, 796, 37250, 19687, 3256, 705, 82, 2611, 3256, 705, 81, 2611, 3256, 705, 2875, 20520, 198, 198, 2, 44707, 346, 1096, 15095, 874, 13, 198, 198, 2235, 31122, 42903, 598, 14, 44971, 198, 24805, 220, 220, 220, 220, 220, 220, 220, 220, 796, 46947, 7, 834, 3672, 834, 8, 198, 50, 11290, 2767, 62, 9399, 220, 220, 796, 47068, 9399, 7, 24805, 8, 198, 198, 2235, 44707, 346, 1096, 2779, 4755, 2134, 13, 198, 7295, 62, 15252, 796, 6045, 198, 198, 46981, 62, 929, 67, 729, 796, 10352, 198, 198, 2235, 44707, 346, 1096, 6101, 14, 634, 5166, 15095, 874, 13, 198, 4774, 62, 541, 220, 220, 220, 220, 796, 10148, 198, 4774, 62, 634, 220, 220, 796, 10148, 198, 198, 2235, 5345, 21703, 12940, 2393, 1438, 13, 198, 8141, 39, 5222, 62, 46700, 1546, 796, 705, 2213, 9972, 13, 17752, 6, 628, 198, 31, 24805, 13, 22866, 62, 41341, 628, 198, 198, 31, 24805, 13, 38629, 10786, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 31, 24805, 13, 38629, 10786, 14, 2118, 12, 15042, 14, 85, 16, 14, 2213, 5067, 62, 19119, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 31, 24805, 13, 38629, 10786, 14, 2118, 12, 15042, 14, 85, 16, 14, 1136, 62, 2213, 5067, 62, 40926, 278, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 31, 24805, 13, 38629, 10786, 14, 2118, 12, 15042, 14, 85, 16, 14, 1136, 62, 2213, 5067, 62, 521, 44549, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 31, 24805, 13, 38629, 10786, 14, 2118, 12, 15042, 14, 85, 16, 14, 1136, 62, 2213, 5067, 62, 46188, 829, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 31, 24805, 13, 38629, 10786, 14, 2118, 12, 15042, 14, 85, 16, 14, 9288, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 628, 628 ]
2.652482
423
from selenium import webdriver from test_utils import * from time import sleep import random if __name__ == "__main__": try: test_SignUpRequest() print("test_SignUpRequest passed") except: print("test_SignUpRequest Failed")
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 1332, 62, 26791, 1330, 1635, 198, 6738, 640, 1330, 3993, 198, 11748, 4738, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 11712, 4933, 18453, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9288, 62, 11712, 4933, 18453, 3804, 4943, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9288, 62, 11712, 4933, 18453, 22738, 4943, 198 ]
2.636364
99
from marshmallow import EXCLUDE from ma import ma from models.book import BookModel
[ 6738, 22397, 42725, 1330, 7788, 5097, 52, 7206, 198, 6738, 17266, 1330, 17266, 198, 6738, 4981, 13, 2070, 1330, 4897, 17633 ]
3.952381
21
import requests import bs4 as bs if __name__ == "__main__": url = "http://192.168.1.40/.hidden/" scrapping_recursive(url)
[ 11748, 7007, 198, 11748, 275, 82, 19, 355, 275, 82, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 6371, 796, 366, 4023, 1378, 17477, 13, 14656, 13, 16, 13, 1821, 11757, 30342, 30487, 198, 197, 1416, 430, 2105, 62, 8344, 30753, 7, 6371, 8, 198 ]
2.45098
51
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from Axon.Component import component from Axon.ThreadedComponent import threadedcomponent from Axon.Ipc import producerFinished, shutdownMicroprocess from Kamaelia.Util.PipelineComponent import pipeline import time from Axon.Scheduler import _ACTIVE class Profiler(threadedcomponent): """\ Profiler([samplingrate][,outputrate]) -> new Profiler component. Basic code profiler for Axon/Kamaelia systems. Measures the amount of time different microproceses are running. Keyword arguments: - samplingrate -- samples of state taken per second (default=1.0) - outputrate -- times statistics are output per second (default=1.0) """ Inboxes = { "inbox" : "", "control" : "", } Outboxes = { "outbox" : "Raw profiling data", "signal" : "", } if __name__=="__main__": from Kamaelia.Util.Console import ConsoleEchoer BusyComponent().activate() pipeline( FormattedProfiler(10.0,1.0), ConsoleEchoer(), ).run()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 3050, 3517, 32250, 10501, 290, 509, 1689, 25418, 25767, 669, 7, 16, 8, 198, 2, 198, 2, 357, 16, 8, 509, 1689, 25418, 25767, 669, 389, 5610, 287, 262, 37195, 20673, 2393, 290, 379, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 74, 1689, 25418, 13, 2398, 14, 32, 24318, 20673, 532, 3387, 9117, 428, 2393, 11, 198, 2, 220, 220, 220, 220, 407, 428, 4003, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 12176, 261, 13, 21950, 1330, 7515, 198, 6738, 12176, 261, 13, 16818, 276, 21950, 1330, 40945, 42895, 198, 6738, 12176, 261, 13, 40, 14751, 1330, 9920, 18467, 1348, 11, 18325, 13031, 14681, 198, 6738, 509, 1689, 25418, 13, 18274, 346, 13, 47, 541, 4470, 21950, 1330, 11523, 198, 11748, 640, 198, 6738, 12176, 261, 13, 50, 1740, 18173, 1330, 4808, 10659, 9306, 198, 198, 4871, 4415, 5329, 7, 16663, 276, 42895, 2599, 198, 220, 220, 220, 37227, 59, 198, 220, 220, 220, 4415, 5329, 26933, 37687, 11347, 4873, 7131, 11, 22915, 4873, 12962, 4613, 649, 4415, 5329, 7515, 13, 628, 220, 220, 220, 14392, 2438, 1534, 5329, 329, 12176, 261, 14, 42, 1689, 25418, 3341, 13, 45040, 262, 2033, 286, 640, 198, 220, 220, 220, 1180, 4580, 1676, 728, 274, 389, 2491, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 532, 19232, 4873, 220, 1377, 8405, 286, 1181, 2077, 583, 1218, 357, 12286, 28, 16, 13, 15, 8, 198, 220, 220, 220, 532, 5072, 4873, 220, 220, 220, 1377, 1661, 7869, 389, 5072, 583, 1218, 357, 12286, 28, 16, 13, 15, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 554, 29305, 796, 1391, 366, 259, 3524, 1, 1058, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13716, 1, 1058, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 3806, 29305, 796, 1391, 366, 448, 3524, 1, 1058, 366, 27369, 31582, 1366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12683, 282, 1, 1058, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 422, 509, 1689, 25418, 13, 18274, 346, 13, 47581, 1330, 24371, 36, 6679, 263, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5869, 88, 21950, 22446, 39022, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 11523, 7, 5178, 16898, 15404, 5329, 7, 940, 13, 15, 11, 16, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24371, 36, 6679, 263, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 5143, 3419, 198, 220, 220, 220, 220 ]
2.851796
668
import re from typing import Tuple BINANCE_SYMBOL_SPLITTER = re.compile(r"^(\w+)(BTC|ETH|BNB|XRP|USDT|USDC|TUSD|PAX)$")
[ 11748, 302, 198, 6738, 19720, 1330, 309, 29291, 628, 198, 33, 1268, 19240, 62, 23060, 10744, 3535, 62, 4303, 43, 2043, 5781, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 38016, 86, 10, 5769, 35964, 91, 20702, 91, 15766, 33, 91, 55, 20031, 91, 2937, 24544, 91, 2937, 9697, 91, 51, 29072, 91, 4537, 55, 8, 3, 4943, 628, 628 ]
2.04918
61
import json import os print("relation", "raw_p", "few_p", "p inc", "raw_type_p", "few_type_p", "t inc", sep='\t') relations = ['P1001', 'P101', 'P103', 'P106', 'P108', 'P127', 'P1303', 'P131', 'P136', 'P1376', 'P138', 'P140', 'P1412', 'P159', 'P17', 'P176', 'P178', 'P19', 'P190', 'P20', 'P264', 'P27', 'P276', 'P279', 'P30', 'P31', 'P36', 'P361', 'P364', 'P37', 'P39', 'P407', 'P413', 'P449', 'P463', 'P47', 'P495', 'P527', 'P530', 'P740', 'P937'] fewshot_dir_path = 'case_based_10_train' raw_dir_path = 'lama' with open('data/type_file/bert.json', 'r') as f: relation_token = json.load(f) for relation in relations: with open(os.path.join(fewshot_dir_path, relation, relation + '_predictions.jsonl'), 'r') as f: fewshot_prediction_list = f.readlines() fewshot_prediction_list = [json.loads(pred) for pred in fewshot_prediction_list] with open(os.path.join(raw_dir_path, relation, relation + '_predictions.jsonl'), 'r') as f: raw_prediction_list = f.readlines() raw_prediction_list = [json.loads(pred) for pred in raw_prediction_list] type_token_set = set(relation_token[relation]) raw_p = get_precision(raw_prediction_list) few_p = get_precision(fewshot_prediction_list) p_inc = few_p - raw_p raw_type_p = get_type_precision(raw_prediction_list, type_token_set) few_type_p = get_type_precision(fewshot_prediction_list, type_token_set) t_inc = few_type_p - raw_type_p print( relation, raw_p, few_p, p_inc, raw_type_p, few_type_p, t_inc, sep='\t' )
[ 11748, 33918, 198, 11748, 28686, 198, 198, 4798, 7203, 49501, 1600, 366, 1831, 62, 79, 1600, 366, 32146, 62, 79, 1600, 366, 79, 753, 1600, 366, 1831, 62, 4906, 62, 79, 1600, 366, 32146, 62, 4906, 62, 79, 1600, 366, 83, 753, 1600, 41767, 11639, 59, 83, 11537, 628, 198, 39468, 796, 37250, 47, 47705, 3256, 705, 47, 8784, 3256, 705, 47, 15197, 3256, 705, 47, 15801, 3256, 705, 47, 15711, 3256, 705, 47, 16799, 3256, 705, 47, 12952, 18, 3256, 705, 47, 22042, 3256, 705, 47, 20809, 3256, 705, 47, 1485, 4304, 3256, 705, 47, 20107, 3256, 705, 47, 15187, 3256, 705, 47, 1415, 1065, 3256, 705, 47, 19707, 3256, 705, 47, 1558, 3256, 705, 47, 24096, 3256, 705, 47, 23188, 3256, 705, 47, 1129, 3256, 705, 47, 19782, 3256, 705, 47, 1238, 3256, 705, 47, 18897, 3256, 705, 47, 1983, 3256, 705, 47, 27988, 3256, 705, 47, 26050, 3256, 705, 47, 1270, 3256, 705, 47, 3132, 3256, 705, 47, 2623, 3256, 705, 47, 35195, 3256, 705, 47, 26780, 3256, 705, 47, 2718, 3256, 705, 47, 2670, 3256, 705, 47, 30120, 3256, 705, 47, 44103, 3256, 705, 47, 31911, 3256, 705, 47, 38380, 3256, 705, 47, 2857, 3256, 705, 47, 33781, 3256, 705, 47, 20, 1983, 3256, 705, 47, 38612, 3256, 705, 47, 45598, 3256, 705, 47, 24, 2718, 20520, 198, 32146, 9442, 62, 15908, 62, 6978, 796, 705, 7442, 62, 3106, 62, 940, 62, 27432, 6, 198, 1831, 62, 15908, 62, 6978, 796, 705, 75, 1689, 6, 198, 198, 4480, 1280, 10786, 7890, 14, 4906, 62, 7753, 14, 4835, 13, 17752, 3256, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 8695, 62, 30001, 796, 33918, 13, 2220, 7, 69, 8, 628, 198, 1640, 8695, 287, 2316, 25, 198, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 32146, 9442, 62, 15908, 62, 6978, 11, 8695, 11, 8695, 1343, 705, 62, 28764, 9278, 13, 17752, 75, 33809, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1178, 9442, 62, 28764, 2867, 62, 4868, 796, 277, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1178, 9442, 62, 28764, 2867, 62, 4868, 796, 685, 17752, 13, 46030, 7, 28764, 8, 329, 2747, 287, 1178, 9442, 62, 28764, 2867, 62, 4868, 60, 198, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 1831, 62, 15908, 62, 6978, 11, 8695, 11, 8695, 1343, 705, 62, 28764, 9278, 13, 17752, 75, 33809, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 28764, 2867, 62, 4868, 796, 277, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 28764, 2867, 62, 4868, 796, 685, 17752, 13, 46030, 7, 28764, 8, 329, 2747, 287, 8246, 62, 28764, 2867, 62, 4868, 60, 198, 220, 220, 220, 2099, 62, 30001, 62, 2617, 796, 900, 7, 49501, 62, 30001, 58, 49501, 12962, 198, 220, 220, 220, 8246, 62, 79, 796, 651, 62, 3866, 16005, 7, 1831, 62, 28764, 2867, 62, 4868, 8, 198, 220, 220, 220, 1178, 62, 79, 796, 651, 62, 3866, 16005, 7, 32146, 9442, 62, 28764, 2867, 62, 4868, 8, 198, 220, 220, 220, 279, 62, 1939, 796, 1178, 62, 79, 532, 8246, 62, 79, 198, 220, 220, 220, 8246, 62, 4906, 62, 79, 796, 651, 62, 4906, 62, 3866, 16005, 7, 1831, 62, 28764, 2867, 62, 4868, 11, 2099, 62, 30001, 62, 2617, 8, 198, 220, 220, 220, 1178, 62, 4906, 62, 79, 796, 651, 62, 4906, 62, 3866, 16005, 7, 32146, 9442, 62, 28764, 2867, 62, 4868, 11, 2099, 62, 30001, 62, 2617, 8, 198, 220, 220, 220, 256, 62, 1939, 796, 1178, 62, 4906, 62, 79, 532, 8246, 62, 4906, 62, 79, 198, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8695, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1178, 62, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 1939, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 4906, 62, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1178, 62, 4906, 62, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 256, 62, 1939, 11, 198, 220, 220, 220, 220, 220, 220, 220, 41767, 11639, 59, 83, 6, 198, 220, 220, 220, 1267, 198 ]
2.166667
738
import json import os import logging import pandas as pd import torch def set_logger(log_path): """Set the logger to log info in terminal and file `log_path`. In general, it is useful to have a logger so that every output to the terminal is saved in a permanent file. Here we save it to `model_dir/train.log`. Example: ``` logging.info("Starting training...") ``` Args: log_path: (string) where to log """ logger = logging.getLogger() logger.setLevel(logging.INFO) if not logger.handlers: # Logging to a file file_handler = logging.FileHandler(log_path) file_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s')) logger.addHandler(file_handler) # Logging to console stream_handler = logging.StreamHandler() stream_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s')) logger.addHandler(stream_handler) def save_metric_histories(train_hist, valid_hist, results_path): """ both lists of dicts, keys are metric names """ train_hist_df = pd.DataFrame(train_hist) valid_hist_df = pd.DataFrame(valid_hist) TRAIN_HIST_FILE = os.path.join(results_path, 'train_hist.csv') VALID_HIST_FILE = os.path.join(results_path, 'valid_hist.csv') train_hist_df.to_csv(TRAIN_HIST_FILE, index=False) valid_hist_df.to_csv(VALID_HIST_FILE, index=False)
[ 11748, 33918, 198, 11748, 28686, 198, 11748, 18931, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 628, 198, 198, 4299, 900, 62, 6404, 1362, 7, 6404, 62, 6978, 2599, 198, 220, 220, 220, 37227, 7248, 262, 49706, 284, 2604, 7508, 287, 12094, 290, 2393, 4600, 6404, 62, 6978, 44646, 198, 220, 220, 220, 554, 2276, 11, 340, 318, 4465, 284, 423, 257, 49706, 523, 326, 790, 5072, 284, 262, 12094, 318, 7448, 198, 220, 220, 220, 287, 257, 7748, 2393, 13, 3423, 356, 3613, 340, 284, 4600, 19849, 62, 15908, 14, 27432, 13, 6404, 44646, 198, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 7559, 63, 198, 220, 220, 220, 18931, 13, 10951, 7203, 22851, 3047, 9313, 8, 198, 220, 220, 220, 7559, 63, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 6978, 25, 357, 8841, 8, 810, 284, 2604, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 220, 220, 220, 49706, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 628, 220, 220, 220, 611, 407, 49706, 13, 4993, 8116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5972, 2667, 284, 257, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 30281, 796, 18931, 13, 8979, 25060, 7, 6404, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 30281, 13, 2617, 8479, 1436, 7, 6404, 2667, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 25, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 2860, 25060, 7, 7753, 62, 30281, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5972, 2667, 284, 8624, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 62, 30281, 796, 18931, 13, 12124, 25060, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 62, 30281, 13, 2617, 8479, 1436, 7, 6404, 2667, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 25, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 2860, 25060, 7, 5532, 62, 30281, 8, 628, 198, 4299, 3613, 62, 4164, 1173, 62, 10034, 1749, 7, 27432, 62, 10034, 11, 4938, 62, 10034, 11, 2482, 62, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1111, 8341, 286, 8633, 82, 11, 8251, 389, 18663, 3891, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4512, 62, 10034, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 27432, 62, 10034, 8, 198, 220, 220, 220, 4938, 62, 10034, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 12102, 62, 10034, 8, 628, 220, 220, 220, 29125, 1268, 62, 39, 8808, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 43420, 62, 6978, 11, 705, 27432, 62, 10034, 13, 40664, 11537, 198, 220, 220, 220, 26173, 2389, 62, 39, 8808, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 43420, 62, 6978, 11, 705, 12102, 62, 10034, 13, 40664, 11537, 628, 220, 220, 220, 4512, 62, 10034, 62, 7568, 13, 1462, 62, 40664, 7, 51, 3861, 1268, 62, 39, 8808, 62, 25664, 11, 6376, 28, 25101, 8, 198, 220, 220, 220, 4938, 62, 10034, 62, 7568, 13, 1462, 62, 40664, 7, 23428, 2389, 62, 39, 8808, 62, 25664, 11, 6376, 28, 25101, 8, 628, 198 ]
2.494845
582
# SPDX-License-Identifier: Apache-2.0 # # The OpenSearch Contributors require contributions made to # this file be licensed under the Apache-2.0 license or a # compatible open source license. import unittest from unittest.mock import MagicMock, Mock, patch from test_workflow.integ_test.integ_test_start_properties_opensearch_dashboards import IntegTestStartPropertiesOpenSearchDashboards
[ 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 198, 2, 198, 2, 383, 4946, 18243, 25767, 669, 2421, 9284, 925, 284, 198, 2, 428, 2393, 307, 11971, 739, 262, 24843, 12, 17, 13, 15, 5964, 393, 257, 198, 2, 11670, 1280, 2723, 5964, 13, 198, 198, 11748, 555, 715, 395, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 6139, 44, 735, 11, 44123, 11, 8529, 198, 198, 6738, 1332, 62, 1818, 11125, 13, 18908, 62, 9288, 13, 18908, 62, 9288, 62, 9688, 62, 48310, 62, 404, 1072, 998, 62, 42460, 12821, 1330, 15995, 14402, 10434, 2964, 18200, 11505, 18243, 43041, 12821, 628 ]
3.59633
109
from Spectrum import Spectrum from UniversalSpectrumIdentifier import UniversalSpectrumIdentifier # USI created usi = UniversalSpectrumIdentifier("asdf:PXD000561::Adult_Frontalcortex_bRP_Elite_85_f09:scan:17555:VLHPLEGAVVIIFK/2") # usi = UniversalSpectrumIdentifier("mzspec:PXD002437:00261_A06_P001564_B00E_A00_R1:scan:10951:PEPT[Phospho]IDELVISK/2") # usi = UniversalSpectrumIdentifier("mzspec:PXD005712::20152002_RG_150218_Saita_Ctrl_3XXXXX:scan:5748:AVAAVAATGPASAPGPGGGR/2") usi.parse(verbose=False) # if the USI is okay then create a spectrum class to fetch from the online database if usi.valid: # spectrum class just takes in a USI spectrum = Spectrum(usi) # fetches the USI from the PeptideAtlas database or whatever database is specified resp = spectrum.fetch('PeptideAtlas') print(resp.code) if resp.code == 'OK': spectrum.show()
[ 6738, 27217, 1330, 27217, 201, 198, 6738, 14499, 49738, 6582, 33234, 7483, 1330, 14499, 49738, 6582, 33234, 7483, 201, 198, 201, 198, 2, 1294, 40, 2727, 201, 198, 385, 72, 796, 14499, 49738, 6582, 33234, 7483, 7203, 292, 7568, 25, 47, 55, 35, 830, 47915, 3712, 42995, 62, 25886, 282, 66, 26158, 62, 65, 20031, 62, 9527, 578, 62, 5332, 62, 69, 2931, 25, 35836, 25, 1558, 31046, 25, 47468, 14082, 2538, 9273, 53, 45529, 26236, 14, 17, 4943, 201, 198, 2, 514, 72, 796, 14499, 49738, 6582, 33234, 7483, 7203, 76, 89, 16684, 25, 47, 55, 35, 405, 1731, 2718, 25, 405, 30057, 62, 32, 3312, 62, 47, 405, 1314, 2414, 62, 33, 405, 36, 62, 32, 405, 62, 49, 16, 25, 35836, 25, 940, 50119, 25, 47, 8905, 51, 58, 2725, 14222, 78, 60, 2389, 3698, 29817, 42, 14, 17, 4943, 201, 198, 2, 514, 72, 796, 14499, 49738, 6582, 33234, 7483, 7203, 76, 89, 16684, 25, 47, 55, 35, 405, 3553, 1065, 3712, 4626, 16942, 62, 48192, 62, 8628, 28727, 62, 50, 4548, 64, 62, 40069, 62, 18, 24376, 55, 25, 35836, 25, 3553, 2780, 25, 10116, 3838, 11731, 1404, 16960, 1921, 2969, 38, 6968, 38, 10761, 14, 17, 4943, 201, 198, 385, 72, 13, 29572, 7, 19011, 577, 28, 25101, 8, 201, 198, 2, 611, 262, 1294, 40, 318, 8788, 788, 2251, 257, 10958, 1398, 284, 21207, 422, 262, 2691, 6831, 201, 198, 361, 514, 72, 13, 12102, 25, 201, 198, 220, 220, 220, 1303, 10958, 1398, 655, 2753, 287, 257, 1294, 40, 201, 198, 220, 220, 220, 10958, 796, 27217, 7, 385, 72, 8, 201, 198, 220, 220, 220, 1303, 11351, 2052, 262, 1294, 40, 422, 262, 2631, 457, 485, 2953, 21921, 6831, 393, 4232, 6831, 318, 7368, 201, 198, 220, 220, 220, 1217, 796, 10958, 13, 69, 7569, 10786, 6435, 457, 485, 2953, 21921, 11537, 201, 198, 220, 220, 220, 3601, 7, 4363, 13, 8189, 8, 201, 198, 220, 220, 220, 611, 1217, 13, 8189, 6624, 705, 11380, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 10958, 13, 12860, 3419, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198 ]
2.464674
368
"""Crop maps """ # pylint: disable=C0103 import os import sys import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from vtra.utils import * mpl.style.use('ggplot') mpl.rcParams['font.size'] = 11. mpl.rcParams['axes.labelsize'] = 14. mpl.rcParams['xtick.labelsize'] = 11. mpl.rcParams['ytick.labelsize'] = 11. mpl.rcParams['savefig.pad_inches'] = 0.05 if __name__ == '__main__': main()
[ 37811, 34, 1773, 8739, 198, 37811, 198, 2, 279, 2645, 600, 25, 15560, 28, 34, 486, 3070, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 6383, 11081, 13, 66, 3808, 355, 36624, 3808, 198, 11748, 6383, 11081, 13, 952, 13, 43358, 46862, 355, 427, 9681, 263, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 410, 9535, 13, 26791, 1330, 1635, 198, 198, 76, 489, 13, 7635, 13, 1904, 10786, 1130, 29487, 11537, 198, 76, 489, 13, 6015, 10044, 4105, 17816, 10331, 13, 7857, 20520, 796, 1367, 13, 198, 76, 489, 13, 6015, 10044, 4105, 17816, 897, 274, 13, 23912, 1424, 1096, 20520, 796, 1478, 13, 198, 76, 489, 13, 6015, 10044, 4105, 17816, 742, 624, 13, 23912, 1424, 1096, 20520, 796, 1367, 13, 198, 76, 489, 13, 6015, 10044, 4105, 17816, 20760, 624, 13, 23912, 1424, 1096, 20520, 796, 1367, 13, 198, 76, 489, 13, 6015, 10044, 4105, 17816, 21928, 5647, 13, 15636, 62, 45457, 20520, 796, 657, 13, 2713, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.435
200
from collections import defaultdict import matplotlib.pyplot as plt from boxes import generate_legend_handles, group_boxplot from commons import WIDTH_IN with open("data/hops.csv") as f: ret = defaultdict(list) for l in f.readlines()[1:]: split = l.rstrip("\n").split(",") # is datacenter? if split[-1] == "1": continue # Hops, ASes ret[split[0]].append((int(split[5]), int(split[6]))) grp = [ (continent, [("Hops", [x[0] for x in xs]), ("ASes", [x[1] for x in xs])]) for continent, xs in ret.items() ] fig, ax = plt.subplots(figsize=(WIDTH_IN, 1.2)) ax, positions, props = group_boxplot(grp, ax, showfliers=False) ax.set_yticks(range(0, 26, 5)) ax.set_ylabel("Path length") ax.legend( handles=generate_legend_handles(props), handlelength=1, labelspacing=0.06, columnspacing=0.5, handletextpad=0.3, ncol=6, fontsize="small", loc="upper right", fancybox=False, edgecolor="k", ) plt.grid(axis="y") plt.subplots_adjust(top=0.99, bottom=0.17, left=0.14, right=0.99) plt.savefig("figures/figure-7.pdf")
[ 6738, 17268, 1330, 4277, 11600, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 10559, 1330, 7716, 62, 1455, 437, 62, 4993, 829, 11, 1448, 62, 3524, 29487, 198, 6738, 36523, 1330, 370, 2389, 4221, 62, 1268, 198, 198, 4480, 1280, 7203, 7890, 14, 21936, 13, 40664, 4943, 355, 277, 25, 198, 220, 220, 220, 1005, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 329, 300, 287, 277, 13, 961, 6615, 3419, 58, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 6626, 796, 300, 13, 81, 36311, 7203, 59, 77, 11074, 35312, 7, 2430, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 4818, 330, 9255, 30, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6626, 58, 12, 16, 60, 6624, 366, 16, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 367, 2840, 11, 7054, 274, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 35312, 58, 15, 60, 4083, 33295, 19510, 600, 7, 35312, 58, 20, 46570, 493, 7, 35312, 58, 21, 60, 22305, 198, 198, 2164, 79, 796, 685, 198, 220, 220, 220, 357, 3642, 7233, 11, 685, 7203, 39, 2840, 1600, 685, 87, 58, 15, 60, 329, 2124, 287, 2124, 82, 46570, 5855, 1921, 274, 1600, 685, 87, 58, 16, 60, 329, 2124, 287, 2124, 82, 12962, 12962, 198, 220, 220, 220, 329, 15549, 11, 2124, 82, 287, 1005, 13, 23814, 3419, 198, 60, 628, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 16193, 54, 2389, 4221, 62, 1268, 11, 352, 13, 17, 4008, 198, 897, 11, 6116, 11, 25744, 796, 1448, 62, 3524, 29487, 7, 2164, 79, 11, 7877, 11, 905, 2704, 3183, 28, 25101, 8, 198, 897, 13, 2617, 62, 20760, 3378, 7, 9521, 7, 15, 11, 2608, 11, 642, 4008, 198, 897, 13, 2617, 62, 2645, 9608, 7203, 15235, 4129, 4943, 198, 897, 13, 1455, 437, 7, 198, 220, 220, 220, 17105, 28, 8612, 378, 62, 1455, 437, 62, 4993, 829, 7, 1676, 862, 828, 198, 220, 220, 220, 5412, 13664, 28, 16, 11, 198, 220, 220, 220, 14722, 79, 4092, 28, 15, 13, 3312, 11, 198, 220, 220, 220, 5721, 2777, 4092, 28, 15, 13, 20, 11, 198, 220, 220, 220, 5412, 5239, 15636, 28, 15, 13, 18, 11, 198, 220, 220, 220, 299, 4033, 28, 21, 11, 198, 220, 220, 220, 10369, 7857, 2625, 17470, 1600, 198, 220, 220, 220, 1179, 2625, 45828, 826, 1600, 198, 220, 220, 220, 14996, 3524, 28, 25101, 11, 198, 220, 220, 220, 5743, 8043, 2625, 74, 1600, 198, 8, 198, 198, 489, 83, 13, 25928, 7, 22704, 2625, 88, 4943, 198, 489, 83, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 2079, 11, 4220, 28, 15, 13, 1558, 11, 1364, 28, 15, 13, 1415, 11, 826, 28, 15, 13, 2079, 8, 198, 489, 83, 13, 21928, 5647, 7203, 5647, 942, 14, 26875, 12, 22, 13, 12315, 4943, 198 ]
2.178082
511
""" Created by adam on 5/31/18 """ __author__ = 'adam' import sqlite3 import environment def get_all_words_in_tweet(tweetId, db): """ Returns all the words used in the tweet Example: words = get_all_words_in_tweet(331546674315014144, db=environment.TWEET_DB_NO_STOP) words = [x[2] for x in words] Result: words = ['thought', 'crying', 'like', 'crazy', 'im', 'tired', 'pain','inevitability', 'rely', 'life', 'spoonie'] """ conn = sqlite3.connect(db) query = "SELECT * FROM word_map WHERE tweet_id = ?" param = (tweetId, ) with conn: r = conn.execute(query, param) return r.fetchall() if __name__ == '__main__': pass
[ 37811, 198, 41972, 416, 23197, 319, 642, 14, 3132, 14, 1507, 198, 37811, 198, 834, 9800, 834, 796, 705, 324, 321, 6, 198, 11748, 44161, 578, 18, 198, 11748, 2858, 628, 198, 4299, 651, 62, 439, 62, 10879, 62, 259, 62, 83, 7277, 7, 83, 7277, 7390, 11, 20613, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 477, 262, 2456, 973, 287, 262, 6126, 628, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 651, 62, 439, 62, 10879, 62, 259, 62, 83, 7277, 7, 2091, 21526, 28933, 3559, 1314, 28645, 18444, 11, 20613, 28, 38986, 13, 51, 8845, 2767, 62, 11012, 62, 15285, 62, 2257, 3185, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 685, 87, 58, 17, 60, 329, 2124, 287, 2456, 60, 198, 220, 220, 220, 25414, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 37250, 28895, 3256, 705, 66, 14992, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2339, 3256, 705, 50112, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 320, 3256, 705, 83, 1202, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35436, 41707, 500, 85, 34147, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 38015, 3256, 705, 6042, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2777, 2049, 494, 20520, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 48260, 796, 44161, 578, 18, 13, 8443, 7, 9945, 8, 628, 220, 220, 220, 12405, 796, 366, 46506, 1635, 16034, 1573, 62, 8899, 33411, 6126, 62, 312, 796, 220, 1701, 198, 220, 220, 220, 5772, 796, 357, 83, 7277, 7390, 11, 1267, 198, 220, 220, 220, 351, 48260, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 48260, 13, 41049, 7, 22766, 11, 5772, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 13, 69, 7569, 439, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1208 ]
2.182891
339
""" Represents an optical Gaussian source. """
[ 37811, 198, 6207, 6629, 281, 18480, 12822, 31562, 2723, 13, 198, 37811, 198 ]
3.615385
13
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # #TOFILL if __name__ == '__main__': param = [ ([2, 5, 7, 12, 13, 13, 15, 18, 20, 21, 22, 26, 27, 41, 41, 50, 53, 57, 58, 58, 61, 62, 62, 64, 70, 75, 78, 79, 81, 81, 81, 83, 86, 91, 93, 95, 97, 99, 99],36,35,), ([8, 16, 62, -24, 14, -4, 2, 50, -64, -76, 78, 66, -64, 18],12,11,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],32,27,), ([50, 20, 79, 42, 85, 24, 20, 76, 36, 88, 40, 5, 24, 85, 7, 19, 43, 51, 94, 13, 53, 93, 92, 43, 97, 38, 80, 48, 52, 47, 77, 56, 41, 80, 32, 34, 77, 14, 70, 3],29,27,), ([-96, -94, -72, -58, -48, -36, -28, -26, -10, -10, -8, -8, -6, 2, 14, 30, 30, 54, 58, 60, 64, 68, 78, 84, 96, 98],16,18,), ([1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0],7,8,), ([2, 7, 8, 15, 18, 23, 24, 25, 27, 35, 40, 42, 43, 46, 48, 50, 53, 64, 66, 69, 70, 71, 72, 77, 78, 80, 81, 81, 81, 82, 82, 82, 84, 87, 97, 98],23,32,), ([46, 54, 24, -10],3,3,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],21,34,), ([39, 21, 38, 6, 38, 44, 96, 1, 16, 1, 28, 4, 55, 8],12,11,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
[ 2, 15069, 357, 66, 8, 13130, 12, 25579, 11, 3203, 11, 3457, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 2, 628, 198, 2, 10468, 37, 8267, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 5772, 796, 685, 198, 220, 220, 220, 29565, 17, 11, 642, 11, 767, 11, 1105, 11, 1511, 11, 1511, 11, 1315, 11, 1248, 11, 1160, 11, 2310, 11, 2534, 11, 2608, 11, 2681, 11, 6073, 11, 6073, 11, 2026, 11, 7192, 11, 7632, 11, 7618, 11, 7618, 11, 8454, 11, 8190, 11, 8190, 11, 5598, 11, 4317, 11, 5441, 11, 8699, 11, 9225, 11, 9773, 11, 9773, 11, 9773, 11, 9698, 11, 9849, 11, 10495, 11, 10261, 11, 6957, 11, 10111, 11, 7388, 11, 7388, 4357, 2623, 11, 2327, 11, 828, 198, 220, 220, 220, 29565, 23, 11, 1467, 11, 8190, 11, 532, 1731, 11, 1478, 11, 532, 19, 11, 362, 11, 2026, 11, 532, 2414, 11, 532, 4304, 11, 8699, 11, 7930, 11, 532, 2414, 11, 1248, 4357, 1065, 11, 1157, 11, 828, 198, 220, 220, 220, 29565, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 4357, 2624, 11, 1983, 11, 828, 198, 220, 220, 220, 29565, 1120, 11, 1160, 11, 9225, 11, 5433, 11, 7600, 11, 1987, 11, 1160, 11, 8684, 11, 4570, 11, 9193, 11, 2319, 11, 642, 11, 1987, 11, 7600, 11, 767, 11, 678, 11, 5946, 11, 6885, 11, 10048, 11, 1511, 11, 7192, 11, 10261, 11, 10190, 11, 5946, 11, 10111, 11, 4353, 11, 4019, 11, 4764, 11, 6740, 11, 6298, 11, 8541, 11, 7265, 11, 6073, 11, 4019, 11, 3933, 11, 4974, 11, 8541, 11, 1478, 11, 4317, 11, 513, 4357, 1959, 11, 1983, 11, 828, 198, 220, 220, 220, 29565, 12, 4846, 11, 532, 5824, 11, 532, 4761, 11, 532, 3365, 11, 532, 2780, 11, 532, 2623, 11, 532, 2078, 11, 532, 2075, 11, 532, 940, 11, 532, 940, 11, 532, 23, 11, 532, 23, 11, 532, 21, 11, 362, 11, 1478, 11, 1542, 11, 1542, 11, 7175, 11, 7618, 11, 3126, 11, 5598, 11, 8257, 11, 8699, 11, 9508, 11, 9907, 11, 9661, 4357, 1433, 11, 1507, 11, 828, 198, 220, 220, 220, 29565, 16, 11, 657, 11, 352, 11, 352, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 657, 11, 657, 4357, 22, 11, 23, 11, 828, 198, 220, 220, 220, 29565, 17, 11, 767, 11, 807, 11, 1315, 11, 1248, 11, 2242, 11, 1987, 11, 1679, 11, 2681, 11, 3439, 11, 2319, 11, 5433, 11, 5946, 11, 6337, 11, 4764, 11, 2026, 11, 7192, 11, 5598, 11, 7930, 11, 8644, 11, 4317, 11, 9166, 11, 7724, 11, 8541, 11, 8699, 11, 4019, 11, 9773, 11, 9773, 11, 9773, 11, 9415, 11, 9415, 11, 9415, 11, 9508, 11, 10083, 11, 10111, 11, 9661, 4357, 1954, 11, 2624, 11, 828, 198, 220, 220, 220, 29565, 3510, 11, 7175, 11, 1987, 11, 532, 940, 4357, 18, 11, 18, 11, 828, 198, 220, 220, 220, 29565, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 4357, 2481, 11, 2682, 11, 828, 198, 220, 220, 220, 29565, 2670, 11, 2310, 11, 4353, 11, 718, 11, 4353, 11, 5846, 11, 9907, 11, 352, 11, 1467, 11, 352, 11, 2579, 11, 604, 11, 5996, 11, 807, 4357, 1065, 11, 1157, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 299, 62, 13138, 796, 657, 198, 220, 220, 220, 329, 1312, 11, 10007, 62, 2617, 287, 27056, 378, 7, 17143, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 62, 20286, 46491, 17143, 7307, 62, 2617, 8, 6624, 277, 62, 24267, 46491, 17143, 7307, 62, 2617, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 13138, 47932, 16, 198, 220, 220, 220, 3601, 7203, 2, 25468, 25, 4064, 72, 11, 4064, 72, 1, 4064, 357, 77, 62, 13138, 11, 18896, 7, 17143, 22305 ]
1.898689
839
"""Events.""" import asyncio import networkx from aocrecs.cache import cached from aocrecs.util import by_key def get_sides(matches, participants): """Get users per side given matches.""" users = {} for match in matches: users.update({ p['user_id']: dict( id=p['user_id'], name=p['user_name'] or p['name'], platform_id=p['platform_id'] ) for p in match['players'] }) return [ dict(p, users=[users[u] for u in p['user_ids'] if u]) for p in compute_participants(matches, participants) ] async def get_series(database, series_id): """Get a series.""" series_query = """ select series.id, series.played, series_metadata.name, rounds.tournament_id, tournaments.id as tournament_id, tournaments.name as tournament_name, events.id as event_id, events.name as event_name from series join rounds on series.round_id=rounds.id join series_metadata on series.id=series_metadata.series_id join tournaments on rounds.tournament_id=tournaments.id join events on tournaments.event_id=events.id where series.id=:id """ participants_query = 'select series_id, name, score, winner from participants where series_id=:id' matches_query = 'select id, series_id from matches where series_id=:id' values = {'id': series_id} series, participants, matches = await asyncio.gather( database.fetch_one(series_query, values=values), database.fetch_all(participants_query, values=values), database.fetch_all(matches_query, values=values) ) return dict( series, participants=list(map(dict, participants)), match_ids=list(map(lambda m: m['id'], matches)), tournament=dict( id=series['tournament_id'], name=series['tournament_name'], event=dict( id=series['event_id'], name=series['event_name'] ) ) ) @cached(ttl=86400) async def get_event(database, event_id): """Get an event.""" events_query = 'select id, name, year from events where id=:event_id' tournaments_query = 'select id, event_id, name from tournaments where event_id=:event_id' series_query = """ select series.id, series.played, series_metadata.name, rounds.tournament_id from series join rounds on series.round_id=rounds.id join tournaments on rounds.tournament_id=tournaments.id join series_metadata on series.id=series_metadata.series_id where tournaments.event_id=:event_id order by series.id """ participants_query = """ select series_id, participants.name, score, winner from participants join series on participants.series_id=series.id join rounds on series.round_id=rounds.id join tournaments on rounds.tournament_id=tournaments.id where tournaments.event_id=:event_id """ maps_query = """ select map_name, avg(matches.duration)::interval(0) as avg_duration, count(distinct match_id) as matches, max(players.dataset_id) as dataset_id, round(count(distinct match_id)/(select count(*) from matches where event_id=:event_id)::numeric, 2) as played_percent, mode() within group (order by civilizations.id) as most_played_civ_id, mode() within group (order by civilizations.name) as most_played_civ_name from players join civilizations on civilizations.dataset_id=players.dataset_id and civilizations.id = players.civilization_id join matches on players.match_id=matches.id where event_id=:event_id group by map_name order by count(distinct match_id) desc """ players_query = """ select max(players.name) as name, max(players.platform_id) as platform_id, max(user_id) as user_id, max(people.id) as person_id, max(people.name) as person_name, max(people.country) as country, count(*) as matches, round(sum(players.winner::int)/count(*)::numeric, 2) as win_percent, max(matches.dataset_id) as dataset_id, avg(matches.duration)::interval(0) as avg_duration, mode() within group (order by civilizations.id) as most_played_civ_id, mode() within group (order by civilizations.name) as most_played_civ_name, mode() within group (order by matches.map_name) as most_played_map from players join civilizations on civilizations.dataset_id=players.dataset_id and civilizations.id = players.civilization_id join matches on players.match_id=matches.id left join users on players.platform_id=users.platform_id and players.user_id=users.id left join people on users.person_id=people.id where event_id=:event_id group by case when people.id is not null then people.id::varchar else players.name end order by count(*) desc, sum(players.winner::int)/count(*)::numeric desc """ civilizations_query = """ select civilizations.id, civilizations.name, avg(matches.duration)::interval(0) as avg_duration, count(distinct match_id) as matches, max(players.dataset_id) as dataset_id, count(*) as matches, round(sum(players.winner::int)/count(*)::numeric, 2) as win_percent, mode() within group (order by matches.map_name) as most_played_map from players join civilizations on civilizations.dataset_id=players.dataset_id and civilizations.id = players.civilization_id join matches on players.match_id=matches.id where event_id=:event_id group by civilizations.id, civilizations.name order by count(distinct match_id) desc ; """ event, tournaments, series, maps, civilizations, players, participants = await asyncio.gather( database.fetch_one(events_query, values={'event_id': event_id}), database.fetch_all(tournaments_query, values={'event_id': event_id}), database.fetch_all(series_query, values={'event_id': event_id}), database.fetch_all(maps_query, values={'event_id': event_id}), database.fetch_all(civilizations_query, values={'event_id': event_id}), database.fetch_all(players_query, values={'event_id': event_id}), database.fetch_all(participants_query, values={'event_id': event_id}) ) series_data = by_key(series, 'tournament_id') participant_data = by_key(participants, 'series_id') return dict( event, maps=[ dict( map=dict( name=m['map_name'] ), average_duration=m['avg_duration'], match_count=m['matches'], played_percent=m['played_percent'], most_played_civilization=dict( id=m['most_played_civ_id'], name=m['most_played_civ_name'], dataset_id=m['dataset_id'] ) ) for m in maps ], civilizations=[ dict( civilization=dict( id=c['id'], name=c['name'], dataset_id=c['dataset_id'] ), average_duration=c['avg_duration'], match_count=c['matches'], win_percent=c['win_percent'], most_played_map=c['most_played_map'] ) for c in civilizations ], players=[ dict( player=dict( name=player['name'], user=dict( id=player['user_id'], name=player['name'], platform_id=player['platform_id'], person=dict( id=player['person_id'], country=player['country'], name=player['person_name'] ) if player['person_id'] else None ) if player['user_id'] else None ), match_count=player['matches'], win_percent=player['win_percent'], average_duration=player['avg_duration'], most_played_map=player['most_played_map'], most_played_civilization=dict( id=player['most_played_civ_id'], name=player['most_played_civ_name'], dataset_id=player['dataset_id'] ) ) for player in players ], tournaments=[dict( tournament, series=[dict( series_, participants=participant_data[series_['id']], ) for series_ in series_data[tournament['id']]] ) for tournament in tournaments] ) @cached(warm=True, ttl=86400) async def get_events(database): """Get events.""" events_query = 'select id, name, year from events order by year, name' events = await database.fetch_all(events_query) return [dict(e) for e in events] def compute_participants(matches, challonge_data): """Compute series participants. Iterate all matches and players to create a graph. Apply connected components algorithm to resolve distinct participant groups over all matches. Sort participant groups by number of wins to correlate with Challonge participant data (which also includes number of wins). Note that edge cases exist that are not covered. For example, teams sometimes field a 1v1 player for a single match. If neither player in the 1v1 match takes part in any other matches, the players can't be placed in a participant group and their win is not counted. There are two consequences: 1. Not counting a win may make the number of wins between participants even, in which case we don't know which participant group won the series. 2. Not grouping a player means the participant player list will be incomplete. """ graph = networkx.DiGraph() win_id = 0 platform_ids = [] name_to_user = {} for match in matches: # Record a win win_id += 1 graph.add_node(win_id, type='win') # Record platform ID platform_ids.append(match['platform_id']) # Add node for each player for player in match['players']: name_to_user[player['name']] = player['user_id'] graph.add_node(player['name'], type='player') # Can happen for incomplete matches if match['winning_team'] is None: continue # Connect winning players to recorded win for player in match['winning_team']['players']: graph.add_edge(player['name'], win_id) # Connect all players on the same team for team in match['teams']: for i in team['players']: for j in team['players']: graph.add_edge(i['name'], j['name']) mgz_data = [{ 'wins': len([node for node in g if graph.nodes[node]['type'] == 'win']), 'players': [node for node in g if graph.nodes[node]['type'] == 'player'] } for g in networkx.weakly_connected_components(graph)] return [{ 'user_ids': [name_to_user[n] for n in mgz['players']], 'winner': challonge['winner'], 'name': challonge['name'], 'score': challonge['score'], 'platform_id': platform_ids[0] } for mgz, challonge in zip( sorted(mgz_data, key=lambda k: -1 * k['wins']), sorted(challonge_data, key=lambda k: -1 * k['score'] if k['score'] else 0) )]
