content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import asyncio from flask import ( abort, Blueprint, Response, render_template, request, current_app as app, ) # local imports from . import routes from luts import huc8_gdf huc_api = Blueprint("huc_api", __name__) @routes.route("/huc/") @routes.route("/huc/abstract/") @routes.route("/huc/huc8") @routes.route("/huc/huc8/<huc8_id>") def run_fetch_huc_poly(huc8_id): """Run the async IEM data requesting for a single point and return data as json Args: huc8_id (int): HUC-8 ID Returns: GeoJSON of the HUC-8 polygon Notes: example request: http://localhost:5000/huc/huc8/19070506 """ poly = huc8_gdf.loc[[huc8_id]] poly_geojson = poly.to_json() return poly_geojson
[ 11748, 30351, 952, 198, 6738, 42903, 1330, 357, 198, 220, 220, 220, 15614, 11, 198, 220, 220, 220, 39932, 11, 198, 220, 220, 220, 18261, 11, 198, 220, 220, 220, 8543, 62, 28243, 11, 198, 220, 220, 220, 2581, 11, 198, 220, 220, 220, 1459, 62, 1324, 355, 598, 11, 198, 8, 198, 198, 2, 1957, 17944, 198, 6738, 764, 1330, 11926, 198, 6738, 300, 5500, 1330, 289, 1229, 23, 62, 70, 7568, 628, 198, 71, 1229, 62, 15042, 796, 39932, 7203, 71, 1229, 62, 15042, 1600, 11593, 3672, 834, 8, 628, 198, 31, 81, 448, 274, 13, 38629, 7203, 14, 71, 1229, 14, 4943, 198, 31, 81, 448, 274, 13, 38629, 7203, 14, 71, 1229, 14, 397, 8709, 14, 4943, 628, 198, 31, 81, 448, 274, 13, 38629, 7203, 14, 71, 1229, 14, 71, 1229, 23, 4943, 628, 198, 31, 81, 448, 274, 13, 38629, 7203, 14, 71, 1229, 14, 71, 1229, 23, 14, 27, 71, 1229, 23, 62, 312, 29, 4943, 198, 4299, 1057, 62, 69, 7569, 62, 71, 1229, 62, 35428, 7, 71, 1229, 23, 62, 312, 2599, 198, 220, 220, 220, 37227, 10987, 262, 30351, 314, 3620, 1366, 20623, 329, 257, 2060, 966, 198, 220, 220, 220, 290, 1441, 1366, 355, 33918, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 289, 1229, 23, 62, 312, 357, 600, 2599, 367, 9598, 12, 23, 4522, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 32960, 40386, 286, 262, 367, 9598, 12, 23, 7514, 14520, 628, 220, 220, 220, 11822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1672, 2581, 25, 2638, 1378, 36750, 25, 27641, 14, 71, 1229, 14, 71, 1229, 23, 14, 19782, 2154, 35638, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7514, 796, 289, 1229, 23, 62, 70, 7568, 13, 17946, 30109, 71, 1229, 23, 62, 312, 11907, 198, 220, 220, 220, 7514, 62, 469, 13210, 1559, 796, 7514, 13, 1462, 62, 17752, 3419, 628, 220, 220, 220, 1441, 7514, 62, 469, 13210, 1559, 198 ]
2.212209
344
# snapy - a python snmp library # # Copyright (C) 2009 ITA Software, Inc. # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # version 2 as published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. import time from twisted.trial import unittest from snapy.netsnmp.unittests import TestCase from snapy.netsnmp import Session, SnmpError, SnmpTimeout, OID class Result(object): """Container for async results""" value = None
[ 2, 11495, 88, 532, 257, 21015, 3013, 3149, 5888, 198, 2, 198, 2, 15069, 357, 34, 8, 3717, 314, 5603, 10442, 11, 3457, 13, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 198, 2, 13096, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 2196, 362, 355, 3199, 416, 262, 3232, 10442, 5693, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 198, 11748, 640, 198, 6738, 19074, 13, 45994, 1330, 555, 715, 395, 198, 6738, 11495, 88, 13, 45938, 77, 3149, 13, 403, 715, 3558, 1330, 6208, 20448, 198, 6738, 11495, 88, 13, 45938, 77, 3149, 1330, 23575, 11, 5489, 3149, 12331, 11, 5489, 3149, 48031, 11, 440, 2389, 198, 198, 4871, 25414, 7, 15252, 2599, 198, 220, 220, 220, 37227, 29869, 329, 30351, 2482, 37811, 198, 220, 220, 220, 1988, 796, 6045, 628, 628 ]
3.632353
204
""" This tells Python that this is a module. """
[ 37811, 198, 1212, 4952, 11361, 326, 428, 318, 257, 8265, 13, 198, 37811, 198 ]
3.5
14
ACTION_TYPES = { 'INIT': '@@redux/INIT' } """ * Creates a Redux store that holds the state tree. * The only way to change the data in the store is to call `dispatch()` on it. * * There should only be a single store in your app. To specify how different * parts of the state tree respond to actions, you may combine several reducers * into a single reducer function by using `combineReducers`. * * @param {Function} reducer A function that returns the next state tree, given * the current state tree and the action to handle. * * @param {any} [preloadedState] The initial state. You may optionally specify it * to hydrate the state from the server in universal apps, or to restore a * previously serialized user session. * If you use `combineReducers` to produce the root reducer function, this must be * an object with the same shape as `combineReducers` keys. * * @param {Function} enhancer The store enhancer. You may optionally specify it * to enhance the store with third-party capabilities such as middleware, * time travel, persistence, etc. The only store enhancer that ships with Redux * is `applyMiddleware()`. * * @returns {Store} A Redux store that lets you read the state, dispatch actions * and subscribe to changes. """
[ 44710, 62, 9936, 47, 1546, 796, 1391, 198, 197, 6, 1268, 2043, 10354, 705, 12404, 445, 2821, 14, 1268, 2043, 6, 198, 92, 198, 198, 37811, 198, 1635, 7921, 274, 257, 30609, 3650, 326, 6622, 262, 1181, 5509, 13, 198, 1635, 383, 691, 835, 284, 1487, 262, 1366, 287, 262, 3650, 318, 284, 869, 4600, 6381, 17147, 3419, 63, 319, 340, 13, 198, 1635, 198, 1635, 1318, 815, 691, 307, 257, 2060, 3650, 287, 534, 598, 13, 1675, 11986, 703, 1180, 198, 1635, 3354, 286, 262, 1181, 5509, 3031, 284, 4028, 11, 345, 743, 12082, 1811, 2027, 7999, 198, 1635, 656, 257, 2060, 2027, 2189, 2163, 416, 1262, 4600, 24011, 500, 7738, 1229, 364, 44646, 198, 1635, 198, 1635, 2488, 17143, 1391, 22203, 92, 2027, 2189, 317, 2163, 326, 5860, 262, 1306, 1181, 5509, 11, 1813, 198, 1635, 262, 1459, 1181, 5509, 290, 262, 2223, 284, 5412, 13, 198, 1635, 198, 1635, 2488, 17143, 1391, 1092, 92, 685, 3866, 14578, 9012, 60, 383, 4238, 1181, 13, 921, 743, 42976, 11986, 340, 198, 1635, 284, 7409, 4873, 262, 1181, 422, 262, 4382, 287, 10112, 6725, 11, 393, 284, 11169, 257, 198, 1635, 4271, 11389, 1143, 2836, 6246, 13, 198, 1635, 1002, 345, 779, 4600, 24011, 500, 7738, 1229, 364, 63, 284, 4439, 262, 6808, 2027, 2189, 2163, 11, 428, 1276, 307, 198, 1635, 281, 2134, 351, 262, 976, 5485, 355, 4600, 24011, 500, 7738, 1229, 364, 63, 8251, 13, 198, 1635, 198, 1635, 2488, 17143, 1391, 22203, 92, 5881, 8250, 383, 3650, 5881, 8250, 13, 921, 743, 42976, 11986, 340, 198, 1635, 284, 9494, 262, 3650, 351, 2368, 12, 10608, 9889, 884, 355, 3504, 1574, 11, 198, 1635, 640, 3067, 11, 30802, 11, 3503, 13, 383, 691, 3650, 5881, 8250, 326, 7937, 351, 30609, 198, 1635, 318, 4600, 39014, 34621, 1574, 3419, 44646, 198, 1635, 198, 1635, 2488, 7783, 82, 1391, 22658, 92, 317, 30609, 3650, 326, 8781, 345, 1100, 262, 1181, 11, 27965, 4028, 198, 1635, 290, 12383, 284, 2458, 13, 198, 37811 ]
3.777778
333
from warnings import filterwarnings from PIL import Image, ImageOps from jikanpy import Jikan from requests import get from time import sleep import re import os print('''Run this in your anime folder For help, info and memes, check out https://github.com/notdedsec/anicon ''') sleep(1) jikan = Jikan() filterwarnings("ignore") folderlist = next(os.walk('.'))[1] if folderlist is None or len(folderlist) == 0: # In case the file is placed inside an inner most directory which contains only files and no other folders, this list will be empty. # Thus adding the current directory path as an element of the list. folderlist = E:\ automode = True if input('Use AutoMode? Y/N : ').upper() == 'Y' else False for folder in folderlist: name = getname(folder) # Extracting the name of the folder without the path and then performing search for the same. This will be the name of the anime # episode, thus instead of performing a search for the directory path, now performing a search for the directory name. name = name.rpartition('\\')[2].strip() iconname = name.replace(' ', '_') jpgfile = folder + '\\' + iconname + '.jpg' icofile = folder + '\\' + iconname + '.ico' if os.path.isfile(icofile): print('An icon is already present. Delete the older icon and `desktop.ini` file before applying a new icon') continue link, Type = getartwork(name) try: icon = createicon(folder, link) except: print('Ran into an error. Blame the dev :(') continue f = open(folder + "\\desktop.ini","w+") f.write("[.ShellClassInfo]\nConfirmFileOp=0\n") f.write("IconResource={},0".format(icofile.replace(folder, "").strip("\\"))) f.write("\nIconFile={}\nIconIndex=0".format(icofile.replace(folder, "").strip("\\"))) if Type is not None and len(Type) > 0: # If the result has a type, then using this as the infotip for the desktop icon. f.write("\nInfoTip={}".format(Type)) # Closing the output stream. All the text will be written into `desktop.ini` file only when the output is being closed. f.close() # Not marking the `desktop.ini` file as a system file. This will make sure that the file can be seen if display hidden items is enabled. os.system('attrib +r \"{}\\{}\"'.format(os.getcwd(), folder)) os.system('attrib +h \"{}\\desktop.ini\"'.format(folder)) os.system('attrib +h \"{}\"'.format(icon))
[ 6738, 14601, 1330, 8106, 40539, 654, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 41472, 198, 6738, 474, 49894, 9078, 1330, 449, 49894, 198, 6738, 7007, 1330, 651, 198, 6738, 640, 1330, 3993, 198, 11748, 302, 198, 11748, 28686, 198, 198, 4798, 7, 7061, 6, 10987, 428, 287, 534, 11984, 9483, 198, 1890, 1037, 11, 7508, 290, 32905, 11, 2198, 503, 198, 5450, 1378, 12567, 13, 785, 14, 1662, 9395, 2363, 14, 272, 4749, 198, 7061, 11537, 198, 198, 42832, 7, 16, 8, 198, 73, 49894, 796, 449, 49894, 3419, 198, 24455, 40539, 654, 7203, 46430, 4943, 198, 43551, 4868, 796, 1306, 7, 418, 13, 11152, 10786, 2637, 4008, 58, 16, 60, 198, 361, 9483, 4868, 318, 6045, 393, 18896, 7, 43551, 4868, 8, 6624, 657, 25, 198, 220, 220, 220, 1303, 554, 1339, 262, 2393, 318, 4624, 2641, 281, 8434, 749, 8619, 543, 4909, 691, 3696, 290, 645, 584, 24512, 11, 428, 1351, 481, 307, 6565, 13, 198, 220, 220, 220, 1303, 6660, 4375, 262, 1459, 8619, 3108, 355, 281, 5002, 286, 262, 1351, 13, 198, 220, 220, 220, 9483, 4868, 796, 412, 7479, 198, 2306, 296, 1098, 796, 6407, 611, 5128, 10786, 11041, 11160, 19076, 30, 575, 14, 45, 1058, 705, 737, 45828, 3419, 6624, 705, 56, 6, 2073, 10352, 198, 198, 1640, 9483, 287, 9483, 4868, 25, 198, 220, 220, 220, 1438, 796, 651, 3672, 7, 43551, 8, 628, 220, 220, 220, 1303, 29677, 278, 262, 1438, 286, 262, 9483, 1231, 262, 3108, 290, 788, 9489, 2989, 329, 262, 976, 13, 770, 481, 307, 262, 1438, 286, 262, 11984, 198, 220, 220, 220, 1303, 4471, 11, 4145, 2427, 286, 9489, 257, 2989, 329, 262, 8619, 3108, 11, 783, 9489, 257, 2989, 329, 262, 8619, 1438, 13, 198, 220, 220, 220, 1438, 796, 1438, 13, 81, 3911, 653, 10786, 6852, 11537, 58, 17, 4083, 36311, 3419, 628, 220, 220, 220, 7196, 3672, 796, 1438, 13, 33491, 10786, 46083, 705, 62, 11537, 198, 220, 220, 220, 474, 6024, 7753, 796, 9483, 1343, 705, 6852, 6, 1343, 7196, 3672, 1343, 45302, 9479, 6, 198, 220, 220, 220, 14158, 1659, 576, 796, 9483, 1343, 705, 6852, 6, 1343, 7196, 3672, 1343, 45302, 3713, 6, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 291, 1659, 576, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2025, 7196, 318, 1541, 1944, 13, 23520, 262, 4697, 7196, 290, 4600, 41375, 13, 5362, 63, 2393, 878, 11524, 257, 649, 7196, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 2792, 11, 5994, 796, 651, 433, 1818, 7, 3672, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7196, 796, 2251, 4749, 7, 43551, 11, 2792, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 49, 272, 656, 281, 4049, 13, 1086, 480, 262, 1614, 1058, 10786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 277, 796, 1280, 7, 43551, 1343, 366, 6852, 41375, 13, 5362, 2430, 86, 10, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 277, 13, 13564, 7203, 58, 13, 23248, 9487, 12360, 60, 59, 77, 18546, 2533, 8979, 18257, 28, 15, 59, 77, 4943, 198, 220, 220, 220, 277, 13, 13564, 7203, 19578, 26198, 34758, 5512, 15, 1911, 18982, 7, 291, 1659, 576, 13, 33491, 7, 43551, 11, 366, 11074, 36311, 7203, 6852, 1, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 19578, 8979, 34758, 32239, 77, 19578, 15732, 28, 15, 1911, 18982, 7, 291, 1659, 576, 13, 33491, 7, 43551, 11, 366, 11074, 36311, 7203, 6852, 1, 22305, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 5994, 318, 407, 6045, 290, 18896, 7, 6030, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 1255, 468, 257, 2099, 11, 788, 1262, 428, 355, 262, 1167, 313, 541, 329, 262, 11364, 7196, 13, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 12360, 28434, 34758, 92, 1911, 18982, 7, 6030, 4008, 628, 220, 220, 220, 1303, 47055, 262, 5072, 4269, 13, 1439, 262, 2420, 481, 307, 3194, 656, 4600, 41375, 13, 5362, 63, 2393, 691, 618, 262, 5072, 318, 852, 4838, 13, 198, 220, 220, 220, 277, 13, 19836, 3419, 628, 220, 220, 220, 1303, 1892, 18730, 262, 4600, 41375, 13, 5362, 63, 2393, 355, 257, 1080, 2393, 13, 770, 481, 787, 1654, 326, 262, 2393, 460, 307, 1775, 611, 3359, 7104, 3709, 318, 9343, 13, 198, 220, 220, 220, 28686, 13, 10057, 10786, 1078, 822, 1343, 81, 19990, 90, 92, 6852, 90, 92, 7879, 4458, 18982, 7, 418, 13, 1136, 66, 16993, 22784, 9483, 4008, 198, 220, 220, 220, 28686, 13, 10057, 10786, 1078, 822, 1343, 71, 19990, 90, 92, 6852, 41375, 13, 5362, 7879, 4458, 18982, 7, 43551, 4008, 198, 220, 220, 220, 28686, 13, 10057, 10786, 1078, 822, 1343, 71, 19990, 90, 92, 7879, 4458, 18982, 7, 4749, 4008, 198 ]
2.897527
849
# Generated by Django 2.2.1 on 2019-06-08 13:17 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 16, 319, 13130, 12, 3312, 12, 2919, 1511, 25, 1558, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.766667
30
# ---------------------------------------------------------------------- # # Brad T. Aagaard, U.S. Geological Survey # Charles A. Williams, GNS Science # Matthew G. Knepley, University at Buffalo # # This code was developed as part of the Computational Infrastructure # for Geodynamics (http://geodynamics.org). # # Copyright (c) 2010-2021 University of California, Davis # # See LICENSE.md for license information. # # ---------------------------------------------------------------------- # # @file pythia.pyre/meshio/DataWriterHDF5Ext.py # # @brief Python object for writing finite-element data to HDF5 file # with datasets stored in external binary files. from .DataWriter import DataWriter from .meshio import DataWriterHDF5Ext as ModuleDataWriterHDF5Ext class DataWriterHDF5Ext(DataWriter, ModuleDataWriterHDF5Ext): """ @brief Python object for writing finite-element data to HDF5 file with datasets stored in external binary files. FACTORY: data_writer """ import pythia.pyre.inventory filename = pythia.pyre.inventory.str("filename", default="") filename.meta['tip'] = "Name of HDF5 file." # PUBLIC METHODS ///////////////////////////////////////////////////// def __init__(self, name="datawriterhdf5"): """Constructor. """ DataWriter.__init__(self, name) return def preinitialize(self): """Initialize writer. """ DataWriter.preinitialize(self) return def setFilename(self, outputDir, simName, label): """Set filename from default options and inventory. If filename is given in inventory, use it, otherwise create filename from default options. """ filename = self.filename or DataWriter.mkfilename(outputDir, simName, label, "h5") self.mkpath(filename) ModuleDataWriterHDF5Ext.filename(self, filename) return def close(self): """Close writer. """ ModuleDataWriterHDF5Ext.close(self) # Only write Xdmf file on proc 0 from pylith.mpi.Communicator import mpi_comm_world comm = mpi_comm_world() if not comm.rank: from .Xdmf import Xdmf xdmf = Xdmf() xdmf.write(ModuleDataWriterHDF5Ext.hdf5Filename( self), verbose=False) return # PRIVATE METHODS ///////////////////////////////////////////////////// def _createModuleObj(self): """Create handle to C++ object.""" ModuleDataWriterHDF5Ext.__init__(self) return # FACTORIES //////////////////////////////////////////////////////////// def data_writer(): """Factory associated with DataWriter. """ return DataWriterHDF5Ext() # End of file
[ 2, 16529, 23031, 198, 2, 198, 2, 8114, 309, 13, 317, 8126, 446, 11, 471, 13, 50, 13, 34246, 13084, 198, 2, 7516, 317, 13, 6484, 11, 402, 8035, 5800, 198, 2, 9308, 402, 13, 6102, 538, 1636, 11, 2059, 379, 14905, 198, 2, 198, 2, 770, 2438, 373, 4166, 355, 636, 286, 262, 22476, 864, 33709, 198, 2, 329, 2269, 44124, 357, 4023, 1378, 469, 44124, 13, 2398, 737, 198, 2, 198, 2, 15069, 357, 66, 8, 3050, 12, 1238, 2481, 2059, 286, 3442, 11, 7802, 198, 2, 198, 2, 4091, 38559, 24290, 13, 9132, 329, 5964, 1321, 13, 198, 2, 198, 2, 16529, 23031, 198, 2, 198, 2, 2488, 7753, 279, 5272, 544, 13, 9078, 260, 14, 76, 5069, 952, 14, 6601, 34379, 39, 8068, 20, 11627, 13, 9078, 198, 2, 198, 2, 2488, 65, 3796, 11361, 2134, 329, 3597, 27454, 12, 30854, 1366, 284, 5572, 37, 20, 2393, 198, 2, 351, 40522, 8574, 287, 7097, 13934, 3696, 13, 198, 198, 6738, 764, 6601, 34379, 1330, 6060, 34379, 198, 6738, 764, 76, 5069, 952, 1330, 6060, 34379, 39, 8068, 20, 11627, 355, 19937, 6601, 34379, 39, 8068, 20, 11627, 628, 198, 4871, 6060, 34379, 39, 8068, 20, 11627, 7, 6601, 34379, 11, 19937, 6601, 34379, 39, 8068, 20, 11627, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 65, 3796, 11361, 2134, 329, 3597, 27454, 12, 30854, 1366, 284, 5572, 37, 20, 2393, 198, 220, 220, 220, 351, 40522, 8574, 287, 7097, 13934, 3696, 13, 628, 220, 220, 220, 376, 10659, 15513, 25, 1366, 62, 16002, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1330, 279, 5272, 544, 13, 9078, 260, 13, 24807, 628, 220, 220, 220, 29472, 796, 279, 5272, 544, 13, 9078, 260, 13, 24807, 13, 2536, 7203, 34345, 1600, 4277, 2625, 4943, 198, 220, 220, 220, 29472, 13, 28961, 17816, 22504, 20520, 796, 366, 5376, 286, 5572, 37, 20, 2393, 526, 628, 220, 220, 220, 1303, 44731, 337, 36252, 50, 3373, 49704, 27246, 20379, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 2625, 19608, 707, 43407, 71, 7568, 20, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 273, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6060, 34379, 13, 834, 15003, 834, 7, 944, 11, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 825, 662, 36733, 1096, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 6260, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6060, 34379, 13, 3866, 36733, 1096, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 825, 900, 35063, 7, 944, 11, 5072, 35277, 11, 985, 5376, 11, 6167, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 29472, 422, 4277, 3689, 290, 13184, 13, 1002, 29472, 318, 1813, 287, 13184, 11, 779, 340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4306, 2251, 29472, 422, 4277, 3689, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 2116, 13, 34345, 393, 6060, 34379, 13, 28015, 34345, 7, 22915, 35277, 11, 985, 5376, 11, 6167, 11, 366, 71, 20, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28015, 6978, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19937, 6601, 34379, 39, 8068, 20, 11627, 13, 34345, 7, 944, 11, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 825, 1969, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26125, 6260, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19937, 6601, 34379, 39, 8068, 20, 11627, 13, 19836, 7, 944, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5514, 3551, 1395, 36020, 69, 2393, 319, 13834, 657, 198, 220, 220, 220, 220, 220, 220, 220, 422, 279, 2645, 342, 13, 3149, 72, 13, 30813, 26407, 1330, 285, 14415, 62, 9503, 62, 6894, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 285, 14415, 62, 9503, 62, 6894, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 725, 13, 43027, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 764, 55, 36020, 69, 1330, 1395, 36020, 69, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 36020, 69, 796, 1395, 36020, 69, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 36020, 69, 13, 13564, 7, 26796, 6601, 34379, 39, 8068, 20, 11627, 13, 71, 7568, 20, 35063, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 828, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1303, 4810, 3824, 6158, 337, 36252, 50, 3373, 49704, 27246, 20379, 628, 220, 220, 220, 825, 4808, 17953, 26796, 49201, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 5412, 284, 327, 4880, 2134, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 19937, 6601, 34379, 39, 8068, 20, 11627, 13, 834, 15003, 834, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 2, 376, 10659, 1581, 11015, 3373, 49704, 27246, 16150, 1003, 198, 198, 4299, 1366, 62, 16002, 33529, 198, 220, 220, 220, 37227, 22810, 3917, 351, 6060, 34379, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 6060, 34379, 39, 8068, 20, 11627, 3419, 628, 198, 2, 5268, 286, 2393, 198 ]
2.840415
965
# A timer based LED chaser using adressable LEDs of type WS2812/NeoPixel # Tested on a an ESP32 running MicroPython import machine, neopixel from machine import Timer # Pin to use for controlling LEDs LED_STRIP_PIN = 14 # Number of LEDs on LED strip LED_STRIP_LENGTH = 42 # How many times a second (HZ) to advance the LED LED_ADVANCE_RATE_HZ = 20 # The color of the lit LED LED_COLOR = (100, 0, 0) # How many times a second (HZ) to refresh LEDs LED_REFRESH_RATE_HZ = 20 # The speed of fading. Higher values = faster fades with less granularity LED_FADE_SPEED = 15 # Frequency of lowering the intensity of the LEDS LED_FADE_RATE_HZ = LED_REFRESH_RATE_HZ # Create a neopixels object representing a strip of LEDS np = neopixel.NeoPixel(machine.Pin(LED_STRIP_PIN), LED_STRIP_LENGTH) # Index of the currently lit LED led_index = 0 def advance(timer): """ Advance lit LED """ global np, led_index, LED_COLOR # Light LED np[led_index] = LED_COLOR # Set index of next LED if led_index == np.n - 1: led_index = 0 else: led_index += 1 def fade(timer): """ Lower intensity for all LEDs on strip """ global np, LED_FADE_SPEED for i in range(np.n): np[i] = [ v - int(LED_FADE_SPEED) if v > int(LED_FADE_SPEED) else 0 for v in np[i] ] # Timer for advancing the lit LED timer_advance = Timer(0) timer_advance.init( period=int(1000 / LED_ADVANCE_RATE_HZ), mode=Timer.PERIODIC, callback=advance, ) # Timer for fading out LEDs timer_fade = Timer(1) timer_fade.init( period=int(1000 / LED_FADE_RATE_HZ), mode=Timer.PERIODIC, callback=fade, ) # Timer for updating the LED strip timer_refresh = Timer(2) timer_refresh.init( period=int(1000 / LED_REFRESH_RATE_HZ), mode=Timer.PERIODIC, callback=lambda t: np.write(), )
[ 2, 317, 19781, 1912, 12365, 442, 6005, 1262, 512, 601, 540, 33697, 286, 2099, 25290, 2078, 1065, 14, 8199, 78, 40809, 198, 2, 6208, 276, 319, 257, 281, 9428, 2624, 2491, 4527, 37906, 198, 11748, 4572, 11, 497, 404, 7168, 198, 6738, 4572, 1330, 5045, 263, 198, 198, 2, 13727, 284, 779, 329, 12755, 33697, 198, 30465, 62, 18601, 4061, 62, 44032, 796, 1478, 198, 2, 7913, 286, 33697, 319, 12365, 10283, 198, 30465, 62, 18601, 4061, 62, 43, 49494, 796, 5433, 198, 2, 1374, 867, 1661, 257, 1218, 357, 39, 57, 8, 284, 5963, 262, 12365, 198, 30465, 62, 2885, 53, 19240, 62, 49, 6158, 62, 39, 57, 796, 1160, 198, 2, 383, 3124, 286, 262, 6578, 12365, 198, 30465, 62, 46786, 796, 357, 3064, 11, 657, 11, 657, 8, 198, 2, 1374, 867, 1661, 257, 1218, 357, 39, 57, 8, 284, 14976, 33697, 198, 30465, 62, 2200, 10913, 44011, 62, 49, 6158, 62, 39, 57, 796, 1160, 198, 2, 383, 2866, 286, 31465, 13, 16038, 3815, 796, 5443, 41381, 351, 1342, 19468, 33737, 198, 30465, 62, 37, 19266, 62, 4303, 41841, 796, 1315, 198, 2, 31902, 286, 21683, 262, 12245, 286, 262, 12365, 50, 198, 30465, 62, 37, 19266, 62, 49, 6158, 62, 39, 57, 796, 12365, 62, 2200, 10913, 44011, 62, 49, 6158, 62, 39, 57, 198, 198, 2, 13610, 257, 497, 404, 14810, 2134, 10200, 257, 10283, 286, 12365, 50, 198, 37659, 796, 497, 404, 7168, 13, 8199, 78, 40809, 7, 30243, 13, 28348, 7, 30465, 62, 18601, 4061, 62, 44032, 828, 12365, 62, 18601, 4061, 62, 43, 49494, 8, 198, 198, 2, 12901, 286, 262, 3058, 6578, 12365, 198, 992, 62, 9630, 796, 657, 628, 198, 4299, 5963, 7, 45016, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25170, 6578, 12365, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 45941, 11, 2957, 62, 9630, 11, 12365, 62, 46786, 198, 220, 220, 220, 1303, 4401, 12365, 198, 220, 220, 220, 45941, 58, 992, 62, 9630, 60, 796, 12365, 62, 46786, 198, 220, 220, 220, 1303, 5345, 6376, 286, 1306, 12365, 198, 220, 220, 220, 611, 2957, 62, 9630, 6624, 45941, 13, 77, 532, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2957, 62, 9630, 796, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2957, 62, 9630, 15853, 352, 628, 198, 4299, 22100, 7, 45016, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16048, 12245, 329, 477, 33697, 319, 10283, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 45941, 11, 12365, 62, 37, 19266, 62, 4303, 41841, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 37659, 13, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 58, 72, 60, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 532, 493, 7, 30465, 62, 37, 19266, 62, 4303, 41841, 8, 611, 410, 1875, 493, 7, 30465, 62, 37, 19266, 62, 4303, 41841, 8, 2073, 657, 329, 410, 287, 45941, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 198, 2, 5045, 263, 329, 19988, 262, 6578, 12365, 198, 45016, 62, 324, 19259, 796, 5045, 263, 7, 15, 8, 198, 45016, 62, 324, 19259, 13, 15003, 7, 198, 220, 220, 220, 2278, 28, 600, 7, 12825, 1220, 12365, 62, 2885, 53, 19240, 62, 49, 6158, 62, 39, 57, 828, 198, 220, 220, 220, 4235, 28, 48801, 13, 18973, 40, 3727, 2149, 11, 198, 220, 220, 220, 23838, 28, 324, 19259, 11, 198, 8, 198, 198, 2, 5045, 263, 329, 31465, 503, 33697, 198, 45016, 62, 69, 671, 796, 5045, 263, 7, 16, 8, 198, 45016, 62, 69, 671, 13, 15003, 7, 198, 220, 220, 220, 2278, 28, 600, 7, 12825, 1220, 12365, 62, 37, 19266, 62, 49, 6158, 62, 39, 57, 828, 198, 220, 220, 220, 4235, 28, 48801, 13, 18973, 40, 3727, 2149, 11, 198, 220, 220, 220, 23838, 28, 69, 671, 11, 198, 8, 198, 198, 2, 5045, 263, 329, 19698, 262, 12365, 10283, 198, 45016, 62, 5420, 3447, 796, 5045, 263, 7, 17, 8, 198, 45016, 62, 5420, 3447, 13, 15003, 7, 198, 220, 220, 220, 2278, 28, 600, 7, 12825, 1220, 12365, 62, 2200, 10913, 44011, 62, 49, 6158, 62, 39, 57, 828, 198, 220, 220, 220, 4235, 28, 48801, 13, 18973, 40, 3727, 2149, 11, 198, 220, 220, 220, 23838, 28, 50033, 256, 25, 45941, 13, 13564, 22784, 198, 8, 198 ]
2.468541
747
#!/usr/bin/env python3 # ******************************************************** # # Project: nita-webapp # # Copyright (c) Juniper Networks, Inc., 2021. All rights reserved. # # Notice and Disclaimer: This code is licensed to you under the Apache 2.0 License (the "License"). You may not use this code except in compliance with the License. This code is not an official Juniper product. You can obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0.html # # SPDX-License-Identifier: Apache-2.0 # # Third-Party Code: This code may depend on other components under separate copyright notice and license terms. Your use of the source code for those components is subject to the terms and conditions of the respective license as noted in the Third-Party source code file. # # ******************************************************** # xml specific from lxml import etree from lxml.builder import E import xml.etree.ElementTree as ET import xml.dom.minidom import lxml # stdlib from io import StringIO import re import subprocess as sub from subprocess import Popen, PIPE from subprocess import check_call import os import sys import pdb import errno import time from datetime import datetime from datetime import date, timedelta from time import sleep from pprint import pprint import logging import hashlib from socket import error as SocketError import errno import signal from itertools import * import csv import tempfile #third-party import xmltodict import yaml import paramiko # import ncclient.transport.errors as NcErrors # import ncclient.operations.errors as TError import jinja2 import csv from select import select import ftplib import logging.handlers # junos-ez from jnpr.junos.utils.scp import SCP from jnpr.junos.utils.fs import FS from jnpr.junos.exception import * from jnpr.junos.utils.config import Config from jnpr.junos.utils.sw import SW from jnpr.junos.utils.start_shell import StartShell from jnpr.junos.factory import loadyaml from jnpr.junos.op.routes import RouteTable from jnpr.junos import Device from jnpr.junos import * # Robot libraries from robot.libraries.BuiltIn import BuiltIn from robot.libraries.OperatingSystem import OperatingSystem from robot.api import logger # Global Variables timestamp = datetime.now().strftime("%Y-%m-%d") timestamp2 = datetime.now().strftime("%Y-%m-%d-%H-%M-%S.%f")[:-3] timestamp3 = datetime.now().strftime("%H_%M_%S") timestamp4 = datetime.now().strftime("%Y_%m_%d_%H_%M_%S") # Global variables for shell connection _SHELL_PROMPT = '% ' _JUNOS_PROMPT = '> ' _BASH_PROMPT = '?' _SELECT_WAIT = 0.1 _RECVSZ = 1024
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 41906, 8412, 4557, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4935, 25, 299, 5350, 12, 12384, 1324, 198, 2, 198, 2, 15069, 357, 66, 8, 7653, 9346, 27862, 11, 3457, 1539, 33448, 13, 1439, 2489, 10395, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17641, 290, 3167, 17111, 25, 770, 2438, 318, 11971, 284, 345, 739, 262, 24843, 362, 13, 15, 13789, 357, 1169, 366, 34156, 11074, 921, 743, 407, 779, 428, 2438, 2845, 287, 11846, 351, 262, 13789, 13, 770, 2438, 318, 407, 281, 1743, 7653, 9346, 1720, 13, 921, 460, 7330, 257, 4866, 286, 262, 13789, 379, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 6494, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 198, 2, 198, 2, 10467, 12, 33553, 6127, 25, 770, 2438, 743, 4745, 319, 584, 6805, 739, 4553, 6634, 4003, 290, 5964, 2846, 13, 3406, 779, 286, 262, 2723, 2438, 329, 883, 6805, 318, 2426, 284, 262, 2846, 290, 3403, 286, 262, 11756, 5964, 355, 4367, 287, 262, 10467, 12, 33553, 2723, 2438, 2393, 13, 198, 2, 198, 2, 41906, 8412, 4557, 198, 198, 2, 35555, 2176, 198, 6738, 300, 19875, 1330, 2123, 631, 198, 6738, 300, 19875, 13, 38272, 1330, 412, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 11748, 35555, 13, 3438, 13, 1084, 312, 296, 198, 11748, 300, 19875, 198, 198, 2, 14367, 8019, 198, 6738, 33245, 1330, 10903, 9399, 198, 11748, 302, 198, 11748, 850, 14681, 355, 850, 198, 6738, 850, 14681, 1330, 8099, 268, 11, 350, 4061, 36, 198, 6738, 850, 14681, 1330, 2198, 62, 13345, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 279, 9945, 198, 11748, 11454, 3919, 198, 11748, 640, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 4818, 8079, 1330, 3128, 11, 28805, 12514, 198, 6738, 640, 1330, 3993, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 11748, 18931, 198, 11748, 12234, 8019, 198, 6738, 17802, 1330, 4049, 355, 47068, 12331, 198, 11748, 11454, 3919, 198, 11748, 6737, 198, 6738, 340, 861, 10141, 1330, 1635, 198, 11748, 269, 21370, 198, 11748, 20218, 7753, 198, 198, 2, 17089, 12, 10608, 198, 11748, 2124, 76, 2528, 375, 713, 198, 11748, 331, 43695, 198, 11748, 5772, 12125, 198, 2, 1330, 299, 535, 75, 1153, 13, 7645, 634, 13, 48277, 355, 399, 66, 9139, 5965, 198, 2, 1330, 299, 535, 75, 1153, 13, 3575, 602, 13, 48277, 355, 309, 12331, 198, 11748, 474, 259, 6592, 17, 198, 11748, 269, 21370, 198, 6738, 2922, 1330, 2922, 198, 11748, 10117, 489, 571, 198, 11748, 18931, 13, 4993, 8116, 198, 198, 2, 10891, 418, 12, 8471, 198, 6738, 474, 77, 1050, 13, 29741, 418, 13, 26791, 13, 1416, 79, 1330, 17527, 198, 6738, 474, 77, 1050, 13, 29741, 418, 13, 26791, 13, 9501, 1330, 23324, 198, 6738, 474, 77, 1050, 13, 29741, 418, 13, 1069, 4516, 1330, 1635, 198, 6738, 474, 77, 1050, 13, 29741, 418, 13, 26791, 13, 11250, 1330, 17056, 198, 6738, 474, 77, 1050, 13, 29741, 418, 13, 26791, 13, 2032, 1330, 12672, 198, 6738, 474, 77, 1050, 13, 29741, 418, 13, 26791, 13, 9688, 62, 29149, 1330, 7253, 23248, 198, 6738, 474, 77, 1050, 13, 29741, 418, 13, 69, 9548, 1330, 3440, 88, 43695, 198, 6738, 474, 77, 1050, 13, 29741, 418, 13, 404, 13, 81, 448, 274, 1330, 18956, 10962, 198, 6738, 474, 77, 1050, 13, 29741, 418, 1330, 16232, 198, 6738, 474, 77, 1050, 13, 29741, 418, 1330, 1635, 198, 198, 2, 16071, 12782, 198, 198, 6738, 9379, 13, 75, 11127, 13, 39582, 818, 1330, 28477, 818, 198, 6738, 9379, 13, 75, 11127, 13, 18843, 803, 11964, 1330, 24850, 11964, 198, 6738, 9379, 13, 15042, 1330, 49706, 198, 198, 2, 8060, 15965, 2977, 198, 16514, 27823, 796, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 4943, 198, 16514, 27823, 17, 796, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 12, 4, 39, 12, 4, 44, 12, 4, 50, 13, 4, 69, 4943, 58, 21912, 18, 60, 198, 16514, 27823, 18, 796, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 39, 62, 4, 44, 62, 4, 50, 4943, 198, 16514, 27823, 19, 796, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 56, 62, 4, 76, 62, 4, 67, 62, 4, 39, 62, 4, 44, 62, 4, 50, 4943, 198, 198, 2, 8060, 9633, 329, 7582, 4637, 198, 198, 62, 9693, 23304, 62, 4805, 2662, 11571, 796, 705, 4, 705, 198, 62, 41, 4944, 2640, 62, 4805, 2662, 11571, 796, 705, 29, 705, 198, 62, 33, 11211, 62, 4805, 2662, 11571, 796, 705, 8348, 198, 62, 46506, 62, 15543, 2043, 796, 657, 13, 16, 198, 62, 38827, 20304, 57, 796, 28119, 628 ]
2.531915
1,175
from collections import defaultdict operMap = { '+' : 0, '-' : 1, '*' : 2, '/' : 3, '%' : 4, '=' : 5, '<' : 6, '>' : 7, '<=' : 8, '>=' : 9, '!=' : 10, '==' : 11, '&&' : 12, '||' : 13, 'console' : 14, '+*' : 15} #Additional semanticCube = {} # Return -1 if not possible semanticCube = defaultdict(lambda: -1, semanticCube) # Aritmetic # int _ int : _ # float _ float : _ # int _ float : _ # float _ int : _ for i in range(0,4): semanticCube[i,0,0] = 0 semanticCube[i,1,1] = 1 semanticCube[i,0,1] = 1 semanticCube[i,1,0] = 1 semanticCube[15,0,0] = 0 # = a a : a for i in range(0,4): semanticCube[5, i, i] = i # = int float: int semanticCube[5, 0, 1] = 0 semanticCube[5, 1, 0] = 1 # % is always integer semanticCube[4,0,0] = 0 semanticCube[4,1,1] = 0 semanticCube[4,0,1] = 0 semanticCube[4,1,0] = 0 # "string1" + "string2" = "string1string2" semanticCube[0,2,2] = 2 #Comparison # int|float_int|float = bool for i in range(0,2): for j in range(0,2): for k in range(6,12): semanticCube[k,i,j] = 3 for k in range(6,12): semanticCube[k,2,2] = 3 #HigherExpression for i in range(12,14): semanticCube[i,3,3] = 3
[ 6738, 17268, 1330, 4277, 11600, 198, 3575, 13912, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10, 6, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19355, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9, 6, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 6, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 6, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 604, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11639, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27, 6, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 718, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29, 6, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 767, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27, 11639, 220, 220, 220, 220, 220, 220, 220, 1058, 807, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29, 11639, 220, 220, 220, 220, 220, 220, 220, 1058, 860, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 0, 11639, 220, 220, 220, 220, 220, 220, 220, 1058, 838, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 855, 6, 220, 220, 220, 220, 220, 220, 220, 1058, 1367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25226, 6, 220, 220, 220, 220, 220, 220, 220, 1058, 1105, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15886, 6, 220, 220, 220, 220, 220, 220, 220, 1058, 1511, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41947, 6, 220, 220, 1058, 1478, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10, 9, 6, 220, 220, 220, 220, 220, 220, 220, 1058, 1315, 92, 198, 198, 2, 17699, 198, 198, 43616, 5109, 29071, 796, 23884, 198, 2, 8229, 532, 16, 611, 407, 1744, 198, 43616, 5109, 29071, 796, 4277, 11600, 7, 50033, 25, 532, 16, 11, 37865, 29071, 8, 198, 198, 2, 317, 799, 15103, 198, 2, 493, 4808, 493, 1058, 4808, 198, 2, 12178, 4808, 12178, 1058, 4808, 198, 2, 493, 4808, 12178, 1058, 4808, 198, 2, 12178, 4808, 493, 1058, 4808, 198, 1640, 1312, 287, 2837, 7, 15, 11, 19, 2599, 198, 220, 220, 220, 37865, 29071, 58, 72, 11, 15, 11, 15, 60, 796, 657, 198, 220, 220, 220, 37865, 29071, 58, 72, 11, 16, 11, 16, 60, 796, 352, 198, 220, 220, 220, 37865, 29071, 58, 72, 11, 15, 11, 16, 60, 796, 352, 198, 220, 220, 220, 37865, 29071, 58, 72, 11, 16, 11, 15, 60, 796, 352, 198, 198, 43616, 5109, 29071, 58, 1314, 11, 15, 11, 15, 60, 796, 657, 198, 198, 2, 796, 257, 257, 1058, 257, 198, 1640, 1312, 287, 2837, 7, 15, 11, 19, 2599, 198, 220, 220, 220, 37865, 29071, 58, 20, 11, 1312, 11, 1312, 60, 796, 1312, 198, 198, 2, 796, 493, 12178, 25, 493, 198, 43616, 5109, 29071, 58, 20, 11, 657, 11, 352, 60, 796, 657, 198, 43616, 5109, 29071, 58, 20, 11, 352, 11, 657, 60, 796, 352, 198, 2, 4064, 318, 1464, 18253, 198, 43616, 5109, 29071, 58, 19, 11, 15, 11, 15, 60, 796, 657, 198, 43616, 5109, 29071, 58, 19, 11, 16, 11, 16, 60, 796, 657, 198, 43616, 5109, 29071, 58, 19, 11, 15, 11, 16, 60, 796, 657, 198, 43616, 5109, 29071, 58, 19, 11, 16, 11, 15, 60, 796, 657, 198, 198, 2, 366, 8841, 16, 1, 1343, 366, 8841, 17, 1, 796, 366, 8841, 16, 8841, 17, 1, 198, 43616, 5109, 29071, 58, 15, 11, 17, 11, 17, 60, 796, 362, 198, 198, 2, 50249, 1653, 198, 2, 493, 91, 22468, 62, 600, 91, 22468, 796, 20512, 198, 1640, 1312, 287, 2837, 7, 15, 11, 17, 2599, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 15, 11, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 21, 11, 1065, 2599, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37865, 29071, 58, 74, 11, 72, 11, 73, 60, 796, 513, 198, 198, 1640, 479, 287, 2837, 7, 21, 11, 1065, 2599, 198, 220, 220, 220, 37865, 29071, 58, 74, 11, 17, 11, 17, 60, 796, 513, 198, 198, 2, 48708, 16870, 2234, 198, 1640, 1312, 287, 2837, 7, 1065, 11, 1415, 2599, 198, 220, 220, 220, 37865, 29071, 58, 72, 11, 18, 11, 18, 60, 796, 513, 198 ]
1.706559
869
# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import glob from py4j.protocol import Py4JJavaError from py4j.java_gateway import JavaObject from py4j.java_collections import ListConverter, JavaArray, JavaList, JavaMap, MapConverter from pyspark import RDD, SparkContext from pyspark.serializers import PickleSerializer, AutoBatchedSerializer from pyspark.sql import DataFrame, SQLContext from pyspark.mllib.common import callJavaFunc from pyspark import SparkConf import numpy as np import threading import tempfile from bigdl.util.engine import get_bigdl_classpath, is_spark_below_2_2 INTMAX = 2147483647 INTMIN = -2147483648 DOUBLEMAX = 1.7976931348623157E308 if sys.version >= '3': long = int unicode = str class EvaluatedResult(): """ A testing result used to benchmark the model quality. """ def __init__(self, result, total_num, method): """ :param result: the validation result. i.e: top1 accuracy percentage. :param total_num: the total processed records. :param method: the validation method. i.e: Top1Accuracy """ self.result = result self.total_num = total_num self.method = method class JTensor(object): """ A wrapper to easy our work when need to pass or return Tensor to/from Scala. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> np.random.seed(123) >>> """ def __init__(self, storage, shape, bigdl_type="float", indices=None): """ :param storage: values in this tensor :param shape: shape of this tensor :param bigdl_type: numeric type :param indices: if indices is provided, means this is a SparseTensor; if not provided, means this is a DenseTensor """ if isinstance(storage, bytes) and isinstance(shape, bytes): self.storage = np.frombuffer(storage, dtype=get_dtype(bigdl_type)) self.shape = np.frombuffer(shape, dtype=np.int32) else: self.storage = np.array(storage, dtype=get_dtype(bigdl_type)) self.shape = np.array(shape, dtype=np.int32) if indices is None: self.indices = None elif isinstance(indices, bytes): self.indices = np.frombuffer(indices, dtype=np.int32) else: assert isinstance(indices, np.ndarray), \ "indices should be a np.ndarray, not %s, %s" % (type(a_ndarray), str(indices)) self.indices = np.array(indices, dtype=np.int32) self.bigdl_type = bigdl_type @classmethod def from_ndarray(cls, a_ndarray, bigdl_type="float"): """ Convert a ndarray to a DenseTensor which would be used in Java side. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> from bigdl.util.common import callBigDlFunc >>> np.random.seed(123) >>> data = np.random.uniform(0, 1, (2, 3)).astype("float32") >>> result = JTensor.from_ndarray(data) >>> print(result) JTensor: storage: [[ 0.69646919 0.28613934 0.22685145] [ 0.55131477 0.71946895 0.42310646]], shape: [2 3], float >>> result JTensor: storage: [[ 0.69646919 0.28613934 0.22685145] [ 0.55131477 0.71946895 0.42310646]], shape: [2 3], float >>> data_back = result.to_ndarray() >>> (data == data_back).all() True >>> tensor1 = callBigDlFunc("float", "testTensor", JTensor.from_ndarray(data)) # noqa >>> array_from_tensor = tensor1.to_ndarray() >>> (array_from_tensor == data).all() True """ if a_ndarray is None: return None assert isinstance(a_ndarray, np.ndarray), \ "input should be a np.ndarray, not %s" % type(a_ndarray) return cls(a_ndarray, a_ndarray.shape if a_ndarray.shape else (a_ndarray.size), bigdl_type) @classmethod def sparse(cls, a_ndarray, i_ndarray, shape, bigdl_type="float"): """ Convert a three ndarray to SparseTensor which would be used in Java side. For example: a_ndarray = [1, 3, 2, 4] i_ndarray = [[0, 0, 1, 2], [0, 3, 2, 1]] shape = [3, 4] Present a dense tensor [[ 1, 0, 0, 3], [ 0, 0, 2, 0], [ 0, 4, 0, 0]] :param a_ndarray non-zero elements in this SparseTensor :param i_ndarray zero-based indices for non-zero element i_ndarray's shape should be (shape.size, a_ndarray.size) And the i-th non-zero elements indices is i_ndarray[:, 1] :param shape shape as a DenseTensor. >>> import numpy as np >>> from bigdl.util.common import JTensor >>> from bigdl.util.common import callBigDlFunc >>> np.random.seed(123) >>> data = np.arange(1, 7).astype("float32") >>> indices = np.arange(1, 7) >>> shape = np.array([10]) >>> result = JTensor.sparse(data, indices, shape) >>> result JTensor: storage: [ 1. 2. 3. 4. 5. 6.], shape: [10] ,indices [1 2 3 4 5 6], float >>> tensor1 = callBigDlFunc("float", "testTensor", result) # noqa >>> array_from_tensor = tensor1.to_ndarray() >>> expected_ndarray = np.array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) >>> (array_from_tensor == expected_ndarray).all() True """ if a_ndarray is None: return None assert isinstance(a_ndarray, np.ndarray), \ "values array should be a np.ndarray, not %s" % type(a_ndarray) assert isinstance(i_ndarray, np.ndarray), \ "indices array should be a np.ndarray, not %s" % type(a_ndarray) assert i_ndarray.size == a_ndarray.size * shape.size, \ "size of values and indices should match." return cls(a_ndarray, shape, bigdl_type, i_ndarray) def to_ndarray(self): """ Transfer JTensor to ndarray. As SparseTensor may generate an very big ndarray, so we don't support this function for SparseTensor. :return: a ndarray """ assert self.indices is None, "sparseTensor to ndarray is not supported" return np.array(self.storage, dtype=get_dtype(self.bigdl_type)).reshape(self.shape) # noqa class RNG(): """ generate tensor data with seed """ _picklable_classes = [ 'LinkedList', 'SparseVector', 'DenseVector', 'DenseMatrix', 'Rating', 'LabeledPoint', 'Sample', 'EvaluatedResult', 'JTensor', 'JActivity' ] def redire_spark_logs(bigdl_type="float", log_path=os.getcwd()+"/bigdl.log"): """ Redirect spark logs to the specified path. :param bigdl_type: "double" or "float" :param log_path: the file path to be redirected to; the default file is under the current workspace named `bigdl.log`. """ callBigDlFunc(bigdl_type, "redirectSparkLogs", log_path) def show_bigdl_info_logs(bigdl_type="float"): """ Set BigDL log level to INFO. :param bigdl_type: "double" or "float" """ callBigDlFunc(bigdl_type, "showBigDlInfoLogs") def to_sample_rdd(x, y, numSlices=None): """ Conver x and y into RDD[Sample] :param x: ndarray and the first dimension should be batch :param y: ndarray and the first dimension should be batch :param numSlices: :return: """ sc = get_spark_context() from bigdl.util.common import Sample x_rdd = sc.parallelize(x, numSlices) y_rdd = sc.parallelize(y, numSlices) return x_rdd.zip(y_rdd).map(lambda item: Sample.from_ndarray(item[0], item[1])) def get_spark_context(conf=None): """ Get the current active spark context and create one if no active instance :param conf: combining bigdl configs into spark conf :return: SparkContext """ if hasattr(SparkContext, "getOrCreate"): with SparkContext._lock: if SparkContext._active_spark_context is None: spark_conf = create_spark_conf() if conf is None else conf return SparkContext.getOrCreate(spark_conf) else: return SparkContext.getOrCreate() else: # Might have threading issue but we cann't add _lock here # as it's not RLock in spark1.5; if SparkContext._active_spark_context is None: spark_conf = create_spark_conf() if conf is None else conf return SparkContext(conf=spark_conf) else: return SparkContext._active_spark_context def callBigDlFunc(bigdl_type, name, *args): """ Call API in PythonBigDL """ jinstance = JavaCreator.instance(bigdl_type=bigdl_type).value sc = get_spark_context() api = getattr(jinstance, name) return callJavaFunc(sc, api, *args) def callJavaFunc(sc, func, *args): """ Call Java Function """ args = [_py2java(sc, a) for a in args] result = func(*args) return _java2py(sc, result) def _to_java_object_rdd(rdd): """ Return a JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not. """ rdd = rdd._reserialize(AutoBatchedSerializer(PickleSerializer())) return \ rdd.ctx._jvm.org.apache.spark.bigdl.api.python.BigDLSerDe.pythonToJava( rdd._jrdd, True) def _py2java(sc, obj): """ Convert Python object into Java """ if isinstance(obj, RDD): obj = _to_java_object_rdd(obj) elif isinstance(obj, DataFrame): obj = obj._jdf elif isinstance(obj, SparkContext): obj = obj._jsc elif isinstance(obj, (list, tuple)): obj = ListConverter().convert([_py2java(sc, x) for x in obj], sc._gateway._gateway_client) elif isinstance(obj, dict): result = {} for (key, value) in obj.items(): result[key] = _py2java(sc, value) obj = MapConverter().convert(result, sc._gateway._gateway_client) elif isinstance(obj, JavaValue): obj = obj.value elif isinstance(obj, JavaObject): pass elif isinstance(obj, (int, long, float, bool, bytes, unicode)): pass else: data = bytearray(PickleSerializer().dumps(obj)) obj = sc._jvm.org.apache.spark.bigdl.api.python.BigDLSerDe.loads(data) return obj def get_activation_by_name(activation_name, activation_id=None): """ Convert to a bigdl activation layer given the name of the activation as a string """ import bigdl.nn.layer as BLayer activation = None activation_name = activation_name.lower() if activation_name == "tanh": activation = BLayer.Tanh() elif activation_name == "sigmoid": activation = BLayer.Sigmoid() elif activation_name == "hard_sigmoid": activation = BLayer.HardSigmoid() elif activation_name == "relu": activation = BLayer.ReLU() elif activation_name == "softmax": activation = BLayer.SoftMax() elif activation_name == "softplus": activation = BLayer.SoftPlus(beta=1.0) elif activation_name == "softsign": activation = BLayer.SoftSign() elif activation_name == "linear": activation = BLayer.Identity() else: raise Exception("Unsupported activation type: %s" % activation_name) if not activation_id: activation.set_name(activation_id) return activation if __name__ == "__main__": _test()
[ 2, 198, 2, 15069, 1584, 383, 4403, 19260, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 15095, 198, 6738, 12972, 19, 73, 13, 11235, 4668, 1330, 9485, 19, 41, 29584, 12331, 198, 6738, 12972, 19, 73, 13, 12355, 62, 10494, 1014, 1330, 7349, 10267, 198, 6738, 12972, 19, 73, 13, 12355, 62, 4033, 26448, 1330, 7343, 3103, 332, 353, 11, 7349, 19182, 11, 7349, 8053, 11, 7349, 13912, 11, 9347, 3103, 332, 353, 198, 198, 6738, 279, 893, 20928, 1330, 371, 16458, 11, 17732, 21947, 198, 6738, 279, 893, 20928, 13, 46911, 11341, 1330, 12346, 293, 32634, 7509, 11, 11160, 33, 14265, 32634, 7509, 198, 6738, 279, 893, 20928, 13, 25410, 1330, 6060, 19778, 11, 16363, 21947, 198, 6738, 279, 893, 20928, 13, 76, 297, 571, 13, 11321, 1330, 869, 29584, 37, 19524, 198, 6738, 279, 893, 20928, 1330, 17732, 18546, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4704, 278, 198, 11748, 20218, 7753, 198, 6738, 1263, 25404, 13, 22602, 13, 18392, 1330, 651, 62, 14261, 25404, 62, 4871, 6978, 11, 318, 62, 2777, 668, 62, 35993, 62, 17, 62, 17, 198, 198, 12394, 22921, 796, 362, 20198, 2780, 26780, 22, 198, 12394, 23678, 796, 532, 17, 20198, 2780, 26780, 23, 198, 35, 2606, 19146, 22921, 796, 352, 13, 44673, 3388, 25838, 34251, 1954, 18458, 36, 21495, 198, 198, 361, 25064, 13, 9641, 18189, 705, 18, 10354, 198, 220, 220, 220, 890, 796, 493, 198, 220, 220, 220, 28000, 1098, 796, 965, 628, 628, 198, 198, 4871, 26439, 6605, 23004, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4856, 1255, 973, 284, 18335, 262, 2746, 3081, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1255, 11, 2472, 62, 22510, 11, 2446, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1255, 25, 262, 21201, 1255, 13, 1312, 13, 68, 25, 1353, 16, 9922, 5873, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2472, 62, 22510, 25, 262, 2472, 13686, 4406, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2446, 25, 262, 21201, 2446, 13, 1312, 13, 68, 25, 5849, 16, 17320, 23843, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 22510, 796, 2472, 62, 22510, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24396, 796, 2446, 628, 628, 198, 198, 4871, 449, 51, 22854, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 29908, 284, 2562, 674, 670, 618, 761, 284, 1208, 393, 1441, 309, 22854, 284, 14, 6738, 38334, 13, 628, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 13163, 422, 1263, 25404, 13, 22602, 13, 11321, 1330, 449, 51, 22854, 198, 220, 220, 220, 13163, 45941, 13, 25120, 13, 28826, 7, 10163, 8, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 6143, 11, 5485, 11, 1263, 25404, 62, 4906, 2625, 22468, 1600, 36525, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6143, 25, 3815, 287, 428, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5485, 25, 5485, 286, 428, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1263, 25404, 62, 4906, 25, 35575, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 36525, 25, 611, 36525, 318, 2810, 11, 1724, 428, 318, 257, 1338, 17208, 51, 22854, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2810, 11, 1724, 428, 318, 257, 360, 1072, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 35350, 11, 9881, 8, 290, 318, 39098, 7, 43358, 11, 9881, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35350, 796, 45941, 13, 6738, 22252, 7, 35350, 11, 288, 4906, 28, 1136, 62, 67, 4906, 7, 14261, 25404, 62, 4906, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43358, 796, 45941, 13, 6738, 22252, 7, 43358, 11, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35350, 796, 45941, 13, 18747, 7, 35350, 11, 288, 4906, 28, 1136, 62, 67, 4906, 7, 14261, 25404, 62, 4906, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43358, 796, 45941, 13, 18747, 7, 43358, 11, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 36525, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 521, 1063, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 521, 1063, 11, 9881, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 521, 1063, 796, 45941, 13, 6738, 22252, 7, 521, 1063, 11, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 521, 1063, 11, 45941, 13, 358, 18747, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 521, 1063, 815, 307, 257, 45941, 13, 358, 18747, 11, 407, 4064, 82, 11, 4064, 82, 1, 4064, 357, 4906, 7, 64, 62, 358, 18747, 828, 965, 7, 521, 1063, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 521, 1063, 796, 45941, 13, 18747, 7, 521, 1063, 11, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14261, 25404, 62, 4906, 796, 1263, 25404, 62, 4906, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 358, 18747, 7, 565, 82, 11, 257, 62, 358, 18747, 11, 1263, 25404, 62, 4906, 2625, 22468, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 257, 299, 67, 18747, 284, 257, 360, 1072, 51, 22854, 543, 561, 307, 973, 287, 7349, 1735, 13, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 1263, 25404, 13, 22602, 13, 11321, 1330, 449, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 1263, 25404, 13, 22602, 13, 11321, 1330, 869, 12804, 35, 75, 37, 19524, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 45941, 13, 25120, 13, 28826, 7, 10163, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1366, 796, 45941, 13, 25120, 13, 403, 6933, 7, 15, 11, 352, 11, 357, 17, 11, 513, 29720, 459, 2981, 7203, 22468, 2624, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 449, 51, 22854, 13, 6738, 62, 358, 18747, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 20274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 449, 51, 22854, 25, 6143, 25, 16410, 657, 13, 3388, 2414, 3388, 1129, 220, 657, 13, 27033, 20219, 2682, 220, 657, 13, 1828, 35978, 18781, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 685, 657, 13, 2816, 1485, 1415, 3324, 220, 657, 13, 22, 22913, 3104, 3865, 220, 657, 13, 43356, 940, 27720, 60, 4357, 5485, 25, 685, 17, 513, 4357, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 449, 51, 22854, 25, 6143, 25, 16410, 657, 13, 3388, 2414, 3388, 1129, 220, 657, 13, 27033, 20219, 2682, 220, 657, 13, 1828, 35978, 18781, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 685, 657, 13, 2816, 1485, 1415, 3324, 220, 657, 13, 22, 22913, 3104, 3865, 220, 657, 13, 43356, 940, 27720, 60, 4357, 5485, 25, 685, 17, 513, 4357, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1366, 62, 1891, 796, 1255, 13, 1462, 62, 358, 18747, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 357, 7890, 6624, 1366, 62, 1891, 737, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 11192, 273, 16, 796, 869, 12804, 35, 75, 37, 19524, 7203, 22468, 1600, 366, 9288, 51, 22854, 1600, 449, 51, 22854, 13, 6738, 62, 358, 18747, 7, 7890, 4008, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 7177, 62, 6738, 62, 83, 22854, 796, 11192, 273, 16, 13, 1462, 62, 358, 18747, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 357, 18747, 62, 6738, 62, 83, 22854, 6624, 1366, 737, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 257, 62, 358, 18747, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 64, 62, 358, 18747, 11, 45941, 13, 358, 18747, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15414, 815, 307, 257, 45941, 13, 358, 18747, 11, 407, 4064, 82, 1, 4064, 2099, 7, 64, 62, 358, 18747, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 64, 62, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 358, 18747, 13, 43358, 611, 257, 62, 358, 18747, 13, 43358, 2073, 357, 64, 62, 358, 18747, 13, 7857, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1263, 25404, 62, 4906, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 29877, 7, 565, 82, 11, 257, 62, 358, 18747, 11, 1312, 62, 358, 18747, 11, 5485, 11, 1263, 25404, 62, 4906, 2625, 22468, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 257, 1115, 299, 67, 18747, 284, 1338, 17208, 51, 22854, 543, 561, 307, 973, 287, 7349, 1735, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 358, 18747, 796, 685, 16, 11, 513, 11, 362, 11, 604, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 358, 18747, 796, 16410, 15, 11, 657, 11, 352, 11, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 513, 11, 362, 11, 352, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 685, 18, 11, 604, 60, 198, 220, 220, 220, 220, 220, 220, 220, 21662, 257, 15715, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 352, 11, 220, 657, 11, 220, 657, 11, 220, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 685, 657, 11, 220, 657, 11, 220, 362, 11, 220, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 685, 657, 11, 220, 604, 11, 220, 657, 11, 220, 657, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 257, 62, 358, 18747, 1729, 12, 22570, 4847, 287, 428, 1338, 17208, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1312, 62, 358, 18747, 6632, 12, 3106, 36525, 329, 1729, 12, 22570, 5002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 358, 18747, 338, 5485, 815, 307, 357, 43358, 13, 7857, 11, 257, 62, 358, 18747, 13, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 843, 262, 1312, 12, 400, 1729, 12, 22570, 4847, 36525, 318, 1312, 62, 358, 18747, 58, 45299, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5485, 220, 220, 220, 220, 5485, 355, 257, 360, 1072, 51, 22854, 13, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 1263, 25404, 13, 22602, 13, 11321, 1330, 449, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 1263, 25404, 13, 22602, 13, 11321, 1330, 869, 12804, 35, 75, 37, 19524, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 