[ 37811, 37103, 526, 15931, 198, 11748, 30351, 952, 198, 198, 11748, 3127, 87, 198, 6738, 257, 27945, 6359, 13, 23870, 1330, 39986, 198, 6738, 257, 27945, 6359, 13, 22602, 1330, 416, 62, 2539, 628, 198, 4299, 651, 62, 82, 1460, 7, 6759, 2052, 11, 6809, 2599, 198, 220, 220, 220, 37227, 3855, 2985, 583, 1735, 1813, 7466, 526, 15931, 198, 220, 220, 220, 2985, 796, 23884, 198, 220, 220, 220, 329, 2872, 287, 7466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2985, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 17816, 7220, 62, 312, 6, 5974, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 79, 17816, 7220, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 79, 17816, 7220, 62, 3672, 20520, 393, 279, 17816, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3859, 62, 312, 28, 79, 17816, 24254, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 329, 279, 287, 2872, 17816, 32399, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 79, 11, 2985, 41888, 18417, 58, 84, 60, 329, 334, 287, 279, 17816, 7220, 62, 2340, 20520, 611, 334, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 24061, 62, 48013, 1187, 7, 6759, 2052, 11, 6809, 8, 198, 220, 220, 220, 2361, 628, 198, 292, 13361, 825, 651, 62, 25076, 7, 48806, 11, 2168, 62, 312, 2599, 198, 220, 220, 220, 37227, 3855, 257, 2168, 526, 15931, 198, 220, 220, 220, 2168, 62, 22766, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2922, 2168, 13, 312, 11, 2168, 13, 21542, 11, 2168, 62, 38993, 13, 3672, 11, 9196, 13, 83, 5138, 62, 312, 11, 18130, 13, 312, 355, 7756, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 18130, 13, 3672, 355, 7756, 62, 3672, 11, 2995, 13, 312, 355, 1785, 62, 312, 11, 2995, 13, 3672, 355, 1785, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 422, 2168, 4654, 9196, 319, 2168, 13, 744, 62, 312, 28, 744, 82, 13, 312, 4654, 2168, 62, 38993, 319, 2168, 13, 312, 28, 25076, 62, 38993, 13, 25076, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 4654, 18130, 319, 9196, 13, 83, 5138, 62, 312, 28, 83, 16950, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 4654, 2995, 319, 18130, 13, 15596, 62, 312, 28, 31534, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 810, 2168, 13, 312, 28, 25, 312, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6809, 62, 22766, 796, 705, 19738, 2168, 62, 312, 11, 1438, 11, 4776, 11, 8464, 422, 6809, 810, 2168, 62, 312, 28, 25, 312, 6, 198, 220, 220, 220, 7466, 62, 22766, 796, 705, 19738, 4686, 11, 2168, 62, 312, 422, 7466, 810, 2168, 62, 312, 28, 25, 312, 6, 198, 220, 220, 220, 3815, 796, 1391, 6, 312, 10354, 2168, 62, 312, 92, 198, 220, 220, 220, 2168, 11, 6809, 11, 7466, 796, 25507, 30351, 952, 13, 70, 1032, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 505, 7, 25076, 62, 22766, 11, 3815, 28, 27160, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 439, 7, 48013, 1187, 62, 22766, 11, 3815, 28, 27160, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 439, 7, 6759, 2052, 62, 22766, 11, 3815, 28, 27160, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1441, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2168, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6809, 28, 4868, 7, 8899, 7, 11600, 11, 6809, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 2340, 28, 4868, 7, 8899, 7, 50033, 285, 25, 285, 17816, 312, 6, 4357, 7466, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 7756, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 25076, 17816, 83, 5138, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 25076, 17816, 83, 5138, 62, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 25076, 17816, 15596, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 25076, 17816, 15596, 62, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 198, 31, 66, 2317, 7, 926, 75, 28, 39570, 405, 8, 198, 292, 13361, 825, 651, 62, 15596, 7, 48806, 11, 1785, 62, 312, 2599, 198, 220, 220, 220, 37227, 3855, 281, 1785, 526, 15931, 198, 220, 220, 220, 2995, 62, 22766, 796, 705, 19738, 4686, 11, 1438, 11, 614, 422, 2995, 810, 4686, 28, 25, 15596, 62, 312, 6, 198, 220, 220, 220, 18130, 62, 22766, 796, 705, 19738, 4686, 11, 1785, 62, 312, 11, 1438, 422, 18130, 810, 1785, 62, 312, 28, 25, 15596, 62, 312, 6, 198, 220, 220, 220, 2168, 62, 22766, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2922, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2168, 13, 312, 11, 2168, 13, 21542, 11, 2168, 62, 38993, 13, 3672, 11, 9196, 13, 83, 5138, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 422, 2168, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 9196, 319, 2168, 13, 744, 62, 312, 28, 744, 82, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 18130, 319, 9196, 13, 83, 5138, 62, 312, 28, 83, 16950, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 2168, 62, 38993, 319, 2168, 13, 312, 28, 25076, 62, 38993, 13, 25076, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 810, 18130, 13, 15596, 62, 312, 28, 25, 15596, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 416, 2168, 13, 312, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6809, 62, 22766, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2922, 2168, 62, 312, 11, 6809, 13, 3672, 11, 4776, 11, 8464, 198, 220, 220, 220, 220, 220, 220, 220, 422, 6809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 2168, 319, 6809, 13, 25076, 62, 312, 28, 25076, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 9196, 319, 2168, 13, 744, 62, 312, 28, 744, 82, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 18130, 319, 9196, 13, 83, 5138, 62, 312, 28, 83, 16950, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 810, 18130, 13, 15596, 62, 312, 28, 25, 15596, 62, 312, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8739, 62, 22766, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2922, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 3672, 11, 42781, 7, 6759, 2052, 13, 32257, 2599, 25, 3849, 2100, 7, 15, 8, 355, 42781, 62, 32257, 11, 954, 7, 17080, 4612, 2872, 62, 312, 8, 355, 7466, 11, 3509, 7, 32399, 13, 19608, 292, 316, 62, 312, 8, 355, 27039, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 7, 9127, 7, 17080, 4612, 2872, 62, 312, 20679, 7, 19738, 954, 7, 28104, 422, 7466, 810, 1785, 62, 312, 28, 25, 15596, 62, 312, 2599, 25, 77, 39223, 11, 362, 8, 355, 2826, 62, 25067, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 3419, 1626, 1448, 357, 2875, 416, 35928, 13, 312, 8, 355, 749, 62, 21542, 62, 66, 452, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 3419, 1626, 1448, 357, 2875, 416, 35928, 13, 3672, 8, 355, 749, 62, 21542, 62, 66, 452, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1938, 198, 220, 220, 220, 220, 220, 220, 220, 4654, 35928, 319, 35928, 13, 19608, 292, 316, 62, 312, 28, 32399, 13, 19608, 292, 316, 62, 312, 290, 35928, 13, 312, 796, 1938, 13, 37636, 1634, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 4654, 7466, 319, 1938, 13, 15699, 62, 312, 28, 6759, 2052, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 810, 1785, 62, 312, 28, 25, 15596, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 416, 3975, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 416, 954, 7, 17080, 4612, 2872, 62, 312, 8, 1715, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1938, 62, 22766, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2922, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 32399, 13, 3672, 8, 355, 1438, 11, 3509, 7, 32399, 13, 24254, 62, 312, 8, 355, 3859, 62, 312, 11, 3509, 7, 7220, 62, 312, 8, 355, 2836, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 15332, 13, 312, 8, 355, 1048, 62, 312, 11, 3509, 7, 15332, 13, 3672, 8, 355, 1048, 62, 3672, 11, 3509, 7, 15332, 13, 19315, 8, 355, 1499, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 7, 28104, 355, 7466, 11, 2835, 7, 16345, 7, 32399, 13, 39791, 3712, 600, 20679, 9127, 46491, 2599, 25, 77, 39223, 11, 362, 8, 355, 1592, 62, 25067, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 6759, 2052, 13, 19608, 292, 316, 62, 312, 8, 355, 27039, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 7, 6759, 2052, 13, 32257, 2599, 25, 3849, 2100, 7, 15, 8, 355, 42781, 62, 32257, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 3419, 1626, 1448, 357, 2875, 416, 35928, 13, 312, 8, 355, 749, 62, 21542, 62, 66, 452, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 3419, 1626, 1448, 357, 2875, 416, 35928, 13, 3672, 8, 355, 749, 62, 21542, 62, 66, 452, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 3419, 1626, 1448, 357, 2875, 416, 7466, 13, 8899, 62, 3672, 8, 355, 749, 62, 21542, 62, 8899, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1938, 198, 220, 220, 220, 220, 220, 220, 220, 4654, 35928, 319, 35928, 13, 19608, 292, 316, 62, 312, 28, 32399, 13, 19608, 292, 316, 62, 312, 290, 35928, 13, 312, 796, 1938, 13, 37636, 1634, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 4654, 7466, 319, 1938, 13, 15699, 62, 312, 28, 6759, 2052, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1364, 4654, 2985, 319, 1938, 13, 24254, 62, 312, 28, 18417, 13, 24254, 62, 312, 290, 1938, 13, 7220, 62, 312, 28, 18417, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1364, 4654, 661, 319, 2985, 13, 6259, 62, 312, 28, 15332, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 810, 1785, 62, 312, 28, 25, 15596, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 416, 1339, 618, 661, 13, 312, 318, 407, 9242, 788, 661, 13, 312, 3712, 85, 998, 283, 2073, 1938, 13, 3672, 886, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 416, 954, 7, 28104, 1715, 11, 2160, 7, 32399, 13, 39791, 3712, 600, 20679, 9127, 46491, 2599, 25, 77, 39223, 1715, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35928, 62, 22766, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2922, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35928, 13, 312, 11, 35928, 13, 3672, 11, 42781, 7, 6759, 2052, 13, 32257, 2599, 25, 3849, 2100, 7, 15, 8, 355, 42781, 62, 32257, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 7, 17080, 4612, 2872, 62, 312, 8, 355, 7466, 11, 3509, 7, 32399, 13, 19608, 292, 316, 62, 312, 8, 355, 27039, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 7, 28104, 355, 7466, 11, 2835, 7, 16345, 7, 32399, 13, 39791, 3712, 600, 20679, 9127, 46491, 2599, 25, 77, 39223, 11, 362, 8, 355, 1592, 62, 25067, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 3419, 1626, 1448, 357, 2875, 416, 7466, 13, 8899, 62, 3672, 8, 355, 749, 62, 21542, 62, 8899, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1938, 198, 220, 220, 220, 220, 220, 220, 220, 4654, 35928, 319, 35928, 13, 19608, 292, 316, 62, 312, 28, 32399, 13, 19608, 292, 316, 62, 312, 290, 35928, 13, 312, 796, 1938, 13, 37636, 1634, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 4654, 7466, 319, 1938, 13, 15699, 62, 312, 28, 6759, 2052, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 810, 1785, 62, 312, 28, 25, 15596, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 416, 35928, 13, 312, 11, 35928, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 416, 954, 7, 17080, 4612, 2872, 62, 312, 8, 1715, 198, 26, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1785, 11, 18130, 11, 2168, 11, 8739, 11, 35928, 11, 1938, 11, 6809, 796, 25507, 30351, 952, 13, 70, 1032, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 505, 7, 31534, 62, 22766, 11, 3815, 34758, 6, 15596, 62, 312, 10354, 1785, 62, 312, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 439, 7, 83, 16950, 62, 22766, 11, 3815, 34758, 6, 15596, 62, 312, 10354, 1785, 62, 312, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 439, 7, 25076, 62, 22766, 11, 3815, 34758, 6, 15596, 62, 312, 10354, 1785, 62, 312, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 439, 7, 31803, 62, 22766, 11, 3815, 34758, 6, 15596, 62, 312, 10354, 1785, 62, 312, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 439, 7, 37636, 4582, 62, 22766, 11, 3815, 34758, 6, 15596, 62, 312, 10354, 1785, 62, 312, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 439, 7, 32399, 62, 22766, 11, 3815, 34758, 6, 15596, 62, 312, 10354, 1785, 62, 312, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 69, 7569, 62, 439, 7, 48013, 1187, 62, 22766, 11, 3815, 34758, 6, 15596, 62, 312, 10354, 1785, 62, 312, 30072, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2168, 62, 7890, 796, 416, 62, 2539, 7, 25076, 11, 705, 83, 5138, 62, 312, 11537, 198, 220, 220, 220, 18399, 62, 7890, 796, 416, 62, 2539, 7, 48013, 1187, 11, 705, 25076, 62, 312, 11537, 198, 220, 220, 220, 1441, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8739, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 76, 17816, 8899, 62, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 32257, 28, 76, 17816, 615, 70, 62, 32257, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 9127, 28, 76, 17816, 6759, 2052, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2826, 62, 25067, 28, 76, 17816, 21542, 62, 25067, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 749, 62, 21542, 62, 37636, 1634, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 76, 17816, 1712, 62, 21542, 62, 66, 452, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 76, 17816, 1712, 62, 21542, 62, 66, 452, 62, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 312, 28, 76, 17816, 19608, 292, 316, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 329, 285, 287, 8739, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 35928, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14355, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 66, 17816, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 66, 17816, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 312, 28, 66, 17816, 19608, 292, 316, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 32257, 28, 66, 17816, 615, 70, 62, 32257, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 9127, 28, 66, 17816, 6759, 2052, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 25067, 28, 66, 17816, 5404, 62, 25067, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 749, 62, 21542, 62, 8899, 28, 66, 17816, 1712, 62, 21542, 62, 8899, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 329, 269, 287, 35928, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 1938, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 7829, 17816, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 7829, 17816, 7220, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 7829, 17816, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3859, 62, 312, 28, 7829, 17816, 24254, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1048, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 7829, 17816, 6259, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1499, 28, 7829, 17816, 19315, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 7829, 17816, 6259, 62, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 611, 2137, 17816, 6259, 62, 312, 20520, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 611, 2137, 17816, 7220, 62, 312, 20520, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 9127, 28, 7829, 17816, 6759, 2052, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 25067, 28, 7829, 17816, 5404, 62, 25067, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 32257, 28, 7829, 17816, 615, 70, 62, 32257, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 749, 62, 21542, 62, 8899, 28, 7829, 17816, 1712, 62, 21542, 62, 8899, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 749, 62, 21542, 62, 37636, 1634, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 7829, 17816, 1712, 62, 21542, 62, 66, 452, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 7829, 17816, 1712, 62, 21542, 62, 66, 452, 62, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 312, 28, 7829, 17816, 19608, 292, 316, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 329, 2137, 287, 1938, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 18130, 41888, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7756, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2168, 41888, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2168, 62, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6809, 28, 48013, 415, 62, 7890, 58, 25076, 62, 17816, 312, 20520, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 329, 2168, 62, 287, 2168, 62, 7890, 58, 83, 5138, 17816, 312, 6, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 329, 7756, 287, 18130, 60, 198, 220, 220, 220, 1267, 628, 198, 31, 66, 2317, 7, 31975, 28, 17821, 11, 256, 28781, 28, 39570, 405, 8, 198, 292, 13361, 825, 651, 62, 31534, 7, 48806, 2599, 198, 220, 220, 220, 37227, 3855, 2995, 526, 15931, 198, 220, 220, 220, 2995, 62, 22766, 796, 705, 19738, 4686, 11, 1438, 11, 614, 422, 2995, 1502, 416, 614, 11, 1438, 6, 198, 220, 220, 220, 2995, 796, 25507, 6831, 13, 69, 7569, 62, 439, 7, 31534, 62, 22766, 8, 198, 220, 220, 220, 1441, 685, 11600, 7, 68, 8, 329, 304, 287, 2995, 60, 628, 198, 4299, 24061, 62, 48013, 1187, 7, 6759, 2052, 11, 2532, 14220, 62, 7890, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 2168, 6809, 13, 628, 220, 220, 220, 40806, 378, 477, 7466, 290, 1938, 284, 2251, 257, 4823, 13, 198, 220, 220, 220, 27967, 5884, 6805, 11862, 284, 10568, 7310, 198, 220, 220, 220, 18399, 2628, 625, 477, 7466, 13, 628, 220, 220, 220, 33947, 18399, 2628, 416, 1271, 286, 7864, 284, 39684, 198, 220, 220, 220, 351, 10772, 14220, 18399, 1366, 357, 4758, 635, 3407, 1271, 198, 220, 220, 220, 286, 7864, 737, 628, 220, 220, 220, 5740, 326, 5743, 2663, 2152, 326, 389, 407, 5017, 13, 1114, 1672, 11, 198, 220, 220, 220, 3466, 3360, 2214, 257, 352, 85, 16, 2137, 329, 257, 2060, 2872, 13, 1002, 6159, 198, 220, 220, 220, 2137, 287, 262, 352, 85, 16, 2872, 2753, 636, 287, 597, 584, 7466, 11, 198, 220, 220, 220, 262, 1938, 460, 470, 307, 4624, 287, 257, 18399, 1448, 290, 511, 1592, 198, 220, 220, 220, 318, 407, 14789, 13, 1318, 389, 734, 6948, 25, 628, 220, 220, 220, 352, 13, 1892, 14143, 257, 1592, 743, 787, 262, 1271, 286, 7864, 1022, 198, 220, 220, 220, 220, 220, 220, 6809, 772, 11, 287, 543, 1339, 356, 836, 470, 760, 543, 198, 220, 220, 220, 220, 220, 220, 18399, 1448, 1839, 262, 2168, 13, 198, 220, 220, 220, 362, 13, 1892, 36115, 257, 2137, 1724, 262, 18399, 2137, 1351, 198, 220, 220, 220, 220, 220, 220, 481, 307, 17503, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4823, 796, 3127, 87, 13, 18683, 37065, 3419, 198, 220, 220, 220, 1592, 62, 312, 796, 657, 198, 220, 220, 220, 3859, 62, 2340, 796, 17635, 198, 220, 220, 220, 1438, 62, 1462, 62, 7220, 796, 23884, 198, 220, 220, 220, 329, 2872, 287, 7466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13266, 257, 1592, 198, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 4823, 13, 2860, 62, 17440, 7, 5404, 62, 312, 11, 2099, 11639, 5404, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13266, 3859, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 3859, 62, 2340, 13, 33295, 7, 15699, 17816, 24254, 62, 312, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 10139, 329, 1123, 2137, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2137, 287, 2872, 17816, 32399, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 1462, 62, 7220, 58, 7829, 17816, 3672, 6, 11907, 796, 2137, 17816, 7220, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4823, 13, 2860, 62, 17440, 7, 7829, 17816, 3672, 6, 4357, 2099, 11639, 7829, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1680, 1645, 329, 17503, 7466, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 17816, 14463, 62, 15097, 20520, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8113, 5442, 1938, 284, 6264, 1592, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2137, 287, 2872, 17816, 14463, 62, 15097, 6, 7131, 6, 32399, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4823, 13, 2860, 62, 14907, 7, 7829, 17816, 3672, 6, 4357, 1592, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8113, 477, 1938, 319, 262, 976, 1074, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1074, 287, 2872, 17816, 660, 4105, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 1074, 17816, 32399, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 1074, 17816, 32399, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4823, 13, 2860, 62, 14907, 7, 72, 17816, 3672, 6, 4357, 474, 17816, 3672, 6, 12962, 628, 220, 220, 220, 10527, 89, 62, 7890, 796, 685, 90, 198, 220, 220, 220, 220, 220, 220, 220, 705, 86, 1040, 10354, 18896, 26933, 17440, 329, 10139, 287, 308, 611, 4823, 13, 77, 4147, 58, 17440, 7131, 6, 4906, 20520, 6624, 705, 5404, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32399, 10354, 685, 17440, 329, 10139, 287, 308, 611, 4823, 13, 77, 4147, 58, 17440, 7131, 6, 4906, 20520, 6624, 705, 7829, 20520, 198, 220, 220, 220, 1782, 329, 308, 287, 3127, 87, 13, 38695, 306, 62, 15236, 62, 5589, 3906, 7, 34960, 15437, 628, 220, 220, 220, 1441, 685, 90, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 62, 2340, 10354, 685, 3672, 62, 1462, 62, 7220, 58, 77, 60, 329, 299, 287, 10527, 89, 17816, 32399, 20520, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39791, 10354, 2532, 14220, 17816, 39791, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 2532, 14220, 17816, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26675, 10354, 2532, 14220, 17816, 26675, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24254, 62, 312, 10354, 3859, 62, 2340, 58, 15, 60, 198, 220, 220, 220, 1782, 329, 10527, 89, 11, 2532, 14220, 287, 19974, 7, 198, 220, 220, 220, 220, 220, 220, 220, 23243, 7, 11296, 89, 62, 7890, 11, 1994, 28, 50033, 479, 25, 532, 16, 1635, 479, 17816, 86, 1040, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 23243, 7, 36747, 14220, 62, 7890, 11, 1994, 28, 50033, 479, 25, 532, 16, 1635, 479, 17816, 26675, 20520, 611, 479, 17816, 26675, 20520, 2073, 657, 8, 198, 220, 220, 220, 48600, 198 ]
2.264198
5,212
# Coneversiones de unidades import struct import binascii
[ 2, 327, 505, 9641, 274, 390, 555, 312, 2367, 198, 11748, 2878, 198, 11748, 9874, 292, 979, 72, 198 ]
3.052632
19
# MiniPlayerViewWidget.py from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5.QtGui import * import sys, subprocess, time, threading, datetime, os, mutagen from _prefs import miniplayer_coversize, cmus_remote_cmd, player_coversize coversize = miniplayer_coversize
[ 2, 12558, 14140, 7680, 38300, 13, 9078, 198, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1635, 198, 198, 11748, 25064, 11, 850, 14681, 11, 640, 11, 4704, 278, 11, 4818, 8079, 11, 28686, 11, 4517, 11286, 198, 198, 6738, 4808, 3866, 9501, 1330, 9927, 7829, 62, 1073, 690, 1096, 11, 12067, 385, 62, 47960, 62, 28758, 11, 2137, 62, 1073, 690, 1096, 198, 198, 1073, 690, 1096, 796, 9927, 7829, 62, 1073, 690, 1096, 198 ]
2.679245
106
r"""*Main implementation file for* ``flake8-absolute-import``. flake8 plugin to require absolute imports **Author** Brian Skinn ([email protected]) **File Created** 6 Sep 2019 **Copyright** \(c) Brian Skinn 2019-2021 **Source Repository** http://github.com/bskinn/flake8-absolute-import **License** The MIT License; see |license_txt|_ for full license terms **Members** """ import ast from flake8_absolute_import.version import __version__ ABS101 = "ABS101 Relative import found" class Visitor(ast.NodeVisitor): """NodeVisitor to report relative imports.""" def __init__(self): """Create a Visitor with empty errors list.""" self.errors = [] def visit_ImportFrom(self, node): # noqa: N802 """Implement check for relative import.""" if node.level > 0: self.errors.append((node.lineno, node.col_offset, ABS101)) self.generic_visit(node) class Plugin: """Core plugin class for flake8-absolute-import.""" name = "flake8-absolute-import" version = __version__ def __init__(self, tree): """Create plugin instance from the provided AST.""" self._tree = tree def run(self): """Traverse the AST and collect the errors.""" visitor = Visitor() visitor.visit(self._tree) for line, col, msg in visitor.errors: yield line, col, msg, type(self)
[ 81, 37811, 9, 13383, 7822, 2393, 329, 9, 7559, 47597, 23, 12, 48546, 12, 11748, 15506, 13, 198, 198, 47597, 23, 13877, 284, 2421, 4112, 17944, 198, 198, 1174, 13838, 1174, 198, 220, 220, 220, 8403, 3661, 3732, 357, 1443, 74, 3732, 31, 282, 388, 13, 2781, 13, 15532, 8, 198, 198, 1174, 8979, 15622, 1174, 198, 220, 220, 220, 718, 8621, 13130, 198, 198, 1174, 15269, 1174, 198, 220, 220, 220, 16792, 66, 8, 8403, 3661, 3732, 13130, 12, 1238, 2481, 198, 198, 1174, 7416, 1432, 13264, 1174, 198, 220, 220, 220, 2638, 1378, 12567, 13, 785, 14, 1443, 74, 3732, 14, 47597, 23, 12, 48546, 12, 11748, 198, 198, 1174, 34156, 1174, 198, 220, 220, 220, 383, 17168, 13789, 26, 766, 930, 43085, 62, 14116, 91, 62, 329, 1336, 5964, 2846, 198, 198, 1174, 25341, 1174, 198, 198, 37811, 198, 198, 11748, 6468, 198, 198, 6738, 781, 539, 23, 62, 48546, 62, 11748, 13, 9641, 1330, 11593, 9641, 834, 628, 198, 32, 4462, 8784, 796, 366, 32, 4462, 8784, 45344, 1330, 1043, 1, 628, 198, 4871, 6911, 2072, 7, 459, 13, 19667, 15854, 2072, 2599, 198, 220, 220, 220, 37227, 19667, 15854, 2072, 284, 989, 3585, 17944, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 6911, 2072, 351, 6565, 8563, 1351, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48277, 796, 17635, 628, 220, 220, 220, 825, 3187, 62, 20939, 4863, 7, 944, 11, 10139, 2599, 220, 1303, 645, 20402, 25, 399, 30863, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3546, 26908, 2198, 329, 3585, 1330, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 13, 5715, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48277, 13, 33295, 19510, 17440, 13, 2815, 23397, 11, 10139, 13, 4033, 62, 28968, 11, 29950, 8784, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41357, 62, 4703, 270, 7, 17440, 8, 628, 198, 4871, 42636, 25, 198, 220, 220, 220, 37227, 14055, 13877, 1398, 329, 781, 539, 23, 12, 48546, 12, 11748, 526, 15931, 628, 220, 220, 220, 1438, 796, 366, 47597, 23, 12, 48546, 12, 11748, 1, 198, 220, 220, 220, 2196, 796, 11593, 9641, 834, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5509, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 13877, 4554, 422, 262, 2810, 29273, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21048, 796, 5509, 628, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15721, 4399, 262, 29273, 290, 2824, 262, 8563, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 21493, 796, 6911, 2072, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 21493, 13, 4703, 270, 7, 944, 13557, 21048, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 11, 951, 11, 31456, 287, 21493, 13, 48277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 1627, 11, 951, 11, 31456, 11, 2099, 7, 944, 8, 198 ]
2.64432
537
from django.conf.urls import * # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() # from django.conf import settings urlpatterns = [ # Example: url(r'^', include('halolib.halolib.urls')), #url(r'^(?P<url>.*)$', proxy),#, ProxyLink.as_view(), name='proxy'), # Uncomment the admin/doc line below to enable admin documentation: #url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: #url(r'^admin/', include(admin.site.urls)), #url(r'^api-token-auth/', include('rest_framework.authtoken.views.obtain_auth_token')), ] #+ static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 1635, 198, 198, 2, 791, 23893, 262, 1306, 734, 3951, 284, 7139, 262, 13169, 25, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 28482, 13, 2306, 375, 29392, 3419, 198, 198, 2, 422, 42625, 14208, 13, 10414, 1330, 6460, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 1303, 17934, 25, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3256, 2291, 10786, 14201, 349, 571, 13, 14201, 349, 571, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 1303, 6371, 7, 81, 6, 61, 7, 30, 47, 27, 6371, 29, 15885, 8, 3, 3256, 15741, 828, 2, 11, 38027, 11280, 13, 292, 62, 1177, 22784, 1438, 11639, 36436, 33809, 628, 220, 220, 220, 1303, 791, 23893, 262, 13169, 14, 15390, 1627, 2174, 284, 7139, 13169, 10314, 25, 198, 220, 220, 220, 1303, 6371, 7, 81, 6, 61, 28482, 14, 15390, 14, 3256, 2291, 10786, 28241, 14208, 13, 3642, 822, 13, 324, 10155, 420, 82, 13, 6371, 82, 11537, 828, 628, 220, 220, 220, 1303, 791, 23893, 262, 1306, 1627, 284, 7139, 262, 13169, 25, 198, 220, 220, 220, 1303, 6371, 7, 81, 6, 61, 28482, 14, 3256, 2291, 7, 28482, 13, 15654, 13, 6371, 82, 36911, 628, 220, 220, 220, 1303, 6371, 7, 81, 6, 61, 15042, 12, 30001, 12, 18439, 14, 3256, 2291, 10786, 2118, 62, 30604, 13, 18439, 30001, 13, 33571, 13, 672, 3153, 62, 18439, 62, 30001, 11537, 828, 198, 60, 1303, 10, 9037, 7, 33692, 13, 35744, 2149, 62, 21886, 11, 3188, 62, 15763, 28, 33692, 13, 35744, 2149, 62, 13252, 2394, 8, 628, 198 ]
2.681319
273
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This module is meant to be used together with the web app. For the stand alone CLI implementation, see parent directory. """ from datetime import datetime import ast import os import re import unicodedata import logging import defaults logger = logging.getLogger() try: import redis except ImportError: print('pip install redis') exit(1) try: import ssdeep except ImportError: """ if you get errors during the installation process, install these: sudo apt-get install python3 python-dev python3-dev build-essential libssl-dev libffi-dev libxml2-dev libxslt1-dev zlib1g-dev python-pip libfuzzy-dev """ print('pip install ssdeep') exit(1) # To start with, set all to None. inputname = None inputssdeep = None inputsha256 = None # set the DB number and host to the default value REDIS_DB = defaults.REDIS_DB REDIS_HOST = defaults.REDIS_HOST REDIS_PASS = defaults.REDIS_PASS # Connect to redis. # Also, convert all responses to strings, not bytes r = redis.StrictRedis(REDIS_HOST, 6379, db=REDIS_DB, password=REDIS_PASS, charset="utf-8", decode_responses=True) def remove_control_characters(s): """Some input (like filenames) has some really nasty control chars. This trick removes those (https://stackoverflow.com/a/19016117)""" return "".join(ch for ch in s if unicodedata.category(ch)[0] != "C") def replace_badchars(inputstring): """Stringing together '.replace' seems the fastest way to do this: https://stackoverflow.com/a/27086669. As the input is json, the "," does not nead special treatment """ blacklist = {':': '', '\\': '', '"': '', '\'': '', '|': '', ' ': '', '/': ''} for k in blacklist: inputstring = inputstring.replace(k, blacklist[k]) return inputstring def clean_context(contextstring): """Remove all troublesome characters from the context option. We need to do this to make splitting the strings by other tools reliable.""" clean_contextstring = replace_badchars(contextstring) # make string splitable on pipe symbol and turn to lowercase clean_contextstring = clean_contextstring.encode('utf-8', 'ignore') clean_contextstring = clean_contextstring.decode('utf-8', 'ignore') clean_contextstring = clean_contextstring.replace(',', '|').lower() clean_contextstring = remove_control_characters(clean_contextstring) return clean_contextstring def clean_name(filename): """Remove pathname from the input and characters which could cause issues with stringparsing. """ # XXX in the case of directories, we'd want dirnames etc. cleanname = os.path.basename(filename) cleanname = replace_badchars(cleanname) cleanname = cleanname.encode('utf-8', 'ignore').decode('utf-8', 'ignore') cleanname = remove_control_characters(cleanname) # this turns a comma seperated list into the actual context list cleanname = cleanname.replace(',', '|').lower() return (cleanname) # The below two functions (preprocess_ssdeep and get_all_7_char_rolling_window) # originally come from Brian Wallace: # https://www.virusbulletin.com/virusbulletin/2015/11/\ # optimizing-ssdeep-use-scale def get_all_7_char_rolling_window(bs, h): """return a set containing the 7 character length strings (rolling window) of the ssdeep string for both block sizes, with the block size prepended. Ssdeep only does a compare if at least 7 characters match between strings. These are the keys which hold the sibling values.""" return set((str(bs) + ":" + h[i:i + 7]) for i in range(len(h) - 6)) def preprocess_ssdeep(h): """The ssdeep string is split into block_size, ssdeep, ssdeep_double_block. Before returning a set of all the rolling_window for size and double size, all the repeated character sequences of more than 3 are reduced to max 3. This is something the ssdeep algoritm does internally too. """ h_rolling_window = set() block_size, h = h.split(":", 1) block_size = int(block_size) # Reduce any sequence of the same char greater than 3 to 3 for c in set(list(h)): while c * 4 in h: h = h.replace(c * 4, c * 3) block_data, double_block_data = h.split(":") h_rolling_window.update(get_all_7_char_rolling_window(block_size, block_data)) h_rolling_window.update(get_all_7_char_rolling_window(block_size * 2, double_block_data)) return h_rolling_window def get_ssdeep_sets(rolling_window_ssdeep, inputssdeep): """ create a set of ssdeep hashes matching filesssdeep from the rolling_window set, which does not contain inputssdeep hash itself. Using '.discard' to silently return without inputssdeep.""" siblings_set = r.smembers(rolling_window_ssdeep) siblings_set.discard(inputssdeep) return siblings_set def add_ssdeep_to_rolling_window(rolling_window_ssdeep, inputssdeep): """This function adds the inputssdeep hash to all the matching rolling_windows.""" r.sadd(rolling_window_ssdeep, inputssdeep) def add_info(inputname, inputsha256, inputssdeep, inputcontext): """The four info fields contain a set (read: unique) of information about the added entity. This way sha256/inputname/inputssdeep are linked and retrievable.""" inputcontext = clean_context(inputcontext) splitcontext = inputcontext.split('|') inputsha256 = inputsha256.lower() r.sadd('info:inputname:{}'.format(inputname), 'sha256:{}:ssdeep:{}:context:{}'.format(inputsha256, inputssdeep, inputcontext)) r.sadd('info:ssdeep:{}'.format(inputssdeep), 'sha256:{}:context:{}:inputname:{}'.format(inputsha256, inputcontext, inputname)) r.sadd('info:sha256:{}'.format(inputsha256), 'ssdeep:{}:context:{}:inputname:{}'.format(inputssdeep, inputcontext, inputname)) r.sadd("hashes:ssdeep", '{}'.format(inputssdeep)) r.sadd("names:inputname", '{}'.format(inputname)) # pull all most significant contexts from an ssdeep and, if they are # different, add the combined names to splitcontext for inclusion in # "names:context". # Because the ssdeeps are similar, this will make different naming # schemes explicit. for contexts in r.smembers('info:ssdeep:{}'.format(inputssdeep)): context = contexts.split(':')[3].split('|')[0] if context != splitcontext[0]: context = '/'.join(sorted([context, splitcontext[0]])) splitcontext.append(context) for singlecontext in splitcontext: # add unique key to set with 'incr 1' to keep track of occurance # and create a ranked set. Rank may chance over time, but that # is not a problem when updates do not happen inbetween calls r.zincrby("names:context", '{}'.format(singlecontext), amount=1) info_string = 'sha256:{}:ssdeep:{}:inputname:{}:inputcontext:{}' r.sadd('info:context:{}'.format(singlecontext), info_string.format(inputsha256, inputssdeep, inputname, inputcontext)) # timestamp is used for caching of query results. It is updated after # every addition so it never goes stale. # keep a log of timestamps r.sadd("timestamplog", r.get("timestamp")) logger.debug(timestamp()) r.set("timestamp", timestamp()) logger.debug(r.get("timestamp")) def get_allsha256_for_ssdeep(ssdeep): """function which retrieves a string of unique sha256 hashes for an ssdeep hash. Theoretically a single ssdeep hash could match multiple different inputs, if the differences are insignificant.""" allsha256s = [allsha256.split(':')[1] for allsha256 in r.smembers('info:ssdeep:{}'.format(ssdeep))] allsha256s = str.join(':', set(allsha256s)) logger.debug(f"=== DEBUG === : allsha256s: {allsha256s}") return allsha256s def get_allcontext_for_ssdeep(ssdeep): """function which retrieves a string of unique context strings for an ssdeep hash. Theoretically a single ssdeep hash could match multiple different contexts, based on how they are added to the dataset.""" allcontexts = [allcontext.split(':')[3] for allcontext in r.smembers('info:ssdeep:{}'.format(ssdeep))] allcontexts = str.join(':', set(allcontexts)) logger.debug(f"=== DEBUG === : allcontexts: {allcontexts}") return allcontexts def return_results(inputname, inputsha256, inputssdeep, inputcontext): """The results should be in json. But the json.dumps function cannot deal with python sets, so we turn them into lists. additionally we retrieve other files with the same sha256 and, last but not least, it siblings (partially matching ssdeep hashes).""" info = dict() info['inputname'] = inputname info['sha256'] = inputsha256.lower() info['ssdeep'] = inputssdeep info['context'] = inputcontext info['other_inputnames'] = [inputnames.split(':')[-1] for inputnames in r.smembers('info:sha256:{}'.format(inputsha256)) if inputnames.split(':')[-1] not in inputname] info['siblings'] = list(r.zrangebyscore(inputssdeep, min=0, max='+inf', withscores=True)) return(info) def new_hash(inputsha256): """ To speed things up, we take a different path if the file is already known. return True if new, False if the hash is already known.""" inputsha256 = inputsha256.lower() if r.sismember("hashes:sha256", '{}'.format(inputsha256)): new = False else: new = True return new def rest_add(info_object): """This function should receive a list of dictionaries. Each dictionary must consist of: {"inputname": <>, "sha256": <>, "ssdeep": <>, "contexts": ["<>", "<>", "<>"]} The most important context must be the first in the list.""" logger.debug(f"=== DEBUG === : ingesting info_object: {info_object}") # sanity check for rest_info in info_object: inputname = clean_name(rest_info['inputname']) if check_sha256(rest_info['sha256']): input_sha256 = rest_info['sha256'].lower() else: return False if check_ssdeep(rest_info['ssdeep']): input_ssdeep = rest_info['ssdeep'] else: return False if len(rest_info['contexts']) == 0: return False contexts = list(map(lambda x: clean_context(x), rest_info['contexts'])) input_contexts = ','.join(contexts) add_ssdeep_to_db(inputname, input_sha256, input_ssdeep, input_contexts) return True
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 770, 8265, 318, 4001, 284, 307, 973, 1978, 351, 262, 3992, 598, 13, 198, 1890, 262, 1302, 3436, 43749, 7822, 11, 766, 2560, 8619, 13, 198, 37811, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 6468, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 28000, 9043, 1045, 198, 11748, 18931, 198, 11748, 26235, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 2266, 271, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 3601, 10786, 79, 541, 2721, 2266, 271, 11537, 198, 220, 220, 220, 8420, 7, 16, 8, 198, 28311, 25, 198, 220, 220, 220, 1330, 37786, 22089, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 345, 651, 8563, 1141, 262, 9988, 1429, 11, 2721, 777, 25, 198, 220, 220, 220, 21061, 15409, 12, 1136, 2721, 21015, 18, 21015, 12, 7959, 21015, 18, 12, 7959, 1382, 12, 31195, 9195, 45163, 12, 7959, 198, 220, 220, 220, 9195, 487, 72, 12, 7959, 9195, 19875, 17, 12, 7959, 9195, 34223, 2528, 16, 12, 7959, 1976, 8019, 16, 70, 12, 7959, 21015, 12, 79, 541, 9195, 69, 4715, 88, 12, 7959, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 10786, 79, 541, 2721, 37786, 22089, 11537, 198, 220, 220, 220, 8420, 7, 16, 8, 628, 198, 2, 1675, 923, 351, 11, 900, 477, 284, 6045, 13, 198, 15414, 3672, 796, 6045, 198, 15414, 824, 22089, 796, 6045, 198, 15414, 26270, 11645, 796, 6045, 198, 198, 2, 900, 262, 20137, 1271, 290, 2583, 284, 262, 4277, 1988, 198, 22083, 1797, 62, 11012, 796, 26235, 13, 22083, 1797, 62, 11012, 198, 22083, 1797, 62, 39, 10892, 796, 26235, 13, 22083, 1797, 62, 39, 10892, 198, 22083, 1797, 62, 47924, 796, 26235, 13, 22083, 1797, 62, 47924, 198, 198, 2, 8113, 284, 2266, 271, 13, 198, 2, 4418, 11, 10385, 477, 9109, 284, 13042, 11, 407, 9881, 198, 81, 796, 2266, 271, 13, 1273, 2012, 7738, 271, 7, 22083, 1797, 62, 39, 10892, 11, 718, 29088, 11, 20613, 28, 22083, 1797, 62, 11012, 11, 9206, 28, 22083, 1797, 62, 47924, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34534, 316, 2625, 40477, 12, 23, 1600, 36899, 62, 16733, 274, 28, 17821, 8, 628, 628, 198, 198, 4299, 4781, 62, 13716, 62, 10641, 19858, 7, 82, 2599, 198, 220, 220, 220, 37227, 4366, 5128, 357, 2339, 1226, 268, 1047, 8, 468, 617, 1107, 17166, 1630, 34534, 13, 198, 220, 220, 220, 770, 6908, 20694, 883, 357, 5450, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 1129, 27037, 17657, 8, 37811, 198, 220, 220, 220, 1441, 366, 1911, 22179, 7, 354, 329, 442, 287, 264, 611, 28000, 9043, 1045, 13, 22872, 7, 354, 38381, 15, 60, 14512, 366, 34, 4943, 628, 198, 4299, 6330, 62, 14774, 354, 945, 7, 15414, 8841, 2599, 198, 220, 220, 220, 37227, 10100, 278, 1978, 45302, 33491, 6, 2331, 262, 14162, 835, 198, 220, 220, 220, 284, 466, 428, 25, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 1983, 2919, 2791, 3388, 13, 198, 220, 220, 220, 1081, 262, 5128, 318, 33918, 11, 262, 366, 553, 857, 407, 497, 324, 2041, 3513, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38810, 796, 1391, 10354, 10354, 705, 3256, 705, 6852, 10354, 705, 3256, 705, 1, 10354, 705, 3256, 705, 59, 7061, 25, 705, 3256, 705, 91, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 705, 25, 705, 3256, 31051, 10354, 10148, 92, 198, 220, 220, 220, 329, 479, 287, 38810, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 8841, 796, 5128, 8841, 13, 33491, 7, 74, 11, 38810, 58, 74, 12962, 198, 220, 220, 220, 1441, 5128, 8841, 628, 198, 4299, 3424, 62, 22866, 7, 22866, 8841, 2599, 198, 220, 220, 220, 37227, 27914, 477, 35778, 3435, 422, 262, 4732, 3038, 13, 198, 220, 220, 220, 775, 761, 284, 466, 428, 284, 787, 26021, 262, 13042, 416, 198, 220, 220, 220, 584, 4899, 9314, 526, 15931, 198, 220, 220, 220, 3424, 62, 22866, 8841, 796, 6330, 62, 14774, 354, 945, 7, 22866, 8841, 8, 198, 220, 220, 220, 1303, 787, 4731, 4328, 4674, 319, 12656, 6194, 290, 1210, 284, 2793, 7442, 198, 220, 220, 220, 3424, 62, 22866, 8841, 796, 3424, 62, 22866, 8841, 13, 268, 8189, 10786, 40477, 12, 23, 3256, 705, 46430, 11537, 198, 220, 220, 220, 3424, 62, 22866, 8841, 796, 3424, 62, 22866, 8841, 13, 12501, 1098, 10786, 40477, 12, 23, 3256, 705, 46430, 11537, 198, 220, 220, 220, 3424, 62, 22866, 8841, 796, 3424, 62, 22866, 8841, 13, 33491, 7, 3256, 3256, 705, 91, 27691, 21037, 3419, 198, 220, 220, 220, 3424, 62, 22866, 8841, 796, 4781, 62, 13716, 62, 10641, 19858, 7, 27773, 62, 22866, 8841, 8, 198, 220, 220, 220, 1441, 3424, 62, 22866, 8841, 628, 198, 4299, 3424, 62, 3672, 7, 34345, 2599, 198, 220, 220, 220, 37227, 27914, 3108, 3672, 422, 262, 5128, 290, 3435, 198, 220, 220, 220, 543, 714, 2728, 2428, 351, 4731, 79, 945, 278, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 27713, 287, 262, 1339, 286, 29196, 11, 356, 1549, 765, 26672, 14933, 3503, 13, 198, 220, 220, 220, 1190, 1236, 480, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 34345, 8, 198, 220, 220, 220, 1190, 1236, 480, 796, 6330, 62, 14774, 354, 945, 7, 2375, 1236, 480, 8, 198, 220, 220, 220, 1190, 1236, 480, 796, 1190, 1236, 480, 13, 268, 8189, 10786, 40477, 12, 23, 3256, 705, 46430, 27691, 12501, 1098, 10786, 40477, 12, 23, 3256, 705, 46430, 11537, 198, 220, 220, 220, 1190, 1236, 480, 796, 4781, 62, 13716, 62, 10641, 19858, 7, 2375, 1236, 480, 8, 198, 220, 220, 220, 1303, 428, 4962, 257, 39650, 384, 525, 515, 1351, 656, 262, 4036, 4732, 1351, 198, 220, 220, 220, 1190, 1236, 480, 796, 1190, 1236, 480, 13, 33491, 7, 3256, 3256, 705, 91, 27691, 21037, 3419, 198, 220, 220, 220, 1441, 357, 2375, 1236, 480, 8, 628, 198, 2, 383, 2174, 734, 5499, 357, 3866, 14681, 62, 824, 22089, 290, 651, 62, 439, 62, 22, 62, 10641, 62, 18886, 62, 17497, 8, 198, 2, 6198, 1282, 422, 8403, 17161, 25, 198, 2, 3740, 1378, 2503, 13, 85, 19397, 15065, 1616, 259, 13, 785, 14, 85, 19397, 15065, 1616, 259, 14, 4626, 14, 1157, 14, 59, 198, 2, 220, 220, 220, 220, 220, 220, 220, 45780, 12, 824, 22089, 12, 1904, 12, 9888, 198, 198, 4299, 651, 62, 439, 62, 22, 62, 10641, 62, 18886, 62, 17497, 7, 1443, 11, 289, 2599, 198, 220, 220, 220, 37227, 7783, 257, 900, 7268, 262, 767, 2095, 4129, 13042, 357, 18886, 4324, 8, 198, 220, 220, 220, 286, 262, 37786, 22089, 4731, 329, 1111, 2512, 10620, 11, 351, 262, 2512, 2546, 3143, 1631, 13, 198, 220, 220, 220, 311, 82, 22089, 691, 857, 257, 8996, 611, 379, 1551, 767, 3435, 2872, 1022, 13042, 13, 198, 220, 220, 220, 2312, 389, 262, 8251, 543, 1745, 262, 33423, 3815, 526, 15931, 198, 220, 220, 220, 1441, 900, 19510, 2536, 7, 1443, 8, 1343, 366, 11097, 1343, 289, 58, 72, 25, 72, 1343, 767, 12962, 329, 1312, 287, 2837, 7, 11925, 7, 71, 8, 532, 718, 4008, 628, 198, 4299, 662, 14681, 62, 824, 22089, 7, 71, 2599, 198, 220, 220, 220, 37227, 464, 37786, 22089, 4731, 318, 6626, 656, 2512, 62, 7857, 11, 37786, 22089, 11, 37786, 22089, 62, 23352, 62, 9967, 13, 198, 220, 220, 220, 7413, 8024, 257, 900, 286, 477, 262, 10708, 62, 17497, 329, 2546, 290, 4274, 2546, 11, 198, 220, 220, 220, 477, 262, 5100, 2095, 16311, 286, 517, 621, 513, 389, 5322, 284, 3509, 513, 13, 198, 220, 220, 220, 770, 318, 1223, 262, 37786, 22089, 435, 7053, 270, 76, 857, 20947, 1165, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 289, 62, 18886, 62, 17497, 796, 900, 3419, 198, 220, 220, 220, 2512, 62, 7857, 11, 289, 796, 289, 13, 35312, 7, 1298, 1600, 352, 8, 198, 220, 220, 220, 2512, 62, 7857, 796, 493, 7, 9967, 62, 7857, 8, 198, 220, 220, 220, 1303, 44048, 597, 8379, 286, 262, 976, 1149, 3744, 621, 513, 284, 513, 198, 220, 220, 220, 329, 269, 287, 900, 7, 4868, 7, 71, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 981, 269, 1635, 604, 287, 289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 289, 13, 33491, 7, 66, 1635, 604, 11, 269, 1635, 513, 8, 198, 220, 220, 220, 2512, 62, 7890, 11, 4274, 62, 9967, 62, 7890, 796, 289, 13, 35312, 7, 2404, 8, 198, 220, 220, 220, 289, 62, 18886, 62, 17497, 13, 19119, 7, 1136, 62, 439, 62, 22, 62, 10641, 62, 18886, 62, 17497, 7, 9967, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 7890, 4008, 198, 220, 220, 220, 289, 62, 18886, 62, 17497, 13, 19119, 7, 1136, 62, 439, 62, 22, 62, 10641, 62, 18886, 62, 17497, 7, 9967, 62, 7857, 1635, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4274, 62, 9967, 62, 7890, 4008, 198, 220, 220, 220, 1441, 289, 62, 18886, 62, 17497, 628, 198, 4299, 651, 62, 824, 22089, 62, 28709, 7, 18886, 62, 17497, 62, 824, 22089, 11, 5128, 824, 22089, 2599, 198, 220, 220, 220, 37227, 2251, 257, 900, 286, 37786, 22089, 46621, 12336, 1226, 408, 82, 22089, 198, 220, 220, 220, 422, 262, 10708, 62, 17497, 900, 11, 543, 857, 407, 3994, 198, 220, 220, 220, 5128, 824, 22089, 12234, 2346, 13, 8554, 45302, 15410, 446, 6, 284, 24595, 198, 220, 220, 220, 1441, 1231, 5128, 824, 22089, 526, 15931, 198, 220, 220, 220, 20569, 62, 2617, 796, 374, 13, 5796, 368, 1213, 7, 18886, 62, 17497, 62, 824, 22089, 8, 198, 220, 220, 220, 20569, 62, 2617, 13, 15410, 446, 7, 15414, 824, 22089, 8, 198, 220, 220, 220, 1441, 20569, 62, 2617, 628, 198, 4299, 751, 62, 824, 22089, 62, 1462, 62, 18886, 62, 17497, 7, 18886, 62, 17497, 62, 824, 22089, 11, 5128, 824, 22089, 2599, 198, 220, 220, 220, 37227, 1212, 2163, 6673, 262, 5128, 824, 22089, 12234, 284, 477, 262, 12336, 198, 220, 220, 220, 10708, 62, 28457, 526, 15931, 198, 220, 220, 220, 374, 13, 82, 2860, 7, 18886, 62, 17497, 62, 824, 22089, 11, 5128, 824, 22089, 8, 628, 198, 4299, 751, 62, 10951, 7, 15414, 3672, 11, 5128, 26270, 11645, 11, 5128, 824, 22089, 11, 5128, 22866, 2599, 198, 220, 220, 220, 37227, 464, 1440, 7508, 7032, 3994, 257, 900, 357, 961, 25, 3748, 8, 286, 1321, 198, 220, 220, 220, 546, 262, 2087, 9312, 13, 770, 835, 427, 64, 11645, 14, 15414, 3672, 14, 15414, 824, 22089, 389, 198, 220, 220, 220, 6692, 290, 37715, 1990, 540, 526, 15931, 198, 220, 220, 220, 5128, 22866, 796, 3424, 62, 22866, 7, 15414, 22866, 8, 198, 220, 220, 220, 6626, 22866, 796, 5128, 22866, 13, 35312, 10786, 91, 11537, 198, 220, 220, 220, 5128, 26270, 11645, 796, 5128, 26270, 11645, 13, 21037, 3419, 628, 220, 220, 220, 374, 13, 82, 2860, 10786, 10951, 25, 15414, 3672, 29164, 92, 4458, 18982, 7, 15414, 3672, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26270, 11645, 29164, 38362, 824, 22089, 29164, 38362, 22866, 29164, 92, 4458, 18982, 7, 15414, 26270, 11645, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 824, 22089, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 22866, 4008, 198, 220, 220, 220, 374, 13, 82, 2860, 10786, 10951, 25, 824, 22089, 29164, 92, 4458, 18982, 7, 15414, 824, 22089, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26270, 11645, 29164, 38362, 22866, 29164, 38362, 15414, 3672, 29164, 92, 4458, 18982, 7, 15414, 26270, 11645, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 3672, 4008, 198, 220, 220, 220, 374, 13, 82, 2860, 10786, 10951, 25, 26270, 11645, 29164, 92, 4458, 18982, 7, 15414, 26270, 11645, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 824, 22089, 29164, 38362, 22866, 29164, 38362, 15414, 3672, 29164, 92, 4458, 18982, 7, 15414, 824, 22089, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 3672, 4008, 198, 220, 220, 220, 374, 13, 82, 2860, 7203, 71, 7465, 25, 824, 22089, 1600, 705, 90, 92, 4458, 18982, 7, 15414, 824, 22089, 4008, 198, 220, 220, 220, 374, 13, 82, 2860, 7203, 14933, 25, 15414, 3672, 1600, 705, 90, 92, 4458, 18982, 7, 15414, 3672, 4008, 198, 220, 220, 220, 1303, 2834, 477, 749, 2383, 26307, 422, 281, 37786, 22089, 290, 11, 611, 484, 389, 198, 220, 220, 220, 1303, 1180, 11, 751, 262, 5929, 3891, 284, 6626, 22866, 329, 14900, 287, 198, 220, 220, 220, 1303, 366, 14933, 25, 22866, 1911, 198, 220, 220, 220, 1303, 4362, 262, 37786, 22089, 82, 389, 2092, 11, 428, 481, 787, 1180, 19264, 198, 220, 220, 220, 1303, 16546, 7952, 13, 198, 220, 220, 220, 329, 26307, 287, 374, 13, 5796, 368, 1213, 10786, 10951, 25, 824, 22089, 29164, 92, 4458, 18982, 7, 15414, 824, 22089, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 26307, 13, 35312, 7, 10354, 11537, 58, 18, 4083, 35312, 10786, 91, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4732, 14512, 6626, 22866, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 31051, 4458, 22179, 7, 82, 9741, 26933, 22866, 11, 6626, 22866, 58, 15, 11907, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 22866, 13, 33295, 7, 22866, 8, 628, 220, 220, 220, 329, 2060, 22866, 287, 6626, 22866, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 3748, 1994, 284, 900, 351, 705, 1939, 81, 352, 6, 284, 1394, 2610, 286, 3051, 590, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 2251, 257, 10307, 900, 13, 10916, 743, 2863, 625, 640, 11, 475, 326, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 407, 257, 1917, 618, 5992, 466, 407, 1645, 287, 23395, 3848, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 89, 1939, 81, 1525, 7203, 14933, 25, 22866, 1600, 705, 90, 92, 4458, 18982, 7, 29762, 22866, 828, 2033, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7508, 62, 8841, 796, 705, 26270, 11645, 29164, 38362, 824, 22089, 29164, 38362, 15414, 3672, 29164, 38362, 15414, 22866, 29164, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 82, 2860, 10786, 10951, 25, 22866, 29164, 92, 4458, 18982, 7, 29762, 22866, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 62, 8841, 13, 18982, 7, 15414, 26270, 11645, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 824, 22089, 11, 5128, 3672, 11, 5128, 22866, 4008, 198, 220, 220, 220, 1303, 41033, 318, 973, 329, 40918, 286, 12405, 2482, 13, 632, 318, 6153, 706, 198, 220, 220, 220, 1303, 790, 3090, 523, 340, 1239, 2925, 39985, 13, 198, 220, 220, 220, 1303, 1394, 257, 2604, 286, 4628, 395, 9430, 198, 220, 220, 220, 374, 13, 82, 2860, 7203, 16514, 395, 321, 489, 519, 1600, 374, 13, 1136, 7203, 16514, 27823, 48774, 198, 220, 220, 220, 49706, 13, 24442, 7, 16514, 27823, 28955, 198, 220, 220, 220, 374, 13, 2617, 7203, 16514, 27823, 1600, 41033, 28955, 628, 220, 220, 220, 49706, 13, 24442, 7, 81, 13, 1136, 7203, 16514, 27823, 48774, 628, 198, 4299, 651, 62, 439, 26270, 11645, 62, 1640, 62, 824, 22089, 7, 824, 22089, 2599, 198, 220, 220, 220, 37227, 8818, 543, 13236, 1158, 257, 4731, 286, 3748, 427, 64, 11645, 46621, 329, 198, 220, 220, 220, 281, 37786, 22089, 12234, 13, 383, 9997, 1146, 257, 2060, 37786, 22089, 12234, 714, 2872, 3294, 198, 220, 220, 220, 1180, 17311, 11, 611, 262, 5400, 389, 32081, 526, 15931, 198, 220, 220, 220, 477, 26270, 11645, 82, 796, 685, 439, 26270, 11645, 13, 35312, 7, 10354, 11537, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 477, 26270, 11645, 287, 374, 13, 5796, 368, 1213, 10786, 10951, 25, 824, 22089, 29164, 92, 4458, 18982, 7, 824, 22089, 4008, 60, 198, 220, 220, 220, 477, 26270, 11645, 82, 796, 965, 13, 22179, 7, 10354, 3256, 900, 7, 439, 26270, 11645, 82, 4008, 198, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 18604, 16959, 24844, 1058, 477, 26270, 11645, 82, 25, 1391, 439, 26270, 11645, 82, 92, 4943, 198, 220, 220, 220, 1441, 477, 26270, 11645, 82, 628, 198, 4299, 651, 62, 439, 22866, 62, 1640, 62, 824, 22089, 7, 824, 22089, 2599, 198, 220, 220, 220, 37227, 8818, 543, 13236, 1158, 257, 4731, 286, 3748, 4732, 13042, 329, 198, 220, 220, 220, 281, 37786, 22089, 12234, 13, 383, 9997, 1146, 257, 2060, 37786, 22089, 12234, 714, 2872, 3294, 198, 220, 220, 220, 1180, 26307, 11, 1912, 319, 703, 484, 389, 2087, 284, 262, 27039, 526, 15931, 198, 220, 220, 220, 477, 22866, 82, 796, 685, 439, 22866, 13, 35312, 7, 10354, 11537, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 477, 22866, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 5796, 368, 1213, 10786, 10951, 25, 824, 22089, 29164, 92, 4458, 18982, 7, 824, 22089, 4008, 60, 198, 220, 220, 220, 477, 22866, 82, 796, 965, 13, 22179, 7, 10354, 3256, 900, 7, 439, 22866, 82, 4008, 198, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 18604, 16959, 24844, 1058, 477, 22866, 82, 25, 1391, 439, 22866, 82, 92, 4943, 198, 220, 220, 220, 1441, 477, 22866, 82, 628, 198, 4299, 1441, 62, 43420, 7, 15414, 3672, 11, 5128, 26270, 11645, 11, 5128, 824, 22089, 11, 5128, 22866, 2599, 198, 220, 220, 220, 37227, 464, 2482, 815, 307, 287, 33918, 13, 887, 262, 33918, 13, 67, 8142, 2163, 198, 220, 220, 220, 2314, 1730, 351, 21015, 5621, 11, 523, 356, 1210, 606, 656, 8341, 13, 198, 220, 220, 220, 36527, 356, 19818, 584, 3696, 351, 262, 976, 427, 64, 11645, 290, 11, 198, 220, 220, 220, 938, 475, 407, 1551, 11, 340, 20569, 357, 3911, 1927, 12336, 37786, 22089, 46621, 21387, 15931, 198, 220, 220, 220, 7508, 796, 8633, 3419, 198, 220, 220, 220, 7508, 17816, 15414, 3672, 20520, 796, 5128, 3672, 198, 220, 220, 220, 7508, 17816, 26270, 11645, 20520, 796, 5128, 26270, 11645, 13, 21037, 3419, 198, 220, 220, 220, 7508, 17816, 824, 22089, 20520, 796, 5128, 824, 22089, 198, 220, 220, 220, 7508, 17816, 22866, 20520, 796, 5128, 22866, 198, 220, 220, 220, 7508, 17816, 847, 62, 15414, 14933, 20520, 796, 685, 15414, 14933, 13, 35312, 7, 10354, 11537, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5128, 14933, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 5796, 368, 1213, 10786, 10951, 25, 26270, 11645, 29164, 92, 4458, 18982, 7, 15414, 26270, 11645, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 14933, 13, 35312, 7, 10354, 11537, 58, 12, 16, 60, 407, 287, 5128, 3672, 60, 198, 220, 220, 220, 7508, 17816, 82, 19389, 20520, 796, 1351, 7, 81, 13, 89, 9521, 48209, 7295, 7, 15414, 824, 22089, 11, 949, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 11639, 10, 10745, 3256, 351, 1416, 2850, 28, 17821, 4008, 198, 220, 220, 220, 1441, 7, 10951, 8, 628, 198, 4299, 649, 62, 17831, 7, 15414, 26270, 11645, 2599, 198, 220, 220, 220, 37227, 1675, 2866, 1243, 510, 11, 356, 1011, 257, 1180, 3108, 611, 262, 2393, 318, 1541, 1900, 13, 198, 220, 220, 220, 1441, 6407, 611, 649, 11, 10352, 611, 262, 12234, 318, 1541, 1900, 526, 15931, 198, 220, 220, 220, 5128, 26270, 11645, 796, 5128, 26270, 11645, 13, 21037, 3419, 198, 220, 220, 220, 611, 374, 13, 82, 1042, 1491, 7203, 71, 7465, 25, 26270, 11645, 1600, 705, 90, 92, 4458, 18982, 7, 15414, 26270, 11645, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 796, 10352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 796, 6407, 198, 220, 220, 220, 1441, 649, 628, 628, 198, 4299, 1334, 62, 2860, 7, 10951, 62, 15252, 2599, 198, 220, 220, 220, 37227, 1212, 2163, 815, 3328, 257, 1351, 286, 48589, 3166, 13, 198, 220, 220, 220, 5501, 22155, 1276, 3473, 286, 25, 198, 220, 220, 220, 19779, 15414, 3672, 1298, 1279, 22330, 366, 26270, 11645, 1298, 1279, 22330, 366, 824, 22089, 1298, 1279, 22330, 366, 22866, 82, 1298, 14631, 27, 29, 1600, 33490, 29, 1600, 33490, 29, 8973, 92, 198, 220, 220, 220, 383, 749, 1593, 4732, 1276, 307, 262, 717, 287, 262, 1351, 526, 15931, 198, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 18604, 16959, 24844, 1058, 26151, 278, 7508, 62, 15252, 25, 1391, 10951, 62, 15252, 92, 4943, 628, 220, 220, 220, 1303, 34182, 2198, 198, 220, 220, 220, 329, 1334, 62, 10951, 287, 7508, 62, 15252, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 3672, 796, 3424, 62, 3672, 7, 2118, 62, 10951, 17816, 15414, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2198, 62, 26270, 11645, 7, 2118, 62, 10951, 17816, 26270, 11645, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 26270, 11645, 796, 1334, 62, 10951, 17816, 26270, 11645, 6, 4083, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2198, 62, 824, 22089, 7, 2118, 62, 10951, 17816, 824, 22089, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 824, 22089, 796, 1334, 62, 10951, 17816, 824, 22089, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2118, 62, 10951, 17816, 22866, 82, 6, 12962, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 26307, 796, 1351, 7, 8899, 7, 50033, 2124, 25, 3424, 62, 22866, 7, 87, 828, 1334, 62, 10951, 17816, 22866, 82, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 22866, 82, 796, 705, 4032, 13, 22179, 7, 22866, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 824, 22089, 62, 1462, 62, 9945, 7, 15414, 3672, 11, 5128, 62, 26270, 11645, 11, 5128, 62, 824, 22089, 11, 5128, 62, 22866, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628 ]