45941, 13, 25120, 13, 28826, 7, 10163, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1366, 796, 45941, 13, 283, 858, 7, 16, 11, 767, 737, 459, 2981, 7203, 22468, 2624, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 36525, 796, 45941, 13, 283, 858, 7, 16, 11, 767, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5485, 796, 45941, 13, 18747, 26933, 940, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 449, 51, 22854, 13, 82, 29572, 7, 7890, 11, 36525, 11, 5485, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 449, 51, 22854, 25, 6143, 25, 685, 352, 13, 220, 362, 13, 220, 513, 13, 220, 604, 13, 220, 642, 13, 220, 718, 13, 4357, 5485, 25, 685, 940, 60, 837, 521, 1063, 685, 16, 362, 513, 604, 642, 718, 4357, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 11192, 273, 16, 796, 869, 12804, 35, 75, 37, 19524, 7203, 22468, 1600, 366, 9288, 51, 22854, 1600, 1255, 8, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 7177, 62, 6738, 62, 83, 22854, 796, 11192, 273, 16, 13, 1462, 62, 358, 18747, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 2938, 62, 358, 18747, 796, 45941, 13, 18747, 26933, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 657, 11, 657, 11, 657, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 357, 18747, 62, 6738, 62, 83, 22854, 6624, 2938, 62, 358, 18747, 737, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 257, 62, 358, 18747, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 64, 62, 358, 18747, 11, 45941, 13, 358, 18747, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27160, 7177, 815, 307, 257, 45941, 13, 358, 18747, 11, 407, 4064, 82, 1, 4064, 2099, 7, 64, 62, 358, 18747, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 72, 62, 358, 18747, 11, 45941, 13, 358, 18747, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 521, 1063, 7177, 815, 307, 257, 45941, 13, 358, 18747, 11, 407, 4064, 82, 1, 4064, 2099, 7, 64, 62, 358, 18747, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1312, 62, 358, 18747, 13, 7857, 6624, 257, 62, 358, 18747, 13, 7857, 1635, 5485, 13, 7857, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7857, 286, 3815, 290, 36525, 815, 2872, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 64, 62, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1263, 25404, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 358, 18747, 8, 628, 220, 220, 220, 825, 284, 62, 358, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20558, 449, 51, 22854, 284, 299, 67, 18747, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1081, 1338, 17208, 51, 22854, 743, 7716, 281, 845, 1263, 299, 67, 18747, 11, 523, 356, 836, 470, 1104, 428, 2163, 329, 1338, 17208, 51, 22854, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 257, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 521, 1063, 318, 6045, 11, 366, 82, 29572, 51, 22854, 284, 299, 67, 18747, 318, 407, 4855, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 7, 944, 13, 35350, 11, 288, 4906, 28, 1136, 62, 67, 4906, 7, 944, 13, 14261, 25404, 62, 4906, 29720, 3447, 1758, 7, 944, 13, 43358, 8, 220, 1303, 645, 20402, 628, 198, 198, 4871, 371, 10503, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7716, 11192, 273, 1366, 351, 9403, 198, 220, 220, 220, 37227, 628, 198, 62, 27729, 75, 540, 62, 37724, 796, 685, 198, 220, 220, 220, 705, 11280, 276, 8053, 3256, 198, 220, 220, 220, 705, 50, 29572, 38469, 3256, 198, 220, 220, 220, 705, 35, 1072, 38469, 3256, 198, 220, 220, 220, 705, 35, 1072, 46912, 3256, 198, 220, 220, 220, 705, 29321, 3256, 198, 220, 220, 220, 705, 33986, 276, 12727, 3256, 198, 220, 220, 220, 705, 36674, 3256, 198, 220, 220, 220, 705, 36, 2100, 6605, 23004, 3256, 198, 220, 220, 220, 705, 41, 51, 22854, 3256, 198, 220, 220, 220, 705, 41, 16516, 6, 198, 60, 628, 198, 198, 4299, 2266, 557, 62, 2777, 668, 62, 6404, 82, 7, 14261, 25404, 62, 4906, 2625, 22468, 1600, 2604, 62, 6978, 28, 418, 13, 1136, 66, 16993, 3419, 10, 1, 14, 14261, 25404, 13, 6404, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2297, 1060, 9009, 17259, 284, 262, 7368, 3108, 13, 198, 220, 220, 220, 1058, 17143, 1263, 25404, 62, 4906, 25, 366, 23352, 1, 393, 366, 22468, 1, 198, 220, 220, 220, 1058, 17143, 2604, 62, 6978, 25, 262, 2393, 3108, 284, 307, 45158, 284, 26, 262, 4277, 2393, 318, 739, 262, 1459, 44573, 3706, 4600, 14261, 25404, 13, 6404, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 869, 12804, 35, 75, 37, 19524, 7, 14261, 25404, 62, 4906, 11, 366, 445, 1060, 4561, 668, 11187, 82, 1600, 2604, 62, 6978, 8, 628, 198, 4299, 905, 62, 14261, 25404, 62, 10951, 62, 6404, 82, 7, 14261, 25404, 62, 4906, 2625, 22468, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5345, 4403, 19260, 2604, 1241, 284, 24890, 13, 198, 220, 220, 220, 1058, 17143, 1263, 25404, 62, 4906, 25, 366, 23352, 1, 393, 366, 22468, 1, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 869, 12804, 35, 75, 37, 19524, 7, 14261, 25404, 62, 4906, 11, 366, 12860, 12804, 35, 75, 12360, 11187, 82, 4943, 628, 628, 198, 4299, 284, 62, 39873, 62, 81, 1860, 7, 87, 11, 331, 11, 997, 50, 677, 274, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35602, 2124, 290, 331, 656, 371, 16458, 58, 36674, 60, 198, 220, 220, 220, 1058, 17143, 2124, 25, 299, 67, 18747, 290, 262, 717, 15793, 815, 307, 15458, 198, 220, 220, 220, 1058, 17143, 331, 25, 299, 67, 18747, 290, 262, 717, 15793, 815, 307, 15458, 198, 220, 220, 220, 1058, 17143, 997, 50, 677, 274, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 629, 796, 651, 62, 2777, 668, 62, 22866, 3419, 198, 220, 220, 220, 422, 1263, 25404, 13, 22602, 13, 11321, 1330, 27565, 198, 220, 220, 220, 2124, 62, 81, 1860, 796, 629, 13, 1845, 29363, 1096, 7, 87, 11, 997, 50, 677, 274, 8, 198, 220, 220, 220, 331, 62, 81, 1860, 796, 629, 13, 1845, 29363, 1096, 7, 88, 11, 997, 50, 677, 274, 8, 198, 220, 220, 220, 1441, 2124, 62, 81, 1860, 13, 13344, 7, 88, 62, 81, 1860, 737, 8899, 7, 50033, 2378, 25, 27565, 13, 6738, 62, 358, 18747, 7, 9186, 58, 15, 4357, 2378, 58, 16, 60, 4008, 628, 628, 198, 4299, 651, 62, 2777, 668, 62, 22866, 7, 10414, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 1459, 4075, 9009, 4732, 290, 2251, 530, 611, 645, 4075, 4554, 198, 220, 220, 220, 1058, 17143, 1013, 25, 19771, 1263, 25404, 4566, 82, 656, 9009, 1013, 198, 220, 220, 220, 1058, 7783, 25, 17732, 21947, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 468, 35226, 7, 4561, 668, 21947, 11, 366, 1136, 5574, 16447, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 17732, 21947, 13557, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17732, 21947, 13557, 5275, 62, 2777, 668, 62, 22866, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9009, 62, 10414, 796, 2251, 62, 2777, 668, 62, 10414, 3419, 611, 1013, 318, 6045, 2073, 1013, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17732, 21947, 13, 1136, 5574, 16447, 7, 2777, 668, 62, 10414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17732, 21947, 13, 1136, 5574, 16447, 3419, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24213, 423, 4704, 278, 2071, 475, 356, 6463, 470, 751, 4808, 5354, 994, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 355, 340, 338, 407, 371, 25392, 287, 9009, 16, 13, 20, 26, 198, 220, 220, 220, 220, 220, 220, 220, 611, 17732, 21947, 13557, 5275, 62, 2777, 668, 62, 22866, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9009, 62, 10414, 796, 2251, 62, 2777, 668, 62, 10414, 3419, 611, 1013, 318, 6045, 2073, 1013, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17732, 21947, 7, 10414, 28, 2777, 668, 62, 10414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17732, 21947, 13557, 5275, 62, 2777, 668, 62, 22866, 628, 198, 198, 4299, 869, 12804, 35, 75, 37, 19524, 7, 14261, 25404, 62, 4906, 11, 1438, 11, 1635, 22046, 2599, 198, 220, 220, 220, 37227, 4889, 7824, 287, 11361, 12804, 19260, 37227, 198, 220, 220, 220, 474, 39098, 796, 7349, 16719, 273, 13, 39098, 7, 14261, 25404, 62, 4906, 28, 14261, 25404, 62, 4906, 737, 8367, 198, 220, 220, 220, 629, 796, 651, 62, 2777, 668, 62, 22866, 3419, 198, 220, 220, 220, 40391, 796, 651, 35226, 7, 73, 39098, 11, 1438, 8, 198, 220, 220, 220, 1441, 869, 29584, 37, 19524, 7, 1416, 11, 40391, 11, 1635, 22046, 8, 628, 198, 198, 4299, 869, 29584, 37, 19524, 7, 1416, 11, 25439, 11, 1635, 22046, 2599, 198, 220, 220, 220, 37227, 4889, 7349, 15553, 37227, 198, 220, 220, 220, 26498, 796, 685, 62, 9078, 17, 12355, 7, 1416, 11, 257, 8, 329, 257, 287, 26498, 60, 198, 220, 220, 220, 1255, 796, 25439, 46491, 22046, 8, 198, 220, 220, 220, 1441, 4808, 12355, 17, 9078, 7, 1416, 11, 1255, 8, 628, 198, 4299, 4808, 1462, 62, 12355, 62, 15252, 62, 81, 1860, 7, 81, 1860, 2599, 198, 220, 220, 220, 37227, 8229, 257, 7349, 49, 16458, 286, 9515, 416, 8593, 624, 1359, 628, 198, 220, 220, 220, 632, 481, 10385, 1123, 11361, 2134, 656, 7349, 2134, 416, 9485, 3225, 578, 11, 8797, 198, 220, 220, 220, 262, 371, 16458, 318, 11389, 1143, 287, 15458, 393, 407, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 374, 1860, 796, 374, 1860, 13557, 411, 48499, 1096, 7, 27722, 33, 14265, 32634, 7509, 7, 31686, 293, 32634, 7509, 3419, 4008, 198, 220, 220, 220, 1441, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1860, 13, 49464, 13557, 73, 14761, 13, 2398, 13, 43073, 13, 2777, 668, 13, 14261, 25404, 13, 15042, 13, 29412, 13, 12804, 35, 6561, 263, 5005, 13, 29412, 2514, 29584, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 1860, 13557, 73, 81, 1860, 11, 6407, 8, 628, 198, 4299, 4808, 9078, 17, 12355, 7, 1416, 11, 26181, 2599, 198, 220, 220, 220, 37227, 38240, 11361, 2134, 656, 7349, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 26801, 11, 371, 16458, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 4808, 1462, 62, 12355, 62, 15252, 62, 81, 1860, 7, 26801, 8, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 26801, 11, 6060, 19778, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 26181, 13557, 73, 7568, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 26801, 11, 17732, 21947, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 26181, 13557, 73, 1416, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 26801, 11, 357, 4868, 11, 46545, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 7343, 3103, 332, 353, 22446, 1102, 1851, 26933, 62, 9078, 17, 12355, 7, 1416, 11, 2124, 8, 329, 2124, 287, 26181, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 13557, 10494, 1014, 13557, 10494, 1014, 62, 16366, 8, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 26801, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 2539, 11, 1988, 8, 287, 26181, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 2539, 60, 796, 4808, 9078, 17, 12355, 7, 1416, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 9347, 3103, 332, 353, 22446, 1102, 1851, 7, 20274, 11, 629, 13557, 10494, 1014, 13557, 10494, 1014, 62, 16366, 8, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 26801, 11, 7349, 11395, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 26181, 13, 8367, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 26801, 11, 7349, 10267, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 26801, 11, 357, 600, 11, 890, 11, 12178, 11, 20512, 11, 9881, 11, 28000, 1098, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 416, 83, 451, 2433, 7, 31686, 293, 32634, 7509, 22446, 67, 8142, 7, 26801, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 629, 13557, 73, 14761, 13, 2398, 13, 43073, 13, 2777, 668, 13, 14261, 25404, 13, 15042, 13, 29412, 13, 12804, 35, 6561, 263, 5005, 13, 46030, 7, 7890, 8, 198, 220, 220, 220, 1441, 26181, 628, 628, 628, 198, 4299, 651, 62, 48545, 62, 1525, 62, 3672, 7, 48545, 62, 3672, 11, 14916, 62, 312, 28, 14202, 2599, 198, 220, 220, 220, 37227, 38240, 284, 257, 1263, 25404, 14916, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 1813, 262, 1438, 286, 262, 14916, 355, 257, 4731, 220, 37227, 198, 220, 220, 220, 1330, 1263, 25404, 13, 20471, 13, 29289, 355, 9878, 2794, 198, 220, 220, 220, 14916, 796, 6045, 198, 220, 220, 220, 14916, 62, 3672, 796, 14916, 62, 3672, 13, 21037, 3419, 198, 220, 220, 220, 611, 14916, 62, 3672, 6624, 366, 38006, 71, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 796, 9878, 2794, 13, 45557, 71, 3419, 198, 220, 220, 220, 1288, 361, 14916, 62, 3672, 6624, 366, 82, 17225, 1868, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 796, 9878, 2794, 13, 50, 17225, 1868, 3419, 198, 220, 220, 220, 1288, 361, 14916, 62, 3672, 6624, 366, 10424, 62, 82, 17225, 1868, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 796, 9878, 2794, 13, 17309, 50, 17225, 1868, 3419, 198, 220, 220, 220, 1288, 361, 14916, 62, 3672, 6624, 366, 260, 2290, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 796, 9878, 2794, 13, 3041, 41596, 3419, 198, 220, 220, 220, 1288, 361, 14916, 62, 3672, 6624, 366, 4215, 9806, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 796, 9878, 2794, 13, 18380, 11518, 3419, 198, 220, 220, 220, 1288, 361, 14916, 62, 3672, 6624, 366, 4215, 9541, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 796, 9878, 2794, 13, 18380, 17860, 7, 31361, 28, 16, 13, 15, 8, 198, 220, 220, 220, 1288, 361, 14916, 62, 3672, 6624, 366, 4215, 12683, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 796, 9878, 2794, 13, 18380, 11712, 3419, 198, 220, 220, 220, 1288, 361, 14916, 62, 3672, 6624, 366, 29127, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 796, 9878, 2794, 13, 7390, 26858, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 3118, 15999, 14916, 2099, 25, 4064, 82, 1, 4064, 14916, 62, 3672, 8, 198, 220, 220, 220, 611, 407, 14916, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 13, 2617, 62, 3672, 7, 48545, 62, 312, 8, 198, 220, 220, 220, 1441, 14916, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 4808, 9288, 3419, 198 ]
2.317957
5,268
#!/usr/bin/env python # -*- encoding: utf-8 -*- import os import unittest from functional_tests.data.atlas.skulls.run import AtlasSkulls from functional_tests.data.atlas.brain_structures.run import AtlasBrainStructures from functional_tests.data.atlas.digits.run import AtlasDigits from functional_tests.data.regression.skulls.run import RegressionSkulls TEST_MODULES = [AtlasSkulls, AtlasBrainStructures, AtlasDigits, RegressionSkulls] if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 10345, 62, 41989, 13, 7890, 13, 265, 21921, 13, 8135, 724, 82, 13, 5143, 1330, 22494, 15739, 724, 82, 198, 6738, 10345, 62, 41989, 13, 7890, 13, 265, 21921, 13, 27825, 62, 7249, 942, 13, 5143, 1330, 22494, 44687, 44909, 942, 198, 6738, 10345, 62, 41989, 13, 7890, 13, 265, 21921, 13, 12894, 896, 13, 5143, 1330, 22494, 19511, 896, 198, 6738, 10345, 62, 41989, 13, 7890, 13, 2301, 2234, 13, 8135, 724, 82, 13, 5143, 1330, 3310, 2234, 15739, 724, 82, 198, 198, 51, 6465, 62, 33365, 6239, 1546, 796, 685, 2953, 21921, 15739, 724, 82, 11, 22494, 44687, 44909, 942, 11, 22494, 19511, 896, 11, 3310, 2234, 15739, 724, 82, 60, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 628 ]
2.892216
167
class decoratorWithoutArguments(object): ''' If there are no decorator arguments, the function to be decorated is passed to the constructor. ''' ''' Note: 1. The major constraint on the result of a decorator is that it be callable. The __call__ method here achieves that. 2. __call__ is called every time the decorated function is called; __init__is called only once during the 'construction' of the decorated function. ''' ''' The __call__ method is not called until the decorated function is called. ''' @decoratorWithoutArguments @decoratorWithoutArguments @decoratorFunction if __name__ == "__main__": func1("test", "multiple", "args") print '\n' func1("another", "round", "of args") print '\n' func2() print '\n' func3() print '\n' print "end of example"
[ 198, 4871, 11705, 1352, 16249, 28100, 2886, 7, 15252, 2599, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1002, 612, 389, 645, 11705, 1352, 7159, 11, 262, 2163, 284, 307, 24789, 318, 3804, 198, 220, 220, 220, 284, 262, 23772, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5740, 25, 198, 220, 220, 220, 352, 13, 383, 1688, 32315, 319, 262, 1255, 286, 257, 11705, 1352, 318, 326, 340, 307, 869, 540, 13, 198, 220, 220, 220, 383, 11593, 13345, 834, 2446, 994, 41885, 326, 13, 198, 220, 220, 220, 362, 13, 11593, 13345, 834, 318, 1444, 790, 640, 262, 24789, 2163, 318, 1444, 26, 198, 220, 220, 220, 11593, 15003, 834, 271, 1444, 691, 1752, 1141, 262, 705, 9979, 2762, 6, 286, 262, 24789, 198, 220, 220, 220, 2163, 13, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 383, 11593, 13345, 834, 2446, 318, 407, 1444, 1566, 262, 24789, 2163, 318, 1444, 13, 198, 220, 220, 220, 705, 7061, 198, 198, 31, 12501, 273, 1352, 16249, 28100, 2886, 198, 198, 31, 12501, 273, 1352, 16249, 28100, 2886, 198, 198, 31, 12501, 273, 1352, 22203, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 25439, 16, 7203, 9288, 1600, 366, 48101, 1600, 366, 22046, 4943, 198, 220, 220, 220, 3601, 705, 59, 77, 6, 198, 220, 220, 220, 25439, 16, 7203, 29214, 1600, 366, 744, 1600, 366, 1659, 26498, 4943, 198, 220, 220, 220, 3601, 705, 59, 77, 6, 198, 220, 220, 220, 25439, 17, 3419, 198, 220, 220, 220, 3601, 705, 59, 77, 6, 198, 220, 220, 220, 25439, 18, 3419, 628, 220, 220, 220, 3601, 705, 59, 77, 6, 198, 220, 220, 220, 3601, 366, 437, 286, 1672, 1, 198 ]
2.814935
308
from .aitextgen import aitextgen from .TokenDataset import TokenDataset from .tokenizers import train_tokenizer import fire def aitextgen_cli(**kwargs): """Entrypoint for the CLI""" fire.Fire( { "encode": encode_cli, "train": train_cli, "generate": generate_cli, "train_tokenizer": train_tokenizer_cli, } ) def encode_cli(file_path: str, **kwargs): """Encode + compress a dataset""" TokenDataset(file_path, save_cache=True, **kwargs) def train_cli(file_path: str, **kwargs): """Train on a dataset.""" ai = aitextgen(**kwargs) from_cache = file_path.endswith(".tar.gz") dataset = TokenDataset(file_path, from_cache=from_cache, **kwargs) ai.train(dataset, **kwargs) def generate_cli(to_file: bool = True, **kwargs): """Generate from a trained model, or download one if not present.""" ai = aitextgen(**kwargs) if to_file: ai.generate_to_file(**kwargs) else: ai.generate(**kwargs) def train_tokenizer_cli(files: str, **kwargs): """Trains a tokenizer on the specified file.""" train_tokenizer(files, **kwargs)
[ 6738, 764, 64, 578, 742, 5235, 1330, 257, 578, 742, 5235, 198, 6738, 764, 30642, 27354, 292, 316, 1330, 29130, 27354, 292, 316, 198, 6738, 764, 30001, 11341, 1330, 4512, 62, 30001, 7509, 198, 11748, 2046, 628, 198, 4299, 257, 578, 742, 5235, 62, 44506, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 30150, 4122, 329, 262, 43749, 37811, 198, 220, 220, 220, 2046, 13, 13543, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 268, 8189, 1298, 37773, 62, 44506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27432, 1298, 4512, 62, 44506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8612, 378, 1298, 7716, 62, 44506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27432, 62, 30001, 7509, 1298, 4512, 62, 30001, 7509, 62, 44506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 198, 4299, 37773, 62, 44506, 7, 7753, 62, 6978, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 4834, 8189, 1343, 27413, 257, 27039, 37811, 198, 220, 220, 220, 29130, 27354, 292, 316, 7, 7753, 62, 6978, 11, 3613, 62, 23870, 28, 17821, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 4512, 62, 44506, 7, 7753, 62, 6978, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 44077, 319, 257, 27039, 526, 15931, 198, 220, 220, 220, 257, 72, 796, 257, 578, 742, 5235, 7, 1174, 46265, 22046, 8, 628, 220, 220, 220, 422, 62, 23870, 796, 2393, 62, 6978, 13, 437, 2032, 342, 7, 1911, 18870, 13, 34586, 4943, 198, 220, 220, 220, 27039, 796, 29130, 27354, 292, 316, 7, 7753, 62, 6978, 11, 422, 62, 23870, 28, 6738, 62, 23870, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 257, 72, 13, 27432, 7, 19608, 292, 316, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 7716, 62, 44506, 7, 1462, 62, 7753, 25, 20512, 796, 6407, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 8645, 378, 422, 257, 8776, 2746, 11, 393, 4321, 530, 611, 407, 1944, 526, 15931, 628, 220, 220, 220, 257, 72, 796, 257, 578, 742, 5235, 7, 1174, 46265, 22046, 8, 198, 220, 220, 220, 611, 284, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 72, 13, 8612, 378, 62, 1462, 62, 7753, 7, 1174, 46265, 22046, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 72, 13, 8612, 378, 7, 1174, 46265, 22046, 8, 628, 198, 4299, 4512, 62, 30001, 7509, 62, 44506, 7, 16624, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 2898, 1299, 257, 11241, 7509, 319, 262, 7368, 2393, 526, 15931, 198, 220, 220, 220, 4512, 62, 30001, 7509, 7, 16624, 11, 12429, 46265, 22046, 8, 198 ]
2.34004
497
from LRL_main_arena.envs.LaRoboLiga_main import LaRoboLigaPs2Arena
[ 6738, 406, 7836, 62, 12417, 62, 533, 2616, 13, 268, 14259, 13, 14772, 14350, 78, 43, 13827, 62, 12417, 1330, 4689, 14350, 78, 43, 13827, 12016, 17, 43199, 64 ]
2.275862
29
# BSD 3-Clause License; see https://github.com/scikit-hep/uproot4/blob/main/LICENSE from __future__ import absolute_import import pytest import uproot @pytest.mark.network @pytest.mark.network @pytest.mark.network
[ 2, 347, 10305, 513, 12, 2601, 682, 13789, 26, 766, 3740, 1378, 12567, 13, 785, 14, 36216, 15813, 12, 258, 79, 14, 929, 15763, 19, 14, 2436, 672, 14, 12417, 14, 43, 2149, 24290, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 12972, 9288, 198, 198, 11748, 510, 15763, 628, 198, 31, 9078, 9288, 13, 4102, 13, 27349, 628, 198, 31, 9078, 9288, 13, 4102, 13, 27349, 628, 198, 31, 9078, 9288, 13, 4102, 13, 27349, 198 ]
2.719512
82
import numpy as np module_masses = load_inputs("input.txt") module_fuels = map(get_fuel_v2, module_masses) total = sum(module_fuels) print("Total: ", total)
[ 11748, 299, 32152, 355, 45941, 198, 198, 21412, 62, 76, 13978, 796, 3440, 62, 15414, 82, 7203, 15414, 13, 14116, 4943, 198, 21412, 62, 20942, 1424, 796, 3975, 7, 1136, 62, 25802, 62, 85, 17, 11, 8265, 62, 76, 13978, 8, 198, 23350, 796, 2160, 7, 21412, 62, 20942, 1424, 8, 198, 4798, 7203, 14957, 25, 33172, 2472, 8, 198 ]
2.633333
60
#!/Users/sunyun/anaconda3/bin/python import sys import time import utils sys.path.append("/Users/sunyun/software/python") if __name__ == "__main__": team = Team("MRE") team.add_member("Caroline", "McQuatt") team.add_member("Dmitry", "Serpakov") team.add_member("James", "Roland") team.add_member("Jan", "Duzinkiwicz") team.add_member("Lewis", "Elliot") team.add_member("Mirco", "Padovan") team.add_member("Mohamed", "Karnel") team.add_member("Sherif", "Elian") team.add_member("Sridhar", "Sundarraman") team.add_member("Sunghee", "Yun") team.add_data("Caroline", "Android", "11/2/17", "20% (3/5 modules)") team.add_data("Caroline", "Android", "11/16/17", "33%") team.add_data("Caroline", "Android", "1/5/18", "50%") team.add_data("Caroline", "Android", "1/18/18", "ready for exam this week") team.add_data("Caroline", "Android", "2/1/18", "ready for exam") team.add_data("Caroline", "Android", "2/19/18", "ready for exam") team.add_data("Caroline", "Android", "3/29/18", "ready for exam") team.add_data("Caroline", "Android", "4/12/18", "want to do Sprint (w/o certificate)") team.add_data("Caroline", "Android", "4/27/18", "starting Android Sprint on May 7th") team.add_data("Caroline", "Android", "5/10/18", "started Android Sprint") team.add_data("Dmitry", "Android", "11/2/17", "0%") team.add_data("Dmitry", "Android", "11/16/17", "0%") team.add_data("Dmitry", "Android", "1/5/18", "0%") team.add_data("Dmitry", "Android", "1/18/18", "planning to start this week") team.add_data("Dmitry", "iOS", "2/1/18", "40%") team.add_data("Dmitry", "iOS", "2/19/18", "40%") team.add_data("Dmitry", "iOS", "3/29/18", "40%") team.add_data("Dmitry", "iOS", "4/12/18", "40%") team.add_data("Dmitry", "iOS", "4/27/18", "40%") team.add_data("James", "iOS", "11/2/17", "0%") team.add_data("James", "iOS", "11/16/17", "0%") team.add_data("James", "iOS", "1/5/18", "0%") team.add_data("James", "iOS", "1/18/18", "0%") team.add_data("James", "iOS", "2/1/18", "0%") team.add_data("James", "iOS", "2/19/18", "0%") team.add_data("James", "iOS", "3/29/18", "0%") team.add_data("James", "iOS", "4/27/18", "0%") team.add_data("Jan", "Android", "11/2/17", "1.437%") team.add_data("Jan", "Android", "11/16/17", "1.437%") team.add_data("Jan", "Android", "1/5/18", "1.437%") team.add_data("Jan", "Android", "2/1/18", "on lesson 1.4") team.add_data("Jan", "Android", "2/19/18", "on lesson 1.4") team.add_data("Jan", "Android", "3/29/18", "on lesson 1.4") team.add_data("Lewis", "iOS", "11/2/17", "0%") team.add_data("Lewis", "iOS", "11/16/17", "0%") team.add_data("Lewis", "iOS", "2/1/18", "20%") team.add_data("Lewis", "iOS", "2/19/18", "20%") team.add_data("Lewis", "iOS", "3/29/18", "20%") team.add_data("Lewis", "iOS", "4/12/18", "20%") team.add_data("Lewis", "iOS", "4/27/18", "20%") team.add_data("Mirco", "Android", "11/2/17", "0%") team.add_data("Mirco", "Android", "11/16/17", "25%") team.add_data("Mirco", "Android", "1/5/18", "100% - ready for test") team.add_data("Mirco", "Android", "1/18/18", "planning on taking test next week") team.add_data("Mirco", "Android", "2/1/18", "100% - finished taking test") team.add_data("Mirco", "Android", "2/19/18", "finished Sprint on Android!") team.add_data("Mirco", "iOS", "3/29/18", "20%") team.add_data("Mirco", "iOS", "4/12/18", "20%") team.add_data("Mirco", "iOS", "4/27/18", "30%") team.add_data("Mohamed", "Android", "11/2/17", "20%") team.add_data("Mohamed", "Android", "11/16/17", "30-35%") team.add_data("Mohamed", "Android", "1/5/18", "50%") team.add_data("Mohamed", "Android", "1/18/18", "finished pdf. practice before the exam") team.add_data("Mohamed", "Android", "2/1/18", "100% - planning to take certificate in Q1") team.add_data("Mohamed", "Android", "3/29/18", "Gotten certificate and doing Sprint") team.add_data("Sherif", "iOS", "11/2/17", "77.77%") team.add_data("Sherif", "iOS", "11/16/17", "95%") team.add_data("Sherif", "iOS", "1/5/18", "100% - ready for sprint (Feb)") team.add_data("Sherif", "iOS", "2/1/18", "100% - planning to start sprint on Feb. 5th") team.add_data("Sherif", "iOS", "2/19/18", "finished Sprint on iOS!") team.add_data("Sridhar", "Android", "11/2/17", "50% planning on taking test 11/31") team.add_data("Sridhar", "Android", "11/16/17", "50%") team.add_data("Sridhar", "Android", "1/5/18", "100% - ready for sprint (March)") team.add_data("Sridhar", "Android", "2/1/18", "100% - ready for sprint (March)") team.add_data("Sridhar", "Android", "3/29/18", "starting Sprint on Android") team.add_data("Sridhar", "Android", "4/27/18", "finished Sprint on Android") team.add_data("Sunghee", "Android", "11/2/17", "0%") team.add_data("Sunghee", "Android", "11/16/17", "0%") team.add_data("Sunghee", "Android", "1/5/18", "0%") team.add_data("Sunghee", "Android", "1/18/18", "5%") team.add_data("Sunghee", "Android", "2/1/18", "5%") team.add_data("Sunghee", "Android", "2/19/18", "5%") team.add_data("Sunghee", "Android", "3/29/18", "5%") team.add_data("Sunghee", "Android", "4/12/18", "5%") team.add_data("Sunghee", "Android", "4/27/18", "5%") team.add_data("Mirco", "iOS", "7/6/18", "50%") team.write_to_wiki_by_name("mt_by_name.wtb") # team.write_to_wiki_by_platform("mt_by_platform.wtb")
[ 2, 48443, 14490, 14, 19155, 88, 403, 14, 272, 330, 13533, 18, 14, 8800, 14, 29412, 198, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 3384, 4487, 198, 198, 17597, 13, 6978, 13, 33295, 7203, 14, 14490, 14, 19155, 88, 403, 14, 43776, 14, 29412, 4943, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1074, 796, 4816, 7203, 44, 2200, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 9914, 14453, 1600, 366, 9742, 4507, 1078, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 35, 2781, 563, 1600, 366, 7089, 41091, 709, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 14731, 1600, 366, 49, 23573, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 12128, 1600, 366, 35, 10277, 676, 14246, 28051, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 40330, 1600, 366, 30639, 5151, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 27453, 1073, 1600, 366, 26114, 22590, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 38443, 2434, 1600, 366, 42, 1501, 417, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 28782, 361, 1600, 366, 9527, 666, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 50, 6058, 9869, 1600, 366, 20602, 283, 859, 272, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 19522, 7203, 50, 2150, 21067, 1600, 366, 56, 403, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 1238, 4, 357, 18, 14, 20, 13103, 8, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 2091, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 1120, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 16, 14, 1507, 14, 1507, 1600, 366, 1493, 329, 2814, 428, 1285, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 1493, 329, 2814, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 17, 14, 1129, 14, 1507, 1600, 366, 1493, 329, 2814, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 1493, 329, 2814, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 19, 14, 1065, 14, 1507, 1600, 366, 42949, 284, 466, 23178, 357, 86, 14, 78, 10703, 8, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 19, 14, 1983, 14, 1507, 1600, 366, 38690, 5565, 23178, 319, 1737, 767, 400, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 9914, 14453, 1600, 366, 25934, 1600, 366, 20, 14, 940, 14, 1507, 1600, 366, 46981, 5565, 23178, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 25934, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 25934, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 25934, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 25934, 1600, 366, 16, 14, 1507, 14, 1507, 1600, 366, 11578, 768, 284, 923, 428, 1285, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 35742, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 1821, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 35742, 1600, 366, 17, 14, 1129, 14, 1507, 1600, 366, 1821, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 35742, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 1821, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 35742, 1600, 366, 19, 14, 1065, 14, 1507, 1600, 366, 1821, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 35, 2781, 563, 1600, 366, 35742, 1600, 366, 19, 14, 1983, 14, 1507, 1600, 366, 1821, 4, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 14731, 1600, 366, 35742, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 14731, 1600, 366, 35742, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 14731, 1600, 366, 35742, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 14731, 1600, 366, 35742, 1600, 366, 16, 14, 1507, 14, 1507, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 14731, 1600, 366, 35742, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 14731, 1600, 366, 35742, 1600, 366, 17, 14, 1129, 14, 1507, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 14731, 1600, 366, 35742, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 14731, 1600, 366, 35742, 1600, 366, 19, 14, 1983, 14, 1507, 1600, 366, 15, 4, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 12128, 1600, 366, 25934, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 16, 13, 43284, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 12128, 1600, 366, 25934, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 16, 13, 43284, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 12128, 1600, 366, 25934, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 16, 13, 43284, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 12128, 1600, 366, 25934, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 261, 11483, 352, 13, 19, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 12128, 1600, 366, 25934, 1600, 366, 17, 14, 1129, 14, 1507, 1600, 366, 261, 11483, 352, 13, 19, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 12128, 1600, 366, 25934, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 261, 11483, 352, 13, 19, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 40330, 1600, 366, 35742, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 40330, 1600, 366, 35742, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 40330, 1600, 366, 35742, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 1238, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 40330, 1600, 366, 35742, 1600, 366, 17, 14, 1129, 14, 1507, 1600, 366, 1238, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 40330, 1600, 366, 35742, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 1238, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 40330, 1600, 366, 35742, 1600, 366, 19, 14, 1065, 14, 1507, 1600, 366, 1238, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 40330, 1600, 366, 35742, 1600, 366, 19, 14, 1983, 14, 1507, 1600, 366, 1238, 4, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 25934, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 25934, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 1495, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 25934, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 3064, 4, 532, 3492, 329, 1332, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 25934, 1600, 366, 16, 14, 1507, 14, 1507, 1600, 366, 11578, 768, 319, 2263, 1332, 1306, 1285, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 25934, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 3064, 4, 532, 5201, 2263, 1332, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 25934, 1600, 366, 17, 14, 1129, 14, 1507, 1600, 366, 43952, 23178, 319, 5565, 2474, 8, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 35742, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 1238, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 35742, 1600, 366, 19, 14, 1065, 14, 1507, 1600, 366, 1238, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 35742, 1600, 366, 19, 14, 1983, 14, 1507, 1600, 366, 1270, 4, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 38443, 2434, 1600, 366, 25934, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 1238, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 38443, 2434, 1600, 366, 25934, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 1270, 12, 2327, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 38443, 2434, 1600, 366, 25934, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 1120, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 38443, 2434, 1600, 366, 25934, 1600, 366, 16, 14, 1507, 14, 1507, 1600, 366, 43952, 37124, 13, 220, 3357, 878, 262, 2814, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 38443, 2434, 1600, 366, 25934, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 3064, 4, 532, 5410, 284, 1011, 10703, 287, 1195, 16, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 38443, 2434, 1600, 366, 25934, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 38, 4728, 10703, 290, 1804, 23178, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 28782, 361, 1600, 366, 35742, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 3324, 13, 3324, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 28782, 361, 1600, 366, 35742, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 3865, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 28782, 361, 1600, 366, 35742, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 3064, 4, 532, 3492, 329, 18553, 357, 15146, 8, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 28782, 361, 1600, 366, 35742, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 3064, 4, 532, 5410, 284, 923, 18553, 319, 3158, 13, 642, 400, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 28782, 361, 1600, 366, 35742, 1600, 366, 17, 14, 1129, 14, 1507, 1600, 366, 43952, 23178, 319, 8969, 2474, 8, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 6058, 9869, 1600, 366, 25934, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 1120, 4, 5410, 319, 2263, 1332, 1367, 14, 3132, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 6058, 9869, 1600, 366, 25934, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 1120, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 6058, 9869, 1600, 366, 25934, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 3064, 4, 532, 3492, 329, 18553, 357, 16192, 8, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 6058, 9869, 1600, 366, 25934, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 3064, 4, 532, 3492, 329, 18553, 357, 16192, 8, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 6058, 9869, 1600, 366, 25934, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 38690, 23178, 319, 5565, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 6058, 9869, 1600, 366, 25934, 1600, 366, 19, 14, 1983, 14, 1507, 1600, 366, 43952, 23178, 319, 5565, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 1157, 14, 17, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 1157, 14, 1433, 14, 1558, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 16, 14, 20, 14, 1507, 1600, 366, 15, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 16, 14, 1507, 14, 1507, 1600, 366, 20, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 17, 14, 16, 14, 1507, 1600, 366, 20, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 17, 14, 1129, 14, 1507, 1600, 366, 20, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 18, 14, 1959, 14, 1507, 1600, 366, 20, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 19, 14, 1065, 14, 1507, 1600, 366, 20, 4, 4943, 198, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 50, 2150, 21067, 1600, 366, 25934, 1600, 366, 19, 14, 1983, 14, 1507, 1600, 366, 20, 4, 4943, 628, 220, 220, 220, 1074, 13, 2860, 62, 7890, 7203, 27453, 1073, 1600, 366, 35742, 1600, 366, 22, 14, 21, 14, 1507, 1600, 366, 1120, 4, 4943, 628, 220, 220, 220, 1074, 13, 13564, 62, 1462, 62, 15466, 62, 1525, 62, 3672, 7203, 16762, 62, 1525, 62, 3672, 13, 46569, 65, 4943, 198, 2, 220, 220, 220, 1074, 13, 13564, 62, 1462, 62, 15466, 62, 1525, 62, 24254, 7203, 16762, 62, 1525, 62, 24254, 13, 46569, 65, 4943, 198 ]
2.226339
2,483
import numpy as np from sklearn.base import BaseEstimator def scaled_linspace(x: np.ndarray, y: np.ndarray, num: int, scaler: BaseEstimator) -> np.ndarray: """Generate a linspace, evenly spaced according to the normalization Args: x (np.ndarray): First point y (np.ndarray): Sencond point num (int): Number of points (in between the two points) method (str): Normalization method Returns: np.ndarray: Sequence of points evenly spaced """ # Normalize the points x = scaler.transform([x])[0] y = scaler.transform([y])[0] # Generate the linspace ls = np.linspace(x, y, num=num + 1, endpoint=True) # Unnormalize the points ls = scaler.inverse_transform(ls) return ls
[ 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 8692, 1330, 7308, 22362, 320, 1352, 628, 198, 4299, 27464, 62, 21602, 10223, 7, 87, 25, 45941, 13, 358, 18747, 11, 331, 25, 45941, 13, 358, 18747, 11, 997, 25, 493, 11, 16578, 263, 25, 7308, 22362, 320, 1352, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 8645, 378, 257, 300, 1040, 10223, 11, 21894, 38980, 1864, 284, 262, 3487, 1634, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 37659, 13, 358, 18747, 2599, 3274, 966, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 357, 37659, 13, 358, 18747, 2599, 2311, 17561, 966, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 357, 600, 2599, 7913, 286, 2173, 357, 259, 1022, 262, 734, 2173, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 357, 2536, 2599, 14435, 1634, 2446, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 358, 18747, 25, 45835, 286, 2173, 21894, 38980, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 14435, 1096, 262, 2173, 198, 220, 220, 220, 2124, 796, 16578, 263, 13, 35636, 26933, 87, 12962, 58, 15, 60, 198, 220, 220, 220, 331, 796, 16578, 263, 13, 35636, 26933, 88, 12962, 58, 15, 60, 628, 220, 220, 220, 1303, 2980, 378, 262, 300, 1040, 10223, 198, 220, 220, 220, 43979, 796, 45941, 13, 21602, 10223, 7, 87, 11, 331, 11, 997, 28, 22510, 1343, 352, 11, 36123, 28, 17821, 8, 628, 220, 220, 220, 1303, 791, 11265, 1096, 262, 2173, 198, 220, 220, 220, 43979, 796, 16578, 263, 13, 259, 4399, 62, 35636, 7, 7278, 8, 628, 220, 220, 220, 1441, 43979, 198 ]
2.430769
325
from keras_classifiers import ffn1, ffn2, cnn1, cnn2, train_and_evaluate from sklearn_classifiers import train_and_evaluate_all import utils as u print('\n\nEvaluating DNN Classifiers') # train_and_evaluate(cnn1, u.FEATURE_SET_SPECS) # train_and_evaluate(cnn2, u.FEATURE_SET_SPECS) # train_and_evaluate(ffn1, u.FEATURE_SET_MEANS) # train_and_evaluate(ffn2, u.FEATURE_SET_SPECS_NORM) print('\n\nEvaluating Classifiers') train_and_evaluate_all(u.FEATURE_SET_MEANS) # train_and_evaluate_all(u.FEATURE_SET_SPECS_NORM)
[ 6738, 41927, 292, 62, 4871, 13350, 1330, 277, 22184, 16, 11, 277, 22184, 17, 11, 269, 20471, 16, 11, 269, 20471, 17, 11, 4512, 62, 392, 62, 49786, 198, 6738, 1341, 35720, 62, 4871, 13350, 1330, 4512, 62, 392, 62, 49786, 62, 439, 198, 11748, 3384, 4487, 355, 334, 628, 198, 4798, 10786, 59, 77, 59, 77, 36, 2100, 11927, 360, 6144, 5016, 13350, 11537, 198, 2, 4512, 62, 392, 62, 49786, 7, 66, 20471, 16, 11, 334, 13, 15112, 40086, 62, 28480, 62, 48451, 50, 8, 198, 2, 4512, 62, 392, 62, 49786, 7, 66, 20471, 17, 11, 334, 13, 15112, 40086, 62, 28480, 62, 48451, 50, 8, 198, 2, 4512, 62, 392, 62, 49786, 7, 487, 77, 16, 11, 334, 13, 15112, 40086, 62, 28480, 62, 11682, 15037, 8, 198, 2, 4512, 62, 392, 62, 49786, 7, 487, 77, 17, 11, 334, 13, 15112, 40086, 62, 28480, 62, 48451, 50, 62, 35510, 44, 8, 198, 198, 4798, 10786, 59, 77, 59, 77, 36, 2100, 11927, 5016, 13350, 11537, 198, 27432, 62, 392, 62, 49786, 62, 439, 7, 84, 13, 15112, 40086, 62, 28480, 62, 11682, 15037, 8, 198, 2, 4512, 62, 392, 62, 49786, 62, 439, 7, 84, 13, 15112, 40086, 62, 28480, 62, 48451, 50, 62, 35510, 44, 8 ]
2.433962
212
# Generated by Django 2.0.2 on 2018-03-01 22:33 from django.db import migrations, models import django.utils.timezone
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 13, 17, 319, 2864, 12, 3070, 12, 486, 2534, 25, 2091, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 26791, 13, 2435, 11340, 628 ]
2.926829
41
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.extensions.google_cloud_ai_platform.runner.""" import copy import importlib import os from typing import Any, Dict from unittest import mock from google.auth import credentials as auth_credentials from google.cloud import aiplatform from google.cloud.aiplatform import initializer from google.cloud.aiplatform.compat.types import endpoint from google.cloud.aiplatform_v1.services.endpoint_service import ( client as endpoint_service_client) from google.cloud.aiplatform_v1beta1.types.custom_job import CustomJob from google.cloud.aiplatform_v1beta1.types.job_state import JobState from googleapiclient import errors import httplib2 import tensorflow as tf from tfx.extensions.google_cloud_ai_platform import prediction_clients from tfx.extensions.google_cloud_ai_platform import runner from tfx.extensions.google_cloud_ai_platform.trainer import executor from tfx.utils import json_utils from tfx.utils import telemetry_utils from tfx.utils import version_utils if __name__ == '__main__': tf.test.main()
[ 2, 15069, 13130, 3012, 11419, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 51, 3558, 329, 256, 21373, 13, 2302, 5736, 13, 13297, 62, 17721, 62, 1872, 62, 24254, 13, 16737, 526, 15931, 198, 198, 11748, 4866, 198, 11748, 1330, 8019, 198, 11748, 28686, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 198, 6738, 555, 715, 395, 1330, 15290, 198, 198, 6738, 23645, 13, 18439, 1330, 18031, 355, 6284, 62, 66, 445, 14817, 198, 6738, 23645, 13, 17721, 1330, 257, 72, 24254, 198, 6738, 23645, 13, 17721, 13, 1872, 24254, 1330, 4238, 7509, 198, 6738, 23645, 13, 17721, 13, 1872, 24254, 13, 5589, 265, 13, 19199, 1330, 36123, 198, 6738, 23645, 13, 17721, 13, 1872, 24254, 62, 85, 16, 13, 30416, 13, 437, 4122, 62, 15271, 1330, 357, 198, 220, 220, 220, 5456, 355, 36123, 62, 15271, 62, 16366, 8, 198, 6738, 23645, 13, 17721, 13, 1872, 24254, 62, 85, 16, 31361, 16, 13, 19199, 13, 23144, 62, 21858, 1330, 8562, 33308, 198, 6738, 23645, 13, 17721, 13, 1872, 24254, 62, 85, 16, 31361, 16, 13, 19199, 13, 21858, 62, 5219, 1330, 15768, 9012, 198, 6738, 23645, 499, 291, 75, 1153, 1330, 8563, 198, 11748, 1841, 489, 571, 17, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 256, 21373, 13, 2302, 5736, 13, 13297, 62, 17721, 62, 1872, 62, 24254, 1330, 17724, 62, 565, 2334, 198, 6738, 256, 21373, 13, 2302, 5736, 13, 13297, 62, 17721, 62, 1872, 62, 24254, 1330, 17490, 198, 6738, 256, 21373, 13, 2302, 5736, 13, 13297, 62, 17721, 62, 1872, 62, 24254, 13, 2213, 10613, 1330, 3121, 273, 198, 6738, 256, 21373, 13, 26791, 1330, 33918, 62, 26791, 198, 6738, 256, 21373, 13, 26791, 1330, 5735, 41935, 62, 26791, 198, 6738, 256, 21373, 13, 26791, 1330, 2196, 62, 26791, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 48700, 13, 9288, 13, 12417, 3419, 198 ]
3.554585
458
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains tests for decision_maker.""" import pytest from aea_ledger_cosmos import CosmosCrypto from aea_ledger_ethereum import EthereumCrypto from aea_ledger_fetchai import FetchAICrypto from aea.configurations.base import PublicId from aea.crypto.registries import make_crypto, make_ledger_api from aea.crypto.wallet import Wallet from aea.decision_maker.base import DecisionMaker from aea.decision_maker.default import DecisionMakerHandler from aea.helpers.transaction.base import ( RawMessage, RawTransaction, SignedMessage, Terms, ) from aea.identity.base import Identity from aea.protocols.base import Address, Message from aea.protocols.dialogue.base import Dialogue as BaseDialogue from packages.fetchai.protocols.signing.dialogues import SigningDialogue from packages.fetchai.protocols.signing.dialogues import ( SigningDialogues as BaseSigningDialogues, ) from packages.fetchai.protocols.signing.message import SigningMessage from tests.conftest import ( COSMOS_PRIVATE_KEY_PATH, ETHEREUM_PRIVATE_KEY_PATH, FETCHAI_PRIVATE_KEY_PATH, FETCHAI_TESTNET_CONFIG, MAX_FLAKY_RERUNS, get_wealth_if_needed, ) class SigningDialogues(BaseSigningDialogues): """This class keeps track of all oef_search dialogues.""" def __init__(self, self_address: Address) -> None: """ Initialize dialogues. :param self_address: the address of the entity for whom dialogues are maintained :return: None """ def role_from_first_message( # pylint: disable=unused-argument message: Message, receiver_address: Address ) -> BaseDialogue.Role: """Infer the role of the agent from an incoming/outgoing first message :param message: an incoming/outgoing first message :param receiver_address: the address of the receiving agent :return: The role of the agent """ return SigningDialogue.Role.SKILL BaseSigningDialogues.__init__( self, self_address=self_address, role_from_first_message=role_from_first_message, dialogue_class=SigningDialogue, ) class BaseTestDecisionMaker: """Test the decision maker.""" @classmethod def setup( cls, decision_maker_handler_cls=DecisionMakerHandler, decision_maker_cls=DecisionMaker, ): """Initialise the decision maker.""" cls.wallet = Wallet( { CosmosCrypto.identifier: COSMOS_PRIVATE_KEY_PATH, EthereumCrypto.identifier: ETHEREUM_PRIVATE_KEY_PATH, FetchAICrypto.identifier: FETCHAI_PRIVATE_KEY_PATH, } ) cls.agent_name = "test" cls.identity = Identity( cls.agent_name, addresses=cls.wallet.addresses, public_keys=cls.wallet.public_keys, default_address_key=FetchAICrypto.identifier, ) cls.config = {} cls.decision_maker_handler = decision_maker_handler_cls( identity=cls.identity, wallet=cls.wallet, config=cls.config ) cls.decision_maker = decision_maker_cls(cls.decision_maker_handler) cls.tx_sender_addr = "agent_1" cls.tx_counterparty_addr = "pk" cls.info = {"some_info_key": "some_info_value"} cls.ledger_id = FetchAICrypto.identifier cls.decision_maker.start() def test_decision_maker_config(self): """Test config property.""" assert self.decision_maker_handler.config == self.config def test_decision_maker_execute_w_wrong_input(self): """Test the execute method with wrong input.""" with pytest.raises(ValueError): self.decision_maker.message_in_queue.put_nowait("wrong input") with pytest.raises(ValueError): self.decision_maker.message_in_queue.put("wrong input") def test_decision_maker_queue_access_not_permitted(self): """Test the in queue of the decision maker can not be accessed.""" with pytest.raises(ValueError): self.decision_maker.message_in_queue.get() with pytest.raises(ValueError): self.decision_maker.message_in_queue.get_nowait() with pytest.raises(ValueError): self.decision_maker.message_in_queue.protected_get( access_code="some_invalid_code" ) @pytest.mark.flaky(reruns=MAX_FLAKY_RERUNS) def test_handle_tx_signing_fetchai(self): """Test tx signing for fetchai.""" fetchai_api = make_ledger_api( FetchAICrypto.identifier, **FETCHAI_TESTNET_CONFIG ) sender_address = self.wallet.addresses["fetchai"] fc2 = make_crypto(FetchAICrypto.identifier) get_wealth_if_needed(sender_address, fetchai_api) amount = 10000 transfer_transaction = fetchai_api.get_transfer_transaction( sender_address=sender_address, destination_address=fc2.address, amount=amount, tx_fee=1000, tx_nonce="something", ) signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_TRANSACTION, dialogue_reference=signing_dialogues.new_self_initiated_dialogue_reference(), terms=Terms( ledger_id=FetchAICrypto.identifier, sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_transaction=RawTransaction( FetchAICrypto.identifier, transfer_transaction ), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) recovered_dialogue = signing_dialogues.update(signing_msg_response) assert recovered_dialogue is not None and recovered_dialogue == signing_dialogue assert ( signing_msg_response.performative == SigningMessage.Performative.SIGNED_TRANSACTION ) assert type(signing_msg_response.signed_transaction.body) == dict def test_handle_tx_signing_ethereum(self): """Test tx signing for ethereum.""" tx = {"gasPrice": 30, "nonce": 1, "gas": 20000} signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_TRANSACTION, dialogue_reference=signing_dialogues.new_self_initiated_dialogue_reference(), terms=Terms( ledger_id=EthereumCrypto.identifier, sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_transaction=RawTransaction(EthereumCrypto.identifier, tx), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) recovered_dialogue = signing_dialogues.update(signing_msg_response) assert recovered_dialogue is not None and recovered_dialogue == signing_dialogue assert ( signing_msg_response.performative == SigningMessage.Performative.SIGNED_TRANSACTION ) assert type(signing_msg_response.signed_transaction.body) == dict def test_handle_tx_signing_unknown(self): """Test tx signing for unknown.""" tx = {} signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_TRANSACTION, dialogue_reference=signing_dialogues.new_self_initiated_dialogue_reference(), terms=Terms( ledger_id="unknown", sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_transaction=RawTransaction("unknown", tx), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) recovered_dialogue = signing_dialogues.update(signing_msg_response) assert recovered_dialogue is not None and recovered_dialogue == signing_dialogue assert signing_msg_response.performative == SigningMessage.Performative.ERROR assert ( signing_msg_response.error_code == SigningMessage.ErrorCode.UNSUCCESSFUL_TRANSACTION_SIGNING ) def test_handle_message_signing_fetchai(self): """Test message signing for fetchai.""" message = b"0x11f3f9487724404e3a1fb7252a322656b90ba0455a2ca5fcdcbe6eeee5f8126d" signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_MESSAGE, dialogue_reference=signing_dialogues.new_self_initiated_dialogue_reference(), terms=Terms( ledger_id=FetchAICrypto.identifier, sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_message=RawMessage(FetchAICrypto.identifier, message), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) recovered_dialogue = signing_dialogues.update(signing_msg_response) assert recovered_dialogue is not None and recovered_dialogue == signing_dialogue assert ( signing_msg_response.performative == SigningMessage.Performative.SIGNED_MESSAGE ) assert type(signing_msg_response.signed_message) == SignedMessage def test_handle_message_signing_ethereum(self): """Test message signing for ethereum.""" message = b"0x11f3f9487724404e3a1fb7252a322656b90ba0455a2ca5fcdcbe6eeee5f8126d" signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_MESSAGE, dialogue_reference=signing_dialogues.new_self_initiated_dialogue_reference(), terms=Terms( ledger_id=EthereumCrypto.identifier, sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_message=RawMessage(EthereumCrypto.identifier, message), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) recovered_dialogue = signing_dialogues.update(signing_msg_response) assert recovered_dialogue is not None and recovered_dialogue == signing_dialogue assert ( signing_msg_response.performative == SigningMessage.Performative.SIGNED_MESSAGE ) assert type(signing_msg_response.signed_message) == SignedMessage def test_handle_message_signing_ethereum_deprecated(self): """Test message signing for ethereum deprecated.""" message = b"0x11f3f9487724404e3a1fb7252a3226" signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_MESSAGE, dialogue_reference=signing_dialogues.new_self_initiated_dialogue_reference(), terms=Terms( ledger_id=EthereumCrypto.identifier, sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_message=RawMessage( EthereumCrypto.identifier, message, is_deprecated_mode=True ), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) recovered_dialogue = signing_dialogues.update(signing_msg_response) assert recovered_dialogue is not None and recovered_dialogue == signing_dialogue assert ( signing_msg_response.performative == SigningMessage.Performative.SIGNED_MESSAGE ) assert type(signing_msg_response.signed_message) == SignedMessage assert signing_msg_response.signed_message.is_deprecated_mode def test_handle_message_signing_unknown_and_two_dialogues(self): """Test message signing for unknown.""" message = b"0x11f3f9487724404e3a1fb7252a322656b90ba0455a2ca5fcdcbe6eeee5f8126d" signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_MESSAGE, dialogue_reference=signing_dialogues.new_self_initiated_dialogue_reference(), terms=Terms( ledger_id="unknown", sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_message=RawMessage("unknown", message), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) recovered_dialogue = signing_dialogues.update(signing_msg_response) assert recovered_dialogue is not None and recovered_dialogue == signing_dialogue assert signing_msg_response.performative == SigningMessage.Performative.ERROR assert ( signing_msg_response.error_code == SigningMessage.ErrorCode.UNSUCCESSFUL_MESSAGE_SIGNING ) def test_handle_messages_from_two_dialogues_same_agent(self): """Test message signing for unknown.""" message = b"0x11f3f9487724404e3a1fb7252a322656b90ba0455a2ca5fcdcbe6eeee5f8126d" signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) dialogue_reference = signing_dialogues.new_self_initiated_dialogue_reference() signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_MESSAGE, dialogue_reference=dialogue_reference, terms=Terms( ledger_id="unknown", sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_message=RawMessage("unknown", message), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) assert signing_msg_response is not None signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_MESSAGE, dialogue_reference=dialogue_reference, terms=Terms( ledger_id="unknown", sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_message=RawMessage("unknown", message), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None with pytest.raises(Exception): # Exception occurs because the same counterparty sends two identical dialogue references self.decision_maker.message_out_queue.get(timeout=1) # test twice; should work again even from same agent signing_dialogues = SigningDialogues( str(PublicId("author", "a_skill", "0.1.0")) ) signing_msg = SigningMessage( performative=SigningMessage.Performative.SIGN_MESSAGE, dialogue_reference=signing_dialogues.new_self_initiated_dialogue_reference(), terms=Terms( ledger_id="unknown", sender_address="pk1", counterparty_address="pk2", amount_by_currency_id={"FET": -1}, is_sender_payable_tx_fee=True, quantities_by_good_id={"good_id": 10}, nonce="transaction nonce", ), raw_message=RawMessage("unknown", message), ) signing_dialogue = signing_dialogues.create_with_message( "decision_maker", signing_msg ) assert signing_dialogue is not None self.decision_maker.message_in_queue.put_nowait(signing_msg) signing_msg_response = self.decision_maker.message_out_queue.get(timeout=2) assert signing_msg_response is not None @classmethod def teardown(cls): """Tear the tests down.""" cls.decision_maker.stop() class TestDecisionMaker(BaseTestDecisionMaker): """Run test for default decision maker."""