2.535601
4,410
import time from datetime import datetime as dt hp = r"C:\Windows\System32\drivers\hosts" #provide the proper host path according to yor system redirect = "127.0.0.1" web = ["www.youtube.com","www.facebook.com"] #add the website links in the list while True: if dt(dt.now().year, dt.now().month, dt.now().day,9) < dt.now() < dt(dt.now().year, dt.now().month, dt.now().day,18): print("Sorry you are not allowed...") with open(hp,'r+') as file: content = file.read() for site in web: if site in content: pass else: file.write(redirect+" "+site+"\n") else: with open(hp,'r+') as file: content = file.readlines() file.seek(0) for line in content: if not any(site in line for site in web): file.write(line) file.truncate() print("Access Granted....") time.sleep(5)
[ 11748, 640, 198, 6738, 4818, 8079, 1330, 4818, 8079, 355, 288, 83, 198, 198, 24831, 796, 374, 1, 34, 7479, 11209, 59, 11964, 2624, 59, 36702, 59, 4774, 82, 1, 220, 220, 1303, 15234, 485, 262, 1774, 2583, 3108, 1864, 284, 331, 273, 1080, 198, 445, 1060, 796, 366, 16799, 13, 15, 13, 15, 13, 16, 1, 198, 12384, 796, 14631, 2503, 13, 11604, 13, 785, 2430, 2503, 13, 19024, 13, 785, 8973, 220, 1303, 2860, 262, 3052, 6117, 287, 262, 1351, 198, 198, 4514, 6407, 25, 198, 220, 611, 288, 83, 7, 28664, 13, 2197, 22446, 1941, 11, 288, 83, 13, 2197, 22446, 8424, 11, 288, 83, 13, 2197, 22446, 820, 11, 24, 8, 1279, 288, 83, 13, 2197, 3419, 1279, 288, 83, 7, 28664, 13, 2197, 22446, 1941, 11, 288, 83, 13, 2197, 22446, 8424, 11, 288, 83, 13, 2197, 22446, 820, 11, 1507, 2599, 198, 220, 220, 220, 3601, 7203, 14385, 345, 389, 407, 3142, 9313, 8, 198, 220, 220, 220, 351, 1280, 7, 24831, 4032, 81, 10, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 2695, 796, 2393, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 329, 2524, 287, 3992, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2524, 287, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 445, 1060, 10, 1, 43825, 15654, 10, 1, 59, 77, 4943, 198, 220, 2073, 25, 198, 220, 220, 220, 351, 1280, 7, 24831, 4032, 81, 10, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 2695, 796, 2393, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 2393, 13, 36163, 7, 15, 8, 198, 220, 220, 220, 220, 220, 329, 1627, 287, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 597, 7, 15654, 287, 1627, 329, 2524, 287, 3992, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 2393, 13, 2213, 19524, 378, 3419, 198, 220, 220, 220, 3601, 7203, 15457, 38842, 1106, 4943, 198, 220, 640, 13, 42832, 7, 20, 8, 198 ]
2.313984
379
"""Fix bad casting Revision ID: c2f1fafd2225 Revises: bff84c33d64d Create Date: 2019-01-10 15:41:34.358222 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = 'c2f1fafd2225' down_revision = 'bff84c33d64d' branch_labels = None depends_on = None
[ 37811, 22743, 2089, 13092, 198, 198, 18009, 1166, 4522, 25, 269, 17, 69, 16, 69, 1878, 67, 1828, 1495, 198, 18009, 2696, 25, 275, 487, 5705, 66, 2091, 67, 2414, 67, 198, 16447, 7536, 25, 13130, 12, 486, 12, 940, 1315, 25, 3901, 25, 2682, 13, 31128, 23148, 198, 198, 37811, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 1330, 1281, 34239, 13976, 198, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 66, 17, 69, 16, 69, 1878, 67, 1828, 1495, 6, 198, 2902, 62, 260, 10178, 796, 705, 65, 487, 5705, 66, 2091, 67, 2414, 67, 6, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 628, 198 ]
2.485507
138
#! /usr/bin/env python3 from pager import Pager from pexels_results import PexelsResults if __name__ == "__main__": import requests main () quit ()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 279, 3536, 1330, 350, 3536, 198, 6738, 613, 87, 1424, 62, 43420, 1330, 350, 1069, 1424, 25468, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 11748, 7007, 198, 197, 12417, 7499, 198, 197, 47391, 7499, 198 ]
2.781818
55
""" error.py ~~~~~~~~ This module contains errors to be thrown by storage modules :copyright: (c) by 2016 James Moore :license: BSD, see LICENSE for more details """ class SchemaExistsError(Exception): """ Thrown when a schema already exists """ pass class SchemaDoesNotExistError(Exception): """ Thrown when a schema does not exist """ pass class SchemaHasNoVersionsError(Exception): """ Thrown when a schema does not have any versions """ pass class SchemaVersionDoesNotExistError(Exception): """ Thrown when a schema version does not exist """ pass
[ 37811, 198, 220, 220, 220, 4049, 13, 9078, 198, 220, 220, 220, 220, 15116, 628, 220, 220, 220, 770, 8265, 4909, 8563, 284, 307, 8754, 416, 6143, 13103, 628, 220, 220, 220, 1058, 22163, 4766, 25, 357, 66, 8, 416, 1584, 3700, 8877, 198, 220, 220, 220, 1058, 43085, 25, 347, 10305, 11, 766, 38559, 24290, 329, 517, 3307, 198, 37811, 198, 198, 4871, 10011, 2611, 3109, 1023, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 536, 2053, 618, 257, 32815, 1541, 7160, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1208, 198, 198, 4871, 10011, 2611, 13921, 3673, 3109, 396, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 536, 2053, 618, 257, 32815, 857, 407, 2152, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1208, 198, 198, 4871, 10011, 2611, 19242, 2949, 45150, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 536, 2053, 618, 257, 32815, 857, 407, 423, 597, 6300, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1208, 198, 198, 4871, 10011, 2611, 14815, 13921, 3673, 3109, 396, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 536, 2053, 618, 257, 32815, 2196, 857, 407, 2152, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1208 ]
2.900452
221
# Generated by Django 2.1.1 on 2019-07-16 19:43 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 16, 319, 13130, 12, 2998, 12, 1433, 678, 25, 3559, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.766667
30
''' Given strings s1, s2, and s3, find whether s3 is formed by an interleaving of s1 and s2. An interleaving of two strings s and t is a configuration where they are divided into non-empty substrings such that: s = s1 + s2 + ... + sn t = t1 + t2 + ... + tm |n - m| <= 1 The interleaving is s1 + t1 + s2 + t2 + s3 + t3 + ... or t1 + s1 + t2 + s2 + t3 + s3 + ... Note: a + b is the concatenation of strings a and b. Example 1: Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac" Output: true Example 2: Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc" Output: false Example 3: Input: s1 = "", s2 = "", s3 = "" Output: true '''
[ 7061, 6, 198, 15056, 13042, 264, 16, 11, 264, 17, 11, 290, 264, 18, 11, 1064, 1771, 264, 18, 318, 7042, 416, 281, 987, 293, 2703, 286, 264, 16, 290, 264, 17, 13, 198, 198, 2025, 987, 293, 2703, 286, 734, 13042, 264, 290, 256, 318, 257, 8398, 810, 484, 389, 9086, 656, 1729, 12, 28920, 850, 37336, 884, 326, 25, 198, 198, 82, 796, 264, 16, 1343, 264, 17, 1343, 2644, 1343, 3013, 198, 83, 796, 256, 16, 1343, 256, 17, 1343, 2644, 1343, 256, 76, 198, 91, 77, 532, 285, 91, 19841, 352, 198, 464, 987, 293, 2703, 318, 264, 16, 1343, 256, 16, 1343, 264, 17, 1343, 256, 17, 1343, 264, 18, 1343, 256, 18, 1343, 2644, 393, 256, 16, 1343, 264, 16, 1343, 256, 17, 1343, 264, 17, 1343, 256, 18, 1343, 264, 18, 1343, 2644, 198, 6425, 25, 257, 1343, 275, 318, 262, 1673, 36686, 341, 286, 13042, 257, 290, 275, 13, 628, 220, 198, 198, 16281, 352, 25, 628, 198, 20560, 25, 264, 16, 796, 366, 64, 397, 535, 1600, 264, 17, 796, 366, 9945, 65, 6888, 1600, 264, 18, 796, 366, 64, 324, 11848, 66, 15630, 330, 1, 198, 26410, 25, 2081, 198, 16281, 362, 25, 198, 198, 20560, 25, 264, 16, 796, 366, 64, 397, 535, 1600, 264, 17, 796, 366, 9945, 65, 6888, 1600, 264, 18, 796, 366, 64, 324, 11848, 65, 330, 535, 1, 198, 26410, 25, 3991, 198, 16281, 513, 25, 198, 198, 20560, 25, 264, 16, 796, 366, 1600, 264, 17, 796, 366, 1600, 264, 18, 796, 13538, 198, 26410, 25, 2081, 198, 7061, 6, 198 ]
2.38806
268
for var_x in range(1,6): print(var_x) var_i = ["Apple","Banana","Pieapple","Orange","Lime"] for var_x in var_i: print(var_x) food_info={"Food_1":"Apple","Food_2":"Banana","Food_3":"Pieapple","Food_4":"Mango","Food_5":"Orange","Food_6":"Lime"} index_num1 = range(len(dict.keys(food_info))) key_list =list(dict.keys(food_info)) print("Food Name"+"\t"+"Food List") for var_x in index_num1: print(key_list[var_x]+"\t\t"+food_info[key_list[var_x]])
[ 1640, 1401, 62, 87, 287, 2837, 7, 16, 11, 21, 2599, 201, 198, 220, 220, 220, 3601, 7, 7785, 62, 87, 8, 201, 198, 220, 220, 220, 220, 201, 198, 7785, 62, 72, 796, 14631, 16108, 2430, 30457, 2271, 2430, 48223, 18040, 2430, 40141, 2430, 43, 524, 8973, 201, 198, 1640, 1401, 62, 87, 287, 1401, 62, 72, 25, 201, 198, 220, 220, 220, 3601, 7, 7785, 62, 87, 8, 201, 198, 220, 220, 220, 220, 201, 198, 19425, 62, 10951, 28, 4895, 24602, 62, 16, 2404, 16108, 2430, 24602, 62, 17, 2404, 30457, 2271, 2430, 24602, 62, 18, 2404, 48223, 18040, 2430, 24602, 62, 19, 2404, 44, 14208, 2430, 24602, 62, 20, 2404, 40141, 2430, 24602, 62, 21, 2404, 43, 524, 20662, 201, 198, 9630, 62, 22510, 16, 796, 2837, 7, 11925, 7, 11600, 13, 13083, 7, 19425, 62, 10951, 22305, 201, 198, 2539, 62, 4868, 796, 4868, 7, 11600, 13, 13083, 7, 19425, 62, 10951, 4008, 201, 198, 220, 220, 201, 198, 4798, 7203, 24602, 6530, 1, 10, 1, 59, 83, 1, 10, 1, 24602, 7343, 4943, 201, 198, 220, 220, 201, 198, 1640, 1401, 62, 87, 287, 6376, 62, 22510, 16, 25, 201, 198, 220, 220, 220, 3601, 7, 2539, 62, 4868, 58, 7785, 62, 87, 48688, 1, 59, 83, 59, 83, 1, 10, 19425, 62, 10951, 58, 2539, 62, 4868, 58, 7785, 62, 87, 11907, 8, 201, 198 ]
2.099138
232
import graphene from flask_graphql_auth import mutation_jwt_required, get_jwt_identity, AuthInfoField from app.models import User, QuickMemo from app.schema.unions import ResponseUnion from app.schema.fields import ResponseMessageField
[ 11748, 42463, 198, 6738, 42903, 62, 34960, 13976, 62, 18439, 1330, 15148, 62, 73, 46569, 62, 35827, 11, 651, 62, 73, 46569, 62, 738, 414, 11, 26828, 12360, 15878, 198, 198, 6738, 598, 13, 27530, 1330, 11787, 11, 12029, 13579, 78, 198, 6738, 598, 13, 15952, 2611, 13, 403, 507, 1330, 18261, 38176, 198, 6738, 598, 13, 15952, 2611, 13, 25747, 1330, 18261, 12837, 15878, 628 ]
3.606061
66
from .imdb import get_movies # TODO extract items from org mode? perhaps not very high priority
[ 6738, 764, 320, 9945, 1330, 651, 62, 76, 20526, 198, 198, 2, 16926, 46, 7925, 3709, 422, 8745, 4235, 30, 3737, 407, 845, 1029, 8475, 198 ]
3.730769
26
# Under MIT license, see LICENSE.txt import numpy as np from Util.geometry import wrap_to_pi from Util.role import Role from ai.Algorithm.evaluation_module import closest_players_to_point_except, ball_going_toward_player from ai.GameDomainObjects import Player from ai.STA.Strategy.graphless_strategy import GraphlessStrategy from ai.STA.Tactic.go_kick import GoKick from ai.STA.Tactic.goalkeeper import GoalKeeper from ai.STA.Tactic.position_for_pass import PositionForPass from ai.STA.Tactic.receive_pass import ReceivePass from ai.STA.Tactic.stay_away_from_ball import StayAwayFromBall from ai.STA.Tactic.tactic_constants import Flags from ai.states.game_state import GameState MAX_DISTANCE_TO_SWITCH_TO_RECEIVE_PASS = 1500
[ 2, 4698, 17168, 5964, 11, 766, 38559, 24290, 13, 14116, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 7273, 346, 13, 469, 15748, 1330, 14441, 62, 1462, 62, 14415, 198, 6738, 7273, 346, 13, 18090, 1330, 20934, 198, 6738, 257, 72, 13, 2348, 42289, 13, 18206, 2288, 62, 21412, 1330, 11706, 62, 32399, 62, 1462, 62, 4122, 62, 16341, 11, 2613, 62, 5146, 62, 83, 46138, 62, 7829, 198, 6738, 257, 72, 13, 8777, 43961, 10267, 82, 1330, 7853, 198, 6738, 257, 72, 13, 2257, 32, 13, 13290, 4338, 13, 34960, 1203, 62, 2536, 4338, 1330, 29681, 1203, 13290, 4338, 198, 6738, 257, 72, 13, 2257, 32, 13, 51, 12009, 13, 2188, 62, 24585, 1330, 1514, 45390, 198, 6738, 257, 72, 13, 2257, 32, 13, 51, 12009, 13, 35231, 13884, 1330, 25376, 42, 41278, 198, 6738, 257, 72, 13, 2257, 32, 13, 51, 12009, 13, 9150, 62, 1640, 62, 6603, 1330, 23158, 1890, 14478, 198, 6738, 257, 72, 13, 2257, 32, 13, 51, 12009, 13, 260, 15164, 62, 6603, 1330, 797, 15164, 14478, 198, 6738, 257, 72, 13, 2257, 32, 13, 51, 12009, 13, 31712, 62, 8272, 62, 6738, 62, 1894, 1330, 16160, 32, 1014, 4863, 23410, 198, 6738, 257, 72, 13, 2257, 32, 13, 51, 12009, 13, 83, 12009, 62, 9979, 1187, 1330, 34771, 198, 6738, 257, 72, 13, 27219, 13, 6057, 62, 5219, 1330, 3776, 9012, 198, 198, 22921, 62, 35, 8808, 19240, 62, 10468, 62, 17887, 31949, 62, 10468, 62, 2200, 5222, 9306, 62, 47924, 796, 20007, 628 ]
2.889328
253
# -*- coding: utf-8 -*- import pytest from pyleecan.Classes.Segment import Segment from pyleecan.Classes.SurfLine import SurfLine from pyleecan.Classes.LamHole import LamHole from pyleecan.Classes.HoleM53 import HoleM53 from pyleecan.Classes.Magnet import Magnet from numpy import exp, arcsin, ndarray, pi from pyleecan.Methods.Slot.HoleM53 import Slot53InterError # For AlmostEqual DELTA = 1e-6 HoleM53_test = list() HoleM53_test_error = list() # Two hole test_obj = LamHole(is_internal=True, Rext=80.2e-3, Rint=0) test_obj.hole = list() test_obj.hole.append( HoleM53( Zh=8, H0=0.02, H1=0.001, H2=0.01, H3=0.003, W1=0.005, W2=0, W3=0.01, W4=0.78 ) ) HoleM53_test.append( { "test_obj": test_obj, "S_exp": 3.63836e-4, "SM_exp": 0.0002, "Rmin": 5.8879558e-2, "Rmax": 7.92e-2, "W5": 7.78324e-3, } ) # One hole test_obj = LamHole(is_internal=True, Rext=80.2e-3, Rint=0) test_obj.hole = list() test_obj.hole.append( HoleM53(Zh=8, H0=0.02, H1=0.001, H2=0.01, H3=0.003, W1=0, W2=0, W3=0.01, W4=0.78) ) HoleM53_test.append( { "test_obj": test_obj, "S_exp": 3.73158e-4, "SM_exp": 0.0002, "Rmin": 5.8523556e-2, "Rmax": 7.92e-2, "W5": 8.317707e-3, } ) # Error test test_obj = LamHole(is_internal=True, Rext=80.2e-3, Rint=0) test_obj.hole = list() test_obj.hole.append( HoleM53(Zh=8, H0=0.02, H1=0.001, H2=0.01, H3=0.003, W1=0, W2=0, W3=0.01, W4=0.78) ) HoleM53_test_error.append( { "test_obj": test_obj, "S_exp": 3.73158e-4, "SM_exp": 0.0002, "Rmin": 5.8523556e-2, "Rmax": 7.92e-2, "W5": 8.317707e-3, } ) @pytest.mark.METHODS class Test_HoleM53_meth(object): """pytest for holeB53 methods""" @pytest.mark.parametrize("test_dict", HoleM53_test) def test_comp_surface(self, test_dict): """Check that the computation of the surface is correct""" test_obj = test_dict["test_obj"] result = test_obj.hole[0].comp_surface() a = result b = test_dict["S_exp"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg @pytest.mark.parametrize("test_dict", HoleM53_test) def test_comp_surface_mag(self, test_dict): """Check that the computation of the magnet surface is correct""" test_obj = test_dict["test_obj"] result = test_obj.hole[0].comp_surface_magnets() a = result b = test_dict["SM_exp"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg @pytest.mark.parametrize("test_dict", HoleM53_test) def test_comp_radius(self, test_dict): """Check that the computation of the radius is correct""" test_obj = test_dict["test_obj"] result = test_obj.hole[0].comp_radius() a = result[0] b = test_dict["Rmin"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg a = result[1] b = test_dict["Rmax"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg @pytest.mark.parametrize("test_dict", HoleM53_test) def test_comp_W5(self, test_dict): """Check that the computation of W5 iscorrect""" test_obj = test_dict["test_obj"] a = test_obj.hole[0].comp_W5() b = test_dict["W5"] msg = "Return " + str(a) + " expected " + str(b) assert abs((a - b) / a - 0) < DELTA, msg # Test that Z11 = Zlist[0] test_obj2 = LamHole(is_internal=True, Rext=80.2e-3, Rint=0) test_obj2.hole = list() test_obj2.hole.append( HoleM53( Zh=8, H0=0.00000000000000000000002, H1=0.00000001, H2=0.01, H3=0.003, W1=0, W2=0, W3=0.01, W4=2.28, ) ) a = test_obj2.hole[0].comp_W5() assert -0.0014380265690122837 == a @pytest.mark.parametrize("test_dict", HoleM53_test) def test_build_geometry(self, test_dict): """Check that the build geometry method works""" # is_simplified to True and magnetization Parallel test_obj = test_dict["test_obj"] test_obj.hole[0].magnet_0 = Magnet(type_magnetization=1) test_obj.hole[0].magnet_1 = Magnet(type_magnetization=1) a = test_obj.hole[0].build_geometry(is_simplified=True) assert a[1].label == "HoleMagnet_Stator_Parallel_N_R0_T0_S0" assert a[1].line_list[0] is not None assert a[1].line_list[1] is not None with pytest.raises(IndexError) as context: a[1].line_list[2] if test_obj.hole[0].W1 > 0: assert a[4].label == "HoleMagnet_Stator_Parallel_N_R0_T1_S0" assert a[4].line_list[0] is not None assert a[4].line_list[1] is not None with pytest.raises(IndexError) as context: a[4].line_list[2] else: assert a[3].label == "HoleMagnet_Stator_Parallel_N_R0_T1_S0" assert a[3].line_list[0] is not None assert a[3].line_list[1] is not None with pytest.raises(IndexError) as context: a[3].line_list[2] @pytest.mark.parametrize("test_dict", HoleM53_test_error) def test_build_geometry_Z11_Z1_not_foundable(self, test_dict): """Check that the build geometry error works""" test_obj = test_dict["test_obj"] test_obj.hole[0] = HoleM53( Zh=8, H0=0.02, H1=0.001, H2=0.01, H3=0.003, W1=0.765149757, W2=0.32542, W3=0.0564, W4=0.324, ) # Z11 with pytest.raises(Slot53InterError) as context: test_obj.hole[0].build_geometry() test_obj.hole[0] = HoleM53( Zh=8, H0=50.02, H1=10.0054456451, H2=40.56456456401, H3=0.968464003, W1=10.0, W2=0.14540, W3=1.01546654654, W4=0.05144, ) # Z1 with pytest.raises(Slot53InterError) as context: test_obj.hole[0].build_geometry() @pytest.mark.parametrize("test_dict", HoleM53_test_error) def test_build_geometry_Z11_Z1(self, test_dict): """Check nothing it's just for the coverage""" test_obj = test_dict["test_obj"] test_obj.hole[0] = HoleM53( Zh=8, H0=0.02, H1=0.001, H2=0.01, H3=0.003, W1=0.005, W2=0, W3=0.01, W4=0.78 ) lst_pattern = test_obj.hole[0].build_geometry() # Z11 = Zlist[0] test_obj.hole[0] = HoleM53( Zh=8, H0=0.00000000000000000000002, H1=0.00000001, H2=0.01, H3=0.003, W1=0, W2=0, W3=0.01, W4=2.28, ) lst1 = test_obj.hole[0].build_geometry() # Z1 = Zlist[0] test_obj.hole[0] = HoleM53( Zh=8, H0=0.00000000000000000000002, H1=0.00000001, H2=0.01, H3=0.003, W1=0, W2=0, W3=0.01, W4=4.78, ) lst2 = test_obj.hole[0].build_geometry() assert len(lst1) != len(lst_pattern) assert len(lst2) != len(lst_pattern) def test_comp_surface_magnet_id(self): """check that id is 0""" hole = HoleM53( Zh=8, H0=0.02, H1=0.001, H2=0.01, H3=0.003, W1=0.005, W2=0, W3=0.01, W4=0.78 ) assert hole.comp_surface_magnet_id(2) == 0
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 12972, 9288, 198, 198, 6738, 279, 2349, 721, 272, 13, 9487, 274, 13, 41030, 434, 1330, 1001, 5154, 198, 6738, 279, 2349, 721, 272, 13, 9487, 274, 13, 14214, 69, 13949, 1330, 43771, 13949, 198, 198, 6738, 279, 2349, 721, 272, 13, 9487, 274, 13, 43, 321, 39, 2305, 1330, 10923, 39, 2305, 198, 6738, 279, 2349, 721, 272, 13, 9487, 274, 13, 39, 2305, 44, 4310, 1330, 24478, 44, 4310, 198, 6738, 279, 2349, 721, 272, 13, 9487, 274, 13, 13436, 3262, 1330, 32079, 198, 6738, 299, 32152, 1330, 1033, 11, 44606, 259, 11, 299, 67, 18747, 11, 31028, 198, 198, 6738, 279, 2349, 721, 272, 13, 46202, 13, 38963, 13, 39, 2305, 44, 4310, 1330, 32026, 4310, 9492, 12331, 198, 198, 2, 1114, 16699, 36, 13255, 198, 35, 3698, 5603, 796, 352, 68, 12, 21, 198, 198, 39, 2305, 44, 4310, 62, 9288, 796, 1351, 3419, 198, 39, 2305, 44, 4310, 62, 9288, 62, 18224, 796, 1351, 3419, 198, 198, 2, 4930, 7604, 198, 9288, 62, 26801, 796, 10923, 39, 2305, 7, 271, 62, 32538, 28, 17821, 11, 797, 742, 28, 1795, 13, 17, 68, 12, 18, 11, 371, 600, 28, 15, 8, 198, 9288, 62, 26801, 13, 13207, 796, 1351, 3419, 198, 9288, 62, 26801, 13, 13207, 13, 33295, 7, 198, 220, 220, 220, 24478, 44, 4310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10511, 28, 23, 11, 367, 15, 28, 15, 13, 2999, 11, 367, 16, 28, 15, 13, 8298, 11, 367, 17, 28, 15, 13, 486, 11, 367, 18, 28, 15, 13, 11245, 11, 370, 16, 28, 15, 13, 22544, 11, 370, 17, 28, 15, 11, 370, 18, 28, 15, 13, 486, 11, 370, 19, 28, 15, 13, 3695, 198, 220, 220, 220, 1267, 198, 8, 198, 39, 2305, 44, 4310, 62, 9288, 13, 33295, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 62, 26801, 1298, 1332, 62, 26801, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 50, 62, 11201, 1298, 513, 13, 21, 2548, 2623, 68, 12, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12310, 62, 11201, 1298, 657, 13, 34215, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 49, 1084, 1298, 642, 13, 3459, 3720, 40486, 68, 12, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 49, 9806, 1298, 767, 13, 5892, 68, 12, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 54, 20, 1298, 767, 13, 3695, 33916, 68, 12, 18, 11, 198, 220, 220, 220, 1782, 198, 8, 198, 198, 2, 1881, 7604, 198, 9288, 62, 26801, 796, 10923, 39, 2305, 7, 271, 62, 32538, 28, 17821, 11, 797, 742, 28, 1795, 13, 17, 68, 12, 18, 11, 371, 600, 28, 15, 8, 198, 9288, 62, 26801, 13, 13207, 796, 1351, 3419, 198, 9288, 62, 26801, 13, 13207, 13, 33295, 7, 198, 220, 220, 220, 24478, 44, 4310, 7, 57, 71, 28, 23, 11, 367, 15, 28, 15, 13, 2999, 11, 367, 16, 28, 15, 13, 8298, 11, 367, 17, 28, 15, 13, 486, 11, 367, 18, 28, 15, 13, 11245, 11, 370, 16, 28, 15, 11, 370, 17, 28, 15, 11, 370, 18, 28, 15, 13, 486, 11, 370, 19, 28, 15, 13, 3695, 8, 198, 8, 198, 39, 2305, 44, 4310, 62, 9288, 13, 33295, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 62, 26801, 1298, 1332, 62, 26801, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 50, 62, 11201, 1298, 513, 13, 4790, 21273, 68, 12, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12310, 62, 11201, 1298, 657, 13, 34215, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 49, 1084, 1298, 642, 13, 5332, 1954, 37864, 68, 12, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 49, 9806, 1298, 767, 13, 5892, 68, 12, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 54, 20, 1298, 807, 13, 34125, 24038, 68, 12, 18, 11, 198, 220, 220, 220, 1782, 198, 8, 198, 198, 2, 13047, 1332, 198, 9288, 62, 26801, 796, 10923, 39, 2305, 7, 271, 62, 32538, 28, 17821, 11, 797, 742, 28, 1795, 13, 17, 68, 12, 18, 11, 371, 600, 28, 15, 8, 198, 9288, 62, 26801, 13, 13207, 796, 1351, 3419, 198, 9288, 62, 26801, 13, 13207, 13, 33295, 7, 198, 220, 220, 220, 24478, 44, 4310, 7, 57, 71, 28, 23, 11, 367, 15, 28, 15, 13, 2999, 11, 367, 16, 28, 15, 13, 8298, 11, 367, 17, 28, 15, 13, 486, 11, 367, 18, 28, 15, 13, 11245, 11, 370, 16, 28, 15, 11, 370, 17, 28, 15, 11, 370, 18, 28, 15, 13, 486, 11, 370, 19, 28, 15, 13, 3695, 8, 198, 8, 198, 39, 2305, 44, 4310, 62, 9288, 62, 18224, 13, 33295, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 62, 26801, 1298, 1332, 62, 26801, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 50, 62, 11201, 1298, 513, 13, 4790, 21273, 68, 12, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12310, 62, 11201, 1298, 657, 13, 34215, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 49, 1084, 1298, 642, 13, 5332, 1954, 37864, 68, 12, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 49, 9806, 1298, 767, 13, 5892, 68, 12, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 54, 20, 1298, 807, 13, 34125, 24038, 68, 12, 18, 11, 198, 220, 220, 220, 1782, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 49273, 50, 198, 4871, 6208, 62, 39, 2305, 44, 4310, 62, 76, 2788, 7, 15252, 2599, 198, 220, 220, 220, 37227, 9078, 9288, 329, 7604, 33, 4310, 5050, 37811, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 11600, 1600, 24478, 44, 4310, 62, 9288, 8, 198, 220, 220, 220, 825, 1332, 62, 5589, 62, 42029, 7, 944, 11, 1332, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 262, 29964, 286, 262, 4417, 318, 3376, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 1332, 62, 11600, 14692, 9288, 62, 26801, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 5589, 62, 42029, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 1332, 62, 11600, 14692, 50, 62, 11201, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 13615, 366, 1343, 965, 7, 64, 8, 1343, 366, 2938, 366, 1343, 965, 7, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2352, 19510, 64, 532, 275, 8, 1220, 257, 532, 657, 8, 1279, 28163, 5603, 11, 31456, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 11600, 1600, 24478, 44, 4310, 62, 9288, 8, 198, 220, 220, 220, 825, 1332, 62, 5589, 62, 42029, 62, 19726, 7, 944, 11, 1332, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 262, 29964, 286, 262, 19972, 4417, 318, 3376, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 1332, 62, 11600, 14692, 9288, 62, 26801, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 5589, 62, 42029, 62, 76, 4660, 1039, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 1332, 62, 11600, 14692, 12310, 62, 11201, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 13615, 366, 1343, 965, 7, 64, 8, 1343, 366, 2938, 366, 1343, 965, 7, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2352, 19510, 64, 532, 275, 8, 1220, 257, 532, 657, 8, 1279, 28163, 5603, 11, 31456, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 11600, 1600, 24478, 44, 4310, 62, 9288, 8, 198, 220, 220, 220, 825, 1332, 62, 5589, 62, 42172, 7, 944, 11, 1332, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 262, 29964, 286, 262, 16874, 318, 3376, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 1332, 62, 11600, 14692, 9288, 62, 26801, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 5589, 62, 42172, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1255, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 1332, 62, 11600, 14692, 49, 1084, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 13615, 366, 1343, 965, 7, 64, 8, 1343, 366, 2938, 366, 1343, 965, 7, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2352, 19510, 64, 532, 275, 8, 1220, 257, 532, 657, 8, 1279, 28163, 5603, 11, 31456, 628, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1255, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 1332, 62, 11600, 14692, 49, 9806, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 13615, 366, 1343, 965, 7, 64, 8, 1343, 366, 2938, 366, 1343, 965, 7, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2352, 19510, 64, 532, 275, 8, 1220, 257, 532, 657, 8, 1279, 28163, 5603, 11, 31456, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 11600, 1600, 24478, 44, 4310, 62, 9288, 8, 198, 220, 220, 220, 825, 1332, 62, 5589, 62, 54, 20, 7, 944, 11, 1332, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 262, 29964, 286, 370, 20, 318, 30283, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 1332, 62, 11600, 14692, 9288, 62, 26801, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 5589, 62, 54, 20, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 1332, 62, 11600, 14692, 54, 20, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 13615, 366, 1343, 965, 7, 64, 8, 1343, 366, 2938, 366, 1343, 965, 7, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2352, 19510, 64, 532, 275, 8, 1220, 257, 532, 657, 8, 1279, 28163, 5603, 11, 31456, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 6208, 326, 1168, 1157, 796, 1168, 4868, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 17, 796, 10923, 39, 2305, 7, 271, 62, 32538, 28, 17821, 11, 797, 742, 28, 1795, 13, 17, 68, 12, 18, 11, 371, 600, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 17, 13, 13207, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 17, 13, 13207, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24478, 44, 4310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10511, 28, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 15, 28, 15, 13, 25645, 10535, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 16, 28, 15, 13, 10535, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 17, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 18, 28, 15, 13, 11245, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 16, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 17, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 18, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 19, 28, 17, 13, 2078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1332, 62, 26801, 17, 13, 13207, 58, 15, 4083, 5589, 62, 54, 20, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 532, 15, 13, 405, 21139, 1795, 22980, 3388, 486, 23815, 2718, 6624, 257, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 11600, 1600, 24478, 44, 4310, 62, 9288, 8, 198, 220, 220, 220, 825, 1332, 62, 11249, 62, 469, 15748, 7, 944, 11, 1332, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 262, 1382, 22939, 2446, 2499, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 62, 14323, 489, 1431, 284, 6407, 290, 19972, 1634, 42945, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 1332, 62, 11600, 14692, 9288, 62, 26801, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 19726, 3262, 62, 15, 796, 32079, 7, 4906, 62, 19726, 3262, 1634, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 19726, 3262, 62, 16, 796, 32079, 7, 4906, 62, 19726, 3262, 1634, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 11249, 62, 469, 15748, 7, 271, 62, 14323, 489, 1431, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 16, 4083, 18242, 6624, 366, 39, 2305, 13436, 3262, 62, 1273, 1352, 62, 10044, 29363, 62, 45, 62, 49, 15, 62, 51, 15, 62, 50, 15, 1, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 16, 4083, 1370, 62, 4868, 58, 15, 60, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 16, 4083, 1370, 62, 4868, 58, 16, 60, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 15732, 12331, 8, 355, 4732, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 58, 16, 4083, 1370, 62, 4868, 58, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 54, 16, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 19, 4083, 18242, 6624, 366, 39, 2305, 13436, 3262, 62, 1273, 1352, 62, 10044, 29363, 62, 45, 62, 49, 15, 62, 51, 16, 62, 50, 15, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 19, 4083, 1370, 62, 4868, 58, 15, 60, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 19, 4083, 1370, 62, 4868, 58, 16, 60, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 15732, 12331, 8, 355, 4732, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 58, 19, 4083, 1370, 62, 4868, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 18, 4083, 18242, 6624, 366, 39, 2305, 13436, 3262, 62, 1273, 1352, 62, 10044, 29363, 62, 45, 62, 49, 15, 62, 51, 16, 62, 50, 15, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 18, 4083, 1370, 62, 4868, 58, 15, 60, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 257, 58, 18, 4083, 1370, 62, 4868, 58, 16, 60, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 15732, 12331, 8, 355, 4732, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 58, 18, 4083, 1370, 62, 4868, 58, 17, 60, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 11600, 1600, 24478, 44, 4310, 62, 9288, 62, 18224, 8, 198, 220, 220, 220, 825, 1332, 62, 11249, 62, 469, 15748, 62, 57, 1157, 62, 57, 16, 62, 1662, 62, 9275, 540, 7, 944, 11, 1332, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 262, 1382, 22939, 4049, 2499, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 1332, 62, 11600, 14692, 9288, 62, 26801, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 60, 796, 24478, 44, 4310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10511, 28, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 15, 28, 15, 13, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 16, 28, 15, 13, 8298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 17, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 18, 28, 15, 13, 11245, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 16, 28, 15, 13, 29143, 19442, 39251, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 17, 28, 15, 13, 26582, 3682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 18, 28, 15, 13, 2713, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 19, 28, 15, 13, 33916, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1168, 1157, 628, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 38963, 4310, 9492, 12331, 8, 355, 4732, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 11249, 62, 469, 15748, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 60, 796, 24478, 44, 4310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10511, 28, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 15, 28, 1120, 13, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 16, 28, 940, 13, 405, 4051, 29228, 36330, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 17, 28, 1821, 13, 3980, 29228, 2231, 2414, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 18, 28, 15, 13, 38956, 44578, 11245, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 16, 28, 940, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 17, 28, 15, 13, 18781, 1821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 18, 28, 16, 13, 486, 4051, 2791, 4051, 39111, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 19, 28, 15, 13, 2713, 18444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1168, 16, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 38963, 4310, 9492, 12331, 8, 355, 4732, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 11249, 62, 469, 15748, 3419, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 9288, 62, 11600, 1600, 24478, 44, 4310, 62, 9288, 62, 18224, 8, 198, 220, 220, 220, 825, 1332, 62, 11249, 62, 469, 15748, 62, 57, 1157, 62, 57, 16, 7, 944, 11, 1332, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 2147, 340, 338, 655, 329, 262, 5197, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 1332, 62, 11600, 14692, 9288, 62, 26801, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 60, 796, 24478, 44, 4310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10511, 28, 23, 11, 367, 15, 28, 15, 13, 2999, 11, 367, 16, 28, 15, 13, 8298, 11, 367, 17, 28, 15, 13, 486, 11, 367, 18, 28, 15, 13, 11245, 11, 370, 16, 28, 15, 13, 22544, 11, 370, 17, 28, 15, 11, 370, 18, 28, 15, 13, 486, 11, 370, 19, 28, 15, 13, 3695, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 62, 33279, 796, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 11249, 62, 469, 15748, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1168, 1157, 796, 1168, 4868, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 60, 796, 24478, 44, 4310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10511, 28, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 15, 28, 15, 13, 25645, 10535, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 16, 28, 15, 13, 10535, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 17, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 18, 28, 15, 13, 11245, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 16, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 17, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 18, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 19, 28, 17, 13, 2078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 16, 796, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 11249, 62, 469, 15748, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1168, 16, 796, 1168, 4868, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 13, 13207, 58, 15, 60, 796, 24478, 44, 4310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10511, 28, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 15, 28, 15, 13, 25645, 10535, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 16, 28, 15, 13, 10535, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 17, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 18, 28, 15, 13, 11245, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 16, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 17, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 18, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 19, 28, 19, 13, 3695, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 17, 796, 1332, 62, 26801, 13, 13207, 58, 15, 4083, 11249, 62, 469, 15748, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 75, 301, 16, 8, 14512, 18896, 7, 75, 301, 62, 33279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 75, 301, 17, 8, 14512, 18896, 7, 75, 301, 62, 33279, 8, 628, 220, 220, 220, 825, 1332, 62, 5589, 62, 42029, 62, 19726, 3262, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9122, 326, 4686, 318, 657, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 7604, 796, 24478, 44, 4310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10511, 28, 23, 11, 367, 15, 28, 15, 13, 2999, 11, 367, 16, 28, 15, 13, 8298, 11, 367, 17, 28, 15, 13, 486, 11, 367, 18, 28, 15, 13, 11245, 11, 370, 16, 28, 15, 13, 22544, 11, 370, 17, 28, 15, 11, 370, 18, 28, 15, 13, 486, 11, 370, 19, 28, 15, 13, 3695, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7604, 13, 5589, 62, 42029, 62, 19726, 3262, 62, 312, 7, 17, 8, 6624, 657, 198 ]
1.787816
4,350
from .box_iou_rotated_cuda import box_iou_rotated __all__ = ['box_iou_rotated']
[ 6738, 764, 3524, 62, 72, 280, 62, 10599, 515, 62, 66, 15339, 1330, 3091, 62, 72, 280, 62, 10599, 515, 198, 198, 834, 439, 834, 796, 37250, 3524, 62, 72, 280, 62, 10599, 515, 20520, 198 ]
2.25
36
import typing
[ 11748, 19720, 628 ]
5
3
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 """ This module uses oauth to allow applications and users access. Supports 2-legged oauth for application requests, and for trusted applications accessing user-restricted methods. Supports 3-legged oauth for non-trusted applications that want to access user methods. To use this module, add this to your settings.py: SPOTSEEKER_AUTH_MODULE = spotseeker_server.auth.oauth """ from django.http import HttpResponse from oauth_provider.utils import get_oauth_request, verify_oauth_request from oauth_provider.store import store, InvalidConsumerError, InvalidTokenError from spotseeker_server.models import TrustedOAuthClient import logging
[ 2, 15069, 33448, 33436, 12, 2043, 11, 2059, 286, 2669, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 198, 198, 37811, 770, 8265, 3544, 267, 18439, 284, 1249, 5479, 290, 2985, 1895, 13, 198, 15979, 2096, 362, 12, 40898, 267, 18439, 329, 3586, 7007, 11, 290, 329, 13467, 198, 1324, 677, 602, 22534, 2836, 12, 49343, 5050, 13, 220, 45267, 513, 12, 40898, 198, 12162, 1071, 329, 1729, 12, 2213, 8459, 5479, 326, 765, 284, 1895, 2836, 5050, 13, 198, 198, 2514, 779, 428, 8265, 11, 751, 428, 284, 534, 6460, 13, 9078, 25, 198, 198, 4303, 2394, 36078, 42839, 62, 32, 24318, 62, 33365, 24212, 796, 4136, 325, 28233, 62, 15388, 13, 18439, 13, 12162, 1071, 198, 37811, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 198, 6738, 267, 18439, 62, 15234, 1304, 13, 26791, 1330, 651, 62, 12162, 1071, 62, 25927, 11, 11767, 62, 12162, 1071, 62, 25927, 198, 6738, 267, 18439, 62, 15234, 1304, 13, 8095, 1330, 3650, 11, 17665, 49106, 12331, 11, 17665, 30642, 12331, 198, 6738, 4136, 325, 28233, 62, 15388, 13, 27530, 1330, 833, 8459, 23621, 1071, 11792, 198, 198, 11748, 18931, 628, 198 ]
3.66
200
#!/usr/bin/env python # Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import os import os.path as osp from vai.dpuv1.rt.xdnn_io import loadImageBlobFromFileScriptBase IMAGEROOT = osp.join(os.environ['HOME'], 'CK-TOOLS/dataset-imagenet-ilsvrc2012-val-min') IMAGELIST = osp.join(os.environ['HOME'], 'CK-TOOLS/dataset-imagenet-ilsvrc2012-val-min/val.txt') INPUT_NODES = 'input' ### Preprocessing formulas ### Available transformations: ['resize', 'resize2mindim', 'resize2maxdim', 'crop_letterbox', ### 'crop_center', 'plot', 'pxlscale', 'meansub', 'chtranspose', 'chswap'] CMD_SEQ = { 'resnet50_v1_tf':[ ('meansub', [103.94, 116.78, 123.68]), ('chswap',(2,1,0)), ('resize', [256, 256]), ('crop_center', [224, 224]), ], 'inception_v1_tf':[ ('pxlscale', 1/255.), ('meansub', 0.5), ('pxlscale', 2), ('resize', [256, 256]), ('crop_center', [224, 224]), ], 'inception_v3_tf':[ ('pxlscale', 1/255.), ('meansub', 0.5), ('pxlscale', 2), ('resize', [342, 342]), ('crop_center', [299, 299]), ], } for name in CMD_SEQ: globals()['input_fn_{}'.format(name)] = get_input_fn(name)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 15069, 13130, 1395, 346, 28413, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 198, 198, 6738, 410, 1872, 13, 26059, 14795, 16, 13, 17034, 13, 24954, 20471, 62, 952, 1330, 3440, 5159, 3629, 672, 4863, 8979, 7391, 14881, 198, 198, 3955, 4760, 34812, 2394, 796, 267, 2777, 13, 22179, 7, 418, 13, 268, 2268, 17816, 39069, 6, 4357, 705, 34, 42, 12, 10468, 3535, 50, 14, 19608, 292, 316, 12, 320, 11286, 316, 12, 4487, 85, 6015, 6999, 12, 2100, 12, 1084, 11537, 198, 3955, 4760, 3698, 8808, 796, 267, 2777, 13, 22179, 7, 418, 13, 268, 2268, 17816, 39069, 6, 4357, 705, 34, 42, 12, 10468, 3535, 50, 14, 19608, 292, 316, 12, 320, 11286, 316, 12, 4487, 85, 6015, 6999, 12, 2100, 12, 1084, 14, 2100, 13, 14116, 11537, 198, 1268, 30076, 62, 45, 3727, 1546, 796, 705, 15414, 6, 198, 198, 21017, 3771, 36948, 32126, 198, 21017, 14898, 38226, 25, 37250, 411, 1096, 3256, 705, 411, 1096, 17, 10155, 320, 3256, 705, 411, 1096, 17, 9806, 27740, 3256, 705, 31476, 62, 9291, 3524, 3256, 198, 21017, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31476, 62, 16159, 3256, 705, 29487, 3256, 705, 8416, 75, 9888, 3256, 705, 1326, 504, 549, 3256, 705, 354, 7645, 3455, 3256, 705, 354, 2032, 499, 20520, 198, 198, 34, 12740, 62, 5188, 48, 220, 220, 220, 220, 220, 220, 220, 796, 1391, 198, 220, 220, 220, 705, 411, 3262, 1120, 62, 85, 16, 62, 27110, 10354, 58, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 1326, 504, 549, 3256, 685, 15197, 13, 5824, 11, 18693, 13, 3695, 11, 17031, 13, 3104, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 354, 2032, 499, 3256, 7, 17, 11, 16, 11, 15, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 411, 1096, 3256, 685, 11645, 11, 17759, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 31476, 62, 16159, 3256, 685, 24137, 11, 26063, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 705, 924, 1159, 62, 85, 16, 62, 27110, 10354, 58, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 8416, 75, 9888, 3256, 352, 14, 13381, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 1326, 504, 549, 3256, 657, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 8416, 75, 9888, 3256, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 411, 1096, 3256, 685, 11645, 11, 17759, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 31476, 62, 16159, 3256, 685, 24137, 11, 26063, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 705, 924, 1159, 62, 85, 18, 62, 27110, 10354, 58, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 8416, 75, 9888, 3256, 352, 14, 13381, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 1326, 504, 549, 3256, 657, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 8416, 75, 9888, 3256, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 411, 1096, 3256, 685, 31575, 11, 44341, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 31476, 62, 16159, 3256, 685, 22579, 11, 31011, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1782, 198, 198, 1640, 1438, 287, 327, 12740, 62, 5188, 48, 25, 198, 220, 220, 220, 15095, 874, 3419, 17816, 15414, 62, 22184, 23330, 92, 4458, 18982, 7, 3672, 15437, 796, 651, 62, 15414, 62, 22184, 7, 3672, 8, 198 ]
2.336761
778