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 16529, 26171, 198, 2, 198, 2, 220, 220, 15069, 2864, 12, 23344, 376, 7569, 13, 20185, 15302, 198, 2, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 16529, 26171, 198, 198, 37811, 1212, 8265, 4909, 5254, 329, 2551, 62, 10297, 526, 15931, 198, 198, 11748, 12972, 9288, 198, 6738, 257, 18213, 62, 992, 1362, 62, 6966, 16785, 1330, 39972, 23919, 78, 198, 6738, 257, 18213, 62, 992, 1362, 62, 316, 1456, 388, 1330, 20313, 23919, 78, 198, 6738, 257, 18213, 62, 992, 1362, 62, 69, 7569, 1872, 1330, 376, 7569, 32, 2149, 6012, 78, 198, 198, 6738, 257, 18213, 13, 11250, 20074, 13, 8692, 1330, 5094, 7390, 198, 6738, 257, 18213, 13, 29609, 78, 13, 2301, 32995, 1330, 787, 62, 29609, 78, 11, 787, 62, 992, 1362, 62, 15042, 198, 6738, 257, 18213, 13, 29609, 78, 13, 44623, 1330, 37249, 198, 6738, 257, 18213, 13, 12501, 1166, 62, 10297, 13, 8692, 1330, 26423, 48890, 198, 6738, 257, 18213, 13, 12501, 1166, 62, 10297, 13, 12286, 1330, 26423, 48890, 25060, 198, 6738, 257, 18213, 13, 16794, 364, 13, 7645, 2673, 13, 8692, 1330, 357, 198, 220, 220, 220, 16089, 12837, 11, 198, 220, 220, 220, 16089, 48720, 11, 198, 220, 220, 220, 36215, 12837, 11, 198, 220, 220, 220, 17637, 11, 198, 8, 198, 6738, 257, 18213, 13, 738, 414, 13, 8692, 1330, 27207, 198, 6738, 257, 18213, 13, 11235, 4668, 82, 13, 8692, 1330, 17917, 11, 16000, 198, 6738, 257, 18213, 13, 11235, 4668, 82, 13, 38969, 5119, 13, 8692, 1330, 34709, 355, 7308, 41099, 198, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 11235, 4668, 82, 13, 12683, 278, 13, 38969, 519, 947, 1330, 5865, 278, 41099, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 11235, 4668, 82, 13, 12683, 278, 13, 38969, 519, 947, 1330, 357, 198, 220, 220, 220, 5865, 278, 44204, 947, 355, 7308, 11712, 278, 44204, 947, 11, 198, 8, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 11235, 4668, 82, 13, 12683, 278, 13, 20500, 1330, 5865, 278, 12837, 198, 198, 6738, 5254, 13, 1102, 701, 395, 1330, 357, 198, 220, 220, 220, 327, 2640, 44, 2640, 62, 4805, 3824, 6158, 62, 20373, 62, 34219, 11, 198, 220, 220, 220, 35920, 9338, 5883, 62, 4805, 3824, 6158, 62, 20373, 62, 34219, 11, 198, 220, 220, 220, 376, 2767, 3398, 20185, 62, 4805, 3824, 6158, 62, 20373, 62, 34219, 11, 198, 220, 220, 220, 376, 2767, 3398, 20185, 62, 51, 6465, 12884, 62, 10943, 16254, 11, 198, 220, 220, 220, 25882, 62, 3697, 10206, 56, 62, 49, 1137, 4944, 50, 11, 198, 220, 220, 220, 651, 62, 14298, 62, 361, 62, 27938, 11, 198, 8, 628, 198, 4871, 5865, 278, 44204, 947, 7, 14881, 11712, 278, 44204, 947, 2599, 198, 220, 220, 220, 37227, 1212, 1398, 7622, 2610, 286, 477, 267, 891, 62, 12947, 17310, 947, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2116, 62, 21975, 25, 17917, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 17310, 947, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2116, 62, 21975, 25, 262, 2209, 286, 262, 9312, 329, 4150, 17310, 947, 389, 9456, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 825, 2597, 62, 6738, 62, 11085, 62, 20500, 7, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 25, 16000, 11, 9733, 62, 21975, 25, 17917, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 4613, 7308, 41099, 13, 47445, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 818, 2232, 262, 2597, 286, 262, 5797, 422, 281, 15619, 14, 448, 5146, 717, 3275, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3275, 25, 281, 15619, 14, 448, 5146, 717, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9733, 62, 21975, 25, 262, 2209, 286, 262, 6464, 5797, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 2597, 286, 262, 5797, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5865, 278, 41099, 13, 47445, 13, 18831, 8267, 628, 220, 220, 220, 220, 220, 220, 220, 7308, 11712, 278, 44204, 947, 13, 834, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 62, 21975, 28, 944, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2597, 62, 6738, 62, 11085, 62, 20500, 28, 18090, 62, 6738, 62, 11085, 62, 20500, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 4871, 28, 11712, 278, 41099, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4871, 7308, 14402, 10707, 1166, 48890, 25, 198, 220, 220, 220, 37227, 14402, 262, 2551, 16009, 526, 15931, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 9058, 7, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2551, 62, 10297, 62, 30281, 62, 565, 82, 28, 10707, 1166, 48890, 25060, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2551, 62, 10297, 62, 565, 82, 28, 10707, 1166, 48890, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 786, 262, 2551, 16009, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 44623, 796, 37249, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39972, 23919, 78, 13, 738, 7483, 25, 327, 2640, 44, 2640, 62, 4805, 3824, 6158, 62, 20373, 62, 34219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20313, 23919, 78, 13, 738, 7483, 25, 35920, 9338, 5883, 62, 4805, 3824, 6158, 62, 20373, 62, 34219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 25, 376, 2767, 3398, 20185, 62, 4805, 3824, 6158, 62, 20373, 62, 34219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 25781, 62, 3672, 796, 366, 9288, 1, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 738, 414, 796, 27207, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 25781, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9405, 28, 565, 82, 13, 44623, 13, 2860, 16746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1171, 62, 13083, 28, 565, 82, 13, 44623, 13, 11377, 62, 13083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 21975, 62, 2539, 28, 37, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 11250, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 12501, 1166, 62, 10297, 62, 30281, 796, 2551, 62, 10297, 62, 30281, 62, 565, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5369, 28, 565, 82, 13, 738, 414, 11, 13008, 28, 565, 82, 13, 44623, 11, 4566, 28, 565, 82, 13, 11250, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 12501, 1166, 62, 10297, 796, 2551, 62, 10297, 62, 565, 82, 7, 565, 82, 13, 12501, 1166, 62, 10297, 62, 30281, 8, 628, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 17602, 62, 82, 2194, 62, 29851, 796, 366, 25781, 62, 16, 1, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 17602, 62, 24588, 10608, 62, 29851, 796, 366, 79, 74, 1, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 10951, 796, 19779, 11246, 62, 10951, 62, 2539, 1298, 366, 11246, 62, 10951, 62, 8367, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 992, 1362, 62, 312, 796, 376, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 628, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 12501, 1166, 62, 10297, 13, 9688, 3419, 628, 220, 220, 220, 825, 1332, 62, 12501, 1166, 62, 10297, 62, 11250, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 4566, 3119, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 12501, 1166, 62, 10297, 62, 30281, 13, 11250, 6624, 2116, 13, 11250, 628, 220, 220, 220, 825, 1332, 62, 12501, 1166, 62, 10297, 62, 41049, 62, 86, 62, 36460, 62, 15414, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 12260, 2446, 351, 2642, 5128, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7203, 36460, 5128, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 7203, 36460, 5128, 4943, 628, 220, 220, 220, 825, 1332, 62, 12501, 1166, 62, 10297, 62, 36560, 62, 15526, 62, 1662, 62, 525, 3291, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 287, 16834, 286, 262, 2551, 16009, 460, 407, 307, 17535, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1136, 62, 2197, 4548, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 24326, 62, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 8189, 2625, 11246, 62, 259, 12102, 62, 8189, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 2704, 15492, 7, 260, 48381, 28, 22921, 62, 3697, 10206, 56, 62, 49, 1137, 4944, 50, 8, 198, 220, 220, 220, 825, 1332, 62, 28144, 62, 17602, 62, 12683, 278, 62, 69, 7569, 1872, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 27765, 8415, 329, 21207, 1872, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 21207, 1872, 62, 15042, 796, 787, 62, 992, 1362, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 11, 12429, 37, 2767, 3398, 20185, 62, 51, 6465, 12884, 62, 10943, 16254, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 796, 2116, 13, 44623, 13, 2860, 16746, 14692, 69, 7569, 1872, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 277, 66, 17, 796, 787, 62, 29609, 78, 7, 37, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 8, 628, 220, 220, 220, 220, 220, 220, 220, 651, 62, 14298, 62, 361, 62, 27938, 7, 82, 2194, 62, 21975, 11, 21207, 1872, 62, 15042, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2033, 796, 33028, 198, 220, 220, 220, 220, 220, 220, 220, 4351, 62, 7645, 2673, 796, 21207, 1872, 62, 15042, 13, 1136, 62, 39437, 62, 7645, 2673, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 28, 82, 2194, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10965, 62, 21975, 28, 16072, 17, 13, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 28, 17287, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 62, 39071, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 62, 13159, 344, 2625, 18927, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 5446, 15037, 44710, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 12683, 278, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 28, 37, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 7645, 2673, 28, 27369, 48720, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 11, 4351, 62, 7645, 2673, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 19119, 7, 12683, 278, 62, 19662, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 11911, 62, 38969, 5119, 318, 407, 6045, 290, 11911, 62, 38969, 5119, 6624, 8415, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 13, 525, 687, 876, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 5865, 278, 12837, 13, 5990, 687, 876, 13, 46224, 1961, 62, 5446, 15037, 44710, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2099, 7, 12683, 278, 62, 19662, 62, 26209, 13, 32696, 62, 7645, 2673, 13, 2618, 8, 6624, 8633, 628, 220, 220, 220, 825, 1332, 62, 28144, 62, 17602, 62, 12683, 278, 62, 316, 1456, 388, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 27765, 8415, 329, 304, 17733, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 796, 19779, 22649, 18124, 1298, 1542, 11, 366, 13159, 344, 1298, 352, 11, 366, 22649, 1298, 939, 405, 92, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 5446, 15037, 44710, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 12683, 278, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 28, 36, 17733, 23919, 78, 13, 738, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 7645, 2673, 28, 27369, 48720, 7, 36, 17733, 23919, 78, 13, 738, 7483, 11, 27765, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 19119, 7, 12683, 278, 62, 19662, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 11911, 62, 38969, 5119, 318, 407, 6045, 290, 11911, 62, 38969, 5119, 6624, 8415, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 13, 525, 687, 876, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 5865, 278, 12837, 13, 5990, 687, 876, 13, 46224, 1961, 62, 5446, 15037, 44710, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2099, 7, 12683, 278, 62, 19662, 62, 26209, 13, 32696, 62, 7645, 2673, 13, 2618, 8, 6624, 8633, 628, 220, 220, 220, 825, 1332, 62, 28144, 62, 17602, 62, 12683, 278, 62, 34680, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 27765, 8415, 329, 6439, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 5446, 15037, 44710, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 12683, 278, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 2625, 34680, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 7645, 2673, 28, 27369, 48720, 7203, 34680, 1600, 27765, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 19119, 7, 12683, 278, 62, 19662, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 11911, 62, 38969, 5119, 318, 407, 6045, 290, 11911, 62, 38969, 5119, 6624, 8415, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 19662, 62, 26209, 13, 525, 687, 876, 6624, 5865, 278, 12837, 13, 5990, 687, 876, 13, 24908, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 13, 18224, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 5865, 278, 12837, 13, 12331, 10669, 13, 4944, 12564, 4093, 7597, 46476, 62, 5446, 15037, 44710, 62, 50, 3528, 15871, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 28144, 62, 20500, 62, 12683, 278, 62, 69, 7569, 1872, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 3275, 8415, 329, 21207, 1872, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 275, 1, 15, 87, 1157, 69, 18, 69, 24, 2780, 3324, 1731, 26429, 68, 18, 64, 16, 21855, 22, 22800, 64, 37283, 37466, 65, 3829, 7012, 15, 30505, 64, 17, 6888, 20, 69, 10210, 66, 1350, 21, 41591, 20, 69, 23, 19420, 67, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 44, 1546, 4090, 8264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 12683, 278, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 28, 37, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 20500, 28, 27369, 12837, 7, 37, 7569, 32, 2149, 6012, 78, 13, 738, 7483, 11, 3275, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 19119, 7, 12683, 278, 62, 19662, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 11911, 62, 38969, 5119, 318, 407, 6045, 290, 11911, 62, 38969, 5119, 6624, 8415, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 13, 525, 687, 876, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 5865, 278, 12837, 13, 5990, 687, 876, 13, 46224, 1961, 62, 44, 1546, 4090, 8264, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2099, 7, 12683, 278, 62, 19662, 62, 26209, 13, 32696, 62, 20500, 8, 6624, 36215, 12837, 628, 220, 220, 220, 825, 1332, 62, 28144, 62, 20500, 62, 12683, 278, 62, 316, 1456, 388, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 3275, 8415, 329, 304, 17733, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 275, 1, 15, 87, 1157, 69, 18, 69, 24, 2780, 3324, 1731, 26429, 68, 18, 64, 16, 21855, 22, 22800, 64, 37283, 37466, 65, 3829, 7012, 15, 30505, 64, 17, 6888, 20, 69, 10210, 66, 1350, 21, 41591, 20, 69, 23, 19420, 67, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 44, 1546, 4090, 8264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 12683, 278, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 28, 36, 17733, 23919, 78, 13, 738, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 20500, 28, 27369, 12837, 7, 36, 17733, 23919, 78, 13, 738, 7483, 11, 3275, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 19119, 7, 12683, 278, 62, 19662, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 11911, 62, 38969, 5119, 318, 407, 6045, 290, 11911, 62, 38969, 5119, 6624, 8415, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 13, 525, 687, 876, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 5865, 278, 12837, 13, 5990, 687, 876, 13, 46224, 1961, 62, 44, 1546, 4090, 8264, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2099, 7, 12683, 278, 62, 19662, 62, 26209, 13, 32696, 62, 20500, 8, 6624, 36215, 12837, 628, 220, 220, 220, 825, 1332, 62, 28144, 62, 20500, 62, 12683, 278, 62, 316, 1456, 388, 62, 10378, 31023, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 3275, 8415, 329, 304, 17733, 39224, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 275, 1, 15, 87, 1157, 69, 18, 69, 24, 2780, 3324, 1731, 26429, 68, 18, 64, 16, 21855, 22, 22800, 64, 18, 24909, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 44, 1546, 4090, 8264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 12683, 278, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 28, 36, 17733, 23919, 78, 13, 738, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 20500, 28, 27369, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20313, 23919, 78, 13, 738, 7483, 11, 3275, 11, 318, 62, 10378, 31023, 62, 14171, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 19119, 7, 12683, 278, 62, 19662, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 11911, 62, 38969, 5119, 318, 407, 6045, 290, 11911, 62, 38969, 5119, 6624, 8415, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 13, 525, 687, 876, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 5865, 278, 12837, 13, 5990, 687, 876, 13, 46224, 1961, 62, 44, 1546, 4090, 8264, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2099, 7, 12683, 278, 62, 19662, 62, 26209, 13, 32696, 62, 20500, 8, 6624, 36215, 12837, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 19662, 62, 26209, 13, 32696, 62, 20500, 13, 271, 62, 10378, 31023, 62, 14171, 628, 220, 220, 220, 825, 1332, 62, 28144, 62, 20500, 62, 12683, 278, 62, 34680, 62, 392, 62, 11545, 62, 38969, 519, 947, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 3275, 8415, 329, 6439, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 275, 1, 15, 87, 1157, 69, 18, 69, 24, 2780, 3324, 1731, 26429, 68, 18, 64, 16, 21855, 22, 22800, 64, 37283, 37466, 65, 3829, 7012, 15, 30505, 64, 17, 6888, 20, 69, 10210, 66, 1350, 21, 41591, 20, 69, 23, 19420, 67, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 44, 1546, 4090, 8264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 12683, 278, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 2625, 34680, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 20500, 28, 27369, 12837, 7203, 34680, 1600, 3275, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 19119, 7, 12683, 278, 62, 19662, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 11911, 62, 38969, 5119, 318, 407, 6045, 290, 11911, 62, 38969, 5119, 6624, 8415, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 19662, 62, 26209, 13, 525, 687, 876, 6624, 5865, 278, 12837, 13, 5990, 687, 876, 13, 24908, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 13, 18224, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6624, 5865, 278, 12837, 13, 12331, 10669, 13, 4944, 12564, 4093, 7597, 46476, 62, 44, 1546, 4090, 8264, 62, 50, 3528, 15871, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 28144, 62, 37348, 1095, 62, 6738, 62, 11545, 62, 38969, 519, 947, 62, 31642, 62, 25781, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 3275, 8415, 329, 6439, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 275, 1, 15, 87, 1157, 69, 18, 69, 24, 2780, 3324, 1731, 26429, 68, 18, 64, 16, 21855, 22, 22800, 64, 37283, 37466, 65, 3829, 7012, 15, 30505, 64, 17, 6888, 20, 69, 10210, 66, 1350, 21, 41591, 20, 69, 23, 19420, 67, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 796, 8415, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 44, 1546, 4090, 8264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 38969, 5119, 62, 35790, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 2625, 34680, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 20500, 28, 27369, 12837, 7203, 34680, 1600, 3275, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 19662, 62, 26209, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 44, 1546, 4090, 8264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 38969, 5119, 62, 35790, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 2625, 34680, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 20500, 28, 27369, 12837, 7203, 34680, 1600, 3275, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35528, 8833, 780, 262, 976, 3753, 10608, 12800, 734, 10411, 10721, 10288, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1332, 5403, 26, 815, 670, 757, 772, 422, 976, 5797, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 519, 947, 796, 5865, 278, 44204, 947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15202, 7390, 7203, 9800, 1600, 366, 64, 62, 42401, 1600, 366, 15, 13, 16, 13, 15, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 796, 5865, 278, 12837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 11712, 278, 12837, 13, 5990, 687, 876, 13, 46224, 62, 44, 1546, 4090, 8264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10721, 62, 35790, 28, 12683, 278, 62, 38969, 519, 947, 13, 3605, 62, 944, 62, 259, 8846, 515, 62, 38969, 5119, 62, 35790, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2846, 28, 15156, 907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 2625, 34680, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 21975, 2625, 79, 74, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 62, 21975, 2625, 79, 74, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 62, 1525, 62, 34415, 62, 312, 28, 4895, 37, 2767, 1298, 532, 16, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 82, 2194, 62, 15577, 540, 62, 17602, 62, 39071, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 62, 1525, 62, 11274, 62, 312, 28, 4895, 11274, 62, 312, 1298, 838, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 344, 2625, 7645, 2673, 1729, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 20500, 28, 27369, 12837, 7203, 34680, 1600, 3275, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 38969, 5119, 796, 8415, 62, 38969, 519, 947, 13, 17953, 62, 4480, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12501, 1166, 62, 10297, 1600, 8415, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 38969, 5119, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 259, 62, 36560, 13, 1996, 62, 2197, 4548, 7, 12683, 278, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8415, 62, 19662, 62, 26209, 796, 2116, 13, 12501, 1166, 62, 10297, 13, 20500, 62, 448, 62, 36560, 13, 1136, 7, 48678, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 8415, 62, 19662, 62, 26209, 318, 407, 6045, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 573, 446, 593, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 51, 451, 262, 5254, 866, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 12501, 1166, 62, 10297, 13, 11338, 3419, 628, 198, 4871, 6208, 10707, 1166, 48890, 7, 14881, 14402, 10707, 1166, 48890, 2599, 198, 220, 220, 220, 37227, 10987, 1332, 329, 4277, 2551, 16009, 526, 15931, 198 ]
2.189468
9,590
import algorithm_rgb as al import os import osgeo.gdal as gdal import numpy as np import json input1 = './test_input/rgb_1_2_E.tif' input2 = './test_input/rgb_40_11_W.tif' meta = './meta.json' # -------------------------------------------------- def test_input_files(): """Test input files exist""" assert os.path.isfile(input1) assert os.path.isfile(input2) # -------------------------------------------------- def test_get_red_green_blue_averages(): """Test get_red_green_blue_averages""" assert al.get_red_green_blue_averages( read_input(input1)) == (166.8537142857143, 160.37885714285713, 139.89971428571428) assert al.get_red_green_blue_averages( read_input(input2)) == (109.85485714285714, 144.25085714285714, 90.381) # -------------------------------------------------- def test_excess_greenness_index(): """Test excess_greenness_index""" assert al.excess_greenness_index(read_input(input1)) == 14.0 assert al.excess_greenness_index(read_input(input2)) == 88.27 # -------------------------------------------------- def test_green_leaf_index(): """Test green_leaf_index""" assert al.green_leaf_index(read_input(input1)) == 0.02 assert al.green_leaf_index(read_input(input2)) == 0.18 # -------------------------------------------------- def test_cive(): """Test cive""" assert al.cive(read_input(input1)) == 16.16 assert al.cive(read_input(input2)) == -14.96 # -------------------------------------------------- def test_normalized_difference_index(): """Test normalized_difference_index""" assert al.normalized_difference_index(read_input(input1)) == -1.53 assert al.normalized_difference_index(read_input(input2)) == 18.33 # -------------------------------------------------- def test_excess_red(): """Test excess_red""" assert al.excess_red(read_input(input1)) == 56.53 assert al.excess_red(read_input(input2)) == -1.44 # -------------------------------------------------- def test_exgr(): """Test exgr""" assert al.exgr(read_input(input1)) == -42.53 assert al.exgr(read_input(input2)) == 89.71 # -------------------------------------------------- def test_combined_indices_1(): """Test combined_indices_1""" assert al.combined_indices_1(read_input(input1)) == 30.16 assert al.combined_indices_1(read_input(input2)) == 73.31 # -------------------------------------------------- def test_combined_indices_2(): """Test combined_indices_2""" assert al.combined_indices_2(read_input(input1)) == 12.81 assert al.combined_indices_2(read_input(input2)) == 24.98 # -------------------------------------------------- def test_vegetative_index(): """Test vegetative_index""" assert al.vegetative_index(read_input(input1)) == 1.02 assert al.vegetative_index(read_input(input2)) == 1.4 # -------------------------------------------------- def test_ngrdi(): """Test ngrdi""" assert al.ngrdi(read_input(input1)) == -0.02 assert al.ngrdi(read_input(input2)) == 0.14 # -------------------------------------------------- def test_percent_green(): """Test percent_green""" assert al.percent_green(read_input(input1)) == 0.34 assert al.percent_green(read_input(input2)) == 0.42 # -------------------------------------------------- def test_calculate(): """Test calculate""" assert al.calculate(read_input(input1)) == [ 14.0, 0.02, 16.16, -1.53, 56.53, -42.53, 30.16, 12.81, 1.02, -0.02, 0.34 ] assert al.calculate(read_input(input2)) == [ 88.27, 0.18, -14.96, 18.33, -1.44, 89.71, 73.31, 24.98, 1.4, 0.14, 0.42 ] # -------------------------------------------------- def read_input(file) -> np.ndarray: """Run calculate on a file""" if fh := gdal.Open(file): pix = np.array(fh.ReadAsArray()) return np.rollaxis(pix, 0, 3) # -------------------------------------------------- def test_meta(): """Test meta""" assert os.path.isfile(meta) data = json.load(open(meta)) assert data['authors']
[ 11748, 11862, 62, 81, 22296, 355, 435, 198, 11748, 28686, 198, 11748, 28686, 469, 78, 13, 21287, 282, 355, 308, 31748, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 198, 15414, 16, 796, 705, 19571, 9288, 62, 15414, 14, 81, 22296, 62, 16, 62, 17, 62, 36, 13, 49929, 6, 198, 15414, 17, 796, 705, 19571, 9288, 62, 15414, 14, 81, 22296, 62, 1821, 62, 1157, 62, 54, 13, 49929, 6, 198, 28961, 796, 705, 19571, 28961, 13, 17752, 6, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 15414, 62, 16624, 33529, 198, 220, 220, 220, 37227, 14402, 5128, 3696, 2152, 37811, 628, 220, 220, 220, 6818, 28686, 13, 6978, 13, 4468, 576, 7, 15414, 16, 8, 198, 220, 220, 220, 6818, 28686, 13, 6978, 13, 4468, 576, 7, 15414, 17, 8, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 1136, 62, 445, 62, 14809, 62, 17585, 62, 8770, 1095, 33529, 198, 220, 220, 220, 37227, 14402, 651, 62, 445, 62, 14809, 62, 17585, 62, 8770, 1095, 37811, 628, 220, 220, 220, 6818, 435, 13, 1136, 62, 445, 62, 14809, 62, 17585, 62, 8770, 1095, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 62, 15414, 7, 15414, 16, 4008, 6624, 357, 23055, 13, 5332, 2718, 1415, 2078, 3553, 21139, 11, 13454, 13, 2718, 3459, 3553, 1415, 2078, 3553, 1485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23666, 13, 23, 39647, 1415, 2078, 3553, 1415, 2078, 8, 628, 220, 220, 220, 6818, 435, 13, 1136, 62, 445, 62, 14809, 62, 17585, 62, 8770, 1095, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 62, 15414, 7, 15414, 17, 4008, 6624, 357, 14454, 13, 5332, 2780, 3553, 1415, 2078, 3553, 1415, 11, 20224, 13, 9031, 23, 3553, 1415, 2078, 3553, 1415, 11, 4101, 13, 36626, 8, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 1069, 919, 62, 14809, 1108, 62, 9630, 33529, 198, 220, 220, 220, 37227, 14402, 6992, 62, 14809, 1108, 62, 9630, 37811, 628, 220, 220, 220, 6818, 435, 13, 1069, 919, 62, 14809, 1108, 62, 9630, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 1478, 13, 15, 198, 220, 220, 220, 6818, 435, 13, 1069, 919, 62, 14809, 1108, 62, 9630, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 9193, 13, 1983, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 14809, 62, 33201, 62, 9630, 33529, 198, 220, 220, 220, 37227, 14402, 4077, 62, 33201, 62, 9630, 37811, 628, 220, 220, 220, 6818, 435, 13, 14809, 62, 33201, 62, 9630, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 657, 13, 2999, 198, 220, 220, 220, 6818, 435, 13, 14809, 62, 33201, 62, 9630, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 657, 13, 1507, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 66, 425, 33529, 198, 220, 220, 220, 37227, 14402, 269, 425, 37811, 628, 220, 220, 220, 6818, 435, 13, 66, 425, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 1467, 13, 1433, 198, 220, 220, 220, 6818, 435, 13, 66, 425, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 532, 1415, 13, 4846, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 11265, 1143, 62, 26069, 1945, 62, 9630, 33529, 198, 220, 220, 220, 37227, 14402, 39279, 62, 26069, 1945, 62, 9630, 37811, 628, 220, 220, 220, 6818, 435, 13, 11265, 1143, 62, 26069, 1945, 62, 9630, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 532, 16, 13, 4310, 198, 220, 220, 220, 6818, 435, 13, 11265, 1143, 62, 26069, 1945, 62, 9630, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 1248, 13, 2091, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 1069, 919, 62, 445, 33529, 198, 220, 220, 220, 37227, 14402, 6992, 62, 445, 37811, 628, 220, 220, 220, 6818, 435, 13, 1069, 919, 62, 445, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 7265, 13, 4310, 198, 220, 220, 220, 6818, 435, 13, 1069, 919, 62, 445, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 532, 16, 13, 2598, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 1069, 2164, 33529, 198, 220, 220, 220, 37227, 14402, 409, 2164, 37811, 628, 220, 220, 220, 6818, 435, 13, 1069, 2164, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 532, 3682, 13, 4310, 198, 220, 220, 220, 6818, 435, 13, 1069, 2164, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 9919, 13, 4869, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 24011, 1389, 62, 521, 1063, 62, 16, 33529, 198, 220, 220, 220, 37227, 14402, 5929, 62, 521, 1063, 62, 16, 37811, 628, 220, 220, 220, 6818, 435, 13, 24011, 1389, 62, 521, 1063, 62, 16, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 1542, 13, 1433, 198, 220, 220, 220, 6818, 435, 13, 24011, 1389, 62, 521, 1063, 62, 16, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 8854, 13, 3132, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 24011, 1389, 62, 521, 1063, 62, 17, 33529, 198, 220, 220, 220, 37227, 14402, 5929, 62, 521, 1063, 62, 17, 37811, 628, 220, 220, 220, 6818, 435, 13, 24011, 1389, 62, 521, 1063, 62, 17, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 1105, 13, 6659, 198, 220, 220, 220, 6818, 435, 13, 24011, 1389, 62, 521, 1063, 62, 17, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 1987, 13, 4089, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 303, 1136, 876, 62, 9630, 33529, 198, 220, 220, 220, 37227, 14402, 7494, 876, 62, 9630, 37811, 628, 220, 220, 220, 6818, 435, 13, 303, 1136, 876, 62, 9630, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 352, 13, 2999, 198, 220, 220, 220, 6818, 435, 13, 303, 1136, 876, 62, 9630, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 352, 13, 19, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 782, 4372, 72, 33529, 198, 220, 220, 220, 37227, 14402, 299, 2164, 10989, 37811, 628, 220, 220, 220, 6818, 435, 13, 782, 4372, 72, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 532, 15, 13, 2999, 198, 220, 220, 220, 6818, 435, 13, 782, 4372, 72, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 657, 13, 1415, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 25067, 62, 14809, 33529, 198, 220, 220, 220, 37227, 14402, 1411, 62, 14809, 37811, 628, 220, 220, 220, 6818, 435, 13, 25067, 62, 14809, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 657, 13, 2682, 198, 220, 220, 220, 6818, 435, 13, 25067, 62, 14809, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 657, 13, 3682, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 9948, 3129, 378, 33529, 198, 220, 220, 220, 37227, 14402, 15284, 37811, 628, 220, 220, 220, 6818, 435, 13, 9948, 3129, 378, 7, 961, 62, 15414, 7, 15414, 16, 4008, 6624, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1478, 13, 15, 11, 657, 13, 2999, 11, 1467, 13, 1433, 11, 532, 16, 13, 4310, 11, 7265, 13, 4310, 11, 532, 3682, 13, 4310, 11, 1542, 13, 1433, 11, 1105, 13, 6659, 11, 352, 13, 2999, 11, 532, 15, 13, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2682, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 6818, 435, 13, 9948, 3129, 378, 7, 961, 62, 15414, 7, 15414, 17, 4008, 6624, 685, 198, 220, 220, 220, 220, 220, 220, 220, 9193, 13, 1983, 11, 657, 13, 1507, 11, 532, 1415, 13, 4846, 11, 1248, 13, 2091, 11, 532, 16, 13, 2598, 11, 9919, 13, 4869, 11, 8854, 13, 3132, 11, 1987, 13, 4089, 11, 352, 13, 19, 11, 657, 13, 1415, 11, 657, 13, 3682, 198, 220, 220, 220, 2361, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1100, 62, 15414, 7, 7753, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 10987, 15284, 319, 257, 2393, 37811, 198, 220, 220, 220, 611, 277, 71, 19039, 308, 31748, 13, 11505, 7, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 844, 796, 45941, 13, 18747, 7, 69, 71, 13, 5569, 1722, 19182, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 2487, 22704, 7, 79, 844, 11, 657, 11, 513, 8, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1332, 62, 28961, 33529, 198, 220, 220, 220, 37227, 14402, 13634, 37811, 628, 220, 220, 220, 6818, 28686, 13, 6978, 13, 4468, 576, 7, 28961, 8, 198, 220, 220, 220, 1366, 796, 33918, 13, 2220, 7, 9654, 7, 28961, 4008, 198, 220, 220, 220, 6818, 1366, 17816, 41617, 20520, 198 ]
2.768506
1,486
from cnn_classifier_stepwise.base.cnn_classifier_stepwise_base import \ CnnStepwiseClassifierBaseDf from self_supervised.network.flatten_mlp import FlattenMlpDropout
[ 6738, 269, 20471, 62, 4871, 7483, 62, 9662, 3083, 13, 8692, 13, 66, 20471, 62, 4871, 7483, 62, 9662, 3083, 62, 8692, 1330, 3467, 198, 220, 220, 220, 327, 20471, 8600, 3083, 9487, 7483, 14881, 35, 69, 198, 198, 6738, 2116, 62, 16668, 16149, 13, 27349, 13, 2704, 41769, 62, 4029, 79, 1330, 1610, 41769, 44, 34431, 26932, 448, 198 ]
2.85
60
import Bio,gzip from Bio import SeqIO import pyteomics from pyteomics import mass,fasta import pyteomics.parser as pyt_parser import pandas as pd import numpy as np import json,os from tqdm import tqdm from load_config import CONFIG MAX_DATABASE_SIZE=100000000 DB_PEPTIDE_MINIMUM_LENGTH=CONFIG['DB_PEPTIDE_MINIMUM_LENGTH']#7 DB_PEPTIDE_MAXIMUM_LENGTH=CONFIG['DB_PEPTIDE_MAXIMUM_LENGTH']#42 MAX_MISSED_CLEAVAGES=CONFIG['MAX_MISSED_CLEAVAGES']#args.MAX_MISSED_CLEAVAGES ENZYME=CONFIG['ENZYME'] SEMI_SPECIFIC_CLEAVAGE=CONFIG['SEMI_SPECIFIC_CLEAVAGE'] SAVE=True SAVE_DB_AS_JSON=True if "r'" in ENZYME: ENZYME = ENZYME.replace("r'","") ENZYME = ENZYME.replace("'","") ENZYME = r'%s'%ENZYME #FASTA_FILE = CONFIG['FASTA'] from collections import defaultdict #if __name__ == '__main__':
[ 11748, 16024, 11, 70, 13344, 198, 6738, 16024, 1330, 1001, 80, 9399, 198, 11748, 12972, 660, 31994, 198, 6738, 12972, 660, 31994, 1330, 2347, 11, 7217, 64, 198, 11748, 12972, 660, 31994, 13, 48610, 355, 12972, 83, 62, 48610, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 11, 418, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 6738, 3440, 62, 11250, 1330, 25626, 198, 198, 22921, 62, 35, 1404, 6242, 11159, 62, 33489, 28, 16, 8269, 198, 11012, 62, 47, 8905, 51, 14114, 62, 23678, 3955, 5883, 62, 43, 49494, 28, 10943, 16254, 17816, 11012, 62, 47, 8905, 51, 14114, 62, 23678, 3955, 5883, 62, 43, 49494, 20520, 2, 22, 198, 11012, 62, 47, 8905, 51, 14114, 62, 22921, 3955, 5883, 62, 43, 49494, 28, 10943, 16254, 17816, 11012, 62, 47, 8905, 51, 14114, 62, 22921, 3955, 5883, 62, 43, 49494, 20520, 2, 3682, 198, 22921, 62, 44, 16744, 1961, 62, 29931, 10116, 25552, 28, 10943, 16254, 17816, 22921, 62, 44, 16744, 1961, 62, 29931, 10116, 25552, 20520, 2, 22046, 13, 22921, 62, 44, 16744, 1961, 62, 29931, 10116, 25552, 198, 1677, 57, 56, 11682, 28, 10943, 16254, 17816, 1677, 57, 56, 11682, 20520, 198, 50, 3620, 40, 62, 48451, 30643, 62, 29931, 10116, 11879, 28, 10943, 16254, 17816, 50, 3620, 40, 62, 48451, 30643, 62, 29931, 10116, 11879, 20520, 198, 4090, 6089, 28, 17821, 198, 4090, 6089, 62, 11012, 62, 1921, 62, 40386, 28, 17821, 198, 198, 361, 366, 81, 29653, 287, 12964, 57, 56, 11682, 25, 198, 220, 220, 220, 12964, 57, 56, 11682, 796, 12964, 57, 56, 11682, 13, 33491, 7203, 81, 6, 2430, 4943, 220, 198, 220, 220, 220, 12964, 57, 56, 11682, 796, 12964, 57, 56, 11682, 13, 33491, 7203, 6, 2430, 4943, 198, 220, 220, 220, 12964, 57, 56, 11682, 796, 374, 6, 4, 82, 6, 4, 1677, 57, 56, 11682, 220, 198, 2, 37, 1921, 5603, 62, 25664, 796, 25626, 17816, 37, 1921, 5603, 20520, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 2, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628 ]
2.257062
354
#!/usr/bin/env python ''' Python and Ansible for Network Engineers Week 2, Exercise 2 Write a script that connects using telnet to the pynet-rtr1 router. Execute the 'show ip int brief' command on the router and return the output. ''' import telnetlib import time import sys TELNET_PORT = 23 TELNET_TIMEOUT = 6 def main(): ''' Write a script that connects to the lab pynet-rtr1, logs in, and executes the 'show ip interface brief' command. ''' ip_addr = "184.105.247.70" userid = "pyclass" password = "88newclass" remote_conn = telnetlib.Telnet(ip_addr, TELNET_PORT, TELNET_TIMEOUT) cmd = "show ip interface brief" output = login(remote_conn, userid, password) time.sleep(1) remote_conn.read_very_eager() output = send_commands(remote_conn, cmd) print output logout(remote_conn) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 7061, 6, 198, 37906, 290, 28038, 856, 329, 7311, 27170, 198, 20916, 362, 11, 32900, 362, 198, 198, 16594, 257, 4226, 326, 20417, 1262, 13632, 3262, 284, 262, 279, 2047, 316, 12, 81, 2213, 16, 20264, 13, 8393, 1133, 198, 1169, 705, 12860, 20966, 493, 4506, 6, 3141, 319, 262, 20264, 290, 1441, 262, 5072, 13, 198, 7061, 6, 198, 198, 11748, 13632, 3262, 8019, 198, 11748, 640, 198, 11748, 25064, 628, 198, 51, 3698, 12884, 62, 15490, 796, 2242, 198, 51, 3698, 12884, 62, 34694, 12425, 796, 718, 628, 628, 198, 220, 220, 220, 220, 198, 4299, 1388, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 19430, 257, 4226, 326, 20417, 284, 262, 2248, 279, 2047, 316, 12, 81, 2213, 16, 11, 17259, 287, 11, 290, 42985, 198, 220, 220, 220, 262, 705, 12860, 20966, 7071, 4506, 6, 3141, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 20966, 62, 29851, 796, 366, 22883, 13, 13348, 13, 23753, 13, 2154, 1, 198, 220, 220, 220, 2836, 312, 796, 366, 9078, 4871, 1, 198, 220, 220, 220, 9206, 796, 366, 3459, 3605, 4871, 1, 198, 220, 220, 220, 6569, 62, 37043, 796, 13632, 3262, 8019, 13, 33317, 3262, 7, 541, 62, 29851, 11, 309, 3698, 12884, 62, 15490, 11, 309, 3698, 12884, 62, 34694, 12425, 8, 198, 220, 220, 220, 23991, 796, 366, 12860, 20966, 7071, 4506, 1, 628, 220, 220, 220, 5072, 796, 17594, 7, 47960, 62, 37043, 11, 2836, 312, 11, 9206, 8, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 220, 220, 220, 6569, 62, 37043, 13, 961, 62, 548, 62, 68, 3536, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5072, 796, 3758, 62, 9503, 1746, 7, 47960, 62, 37043, 11, 23991, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 5072, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2604, 448, 7, 47960, 62, 37043, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 628 ]
2.582386
352
import sys import time import random from menu import Menu from game_engine import Console, Player console = Console() player = Player() start = True basement_suprise = ["demon", "open", "closed", "bear"] sus_building = ["enemy_trap", "human_traffic", "smuggler"] boat_stuff = ["tip over", "fight", "safe"] truck_survive = ["no", "yes"] # I know I don't need so many varibles but still I don't care go_in = " " choice = " " name = " " start_sim = " " enter = " " trust = " " enter_tower_1 = " " retry_input = " " jump_1 = " " wake_up = " " escape = " " bye = 0 # Function to exit the game # put the intro here # ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # Start part 0 # Start adventure # ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # End part 0 # Start part 1 # ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ # RNG route #----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # quick escape route #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # part 2 escape out of the country #------------------------------------------------------------------------------------------------------------------------------------------------------------- # part 3 New country #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # part 4 epilogue # starts the game and menu while start == True: Menu.print_menu() menu = console.check_answer("What do you want to do?", ["1", "intro", "start", "2", "skip", "quit", "3", "help", "4"]) print(" ") if menu == ("1") or menu == ("intro") or menu == ("start"): intro() elif menu == ("2") or menu == ("skip"): adventure() elif menu == ("help") or menu == ("3"): help() elif menu == ("quit") or menu == ("4"): quit()
[ 11748, 25064, 198, 11748, 640, 198, 11748, 4738, 198, 6738, 6859, 1330, 21860, 198, 6738, 983, 62, 18392, 1330, 24371, 11, 7853, 198, 198, 41947, 796, 24371, 3419, 198, 7829, 796, 7853, 3419, 198, 9688, 796, 6407, 198, 12093, 972, 62, 37330, 17163, 796, 14631, 26567, 1600, 366, 9654, 1600, 366, 20225, 1600, 366, 33227, 8973, 198, 82, 385, 62, 16894, 796, 14631, 46970, 62, 46670, 1600, 366, 10734, 62, 9535, 2108, 1600, 366, 5796, 6837, 1754, 8973, 198, 24482, 62, 41094, 796, 14631, 22504, 625, 1600, 366, 15481, 1600, 366, 21230, 8973, 198, 83, 30915, 62, 48846, 425, 796, 14631, 3919, 1600, 366, 8505, 8973, 198, 2, 314, 760, 314, 836, 470, 761, 523, 867, 1401, 18764, 475, 991, 314, 836, 470, 1337, 198, 2188, 62, 259, 796, 366, 366, 198, 25541, 796, 366, 366, 198, 3672, 796, 366, 366, 198, 9688, 62, 14323, 796, 366, 366, 198, 9255, 796, 366, 366, 198, 38087, 796, 366, 366, 198, 9255, 62, 36170, 62, 16, 796, 366, 366, 198, 1186, 563, 62, 15414, 796, 366, 366, 198, 43327, 62, 16, 796, 366, 366, 198, 48530, 62, 929, 796, 366, 366, 198, 41915, 796, 366, 366, 198, 16390, 796, 657, 198, 198, 2, 15553, 284, 8420, 262, 983, 198, 198, 2, 1234, 262, 18951, 994, 198, 198, 2, 16529, 10097, 3880, 45537, 198, 2, 7253, 636, 657, 198, 2, 7253, 8855, 198, 198, 2, 16529, 10097, 3880, 45537, 198, 2, 5268, 636, 657, 198, 2, 7253, 636, 352, 198, 198, 2, 16529, 10097, 3880, 26171, 198, 2, 371, 10503, 6339, 198, 198, 2, 10097, 10097, 3880, 32501, 198, 2, 2068, 6654, 6339, 198, 198, 2, 10097, 10097, 3880, 438, 198, 2, 636, 362, 6654, 503, 286, 262, 1499, 198, 198, 2, 10097, 10097, 1783, 32501, 198, 2, 636, 513, 968, 1499, 198, 198, 2, 10097, 10097, 3880, 438, 198, 2, 636, 604, 2462, 346, 5119, 198, 198, 2, 4940, 262, 983, 290, 6859, 198, 4514, 923, 6624, 6407, 25, 198, 220, 220, 220, 21860, 13, 4798, 62, 26272, 3419, 198, 220, 220, 220, 6859, 796, 8624, 13, 9122, 62, 41484, 7203, 2061, 466, 345, 765, 284, 466, 35379, 14631, 16, 1600, 366, 600, 305, 1600, 366, 9688, 1600, 366, 17, 1600, 366, 48267, 1600, 366, 47391, 1600, 366, 18, 1600, 366, 16794, 1600, 366, 19, 8973, 8, 198, 220, 220, 220, 3601, 7203, 366, 8, 198, 220, 220, 220, 611, 6859, 6624, 5855, 16, 4943, 393, 6859, 6624, 5855, 600, 305, 4943, 393, 6859, 6624, 5855, 9688, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18951, 3419, 198, 220, 220, 220, 1288, 361, 6859, 6624, 5855, 17, 4943, 393, 6859, 6624, 5855, 48267, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8855, 3419, 198, 220, 220, 220, 1288, 361, 6859, 6624, 5855, 16794, 4943, 393, 6859, 6624, 5855, 18, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 3419, 198, 220, 220, 220, 1288, 361, 6859, 6624, 5855, 47391, 4943, 393, 6859, 6624, 5855, 19, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11238, 3419 ]
4.776908
511
#!/usr/bin/python import MySQLdb import serial import time try: con = _mysql.connect('localhost', 'sms_gat', 'sms_gat', 'sms_gateway') con.query("SELECT VERSION()") result = con.use_result() print "MySQL version: %s" % \ result.fetch_row()[0] except _mysql.Error, e: print "Error %d: %s" % (e.args[0], e.args[1]) sys.exit(1) finally: print("ok") con.close() #3 leds netz sending error # reset chip # connect to serial 9600 baud check version; set baudrate to x #reset pin toglle + wait 5 seconds # AT -> OK //ping # AT+CMGF=1 -> OK //check mode # AT+CPIN="0000" -> //set pin wait 5 seconds #open mysql check new messages # AT -> ok // cehck pin #AT+CMGF=1 //set sms mode #AT+CSMP: 1,169,0,0 ->OK // set message mode #AT+CMGS="+31638740161" -> > //set number #message here +ctrl+z finsh #+CMGS: 62 //message id store in db #delete db entry #set log #set send_messages #check new entry
[ 2, 48443, 14629, 14, 8800, 14, 29412, 628, 198, 11748, 33476, 9945, 198, 11748, 11389, 198, 11748, 640, 628, 628, 198, 28311, 25, 198, 220, 220, 220, 369, 796, 4808, 28744, 13976, 13, 8443, 10786, 36750, 3256, 705, 82, 907, 62, 41268, 3256, 705, 82, 907, 62, 41268, 3256, 705, 82, 907, 62, 10494, 1014, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 369, 13, 22766, 7203, 46506, 44156, 2849, 3419, 4943, 198, 220, 220, 220, 1255, 796, 369, 13, 1904, 62, 20274, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 366, 3666, 17861, 2196, 25, 4064, 82, 1, 4064, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 69, 7569, 62, 808, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 198, 16341, 4808, 28744, 13976, 13, 12331, 11, 304, 25, 198, 220, 220, 198, 220, 220, 220, 3601, 366, 12331, 4064, 67, 25, 4064, 82, 1, 4064, 357, 68, 13, 22046, 58, 15, 4357, 304, 13, 22046, 58, 16, 12962, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 69, 3289, 25, 198, 197, 4798, 7203, 482, 4943, 198, 197, 1102, 13, 19836, 3419, 628, 198, 2, 18, 2957, 82, 2010, 89, 7216, 4049, 628, 198, 2, 13259, 11594, 198, 2, 2018, 284, 11389, 860, 8054, 275, 3885, 2198, 2196, 26, 900, 275, 3885, 4873, 284, 2124, 628, 198, 2, 42503, 6757, 284, 4743, 293, 1343, 4043, 642, 4201, 198, 2, 5161, 4613, 7477, 3373, 13886, 198, 2, 5161, 10, 34, 20474, 37, 28, 16, 4613, 7477, 3373, 9122, 4235, 198, 2, 5161, 10, 8697, 1268, 2625, 2388, 1, 4613, 3373, 2617, 6757, 4043, 642, 4201, 628, 198, 198, 2, 9654, 48761, 2198, 649, 6218, 198, 2, 5161, 4613, 12876, 3373, 2906, 71, 694, 6757, 198, 2, 1404, 10, 34, 20474, 37, 28, 16, 220, 3373, 2617, 895, 82, 4235, 198, 2, 1404, 10, 7902, 7378, 25, 352, 11, 22172, 11, 15, 11, 15, 4613, 11380, 3373, 900, 3275, 4235, 198, 2, 1404, 10, 24187, 14313, 2625, 10, 33400, 2548, 4524, 486, 5333, 1, 4613, 1875, 3373, 2617, 1271, 198, 2, 20500, 994, 1343, 44755, 10, 89, 957, 1477, 198, 2, 10, 24187, 14313, 25, 8190, 3373, 20500, 4686, 3650, 287, 20613, 198, 2, 33678, 20613, 5726, 198, 2, 2617, 2604, 198, 2, 2617, 3758, 62, 37348, 1095, 198, 2, 9122, 649, 5726, 628 ]
2.395
400
""" Example scenario for wartime negotiation. Provides use cases for both modeling and simulating scenarios. """ import sys from ConfigParser import SafeConfigParser from argparse import ArgumentParser import StringIO from psychsim.pwl import * from psychsim.reward import * from psychsim.action import * from psychsim.world import World,stateKey,actionKey,binaryKey,modelKey from psychsim.agent import Agent def scenarioCreationUseCase(enemy='Sylvania',model='powell',web=False, fCollapse=None,sCollapse=None,maxRounds=15): """ An example of how to create a scenario @param enemy: the name of the agent-controlled side, i.e., Freedonia's opponent (default: Sylvania) @type enemy: str @param model: which model do we use (default is "powell") @type model: powell or slantchev @param web: if C{True}, then create the web-based experiment scenario (default: C{False}) @type web: bool @param fCollapse: the probability that Freedonia collapses (under powell, default: 0.1) or loses battle (under slantchev, default: 0.7) @type fCollapse: float @param sCollapse: the probability that Sylvania collapses, under powell (default: 0.1) @type sCollapse: float @param maxRounds: the maximum number of game rounds (default: 15) @type maxRounds: int @return: the scenario created @rtype: L{World} """ # Handle defaults for battle probabilities, under each model posLo = 0 posHi = 10 if fCollapse is None: if model == 'powell': fCollapse = 0.1 elif model == 'slantchev': fCollapse = 0.7 if sCollapse is None: sCollapse = 0.1 # Create scenario world = World() # Agents free = Agent('Freedonia') world.addAgent(free) sylv = Agent(enemy) world.addAgent(sylv) # User state world.defineState(free.name,'troops',int,lo=0,hi=50000, description='Number of troops you have left') free.setState('troops',40000) world.defineState(free.name,'territory',int,lo=0,hi=100, description='Percentage of disputed territory owned by you') free.setState('territory',15) world.defineState(free.name,'cost',int,lo=0,hi=50000, description='Number of troops %s loses in an attack' % (free.name)) free.setState('cost',2000) world.defineState(free.name,'position',int,lo=posLo,hi=posHi, description='Current status of war (%d=%s is winner, %d=you are winner)' % (posLo,sylv.name,posHi)) free.setState('position',5) world.defineState(free.name,'offered',int,lo=0,hi=100, description='Percentage of disputed territory that %s last offered to you' % (sylv.name)) free.setState('offered',0) if model == 'slantchev': # Compute new value for territory only *after* computing new value for position world.addDependency(stateKey(free.name,'territory'),stateKey(free.name,'position')) # Agent state world.defineState(sylv.name,'troops',int,lo=0,hi=500000, description='Number of troops %s has left' % (sylv.name)) sylv.setState('troops',30000) world.defineState(sylv.name,'cost',int,lo=0,hi=50000, description='Number of troops %s loses in an attack' % (sylv.name)) sylv.setState('cost',2000) world.defineState(sylv.name,'offered',int,lo=0,hi=100, description='Percentage of disputed territory that %s last offered to %s' % (free.name,sylv.name)) sylv.setState('offered',0) # World state world.defineState(None,'treaty',bool, description='Have the two sides reached an agreement?') world.setState(None,'treaty',False) # Stage of negotiation, illustrating the use of an enumerated state feature world.defineState(None,'phase',list,['offer','respond','rejection','end','paused','engagement'], description='The current stage of the negotiation game') world.setState(None,'phase','paused') # Game model, static descriptor world.defineState(None,'model',list,['powell','slantchev'], description='The model underlying the negotiation game') world.setState(None,'model',model) # Round of negotiation world.defineState(None,'round',int,description='The current round of the negotiation') world.setState(None,'round',0) if not web: # Relationship value key = world.defineRelation(free.name,sylv.name,'trusts') world.setFeature(key,0.) # Game over if there is a treaty world.addTermination(makeTree({'if': trueRow(stateKey(None,'treaty')), True: True, False: False})) # Game over if Freedonia has no territory world.addTermination(makeTree({'if': thresholdRow(stateKey(free.name,'territory'),1), True: False, False: True}) ) # Game over if Freedonia has all the territory world.addTermination(makeTree({'if': thresholdRow(stateKey(free.name,'territory'),99), True: True, False: False})) # Game over if number of rounds exceeds limit world.addTermination(makeTree({'if': thresholdRow(stateKey(None,'round'),maxRounds), True: True, False: False})) # Turn order: Uncomment the following if you want agents to act in parallel # world.setOrder([set(world.agents.keys())]) # Turn order: Uncomment the following if you want agents to act sequentially world.setOrder([free.name,sylv.name]) # User actions freeBattle = free.addAction({'verb': 'attack','object': sylv.name}) for amount in range(20,100,20): free.addAction({'verb': 'offer','object': sylv.name,'amount': amount}) if model == 'powell': # Powell has null stages freeNOP = free.addAction({'verb': 'continue'}) elif model == 'slantchev': # Slantchev has both sides receiving offers free.addAction({'verb': 'accept offer','object': sylv.name}) free.addAction({'verb': 'reject offer','object': sylv.name}) # Agent actions sylvBattle = sylv.addAction({'verb': 'attack','object': free.name}) sylvAccept = sylv.addAction({'verb': 'accept offer','object': free.name}) sylvReject = sylv.addAction({'verb': 'reject offer','object': free.name}) if model == 'powell': # Powell has null stages sylvNOP = sylv.addAction({'verb': 'continue'}) elif model == 'slantchev': # Slantchev has both sides making offers for amount in range(10,100,10): sylv.addAction({'verb': 'offer','object': free.name,'amount': amount}) # Restrictions on when actions are legal, based on phase of game for action in filterActions({'verb': 'offer'},free.actions | sylv.actions): agent = world.agents[action['subject']] agent.setLegal(action,makeTree({'if': equalRow(stateKey(None,'phase'),'offer'), True: True, # Offers are legal in the offer phase False: False})) # Offers are illegal in all other phases if model == 'powell': # Powell has a special rejection phase for action in [freeNOP,freeBattle]: free.setLegal(action,makeTree({'if': equalRow(stateKey(None,'phase'),'rejection'), True: True, # Attacking and doing nothing are legal only in rejection phase False: False})) # Attacking and doing nothing are illegal in all other phases # Once offered, agent can respond if model == 'powell': # Under Powell, only Sylvania has to respond, and it can attack responses = [sylvBattle,sylvAccept,sylvReject] elif model == 'slantchev': # Under Slantchev, only accept/reject responses = filterActions({'verb': 'accept offer'},free.actions | sylv.actions) responses += filterActions({'verb': 'reject offer'},free.actions | sylv.actions) for action in responses: agent = world.agents[action['subject']] agent.setLegal(action,makeTree({'if': equalRow(stateKey(None,'phase'),'respond'), True: True, # Offeree must act in the response phase False: False})) # Offeree cannot act in any other phase if model == 'powell': # NOP is legal in exactly opposite situations to all other actions sylv.setLegal(sylvNOP,makeTree({'if': equalRow(stateKey(None,'phase'),'end'), True: True, # Sylvania does not do anything in the null phase after Freedonia responds to rejection False: False})) # Sylvania must act in its other phases if model == 'slantchev': # Attacking legal only under engagement phase for action in filterActions({'verb': 'attack'},free.actions | sylv.actions): agent = world.agents[action['subject']] agent.setLegal(action,makeTree({'if': equalRow(stateKey(None,'phase'),'engagement'), True: True, # Attacking legal only in engagement False: False})) # Attacking legal every other phase # Goals for Freedonia goalFTroops = maximizeFeature(stateKey(free.name,'troops')) free.setReward(goalFTroops,1.) goalFTerritory = maximizeFeature(stateKey(free.name,'territory')) free.setReward(goalFTerritory,1.) # Goals for Sylvania goalSTroops = maximizeFeature(stateKey(sylv.name,'troops')) sylv.setReward(goalSTroops,1.) goalSTerritory = minimizeFeature(stateKey(free.name,'territory')) sylv.setReward(goalSTerritory,1.) # Possible goals applicable to both goalAgreement = maximizeFeature(stateKey(None,'treaty')) # Silly goal, provided as an example of an achievement goal goalAchieve = achieveFeatureValue(stateKey(None,'phase'),'respond') # Horizons if model == 'powell': free.setAttribute('horizon',4) sylv.setAttribute('horizon',4) elif model == 'slantchev': free.setAttribute('horizon',6) sylv.setAttribute('horizon',6) # Discount factors free.setAttribute('discount',-1) sylv.setAttribute('discount',-1) # Levels of belief free.setRecursiveLevel(2) sylv.setRecursiveLevel(2) # Dynamics of battle freeTroops = stateKey(free.name,'troops') freeTerr = stateKey(free.name,'territory') sylvTroops = stateKey(sylv.name,'troops') # Effect of fighting for action in filterActions({'verb': 'attack'},free.actions | sylv.actions): # Effect on troops (cost of battle) tree = makeTree(addFeatureMatrix(freeTroops,stateKey(free.name,'cost'),-1.)) world.setDynamics(freeTroops,action,tree,enforceMin=not web) tree = makeTree(addFeatureMatrix(sylvTroops,stateKey(sylv.name,'cost'),-1.)) world.setDynamics(sylvTroops,action,tree,enforceMin=not web) if model == 'powell': # Effect on territory (probability of collapse) tree = makeTree({'distribution': [ ({'distribution': [(setToConstantMatrix(freeTerr,100),1.-fCollapse), # Sylvania collapses, Freedonia does not (noChangeMatrix(freeTerr), fCollapse)]}, # Both collapse sCollapse), ({'distribution': [(setToConstantMatrix(freeTerr,0),fCollapse), # Freedonia collapses, Sylvania does not (noChangeMatrix(freeTerr), 1.-fCollapse)]}, # Neither collapses 1.-sCollapse)]}) world.setDynamics(freeTerr,action,tree) elif model == 'slantchev': # Effect on position pos = stateKey(free.name,'position') tree = makeTree({'distribution': [(incrementMatrix(pos,1),1.-fCollapse), # Freedonia wins battle (incrementMatrix(pos,-1),fCollapse)]}) # Freedonia loses battle world.setDynamics(pos,action,tree) # Effect on territory tree = makeTree({'if': thresholdRow(pos,posHi-.5), True: setToConstantMatrix(freeTerr,100), # Freedonia won False: {'if': thresholdRow(pos,posLo+.5), True: noChangeMatrix(freeTerr), False: setToConstantMatrix(freeTerr,0)}}) # Freedonia lost world.setDynamics(freeTerr,action,tree) # Dynamics of offers for index in range(2): atom = Action({'subject': world.agents.keys()[index],'verb': 'offer', 'object': world.agents.keys()[1-index]}) if atom['subject'] == free.name or model != 'powell': offer = stateKey(atom['object'],'offered') amount = actionKey('amount') tree = makeTree({'if': trueRow(stateKey(None,'treaty')), True: noChangeMatrix(offer), False: setToConstantMatrix(offer,amount)}) world.setDynamics(offer,atom,tree,enforceMax=not web) # Dynamics of treaties for action in filterActions({'verb': 'accept offer'},free.actions | sylv.actions): # Accepting an offer means that there is now a treaty key = stateKey(None,'treaty') tree = makeTree(setTrueMatrix(key)) world.setDynamics(key,action,tree) # Accepting offer sets territory offer = stateKey(action['subject'],'offered') territory = stateKey(free.name,'territory') if action['subject'] == free.name: # Freedonia accepts sets territory to last offer tree = makeTree(setToFeatureMatrix(territory,offer)) world.setDynamics(freeTerr,action,tree) else: # Sylvania accepts sets territory to 1-last offer tree = makeTree(setToFeatureMatrix(territory,offer,pct=-1.,shift=100.)) world.setDynamics(freeTerr,action,tree) # Dynamics of phase phase = stateKey(None,'phase') roundKey = stateKey(None,'round') # OFFER -> RESPOND for index in range(2): action = Action({'subject': world.agents.keys()[index],'verb': 'offer', 'object': world.agents.keys()[1-index]}) if action['subject'] == free.name or model != 'powell': tree = makeTree(setToConstantMatrix(phase,'respond')) world.setDynamics(phase,action,tree) # RESPOND -> REJECTION or ENGAGEMENT for action in filterActions({'verb': 'reject offer'},free.actions | sylv.actions): if model == 'powell': tree = makeTree(setToConstantMatrix(phase,'rejection')) elif model == 'slantchev': tree = makeTree(setToConstantMatrix(phase,'engagement')) world.setDynamics(phase,action,tree) # accepting -> OFFER for action in filterActions({'verb': 'accept offer'},free.actions | sylv.actions): tree = makeTree(setToConstantMatrix(phase,'offer')) world.setDynamics(phase,action,tree) # attacking -> OFFER for action in filterActions({'verb': 'attack'},free.actions | sylv.actions): tree = makeTree(setToConstantMatrix(phase,'offer')) world.setDynamics(phase,action,tree) if action['subject'] == sylv.name or model == 'slantchev': tree = makeTree(incrementMatrix(roundKey,1)) world.setDynamics(roundKey,action,tree) if model == 'powell': # REJECTION -> END for atom in [freeNOP,freeBattle]: tree = makeTree(setToConstantMatrix(phase,'end')) world.setDynamics(phase,atom,tree) # END -> OFFER atom = Action({'subject': sylv.name,'verb': 'continue'}) tree = makeTree(setToConstantMatrix(phase,'offer')) world.setDynamics(phase,atom,tree) tree = makeTree(incrementMatrix(roundKey,1)) world.setDynamics(roundKey,atom,tree) if not web: # Relationship dynamics: attacking is bad for trust atom = Action({'subject': sylv.name,'verb': 'attack','object': free.name}) key = binaryKey(free.name,sylv.name,'trusts') tree = makeTree(approachMatrix(key,0.1,-1.)) world.setDynamics(key,atom,tree) # Handcrafted policy for Freedonia # free.setPolicy(makeTree({'if': equalRow('phase','respond'), # # Accept an offer greater than 50 # True: {'if': thresholdRow(stateKey(free.name,'offered'),50), # True: Action({'subject': free.name,'verb': 'accept offer','object': sylv.name}), # False: Action({'subject': free.name,'verb': 'reject offer','object': sylv.name})}, # False: {'if': equalRow('phase','engagement'), # # Attack during engagement phase # True: Action({'subject': free.name,'verb': 'attack','object': sylv.name}), # # Agent decides how what to do otherwise # False: False}})) # Mental models of enemy # Example of creating a model with incorrect reward all at once (a version of Freedonia who cares about reaching agreement as well) # sylv.addModel('false',R={goalSTroops: 10.,goalSTerritory: 1.,goalAgreement: 1.}, # rationality=1.,selection='distribution',parent=True) # Example of creating a model with incorrect beliefs sylv.addModel('false',rationality=10.,selection='distribution',parent=True) key = stateKey(free.name,'position') # Sylvania believes position to be fixed at 3 sylv.setBelief(key,3,'false') # Freedonia is truly unsure about position (50% chance of being 7, 50% of being 3) world.setModel(free.name,True) free.setBelief(key,Distribution({7: 0.5,3: 0.5}),True) # Observations about military position tree = makeTree({'if': thresholdRow(key,1), True: {'if': thresholdRow(key,9), True: {'distribution': [(KeyedVector({key: 1}),0.9), (KeyedVector({key: 1,CONSTANT: -1}),0.1)]}, False: {'distribution': [(KeyedVector({key: 1}),0.8), (KeyedVector({key: 1,CONSTANT: -1}),0.1), (KeyedVector({key: 1,CONSTANT: 1}),0.1)]}}, False: {'distribution': [(KeyedVector({key: 1}),0.9), (KeyedVector({key: 1,CONSTANT: 1}),0.1)]}}) free.defineObservation(key,tree) # Example of setting model parameters separately sylv.addModel('true',parent=True) sylv.setAttribute('rationality',10.,'true') # Override real agent's rationality with this value sylv.setAttribute('selection','distribution','true') world.setMentalModel(free.name,sylv.name,{'false': 0.9,'true': 0.1}) # Goal of fooling Sylvania goalDeception = achieveFeatureValue(modelKey(sylv.name),sylv.model2index('false')) return world def fitWorld(world): """ Piecewise linear compilation of Freedonia's policy """ for agent in world.agents.values(): if agent.name == 'Freedonia': free = agent else: sylv = agent world.setState(None,'phase','offer') state = world.state.domain()[0] freeModel = world.getModel(free.name,state) beliefs = free.getBelief(state,freeModel) # Compute transition trees T = {} for agent in world.agents.values(): for action in agent.actions: T[action] = None for keys in world.evaluationOrder: result = None for key in keys: dynamics = world.getDynamics(key,action) if dynamics: # Use existing tree assert len(dynamics) == 1 dynamics = dynamics[0] else: # Create identity tree dynamics = KeyedTree(noChangeMatrix(key)) if result is None: result = dynamics else: result += dynamics result += KeyedTree(noChangeMatrix(CONSTANT)) if T[action] is None: T[action] = result else: T[action] = result*T[action] # Compute policy trees for the other agent models = {} for agent in world.agents.values(): models[agent.name] = set() for agent in world.agents.values(): for vector in beliefs.domain(): model = world.getModel(agent.name,vector) ancestor = agent.findAttribute('R',model) models[agent.name].add(ancestor) if len(models[agent.name]) == 0: # No beliefs about models found, assume True model models[agent.name].add(True) for agent in world.agents.values(): for model in models[agent.name]: R = sum(agent.getAttribute('R',model),KeyedTree(KeyedVector())) agent.models[model]['policy'] = [] policy = agent.models[model]['policy'] for horizon in range(1,agent.getAttribute('horizon',model)+1): # Dynamic programming of policies if len(policy) < horizon: # Policy tree for this horizon is missing legal = {} actions = [] # Process legality conditions for action in agent.actions: try: legal[action] = agent.legal[action] except KeyError: legal[action] = KeyedTree(True) # Compute value functions for each action if horizon > 1: raise NotImplementedError,'Backup step is missing' V = {} for action in agent.actions: V[action] = R*T[action] V[action] = legal[action].replace(True,V[action]) V[action] = V[action].expectation() V[action] = V[action].map(lambda leaf: {'vector': leaf,'action': action} if isinstance(leaf,KeyedVector) else leaf) # Build up a policy policy.append(None) for action in agent.actions: if policy[horizon-1] is None: policy[horizon-1] = V[action] else: policy[horizon-1] = policy[horizon-1].max(V[action]) Vstar = policy[horizon-1].map(lambda leaf: leaf['vector'] if isinstance(leaf,dict) else leaf) policy[horizon-1] = policy[horizon-1].map(lambda leaf: leaf['action'] if isinstance(leaf,dict) else leaf) # print 'Unpruned:' policy[horizon-1].minimizePlanes() # print policy[horizon-1] pruned = policy[horizon-1].prune() # print 'Pruned:' print pruned # # Verify pruning # world.setFeature('phase','respond',beliefs) # world.setState('Freedonia','territory',72,beliefs) # for offer in range(50,100,3): # world.setState(agent.name,'offered',offer,beliefs) # vector = beliefs.domain()[0] # print offer # print policy[horizon-1][vector],pruned[vector] # assert policy[horizon-1][vector] == pruned[vector] print free.models[freeModel]['beliefs'] break sys.exit(0) def scenarioSimulationUseCase(world,offer=0,rounds=1,debug=1,model='powell'): """ @param offer: the initial offer for Freedonia to give (default is none) @type offer: int @param rounds: the number of complete rounds, where a round is two turns each, following Powell (default is 1) @type rounds: int @param debug: the debug level to use in explanation (default is 1) @type debug: int """ testMode = isinstance(debug,dict) if testMode: buf = StringIO.StringIO() debug[offer] = buf debug = 0 for agent in world.agents.values(): if agent.name == 'Freedonia': free = agent else: sylv = agent world.setState(None,'phase','offer') if model == 'powell': steps = 4 else: assert model == 'slantchev' steps = 3 if debug > 0: world.printState(beliefs=True) for t in range(rounds): for step in range(steps): assert len(world.state) == 1 phase = world.getState(None,'phase').expectation() state = world.state.domain()[0] if not world.terminated(state): if t == 0 and phase == 'offer' and offer > 0: # Force Freedonia to make low offer in first step outcome = world.step({free.name: Action({'subject':free.name,'verb':'offer','object': sylv.name,'amount': offer})}) world.explain(outcome,debug) else: # Free to choose outcome = world.step() world.explain(outcome,debug) if testMode: if (t == 0 and step == 1) or (t == 1 and step == 0): for entry in outcome: world.explainAction(entry,buf,1) world.state.select() if not testMode and debug > 0: world.printState(beliefs=True) for agent in world.agents.values(): print agent.name,len(agent.models) assert len(world.state) == 1 phase = world.getState(None,'phase').expectation() if phase == 'offer': # Looped around break def findThreshold(scenario,t,model='powell',position=0): """ Finds the threshold at which the agent will accept the offer""" if model == 'slantchev': # Find counteroffer in this state actions = [] while len(actions) < 2: world = World(scenario) world.setState(None,'round',t) world.setState('Freedonia','position',position) entry = {} scenarioSimulationUseCase(world,20,2,entry,model) actions = entry[20].getvalue().split('\n')[:-1] entry[20].close() amount = int(actions[1].split('-')[-1]) print 'Time: %d, Position %d -> Offer %d%%' % (t,position,amount) # Compute acceptance threshold offers = [50] index = 0 entry = {} while True: world = World(scenario) world.setState(None,'round',t) if model == 'slantchev': world.setState('Freedonia','position',position) scenarioSimulationUseCase(world,offers[index],1,entry,model) actions = entry[offers[index]].getvalue().split('\n')[:-1] entry[offers[index]].close() entry[offers[index]] = actions[0].split('-')[1].split()[0] if entry[offers[index]] == 'accept': # Try a lower offer if index > 0: down = offers[index-1] assert entry[down] != 'accept' else: down = 0 new = (offers[index]+down) / 2 if entry.has_key(new): if entry[new] != 'accept': new += 1 break else: offers.insert(index,new) else: assert entry[offers[index]] in ['reject','attack'] # Try a higher offer try: up = offers[index+1] assert entry[up] == 'accept' except IndexError: up = 100 new = (offers[index]+up) / 2 if entry.has_key(new): break else: offers.insert(index+1,new) index += 1 return new def play(world,debug=1): """ Modify Freedonia to play autonomously and simulate """ for agent in world.agents.values(): if agent.name == 'Freedonia': free = agent else: sylv = agent for amount in range(10,100,20): action = Action({'verb': 'offer','object': sylv.name,'amount': amount}) free.addAction(action) action = Action({'verb': 'offer','object': free.name,'amount': amount}) sylv.addAction(action) for action in filterActions({'verb': 'offer'},free.actions | sylv.actions): actor = world.agents[action['subject']] if not actor.legal.has_key(action): actor.setLegal(action,makeTree({'if': equalRow(stateKey(None,'phase'),'offer'), True: True, # Offers are legal in the offer phase False: False})) # Offers are illegal in all other phases model = world.getState(None,'model').domain()[0] start = world.getState(free.name,'territory').expectation() print model,start scenarioSimulationUseCase(world,offer=0,rounds=15,debug=debug,model=model) def findPolicies(args): """ Wrapper for finding agent offers and acceptance thresholds """ results = [] search = (30,40,1) for t in range(args['rounds']): entry = {} if args['model'] == 'slantchev': for position in range(1,10): subresult = [] results.append(subresult) subresult.append(entry) thresh = findThreshold(args['output'],t,args['model'],position) print 'Time %d, Position %d -> Accept if > %d%%' % (t,position,thresh) else: results.append(entry) print 'Time %d -> Accept if > %d%%' %(t,findThreshold(args['output'],t)) if __name__ == '__main__': # Grab command-line arguments parser = ArgumentParser() # Optional argument that sets the filename for the output file parser.add_argument('-o',action='store', dest='output',default='default', help='scenario file [default: %(default)s]') group = parser.add_argument_group('Creation Options','Control the parameters of the created scenario.') # Optional argument that sets the theoretical model group.add_argument('-m',action='store', dest='model',choices=['powell','slantchev'],default='powell', help='theoretical model for the game [default: %(default)s]') # Optional argument that sets the cost of battle to Freedonia group.add_argument('-f',action='store', dest='fcost',type=int,default=2000, help='cost of battle to Freedonia [default: %(default)s]') # Optional argument that sets the cost of battle to Sylvania group.add_argument('-s',action='store', dest='scost',type=int,default=1000, help='cost of battle to enemy [default: %(default)s]') # Optional argument that sets the initial amount of territory owned by Freedonia group.add_argument('-i','--initial',action='store', dest='initial',type=int,default=13, help='Freedonia\'s initial territory percentage [default: %(default)s]') # Optional argument that sets Freedonia's initial military positional advantage group.add_argument('-p','--position',action='store', dest='position',type=int,default=3, help='Freedonia\'s initial positional advantage [default: %(default)s]') # Optional argument that sets the name of the enemy country group.add_argument('-e',action='store', dest='enemy',default='Sylvania', help='Name of the enemy country [default: %(default)s]') # Optional argument that sets the name of the disputed region group.add_argument('--region',action='store', dest='region',default='Trentino', help='Name of the region under dispute [default: %(default)s]') # Optional argument that sets the maximum number of rounds to play group.add_argument('-r',action='store', dest='rounds',type=int,default=15, help='Maximum number of rounds to play [default: %(default)s]') # Optional argument that sets Freedonia's initial troops group.add_argument('--freedonia-troops',action='store', dest='ftroops',type=int,default=40000, help='number of Freedonia troops [default: %(default)s]') # Optional argument that sets Sylvania's initial troops group.add_argument('--enemy-troops',action='store', dest='stroops',type=int,default=30000, help='number of enemy troops [default: %(default)s]') # Optional argument that determines whether to generate models for Web platform group.add_argument('-w','--web',action='store_true', dest='web',default=False, help='generate Web version if set [default: %(default)s]') group = parser.add_argument_group('Algorithm Options','Control the algorithms to apply to the agents.') # Optional argument that determines whether to use value iteration to create Freedonia's policy group.add_argument('-c','--compiled',action='store_true', dest='compiled',default=False, help='use value iteration for Freedonia [default: %(default)s]') # Optional argument that determines whether to use PWL compilation of Freedonia's policy group.add_argument('--fitting',action='store_true', dest='fitting',default=False, help='use PWL compilation and fitting for Freedonia [default: %(default)s]') group = parser.add_argument_group('Simulation Options','Control the simulation of the created scenario.') # Optional argument that sets the level of explanations when running the simulation group.add_argument('-d',action='store', dest='debug',type=int,default=1, help='level of explanation detail [default: %(default)s]') # Optional argument that sets the initial offer that Freedonia will make group.add_argument('-a',action='store', dest='amount',type=int,default=0, help='Freedonia\'s first offer amount') # Optional argument that sets the number of time steps to simulate group.add_argument('-t','--time',action='store', dest='time',type=int,default=1, help='number of time steps to simulate [default: %(default)s]') group = parser.add_argument_group('Creation Options','Control the parameters of the created scenario.') args = vars(parser.parse_args()) world = scenarioCreationUseCase(args['enemy'],maxRounds=args['rounds'],model=args['model'], web=args['web']) # Initialize state values based on command-line arguments world.agents['Freedonia'].setState('troops',args['ftroops']) world.agents['Freedonia'].setState('territory',args['initial']) world.agents['Freedonia'].setState('position',args['position']) world.agents['Freedonia'].setState('cost',args['fcost']) world.agents[args['enemy']].setState('troops',args['stroops']) world.agents[args['enemy']].setState('cost',args['scost']) if args['compiled']: compileWorld(world) if args['fitting']: fitWorld(world) # Create configuration file config = SafeConfigParser() # Specify game options for web interface config.add_section('Game') config.set('Game','rounds','%d' % (args['rounds'])) config.set('Game','user','Freedonia') config.set('Game','agent',args['enemy']) config.set('Game','region',args['region']) if args['model'] == 'powell': # Battle is optional under Powell config.set('Game','battle','optional') elif args['model'] == 'slantchev': # Battle is mandatory under Slantchev config.set('Game','battle','mandatory') # Specify which state features are visible in web interface config.add_section('Visible') features = ['territory','troops'] if args['model'] == 'slantchev': features.append('position') for feature in features: config.set('Visible',feature,'yes') # Specify descriptions of actions for web interface config.add_section('Actions') config.set('Actions','offer','Propose treaty where %s gets <action:amount>%%%% of total disputed territory' % (args['enemy'])) config.set('Actions','attack','Attack %s' % (args['enemy'])) config.set('Actions','accept offer','Accept offer of <Freedonia:offered>%% of total disputed territory') config.set('Actions','reject offer','Reject offer of <Freedonia:offered>%% of total disputed territory') config.set('Actions','continue','Continue to next round of negotiation without attacking') config.set('Actions','%s offer' % (args['enemy']),'offer <action:amount>%%') config.set('Actions','%s accept offer' % (args['enemy']), 'Accept offer of <%s:offered>%%%% of total disputed territory' % (args['enemy'])) config.set('Actions','%s reject offer' % (args['enemy']), 'Reject offer of <%s:offered>%%%% of total disputed territory' % (args['enemy'])) # Specify what changes are displayed config.add_section('Change') config.set('Change','troops','yes') if args['model'] == 'slantchev': config.set('Change','position','yes') # Specify links config.add_section('Links') config.set('Links','survey','http://www.curiouslab.com/clsurvey/index.php?sid=39345&lang=en') config.set('Links','scenarios','8839,1308,2266,5538') f = open('%s.cfg' % (args['output']),'w') config.write(f) f.close() # Save scenario to compressed XML file world.save(args['output']) # Test saved scenario world = World(args['output']) scenarioSimulationUseCase(world,args['amount'],args['time'],args['debug'],args['model']) # findPolicies(args) # world.printState(world.agents[args['enemy']].getBelief(world.state.domain()[0],'false'))
[ 37811, 198, 16281, 8883, 329, 35382, 24462, 13, 198, 15946, 1460, 779, 2663, 329, 1111, 21128, 290, 985, 8306, 13858, 13, 198, 37811, 198, 11748, 25064, 198, 6738, 17056, 46677, 1330, 19978, 16934, 46677, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 11748, 10903, 9399, 198, 198, 6738, 3795, 14323, 13, 79, 40989, 1330, 1635, 198, 6738, 3795, 14323, 13, 260, 904, 1330, 1635, 198, 6738, 3795, 14323, 13, 2673, 1330, 1635, 198, 6738, 3795, 14323, 13, 6894, 1330, 2159, 11, 5219, 9218, 11, 2673, 9218, 11, 39491, 9218, 11, 19849, 9218, 198, 6738, 3795, 14323, 13, 25781, 1330, 15906, 198, 198, 4299, 8883, 12443, 341, 11041, 20448, 7, 46970, 11639, 50, 2645, 85, 5411, 3256, 19849, 11639, 79, 32829, 3256, 12384, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 22667, 7512, 28, 14202, 11, 82, 22667, 7512, 28, 14202, 11, 9806, 49, 3733, 28, 1314, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 1672, 286, 703, 284, 2251, 257, 8883, 198, 220, 220, 220, 2488, 17143, 4472, 25, 262, 1438, 286, 262, 5797, 12, 14401, 1735, 11, 1312, 13, 68, 1539, 38728, 11339, 338, 6125, 357, 12286, 25, 24286, 5411, 8, 198, 220, 220, 220, 2488, 4906, 4472, 25, 965, 198, 220, 220, 220, 2488, 17143, 2746, 25, 543, 2746, 466, 356, 779, 357, 12286, 318, 366, 79, 32829, 4943, 198, 220, 220, 220, 2488, 4906, 2746, 25, 7182, 695, 393, 1017, 415, 49916, 198, 220, 220, 220, 2488, 17143, 3992, 25, 611, 327, 90, 17821, 5512, 788, 2251, 262, 3992, 12, 3106, 6306, 8883, 357, 12286, 25, 327, 90, 25101, 30072, 198, 220, 220, 220, 2488, 4906, 3992, 25, 20512, 198, 220, 220, 220, 2488, 17143, 277, 22667, 7512, 25, 262, 12867, 326, 38728, 11339, 35752, 357, 4625, 7182, 695, 11, 4277, 25, 657, 13, 16, 8, 393, 14754, 3344, 357, 4625, 1017, 415, 49916, 11, 4277, 25, 657, 13, 22, 8, 198, 220, 220, 220, 2488, 4906, 277, 22667, 7512, 25, 12178, 198, 220, 220, 220, 2488, 17143, 264, 22667, 7512, 25, 262, 12867, 326, 24286, 5411, 35752, 11, 739, 7182, 695, 357, 12286, 25, 657, 13, 16, 8, 198, 220, 220, 220, 2488, 4906, 264, 22667, 7512, 25, 12178, 198, 220, 220, 220, 2488, 17143, 3509, 49, 3733, 25, 262, 5415, 1271, 286, 983, 9196, 357, 12286, 25, 1315, 8, 198, 220, 220, 220, 2488, 4906, 3509, 49, 3733, 25, 493, 198, 220, 220, 220, 2488, 7783, 25, 262, 8883, 2727, 198, 220, 220, 220, 2488, 81, 4906, 25, 406, 90, 10603, 92, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 33141, 26235, 329, 3344, 39522, 11, 739, 1123, 2746, 198, 220, 220, 220, 1426, 27654, 796, 657, 198, 220, 220, 220, 1426, 17250, 796, 838, 198, 220, 220, 220, 611, 277, 22667, 7512, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 22667, 7512, 796, 657, 13, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 22667, 7512, 796, 657, 13, 22, 198, 220, 220, 220, 611, 264, 22667, 7512, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 22667, 7512, 796, 657, 13, 16, 628, 220, 220, 220, 1303, 13610, 8883, 198, 220, 220, 220, 995, 796, 2159, 3419, 628, 220, 220, 220, 1303, 28295, 198, 220, 220, 220, 1479, 796, 15906, 10786, 37, 15977, 11339, 11537, 198, 220, 220, 220, 995, 13, 2860, 36772, 7, 5787, 8, 198, 220, 220, 220, 827, 6780, 796, 15906, 7, 46970, 8, 198, 220, 220, 220, 995, 13, 2860, 36772, 7, 9163, 8, 628, 220, 220, 220, 1303, 11787, 1181, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 5787, 13, 3672, 4032, 23528, 2840, 3256, 600, 11, 5439, 28, 15, 11, 5303, 28, 20, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 15057, 286, 6553, 345, 423, 1364, 11537, 198, 220, 220, 220, 1479, 13, 2617, 9012, 10786, 23528, 2840, 3256, 19, 2388, 8, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 5787, 13, 3672, 4032, 353, 799, 652, 3256, 600, 11, 5439, 28, 15, 11, 5303, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 31905, 496, 286, 21941, 7674, 6898, 416, 345, 11537, 198, 220, 220, 220, 1479, 13, 2617, 9012, 10786, 353, 799, 652, 3256, 1314, 8, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 5787, 13, 3672, 4032, 15805, 3256, 600, 11, 5439, 28, 15, 11, 5303, 28, 20, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 15057, 286, 6553, 4064, 82, 14754, 287, 281, 1368, 6, 4064, 357, 5787, 13, 3672, 4008, 198, 220, 220, 220, 1479, 13, 2617, 9012, 10786, 15805, 3256, 11024, 8, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 5787, 13, 3672, 4032, 9150, 3256, 600, 11, 5439, 28, 1930, 27654, 11, 5303, 28, 1930, 17250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 11297, 3722, 286, 1175, 37633, 67, 28, 4, 82, 318, 8464, 11, 4064, 67, 28, 5832, 389, 8464, 33047, 4064, 357, 1930, 27654, 11, 9163, 13, 3672, 11, 1930, 17250, 4008, 198, 220, 220, 220, 1479, 13, 2617, 9012, 10786, 9150, 3256, 20, 8, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 5787, 13, 3672, 4032, 2364, 1068, 3256, 600, 11, 5439, 28, 15, 11, 5303, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 31905, 496, 286, 21941, 7674, 326, 4064, 82, 938, 4438, 284, 345, 6, 4064, 357, 9163, 13, 3672, 4008, 198, 220, 220, 220, 1479, 13, 2617, 9012, 10786, 2364, 1068, 3256, 15, 8, 198, 220, 220, 220, 611, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 649, 1988, 329, 7674, 691, 1635, 8499, 9, 14492, 649, 1988, 329, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2860, 35, 2690, 1387, 7, 5219, 9218, 7, 5787, 13, 3672, 4032, 353, 799, 652, 33809, 5219, 9218, 7, 5787, 13, 3672, 4032, 9150, 6, 4008, 628, 220, 220, 220, 1303, 15906, 1181, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 9163, 13, 3672, 4032, 23528, 2840, 3256, 600, 11, 5439, 28, 15, 11, 5303, 28, 4059, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 15057, 286, 6553, 4064, 82, 468, 1364, 6, 4064, 357, 9163, 13, 3672, 4008, 198, 220, 220, 220, 827, 6780, 13, 2617, 9012, 10786, 23528, 2840, 3256, 18, 2388, 8, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 9163, 13, 3672, 4032, 15805, 3256, 600, 11, 5439, 28, 15, 11, 5303, 28, 20, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 15057, 286, 6553, 4064, 82, 14754, 287, 281, 1368, 6, 4064, 357, 9163, 13, 3672, 4008, 198, 220, 220, 220, 827, 6780, 13, 2617, 9012, 10786, 15805, 3256, 11024, 8, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 9163, 13, 3672, 4032, 2364, 1068, 3256, 600, 11, 5439, 28, 15, 11, 5303, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 31905, 496, 286, 21941, 7674, 326, 4064, 82, 938, 4438, 284, 4064, 82, 6, 4064, 357, 5787, 13, 3672, 11, 9163, 13, 3672, 4008, 198, 220, 220, 220, 827, 6780, 13, 2617, 9012, 10786, 2364, 1068, 3256, 15, 8, 628, 220, 220, 220, 1303, 2159, 1181, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 14202, 4032, 83, 630, 88, 3256, 30388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 11980, 262, 734, 5389, 4251, 281, 4381, 8348, 8, 198, 220, 220, 220, 995, 13, 2617, 9012, 7, 14202, 4032, 83, 630, 88, 3256, 25101, 8, 198, 220, 220, 220, 1303, 15371, 286, 24462, 11, 44000, 262, 779, 286, 281, 27056, 515, 1181, 3895, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 14202, 4032, 40715, 3256, 4868, 17414, 6, 47895, 41707, 5546, 41707, 260, 29192, 41707, 437, 41707, 8957, 1484, 41707, 1516, 5082, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 464, 1459, 3800, 286, 262, 24462, 983, 11537, 198, 220, 220, 220, 995, 13, 2617, 9012, 7, 14202, 4032, 40715, 41707, 8957, 1484, 11537, 198, 220, 220, 220, 1303, 3776, 2746, 11, 9037, 43087, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 14202, 4032, 19849, 3256, 4868, 17414, 6, 79, 32829, 41707, 6649, 415, 49916, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 464, 2746, 10238, 262, 24462, 983, 11537, 198, 220, 220, 220, 995, 13, 2617, 9012, 7, 14202, 4032, 19849, 3256, 19849, 8, 198, 220, 220, 220, 1303, 10485, 286, 24462, 198, 220, 220, 220, 995, 13, 13086, 9012, 7, 14202, 4032, 744, 3256, 600, 11, 11213, 11639, 464, 1459, 2835, 286, 262, 24462, 11537, 198, 220, 220, 220, 995, 13, 2617, 9012, 7, 14202, 4032, 744, 3256, 15, 8, 628, 220, 220, 220, 611, 407, 3992, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39771, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 995, 13, 13086, 6892, 341, 7, 5787, 13, 3672, 11, 9163, 13, 3672, 4032, 38087, 82, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 38816, 7, 2539, 11, 15, 2014, 198, 220, 220, 220, 1303, 3776, 625, 611, 612, 318, 257, 15775, 198, 220, 220, 220, 995, 13, 2860, 15156, 17928, 7, 15883, 27660, 15090, 6, 361, 10354, 2081, 25166, 7, 5219, 9218, 7, 14202, 4032, 83, 630, 88, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 10352, 25, 10352, 92, 4008, 198, 220, 220, 220, 1303, 3776, 625, 611, 38728, 11339, 468, 645, 7674, 198, 220, 220, 220, 995, 13, 2860, 15156, 17928, 7, 15883, 27660, 15090, 6, 361, 10354, 11387, 25166, 7, 5219, 9218, 7, 5787, 13, 3672, 4032, 353, 799, 652, 33809, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 10352, 11, 10352, 25, 6407, 30072, 1267, 198, 220, 220, 220, 1303, 3776, 625, 611, 38728, 11339, 468, 477, 262, 7674, 198, 220, 220, 220, 995, 13, 2860, 15156, 17928, 7, 15883, 27660, 15090, 6, 361, 10354, 11387, 25166, 7, 5219, 9218, 7, 5787, 13, 3672, 4032, 353, 799, 652, 33809, 2079, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 10352, 25, 10352, 92, 4008, 220, 198, 220, 220, 220, 1303, 3776, 625, 611, 1271, 286, 9196, 21695, 4179, 198, 220, 220, 220, 995, 13, 2860, 15156, 17928, 7, 15883, 27660, 15090, 6, 361, 10354, 11387, 25166, 7, 5219, 9218, 7, 14202, 4032, 744, 33809, 9806, 49, 3733, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 10352, 25, 10352, 92, 4008, 628, 220, 220, 220, 1303, 6756, 1502, 25, 791, 23893, 262, 1708, 611, 345, 765, 6554, 284, 719, 287, 10730, 198, 2, 220, 220, 220, 995, 13, 2617, 18743, 26933, 2617, 7, 6894, 13, 49638, 13, 13083, 28955, 12962, 198, 220, 220, 220, 1303, 6756, 1502, 25, 791, 23893, 262, 1708, 611, 345, 765, 6554, 284, 719, 4726, 3746, 198, 220, 220, 220, 995, 13, 2617, 18743, 26933, 5787, 13, 3672, 11, 9163, 13, 3672, 12962, 628, 220, 220, 220, 1303, 11787, 4028, 198, 220, 220, 220, 1479, 24064, 796, 1479, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 20358, 41707, 15252, 10354, 827, 6780, 13, 3672, 30072, 198, 220, 220, 220, 329, 2033, 287, 2837, 7, 1238, 11, 3064, 11, 1238, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 47895, 41707, 15252, 10354, 827, 6780, 13, 3672, 4032, 17287, 10354, 2033, 30072, 198, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19675, 468, 9242, 9539, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 45, 3185, 796, 1479, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 43043, 6, 30072, 198, 220, 220, 220, 1288, 361, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3454, 415, 49916, 468, 1111, 5389, 6464, 4394, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 13635, 2897, 41707, 15252, 10354, 827, 6780, 13, 3672, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 260, 752, 2897, 41707, 15252, 10354, 827, 6780, 13, 3672, 30072, 628, 220, 220, 220, 1303, 15906, 4028, 198, 220, 220, 220, 827, 6780, 24064, 796, 827, 6780, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 20358, 41707, 15252, 10354, 1479, 13, 3672, 30072, 198, 220, 220, 220, 827, 6780, 38855, 796, 827, 6780, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 13635, 2897, 41707, 15252, 10354, 1479, 13, 3672, 30072, 198, 220, 220, 220, 827, 6780, 3041, 752, 796, 827, 6780, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 260, 752, 2897, 41707, 15252, 10354, 1479, 13, 3672, 30072, 198, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19675, 468, 9242, 9539, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 45, 3185, 796, 827, 6780, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 43043, 6, 30072, 198, 220, 220, 220, 1288, 361, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3454, 415, 49916, 468, 1111, 5389, 1642, 4394, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2033, 287, 2837, 7, 940, 11, 3064, 11, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2860, 12502, 15090, 6, 19011, 10354, 705, 47895, 41707, 15252, 10354, 1479, 13, 3672, 4032, 17287, 10354, 2033, 30072, 628, 220, 220, 220, 1303, 37163, 507, 319, 618, 4028, 389, 2742, 11, 1912, 319, 7108, 286, 983, 198, 220, 220, 220, 329, 2223, 287, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 47895, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 796, 995, 13, 49638, 58, 2673, 17816, 32796, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 2617, 38263, 7, 2673, 11, 15883, 27660, 15090, 6, 361, 10354, 4961, 25166, 7, 5219, 9218, 7, 14202, 4032, 40715, 33809, 6, 47895, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 220, 220, 220, 220, 1303, 3242, 364, 389, 2742, 287, 262, 2897, 7108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 10352, 92, 4008, 1303, 3242, 364, 389, 5293, 287, 477, 584, 21164, 198, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19675, 468, 257, 2041, 17927, 7108, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 685, 5787, 45, 3185, 11, 5787, 24064, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 2617, 38263, 7, 2673, 11, 15883, 27660, 15090, 6, 361, 10354, 4961, 25166, 7, 5219, 9218, 7, 14202, 4032, 40715, 33809, 6, 260, 29192, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 220, 220, 220, 220, 1303, 3460, 5430, 290, 1804, 2147, 389, 2742, 691, 287, 17927, 7108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 10352, 92, 4008, 1303, 3460, 5430, 290, 1804, 2147, 389, 5293, 287, 477, 584, 21164, 628, 220, 220, 220, 1303, 4874, 4438, 11, 5797, 460, 3031, 198, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4698, 19675, 11, 691, 24286, 5411, 468, 284, 3031, 11, 290, 340, 460, 1368, 198, 220, 220, 220, 220, 220, 220, 220, 9109, 796, 685, 9163, 24064, 11, 9163, 38855, 11, 9163, 3041, 752, 60, 198, 220, 220, 220, 1288, 361, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4698, 3454, 415, 49916, 11, 691, 2453, 14, 260, 752, 198, 220, 220, 220, 220, 220, 220, 220, 9109, 796, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 13635, 2897, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9109, 15853, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 260, 752, 2897, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 8, 198, 220, 220, 220, 329, 2223, 287, 9109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 796, 995, 13, 49638, 58, 2673, 17816, 32796, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 2617, 38263, 7, 2673, 11, 15883, 27660, 15090, 6, 361, 10354, 4961, 25166, 7, 5219, 9218, 7, 14202, 4032, 40715, 33809, 6, 5546, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 220, 220, 220, 220, 1303, 3242, 45316, 1276, 719, 287, 262, 2882, 7108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 10352, 92, 4008, 1303, 3242, 45316, 2314, 719, 287, 597, 584, 7108, 628, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 399, 3185, 318, 2742, 287, 3446, 6697, 7445, 284, 477, 584, 4028, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2617, 38263, 7, 9163, 45, 3185, 11, 15883, 27660, 15090, 6, 361, 10354, 4961, 25166, 7, 5219, 9218, 7, 14202, 4032, 40715, 33809, 6, 437, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 220, 220, 220, 220, 1303, 24286, 5411, 857, 407, 466, 1997, 287, 262, 9242, 7108, 706, 38728, 11339, 20067, 284, 17927, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 10352, 92, 4008, 1303, 24286, 5411, 1276, 719, 287, 663, 584, 21164, 198, 220, 220, 220, 611, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3460, 5430, 2742, 691, 739, 12352, 7108, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 20358, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 796, 995, 13, 49638, 58, 2673, 17816, 32796, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 2617, 38263, 7, 2673, 11, 15883, 27660, 15090, 6, 361, 10354, 4961, 25166, 7, 5219, 9218, 7, 14202, 4032, 40715, 33809, 6, 1516, 5082, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 220, 220, 220, 220, 1303, 3460, 5430, 2742, 691, 287, 12352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 10352, 92, 4008, 1303, 3460, 5430, 2742, 790, 584, 7108, 628, 220, 220, 220, 1303, 28510, 329, 38728, 11339, 198, 220, 220, 220, 3061, 9792, 305, 2840, 796, 20487, 38816, 7, 5219, 9218, 7, 5787, 13, 3672, 4032, 23528, 2840, 6, 4008, 198, 220, 220, 220, 1479, 13, 2617, 48123, 7, 35231, 9792, 305, 2840, 11, 16, 2014, 198, 220, 220, 220, 3061, 9792, 263, 799, 652, 796, 20487, 38816, 7, 5219, 9218, 7, 5787, 13, 3672, 4032, 353, 799, 652, 6, 4008, 198, 220, 220, 220, 1479, 13, 2617, 48123, 7, 35231, 9792, 263, 799, 652, 11, 16, 2014, 628, 220, 220, 220, 1303, 28510, 329, 24286, 5411, 198, 220, 220, 220, 3061, 2257, 305, 2840, 796, 20487, 38816, 7, 5219, 9218, 7, 9163, 13, 3672, 4032, 23528, 2840, 6, 4008, 198, 220, 220, 220, 827, 6780, 13, 2617, 48123, 7, 35231, 2257, 305, 2840, 11, 16, 2014, 198, 220, 220, 220, 3061, 2257, 263, 799, 652, 796, 17775, 38816, 7, 5219, 9218, 7, 5787, 13, 3672, 4032, 353, 799, 652, 6, 4008, 198, 220, 220, 220, 827, 6780, 13, 2617, 48123, 7, 35231, 2257, 263, 799, 652, 11, 16, 2014, 628, 220, 220, 220, 1303, 33671, 4661, 9723, 284, 1111, 198, 220, 220, 220, 3061, 10262, 10237, 796, 20487, 38816, 7, 5219, 9218, 7, 14202, 4032, 83, 630, 88, 6, 4008, 628, 220, 220, 220, 1303, 311, 6548, 3061, 11, 2810, 355, 281, 1672, 286, 281, 13293, 3061, 198, 220, 220, 220, 3061, 32, 24957, 796, 4620, 38816, 11395, 7, 5219, 9218, 7, 14202, 4032, 40715, 33809, 6, 5546, 11537, 628, 220, 220, 220, 1303, 39519, 198, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 2617, 33682, 10786, 17899, 8637, 3256, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2617, 33682, 10786, 17899, 8637, 3256, 19, 8, 198, 220, 220, 220, 1288, 361, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 2617, 33682, 10786, 17899, 8637, 3256, 21, 8, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2617, 33682, 10786, 17899, 8637, 3256, 21, 8, 628, 220, 220, 220, 1303, 43474, 5087, 198, 220, 220, 220, 1479, 13, 2617, 33682, 10786, 15410, 608, 3256, 12, 16, 8, 198, 220, 220, 220, 827, 6780, 13, 2617, 33682, 10786, 15410, 608, 3256, 12, 16, 8, 628, 220, 220, 220, 1303, 28248, 286, 4901, 198, 220, 220, 220, 1479, 13, 2617, 6690, 30753, 4971, 7, 17, 8, 198, 220, 220, 220, 827, 6780, 13, 2617, 6690, 30753, 4971, 7, 17, 8, 628, 220, 220, 220, 1303, 33806, 286, 3344, 198, 220, 220, 220, 1479, 44095, 2840, 796, 1181, 9218, 7, 5787, 13, 3672, 4032, 23528, 2840, 11537, 198, 220, 220, 220, 1479, 51, 8056, 796, 1181, 9218, 7, 5787, 13, 3672, 4032, 353, 799, 652, 11537, 198, 220, 220, 220, 827, 6780, 44095, 2840, 796, 1181, 9218, 7, 9163, 13, 3672, 4032, 23528, 2840, 11537, 198, 220, 220, 220, 1303, 7896, 286, 4330, 198, 220, 220, 220, 329, 2223, 287, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 20358, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7896, 319, 6553, 357, 15805, 286, 3344, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2860, 38816, 46912, 7, 5787, 44095, 2840, 11, 5219, 9218, 7, 5787, 13, 3672, 4032, 15805, 33809, 12, 16, 2014, 8, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 5787, 44095, 2840, 11, 2673, 11, 21048, 11, 268, 3174, 9452, 28, 1662, 3992, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2860, 38816, 46912, 7, 9163, 44095, 2840, 11, 5219, 9218, 7, 9163, 13, 3672, 4032, 15805, 33809, 12, 16, 2014, 8, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 9163, 44095, 2840, 11, 2673, 11, 21048, 11, 268, 3174, 9452, 28, 1662, 3992, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7896, 319, 7674, 357, 1676, 65, 1799, 286, 9807, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 15090, 6, 17080, 3890, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37913, 6, 17080, 3890, 10354, 47527, 2617, 2514, 3103, 18797, 46912, 7, 5787, 51, 8056, 11, 3064, 828, 16, 7874, 69, 22667, 7512, 828, 1303, 24286, 5411, 35752, 11, 38728, 11339, 857, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3919, 19400, 46912, 7, 5787, 51, 8056, 828, 220, 220, 220, 220, 220, 220, 220, 220, 277, 22667, 7512, 15437, 5512, 220, 1303, 5747, 9807, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 22667, 7512, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37913, 6, 17080, 3890, 10354, 47527, 2617, 2514, 3103, 18797, 46912, 7, 5787, 51, 8056, 11, 15, 828, 69, 22667, 7512, 828, 220, 220, 220, 220, 220, 1303, 38728, 11339, 35752, 11, 24286, 5411, 857, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3919, 19400, 46912, 7, 5787, 51, 8056, 828, 220, 220, 220, 220, 220, 220, 352, 7874, 69, 22667, 7512, 15437, 5512, 1303, 16126, 35752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 7874, 82, 22667, 7512, 15437, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 5787, 51, 8056, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7896, 319, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 1181, 9218, 7, 5787, 13, 3672, 4032, 9150, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 15090, 6, 17080, 3890, 10354, 47527, 24988, 434, 46912, 7, 1930, 11, 16, 828, 16, 7874, 69, 22667, 7512, 828, 1303, 38728, 11339, 7864, 3344, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 24988, 434, 46912, 7, 1930, 12095, 16, 828, 69, 22667, 7512, 15437, 30072, 1303, 38728, 11339, 14754, 3344, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 1930, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7896, 319, 7674, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 15090, 6, 361, 10354, 11387, 25166, 7, 1930, 11, 1930, 17250, 34507, 20, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 900, 2514, 3103, 18797, 46912, 7, 5787, 51, 8056, 11, 3064, 828, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38728, 11339, 1839, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 1391, 6, 361, 10354, 11387, 25166, 7, 1930, 11, 1930, 27654, 27613, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 645, 19400, 46912, 7, 5787, 51, 8056, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 900, 2514, 3103, 18797, 46912, 7, 5787, 51, 8056, 11, 15, 8, 11709, 8, 1303, 38728, 11339, 2626, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 5787, 51, 8056, 11, 2673, 11, 21048, 8, 628, 220, 220, 220, 1303, 33806, 286, 4394, 198, 220, 220, 220, 329, 6376, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 796, 220, 7561, 15090, 6, 32796, 10354, 995, 13, 49638, 13, 13083, 3419, 58, 9630, 60, 4032, 19011, 10354, 705, 47895, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15252, 10354, 995, 13, 49638, 13, 13083, 3419, 58, 16, 12, 9630, 60, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 611, 22037, 17816, 32796, 20520, 6624, 1479, 13, 3672, 393, 2746, 14512, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2897, 796, 1181, 9218, 7, 37696, 17816, 15252, 20520, 4032, 2364, 1068, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2033, 796, 2223, 9218, 10786, 17287, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 15090, 6, 361, 10354, 2081, 25166, 7, 5219, 9218, 7, 14202, 4032, 83, 630, 88, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 645, 19400, 46912, 7, 47895, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 900, 2514, 3103, 18797, 46912, 7, 47895, 11, 17287, 8, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 47895, 11, 37696, 11, 21048, 11, 268, 3174, 11518, 28, 1662, 3992, 8, 628, 220, 220, 220, 1303, 33806, 286, 30734, 198, 220, 220, 220, 329, 2223, 287, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 13635, 2897, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21699, 278, 281, 2897, 1724, 326, 612, 318, 783, 257, 15775, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 1181, 9218, 7, 14202, 4032, 83, 630, 88, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 17821, 46912, 7, 2539, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 2539, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21699, 278, 2897, 5621, 7674, 198, 220, 220, 220, 220, 220, 220, 220, 2897, 796, 1181, 9218, 7, 2673, 17816, 32796, 20520, 4032, 2364, 1068, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7674, 796, 1181, 9218, 7, 5787, 13, 3672, 4032, 353, 799, 652, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2223, 17816, 32796, 20520, 6624, 1479, 13, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38728, 11339, 18178, 5621, 7674, 284, 938, 2897, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 38816, 46912, 7, 353, 799, 652, 11, 47895, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 5787, 51, 8056, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24286, 5411, 18178, 5621, 7674, 284, 352, 12, 12957, 2897, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 38816, 46912, 7, 353, 799, 652, 11, 47895, 11, 79, 310, 10779, 16, 1539, 30846, 28, 3064, 2014, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 5787, 51, 8056, 11, 2673, 11, 21048, 8, 628, 220, 220, 220, 1303, 33806, 286, 7108, 198, 220, 220, 220, 7108, 796, 1181, 9218, 7, 14202, 4032, 40715, 11537, 198, 220, 220, 220, 2835, 9218, 796, 1181, 9218, 7, 14202, 4032, 744, 11537, 198, 220, 220, 220, 1303, 18562, 1137, 4613, 47203, 18672, 198, 220, 220, 220, 329, 6376, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 7561, 15090, 6, 32796, 10354, 995, 13, 49638, 13, 13083, 3419, 58, 9630, 60, 4032, 19011, 10354, 705, 47895, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15252, 10354, 995, 13, 49638, 13, 13083, 3419, 58, 16, 12, 9630, 60, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2223, 17816, 32796, 20520, 6624, 1479, 13, 3672, 393, 2746, 14512, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 3103, 18797, 46912, 7, 40715, 4032, 5546, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 40715, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 1303, 47203, 18672, 4613, 4526, 23680, 2849, 393, 36924, 4760, 12529, 198, 220, 220, 220, 329, 2223, 287, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 260, 752, 2897, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 3103, 18797, 46912, 7, 40715, 4032, 260, 29192, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 3103, 18797, 46912, 7, 40715, 4032, 1516, 5082, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 40715, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 1303, 12598, 4613, 18562, 1137, 198, 220, 220, 220, 329, 2223, 287, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 13635, 2897, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 3103, 18797, 46912, 7, 40715, 4032, 47895, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 40715, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 1303, 9274, 4613, 18562, 1137, 198, 220, 220, 220, 329, 2223, 287, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 20358, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 3103, 18797, 46912, 7, 40715, 4032, 47895, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 40715, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2223, 17816, 32796, 20520, 6624, 827, 6780, 13, 3672, 393, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 24988, 434, 46912, 7, 744, 9218, 11, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 744, 9218, 11, 2673, 11, 21048, 8, 198, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4526, 23680, 2849, 4613, 23578, 198, 220, 220, 220, 220, 220, 220, 220, 329, 22037, 287, 685, 5787, 45, 3185, 11, 5787, 24064, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 3103, 18797, 46912, 7, 40715, 4032, 437, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 40715, 11, 37696, 11, 21048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23578, 4613, 18562, 1137, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 796, 220, 7561, 15090, 6, 32796, 10354, 827, 6780, 13, 3672, 4032, 19011, 10354, 705, 43043, 6, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 2617, 2514, 3103, 18797, 46912, 7, 40715, 4032, 47895, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 40715, 11, 37696, 11, 21048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 24988, 434, 46912, 7, 744, 9218, 11, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 744, 9218, 11, 37696, 11, 21048, 8, 628, 198, 220, 220, 220, 611, 407, 3992, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39771, 17262, 25, 9274, 318, 2089, 329, 3774, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 796, 220, 7561, 15090, 6, 32796, 10354, 827, 6780, 13, 3672, 4032, 19011, 10354, 705, 20358, 41707, 15252, 10354, 1479, 13, 3672, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 13934, 9218, 7, 5787, 13, 3672, 11, 9163, 13, 3672, 4032, 38087, 82, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 7, 21064, 620, 46912, 7, 2539, 11, 15, 13, 16, 12095, 16, 2014, 8, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 35, 4989, 873, 7, 2539, 11, 37696, 11, 21048, 8, 198, 220, 220, 220, 1303, 7157, 39160, 2450, 329, 38728, 11339, 198, 2, 220, 220, 220, 1479, 13, 2617, 36727, 7, 15883, 27660, 15090, 6, 361, 10354, 4961, 25166, 10786, 40715, 41707, 5546, 33809, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 21699, 281, 2897, 3744, 621, 2026, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 1391, 6, 361, 10354, 11387, 25166, 7, 5219, 9218, 7, 5787, 13, 3672, 4032, 2364, 1068, 33809, 1120, 828, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 7561, 15090, 6, 32796, 10354, 1479, 13, 3672, 4032, 19011, 10354, 705, 13635, 2897, 41707, 15252, 10354, 827, 6780, 13, 3672, 92, 828, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 7561, 15090, 6, 32796, 10354, 1479, 13, 3672, 4032, 19011, 10354, 705, 260, 752, 2897, 41707, 15252, 10354, 827, 6780, 13, 3672, 30072, 5512, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 1391, 6, 361, 10354, 4961, 25166, 10786, 40715, 41707, 1516, 5082, 33809, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8307, 1141, 12352, 7108, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 7561, 15090, 6, 32796, 10354, 1479, 13, 3672, 4032, 19011, 10354, 705, 20358, 41707, 15252, 10354, 827, 6780, 13, 3672, 92, 828, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15906, 13267, 703, 644, 284, 466, 4306, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 10352, 11709, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21235, 4981, 286, 4472, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17934, 286, 4441, 257, 2746, 351, 11491, 6721, 477, 379, 1752, 357, 64, 2196, 286, 38728, 11339, 508, 16609, 546, 8978, 4381, 355, 880, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 827, 6780, 13, 2860, 17633, 10786, 9562, 3256, 49, 34758, 35231, 2257, 305, 2840, 25, 838, 1539, 35231, 2257, 263, 799, 652, 25, 352, 1539, 35231, 10262, 10237, 25, 352, 13, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45627, 28, 16, 1539, 49283, 11639, 17080, 3890, 3256, 8000, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17934, 286, 4441, 257, 2746, 351, 11491, 9056, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2860, 17633, 10786, 9562, 3256, 20310, 414, 28, 940, 1539, 49283, 11639, 17080, 3890, 3256, 8000, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 1181, 9218, 7, 5787, 13, 3672, 4032, 9150, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24286, 5411, 5804, 2292, 284, 307, 5969, 379, 513, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2617, 12193, 2086, 7, 2539, 11, 18, 4032, 9562, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38728, 11339, 318, 4988, 22147, 546, 2292, 357, 1120, 4, 2863, 286, 852, 767, 11, 2026, 4, 286, 852, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 17633, 7, 5787, 13, 3672, 11, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 2617, 12193, 2086, 7, 2539, 11, 20344, 3890, 15090, 22, 25, 657, 13, 20, 11, 18, 25, 657, 13, 20, 92, 828, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19243, 602, 546, 2422, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 787, 27660, 15090, 6, 361, 10354, 11387, 25166, 7, 2539, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 1391, 6, 361, 10354, 11387, 25166, 7, 2539, 11, 24, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 1391, 6, 17080, 3890, 10354, 47527, 9218, 276, 38469, 15090, 2539, 25, 352, 92, 828, 15, 13, 24, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9218, 276, 38469, 15090, 2539, 25, 352, 11, 10943, 2257, 8643, 25, 532, 16, 92, 828, 15, 13, 16, 15437, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 1391, 6, 17080, 3890, 10354, 47527, 9218, 276, 38469, 15090, 2539, 25, 352, 92, 828, 15, 13, 23, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9218, 276, 38469, 15090, 2539, 25, 352, 11, 10943, 2257, 8643, 25, 532, 16, 92, 828, 15, 13, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9218, 276, 38469, 15090, 2539, 25, 352, 11, 10943, 2257, 8643, 25, 352, 92, 828, 15, 13, 16, 15437, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 1391, 6, 17080, 3890, 10354, 47527, 9218, 276, 38469, 15090, 2539, 25, 352, 92, 828, 15, 13, 24, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9218, 276, 38469, 15090, 2539, 25, 352, 11, 10943, 2257, 8643, 25, 352, 92, 828, 15, 13, 16, 15437, 11709, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 13086, 31310, 13208, 7, 2539, 11, 21048, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17934, 286, 4634, 2746, 10007, 13869, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2860, 17633, 10786, 7942, 3256, 8000, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2617, 33682, 10786, 20310, 414, 3256, 940, 1539, 6, 7942, 11537, 1303, 3827, 13154, 1103, 5797, 338, 45627, 351, 428, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2617, 33682, 10786, 49283, 41707, 17080, 3890, 41707, 7942, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 44, 2470, 17633, 7, 5787, 13, 3672, 11, 9163, 13, 3672, 11, 90, 6, 9562, 10354, 657, 13, 24, 4032, 7942, 10354, 657, 13, 16, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25376, 286, 9192, 278, 24286, 5411, 198, 220, 220, 220, 220, 220, 220, 220, 3061, 5005, 4516, 796, 4620, 38816, 11395, 7, 19849, 9218, 7, 9163, 13, 3672, 828, 9163, 13, 19849, 17, 9630, 10786, 9562, 6, 4008, 198, 220, 220, 220, 1441, 995, 198, 198, 4299, 4197, 10603, 7, 6894, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27053, 3083, 14174, 23340, 286, 38728, 11339, 338, 2450, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 5797, 287, 995, 13, 49638, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5797, 13, 3672, 6624, 705, 37, 15977, 11339, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1479, 796, 5797, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 796, 5797, 198, 220, 220, 220, 995, 13, 2617, 9012, 7, 14202, 4032, 40715, 41707, 47895, 11537, 198, 220, 220, 220, 1181, 796, 995, 13, 5219, 13, 27830, 3419, 58, 15, 60, 198, 220, 220, 220, 1479, 17633, 796, 995, 13, 1136, 17633, 7, 5787, 13, 3672, 11, 5219, 8, 198, 220, 220, 220, 9056, 796, 1479, 13, 1136, 12193, 2086, 7, 5219, 11, 5787, 17633, 8, 198, 220, 220, 220, 1303, 3082, 1133, 6801, 7150, 198, 220, 220, 220, 309, 796, 23884, 198, 220, 220, 220, 329, 5797, 287, 995, 13, 49638, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 5797, 13, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 58, 2673, 60, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 8251, 287, 995, 13, 18206, 2288, 18743, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 8251, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17262, 796, 995, 13, 1136, 35, 4989, 873, 7, 2539, 11, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17262, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 4683, 5509, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 67, 4989, 873, 8, 6624, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17262, 796, 17262, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 5369, 5509, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17262, 796, 7383, 276, 27660, 7, 3919, 19400, 46912, 7, 2539, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 17262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 15853, 17262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 15853, 7383, 276, 27660, 7, 3919, 19400, 46912, 7, 10943, 2257, 8643, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 309, 58, 2673, 60, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 58, 2673, 60, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 58, 2673, 60, 796, 1255, 9, 51, 58, 2673, 60, 198, 220, 220, 220, 1303, 3082, 1133, 2450, 7150, 329, 262, 584, 5797, 198, 220, 220, 220, 4981, 796, 23884, 198, 220, 220, 220, 329, 5797, 287, 995, 13, 49638, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 4981, 58, 25781, 13, 3672, 60, 796, 900, 3419, 198, 220, 220, 220, 329, 5797, 287, 995, 13, 49638, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 15879, 287, 9056, 13, 27830, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 995, 13, 1136, 17633, 7, 25781, 13, 3672, 11, 31364, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31836, 796, 5797, 13, 19796, 33682, 10786, 49, 3256, 19849, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 58, 25781, 13, 3672, 4083, 2860, 7, 1192, 395, 273, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 27530, 58, 25781, 13, 3672, 12962, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 9056, 546, 4981, 1043, 11, 7048, 6407, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 58, 25781, 13, 3672, 4083, 2860, 7, 17821, 8, 198, 220, 220, 220, 329, 5797, 287, 995, 13, 49638, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2746, 287, 4981, 58, 25781, 13, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 796, 2160, 7, 25781, 13, 1136, 33682, 10786, 49, 3256, 19849, 828, 9218, 276, 27660, 7, 9218, 276, 38469, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 27530, 58, 19849, 7131, 6, 30586, 20520, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2450, 796, 5797, 13, 27530, 58, 19849, 7131, 6, 30586, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 17810, 287, 2837, 7, 16, 11, 25781, 13, 1136, 33682, 10786, 17899, 8637, 3256, 19849, 47762, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26977, 8300, 286, 4788, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 30586, 8, 1279, 17810, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7820, 5509, 329, 428, 17810, 318, 