# -*- coding: utf-8 -*- # (C) Copyright 2020, 2021 IBM. All Rights Reserved. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """aihwkit example 20: MNIST training with PyTorch Distributed Data Parallel (DDP). MNIST training example based on the paper: https://www.frontiersin.org/articles/10.3389/fnins.2016.00333/full Uses learning rates of η = 0.01, 0.005, and 0.0025 for epochs 0–10, 11–20, and 21–30, respectively. """ # pylint: disable=invalid-name # pylint: disable=too-many-locals import os from time import time # Imports from PyTorch. import torch from torch import nn import torch.distributed as dist import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim.lr_scheduler import StepLR from torchvision import datasets, transforms # Imports from aihwkit. from aihwkit.nn import AnalogLinear, AnalogLinearMapped, AnalogSequential from aihwkit.optim import AnalogSGD from aihwkit.simulator.configs import InferenceRPUConfig # Check device DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Path where the datasets will be stored. PATH_DATASET = os.path.join('data', 'DATASET') # Network definition. INPUT_SIZE = 784 HIDDEN_SIZES = [256, 128] OUTPUT_SIZE = 10 # Training parameters. EPOCHS = 30 BATCH_SIZE = 64 def init_process(rank, size, fn, backend='nccl'): """ Initialize the distributed environment. """ print("init process: ", rank) os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '29411' dist.init_process_group(backend, rank=rank, world_size=size) fn() def cleanup(): """ Destroy distributed processes once they are complete. """ dist.destroy_process_group() def load_images(): """Load images for train from the torchvision datasets.""" rank = dist.get_rank() size = dist.get_world_size() transform = transforms.Compose([transforms.ToTensor()]) # Load the images. train_set = datasets.MNIST(PATH_DATASET, download=True, train=True, transform=transform) val_set = datasets.MNIST(PATH_DATASET, download=True, train=False, transform=transform) train_sampler = torch.utils.data.DistributedSampler(train_set, num_replicas=size, rank=rank, shuffle=True, seed=42) train_data = torch.utils.data.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=False, num_workers=size, sampler=train_sampler, pin_memory=True) validation_data = torch.utils.data.DataLoader(val_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=size, pin_memory=True) return train_data, validation_data def create_analog_network(input_size, hidden_sizes, output_size): """Create the neural network using analog and digital layers. Args: input_size (int): size of the Tensor at the input. hidden_sizes (list): list of sizes of the hidden layers (2 layers). output_size (int): size of the Tensor at the output. Returns: nn.Module: created analog model """ model = AnalogSequential( AnalogLinear(input_size, hidden_sizes[0], True, rpu_config=InferenceRPUConfig()), nn.Sigmoid(), AnalogLinear(hidden_sizes[0], hidden_sizes[1], True, rpu_config=InferenceRPUConfig()), nn.Sigmoid(), AnalogLinearMapped(hidden_sizes[1], output_size, True, rpu_config=InferenceRPUConfig()), nn.LogSoftmax(dim=1) ) return model def create_sgd_optimizer(model): """Create the analog-aware optimizer. Args: model (nn.Module): model to be trained. Returns: nn.Module: optimizer """ optimizer = AnalogSGD(model.parameters(), lr=0.05) optimizer.regroup_param_groups(model) return optimizer def train(model, train_set): """Train the network. Args: model (nn.Module): model to be trained. train_set (DataLoader): dataset of elements to use as input for training. """ rank = dist.get_rank() size = dist.get_world_size() device = torch.device('cuda', rank) classifier = nn.NLLLoss() optimizer = create_sgd_optimizer(model) scheduler = StepLR(optimizer, step_size=10, gamma=0.5) time_init = time() total_time = [torch.zeros(1, dtype=torch.float).to(device) for _ in range(size)] for epoch_number in range(EPOCHS): total_loss = torch.zeros(1, dtype=torch.float).to(device) total_images = torch.zeros(1, dtype=torch.int).to(device) for images, labels in train_set: images = images.to(device) labels = labels.to(device) # Flatten MNIST images into a 784 vector. images = images.view(images.shape[0], -1) optimizer.zero_grad() # Add training Tensor to the model (input). output = model(images) loss = classifier(output, labels) # Run training (backward propagation). loss.backward() # Optimize weights. optimizer.step() total_images += labels.size(0) total_loss += loss.item() * labels.size(0) dist.all_reduce(total_loss, op=dist.ReduceOp.SUM) dist.all_reduce(total_images, op=dist.ReduceOp.SUM) if rank == 0: train_loss = total_loss.item() / total_images.item() print('Epoch {} - Training loss: {:.16f}'.format(epoch_number, train_loss)) # Decay learning rate if needed. scheduler.step() dist.all_gather(total_time, torch.tensor(time()-time_init).to(device)) if rank == 0: avg_train_time = torch.mean(torch.cat(total_time, 0)) print('\nAverage Training Time (s) = {}'.format(avg_train_time)) def test_evaluation(model, val_set): """Test trained network Args: model (nn.Model): Trained model to be evaluated val_set (DataLoader): Validation set to perform the evaluation """ rank = dist.get_rank() size = dist.get_world_size() device = torch.device('cuda', rank) # Setup counter of images predicted to 0. predicted_ok = 0 total_images = 0 # make list to collect test ccuracies for each gpu acc_list = [torch.zeros(1, dtype=torch.float).to(device) for _ in range(size)] model.eval() for images, labels in val_set: # Predict image. images = images.to(device) labels = labels.to(device) images = images.view(images.shape[0], -1) pred = model(images) _, predicted = torch.max(pred.data, 1) total_images += labels.size(0) predicted_ok += (predicted == labels).sum().item() dist.all_gather(acc_list, torch.tensor(predicted_ok/total_images).to(device)) if rank == 0: acc = torch.mean(torch.cat(acc_list, 0)) print('\nNumber Of Images Tested = {}'.format(total_images)) print('Model Accuracy = {}'.format(acc)) def main(): """Train a PyTorch analog model with the MNIST dataset.""" rank = dist.get_rank() device = torch.device('cuda', rank) # Load datasets. train_dataset, validation_dataset = load_images() # Prepare the model. model = create_analog_network(INPUT_SIZE, HIDDEN_SIZES, OUTPUT_SIZE) if rank == 0: print(model) model.prepare_for_ddp() model.to(device) # enable parallel training model = DDP(model, device_ids=[rank], output_device=rank) # Train the model. train(model, train_dataset) # Evaluate the trained model. test_evaluation(model, validation_dataset) cleanup() if __name__ == '__main__': # Execute only if run as the entry point into the program world_size = 2 print("Device count: ", world_size) processes = [] ctx = mp.get_context("spawn") for world_rank in range(world_size): print("Process: ", world_rank) p = ctx.Process(target=init_process, args=(world_rank, world_size, main)) p.start() processes.append(p) for p in processes: p.join()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 357, 34, 8, 15069, 12131, 11, 33448, 19764, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 770, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 13, 921, 743, 198, 2, 7330, 257, 4866, 286, 428, 5964, 287, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 198, 2, 286, 428, 2723, 5509, 393, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 198, 2, 198, 2, 4377, 19008, 393, 27255, 2499, 286, 428, 2438, 1276, 12377, 428, 198, 2, 6634, 4003, 11, 290, 9518, 3696, 761, 284, 3283, 257, 4003, 12739, 198, 2, 326, 484, 423, 587, 14294, 422, 262, 47324, 13, 198, 198, 37811, 1872, 36599, 15813, 1672, 1160, 25, 29060, 8808, 3047, 351, 9485, 15884, 354, 4307, 6169, 6060, 42945, 357, 35, 6322, 737, 198, 198, 39764, 8808, 3047, 1672, 1912, 319, 262, 3348, 25, 198, 5450, 1378, 2503, 13, 8534, 3183, 259, 13, 2398, 14, 26845, 14, 940, 13, 2091, 4531, 14, 22184, 1040, 13, 5304, 13, 405, 20370, 14, 12853, 198, 198, 5842, 274, 4673, 3965, 286, 7377, 115, 796, 657, 13, 486, 11, 657, 13, 22544, 11, 290, 657, 13, 405, 1495, 198, 1640, 36835, 82, 657, 1906, 940, 11, 1367, 1906, 1238, 11, 290, 2310, 1906, 1270, 11, 8148, 13, 198, 37811, 198, 2, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 2, 279, 2645, 600, 25, 15560, 28, 18820, 12, 21834, 12, 17946, 874, 198, 198, 11748, 28686, 198, 6738, 640, 1330, 640, 198, 198, 2, 1846, 3742, 422, 9485, 15884, 354, 13, 198, 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 11748, 28034, 13, 17080, 6169, 355, 1233, 198, 11748, 28034, 13, 16680, 541, 305, 919, 278, 355, 29034, 198, 6738, 28034, 13, 20471, 13, 1845, 29363, 1330, 4307, 6169, 6601, 10044, 29363, 355, 360, 6322, 198, 6738, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 1330, 5012, 35972, 198, 198, 6738, 28034, 10178, 1330, 40522, 11, 31408, 628, 198, 2, 1846, 3742, 422, 257, 4449, 86, 15813, 13, 198, 6738, 257, 4449, 86, 15813, 13, 20471, 1330, 50088, 14993, 451, 11, 50088, 14993, 451, 44, 6320, 11, 50088, 44015, 1843, 198, 6738, 257, 4449, 86, 15813, 13, 40085, 1330, 50088, 38475, 35, 198, 6738, 257, 4449, 86, 15813, 13, 14323, 8927, 13, 11250, 82, 1330, 554, 4288, 49, 5105, 16934, 198, 198, 2, 6822, 3335, 198, 7206, 27389, 796, 28034, 13, 25202, 10786, 66, 15339, 6, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 705, 36166, 11537, 198, 198, 2, 10644, 810, 262, 40522, 481, 307, 8574, 13, 198, 34219, 62, 35, 1404, 1921, 2767, 796, 28686, 13, 6978, 13, 22179, 10786, 7890, 3256, 705, 35, 1404, 1921, 2767, 11537, 198, 198, 2, 7311, 6770, 13, 198, 1268, 30076, 62, 33489, 796, 767, 5705, 198, 39, 2389, 41819, 62, 11584, 57, 1546, 796, 685, 11645, 11, 13108, 60, 198, 2606, 7250, 3843, 62, 33489, 796, 838, 198, 198, 2, 13614, 10007, 13, 198, 8905, 46, 3398, 50, 796, 1542, 198, 33, 11417, 62, 33489, 796, 5598, 628, 198, 4299, 2315, 62, 14681, 7, 43027, 11, 2546, 11, 24714, 11, 30203, 11639, 77, 535, 75, 6, 2599, 198, 220, 220, 220, 37227, 20768, 1096, 262, 9387, 2858, 13, 37227, 198, 220, 220, 220, 3601, 7203, 15003, 1429, 25, 33172, 4279, 8, 198, 220, 220, 220, 28686, 13, 268, 2268, 17816, 31180, 5781, 62, 2885, 7707, 20520, 796, 705, 36750, 6, 198, 220, 220, 220, 28686, 13, 268, 2268, 17816, 31180, 5781, 62, 15490, 20520, 796, 705, 27696, 1157, 6, 198, 220, 220, 220, 1233, 13, 15003, 62, 14681, 62, 8094, 7, 1891, 437, 11, 4279, 28, 43027, 11, 995, 62, 7857, 28, 7857, 8, 198, 220, 220, 220, 24714, 3419, 628, 198, 4299, 27425, 33529, 198, 220, 220, 220, 37227, 19448, 9387, 7767, 1752, 484, 389, 1844, 13, 37227, 198, 220, 220, 220, 1233, 13, 41659, 62, 14681, 62, 8094, 3419, 628, 198, 4299, 3440, 62, 17566, 33529, 198, 220, 220, 220, 37227, 8912, 4263, 329, 4512, 422, 262, 28034, 10178, 40522, 526, 15931, 198, 220, 220, 220, 4279, 796, 1233, 13, 1136, 62, 43027, 3419, 198, 220, 220, 220, 2546, 796, 1233, 13, 1136, 62, 6894, 62, 7857, 3419, 198, 220, 220, 220, 6121, 796, 31408, 13, 7293, 577, 26933, 7645, 23914, 13, 2514, 51, 22854, 3419, 12962, 628, 220, 220, 220, 1303, 8778, 262, 4263, 13, 198, 220, 220, 220, 4512, 62, 2617, 796, 40522, 13, 39764, 8808, 7, 34219, 62, 35, 1404, 1921, 2767, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4321, 28, 17821, 11, 4512, 28, 17821, 11, 6121, 28, 35636, 8, 628, 220, 220, 220, 1188, 62, 2617, 796, 40522, 13, 39764, 8808, 7, 34219, 62, 35, 1404, 1921, 2767, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4321, 28, 17821, 11, 4512, 28, 25101, 11, 6121, 28, 35636, 8, 628, 220, 220, 220, 4512, 62, 37687, 20053, 796, 28034, 13, 26791, 13, 7890, 13, 20344, 6169, 16305, 20053, 7, 27432, 62, 2617, 11, 997, 62, 35666, 44645, 28, 7857, 11, 4279, 28, 43027, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 17821, 11, 9403, 28, 3682, 8, 628, 220, 220, 220, 4512, 62, 7890, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 27432, 62, 2617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 33, 11417, 62, 33489, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22896, 28, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6072, 20053, 28, 27432, 62, 37687, 20053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6757, 62, 31673, 28, 17821, 8, 628, 220, 220, 220, 21201, 62, 7890, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 2100, 62, 2617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 33, 11417, 62, 33489, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22896, 28, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6757, 62, 31673, 28, 17821, 8, 628, 220, 220, 220, 1441, 4512, 62, 7890, 11, 21201, 62, 7890, 628, 198, 4299, 2251, 62, 272, 11794, 62, 27349, 7, 15414, 62, 7857, 11, 7104, 62, 82, 4340, 11, 5072, 62, 7857, 2599, 198, 220, 220, 220, 37227, 16447, 262, 17019, 3127, 1262, 15075, 290, 4875, 11685, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7857, 357, 600, 2599, 2546, 286, 262, 309, 22854, 379, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 82, 4340, 357, 4868, 2599, 1351, 286, 10620, 286, 262, 7104, 11685, 357, 17, 11685, 737, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7857, 357, 600, 2599, 2546, 286, 262, 309, 22854, 379, 262, 5072, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 26796, 25, 2727, 15075, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2746, 796, 50088, 44015, 1843, 7, 198, 220, 220, 220, 220, 220, 220, 220, 50088, 14993, 451, 7, 15414, 62, 7857, 11, 7104, 62, 82, 4340, 58, 15, 4357, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 19944, 62, 11250, 28, 818, 4288, 49, 5105, 16934, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 50, 17225, 1868, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 50088, 14993, 451, 7, 30342, 62, 82, 4340, 58, 15, 4357, 7104, 62, 82, 4340, 58, 16, 4357, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 19944, 62, 11250, 28, 818, 4288, 49, 5105, 16934, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 50, 17225, 1868, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 50088, 14993, 451, 44, 6320, 7, 30342, 62, 82, 4340, 58, 16, 4357, 5072, 62, 7857, 11, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 19944, 62, 11250, 28, 818, 4288, 49, 5105, 16934, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 11187, 18380, 9806, 7, 27740, 28, 16, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 2746, 628, 198, 4299, 2251, 62, 82, 21287, 62, 40085, 7509, 7, 19849, 2599, 198, 220, 220, 220, 37227, 16447, 262, 15075, 12, 9685, 6436, 7509, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 357, 20471, 13, 26796, 2599, 2746, 284, 307, 8776, 13, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 26796, 25, 6436, 7509, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6436, 7509, 796, 50088, 38475, 35, 7, 19849, 13, 17143, 7307, 22784, 300, 81, 28, 15, 13, 2713, 8, 198, 220, 220, 220, 6436, 7509, 13, 2301, 3233, 62, 17143, 62, 24432, 7, 19849, 8, 628, 220, 220, 220, 1441, 6436, 7509, 628, 198, 4299, 4512, 7, 19849, 11, 4512, 62, 2617, 2599, 198, 220, 220, 220, 37227, 44077, 262, 3127, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 357, 20471, 13, 26796, 2599, 2746, 284, 307, 8776, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 357, 6601, 17401, 2599, 27039, 286, 4847, 284, 779, 355, 5128, 329, 3047, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4279, 796, 1233, 13, 1136, 62, 43027, 3419, 198, 220, 220, 220, 2546, 796, 1233, 13, 1136, 62, 6894, 62, 7857, 3419, 198, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 66, 15339, 3256, 4279, 8, 628, 220, 220, 220, 1398, 7483, 796, 299, 77, 13, 45, 3069, 43, 793, 3419, 198, 220, 220, 220, 6436, 7509, 796, 2251, 62, 82, 21287, 62, 40085, 7509, 7, 19849, 8, 198, 220, 220, 220, 6038, 18173, 796, 5012, 35972, 7, 40085, 7509, 11, 2239, 62, 7857, 28, 940, 11, 34236, 28, 15, 13, 20, 8, 628, 220, 220, 220, 640, 62, 15003, 796, 640, 3419, 198, 220, 220, 220, 2472, 62, 2435, 796, 685, 13165, 354, 13, 9107, 418, 7, 16, 11, 288, 4906, 28, 13165, 354, 13, 22468, 737, 1462, 7, 25202, 8, 329, 4808, 287, 2837, 7, 7857, 15437, 198, 220, 220, 220, 329, 36835, 62, 17618, 287, 2837, 7, 8905, 46, 3398, 50, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 22462, 796, 28034, 13, 9107, 418, 7, 16, 11, 288, 4906, 28, 13165, 354, 13, 22468, 737, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 17566, 796, 28034, 13, 9107, 418, 7, 16, 11, 288, 4906, 28, 13165, 354, 13, 600, 737, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4263, 11, 14722, 287, 4512, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 4263, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 14722, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1610, 41769, 29060, 8808, 4263, 656, 257, 767, 5705, 15879, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 4263, 13, 1177, 7, 17566, 13, 43358, 58, 15, 4357, 532, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3047, 309, 22854, 284, 262, 2746, 357, 15414, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2746, 7, 17566, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 1398, 7483, 7, 22915, 11, 14722, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5660, 3047, 357, 1891, 904, 43594, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 30011, 1096, 19590, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 9662, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 17566, 15853, 14722, 13, 7857, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 22462, 15853, 2994, 13, 9186, 3419, 1635, 14722, 13, 7857, 7, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1233, 13, 439, 62, 445, 7234, 7, 23350, 62, 22462, 11, 1034, 28, 17080, 13, 7738, 7234, 18257, 13, 50, 5883, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1233, 13, 439, 62, 445, 7234, 7, 23350, 62, 17566, 11, 1034, 28, 17080, 13, 7738, 7234, 18257, 13, 50, 5883, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4279, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 22462, 796, 2472, 62, 22462, 13, 9186, 3419, 1220, 2472, 62, 17566, 13, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 13807, 5374, 23884, 532, 13614, 2994, 25, 46110, 13, 1433, 69, 92, 4458, 18982, 7, 538, 5374, 62, 17618, 11, 4512, 62, 22462, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 39087, 4673, 2494, 611, 2622, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6038, 18173, 13, 9662, 3419, 628, 220, 220, 220, 1233, 13, 439, 62, 70, 1032, 7, 23350, 62, 2435, 11, 28034, 13, 83, 22854, 7, 2435, 3419, 12, 2435, 62, 15003, 737, 1462, 7, 25202, 4008, 628, 220, 220, 220, 611, 4279, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 27432, 62, 2435, 796, 28034, 13, 32604, 7, 13165, 354, 13, 9246, 7, 23350, 62, 2435, 11, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 26287, 13614, 3862, 357, 82, 8, 796, 23884, 4458, 18982, 7, 615, 70, 62, 27432, 62, 2435, 4008, 628, 198, 4299, 1332, 62, 18206, 2288, 7, 19849, 11, 1188, 62, 2617, 2599, 198, 220, 220, 220, 37227, 14402, 8776, 3127, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 357, 20471, 13, 17633, 2599, 833, 1328, 2746, 284, 307, 16726, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 357, 6601, 17401, 2599, 3254, 24765, 900, 284, 1620, 262, 12660, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4279, 796, 1233, 13, 1136, 62, 43027, 3419, 198, 220, 220, 220, 2546, 796, 1233, 13, 1136, 62, 6894, 62, 7857, 3419, 198, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 66, 15339, 3256, 4279, 8, 628, 220, 220, 220, 1303, 31122, 3753, 286, 4263, 11001, 284, 657, 13, 198, 220, 220, 220, 11001, 62, 482, 796, 657, 198, 220, 220, 220, 2472, 62, 17566, 796, 657, 628, 220, 220, 220, 1303, 787, 1351, 284, 2824, 1332, 269, 22019, 13433, 329, 1123, 308, 19944, 198, 220, 220, 220, 697, 62, 4868, 796, 685, 13165, 354, 13, 9107, 418, 7, 16, 11, 288, 4906, 28, 13165, 354, 13, 22468, 737, 1462, 7, 25202, 8, 329, 4808, 287, 2837, 7, 7857, 15437, 628, 220, 220, 220, 2746, 13, 18206, 3419, 628, 220, 220, 220, 329, 4263, 11, 14722, 287, 1188, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49461, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 4263, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 14722, 13, 1462, 7, 25202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 4263, 13, 1177, 7, 17566, 13, 43358, 58, 15, 4357, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 796, 2746, 7, 17566, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 11001, 796, 28034, 13, 9806, 7, 28764, 13, 7890, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 17566, 15853, 14722, 13, 7857, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11001, 62, 482, 15853, 357, 28764, 5722, 6624, 14722, 737, 16345, 22446, 9186, 3419, 628, 220, 220, 220, 1233, 13, 439, 62, 70, 1032, 7, 4134, 62, 4868, 11, 28034, 13, 83, 22854, 7, 28764, 5722, 62, 482, 14, 23350, 62, 17566, 737, 1462, 7, 25202, 4008, 628, 220, 220, 220, 611, 4279, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 697, 796, 28034, 13, 32604, 7, 13165, 354, 13, 9246, 7, 4134, 62, 4868, 11, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 15057, 3226, 5382, 6208, 276, 796, 23884, 4458, 18982, 7, 23350, 62, 17566, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 17633, 33222, 796, 23884, 4458, 18982, 7, 4134, 4008, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 44077, 257, 9485, 15884, 354, 15075, 2746, 351, 262, 29060, 8808, 27039, 526, 15931, 198, 220, 220, 220, 4279, 796, 1233, 13, 1136, 62, 43027, 3419, 198, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 66, 15339, 3256, 4279, 8, 628, 220, 220, 220, 1303, 8778, 40522, 13, 198, 220, 220, 220, 4512, 62, 19608, 292, 316, 11, 21201, 62, 19608, 292, 316, 796, 3440, 62, 17566, 3419, 628, 220, 220, 220, 1303, 43426, 262, 2746, 13, 198, 220, 220, 220, 2746, 796, 2251, 62, 272, 11794, 62, 27349, 7, 1268, 30076, 62, 33489, 11, 367, 2389, 41819, 62, 11584, 57, 1546, 11, 16289, 30076, 62, 33489, 8, 628, 220, 220, 220, 611, 4279, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 19849, 8, 628, 220, 220, 220, 2746, 13, 46012, 533, 62, 1640, 62, 1860, 79, 3419, 198, 220, 220, 220, 2746, 13, 1462, 7, 25202, 8, 628, 220, 220, 220, 1303, 7139, 10730, 3047, 198, 220, 220, 220, 2746, 796, 360, 6322, 7, 19849, 11, 3335, 62, 2340, 41888, 43027, 4357, 5072, 62, 25202, 28, 43027, 8, 628, 220, 220, 220, 1303, 16835, 262, 2746, 13, 198, 220, 220, 220, 4512, 7, 19849, 11, 4512, 62, 19608, 292, 316, 8, 628, 220, 220, 220, 1303, 26439, 4985, 262, 8776, 2746, 13, 198, 220, 220, 220, 1332, 62, 18206, 2288, 7, 19849, 11, 21201, 62, 19608, 292, 316, 8, 628, 220, 220, 220, 27425, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 8393, 1133, 691, 611, 1057, 355, 262, 5726, 966, 656, 262, 1430, 198, 220, 220, 220, 995, 62, 7857, 796, 362, 198, 220, 220, 220, 3601, 7203, 24728, 954, 25, 33172, 995, 62, 7857, 8, 198, 220, 220, 220, 7767, 796, 17635, 198, 220, 220, 220, 269, 17602, 796, 29034, 13, 1136, 62, 22866, 7203, 48183, 4943, 628, 220, 220, 220, 329, 995, 62, 43027, 287, 2837, 7, 6894, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18709, 25, 33172, 995, 62, 43027, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 269, 17602, 13, 18709, 7, 16793, 28, 15003, 62, 14681, 11, 26498, 16193, 6894, 62, 43027, 11, 995, 62, 7857, 11, 1388, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 7767, 13, 33295, 7, 79, 8, 628, 220, 220, 220, 329, 279, 287, 7767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 22179, 3419, 198 ]
2.329765
3,830
# coding: utf-8 from enum import Enum from six import string_types, iteritems from bitmovin_api_sdk.common.poscheck import poscheck_model
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 2237, 1330, 4731, 62, 19199, 11, 11629, 23814, 198, 6738, 1643, 76, 709, 259, 62, 15042, 62, 21282, 74, 13, 11321, 13, 1930, 9122, 1330, 1426, 9122, 62, 19849, 628 ]
3.043478
46
"""Maintain db function searchkey_first_name here.""" from alembic_utils.pg_function import PGFunction sim_number = PGFunction( schema="public", signature="sim_number(actual_name character varying)", definition=""" RETURNS numeric LANGUAGE plpgsql AS $function$ DECLARE v_name VARCHAR(60); v_sim_number DECIMAL; BEGIN v_name := regexp_replace(actual_name, '(.)\1{1,}', '\1', 'g'); if length((SELECT public.searchkey_last_name(v_name))) <= 3 then v_sim_number := .65 ; else v_sim_number := .46 ; end if; return v_sim_number; END ; $function$; """ )
[ 37811, 44, 32725, 20613, 2163, 2989, 2539, 62, 11085, 62, 3672, 994, 526, 15931, 198, 6738, 31341, 2022, 291, 62, 26791, 13, 6024, 62, 8818, 1330, 350, 21713, 4575, 628, 198, 14323, 62, 17618, 796, 350, 21713, 4575, 7, 198, 220, 220, 220, 32815, 2625, 11377, 1600, 198, 220, 220, 220, 9877, 2625, 14323, 62, 17618, 7, 50039, 62, 3672, 2095, 15874, 42501, 198, 220, 220, 220, 6770, 2625, 15931, 198, 30826, 4261, 8035, 35575, 198, 406, 15567, 52, 11879, 458, 6024, 25410, 198, 1921, 720, 8818, 3, 198, 41374, 43, 12203, 198, 220, 220, 410, 62, 3672, 569, 31315, 1503, 7, 1899, 1776, 198, 220, 220, 410, 62, 14323, 62, 17618, 27196, 3955, 1847, 26, 198, 220, 347, 43312, 198, 220, 220, 220, 220, 410, 62, 3672, 19039, 40364, 79, 62, 33491, 7, 50039, 62, 3672, 11, 29513, 2014, 59, 16, 90, 16, 11, 92, 3256, 705, 59, 16, 3256, 705, 70, 24036, 628, 220, 220, 220, 220, 611, 4129, 19510, 46506, 1171, 13, 12947, 2539, 62, 12957, 62, 3672, 7, 85, 62, 3672, 22305, 19841, 513, 788, 198, 197, 410, 62, 14323, 62, 17618, 19039, 764, 2996, 2162, 198, 197, 2073, 198, 197, 410, 62, 14323, 62, 17618, 19039, 764, 3510, 2162, 198, 220, 220, 886, 611, 26, 198, 220, 1441, 410, 62, 14323, 62, 17618, 26, 198, 220, 23578, 198, 220, 220, 220, 2162, 220, 198, 220, 220, 220, 720, 8818, 3, 26, 198, 220, 220, 220, 37227, 198, 8, 198 ]
2.495902
244
from __future__ import absolute_import from datetime import datetime from mock import patch import pytest import pytz from sentry.models import GroupRelease, Release from sentry.testutils import TestCase, SnubaTestCase from sentry.testutils.helpers.datetime import iso_format, before_now from sentry.utils.snuba import ( _prepare_query_params, get_snuba_translators, zerofill, get_json_type, get_snuba_column_name, detect_dataset, transform_aliases_and_query, Dataset, SnubaQueryParams, UnqualifiedQueryError, ) class TransformAliasesAndQueryTransactionsTest(TestCase): """ This test mocks snuba.raw_query because there is currently no way to insert data into the transactions dataset during tests. """ @patch("sentry.utils.snuba.raw_query") @patch("sentry.utils.snuba.raw_query") @patch("sentry.utils.snuba.raw_query") @patch("sentry.utils.snuba.raw_query") @patch("sentry.utils.snuba.raw_query") @patch("sentry.utils.snuba.raw_query") @patch("sentry.utils.snuba.raw_query") @patch("sentry.utils.snuba.raw_query")
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 15290, 1330, 8529, 198, 11748, 12972, 9288, 198, 11748, 12972, 22877, 198, 198, 6738, 1908, 563, 13, 27530, 1330, 4912, 26362, 11, 13868, 198, 6738, 1908, 563, 13, 9288, 26791, 1330, 6208, 20448, 11, 5489, 22013, 14402, 20448, 198, 6738, 1908, 563, 13, 9288, 26791, 13, 16794, 364, 13, 19608, 8079, 1330, 47279, 62, 18982, 11, 878, 62, 2197, 198, 6738, 1908, 563, 13, 26791, 13, 16184, 22013, 1330, 357, 198, 220, 220, 220, 4808, 46012, 533, 62, 22766, 62, 37266, 11, 198, 220, 220, 220, 651, 62, 16184, 22013, 62, 7645, 75, 2024, 11, 198, 220, 220, 220, 1976, 263, 1659, 359, 11, 198, 220, 220, 220, 651, 62, 17752, 62, 4906, 11, 198, 220, 220, 220, 651, 62, 16184, 22013, 62, 28665, 62, 3672, 11, 198, 220, 220, 220, 4886, 62, 19608, 292, 316, 11, 198, 220, 220, 220, 6121, 62, 7344, 1386, 62, 392, 62, 22766, 11, 198, 220, 220, 220, 16092, 292, 316, 11, 198, 220, 220, 220, 5489, 22013, 20746, 10044, 4105, 11, 198, 220, 220, 220, 791, 22557, 20746, 12331, 11, 198, 8, 628, 628, 198, 4871, 26981, 37893, 1386, 1870, 20746, 8291, 4658, 14402, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1332, 285, 3320, 3013, 22013, 13, 1831, 62, 22766, 780, 612, 318, 3058, 645, 198, 220, 220, 220, 835, 284, 7550, 1366, 656, 262, 8945, 27039, 1141, 5254, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 17147, 7203, 82, 13000, 13, 26791, 13, 16184, 22013, 13, 1831, 62, 22766, 4943, 628, 220, 220, 220, 2488, 17147, 7203, 82, 13000, 13, 26791, 13, 16184, 22013, 13, 1831, 62, 22766, 4943, 628, 220, 220, 220, 2488, 17147, 7203, 82, 13000, 13, 26791, 13, 16184, 22013, 13, 1831, 62, 22766, 4943, 628, 220, 220, 220, 2488, 17147, 7203, 82, 13000, 13, 26791, 13, 16184, 22013, 13, 1831, 62, 22766, 4943, 628, 220, 220, 220, 2488, 17147, 7203, 82, 13000, 13, 26791, 13, 16184, 22013, 13, 1831, 62, 22766, 4943, 628, 220, 220, 220, 2488, 17147, 7203, 82, 13000, 13, 26791, 13, 16184, 22013, 13, 1831, 62, 22766, 4943, 628, 220, 220, 220, 2488, 17147, 7203, 82, 13000, 13, 26791, 13, 16184, 22013, 13, 1831, 62, 22766, 4943, 628, 220, 220, 220, 2488, 17147, 7203, 82, 13000, 13, 26791, 13, 16184, 22013, 13, 1831, 62, 22766, 4943, 628, 198 ]
2.722628
411
""" Perona-Malik anisotropic smoothing filter [Sergeevich]_. .. [Sergeevich] Employing the Perona - Malik anisotropic filter for the problem of landing site detection: https://github.com/Galarius/pm-ocl """ import logging from math import ceil import os import cupy as cp import numpy as np from utoolbox.parallel import RawKernelFile __all__ = ["PeronaMalik2D", "PeronaMalik3D"] logger = logging.getLogger(__name__) class PeronaMalik2D(object): """ Perona-Malik anisotropic smoothing filter in 2D. Args: threshold (float, optional): Conduction function threshold. niter (float, optiona): Number of iterations. tile_width (int, optional): Tile size during kernel launch. """ def __call__(self, x, in_place=True): """ Args: x (cp.ndarray): Input data. in_place (bool, optional): Write result into provided array. """ ny, nx = x.shape grid_sz = (int(ceil(nx / self._tile_width)), int(ceil(ny / self._tile_width))) in_buf = x if in_place else cp.copy(x) out_buf = cp.empty_like(in_buf) for _ in range(self._niter): self._kernels["perona_malik_2d_kernel"]( grid_sz, (self._tile_width,) * 2, (out_buf, in_buf, np.float32(self._threshold), nx, ny), ) in_buf, out_buf = out_buf, in_buf return in_buf class PeronaMalik3D(object): """ Perona-Malik anisotropic smoothing filter in 3D. Args: threshold (float, optional): Conduction function threshold. niter (float, optiona): Number of iterations. tile_width (int, optional): Tile size during kernel launch. """ def __call__(self, x, in_place=True): """ Args: x (cp.ndarray): Input data. in_place (bool, optional): Write result into provided array. """ nz, ny, nx = x.shape grid_sz = ( int(ceil(nx / self._tile_width)), int(ceil(ny / self._tile_width)), int(ceil(nz / self._tile_width)), ) in_buf = x if in_place else cp.copy(x) out_buf = cp.empty_like(in_buf) for _ in range(self._niter): self._kernels["perona_malik_3d_kernel"]( grid_sz, (self._tile_width,) * 3, (out_buf, in_buf, np.float32(self._threshold), nx, ny, nz), ) in_buf, out_buf = out_buf, in_buf return in_buf if __name__ == "__main__": from imageio import volread, volwrite from utoolbox.exposure.rescale_intensity import RescaleIntensity in_data = volread("mito.tif") _, _, nc = in_data.shape pm = PeronaMalik3D(threshold=10, niter=16) in_data = in_data.astype(np.float32) in_data = cp.asarray(in_data) out_data = pm(in_data) ri = RescaleIntensity() out_data = ri(out_data, out_range=np.uint16) out_data = cp.asnumpy(out_data) out_data = out_data.astype(np.uint16) volwrite("result.tif", out_data)
[ 37811, 198, 5990, 4450, 12, 15029, 1134, 281, 271, 46084, 32746, 722, 8106, 685, 7089, 469, 1990, 488, 60, 44807, 198, 198, 492, 685, 7089, 469, 1990, 488, 60, 12645, 278, 262, 2448, 4450, 532, 31745, 281, 271, 46084, 8106, 329, 262, 1917, 286, 9581, 2524, 13326, 25, 3740, 1378, 12567, 13, 785, 14, 26552, 19897, 14, 4426, 12, 38679, 198, 37811, 198, 11748, 18931, 198, 6738, 10688, 1330, 2906, 346, 198, 11748, 28686, 198, 198, 11748, 6508, 88, 355, 31396, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 3384, 970, 3524, 13, 1845, 29363, 1330, 16089, 42, 7948, 8979, 198, 198, 834, 439, 834, 796, 14631, 5990, 4450, 15029, 1134, 17, 35, 1600, 366, 5990, 4450, 15029, 1134, 18, 35, 8973, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 2448, 4450, 15029, 1134, 17, 35, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2448, 4450, 12, 15029, 1134, 281, 271, 46084, 32746, 722, 8106, 287, 362, 35, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 357, 22468, 11, 11902, 2599, 9724, 8110, 2163, 11387, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 2676, 357, 22468, 11, 3038, 64, 2599, 7913, 286, 34820, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17763, 62, 10394, 357, 600, 11, 11902, 2599, 47870, 2546, 1141, 9720, 4219, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 2124, 11, 287, 62, 5372, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 13155, 13, 358, 18747, 2599, 23412, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 5372, 357, 30388, 11, 11902, 2599, 19430, 1255, 656, 2810, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 88, 11, 299, 87, 796, 2124, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 82, 89, 796, 357, 600, 7, 344, 346, 7, 77, 87, 1220, 2116, 13557, 40927, 62, 10394, 36911, 493, 7, 344, 346, 7, 3281, 1220, 2116, 13557, 40927, 62, 10394, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 287, 62, 29325, 796, 2124, 611, 287, 62, 5372, 2073, 31396, 13, 30073, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 29325, 796, 31396, 13, 28920, 62, 2339, 7, 259, 62, 29325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 944, 13557, 77, 2676, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 74, 44930, 14692, 525, 4450, 62, 7617, 1134, 62, 17, 67, 62, 33885, 8973, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 82, 89, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13557, 40927, 62, 10394, 35751, 1635, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 448, 62, 29325, 11, 287, 62, 29325, 11, 45941, 13, 22468, 2624, 7, 944, 13557, 400, 10126, 828, 299, 87, 11, 299, 88, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 29325, 11, 503, 62, 29325, 796, 503, 62, 29325, 11, 287, 62, 29325, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 287, 62, 29325, 628, 198, 4871, 2448, 4450, 15029, 1134, 18, 35, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2448, 4450, 12, 15029, 1134, 281, 271, 46084, 32746, 722, 8106, 287, 513, 35, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 357, 22468, 11, 11902, 2599, 9724, 8110, 2163, 11387, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 2676, 357, 22468, 11, 3038, 64, 2599, 7913, 286, 34820, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17763, 62, 10394, 357, 600, 11, 11902, 2599, 47870, 2546, 1141, 9720, 4219, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 2124, 11, 287, 62, 5372, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 13155, 13, 358, 18747, 2599, 23412, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 5372, 357, 30388, 11, 11902, 2599, 19430, 1255, 656, 2810, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 89, 11, 299, 88, 11, 299, 87, 796, 2124, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 82, 89, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 344, 346, 7, 77, 87, 1220, 2116, 13557, 40927, 62, 10394, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 344, 346, 7, 3281, 1220, 2116, 13557, 40927, 62, 10394, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 344, 346, 7, 27305, 1220, 2116, 13557, 40927, 62, 10394, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 287, 62, 29325, 796, 2124, 611, 287, 62, 5372, 2073, 31396, 13, 30073, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 29325, 796, 31396, 13, 28920, 62, 2339, 7, 259, 62, 29325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 944, 13557, 77, 2676, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 74, 44930, 14692, 525, 4450, 62, 7617, 1134, 62, 18, 67, 62, 33885, 8973, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 82, 89, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13557, 40927, 62, 10394, 35751, 1635, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 448, 62, 29325, 11, 287, 62, 29325, 11, 45941, 13, 22468, 2624, 7, 944, 13557, 400, 10126, 828, 299, 87, 11, 299, 88, 11, 299, 89, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 29325, 11, 503, 62, 29325, 796, 503, 62, 29325, 11, 287, 62, 29325, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 287, 62, 29325, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 422, 2939, 952, 1330, 2322, 961, 11, 2322, 13564, 198, 220, 220, 220, 422, 3384, 970, 3524, 13, 1069, 26205, 13, 411, 38765, 62, 47799, 1330, 1874, 38765, 5317, 6377, 628, 220, 220, 220, 287, 62, 7890, 796, 2322, 961, 7203, 2781, 78, 13, 49929, 4943, 628, 220, 220, 220, 4808, 11, 4808, 11, 299, 66, 796, 287, 62, 7890, 13, 43358, 198, 220, 220, 220, 9114, 796, 2448, 4450, 15029, 1134, 18, 35, 7, 400, 10126, 28, 940, 11, 299, 2676, 28, 1433, 8, 628, 220, 220, 220, 287, 62, 7890, 796, 287, 62, 7890, 13, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 287, 62, 7890, 796, 31396, 13, 292, 18747, 7, 259, 62, 7890, 8, 628, 220, 220, 220, 503, 62, 7890, 796, 9114, 7, 259, 62, 7890, 8, 628, 220, 220, 220, 374, 72, 796, 1874, 38765, 5317, 6377, 3419, 198, 220, 220, 220, 503, 62, 7890, 796, 374, 72, 7, 448, 62, 7890, 11, 503, 62, 9521, 28, 37659, 13, 28611, 1433, 8, 628, 220, 220, 220, 503, 62, 7890, 796, 31396, 13, 292, 77, 32152, 7, 448, 62, 7890, 8, 198, 220, 220, 220, 503, 62, 7890, 796, 503, 62, 7890, 13, 459, 2981, 7, 37659, 13, 28611, 1433, 8, 628, 220, 220, 220, 2322, 13564, 7203, 20274, 13, 49929, 1600, 503, 62, 7890, 8, 198 ]
2.139972
1,436
from collections import namedtuple Transition = namedtuple("Transition", ("state", "action", "reward", "done", "new_state")) class BaseBuffer: """ Base class for replay buffer. """ def __init__(self, size, batch_size=32, n_step=0): """ Initialize replay buffer. Args: size: Buffer maximum size. batch_size: Size of the batch that should be used in get_sample() implementation. n_step: The reward after n_step after applying discount factor """ assert size > 0, f'Buffer size should be > 0, got {size}' assert batch_size > 0, f'Buffer batch size should be > 0, got {batch_size}' assert ( batch_size <= size ), f'Buffer batch size `{batch_size}` should be <= size `{size}`' self.size = size self.batch_size = batch_size self.n_step = n_step self.current_size = 0 def append(self, *args): """ Add experience to buffer. Args: *args: Items to store, types are implementation specific. """ raise NotImplementedError( f'append() should be implemented by {self.__class__.__name__} subclasses' ) def get_sample_indices(self): """ Random sample indices from stored experience. :return: List of batch_size indices. """ raise NotImplementedError( f'get_sample_indices() should be implemented by {self.__class__.__name__} subclasses' ) def get_sample(self, indices): """ Sample from stored experience. Args: *indices: The indices of getting samo Returns: Sample as numpy array. """ raise NotImplementedError( f'get_sample() should be implemented by {self.__class__.__name__} subclasses' )
[ 6738, 17268, 1330, 3706, 83, 29291, 198, 198, 8291, 653, 796, 3706, 83, 29291, 7203, 8291, 653, 1600, 5855, 5219, 1600, 366, 2673, 1600, 366, 260, 904, 1600, 366, 28060, 1600, 366, 3605, 62, 5219, 48774, 628, 198, 4871, 7308, 28632, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 1398, 329, 24788, 11876, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2546, 11, 15458, 62, 7857, 28, 2624, 11, 299, 62, 9662, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 24788, 11876, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 25, 47017, 5415, 2546, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 25, 12849, 286, 262, 15458, 326, 815, 307, 973, 287, 651, 62, 39873, 3419, 7822, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 9662, 25, 383, 6721, 706, 299, 62, 9662, 706, 11524, 9780, 5766, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2546, 1875, 657, 11, 277, 6, 28632, 2546, 815, 307, 1875, 657, 11, 220, 1392, 1391, 7857, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 15458, 62, 7857, 1875, 657, 11, 277, 6, 28632, 15458, 2546, 815, 307, 1875, 657, 11, 1392, 1391, 43501, 62, 7857, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 19841, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 277, 6, 28632, 15458, 2546, 4600, 90, 43501, 62, 7857, 92, 63, 815, 307, 19841, 2546, 4600, 90, 7857, 92, 63, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7857, 796, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43501, 62, 7857, 796, 15458, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 9662, 796, 299, 62, 9662, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 7857, 796, 657, 628, 220, 220, 220, 825, 24443, 7, 944, 11, 1635, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 1998, 284, 11876, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 25, 17230, 284, 3650, 11, 3858, 389, 7822, 2176, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 33295, 3419, 815, 307, 9177, 416, 1391, 944, 13, 834, 4871, 834, 13, 834, 3672, 834, 92, 850, 37724, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 651, 62, 39873, 62, 521, 1063, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14534, 6291, 36525, 422, 8574, 1998, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 15458, 62, 7857, 36525, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 1136, 62, 39873, 62, 521, 1063, 3419, 815, 307, 9177, 416, 1391, 944, 13, 834, 4871, 834, 13, 834, 3672, 834, 92, 850, 37724, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 651, 62, 39873, 7, 944, 11, 36525, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27565, 422, 8574, 1998, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 521, 1063, 25, 383, 36525, 286, 1972, 6072, 78, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27565, 355, 299, 32152, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 1136, 62, 39873, 3419, 815, 307, 9177, 416, 1391, 944, 13, 834, 4871, 834, 13, 834, 3672, 834, 92, 850, 37724, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.27512
836
from office365.runtime.client_value import ClientValue class SharePointIds(ClientValue): """The SharePointIds resource groups the various identifiers for an item stored in a SharePoint site or OneDrive for Business into a single structure. """
[ 6738, 2607, 24760, 13, 43282, 13, 16366, 62, 8367, 1330, 20985, 11395, 628, 198, 4871, 8734, 12727, 7390, 82, 7, 11792, 11395, 2599, 198, 220, 220, 220, 37227, 464, 8734, 12727, 7390, 82, 8271, 2628, 262, 2972, 42814, 329, 281, 2378, 8574, 287, 257, 8734, 12727, 2524, 393, 1881, 24825, 198, 220, 220, 220, 329, 7320, 656, 257, 2060, 4645, 13, 37227, 198 ]
4.031746
63
import random
[ 11748, 4738, 628 ]
5
3
import chess.uci import sys import os ########################################### ########## UCI config functions ########### ########################################### def write_config(opt, file): """Export options dictionnary to config file.""" for key, value in opt.items(): if key.lower() == "multipv": continue file.write("{:s} = {:s}\n".format(str(key), str(value))) def update_options_from_config(opt, file): """Read a config and update dictionnary opt""" data = file.readlines() for line in data: key, val = line.split('=') opt[key.strip()] = val.strip() #remove whitespace return opt def default_options(engine): """Returns a dictionnary containing all engine options at their default value""" Options = engine.options ret = dict() for e in Options: ret[Options[e].name] = Options[e].default return ret def load_options(engine, config): """ Load engine uci options from config, if no config exists will create one. Returns a tuple : (config , boolean containing whereas or not we used a default config)""" if config == "<autodiscover>": #no config provided engine_name = engine.name.split()[0] # first string in name config = engine_name + ".cfg" if not os.path.isfile(config): # no existing config file print("\n!Warning: No config file for {:s} detected, creating one. Default values used.\n".format(engine_name)) f = open(config, "w") opt = default_options(engine) write_config(opt, f) # exporting config to file return (opt, True) if os.path.isfile(config): # custom or default config exists opt = default_options(engine) f = open(config, "r") update_options_from_config(opt, f) return (opt, False) else: #no config found sys.stderr.write("!!Error: config {:s} doesn't exists ! Exiting...\n") sys.exit(-2)
[ 11748, 19780, 13, 42008, 198, 11748, 25064, 198, 11748, 28686, 198, 198, 29113, 7804, 21017, 198, 7804, 2235, 14417, 40, 4566, 5499, 1303, 7804, 2235, 198, 29113, 7804, 21017, 198, 198, 4299, 3551, 62, 11250, 7, 8738, 11, 2393, 2599, 198, 220, 220, 220, 37227, 43834, 3689, 48589, 77, 560, 284, 4566, 2393, 526, 15931, 198, 220, 220, 220, 329, 1994, 11, 1988, 287, 2172, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 13, 21037, 3419, 6624, 366, 16680, 541, 85, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7203, 90, 25, 82, 92, 796, 46110, 82, 32239, 77, 1911, 18982, 7, 2536, 7, 2539, 828, 965, 7, 8367, 22305, 198, 198, 4299, 4296, 62, 25811, 62, 6738, 62, 11250, 7, 8738, 11, 2393, 2599, 198, 220, 220, 220, 37227, 5569, 257, 4566, 290, 4296, 48589, 77, 560, 2172, 37811, 198, 220, 220, 220, 1366, 796, 2393, 13, 961, 6615, 3419, 198, 220, 220, 220, 329, 1627, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 11, 1188, 796, 1627, 13, 35312, 10786, 28, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2172, 58, 2539, 13, 36311, 3419, 60, 796, 1188, 13, 36311, 3419, 1303, 28956, 13216, 10223, 628, 220, 220, 220, 1441, 2172, 198, 198, 4299, 4277, 62, 25811, 7, 18392, 2599, 198, 220, 220, 220, 37227, 35561, 257, 48589, 77, 560, 7268, 477, 3113, 3689, 379, 511, 4277, 1988, 37811, 198, 220, 220, 220, 18634, 796, 3113, 13, 25811, 198, 220, 220, 220, 1005, 796, 8633, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 304, 287, 18634, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 29046, 58, 68, 4083, 3672, 60, 796, 18634, 58, 68, 4083, 12286, 628, 220, 220, 220, 1441, 1005, 198, 198, 4299, 3440, 62, 25811, 7, 18392, 11, 4566, 2599, 198, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 8778, 3113, 334, 979, 3689, 422, 4566, 11, 220, 198, 220, 220, 220, 611, 645, 4566, 7160, 481, 2251, 530, 13, 220, 198, 220, 220, 220, 16409, 257, 46545, 1058, 357, 11250, 837, 25131, 7268, 9472, 393, 407, 356, 973, 257, 4277, 4566, 8, 37811, 198, 220, 220, 220, 611, 4566, 6624, 33490, 2306, 375, 29392, 29, 1298, 1303, 3919, 4566, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 62, 3672, 796, 3113, 13, 3672, 13, 35312, 3419, 58, 15, 60, 1303, 717, 4731, 287, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 3113, 62, 3672, 1343, 27071, 37581, 1, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 11250, 2599, 1303, 645, 4683, 4566, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 0, 20361, 25, 1400, 4566, 2393, 329, 46110, 82, 92, 12326, 11, 4441, 530, 13, 15161, 3815, 973, 13, 59, 77, 1911, 18982, 7, 18392, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 11250, 11, 366, 86, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2172, 796, 4277, 62, 25811, 7, 18392, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 11250, 7, 8738, 11, 277, 8, 1303, 39133, 4566, 284, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 8738, 11, 6407, 8, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 11250, 2599, 1303, 2183, 393, 4277, 4566, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 2172, 796, 4277, 62, 25811, 7, 18392, 8, 628, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 11250, 11, 366, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 25811, 62, 6738, 62, 11250, 7, 8738, 11, 277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 8738, 11, 10352, 8, 628, 220, 220, 220, 2073, 25, 1303, 3919, 4566, 1043, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 301, 1082, 81, 13, 13564, 7203, 3228, 12331, 25, 4566, 46110, 82, 92, 1595, 470, 7160, 5145, 1475, 1780, 986, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 32590, 17, 8, 198 ]
2.7
740
from abstract_factory.factories.furniture_factory import FurnitureFactory from abstract_factory.factories.modern_furniture_factory import ModernFurnitureFactory from abstract_factory.factories.victorian_furniture_factory import VictorianFurnitureFactory ''' Abstract Factory is a creational design pattern that lets you produce families of related objects without specifying their concrete classes. Chair, Sofa, Coffee Table X Modern, Victorian ''' def client_code(factory: FurnitureFactory) -> None: """ The client code works with factories and products only through abstract types: FurnitureFactory and abstract furniture Chair, Sofa and Coffee Table. This lets you pass any factory or product subclass to the client code without breaking it. """ chair = factory.create_chair() sofa = factory.create_sofa() print(f"{chair.chair_feature_1()}") print(f"{sofa.sofa_feature_2()}") if __name__ == "__main__": """ The client code can work with any concrete factory class. """ print("Client: Testing client code with the ModernFurnitureFactory:") client_code(ModernFurnitureFactory()) print('\n') print("Client: Testing client code with the VictorianFurnitureFactory:") client_code(VictorianFurnitureFactory())