4814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2742, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4028, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10854, 38209, 3403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 5797, 13, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2742, 58, 2673, 60, 796, 5797, 13, 18011, 58, 2673, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2742, 58, 2673, 60, 796, 7383, 276, 27660, 7, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 1988, 5499, 329, 1123, 2223, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17810, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 4032, 7282, 929, 2239, 318, 4814, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 5797, 13, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 58, 2673, 60, 796, 371, 9, 51, 58, 2673, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 58, 2673, 60, 796, 2742, 58, 2673, 4083, 33491, 7, 17821, 11, 53, 58, 2673, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 58, 2673, 60, 796, 569, 58, 2673, 4083, 1069, 806, 341, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 58, 2673, 60, 796, 569, 58, 2673, 4083, 8899, 7, 50033, 12835, 25, 1391, 6, 31364, 10354, 12835, 4032, 2673, 10354, 2223, 92, 611, 318, 39098, 7, 33201, 11, 9218, 276, 38469, 8, 2073, 12835, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 510, 257, 2450, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2450, 13, 33295, 7, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 5797, 13, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2450, 58, 17899, 8637, 12, 16, 60, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2450, 58, 17899, 8637, 12, 16, 60, 796, 569, 58, 2673, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2450, 58, 17899, 8637, 12, 16, 60, 796, 2450, 58, 17899, 8637, 12, 16, 4083, 9806, 7, 53, 58, 2673, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 7364, 796, 2450, 58, 17899, 8637, 12, 16, 4083, 8899, 7, 50033, 12835, 25, 12835, 17816, 31364, 20520, 611, 318, 39098, 7, 33201, 11, 11600, 8, 2073, 12835, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2450, 58, 17899, 8637, 12, 16, 60, 796, 2450, 58, 17899, 8637, 12, 16, 4083, 8899, 7, 50033, 12835, 25, 12835, 17816, 2673, 20520, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 33201, 11, 11600, 8, 2073, 12835, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 3118, 1050, 40881, 32105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2450, 58, 17899, 8637, 12, 16, 4083, 1084, 48439, 3646, 7305, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 2450, 58, 17899, 8637, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 778, 40881, 796, 2450, 58, 17899, 8637, 12, 16, 4083, 1050, 1726, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 47, 5143, 276, 32105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 778, 40881, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1303, 49899, 778, 46493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 995, 13, 2617, 38816, 10786, 40715, 41707, 5546, 3256, 6667, 2086, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 995, 13, 2617, 9012, 10786, 37, 15977, 11339, 41707, 353, 799, 652, 3256, 4761, 11, 6667, 2086, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 2897, 287, 2837, 7, 1120, 11, 3064, 11, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 995, 13, 2617, 9012, 7, 25781, 13, 3672, 4032, 2364, 1068, 3256, 47895, 11, 6667, 2086, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 15879, 796, 9056, 13, 27830, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 2897, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 2450, 58, 17899, 8637, 12, 16, 7131, 31364, 4357, 1050, 40881, 58, 31364, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 6818, 2450, 58, 17899, 8637, 12, 16, 7131, 31364, 60, 6624, 778, 40881, 58, 31364, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 1479, 13, 27530, 58, 5787, 17633, 7131, 6, 6667, 2086, 82, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4299, 8883, 8890, 1741, 11041, 20448, 7, 6894, 11, 47895, 28, 15, 11, 744, 82, 28, 16, 11, 24442, 28, 16, 11, 19849, 11639, 79, 32829, 6, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 17143, 2897, 25, 262, 4238, 2897, 329, 38728, 11339, 284, 1577, 357, 12286, 318, 4844, 8, 198, 220, 220, 220, 2488, 4906, 2897, 25, 493, 198, 220, 220, 220, 2488, 17143, 9196, 25, 262, 1271, 286, 1844, 9196, 11, 810, 257, 2835, 318, 734, 4962, 1123, 11, 1708, 19675, 357, 12286, 318, 352, 8, 198, 220, 220, 220, 2488, 4906, 9196, 25, 493, 198, 220, 220, 220, 2488, 17143, 14257, 25, 262, 14257, 1241, 284, 779, 287, 7468, 357, 12286, 318, 352, 8, 198, 220, 220, 220, 2488, 4906, 14257, 25, 493, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1332, 19076, 796, 318, 39098, 7, 24442, 11, 11600, 8, 198, 220, 220, 220, 611, 1332, 19076, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42684, 796, 10903, 9399, 13, 10100, 9399, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 58, 47895, 60, 796, 42684, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 796, 657, 198, 220, 220, 220, 329, 5797, 287, 995, 13, 49638, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5797, 13, 3672, 6624, 705, 37, 15977, 11339, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1479, 796, 5797, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 796, 5797, 198, 220, 220, 220, 995, 13, 2617, 9012, 7, 14202, 4032, 40715, 41707, 47895, 11537, 628, 220, 220, 220, 611, 2746, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 796, 604, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2746, 6624, 705, 6649, 415, 49916, 6, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 796, 513, 628, 220, 220, 220, 611, 14257, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 4798, 9012, 7, 6667, 2086, 82, 28, 17821, 8, 628, 220, 220, 220, 329, 256, 287, 2837, 7, 744, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2239, 287, 2837, 7, 20214, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 6894, 13, 5219, 8, 6624, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 796, 995, 13, 1136, 9012, 7, 14202, 4032, 40715, 27691, 1069, 806, 341, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 995, 13, 5219, 13, 27830, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 995, 13, 23705, 515, 7, 5219, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 6624, 657, 290, 7108, 6624, 705, 47895, 6, 290, 2897, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5221, 38728, 11339, 284, 787, 1877, 2897, 287, 717, 2239, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8055, 796, 995, 13, 9662, 15090, 5787, 13, 3672, 25, 7561, 15090, 6, 32796, 10354, 5787, 13, 3672, 4032, 19011, 10354, 6, 47895, 41707, 15252, 10354, 827, 6780, 13, 3672, 4032, 17287, 10354, 2897, 30072, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 20676, 391, 7, 448, 2958, 11, 24442, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3232, 284, 3853, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8055, 796, 995, 13, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 20676, 391, 7, 448, 2958, 11, 24442, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1332, 19076, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 83, 6624, 657, 290, 2239, 6624, 352, 8, 393, 357, 83, 6624, 352, 290, 2239, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5726, 287, 8055, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 20676, 391, 12502, 7, 13000, 11, 29325, 11, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 5219, 13, 19738, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1332, 19076, 290, 14257, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 4798, 9012, 7, 6667, 2086, 82, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5797, 287, 995, 13, 49638, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 5797, 13, 3672, 11, 11925, 7, 25781, 13, 27530, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 6894, 13, 5219, 8, 6624, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 796, 995, 13, 1136, 9012, 7, 14202, 4032, 40715, 27691, 1069, 806, 341, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7108, 6624, 705, 47895, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6706, 19458, 1088, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 4299, 1064, 817, 10126, 7, 1416, 39055, 11, 83, 11, 19849, 11639, 79, 32829, 3256, 9150, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9938, 82, 262, 11387, 379, 543, 262, 5797, 481, 2453, 262, 2897, 37811, 198, 220, 220, 220, 611, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 3753, 47895, 287, 428, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 4028, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 981, 18896, 7, 4658, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 796, 2159, 7, 1416, 39055, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 9012, 7, 14202, 4032, 744, 3256, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 9012, 10786, 37, 15977, 11339, 41707, 9150, 3256, 9150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8883, 8890, 1741, 11041, 20448, 7, 6894, 11, 1238, 11, 17, 11, 13000, 11, 19849, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4028, 796, 5726, 58, 1238, 4083, 1136, 8367, 22446, 35312, 10786, 59, 77, 11537, 58, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 58, 1238, 4083, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2033, 796, 493, 7, 4658, 58, 16, 4083, 35312, 10786, 12, 11537, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 7575, 25, 4064, 67, 11, 23158, 4064, 67, 4613, 33085, 4064, 67, 16626, 6, 4064, 357, 83, 11, 9150, 11, 17287, 8, 198, 220, 220, 220, 1303, 3082, 1133, 13427, 11387, 198, 220, 220, 220, 4394, 796, 685, 1120, 60, 198, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 5726, 796, 23884, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 995, 796, 2159, 7, 1416, 39055, 8, 198, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 9012, 7, 14202, 4032, 744, 3256, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2746, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 13, 2617, 9012, 10786, 37, 15977, 11339, 41707, 9150, 3256, 9150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8883, 8890, 1741, 11041, 20448, 7, 6894, 11, 2364, 364, 58, 9630, 4357, 16, 11, 13000, 11, 19849, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4028, 796, 5726, 58, 2364, 364, 58, 9630, 60, 4083, 1136, 8367, 22446, 35312, 10786, 59, 77, 11537, 58, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 58, 2364, 364, 58, 9630, 60, 4083, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 58, 2364, 364, 58, 9630, 11907, 796, 4028, 58, 15, 4083, 35312, 10786, 12, 11537, 58, 16, 4083, 35312, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 58, 2364, 364, 58, 9630, 11907, 6624, 705, 13635, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 257, 2793, 2897, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 866, 796, 4394, 58, 9630, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 5726, 58, 2902, 60, 14512, 705, 13635, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 866, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 796, 357, 2364, 364, 58, 9630, 48688, 2902, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 13, 10134, 62, 2539, 7, 3605, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 58, 3605, 60, 14512, 705, 13635, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4394, 13, 28463, 7, 9630, 11, 3605, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 5726, 58, 2364, 364, 58, 9630, 11907, 287, 37250, 260, 752, 41707, 20358, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 257, 2440, 2897, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 796, 4394, 58, 9630, 10, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 5726, 58, 929, 60, 6624, 705, 13635, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 796, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 796, 357, 2364, 364, 58, 9630, 48688, 929, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 13, 10134, 62, 2539, 7, 3605, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4394, 13, 28463, 7, 9630, 10, 16, 11, 3605, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 198, 220, 220, 220, 1441, 649, 198, 198, 4299, 711, 7, 6894, 11, 24442, 28, 16, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3401, 1958, 38728, 11339, 284, 711, 11827, 3481, 290, 29308, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 5797, 287, 995, 13, 49638, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5797, 13, 3672, 6624, 705, 37, 15977, 11339, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1479, 796, 5797, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 796, 5797, 198, 220, 220, 220, 329, 2033, 287, 2837, 7, 940, 11, 3064, 11, 1238, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 7561, 15090, 6, 19011, 10354, 705, 47895, 41707, 15252, 10354, 827, 6780, 13, 3672, 4032, 17287, 10354, 2033, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 13, 2860, 12502, 7, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 7561, 15090, 6, 19011, 10354, 705, 47895, 41707, 15252, 10354, 1479, 13, 3672, 4032, 17287, 10354, 2033, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 827, 6780, 13, 2860, 12502, 7, 2673, 8, 198, 220, 220, 220, 329, 2223, 287, 8106, 32, 2733, 15090, 6, 19011, 10354, 705, 47895, 6, 5512, 5787, 13, 4658, 930, 827, 6780, 13, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8674, 796, 995, 13, 49638, 58, 2673, 17816, 32796, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8674, 13, 18011, 13, 10134, 62, 2539, 7, 2673, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8674, 13, 2617, 38263, 7, 2673, 11, 15883, 27660, 15090, 6, 361, 10354, 4961, 25166, 7, 5219, 9218, 7, 14202, 4032, 40715, 33809, 6, 47895, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 25, 6407, 11, 220, 220, 220, 220, 1303, 3242, 364, 389, 2742, 287, 262, 2897, 7108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 25, 10352, 92, 4008, 1303, 3242, 364, 389, 5293, 287, 477, 584, 21164, 198, 220, 220, 220, 2746, 796, 995, 13, 1136, 9012, 7, 14202, 4032, 19849, 27691, 27830, 3419, 58, 15, 60, 198, 220, 220, 220, 923, 796, 995, 13, 1136, 9012, 7, 5787, 13, 3672, 4032, 353, 799, 652, 27691, 1069, 806, 341, 3419, 198, 220, 220, 220, 3601, 2746, 11, 9688, 198, 220, 220, 220, 8883, 8890, 1741, 11041, 20448, 7, 6894, 11, 47895, 28, 15, 11, 744, 82, 28, 1314, 11, 24442, 28, 24442, 11, 19849, 28, 19849, 8, 198, 198, 4299, 1064, 47, 4160, 444, 7, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27323, 2848, 329, 4917, 5797, 4394, 290, 13427, 40885, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2482, 796, 17635, 198, 220, 220, 220, 2989, 796, 357, 1270, 11, 1821, 11, 16, 8, 198, 220, 220, 220, 329, 256, 287, 2837, 7, 22046, 17816, 744, 82, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 17816, 19849, 20520, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2292, 287, 2837, 7, 16, 11, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 20274, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 13, 33295, 7, 7266, 20274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 20274, 13, 33295, 7, 13000, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 294, 3447, 796, 1064, 817, 10126, 7, 22046, 17816, 22915, 6, 4357, 83, 11, 22046, 17816, 19849, 6, 4357, 9150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 7575, 4064, 67, 11, 23158, 4064, 67, 4613, 21699, 611, 1875, 4064, 67, 16626, 6, 4064, 357, 83, 11, 9150, 11, 400, 3447, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 13, 33295, 7, 13000, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 7575, 4064, 67, 4613, 21699, 611, 1875, 4064, 67, 16626, 6, 4064, 7, 83, 11, 19796, 817, 10126, 7, 22046, 17816, 22915, 6, 4357, 83, 4008, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 25339, 3141, 12, 1370, 7159, 198, 220, 220, 220, 30751, 796, 45751, 46677, 3419, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 29472, 329, 262, 5072, 2393, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 78, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 22915, 3256, 12286, 11639, 12286, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 1416, 39055, 2393, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1448, 796, 30751, 13, 2860, 62, 49140, 62, 8094, 10786, 12443, 341, 18634, 41707, 15988, 262, 10007, 286, 262, 2727, 8883, 2637, 8, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 16200, 2746, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 76, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 19849, 3256, 6679, 1063, 28, 17816, 79, 32829, 41707, 6649, 415, 49916, 6, 4357, 12286, 11639, 79, 32829, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 1169, 9997, 605, 2746, 329, 262, 983, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 1575, 286, 3344, 284, 38728, 11339, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 69, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 69, 15805, 3256, 4906, 28, 600, 11, 12286, 28, 11024, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15805, 286, 3344, 284, 38728, 11339, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 1575, 286, 3344, 284, 24286, 5411, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 82, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 1416, 455, 3256, 4906, 28, 600, 11, 12286, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15805, 286, 3344, 284, 4472, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 4238, 2033, 286, 7674, 6898, 416, 38728, 11339, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 72, 41707, 438, 36733, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 36733, 3256, 4906, 28, 600, 11, 12286, 28, 1485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 37, 15977, 11339, 43054, 82, 4238, 7674, 5873, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 38728, 11339, 338, 4238, 2422, 45203, 4621, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 79, 41707, 438, 9150, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 9150, 3256, 4906, 28, 600, 11, 12286, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 37, 15977, 11339, 43054, 82, 4238, 45203, 4621, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 1438, 286, 262, 4472, 1499, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 68, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 46970, 3256, 12286, 11639, 50, 2645, 85, 5411, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5376, 286, 262, 4472, 1499, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 1438, 286, 262, 21941, 3814, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 438, 36996, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 36996, 3256, 12286, 11639, 51, 1156, 2879, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5376, 286, 262, 3814, 739, 11047, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 5415, 1271, 286, 9196, 284, 711, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 81, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 744, 82, 3256, 4906, 28, 600, 11, 12286, 28, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 40541, 1271, 286, 9196, 284, 711, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 38728, 11339, 338, 4238, 6553, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 438, 69, 15977, 11339, 12, 23528, 2840, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 701, 305, 2840, 3256, 4906, 28, 600, 11, 12286, 28, 19, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 17618, 286, 38728, 11339, 6553, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 24286, 5411, 338, 4238, 6553, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 438, 46970, 12, 23528, 2840, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 20661, 2840, 3256, 4906, 28, 600, 11, 12286, 28, 18, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 17618, 286, 4472, 6553, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 15947, 1771, 284, 7716, 4981, 329, 5313, 3859, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 86, 41707, 438, 12384, 3256, 2673, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 12384, 3256, 12286, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 8612, 378, 5313, 2196, 611, 900, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 628, 220, 220, 220, 1448, 796, 30751, 13, 2860, 62, 49140, 62, 8094, 10786, 2348, 42289, 18634, 41707, 15988, 262, 16113, 284, 4174, 284, 262, 6554, 2637, 8, 198, 220, 220, 220, 1303, 32233, 4578, 326, 15947, 1771, 284, 779, 1988, 24415, 284, 2251, 38728, 11339, 338, 2450, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 66, 41707, 438, 5589, 3902, 3256, 2673, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 5589, 3902, 3256, 12286, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 1904, 1988, 24415, 329, 38728, 11339, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 15947, 1771, 284, 779, 44141, 43, 23340, 286, 38728, 11339, 338, 2450, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 438, 32232, 3256, 2673, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 32232, 3256, 12286, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 1904, 44141, 43, 23340, 290, 15830, 329, 38728, 11339, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 628, 220, 220, 220, 1448, 796, 30751, 13, 2860, 62, 49140, 62, 8094, 10786, 8890, 1741, 18634, 41707, 15988, 262, 18640, 286, 262, 2727, 8883, 2637, 8, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 1241, 286, 18681, 618, 2491, 262, 18640, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 67, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 24442, 3256, 4906, 28, 600, 11, 12286, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5715, 286, 7468, 3703, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 4238, 2897, 326, 38728, 11339, 481, 787, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 64, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 17287, 3256, 4906, 28, 600, 11, 12286, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 37, 15977, 11339, 43054, 82, 717, 2897, 2033, 11537, 198, 220, 220, 220, 1303, 32233, 4578, 326, 5621, 262, 1271, 286, 640, 4831, 284, 29308, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 10786, 12, 83, 41707, 438, 2435, 3256, 2673, 11639, 8095, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 2435, 3256, 4906, 28, 600, 11, 12286, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 17618, 286, 640, 4831, 284, 29308, 685, 12286, 25, 4064, 7, 12286, 8, 82, 60, 11537, 198, 220, 220, 220, 1448, 796, 30751, 13, 2860, 62, 49140, 62, 8094, 10786, 12443, 341, 18634, 41707, 15988, 262, 10007, 286, 262, 2727, 8883, 2637, 8, 198, 220, 220, 220, 26498, 796, 410, 945, 7, 48610, 13, 29572, 62, 22046, 28955, 628, 220, 220, 220, 995, 796, 8883, 12443, 341, 11041, 20448, 7, 22046, 17816, 46970, 6, 4357, 9806, 49, 3733, 28, 22046, 17816, 744, 82, 6, 4357, 19849, 28, 22046, 17816, 19849, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3992, 28, 22046, 17816, 12384, 6, 12962, 628, 220, 220, 220, 1303, 20768, 1096, 1181, 3815, 1912, 319, 3141, 12, 1370, 7159, 198, 220, 220, 220, 995, 13, 49638, 17816, 37, 15977, 11339, 6, 4083, 2617, 9012, 10786, 23528, 2840, 3256, 22046, 17816, 701, 305, 2840, 6, 12962, 198, 220, 220, 220, 995, 13, 49638, 17816, 37, 15977, 11339, 6, 4083, 2617, 9012, 10786, 353, 799, 652, 3256, 22046, 17816, 36733, 6, 12962, 198, 220, 220, 220, 995, 13, 49638, 17816, 37, 15977, 11339, 6, 4083, 2617, 9012, 10786, 9150, 3256, 22046, 17816, 9150, 6, 12962, 198, 220, 220, 220, 995, 13, 49638, 17816, 37, 15977, 11339, 6, 4083, 2617, 9012, 10786, 15805, 3256, 22046, 17816, 69, 15805, 6, 12962, 198, 220, 220, 220, 995, 13, 49638, 58, 22046, 17816, 46970, 20520, 4083, 2617, 9012, 10786, 23528, 2840, 3256, 22046, 17816, 20661, 2840, 6, 12962, 198, 220, 220, 220, 995, 13, 49638, 58, 22046, 17816, 46970, 20520, 4083, 2617, 9012, 10786, 15805, 3256, 22046, 17816, 1416, 455, 6, 12962, 628, 220, 220, 220, 611, 26498, 17816, 5589, 3902, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 17632, 10603, 7, 6894, 8, 198, 220, 220, 220, 611, 26498, 17816, 32232, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 4197, 10603, 7, 6894, 8, 628, 220, 220, 220, 1303, 13610, 8398, 2393, 198, 220, 220, 220, 4566, 796, 19978, 16934, 46677, 3419, 198, 220, 220, 220, 1303, 18291, 1958, 983, 3689, 329, 3992, 7071, 198, 220, 220, 220, 4566, 13, 2860, 62, 5458, 10786, 8777, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 8777, 41707, 744, 82, 41707, 4, 67, 6, 4064, 357, 22046, 17816, 744, 82, 20520, 4008, 198, 220, 220, 220, 4566, 13, 2617, 10786, 8777, 41707, 7220, 41707, 37, 15977, 11339, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 8777, 41707, 25781, 3256, 22046, 17816, 46970, 6, 12962, 198, 220, 220, 220, 4566, 13, 2617, 10786, 8777, 41707, 36996, 3256, 22046, 17816, 36996, 6, 12962, 198, 220, 220, 220, 611, 26498, 17816, 19849, 20520, 6624, 705, 79, 32829, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5838, 318, 11902, 739, 19675, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 2617, 10786, 8777, 41707, 38471, 41707, 25968, 11537, 198, 220, 220, 220, 1288, 361, 26498, 17816, 19849, 20520, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5838, 318, 13677, 739, 3454, 415, 49916, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 2617, 10786, 8777, 41707, 38471, 41707, 22249, 2870, 11537, 198, 220, 220, 220, 1303, 18291, 1958, 543, 1181, 3033, 389, 7424, 287, 3992, 7071, 198, 220, 220, 220, 4566, 13, 2860, 62, 5458, 10786, 53, 12843, 11537, 198, 220, 220, 220, 3033, 796, 37250, 353, 799, 652, 41707, 23528, 2840, 20520, 198, 220, 220, 220, 611, 26498, 17816, 19849, 20520, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 13, 33295, 10786, 9150, 11537, 198, 220, 220, 220, 329, 3895, 287, 3033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 2617, 10786, 53, 12843, 3256, 30053, 4032, 8505, 11537, 198, 220, 220, 220, 1303, 18291, 1958, 16969, 286, 4028, 329, 3992, 7071, 198, 220, 220, 220, 4566, 13, 2860, 62, 5458, 10786, 32, 2733, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 32, 2733, 41707, 47895, 41707, 24331, 577, 15775, 810, 4064, 82, 3011, 1279, 2673, 25, 17287, 29, 36917, 286, 2472, 21941, 7674, 6, 4064, 357, 22046, 17816, 46970, 20520, 4008, 198, 220, 220, 220, 4566, 13, 2617, 10786, 32, 2733, 41707, 20358, 41707, 27732, 4064, 82, 6, 4064, 357, 22046, 17816, 46970, 20520, 4008, 198, 220, 220, 220, 4566, 13, 2617, 10786, 32, 2733, 41707, 13635, 2897, 41707, 38855, 2897, 286, 1279, 37, 15977, 11339, 25, 2364, 1068, 29, 16626, 286, 2472, 21941, 7674, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 32, 2733, 41707, 260, 752, 2897, 41707, 3041, 752, 2897, 286, 1279, 37, 15977, 11339, 25, 2364, 1068, 29, 16626, 286, 2472, 21941, 7674, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 32, 2733, 41707, 43043, 41707, 29453, 284, 1306, 2835, 286, 24462, 1231, 9274, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 32, 2733, 41707, 4, 82, 2897, 6, 4064, 357, 22046, 17816, 46970, 20520, 828, 6, 47895, 1279, 2673, 25, 17287, 29, 16626, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 32, 2733, 41707, 4, 82, 2453, 2897, 6, 4064, 357, 22046, 17816, 46970, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38855, 2897, 286, 1279, 4, 82, 25, 2364, 1068, 29, 36917, 286, 2472, 21941, 7674, 6, 4064, 357, 22046, 17816, 46970, 20520, 4008, 198, 220, 220, 220, 4566, 13, 2617, 10786, 32, 2733, 41707, 4, 82, 4968, 2897, 6, 4064, 357, 22046, 17816, 46970, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3041, 752, 2897, 286, 1279, 4, 82, 25, 2364, 1068, 29, 36917, 286, 2472, 21941, 7674, 6, 4064, 357, 22046, 17816, 46970, 20520, 4008, 198, 220, 220, 220, 1303, 18291, 1958, 644, 2458, 389, 9066, 198, 220, 220, 220, 4566, 13, 2860, 62, 5458, 10786, 19400, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 19400, 41707, 23528, 2840, 41707, 8505, 11537, 198, 220, 220, 220, 611, 26498, 17816, 19849, 20520, 6624, 705, 6649, 415, 49916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 2617, 10786, 19400, 41707, 9150, 41707, 8505, 11537, 198, 220, 220, 220, 1303, 18291, 1958, 6117, 198, 220, 220, 220, 4566, 13, 2860, 62, 5458, 10786, 31815, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 31815, 41707, 11793, 3304, 41707, 4023, 1378, 2503, 13, 66, 16421, 23912, 13, 785, 14, 565, 11793, 3304, 14, 9630, 13, 10121, 30, 30255, 28, 26007, 2231, 5, 17204, 28, 268, 11537, 198, 220, 220, 220, 4566, 13, 2617, 10786, 31815, 41707, 1416, 268, 13010, 41707, 3459, 2670, 11, 12952, 23, 11, 1828, 2791, 11, 2816, 2548, 11537, 198, 220, 220, 220, 277, 796, 1280, 10786, 4, 82, 13, 37581, 6, 4064, 357, 22046, 17816, 22915, 20520, 828, 6, 86, 11537, 198, 220, 220, 220, 4566, 13, 13564, 7, 69, 8, 198, 220, 220, 220, 277, 13, 19836, 3419, 628, 220, 220, 220, 1303, 12793, 8883, 284, 25388, 23735, 2393, 198, 220, 220, 220, 995, 13, 21928, 7, 22046, 17816, 22915, 6, 12962, 628, 220, 220, 220, 1303, 6208, 7448, 8883, 198, 220, 220, 220, 995, 796, 2159, 7, 22046, 17816, 22915, 6, 12962, 198, 220, 220, 220, 8883, 8890, 1741, 11041, 20448, 7, 6894, 11, 22046, 17816, 17287, 6, 4357, 22046, 17816, 2435, 6, 4357, 22046, 17816, 24442, 6, 4357, 22046, 17816, 19849, 6, 12962, 198, 2, 220, 220, 220, 1064, 47, 4160, 444, 7, 22046, 8, 198, 2, 220, 220, 220, 995, 13, 4798, 9012, 7, 6894, 13, 49638, 58, 22046, 17816, 46970, 20520, 4083, 1136, 12193, 2086, 7, 6894, 13, 5219, 13, 27830, 3419, 58, 15, 60, 4032, 9562, 6, 4008, 198 ]
2.247907
17,442
""" Author: mcncm, 2019 Standard output messages for displaying hierarchically-organized data such as recursively-called status lines. """ import os import sys import datetime as dt from functools import wraps import getpass import inspect from io import StringIO import logging import platform import textwrap import toplevel.conf as conf from dysart.messages.errors import DysartError DEFAULT_COL = 48 TAB = ' ' * 4 class Bcolor: """ Enum for colored printing """ HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' ITALIC = '\033[3m' UNDERLINE = '\033[4m' def cstr_ansi(s: str, status: str = 'normal') -> str: """ Wrap a string with ANSI color annotations TODO there's a package for this; you can rip this out. """ if platform.system() == 'Windows': return s # ANSI colors unsupported on Windows if status == 'ok': return Bcolor.OKGREEN + s + Bcolor.ENDC elif status == 'fail': return Bcolor.FAIL + s + Bcolor.ENDC elif status == 'warn': return Bcolor.WARNING + s + Bcolor.ENDC elif status == 'bold': return Bcolor.BOLD + s + Bcolor.ENDC elif status == 'italic': return Bcolor.ITALIC + s + Bcolor.ENDC elif status == 'underline': return Bcolor.UNDERLINE + s + Bcolor.ENDC else: return s def cstr_slack(s: str, status: str = 'normal') -> str: """ Wrap a string with ANSI color annotations TODO there's a package for this; you can rip this out. """ if status == 'bold': return '*' + s + '*' elif status == 'italic': return '_' + s + '_' elif status == 'strikethrough': return '~' + s + '~' elif status == 'underline': return Bcolor.UNDERLINE + s + Bcolor.ENDC elif status == 'code': return '`' + s + '`' elif status == 'codeblock': return '```' + s + '```' else: return s # This module-scoped function is used to decorate text with colors, bold and # italics, and so on. By default it is set to a function using ANSI escape # codes. Context managers within this module may contextually replace it with # a different function. # # I'm not convinced that this is the best approach to this problem. If you # happen to read this and have other ideas, let's talk. cstr = cstr_ansi class FormatContext: """ Todo: make this 100x less hacky """ cstrs = { 'slack': cstr_slack } def cprint(s: str, status: str = 'normal', **kwargs): """ Print a string with ANSI color annotations """ print(cstr(s, status), **kwargs) def msg1(message: str, level=0, end="\n"): """ Print a formatted message to stdout. Accepts an optional level parameter, which is useful when you might wish to log a stack trace. """ prompt = '=> ' indent = ' ' output = level * indent + prompt + message print(output, end=end) def msg2(message: str, level=0, end="\n"): """ Print a formatted message to stdout. Accepts an optional level parameter, which is useful when you might wish to log a stack trace. """ prompt = '-> ' indent = ' ' output = level * indent + prompt + message print(output, end=end) def write_log(message: str): """ Write a message to a log file with date and time information. """ logging.info(message) def logged(stdout=True, message='log event', **kwargs): """ Decorator for handling log messages. By default, writes to a default log file in the debug_data database directory, and prints output to stdout. Passes level parameter in decorated function to message functions to """ # set terminator for log message term = "\n" if 'end' in kwargs: term = kwargs['end'] return decorator def configure_logging(logfile=''): """ Set up the logging module to write to the correct logfile, etc. """ if logfile == '' or logfile is None: # Set the log output to the null file. This should actually be cross- # platform, i.e. equal to '/dev/null' on unix systems and 'NULL' on # windows. logfile = os.devnull # TODO: I should really take advantage of some of the more advanced # features of the logging module. user = getpass.getuser() log_format = '%(asctime)s | ' + user + " | %(message)s" date_format = '%m/%d/%Y %I:%M:%S' logging.basicConfig(format=log_format, filename=logfile, datefmt=date_format, level='INFO') def tree(obj, get_deps: callable, pipe='│', dash='─', tee='├', elbow='└', indent=' ' * 3, prefix='') -> str: """Takes an object and a closure that is assumed to return an iterable of dependent objects of the same type; produces an ascii tree diagram. """ s = str(obj) deps = list(get_deps(obj)) # special case for empty dependents: no pipes if not deps: ('\n' + prefix).join(s.split('\n')) return s # otherwise, dependents are nonempty: pipe to them s = (prefix + '\n' + pipe).join(s.split('\n')) s += '\n' for i, dep in enumerate(deps): if i == len(deps) - 1: leader = elbow + dash * len(indent) else: leader = tee + dash * len(indent) s += prefix + leader new_prefix = pipe + indent if i != len(deps) - 1 else ' ' + indent subtree = tree(dep, get_deps, prefix=new_prefix) s += ('\n' + new_prefix).join(subtree.split('\n')) return s def pprint_func(name: str, doc: str) -> None: """ TODO real docstring for pprint_property Takes a name and docstring of a function and formats and pretty-prints them. """ if doc is None: return # Number of columns in the formatted docscring status_col = int(conf.config.get('STATUS_COL') or DEFAULT_COL) # Prepare the docstring: fix up whitespace for display doc = ' '.join(doc.strip().split()) # Prepare the docstring: wrap it and indent it doc = '\t' + '\n\t'.join(textwrap.wrap(doc, status_col)) # Finally, print the result print(cstr(name, status='bold') + '\n' + cstr(doc, status='italic') + '\n') class StatusMessage: """ A simple context manager for printing informative status messages about ongoing administration tasks. TODO: document parameters, etc. """ def __enter__(self): """Prints a message describing the action taken and redirects io""" cprint(self.infostr.ljust(self.num_cols).capitalize(), status='normal', end='', flush=True) if self.__capture_io: sys.stdout = self.stdout_buff = StringIO() sys.stderr = self.stderr_buff = StringIO() def __exit__(self, exc_type, exc_value, traceback): """Prints the terminating status string and restores io""" if exc_type is None: cprint(self.donestr, status='ok', file=self.__old_stdout) else: status = 'fail' failstr = self.failstr if isinstance(exc_value, DysartError): status = exc_value.status failstr = exc_value.message cprint(failstr, status, file=self.__old_stdout) if 'VERBOSE_MESSAGES' in conf.config: print(exc_value) if self.__capture_io: sys.stdout, sys.stderr = self.__old_stdout, self.__old_stderr sys.stdout.write(self.stdout_buff.getvalue()) sys.stderr.write(self.stderr_buff.getvalue()) return True
[ 37811, 198, 13838, 25, 36650, 10782, 76, 11, 13130, 198, 23615, 5072, 6218, 329, 19407, 28398, 1146, 12, 30280, 1366, 884, 355, 198, 8344, 1834, 2280, 12, 7174, 3722, 3951, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 4818, 8079, 355, 288, 83, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 11748, 651, 6603, 198, 11748, 10104, 198, 6738, 33245, 1330, 10903, 9399, 198, 11748, 18931, 198, 11748, 3859, 198, 11748, 2420, 37150, 198, 198, 11748, 284, 1154, 626, 13, 10414, 355, 1013, 198, 6738, 13147, 433, 13, 37348, 1095, 13, 48277, 1330, 46876, 433, 12331, 198, 198, 7206, 38865, 62, 25154, 796, 4764, 198, 5603, 33, 796, 705, 705, 1635, 604, 628, 198, 4871, 347, 8043, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2039, 388, 329, 16396, 13570, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 39837, 1137, 796, 705, 59, 44427, 58, 3865, 76, 6, 198, 220, 220, 220, 7477, 9148, 8924, 796, 705, 59, 44427, 58, 5824, 76, 6, 198, 220, 220, 220, 7477, 43016, 796, 705, 59, 44427, 58, 5892, 76, 6, 198, 220, 220, 220, 39410, 796, 705, 59, 44427, 58, 6052, 76, 6, 198, 220, 220, 220, 9677, 4146, 796, 705, 59, 44427, 58, 6420, 76, 6, 198, 220, 220, 220, 23578, 34, 796, 705, 59, 44427, 58, 15, 76, 6, 198, 220, 220, 220, 347, 15173, 796, 705, 59, 44427, 58, 16, 76, 6, 198, 220, 220, 220, 7283, 1847, 2149, 796, 705, 59, 44427, 58, 18, 76, 6, 198, 220, 220, 220, 35219, 24027, 796, 705, 59, 44427, 58, 19, 76, 6, 628, 198, 4299, 269, 2536, 62, 504, 72, 7, 82, 25, 965, 11, 3722, 25, 965, 796, 705, 11265, 11537, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 41028, 257, 4731, 351, 3537, 11584, 3124, 37647, 198, 220, 220, 220, 16926, 46, 612, 338, 257, 5301, 329, 428, 26, 345, 460, 18344, 428, 503, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 3859, 13, 10057, 3419, 6624, 705, 11209, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 264, 220, 1303, 3537, 11584, 7577, 24222, 319, 3964, 628, 220, 220, 220, 611, 3722, 6624, 705, 482, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 347, 8043, 13, 11380, 43016, 1343, 264, 1343, 347, 8043, 13, 1677, 9697, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 32165, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 347, 8043, 13, 7708, 4146, 1343, 264, 1343, 347, 8043, 13, 1677, 9697, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 40539, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 347, 8043, 13, 31502, 1343, 264, 1343, 347, 8043, 13, 1677, 9697, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 36575, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 347, 8043, 13, 33, 15173, 1343, 264, 1343, 347, 8043, 13, 1677, 9697, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 1287, 291, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 347, 8043, 13, 40579, 2149, 1343, 264, 1343, 347, 8043, 13, 1677, 9697, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 4625, 1370, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 347, 8043, 13, 4944, 14418, 24027, 1343, 264, 1343, 347, 8043, 13, 1677, 9697, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 264, 628, 198, 4299, 269, 2536, 62, 6649, 441, 7, 82, 25, 965, 11, 3722, 25, 965, 796, 705, 11265, 11537, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 41028, 257, 4731, 351, 3537, 11584, 3124, 37647, 198, 220, 220, 220, 16926, 46, 612, 338, 257, 5301, 329, 428, 26, 345, 460, 18344, 428, 503, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 3722, 6624, 705, 36575, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 9, 6, 1343, 264, 1343, 705, 9, 6, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 1287, 291, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 62, 6, 1343, 264, 1343, 705, 62, 6, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 301, 12602, 2788, 740, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 93, 6, 1343, 264, 1343, 705, 93, 6, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 4625, 1370, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 347, 8043, 13, 4944, 14418, 24027, 1343, 264, 1343, 347, 8043, 13, 1677, 9697, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 8189, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 63, 6, 1343, 264, 1343, 705, 63, 6, 198, 220, 220, 220, 1288, 361, 3722, 6624, 705, 8189, 9967, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 15506, 63, 6, 1343, 264, 1343, 705, 15506, 63, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 264, 198, 198, 2, 770, 8265, 12, 1416, 19458, 2163, 318, 973, 284, 11705, 378, 2420, 351, 7577, 11, 10758, 290, 198, 2, 46127, 873, 11, 290, 523, 319, 13, 2750, 4277, 340, 318, 900, 284, 257, 2163, 1262, 3537, 11584, 6654, 198, 2, 12416, 13, 30532, 11663, 1626, 428, 8265, 743, 4732, 935, 6330, 340, 351, 198, 2, 257, 1180, 2163, 13, 198, 2, 198, 2, 314, 1101, 407, 9431, 326, 428, 318, 262, 1266, 3164, 284, 428, 1917, 13, 1002, 345, 198, 2, 1645, 284, 1100, 428, 290, 423, 584, 4213, 11, 1309, 338, 1561, 13, 198, 66, 2536, 796, 269, 2536, 62, 504, 72, 198, 198, 4871, 18980, 21947, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 309, 24313, 25, 787, 428, 1802, 87, 1342, 8156, 88, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 269, 2536, 82, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6649, 441, 10354, 269, 2536, 62, 6649, 441, 198, 220, 220, 220, 1782, 628, 198, 4299, 269, 4798, 7, 82, 25, 965, 11, 3722, 25, 965, 796, 705, 11265, 3256, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 257, 4731, 351, 3537, 11584, 3124, 37647, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7, 66, 2536, 7, 82, 11, 3722, 828, 12429, 46265, 22046, 8, 628, 198, 4299, 31456, 16, 7, 20500, 25, 965, 11, 1241, 28, 15, 11, 886, 2625, 59, 77, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 257, 39559, 3275, 284, 14367, 448, 13, 198, 220, 220, 220, 21699, 82, 281, 11902, 1241, 11507, 11, 543, 318, 4465, 618, 345, 1244, 4601, 198, 220, 220, 220, 284, 2604, 257, 8931, 12854, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6152, 796, 705, 14804, 705, 198, 220, 220, 220, 33793, 796, 705, 220, 220, 705, 198, 220, 220, 220, 5072, 796, 1241, 1635, 33793, 1343, 6152, 1343, 3275, 198, 220, 220, 220, 3601, 7, 22915, 11, 886, 28, 437, 8, 628, 198, 4299, 31456, 17, 7, 20500, 25, 965, 11, 1241, 28, 15, 11, 886, 2625, 59, 77, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 257, 39559, 3275, 284, 14367, 448, 13, 198, 220, 220, 220, 21699, 82, 281, 11902, 1241, 11507, 11, 543, 318, 4465, 618, 345, 1244, 4601, 198, 220, 220, 220, 284, 2604, 257, 8931, 12854, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6152, 796, 705, 3784, 705, 198, 220, 220, 220, 33793, 796, 705, 220, 220, 705, 198, 220, 220, 220, 5072, 796, 1241, 1635, 33793, 1343, 6152, 1343, 3275, 198, 220, 220, 220, 3601, 7, 22915, 11, 886, 28, 437, 8, 628, 198, 4299, 3551, 62, 6404, 7, 20500, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19430, 257, 3275, 284, 257, 2604, 2393, 351, 3128, 290, 640, 1321, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18931, 13, 10951, 7, 20500, 8, 628, 198, 4299, 18832, 7, 19282, 448, 28, 17821, 11, 3275, 11639, 6404, 1785, 3256, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4280, 273, 1352, 329, 9041, 2604, 6218, 13, 2750, 4277, 11, 6797, 284, 257, 4277, 2604, 198, 220, 220, 220, 2393, 287, 262, 14257, 62, 7890, 6831, 8619, 11, 290, 20842, 5072, 284, 14367, 448, 13, 198, 220, 220, 220, 6251, 274, 1241, 11507, 287, 24789, 2163, 284, 3275, 5499, 284, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 900, 5651, 1352, 329, 2604, 3275, 198, 220, 220, 220, 3381, 796, 37082, 77, 1, 198, 220, 220, 220, 611, 705, 437, 6, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3381, 796, 479, 86, 22046, 17816, 437, 20520, 198, 220, 220, 220, 1441, 11705, 1352, 628, 198, 4299, 17425, 62, 6404, 2667, 7, 6404, 7753, 28, 7061, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5345, 510, 262, 18931, 8265, 284, 3551, 284, 262, 3376, 2604, 7753, 11, 3503, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 2604, 7753, 6624, 10148, 393, 2604, 7753, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 262, 2604, 5072, 284, 262, 9242, 2393, 13, 770, 815, 1682, 307, 3272, 12, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3859, 11, 1312, 13, 68, 13, 4961, 284, 31051, 7959, 14, 8423, 6, 319, 555, 844, 3341, 290, 705, 33991, 6, 319, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9168, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 7753, 796, 28686, 13, 7959, 8423, 628, 220, 220, 220, 1303, 16926, 46, 25, 314, 815, 1107, 1011, 4621, 286, 617, 286, 262, 517, 6190, 198, 220, 220, 220, 1303, 3033, 286, 262, 18931, 8265, 13, 198, 220, 220, 220, 2836, 796, 651, 6603, 13, 1136, 7220, 3419, 198, 220, 220, 220, 2604, 62, 18982, 796, 705, 4, 7, 292, 310, 524, 8, 82, 930, 705, 1343, 2836, 1343, 366, 930, 4064, 7, 20500, 8, 82, 1, 198, 220, 220, 220, 3128, 62, 18982, 796, 705, 4, 76, 14, 4, 67, 14, 4, 56, 4064, 40, 25, 4, 44, 25, 4, 50, 6, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 18982, 28, 6404, 62, 18982, 11, 29472, 28, 6404, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 69, 16762, 28, 4475, 62, 18982, 11, 1241, 11639, 10778, 11537, 628, 198, 4299, 5509, 7, 26801, 11, 651, 62, 10378, 82, 25, 869, 540, 11, 12656, 11639, 6552, 224, 3256, 14470, 11639, 7280, 3256, 30479, 11639, 6552, 250, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 22662, 11639, 6552, 242, 3256, 33793, 11639, 705, 1635, 513, 11, 21231, 28, 7061, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 51, 1124, 281, 2134, 290, 257, 16512, 326, 318, 9672, 284, 1441, 281, 11629, 540, 286, 198, 220, 220, 220, 10795, 5563, 286, 262, 976, 2099, 26, 11073, 281, 355, 979, 72, 5509, 16362, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 796, 965, 7, 26801, 8, 198, 220, 220, 220, 390, 862, 796, 1351, 7, 1136, 62, 10378, 82, 7, 26801, 4008, 628, 220, 220, 220, 1303, 2041, 1339, 329, 6565, 4745, 658, 25, 645, 19860, 198, 220, 220, 220, 611, 407, 390, 862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 59, 77, 6, 1343, 21231, 737, 22179, 7, 82, 13, 35312, 10786, 59, 77, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 264, 628, 220, 220, 220, 1303, 4306, 11, 4745, 658, 389, 1729, 28920, 25, 12656, 284, 606, 198, 220, 220, 220, 264, 796, 357, 40290, 1343, 705, 59, 77, 6, 1343, 12656, 737, 22179, 7, 82, 13, 35312, 10786, 59, 77, 6, 4008, 198, 220, 220, 220, 264, 15853, 705, 59, 77, 6, 628, 220, 220, 220, 329, 1312, 11, 1207, 287, 27056, 378, 7, 10378, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 18896, 7, 10378, 82, 8, 532, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3554, 796, 22662, 1343, 14470, 1635, 18896, 7, 521, 298, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3554, 796, 30479, 1343, 14470, 1635, 18896, 7, 521, 298, 8, 628, 220, 220, 220, 220, 220, 220, 220, 264, 15853, 21231, 1343, 3554, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 40290, 796, 12656, 1343, 33793, 611, 1312, 14512, 18896, 7, 10378, 82, 8, 532, 352, 2073, 705, 705, 1343, 33793, 198, 220, 220, 220, 220, 220, 220, 220, 13284, 631, 796, 5509, 7, 10378, 11, 651, 62, 10378, 82, 11, 21231, 28, 3605, 62, 40290, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 15853, 19203, 59, 77, 6, 1343, 649, 62, 40290, 737, 22179, 7, 7266, 21048, 13, 35312, 10786, 59, 77, 6, 4008, 198, 220, 220, 220, 1441, 264, 628, 198, 4299, 279, 4798, 62, 20786, 7, 3672, 25, 965, 11, 2205, 25, 965, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16926, 46, 1103, 2205, 8841, 329, 279, 4798, 62, 26745, 198, 220, 220, 220, 33687, 257, 1438, 290, 2205, 8841, 286, 257, 2163, 290, 17519, 290, 2495, 12, 17190, 606, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2205, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 1303, 7913, 286, 15180, 287, 262, 39559, 2205, 1416, 1806, 198, 220, 220, 220, 3722, 62, 4033, 796, 493, 7, 10414, 13, 11250, 13, 1136, 10786, 35744, 2937, 62, 25154, 11537, 393, 5550, 38865, 62, 25154, 8, 198, 220, 220, 220, 1303, 43426, 262, 2205, 8841, 25, 4259, 510, 13216, 10223, 329, 3359, 198, 220, 220, 220, 2205, 796, 705, 45302, 22179, 7, 15390, 13, 36311, 22446, 35312, 28955, 198, 220, 220, 220, 1303, 43426, 262, 2205, 8841, 25, 14441, 340, 290, 33793, 340, 198, 220, 220, 220, 2205, 796, 705, 59, 83, 6, 1343, 705, 59, 77, 59, 83, 4458, 22179, 7, 5239, 37150, 13, 37150, 7, 15390, 11, 3722, 62, 4033, 4008, 198, 220, 220, 220, 1303, 9461, 11, 3601, 262, 1255, 198, 220, 220, 220, 3601, 7, 66, 2536, 7, 3672, 11, 3722, 11639, 36575, 11537, 1343, 705, 59, 77, 6, 1343, 269, 2536, 7, 15390, 11, 3722, 11639, 1287, 291, 11537, 1343, 705, 59, 77, 11537, 628, 198, 4871, 12678, 12837, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2829, 4732, 4706, 329, 13570, 30304, 3722, 6218, 546, 198, 220, 220, 220, 7044, 3662, 8861, 13, 628, 220, 220, 220, 16926, 46, 25, 3188, 10007, 11, 3503, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 9255, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18557, 82, 257, 3275, 12059, 262, 2223, 2077, 290, 18941, 82, 33245, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 269, 4798, 7, 944, 13, 10745, 455, 81, 13, 75, 3137, 7, 944, 13, 22510, 62, 4033, 82, 737, 27544, 1096, 22784, 3722, 11639, 11265, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 11639, 3256, 24773, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 834, 27144, 495, 62, 952, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 796, 2116, 13, 19282, 448, 62, 36873, 796, 10903, 9399, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 301, 1082, 81, 796, 2116, 13, 301, 1082, 81, 62, 36873, 796, 10903, 9399, 3419, 628, 220, 220, 220, 825, 11593, 37023, 834, 7, 944, 11, 2859, 62, 4906, 11, 2859, 62, 8367, 11, 12854, 1891, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18557, 82, 262, 47985, 3722, 4731, 290, 45815, 33245, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2859, 62, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 4798, 7, 944, 13, 9099, 395, 81, 11, 3722, 11639, 482, 3256, 2393, 28, 944, 13, 834, 727, 62, 19282, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 705, 32165, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2038, 2536, 796, 2116, 13, 32165, 2536, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 41194, 62, 8367, 11, 46876, 433, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 2859, 62, 8367, 13, 13376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2038, 2536, 796, 2859, 62, 8367, 13, 20500, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 4798, 7, 32165, 2536, 11, 3722, 11, 2393, 28, 944, 13, 834, 727, 62, 19282, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 5959, 33, 14058, 62, 44, 1546, 4090, 48075, 6, 287, 1013, 13, 11250, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 41194, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 834, 27144, 495, 62, 952, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 11, 25064, 13, 301, 1082, 81, 796, 2116, 13, 834, 727, 62, 19282, 448, 11, 2116, 13, 834, 727, 62, 301, 1082, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 944, 13, 19282, 448, 62, 36873, 13, 1136, 8367, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 301, 1082, 81, 13, 13564, 7, 944, 13, 301, 1082, 81, 62, 36873, 13, 1136, 8367, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628 ]
2.477655
3,088
""" Make sure that the correct versions of gobject introspection dependencies are installed. """ import os import logging from gi import require_version from .locale import _ require_version('Gio', '2.0') require_version('GLib', '2.0') _in_X = bool(os.environ.get('DISPLAY')) _has_Gtk = (3 if check_version('Gtk', '3.0') else 2 if check_version('Gtk', '2.0') else 0) _has_Notify = check_version('Notify', '0.7') _has_AppIndicator3 = check_version('AppIndicator3', '0.1') def require_Gtk(min_version=2): """ Make sure Gtk is properly initialized. :raises RuntimeError: if Gtk can not be properly initialized """ if not _in_X: raise RuntimeError('Not in X session.') if _has_Gtk < min_version: raise RuntimeError('Module gi.repository.Gtk not available!') if _has_Gtk == 2: logging.getLogger(__name__).warn( _("Missing runtime dependency GTK 3. Falling back to GTK 2 " "for password prompt")) from gi.repository import Gtk # if we attempt to create any GUI elements with no X server running the # program will just crash, so let's make a way to catch this case: if not Gtk.init_check(None)[0]: raise RuntimeError(_("X server not connected!")) return Gtk
[ 37811, 198, 12050, 1654, 326, 262, 3376, 6300, 286, 48484, 752, 18951, 31308, 20086, 198, 533, 6589, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 18931, 198, 198, 6738, 308, 72, 1330, 2421, 62, 9641, 198, 198, 6738, 764, 17946, 1000, 1330, 4808, 198, 198, 46115, 62, 9641, 10786, 38, 952, 3256, 705, 17, 13, 15, 11537, 198, 46115, 62, 9641, 10786, 8763, 571, 3256, 705, 17, 13, 15, 11537, 628, 628, 198, 62, 259, 62, 55, 796, 20512, 7, 418, 13, 268, 2268, 13, 1136, 10786, 26288, 31519, 6, 4008, 198, 198, 62, 10134, 62, 38, 30488, 796, 357, 18, 611, 2198, 62, 9641, 10786, 38, 30488, 3256, 705, 18, 13, 15, 11537, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 611, 2198, 62, 9641, 10786, 38, 30488, 3256, 705, 17, 13, 15, 11537, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 8, 198, 198, 62, 10134, 62, 3673, 1958, 796, 2198, 62, 9641, 10786, 3673, 1958, 3256, 705, 15, 13, 22, 11537, 198, 62, 10134, 62, 4677, 5497, 26407, 18, 796, 2198, 62, 9641, 10786, 4677, 5497, 26407, 18, 3256, 705, 15, 13, 16, 11537, 628, 198, 4299, 2421, 62, 38, 30488, 7, 1084, 62, 9641, 28, 17, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 1654, 402, 30488, 318, 6105, 23224, 13, 628, 220, 220, 220, 1058, 430, 2696, 43160, 12331, 25, 611, 402, 30488, 460, 407, 307, 6105, 23224, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 4808, 259, 62, 55, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 3673, 287, 1395, 6246, 2637, 8, 198, 220, 220, 220, 611, 4808, 10134, 62, 38, 30488, 1279, 949, 62, 9641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 26796, 308, 72, 13, 260, 1930, 37765, 13, 38, 30488, 407, 1695, 0, 11537, 198, 220, 220, 220, 611, 4808, 10134, 62, 38, 30488, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 737, 40539, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7203, 43730, 19124, 20203, 7963, 42, 513, 13, 42914, 736, 284, 7963, 42, 362, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1640, 9206, 6152, 48774, 198, 220, 220, 220, 422, 308, 72, 13, 260, 1930, 37765, 1330, 402, 30488, 198, 220, 220, 220, 1303, 611, 356, 2230, 284, 2251, 597, 25757, 4847, 351, 645, 1395, 4382, 2491, 262, 198, 220, 220, 220, 1303, 1430, 481, 655, 7014, 11, 523, 1309, 338, 787, 257, 835, 284, 4929, 428, 1339, 25, 198, 220, 220, 220, 611, 407, 402, 30488, 13, 15003, 62, 9122, 7, 14202, 38381, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 28264, 7203, 55, 4382, 407, 5884, 2474, 4008, 198, 220, 220, 220, 1441, 402, 30488, 628, 628, 628 ]
2.579365
504
import dj_database_url from decouple import config from .base import * # noqa SECRET_KEY = 'django-insecure-ibi@xb(j2k@r&%*(*&(^%$%^$%^^&)))5_niq9erpkv%*!&!m9hp' DEBUG = True ALLOWED_HOSTS = [] DATABASES = { 'default': dj_database_url.config(default=config('SQLITE_DB')) }
[ 11748, 42625, 62, 48806, 62, 6371, 198, 6738, 875, 43846, 1330, 4566, 198, 6738, 764, 8692, 1330, 1635, 220, 1303, 645, 20402, 198, 198, 23683, 26087, 62, 20373, 796, 705, 28241, 14208, 12, 259, 22390, 12, 27567, 31, 30894, 7, 73, 17, 74, 31, 81, 5, 4, 9, 46491, 5, 7, 61, 4, 3, 4, 61, 3, 4, 18237, 5, 22305, 20, 62, 8461, 80, 24, 263, 79, 74, 85, 4, 9, 0, 5, 0, 76, 24, 24831, 6, 198, 30531, 796, 6407, 198, 7036, 3913, 1961, 62, 39, 10892, 50, 796, 17635, 198, 198, 35, 1404, 6242, 1921, 1546, 796, 1391, 198, 220, 220, 220, 705, 12286, 10354, 42625, 62, 48806, 62, 6371, 13, 11250, 7, 12286, 28, 11250, 10786, 17861, 12709, 62, 11012, 6, 4008, 198, 92, 198 ]
2.153846
130
# nlantau, 2020-12-15 import copy import os # STARTING_NUMBERS = [2, 0, 6, 12, 1, 3] STARTING_NUMBERS = [0, 3, 6] if __name__ == "__main__": main()
[ 2, 299, 75, 415, 559, 11, 12131, 12, 1065, 12, 1314, 198, 11748, 4866, 198, 11748, 28686, 198, 198, 2, 33303, 2751, 62, 41359, 33, 4877, 796, 685, 17, 11, 657, 11, 718, 11, 1105, 11, 352, 11, 513, 60, 198, 2257, 7227, 2751, 62, 41359, 33, 4877, 796, 685, 15, 11, 513, 11, 718, 60, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.065789
76
from random_utils import from_dungeon_level
[ 6738, 4738, 62, 26791, 1330, 422, 62, 67, 403, 6281, 62, 5715, 628 ]
3.461538
13
# Given a string, return the count of the number of times that a substring # length 2 appears in the string and also as the last 2 chars of the string, # so "hixxxhi" yields 1 (we won't count the end substring). # last2('hixxhi') --> 1 # last2('xaxxaxaxx') --> 1 # last2('axxxaaxx') --> 2 print(last2('hixxhi')) print(last2('xaxxaxaxx')) print(last2('axxxaaxx'))
[ 2, 11259, 257, 4731, 11, 1441, 262, 954, 286, 262, 1271, 286, 1661, 326, 257, 3293, 1806, 198, 2, 4129, 362, 3568, 287, 262, 4731, 290, 635, 355, 262, 938, 362, 34534, 286, 262, 4731, 11, 198, 2, 523, 366, 71, 844, 5324, 5303, 1, 19299, 352, 357, 732, 1839, 470, 954, 262, 886, 3293, 1806, 737, 220, 198, 198, 2, 938, 17, 10786, 71, 844, 87, 5303, 11537, 14610, 352, 198, 2, 938, 17, 10786, 87, 897, 87, 897, 897, 87, 11537, 14610, 352, 198, 2, 938, 17, 10786, 897, 5324, 64, 897, 87, 11537, 14610, 362, 198, 198, 4798, 7, 12957, 17, 10786, 71, 844, 87, 5303, 6, 4008, 198, 4798, 7, 12957, 17, 10786, 87, 897, 87, 897, 897, 87, 6, 4008, 198, 4798, 7, 12957, 17, 10786, 897, 5324, 64, 897, 87, 6, 4008, 198 ]
2.633094
139
from config import * from gdocument import GDocument if __name__ == '__main__': main()
[ 6738, 4566, 1330, 1635, 198, 6738, 308, 22897, 1330, 402, 24941, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.032258
31
''' Created on 17.10.2019 @author: JM ''' class TMC2225_register_variant: " ===== TMC2225 register variants ===== " "..."