[ 6738, 12531, 62, 69, 9548, 13, 22584, 1749, 13, 69, 700, 8089, 62, 69, 9548, 1330, 34937, 8089, 22810, 198, 6738, 12531, 62, 69, 9548, 13, 22584, 1749, 13, 23922, 62, 69, 700, 8089, 62, 69, 9548, 1330, 12495, 37, 700, 8089, 22810, 198, 6738, 12531, 62, 69, 9548, 13, 22584, 1749, 13, 32433, 22618, 62, 69, 700, 8089, 62, 69, 9548, 1330, 24569, 37, 700, 8089, 22810, 198, 198, 7061, 6, 198, 23839, 19239, 318, 257, 1126, 864, 1486, 3912, 326, 8781, 345, 4439, 4172, 220, 198, 1659, 3519, 5563, 1231, 31577, 511, 10017, 6097, 13, 198, 198, 43189, 11, 1406, 13331, 11, 19443, 8655, 1395, 12495, 11, 24569, 198, 7061, 6, 628, 198, 4299, 5456, 62, 8189, 7, 69, 9548, 25, 34937, 8089, 22810, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 5456, 2438, 2499, 351, 17590, 290, 3186, 691, 832, 12531, 198, 220, 220, 220, 3858, 25, 34937, 8089, 22810, 290, 12531, 13091, 9369, 11, 1406, 13331, 290, 19443, 8655, 13, 198, 220, 220, 220, 770, 8781, 345, 1208, 597, 8860, 393, 1720, 47611, 284, 262, 5456, 2438, 1231, 7163, 340, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5118, 796, 8860, 13, 17953, 62, 16337, 3419, 198, 220, 220, 220, 34902, 796, 8860, 13, 17953, 62, 568, 13331, 3419, 628, 220, 220, 220, 3601, 7, 69, 1, 90, 16337, 13, 16337, 62, 30053, 62, 16, 3419, 92, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 568, 13331, 13, 568, 13331, 62, 30053, 62, 17, 3419, 92, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 5456, 2438, 460, 670, 351, 597, 10017, 8860, 1398, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7203, 11792, 25, 23983, 5456, 2438, 351, 262, 12495, 37, 700, 8089, 22810, 25, 4943, 198, 220, 220, 220, 5456, 62, 8189, 7, 31439, 37, 700, 8089, 22810, 28955, 628, 220, 220, 220, 3601, 10786, 59, 77, 11537, 628, 220, 220, 220, 3601, 7203, 11792, 25, 23983, 5456, 2438, 351, 262, 24569, 37, 700, 8089, 22810, 25, 4943, 198, 220, 220, 220, 5456, 62, 8189, 7, 21944, 22618, 37, 700, 8089, 22810, 28955, 198 ]
3.405836
377
from django.shortcuts import render from django.views.generic import ListView, DetailView from django_vend.core.views import (VendAuthSingleObjectSyncMixin, VendAuthCollectionSyncMixin) from .models import VendOutlet, VendRegister
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 7343, 7680, 11, 42585, 7680, 198, 198, 6738, 42625, 14208, 62, 85, 437, 13, 7295, 13, 33571, 1330, 357, 53, 437, 30515, 28008, 10267, 28985, 35608, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44220, 30515, 36307, 28985, 35608, 259, 8, 198, 198, 6738, 764, 27530, 1330, 44220, 7975, 1616, 11, 44220, 38804, 628, 628, 198 ]
2.650485
103
import numpy as np def TSNR(noisy_stft, signal_gains, noise_estimation): """ Reconstructs the signal by re-adding phase components to the magnitude estimate :param noisy_stft: stft of original noisy signal :param signal_gains: gains of each stft frame returned by DD :param noise_estimation: noise estimation average based on first n frames of noisy signal :return: signal_output: stft of signal after TSNR modification TSNR_gains: ndarray containing gain for each bin in signal_output """ num_frames = noisy_stft.shape[1] signal_output = np.zeros(noisy_stft.shape, dtype=complex) TSNR_gains = [] for frame_number in range(num_frames): noisy_frame = np.abs(noisy_stft[:, frame_number]) #Calculating SNR_prior for current frame numerator = (signal_gains[:, frame_number] * noisy_frame) ** 2 prior_SNR = numerator / noise_estimation #Calculating TSNR filter_gain for current frame TSNR_gain = np.divide(prior_SNR, prior_SNR + 1) TSNR_gains.append(TSNR_gain) signal_output[:, frame_number] = TSNR_gain * noisy_stft[:, frame_number] return signal_output, np.asarray(TSNR_gains).T
[ 11748, 299, 32152, 355, 45941, 198, 198, 4299, 309, 15571, 49, 7, 3919, 13560, 62, 301, 701, 11, 6737, 62, 70, 1299, 11, 7838, 62, 395, 18991, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23419, 7249, 82, 262, 6737, 416, 302, 12, 26872, 7108, 6805, 284, 262, 14735, 8636, 198, 220, 220, 220, 1058, 17143, 31210, 62, 301, 701, 25, 336, 701, 286, 2656, 31210, 6737, 198, 220, 220, 220, 1058, 17143, 6737, 62, 70, 1299, 25, 8810, 286, 1123, 336, 701, 5739, 4504, 416, 20084, 198, 220, 220, 220, 1058, 17143, 7838, 62, 395, 18991, 25, 7838, 31850, 2811, 1912, 319, 717, 299, 13431, 286, 31210, 6737, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 62, 22915, 25, 336, 701, 286, 6737, 706, 309, 15571, 49, 17613, 198, 220, 220, 220, 220, 220, 220, 220, 309, 15571, 49, 62, 70, 1299, 25, 299, 67, 18747, 7268, 4461, 329, 1123, 9874, 287, 6737, 62, 22915, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 997, 62, 37805, 796, 31210, 62, 301, 701, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 6737, 62, 22915, 796, 45941, 13, 9107, 418, 7, 3919, 13560, 62, 301, 701, 13, 43358, 11, 288, 4906, 28, 41887, 8, 198, 220, 220, 220, 309, 15571, 49, 62, 70, 1299, 796, 17635, 628, 220, 220, 220, 329, 5739, 62, 17618, 287, 2837, 7, 22510, 62, 37805, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 31210, 62, 14535, 796, 45941, 13, 8937, 7, 3919, 13560, 62, 301, 701, 58, 45299, 5739, 62, 17618, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9771, 3129, 803, 11346, 49, 62, 3448, 273, 329, 1459, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 5470, 1352, 796, 357, 12683, 282, 62, 70, 1299, 58, 45299, 5739, 62, 17618, 60, 1635, 31210, 62, 14535, 8, 12429, 362, 198, 220, 220, 220, 220, 220, 220, 220, 3161, 62, 15571, 49, 796, 5470, 1352, 1220, 7838, 62, 395, 18991, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9771, 3129, 803, 309, 15571, 49, 8106, 62, 48544, 329, 1459, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 309, 15571, 49, 62, 48544, 796, 45941, 13, 7146, 485, 7, 3448, 273, 62, 15571, 49, 11, 3161, 62, 15571, 49, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 15571, 49, 62, 70, 1299, 13, 33295, 7, 4694, 24723, 62, 48544, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6737, 62, 22915, 58, 45299, 5739, 62, 17618, 60, 796, 309, 15571, 49, 62, 48544, 1635, 31210, 62, 301, 701, 58, 45299, 5739, 62, 17618, 60, 628, 220, 220, 220, 1441, 6737, 62, 22915, 11, 45941, 13, 292, 18747, 7, 4694, 24723, 62, 70, 1299, 737, 51 ]
2.58547
468
# py_adventure screen scrypt import config import os
[ 2, 12972, 62, 324, 5388, 3159, 629, 6012, 201, 198, 11748, 4566, 201, 198, 11748, 28686, 201 ]
3.235294
17
# coding: utf-8 # In[1]: import numpy as np from time import time import gzip import warnings import pickle warnings.filterwarnings("ignore") from Bio.PDB import * import Bio from config import DefaultConfig configs = DefaultConfig() parser = PDBParser() THIRD_ATOM = 'N' # 'O' # In[2]: # In[3]: from Bio import pairwise2 from Bio.pairwise2 import format_alignment from Bio import SeqUtils protein_letters_3to1 = SeqUtils.IUPACData.protein_letters_3to1 ppb = PPBuilder() # dist_matrix_map, angle_matrix_map
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 16, 5974, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 640, 1330, 640, 198, 11748, 308, 13344, 198, 11748, 14601, 198, 11748, 2298, 293, 198, 198, 40539, 654, 13, 24455, 40539, 654, 7203, 46430, 4943, 198, 198, 6738, 16024, 13, 5760, 33, 1330, 1635, 198, 11748, 16024, 198, 6738, 4566, 1330, 15161, 16934, 198, 11250, 82, 796, 15161, 16934, 3419, 628, 198, 198, 48610, 796, 350, 11012, 46677, 3419, 198, 198, 4221, 46833, 62, 1404, 2662, 796, 705, 45, 6, 220, 1303, 705, 46, 6, 628, 198, 2, 554, 58, 17, 5974, 628, 628, 198, 198, 2, 554, 58, 18, 5974, 628, 198, 6738, 16024, 1330, 5166, 3083, 17, 198, 6738, 16024, 13, 24874, 3083, 17, 1330, 5794, 62, 282, 16747, 198, 6738, 16024, 1330, 1001, 80, 18274, 4487, 198, 198, 48693, 62, 15653, 62, 18, 1462, 16, 796, 1001, 80, 18274, 4487, 13, 40, 8577, 2246, 6601, 13, 48693, 62, 15653, 62, 18, 1462, 16, 198, 198, 381, 65, 796, 21082, 32875, 3419, 628, 198, 2, 220, 220, 220, 220, 1233, 62, 6759, 8609, 62, 8899, 11, 9848, 62, 6759, 8609, 62, 8899, 628 ]
2.69697
198
import numpy as np from numpy.typing import ArrayLike import sys from puzzle_1 import load_input sys.path.append("..") import helpers # noqa def calculate_last_winning_score( draw_numbers: list[int], boards: list[ArrayLike], blank_boards: list[ArrayLike] ) -> tuple[int, int, int]: """Function to calculate the winning score from the board which would win last. The score is given by sum of all unmarked numbers on that board multiplied by the number that was just called for the winning board. """ boards_in_play = [i for i in range(len(boards))] remove_board = [] for drawn_number in draw_numbers: for board_no in boards_in_play: board = boards[board_no] blank_board = blank_boards[board_no] drawn_number_found = board == drawn_number if drawn_number_found.sum() > 0: blank_board = blank_board + drawn_number_found blank_board = np.clip(blank_board, a_min=None, a_max=1) blank_boards[board_no] = blank_board unmarked_board = (1 - blank_board) * board # check for winning board if (blank_board.sum(axis=0) == 5).any() or ( blank_board.sum(axis=1) == 5 ).any(): # if the board wins, store the board number and remove it # outside of the loop if len(boards_in_play) > 1: remove_board.append(board_no) else: unmarked_board = (1 - blank_board) * board unmarked_board_score = unmarked_board.sum() return ( unmarked_board_score * drawn_number, unmarked_board_score, drawn_number, ) if remove_board is not []: for board_to_remove in remove_board: boards_in_play.remove(board_to_remove) remove_board = [] if __name__ == "__main__": input = load_input("input_1.txt") result = calculate_last_winning_score(*input) print(result)
[ 11748, 299, 32152, 355, 45941, 198, 6738, 299, 32152, 13, 774, 13886, 1330, 15690, 7594, 198, 11748, 25064, 198, 6738, 15027, 62, 16, 1330, 3440, 62, 15414, 198, 198, 17597, 13, 6978, 13, 33295, 7203, 492, 4943, 198, 11748, 49385, 220, 1303, 645, 20402, 628, 198, 4299, 15284, 62, 12957, 62, 14463, 62, 26675, 7, 198, 220, 220, 220, 3197, 62, 77, 17024, 25, 1351, 58, 600, 4357, 11490, 25, 1351, 58, 19182, 7594, 4357, 9178, 62, 12821, 25, 1351, 58, 19182, 7594, 60, 198, 8, 4613, 46545, 58, 600, 11, 493, 11, 493, 5974, 198, 220, 220, 220, 37227, 22203, 284, 15284, 262, 5442, 4776, 422, 262, 198, 220, 220, 220, 3096, 543, 561, 1592, 938, 13, 383, 4776, 318, 1813, 416, 198, 220, 220, 220, 2160, 286, 477, 46791, 3146, 319, 326, 3096, 33096, 198, 220, 220, 220, 416, 262, 1271, 326, 373, 655, 1444, 329, 262, 5442, 198, 220, 220, 220, 3096, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11490, 62, 259, 62, 1759, 796, 685, 72, 329, 1312, 287, 2837, 7, 11925, 7, 12821, 4008, 60, 628, 220, 220, 220, 4781, 62, 3526, 796, 17635, 628, 220, 220, 220, 329, 7428, 62, 17618, 287, 3197, 62, 77, 17024, 25, 628, 220, 220, 220, 220, 220, 220, 220, 329, 3096, 62, 3919, 287, 11490, 62, 259, 62, 1759, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3096, 796, 11490, 58, 3526, 62, 3919, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9178, 62, 3526, 796, 9178, 62, 12821, 58, 3526, 62, 3919, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7428, 62, 17618, 62, 9275, 796, 3096, 6624, 7428, 62, 17618, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7428, 62, 17618, 62, 9275, 13, 16345, 3419, 1875, 657, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9178, 62, 3526, 796, 9178, 62, 3526, 1343, 7428, 62, 17618, 62, 9275, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9178, 62, 3526, 796, 45941, 13, 15036, 7, 27190, 62, 3526, 11, 257, 62, 1084, 28, 14202, 11, 257, 62, 9806, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9178, 62, 12821, 58, 3526, 62, 3919, 60, 796, 9178, 62, 3526, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46791, 62, 3526, 796, 357, 16, 532, 9178, 62, 3526, 8, 1635, 3096, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 329, 5442, 3096, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 27190, 62, 3526, 13, 16345, 7, 22704, 28, 15, 8, 6624, 642, 737, 1092, 3419, 393, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9178, 62, 3526, 13, 16345, 7, 22704, 28, 16, 8, 6624, 642, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 1092, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 262, 3096, 7864, 11, 3650, 262, 3096, 1271, 290, 4781, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2354, 286, 262, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 12821, 62, 259, 62, 1759, 8, 1875, 352, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 3526, 13, 33295, 7, 3526, 62, 3919, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46791, 62, 3526, 796, 357, 16, 532, 9178, 62, 3526, 8, 1635, 3096, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46791, 62, 3526, 62, 26675, 796, 46791, 62, 3526, 13, 16345, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46791, 62, 3526, 62, 26675, 1635, 7428, 62, 17618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46791, 62, 3526, 62, 26675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7428, 62, 17618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4781, 62, 3526, 318, 407, 685, 5974, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3096, 62, 1462, 62, 28956, 287, 4781, 62, 3526, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11490, 62, 259, 62, 1759, 13, 28956, 7, 3526, 62, 1462, 62, 28956, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 3526, 796, 17635, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 5128, 796, 3440, 62, 15414, 7203, 15414, 62, 16, 13, 14116, 4943, 628, 220, 220, 220, 1255, 796, 15284, 62, 12957, 62, 14463, 62, 26675, 46491, 15414, 8, 628, 220, 220, 220, 3601, 7, 20274, 8, 198 ]
2.092279
1,062
# This code is part of Qiskit. # # (C) Copyright IBM 2020, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A Neural Network abstract class for all (quantum) neural networks within Qiskit's machine learning module.""" from abc import ABC, abstractmethod from typing import Tuple, Union, List, Optional import numpy as np try: from sparse import SparseArray except ImportError: class SparseArray: # type: ignore """Empty SparseArray class Replacement if sparse.SparseArray is not present. """ pass from ..exceptions import QiskitMachineLearningError class NeuralNetwork(ABC): """Abstract Neural Network class providing forward and backward pass and handling batched inputs. This is to be implemented by other (quantum) neural networks. """ def __init__( self, num_inputs: int, num_weights: int, sparse: bool, output_shape: Union[int, Tuple[int, ...]], ) -> None: """Initializes the Neural Network. Args: num_inputs: The number of input features. num_weights: The number of trainable weights. sparse: Determines whether the output is a sparse array or not. output_shape: The shape of the output. Raises: QiskitMachineLearningError: Invalid parameter values. """ if num_inputs < 0: raise QiskitMachineLearningError(f"Number of inputs cannot be negative: {num_inputs}!") self._num_inputs = num_inputs if num_weights < 0: raise QiskitMachineLearningError( f"Number of weights cannot be negative: {num_weights}!" ) self._num_weights = num_weights self._sparse = sparse if isinstance(output_shape, int): output_shape = (output_shape,) if not np.all([s > 0 for s in output_shape]): raise QiskitMachineLearningError( f"Invalid output shape, all components must be > 0, but got: {output_shape}." ) self._output_shape = output_shape self._input_gradients = False @property def num_inputs(self) -> int: """Returns the number of input features.""" return self._num_inputs @property def num_weights(self) -> int: """Returns the number of trainable weights.""" return self._num_weights @property def sparse(self) -> bool: """Returns whether the output is sparse or not.""" return self._sparse @property def output_shape(self) -> Tuple[int, ...]: """Returns the output shape.""" return self._output_shape @property def input_gradients(self) -> bool: """Returns whether gradients with respect to input data are computed by this neural network in the ``backward`` method or not. By default such gradients are not computed.""" return self._input_gradients @input_gradients.setter def input_gradients(self, input_gradients: bool) -> None: """Turn on/off computation of gradients with respect to input data.""" self._input_gradients = input_gradients def forward( self, input_data: Optional[Union[List[float], np.ndarray, float]], weights: Optional[Union[List[float], np.ndarray, float]], ) -> Union[np.ndarray, SparseArray]: """Forward pass of the network. Args: input_data: input data of the shape (num_inputs). In case of a single scalar input it is directly cast to and interpreted like a one-element array. weights: trainable weights of the shape (num_weights). In case of a single scalar weight it is directly cast to and interpreted like a one-element array. Returns: The result of the neural network of the shape (output_shape). """ input_, shape = self._validate_input(input_data) weights_ = self._validate_weights(weights) output_data = self._forward(input_, weights_) return self._validate_forward_output(output_data, shape) @abstractmethod def backward( self, input_data: Optional[Union[List[float], np.ndarray, float]], weights: Optional[Union[List[float], np.ndarray, float]], ) -> Tuple[Optional[Union[np.ndarray, SparseArray]], Optional[Union[np.ndarray, SparseArray]],]: """Backward pass of the network. Args: input_data: input data of the shape (num_inputs). In case of a single scalar input it is directly cast to and interpreted like a one-element array. weights: trainable weights of the shape (num_weights). In case of a single scalar weight it is directly cast to and interpreted like a one-element array. Returns: The result of the neural network of the backward pass, i.e., a tuple with the gradients for input and weights of shape (output_shape, num_input) and (output_shape, num_weights), respectively. """ input_, shape = self._validate_input(input_data) weights_ = self._validate_weights(weights) input_grad, weight_grad = self._backward(input_, weights_) input_grad_reshaped, weight_grad_reshaped = self._validate_backward_output( input_grad, weight_grad, shape ) return input_grad_reshaped, weight_grad_reshaped @abstractmethod
[ 2, 770, 2438, 318, 636, 286, 1195, 1984, 270, 13, 198, 2, 198, 2, 357, 34, 8, 15069, 19764, 12131, 11, 33448, 13, 198, 2, 198, 2, 770, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 13, 921, 743, 198, 2, 7330, 257, 4866, 286, 428, 5964, 287, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 198, 2, 286, 428, 2723, 5509, 393, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 198, 2, 198, 2, 4377, 19008, 393, 27255, 2499, 286, 428, 2438, 1276, 12377, 428, 198, 2, 6634, 4003, 11, 290, 9518, 3696, 761, 284, 3283, 257, 4003, 12739, 198, 2, 326, 484, 423, 587, 14294, 422, 262, 47324, 13, 198, 198, 37811, 32, 47986, 7311, 12531, 1398, 329, 477, 357, 40972, 388, 8, 17019, 7686, 1626, 1195, 1984, 270, 338, 198, 30243, 4673, 8265, 526, 15931, 628, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 19720, 1330, 309, 29291, 11, 4479, 11, 7343, 11, 32233, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 29877, 1330, 1338, 17208, 19182, 198, 16341, 17267, 12331, 25, 628, 220, 220, 220, 1398, 1338, 17208, 19182, 25, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40613, 1338, 17208, 19182, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 43986, 611, 29877, 13, 50, 29572, 19182, 318, 407, 1944, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 6738, 11485, 1069, 11755, 1330, 1195, 1984, 270, 37573, 41730, 12331, 628, 198, 4871, 47986, 26245, 7, 24694, 2599, 198, 220, 220, 220, 37227, 23839, 47986, 7311, 1398, 4955, 2651, 290, 19528, 1208, 290, 9041, 198, 220, 220, 220, 7365, 1740, 17311, 13, 770, 318, 284, 307, 9177, 416, 584, 357, 40972, 388, 8, 17019, 7686, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 15414, 82, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 43775, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 29877, 25, 20512, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 43358, 25, 4479, 58, 600, 11, 309, 29291, 58, 600, 11, 2644, 60, 4357, 198, 220, 220, 220, 1267, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 262, 47986, 7311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 15414, 82, 25, 383, 1271, 286, 5128, 3033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 43775, 25, 383, 1271, 286, 4512, 540, 19590, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29877, 25, 360, 13221, 274, 1771, 262, 5072, 318, 257, 29877, 7177, 393, 407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 43358, 25, 383, 5485, 286, 262, 5072, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1195, 1984, 270, 37573, 41730, 12331, 25, 17665, 11507, 3815, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 997, 62, 15414, 82, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1195, 1984, 270, 37573, 41730, 12331, 7, 69, 1, 15057, 286, 17311, 2314, 307, 4633, 25, 1391, 22510, 62, 15414, 82, 92, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22510, 62, 15414, 82, 796, 997, 62, 15414, 82, 628, 220, 220, 220, 220, 220, 220, 220, 611, 997, 62, 43775, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1195, 1984, 270, 37573, 41730, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 15057, 286, 19590, 2314, 307, 4633, 25, 1391, 22510, 62, 43775, 92, 2474, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22510, 62, 43775, 796, 997, 62, 43775, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 82, 29572, 796, 29877, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 22915, 62, 43358, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 43358, 796, 357, 22915, 62, 43358, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 45941, 13, 439, 26933, 82, 1875, 657, 329, 264, 287, 5072, 62, 43358, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1195, 1984, 270, 37573, 41730, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 44651, 5072, 5485, 11, 477, 6805, 1276, 307, 1875, 657, 11, 475, 1392, 25, 1391, 22915, 62, 43358, 92, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22915, 62, 43358, 796, 5072, 62, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15414, 62, 9744, 2334, 796, 10352, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 997, 62, 15414, 82, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 1271, 286, 5128, 3033, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 22510, 62, 15414, 82, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 997, 62, 43775, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 1271, 286, 4512, 540, 19590, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 22510, 62, 43775, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 29877, 7, 944, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 1771, 262, 5072, 318, 29877, 393, 407, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 82, 29572, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5072, 62, 43358, 7, 944, 8, 4613, 309, 29291, 58, 600, 11, 2644, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 5072, 5485, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 22915, 62, 43358, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5128, 62, 9744, 2334, 7, 944, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 1771, 3915, 2334, 351, 2461, 284, 5128, 1366, 389, 29231, 416, 428, 17019, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 287, 262, 7559, 1891, 904, 15506, 2446, 393, 407, 13, 2750, 4277, 884, 3915, 2334, 389, 407, 29231, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 15414, 62, 9744, 2334, 628, 220, 220, 220, 2488, 15414, 62, 9744, 2334, 13, 2617, 353, 198, 220, 220, 220, 825, 5128, 62, 9744, 2334, 7, 944, 11, 5128, 62, 9744, 2334, 25, 20512, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17278, 319, 14, 2364, 29964, 286, 3915, 2334, 351, 2461, 284, 5128, 1366, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15414, 62, 9744, 2334, 796, 5128, 62, 9744, 2334, 628, 220, 220, 220, 825, 2651, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 25, 32233, 58, 38176, 58, 8053, 58, 22468, 4357, 45941, 13, 358, 18747, 11, 12178, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 25, 32233, 58, 38176, 58, 8053, 58, 22468, 4357, 45941, 13, 358, 18747, 11, 12178, 60, 4357, 198, 220, 220, 220, 1267, 4613, 4479, 58, 37659, 13, 358, 18747, 11, 1338, 17208, 19182, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39746, 1208, 286, 262, 3127, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 25, 5128, 1366, 286, 262, 5485, 357, 22510, 62, 15414, 82, 737, 554, 1339, 286, 257, 2060, 16578, 283, 5128, 340, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3264, 3350, 284, 290, 16173, 588, 257, 530, 12, 30854, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 25, 4512, 540, 19590, 286, 262, 5485, 357, 22510, 62, 43775, 737, 554, 1339, 286, 257, 2060, 16578, 283, 3463, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 318, 3264, 3350, 284, 290, 16173, 588, 257, 530, 12, 30854, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1255, 286, 262, 17019, 3127, 286, 262, 5485, 357, 22915, 62, 43358, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 11, 5485, 796, 2116, 13557, 12102, 378, 62, 15414, 7, 15414, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 62, 796, 2116, 13557, 12102, 378, 62, 43775, 7, 43775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7890, 796, 2116, 13557, 11813, 7, 15414, 62, 11, 19590, 62, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 12102, 378, 62, 11813, 62, 22915, 7, 22915, 62, 7890, 11, 5485, 8, 628, 220, 220, 220, 2488, 397, 8709, 24396, 628, 220, 220, 220, 825, 19528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 25, 32233, 58, 38176, 58, 8053, 58, 22468, 4357, 45941, 13, 358, 18747, 11, 12178, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 25, 32233, 58, 38176, 58, 8053, 58, 22468, 4357, 45941, 13, 358, 18747, 11, 12178, 60, 4357, 198, 220, 220, 220, 1267, 4613, 309, 29291, 58, 30719, 58, 38176, 58, 37659, 13, 358, 18747, 11, 1338, 17208, 19182, 60, 4357, 32233, 58, 38176, 58, 37659, 13, 358, 18747, 11, 1338, 17208, 19182, 60, 4357, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7282, 904, 1208, 286, 262, 3127, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 25, 5128, 1366, 286, 262, 5485, 357, 22510, 62, 15414, 82, 737, 554, 1339, 286, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2060, 16578, 283, 5128, 340, 318, 3264, 3350, 284, 290, 16173, 588, 257, 530, 12, 30854, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 25, 4512, 540, 19590, 286, 262, 5485, 357, 22510, 62, 43775, 737, 554, 1339, 286, 257, 2060, 16578, 283, 3463, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 318, 3264, 3350, 284, 290, 16173, 588, 257, 530, 12, 30854, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1255, 286, 262, 17019, 3127, 286, 262, 19528, 1208, 11, 1312, 13, 68, 1539, 257, 46545, 351, 262, 3915, 2334, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5128, 290, 19590, 286, 5485, 357, 22915, 62, 43358, 11, 997, 62, 15414, 8, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22915, 62, 43358, 11, 997, 62, 43775, 828, 8148, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 11, 5485, 796, 2116, 13557, 12102, 378, 62, 15414, 7, 15414, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 62, 796, 2116, 13557, 12102, 378, 62, 43775, 7, 43775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9744, 11, 3463, 62, 9744, 796, 2116, 13557, 1891, 904, 7, 15414, 62, 11, 19590, 62, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9744, 62, 3447, 5813, 11, 3463, 62, 9744, 62, 3447, 5813, 796, 2116, 13557, 12102, 378, 62, 1891, 904, 62, 22915, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9744, 11, 3463, 62, 9744, 11, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5128, 62, 9744, 62, 3447, 5813, 11, 3463, 62, 9744, 62, 3447, 5813, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198 ]
2.629663
2,225
#!/usr/bin/env python import os import re import shutil import glob # This script converts from the docker version to a shell install version # Useful for installation without docker # Manual installation # - Init a database using ../postgresql/docker-entrypoint-initdb.d/init-database.sh # - Add db, smtp and rabbitmq to /etc/hosts # - Excute ./docker2shell.py # - Open schellinstall folder # - Update database connexion in config files (*.py) # - Create env file and load data in bash session for envsub # - Update NGINX ports in *.template # - Update SMTP config (config.py and wcs.settings.py) # - Turn debug off if needed in config files (*.py) # - Execute install.sh # - Start app with start-xxx.sh apps = ["base", "hobo", "authentic", "combo", "fargo", "passerelle", "wcs"] project_path = os.getcwd() bare_path = os.path.join(project_path, "shellinstall") if not os.path.exists(bare_path): os.makedirs(bare_path) else: [os.remove(f) for f in glob.glob(bare_path+"/*")] replace_dict = { "FROM" : "# FROM", "MAINTAINER" : "# MAINTAINER", "VOLUME" : "# VOLUME", "EXPOSE" : "# EXPOSE", "ENTRYPOINT\s\[\"(?P<script>[A-Za-z\-\.]*)\"\]" : "./\g<script>", "CMD" : "# CMD", "RUN " : "", "COPY" : "cp", "ENV\s(?P<name>[A-Z]*)\s*(?P<value>[a-z]*)" : "export \g<name>=\g<value>", "/root" : "/usr/bin" } do_not_copy = ["Dockerfile", "LICENSE", "README.md", \ ".git", "nginx.template", "start.sh", "stop.sh"] startgru = "" stopgru = "" configuregru = "" envextractor = re.compile("(envsubst.*)") for app in apps: app_path = os.path.join(project_path, app) if "Dockerfile" in os.listdir(app) : print("Converting {} docker image...".format(app)) # Rename nginx template using app name nginx_path = os.path.join(app_path, "nginx.template") if os.path.isfile(nginx_path): nginx_new_name = "nginx-"+app+".template" replace_dict.update({"nginx.template" : nginx_new_name}) shutil.copyfile(nginx_path, os.path.join(bare_path, nginx_new_name)) # Convert docker entrypoint into startup script entrypoint_path = os.path.join(app_path, "start.sh") if os.path.isfile(entrypoint_path): startappscript = "start-"+app+".sh" replace_dict.update({"start.sh" : startappscript}) # delete the 'exec' command in the script with open(entrypoint_path) as f: newContent = f.read().replace('exec "$@"', '') newContent = envextractor.sub('# moved to configure.sh \\1', newContent) configuregru += "\n".join([ a + "\n" for a in envextractor.findall(newContent)]) with open(os.path.join(bare_path, startappscript), "w+") as f: f.write(newContent) startgru += "./" + startappscript + "\n" # Convert docker stop script entrypoint_path = os.path.join(app_path, "stop.sh") if os.path.isfile(entrypoint_path): stopappscript = "stop-"+app+".sh" replace_dict.update({"stop.sh" : stopappscript}) shutil.copyfile(entrypoint_path, os.path.join(bare_path, stopappscript)) stopgru += "./" + stopappscript + "\n" # Convert dockerfile file_replace(replace_dict, \ os.path.join(app_path, "Dockerfile"), \ os.path.join(bare_path, "install.sh"), app) # Copy other files files = [f for f in os.listdir(app) if f not in do_not_copy] for file in files: file_path = os.path.join(app_path, file) if os.path.isfile(os.path.join(bare_path, file)): print("Error, file %s already exists", file) shutil.copy(file_path, bare_path) print("{} docker image converted".format(app)) with open(os.path.join(bare_path, "start-all.sh"), "w") as f: f.write(startgru) with open(os.path.join(bare_path, "stop-all.sh"), "w") as f: f.write(stopgru) with open(os.path.join(bare_path, "configure.sh"), "w") as f: f.write(configuregru)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 4423, 346, 198, 11748, 15095, 198, 198, 2, 770, 4226, 26161, 422, 262, 36253, 2196, 284, 257, 7582, 2721, 2196, 198, 2, 49511, 329, 9988, 1231, 36253, 628, 198, 2, 17969, 9988, 198, 2, 532, 44707, 257, 6831, 1262, 11485, 14, 7353, 34239, 13976, 14, 45986, 12, 13000, 4122, 12, 15003, 9945, 13, 67, 14, 15003, 12, 48806, 13, 1477, 198, 2, 532, 3060, 20613, 11, 895, 34788, 290, 22746, 76, 80, 284, 1220, 14784, 14, 4774, 82, 198, 2, 532, 25268, 1133, 24457, 45986, 17, 29149, 13, 9078, 198, 2, 532, 4946, 3897, 297, 17350, 9483, 198, 2, 220, 220, 532, 10133, 6831, 369, 12413, 295, 287, 4566, 3696, 20789, 13, 9078, 8, 198, 2, 220, 220, 532, 13610, 17365, 2393, 290, 3440, 1366, 287, 27334, 6246, 329, 17365, 7266, 198, 2, 220, 220, 532, 10133, 39058, 1268, 55, 14090, 287, 46866, 28243, 198, 2, 220, 220, 532, 10133, 9447, 7250, 4566, 357, 11250, 13, 9078, 290, 266, 6359, 13, 33692, 13, 9078, 8, 198, 2, 220, 220, 532, 6756, 14257, 572, 611, 2622, 287, 4566, 3696, 20789, 13, 9078, 8, 198, 2, 220, 220, 532, 8393, 1133, 2721, 13, 1477, 198, 2, 220, 220, 532, 7253, 598, 351, 923, 12, 31811, 13, 1477, 198, 220, 220, 220, 220, 198, 18211, 796, 14631, 8692, 1600, 366, 71, 20391, 1600, 366, 41299, 291, 1600, 366, 785, 2127, 1600, 366, 69, 9448, 1600, 366, 79, 21612, 2411, 293, 1600, 366, 12712, 8973, 198, 198, 16302, 62, 6978, 796, 28686, 13, 1136, 66, 16993, 3419, 198, 49382, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 16302, 62, 6978, 11, 366, 29149, 17350, 4943, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 49382, 62, 6978, 2599, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 49382, 62, 6978, 8, 198, 17772, 25, 198, 220, 220, 220, 685, 418, 13, 28956, 7, 69, 8, 329, 277, 287, 15095, 13, 4743, 672, 7, 49382, 62, 6978, 10, 1, 15211, 4943, 60, 198, 198, 33491, 62, 11600, 796, 1391, 198, 220, 220, 220, 366, 10913, 2662, 1, 1058, 25113, 16034, 1600, 198, 220, 220, 220, 366, 5673, 1268, 30339, 1137, 1, 1058, 25113, 8779, 1268, 30339, 1137, 1600, 198, 220, 220, 220, 366, 44558, 38340, 1, 1058, 25113, 38570, 38340, 1600, 198, 220, 220, 220, 366, 6369, 48933, 1, 1058, 25113, 25703, 14058, 1600, 198, 220, 220, 220, 366, 3525, 18276, 16402, 12394, 59, 82, 59, 58, 7879, 7, 30, 47, 27, 12048, 36937, 32, 12, 57, 64, 12, 89, 41441, 59, 8183, 28104, 7879, 59, 30866, 1058, 366, 19571, 59, 70, 27, 12048, 29, 1600, 198, 220, 220, 220, 366, 34, 12740, 1, 1058, 25113, 327, 12740, 1600, 198, 220, 220, 220, 366, 49, 4944, 366, 1058, 366, 1600, 198, 220, 220, 220, 366, 34, 3185, 56, 1, 1058, 366, 13155, 1600, 198, 220, 220, 220, 366, 1677, 53, 59, 82, 7, 30, 47, 27, 3672, 36937, 32, 12, 57, 60, 9, 19415, 82, 9, 7, 30, 47, 27, 8367, 36937, 64, 12, 89, 60, 9, 16725, 1058, 366, 39344, 3467, 70, 27, 3672, 29, 28, 59, 70, 27, 8367, 29, 1600, 198, 220, 220, 220, 12813, 15763, 1, 1058, 12813, 14629, 14, 8800, 1, 198, 220, 220, 220, 1782, 198, 198, 4598, 62, 1662, 62, 30073, 796, 14631, 35, 12721, 7753, 1600, 366, 43, 2149, 24290, 1600, 366, 15675, 11682, 13, 9132, 1600, 3467, 198, 220, 220, 220, 27071, 18300, 1600, 366, 782, 28413, 13, 28243, 1600, 366, 9688, 13, 1477, 1600, 366, 11338, 13, 1477, 8973, 198, 198, 9688, 48929, 796, 13538, 198, 11338, 48929, 796, 13538, 198, 11250, 495, 48929, 796, 13538, 198, 268, 303, 742, 40450, 796, 302, 13, 5589, 576, 7203, 7, 24330, 7266, 301, 15885, 8, 4943, 198, 198, 1640, 598, 287, 6725, 25, 198, 220, 220, 220, 598, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 16302, 62, 6978, 11, 598, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 366, 35, 12721, 7753, 1, 287, 28686, 13, 4868, 15908, 7, 1324, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3103, 48820, 23884, 36253, 2939, 9313, 13, 18982, 7, 1324, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7152, 480, 299, 42822, 11055, 1262, 598, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 299, 42822, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 1324, 62, 6978, 11, 366, 782, 28413, 13, 28243, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 782, 28413, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 42822, 62, 3605, 62, 3672, 796, 366, 782, 28413, 21215, 10, 1324, 10, 1911, 28243, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6330, 62, 11600, 13, 19119, 7, 4895, 782, 28413, 13, 28243, 1, 1058, 299, 42822, 62, 3605, 62, 3672, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7753, 7, 782, 28413, 62, 6978, 11, 28686, 13, 6978, 13, 22179, 7, 49382, 62, 6978, 11, 299, 42822, 62, 3605, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 36253, 5726, 4122, 656, 13693, 4226, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 4122, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 1324, 62, 6978, 11, 366, 9688, 13, 1477, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 13000, 4122, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 1324, 12048, 796, 366, 9688, 21215, 10, 1324, 10, 1911, 1477, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6330, 62, 11600, 13, 19119, 7, 4895, 9688, 13, 1477, 1, 1058, 923, 1324, 12048, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12233, 262, 705, 18558, 6, 3141, 287, 262, 4226, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 13000, 4122, 62, 6978, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 19746, 796, 277, 13, 961, 22446, 33491, 10786, 18558, 17971, 31, 1, 3256, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 19746, 796, 551, 303, 742, 40450, 13, 7266, 10786, 2, 3888, 284, 17425, 13, 1477, 26867, 16, 3256, 649, 19746, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17425, 48929, 15853, 37082, 77, 1911, 22179, 26933, 257, 1343, 37082, 77, 1, 329, 257, 287, 551, 303, 742, 40450, 13, 19796, 439, 7, 3605, 19746, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 49382, 62, 6978, 11, 923, 1324, 12048, 828, 366, 86, 10, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 3605, 19746, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 48929, 15853, 366, 19571, 1, 1343, 923, 1324, 12048, 1343, 37082, 77, 1, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 36253, 2245, 4226, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 4122, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 1324, 62, 6978, 11, 366, 11338, 13, 1477, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 13000, 4122, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 1324, 12048, 796, 366, 11338, 21215, 10, 1324, 10, 1911, 1477, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6330, 62, 11600, 13, 19119, 7, 4895, 11338, 13, 1477, 1, 1058, 2245, 1324, 12048, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7753, 7, 13000, 4122, 62, 6978, 11, 28686, 13, 6978, 13, 22179, 7, 49382, 62, 6978, 11, 2245, 1324, 12048, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 48929, 15853, 366, 19571, 1, 1343, 2245, 1324, 12048, 1343, 37082, 77, 1, 220, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 36253, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 33491, 7, 33491, 62, 11600, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 1324, 62, 6978, 11, 366, 35, 12721, 7753, 12340, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 49382, 62, 6978, 11, 366, 17350, 13, 1477, 12340, 598, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17393, 584, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 685, 69, 329, 277, 287, 28686, 13, 4868, 15908, 7, 1324, 8, 611, 277, 407, 287, 466, 62, 1662, 62, 30073, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 1324, 62, 6978, 11, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 418, 13, 6978, 13, 22179, 7, 49382, 62, 6978, 11, 2393, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 11, 2393, 4064, 82, 1541, 7160, 1600, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7, 7753, 62, 6978, 11, 6247, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 36253, 2939, 11513, 1911, 18982, 7, 1324, 4008, 198, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 49382, 62, 6978, 11, 366, 9688, 12, 439, 13, 1477, 12340, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7, 9688, 48929, 8, 198, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 49382, 62, 6978, 11, 366, 11338, 12, 439, 13, 1477, 12340, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7, 11338, 48929, 8, 198, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 49382, 62, 6978, 11, 366, 11250, 495, 13, 1477, 12340, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7, 11250, 495, 48929, 8 ]
2.238328
1,842
from root_dir import root_dir DEBUG = True LOG_DIRECTORY = root_dir('..', 'dev_logs') EMAIL_BACKEND = 'django.core.mail.backends.locmem.EmailBackend' EMAIL_PORT = 1025 YWOT_HOST = 'localhost:8001' PUSHER_APP_ID = '...' PUSHER_KEY = '...' PUSHER_SECRET = '...' MIXPANEL_ID = "..." STATIC_URL = '/static/' SENTRY_DSN = None
[ 6738, 6808, 62, 15908, 1330, 6808, 62, 15908, 198, 198, 30531, 796, 6407, 198, 198, 25294, 62, 17931, 23988, 15513, 796, 6808, 62, 15908, 10786, 492, 3256, 705, 7959, 62, 6404, 82, 11537, 198, 198, 27630, 4146, 62, 31098, 10619, 796, 705, 28241, 14208, 13, 7295, 13, 4529, 13, 1891, 2412, 13, 17946, 11883, 13, 15333, 7282, 437, 6, 198, 27630, 4146, 62, 15490, 796, 838, 1495, 198, 198, 56, 54, 2394, 62, 39, 10892, 796, 705, 36750, 25, 7410, 16, 6, 198, 198, 47, 2937, 16879, 62, 24805, 62, 2389, 796, 705, 986, 6, 198, 47, 2937, 16879, 62, 20373, 796, 705, 986, 6, 198, 47, 2937, 16879, 62, 23683, 26087, 796, 705, 986, 6, 198, 8895, 27481, 1565, 3698, 62, 2389, 796, 366, 9313, 198, 198, 35744, 2149, 62, 21886, 796, 31051, 12708, 14, 6, 198, 198, 50, 3525, 18276, 62, 5258, 45, 796, 6045, 628 ]
2.22973
148
import re import string from typing import List def tokenize_fast(input_text: str) -> List[str]: """Returns a very naive whitespace and punctuation based tokenization. This helps for most but not all languages, should only be used if you don't know the language yet, or if you have a lot of data and can sacrifice a lot of output quality for the sake of speed. """ return strip_most_punctuation(remove_html_tags(input_text)).split() def remove_html_tags(input_text: str) -> str: """Removes all text enclosed by angle brackets.""" html_regex = re.compile("<.*?>") return re.sub(html_regex, "", input_text) def strip_most_punctuation(input_text: str) -> str: """Removes most punctuation except for particular characters inside a word. E.g., "The dog." becomes "The dog" but "U.S.A." becomes "U.S.A". """ chars = [c for c in input_text] for i in range(len(chars)): if chars[i] in string.punctuation: if ((chars[i] in "'./?&=:") and 0 < i < len(chars) - 1 and not chars[i-1].isspace() and not chars[i+1].isspace()): continue chars[i] = ' ' return ''.join(chars)
[ 11748, 302, 198, 11748, 4731, 198, 6738, 19720, 1330, 7343, 628, 198, 4299, 11241, 1096, 62, 7217, 7, 15414, 62, 5239, 25, 965, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 37227, 35561, 257, 845, 24354, 13216, 10223, 290, 21025, 2288, 1912, 11241, 1634, 13, 628, 220, 220, 220, 770, 5419, 329, 749, 475, 407, 477, 8950, 11, 815, 691, 307, 973, 611, 345, 836, 470, 760, 262, 3303, 1865, 11, 198, 220, 220, 220, 393, 611, 345, 423, 257, 1256, 286, 1366, 290, 460, 11728, 257, 1256, 286, 5072, 3081, 329, 262, 11060, 286, 2866, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 10283, 62, 1712, 62, 79, 16260, 2288, 7, 28956, 62, 6494, 62, 31499, 7, 15414, 62, 5239, 29720, 35312, 3419, 628, 198, 4299, 4781, 62, 6494, 62, 31499, 7, 15414, 62, 5239, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 8413, 5241, 477, 2420, 28543, 416, 9848, 28103, 526, 15931, 198, 220, 220, 220, 27711, 62, 260, 25636, 796, 302, 13, 5589, 576, 7203, 27, 15885, 30, 29, 4943, 198, 220, 220, 220, 1441, 302, 13, 7266, 7, 6494, 62, 260, 25636, 11, 366, 1600, 5128, 62, 5239, 8, 628, 198, 4299, 10283, 62, 1712, 62, 79, 16260, 2288, 7, 15414, 62, 5239, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 8413, 5241, 749, 21025, 2288, 2845, 329, 1948, 3435, 2641, 257, 1573, 13, 628, 220, 220, 220, 412, 13, 70, 1539, 366, 464, 3290, 526, 4329, 366, 464, 3290, 1, 475, 366, 52, 13, 50, 13, 32, 526, 4329, 366, 52, 13, 50, 13, 32, 1911, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 34534, 796, 685, 66, 329, 269, 287, 5128, 62, 5239, 60, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 354, 945, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 34534, 58, 72, 60, 287, 4731, 13, 79, 16260, 2288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14808, 354, 945, 58, 72, 60, 287, 366, 4458, 20924, 5, 28, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 657, 1279, 1312, 1279, 18896, 7, 354, 945, 8, 532, 352, 290, 407, 34534, 58, 72, 12, 16, 4083, 747, 10223, 3419, 290, 407, 34534, 58, 72, 10, 16, 4083, 747, 10223, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34534, 58, 72, 60, 796, 705, 705, 198, 220, 220, 220, 1441, 705, 4458, 22179, 7, 354, 945, 8, 198 ]
2.598253
458
# The Expat License # # Copyright (c) 2017, Shlomi Fish # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys from functools import reduce from six import print_ if sys.version_info > (3,): long = int xrange = range if __name__ == "__main__": main()
[ 2, 383, 5518, 265, 13789, 198, 2, 198, 2, 15069, 357, 66, 8, 2177, 11, 911, 75, 12753, 13388, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 198, 11748, 25064, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 6738, 2237, 1330, 3601, 62, 198, 198, 361, 25064, 13, 9641, 62, 10951, 1875, 357, 18, 11, 2599, 198, 220, 220, 220, 890, 796, 493, 198, 220, 220, 220, 2124, 9521, 796, 2837, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.589385
358
import requests from requests.structures import CaseInsensitiveDict import json BLOG_ID = "2352119848425464545" BASE_URL = "https://www.googleapis.com/blogger/v3/blogs/" if __name__ == "__main__": main()
[ 11748, 7007, 198, 6738, 7007, 13, 7249, 942, 1330, 8913, 20376, 18464, 35, 713, 198, 11748, 33918, 198, 198, 9148, 7730, 62, 2389, 796, 366, 22370, 2481, 22337, 2780, 32114, 3510, 2231, 2231, 1, 198, 33, 11159, 62, 21886, 796, 366, 5450, 1378, 2503, 13, 13297, 499, 271, 13, 785, 14, 14036, 1362, 14, 85, 18, 14, 49096, 30487, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.696203
79
import streamlit as st # web development import numpy as np # np mean, np random import pandas as pd # read csv, df manipulation import time # to simulate a real time data, time loop import plotly.express as px # interactive charts # read csv from a github repo df = pd.read_csv("https://raw.githubusercontent.com/Lexie88rus/bank-marketing-analysis/master/bank.csv") st.set_page_config( page_title = 'Real-Time Data Science Dashboard', page_icon = '✅', layout = 'wide' ) # dashboard title st.title("Real-Time / Live Data Science Dashboard") # top-level filters job_filter = st.selectbox("Select the Job", pd.unique(df['job'])) # creating a single-element container. placeholder = st.empty() # dataframe filter df = df[df['job']==job_filter] # near real-time / live feed simulation for seconds in range(200): #while True: df['age_new'] = df['age'] * np.random.choice(range(1,5)) df['balance_new'] = df['balance'] * np.random.choice(range(1,5)) # creating KPIs avg_age = np.mean(df['age_new']) count_married = int(df[(df["marital"]=='married')]['marital'].count() + np.random.choice(range(1,30))) balance = np.mean(df['balance_new']) with placeholder.container(): # create three columns kpi1, kpi2, kpi3 = st.columns(3) # fill in those three columns with respective metrics or KPIs kpi1.metric(label="Age ⏳", value=round(avg_age), delta= round(avg_age) - 10) kpi2.metric(label="Married Count 💍", value= int(count_married), delta= - 10 + count_married) kpi3.metric(label="A/C Balance $", value= f"$ {round(balance,2)} ", delta= - round(balance/count_married) * 100) # create two columns for charts fig_col1, fig_col2 = st.columns(2) with fig_col1: st.markdown("### First Chart") fig = px.density_heatmap(data_frame=df, y = 'age_new', x = 'marital') st.write(fig) with fig_col2: st.markdown("### Second Chart") fig2 = px.histogram(data_frame = df, x = 'age_new') st.write(fig2) st.markdown("### Detailed Data View") st.dataframe(df) time.sleep(1) #placeholder.empty()
[ 11748, 4269, 18250, 355, 336, 1303, 3992, 2478, 198, 11748, 299, 32152, 355, 45941, 1303, 45941, 1612, 11, 45941, 4738, 220, 198, 11748, 19798, 292, 355, 279, 67, 1303, 1100, 269, 21370, 11, 47764, 17512, 198, 11748, 640, 1303, 284, 29308, 257, 1103, 640, 1366, 11, 640, 9052, 220, 198, 11748, 7110, 306, 13, 42712, 355, 279, 87, 1303, 14333, 15907, 220, 628, 198, 2, 1100, 269, 21370, 422, 257, 33084, 29924, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7203, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 45117, 494, 3459, 14932, 14, 17796, 12, 10728, 278, 12, 20930, 14, 9866, 14, 17796, 13, 40664, 4943, 628, 198, 301, 13, 2617, 62, 7700, 62, 11250, 7, 198, 220, 220, 220, 2443, 62, 7839, 796, 705, 15633, 12, 7575, 6060, 5800, 16189, 3526, 3256, 198, 220, 220, 220, 2443, 62, 4749, 796, 705, 26486, 227, 3256, 198, 220, 220, 220, 12461, 796, 705, 4421, 6, 198, 8, 198, 198, 2, 30415, 3670, 198, 198, 301, 13, 7839, 7203, 15633, 12, 7575, 1220, 7547, 6060, 5800, 16189, 3526, 4943, 198, 198, 2, 1353, 12, 5715, 16628, 220, 198, 198, 21858, 62, 24455, 796, 336, 13, 19738, 3524, 7203, 17563, 262, 15768, 1600, 279, 67, 13, 34642, 7, 7568, 17816, 21858, 20520, 4008, 628, 198, 2, 4441, 257, 2060, 12, 30854, 9290, 13, 198, 5372, 13829, 796, 336, 13, 28920, 3419, 198, 198, 2, 1366, 14535, 8106, 220, 198, 198, 7568, 796, 47764, 58, 7568, 17816, 21858, 20520, 855, 21858, 62, 24455, 60, 198, 198, 2, 1474, 1103, 12, 2435, 1220, 2107, 3745, 18640, 220, 198, 198, 1640, 4201, 287, 2837, 7, 2167, 2599, 198, 2, 4514, 6407, 25, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 47764, 17816, 496, 62, 3605, 20520, 796, 47764, 17816, 496, 20520, 1635, 45941, 13, 25120, 13, 25541, 7, 9521, 7, 16, 11, 20, 4008, 198, 220, 220, 220, 47764, 17816, 20427, 62, 3605, 20520, 796, 47764, 17816, 20427, 20520, 1635, 45941, 13, 25120, 13, 25541, 7, 9521, 7, 16, 11, 20, 4008, 628, 220, 220, 220, 1303, 4441, 45814, 3792, 220, 198, 220, 220, 220, 42781, 62, 496, 796, 45941, 13, 32604, 7, 7568, 17816, 496, 62, 3605, 6, 12962, 220, 628, 220, 220, 220, 954, 62, 30526, 796, 493, 7, 7568, 58, 7, 7568, 14692, 3876, 1287, 8973, 855, 6, 30526, 11537, 7131, 6, 3876, 1287, 6, 4083, 9127, 3419, 1343, 45941, 13, 25120, 13, 25541, 7, 9521, 7, 16, 11, 1270, 22305, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5236, 796, 45941, 13, 32604, 7, 7568, 17816, 20427, 62, 3605, 6, 12962, 628, 220, 220, 220, 351, 46076, 13, 34924, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 1115, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 479, 14415, 16, 11, 479, 14415, 17, 11, 479, 14415, 18, 796, 336, 13, 28665, 82, 7, 18, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6070, 287, 883, 1115, 15180, 351, 11756, 20731, 393, 45814, 3792, 220, 198, 220, 220, 220, 220, 220, 220, 220, 479, 14415, 16, 13, 4164, 1173, 7, 18242, 2625, 23396, 2343, 237, 111, 1600, 1988, 28, 744, 7, 615, 70, 62, 496, 828, 25979, 28, 2835, 7, 615, 70, 62, 496, 8, 532, 838, 8, 198, 220, 220, 220, 220, 220, 220, 220, 479, 14415, 17, 13, 4164, 1173, 7, 18242, 2625, 7676, 2228, 2764, 12520, 240, 235, 1600, 1988, 28, 493, 7, 9127, 62, 30526, 828, 25979, 28, 532, 838, 1343, 954, 62, 30526, 8, 198, 220, 220, 220, 220, 220, 220, 220, 479, 14415, 18, 13, 4164, 1173, 7, 18242, 2625, 32, 14, 34, 22924, 27332, 120, 226, 1600, 1988, 28, 277, 1, 3, 1391, 744, 7, 20427, 11, 17, 38165, 33172, 25979, 28, 532, 2835, 7, 20427, 14, 9127, 62, 30526, 8, 1635, 1802, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 734, 15180, 329, 15907, 220, 628, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 4033, 16, 11, 2336, 62, 4033, 17, 796, 336, 13, 28665, 82, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2336, 62, 4033, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 13, 4102, 2902, 7203, 21017, 3274, 22086, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 279, 87, 13, 43337, 62, 25080, 8899, 7, 7890, 62, 14535, 28, 7568, 11, 331, 796, 705, 496, 62, 3605, 3256, 2124, 796, 705, 3876, 1287, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 13, 13564, 7, 5647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2336, 62, 4033, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 13, 4102, 2902, 7203, 21017, 5498, 22086, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 17, 796, 279, 87, 13, 10034, 21857, 7, 7890, 62, 14535, 796, 47764, 11, 2124, 796, 705, 496, 62, 3605, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 13, 13564, 7, 5647, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 336, 13, 4102, 2902, 7203, 21017, 4614, 6255, 6060, 3582, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 336, 13, 7890, 14535, 7, 7568, 8, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 220, 220, 220, 1303, 5372, 13829, 13, 28920, 3419, 628, 198 ]
2.415401
922
""" Earth moon sun """ import arcade SCREEN_WIDTH = 600 SCREEN_HEIGHT = 600 class MyGame(arcade.Window): """ Main application class. """ def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() self.earth_shape_list.draw() self.moon_shape_list.draw() def update(self, delta_time): """ Movement and game logic """ self.earth_angle += 1 self.moon_angle += 5 earth_center_x, earth_center_y = arcade.rotate_point( self.sun_x + self.earth_dist, self.sun_y, self.sun_x, self.sun_y, self.earth_angle) self.moon_shape_list.center_x = earth_center_x self.moon_shape_list.center_y = earth_center_y self.earth_shape_list.angle = self.earth_angle self.moon_shape_list.angle = self.moon_angle if __name__ == "__main__": main()
[ 37811, 198, 22840, 8824, 4252, 198, 37811, 198, 198, 11748, 27210, 198, 198, 6173, 2200, 1677, 62, 54, 2389, 4221, 796, 10053, 198, 6173, 2200, 1677, 62, 13909, 9947, 796, 10053, 628, 198, 4871, 2011, 8777, 7, 5605, 671, 13, 27703, 2599, 198, 220, 220, 220, 37227, 8774, 3586, 1398, 13, 37227, 628, 220, 220, 220, 825, 319, 62, 19334, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 46722, 262, 3159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 3141, 468, 284, 1645, 878, 356, 923, 8263, 198, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 9688, 62, 13287, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16442, 62, 43358, 62, 4868, 13, 19334, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22977, 62, 43358, 62, 4868, 13, 19334, 3419, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 25979, 62, 2435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15477, 290, 983, 9156, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16442, 62, 9248, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22977, 62, 9248, 15853, 642, 198, 220, 220, 220, 220, 220, 220, 220, 4534, 62, 16159, 62, 87, 11, 4534, 62, 16159, 62, 88, 796, 27210, 13, 10599, 378, 62, 4122, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19155, 62, 87, 1343, 2116, 13, 16442, 62, 17080, 11, 2116, 13, 19155, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19155, 62, 87, 11, 2116, 13, 19155, 62, 88, 11, 2116, 13, 16442, 62, 9248, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22977, 62, 43358, 62, 4868, 13, 16159, 62, 87, 796, 4534, 62, 16159, 62, 87, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22977, 62, 43358, 62, 4868, 13, 16159, 62, 88, 796, 4534, 62, 16159, 62, 88, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16442, 62, 43358, 62, 4868, 13, 9248, 796, 2116, 13, 16442, 62, 9248, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22977, 62, 43358, 62, 4868, 13, 9248, 796, 2116, 13, 22977, 62, 9248, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.259524
420
# %% [markdown] # 分析test.py文件 # %% import torch from model.model import parsingNet import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.io import read_image from PIL import Image import cv2 import scipy.special torch.backends.cudnn.benchmark = True cls_num_per_lane = 18 net = parsingNet(pretrained = False, backbone='18',cls_dim = (200+1,cls_num_per_lane,4), use_aux=False).cpu() modlePath = 'culane_18.pth' state_dict = torch.load(modlePath, map_location = 'cpu')['model'] # %% net.load_state_dict(state_dict, strict = False) net.eval() # %% img_transforms = transforms.Compose([ transforms.Resize((288, 800)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) cap = cv2.VideoCapture("20190408035014_020328AA.MP4") _,img = cap.read() img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img2 = Image.fromarray(img) x = img_transforms(img2) x = x.unsqueeze(0).cpu()+1 # %% img_path = "mytest.jpg" image = Image.open(img_path) img = img_transforms(image) img = img.cpu() img = img.unsqueeze(0).cpu()+1 with torch.no_grad(): out = net(img) # %% [markdown] # 下面参照demo.py处理输出数据 # %% out_j = out[0].data.cpu().numpy() # 下面让18行row ankor上下颠倒排列 out_j = out_j[:, ::-1, :] # softmax的参数axis=0,表示只对201个gridding做softmax运算 # out_j1[:-1, :, :]表示第一维度gridding数量减1,去掉最后一个 prob = scipy.special.softmax(out_j[:-1, :, :], axis=0) # %% import numpy as np idx = np.arange(200) + 1 idx1 = idx.reshape(-1, 1, 1) loc = np.sum(prob * idx1, axis=0) out_j = np.argmax(out_j, axis=0) loc[out_j == 200] = 0 out_j = loc # %% vis = cv2.imread(img_path) col_sample = np.linspace(0, 800 - 1, 200) col_sample_w = col_sample[1] - col_sample[0] img_w, img_h = 1640, 590 row_anchor = [121, 131, 141, 150, 160, 170, 180, 189, 199, 209, 219, 228, 238, 248, 258, 267, 277, 287] for i in range(out_j.shape[1]): if np.sum(out_j[:, i] != 0) > 2: for k in range(out_j.shape[0]): if out_j[k, i] > 0: ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 ) cv2.circle(vis,ppp,5,(0,255,0),-1) # %% cv2.imwrite('out4.jpg', vis)
[ 2, 43313, 685, 4102, 2902, 60, 198, 2, 10263, 230, 228, 162, 252, 238, 9288, 13, 9078, 23877, 229, 20015, 114, 198, 198, 2, 43313, 198, 11748, 28034, 198, 6738, 2746, 13, 19849, 1330, 32096, 7934, 198, 11748, 28034, 10178, 13, 7645, 23914, 355, 31408, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 6738, 28034, 10178, 13, 952, 1330, 1100, 62, 9060, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 269, 85, 17, 198, 11748, 629, 541, 88, 13, 20887, 198, 198, 13165, 354, 13, 1891, 2412, 13, 66, 463, 20471, 13, 26968, 4102, 796, 6407, 198, 565, 82, 62, 22510, 62, 525, 62, 33533, 796, 1248, 198, 3262, 796, 32096, 7934, 7, 5310, 13363, 796, 10352, 11, 32774, 11639, 1507, 3256, 565, 82, 62, 27740, 796, 357, 2167, 10, 16, 11, 565, 82, 62, 22510, 62, 525, 62, 33533, 11, 19, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 14644, 28, 25101, 737, 36166, 3419, 198, 198, 4666, 293, 15235, 796, 705, 3129, 1531, 62, 1507, 13, 79, 400, 6, 198, 5219, 62, 11600, 796, 28034, 13, 2220, 7, 4666, 293, 15235, 11, 3975, 62, 24886, 796, 705, 36166, 11537, 17816, 19849, 20520, 628, 198, 2, 43313, 198, 3262, 13, 2220, 62, 5219, 62, 11600, 7, 5219, 62, 11600, 11, 7646, 796, 10352, 8, 198, 3262, 13, 18206, 3419, 198, 198, 2, 43313, 198, 9600, 62, 7645, 23914, 796, 31408, 13, 7293, 577, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 4965, 1096, 19510, 25270, 11, 10460, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 31408, 13, 26447, 1096, 19510, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 828, 357, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 36911, 198, 220, 220, 220, 33761, 198, 198, 11128, 796, 269, 85, 17, 13, 10798, 49630, 7203, 1264, 3829, 1821, 1795, 2327, 28645, 62, 15, 22416, 2078, 3838, 13, 7378, 19, 4943, 198, 62, 11, 9600, 796, 1451, 13, 961, 3419, 198, 9600, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9600, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 36982, 8, 198, 9600, 17, 796, 7412, 13, 6738, 18747, 7, 9600, 8, 198, 87, 796, 33705, 62, 7645, 23914, 7, 9600, 17, 8, 198, 87, 796, 2124, 13, 13271, 421, 1453, 2736, 7, 15, 737, 36166, 3419, 10, 16, 198, 198, 2, 43313, 198, 198, 9600, 62, 6978, 796, 366, 1820, 9288, 13, 9479, 1, 198, 9060, 796, 7412, 13, 9654, 7, 9600, 62, 6978, 8, 198, 9600, 796, 33705, 62, 7645, 23914, 7, 9060, 8, 198, 9600, 796, 33705, 13, 36166, 3419, 198, 9600, 796, 33705, 13, 13271, 421, 1453, 2736, 7, 15, 737, 36166, 3419, 10, 16, 198, 4480, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 503, 796, 2010, 7, 9600, 8, 198, 198, 2, 43313, 685, 4102, 2902, 60, 198, 2, 220, 10310, 233, 165, 251, 95, 20998, 224, 163, 227, 100, 9536, 78, 13, 9078, 13783, 226, 49426, 228, 164, 122, 241, 49035, 118, 46763, 108, 162, 235, 106, 198, 198, 2, 43313, 198, 448, 62, 73, 796, 503, 58, 15, 4083, 7890, 13, 36166, 22446, 77, 32152, 3419, 198, 2, 220, 10310, 233, 165, 251, 95, 164, 106, 102, 1507, 26193, 234, 808, 16553, 273, 41468, 10310, 233, 165, 95, 254, 161, 222, 240, 162, 236, 240, 26344, 245, 198, 448, 62, 73, 796, 503, 62, 73, 58, 45299, 7904, 12, 16, 11, 1058, 60, 198, 2, 2705, 9806, 21410, 20998, 224, 46763, 108, 22704, 28, 15, 171, 120, 234, 26193, 101, 163, 97, 118, 20998, 103, 43380, 117, 1264, 10310, 103, 2164, 13494, 161, 223, 248, 4215, 9806, 32573, 238, 163, 106, 245, 198, 2, 503, 62, 73, 16, 58, 21912, 16, 11, 1058, 11, 1058, 60, 26193, 101, 163, 97, 118, 163, 105, 105, 31660, 163, 119, 112, 41753, 99, 2164, 13494, 46763, 108, 34932, 237, 49035, 237, 16, 171, 120, 234, 43889, 119, 162, 236, 231, 17312, 222, 28938, 236, 31660, 10310, 103, 198, 1676, 65, 796, 629, 541, 88, 13, 20887, 13, 4215, 9806, 7, 448, 62, 73, 58, 21912, 16, 11, 1058, 11, 1058, 4357, 16488, 28, 15, 8, 198, 198, 2, 43313, 198, 11748, 299, 32152, 355, 45941, 198, 312, 87, 796, 45941, 13, 283, 858, 7, 2167, 8, 1343, 352, 198, 312, 87, 16, 796, 4686, 87, 13, 3447, 1758, 32590, 16, 11, 352, 11, 352, 8, 198, 198, 17946, 796, 45941, 13, 16345, 7, 1676, 65, 1635, 4686, 87, 16, 11, 16488, 28, 15, 8, 198, 448, 62, 73, 796, 45941, 13, 853, 9806, 7, 448, 62, 73, 11, 16488, 28, 15, 8, 198, 17946, 58, 448, 62, 73, 6624, 939, 60, 796, 657, 198, 448, 62, 73, 796, 1179, 198, 198, 2, 43313, 198, 4703, 796, 269, 85, 17, 13, 320, 961, 7, 9600, 62, 6978, 8, 198, 4033, 62, 39873, 796, 45941, 13, 21602, 10223, 7, 15, 11, 10460, 532, 352, 11, 939, 8, 198, 4033, 62, 39873, 62, 86, 796, 951, 62, 39873, 58, 16, 60, 532, 951, 62, 39873, 58, 15, 60, 198, 9600, 62, 86, 11, 33705, 62, 71, 796, 1467, 1821, 11, 642, 3829, 198, 808, 62, 3702, 273, 796, 685, 19244, 11, 23134, 11, 25500, 11, 6640, 11, 13454, 11, 16677, 11, 11546, 11, 27230, 11, 1594, 11, 28815, 11, 30453, 11, 29041, 11, 32544, 11, 32996, 11, 37528, 11, 37364, 11, 38703, 11, 38721, 60, 198, 1640, 1312, 287, 2837, 7, 448, 62, 73, 13, 43358, 58, 16, 60, 2599, 198, 220, 220, 220, 611, 45941, 13, 16345, 7, 448, 62, 73, 58, 45299, 1312, 60, 14512, 657, 8, 1875, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 448, 62, 73, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 503, 62, 73, 58, 74, 11, 1312, 60, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 381, 796, 357, 600, 7, 448, 62, 73, 58, 74, 11, 1312, 60, 1635, 951, 62, 39873, 62, 86, 1635, 33705, 62, 86, 1220, 10460, 8, 532, 352, 11, 493, 7, 9600, 62, 71, 1635, 357, 808, 62, 3702, 273, 58, 565, 82, 62, 22510, 62, 525, 62, 33533, 12, 16, 12, 74, 60, 14, 25270, 4008, 532, 352, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 4703, 11, 381, 79, 11, 20, 11, 7, 15, 11, 13381, 11, 15, 828, 12, 16, 8, 198, 198, 2, 43313, 198, 33967, 17, 13, 320, 13564, 10786, 448, 19, 13, 9479, 3256, 1490, 8, 628, 628 ]
1.948829
1,153
# -*- coding: utf-8 -*- """ Django application to add 'django-crispy-forms' layout objects for Materialize """ __version__ = '0.2'
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 35, 73, 14208, 3586, 284, 751, 705, 28241, 14208, 12, 66, 2442, 9078, 12, 23914, 6, 12461, 5563, 329, 14633, 1096, 198, 37811, 198, 834, 9641, 834, 796, 705, 15, 13, 17, 6, 198 ]
2.62
50
import json import multiprocessing as mp import random import threading import time import numpy as np from threading import Thread, Lock from common.constants import * from common.enums.climb_state import ClimbState from common.enums.collision_control_methods import CCMethods from common.enums.direction import Direction from common.enums.layout import Layouts from common.enums.layout_block import LayoutBlock from common.enums.player import Player from common.enums.server_message import ServerMessage from common.layout_builder import get_level_layout from server.donkey_kong_server import Server from server.models.collision.pipe_message import Message from server.models.game_objects.barrel import Barrel from server.models.game_objects.coin import Coin from server.models.game_objects.gorilla import Gorilla from server.models.game_objects.princess import Princess from server.models.networking.client import Client class Match: """ Starts object threads """ """ Sets the scene layout, notifies players to load the scene """ """ Sends a message to all players in the match """ """ Sends a message to the opponent """ """ Adds a player to the match """ """ Removes the player from the match and ends the match if favor of his opponent """ """ Checks if a player can move in the desired direction. """ """ Sets the layout of the current level """ """ Resets player lives """ """ Checks if a player should fall. Notifies both players to move the avatar of the falling player down. """ """ Checks if both players are dead """ """ Handles barrel movement, removing and collision with players """ """ Handles collision with princess, starts next level upon collision """ """ Handles collision with gorilla """ """ Handles gorilla movement and barrel throwing """ """ Handles coin drawing and removal """ """ Sets coin position """ """ Sends coin effect messages """ """ Notifies both players to move the gorilla """ """ Notifies both players to draw a barrel """ """ Thread safe check if threads should terminate """ """ Checks if both players are dead """ """ Notifies both players to move the player avatar left """ """ Notifies both players to move the player avatar right """ """ Notifies both players to move the player avatar up """ """ Notifies both players to move the player avatar down """ """ Stops running threads, closes all pipes to collision control and notifies players that the match ended """ """ Creates a pipe between collision control and this match """ """ Sets starting positions for players, princess, gorilla and gorilla movement boundaries """ """ Sets the current layout of the scene """ """ Resets player positions to their starting ones fot that scene """ """ Thread safe deleting of all barrels """
[ 11748, 33918, 198, 11748, 18540, 305, 919, 278, 355, 29034, 198, 11748, 4738, 198, 11748, 4704, 278, 198, 11748, 640, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 4704, 278, 1330, 14122, 11, 13656, 198, 6738, 2219, 13, 9979, 1187, 1330, 1635, 198, 6738, 2219, 13, 268, 5700, 13, 565, 14107, 62, 5219, 1330, 1012, 14107, 9012, 198, 6738, 2219, 13, 268, 5700, 13, 26000, 1166, 62, 13716, 62, 24396, 82, 1330, 12624, 46202, 198, 6738, 2219, 13, 268, 5700, 13, 37295, 1330, 41837, 198, 6738, 2219, 13, 268, 5700, 13, 39786, 1330, 18881, 5269, 198, 6738, 2219, 13, 268, 5700, 13, 39786, 62, 9967, 1330, 47639, 12235, 198, 6738, 2219, 13, 268, 5700, 13, 7829, 1330, 7853, 198, 6738, 2219, 13, 268, 5700, 13, 15388, 62, 20500, 1330, 9652, 12837, 198, 6738, 2219, 13, 39786, 62, 38272, 1330, 651, 62, 5715, 62, 39786, 198, 6738, 4382, 13, 9099, 2539, 62, 74, 506, 62, 15388, 1330, 9652, 198, 6738, 4382, 13, 27530, 13, 26000, 1166, 13, 34360, 62, 20500, 1330, 16000, 198, 6738, 4382, 13, 27530, 13, 6057, 62, 48205, 13, 5657, 2411, 1330, 29920, 198, 6738, 4382, 13, 27530, 13, 6057, 62, 48205, 13, 3630, 1330, 16312, 198, 6738, 4382, 13, 27530, 13, 6057, 62, 48205, 13, 7053, 5049, 1330, 19097, 5049, 198, 6738, 4382, 13, 27530, 13, 6057, 62, 48205, 13, 1050, 259, 919, 1330, 8449, 198, 6738, 4382, 13, 27530, 13, 3262, 16090, 13, 16366, 1330, 20985, 628, 198, 4871, 13225, 25, 628, 198, 220, 220, 220, 37227, 50181, 2134, 14390, 37227, 628, 220, 220, 220, 37227, 21394, 262, 3715, 12461, 11, 407, 6945, 1938, 284, 3440, 262, 3715, 37227, 628, 220, 220, 220, 37227, 311, 2412, 257, 3275, 284, 477, 1938, 287, 262, 2872, 37227, 628, 220, 220, 220, 37227, 311, 2412, 257, 3275, 284, 262, 6125, 37227, 628, 220, 220, 220, 37227, 34333, 257, 2137, 284, 262, 2872, 37227, 628, 220, 220, 220, 37227, 3982, 5241, 262, 2137, 422, 262, 2872, 290, 5645, 262, 2872, 611, 2661, 286, 465, 6125, 37227, 628, 220, 220, 220, 37227, 47719, 611, 257, 2137, 460, 1445, 287, 262, 10348, 4571, 13, 37227, 628, 220, 220, 220, 37227, 21394, 262, 12461, 286, 262, 1459, 1241, 37227, 628, 220, 220, 220, 37227, 1874, 1039, 2137, 3160, 37227, 628, 220, 220, 220, 37227, 47719, 611, 257, 2137, 815, 2121, 13, 1892, 6945, 1111, 1938, 284, 1445, 262, 30919, 286, 262, 7463, 2137, 866, 13, 37227, 628, 220, 220, 220, 37227, 47719, 611, 1111, 1938, 389, 2636, 37227, 628, 220, 220, 220, 37227, 7157, 829, 9036, 3356, 11, 10829, 290, 17661, 351, 1938, 37227, 628, 220, 220, 220, 37227, 7157, 829, 17661, 351, 21752, 11, 4940, 1306, 1241, 2402, 17661, 37227, 628, 220, 220, 220, 37227, 7157, 829, 17661, 351, 45314, 37227, 628, 220, 220, 220, 37227, 7157, 829, 45314, 3356, 290, 9036, 9644, 37227, 628, 220, 220, 220, 37227, 7157, 829, 10752, 8263, 290, 9934, 37227, 628, 220, 220, 220, 37227, 21394, 10752, 2292, 37227, 628, 220, 220, 220, 37227, 311, 2412, 10752, 1245, 6218, 37227, 628, 220, 220, 220, 37227, 1892, 6945, 1111, 1938, 284, 1445, 262, 45314, 37227, 628, 220, 220, 220, 37227, 1892, 6945, 1111, 1938, 284, 3197, 257, 9036, 37227, 628, 220, 220, 220, 37227, 14122, 3338, 2198, 611, 14390, 815, 23654, 37227, 628, 220, 220, 220, 37227, 47719, 611, 1111, 1938, 389, 2636, 37227, 628, 220, 220, 220, 37227, 1892, 6945, 1111, 1938, 284, 1445, 262, 2137, 30919, 1364, 37227, 628, 220, 220, 220, 37227, 1892, 6945, 1111, 1938, 284, 1445, 262, 2137, 30919, 826, 37227, 628, 220, 220, 220, 37227, 1892, 6945, 1111, 1938, 284, 1445, 262, 2137, 30919, 510, 37227, 628, 220, 220, 220, 37227, 1892, 6945, 1111, 1938, 284, 1445, 262, 2137, 30919, 866, 37227, 628, 220, 220, 220, 37227, 520, 2840, 2491, 14390, 11, 20612, 477, 19860, 284, 17661, 1630, 290, 407, 6945, 1938, 326, 262, 2872, 4444, 37227, 628, 220, 220, 220, 37227, 7921, 274, 257, 12656, 1022, 17661, 1630, 290, 428, 2872, 37227, 628, 220, 220, 220, 37227, 21394, 3599, 6116, 329, 1938, 11, 21752, 11, 45314, 290, 45314, 3356, 13215, 37227, 628, 220, 220, 220, 37227, 21394, 262, 1459, 12461, 286, 262, 3715, 37227, 628, 220, 220, 220, 37227, 1874, 1039, 2137, 6116, 284, 511, 3599, 3392, 277, 313, 326, 3715, 37227, 628, 220, 220, 220, 37227, 14122, 3338, 34817, 286, 477, 17907, 37227, 198 ]
3.991724
725
from pathlib import Path import json import pytest import requests_mock import shapely # pylint: disable=unused-import,wrong-import-order from .context import Workflow from .fixtures import auth_mock, auth_live, workflow_mock, workflow_live, job_mock import up42 json_workflow_tasks = { "data": [ { "id": "c0d04ec3-98d7-4183-902f-5bcb2a176d89", "name": "sobloo-s2-l1c-aoiclipped:1", "block": { "name": "sobloo-s2-l1c-aoiclipped", "parameters": { "nodata": {"type": "number",}, "time": { "type": "dateRange", "default": "2018-01-01T00:00:00+00:00/2020-12-31T23:59:59+00:00", }, }, }, }, { "id": "af626c54-156e-4f13-a743-55efd27de533", "name": "tiling:1", "block": { "name": "tiling", "parameters": { "nodata": { "type": "number", "default": None, "required": False, "description": "Value representing..", }, "tile_width": { "type": "number", "default": 768, "required": True, "description": "Width of a tile in pixels", }, }, }, }, ], "error": {}, } @pytest.mark.live @pytest.mark.live @pytest.mark.skip # TODO: Resolve @pytest.mark.live @pytest.mark.live @pytest.mark.live @pytest.mark.live @pytest.mark.skip @pytest.mark.live # TODO: Resolve # def test_update_name(workflow_mock, caplog): # new_name = "new_workflow_name" # with requests_mock.Mocker() as m: # url_update_name = ( # f"{workflow_mock.auth._endpoint()}/projects/{workflow_mock.auth.project_id}/workflows/" # f"{workflow_mock.workflow_id}" # ) # json_new_properties = {"data": {}, "error": {}} # m.post( # url=url_update_name, # json=json_new_properties, # ) # # workflow_mock.update_name(name=new_name) # assert f"Updated workflow name: {new_name}" in caplog.text @pytest.mark.skip # TODO: Resolve
[ 6738, 3108, 8019, 1330, 10644, 198, 11748, 33918, 198, 11748, 12972, 9288, 198, 11748, 7007, 62, 76, 735, 198, 11748, 5485, 306, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 11748, 11, 36460, 12, 11748, 12, 2875, 198, 6738, 764, 22866, 1330, 5521, 11125, 198, 6738, 764, 69, 25506, 1330, 6284, 62, 76, 735, 11, 6284, 62, 12583, 11, 30798, 62, 76, 735, 11, 30798, 62, 12583, 11, 1693, 62, 76, 735, 198, 11748, 510, 3682, 628, 198, 17752, 62, 1818, 11125, 62, 83, 6791, 796, 1391, 198, 220, 220, 220, 366, 7890, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 366, 66, 15, 67, 3023, 721, 18, 12, 4089, 67, 22, 12, 19, 24839, 12, 24, 2999, 69, 12, 20, 15630, 65, 17, 64, 24096, 67, 4531, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 568, 2436, 2238, 12, 82, 17, 12, 75, 16, 66, 12, 5488, 291, 75, 3949, 25, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 568, 2436, 2238, 12, 82, 17, 12, 75, 16, 66, 12, 5488, 291, 75, 3949, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17143, 7307, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 77, 375, 1045, 1298, 19779, 4906, 1298, 366, 17618, 1600, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2435, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 4475, 17257, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 366, 7908, 12, 486, 12, 486, 51, 405, 25, 405, 25, 405, 10, 405, 25, 405, 14, 42334, 12, 1065, 12, 3132, 51, 1954, 25, 3270, 25, 3270, 10, 405, 25, 405, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 366, 1878, 45191, 66, 4051, 12, 21599, 68, 12, 19, 69, 1485, 12, 64, 22, 3559, 12, 2816, 891, 67, 1983, 2934, 44994, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 83, 4386, 25, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 83, 4386, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17143, 7307, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 77, 375, 1045, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 17618, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 11395, 10200, 492, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40927, 62, 10394, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 17618, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 46720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 30916, 286, 257, 17763, 287, 17848, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 366, 18224, 1298, 1391, 5512, 198, 92, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 12583, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 12583, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 198, 2, 16926, 46, 25, 1874, 6442, 628, 198, 31, 9078, 9288, 13, 4102, 13, 12583, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 12583, 628, 628, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 12583, 628, 198, 31, 9078, 9288, 13, 4102, 13, 12583, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 198, 31, 9078, 9288, 13, 4102, 13, 12583, 628, 198, 2, 16926, 46, 25, 1874, 6442, 198, 2, 825, 1332, 62, 19119, 62, 3672, 7, 1818, 11125, 62, 76, 735, 11, 1275, 489, 519, 2599, 198, 2, 220, 220, 220, 220, 649, 62, 3672, 796, 366, 3605, 62, 1818, 11125, 62, 3672, 1, 198, 2, 220, 220, 220, 220, 351, 7007, 62, 76, 735, 13, 44, 12721, 3419, 355, 285, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 19119, 62, 3672, 796, 357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 1818, 11125, 62, 76, 735, 13, 18439, 13557, 437, 4122, 3419, 92, 14, 42068, 14, 90, 1818, 11125, 62, 76, 735, 13, 18439, 13, 16302, 62, 312, 92, 14, 1818, 44041, 30487, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 1818, 11125, 62, 76, 735, 13, 1818, 11125, 62, 312, 36786, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 3605, 62, 48310, 796, 19779, 7890, 1298, 1391, 5512, 366, 18224, 1298, 1391, 11709, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 7353, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 62, 19119, 62, 3672, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 28, 17752, 62, 3605, 62, 48310, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 76, 735, 13, 19119, 62, 3672, 7, 3672, 28, 3605, 62, 3672, 8, 198, 2, 220, 220, 220, 220, 6818, 277, 1, 17354, 30798, 1438, 25, 1391, 3605, 62, 3672, 36786, 287, 1275, 489, 519, 13, 5239, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 198, 2, 16926, 46, 25, 1874, 6442, 198 ]
1.714589
1,412
# -*- coding: utf-8 -*- CUSTOMER = '000' SPANISH = '001' ENGLISH = '002' CATALAN = '003' FRENCH = '004' GERMAN = '005' DUTCH = '006' ITALIAN = '007' SWEDISH = '008' PORTUGUESE = '009' VALENCIAN = '010' POLISH = '011' GALICIAN = '012' EUSKERA = '013' LANGUAGES = [ CUSTOMER, SPANISH, ENGLISH, CATALAN, FRENCH, GERMAN, DUTCH, ITALIAN, SWEDISH, PORTUGUESE, VALENCIAN, POLISH, GALICIAN, EUSKERA ]
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 34, 7759, 2662, 1137, 796, 705, 830, 6, 198, 4303, 1565, 18422, 796, 705, 8298, 6, 198, 1677, 8763, 18422, 796, 705, 21601, 6, 198, 34, 1404, 1847, 1565, 796, 705, 11245, 6, 198, 10913, 1677, 3398, 796, 705, 22914, 6, 198, 30373, 10725, 796, 705, 22544, 6, 198, 35, 3843, 3398, 796, 705, 28041, 6, 198, 40579, 16868, 796, 705, 25816, 6, 198, 17887, 1961, 18422, 796, 705, 25257, 6, 198, 15490, 7340, 52, 33635, 796, 705, 28694, 6, 198, 23428, 24181, 16868, 796, 705, 20943, 6, 198, 45472, 18422, 796, 705, 28555, 6, 198, 38, 1847, 2149, 16868, 796, 705, 30206, 6, 198, 36, 2937, 42839, 32, 796, 705, 30273, 6, 198, 198, 43, 15567, 52, 25552, 796, 685, 198, 220, 220, 220, 327, 7759, 2662, 1137, 11, 198, 220, 220, 220, 6226, 1565, 18422, 11, 198, 220, 220, 220, 12964, 8763, 18422, 11, 198, 220, 220, 220, 38348, 1847, 1565, 11, 198, 220, 220, 220, 8782, 1677, 3398, 11, 198, 220, 220, 220, 44186, 10725, 11, 198, 220, 220, 220, 360, 3843, 3398, 11, 198, 220, 220, 220, 7283, 1847, 16868, 11, 198, 220, 220, 220, 12672, 1961, 18422, 11, 198, 220, 220, 220, 350, 9863, 7340, 52, 33635, 11, 198, 220, 220, 220, 26173, 24181, 16868, 11, 198, 220, 220, 220, 20634, 18422, 11, 198, 220, 220, 220, 402, 1847, 2149, 16868, 11, 198, 220, 220, 220, 412, 2937, 42839, 32, 198, 60, 198 ]
1.782609
253
import os import unittest from vipps import VippsEcomApi, VippsSignupApi import env VIPPS_CLIENT_ID = env.VIPPS_CLIENT_ID VIPPS_CLIENT_SECRET = env.VIPPS_CLIENT_SECRET VIPPS_SUBSCRIPTION_KEY = env.VIPPS_SUBSCRIPTION_KEY VIPPS_MERCHANT_SERIAL_NUMBER = env.VIPPS_MERCHANT_SERIAL_NUMBER VIPPS_SERVER = env.VIPPS_SERVER VIPPS_CALLBACK_PREFIX = env.VIPPS_CALLBACK_PREFIX VIPPS_FALLBACK_URL = env.VIPPS_FALLBACK_URL
[ 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 410, 3974, 82, 1330, 569, 3974, 82, 36, 785, 32, 14415, 11, 569, 3974, 82, 11712, 929, 32, 14415, 198, 198, 11748, 17365, 628, 198, 53, 4061, 3705, 62, 5097, 28495, 62, 2389, 796, 17365, 13, 53, 4061, 3705, 62, 5097, 28495, 62, 2389, 198, 53, 4061, 3705, 62, 5097, 28495, 62, 23683, 26087, 796, 17365, 13, 53, 4061, 3705, 62, 5097, 28495, 62, 23683, 26087, 198, 53, 4061, 3705, 62, 12564, 4462, 40165, 62, 20373, 796, 17365, 13, 53, 4061, 3705, 62, 12564, 4462, 40165, 62, 20373, 198, 53, 4061, 3705, 62, 29296, 3398, 8643, 62, 35009, 12576, 62, 41359, 13246, 796, 17365, 13, 53, 4061, 3705, 62, 29296, 3398, 8643, 62, 35009, 12576, 62, 41359, 13246, 198, 53, 4061, 3705, 62, 35009, 5959, 796, 17365, 13, 53, 4061, 3705, 62, 35009, 5959, 198, 53, 4061, 3705, 62, 34, 7036, 31098, 62, 47, 31688, 10426, 796, 17365, 13, 53, 4061, 3705, 62, 34, 7036, 31098, 62, 47, 31688, 10426, 198, 53, 4061, 3705, 62, 37, 7036, 31098, 62, 21886, 796, 17365, 13, 53, 4061, 3705, 62, 37, 7036, 31098, 62, 21886, 628 ]
2.150259
193
# -*- coding: utf-8 -*-
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628 ]
1.785714
14
import cv2 as cv import numpy as np import pandas as pd import time import os start_time = time.time() lengi = 0 df = pd.DataFrame(columns=['document_id', 'set_id', 'student_id', 'answer_keys']) xForQuads = [(344, 552), (620, 828), (897, 1106), (1174, 1382)] yForQuads = [(897, 1115), (1115, 1333), (1333, 1550), (1550, 1767), (1767, 1984)] setCords = [480, 840, 856, 944] studentCords = [480, 840, 970, 1378] thresholdForWhitePixels = 0.195 for entry in os.scandir('/home/manish/Desktop/JhunAlignedWithBlob'): if entry.path.endswith('.jpg') and entry.is_file(): src = entry.path start = src.find('image')+5 end = src.find('.jpg') docId = src[start:end] imageOriginal = cv.imread(src, -1) imageThresh = image_thresholding(imageOriginal) imageSet = imageThresh[setCords[0]:setCords[1], setCords[2]:setCords[3]] imageStudent = imageThresh[studentCords[0]:studentCords[1], studentCords[2]:studentCords[3]] data = [docId, getIds(imageSet, 2), getIds(imageStudent, 9), getAnswerKeys(imageThresh)] df.loc[len(df.index)] = data lengi += 1 print(f'Done processing image {lengi}: {docId}') # if lengi == 1: # break # break # break # print(df.head()) df['set_id'] = df['set_id'].apply('="{}"'.format) df['student_id'] = df['student_id'].apply('="{}"'.format) df['answer_keys'] = df['answer_keys'].apply('="{}"'.format) df.to_csv('/home/manish/Desktop/bubble_processed3_V3.csv', index=False) print(f'Total time taken: {(time.time() - start_time) / float(60)} minutes.')
[ 11748, 269, 85, 17, 355, 269, 85, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 640, 198, 11748, 28686, 198, 198, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 198, 75, 1516, 72, 796, 657, 198, 7568, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 28, 17816, 22897, 62, 312, 3256, 705, 2617, 62, 312, 3256, 705, 50139, 62, 312, 3256, 705, 41484, 62, 13083, 6, 12962, 198, 87, 1890, 4507, 5643, 796, 47527, 33535, 11, 642, 4309, 828, 357, 38850, 11, 807, 2078, 828, 357, 4531, 22, 11, 9796, 21, 828, 357, 1157, 4524, 11, 1511, 6469, 15437, 198, 88, 1890, 4507, 5643, 796, 47527, 4531, 22, 11, 13374, 20, 828, 357, 1157, 1314, 11, 1511, 2091, 828, 357, 1485, 2091, 11, 1315, 1120, 828, 357, 1314, 1120, 11, 1596, 3134, 828, 357, 1558, 3134, 11, 12844, 15437, 198, 2617, 34, 3669, 796, 685, 22148, 11, 48777, 11, 807, 3980, 11, 860, 2598, 60, 198, 50139, 34, 3669, 796, 685, 22148, 11, 48777, 11, 40463, 11, 1511, 3695, 60, 198, 198, 400, 10126, 1890, 12256, 47, 14810, 796, 657, 13, 22186, 198, 198, 1640, 5726, 287, 28686, 13, 1416, 392, 343, 10786, 14, 11195, 14, 805, 680, 14, 36881, 14, 41, 20088, 2348, 3916, 3152, 3629, 672, 6, 2599, 198, 220, 220, 220, 611, 5726, 13, 6978, 13, 437, 2032, 342, 7, 4458, 9479, 11537, 290, 5726, 13, 271, 62, 7753, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 5726, 13, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 12351, 13, 19796, 10786, 9060, 11537, 10, 20, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 12351, 13, 19796, 7, 4458, 9479, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 7390, 796, 12351, 58, 9688, 25, 437, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 20556, 796, 269, 85, 13, 320, 961, 7, 10677, 11, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 817, 3447, 796, 2939, 62, 400, 10126, 278, 7, 9060, 20556, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 7248, 796, 2939, 817, 3447, 58, 2617, 34, 3669, 58, 15, 5974, 2617, 34, 3669, 58, 16, 4357, 900, 34, 3669, 58, 17, 5974, 2617, 34, 3669, 58, 18, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 38778, 796, 2939, 817, 3447, 58, 50139, 34, 3669, 58, 15, 5974, 50139, 34, 3669, 58, 16, 4357, 3710, 34, 3669, 58, 17, 5974, 50139, 34, 3669, 58, 18, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 685, 15390, 7390, 11, 651, 7390, 82, 7, 9060, 7248, 11, 362, 828, 651, 7390, 82, 7, 9060, 38778, 11, 860, 828, 651, 33706, 40729, 7, 9060, 817, 3447, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 11925, 7, 7568, 13, 9630, 15437, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 40038, 72, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 45677, 7587, 2939, 1391, 75, 1516, 72, 38362, 1391, 15390, 7390, 92, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 40038, 72, 6624, 352, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1303, 2270, 198, 198, 2, 3601, 7, 7568, 13, 2256, 28955, 198, 7568, 17816, 2617, 62, 312, 20520, 796, 47764, 17816, 2617, 62, 312, 6, 4083, 39014, 10786, 2625, 90, 36786, 4458, 18982, 8, 198, 7568, 17816, 50139, 62, 312, 20520, 796, 47764, 17816, 50139, 62, 312, 6, 4083, 39014, 10786, 2625, 90, 36786, 4458, 18982, 8, 198, 7568, 17816, 41484, 62, 13083, 20520, 796, 47764, 17816, 41484, 62, 13083, 6, 4083, 39014, 10786, 2625, 90, 36786, 4458, 18982, 8, 198, 7568, 13, 1462, 62, 40664, 10786, 14, 11195, 14, 805, 680, 14, 36881, 14, 46176, 903, 62, 14681, 276, 18, 62, 53, 18, 13, 40664, 3256, 6376, 28, 25101, 8, 198, 4798, 7, 69, 6, 14957, 640, 2077, 25, 1391, 7, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 8, 1220, 12178, 7, 1899, 38165, 2431, 2637, 8 ]
2.259207
706
import skimage import tqdm import numpy as np from imageProcessing import *
[ 11748, 1341, 9060, 201, 198, 11748, 256, 80, 36020, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 2939, 18709, 278, 1330, 1635, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201 ]
2.542857
35
# Import the necessary packages and modules import matplotlib.pyplot as plt import numpy as np f = open('history.txt', 'r') for line in f: if line.startswith('='): tokens = line.split('\t') # Prepare the data x = np.linspace(0, 10, 100) # Plot the data plt.plot(x, x, label='linear') # Add a legend plt.legend() # Show the plot plt.show()
[ 2, 17267, 262, 3306, 10392, 290, 13103, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 628, 198, 69, 796, 1280, 10786, 23569, 13, 14116, 3256, 705, 81, 11537, 198, 198, 1640, 1627, 287, 277, 25, 198, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 10786, 11639, 2599, 628, 220, 220, 220, 16326, 796, 1627, 13, 35312, 10786, 59, 83, 11537, 198, 198, 2, 43426, 262, 1366, 198, 87, 796, 45941, 13, 21602, 10223, 7, 15, 11, 838, 11, 1802, 8, 198, 198, 2, 28114, 262, 1366, 198, 489, 83, 13, 29487, 7, 87, 11, 2124, 11, 6167, 11639, 29127, 11537, 198, 198, 2, 3060, 257, 8177, 198, 489, 83, 13, 1455, 437, 3419, 198, 198, 2, 5438, 262, 7110, 198, 489, 83, 13, 12860, 3419 ]
2.622222
135
SLAP_TEMPLATES = ( "{user1} {hits} {user2} with a {item}.", "{user1} {hits} {user2} in the face with a {item}.", "{user1} {hits} {user2} around a bit with a {item}.", "{user1} {throws} a {item} at {user2}.", "{user1} grabs a {item} and {throws} it at {user2}'s face.", "{user1} launches a {item} in {user2}'s general direction.", "{user1} starts slapping {user2} silly with a {item}.", "{user1} pins {user2} down and repeatedly {hits} them with a {item}.", "{user1} grabs up a {item} and {hits} {user2} with it.", "{user1} ties {user2} to a chair and {throws} a {item} at them.", "{user1} gave a friendly push to help {user2} learn to swim in lava.", "{user1} {hits} {user2} with a diamond sword.", "{user1} used Splash! But nothing happened...", ) SLAP_SELF = ( "{user1} {hits} themselves with a {item} in their confusion!", "{user1} {hits} themselves in the face with a {item}... what an idiot.", "{user1} {hits} themselves around a bit with a {item}... but why?", "{user1} hits their head against a wall... for some reason.", "{user1} launches themselves into space without a spacesuit... because they thought there was oxygen.", "{user1} {hits} themselves with a {item} after looking at Windows 8's UI. They lost all hope of humanity.", "{user1} is confused. They hurt themselves in their confusion.", ) SLAP_BASIC = ( "{user1} was squished too much.", "{user1} fell from a high place.", "{user1} suffocated in a wall.", "{user1} was struck by lightning.", "{user1} was squished by a falling anvil.", ) ITEMS = ( "cast iron skillet", "large trout", "baseball bat", "cricket bat", "wooden cane", "dildo", "printer", "shovel", "CRT monitor", "physics textbook", "toaster", "portrait of Richard Stallman", "television", "five ton truck", "roll of duct tape", "book", "laptop", "old television", "sack of rocks", "rainbow trout", "rubber chicken", "spiked bat", "fire extinguisher", "heavy rock", "block of dirt", "beehive", "piece of rotten meat", "bear", "ton of bricks", ) THROW = ("throws", "flings", "chucks", "hurls") HIT = ("hits", "whacks", "slaps", "smacks", "bashes") RUN_STRINGS = ( "Where do you think you're going?", "Huh? what? did they get away?", "ZZzzZZzz... Huh? what? oh, just them again, nevermind.", "Get back here!", "Not so fast...", "Look out for the wall!", "Don't leave me alone with them!!", "You run, you die.", "Jokes on you, I'm everywhere", "You're gonna regret that...", "You could also try /kickme, I hear that's fun.", "Go bother someone else, no-one here cares.", "You can run, but you can't hide.", "Is that all you've got?", "I'm behind you...", "You've got company!", "We can do this the easy way, or the hard way.", "You just don't get it, do you?", "Yeah, you better run!", "Please, remind me how much I care?", "I'd run faster if I were you.", "That's definitely the droid we're looking for.", "May the odds be ever in your favour.", "Famous last words.", "And they disappeared forever, never to be seen again.", '"Oh, look at me! I\'m so cool, I can run from a bot!" - this person', "Yeah yeah, just tap /kickme already.", "Here, take this ring and head to Mordor while you're at it.", "Legend has it, they're still running...", "Unlike Harry Potter, your parents can't protect you from me.", "Fear leads to anger. Anger leads to hate. Hate leads to suffering. If you keep running in fear, you might " "be the next Vader.", "Multiple calculations later, I have decided my interest in your shenanigans is exactly 0.", "Legend has it, they're still running.", "Keep it up, not sure we want you here anyway.", "You're a wiza- Oh. Wait. You're not Harry, keep moving.", "NO RUNNING IN THE HALLWAYS!", "Hasta la vista, baby.", "Who let the dogs out?", "It's funny, because no one cares.", "Ah, what a waste. I liked that one.", "Frankly, my dear, I don't give a damn.", "My milkshake brings all the boys to yard... So run faster!", "You can't HANDLE the truth!", "A long time ago, in a galaxy far far away... Someone would've cared about that. Not anymore though.", "Hey, look at them! They're running from the inevitable banhammer... Cute.", "Han shot first. So will I.", "What are you running after, a white rabbit?", "As The Doctor would say... RUN!", )
[ 8634, 2969, 62, 51, 3620, 6489, 29462, 796, 357, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 71, 896, 92, 1391, 7220, 17, 92, 351, 257, 1391, 9186, 92, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 71, 896, 92, 1391, 7220, 17, 92, 287, 262, 1986, 351, 257, 1391, 9186, 92, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 71, 896, 92, 1391, 7220, 17, 92, 1088, 257, 1643, 351, 257, 1391, 9186, 92, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 400, 8516, 92, 257, 1391, 9186, 92, 379, 1391, 7220, 17, 92, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 22378, 257, 1391, 9186, 92, 290, 1391, 400, 8516, 92, 340, 379, 1391, 7220, 17, 92, 6, 82, 1986, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 18617, 257, 1391, 9186, 92, 287, 1391, 7220, 17, 92, 6, 82, 2276, 4571, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 4940, 48966, 1391, 7220, 17, 92, 14397, 351, 257, 1391, 9186, 92, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 20567, 1391, 7220, 17, 92, 866, 290, 7830, 1391, 71, 896, 92, 606, 351, 257, 1391, 9186, 92, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 22378, 510, 257, 1391, 9186, 92, 290, 1391, 71, 896, 92, 1391, 7220, 17, 92, 351, 340, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 8470, 1391, 7220, 17, 92, 284, 257, 5118, 290, 1391, 400, 8516, 92, 257, 1391, 9186, 92, 379, 606, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 2921, 257, 8030, 4574, 284, 1037, 1391, 7220, 17, 92, 2193, 284, 9422, 287, 28856, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 71, 896, 92, 1391, 7220, 17, 92, 351, 257, 15291, 8429, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 973, 45275, 0, 887, 2147, 3022, 9313, 11, 198, 8, 198, 198, 8634, 2969, 62, 50, 37738, 796, 357, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 71, 896, 92, 2405, 351, 257, 1391, 9186, 92, 287, 511, 10802, 40754, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 71, 896, 92, 2405, 287, 262, 1986, 351, 257, 1391, 9186, 92, 986, 644, 281, 22324, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 71, 896, 92, 2405, 1088, 257, 1643, 351, 257, 1391, 9186, 92, 986, 475, 1521, 35379, 198, 220, 220, 220, 45144, 7220, 16, 92, 7127, 511, 1182, 1028, 257, 3355, 986, 329, 617, 1738, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 18617, 2405, 656, 2272, 1231, 257, 9029, 5013, 986, 780, 484, 1807, 612, 373, 11863, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 1391, 71, 896, 92, 2405, 351, 257, 1391, 9186, 92, 706, 2045, 379, 3964, 807, 338, 12454, 13, 1119, 2626, 477, 2911, 286, 9265, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 318, 10416, 13, 1119, 5938, 2405, 287, 511, 10802, 33283, 198, 8, 198, 198, 8634, 2969, 62, 33, 1921, 2149, 796, 357, 198, 220, 220, 220, 45144, 7220, 16, 92, 373, 2809, 1348, 1165, 881, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 3214, 422, 257, 1029, 1295, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 3027, 10533, 287, 257, 3355, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 373, 7425, 416, 14357, 33283, 198, 220, 220, 220, 45144, 7220, 16, 92, 373, 2809, 1348, 416, 257, 7463, 281, 2991, 33283, 198, 8, 198, 198, 2043, 39201, 796, 357, 198, 220, 220, 220, 366, 2701, 6953, 41306, 1600, 198, 220, 220, 220, 366, 11664, 49411, 1600, 198, 220, 220, 220, 366, 8692, 1894, 7365, 1600, 198, 220, 220, 220, 366, 66, 5557, 316, 7365, 1600, 198, 220, 220, 220, 366, 3822, 268, 33009, 1600, 198, 220, 220, 220, 366, 67, 39583, 1600, 198, 220, 220, 220, 366, 1050, 3849, 1600, 198, 220, 220, 220, 366, 1477, 78, 626, 1600, 198, 220, 220, 220, 366, 9419, 51, 5671, 1600, 198, 220, 220, 220, 366, 746, 23154, 28979, 1600, 198, 220, 220, 220, 366, 1462, 1603, 1600, 198, 220, 220, 220, 366, 634, 12907, 286, 6219, 35719, 805, 1600, 198, 220, 220, 220, 366, 660, 5024, 1600, 198, 220, 220, 220, 366, 13261, 5680, 7779, 1600, 198, 220, 220, 220, 366, 2487, 286, 28494, 9154, 1600, 198, 220, 220, 220, 366, 2070, 1600, 198, 220, 220, 220, 366, 75, 45007, 1600, 198, 220, 220, 220, 366, 727, 5581, 1600, 198, 220, 220, 220, 366, 82, 441, 286, 12586, 1600, 198, 220, 220, 220, 366, 3201, 8176, 49411, 1600, 198, 220, 220, 220, 366, 25089, 527, 9015, 1600, 198, 220, 220, 220, 366, 2777, 17951, 7365, 1600, 198, 220, 220, 220, 366, 6495, 24995, 4828, 1600, 198, 220, 220, 220, 366, 23701, 3881, 1600, 198, 220, 220, 220, 366, 9967, 286, 13647, 1600, 198, 220, 220, 220, 366, 1350, 17231, 425, 1600, 198, 220, 220, 220, 366, 12239, 286, 36371, 6174, 1600, 198, 220, 220, 220, 366, 33227, 1600, 198, 220, 220, 220, 366, 1122, 286, 28902, 1600, 198, 8, 198, 198, 4221, 49, 3913, 796, 5855, 400, 8516, 1600, 366, 2704, 654, 1600, 366, 354, 6238, 1600, 366, 71, 6371, 82, 4943, 198, 198, 39, 2043, 796, 5855, 71, 896, 1600, 366, 1929, 4595, 1600, 366, 6649, 1686, 1600, 366, 5796, 4595, 1600, 366, 65, 7465, 4943, 198, 198, 49, 4944, 62, 18601, 20754, 796, 357, 198, 220, 220, 220, 366, 8496, 466, 345, 892, 345, 821, 1016, 35379, 198, 220, 220, 220, 366, 46010, 30, 644, 30, 750, 484, 651, 1497, 35379, 198, 220, 220, 220, 366, 30148, 3019, 30148, 3019, 986, 45412, 30, 644, 30, 11752, 11, 655, 606, 757, 11, 1239, 10155, 33283, 198, 220, 220, 220, 366, 3855, 736, 994, 40754, 198, 220, 220, 220, 366, 3673, 523, 3049, 9313, 11, 198, 220, 220, 220, 366, 8567, 503, 329, 262, 3355, 40754, 198, 220, 220, 220, 366, 3987, 470, 2666, 502, 3436, 351, 606, 3228, 1600, 198, 220, 220, 220, 366, 1639, 1057, 11, 345, 4656, 33283, 198, 220, 220, 220, 366, 41, 3369, 319, 345, 11, 314, 1101, 8347, 1600, 198, 220, 220, 220, 366, 1639, 821, 8066, 13721, 326, 9313, 11, 198, 220, 220, 220, 366, 1639, 714, 635, 1949, 1220, 24585, 1326, 11, 314, 3285, 326, 338, 1257, 33283, 198, 220, 220, 220, 366, 5247, 11393, 2130, 2073, 11, 645, 12, 505, 994, 16609, 33283, 198, 220, 220, 220, 366, 1639, 460, 1057, 11, 475, 345, 460, 470, 7808, 33283, 198, 220, 220, 220, 366, 3792, 326, 477, 345, 1053, 1392, 35379, 198, 220, 220, 220, 366, 40, 1101, 2157, 345, 9313, 11, 198, 220, 220, 220, 366, 1639, 1053, 1392, 1664, 40754, 198, 220, 220, 220, 366, 1135, 460, 466, 428, 262, 2562, 835, 11, 393, 262, 1327, 835, 33283, 198, 220, 220, 220, 366, 1639, 655, 836, 470, 651, 340, 11, 466, 345, 35379, 198, 220, 220, 220, 366, 10995, 11, 345, 1365, 1057, 40754, 198, 220, 220, 220, 366, 5492, 11, 7101, 502, 703, 881, 314, 1337, 35379, 198, 220, 220, 220, 366, 40, 1549, 1057, 5443, 611, 314, 547, 345, 33283, 198, 220, 220, 220, 366, 2504, 338, 4753, 262, 46748, 356, 821, 2045, 329, 33283, 198, 220, 220, 220, 366, 6747, 262, 10402, 307, 1683, 287, 534, 7075, 33283, 198, 220, 220, 220, 366, 37, 10877, 938, 2456, 33283, 198, 220, 220, 220, 366, 1870, 484, 12120, 8097, 11, 1239, 284, 307, 1775, 757, 33283, 198, 220, 220, 220, 705, 1, 5812, 11, 804, 379, 502, 0, 314, 43054, 76, 523, 3608, 11, 314, 460, 1057, 422, 257, 10214, 2474, 532, 428, 1048, 3256, 198, 220, 220, 220, 366, 10995, 10194, 11, 655, 9814, 1220, 24585, 1326, 1541, 33283, 198, 220, 220, 220, 366, 4342, 11, 1011, 428, 5858, 290, 1182, 284, 29548, 273, 981, 345, 821, 379, 340, 33283, 198, 220, 220, 220, 366, 21351, 468, 340, 11, 484, 821, 991, 2491, 9313, 11, 198, 220, 220, 220, 366, 18521, 5850, 14179, 11, 534, 3397, 460, 470, 1805, 345, 422, 502, 33283, 198, 220, 220, 220, 366, 37798, 5983, 284, 8993, 13, 46061, 5983, 284, 5465, 13, 28334, 5983, 284, 7195, 13, 1002, 345, 1394, 2491, 287, 3252, 11, 345, 1244, 366, 198, 220, 220, 220, 366, 1350, 262, 1306, 27403, 33283, 198, 220, 220, 220, 366, 31217, 16765, 1568, 11, 314, 423, 3066, 616, 1393, 287, 534, 48949, 318, 3446, 657, 33283, 198, 220, 220, 220, 366, 21351, 468, 340, 11, 484, 821, 991, 2491, 33283, 198, 220, 220, 220, 366, 15597, 340, 510, 11, 407, 1654, 356, 765, 345, 994, 6949, 33283, 198, 220, 220, 220, 366, 1639, 821, 257, 266, 23638, 12, 3966, 13, 16314, 13, 921, 821, 407, 5850, 11, 1394, 3867, 33283, 198, 220, 220, 220, 366, 15285, 32494, 15871, 3268, 3336, 367, 7036, 42451, 40754, 198, 220, 220, 220, 366, 39, 40197, 8591, 410, 12523, 11, 5156, 33283, 198, 220, 220, 220, 366, 8241, 1309, 262, 6844, 503, 35379, 198, 220, 220, 220, 366, 1026, 338, 8258, 11, 780, 645, 530, 16609, 33283, 198, 220, 220, 220, 366, 10910, 11, 644, 257, 7030, 13, 314, 8288, 326, 530, 33283, 198, 220, 220, 220, 366, 17439, 306, 11, 616, 13674, 11, 314, 836, 470, 1577, 257, 12270, 33283, 198, 220, 220, 220, 366, 3666, 1465, 50133, 539, 6774, 477, 262, 6510, 284, 12699, 986, 1406, 1057, 5443, 40754, 198, 220, 220, 220, 366, 1639, 460, 470, 367, 6981, 2538, 262, 3872, 40754, 198, 220, 220, 220, 366, 32, 890, 640, 2084, 11, 287, 257, 16161, 1290, 1290, 1497, 986, 17877, 561, 1053, 19951, 546, 326, 13, 1892, 7471, 996, 33283, 198, 220, 220, 220, 366, 10814, 11, 804, 379, 606, 0, 1119, 821, 2491, 422, 262, 13203, 3958, 17980, 986, 327, 1133, 33283, 198, 220, 220, 220, 366, 29919, 2823, 717, 13, 1406, 481, 314, 33283, 198, 220, 220, 220, 366, 2061, 389, 345, 2491, 706, 11, 257, 2330, 22746, 35379, 198, 220, 220, 220, 366, 1722, 383, 9356, 561, 910, 986, 32494, 40754, 198, 8, 198 ]