[ 7061, 6, 198, 41972, 319, 1596, 13, 940, 13, 23344, 198, 198, 31, 9800, 25, 47726, 198, 7061, 6, 198, 198, 4871, 309, 9655, 1828, 1495, 62, 30238, 62, 25641, 415, 25, 628, 220, 220, 220, 366, 29335, 309, 9655, 1828, 1495, 7881, 17670, 29335, 366, 198, 220, 220, 220, 366, 9313 ]
2.538462
52
import datetime import unittest import pytest from src.info_string import this_year_info_string
[ 11748, 4818, 8079, 198, 11748, 555, 715, 395, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 12351, 13, 10951, 62, 8841, 1330, 428, 62, 1941, 62, 10951, 62, 8841, 198 ]
3.266667
30
import sys import PyQt5 from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5 import uic from pprint import pprint import cv2 as cv Calui ='./ui.ui' if __name__ =='__main__': app = QApplication(sys.argv) main_dialog=MainDialog() main_dialog.show() app.exec_() #event loop 진입
[ 11748, 25064, 198, 198, 11748, 9485, 48, 83, 20, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 198, 6738, 9485, 48, 83, 20, 1330, 334, 291, 198, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 198, 11748, 269, 85, 17, 355, 269, 85, 198, 198, 9771, 9019, 796, 4458, 14, 9019, 13, 9019, 6, 628, 198, 361, 11593, 3672, 834, 6624, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 796, 1195, 23416, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 1388, 62, 38969, 519, 28, 13383, 44204, 3419, 198, 220, 220, 220, 1388, 62, 38969, 519, 13, 12860, 3419, 198, 220, 220, 220, 598, 13, 18558, 62, 3419, 1303, 15596, 9052, 23821, 100, 226, 168, 252, 227, 198 ]
2.194805
154
from enum import Enum from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.neural_network import MLPClassifier from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline, Pipeline
[ 6738, 33829, 1330, 2039, 388, 201, 198, 6738, 1341, 35720, 13, 82, 14761, 1330, 311, 15922, 201, 198, 6738, 1341, 35720, 13, 21048, 1330, 26423, 27660, 9487, 7483, 201, 198, 6738, 1341, 35720, 13, 2616, 425, 62, 24406, 274, 1330, 12822, 31562, 32819, 201, 198, 6738, 1341, 35720, 13, 710, 394, 32289, 1330, 509, 46445, 32289, 9487, 7483, 201, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 11, 47395, 45686, 9487, 7483, 201, 198, 6738, 1341, 35720, 13, 15410, 3036, 42483, 62, 20930, 1330, 20648, 81, 1512, 15642, 3036, 42483, 32750, 201, 198, 6738, 1341, 35720, 13, 710, 1523, 62, 27349, 1330, 10373, 47, 9487, 7483, 201, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 24846, 18243, 33538, 11, 4512, 62, 9288, 62, 35312, 201, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 201, 198, 6738, 1341, 35720, 13, 79, 541, 4470, 1330, 787, 62, 79, 541, 4470, 11, 37709, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198 ]
3.410714
168
from utils.api_tools import * from recommends.douban_top250 import DoubanTop class DoubanTopAPI(Resource): """ 获取豆瓣读书 Top250 数据 """ args_get = reqparse.RequestParser() \ .add_argument("page", help="分页", type=int, required=False, location=["args", ]) @args_required_method(args_get)
[ 6738, 3384, 4487, 13, 15042, 62, 31391, 1330, 1635, 198, 6738, 20829, 13, 67, 280, 3820, 62, 4852, 9031, 1330, 5728, 3820, 9126, 628, 198, 4871, 5728, 3820, 9126, 17614, 7, 26198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5525, 236, 115, 20998, 244, 164, 109, 228, 163, 241, 96, 46237, 119, 20046, 99, 5849, 9031, 10545, 243, 108, 162, 235, 106, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26498, 62, 1136, 796, 43089, 29572, 13, 18453, 46677, 3419, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 764, 2860, 62, 49140, 7203, 7700, 1600, 1037, 2625, 26344, 228, 165, 94, 113, 1600, 2099, 28, 600, 11, 2672, 28, 25101, 11, 4067, 28, 14692, 22046, 1600, 33761, 628, 220, 220, 220, 2488, 22046, 62, 35827, 62, 24396, 7, 22046, 62, 1136, 8, 198 ]
2.268116
138
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-11-03 06:28 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 319, 1584, 12, 1157, 12, 3070, 9130, 25, 2078, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.8
55
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © 2018 Matthew Stone <[email protected]> # Distributed under terms of the MIT license. """ """ import argparse import heapq from collections import deque import pysam import svtk.utils as svu def records_match(record, other): """ Test if two records are same SV: check chromosome, position, stop, SVTYPE, SVLEN (for insertions), STRANDS (for BNDS and INVs), and (if they exist) CHR2/END2 for multi-chromosomal events """ return (record.chrom == other.chrom and record.pos == other.pos and record.stop == other.stop and record.info['SVTYPE'] == other.info['SVTYPE'] and record.info['SVLEN'] == other.info['SVLEN'] and record.info['STRANDS'] == other.info['STRANDS'] and (('CHR2' not in record.info and 'CHR2' not in other.info) or ('CHR2' in record.info and 'CHR2' in other.info and record.info['CHR2'] == other.info['CHR2'])) and (('END2' not in record.info and 'END2' not in other.info) or ('END2' in record.info and 'END2' in other.info and record.info['END2'] == other.info['END2']))) def merge_key(record): """ Sort records by all fields that records_match will use to check for duplicates, in sequence, so that all identical records according to records_match will be adjacent """ chr2 = record.info['CHR2'] if 'CHR2' in record.info else None end2 = record.info['END2'] if 'END2' in record.info else None return (record.pos, record.stop, record.info['SVTYPE'], record.info['SVLEN'], chr2, end2, record.info['STRANDS'], record.id) def dedup_records(records): """Take unique subset of records""" records = sorted(records, key=merge_key) curr_record = records[0] for record in records[1:]: if records_match(curr_record, record): # keep more informative ALT field, assumed to be the one with more colons # ex: <INS:ME:ALU> kept over <INS> curr_alt = curr_record.alts[0] new_alt = record.alts[0] if (curr_alt.startswith('<') and curr_alt.endswith('>') and new_alt.startswith('<') and new_alt.endswith('>') and len(new_alt.split(':')) > len(curr_alt.split(':'))): curr_record = record continue else: yield curr_record curr_record = record yield curr_record def merge_records(vcfs): """ Take unique set of VCF records Strategy: Merge & roughly sort records from all VCFs by chrom & pos, then gather records that share the same chrom & pos and remove duplicates. Note: The output from heapq.merge cannot be directly used to remove duplicates because it is not sufficiently sorted, so duplicates may not be adjacent. It is also not sufficient to alter the comparator function to take more than chrom & pos into account, because heapq.merge assumes that each VCF is already sorted and will make no attempt to further sort them according to the comparator function. Re-sorting all records that share a chrom & pos by all necessary comparison fields is more efficient than re-sorting each entire VCF. """ merged_vcfs = heapq.merge(*vcfs, key=lambda r: VariantRecordComparison(r)) record = next(merged_vcfs) curr_records = deque([record]) curr_chrom = record.chrom curr_pos = record.pos for record in merged_vcfs: if record.chrom == curr_chrom and record.pos == curr_pos: curr_records.append(record) else: for rec in dedup_records(curr_records): yield rec curr_records = deque([record]) curr_pos = record.pos curr_chrom = record.chrom for rec in dedup_records(curr_records): yield rec if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 10673, 2864, 9308, 8026, 1279, 76, 6440, 20, 31, 76, 456, 13, 9869, 10187, 13, 15532, 29, 198, 2, 4307, 6169, 739, 2846, 286, 262, 17168, 5964, 13, 198, 198, 37811, 198, 37811, 198, 198, 11748, 1822, 29572, 198, 11748, 24575, 80, 198, 6738, 17268, 1330, 390, 4188, 198, 11748, 279, 893, 321, 198, 11748, 38487, 30488, 13, 26791, 355, 38487, 84, 628, 198, 4299, 4406, 62, 15699, 7, 22105, 11, 584, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 611, 734, 4406, 389, 976, 20546, 25, 2198, 34348, 11, 2292, 11, 2245, 11, 20546, 25216, 11, 20546, 43, 1677, 357, 1640, 7550, 507, 828, 198, 220, 220, 220, 19269, 1565, 5258, 357, 1640, 347, 45, 5258, 290, 3268, 23266, 828, 290, 357, 361, 484, 2152, 8, 32567, 17, 14, 10619, 17, 329, 5021, 12, 28663, 418, 18048, 2995, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 22105, 13, 28663, 6624, 584, 13, 28663, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 1930, 6624, 584, 13, 1930, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 11338, 6624, 584, 13, 11338, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 10951, 17816, 50, 53, 25216, 20520, 6624, 584, 13, 10951, 17816, 50, 53, 25216, 20520, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 10951, 17816, 50, 47468, 1677, 20520, 6624, 584, 13, 10951, 17816, 50, 47468, 1677, 20520, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 10951, 17816, 18601, 1565, 5258, 20520, 6624, 584, 13, 10951, 17816, 18601, 1565, 5258, 20520, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 10786, 37846, 17, 6, 407, 287, 1700, 13, 10951, 290, 705, 37846, 17, 6, 407, 287, 584, 13, 10951, 8, 393, 19203, 37846, 17, 6, 287, 1700, 13, 10951, 290, 705, 37846, 17, 6, 287, 584, 13, 10951, 290, 1700, 13, 10951, 17816, 37846, 17, 20520, 6624, 584, 13, 10951, 17816, 37846, 17, 20520, 4008, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 10786, 10619, 17, 6, 407, 287, 1700, 13, 10951, 290, 705, 10619, 17, 6, 407, 287, 584, 13, 10951, 8, 393, 19203, 10619, 17, 6, 287, 1700, 13, 10951, 290, 705, 10619, 17, 6, 287, 584, 13, 10951, 290, 1700, 13, 10951, 17816, 10619, 17, 20520, 6624, 584, 13, 10951, 17816, 10619, 17, 20520, 22305, 628, 198, 4299, 20121, 62, 2539, 7, 22105, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33947, 4406, 416, 477, 7032, 326, 4406, 62, 15699, 481, 779, 284, 2198, 329, 14184, 16856, 11, 287, 8379, 11, 220, 198, 220, 220, 220, 523, 326, 477, 10411, 4406, 1864, 284, 4406, 62, 15699, 481, 307, 15909, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 442, 81, 17, 796, 1700, 13, 10951, 17816, 37846, 17, 20520, 611, 705, 37846, 17, 6, 287, 1700, 13, 10951, 2073, 6045, 198, 220, 220, 220, 886, 17, 796, 1700, 13, 10951, 17816, 10619, 17, 20520, 611, 705, 10619, 17, 6, 287, 1700, 13, 10951, 2073, 6045, 198, 220, 220, 220, 1441, 357, 22105, 13, 1930, 11, 1700, 13, 11338, 11, 1700, 13, 10951, 17816, 50, 53, 25216, 6, 4357, 1700, 13, 10951, 17816, 50, 47468, 1677, 6, 4357, 442, 81, 17, 11, 886, 17, 11, 1700, 13, 10951, 17816, 18601, 1565, 5258, 6, 4357, 1700, 13, 312, 8, 628, 198, 4299, 4648, 929, 62, 8344, 3669, 7, 8344, 3669, 2599, 198, 220, 220, 220, 37227, 12322, 3748, 24637, 286, 4406, 37811, 628, 220, 220, 220, 4406, 796, 23243, 7, 8344, 3669, 11, 1994, 28, 647, 469, 62, 2539, 8, 628, 220, 220, 220, 1090, 81, 62, 22105, 796, 4406, 58, 15, 60, 198, 220, 220, 220, 329, 1700, 287, 4406, 58, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4406, 62, 15699, 7, 22019, 81, 62, 22105, 11, 1700, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1394, 517, 30304, 8355, 51, 2214, 11, 9672, 284, 307, 262, 530, 351, 517, 951, 684, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 409, 25, 1279, 20913, 25, 11682, 25, 1847, 52, 29, 4030, 625, 1279, 20913, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 2501, 796, 1090, 81, 62, 22105, 13, 282, 912, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2501, 796, 1700, 13, 282, 912, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 22019, 81, 62, 2501, 13, 9688, 2032, 342, 10786, 27, 11537, 290, 1090, 81, 62, 2501, 13, 437, 2032, 342, 10786, 29, 11537, 290, 649, 62, 2501, 13, 9688, 2032, 342, 10786, 27, 11537, 290, 649, 62, 2501, 13, 437, 2032, 342, 10786, 29, 11537, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 3605, 62, 2501, 13, 35312, 7, 10354, 6, 4008, 1875, 18896, 7, 22019, 81, 62, 2501, 13, 35312, 7, 10354, 6, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 22105, 796, 1700, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 1090, 81, 62, 22105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 22105, 796, 1700, 628, 220, 220, 220, 7800, 1090, 81, 62, 22105, 628, 198, 198, 4299, 20121, 62, 8344, 3669, 7, 28435, 9501, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7214, 3748, 900, 286, 569, 22495, 4406, 198, 220, 220, 220, 20561, 25, 39407, 1222, 7323, 3297, 4406, 422, 477, 569, 22495, 82, 416, 15358, 1222, 1426, 11, 788, 6431, 4406, 326, 2648, 262, 976, 15358, 1222, 1426, 290, 4781, 14184, 16856, 13, 198, 220, 220, 220, 5740, 25, 383, 5072, 422, 24575, 80, 13, 647, 469, 2314, 307, 3264, 973, 284, 4781, 14184, 16856, 780, 340, 318, 407, 17338, 23243, 11, 523, 14184, 16856, 743, 407, 307, 220, 198, 220, 220, 220, 220, 220, 220, 220, 15909, 13, 632, 318, 635, 407, 6751, 284, 8343, 262, 4616, 1352, 2163, 284, 1011, 517, 621, 15358, 1222, 1426, 656, 1848, 11, 780, 24575, 80, 13, 647, 469, 18533, 220, 198, 220, 220, 220, 220, 220, 220, 220, 326, 1123, 569, 22495, 318, 1541, 23243, 290, 481, 787, 645, 2230, 284, 2252, 3297, 606, 1864, 284, 262, 4616, 1352, 2163, 13, 797, 12, 82, 24707, 477, 4406, 198, 220, 220, 220, 220, 220, 220, 220, 326, 2648, 257, 15358, 1222, 1426, 416, 477, 3306, 7208, 7032, 318, 517, 6942, 621, 302, 12, 82, 24707, 1123, 2104, 569, 22495, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 23791, 62, 28435, 9501, 796, 24575, 80, 13, 647, 469, 46491, 28435, 9501, 11, 1994, 28, 50033, 374, 25, 38215, 23739, 50249, 1653, 7, 81, 4008, 628, 220, 220, 220, 1700, 796, 1306, 7, 647, 2004, 62, 28435, 9501, 8, 198, 220, 220, 220, 1090, 81, 62, 8344, 3669, 796, 390, 4188, 26933, 22105, 12962, 198, 220, 220, 220, 1090, 81, 62, 28663, 796, 1700, 13, 28663, 198, 220, 220, 220, 1090, 81, 62, 1930, 796, 1700, 13, 1930, 628, 220, 220, 220, 329, 1700, 287, 23791, 62, 28435, 9501, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1700, 13, 28663, 6624, 1090, 81, 62, 28663, 290, 1700, 13, 1930, 6624, 1090, 81, 62, 1930, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 8344, 3669, 13, 33295, 7, 22105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 664, 287, 4648, 929, 62, 8344, 3669, 7, 22019, 81, 62, 8344, 3669, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 664, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 8344, 3669, 796, 390, 4188, 26933, 22105, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 1930, 796, 1700, 13, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 28663, 796, 1700, 13, 28663, 628, 220, 220, 220, 329, 664, 287, 4648, 929, 62, 8344, 3669, 7, 22019, 81, 62, 8344, 3669, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 664, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
2.539672
1,525
#!/usr/bin/python -S """ formatters.py This module should implement the standard list of formatters. It also provides a method LookupChain for *composing lookup chains* for formatters. Formatter lookup chaining is not to be confused with plain formatter chaining, e.g.: {variable|html|json} If anyone has any better names for the two types of chaining, let the mailing list know. """ __author__ = 'Andy Chu' import os import sys from ._jsontemplate import FromFile class Error(Exception): """Base class for all exceptions raised by this module.""" def LookupChain(lookup_func_list): """Returns a *function* suitable for passing as the more_formatters argument to Template. NOTE: In Java, this would be implemented using the 'Composite' pattern. A *list* of formatter lookup function behaves the same as a *single* formatter lookup funcion. Note the distinction between formatter *lookup* functions and formatter functions here. """ return MoreFormatters def PythonPercentFormat(format_str): """Use Python % format strings as template format specifiers.""" if format_str.startswith('printf '): fmt = format_str[len('printf '):] return lambda value: fmt % value else: return None # Seam for testing _open = open # Cache of compiled templates. In Java, this might need to be a # ConcurrentHashMap like the tokenization regex cache. _compiled_template_cache = {} class TemplateFileInclude(object): """Template include mechanism. The relative path is specified as an argument to the template. """ def __call__(self, format_str): """Returns a formatter function.""" if format_str.startswith('template-file '): relative_path = format_str[len('template-file '):] full_path = os.path.join(self.root_dir, relative_path) if full_path not in _compiled_template_cache: f = _open(full_path) _compiled_template_cache[full_path] = FromFile(f) f.close() return _compiled_template_cache[full_path].expand # a 'bound method' else: return None # this lookup is not applicable class Json(object): """Format arbitrary nodes as JSON. It takes a function which converts JSON structures to strings as a parameter. All this does is relieve the user of having to remember the standard names 'json' and 'js-string'. Just pass your program's JSON serializer in here. """ def __call__(self, format_str): """Returns a formatter function.""" if format_str in ('json', 'js-string'): return self.json_func else: return None # this lookup is not applicable def Plural(format_str): """Returns whether the value should be considered a plural value. Integers greater than 1 are plural, and lists with length greater than one are too. """ if format_str.startswith('plural?'): i = len('plural?') try: splitchar = format_str[i] # Usually a space, but could be something else _, plural_val, singular_val = format_str.split(splitchar) except IndexError: raise Error('plural? must have exactly 2 arguments') return Formatter else: return None # this lookup is not applicable
[ 2, 48443, 14629, 14, 8800, 14, 29412, 532, 50, 198, 37811, 198, 18982, 1010, 13, 9078, 198, 198, 1212, 8265, 815, 3494, 262, 3210, 1351, 286, 5794, 1010, 13, 198, 198, 1026, 635, 3769, 257, 2446, 6803, 929, 35491, 329, 1635, 785, 32927, 35847, 14659, 9, 329, 198, 18982, 1010, 13, 198, 198, 8479, 1436, 35847, 442, 1397, 318, 407, 284, 307, 10416, 351, 8631, 1296, 1436, 442, 1397, 11, 198, 68, 13, 70, 11207, 628, 220, 1391, 45286, 91, 6494, 91, 17752, 92, 198, 198, 1532, 2687, 468, 597, 1365, 3891, 329, 262, 734, 3858, 286, 442, 1397, 11, 1309, 262, 21898, 198, 4868, 760, 13, 198, 37811, 198, 834, 9800, 834, 796, 705, 35314, 25459, 6, 628, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 47540, 8457, 756, 368, 6816, 1330, 3574, 8979, 628, 198, 4871, 13047, 7, 16922, 2599, 198, 220, 37227, 14881, 1398, 329, 477, 13269, 4376, 416, 428, 8265, 526, 15931, 628, 198, 4299, 6803, 929, 35491, 7, 5460, 929, 62, 20786, 62, 4868, 2599, 198, 220, 37227, 35561, 257, 1635, 8818, 9, 11080, 329, 6427, 355, 262, 517, 62, 18982, 1010, 4578, 198, 220, 284, 37350, 13, 628, 220, 24550, 25, 554, 7349, 11, 428, 561, 307, 9177, 1262, 262, 705, 5377, 1930, 578, 6, 3912, 13, 220, 317, 198, 220, 1635, 4868, 9, 286, 1296, 1436, 35847, 2163, 39341, 262, 976, 355, 257, 1635, 29762, 9, 1296, 1436, 198, 220, 35847, 25439, 295, 13, 628, 220, 5740, 262, 12941, 1022, 1296, 1436, 1635, 5460, 929, 9, 5499, 290, 1296, 1436, 198, 220, 5499, 994, 13, 198, 220, 37227, 628, 220, 1441, 3125, 26227, 1010, 628, 198, 4299, 11361, 31905, 26227, 7, 18982, 62, 2536, 2599, 198, 220, 37227, 11041, 11361, 4064, 5794, 13042, 355, 11055, 5794, 1020, 13350, 526, 15931, 628, 220, 611, 5794, 62, 2536, 13, 9688, 2032, 342, 10786, 37435, 705, 2599, 198, 220, 220, 220, 46996, 796, 5794, 62, 2536, 58, 11925, 10786, 37435, 705, 2599, 60, 198, 220, 220, 220, 1441, 37456, 1988, 25, 46996, 4064, 1988, 198, 220, 2073, 25, 198, 220, 220, 220, 1441, 6045, 628, 198, 2, 1001, 321, 329, 4856, 198, 62, 9654, 796, 1280, 198, 198, 2, 34088, 286, 14102, 24019, 13, 220, 554, 7349, 11, 428, 1244, 761, 284, 307, 257, 198, 2, 13223, 6657, 26257, 13912, 588, 262, 11241, 1634, 40364, 12940, 13, 198, 62, 5589, 3902, 62, 28243, 62, 23870, 796, 23884, 628, 198, 4871, 37350, 8979, 818, 9152, 7, 15252, 2599, 198, 220, 37227, 30800, 2291, 9030, 13, 628, 220, 383, 3585, 3108, 318, 7368, 355, 281, 4578, 284, 262, 11055, 13, 198, 220, 37227, 628, 220, 825, 11593, 13345, 834, 7, 944, 11, 5794, 62, 2536, 2599, 198, 220, 220, 220, 37227, 35561, 257, 1296, 1436, 2163, 526, 15931, 628, 220, 220, 220, 611, 5794, 62, 2536, 13, 9688, 2032, 342, 10786, 28243, 12, 7753, 705, 2599, 198, 220, 220, 220, 220, 220, 3585, 62, 6978, 796, 5794, 62, 2536, 58, 11925, 10786, 28243, 12, 7753, 705, 2599, 60, 198, 220, 220, 220, 220, 220, 1336, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 3585, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 611, 1336, 62, 6978, 407, 287, 4808, 5589, 3902, 62, 28243, 62, 23870, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 4808, 9654, 7, 12853, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 5589, 3902, 62, 28243, 62, 23870, 58, 12853, 62, 6978, 60, 796, 3574, 8979, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 1441, 4808, 5589, 3902, 62, 28243, 62, 23870, 58, 12853, 62, 6978, 4083, 11201, 392, 220, 1303, 257, 705, 7784, 2446, 6, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 1441, 6045, 220, 1303, 428, 35847, 318, 407, 9723, 628, 198, 4871, 449, 1559, 7, 15252, 2599, 198, 220, 37227, 26227, 14977, 13760, 355, 19449, 13, 198, 220, 220, 198, 220, 632, 2753, 257, 2163, 543, 26161, 19449, 8573, 284, 13042, 355, 257, 11507, 13, 628, 220, 1439, 428, 857, 318, 26958, 262, 2836, 286, 1719, 284, 3505, 262, 3210, 3891, 198, 220, 705, 17752, 6, 290, 705, 8457, 12, 8841, 4458, 220, 2329, 1208, 534, 1430, 338, 19449, 11389, 7509, 287, 994, 13, 198, 220, 37227, 628, 220, 825, 11593, 13345, 834, 7, 944, 11, 5794, 62, 2536, 2599, 198, 220, 220, 220, 37227, 35561, 257, 1296, 1436, 2163, 526, 15931, 198, 220, 220, 220, 611, 5794, 62, 2536, 287, 19203, 17752, 3256, 705, 8457, 12, 8841, 6, 2599, 198, 220, 220, 220, 220, 220, 1441, 2116, 13, 17752, 62, 20786, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 1441, 6045, 220, 1303, 428, 35847, 318, 407, 9723, 628, 198, 4299, 1345, 1523, 7, 18982, 62, 2536, 2599, 198, 220, 37227, 35561, 1771, 262, 1988, 815, 307, 3177, 257, 22801, 1988, 13, 628, 220, 15995, 364, 3744, 621, 352, 389, 22801, 11, 290, 8341, 351, 4129, 3744, 621, 530, 389, 198, 220, 1165, 13, 198, 220, 37227, 198, 220, 611, 5794, 62, 2536, 13, 9688, 2032, 342, 10786, 489, 1523, 8348, 2599, 198, 220, 220, 220, 1312, 796, 18896, 10786, 489, 1523, 8348, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 4328, 2007, 283, 796, 5794, 62, 2536, 58, 72, 60, 220, 1303, 19672, 257, 2272, 11, 475, 714, 307, 1223, 2073, 198, 220, 220, 220, 220, 220, 4808, 11, 22801, 62, 2100, 11, 18032, 62, 2100, 796, 5794, 62, 2536, 13, 35312, 7, 22018, 2007, 283, 8, 198, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 5298, 13047, 10786, 489, 1523, 30, 1276, 423, 3446, 362, 7159, 11537, 628, 220, 220, 220, 1441, 5178, 1436, 628, 220, 2073, 25, 198, 220, 220, 220, 1441, 6045, 220, 1303, 428, 35847, 318, 407, 9723, 628 ]
3.211907
991
from codecs import open from ohoh import build_parser, DEFAULT_HOST, DEFAULT_PORT from os import path import os import pytest import sys import time @pytest.fixture @pytest.fixture @pytest.fixture @pytest.mark.parametrize("address,expected", [ (None, (DEFAULT_HOST, DEFAULT_PORT)), ("localhost", ("localhost", DEFAULT_PORT)), ("localhost:80", ("localhost", 80)), ("google.com", ("google.com", DEFAULT_PORT)), ("google.com:80", ("google.com", 80)), (":5868", ("", 5868)), ])
[ 6738, 40481, 82, 1330, 1280, 198, 6738, 11752, 1219, 1330, 1382, 62, 48610, 11, 5550, 38865, 62, 39, 10892, 11, 5550, 38865, 62, 15490, 198, 6738, 28686, 1330, 3108, 198, 11748, 28686, 198, 11748, 12972, 9288, 198, 11748, 25064, 198, 11748, 640, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 21975, 11, 40319, 1600, 685, 198, 220, 220, 220, 357, 14202, 11, 357, 7206, 38865, 62, 39, 10892, 11, 5550, 38865, 62, 15490, 36911, 198, 220, 220, 220, 5855, 36750, 1600, 5855, 36750, 1600, 5550, 38865, 62, 15490, 36911, 198, 220, 220, 220, 5855, 36750, 25, 1795, 1600, 5855, 36750, 1600, 4019, 36911, 198, 220, 220, 220, 5855, 13297, 13, 785, 1600, 5855, 13297, 13, 785, 1600, 5550, 38865, 62, 15490, 36911, 198, 220, 220, 220, 5855, 13297, 13, 785, 25, 1795, 1600, 5855, 13297, 13, 785, 1600, 4019, 36911, 198, 220, 220, 220, 357, 1298, 3365, 3104, 1600, 5855, 1600, 7618, 3104, 36911, 198, 12962, 198 ]
2.698925
186
from pygame.surface import Surface import constants from font import Font from root_object.circle import Circle from root_object.text import Text
[ 6738, 12972, 6057, 13, 42029, 1330, 20321, 198, 198, 11748, 38491, 198, 6738, 10369, 1330, 24060, 198, 6738, 6808, 62, 15252, 13, 45597, 1330, 16291, 198, 6738, 6808, 62, 15252, 13, 5239, 1330, 8255, 628 ]
4.228571
35
import os import glob import yaml
[ 11748, 28686, 198, 11748, 15095, 198, 11748, 331, 43695, 198 ]
3.4
10
# Copyright 2021 Adobe. All rights reserved. # This file is licensed to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. You may obtain a copy # of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import json import mimetypes from adobe.pdfservices.operation.internal.api.dto.document import Document from adobe.pdfservices.operation.internal.api.dto.request.platform.outputs import Outputs from adobe.pdfservices.operation.internal.service_constants import ServiceConstants #TODO Why did it require JSONDecoder?
[ 2, 15069, 33448, 21771, 13, 1439, 2489, 10395, 13, 198, 2, 770, 2393, 318, 11971, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 257, 4866, 198, 2, 286, 262, 13789, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 220, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 9387, 739, 198, 2, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 4526, 48296, 3525, 18421, 198, 2, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 262, 2176, 3303, 198, 2, 15030, 21627, 290, 11247, 739, 262, 13789, 13, 198, 198, 11748, 33918, 198, 11748, 17007, 2963, 12272, 198, 198, 6738, 512, 5910, 13, 12315, 30416, 13, 27184, 13, 32538, 13, 15042, 13, 67, 1462, 13, 22897, 1330, 16854, 198, 6738, 512, 5910, 13, 12315, 30416, 13, 27184, 13, 32538, 13, 15042, 13, 67, 1462, 13, 25927, 13, 24254, 13, 22915, 82, 1330, 25235, 82, 198, 6738, 512, 5910, 13, 12315, 30416, 13, 27184, 13, 32538, 13, 15271, 62, 9979, 1187, 1330, 4809, 34184, 1187, 628, 198, 2, 51, 3727, 46, 4162, 750, 340, 2421, 19449, 10707, 12342, 30, 198 ]
3.902954
237
import snap import numpy as np G = snap.PNGraph.New() for i in range(6): G.AddNode(i) G.AddEdge(0, 1) G.AddEdge(1, 2) G.AddEdge(2, 0) G.AddEdge(3, 4) G.AddEdge(4, 5) G.AddEdge(5, 3) G.AddEdge(4, 3) G.AddEdge(5, 4) G.AddEdge(3, 5) out_file = '../data/small.txt' print 'data:', out_file snap.SaveEdgeList(G, out_file)
[ 11748, 11495, 198, 11748, 299, 32152, 355, 45941, 198, 198, 38, 796, 11495, 13, 47, 10503, 1470, 13, 3791, 3419, 198, 1640, 1312, 287, 2837, 7, 21, 2599, 198, 220, 220, 220, 402, 13, 4550, 19667, 7, 72, 8, 198, 198, 38, 13, 4550, 37021, 7, 15, 11, 352, 8, 198, 38, 13, 4550, 37021, 7, 16, 11, 362, 8, 198, 38, 13, 4550, 37021, 7, 17, 11, 657, 8, 198, 198, 38, 13, 4550, 37021, 7, 18, 11, 604, 8, 198, 38, 13, 4550, 37021, 7, 19, 11, 642, 8, 198, 38, 13, 4550, 37021, 7, 20, 11, 513, 8, 198, 38, 13, 4550, 37021, 7, 19, 11, 513, 8, 198, 38, 13, 4550, 37021, 7, 20, 11, 604, 8, 198, 38, 13, 4550, 37021, 7, 18, 11, 642, 8, 198, 198, 448, 62, 7753, 796, 705, 40720, 7890, 14, 17470, 13, 14116, 6, 198, 4798, 705, 7890, 25, 3256, 503, 62, 7753, 198, 45380, 13, 16928, 37021, 8053, 7, 38, 11, 503, 62, 7753, 8, 198 ]
1.928571
168
import os import toml def _or(val_a, val_b, default=None): """ Used to allow specifying config values through os.environ Args: val_a: val_b: """ if val_a is not None: return val_a elif val_b is not None: return val_b else: return default
[ 11748, 28686, 198, 198, 11748, 284, 4029, 198, 198, 4299, 4808, 273, 7, 2100, 62, 64, 11, 1188, 62, 65, 11, 4277, 28, 14202, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1249, 31577, 4566, 3815, 832, 198, 220, 220, 220, 28686, 13, 268, 2268, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 64, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 65, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1188, 62, 64, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1188, 62, 64, 198, 220, 220, 220, 1288, 361, 1188, 62, 65, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1188, 62, 65, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4277, 628, 198 ]
2.101351
148
from pydantic import BaseModel from typing import List from .notification_model import Notification
[ 6738, 279, 5173, 5109, 1330, 7308, 17633, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 764, 1662, 2649, 62, 19849, 1330, 42808, 198 ]
4.391304
23
import json from dataclasses import dataclass from spatula import ( HtmlPage, XmlPage, JsonPage, CsvListPage, HtmlListPage, XmlListPage, JsonListPage, XPath, URL, ) SOURCE = "https://example.com" @dataclass
[ 11748, 33918, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 15246, 4712, 1330, 357, 198, 220, 220, 220, 367, 20369, 9876, 11, 198, 220, 220, 220, 1395, 4029, 9876, 11, 198, 220, 220, 220, 449, 1559, 9876, 11, 198, 220, 220, 220, 327, 21370, 8053, 9876, 11, 198, 220, 220, 220, 367, 20369, 8053, 9876, 11, 198, 220, 220, 220, 1395, 4029, 8053, 9876, 11, 198, 220, 220, 220, 449, 1559, 8053, 9876, 11, 198, 220, 220, 220, 11961, 776, 11, 198, 220, 220, 220, 10289, 11, 198, 8, 198, 198, 47690, 796, 366, 5450, 1378, 20688, 13, 785, 1, 628, 198, 31, 19608, 330, 31172, 628, 628, 628, 628 ]
2.238938
113
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # AZURE CLI SERVICEBUS - CRUD TEST DEFINITIONS import time from azure.cli.testsdk import (ScenarioTest, ResourceGroupPreparer, live_only) from knack.util import CLIError # pylint: disable=line-too-long # pylint: disable=too-many-lines
[ 2, 16529, 1783, 10541, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 2, 16529, 1783, 10541, 198, 198, 2, 26253, 11335, 43749, 47453, 45346, 532, 8740, 8322, 43001, 5550, 20032, 2043, 11053, 198, 198, 11748, 640, 198, 6738, 35560, 495, 13, 44506, 13, 41989, 34388, 1330, 357, 3351, 39055, 14402, 11, 20857, 13247, 37534, 11258, 11, 2107, 62, 8807, 8, 198, 6738, 47868, 13, 22602, 1330, 43749, 12331, 628, 198, 2, 279, 2645, 600, 25, 15560, 28, 1370, 12, 18820, 12, 6511, 198, 2, 279, 2645, 600, 25, 15560, 28, 18820, 12, 21834, 12, 6615, 198 ]
4.786885
122
# Shows top posters and percentage of posts from top posters for the # last 14 days. You need recent data to run this. # # Run this with ./manage.py runscript run_contributor_counts.py from collections import defaultdict from datetime import datetime, timedelta from kitsune.forums.models import Post if __name__ == '__main__': print 'Run with "./manage.py runscript contributor_counts"'
[ 2, 25156, 1353, 19379, 290, 5873, 286, 6851, 422, 1353, 19379, 329, 262, 198, 2, 938, 1478, 1528, 13, 921, 761, 2274, 1366, 284, 1057, 428, 13, 198, 2, 198, 2, 5660, 428, 351, 24457, 805, 496, 13, 9078, 1057, 12048, 1057, 62, 3642, 2455, 273, 62, 9127, 82, 13, 9078, 628, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 198, 6738, 19183, 1726, 13, 37141, 13, 27530, 1330, 2947, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 705, 10987, 351, 366, 19571, 805, 496, 13, 9078, 1057, 12048, 18920, 62, 9127, 82, 30543, 198 ]
3.491228
114
# -*- coding: utf-8 -*- import json, logging log = logging.getLogger(__name__) def parse_query( request ): """ Preps and returns three data-elements. Called by views.reconcile_v2() """ ( query, query_type, callback ) = ( request.POST.get('query', None), request.POST.get('query_type', None), request.POST.get('callback', None) ) if not query: query = request.GET.get( 'query', None ) query = massage_query( query ) if not query_type: query_type = request.GET.get( 'query_type', '/fast/all' ) if not callback: callback = request.GET.get( 'callback', None ) log.debug( 'query, ```%s```; query_type, ```%s```; callback, ```%s```' % (query, query_type, callback) ) return ( query, query_type, callback ) def massage_query( query ): """ Updates query for better fast-lookups. Called by parse_query() """ if query.startswith( '{' ): query = json.loads(query)['query'] elif '(' in query and ')' in query: substring = query[ query.find('(')+1:query.find(')') ] log.debug( 'substring, `%s`' % substring ) wordcount = len( substring.split() ) if wordcount > 1: query = query.replace( '(', '' ) query = query.replace( ')', '' ) log.debug( 'massaged query, `%s`' % query ) return query
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 33918, 11, 18931, 628, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 21136, 62, 22766, 7, 2581, 15179, 198, 220, 220, 220, 37227, 3771, 862, 290, 5860, 1115, 1366, 12, 68, 3639, 13, 198, 220, 220, 220, 220, 220, 220, 220, 34099, 416, 5009, 13, 260, 1102, 66, 576, 62, 85, 17, 3419, 37227, 198, 220, 220, 220, 357, 12405, 11, 12405, 62, 4906, 11, 23838, 1267, 796, 357, 2581, 13, 32782, 13, 1136, 10786, 22766, 3256, 6045, 828, 2581, 13, 32782, 13, 1136, 10786, 22766, 62, 4906, 3256, 6045, 828, 2581, 13, 32782, 13, 1136, 10786, 47423, 3256, 6045, 8, 1267, 198, 220, 220, 220, 611, 407, 12405, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 2581, 13, 18851, 13, 1136, 7, 705, 22766, 3256, 6045, 1267, 198, 220, 220, 220, 12405, 796, 26900, 62, 22766, 7, 12405, 1267, 198, 220, 220, 220, 611, 407, 12405, 62, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 4906, 796, 2581, 13, 18851, 13, 1136, 7, 705, 22766, 62, 4906, 3256, 31051, 7217, 14, 439, 6, 1267, 198, 220, 220, 220, 611, 407, 23838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23838, 796, 2581, 13, 18851, 13, 1136, 7, 705, 47423, 3256, 6045, 1267, 198, 220, 220, 220, 2604, 13, 24442, 7, 705, 22766, 11, 7559, 63, 4, 82, 15506, 63, 26, 12405, 62, 4906, 11, 7559, 63, 4, 82, 15506, 63, 26, 23838, 11, 7559, 63, 4, 82, 15506, 63, 6, 4064, 357, 22766, 11, 12405, 62, 4906, 11, 23838, 8, 1267, 198, 220, 220, 220, 1441, 357, 12405, 11, 12405, 62, 4906, 11, 23838, 1267, 628, 198, 4299, 26900, 62, 22766, 7, 12405, 15179, 198, 220, 220, 220, 37227, 28090, 12405, 329, 1365, 3049, 12, 5460, 4739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 34099, 416, 21136, 62, 22766, 3419, 37227, 198, 220, 220, 220, 611, 12405, 13, 9688, 2032, 342, 7, 705, 90, 6, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 33918, 13, 46030, 7, 22766, 8, 17816, 22766, 20520, 198, 220, 220, 220, 1288, 361, 705, 10786, 287, 12405, 290, 705, 33047, 287, 12405, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3293, 1806, 796, 12405, 58, 12405, 13, 19796, 10786, 10786, 47762, 16, 25, 22766, 13, 19796, 10786, 8, 11537, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7, 705, 7266, 8841, 11, 4600, 4, 82, 63, 6, 4064, 3293, 1806, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 9127, 796, 18896, 7, 3293, 1806, 13, 35312, 3419, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1573, 9127, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 13, 33491, 7, 29513, 3256, 10148, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 13, 33491, 7, 705, 8, 3256, 10148, 1267, 198, 220, 220, 220, 2604, 13, 24442, 7, 705, 22208, 1886, 12405, 11, 4600, 4, 82, 63, 6, 4064, 12405, 1267, 198, 220, 220, 220, 1441, 12405, 198 ]
2.453211
545
from setuptools import setup, find_packages setup( name="koala", version='0.0', description='Topological Amorphous quantum system simulations', long_description='', author="Peru D'Ornellas, Gino Cassella, Tom Hodson", author_email='', license='Apache Software License', home_page='', packages=find_packages('src'), package_dir={'': 'src'}, install_requires=[ 'numpy>=1.2', 'scipy', 'matplotlib', 'flake8', 'python-sat', 'pytest', 'pytest-cov', 'pytest-xdist', 'nbmake', 'pytest-github-actions-annotate-failures', ] )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 7204, 6081, 1600, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 3256, 198, 220, 220, 220, 6764, 11639, 9126, 2770, 1703, 13425, 516, 14821, 1080, 27785, 3256, 198, 220, 220, 220, 890, 62, 11213, 11639, 3256, 198, 220, 220, 220, 1772, 2625, 5990, 84, 360, 6, 5574, 10076, 292, 11, 402, 2879, 11294, 7255, 64, 11, 4186, 22816, 1559, 1600, 198, 220, 220, 220, 1772, 62, 12888, 11639, 3256, 198, 220, 220, 220, 5964, 11639, 25189, 4891, 10442, 13789, 3256, 198, 220, 220, 220, 1363, 62, 7700, 11639, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 10786, 10677, 33809, 198, 220, 220, 220, 5301, 62, 15908, 34758, 7061, 25, 705, 10677, 6, 5512, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 77, 32152, 29, 28, 16, 13, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1416, 541, 88, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6759, 29487, 8019, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47597, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29412, 12, 49720, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 12, 66, 709, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 12, 87, 17080, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 46803, 15883, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 12, 12567, 12, 4658, 12, 34574, 378, 12, 32165, 942, 3256, 198, 220, 220, 220, 2361, 198, 8, 198 ]
2.182432
296
import numpy as np
[ 11748, 299, 32152, 355, 45941, 198 ]
3.166667
6
# testPhiGradx.py # test the grad wrt x returned by trHess when nTh > 2 import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from src.Phi import * import torch.nn.utils doPlots = True d = 2 m = 5 nTh = 4 net = Phi(nTh=nTh, m=m, d=d) net.double() # vecParams = nn.utils.convert_parameters.parameters_to_vector(net.parameters()) x = torch.randn(1,3).type(torch.double) # AD grad x.requires_grad = True y = net(x) v = torch.randn(x.shape).type(torch.double) # ------------------------------------------------ # f # nablaPhi = net.trHess(x)[0] g = net.trHess(x)[0] niter = 20 h0 = 0.5 E0 = [] E1 = [] hlist = [] for i in range(niter): h = h0**i hlist.append(h) E0.append( torch.norm(net( x + h * v ) - net(x)) ) E1.append( torch.norm(net( x + h * v ) - net(x) - h * torch.matmul(g , v.t())) ) for i in range(niter): print("{:f} {:.6e} {:.6e}".format( hlist[i] , E0[i].item() , E1[i].item() )) if doPlots: plt.plot(hlist,E0, label='E0') plt.plot(hlist,E1, label='E1') plt.yscale('log') plt.xscale('log') plt.legend() plt.show() print("\n")
[ 2, 1332, 2725, 72, 42731, 87, 13, 9078, 198, 2, 1332, 262, 3915, 1319, 83, 2124, 4504, 416, 491, 39, 408, 618, 299, 817, 1875, 362, 198, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 10786, 51, 74, 46384, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 12351, 13, 2725, 72, 1330, 1635, 198, 11748, 28034, 13, 20471, 13, 26791, 198, 198, 4598, 3646, 1747, 796, 6407, 198, 198, 67, 796, 362, 198, 76, 796, 642, 198, 77, 817, 796, 604, 198, 198, 3262, 796, 47256, 7, 77, 817, 28, 77, 817, 11, 285, 28, 76, 11, 288, 28, 67, 8, 198, 3262, 13, 23352, 3419, 198, 198, 2, 43030, 10044, 4105, 796, 299, 77, 13, 26791, 13, 1102, 1851, 62, 17143, 7307, 13, 17143, 7307, 62, 1462, 62, 31364, 7, 3262, 13, 17143, 7307, 28955, 198, 87, 796, 28034, 13, 25192, 77, 7, 16, 11, 18, 737, 4906, 7, 13165, 354, 13, 23352, 8, 198, 2, 5984, 3915, 198, 87, 13, 47911, 62, 9744, 796, 6407, 198, 88, 796, 2010, 7, 87, 8, 198, 198, 85, 796, 28034, 13, 25192, 77, 7, 87, 13, 43358, 737, 4906, 7, 13165, 354, 13, 23352, 8, 198, 198, 2, 20368, 1783, 198, 2, 277, 198, 2, 47822, 5031, 2725, 72, 796, 2010, 13, 2213, 39, 408, 7, 87, 38381, 15, 60, 198, 198, 70, 796, 2010, 13, 2213, 39, 408, 7, 87, 38381, 15, 60, 628, 198, 77, 2676, 796, 1160, 198, 71, 15, 796, 657, 13, 20, 198, 36, 15, 796, 17635, 198, 36, 16, 796, 17635, 198, 71, 4868, 796, 17635, 628, 198, 1640, 1312, 287, 2837, 7, 77, 2676, 2599, 198, 220, 220, 220, 289, 796, 289, 15, 1174, 72, 198, 220, 220, 220, 289, 4868, 13, 33295, 7, 71, 8, 198, 220, 220, 220, 412, 15, 13, 33295, 7, 28034, 13, 27237, 7, 3262, 7, 2124, 1343, 289, 1635, 410, 1267, 532, 2010, 7, 87, 4008, 220, 1267, 198, 220, 220, 220, 412, 16, 13, 33295, 7, 28034, 13, 27237, 7, 3262, 7, 2124, 1343, 289, 1635, 410, 1267, 532, 2010, 7, 87, 8, 532, 289, 1635, 28034, 13, 6759, 76, 377, 7, 70, 837, 410, 13, 83, 3419, 4008, 220, 220, 1267, 198, 198, 1640, 1312, 287, 2837, 7, 77, 2676, 2599, 198, 220, 220, 220, 3601, 7203, 90, 25, 69, 92, 46110, 13, 21, 68, 92, 46110, 13, 21, 68, 92, 1911, 18982, 7, 289, 4868, 58, 72, 60, 837, 412, 15, 58, 72, 4083, 9186, 3419, 837, 412, 16, 58, 72, 4083, 9186, 3419, 15306, 198, 198, 361, 466, 3646, 1747, 25, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 71, 4868, 11, 36, 15, 11, 6167, 11639, 36, 15, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 71, 4868, 11, 36, 16, 11, 6167, 11639, 36, 16, 11537, 198, 220, 220, 220, 458, 83, 13, 28349, 1000, 10786, 6404, 11537, 198, 220, 220, 220, 458, 83, 13, 87, 9888, 10786, 6404, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 198, 4798, 7203, 59, 77, 4943 ]
2.12334
527
import os import torch import CubeNet.net import CubeNet.Picker import CubeNet.config network = CubeNet.net.UNet(); network.load_state_dict(torch.load(os.path.join(os.path.split(CubeNet.__file__)[0],'Para.pt'))); picker = CubeNet.Picker.IrrPicker(arr_info=CubeNet.config.arr_info, para_path = os.path.join(os.path.split(CubeNet.__file__)[0],'Para.pt'), net = network, predict_batch = CubeNet.config.basic_info['batch_size'], device = CubeNet.config.basic_info['device'])
[ 11748, 28686, 198, 11748, 28034, 198, 11748, 23315, 7934, 13, 3262, 198, 11748, 23315, 7934, 13, 47, 15799, 198, 11748, 23315, 7934, 13, 11250, 198, 198, 27349, 796, 23315, 7934, 13, 3262, 13, 4944, 316, 9783, 3127, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 35312, 7, 29071, 7934, 13, 834, 7753, 834, 38381, 15, 60, 4032, 47, 3301, 13, 457, 6, 4008, 1776, 198, 79, 15799, 796, 23315, 7934, 13, 47, 15799, 13, 40, 21062, 47, 15799, 7, 3258, 62, 10951, 28, 29071, 7934, 13, 11250, 13, 3258, 62, 10951, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31215, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 35312, 7, 29071, 7934, 13, 834, 7753, 834, 38381, 15, 60, 4032, 47, 3301, 13, 457, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 3127, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4331, 62, 43501, 796, 23315, 7934, 13, 11250, 13, 35487, 62, 10951, 17816, 43501, 62, 7857, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 23315, 7934, 13, 11250, 13, 35487, 62, 10951, 17816, 25202, 6, 12962, 198 ]
1.96129
310
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2019 Lorenzo Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from .abc import BaseObject from .ability import AbilityEffectChange from .common import APIObject, MachineVersionDetail, Name, NamedAPIObject, VerboseEffect __all__ = ( "Move", "MoveFlavorText", "MoveMetaData", "MoveStatChange", "PastMoveStatValues", "ContestComboDetail", "ContestComboSet" ) class Move(BaseObject): """Represents a move object from the API. .. versionadded:: 0.1.0a .. container:: operations .. describe:: str(x) Returns the move's name. .. describe:: x[y] Returns a move's y attribute. .. describe:: x == y Check if two moves are the same. .. describe:: x != y Check if two moves are *not* the same. Attributes ---------- id: :class:`int` The identifier for the move. name: :class:`str` The name for the move. accuracy: :class:`int` The percent value of how likely the move is to be successful. effect_chance: :class:`int` The percent value of how likely it is that the move's effect will happen. pp: :class:`int` Power points. The number of times the move can be used. power_points: :class:`int` An alias for pp. priority: :class:`int` A value between -8 and 8. Sets the order in which the move is executed during battle. power: :class:`int` The base power of the move with a value of 0 if it does not have a base power. contest_combos: :class:`ContestComboSets` A detail of normal and super contest combos that require the move. contest_type: :class:`NamedAPIObject` The type of appeal the move gives a Pokémon when used in a contest. contest_effect: :class:`APIObject` The effect the move has when used in a contest. super_contest_effect: :class:`APIObject` The effect the move has when used in a super contest. damage_class: :class:`NamedAPIObject` The type of damage the move inflicts on the target, e.g. physical. effect_entries: List[:class:`VerboseEffect`] The effect of the move listed in different languages. flavor_text_entries: List[:class:`MoveFlavorText`] The flavor text of the move listed in different languages. generation: :class:`NamedAPIObject` The generation in which the move was introduced. meta: :class:`MoveMetaData` Metadata about the move. names: List[:class:`Name`] The name of the move listed in different languages. past_values: List[:class:`PastMoveStatValues`] A list of move value changes across version groups of the game. stat_changes: List[:class:`MoveStatChange`] A list of stats this move effects and how much it effects them. effect_changes: List[:class:`AbilityEffectChange`] The list of previous effects the move has had across version groups of the games. target: :class:`NamedAPIObject` The type of target that will receive the effects of the move. type: :class:`NamedAPIObject` The elemental type of the move. machines: :class:`MachineVersionDetail` A list of the machines that teach this move.""" __slots__ = ( "accuracy", "effect_chance", "pp", "power_points", "priority", "power", "contest_type", "type", "target", "generation", "damage_class", "meta", "stat_changes", "names", "effect_entries", "flavor_text_entries", "past_values", "effect_changes", "contest_effect", "super_contest_effect", "machines" ) class MoveFlavorText: """Represents the flavor text of a move associated with a language. .. versionadded:: 0.1.0a Attributes ---------- flavor_text: :class:`str` The localized flavor text for the move in the associated language. language: :class:`NamedAPIObject` The language the text is in. version_group: :class:`NamedAPIObject` The version group that uses the text.""" __slots__ = ("flavor_text", "language", "version_group") class MoveMetaData: """Represents the metadata about a move. .. versionadded:: 0.1.0a Attributes ---------- ailment: :class:`NamedAPIObject` The status ailment the move inflicts on it's target. category: :class:`NamedAPIObject` The category of move the move falls under, e.g. damage or ailment. min_hits: Optional[:class:`int`] The minimum number of times the move hits. ``None`` if it always only hits once. max_hits: Optional[:class:`int`] The maximum number of times the move hits. ``None`` if it always only hits once. min_turns: Optional[:class:`int`] The minimum number of turns the move continues to take effect. ``None`` if it always only lasts one turn. max_turns: Optional[:class:`int`] The maximum number of turns the move continues to take effect. ``None`` if it always only lasts one turn. drain: :class:`int` HP drain (if positive) or recoil damage (if negative), in percent of damage done. healing: :class:`int` The amount of hp gained by the attacking Pokemon, in percent of it's maximum HP. crit_rate: :class:`int` Critical hit rate bonus. ailment_chance: :class:`int` The likelihood the move will cause an ailment. flinch_chance: :class:`int` The likelihood the move will cause the target Pokémon to flinch. stat_chance: :class:`int` The likelihood the mpve will cause a stat change in the target Pokémon. """ __slots__ = ( "ailment", "category", "min_hits", "max_hits", "min_turns", "max_turns", "drain", "healing", "crit_rate", "ailment_chance", "flinch_chance", "stat_chance" ) class MoveStatChange: """Represents a stat change in a :class:`move` .. versionadded:: 0.1.0a Attributes ---------- change: :class:`int` The amount of change. stat: :class:`NamedAPIObject` The stat being affected.""" __slots__ = ("change", "stat") class PastMoveStatValues: """Represents changed values of a :class:`Move` in a version group. .. versionadded:: 0.1.0a Attributes ---------- accuracy: :class:`int` The percent value of how likely the move is to be successful. effect_chance: :class:`int` The percent value of how likely it is the moves effect will take effect. power: :class:`int` The base power of the move with a value of 0 if it does not have a base power. pp: :class:`int` Power points. The number of times the move can be used. effect_entries: List[:class:`VerboseEffect`] The effect of the move listed in different languages. type: :class:`NamedAPIObject` The elemental type of the move. version_group: :class:`NamedAPIObject` The version group in which these move stat values were in effect.""" __slots__ = ("accuracy", "effect_chance", "power", "pp", "effect_entries", "type", "version_group") class ContestComboDetail: """Represents a detail of moves that can be used to grain additional appeal points in contests. .. versionadded:: 0.1.0a Attributes ---------- use_before: List[:class:`NamedAPIObject`] A list of moves to use before this move. use_after: List[:class:`str`] A list of moves to use after this move.""" __slots__ = ("use_before", "use_after") class ContestComboSet: """Represents a set of super and normal contest combos. .. versionadded:: 0.1.0a Attributes ---------- normal: :class:`ContestComboDetail` A detail of moves this move can be used before or after, granting additional appeal points in contests. super: :class:`ContestComboDetail` A detail of moves this move can be used before or after, granting additional appeal points in super contests.""" __slots__ = ("normal", "super")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 464, 17168, 13789, 357, 36393, 8, 198, 198, 15269, 357, 66, 8, 13130, 41721, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 198, 30073, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 198, 1462, 1730, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 198, 1169, 2489, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 198, 392, 14, 273, 3677, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 198, 25423, 318, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 439, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 198, 1581, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 198, 10913, 2662, 11, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 198, 7206, 1847, 20754, 3268, 3336, 47466, 13, 198, 37811, 198, 198, 6738, 764, 39305, 1330, 7308, 10267, 198, 6738, 764, 1799, 1330, 20737, 18610, 19400, 198, 6738, 764, 11321, 1330, 7824, 10267, 11, 10850, 14815, 11242, 603, 11, 6530, 11, 34441, 17614, 10267, 11, 49973, 577, 18610, 198, 198, 834, 439, 834, 796, 357, 198, 220, 220, 220, 366, 21774, 1600, 198, 220, 220, 220, 366, 21774, 7414, 5570, 8206, 1600, 198, 220, 220, 220, 366, 21774, 48526, 6601, 1600, 198, 220, 220, 220, 366, 21774, 17126, 19400, 1600, 198, 220, 220, 220, 366, 34533, 21774, 17126, 40161, 1600, 198, 220, 220, 220, 366, 4264, 395, 5377, 2127, 11242, 603, 1600, 198, 220, 220, 220, 366, 4264, 395, 5377, 2127, 7248, 1, 198, 8, 628, 198, 4871, 10028, 7, 14881, 10267, 2599, 198, 220, 220, 220, 37227, 6207, 6629, 257, 1445, 2134, 422, 262, 7824, 13, 628, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 15, 64, 628, 220, 220, 220, 11485, 9290, 3712, 4560, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 6901, 3712, 965, 7, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1445, 338, 1438, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 6901, 3712, 2124, 58, 88, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 1445, 338, 331, 11688, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 6901, 3712, 2124, 6624, 331, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6822, 611, 734, 6100, 389, 262, 976, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 6901, 3712, 2124, 14512, 331, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6822, 611, 734, 6100, 389, 1635, 1662, 9, 262, 976, 13, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4686, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 27421, 329, 262, 1445, 13, 198, 220, 220, 220, 1438, 25, 1058, 4871, 25, 63, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 329, 262, 1445, 13, 198, 220, 220, 220, 9922, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1411, 1988, 286, 703, 1884, 262, 1445, 318, 284, 307, 4388, 13, 198, 220, 220, 220, 1245, 62, 39486, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1411, 1988, 286, 703, 1884, 340, 318, 326, 262, 1445, 338, 1245, 481, 1645, 13, 198, 220, 220, 220, 9788, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 4333, 2173, 13, 383, 1271, 286, 1661, 262, 1445, 460, 307, 973, 13, 198, 220, 220, 220, 1176, 62, 13033, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 16144, 329, 9788, 13, 198, 220, 220, 220, 8475, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1988, 1022, 532, 23, 290, 807, 13, 21394, 262, 1502, 287, 543, 262, 1445, 318, 10945, 1141, 3344, 13, 198, 220, 220, 220, 1176, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2779, 1176, 286, 262, 1445, 351, 257, 1988, 286, 657, 611, 340, 857, 407, 423, 257, 2779, 1176, 13, 198, 220, 220, 220, 8414, 62, 24011, 418, 25, 1058, 4871, 25, 63, 4264, 395, 5377, 2127, 50, 1039, 63, 198, 220, 220, 220, 220, 220, 220, 220, 317, 3703, 286, 3487, 290, 2208, 8414, 33510, 326, 2421, 262, 1445, 13, 198, 220, 220, 220, 8414, 62, 4906, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2099, 286, 5198, 262, 1445, 3607, 257, 9887, 618, 973, 287, 257, 8414, 13, 198, 220, 220, 220, 8414, 62, 10760, 25, 1058, 4871, 25, 63, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1245, 262, 1445, 468, 618, 973, 287, 257, 8414, 13, 198, 220, 220, 220, 2208, 62, 3642, 395, 62, 10760, 25, 1058, 4871, 25, 63, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1245, 262, 1445, 468, 618, 973, 287, 257, 2208, 8414, 13, 198, 220, 220, 220, 2465, 62, 4871, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2099, 286, 2465, 262, 1445, 30333, 912, 319, 262, 2496, 11, 304, 13, 70, 13, 3518, 13, 198, 220, 220, 220, 1245, 62, 298, 1678, 25, 7343, 58, 25, 4871, 25, 63, 13414, 65, 577, 18610, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1245, 286, 262, 1445, 5610, 287, 1180, 8950, 13, 198, 220, 220, 220, 9565, 62, 5239, 62, 298, 1678, 25, 7343, 58, 25, 4871, 25, 63, 21774, 7414, 5570, 8206, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9565, 2420, 286, 262, 1445, 5610, 287, 1180, 8950, 13, 198, 220, 220, 220, 5270, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5270, 287, 543, 262, 1445, 373, 5495, 13, 198, 220, 220, 220, 13634, 25, 1058, 4871, 25, 63, 