2.760024
1,671
import os import argparse from flask import request from flask_api import FlaskAPI, status, exceptions from werkzeug.utils import secure_filename import io import numpy as np from PIL import Image import cv2 from datetime import datetime import re import math import apriltag from flask_cors import CORS from logzero import logger import boto3 DB_CLUSTER = "database320" DB_NAME = "db320" ARN = "arn:aws:rds:us-east-2:007372221023:cluster:database320" SECRET_ARN = "arn:aws:secretsmanager:us-east-2:007372221023:secret:rds-db-credentials/cluster-BZEL6PSDLGVBVJB6BIDZGZQ4MI/admin320-fsoCse" REGION_NAME = "us-east-2" IMG_FORMAT = ".jpg" # changing this is not handled very gracefully at the moment, probably UPLOAD_FOLDER = "/temp/uploads" ALLOWED_EXTENSIONS = {"png", "jpg", "jpeg"} def ret(error_message=None, **kwargs): """ Make return JSON object :param error_message: sets "error" field to given message string :param kwargs: fields to set on the return JSON """ r = {} if error_message is not None: r["error"] = error_message r.update(kwargs) return r # Params: l1 and l2 are color image matrices # Returns: 1 if aligned, 0 otherwise, -1 on error def get_matching_s3_objects( s3, bucket, prefix="", suffix="", max_keys_per_request=100, ): """ List objects in an S3 bucket. :param s3: boto.client("s3") client :param bucket: Name of the S3 bucket. :param prefix: Only fetch objects whose key starts with this prefix (optional). :param suffix: Only fetch objects whose keys end with this suffix (optional). :param max_keys_per_request: number of objects to list down """ kwargs = {"Bucket": bucket} # If the prefix is a single string (not a tuple of strings), we can # do the filtering directly in the S3 API. if isinstance(prefix, str): kwargs["Prefix"] = prefix else: kwargs["Prefix"] = str(prefix) kwargs["MaxKeys"] = max_keys_per_request while True: # The S3 API response is a large blob of metadata. # 'Contents' contains information about the listed objects. resp = s3.list_objects_v2(**kwargs) try: contents = resp["Contents"] except KeyError: return for obj in contents: key = obj["Key"] if key.startswith(prefix) and key.endswith(suffix): yield obj # The S3 API is paginated, returning up to 1000 keys at a time. # Pass the continuation token into the next response, until we # reach the final page (when this field is missing). try: kwargs["ContinuationToken"] = resp["NextContinuationToken"] except KeyError: break if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-p", "--port", action="store", default="8000") args = parser.parse_args() port = int(args.port) app = create_app() app.run(host="0.0.0.0", port=port)
[ 11748, 28686, 198, 11748, 1822, 29572, 198, 6738, 42903, 1330, 2581, 198, 6738, 42903, 62, 15042, 1330, 46947, 17614, 11, 3722, 11, 13269, 198, 6738, 266, 9587, 2736, 1018, 13, 26791, 1330, 5713, 62, 34345, 198, 11748, 33245, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 269, 85, 17, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 302, 198, 11748, 10688, 198, 11748, 46593, 2326, 363, 198, 198, 6738, 42903, 62, 66, 669, 1330, 327, 20673, 198, 6738, 2604, 22570, 1330, 49706, 198, 11748, 275, 2069, 18, 198, 198, 11012, 62, 5097, 7759, 1137, 796, 366, 48806, 19504, 1, 198, 11012, 62, 20608, 796, 366, 9945, 19504, 1, 198, 1503, 45, 796, 366, 1501, 25, 8356, 25, 4372, 82, 25, 385, 12, 23316, 12, 17, 25, 25816, 2718, 1828, 21536, 1954, 25, 565, 5819, 25, 48806, 19504, 1, 198, 23683, 26087, 62, 1503, 45, 796, 366, 1501, 25, 8356, 25, 2363, 8004, 37153, 25, 385, 12, 23316, 12, 17, 25, 25816, 2718, 1828, 21536, 1954, 25, 21078, 25, 4372, 82, 12, 9945, 12, 66, 445, 14817, 14, 565, 5819, 12, 33, 57, 3698, 21, 3705, 19260, 37094, 33, 53, 47858, 21, 33, 2389, 57, 38, 57, 48, 19, 8895, 14, 28482, 19504, 12, 69, 568, 34, 325, 1, 198, 31553, 2849, 62, 20608, 796, 366, 385, 12, 23316, 12, 17, 1, 198, 3955, 38, 62, 21389, 1404, 796, 27071, 9479, 1, 220, 1303, 5609, 428, 318, 407, 12118, 845, 11542, 2759, 379, 262, 2589, 11, 2192, 198, 198, 52, 6489, 41048, 62, 37, 3535, 14418, 796, 12813, 29510, 14, 39920, 1, 198, 7036, 3913, 1961, 62, 13918, 16938, 11053, 796, 19779, 11134, 1600, 366, 9479, 1600, 366, 73, 22071, 20662, 628, 628, 198, 4299, 1005, 7, 18224, 62, 20500, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 1441, 19449, 2134, 628, 220, 220, 220, 1058, 17143, 4049, 62, 20500, 25, 5621, 366, 18224, 1, 2214, 284, 1813, 3275, 4731, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 7032, 284, 900, 319, 262, 1441, 19449, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 374, 796, 23884, 198, 220, 220, 220, 611, 4049, 62, 20500, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 14692, 18224, 8973, 796, 4049, 62, 20500, 198, 220, 220, 220, 374, 13, 19119, 7, 46265, 22046, 8, 198, 220, 220, 220, 1441, 374, 628, 628, 628, 198, 2, 2547, 4105, 25, 300, 16, 290, 300, 17, 389, 3124, 2939, 2603, 45977, 198, 2, 16409, 25, 352, 611, 19874, 11, 657, 4306, 11, 532, 16, 319, 4049, 628, 198, 4299, 651, 62, 15699, 278, 62, 82, 18, 62, 48205, 7, 198, 220, 220, 220, 264, 18, 11, 19236, 11, 21231, 2625, 1600, 35488, 2625, 1600, 3509, 62, 13083, 62, 525, 62, 25927, 28, 3064, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7343, 5563, 287, 281, 311, 18, 19236, 13, 198, 220, 220, 220, 1058, 17143, 264, 18, 25, 275, 2069, 13, 16366, 7203, 82, 18, 4943, 5456, 198, 220, 220, 220, 1058, 17143, 19236, 25, 6530, 286, 262, 311, 18, 19236, 13, 198, 220, 220, 220, 1058, 17143, 21231, 25, 5514, 21207, 5563, 3025, 1994, 4940, 351, 198, 220, 220, 220, 220, 220, 220, 220, 428, 21231, 357, 25968, 737, 198, 220, 220, 220, 1058, 17143, 35488, 25, 5514, 21207, 5563, 3025, 8251, 886, 351, 198, 220, 220, 220, 220, 220, 220, 220, 428, 35488, 357, 25968, 737, 198, 220, 220, 220, 1058, 17143, 3509, 62, 13083, 62, 525, 62, 25927, 25, 1271, 286, 5563, 284, 1351, 866, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 86, 22046, 796, 19779, 33, 38811, 1298, 19236, 92, 628, 220, 220, 220, 1303, 1002, 262, 21231, 318, 257, 2060, 4731, 357, 1662, 257, 46545, 286, 13042, 828, 356, 460, 198, 220, 220, 220, 1303, 466, 262, 25431, 3264, 287, 262, 311, 18, 7824, 13, 198, 220, 220, 220, 611, 318, 39098, 7, 40290, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 36698, 844, 8973, 796, 21231, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 36698, 844, 8973, 796, 965, 7, 40290, 8, 628, 220, 220, 220, 479, 86, 22046, 14692, 11518, 40729, 8973, 796, 3509, 62, 13083, 62, 525, 62, 25927, 628, 220, 220, 220, 981, 6407, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 311, 18, 7824, 2882, 318, 257, 1588, 44812, 286, 20150, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 15842, 6, 4909, 1321, 546, 262, 5610, 5563, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 264, 18, 13, 4868, 62, 48205, 62, 85, 17, 7, 1174, 46265, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 1217, 14692, 15842, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 329, 26181, 287, 10154, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 26181, 14692, 9218, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 13, 9688, 2032, 342, 7, 40290, 8, 290, 1994, 13, 437, 2032, 342, 7, 37333, 844, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 26181, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 311, 18, 7824, 318, 42208, 3898, 11, 8024, 510, 284, 8576, 8251, 379, 257, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6251, 262, 24659, 11241, 656, 262, 1306, 2882, 11, 1566, 356, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3151, 262, 2457, 2443, 357, 12518, 428, 2214, 318, 4814, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 17875, 2288, 30642, 8973, 796, 1217, 14692, 10019, 17875, 2288, 30642, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 79, 1600, 366, 438, 634, 1600, 2223, 2625, 8095, 1600, 4277, 2625, 33942, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 2493, 796, 493, 7, 22046, 13, 634, 8, 198, 220, 220, 220, 598, 796, 2251, 62, 1324, 3419, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 2625, 15, 13, 15, 13, 15, 13, 15, 1600, 2493, 28, 634, 8, 198 ]
2.573492
1,177
import threading import time import logging import math class Cart: """ need to implement the move method with threading so that it won't interfere with other functions """ # the original implmentation, with the bug. # get all the passengers who want to go the "direction" if __name__ == '__main__': stop_threads = False planner = Planner(5, 1) """ while True: try: lvl_from = int(input()) lvl_to = int(input()) except: planner.stopAll() break Person(lvl_from, lvl_to, planner) """ time.sleep(1) Person(3, 4, planner) time.sleep(1) Person(2, 0, planner)
[ 11748, 4704, 278, 198, 11748, 640, 198, 11748, 18931, 198, 11748, 10688, 628, 198, 4871, 13690, 25, 198, 220, 220, 220, 37227, 761, 284, 3494, 262, 1445, 2446, 351, 4704, 278, 198, 220, 220, 220, 523, 326, 340, 1839, 470, 18135, 351, 584, 5499, 37227, 628, 198, 220, 220, 220, 1303, 262, 2656, 4114, 14374, 11, 351, 262, 5434, 13, 628, 198, 220, 220, 220, 1303, 651, 477, 262, 10405, 508, 765, 284, 467, 262, 366, 37295, 1, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2245, 62, 16663, 82, 796, 10352, 198, 220, 220, 220, 42351, 796, 5224, 1008, 7, 20, 11, 352, 8, 198, 220, 220, 220, 37227, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33309, 62, 6738, 796, 493, 7, 15414, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33309, 62, 1462, 796, 493, 7, 15414, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42351, 13, 11338, 3237, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 7755, 7, 47147, 62, 6738, 11, 33309, 62, 1462, 11, 42351, 8, 37227, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 220, 220, 220, 7755, 7, 18, 11, 604, 11, 42351, 8, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 220, 220, 220, 7755, 7, 17, 11, 657, 11, 42351, 8, 198 ]
2.442446
278
#!/bin/python3 """This is a very simple/terrible port scanner for educational purpose""" import sys import socket from datetime import datetime if len(sys.argv) == 2: target = socket.gethostbyname(sys.argv[1]) # translate hostname else: print("Invalid amount of arguments.") print("Syntax: python3 pyport.py <ip>") print("-" * 50) print("Scanning target "+ target) print("Time started: " + str(datetime.now())) print("-" * 50) try: for port in range(50, 85): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) socket.setdefaulttimeout(1) result = s.connect_ex((target,port)) # returns error indicator if result == 0: print("Port {} is open".format(port)) s.close() except KeyboardInterrupt: print("\nExiting program.") sys.exit() except socket.gaierror: print("Hostname could not be resolved.") sys.exit() except socket.error: print("Could not connect to server.") sys.exit() # command: # python3 scanner.py <ip>
[ 2, 48443, 8800, 14, 29412, 18, 198, 37811, 1212, 318, 257, 845, 2829, 14, 353, 5547, 2493, 27474, 329, 9856, 4007, 37811, 198, 198, 11748, 25064, 198, 11748, 17802, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 6624, 362, 25, 198, 220, 220, 220, 2496, 796, 17802, 13, 1136, 4774, 1525, 3672, 7, 17597, 13, 853, 85, 58, 16, 12962, 1303, 15772, 2583, 3672, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 44651, 2033, 286, 7159, 19570, 198, 220, 220, 220, 3601, 7203, 13940, 41641, 25, 21015, 18, 12972, 634, 13, 9078, 1279, 541, 29, 4943, 198, 4798, 7203, 21215, 1635, 2026, 8, 198, 4798, 7203, 33351, 768, 2496, 43825, 2496, 8, 198, 4798, 7203, 7575, 2067, 25, 366, 1343, 965, 7, 19608, 8079, 13, 2197, 3419, 4008, 198, 4798, 7203, 21215, 1635, 2026, 8, 198, 28311, 25, 198, 220, 220, 220, 329, 2493, 287, 2837, 7, 1120, 11, 7600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17802, 13, 2617, 12286, 48678, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 264, 13, 8443, 62, 1069, 19510, 16793, 11, 634, 4008, 1303, 5860, 4049, 16916, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 13924, 23884, 318, 1280, 1911, 18982, 7, 634, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13, 19836, 3419, 198, 16341, 31973, 9492, 3622, 25, 198, 220, 220, 220, 3601, 7203, 59, 77, 3109, 1780, 1430, 19570, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 16341, 17802, 13, 4908, 959, 1472, 25, 198, 220, 220, 220, 3601, 7203, 17932, 3672, 714, 407, 307, 12939, 19570, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 16341, 17802, 13, 18224, 25, 198, 220, 220, 220, 3601, 7203, 23722, 407, 2018, 284, 4382, 19570, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 2, 3141, 25, 198, 2, 21015, 18, 27474, 13, 9078, 1279, 541, 29 ]
2.700535
374
""" Author: Wenru Dong """ from typing import Optional if __name__ == "__main__": bitmap = Bitmap(10) bitmap.setbit(1) bitmap.setbit(3) bitmap.setbit(6) bitmap.setbit(7) bitmap.setbit(8) for i in range(1, 11): print(bitmap.getbit(i))
[ 37811, 198, 220, 220, 220, 6434, 25, 31164, 622, 28831, 198, 37811, 198, 198, 6738, 19720, 1330, 32233, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1643, 8899, 796, 4722, 8899, 7, 940, 8, 198, 220, 220, 220, 1643, 8899, 13, 2617, 2545, 7, 16, 8, 198, 220, 220, 220, 1643, 8899, 13, 2617, 2545, 7, 18, 8, 198, 220, 220, 220, 1643, 8899, 13, 2617, 2545, 7, 21, 8, 198, 220, 220, 220, 1643, 8899, 13, 2617, 2545, 7, 22, 8, 198, 220, 220, 220, 1643, 8899, 13, 2617, 2545, 7, 23, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 1367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2545, 8899, 13, 1136, 2545, 7, 72, 4008 ]
2.082707
133
a = [[['Inform', 'Train', 'Choice', 'over 1'], ['Inform', 'Train', 'Choice', '000'], ['Request', 'Train', 'Depart', '?']], [['Inform', 'Train', 'Depart', 'birmingham new street']], [['Request', 'Train', 'Day', '?']], [['Inform', 'Train', 'Day', 'wednesday']], [['Inform', 'Train', 'Arrive', '20:23'], ['Inform', 'Train', 'Day', 'Wednesday'], ['Inform', 'Train', 'Depart', 'birmingham new street'], ['Inform', 'Train', 'Leave', '17:40']], [['Inform', 'Train', 'People', '5']], [['OfferBooked', 'Train', 'Ref', 'A9NHSO9Y']], [['Inform', 'Hotel', 'Internet', 'yes'], ['Inform', 'Hotel', 'Stars', '4']], [['Recommend', 'Hotel', 'Name', 'the cambridge belfry']], [['Inform', 'Hotel', 'Day', 'wednesday'], ['Inform', 'Hotel', 'People', '5'], ['Inform', 'Hotel', 'Stay', '5']], [['Book', 'Booking', 'Ref', '5NAWGJDC']], [['thank', 'general', 'none', 'none']], [['bye', 'general', 'none', 'none']]] print(a) for i in range(len(a)): print() for j in range(len(a[i])): one = a[i][j] left = "_".join(one[:-1]) right = one[-1] whole = ": ".join([left, right]) print(whole)
[ 198, 64, 796, 16410, 17816, 818, 687, 3256, 705, 44077, 3256, 705, 46770, 3256, 705, 2502, 352, 6, 4357, 37250, 818, 687, 3256, 705, 44077, 3256, 705, 46770, 3256, 705, 830, 6, 4357, 37250, 18453, 3256, 705, 44077, 3256, 705, 12156, 433, 3256, 705, 8348, 60, 4357, 198, 58, 17816, 818, 687, 3256, 705, 44077, 3256, 705, 12156, 433, 3256, 705, 65, 343, 17737, 649, 4675, 20520, 4357, 198, 58, 17816, 18453, 3256, 705, 44077, 3256, 705, 12393, 3256, 705, 8348, 60, 4357, 198, 58, 17816, 818, 687, 3256, 705, 44077, 3256, 705, 12393, 3256, 705, 19103, 3462, 20520, 4357, 198, 58, 17816, 818, 687, 3256, 705, 44077, 3256, 705, 3163, 11590, 3256, 705, 1238, 25, 1954, 6, 4357, 37250, 818, 687, 3256, 705, 44077, 3256, 705, 12393, 3256, 705, 27150, 6, 4357, 37250, 818, 687, 3256, 705, 44077, 3256, 705, 12156, 433, 3256, 705, 65, 343, 17737, 649, 4675, 6, 4357, 37250, 818, 687, 3256, 705, 44077, 3256, 705, 35087, 3256, 705, 1558, 25, 1821, 20520, 4357, 198, 58, 17816, 818, 687, 3256, 705, 44077, 3256, 705, 8061, 3256, 705, 20, 20520, 4357, 198, 58, 17816, 9362, 263, 10482, 276, 3256, 705, 44077, 3256, 705, 8134, 3256, 705, 32, 24, 45, 7998, 46, 24, 56, 20520, 4357, 198, 58, 17816, 818, 687, 3256, 705, 21352, 417, 3256, 705, 28566, 3256, 705, 8505, 6, 4357, 37250, 818, 687, 3256, 705, 21352, 417, 3256, 705, 29366, 3256, 705, 19, 20520, 4357, 198, 58, 17816, 41248, 3256, 705, 21352, 417, 3256, 705, 5376, 3256, 705, 1169, 12172, 9458, 894, 69, 563, 20520, 4357, 198, 58, 17816, 818, 687, 3256, 705, 21352, 417, 3256, 705, 12393, 3256, 705, 19103, 3462, 6, 4357, 37250, 818, 687, 3256, 705, 21352, 417, 3256, 705, 8061, 3256, 705, 20, 6, 4357, 37250, 818, 687, 3256, 705, 21352, 417, 3256, 705, 25681, 3256, 705, 20, 20520, 4357, 198, 58, 17816, 10482, 3256, 705, 10482, 278, 3256, 705, 8134, 3256, 705, 20, 4535, 54, 38, 41, 9697, 20520, 4357, 198, 58, 17816, 40716, 3256, 705, 24622, 3256, 705, 23108, 3256, 705, 23108, 20520, 4357, 198, 58, 17816, 16390, 3256, 705, 24622, 3256, 705, 23108, 3256, 705, 23108, 6, 11907, 60, 198, 198, 4798, 7, 64, 8, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 64, 8, 2599, 198, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 7, 64, 58, 72, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 530, 796, 257, 58, 72, 7131, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1364, 796, 45434, 1911, 22179, 7, 505, 58, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 826, 796, 530, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2187, 796, 366, 25, 27071, 22179, 26933, 9464, 11, 826, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1929, 2305, 8 ]
2.302905
482
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """A job that write Entries into Datastore. The pipelines behave in the steps below. 1. Create and write Entities to Datastore 2. (Optional) If read limit was provided, read it and confirm that the expected Entities were read. 3. Query the written Entities and verify result. 4. Delete Entries. 5. Query the written Entities, verify no results. """ from __future__ import absolute_import import argparse import hashlib import logging import uuid import apache_beam as beam from apache_beam.io.gcp.datastore.v1.datastoreio import DeleteFromDatastore from apache_beam.io.gcp.datastore.v1.datastoreio import ReadFromDatastore from apache_beam.io.gcp.datastore.v1.datastoreio import WriteToDatastore from apache_beam.options.pipeline_options import GoogleCloudOptions from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import SetupOptions from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to # Protect against environments where apitools library is not available. # pylint: disable=wrong-import-order, wrong-import-position try: from google.cloud.proto.datastore.v1 import entity_pb2 from google.cloud.proto.datastore.v1 import query_pb2 from googledatastore import helper as datastore_helper from googledatastore import PropertyFilter except ImportError: pass # pylint: enable=wrong-import-order, wrong-import-position # pylint: enable=ungrouped-imports def new_pipeline_with_job_name(pipeline_options, job_name, suffix): """Create a pipeline with the given job_name and a suffix.""" gcp_options = pipeline_options.view_as(GoogleCloudOptions) # DirectRunner doesn't have a job name. if job_name: gcp_options.job_name = job_name + suffix return TestPipeline(options=pipeline_options) class EntityWrapper(object): """Create a Cloud Datastore entity from the given string.""" def make_entity(self, content): """Create entity from given string.""" entity = entity_pb2.Entity() if self._namespace is not None: entity.key.partition_id.namespace_id = self._namespace # All entities created will have the same ancestor datastore_helper.add_key_path(entity.key, self._kind, self._ancestor, self._kind, hashlib.sha1(content).hexdigest()) datastore_helper.add_properties(entity, {'content': str(content)}) return entity def make_ancestor_query(kind, namespace, ancestor): """Creates a Cloud Datastore ancestor query.""" ancestor_key = entity_pb2.Key() datastore_helper.add_key_path(ancestor_key, kind, ancestor) if namespace is not None: ancestor_key.partition_id.namespace_id = namespace query = query_pb2.Query() query.kind.add().name = kind datastore_helper.set_property_filter( query.filter, '__key__', PropertyFilter.HAS_ANCESTOR, ancestor_key) return query def run(argv=None): """Main entry point.""" parser = argparse.ArgumentParser() parser.add_argument('--kind', dest='kind', default='writereadtest', help='Datastore Kind') parser.add_argument('--num_entities', dest='num_entities', type=int, required=True, help='Number of entities to write') parser.add_argument('--limit', dest='limit', type=int, help='Limit of number of entities to write') known_args, pipeline_args = parser.parse_known_args(argv) pipeline_options = PipelineOptions(pipeline_args) pipeline_options.view_as(SetupOptions).save_main_session = True gcloud_options = pipeline_options.view_as(GoogleCloudOptions) job_name = gcloud_options.job_name kind = known_args.kind num_entities = known_args.num_entities project = gcloud_options.project # a random ancesor key ancestor = str(uuid.uuid4()) query = make_ancestor_query(kind, None, ancestor) # Pipeline 1: Create and write the specified number of Entities to the # Cloud Datastore. logging.info('Writing %s entities to %s', num_entities, project) p = new_pipeline_with_job_name(pipeline_options, job_name, '-write') # pylint: disable=expression-not-assigned (p | 'Input' >> beam.Create(list(range(known_args.num_entities))) | 'To String' >> beam.Map(str) | 'To Entity' >> beam.Map(EntityWrapper(kind, None, ancestor).make_entity) | 'Write to Datastore' >> WriteToDatastore(project)) p.run() # Optional Pipeline 2: If a read limit was provided, read it and confirm # that the expected entities were read. if known_args.limit is not None: logging.info('Querying a limited set of %s entities and verifying count.', known_args.limit) p = new_pipeline_with_job_name(pipeline_options, job_name, '-verify-limit') query_with_limit = query_pb2.Query() query_with_limit.CopyFrom(query) query_with_limit.limit.value = known_args.limit entities = p | 'read from datastore' >> ReadFromDatastore(project, query_with_limit) assert_that( entities | beam.combiners.Count.Globally(), equal_to([known_args.limit])) p.run() # Pipeline 3: Query the written Entities and verify result. logging.info('Querying entities, asserting they match.') p = new_pipeline_with_job_name(pipeline_options, job_name, '-verify') entities = p | 'read from datastore' >> ReadFromDatastore(project, query) assert_that( entities | beam.combiners.Count.Globally(), equal_to([num_entities])) p.run() # Pipeline 4: Delete Entities. logging.info('Deleting entities.') p = new_pipeline_with_job_name(pipeline_options, job_name, '-delete') entities = p | 'read from datastore' >> ReadFromDatastore(project, query) # pylint: disable=expression-not-assigned (entities | 'To Keys' >> beam.Map(lambda entity: entity.key) | 'Delete keys' >> DeleteFromDatastore(project)) p.run() # Pipeline 5: Query the written Entities, verify no results. logging.info('Querying for the entities to make sure there are none present.') p = new_pipeline_with_job_name(pipeline_options, job_name, '-verify-deleted') entities = p | 'read from datastore' >> ReadFromDatastore(project, query) assert_that( entities | beam.combiners.Count.Globally(), equal_to([0])) p.run() if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run()
[ 2, 198, 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 393, 517, 198, 2, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 9387, 351, 198, 2, 428, 670, 329, 3224, 1321, 5115, 6634, 9238, 13, 198, 2, 383, 7054, 37, 16625, 428, 2393, 284, 921, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 198, 2, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 198, 2, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 37811, 32, 1693, 326, 3551, 7232, 1678, 656, 16092, 459, 382, 13, 198, 198, 464, 31108, 17438, 287, 262, 4831, 2174, 13, 628, 220, 352, 13, 13610, 290, 3551, 7232, 871, 284, 16092, 459, 382, 198, 220, 362, 13, 357, 30719, 8, 1002, 1100, 4179, 373, 2810, 11, 198, 220, 220, 220, 220, 1100, 340, 290, 6216, 326, 262, 2938, 7232, 871, 547, 1100, 13, 198, 220, 513, 13, 43301, 262, 3194, 7232, 871, 290, 11767, 1255, 13, 198, 220, 604, 13, 23520, 7232, 1678, 13, 198, 220, 642, 13, 43301, 262, 3194, 7232, 871, 11, 11767, 645, 2482, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 1822, 29572, 198, 11748, 12234, 8019, 198, 11748, 18931, 198, 11748, 334, 27112, 198, 198, 11748, 2471, 4891, 62, 40045, 355, 15584, 198, 6738, 2471, 4891, 62, 40045, 13, 952, 13, 70, 13155, 13, 19608, 459, 382, 13, 85, 16, 13, 19608, 459, 382, 952, 1330, 23520, 4863, 27354, 459, 382, 198, 6738, 2471, 4891, 62, 40045, 13, 952, 13, 70, 13155, 13, 19608, 459, 382, 13, 85, 16, 13, 19608, 459, 382, 952, 1330, 4149, 4863, 27354, 459, 382, 198, 6738, 2471, 4891, 62, 40045, 13, 952, 13, 70, 13155, 13, 19608, 459, 382, 13, 85, 16, 13, 19608, 459, 382, 952, 1330, 19430, 2514, 27354, 459, 382, 198, 6738, 2471, 4891, 62, 40045, 13, 25811, 13, 79, 541, 4470, 62, 25811, 1330, 3012, 18839, 29046, 198, 6738, 2471, 4891, 62, 40045, 13, 25811, 13, 79, 541, 4470, 62, 25811, 1330, 37709, 29046, 198, 6738, 2471, 4891, 62, 40045, 13, 25811, 13, 79, 541, 4470, 62, 25811, 1330, 31122, 29046, 198, 6738, 2471, 4891, 62, 40045, 13, 33407, 13, 9288, 62, 79, 541, 4470, 1330, 6208, 47, 541, 4470, 198, 6738, 2471, 4891, 62, 40045, 13, 33407, 13, 22602, 1330, 6818, 62, 5562, 198, 6738, 2471, 4891, 62, 40045, 13, 33407, 13, 22602, 1330, 4961, 62, 1462, 198, 198, 2, 21916, 1028, 12493, 810, 2471, 270, 10141, 5888, 318, 407, 1695, 13, 198, 2, 279, 2645, 600, 25, 15560, 28, 36460, 12, 11748, 12, 2875, 11, 2642, 12, 11748, 12, 9150, 198, 28311, 25, 198, 220, 422, 23645, 13, 17721, 13, 1676, 1462, 13, 19608, 459, 382, 13, 85, 16, 1330, 9312, 62, 40842, 17, 198, 220, 422, 23645, 13, 17721, 13, 1676, 1462, 13, 19608, 459, 382, 13, 85, 16, 1330, 12405, 62, 40842, 17, 198, 220, 422, 467, 519, 992, 265, 459, 382, 1330, 31904, 355, 4818, 459, 382, 62, 2978, 525, 198, 220, 422, 467, 519, 992, 265, 459, 382, 1330, 14161, 22417, 198, 16341, 17267, 12331, 25, 198, 220, 1208, 198, 2, 279, 2645, 600, 25, 7139, 28, 36460, 12, 11748, 12, 2875, 11, 2642, 12, 11748, 12, 9150, 198, 2, 279, 2645, 600, 25, 7139, 28, 2150, 3233, 276, 12, 320, 3742, 628, 198, 4299, 649, 62, 79, 541, 4470, 62, 4480, 62, 21858, 62, 3672, 7, 79, 541, 4470, 62, 25811, 11, 1693, 62, 3672, 11, 35488, 2599, 198, 220, 37227, 16447, 257, 11523, 351, 262, 1813, 1693, 62, 3672, 290, 257, 35488, 526, 15931, 198, 220, 308, 13155, 62, 25811, 796, 11523, 62, 25811, 13, 1177, 62, 292, 7, 11708, 18839, 29046, 8, 198, 220, 1303, 4128, 49493, 1595, 470, 423, 257, 1693, 1438, 13, 198, 220, 611, 1693, 62, 3672, 25, 198, 220, 220, 220, 308, 13155, 62, 25811, 13, 21858, 62, 3672, 796, 1693, 62, 3672, 1343, 35488, 628, 220, 1441, 6208, 47, 541, 4470, 7, 25811, 28, 79, 541, 4470, 62, 25811, 8, 628, 198, 4871, 20885, 36918, 2848, 7, 15252, 2599, 198, 220, 37227, 16447, 257, 10130, 16092, 459, 382, 9312, 422, 262, 1813, 4731, 526, 15931, 628, 220, 825, 787, 62, 26858, 7, 944, 11, 2695, 2599, 198, 220, 220, 220, 37227, 16447, 9312, 422, 1813, 4731, 526, 15931, 198, 220, 220, 220, 9312, 796, 9312, 62, 40842, 17, 13, 32398, 3419, 198, 220, 220, 220, 611, 2116, 13557, 14933, 10223, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 9312, 13, 2539, 13, 3911, 653, 62, 312, 13, 14933, 10223, 62, 312, 796, 2116, 13557, 14933, 10223, 628, 220, 220, 220, 1303, 1439, 12066, 2727, 481, 423, 262, 976, 31836, 198, 220, 220, 220, 4818, 459, 382, 62, 2978, 525, 13, 2860, 62, 2539, 62, 6978, 7, 26858, 13, 2539, 11, 2116, 13557, 11031, 11, 2116, 13557, 1192, 395, 273, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11031, 11, 12234, 8019, 13, 26270, 16, 7, 11299, 737, 33095, 12894, 395, 28955, 628, 220, 220, 220, 4818, 459, 382, 62, 2978, 525, 13, 2860, 62, 48310, 7, 26858, 11, 1391, 6, 11299, 10354, 965, 7, 11299, 8, 30072, 198, 220, 220, 220, 1441, 9312, 628, 198, 4299, 787, 62, 1192, 395, 273, 62, 22766, 7, 11031, 11, 25745, 11, 31836, 2599, 198, 220, 37227, 16719, 274, 257, 10130, 16092, 459, 382, 31836, 12405, 526, 15931, 198, 220, 31836, 62, 2539, 796, 9312, 62, 40842, 17, 13, 9218, 3419, 198, 220, 4818, 459, 382, 62, 2978, 525, 13, 2860, 62, 2539, 62, 6978, 7, 1192, 395, 273, 62, 2539, 11, 1611, 11, 31836, 8, 198, 220, 611, 25745, 318, 407, 6045, 25, 198, 220, 220, 220, 31836, 62, 2539, 13, 3911, 653, 62, 312, 13, 14933, 10223, 62, 312, 796, 25745, 628, 220, 12405, 796, 12405, 62, 40842, 17, 13, 20746, 3419, 198, 220, 12405, 13, 11031, 13, 2860, 22446, 3672, 796, 1611, 628, 220, 4818, 459, 382, 62, 2978, 525, 13, 2617, 62, 26745, 62, 24455, 7, 198, 220, 220, 220, 220, 220, 12405, 13, 24455, 11, 705, 834, 2539, 834, 3256, 14161, 22417, 13, 39, 1921, 62, 20940, 6465, 1581, 11, 31836, 62, 2539, 8, 628, 220, 1441, 12405, 628, 198, 4299, 1057, 7, 853, 85, 28, 14202, 2599, 198, 220, 37227, 13383, 5726, 966, 526, 15931, 628, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 628, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 11031, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 11031, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 8933, 567, 324, 9288, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 27354, 459, 382, 14927, 11537, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 298, 871, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 22510, 62, 298, 871, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15057, 286, 12066, 284, 3551, 11537, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 32374, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 32374, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 39184, 286, 1271, 286, 12066, 284, 3551, 11537, 628, 220, 1900, 62, 22046, 11, 11523, 62, 22046, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 7, 853, 85, 8, 198, 220, 11523, 62, 25811, 796, 37709, 29046, 7, 79, 541, 4470, 62, 22046, 8, 198, 220, 11523, 62, 25811, 13, 1177, 62, 292, 7, 40786, 29046, 737, 21928, 62, 12417, 62, 29891, 796, 6407, 198, 220, 308, 17721, 62, 25811, 796, 11523, 62, 25811, 13, 1177, 62, 292, 7, 11708, 18839, 29046, 8, 198, 220, 1693, 62, 3672, 796, 308, 17721, 62, 25811, 13, 21858, 62, 3672, 198, 220, 1611, 796, 1900, 62, 22046, 13, 11031, 198, 220, 997, 62, 298, 871, 796, 1900, 62, 22046, 13, 22510, 62, 298, 871, 198, 220, 1628, 796, 308, 17721, 62, 25811, 13, 16302, 198, 220, 1303, 257, 4738, 281, 728, 273, 1994, 198, 220, 31836, 796, 965, 7, 12303, 312, 13, 12303, 312, 19, 28955, 198, 220, 12405, 796, 787, 62, 1192, 395, 273, 62, 22766, 7, 11031, 11, 6045, 11, 31836, 8, 628, 220, 1303, 37709, 352, 25, 13610, 290, 3551, 262, 7368, 1271, 286, 7232, 871, 284, 262, 198, 220, 1303, 10130, 16092, 459, 382, 13, 198, 220, 18931, 13, 10951, 10786, 33874, 4064, 82, 12066, 284, 4064, 82, 3256, 997, 62, 298, 871, 11, 1628, 8, 198, 220, 279, 796, 649, 62, 79, 541, 4470, 62, 4480, 62, 21858, 62, 3672, 7, 79, 541, 4470, 62, 25811, 11, 1693, 62, 3672, 11, 705, 12, 13564, 11537, 628, 220, 1303, 279, 2645, 600, 25, 15560, 28, 38011, 12, 1662, 12, 562, 3916, 198, 220, 357, 79, 198, 220, 220, 930, 705, 20560, 6, 9609, 15584, 13, 16447, 7, 4868, 7, 9521, 7, 4002, 62, 22046, 13, 22510, 62, 298, 871, 22305, 198, 220, 220, 930, 705, 2514, 10903, 6, 9609, 15584, 13, 13912, 7, 2536, 8, 198, 220, 220, 930, 705, 2514, 20885, 6, 9609, 15584, 13, 13912, 7, 32398, 36918, 2848, 7, 11031, 11, 6045, 11, 31836, 737, 15883, 62, 26858, 8, 198, 220, 220, 930, 705, 16594, 284, 16092, 459, 382, 6, 9609, 19430, 2514, 27354, 459, 382, 7, 16302, 4008, 628, 220, 279, 13, 5143, 3419, 628, 220, 1303, 32233, 37709, 362, 25, 1002, 257, 1100, 4179, 373, 2810, 11, 1100, 340, 290, 6216, 198, 220, 1303, 326, 262, 2938, 12066, 547, 1100, 13, 198, 220, 611, 1900, 62, 22046, 13, 32374, 318, 407, 6045, 25, 198, 220, 220, 220, 18931, 13, 10951, 10786, 4507, 263, 1112, 257, 3614, 900, 286, 4064, 82, 12066, 290, 45505, 954, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1900, 62, 22046, 13, 32374, 8, 198, 220, 220, 220, 279, 796, 649, 62, 79, 541, 4470, 62, 4480, 62, 21858, 62, 3672, 7, 79, 541, 4470, 62, 25811, 11, 1693, 62, 3672, 11, 705, 12, 332, 1958, 12, 32374, 11537, 198, 220, 220, 220, 12405, 62, 4480, 62, 32374, 796, 12405, 62, 40842, 17, 13, 20746, 3419, 198, 220, 220, 220, 12405, 62, 4480, 62, 32374, 13, 29881, 4863, 7, 22766, 8, 198, 220, 220, 220, 12405, 62, 4480, 62, 32374, 13, 32374, 13, 8367, 796, 1900, 62, 22046, 13, 32374, 198, 220, 220, 220, 12066, 796, 279, 930, 705, 961, 422, 4818, 459, 382, 6, 9609, 4149, 4863, 27354, 459, 382, 7, 16302, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 4480, 62, 32374, 8, 198, 220, 220, 220, 6818, 62, 5562, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12066, 930, 15584, 13, 785, 8800, 364, 13, 12332, 13, 9861, 672, 453, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 4961, 62, 1462, 26933, 4002, 62, 22046, 13, 32374, 60, 4008, 628, 220, 220, 220, 279, 13, 5143, 3419, 628, 220, 1303, 37709, 513, 25, 43301, 262, 3194, 7232, 871, 290, 11767, 1255, 13, 198, 220, 18931, 13, 10951, 10786, 4507, 263, 1112, 12066, 11, 33183, 484, 2872, 2637, 8, 198, 220, 279, 796, 649, 62, 79, 541, 4470, 62, 4480, 62, 21858, 62, 3672, 7, 79, 541, 4470, 62, 25811, 11, 1693, 62, 3672, 11, 705, 12, 332, 1958, 11537, 198, 220, 12066, 796, 279, 930, 705, 961, 422, 4818, 459, 382, 6, 9609, 4149, 4863, 27354, 459, 382, 7, 16302, 11, 12405, 8, 628, 220, 6818, 62, 5562, 7, 198, 220, 220, 220, 220, 220, 12066, 930, 15584, 13, 785, 8800, 364, 13, 12332, 13, 9861, 672, 453, 22784, 198, 220, 220, 220, 220, 220, 4961, 62, 1462, 26933, 22510, 62, 298, 871, 60, 4008, 628, 220, 279, 13, 5143, 3419, 628, 220, 1303, 37709, 604, 25, 23520, 7232, 871, 13, 198, 220, 18931, 13, 10951, 10786, 5005, 293, 889, 12066, 2637, 8, 198, 220, 279, 796, 649, 62, 79, 541, 4470, 62, 4480, 62, 21858, 62, 3672, 7, 79, 541, 4470, 62, 25811, 11, 1693, 62, 3672, 11, 705, 12, 33678, 11537, 198, 220, 12066, 796, 279, 930, 705, 961, 422, 4818, 459, 382, 6, 9609, 4149, 4863, 27354, 459, 382, 7, 16302, 11, 12405, 8, 198, 220, 1303, 279, 2645, 600, 25, 15560, 28, 38011, 12, 1662, 12, 562, 3916, 198, 220, 357, 298, 871, 198, 220, 220, 930, 705, 2514, 26363, 6, 9609, 15584, 13, 13912, 7, 50033, 9312, 25, 9312, 13, 2539, 8, 198, 220, 220, 930, 705, 38727, 8251, 6, 9609, 23520, 4863, 27354, 459, 382, 7, 16302, 4008, 628, 220, 279, 13, 5143, 3419, 628, 220, 1303, 37709, 642, 25, 43301, 262, 3194, 7232, 871, 11, 11767, 645, 2482, 13, 198, 220, 18931, 13, 10951, 10786, 4507, 263, 1112, 329, 262, 12066, 284, 787, 1654, 612, 389, 4844, 1944, 2637, 8, 198, 220, 279, 796, 649, 62, 79, 541, 4470, 62, 4480, 62, 21858, 62, 3672, 7, 79, 541, 4470, 62, 25811, 11, 1693, 62, 3672, 11, 705, 12, 332, 1958, 12, 2934, 33342, 11537, 198, 220, 12066, 796, 279, 930, 705, 961, 422, 4818, 459, 382, 6, 9609, 4149, 4863, 27354, 459, 382, 7, 16302, 11, 12405, 8, 628, 220, 6818, 62, 5562, 7, 198, 220, 220, 220, 220, 220, 12066, 930, 15584, 13, 785, 8800, 364, 13, 12332, 13, 9861, 672, 453, 22784, 198, 220, 220, 220, 220, 220, 4961, 62, 1462, 26933, 15, 60, 4008, 628, 220, 279, 13, 5143, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 18931, 13, 1136, 11187, 1362, 22446, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 220, 1057, 3419, 198 ]
2.805925
2,633
# input input_word = input("Enter a word: ") # response print('***') for letter in input_word: print(letter) print('***')
[ 2, 5128, 198, 15414, 62, 4775, 796, 5128, 7203, 17469, 257, 1573, 25, 366, 8, 198, 198, 2, 2882, 198, 4798, 10786, 8162, 11537, 198, 1640, 3850, 287, 5128, 62, 4775, 25, 198, 220, 220, 220, 3601, 7, 9291, 8, 198, 4798, 10786, 8162, 11537, 198 ]
2.76087
46
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: tinkoff/cloud/stt/v1/stt.proto """Generated protocol buffer code.""" from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from tinkoff.cloud.longrunning.v1 import longrunning_pb2 as tinkoff_dot_cloud_dot_longrunning_dot_v1_dot_longrunning__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x1etinkoff/cloud/stt/v1/stt.proto\x12\x14tinkoff.cloud.stt.v1\x1a\x1egoogle/protobuf/duration.proto\x1a\x1cgoogle/api/annotations.proto\x1a.tinkoff/cloud/longrunning/v1/longrunning.proto\"D\n\x10RecognitionAudio\x12\x11\n\x07\x63ontent\x18\x01 \x01(\x0cH\x00\x12\r\n\x03uri\x18\x02 \x01(\tH\x00\x42\x0e\n\x0c\x61udio_source\"2\n\x13SpeechContextPhrase\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\"W\n\rSpeechContext\x12:\n\x07phrases\x18\x03 \x03(\x0b\x32).tinkoff.cloud.stt.v1.SpeechContextPhraseJ\x04\x08\x01\x10\x02J\x04\x08\x02\x10\x03\"\x88\x01\n\x08WordInfo\x12-\n\nstart_time\x18\x01 \x01(\x0b\x32\x19.google.protobuf.Duration\x12+\n\x08\x65nd_time\x18\x02 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x0c\n\x04word\x18\x03 \x01(\t\x12\x12\n\nconfidence\x18\x04 \x01(\x02\"\xb4\x01\n\x1cVoiceActivityDetectionConfig\x12\x1b\n\x13min_speech_duration\x18\x01 \x01(\x02\x12\x1b\n\x13max_speech_duration\x18\x02 \x01(\x02\x12\"\n\x1asilence_duration_threshold\x18\x03 \x01(\x02\x12\x1e\n\x16silence_prob_threshold\x18\x04 \x01(\x02\x12\x16\n\x0e\x61ggressiveness\x18\x05 \x01(\x02\"\xdb\x04\n\x11RecognitionConfig\x12\x35\n\x08\x65ncoding\x18\x01 \x01(\x0e\x32#.tinkoff.cloud.stt.v1.AudioEncoding\x12\x19\n\x11sample_rate_hertz\x18\x02 \x01(\r\x12\x15\n\rlanguage_code\x18\x03 \x01(\t\x12\x18\n\x10max_alternatives\x18\x04 \x01(\r\x12\x18\n\x10profanity_filter\x18\x05 \x01(\x08\x12<\n\x0fspeech_contexts\x18\x06 \x03(\x0b\x32#.tinkoff.cloud.stt.v1.SpeechContext\x12$\n\x1c\x65nable_automatic_punctuation\x18\x08 \x01(\x08\x12\r\n\x05model\x18\n \x01(\t\x12\x14\n\x0cnum_channels\x18\x0c \x01(\r\x12\x1c\n\x12\x64o_not_perform_vad\x18\r \x01(\x08H\x00\x12H\n\nvad_config\x18\x0e \x01(\x0b\x32\x32.tinkoff.cloud.stt.v1.VoiceActivityDetectionConfigH\x00\x12\x1e\n\x16\x65nable_denormalization\x18\x10 \x01(\x08\x12!\n\x19\x65nable_sentiment_analysis\x18\x11 \x01(\x08\x12$\n\x1c\x65nable_gender_identification\x18\x12 \x01(\x08\x42\x05\n\x03vadJ\x04\x08\x07\x10\x08J\x04\x08\t\x10\nJ\x04\x08\x0b\x10\x0cJ\x04\x08\x0f\x10\x10R\x18\x65nable_word_time_offsetsR\x08metadataR\x0cuse_enhanced\"\x82\x01\n\x10RecognizeRequest\x12\x37\n\x06\x63onfig\x18\x01 \x01(\x0b\x32\'.tinkoff.cloud.stt.v1.RecognitionConfig\x12\x35\n\x05\x61udio\x18\x02 \x01(\x0b\x32&.tinkoff.cloud.stt.v1.RecognitionAudio\"u\n\x1cSpeechRecognitionAlternative\x12\x12\n\ntranscript\x18\x01 \x01(\t\x12\x12\n\nconfidence\x18\x02 \x01(\x02\x12-\n\x05words\x18\x03 \x03(\x0b\x32\x1e.tinkoff.cloud.stt.v1.WordInfo\"^\n\x1dSpeechSentimentAnalysisResult\x12\x1b\n\x13negative_prob_audio\x18\x01 \x01(\x02\x12 \n\x18negative_prob_audio_text\x18\x02 \x01(\x02\"L\n SpeechGenderIdentificationResult\x12\x12\n\nmale_proba\x18\x01 \x01(\x02\x12\x14\n\x0c\x66\x65male_proba\x18\x02 \x01(\x02\"\x86\x03\n\x17SpeechRecognitionResult\x12H\n\x0c\x61lternatives\x18\x01 \x03(\x0b\x32\x32.tinkoff.cloud.stt.v1.SpeechRecognitionAlternative\x12\x0f\n\x07\x63hannel\x18\x02 \x01(\x05\x12-\n\nstart_time\x18\x03 \x01(\x0b\x32\x19.google.protobuf.Duration\x12+\n\x08\x65nd_time\x18\x04 \x01(\x0b\x32\x19.google.protobuf.Duration\x12V\n\x19sentiment_analysis_result\x18\x05 \x01(\x0b\x32\x33.tinkoff.cloud.stt.v1.SpeechSentimentAnalysisResult\x12\\\n\x1cgender_identification_result\x18\x06 \x01(\x0b\x32\x36.tinkoff.cloud.stt.v1.SpeechGenderIdentificationResult\"S\n\x11RecognizeResponse\x12>\n\x07results\x18\x01 \x03(\x0b\x32-.tinkoff.cloud.stt.v1.SpeechRecognitionResult\"H\n\x14InterimResultsConfig\x12\x1e\n\x16\x65nable_interim_results\x18\x01 \x01(\x08\x12\x10\n\x08interval\x18\x02 \x01(\x02\"\x9c\x01\n\x1bLongRunningRecognizeRequest\x12\x37\n\x06\x63onfig\x18\x01 \x01(\x0b\x32\'.tinkoff.cloud.stt.v1.RecognitionConfig\x12\x35\n\x05\x61udio\x18\x02 \x01(\x0b\x32&.tinkoff.cloud.stt.v1.RecognitionAudio\x12\r\n\x05group\x18\x03 \x01(\t\"\xbb\x01\n\x1aStreamingRecognitionConfig\x12\x37\n\x06\x63onfig\x18\x01 \x01(\x0b\x32\'.tinkoff.cloud.stt.v1.RecognitionConfig\x12\x18\n\x10single_utterance\x18\x02 \x01(\x08\x12J\n\x16interim_results_config\x18\x03 \x01(\x0b\x32*.tinkoff.cloud.stt.v1.InterimResultsConfig\"\x97\x01\n\x19StreamingRecognizeRequest\x12L\n\x10streaming_config\x18\x01 \x01(\x0b\x32\x30.tinkoff.cloud.stt.v1.StreamingRecognitionConfigH\x00\x12\x17\n\raudio_content\x18\x02 \x01(\x0cH\x00\x42\x13\n\x11streaming_request\"\x8c\x01\n\x1aStreamingRecognitionResult\x12I\n\x12recognition_result\x18\x01 \x01(\x0b\x32-.tinkoff.cloud.stt.v1.SpeechRecognitionResult\x12\x10\n\x08is_final\x18\x02 \x01(\x08\x12\x11\n\tstability\x18\x03 \x01(\x02\"k\n\x1aStreamingRecognizeResponse\x12\x41\n\x07results\x18\x02 \x03(\x0b\x32\x30.tinkoff.cloud.stt.v1.StreamingRecognitionResultJ\x04\x08\x01\x10\x02J\x04\x08\x03\x10\x04\"\x8f\x01\n\x1eStreamingUnaryRecognizeRequest\x12\x39\n\x06\x63onfig\x18\x01 \x01(\x0b\x32\'.tinkoff.cloud.stt.v1.RecognitionConfigH\x00\x12\x17\n\raudio_content\x18\x02 \x01(\x0cH\x00\x42\x19\n\x17streaming_unary_request*\x91\x02\n\rAudioEncoding\x12\x18\n\x14\x45NCODING_UNSPECIFIED\x10\x00\x12\x0c\n\x08LINEAR16\x10\x01\x12\t\n\x05MULAW\x10\x03\x12\x08\n\x04\x41LAW\x10\x08\x12\x0c\n\x08RAW_OPUS\x10\x0b\x12\x0e\n\nMPEG_AUDIO\x10\x0c\x12\x0c\n\x08\x41\x44TS_AAC\x10\r\x12\x0e\n\nRAW_AAC_LC\x10\x0e\x12\x11\n\rRAW_ER_AAC_LD\x10\x0f\"\x04\x08\x02\x10\x02\"\x04\x08\x04\x10\x04\"\x04\x08\x05\x10\x05\"\x04\x08\x06\x10\x06\"\x04\x08\x07\x10\x07\"\x04\x08\t\x10\t\"\x04\x08\n\x10\n*\x04\x46LAC*\x03\x41MR*\x06\x41MR_WB*\x08OGG_OPUS*\x16SPEEX_WITH_HEADER_BYTE*\tLINEAR32F*\nOGG_VORBIS2\xd0\x04\n\x0cSpeechToText\x12z\n\tRecognize\x12&.tinkoff.cloud.stt.v1.RecognizeRequest\x1a\'.tinkoff.cloud.stt.v1.RecognizeResponse\"\x1c\x82\xd3\xe4\x93\x02\x16\"\x11/v1/stt:recognize:\x01*\x12{\n\x12StreamingRecognize\x12/.tinkoff.cloud.stt.v1.StreamingRecognizeRequest\x1a\x30.tinkoff.cloud.stt.v1.StreamingRecognizeResponse(\x01\x30\x01\x12\x9b\x01\n\x14LongRunningRecognize\x12\x31.tinkoff.cloud.stt.v1.LongRunningRecognizeRequest\x1a\'.tinkoff.cloud.longrunning.v1.Operation\"\'\x82\xd3\xe4\x93\x02!\"\x1c/v1/stt:longrunningrecognize:\x01*\x12\xa8\x01\n\x17StreamingUnaryRecognize\x12\x34.tinkoff.cloud.stt.v1.StreamingUnaryRecognizeRequest\x1a\'.tinkoff.cloud.stt.v1.RecognizeResponse\",\x82\xd3\xe4\x93\x02&\"!