21774, 48526, 6601, 63, 198, 220, 220, 220, 220, 220, 220, 220, 3395, 14706, 546, 262, 1445, 13, 198, 220, 220, 220, 3891, 25, 7343, 58, 25, 4871, 25, 63, 5376, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 286, 262, 1445, 5610, 287, 1180, 8950, 13, 198, 220, 220, 220, 1613, 62, 27160, 25, 7343, 58, 25, 4871, 25, 63, 34533, 21774, 17126, 40161, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 1445, 1988, 2458, 1973, 2196, 2628, 286, 262, 983, 13, 198, 220, 220, 220, 1185, 62, 36653, 25, 7343, 58, 25, 4871, 25, 63, 21774, 17126, 19400, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 9756, 428, 1445, 3048, 290, 703, 881, 340, 3048, 606, 13, 198, 220, 220, 220, 1245, 62, 36653, 25, 7343, 58, 25, 4871, 25, 63, 22453, 18610, 19400, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 286, 2180, 3048, 262, 1445, 468, 550, 1973, 2196, 2628, 286, 262, 1830, 13, 198, 220, 220, 220, 2496, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2099, 286, 2496, 326, 481, 3328, 262, 3048, 286, 262, 1445, 13, 198, 220, 220, 220, 2099, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 25601, 2099, 286, 262, 1445, 13, 198, 220, 220, 220, 8217, 25, 1058, 4871, 25, 63, 37573, 14815, 11242, 603, 63, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 262, 8217, 326, 4545, 428, 1445, 526, 15931, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4134, 23843, 1600, 366, 10760, 62, 39486, 1600, 366, 381, 1600, 366, 6477, 62, 13033, 1600, 366, 49336, 1600, 366, 6477, 1600, 366, 3642, 395, 62, 4906, 1600, 366, 4906, 1600, 366, 16793, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20158, 1600, 366, 28735, 62, 4871, 1600, 366, 28961, 1600, 366, 14269, 62, 36653, 1600, 366, 14933, 1600, 366, 10760, 62, 298, 1678, 1600, 366, 2704, 5570, 62, 5239, 62, 298, 1678, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30119, 62, 27160, 1600, 366, 10760, 62, 36653, 1600, 366, 3642, 395, 62, 10760, 1600, 366, 16668, 62, 3642, 395, 62, 10760, 1600, 366, 76, 620, 1127, 1, 198, 220, 220, 220, 1267, 628, 198, 4871, 10028, 7414, 5570, 8206, 25, 198, 220, 220, 220, 37227, 6207, 6629, 262, 9565, 2420, 286, 257, 1445, 3917, 351, 257, 3303, 13, 628, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 15, 64, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 9565, 62, 5239, 25, 1058, 4871, 25, 63, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 36618, 9565, 2420, 329, 262, 1445, 287, 262, 3917, 3303, 13, 198, 220, 220, 220, 3303, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3303, 262, 2420, 318, 287, 13, 198, 220, 220, 220, 2196, 62, 8094, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2196, 1448, 326, 3544, 262, 2420, 526, 15931, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 5855, 2704, 5570, 62, 5239, 1600, 366, 16129, 1600, 366, 9641, 62, 8094, 4943, 628, 198, 4871, 10028, 48526, 6601, 25, 198, 220, 220, 220, 37227, 6207, 6629, 262, 20150, 546, 257, 1445, 13, 628, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 15, 64, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 31907, 434, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3722, 31907, 434, 262, 1445, 30333, 912, 319, 340, 338, 2496, 13, 198, 220, 220, 220, 6536, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6536, 286, 1445, 262, 1445, 8953, 739, 11, 304, 13, 70, 13, 2465, 393, 31907, 434, 13, 198, 220, 220, 220, 949, 62, 71, 896, 25, 32233, 58, 25, 4871, 25, 63, 600, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 1271, 286, 1661, 262, 1445, 7127, 13, 7559, 14202, 15506, 611, 340, 1464, 691, 7127, 1752, 13, 198, 220, 220, 220, 3509, 62, 71, 896, 25, 32233, 58, 25, 4871, 25, 63, 600, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 1661, 262, 1445, 7127, 13, 7559, 14202, 15506, 611, 340, 1464, 691, 7127, 1752, 13, 198, 220, 220, 220, 949, 62, 15344, 82, 25, 32233, 58, 25, 4871, 25, 63, 600, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 1271, 286, 4962, 262, 1445, 4477, 284, 1011, 1245, 13, 7559, 14202, 15506, 611, 340, 1464, 691, 20374, 530, 1210, 13, 198, 220, 220, 220, 3509, 62, 15344, 82, 25, 32233, 58, 25, 4871, 25, 63, 600, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 4962, 262, 1445, 4477, 284, 1011, 1245, 13, 7559, 14202, 15506, 611, 340, 1464, 691, 20374, 530, 1210, 13, 198, 220, 220, 220, 14782, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 6574, 14782, 357, 361, 3967, 8, 393, 30476, 2465, 357, 361, 4633, 828, 287, 1411, 286, 2465, 1760, 13, 198, 220, 220, 220, 11516, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2033, 286, 27673, 8618, 416, 262, 9274, 14878, 11, 287, 1411, 286, 340, 338, 5415, 6574, 13, 198, 220, 220, 220, 1955, 62, 4873, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 17684, 2277, 2494, 7202, 13, 198, 220, 220, 220, 31907, 434, 62, 39486, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 14955, 262, 1445, 481, 2728, 281, 31907, 434, 13, 198, 220, 220, 220, 781, 8589, 62, 39486, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 14955, 262, 1445, 481, 2728, 262, 2496, 9887, 284, 781, 8589, 13, 198, 220, 220, 220, 1185, 62, 39486, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 14955, 262, 29034, 303, 481, 2728, 257, 1185, 1487, 287, 262, 2496, 9887, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 603, 434, 1600, 366, 22872, 1600, 366, 1084, 62, 71, 896, 1600, 366, 9806, 62, 71, 896, 1600, 366, 1084, 62, 15344, 82, 1600, 366, 9806, 62, 15344, 82, 1600, 366, 67, 3201, 1600, 366, 258, 4272, 1600, 366, 22213, 62, 4873, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 603, 434, 62, 39486, 1600, 366, 2704, 8589, 62, 39486, 1600, 366, 14269, 62, 39486, 1, 198, 220, 220, 220, 1267, 628, 198, 4871, 10028, 17126, 19400, 25, 198, 220, 220, 220, 37227, 6207, 6629, 257, 1185, 1487, 287, 257, 1058, 4871, 25, 63, 21084, 63, 628, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 15, 64, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1487, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2033, 286, 1487, 13, 198, 220, 220, 220, 1185, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1185, 852, 5676, 526, 15931, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 5855, 3803, 1600, 366, 14269, 4943, 628, 198, 4871, 11303, 21774, 17126, 40161, 25, 198, 220, 220, 220, 37227, 6207, 6629, 3421, 3815, 286, 257, 1058, 4871, 25, 63, 21774, 63, 287, 257, 2196, 1448, 13, 628, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 15, 64, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 9922, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1411, 1988, 286, 703, 1884, 262, 1445, 318, 284, 307, 4388, 13, 198, 220, 220, 220, 1245, 62, 39486, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1411, 1988, 286, 703, 1884, 340, 318, 262, 6100, 1245, 481, 1011, 1245, 13, 198, 220, 220, 220, 1176, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2779, 1176, 286, 262, 1445, 351, 257, 1988, 286, 657, 611, 340, 857, 407, 423, 257, 2779, 1176, 13, 198, 220, 220, 220, 9788, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 4333, 2173, 13, 383, 1271, 286, 1661, 262, 1445, 460, 307, 973, 13, 198, 220, 220, 220, 1245, 62, 298, 1678, 25, 7343, 58, 25, 4871, 25, 63, 13414, 65, 577, 18610, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1245, 286, 262, 1445, 5610, 287, 1180, 8950, 13, 198, 220, 220, 220, 2099, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 25601, 2099, 286, 262, 1445, 13, 198, 220, 220, 220, 2196, 62, 8094, 25, 1058, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2196, 1448, 287, 543, 777, 1445, 1185, 3815, 547, 287, 1245, 526, 15931, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 5855, 4134, 23843, 1600, 366, 10760, 62, 39486, 1600, 366, 6477, 1600, 366, 381, 1600, 366, 10760, 62, 298, 1678, 1600, 366, 4906, 1600, 366, 9641, 62, 8094, 4943, 628, 198, 4871, 27297, 5377, 2127, 11242, 603, 25, 198, 220, 220, 220, 37227, 6207, 6629, 257, 3703, 286, 6100, 326, 460, 307, 973, 284, 13020, 3224, 198, 220, 220, 220, 5198, 2173, 287, 22830, 13, 628, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 15, 64, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 779, 62, 19052, 25, 7343, 58, 25, 4871, 25, 63, 45, 2434, 17614, 10267, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 6100, 284, 779, 878, 428, 1445, 13, 198, 220, 220, 220, 779, 62, 8499, 25, 7343, 58, 25, 4871, 25, 63, 2536, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 6100, 284, 779, 706, 428, 1445, 526, 15931, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 5855, 1904, 62, 19052, 1600, 366, 1904, 62, 8499, 4943, 628, 198, 4871, 27297, 5377, 2127, 7248, 25, 198, 220, 220, 220, 37227, 6207, 6629, 257, 900, 286, 2208, 290, 3487, 8414, 33510, 13, 628, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 15, 64, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3487, 25, 1058, 4871, 25, 63, 4264, 395, 5377, 2127, 11242, 603, 63, 198, 220, 220, 220, 220, 220, 220, 220, 317, 3703, 286, 6100, 428, 1445, 460, 307, 973, 878, 393, 706, 11, 21787, 3224, 5198, 2173, 287, 22830, 13, 198, 220, 220, 220, 2208, 25, 1058, 4871, 25, 63, 4264, 395, 5377, 2127, 11242, 603, 63, 198, 220, 220, 220, 220, 220, 220, 220, 317, 3703, 286, 6100, 428, 1445, 460, 307, 973, 878, 393, 706, 11, 21787, 3224, 5198, 2173, 287, 2208, 22830, 526, 15931, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 5855, 11265, 1600, 366, 16668, 4943, 198 ]
2.853342
3,157
#!/usr/bin/env python # coding: utf-8 # In[8]: import numpy as np import matplotlib.pyplot as plt import seaborn as sns; sns.set() ranstat = np.random.RandomState(1) P = np.dot(ranstat.rand(2, 2), ranstat.randn(2, 600)).T plt.scatter(P[:, 0], P[:, 1]) plt.axis('equal'); # In[ ]: # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 23, 5974, 628, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 26, 3013, 82, 13, 2617, 3419, 220, 220, 198, 2596, 14269, 796, 45941, 13, 25120, 13, 29531, 9012, 7, 16, 8, 198, 47, 796, 45941, 13, 26518, 7, 2596, 14269, 13, 25192, 7, 17, 11, 362, 828, 4966, 14269, 13, 25192, 77, 7, 17, 11, 10053, 29720, 51, 198, 489, 83, 13, 1416, 1436, 7, 47, 58, 45299, 657, 4357, 350, 58, 45299, 352, 12962, 198, 489, 83, 13, 22704, 10786, 40496, 24036, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 198, 2, 554, 58, 2361, 25, 628, 628, 198 ]
2.163121
141
from typing import Optional from functools import wraps from io import StringIO from sh import RunningCommand from requests.exceptions import ConnectionError, HTTPError from firepy.connection import Connection from firepy.exceptions import err_from_stderr, FirecrackerApiError from firepy.utils.network_utils import network_mac, network_tap_name from firepy.utils.firecracker_utils import kernel_boot_args from firepy.utils.logging_utils import logger def handle_errors(func): """Decorator that humanizes exceptions. It - parses firecracker HTTP responses - checks instance stderr for error messages """ @wraps(func) return wrapper
[ 6738, 19720, 1330, 32233, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 33245, 1330, 10903, 9399, 198, 6738, 427, 1330, 18162, 21575, 198, 6738, 7007, 13, 1069, 11755, 1330, 26923, 12331, 11, 14626, 12331, 198, 6738, 2046, 9078, 13, 38659, 1330, 26923, 198, 6738, 2046, 9078, 13, 1069, 11755, 1330, 11454, 62, 6738, 62, 301, 1082, 81, 11, 3764, 6098, 10735, 32, 14415, 12331, 198, 6738, 2046, 9078, 13, 26791, 13, 27349, 62, 26791, 1330, 3127, 62, 20285, 11, 3127, 62, 44335, 62, 3672, 198, 6738, 2046, 9078, 13, 26791, 13, 6495, 6098, 10735, 62, 26791, 1330, 9720, 62, 18769, 62, 22046, 198, 6738, 2046, 9078, 13, 26791, 13, 6404, 2667, 62, 26791, 1330, 49706, 628, 198, 4299, 5412, 62, 48277, 7, 20786, 2599, 198, 220, 220, 220, 37227, 10707, 273, 1352, 326, 1692, 4340, 13269, 13, 628, 220, 220, 220, 632, 198, 220, 220, 220, 532, 13544, 274, 2046, 6098, 10735, 14626, 9109, 198, 220, 220, 220, 532, 8794, 4554, 336, 1082, 81, 329, 4049, 6218, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 29988, 862, 7, 20786, 8, 198, 220, 220, 220, 1441, 29908, 628 ]
3.494737
190
import datetime import json import logging from collections import OrderedDict from typing import List, Any, Dict import guacamol from guacamol.goal_directed_benchmark import GoalDirectedBenchmark, GoalDirectedBenchmarkResult from guacamol.goal_directed_generator import GoalDirectedGenerator from guacamol.benchmark_suites import goal_directed_benchmark_suite from guacamol.utils.data import get_time_string logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def assess_goal_directed_generation(goal_directed_molecule_generator: GoalDirectedGenerator, json_output_file='output_goal_directed.json', benchmark_version='v1') -> None: """ Assesses a distribution-matching model for de novo molecule design. Args: goal_directed_molecule_generator: Model to evaluate json_output_file: Name of the file where to save the results in JSON format benchmark_version: which benchmark suite to execute """ logger.info(f'Benchmarking goal-directed molecule generation, version {benchmark_version}') benchmarks = goal_directed_benchmark_suite(version_name=benchmark_version) results = _evaluate_goal_directed_benchmarks( goal_directed_molecule_generator=goal_directed_molecule_generator, benchmarks=benchmarks) benchmark_results: Dict[str, Any] = OrderedDict() benchmark_results['guacamol_version'] = guacamol.__version__ benchmark_results['benchmark_suite_version'] = benchmark_version benchmark_results['timestamp'] = get_time_string() benchmark_results['results'] = [vars(result) for result in results] logger.info(f'Save results to file {json_output_file}') with open(json_output_file, 'wt') as f: f.write(json.dumps(benchmark_results, indent=4)) def _evaluate_goal_directed_benchmarks(goal_directed_molecule_generator: GoalDirectedGenerator, benchmarks: List[GoalDirectedBenchmark] ) -> List[GoalDirectedBenchmarkResult]: """ Evaluate a model with the given benchmarks. Should not be called directly except for testing purposes. Args: goal_directed_molecule_generator: model to assess benchmarks: list of benchmarks to evaluate json_output_file: Name of the file where to save the results in JSON format """ logger.info(f'Number of benchmarks: {len(benchmarks)}') results = [] for i, benchmark in enumerate(benchmarks, 1): logger.info(f'Running benchmark {i}/{len(benchmarks)}: {benchmark.name}') result = benchmark.assess_model(goal_directed_molecule_generator) logger.info(f'Results for the benchmark "{result.benchmark_name}":') logger.info(f' Score: {result.score:.6f}') logger.info(f' Execution time: {str(datetime.timedelta(seconds=int(result.execution_time)))}') logger.info(f' Metadata: {result.metadata}') results.append(result) logger.info('Finished execution of the benchmarks') return results
[ 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 18931, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 19720, 1330, 7343, 11, 4377, 11, 360, 713, 198, 198, 11748, 915, 330, 321, 349, 198, 6738, 915, 330, 321, 349, 13, 35231, 62, 34762, 62, 26968, 4102, 1330, 25376, 13470, 276, 44199, 4102, 11, 25376, 13470, 276, 44199, 4102, 23004, 198, 6738, 915, 330, 321, 349, 13, 35231, 62, 34762, 62, 8612, 1352, 1330, 25376, 13470, 276, 8645, 1352, 198, 6738, 915, 330, 321, 349, 13, 26968, 4102, 62, 2385, 2737, 1330, 3061, 62, 34762, 62, 26968, 4102, 62, 2385, 578, 198, 6738, 915, 330, 321, 349, 13, 26791, 13, 7890, 1330, 651, 62, 2435, 62, 8841, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 1362, 13, 2860, 25060, 7, 6404, 2667, 13, 35067, 25060, 28955, 628, 198, 4299, 4659, 62, 35231, 62, 34762, 62, 20158, 7, 35231, 62, 34762, 62, 76, 2305, 23172, 62, 8612, 1352, 25, 25376, 13470, 276, 8645, 1352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 22915, 62, 7753, 11639, 22915, 62, 35231, 62, 34762, 13, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18335, 62, 9641, 11639, 85, 16, 11537, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2195, 44667, 257, 6082, 12, 15699, 278, 2746, 329, 390, 645, 13038, 27756, 1486, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3061, 62, 34762, 62, 76, 2305, 23172, 62, 8612, 1352, 25, 9104, 284, 13446, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 22915, 62, 7753, 25, 6530, 286, 262, 2393, 810, 284, 3613, 262, 2482, 287, 19449, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 18335, 62, 9641, 25, 543, 18335, 18389, 284, 12260, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 44199, 4102, 278, 3061, 12, 34762, 27756, 5270, 11, 2196, 1391, 26968, 4102, 62, 9641, 92, 11537, 198, 220, 220, 220, 31747, 796, 3061, 62, 34762, 62, 26968, 4102, 62, 2385, 578, 7, 9641, 62, 3672, 28, 26968, 4102, 62, 9641, 8, 628, 220, 220, 220, 2482, 796, 4808, 49786, 62, 35231, 62, 34762, 62, 26968, 14306, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3061, 62, 34762, 62, 76, 2305, 23172, 62, 8612, 1352, 28, 35231, 62, 34762, 62, 76, 2305, 23172, 62, 8612, 1352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 31747, 28, 26968, 14306, 8, 628, 220, 220, 220, 18335, 62, 43420, 25, 360, 713, 58, 2536, 11, 4377, 60, 796, 14230, 1068, 35, 713, 3419, 198, 220, 220, 220, 18335, 62, 43420, 17816, 5162, 330, 321, 349, 62, 9641, 20520, 796, 915, 330, 321, 349, 13, 834, 9641, 834, 198, 220, 220, 220, 18335, 62, 43420, 17816, 26968, 4102, 62, 2385, 578, 62, 9641, 20520, 796, 18335, 62, 9641, 198, 220, 220, 220, 18335, 62, 43420, 17816, 16514, 27823, 20520, 796, 651, 62, 2435, 62, 8841, 3419, 198, 220, 220, 220, 18335, 62, 43420, 17816, 43420, 20520, 796, 685, 85, 945, 7, 20274, 8, 329, 1255, 287, 2482, 60, 628, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 16928, 2482, 284, 2393, 1391, 17752, 62, 22915, 62, 7753, 92, 11537, 198, 220, 220, 220, 351, 1280, 7, 17752, 62, 22915, 62, 7753, 11, 705, 46569, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 17752, 13, 67, 8142, 7, 26968, 4102, 62, 43420, 11, 33793, 28, 19, 4008, 628, 198, 4299, 4808, 49786, 62, 35231, 62, 34762, 62, 26968, 14306, 7, 35231, 62, 34762, 62, 76, 2305, 23172, 62, 8612, 1352, 25, 25376, 13470, 276, 8645, 1352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31747, 25, 7343, 58, 49045, 13470, 276, 44199, 4102, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 4613, 7343, 58, 49045, 13470, 276, 44199, 4102, 23004, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26439, 4985, 257, 2746, 351, 262, 1813, 31747, 13, 198, 220, 220, 220, 10358, 407, 307, 1444, 3264, 2845, 329, 4856, 4959, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3061, 62, 34762, 62, 76, 2305, 23172, 62, 8612, 1352, 25, 2746, 284, 4659, 198, 220, 220, 220, 220, 220, 220, 220, 31747, 25, 1351, 286, 31747, 284, 13446, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 22915, 62, 7753, 25, 6530, 286, 262, 2393, 810, 284, 3613, 262, 2482, 287, 19449, 5794, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 15057, 286, 31747, 25, 1391, 11925, 7, 26968, 14306, 38165, 11537, 628, 220, 220, 220, 2482, 796, 17635, 198, 220, 220, 220, 329, 1312, 11, 18335, 287, 27056, 378, 7, 26968, 14306, 11, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 28768, 18335, 1391, 72, 92, 14, 90, 11925, 7, 26968, 14306, 38165, 25, 1391, 26968, 4102, 13, 3672, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 18335, 13, 562, 408, 62, 19849, 7, 35231, 62, 34762, 62, 76, 2305, 23172, 62, 8612, 1352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 25468, 329, 262, 18335, 45144, 20274, 13, 26968, 4102, 62, 3672, 92, 1298, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 220, 15178, 25, 1391, 20274, 13, 26675, 25, 13, 21, 69, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 220, 37497, 640, 25, 1391, 2536, 7, 19608, 8079, 13, 16514, 276, 12514, 7, 43012, 28, 600, 7, 20274, 13, 18558, 1009, 62, 2435, 22305, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 220, 3395, 14706, 25, 1391, 20274, 13, 38993, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 13, 33295, 7, 20274, 8, 628, 220, 220, 220, 49706, 13, 10951, 10786, 18467, 1348, 9706, 286, 262, 31747, 11537, 628, 220, 220, 220, 1441, 2482, 198 ]
2.703993
1,152
#!/usr/bin/env python3 # Copyright (C) 2017 Roland Lutz # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import getopt, os, re, sys import icebox GLB_NETWK_EXTERNAL_BLOCKS = [(13, 8, 1), (0, 8, 1), (7, 17, 0), (7, 0, 0), (0, 9, 0), (13, 9, 0), (6, 0, 1), (6, 17, 1)] GLB_NETWK_INTERNAL_TILES = [(7, 0), (7, 17), (13, 9), (0, 9), (6, 17), (6, 0), (0, 8), (13, 8)] ## Get the global name of a net. # # \param x, y coordinates of the tile to which the net belongs # \param fw, fh width and height of the tile fabric (excluding I/O tiles) # \param net net name # # \return the global name of the net if it is a span wire, otherwise # the unmodified net name # # There are 46624 span wires on the 1k (not counting dummies): # # span4_x[1..12]_g[1..20]_[0..11] # span4_y[1..16]_g[1..16]_[0..11] # span12_x[1..12]_g[1..28]_[0..1] # span12_y[1..16]_g[1..24]_[0..1] # # span4_left_g[3..16]_[0..3] # span4_right_g[5..18]_[0..3] # span4_bottom_g[3..12]_[0..3] # span4_top_g[5..14]_[0..3] # # span4_topleft[2,4,6,8]_[0..3] # span4_bottomright[2,4,6,8]_[0..3] # # dummy_y[1..16]_g[0..3]_[0..11] # # "Dummy" nets are horizontal accesses to non-existing vertical span # wires on the right edge which are listed by icebox but don't # actually connect to anything outside the tile itself. ## Return the human-readable name of the \c fabout net of IO tile ## <tt>(x, y)</tt>. ## Remove an argument from a LUT string and an associated list of ## argument names. # # This is a helper function for \ref lut_to_logic_expression. # # \param lut string of 2^N `0' or `1' characters representing the # logic of an Nx1 look-up table # \param args list of N strings containing the human-readable names # of the arguments # \param i index of the argument to remove # \param keep boolean value indicating which value of the removed # argument is to be assumed in the resulting LUT # # \return a new pair <tt>(lut, args)</tt> with the argument removed ## Negate a tuple representation of a logic expression. # # This is a helper function for \ref lut_to_logic_expression. ## Convert a tuple representation of a logic expression into a string. # # This is a helper function for \ref lut_to_logic_expression. # # \param expr the expression to convert # \param parenthize whether a compound expression should be # surrounded by parentheses ## Remove arguments which don't affect the result from a LUT string ## and an associated list of argument names. # # This is a helper function for \ref lut_to_logic_expression. # # \param lut string of 2^N `0' or `1' characters representing the # logic of an Nx1 look-up table # \param args list of N strings containing the human-readable names # of the arguments # # \return a new pair <tt>(lut, args)</tt> with all unused arguments # removed ## Convert a LUT string to a logic expression. # # \param lut string of 2^N `0' or `1' characters representing the # logic of an Nx1 look-up table # \param args list of N strings containing the human-readable names # of the arguments # # \return a string containing a human-readable logic expression # equivalent to the look-up table # # Example: lut_to_logic_expression('00010000', ['a', 'b', 'c']) -> 'a & b & !c' if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 357, 34, 8, 2177, 220, 29761, 406, 27839, 198, 2, 198, 2, 2448, 3411, 284, 779, 11, 4866, 11, 13096, 11, 290, 14, 273, 14983, 428, 3788, 329, 597, 198, 2, 4007, 351, 393, 1231, 6838, 318, 29376, 7520, 11, 2810, 326, 262, 2029, 198, 2, 6634, 4003, 290, 428, 7170, 4003, 1656, 287, 477, 9088, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1, 5357, 3336, 44746, 13954, 48778, 50, 11096, 34764, 11015, 198, 2, 13315, 23337, 9795, 5390, 12680, 47466, 47783, 2751, 11096, 8959, 49094, 34764, 11015, 3963, 198, 2, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 13, 3268, 8005, 49261, 50163, 3336, 44746, 9348, 43031, 19146, 7473, 198, 2, 15529, 38846, 11, 42242, 11, 3268, 17931, 23988, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 6375, 15529, 29506, 25552, 198, 2, 25003, 15821, 36, 5959, 15731, 16724, 2751, 16034, 406, 18420, 3963, 23210, 11, 42865, 6375, 4810, 19238, 29722, 11, 7655, 2767, 16879, 3268, 3537, 198, 2, 40282, 3963, 27342, 10659, 11, 399, 7156, 43, 3528, 18310, 6375, 25401, 309, 9863, 40, 20958, 40282, 11, 5923, 1797, 2751, 16289, 3963, 198, 2, 6375, 3268, 7102, 45, 24565, 13315, 3336, 23210, 6375, 19878, 13775, 10725, 5222, 3963, 12680, 47466, 13, 198, 198, 11748, 651, 8738, 11, 28686, 11, 302, 11, 25064, 198, 11748, 4771, 3524, 198, 198, 8763, 33, 62, 12884, 54, 42, 62, 6369, 31800, 1847, 62, 9148, 11290, 50, 796, 47527, 1485, 11, 807, 11, 352, 828, 357, 15, 11, 807, 11, 352, 828, 357, 22, 11, 1596, 11, 657, 828, 357, 22, 11, 657, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15, 11, 860, 11, 657, 828, 357, 1485, 11, 860, 11, 657, 828, 357, 21, 11, 657, 11, 352, 828, 357, 21, 11, 1596, 11, 352, 15437, 198, 8763, 33, 62, 12884, 54, 42, 62, 1268, 31800, 1847, 62, 51, 4146, 1546, 796, 47527, 22, 11, 657, 828, 357, 22, 11, 1596, 828, 357, 1485, 11, 860, 828, 357, 15, 11, 860, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 21, 11, 1596, 828, 357, 21, 11, 657, 828, 357, 15, 11, 807, 828, 357, 1485, 11, 807, 15437, 628, 198, 2235, 3497, 262, 3298, 1438, 286, 257, 2010, 13, 198, 2, 198, 2, 3467, 17143, 2124, 11, 331, 220, 220, 220, 22715, 286, 262, 17763, 284, 543, 262, 2010, 14448, 198, 2, 3467, 17143, 277, 86, 11, 277, 71, 220, 9647, 290, 6001, 286, 262, 17763, 9664, 357, 42218, 314, 14, 46, 19867, 8, 198, 2, 3467, 17143, 2010, 220, 220, 220, 220, 2010, 1438, 198, 2, 198, 2, 3467, 7783, 262, 3298, 1438, 286, 262, 2010, 611, 340, 318, 257, 11506, 6503, 11, 4306, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 262, 555, 41771, 2010, 1438, 198, 2, 198, 2, 1318, 389, 604, 2791, 1731, 11506, 19474, 319, 262, 352, 74, 357, 1662, 14143, 288, 39578, 2599, 198, 2, 198, 2, 11506, 19, 62, 87, 58, 16, 492, 1065, 60, 62, 70, 58, 16, 492, 1238, 60, 62, 58, 15, 492, 1157, 60, 198, 2, 11506, 19, 62, 88, 58, 16, 492, 1433, 60, 62, 70, 58, 16, 492, 1433, 60, 62, 58, 15, 492, 1157, 60, 198, 2, 11506, 1065, 62, 87, 58, 16, 492, 1065, 60, 62, 70, 58, 16, 492, 2078, 60, 62, 58, 15, 492, 16, 60, 198, 2, 11506, 1065, 62, 88, 58, 16, 492, 1433, 60, 62, 70, 58, 16, 492, 1731, 60, 62, 58, 15, 492, 16, 60, 198, 2, 198, 2, 11506, 19, 62, 9464, 62, 70, 58, 18, 492, 1433, 60, 62, 58, 15, 492, 18, 60, 198, 2, 11506, 19, 62, 3506, 62, 70, 58, 20, 492, 1507, 60, 62, 58, 15, 492, 18, 60, 198, 2, 11506, 19, 62, 22487, 62, 70, 58, 18, 492, 1065, 60, 62, 58, 15, 492, 18, 60, 198, 2, 11506, 19, 62, 4852, 62, 70, 58, 20, 492, 1415, 60, 62, 58, 15, 492, 18, 60, 198, 2, 198, 2, 11506, 19, 62, 83, 643, 701, 58, 17, 11, 19, 11, 21, 11, 23, 60, 62, 58, 15, 492, 18, 60, 198, 2, 11506, 19, 62, 22487, 3506, 58, 17, 11, 19, 11, 21, 11, 23, 60, 62, 58, 15, 492, 18, 60, 198, 2, 198, 2, 31548, 62, 88, 58, 16, 492, 1433, 60, 62, 70, 58, 15, 492, 18, 60, 62, 58, 15, 492, 1157, 60, 198, 2, 198, 2, 366, 35, 13513, 1, 31720, 389, 16021, 1895, 274, 284, 1729, 12, 25687, 11723, 11506, 198, 2, 19474, 319, 262, 826, 5743, 543, 389, 5610, 416, 4771, 3524, 475, 836, 470, 198, 2, 1682, 2018, 284, 1997, 2354, 262, 17763, 2346, 13, 198, 198, 2235, 8229, 262, 1692, 12, 46155, 1438, 286, 262, 3467, 66, 7843, 448, 2010, 286, 24418, 17763, 198, 2235, 1279, 926, 33994, 87, 11, 331, 36475, 926, 28401, 628, 198, 2235, 17220, 281, 4578, 422, 257, 406, 3843, 4731, 290, 281, 3917, 1351, 286, 198, 2235, 4578, 3891, 13, 198, 2, 198, 2, 770, 318, 257, 31904, 2163, 329, 3467, 5420, 300, 315, 62, 1462, 62, 6404, 291, 62, 38011, 13, 198, 2, 198, 2, 3467, 17143, 300, 315, 220, 220, 4731, 286, 362, 61, 45, 4600, 15, 6, 393, 4600, 16, 6, 3435, 10200, 262, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9156, 286, 281, 399, 87, 16, 804, 12, 929, 3084, 198, 2, 3467, 17143, 26498, 220, 1351, 286, 399, 13042, 7268, 262, 1692, 12, 46155, 3891, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 7159, 198, 2, 3467, 17143, 1312, 220, 220, 220, 220, 6376, 286, 262, 4578, 284, 4781, 198, 2, 3467, 17143, 1394, 220, 25131, 1988, 12739, 543, 1988, 286, 262, 4615, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 284, 307, 9672, 287, 262, 7186, 406, 3843, 198, 2, 198, 2, 3467, 7783, 257, 649, 5166, 1279, 926, 33994, 75, 315, 11, 26498, 36475, 926, 29, 351, 262, 4578, 4615, 198, 198, 2235, 13496, 378, 257, 46545, 10552, 286, 257, 9156, 5408, 13, 198, 2, 198, 2, 770, 318, 257, 31904, 2163, 329, 3467, 5420, 300, 315, 62, 1462, 62, 6404, 291, 62, 38011, 13, 198, 198, 2235, 38240, 257, 46545, 10552, 286, 257, 9156, 5408, 656, 257, 4731, 13, 198, 2, 198, 2, 770, 318, 257, 31904, 2163, 329, 3467, 5420, 300, 315, 62, 1462, 62, 6404, 291, 62, 38011, 13, 198, 2, 198, 2, 3467, 17143, 44052, 220, 220, 220, 220, 220, 220, 220, 262, 5408, 284, 10385, 198, 2, 3467, 17143, 279, 5757, 400, 1096, 220, 1771, 257, 13061, 5408, 815, 307, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11191, 416, 46672, 198, 198, 2235, 17220, 7159, 543, 836, 470, 2689, 262, 1255, 422, 257, 406, 3843, 4731, 198, 2235, 290, 281, 3917, 1351, 286, 4578, 3891, 13, 198, 2, 198, 2, 770, 318, 257, 31904, 2163, 329, 3467, 5420, 300, 315, 62, 1462, 62, 6404, 291, 62, 38011, 13, 198, 2, 198, 2, 3467, 17143, 300, 315, 220, 220, 4731, 286, 362, 61, 45, 4600, 15, 6, 393, 4600, 16, 6, 3435, 10200, 262, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9156, 286, 281, 399, 87, 16, 804, 12, 929, 3084, 198, 2, 3467, 17143, 26498, 220, 1351, 286, 399, 13042, 7268, 262, 1692, 12, 46155, 3891, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 7159, 198, 2, 198, 2, 3467, 7783, 257, 649, 5166, 1279, 926, 33994, 75, 315, 11, 26498, 36475, 926, 29, 351, 477, 21958, 7159, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4615, 198, 198, 2235, 38240, 257, 406, 3843, 4731, 284, 257, 9156, 5408, 13, 198, 2, 198, 2, 3467, 17143, 300, 315, 220, 220, 4731, 286, 362, 61, 45, 4600, 15, 6, 393, 4600, 16, 6, 3435, 10200, 262, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9156, 286, 281, 399, 87, 16, 804, 12, 929, 3084, 198, 2, 3467, 17143, 26498, 220, 1351, 286, 399, 13042, 7268, 262, 1692, 12, 46155, 3891, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 7159, 198, 2, 198, 2, 3467, 7783, 257, 4731, 7268, 257, 1692, 12, 46155, 9156, 5408, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 7548, 284, 262, 804, 12, 929, 3084, 198, 2, 198, 2, 17934, 25, 300, 315, 62, 1462, 62, 6404, 291, 62, 38011, 10786, 18005, 2388, 3256, 37250, 64, 3256, 705, 65, 3256, 705, 66, 6, 12962, 4613, 705, 64, 1222, 275, 1222, 5145, 66, 6, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.642674
1,556
import time import numpy as np from remio import MJPEGEncoder encoderParams = { "quality": 60, "colorspace": "bgr", "colorsubsampling": "422", "fastdct": True, } def test_encoder(): """Test socket encoder class.""" max_encoding_time = 0.02 # seconds encoder = MJPEGEncoder(**encoderParams) encoding_time = [] for i in range(10): frame = read_frame() t0 = time.time() encoded = encoder.encode(frame, base64=True) t1 = time.time() encoding_time.append(t1 - t0) encoding_time = np.array(encoding_time) assert encoding_time.mean() < max_encoding_time, "Improve the encoder..."
[ 11748, 640, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 816, 952, 1330, 337, 12889, 7156, 27195, 12342, 628, 198, 12685, 12342, 10044, 4105, 796, 1391, 198, 220, 220, 220, 366, 13237, 1298, 3126, 11, 198, 220, 220, 220, 366, 4033, 669, 10223, 1298, 366, 65, 2164, 1600, 198, 220, 220, 220, 366, 4033, 669, 23161, 321, 11347, 1298, 366, 44361, 1600, 198, 220, 220, 220, 366, 7217, 67, 310, 1298, 6407, 11, 198, 92, 628, 198, 198, 4299, 1332, 62, 12685, 12342, 33529, 198, 220, 220, 220, 37227, 14402, 17802, 2207, 12342, 1398, 526, 15931, 198, 220, 220, 220, 3509, 62, 12685, 7656, 62, 2435, 796, 657, 13, 2999, 220, 1303, 4201, 198, 220, 220, 220, 2207, 12342, 796, 337, 12889, 7156, 27195, 12342, 7, 1174, 12685, 12342, 10044, 4105, 8, 198, 220, 220, 220, 21004, 62, 2435, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 1100, 62, 14535, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 256, 15, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 30240, 796, 2207, 12342, 13, 268, 8189, 7, 14535, 11, 2779, 2414, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 2435, 13, 33295, 7, 83, 16, 532, 256, 15, 8, 198, 220, 220, 220, 21004, 62, 2435, 796, 45941, 13, 18747, 7, 12685, 7656, 62, 2435, 8, 198, 220, 220, 220, 6818, 21004, 62, 2435, 13, 32604, 3419, 1279, 3509, 62, 12685, 7656, 62, 2435, 11, 366, 47531, 262, 2207, 12342, 9313, 198 ]
2.351064
282
# Python Class 2344 # Lesson 10 Problem 1 # Author: snowapple (471208) import random from tkinter import * import tkinter.messagebox as messagebox play_minesweeper(12, 10, 15)
[ 2, 11361, 5016, 2242, 2598, 198, 2, 12892, 261, 838, 20647, 352, 198, 2, 6434, 25, 6729, 18040, 357, 2857, 1065, 2919, 8, 198, 198, 11748, 4738, 198, 6738, 256, 74, 3849, 1330, 1635, 198, 11748, 256, 74, 3849, 13, 20500, 3524, 355, 3275, 3524, 628, 628, 198, 198, 1759, 62, 1084, 274, 732, 5723, 7, 1065, 11, 838, 11, 1315, 8, 628 ]
2.904762
63
# Generated by Django 4.0.1 on 2022-01-12 15:28 import django.db.models.deletion from django.conf import settings from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 604, 13, 15, 13, 16, 319, 33160, 12, 486, 12, 1065, 1315, 25, 2078, 198, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
3.019231
52
''' Extract all the 6 training zipped files and 2 validation zipped files into data folder and then run this script ''' import cv2 import numpy as np import os import zipfile ## Runnin a loop throught all the zipped training file to extract all video and then extract 100 frames from each. for i in range(1,76): if i<10: zipfilename = 'training80_0'+str(i)+'.zip' else: zipfilename = 'training80_'+str(i)+'.zip' ## Accessing the zipfile i archive = zipfile.ZipFile('data/'+zipfilename, 'r') zipfilename = zipfilename.split('.zip')[0] ##Extracting all videos in it and saving it all to the new folder with same name as zipped one archive.extractall('unzippedData/'+zipfilename) ## Running a loop over all the videos in the zipped file and extracting 100 frames from each for file_name in archive.namelist(): cap = cv2.VideoCapture('unzippedData/'+zipfilename+'/'+file_name) file_name=(file_name.split('.mp4'))[0] ## Creating folder to save all the 100 frames from the video try: if not os.path.exists('ImageData/trainingData/'+file_name): os.makedirs('ImageData/trainingData/'+file_name) except OSError: print ('Error: Creating directory of data') ## Setting the frame limit to 100 cap.set(cv2.CAP_PROP_FRAME_COUNT, 101) length=101 count=0 ## Running a loop to each frame and saving it in the created folder while(cap.isOpened()): count+=1 if length==count: break ret, frame = cap.read() if frame is None: continue ## Resizing it to 256*256 to save the disk space and fit into the model frame = cv2.resize(frame,(256, 256), interpolation = cv2.INTER_CUBIC) # Saves image of the current frame in jpg file name = 'ImageData/trainingData/'+str(file_name)+'/frame' + str(count) + '.jpg' cv2.imwrite(name, frame) if cv2.waitKey(1) & 0xFF == ord('q'): break ## Print the file which is done print (zipfilename, ':', file_name) # for i in range(1,26): if i<10: zipfilename = 'validation80_0'+str(i)+'.zip' else: zipfilename = 'validation80_'+str(i)+'.zip' ## Accessing the zipfile i archive = zipfile.ZipFile('data/'+zipfilename, 'r') zipfilename = zipfilename.split('.zip')[0] ##Extracting all videos in it and saving it all to the new folder with same name as zipped one archive.extractall('unzippedData/'+zipfilename) ## Running a loop over all the videos in the zipped file and extracting 100 frames from each for file_name in archive.namelist(): cap = cv2.VideoCapture('unzippedData/'+zipfilename+'/'+file_name) file_name=(file_name.split('.mp4'))[0] ## Creating folder to save all the 100 frames from the video try: if not os.path.exists('ImageData/validationData/'+file_name): os.makedirs('ImageData/validationData/'+file_name) except OSError: print ('Error: Creating directory of data') ## Setting the frame limit to 100 cap.set(cv2.CAP_PROP_FRAME_COUNT, 101) length=101 count=0 ## Running a loop to each frame and saving it in the created folder while(cap.isOpened()): count+=1 if length==count: break ret, frame = cap.read() if frame is None: continue ## Resizing it to 256*256 to save the disk space and fit into the model frame = cv2.resize(frame,(256, 256), interpolation = cv2.INTER_CUBIC) # Saves image of the current frame in jpg file name = 'ImageData/validationData/'+str(file_name)+'/frame' + str(count) + '.jpg' cv2.imwrite(name, frame) if cv2.waitKey(1) & 0xFF == ord('q'): break ## Print the file which is done print (zipfilename, ':', file_name)
[ 7061, 6, 198, 11627, 974, 477, 262, 718, 3047, 1976, 3949, 3696, 290, 362, 21201, 1976, 3949, 3696, 656, 1366, 9483, 290, 788, 1057, 428, 4226, 198, 7061, 6, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 19974, 7753, 198, 198, 2235, 5660, 35073, 257, 9052, 832, 83, 477, 262, 1976, 3949, 3047, 2393, 284, 7925, 477, 2008, 290, 788, 7925, 1802, 13431, 422, 1123, 13, 198, 1640, 1312, 287, 2837, 7, 16, 11, 4304, 2599, 198, 220, 220, 220, 611, 1312, 27, 940, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19974, 34345, 796, 705, 34409, 1795, 62, 15, 6, 10, 2536, 7, 72, 47762, 4458, 13344, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19974, 34345, 796, 705, 34409, 1795, 62, 6, 10, 2536, 7, 72, 47762, 4458, 13344, 6, 198, 220, 220, 220, 22492, 8798, 278, 262, 19974, 7753, 1312, 198, 220, 220, 220, 15424, 796, 19974, 7753, 13, 41729, 8979, 10786, 7890, 14, 6, 10, 13344, 34345, 11, 705, 81, 11537, 198, 220, 220, 220, 19974, 34345, 796, 19974, 34345, 13, 35312, 7, 4458, 13344, 11537, 58, 15, 60, 628, 220, 220, 220, 22492, 11627, 974, 278, 477, 5861, 287, 340, 290, 8914, 340, 477, 284, 262, 649, 9483, 351, 976, 1438, 355, 1976, 3949, 530, 198, 220, 220, 220, 15424, 13, 2302, 974, 439, 10786, 403, 89, 3949, 6601, 14, 6, 10, 13344, 34345, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 22492, 18162, 257, 9052, 625, 477, 262, 5861, 287, 262, 1976, 3949, 2393, 290, 37895, 1802, 13431, 422, 1123, 198, 220, 220, 220, 329, 2393, 62, 3672, 287, 15424, 13, 7402, 46331, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1451, 796, 269, 85, 17, 13, 10798, 49630, 10786, 403, 89, 3949, 6601, 14, 6, 10, 13344, 34345, 10, 26488, 6, 10, 7753, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 16193, 7753, 62, 3672, 13, 35312, 7, 4458, 3149, 19, 6, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 30481, 9483, 284, 3613, 477, 262, 1802, 13431, 422, 262, 2008, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 10786, 5159, 6601, 14, 34409, 6601, 14, 6, 10, 7753, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 10786, 5159, 6601, 14, 34409, 6601, 14, 6, 10, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 12331, 25, 30481, 8619, 286, 1366, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 25700, 262, 5739, 4179, 284, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 1451, 13, 2617, 7, 33967, 17, 13, 33177, 62, 4805, 3185, 62, 10913, 10067, 62, 34, 28270, 11, 8949, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 28, 8784, 198, 220, 220, 220, 220, 220, 220, 220, 954, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 18162, 257, 9052, 284, 1123, 5739, 290, 8914, 340, 287, 262, 2727, 9483, 198, 220, 220, 220, 220, 220, 220, 220, 981, 7, 11128, 13, 271, 18257, 2945, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4129, 855, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 11, 5739, 796, 1451, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 1874, 2890, 340, 284, 17759, 9, 11645, 284, 3613, 262, 11898, 2272, 290, 4197, 656, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 269, 85, 17, 13, 411, 1096, 7, 14535, 11, 7, 11645, 11, 17759, 828, 39555, 341, 796, 269, 85, 17, 13, 41358, 62, 34, 10526, 2149, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 311, 3080, 2939, 286, 262, 1459, 5739, 287, 474, 6024, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 705, 5159, 6601, 14, 34409, 6601, 14, 6, 10, 2536, 7, 7753, 62, 3672, 47762, 26488, 14535, 6, 1343, 965, 7, 9127, 8, 1343, 45302, 9479, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7, 3672, 11, 5739, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 1222, 657, 87, 5777, 6624, 2760, 10786, 80, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 12578, 262, 2393, 543, 318, 1760, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 13344, 34345, 11, 705, 25, 3256, 2393, 62, 3672, 8, 198, 2, 198, 1640, 1312, 287, 2837, 7, 16, 11, 2075, 2599, 198, 220, 220, 220, 611, 1312, 27, 940, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19974, 34345, 796, 705, 12102, 341, 1795, 62, 15, 6, 10, 2536, 7, 72, 47762, 4458, 13344, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19974, 34345, 796, 705, 12102, 341, 1795, 62, 6, 10, 2536, 7, 72, 47762, 4458, 13344, 6, 198, 220, 220, 220, 22492, 8798, 278, 262, 19974, 7753, 1312, 198, 220, 220, 220, 15424, 796, 19974, 7753, 13, 41729, 8979, 10786, 7890, 14, 6, 10, 13344, 34345, 11, 705, 81, 11537, 198, 220, 220, 220, 19974, 34345, 796, 19974, 34345, 13, 35312, 7, 4458, 13344, 11537, 58, 15, 60, 628, 220, 220, 220, 22492, 11627, 974, 278, 477, 5861, 287, 340, 290, 8914, 340, 477, 284, 262, 649, 9483, 351, 976, 1438, 355, 1976, 3949, 530, 198, 220, 220, 220, 15424, 13, 2302, 974, 439, 10786, 403, 89, 3949, 6601, 14, 6, 10, 13344, 34345, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 22492, 18162, 257, 9052, 625, 477, 262, 5861, 287, 262, 1976, 3949, 2393, 290, 37895, 1802, 13431, 422, 1123, 198, 220, 220, 220, 329, 2393, 62, 3672, 287, 15424, 13, 7402, 46331, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1451, 796, 269, 85, 17, 13, 10798, 49630, 10786, 403, 89, 3949, 6601, 14, 6, 10, 13344, 34345, 10, 26488, 6, 10, 7753, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 16193, 7753, 62, 3672, 13, 35312, 7, 4458, 3149, 19, 6, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 30481, 9483, 284, 3613, 477, 262, 1802, 13431, 422, 262, 2008, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 10786, 5159, 6601, 14, 12102, 341, 6601, 14, 6, 10, 7753, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 10786, 5159, 6601, 14, 12102, 341, 6601, 14, 6, 10, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 12331, 25, 30481, 8619, 286, 1366, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 25700, 262, 5739, 4179, 284, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 1451, 13, 2617, 7, 33967, 17, 13, 33177, 62, 4805, 3185, 62, 10913, 10067, 62, 34, 28270, 11, 8949, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 28, 8784, 198, 220, 220, 220, 220, 220, 220, 220, 954, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 18162, 257, 9052, 284, 1123, 5739, 290, 8914, 340, 287, 262, 2727, 9483, 198, 220, 220, 220, 220, 220, 220, 220, 981, 7, 11128, 13, 271, 18257, 2945, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4129, 855, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 11, 5739, 796, 1451, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 1874, 2890, 340, 284, 17759, 9, 11645, 284, 3613, 262, 11898, 2272, 290, 4197, 656, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 269, 85, 17, 13, 411, 1096, 7, 14535, 11, 7, 11645, 11, 17759, 828, 39555, 341, 796, 269, 85, 17, 13, 41358, 62, 34, 10526, 2149, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 311, 3080, 2939, 286, 262, 1459, 5739, 287, 474, 6024, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 705, 5159, 6601, 14, 12102, 341, 6601, 14, 6, 10, 2536, 7, 7753, 62, 3672, 47762, 26488, 14535, 6, 1343, 965, 7, 9127, 8, 1343, 45302, 9479, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7, 3672, 11, 5739, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 1222, 657, 87, 5777, 6624, 2760, 10786, 80, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 12578, 262, 2393, 543, 318, 1760, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 13344, 34345, 11, 705, 25, 3256, 2393, 62, 3672, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.259521
1,838
import pandas as pd import matplotlib.pyplot as plt import glob, os aos_data = pd.read_csv("aos.csv") soa_data = pd.read_csv("soa.csv") plt.loglog(aos_data["n"],aos_data["time"],"o",markersize=1,label="aos") plt.loglog(soa_data["n"],soa_data["time"],"o",markersize=1,label="soa") plt.title("aos vs soa") plt.legend() plt.xlabel("n") plt.ylabel("time") plt.savefig("aos_vs_soa.png") plt.show()
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 15095, 11, 28686, 198, 7495, 62, 7890, 796, 279, 67, 13, 961, 62, 40664, 7203, 7495, 13, 40664, 4943, 198, 568, 64, 62, 7890, 796, 279, 67, 13, 961, 62, 40664, 7203, 568, 64, 13, 40664, 4943, 198, 489, 83, 13, 6404, 6404, 7, 7495, 62, 7890, 14692, 77, 33116, 7495, 62, 7890, 14692, 2435, 34171, 78, 1600, 4102, 364, 1096, 28, 16, 11, 18242, 2625, 7495, 4943, 198, 489, 83, 13, 6404, 6404, 7, 568, 64, 62, 7890, 14692, 77, 33116, 568, 64, 62, 7890, 14692, 2435, 34171, 78, 1600, 4102, 364, 1096, 28, 16, 11, 18242, 2625, 568, 64, 4943, 198, 489, 83, 13, 7839, 7203, 7495, 3691, 523, 64, 4943, 198, 489, 83, 13, 1455, 437, 3419, 198, 489, 83, 13, 87, 18242, 7203, 77, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 2435, 4943, 198, 489, 83, 13, 21928, 5647, 7203, 7495, 62, 14259, 62, 568, 64, 13, 11134, 4943, 198, 489, 83, 13, 12860, 3419, 198 ]
2.183333
180
try: import pypissh except: print "WARNING: not using PyPi over SSH!" import sys import os import shutil import re from setuptools import setup ## can't just naively import these from txtorcon, as that will only ## work if you already installed the dependencies :( __version__ = '0.13.0' __author__ = 'meejah' __contact__ = '[email protected]' __url__ = 'https://github.com/meejah/txtorcon' __license__ = 'MIT' __copyright__ = 'Copyright 2012-2015' def pip_to_requirements(s): """ Change a PIP-style requirements.txt string into one suitable for setup.py """ if s.startswith('#'): return '' m = re.match('(.*)([>=]=[.0-9]*).*', s) if m: return '%s (%s)' % (m.group(1), m.group(2)) return s.strip() setup(name = 'txtorcon', version = __version__, description = 'Twisted-based Tor controller client, with state-tracking and configuration abstractions.', long_description = open('README.rst', 'r').read(), keywords = ['python', 'twisted', 'tor', 'tor controller'], ## way to have "development requirements"? requires = filter(len, map(pip_to_requirements, open('requirements.txt').readlines())), ## FIXME is requires even doing anything? why is format ## apparently different for install_requires? install_requires = ['Twisted>=11.1.0', 'zope.interface>=3.6.1'], classifiers = ['Framework :: Twisted', 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: POSIX :: Linux', 'Operating System :: Unix', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Internet :: Proxy Servers', 'Topic :: Internet', 'Topic :: Security'], author = __author__, author_email = __contact__, url = __url__, license = __license__, packages = ["txtorcon", "twisted.plugins"], # scripts = ['examples/attach_streams_by_country.py'], ## I'm a little unclear if I'm doing this "properly", especially ## the documentation etc. Do we really want "share/txtorcon" for ## the first member of the tuple? Why does it seem I need to ## duplicate this in MANIFEST.in? data_files = [('share/txtorcon', ['INSTALL', 'README.rst', 'TODO', 'meejah.asc']), ## this includes the Sphinx source for the ## docs. The "map+filter" construct grabs all .rst ## files and re-maps the path ('share/txtorcon', ['docs/apilinks_sphinxext.py', 'docs/conf.py', 'docs/Makefile'] + map(lambda x: os.path.join('docs', x), filter(lambda x: x[-3:] == 'rst', os.listdir('docs'))) + map(lambda x: os.path.join('docs/_static', x), os.listdir('docs/_static'))), ## include all the examples ('share/txtorcon/examples', map(lambda x: os.path.join('examples', x), filter(lambda x: x[-3:] == '.py', os.listdir('examples')))) ] )
[ 28311, 25, 198, 220, 220, 220, 1330, 279, 4464, 747, 71, 198, 16341, 25, 198, 220, 220, 220, 3601, 366, 31502, 25, 407, 1262, 9485, 38729, 625, 33825, 2474, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 302, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 2235, 460, 470, 655, 12385, 2280, 1330, 777, 422, 256, 742, 273, 1102, 11, 355, 326, 481, 691, 198, 2235, 670, 611, 345, 1541, 6589, 262, 20086, 36147, 198, 834, 9641, 834, 796, 705, 15, 13, 1485, 13, 15, 6, 198, 834, 9800, 834, 796, 705, 1326, 68, 31558, 6, 198, 834, 32057, 834, 796, 705, 1326, 68, 31558, 31, 1326, 68, 31558, 13, 6888, 6, 198, 834, 6371, 834, 796, 705, 5450, 1378, 12567, 13, 785, 14, 1326, 68, 31558, 14, 14116, 273, 1102, 6, 198, 834, 43085, 834, 796, 705, 36393, 6, 198, 834, 22163, 4766, 834, 796, 705, 15269, 2321, 12, 4626, 6, 198, 198, 4299, 7347, 62, 1462, 62, 8897, 18883, 7, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9794, 257, 350, 4061, 12, 7635, 5359, 13, 14116, 4731, 656, 530, 11080, 329, 9058, 13, 9078, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 264, 13, 9688, 2032, 342, 10786, 2, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 285, 796, 302, 13, 15699, 10786, 7, 15885, 5769, 58, 29, 28, 22241, 58, 13, 15, 12, 24, 60, 9, 737, 9, 3256, 264, 8, 198, 220, 220, 220, 611, 285, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 4, 82, 37633, 82, 33047, 4064, 357, 76, 13, 8094, 7, 16, 828, 285, 13, 8094, 7, 17, 4008, 198, 220, 220, 220, 1441, 264, 13, 36311, 3419, 628, 198, 40406, 7, 3672, 796, 705, 14116, 273, 1102, 3256, 198, 220, 220, 220, 220, 220, 2196, 796, 11593, 9641, 834, 11, 198, 220, 220, 220, 220, 220, 6764, 796, 705, 5080, 6347, 12, 3106, 4022, 10444, 5456, 11, 351, 1181, 12, 36280, 290, 8398, 12531, 507, 2637, 11, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 796, 1280, 10786, 15675, 11682, 13, 81, 301, 3256, 705, 81, 27691, 961, 22784, 198, 220, 220, 220, 220, 220, 26286, 796, 37250, 29412, 3256, 705, 4246, 6347, 3256, 705, 13165, 3256, 705, 13165, 10444, 6, 4357, 198, 220, 220, 220, 220, 220, 22492, 835, 284, 423, 366, 31267, 5359, 13984, 198, 220, 220, 220, 220, 220, 4433, 796, 8106, 7, 11925, 11, 3975, 7, 79, 541, 62, 1462, 62, 8897, 18883, 11, 1280, 10786, 8897, 18883, 13, 14116, 27691, 961, 6615, 28955, 828, 198, 220, 220, 220, 220, 220, 22492, 44855, 11682, 318, 4433, 772, 1804, 1997, 30, 1521, 318, 5794, 198, 220, 220, 220, 220, 220, 22492, 5729, 1180, 329, 2721, 62, 47911, 30, 198, 220, 220, 220, 220, 220, 2721, 62, 47911, 796, 37250, 5080, 6347, 29, 28, 1157, 13, 16, 13, 15, 3256, 705, 89, 3008, 13, 39994, 29, 28, 18, 13, 21, 13, 16, 6, 4357, 198, 220, 220, 220, 220, 220, 1398, 13350, 796, 37250, 21055, 6433, 7904, 40006, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 604, 532, 17993, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 34152, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35364, 15417, 7904, 3594, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18843, 803, 4482, 7904, 28069, 10426, 7904, 7020, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18843, 803, 4482, 7904, 33501, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 362, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 362, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 362, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 10442, 7712, 7904, 46267, 7904, 11361, 3401, 5028, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4455, 7904, 38027, 2930, 690, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4455, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4765, 6, 4357, 198, 220, 220, 220, 220, 220, 1772, 796, 11593, 9800, 834, 11, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 796, 11593, 32057, 834, 11, 198, 220, 220, 220, 220, 220, 19016, 796, 11593, 6371, 834, 11, 198, 220, 220, 220, 220, 220, 5964, 796, 11593, 43085, 834, 11, 198, 220, 220, 220, 220, 220, 10392, 220, 796, 14631, 14116, 273, 1102, 1600, 366, 4246, 6347, 13, 37390, 33116, 198, 2, 220, 220, 220, 220, 220, 14750, 796, 37250, 1069, 12629, 14, 47348, 62, 5532, 82, 62, 1525, 62, 19315, 13, 9078, 6, 4357, 628, 220, 220, 220, 220, 220, 22492, 314, 1101, 257, 1310, 10061, 611, 314, 1101, 1804, 428, 366, 1676, 525, 306, 1600, 2592, 198, 220, 220, 220, 220, 220, 22492, 262, 10314, 3503, 13, 2141, 356, 1107, 765, 366, 20077, 14, 14116, 273, 1102, 1, 329, 198, 220, 220, 220, 220, 220, 22492, 262, 717, 2888, 286, 262, 46545, 30, 4162, 857, 340, 1283, 314, 761, 284, 198, 220, 220, 220, 220, 220, 22492, 23418, 428, 287, 17254, 5064, 6465, 13, 259, 30, 628, 220, 220, 220, 220, 220, 1366, 62, 16624, 796, 685, 10786, 20077, 14, 14116, 273, 1102, 3256, 37250, 38604, 7036, 3256, 705, 15675, 11682, 13, 81, 301, 3256, 705, 51, 3727, 46, 3256, 705, 1326, 68, 31558, 13, 3372, 20520, 828, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 428, 3407, 262, 45368, 28413, 2723, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 34165, 13, 383, 366, 8899, 10, 24455, 1, 5678, 22378, 477, 764, 81, 301, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 3696, 290, 302, 12, 31803, 262, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 20077, 14, 14116, 273, 1102, 3256, 37250, 31628, 14, 499, 346, 2973, 62, 82, 746, 28413, 2302, 13, 9078, 3256, 705, 31628, 14, 10414, 13, 9078, 3256, 705, 31628, 14, 12050, 7753, 20520, 1343, 3975, 7, 50033, 2124, 25, 28686, 13, 6978, 13, 22179, 10786, 31628, 3256, 2124, 828, 8106, 7, 50033, 2124, 25, 2124, 58, 12, 18, 47715, 6624, 705, 81, 301, 3256, 28686, 13, 4868, 15908, 10786, 31628, 6, 22305, 1343, 3975, 7, 50033, 2124, 25, 28686, 13, 6978, 13, 22179, 10786, 31628, 47835, 12708, 3256, 2124, 828, 28686, 13, 4868, 15908, 10786, 31628, 47835, 12708, 6, 4008, 828, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 2291, 477, 262, 6096, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 20077, 14, 14116, 273, 1102, 14, 1069, 12629, 3256, 3975, 7, 50033, 2124, 25, 28686, 13, 6978, 13, 22179, 10786, 1069, 12629, 3256, 2124, 828, 8106, 7, 50033, 2124, 25, 2124, 58, 12, 18, 47715, 6624, 45302, 9078, 3256, 28686, 13, 4868, 15908, 10786, 1069, 12629, 6, 35514, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 1267, 198 ]