/v1/stt:streaming_unary_recognize:\x01*(\x01\x42NZDgithub.com/Tinkoff/voicekit-examples/golang/pkg/tinkoff/cloud/stt/v1\xa2\x02\x05TVKSRb\x06proto3') _AUDIOENCODING = DESCRIPTOR.enum_types_by_name['AudioEncoding'] AudioEncoding = enum_type_wrapper.EnumTypeWrapper(_AUDIOENCODING) ENCODING_UNSPECIFIED = 0 LINEAR16 = 1 MULAW = 3 ALAW = 8 RAW_OPUS = 11 MPEG_AUDIO = 12 ADTS_AAC = 13 RAW_AAC_LC = 14 RAW_ER_AAC_LD = 15 _RECOGNITIONAUDIO = DESCRIPTOR.message_types_by_name['RecognitionAudio'] _SPEECHCONTEXTPHRASE = DESCRIPTOR.message_types_by_name['SpeechContextPhrase'] _SPEECHCONTEXT = DESCRIPTOR.message_types_by_name['SpeechContext'] _WORDINFO = DESCRIPTOR.message_types_by_name['WordInfo'] _VOICEACTIVITYDETECTIONCONFIG = DESCRIPTOR.message_types_by_name['VoiceActivityDetectionConfig'] _RECOGNITIONCONFIG = DESCRIPTOR.message_types_by_name['RecognitionConfig'] _RECOGNIZEREQUEST = DESCRIPTOR.message_types_by_name['RecognizeRequest'] _SPEECHRECOGNITIONALTERNATIVE = DESCRIPTOR.message_types_by_name['SpeechRecognitionAlternative'] _SPEECHSENTIMENTANALYSISRESULT = DESCRIPTOR.message_types_by_name['SpeechSentimentAnalysisResult'] _SPEECHGENDERIDENTIFICATIONRESULT = DESCRIPTOR.message_types_by_name['SpeechGenderIdentificationResult'] _SPEECHRECOGNITIONRESULT = DESCRIPTOR.message_types_by_name['SpeechRecognitionResult'] _RECOGNIZERESPONSE = DESCRIPTOR.message_types_by_name['RecognizeResponse'] _INTERIMRESULTSCONFIG = DESCRIPTOR.message_types_by_name['InterimResultsConfig'] _LONGRUNNINGRECOGNIZEREQUEST = DESCRIPTOR.message_types_by_name['LongRunningRecognizeRequest'] _STREAMINGRECOGNITIONCONFIG = DESCRIPTOR.message_types_by_name['StreamingRecognitionConfig'] _STREAMINGRECOGNIZEREQUEST = DESCRIPTOR.message_types_by_name['StreamingRecognizeRequest'] _STREAMINGRECOGNITIONRESULT = DESCRIPTOR.message_types_by_name['StreamingRecognitionResult'] _STREAMINGRECOGNIZERESPONSE = DESCRIPTOR.message_types_by_name['StreamingRecognizeResponse'] _STREAMINGUNARYRECOGNIZEREQUEST = DESCRIPTOR.message_types_by_name['StreamingUnaryRecognizeRequest'] RecognitionAudio = _reflection.GeneratedProtocolMessageType('RecognitionAudio', (_message.Message,), { 'DESCRIPTOR' : _RECOGNITIONAUDIO, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.RecognitionAudio) }) _sym_db.RegisterMessage(RecognitionAudio) SpeechContextPhrase = _reflection.GeneratedProtocolMessageType('SpeechContextPhrase', (_message.Message,), { 'DESCRIPTOR' : _SPEECHCONTEXTPHRASE, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.SpeechContextPhrase) }) _sym_db.RegisterMessage(SpeechContextPhrase) SpeechContext = _reflection.GeneratedProtocolMessageType('SpeechContext', (_message.Message,), { 'DESCRIPTOR' : _SPEECHCONTEXT, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.SpeechContext) }) _sym_db.RegisterMessage(SpeechContext) WordInfo = _reflection.GeneratedProtocolMessageType('WordInfo', (_message.Message,), { 'DESCRIPTOR' : _WORDINFO, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.WordInfo) }) _sym_db.RegisterMessage(WordInfo) VoiceActivityDetectionConfig = _reflection.GeneratedProtocolMessageType('VoiceActivityDetectionConfig', (_message.Message,), { 'DESCRIPTOR' : _VOICEACTIVITYDETECTIONCONFIG, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.VoiceActivityDetectionConfig) }) _sym_db.RegisterMessage(VoiceActivityDetectionConfig) RecognitionConfig = _reflection.GeneratedProtocolMessageType('RecognitionConfig', (_message.Message,), { 'DESCRIPTOR' : _RECOGNITIONCONFIG, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.RecognitionConfig) }) _sym_db.RegisterMessage(RecognitionConfig) RecognizeRequest = _reflection.GeneratedProtocolMessageType('RecognizeRequest', (_message.Message,), { 'DESCRIPTOR' : _RECOGNIZEREQUEST, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.RecognizeRequest) }) _sym_db.RegisterMessage(RecognizeRequest) SpeechRecognitionAlternative = _reflection.GeneratedProtocolMessageType('SpeechRecognitionAlternative', (_message.Message,), { 'DESCRIPTOR' : _SPEECHRECOGNITIONALTERNATIVE, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.SpeechRecognitionAlternative) }) _sym_db.RegisterMessage(SpeechRecognitionAlternative) SpeechSentimentAnalysisResult = _reflection.GeneratedProtocolMessageType('SpeechSentimentAnalysisResult', (_message.Message,), { 'DESCRIPTOR' : _SPEECHSENTIMENTANALYSISRESULT, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.SpeechSentimentAnalysisResult) }) _sym_db.RegisterMessage(SpeechSentimentAnalysisResult) SpeechGenderIdentificationResult = _reflection.GeneratedProtocolMessageType('SpeechGenderIdentificationResult', (_message.Message,), { 'DESCRIPTOR' : _SPEECHGENDERIDENTIFICATIONRESULT, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.SpeechGenderIdentificationResult) }) _sym_db.RegisterMessage(SpeechGenderIdentificationResult) SpeechRecognitionResult = _reflection.GeneratedProtocolMessageType('SpeechRecognitionResult', (_message.Message,), { 'DESCRIPTOR' : _SPEECHRECOGNITIONRESULT, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.SpeechRecognitionResult) }) _sym_db.RegisterMessage(SpeechRecognitionResult) RecognizeResponse = _reflection.GeneratedProtocolMessageType('RecognizeResponse', (_message.Message,), { 'DESCRIPTOR' : _RECOGNIZERESPONSE, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.RecognizeResponse) }) _sym_db.RegisterMessage(RecognizeResponse) InterimResultsConfig = _reflection.GeneratedProtocolMessageType('InterimResultsConfig', (_message.Message,), { 'DESCRIPTOR' : _INTERIMRESULTSCONFIG, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.InterimResultsConfig) }) _sym_db.RegisterMessage(InterimResultsConfig) LongRunningRecognizeRequest = _reflection.GeneratedProtocolMessageType('LongRunningRecognizeRequest', (_message.Message,), { 'DESCRIPTOR' : _LONGRUNNINGRECOGNIZEREQUEST, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.LongRunningRecognizeRequest) }) _sym_db.RegisterMessage(LongRunningRecognizeRequest) StreamingRecognitionConfig = _reflection.GeneratedProtocolMessageType('StreamingRecognitionConfig', (_message.Message,), { 'DESCRIPTOR' : _STREAMINGRECOGNITIONCONFIG, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.StreamingRecognitionConfig) }) _sym_db.RegisterMessage(StreamingRecognitionConfig) StreamingRecognizeRequest = _reflection.GeneratedProtocolMessageType('StreamingRecognizeRequest', (_message.Message,), { 'DESCRIPTOR' : _STREAMINGRECOGNIZEREQUEST, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.StreamingRecognizeRequest) }) _sym_db.RegisterMessage(StreamingRecognizeRequest) StreamingRecognitionResult = _reflection.GeneratedProtocolMessageType('StreamingRecognitionResult', (_message.Message,), { 'DESCRIPTOR' : _STREAMINGRECOGNITIONRESULT, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.StreamingRecognitionResult) }) _sym_db.RegisterMessage(StreamingRecognitionResult) StreamingRecognizeResponse = _reflection.GeneratedProtocolMessageType('StreamingRecognizeResponse', (_message.Message,), { 'DESCRIPTOR' : _STREAMINGRECOGNIZERESPONSE, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.StreamingRecognizeResponse) }) _sym_db.RegisterMessage(StreamingRecognizeResponse) StreamingUnaryRecognizeRequest = _reflection.GeneratedProtocolMessageType('StreamingUnaryRecognizeRequest', (_message.Message,), { 'DESCRIPTOR' : _STREAMINGUNARYRECOGNIZEREQUEST, '__module__' : 'tinkoff.cloud.stt.v1.stt_pb2' # @@protoc_insertion_point(class_scope:tinkoff.cloud.stt.v1.StreamingUnaryRecognizeRequest) }) _sym_db.RegisterMessage(StreamingUnaryRecognizeRequest) _SPEECHTOTEXT = DESCRIPTOR.services_by_name['SpeechToText'] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'ZDgithub.com/Tinkoff/voicekit-examples/golang/pkg/tinkoff/cloud/stt/v1\242\002\005TVKSR' _SPEECHTOTEXT.methods_by_name['Recognize']._options = None _SPEECHTOTEXT.methods_by_name['Recognize']._serialized_options = b'\202\323\344\223\002\026\"\021/v1/stt:recognize:\001*' _SPEECHTOTEXT.methods_by_name['LongRunningRecognize']._options = None _SPEECHTOTEXT.methods_by_name['LongRunningRecognize']._serialized_options = b'\202\323\344\223\002!\"\034/v1/stt:longrunningrecognize:\001*' _SPEECHTOTEXT.methods_by_name['StreamingUnaryRecognize']._options = None _SPEECHTOTEXT.methods_by_name['StreamingUnaryRecognize']._serialized_options = b'\202\323\344\223\002&\"!/v1/stt:streaming_unary_recognize:\001*' _AUDIOENCODING._serialized_start=3185 _AUDIOENCODING._serialized_end=3458 _RECOGNITIONAUDIO._serialized_start=166 _RECOGNITIONAUDIO._serialized_end=234 _SPEECHCONTEXTPHRASE._serialized_start=236 _SPEECHCONTEXTPHRASE._serialized_end=286 _SPEECHCONTEXT._serialized_start=288 _SPEECHCONTEXT._serialized_end=375 _WORDINFO._serialized_start=378 _WORDINFO._serialized_end=514 _VOICEACTIVITYDETECTIONCONFIG._serialized_start=517 _VOICEACTIVITYDETECTIONCONFIG._serialized_end=697 _RECOGNITIONCONFIG._serialized_start=700 _RECOGNITIONCONFIG._serialized_end=1303 _RECOGNIZEREQUEST._serialized_start=1306 _RECOGNIZEREQUEST._serialized_end=1436 _SPEECHRECOGNITIONALTERNATIVE._serialized_start=1438 _SPEECHRECOGNITIONALTERNATIVE._serialized_end=1555 _SPEECHSENTIMENTANALYSISRESULT._serialized_start=1557 _SPEECHSENTIMENTANALYSISRESULT._serialized_end=1651 _SPEECHGENDERIDENTIFICATIONRESULT._serialized_start=1653 _SPEECHGENDERIDENTIFICATIONRESULT._serialized_end=1729 _SPEECHRECOGNITIONRESULT._serialized_start=1732 _SPEECHRECOGNITIONRESULT._serialized_end=2122 _RECOGNIZERESPONSE._serialized_start=2124 _RECOGNIZERESPONSE._serialized_end=2207 _INTERIMRESULTSCONFIG._serialized_start=2209 _INTERIMRESULTSCONFIG._serialized_end=2281 _LONGRUNNINGRECOGNIZEREQUEST._serialized_start=2284 _LONGRUNNINGRECOGNIZEREQUEST._serialized_end=2440 _STREAMINGRECOGNITIONCONFIG._serialized_start=2443 _STREAMINGRECOGNITIONCONFIG._serialized_end=2630 _STREAMINGRECOGNIZEREQUEST._serialized_start=2633 _STREAMINGRECOGNIZEREQUEST._serialized_end=2784 _STREAMINGRECOGNITIONRESULT._serialized_start=2787 _STREAMINGRECOGNITIONRESULT._serialized_end=2927 _STREAMINGRECOGNIZERESPONSE._serialized_start=2929 _STREAMINGRECOGNIZERESPONSE._serialized_end=3036 _STREAMINGUNARYRECOGNIZEREQUEST._serialized_start=3039 _STREAMINGUNARYRECOGNIZEREQUEST._serialized_end=3182 _SPEECHTOTEXT._serialized_start=3461 _SPEECHTOTEXT._serialized_end=4053 # @@protoc_insertion_point(module_scope)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 262, 8435, 11876, 17050, 13, 220, 8410, 5626, 48483, 0, 198, 2, 2723, 25, 44569, 2364, 14, 17721, 14, 301, 83, 14, 85, 16, 14, 301, 83, 13, 1676, 1462, 198, 37811, 8645, 515, 8435, 11876, 2438, 526, 15931, 198, 6738, 23645, 13, 11235, 672, 3046, 13, 32538, 1330, 33829, 62, 4906, 62, 48553, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 355, 4808, 20147, 1968, 273, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 62, 7742, 355, 4808, 20147, 1968, 273, 62, 7742, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 3275, 355, 4808, 20500, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 14580, 355, 4808, 5420, 1564, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 6194, 62, 48806, 355, 4808, 1837, 23650, 62, 48806, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 320, 3742, 8, 198, 198, 62, 37047, 62, 9945, 796, 4808, 1837, 23650, 62, 48806, 13, 19463, 3419, 628, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 9478, 62, 40842, 17, 355, 23645, 62, 26518, 62, 11235, 672, 3046, 62, 26518, 62, 32257, 834, 40842, 17, 198, 6738, 23645, 13, 15042, 1330, 37647, 62, 40842, 17, 355, 23645, 62, 26518, 62, 15042, 62, 26518, 62, 34574, 602, 834, 40842, 17, 198, 6738, 44569, 2364, 13, 17721, 13, 6511, 20270, 13, 85, 16, 1330, 890, 20270, 62, 40842, 17, 355, 44569, 2364, 62, 26518, 62, 17721, 62, 26518, 62, 6511, 20270, 62, 26518, 62, 85, 16, 62, 26518, 62, 6511, 20270, 834, 40842, 17, 628, 198, 30910, 36584, 32961, 796, 4808, 20147, 1968, 273, 62, 7742, 13, 19463, 22446, 4550, 32634, 1143, 8979, 7, 65, 6, 59, 77, 59, 87, 16, 316, 676, 2364, 14, 17721, 14, 301, 83, 14, 85, 16, 14, 301, 83, 13, 1676, 1462, 59, 87, 1065, 59, 87, 1415, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 59, 87, 16, 64, 59, 87, 16, 1533, 78, 2467, 14, 11235, 672, 3046, 14, 32257, 13, 1676, 1462, 59, 87, 16, 64, 59, 87, 16, 66, 13297, 14, 15042, 14, 34574, 602, 13, 1676, 1462, 59, 87, 16, 64, 13, 83, 676, 2364, 14, 17721, 14, 6511, 20270, 14, 85, 16, 14, 6511, 20270, 13, 1676, 1462, 7879, 35, 59, 77, 59, 87, 940, 6690, 2360, 653, 21206, 59, 87, 1065, 59, 87, 1157, 59, 77, 59, 87, 2998, 59, 87, 5066, 38564, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 66, 39, 59, 87, 405, 59, 87, 1065, 59, 81, 59, 77, 59, 87, 3070, 9900, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 83, 39, 59, 87, 405, 59, 87, 3682, 59, 87, 15, 68, 59, 77, 59, 87, 15, 66, 59, 87, 5333, 463, 952, 62, 10459, 7879, 17, 59, 77, 59, 87, 1485, 5248, 3055, 21947, 2725, 22789, 59, 87, 1065, 59, 87, 15, 66, 59, 77, 59, 87, 3023, 5239, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 81, 59, 77, 59, 87, 2713, 26675, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2999, 7879, 54, 59, 77, 59, 81, 5248, 3055, 21947, 59, 87, 1065, 7479, 77, 59, 87, 2998, 746, 81, 1386, 59, 87, 1507, 59, 87, 3070, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 737, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 21947, 2725, 22789, 41, 59, 87, 3023, 59, 87, 2919, 59, 87, 486, 59, 87, 940, 59, 87, 2999, 41, 59, 87, 3023, 59, 87, 2919, 59, 87, 2999, 59, 87, 940, 59, 87, 3070, 7879, 59, 87, 3459, 59, 87, 486, 59, 77, 59, 87, 2919, 26449, 12360, 59, 87, 1065, 12, 59, 77, 59, 77, 9688, 62, 2435, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 1129, 13, 13297, 13, 11235, 672, 3046, 13, 26054, 59, 87, 1065, 10, 59, 77, 59, 87, 2919, 59, 87, 2996, 358, 62, 2435, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 1129, 13, 13297, 13, 11235, 672, 3046, 13, 26054, 59, 87, 1065, 59, 87, 15, 66, 59, 77, 59, 87, 3023, 4775, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 1065, 59, 77, 59, 77, 39745, 59, 87, 1507, 59, 87, 3023, 3467, 87, 486, 38016, 87, 2999, 7879, 59, 30894, 19, 59, 87, 486, 59, 77, 59, 87, 16, 66, 35708, 16516, 11242, 3213, 16934, 59, 87, 1065, 59, 87, 16, 65, 59, 77, 59, 87, 1485, 1084, 62, 45862, 62, 32257, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 2999, 59, 87, 1065, 59, 87, 16, 65, 59, 77, 59, 87, 1485, 9806, 62, 45862, 62, 32257, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2999, 59, 87, 1065, 7879, 59, 77, 59, 87, 16, 292, 346, 594, 62, 32257, 62, 400, 10126, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 87, 2999, 59, 87, 1065, 59, 87, 16, 68, 59, 77, 59, 87, 1433, 18217, 594, 62, 1676, 65, 62, 400, 10126, 59, 87, 1507, 59, 87, 3023, 3467, 87, 486, 38016, 87, 2999, 59, 87, 1065, 59, 87, 1433, 59, 77, 59, 87, 15, 68, 59, 87, 5333, 1130, 601, 6517, 59, 87, 1507, 59, 87, 2713, 3467, 87, 486, 38016, 87, 2999, 7879, 59, 87, 9945, 59, 87, 3023, 59, 77, 59, 87, 1157, 6690, 2360, 653, 16934, 59, 87, 1065, 59, 87, 2327, 59, 77, 59, 87, 2919, 59, 87, 2996, 10782, 7656, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 68, 59, 87, 2624, 2, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 21206, 27195, 7656, 59, 87, 1065, 59, 87, 1129, 59, 77, 59, 87, 1157, 39873, 62, 4873, 62, 372, 22877, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 81, 59, 87, 1065, 59, 87, 1314, 59, 77, 59, 81, 16129, 62, 8189, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 1507, 59, 77, 59, 87, 940, 9806, 62, 33645, 2929, 59, 87, 1507, 59, 87, 3023, 3467, 87, 486, 38016, 81, 59, 87, 1065, 59, 87, 1507, 59, 77, 59, 87, 940, 5577, 19689, 62, 24455, 59, 87, 1507, 59, 87, 2713, 3467, 87, 486, 38016, 87, 2919, 59, 87, 1065, 27, 59, 77, 59, 87, 15, 69, 45862, 62, 22866, 82, 59, 87, 1507, 59, 87, 3312, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 2, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 21947, 59, 87, 1065, 3, 59, 77, 59, 87, 16, 66, 59, 87, 2996, 77, 540, 62, 37800, 62, 79, 16260, 2288, 59, 87, 1507, 59, 87, 2919, 3467, 87, 486, 38016, 87, 2919, 59, 87, 1065, 59, 81, 59, 77, 59, 87, 2713, 19849, 59, 87, 1507, 59, 77, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 1415, 59, 77, 59, 87, 15, 66, 22510, 62, 354, 8961, 59, 87, 1507, 59, 87, 15, 66, 3467, 87, 486, 38016, 81, 59, 87, 1065, 59, 87, 16, 66, 59, 77, 59, 87, 1065, 59, 87, 2414, 78, 62, 1662, 62, 525, 687, 62, 85, 324, 59, 87, 1507, 59, 81, 3467, 87, 486, 38016, 87, 2919, 39, 59, 87, 405, 59, 87, 1065, 39, 59, 77, 59, 48005, 324, 62, 11250, 59, 87, 1507, 59, 87, 15, 68, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 2624, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 35708, 16516, 11242, 3213, 16934, 39, 59, 87, 405, 59, 87, 1065, 59, 87, 16, 68, 59, 77, 59, 87, 1433, 59, 87, 2996, 77, 540, 62, 6559, 6636, 1634, 59, 87, 1507, 59, 87, 940, 3467, 87, 486, 38016, 87, 2919, 59, 87, 1065, 0, 59, 77, 59, 87, 1129, 59, 87, 2996, 77, 540, 62, 34086, 3681, 62, 20930, 59, 87, 1507, 59, 87, 1157, 3467, 87, 486, 38016, 87, 2919, 59, 87, 1065, 3, 59, 77, 59, 87, 16, 66, 59, 87, 2996, 77, 540, 62, 8388, 62, 738, 2649, 59, 87, 1507, 59, 87, 1065, 3467, 87, 486, 38016, 87, 2919, 59, 87, 3682, 59, 87, 2713, 59, 77, 59, 87, 3070, 85, 324, 41, 59, 87, 3023, 59, 87, 2919, 59, 87, 2998, 59, 87, 940, 59, 87, 2919, 41, 59, 87, 3023, 59, 87, 2919, 59, 83, 59, 87, 940, 59, 77, 41, 59, 87, 3023, 59, 87, 2919, 59, 87, 15, 65, 59, 87, 940, 59, 87, 15, 66, 41, 59, 87, 3023, 59, 87, 2919, 59, 87, 15, 69, 59, 87, 940, 59, 87, 940, 49, 59, 87, 1507, 59, 87, 2996, 77, 540, 62, 4775, 62, 2435, 62, 8210, 1039, 49, 59, 87, 2919, 38993, 49, 59, 87, 15, 66, 1904, 62, 16550, 2903, 7879, 59, 87, 6469, 59, 87, 486, 59, 77, 59, 87, 940, 6690, 2360, 1096, 18453, 59, 87, 1065, 59, 87, 2718, 59, 77, 59, 87, 3312, 59, 87, 5066, 261, 5647, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 4458, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 653, 16934, 59, 87, 1065, 59, 87, 2327, 59, 77, 59, 87, 2713, 59, 87, 5333, 463, 952, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 5, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 653, 21206, 7879, 84, 59, 77, 59, 87, 16, 66, 5248, 3055, 6690, 2360, 653, 49788, 59, 87, 1065, 59, 87, 1065, 59, 77, 59, 429, 26084, 6519, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 1065, 59, 77, 59, 77, 39745, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2999, 59, 87, 1065, 12, 59, 77, 59, 87, 2713, 10879, 59, 87, 1507, 59, 87, 3070, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 16, 68, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 26449, 12360, 7879, 61, 59, 77, 59, 87, 16, 67, 5248, 3055, 31837, 3681, 32750, 23004, 59, 87, 1065, 59, 87, 16, 65, 59, 77, 59, 87, 1485, 31591, 62, 1676, 65, 62, 24051, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 2999, 59, 87, 1065, 3467, 77, 59, 87, 1507, 31591, 62, 1676, 65, 62, 24051, 62, 5239, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2999, 7879, 43, 59, 77, 24709, 41394, 33234, 2649, 23004, 59, 87, 1065, 59, 87, 1065, 59, 77, 59, 21533, 1000, 62, 1676, 7012, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 2999, 59, 87, 1065, 59, 87, 1415, 59, 77, 59, 87, 15, 66, 59, 87, 2791, 59, 87, 2996, 22606, 62, 1676, 7012, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2999, 7879, 59, 87, 4521, 59, 87, 3070, 59, 77, 59, 87, 1558, 5248, 3055, 6690, 2360, 653, 23004, 59, 87, 1065, 39, 59, 77, 59, 87, 15, 66, 59, 87, 5333, 75, 759, 2929, 59, 87, 1507, 59, 87, 486, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 2624, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 6690, 2360, 653, 49788, 59, 87, 1065, 59, 87, 15, 69, 59, 77, 59, 87, 2998, 59, 87, 5066, 71, 4276, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2713, 59, 87, 1065, 12, 59, 77, 59, 77, 9688, 62, 2435, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 1129, 13, 13297, 13, 11235, 672, 3046, 13, 26054, 59, 87, 1065, 10, 59, 77, 59, 87, 2919, 59, 87, 2996, 358, 62, 2435, 59, 87, 1507, 59, 87, 3023, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 1129, 13, 13297, 13, 11235, 672, 3046, 13, 26054, 59, 87, 1065, 53, 59, 77, 59, 87, 1129, 34086, 3681, 62, 20930, 62, 20274, 59, 87, 1507, 59, 87, 2713, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 2091, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 31837, 3681, 32750, 23004, 59, 87, 1065, 6852, 59, 77, 59, 87, 16, 66, 8388, 62, 738, 2649, 62, 20274, 59, 87, 1507, 59, 87, 3312, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 2623, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 41394, 33234, 2649, 23004, 7879, 50, 59, 77, 59, 87, 1157, 6690, 2360, 1096, 31077, 59, 87, 1065, 29, 59, 77, 59, 87, 2998, 43420, 59, 87, 1507, 59, 87, 486, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 34507, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 6690, 2360, 653, 23004, 7879, 39, 59, 77, 59, 87, 1415, 9492, 320, 25468, 16934, 59, 87, 1065, 59, 87, 16, 68, 59, 77, 59, 87, 1433, 59, 87, 2996, 77, 540, 62, 3849, 320, 62, 43420, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 2919, 59, 87, 1065, 59, 87, 940, 59, 77, 59, 87, 2919, 3849, 2100, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2999, 7879, 59, 87, 24, 66, 59, 87, 486, 59, 77, 59, 87, 16, 65, 14617, 28768, 6690, 2360, 1096, 18453, 59, 87, 1065, 59, 87, 2718, 59, 77, 59, 87, 3312, 59, 87, 5066, 261, 5647, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 4458, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 653, 16934, 59, 87, 1065, 59, 87, 2327, 59, 77, 59, 87, 2713, 59, 87, 5333, 463, 952, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 5, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 653, 21206, 59, 87, 1065, 59, 81, 59, 77, 59, 87, 2713, 8094, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 83, 7879, 59, 87, 11848, 59, 87, 486, 59, 77, 59, 87, 16, 64, 12124, 278, 6690, 2360, 653, 16934, 59, 87, 1065, 59, 87, 2718, 59, 77, 59, 87, 3312, 59, 87, 5066, 261, 5647, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 4458, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 653, 16934, 59, 87, 1065, 59, 87, 1507, 59, 77, 59, 87, 940, 29762, 62, 10381, 590, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2919, 59, 87, 1065, 41, 59, 77, 59, 87, 1433, 3849, 320, 62, 43420, 62, 11250, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 24620, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 9492, 320, 25468, 16934, 7879, 59, 87, 5607, 59, 87, 486, 59, 77, 59, 87, 1129, 12124, 278, 6690, 2360, 1096, 18453, 59, 87, 1065, 43, 59, 77, 59, 87, 940, 5532, 278, 62, 11250, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 1270, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 6690, 2360, 653, 16934, 39, 59, 87, 405, 59, 87, 1065, 59, 87, 1558, 59, 77, 59, 22863, 952, 62, 11299, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 15, 66, 39, 59, 87, 405, 59, 87, 3682, 59, 87, 1485, 59, 77, 59, 87, 1157, 5532, 278, 62, 25927, 7879, 59, 87, 23, 66, 59, 87, 486, 59, 77, 59, 87, 16, 64, 12124, 278, 6690, 2360, 653, 23004, 59, 87, 1065, 40, 59, 77, 59, 87, 1065, 26243, 653, 62, 20274, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 34507, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 6690, 2360, 653, 23004, 59, 87, 1065, 59, 87, 940, 59, 77, 59, 87, 2919, 271, 62, 20311, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 2919, 59, 87, 1065, 59, 87, 1157, 59, 77, 59, 83, 301, 1799, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 87, 2999, 7879, 74, 59, 77, 59, 87, 16, 64, 12124, 278, 6690, 2360, 1096, 31077, 59, 87, 1065, 59, 87, 3901, 59, 77, 59, 87, 2998, 43420, 59, 87, 1507, 59, 87, 2999, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 1270, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 6690, 2360, 653, 23004, 41, 59, 87, 3023, 59, 87, 2919, 59, 87, 486, 59, 87, 940, 59, 87, 2999, 41, 59, 87, 3023, 59, 87, 2919, 59, 87, 3070, 59, 87, 940, 59, 87, 3023, 7879, 59, 87, 23, 69, 59, 87, 486, 59, 77, 59, 87, 16, 68, 12124, 278, 3118, 560, 6690, 2360, 1096, 18453, 59, 87, 1065, 59, 87, 2670, 59, 77, 59, 87, 3312, 59, 87, 5066, 261, 5647, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 4458, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 653, 16934, 39, 59, 87, 405, 59, 87, 1065, 59, 87, 1558, 59, 77, 59, 22863, 952, 62, 11299, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 15, 66, 39, 59, 87, 405, 59, 87, 3682, 59, 87, 1129, 59, 77, 59, 87, 1558, 5532, 278, 62, 403, 560, 62, 25927, 9, 59, 87, 6420, 59, 87, 2999, 59, 77, 59, 81, 21206, 27195, 7656, 59, 87, 1065, 59, 87, 1507, 59, 77, 59, 87, 1415, 59, 87, 2231, 7792, 3727, 2751, 62, 4944, 48451, 28343, 59, 87, 940, 59, 87, 405, 59, 87, 1065, 59, 87, 15, 66, 59, 77, 59, 87, 2919, 24027, 1503, 1433, 59, 87, 940, 59, 87, 486, 59, 87, 1065, 59, 83, 59, 77, 59, 87, 2713, 44, 6239, 12298, 59, 87, 940, 59, 87, 3070, 59, 87, 1065, 59, 87, 2919, 59, 77, 59, 87, 3023, 59, 87, 3901, 43, 12298, 59, 87, 940, 59, 87, 2919, 59, 87, 1065, 59, 87, 15, 66, 59, 77, 59, 87, 2919, 20530, 62, 3185, 2937, 59, 87, 940, 59, 87, 15, 65, 59, 87, 1065, 59, 87, 15, 68, 59, 77, 59, 77, 7378, 7156, 62, 48877, 9399, 59, 87, 940, 59, 87, 15, 66, 59, 87, 1065, 59, 87, 15, 66, 59, 77, 59, 87, 2919, 59, 87, 3901, 59, 87, 2598, 4694, 62, 32, 2246, 59, 87, 940, 59, 81, 59, 87, 1065, 59, 87, 15, 68, 59, 77, 59, 77, 20530, 62, 32, 2246, 62, 5639, 59, 87, 940, 59, 87, 15, 68, 59, 87, 1065, 59, 87, 1157, 59, 77, 59, 81, 20530, 62, 1137, 62, 32, 2246, 62, 11163, 59, 87, 940, 59, 87, 15, 69, 7879, 59, 87, 3023, 59, 87, 2919, 59, 87, 2999, 59, 87, 940, 59, 87, 2999, 7879, 59, 87, 3023, 59, 87, 2919, 59, 87, 3023, 59, 87, 940, 59, 87, 3023, 7879, 59, 87, 3023, 59, 87, 2919, 59, 87, 2713, 59, 87, 940, 59, 87, 2713, 7879, 59, 87, 3023, 59, 87, 2919, 59, 87, 3312, 59, 87, 940, 59, 87, 3312, 7879, 59, 87, 3023, 59, 87, 2919, 59, 87, 2998, 59, 87, 940, 59, 87, 2998, 7879, 59, 87, 3023, 59, 87, 2919, 59, 83, 59, 87, 940, 59, 83, 7879, 59, 87, 3023, 59, 87, 2919, 59, 77, 59, 87, 940, 59, 77, 9, 59, 87, 3023, 59, 87, 3510, 43, 2246, 9, 59, 87, 3070, 59, 87, 3901, 13599, 9, 59, 87, 3312, 59, 87, 3901, 13599, 62, 45607, 9, 59, 87, 2919, 7730, 38, 62, 3185, 2937, 9, 59, 87, 1433, 4303, 36, 6369, 62, 54, 10554, 62, 37682, 1137, 62, 17513, 9328, 9, 59, 83, 24027, 1503, 2624, 37, 9, 59, 77, 7730, 38, 62, 53, 1581, 33, 1797, 17, 59, 24954, 15, 59, 87, 3023, 59, 77, 59, 87, 15, 66, 5248, 3055, 2514, 8206, 59, 87, 1065, 89, 59, 77, 59, 83, 6690, 2360, 1096, 59, 87, 1065, 5, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 1096, 18453, 59, 87, 16, 64, 59, 4458, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 1096, 31077, 7879, 59, 87, 16, 66, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 59, 87, 1433, 7879, 59, 87, 1157, 14, 85, 16, 14, 301, 83, 25, 26243, 1096, 7479, 87, 486, 9, 59, 87, 1065, 31478, 77, 59, 87, 1065, 12124, 278, 6690, 2360, 1096, 59, 87, 1065, 11757, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 6690, 2360, 1096, 18453, 59, 87, 16, 64, 59, 87, 1270, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 6690, 2360, 1096, 31077, 38016, 87, 486, 59, 87, 1270, 59, 87, 486, 59, 87, 1065, 59, 87, 24, 65, 59, 87, 486, 59, 77, 59, 87, 1415, 14617, 28768, 6690, 2360, 1096, 59, 87, 1065, 59, 87, 3132, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 14617, 28768, 6690, 2360, 1096, 18453, 59, 87, 16, 64, 59, 4458, 83, 676, 2364, 13, 17721, 13, 6511, 20270, 13, 85, 16, 13, 32180, 7879, 43054, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 0, 7879, 59, 87, 16, 66, 14, 85, 16, 14, 301, 83, 25, 6511, 20270, 26243, 1096, 7479, 87, 486, 9, 59, 87, 1065, 59, 27865, 23, 59, 87, 486, 59, 77, 59, 87, 1558, 12124, 278, 3118, 560, 6690, 2360, 1096, 59, 87, 1065, 59, 87, 2682, 13, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 3118, 560, 6690, 2360, 1096, 18453, 59, 87, 16, 64, 59, 4458, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 1096, 31077, 34607, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 5, 7879, 48443, 85, 16, 14, 301, 83, 25, 5532, 278, 62, 403, 560, 62, 26243, 1096, 7479, 87, 486, 9, 38016, 87, 486, 59, 87, 3682, 37371, 35, 12567, 13, 785, 14, 51, 676, 2364, 14, 38888, 15813, 12, 1069, 12629, 14, 70, 349, 648, 14, 35339, 14, 83, 676, 2364, 14, 17721, 14, 301, 83, 14, 85, 16, 59, 27865, 17, 59, 87, 2999, 59, 87, 2713, 6849, 42, 12562, 65, 59, 87, 3312, 1676, 1462, 18, 11537, 198, 198, 62, 48877, 9399, 24181, 3727, 2751, 796, 22196, 36584, 32961, 13, 44709, 62, 19199, 62, 1525, 62, 3672, 17816, 21206, 27195, 7656, 20520, 198, 21206, 27195, 7656, 796, 33829, 62, 4906, 62, 48553, 13, 4834, 388, 6030, 36918, 2848, 28264, 48877, 9399, 24181, 3727, 2751, 8, 198, 24181, 3727, 2751, 62, 4944, 48451, 28343, 796, 657, 198, 24027, 1503, 1433, 796, 352, 198, 44, 6239, 12298, 796, 513, 198, 1847, 12298, 796, 807, 198, 20530, 62, 3185, 2937, 796, 1367, 198, 7378, 7156, 62, 48877, 9399, 796, 1105, 198, 2885, 4694, 62, 32, 2246, 796, 1511, 198, 20530, 62, 32, 2246, 62, 5639, 796, 1478, 198, 20530, 62, 1137, 62, 32, 2246, 62, 11163, 796, 1315, 628, 198, 62, 38827, 7730, 45, 17941, 48877, 9399, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 6690, 2360, 653, 21206, 20520, 198, 62, 4303, 36, 25994, 37815, 6369, 7250, 17184, 11159, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 5248, 3055, 21947, 2725, 22789, 20520, 198, 62, 4303, 36, 25994, 10943, 32541, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 5248, 3055, 21947, 20520, 198, 62, 54, 12532, 10778, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 26449, 12360, 20520, 198, 62, 29516, 8476, 10659, 3824, 9050, 35, 2767, 24565, 10943, 16254, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 35708, 16516, 11242, 3213, 16934, 20520, 198, 62, 38827, 7730, 45, 17941, 10943, 16254, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 6690, 2360, 653, 16934, 20520, 198, 62, 38827, 7730, 45, 14887, 9338, 35780, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 6690, 2360, 1096, 18453, 20520, 198, 62, 4303, 36, 25994, 38827, 7730, 45, 17941, 1847, 31800, 37045, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 5248, 3055, 6690, 2360, 653, 49788, 20520, 198, 62, 4303, 36, 2943, 7998, 3525, 3955, 3525, 1565, 1847, 16309, 1797, 19535, 16724, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 5248, 3055, 31837, 3681, 32750, 23004, 20520, 198, 62, 4303, 36, 25994, 38, 10619, 1137, 25256, 30643, 6234, 19535, 16724, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 5248, 3055, 41394, 33234, 2649, 23004, 20520, 198, 62, 4303, 36, 25994, 38827, 7730, 45, 17941, 19535, 16724, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 5248, 3055, 6690, 2360, 653, 23004, 20520, 198, 62, 38827, 7730, 45, 14887, 1137, 1546, 47, 1340, 5188, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 6690, 2360, 1096, 31077, 20520, 198, 62, 41358, 3955, 46274, 10943, 16254, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 9492, 320, 25468, 16934, 20520, 198, 62, 43, 1340, 10761, 4944, 15871, 38827, 7730, 45, 14887, 9338, 35780, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 14617, 28768, 6690, 2360, 1096, 18453, 20520, 198, 62, 2257, 32235, 2751, 38827, 7730, 45, 17941, 10943, 16254, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 12124, 278, 6690, 2360, 653, 16934, 20520, 198, 62, 2257, 32235, 2751, 38827, 7730, 45, 14887, 9338, 35780, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 12124, 278, 6690, 2360, 1096, 18453, 20520, 198, 62, 2257, 32235, 2751, 38827, 7730, 45, 17941, 19535, 16724, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 12124, 278, 6690, 2360, 653, 23004, 20520, 198, 62, 2257, 32235, 2751, 38827, 7730, 45, 14887, 1137, 1546, 47, 1340, 5188, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 12124, 278, 6690, 2360, 1096, 31077, 20520, 198, 62, 2257, 32235, 2751, 4944, 13153, 38827, 7730, 45, 14887, 9338, 35780, 796, 22196, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 12124, 278, 3118, 560, 6690, 2360, 1096, 18453, 20520, 198, 6690, 2360, 653, 21206, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 6690, 2360, 653, 21206, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 38827, 7730, 45, 17941, 48877, 9399, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 653, 21206, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 6690, 2360, 653, 21206, 8, 198, 198, 5248, 3055, 21947, 2725, 22789, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 5248, 3055, 21947, 2725, 22789, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 4303, 36, 25994, 37815, 6369, 7250, 17184, 11159, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 21947, 2725, 22789, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 5248, 3055, 21947, 2725, 22789, 8, 198, 198, 5248, 3055, 21947, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 5248, 3055, 21947, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 4303, 36, 25994, 10943, 32541, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 21947, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 5248, 3055, 21947, 8, 198, 198, 26449, 12360, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 26449, 12360, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 54, 12532, 10778, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 26449, 12360, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 26449, 12360, 8, 198, 198, 35708, 16516, 11242, 3213, 16934, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 35708, 16516, 11242, 3213, 16934, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 29516, 8476, 10659, 3824, 9050, 35, 2767, 24565, 10943, 16254, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 35708, 16516, 11242, 3213, 16934, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 35708, 16516, 11242, 3213, 16934, 8, 198, 198, 6690, 2360, 653, 16934, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 6690, 2360, 653, 16934, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 38827, 7730, 45, 17941, 10943, 16254, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 653, 16934, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 6690, 2360, 653, 16934, 8, 198, 198, 6690, 2360, 1096, 18453, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 6690, 2360, 1096, 18453, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 38827, 7730, 45, 14887, 9338, 35780, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 1096, 18453, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 6690, 2360, 1096, 18453, 8, 198, 198, 5248, 3055, 6690, 2360, 653, 49788, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 5248, 3055, 6690, 2360, 653, 49788, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 4303, 36, 25994, 38827, 7730, 45, 17941, 1847, 31800, 37045, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 6690, 2360, 653, 49788, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 5248, 3055, 6690, 2360, 653, 49788, 8, 198, 198, 5248, 3055, 31837, 3681, 32750, 23004, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 5248, 3055, 31837, 3681, 32750, 23004, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 4303, 36, 2943, 7998, 3525, 3955, 3525, 1565, 1847, 16309, 1797, 19535, 16724, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 31837, 3681, 32750, 23004, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 5248, 3055, 31837, 3681, 32750, 23004, 8, 198, 198, 5248, 3055, 41394, 33234, 2649, 23004, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 5248, 3055, 41394, 33234, 2649, 23004, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 4303, 36, 25994, 38, 10619, 1137, 25256, 30643, 6234, 19535, 16724, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 41394, 33234, 2649, 23004, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 5248, 3055, 41394, 33234, 2649, 23004, 8, 198, 198, 5248, 3055, 6690, 2360, 653, 23004, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 5248, 3055, 6690, 2360, 653, 23004, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 4303, 36, 25994, 38827, 7730, 45, 17941, 19535, 16724, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 5248, 3055, 6690, 2360, 653, 23004, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 5248, 3055, 6690, 2360, 653, 23004, 8, 198, 198, 6690, 2360, 1096, 31077, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 6690, 2360, 1096, 31077, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 38827, 7730, 45, 14887, 1137, 1546, 47, 1340, 5188, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 6690, 2360, 1096, 31077, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 6690, 2360, 1096, 31077, 8, 198, 198, 9492, 320, 25468, 16934, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 9492, 320, 25468, 16934, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 41358, 3955, 46274, 10943, 16254, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 9492, 320, 25468, 16934, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 9492, 320, 25468, 16934, 8, 198, 198, 14617, 28768, 6690, 2360, 1096, 18453, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 14617, 28768, 6690, 2360, 1096, 18453, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 43, 1340, 10761, 4944, 15871, 38827, 7730, 45, 14887, 9338, 35780, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 14617, 28768, 6690, 2360, 1096, 18453, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 14617, 28768, 6690, 2360, 1096, 18453, 8, 198, 198, 12124, 278, 6690, 2360, 653, 16934, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 12124, 278, 6690, 2360, 653, 16934, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 2257, 32235, 2751, 38827, 7730, 45, 17941, 10943, 16254, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 6690, 2360, 653, 16934, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 12124, 278, 6690, 2360, 653, 16934, 8, 198, 198, 12124, 278, 6690, 2360, 1096, 18453, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 12124, 278, 6690, 2360, 1096, 18453, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 2257, 32235, 2751, 38827, 7730, 45, 14887, 9338, 35780, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 6690, 2360, 1096, 18453, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 12124, 278, 6690, 2360, 1096, 18453, 8, 198, 198, 12124, 278, 6690, 2360, 653, 23004, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 12124, 278, 6690, 2360, 653, 23004, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 2257, 32235, 2751, 38827, 7730, 45, 17941, 19535, 16724, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 6690, 2360, 653, 23004, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 12124, 278, 6690, 2360, 653, 23004, 8, 198, 198, 12124, 278, 6690, 2360, 1096, 31077, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 12124, 278, 6690, 2360, 1096, 31077, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 2257, 32235, 2751, 38827, 7730, 45, 14887, 1137, 1546, 47, 1340, 5188, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 6690, 2360, 1096, 31077, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 12124, 278, 6690, 2360, 1096, 31077, 8, 198, 198, 12124, 278, 3118, 560, 6690, 2360, 1096, 18453, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 12124, 278, 3118, 560, 6690, 2360, 1096, 18453, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 2257, 32235, 2751, 4944, 13153, 38827, 7730, 45, 14887, 9338, 35780, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 301, 83, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 83, 676, 2364, 13, 17721, 13, 301, 83, 13, 85, 16, 13, 12124, 278, 3118, 560, 6690, 2360, 1096, 18453, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 12124, 278, 3118, 560, 6690, 2360, 1096, 18453, 8, 198, 198, 62, 4303, 36, 2943, 6535, 2394, 13918, 796, 22196, 36584, 32961, 13, 30416, 62, 1525, 62, 3672, 17816, 5248, 3055, 2514, 8206, 20520, 198, 361, 4808, 20147, 1968, 273, 13557, 19108, 62, 34, 62, 30910, 36584, 51, 20673, 6624, 10352, 25, 628, 220, 22196, 36584, 32961, 13557, 25811, 796, 6045, 198, 220, 22196, 36584, 32961, 13557, 46911, 1143, 62, 25811, 796, 275, 6, 57, 35, 12567, 13, 785, 14, 51, 676, 2364, 14, 38888, 15813, 12, 1069, 12629, 14, 70, 349, 648, 14, 35339, 14, 83, 676, 2364, 14, 17721, 14, 301, 83, 14, 85, 16, 59, 27877, 59, 21601, 59, 22544, 6849, 42, 12562, 6, 198, 220, 4808, 4303, 36, 2943, 6535, 2394, 13918, 13, 24396, 82, 62, 1525, 62, 3672, 17816, 6690, 2360, 1096, 6, 4083, 62, 25811, 796, 6045, 198, 220, 4808, 4303, 36, 2943, 6535, 2394, 13918, 13, 24396, 82, 62, 1525, 62, 3672, 17816, 6690, 2360, 1096, 6, 4083, 62, 46911, 1143, 62, 25811, 796, 275, 6, 59, 19004, 59, 32637, 59, 33535, 59, 22047, 59, 21601, 59, 45987, 7879, 59, 46821, 14, 85, 16, 14, 301, 83, 25, 26243, 1096, 7479, 8298, 9, 6, 198, 220, 4808, 4303, 36, 2943, 6535, 2394, 13918, 13, 24396, 82, 62, 1525, 62, 3672, 17816, 14617, 28768, 6690, 2360, 1096, 6, 4083, 62, 25811, 796, 6045, 198, 220, 4808, 4303, 36, 2943, 6535, 2394, 13918, 13, 24396, 82, 62, 1525, 62, 3672, 17816, 14617, 28768, 6690, 2360, 1096, 6, 4083, 62, 46911, 1143, 62, 25811, 796, 275, 6, 59, 19004, 59, 32637, 59, 33535, 59, 22047, 59, 21601, 0, 7879, 59, 49841, 14, 85, 16, 14, 301, 83, 25, 6511, 20270, 26243, 1096, 7479, 8298, 9, 6, 198, 220, 4808, 4303, 36, 2943, 6535, 2394, 13918, 13, 24396, 82, 62, 1525, 62, 3672, 17816, 12124, 278, 3118, 560, 6690, 2360, 1096, 6, 4083, 62, 25811, 796, 6045, 198, 220, 4808, 4303, 36, 2943, 6535, 2394, 13918, 13, 24396, 82, 62, 1525, 62, 3672, 17816, 12124, 278, 3118, 560, 6690, 2360, 1096, 6, 4083, 62, 46911, 1143, 62, 25811, 796, 275, 6, 59, 19004, 59, 32637, 59, 33535, 59, 22047, 59, 21601, 5, 7879, 48443, 85, 16, 14, 301, 83, 25, 5532, 278, 62, 403, 560, 62, 26243, 1096, 7479, 8298, 9, 6, 198, 220, 4808, 48877, 9399, 24181, 3727, 2751, 13557, 46911, 1143, 62, 9688, 28, 18, 21652, 198, 220, 4808, 48877, 9399, 24181, 3727, 2751, 13557, 46911, 1143, 62, 437, 28, 27712, 23, 198, 220, 4808, 38827, 7730, 45, 17941, 48877, 9399, 13557, 46911, 1143, 62, 9688, 28, 23055, 198, 220, 4808, 38827, 7730, 45, 17941, 48877, 9399, 13557, 46911, 1143, 62, 437, 28, 24409, 198, 220, 4808, 4303, 36, 25994, 37815, 6369, 7250, 17184, 11159, 13557, 46911, 1143, 62, 9688, 28, 24940, 198, 220, 4808, 4303, 36, 25994, 37815, 6369, 7250, 17184, 11159, 13557, 46911, 1143, 62, 437, 28, 27033, 198, 220, 4808, 4303, 36, 25994, 10943, 32541, 13557, 46911, 1143, 62, 9688, 28, 25270, 198, 220, 4808, 4303, 36, 25994, 10943, 32541, 13557, 46911, 1143, 62, 437, 28, 22318, 198, 220, 4808, 54, 12532, 10778, 13557, 46911, 1143, 62, 9688, 28, 30695, 198, 220, 4808, 54, 12532, 10778, 13557, 46911, 1143, 62, 437, 28, 47396, 198, 220, 4808, 29516, 8476, 10659, 3824, 9050, 35, 2767, 24565, 10943, 16254, 13557, 46911, 1143, 62, 9688, 28, 48170, 198, 220, 4808, 29516, 8476, 10659, 3824, 9050, 35, 2767, 24565, 10943, 16254, 13557, 46911, 1143, 62, 437, 28, 40035, 198, 220, 4808, 38827, 7730, 45, 17941, 10943, 16254, 13557, 46911, 1143, 62, 9688, 28, 9879, 198, 220, 4808, 38827, 7730, 45, 17941, 10943, 16254, 13557, 46911, 1143, 62, 437, 28, 12952, 18, 198, 220, 4808, 38827, 7730, 45, 14887, 9338, 35780, 13557, 46911, 1143, 62, 9688, 28, 12952, 21, 198, 220, 4808, 38827, 7730, 45, 14887, 9338, 35780, 13557, 46911, 1143, 62, 437, 28, 1415, 2623, 198, 220, 4808, 4303, 36, 25994, 38827, 7730, 45, 17941, 1847, 31800, 37045, 13557, 46911, 1143, 62, 9688, 28, 1415, 2548, 198, 220, 4808, 4303, 36, 25994, 38827, 7730, 45, 17941, 1847, 31800, 37045, 13557, 46911, 1143, 62, 437, 28, 1314, 2816, 198, 220, 4808, 4303, 36, 2943, 7998, 3525, 3955, 3525, 1565, 1847, 16309, 1797, 19535, 16724, 13557, 46911, 1143, 62, 9688, 28, 1314, 3553, 198, 220, 4808, 4303, 36, 2943, 7998, 3525, 3955, 3525, 1565, 1847, 16309, 1797, 19535, 16724, 13557, 46911, 1143, 62, 437, 28, 1433, 4349, 198, 220, 4808, 4303, 36, 25994, 38, 10619, 1137, 25256, 30643, 6234, 19535, 16724, 13557, 46911, 1143, 62, 9688, 28, 1433, 4310, 198, 220, 4808, 4303, 36, 25994, 38, 10619, 1137, 25256, 30643, 6234, 19535, 16724, 13557, 46911, 1143, 62, 437, 28, 1558, 1959, 198, 220, 4808, 4303, 36, 25994, 38827, 7730, 45, 17941, 19535, 16724, 13557, 46911, 1143, 62, 9688, 28, 1558, 2624, 198, 220, 4808, 4303, 36, 25994, 38827, 7730, 45, 17941, 19535, 16724, 13557, 46911, 1143, 62, 437, 28, 17, 18376, 198, 220, 4808, 38827, 7730, 45, 14887, 1137, 1546, 47, 1340, 5188, 13557, 46911, 1143, 62, 9688, 28, 17, 17464, 198, 220, 4808, 38827, 7730, 45, 14887, 1137, 1546, 47, 1340, 5188, 13557, 46911, 1143, 62, 437, 28, 17572, 22, 198, 220, 4808, 41358, 3955, 46274, 10943, 16254, 13557, 46911, 1143, 62, 9688, 28, 17572, 24, 198, 220, 4808, 41358, 3955, 46274, 10943, 16254, 13557, 46911, 1143, 62, 437, 28, 1828, 6659, 198, 220, 4808, 43, 1340, 10761, 4944, 15871, 38827, 7730, 45, 14887, 9338, 35780, 13557, 46911, 1143, 62, 9688, 28, 1828, 5705, 198, 220, 4808, 43, 1340, 10761, 4944, 15871, 38827, 7730, 45, 14887, 9338, 35780, 13557, 46911, 1143, 62, 437, 28, 1731, 1821, 198, 220, 4808, 2257, 32235, 2751, 38827, 7730, 45, 17941, 10943, 16254, 13557, 46911, 1143, 62, 9688, 28, 1731, 3559, 198, 220, 4808, 2257, 32235, 2751, 38827, 7730, 45, 17941, 10943, 16254, 13557, 46911, 1143, 62, 437, 28, 2075, 1270, 198, 220, 4808, 2257, 32235, 2751, 38827, 7730, 45, 14887, 9338, 35780, 13557, 46911, 1143, 62, 9688, 28, 2075, 2091, 198, 220, 4808, 2257, 32235, 2751, 38827, 7730, 45, 14887, 9338, 35780, 13557, 46911, 1143, 62, 437, 28, 1983, 5705, 198, 220, 4808, 2257, 32235, 2751, 38827, 7730, 45, 17941, 19535, 16724, 13557, 46911, 1143, 62, 9688, 28, 1983, 5774, 198, 220, 4808, 2257, 32235, 2751, 38827, 7730, 45, 17941, 19535, 16724, 13557, 46911, 1143, 62, 437, 28, 1959, 1983, 198, 220, 4808, 2257, 32235, 2751, 38827, 7730, 45, 14887, 1137, 1546, 47, 1340, 5188, 13557, 46911, 1143, 62, 9688, 28, 1959, 1959, 198, 220, 4808, 2257, 32235, 2751, 38827, 7730, 45, 14887, 1137, 1546, 47, 1340, 5188, 13557, 46911, 1143, 62, 437, 28, 1270, 2623, 198, 220, 4808, 2257, 32235, 2751, 4944, 13153, 38827, 7730, 45, 14887, 9338, 35780, 13557, 46911, 1143, 62, 9688, 28, 1270, 2670, 198, 220, 4808, 2257, 32235, 2751, 4944, 13153, 38827, 7730, 45, 14887, 9338, 35780, 13557, 46911, 1143, 62, 437, 28, 18, 24294, 198, 220, 4808, 4303, 36, 2943, 6535, 2394, 13918, 13557, 46911, 1143, 62, 9688, 28, 2682, 5333, 198, 220, 4808, 4303, 36, 2943, 6535, 2394, 13918, 13557, 46911, 1143, 62, 437, 28, 1821, 4310, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 21412, 62, 29982, 8, 198 ]
2.268885
8,234
from .engine import Engine from ..utils.collate import box_collate_fn from ..utils.visualizer import ObjectDetectionVisualizer from ..utils.centernet.parse_detections import parse_detections, parse_batch_detections from ..utils.ap_metrics import APMeter import torch import os import json
[ 6738, 764, 18392, 1330, 7117, 198, 6738, 11485, 26791, 13, 26000, 378, 1330, 3091, 62, 26000, 378, 62, 22184, 198, 6738, 11485, 26791, 13, 41464, 7509, 1330, 9515, 11242, 3213, 36259, 7509, 198, 6738, 11485, 26791, 13, 1087, 1142, 316, 13, 29572, 62, 15255, 478, 507, 1330, 21136, 62, 15255, 478, 507, 11, 21136, 62, 43501, 62, 15255, 478, 507, 198, 6738, 11485, 26791, 13, 499, 62, 4164, 10466, 1330, 3486, 44, 2357, 198, 11748, 28034, 198, 11748, 28686, 198, 11748, 33918, 628 ]
3.493976
83
import os from views import app if __name__ == "__main__": host = os.environ.get('HOST') app.run(host=host)
[ 11748, 28686, 198, 198, 6738, 5009, 1330, 598, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2583, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 39, 10892, 11537, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 28, 4774, 8, 198 ]
2.408163
49
# Demonstrates the following: # plotting logarithmic axes # user-defined functions # "where" function, NumPy array conditional import numpy as np import matplotlib.pyplot as plt # Define the sinc function, with output for x=0 defined # as a special case to avoid division by zero # create arrays for plotting x = np.arange(0., 10., 0.1) y = np.exp(x) t = np.linspace(-10., 10., 100) z = s(t) # create a figure window fig = plt.figure(1, figsize=(9,8)) # subplot: linear plot of exponential ax1 = fig.add_subplot(2,2,1) ax1.plot(x, y) ax1.set_xlabel('time (ms)') ax1.set_ylabel('distance (mm)') ax1.set_title('exponential') # subplot: semi-log plot of exponential ax2 = fig.add_subplot(2,2,2) ax2.plot(x, y) ax2.set_yscale('log') ax2.set_xlabel('time (ms)') ax2.set_ylabel('distance (mm)') ax2.set_title('exponential') # subplot: wide subplot of sinc function ax3 = fig.add_subplot(2,1,2) ax3.plot(t, z, 'r') ax3.axhline(color='gray') ax3.axvline(color='gray') ax3.set_xlabel('angle (deg)') ax3.set_ylabel('electric field') ax3.set_title('sinc function') # Adjusts while space around plots to avoid collisions between subplots fig.tight_layout() plt.savefig("MultPlotDemo.pdf") plt.show()
[ 2, 7814, 2536, 689, 262, 1708, 25, 198, 2, 220, 220, 220, 220, 29353, 2604, 283, 342, 9383, 34197, 198, 2, 220, 220, 220, 220, 2836, 12, 23211, 5499, 198, 2, 220, 220, 220, 220, 366, 3003, 1, 2163, 11, 31835, 20519, 7177, 26340, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 2, 2896, 500, 262, 264, 1939, 2163, 11, 351, 5072, 329, 2124, 28, 15, 5447, 198, 2, 355, 257, 2041, 1339, 284, 3368, 7297, 416, 6632, 198, 198, 2, 2251, 26515, 329, 29353, 198, 87, 796, 45941, 13, 283, 858, 7, 15, 1539, 838, 1539, 657, 13, 16, 8, 198, 88, 796, 45941, 13, 11201, 7, 87, 8, 198, 198, 83, 796, 45941, 13, 21602, 10223, 32590, 940, 1539, 838, 1539, 1802, 8, 198, 89, 796, 264, 7, 83, 8, 198, 198, 2, 2251, 257, 3785, 4324, 198, 5647, 796, 458, 83, 13, 26875, 7, 16, 11, 2336, 7857, 16193, 24, 11, 23, 4008, 198, 198, 2, 850, 29487, 25, 14174, 7110, 286, 39682, 198, 897, 16, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 17, 11, 17, 11, 16, 8, 198, 897, 16, 13, 29487, 7, 87, 11, 331, 8, 198, 897, 16, 13, 2617, 62, 87, 18242, 10786, 2435, 357, 907, 8, 11537, 198, 897, 16, 13, 2617, 62, 2645, 9608, 10786, 30246, 357, 3020, 8, 11537, 198, 897, 16, 13, 2617, 62, 7839, 10786, 11201, 35470, 11537, 198, 198, 2, 850, 29487, 25, 10663, 12, 6404, 7110, 286, 39682, 198, 897, 17, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 17, 11, 17, 11, 17, 8, 198, 897, 17, 13, 29487, 7, 87, 11, 331, 8, 198, 897, 17, 13, 2617, 62, 28349, 1000, 10786, 6404, 11537, 198, 897, 17, 13, 2617, 62, 87, 18242, 10786, 2435, 357, 907, 8, 11537, 198, 897, 17, 13, 2617, 62, 2645, 9608, 10786, 30246, 357, 3020, 8, 11537, 198, 897, 17, 13, 2617, 62, 7839, 10786, 11201, 35470, 11537, 198, 198, 2, 850, 29487, 25, 3094, 850, 29487, 286, 264, 1939, 2163, 198, 897, 18, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 17, 11, 16, 11, 17, 8, 198, 897, 18, 13, 29487, 7, 83, 11, 1976, 11, 705, 81, 11537, 198, 897, 18, 13, 897, 71, 1370, 7, 8043, 11639, 44605, 11537, 198, 897, 18, 13, 897, 85, 1370, 7, 8043, 11639, 44605, 11537, 198, 897, 18, 13, 2617, 62, 87, 18242, 10786, 9248, 357, 13500, 8, 11537, 198, 897, 18, 13, 2617, 62, 2645, 9608, 10786, 31067, 2214, 11537, 198, 897, 18, 13, 2617, 62, 7839, 10786, 82, 1939, 2163, 11537, 198, 198, 2, 20292, 82, 981, 2272, 1088, 21528, 284, 3368, 31998, 1022, 850, 489, 1747, 198, 5647, 13, 33464, 62, 39786, 3419, 198, 198, 489, 83, 13, 21928, 5647, 7203, 15205, 43328, 11522, 78, 13, 12315, 4943, 198, 489, 83, 13, 12860, 3419, 198 ]
2.505176
483