2.323963
1,494
# This sample tests the reportUnusedVariable diagnostic check.
[ 2, 770, 6291, 5254, 262, 989, 3118, 1484, 43015, 23584, 2198, 13, 628 ]
4.923077
13
# Imports import matplotlib.pyplot as plt import seaborn as sns import torch from torch import nn from torch import optim import torch.nn.functional as F from torchvision import datasets, transforms, models from PIL import Image import numpy as np import json import pandas as pd # Import for keeping our session alive from workspace_utils import active_session # Label Mapping with open('cat_to_name.json', 'r') as f: cat_to_name = json.load(f) # Quick check of data in json file df = pd.DataFrame({'flower_type': cat_to_name}) df.head(10) # Define our classifier Class # testing the model and returning the accuracy on new data # Function that loads a checkpoint and rebuilds the model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' im = Image.open(image) width, height = im.size # Resize image to make the shortest side 256 pixels if im.width > im.height: (width, height) = (im.width, 256) elif im.width < im.height: (width, height) = (256, im.height) else: (width, height) = (256, 256) im.thumbnail((width, height), Image.ANTIALIAS) # new size of image width, height = im.size # Crop at center, make image 224x224 reduce = 224 left = (width - reduce)/2 top = (height - reduce)/2 right = left + 224 bottom = top + 224 im = im.crop((left, top, right, bottom)) np_image = np.array(im)/255 mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) np_image = (np_image - mean) / std image = np_image.transpose((2, 0, 1)) return image def imshow(image, ax=None, title=None): """Imshow for Tensor.""" if ax is None: fig, ax = plt.subplots() # PyTorch tensors assume the color channel is the first dimension # but matplotlib assumes is the third dimension image = image.transpose((1, 2, 0)) def predict(image_path, model, device = 'gpu', topk=1): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' image = process_image(image_path) # Convert image to a FloatTensor and add a 'batch_size' dimension with .unsqueeze_(0) image = torch.from_numpy(image).type(torch.FloatTensor).unsqueeze_(0) # Select between gpu and cpu if device == 'gpu' and torch.cuda.is_available(): device = torch.device('cuda:0') else: device = torch.device('cpu') # Bring model to device model.to(device) with torch.no_grad(): model.eval() output = model.forward(image.cuda()) ps = torch.exp(output) probs, idx = ps.topk(topk, dim=1) probs, idx = probs.to('cpu'), idx.to('cpu') probs = probs.numpy () # converting both to numpy array idx = idx.numpy () probs = probs.tolist () [0] # converting both to list idx = idx.tolist () [0] mapping = {val: key for key, val in model.class_to_idx.items() } classes = [mapping [item] for item in idx] class_names = [cat_to_name [item] for item in classes] class_names = np.array(class_names) classes = np.array(classes) # converting to Numpy array return print(probs, class_names)
[ 2, 1846, 3742, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 198, 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 6738, 28034, 1330, 6436, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 10178, 1330, 40522, 11, 31408, 11, 4981, 198, 6738, 350, 4146, 1330, 220, 7412, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 17267, 329, 5291, 674, 6246, 6776, 198, 6738, 44573, 62, 26791, 1330, 4075, 62, 29891, 198, 198, 2, 36052, 337, 5912, 198, 4480, 1280, 10786, 9246, 62, 1462, 62, 3672, 13, 17752, 3256, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 3797, 62, 1462, 62, 3672, 796, 33918, 13, 2220, 7, 69, 8, 198, 198, 2, 12029, 2198, 286, 1366, 287, 33918, 2393, 198, 7568, 796, 279, 67, 13, 6601, 19778, 15090, 6, 25547, 62, 4906, 10354, 3797, 62, 1462, 62, 3672, 30072, 198, 7568, 13, 2256, 7, 940, 8, 198, 198, 2, 2896, 500, 674, 1398, 7483, 5016, 198, 198, 2, 4856, 262, 2746, 290, 8024, 262, 9922, 319, 649, 1366, 628, 198, 198, 2, 15553, 326, 15989, 257, 26954, 290, 17884, 82, 262, 2746, 198, 198, 4299, 1429, 62, 9060, 7, 9060, 2599, 198, 220, 220, 220, 705, 7061, 1446, 2040, 11, 14450, 11, 290, 3487, 4340, 257, 350, 4146, 2939, 329, 257, 9485, 15884, 354, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5860, 281, 399, 32152, 7177, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 545, 796, 7412, 13, 9654, 7, 9060, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 9647, 11, 6001, 796, 545, 13, 7857, 198, 220, 220, 220, 1303, 1874, 1096, 2939, 284, 787, 262, 35581, 1735, 17759, 17848, 198, 220, 220, 220, 611, 545, 13, 10394, 1875, 545, 13, 17015, 25, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 357, 10394, 11, 6001, 8, 796, 357, 320, 13, 10394, 11, 17759, 8, 198, 220, 220, 220, 1288, 361, 545, 13, 10394, 1279, 545, 13, 17015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 10394, 11, 6001, 8, 796, 357, 11645, 11, 545, 13, 17015, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 10394, 11, 6001, 8, 796, 357, 11645, 11, 17759, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 545, 13, 400, 20566, 19510, 10394, 11, 6001, 828, 7412, 13, 8643, 12576, 43429, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 649, 2546, 286, 2939, 198, 220, 220, 220, 9647, 11, 6001, 796, 545, 13, 7857, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 327, 1773, 379, 3641, 11, 787, 2939, 26063, 87, 24137, 198, 220, 220, 220, 4646, 796, 26063, 198, 220, 220, 220, 1364, 796, 357, 10394, 532, 4646, 20679, 17, 220, 198, 220, 220, 220, 1353, 796, 357, 17015, 532, 4646, 20679, 17, 198, 220, 220, 220, 826, 796, 1364, 1343, 26063, 220, 198, 220, 220, 220, 4220, 796, 1353, 1343, 26063, 628, 220, 220, 220, 545, 796, 545, 13, 31476, 19510, 9464, 11, 1353, 11, 826, 11, 4220, 4008, 628, 220, 220, 220, 45941, 62, 9060, 796, 45941, 13, 18747, 7, 320, 20679, 13381, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1612, 796, 45941, 13, 18747, 26933, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 12962, 198, 220, 220, 220, 14367, 796, 45941, 13, 18747, 26933, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 45941, 62, 9060, 796, 357, 37659, 62, 9060, 532, 1612, 8, 1220, 14367, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2939, 796, 45941, 62, 9060, 13, 7645, 3455, 19510, 17, 11, 657, 11, 352, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 2939, 198, 198, 4299, 545, 12860, 7, 9060, 11, 7877, 28, 14202, 11, 3670, 28, 14202, 2599, 198, 220, 220, 220, 37227, 40, 907, 4919, 329, 309, 22854, 526, 15931, 198, 220, 220, 220, 611, 7877, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9485, 15884, 354, 11192, 669, 7048, 262, 3124, 6518, 318, 262, 717, 15793, 198, 220, 220, 220, 1303, 475, 2603, 29487, 8019, 18533, 318, 262, 2368, 15793, 198, 220, 220, 220, 2939, 796, 2939, 13, 7645, 3455, 19510, 16, 11, 362, 11, 657, 4008, 198, 220, 220, 220, 220, 198, 4299, 4331, 7, 9060, 62, 6978, 11, 2746, 11, 3335, 796, 705, 46999, 3256, 1353, 74, 28, 16, 2599, 198, 220, 220, 220, 705, 7061, 49461, 262, 1398, 357, 273, 6097, 8, 286, 281, 2939, 1262, 257, 8776, 2769, 4673, 2746, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2939, 796, 1429, 62, 9060, 7, 9060, 62, 6978, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38240, 2939, 284, 257, 48436, 51, 22854, 290, 751, 257, 705, 43501, 62, 7857, 6, 15793, 351, 764, 13271, 421, 1453, 2736, 41052, 15, 8, 198, 220, 220, 220, 2939, 796, 28034, 13, 6738, 62, 77, 32152, 7, 9060, 737, 4906, 7, 13165, 354, 13, 43879, 51, 22854, 737, 13271, 421, 1453, 2736, 41052, 15, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9683, 1022, 308, 19944, 290, 42804, 198, 220, 220, 220, 611, 3335, 6624, 705, 46999, 6, 290, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 66, 15339, 25, 15, 11537, 220, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 36166, 11537, 628, 220, 220, 220, 1303, 24347, 2746, 284, 3335, 198, 220, 220, 220, 2746, 13, 1462, 7, 25202, 8, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 18206, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2746, 13, 11813, 7, 9060, 13, 66, 15339, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 26692, 796, 28034, 13, 11201, 7, 22915, 8, 198, 220, 220, 220, 220, 220, 220, 220, 386, 1443, 11, 4686, 87, 796, 26692, 13, 4852, 74, 7, 4852, 74, 11, 5391, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 386, 1443, 11, 4686, 87, 796, 386, 1443, 13, 1462, 10786, 36166, 33809, 4686, 87, 13, 1462, 10786, 36166, 11537, 198, 220, 220, 220, 386, 1443, 796, 386, 1443, 13, 77, 32152, 7499, 1303, 23202, 1111, 284, 299, 32152, 7177, 198, 220, 220, 220, 4686, 87, 796, 4686, 87, 13, 77, 32152, 7499, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 386, 1443, 796, 386, 1443, 13, 83, 349, 396, 7499, 685, 15, 60, 1303, 23202, 1111, 284, 1351, 198, 220, 220, 220, 4686, 87, 796, 4686, 87, 13, 83, 349, 396, 7499, 685, 15, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16855, 796, 1391, 2100, 25, 1994, 329, 1994, 11, 1188, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 4871, 62, 1462, 62, 312, 87, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6097, 796, 685, 76, 5912, 685, 9186, 60, 329, 2378, 287, 4686, 87, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1398, 62, 14933, 796, 685, 9246, 62, 1462, 62, 3672, 685, 9186, 60, 329, 2378, 287, 6097, 60, 198, 220, 220, 220, 1398, 62, 14933, 796, 45941, 13, 18747, 7, 4871, 62, 14933, 8, 198, 220, 220, 220, 198, 220, 220, 220, 6097, 796, 45941, 13, 18747, 7, 37724, 8, 1303, 23202, 284, 399, 32152, 7177, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 3601, 7, 1676, 1443, 11, 1398, 62, 14933, 8, 628, 198 ]
2.42765
1,396
from django.urls import path from user.views import ProfileView,ProfileEditView,AllProfilesView from django.contrib.auth.decorators import login_required urlpatterns = [ # dynamic URL path('in/<str:username>/',login_required(ProfileView.as_view()),name='profile_view'), path('in/<str:username>/edit/',login_required(ProfileEditView.as_view()),name='profile_edit_view'), path('profiles/',login_required(AllProfilesView.as_view()),name='all_profiles_view'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 2836, 13, 33571, 1330, 13118, 7680, 11, 37046, 18378, 7680, 11, 3237, 15404, 2915, 7680, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 1303, 8925, 10289, 198, 220, 220, 220, 3108, 10786, 259, 14, 27, 2536, 25, 29460, 29, 14, 3256, 38235, 62, 35827, 7, 37046, 7680, 13, 292, 62, 1177, 3419, 828, 3672, 11639, 13317, 62, 1177, 33809, 198, 220, 220, 220, 3108, 10786, 259, 14, 27, 2536, 25, 29460, 29, 14, 19312, 14, 3256, 38235, 62, 35827, 7, 37046, 18378, 7680, 13, 292, 62, 1177, 3419, 828, 3672, 11639, 13317, 62, 19312, 62, 1177, 33809, 198, 220, 220, 220, 3108, 10786, 5577, 2915, 14, 3256, 38235, 62, 35827, 7, 3237, 15404, 2915, 7680, 13, 292, 62, 1177, 3419, 828, 3672, 11639, 439, 62, 5577, 2915, 62, 1177, 33809, 198, 220, 220, 220, 220, 198, 220, 220, 198, 60, 198 ]
2.824561
171
union_examples = """ Examples ----------- >>> import pandas as pd >>> import piso.interval >>> piso.interval.union( ... pd.Interval(0, 3), ... pd.Interval(2, 4), ... ) Interval(0.0, 4.0, closed='right') >>> piso.interval.union( ... pd.Interval(0, 3), ... pd.Interval(2, 4), ... squeeze=False, ... ) <IntervalArray> [(0.0, 4.0]] Length: 1, closed: right, dtype: interval[float64] >>> piso.interval.union( ... pd.Interval(0, 3, closed="left"), ... pd.Interval(2, 4, closed="left"), ... ) Interval(0.0, 4.0, closed='left') >>> piso.interval.union( ... pd.Interval(0, 1), ... pd.Interval(3, 4), ... ) <IntervalArray> [(0.0, 1.0], (3.0, 4.0]] Length: 2, closed: right, dtype: interval[float64] """ intersection_examples = """ Examples ----------- >>> import pandas as pd >>> import piso.interval >>> piso.interval.intersection( ... pd.Interval(0, 3), ... pd.Interval(2, 4), ... ) Interval(2.0, 3.0, closed='right') >>> piso.interval.intersection( ... pd.Interval(0, 3), ... pd.Interval(2, 4), ... squeeze=False, ... ) <IntervalArray> [(2.0, 3.0]] Length: 1, closed: right, dtype: interval[float64] >>> piso.interval.intersection( ... pd.Interval(0, 3, closed="left"), ... pd.Interval(2, 4, closed="left"), ... ) Interval(2.0, 3.0, closed='left') >>> piso.interval.intersection( ... pd.Interval(0, 1), ... pd.Interval(3, 4), ... ) <IntervalArray> [] Length: 0, closed: right, dtype: interval[int64] """ difference_examples = """ Examples ----------- >>> import pandas as pd >>> import piso.interval >>> piso.interval.difference( ... pd.Interval(0, 3), ... pd.Interval(2, 4), ... ) Interval(0.0, 2.0, closed='right') >>> piso.interval.difference( ... pd.Interval(0, 3), ... pd.Interval(2, 4), ... squeeze=False, ... ) <IntervalArray> [(0.0, 2.0]] Length: 1, closed: right, dtype: interval[float64] >>> piso.interval.difference( ... pd.Interval(0, 4, closed="left"), ... pd.Interval(2, 3, closed="left"), ... ) <IntervalArray> [[0.0, 2.0), [3.0, 4.0)] Length: 2, closed: left, dtype: interval[float64] >>> piso.interval.difference( ... pd.Interval(2, 3), ... pd.Interval(0, 4), ... ) <IntervalArray> [] Length: 0, closed: right, dtype: interval[int64] """ symmetric_difference_examples = """ Examples ----------- >>> import pandas as pd >>> import piso.interval >>> piso.interval.symmetric_difference( ... pd.Interval(0, 3), ... pd.Interval(2, 4), ... ) <IntervalArray> [(0.0, 2.0], (3.0, 4.0]] Length: 2, closed: right, dtype: interval[float64] >>> piso.interval.symmetric_difference( ... pd.Interval(0, 3), ... pd.Interval(2, 3), ... ) Interval(0.0, 2.0, closed='right') >>> piso.interval.symmetric_difference( ... pd.Interval(0, 3, closed="left"), ... pd.Interval(2, 4, closed="left"), ... ) <IntervalArray> [[0.0, 2.0), [3.0, 4.0)] Length: 2, closed: left, dtype: interval[float64] >>> piso.interval.symmetric_difference( ... pd.Interval(2, 3), ... pd.Interval(0, 4), ... ) <IntervalArray> [(0.0, 2.0], (3.0, 4.0]] Length: 2, closed: right, dtype: interval[float64] """ issuperset_examples = """ Examples ----------- >>> import pandas as pd >>> import piso.interval >>> piso.interval.issuperset( ... pd.Interval(1, 4), ... pd.Interval(2, 4), ... ) True >>> piso.interval.issuperset( ... pd.Interval(1, 4), ... pd.Interval(0, 3), ... ) False >>> piso.interval.issuperset( ... pd.Interval(1, 4), ... pd.Interval(2, 4), ... pd.Interval(0, 3), ... ) array([ True, False]) >>> piso.interval.issuperset( ... pd.Interval(0, 3), ... pd.Interval(0, 3), ... squeeze=False ... ) array([ True]) """ issubset_examples = """ Examples ----------- >>> import pandas as pd >>> import piso.interval >>> piso.interval.issubset( ... pd.Interval(2, 4), ... pd.Interval(1, 4), ... ) True >>> piso.interval.issubset( ... pd.Interval(2, 4), ... pd.Interval(0, 3), ... ) False >>> piso.interval.issubset( ... pd.Interval(2, 4), ... pd.Interval(1, 4), ... pd.Interval(0, 3), ... ) array([ True, False]) >>> piso.interval.issubset( ... pd.Interval(1, 4), ... pd.Interval(1, 4), ... squeeze=False ... ) array([ True]) """ template_doc = """ Performs the {operation} of two :class:`pandas.Interval` Parameters ---------- interval1 : pandas.Interval the first operand interval2 : pandas.Interval the second operand squeeze : boolean, default True If True, will try to coerce the return value to a :class:`pandas.Interval` Returns ---------- :class:`pandas.Interval` or :class:`pandas.arrays.IntervalArray` {examples} """ union_docstring = template_doc.format(operation="union", examples=union_examples) intersection_docstring = template_doc.format( operation="intersection", examples=intersection_examples ) difference_docstring = template_doc.format( operation="set difference", examples=difference_examples ) symmetric_difference_docstring = template_doc.format( operation="symmetric difference", examples=symmetric_difference_examples ) is_sub_super_doc = """ Indicates whether one :class:`pandas.Interval` is a {operation} of one, or more, others. Parameters ---------- interval : :class:`pandas.Interval` An interval, against which all other intervals belonging to *intervals* are compared. *intervals : argument list of :class:`pandas.Interval` Must contain at least one argument. squeeze : boolean, default True If True, will try to coerce the return value to a single boolean Returns ---------- boolean, or :class:`numpy.ndarray` of booleans {examples} """ issuperset_docstring = is_sub_super_doc.format( operation="superset", examples=issuperset_examples, ) issubset_docstring = is_sub_super_doc.format( operation="subset", examples=issubset_examples, )
[ 24592, 62, 1069, 12629, 796, 37227, 198, 27730, 198, 32284, 198, 198, 33409, 1330, 19798, 292, 355, 279, 67, 198, 33409, 1330, 279, 26786, 13, 3849, 2100, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 24592, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 1267, 198, 9492, 2100, 7, 15, 13, 15, 11, 604, 13, 15, 11, 4838, 11639, 3506, 11537, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 24592, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 220, 220, 220, 21229, 28, 25101, 11, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 58, 7, 15, 13, 15, 11, 604, 13, 15, 11907, 198, 24539, 25, 352, 11, 4838, 25, 826, 11, 288, 4906, 25, 16654, 58, 22468, 2414, 60, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 24592, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 11, 4838, 2625, 9464, 12340, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 11, 4838, 2625, 9464, 12340, 198, 986, 1267, 198, 9492, 2100, 7, 15, 13, 15, 11, 604, 13, 15, 11, 4838, 11639, 9464, 11537, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 24592, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 352, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 18, 11, 604, 828, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 58, 7, 15, 13, 15, 11, 352, 13, 15, 4357, 357, 18, 13, 15, 11, 604, 13, 15, 11907, 198, 24539, 25, 362, 11, 4838, 25, 826, 11, 288, 4906, 25, 16654, 58, 22468, 2414, 60, 198, 37811, 198, 198, 3849, 5458, 62, 1069, 12629, 796, 37227, 198, 27730, 198, 32284, 198, 198, 33409, 1330, 19798, 292, 355, 279, 67, 198, 33409, 1330, 279, 26786, 13, 3849, 2100, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 3849, 5458, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 1267, 198, 9492, 2100, 7, 17, 13, 15, 11, 513, 13, 15, 11, 4838, 11639, 3506, 11537, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 3849, 5458, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 220, 220, 220, 21229, 28, 25101, 11, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 58, 7, 17, 13, 15, 11, 513, 13, 15, 11907, 198, 24539, 25, 352, 11, 4838, 25, 826, 11, 288, 4906, 25, 16654, 58, 22468, 2414, 60, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 3849, 5458, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 11, 4838, 2625, 9464, 12340, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 11, 4838, 2625, 9464, 12340, 198, 986, 1267, 198, 9492, 2100, 7, 17, 13, 15, 11, 513, 13, 15, 11, 4838, 11639, 9464, 11537, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 3849, 5458, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 352, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 18, 11, 604, 828, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 21737, 198, 24539, 25, 657, 11, 4838, 25, 826, 11, 288, 4906, 25, 16654, 58, 600, 2414, 60, 198, 37811, 198, 198, 26069, 1945, 62, 1069, 12629, 796, 37227, 198, 27730, 198, 32284, 198, 198, 33409, 1330, 19798, 292, 355, 279, 67, 198, 33409, 1330, 279, 26786, 13, 3849, 2100, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 26069, 1945, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 1267, 198, 9492, 2100, 7, 15, 13, 15, 11, 362, 13, 15, 11, 4838, 11639, 3506, 11537, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 26069, 1945, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 220, 220, 220, 21229, 28, 25101, 11, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 58, 7, 15, 13, 15, 11, 362, 13, 15, 11907, 198, 24539, 25, 352, 11, 4838, 25, 826, 11, 288, 4906, 25, 16654, 58, 22468, 2414, 60, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 26069, 1945, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 604, 11, 4838, 2625, 9464, 12340, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 513, 11, 4838, 2625, 9464, 12340, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 30109, 15, 13, 15, 11, 362, 13, 15, 828, 685, 18, 13, 15, 11, 604, 13, 15, 15437, 198, 24539, 25, 362, 11, 4838, 25, 1364, 11, 288, 4906, 25, 16654, 58, 22468, 2414, 60, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 26069, 1945, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 604, 828, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 21737, 198, 24539, 25, 657, 11, 4838, 25, 826, 11, 288, 4906, 25, 16654, 58, 600, 2414, 60, 198, 37811, 628, 198, 1837, 3020, 19482, 62, 26069, 1945, 62, 1069, 12629, 796, 37227, 198, 27730, 198, 32284, 198, 198, 33409, 1330, 19798, 292, 355, 279, 67, 198, 33409, 1330, 279, 26786, 13, 3849, 2100, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 1837, 3020, 19482, 62, 26069, 1945, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 58, 7, 15, 13, 15, 11, 362, 13, 15, 4357, 357, 18, 13, 15, 11, 604, 13, 15, 11907, 198, 24539, 25, 362, 11, 4838, 25, 826, 11, 288, 4906, 25, 16654, 58, 22468, 2414, 60, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 1837, 3020, 19482, 62, 26069, 1945, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 513, 828, 198, 986, 1267, 198, 9492, 2100, 7, 15, 13, 15, 11, 362, 13, 15, 11, 4838, 11639, 3506, 11537, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 1837, 3020, 19482, 62, 26069, 1945, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 11, 4838, 2625, 9464, 12340, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 11, 4838, 2625, 9464, 12340, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 30109, 15, 13, 15, 11, 362, 13, 15, 828, 685, 18, 13, 15, 11, 604, 13, 15, 15437, 198, 24539, 25, 362, 11, 4838, 25, 1364, 11, 288, 4906, 25, 16654, 58, 22468, 2414, 60, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 1837, 3020, 19482, 62, 26069, 1945, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 604, 828, 198, 986, 1267, 198, 27, 9492, 2100, 19182, 29, 198, 58, 7, 15, 13, 15, 11, 362, 13, 15, 4357, 357, 18, 13, 15, 11, 604, 13, 15, 11907, 198, 24539, 25, 362, 11, 4838, 25, 826, 11, 288, 4906, 25, 16654, 58, 22468, 2414, 60, 198, 37811, 198, 198, 747, 929, 364, 316, 62, 1069, 12629, 796, 37227, 198, 27730, 198, 32284, 198, 198, 33409, 1330, 19798, 292, 355, 279, 67, 198, 33409, 1330, 279, 26786, 13, 3849, 2100, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 747, 929, 364, 316, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 16, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 1267, 198, 17821, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 747, 929, 364, 316, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 16, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 1267, 198, 25101, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 747, 929, 364, 316, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 16, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 1267, 198, 18747, 26933, 6407, 11, 220, 10352, 12962, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 747, 929, 364, 316, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 220, 220, 220, 21229, 28, 25101, 198, 986, 1267, 198, 18747, 26933, 6407, 12962, 198, 37811, 628, 198, 747, 549, 2617, 62, 1069, 12629, 796, 37227, 198, 27730, 198, 32284, 198, 198, 33409, 1330, 19798, 292, 355, 279, 67, 198, 33409, 1330, 279, 26786, 13, 3849, 2100, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 747, 549, 2617, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 16, 11, 604, 828, 198, 986, 1267, 198, 17821, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 747, 549, 2617, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 1267, 198, 25101, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 747, 549, 2617, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 17, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 16, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 15, 11, 513, 828, 198, 986, 1267, 198, 18747, 26933, 6407, 11, 220, 10352, 12962, 198, 198, 33409, 279, 26786, 13, 3849, 2100, 13, 747, 549, 2617, 7, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 16, 11, 604, 828, 198, 986, 220, 220, 220, 279, 67, 13, 9492, 2100, 7, 16, 11, 604, 828, 198, 986, 220, 220, 220, 21229, 28, 25101, 198, 986, 1267, 198, 18747, 26933, 6407, 12962, 198, 37811, 198, 198, 28243, 62, 15390, 796, 37227, 198, 5990, 23914, 262, 1391, 27184, 92, 286, 734, 1058, 4871, 25, 63, 79, 392, 292, 13, 9492, 2100, 63, 198, 198, 48944, 198, 35937, 198, 3849, 2100, 16, 1058, 19798, 292, 13, 9492, 2100, 198, 220, 220, 220, 262, 717, 1515, 392, 198, 3849, 2100, 17, 1058, 19798, 292, 13, 9492, 2100, 198, 220, 220, 220, 262, 1218, 1515, 392, 198, 16485, 1453, 2736, 1058, 25131, 11, 4277, 6407, 198, 220, 220, 220, 1002, 6407, 11, 481, 1949, 284, 31255, 344, 262, 1441, 1988, 284, 257, 1058, 4871, 25, 63, 79, 392, 292, 13, 9492, 2100, 63, 198, 198, 35561, 198, 35937, 198, 25, 4871, 25, 63, 79, 392, 292, 13, 9492, 2100, 63, 393, 1058, 4871, 25, 63, 79, 392, 292, 13, 3258, 592, 13, 9492, 2100, 19182, 63, 198, 198, 90, 1069, 12629, 92, 198, 37811, 628, 198, 24592, 62, 15390, 8841, 796, 11055, 62, 15390, 13, 18982, 7, 27184, 2625, 24592, 1600, 6096, 28, 24592, 62, 1069, 12629, 8, 198, 3849, 5458, 62, 15390, 8841, 796, 11055, 62, 15390, 13, 18982, 7, 198, 220, 220, 220, 4905, 2625, 3849, 5458, 1600, 6096, 28, 3849, 5458, 62, 1069, 12629, 198, 8, 198, 26069, 1945, 62, 15390, 8841, 796, 11055, 62, 15390, 13, 18982, 7, 198, 220, 220, 220, 4905, 2625, 2617, 3580, 1600, 6096, 28, 26069, 1945, 62, 1069, 12629, 198, 8, 198, 1837, 3020, 19482, 62, 26069, 1945, 62, 15390, 8841, 796, 11055, 62, 15390, 13, 18982, 7, 198, 220, 220, 220, 4905, 2625, 1837, 3020, 19482, 3580, 1600, 6096, 28, 1837, 3020, 19482, 62, 26069, 1945, 62, 1069, 12629, 198, 8, 628, 198, 271, 62, 7266, 62, 16668, 62, 15390, 796, 37227, 198, 5497, 16856, 1771, 530, 1058, 4871, 25, 63, 79, 392, 292, 13, 9492, 2100, 63, 318, 257, 1391, 27184, 92, 286, 530, 11, 393, 517, 11, 1854, 13, 198, 198, 48944, 198, 35937, 198, 3849, 2100, 1058, 1058, 4871, 25, 63, 79, 392, 292, 13, 9492, 2100, 63, 198, 220, 220, 220, 1052, 16654, 11, 1028, 543, 477, 584, 20016, 16686, 284, 1635, 3849, 12786, 9, 389, 3688, 13, 198, 9, 3849, 12786, 1058, 4578, 1351, 286, 1058, 4871, 25, 63, 79, 392, 292, 13, 9492, 2100, 63, 198, 220, 220, 220, 12039, 3994, 379, 1551, 530, 4578, 13, 198, 16485, 1453, 2736, 1058, 25131, 11, 4277, 6407, 198, 220, 220, 220, 1002, 6407, 11, 481, 1949, 284, 31255, 344, 262, 1441, 1988, 284, 257, 2060, 25131, 198, 198, 35561, 198, 35937, 198, 2127, 21052, 11, 393, 1058, 4871, 25, 63, 77, 32152, 13, 358, 18747, 63, 286, 1489, 2305, 504, 198, 198, 90, 1069, 12629, 92, 198, 37811, 198, 198, 747, 929, 364, 316, 62, 15390, 8841, 796, 318, 62, 7266, 62, 16668, 62, 15390, 13, 18982, 7, 198, 220, 220, 220, 4905, 2625, 37330, 364, 316, 1600, 198, 220, 220, 220, 6096, 28, 747, 929, 364, 316, 62, 1069, 12629, 11, 198, 8, 198, 198, 747, 549, 2617, 62, 15390, 8841, 796, 318, 62, 7266, 62, 16668, 62, 15390, 13, 18982, 7, 198, 220, 220, 220, 4905, 2625, 7266, 2617, 1600, 198, 220, 220, 220, 6096, 28, 747, 549, 2617, 62, 1069, 12629, 11, 198, 8, 198 ]
2.382087
2,434
__example_payload__ = "SELECT * FROM information_schema.tables" __type__ = "encoding all characters in the payload into their URL encoding equivalent"
[ 834, 20688, 62, 15577, 2220, 834, 796, 366, 46506, 1635, 16034, 1321, 62, 15952, 2611, 13, 83, 2977, 1, 198, 834, 4906, 834, 796, 366, 12685, 7656, 477, 3435, 287, 262, 21437, 656, 511, 10289, 21004, 7548, 1, 628 ]
3.897436
39
# flake8: noqa # These have to be synced with the stdlib.pxi import asyncio import collections import concurrent.futures import errno import functools import gc import inspect import itertools import os import signal import socket import subprocess import ssl import stat import sys import threading import traceback import time import warnings import weakref
[ 2, 781, 539, 23, 25, 645, 20402, 198, 198, 2, 2312, 423, 284, 307, 6171, 771, 351, 262, 14367, 8019, 13, 8416, 72, 198, 11748, 30351, 952, 198, 11748, 17268, 198, 11748, 24580, 13, 69, 315, 942, 198, 11748, 11454, 3919, 198, 11748, 1257, 310, 10141, 198, 11748, 308, 66, 198, 11748, 10104, 198, 11748, 340, 861, 10141, 198, 11748, 28686, 198, 11748, 6737, 198, 11748, 17802, 198, 11748, 850, 14681, 198, 11748, 264, 6649, 198, 11748, 1185, 198, 11748, 25064, 198, 11748, 4704, 278, 198, 11748, 12854, 1891, 198, 11748, 640, 198, 11748, 14601, 198, 11748, 4939, 5420, 198 ]
3.61
100
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/protobuf/internal/import_test_package/import_public.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf.internal.import_test_package import import_public_nested_pb2 as google_dot_protobuf_dot_internal_dot_import__test__package_dot_import__public__nested__pb2 from google.protobuf.internal.import_test_package.import_public_nested_pb2 import * DESCRIPTOR = _descriptor.FileDescriptor( name='google/protobuf/internal/import_test_package/import_public.proto', package='google.protobuf.python.internal.import_test_package', syntax='proto2', serialized_options=b'H\001', create_key=_descriptor._internal_create_key, serialized_pb=b'\n@google/protobuf/internal/import_test_package/import_public.proto\x12\x33google.protobuf.python.internal.import_test_package\x1aGgoogle/protobuf/internal/import_test_package/import_public_nested.protoB\x02H\x01P\x00' , dependencies=[google_dot_protobuf_dot_internal_dot_import__test__package_dot_import__public__nested__pb2.DESCRIPTOR,], public_dependencies=[google_dot_protobuf_dot_internal_dot_import__test__package_dot_import__public__nested__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 262, 8435, 11876, 17050, 13, 220, 8410, 5626, 48483, 0, 198, 2, 2723, 25, 23645, 14, 11235, 672, 3046, 14, 32538, 14, 11748, 62, 9288, 62, 26495, 14, 11748, 62, 11377, 13, 1676, 1462, 198, 37811, 8645, 515, 8435, 11876, 2438, 526, 15931, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 355, 4808, 20147, 1968, 273, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 3275, 355, 4808, 20500, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 14580, 355, 4808, 5420, 1564, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 6194, 62, 48806, 355, 4808, 1837, 23650, 62, 48806, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 320, 3742, 8, 198, 198, 62, 37047, 62, 9945, 796, 4808, 1837, 23650, 62, 48806, 13, 19463, 3419, 628, 198, 6738, 23645, 13, 11235, 672, 3046, 13, 32538, 13, 11748, 62, 9288, 62, 26495, 1330, 1330, 62, 11377, 62, 77, 7287, 62, 40842, 17, 355, 23645, 62, 26518, 62, 11235, 672, 3046, 62, 26518, 62, 32538, 62, 26518, 62, 11748, 834, 9288, 834, 26495, 62, 26518, 62, 11748, 834, 11377, 834, 77, 7287, 834, 40842, 17, 198, 198, 6738, 23645, 13, 11235, 672, 3046, 13, 32538, 13, 11748, 62, 9288, 62, 26495, 13, 11748, 62, 11377, 62, 77, 7287, 62, 40842, 17, 1330, 1635, 198, 198, 30910, 36584, 32961, 796, 4808, 20147, 1968, 273, 13, 8979, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 13297, 14, 11235, 672, 3046, 14, 32538, 14, 11748, 62, 9288, 62, 26495, 14, 11748, 62, 11377, 13, 1676, 1462, 3256, 198, 220, 5301, 11639, 13297, 13, 11235, 672, 3046, 13, 29412, 13, 32538, 13, 11748, 62, 9288, 62, 26495, 3256, 198, 220, 15582, 11639, 1676, 1462, 17, 3256, 198, 220, 11389, 1143, 62, 25811, 28, 65, 6, 39, 59, 8298, 3256, 198, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 11, 198, 220, 11389, 1143, 62, 40842, 28, 65, 6, 59, 77, 31, 13297, 14, 11235, 672, 3046, 14, 32538, 14, 11748, 62, 9288, 62, 26495, 14, 11748, 62, 11377, 13, 1676, 1462, 59, 87, 1065, 59, 87, 2091, 13297, 13, 11235, 672, 3046, 13, 29412, 13, 32538, 13, 11748, 62, 9288, 62, 26495, 59, 87, 16, 64, 38, 13297, 14, 11235, 672, 3046, 14, 32538, 14, 11748, 62, 9288, 62, 26495, 14, 11748, 62, 11377, 62, 77, 7287, 13, 1676, 1462, 33, 59, 87, 2999, 39, 59, 87, 486, 47, 59, 87, 405, 6, 198, 220, 837, 198, 220, 20086, 41888, 13297, 62, 26518, 62, 11235, 672, 3046, 62, 26518, 62, 32538, 62, 26518, 62, 11748, 834, 9288, 834, 26495, 62, 26518, 62, 11748, 834, 11377, 834, 77, 7287, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 4357, 198, 220, 1171, 62, 45841, 3976, 41888, 13297, 62, 26518, 62, 11235, 672, 3046, 62, 26518, 62, 32538, 62, 26518, 62, 11748, 834, 9288, 834, 26495, 62, 26518, 62, 11748, 834, 11377, 834, 77, 7287, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 12962, 628, 198, 198, 62, 37047, 62, 9945, 13, 38804, 8979, 24564, 1968, 273, 7, 30910, 36584, 32961, 8, 628, 198, 30910, 36584, 32961, 13557, 25811, 796, 6045, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 21412, 62, 29982, 8, 198 ]
2.946043
556
""" CONSOLE LOGGING VERBOSITY LEVELS --------------------------------- 0 - FATAL 1 - CRITICAL 2 - INFO 3 - LOUD 4 - DEBUG """ from __future__ import print_function VERBOSITY = 3 # Pass a function that handles printing
[ 37811, 198, 10943, 15821, 2538, 41605, 38, 2751, 33310, 33, 2640, 9050, 49277, 50, 198, 3880, 12, 198, 15, 532, 47200, 1847, 198, 16, 532, 8740, 2043, 20151, 198, 17, 532, 24890, 198, 18, 532, 406, 2606, 35, 198, 19, 532, 16959, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 5959, 33, 2640, 9050, 796, 513, 628, 628, 198, 2, 6251, 257, 2163, 326, 17105, 13570, 198 ]
3.097222
72
#!/usr/bin/env python3 import multiprocessing as mp import functools import logging import time from typing import List from tqdm.auto import tqdm from dataclasses import dataclass from simple_parsing import Serializable from pathlib import Path from google.cloud import storage from top.data.objectron_detection import ObjectronDetection from top.run.app_util import update_settings bucket = None def download_shard(shard: str, out_dir: str, bucket_local=None): """Download a single shard into `out_dir`. NOTE(ycho): The output file is automatically named according to the base-name of `shard`. """ global bucket # Convert arg to a path object, just in case ... out_dir = Path(out_dir) # Configure names and download. basename = shard.split('/')[-1] out_file = (out_dir / basename) if bucket_local is None: # NOTE(ycho): Fallback to global bucket bucket_local = bucket blob = bucket_local.blob(shard) try: blob.download_to_filename(str(out_file)) except KeyboardInterrupt as e: # NOTE(ycho): This seems to be the only working solution, # which is to cleanup only on SIGINT. # Catching a general `Exception` does not work. Not sure why. if out_file.exists(): logging.debug(F'unlink: {out_file}') out_file.unlink() return 0 # NOTE(ycho): since we're not downloading metadata through get_blob(), # we need to stat the local file for the size, in bytes. return out_file.stat().st_size @dataclass def init_worker(): """Set global variable `bucket` to point to cloud. NOTE(ycho): This function is only used for mp.Pool. """ global bucket client = storage.Client.create_anonymous_client() bucket = client.bucket('objectron') if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 18540, 305, 919, 278, 355, 29034, 198, 11748, 1257, 310, 10141, 198, 11748, 18931, 198, 11748, 640, 198, 198, 6738, 19720, 1330, 7343, 198, 6738, 256, 80, 36020, 13, 23736, 1330, 256, 80, 36020, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 2829, 62, 79, 945, 278, 1330, 23283, 13821, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 23645, 13, 17721, 1330, 6143, 198, 198, 6738, 1353, 13, 7890, 13, 15252, 1313, 62, 15255, 3213, 1330, 9515, 1313, 11242, 3213, 198, 6738, 1353, 13, 5143, 13, 1324, 62, 22602, 1330, 4296, 62, 33692, 198, 198, 27041, 316, 796, 6045, 628, 198, 4299, 4321, 62, 1477, 446, 7, 1477, 446, 25, 965, 11, 503, 62, 15908, 25, 965, 11, 19236, 62, 12001, 28, 14202, 2599, 198, 220, 220, 220, 37227, 10002, 257, 2060, 427, 446, 656, 4600, 448, 62, 15908, 44646, 628, 220, 220, 220, 24550, 7, 88, 6679, 2599, 383, 5072, 2393, 318, 6338, 3706, 1864, 284, 262, 2779, 12, 3672, 286, 198, 220, 220, 220, 4600, 1477, 446, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 19236, 628, 220, 220, 220, 1303, 38240, 1822, 284, 257, 3108, 2134, 11, 655, 287, 1339, 2644, 198, 220, 220, 220, 503, 62, 15908, 796, 10644, 7, 448, 62, 15908, 8, 628, 220, 220, 220, 1303, 17056, 495, 3891, 290, 4321, 13, 198, 220, 220, 220, 1615, 12453, 796, 427, 446, 13, 35312, 10786, 14, 11537, 58, 12, 16, 60, 198, 220, 220, 220, 503, 62, 7753, 796, 357, 448, 62, 15908, 1220, 1615, 12453, 8, 628, 220, 220, 220, 611, 19236, 62, 12001, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24550, 7, 88, 6679, 2599, 7218, 1891, 284, 3298, 19236, 198, 220, 220, 220, 220, 220, 220, 220, 19236, 62, 12001, 796, 19236, 198, 220, 220, 220, 44812, 796, 19236, 62, 12001, 13, 2436, 672, 7, 1477, 446, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44812, 13, 15002, 62, 1462, 62, 34345, 7, 2536, 7, 448, 62, 7753, 4008, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24550, 7, 88, 6679, 2599, 770, 2331, 284, 307, 262, 691, 1762, 4610, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 543, 318, 284, 27425, 691, 319, 33993, 12394, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 327, 19775, 257, 2276, 4600, 16922, 63, 857, 407, 670, 13, 1892, 1654, 1521, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 503, 62, 7753, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 37, 6, 403, 8726, 25, 1391, 448, 62, 7753, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 7753, 13, 403, 8726, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 628, 220, 220, 220, 1303, 24550, 7, 88, 6679, 2599, 1201, 356, 821, 407, 22023, 20150, 832, 651, 62, 2436, 672, 22784, 198, 220, 220, 220, 1303, 356, 761, 284, 1185, 262, 1957, 2393, 329, 262, 2546, 11, 287, 9881, 13, 198, 220, 220, 220, 1441, 503, 62, 7753, 13, 14269, 22446, 301, 62, 7857, 628, 198, 198, 31, 19608, 330, 31172, 628, 198, 4299, 2315, 62, 28816, 33529, 198, 220, 220, 220, 37227, 7248, 3298, 7885, 4600, 27041, 316, 63, 284, 966, 284, 6279, 13, 628, 220, 220, 220, 24550, 7, 88, 6679, 2599, 770, 2163, 318, 691, 973, 329, 29034, 13, 27201, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 19236, 198, 220, 220, 220, 5456, 796, 6143, 13, 11792, 13, 17953, 62, 272, 6704, 62, 16366, 3419, 198, 220, 220, 220, 19236, 796, 5456, 13, 27041, 316, 10786, 15252, 1313, 11537, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.760773
673
import doctest import os import pytest import psyneulink as pnl
[ 11748, 10412, 395, 198, 198, 11748, 28686, 198, 11748, 12972, 9288, 198, 198, 11748, 17331, 710, 377, 676, 355, 279, 21283, 628, 628, 198 ]
2.916667
24
import pandas as pd import re from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasRegressor from sklearn.preprocessing import StandardScaler from nltk.corpus import stopwords import nltk from sklearn.feature_extraction.text import TfidfVectorizer data = pd.read_csv('data/seattle/3/listings_texts.csv') corpus = data['description'] y = data['price'] X=[] for i,line in enumerate(corpus): clear = [x for x in re.sub(r'[^\w\'\s]', '',line.lower()).split() if x not in stopwords.words('english')] X.append(' '.join(clear)) if i%100 == 0: print("Progress : ", i) if i == 4000: break print("Moving on!") vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(X) net = Sequential() net.add(Dense(200, input_dim=X[0].shape[1], kernel_initializer='normal',activation='relu')) net.add(Dense(100, input_dim=200, kernel_initializer='normal',activation='relu')) net.add(Dense(1, input_dim=100, kernel_initializer='normal')) net.compile(loss='mean_squared_error', optimizer='adam') net.fit(X[:3000],y[:3000], epochs=70, batch_size=100) print(net.evaluate(X[3001:] ,y[3001:])) for i in range(50): print(net.predict(X[3001+i]), y[3001+i])
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 302, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 360, 1072, 198, 6738, 41927, 292, 13, 29988, 11799, 13, 36216, 15813, 62, 35720, 1330, 17337, 292, 8081, 44292, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 198, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 2245, 10879, 198, 11748, 299, 2528, 74, 198, 6738, 1341, 35720, 13, 30053, 62, 2302, 7861, 13, 5239, 1330, 309, 69, 312, 69, 38469, 7509, 628, 198, 7890, 796, 279, 67, 13, 961, 62, 40664, 10786, 7890, 14, 325, 1999, 14, 18, 14, 4868, 654, 62, 5239, 82, 13, 40664, 11537, 198, 198, 10215, 79, 385, 796, 1366, 17816, 11213, 20520, 198, 88, 796, 1366, 17816, 20888, 20520, 198, 55, 28, 21737, 198, 1640, 1312, 11, 1370, 287, 27056, 378, 7, 10215, 79, 385, 2599, 198, 220, 220, 220, 1598, 796, 685, 87, 329, 2124, 287, 302, 13, 7266, 7, 81, 6, 58, 61, 59, 86, 43054, 59, 82, 60, 3256, 705, 3256, 1370, 13, 21037, 3419, 737, 35312, 3419, 611, 2124, 407, 287, 2245, 10879, 13, 10879, 10786, 39126, 11537, 60, 198, 220, 220, 220, 1395, 13, 33295, 10786, 45302, 22179, 7, 20063, 4008, 198, 220, 220, 220, 611, 1312, 4, 3064, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 32577, 1058, 33172, 1312, 8, 198, 220, 220, 220, 611, 1312, 6624, 30123, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 4798, 7203, 33622, 319, 2474, 8, 198, 31364, 7509, 796, 309, 69, 312, 69, 38469, 7509, 3419, 198, 55, 796, 15879, 7509, 13, 11147, 62, 35636, 7, 55, 8, 198, 198, 3262, 796, 24604, 1843, 3419, 198, 3262, 13, 2860, 7, 35, 1072, 7, 2167, 11, 5128, 62, 27740, 28, 55, 58, 15, 4083, 43358, 58, 16, 4357, 9720, 62, 36733, 7509, 11639, 11265, 3256, 48545, 11639, 260, 2290, 6, 4008, 198, 3262, 13, 2860, 7, 35, 1072, 7, 3064, 11, 5128, 62, 27740, 28, 2167, 11, 9720, 62, 36733, 7509, 11639, 11265, 3256, 48545, 11639, 260, 2290, 6, 4008, 198, 3262, 13, 2860, 7, 35, 1072, 7, 16, 11, 5128, 62, 27740, 28, 3064, 11, 9720, 62, 36733, 7509, 11639, 11265, 6, 4008, 198, 3262, 13, 5589, 576, 7, 22462, 11639, 32604, 62, 16485, 1144, 62, 18224, 3256, 6436, 7509, 11639, 324, 321, 11537, 198, 3262, 13, 11147, 7, 55, 58, 25, 23924, 4357, 88, 58, 25, 23924, 4357, 36835, 82, 28, 2154, 11, 15458, 62, 7857, 28, 3064, 8, 198, 198, 4798, 7, 3262, 13, 49786, 7, 55, 58, 6200, 16, 47715, 837, 88, 58, 6200, 16, 47715, 4008, 198, 1640, 1312, 287, 2837, 7, 1120, 2599, 198, 220, 220, 220, 3601, 7, 3262, 13, 79, 17407, 7, 55, 58, 6200, 16, 10, 72, 46570, 331, 58, 6200, 16, 10, 72, 12962, 198 ]
2.553942
482
import time import matplotlib.pyplot as plt from confluent_kafka import Producer if __name__ == '__main__': plot_events_produced_frequency('first_half.txt')
[ 11748, 640, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 1013, 28216, 62, 74, 1878, 4914, 1330, 30436, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 7110, 62, 31534, 62, 32783, 62, 35324, 10786, 11085, 62, 13959, 13, 14116, 11537, 198 ]
2.964286
56
# This file is part of postcipes # (c) Timofey Mukha # The code is released under the MIT Licence. # See LICENCE.txt and the Legal section in the README for more information from __future__ import absolute_import from __future__ import division from __future__ import print_function from .postcipe import Postcipe import turbulucid as tbl import numpy as np from os.path import join from scipy.integrate import simps from collections import OrderedDict from scipy.interpolate import LinearNDInterpolator from scipy.spatial import Delaunay import h5py __all__ = ["UnstructuredChannelFlow"]
[ 2, 770, 2393, 318, 636, 286, 1281, 66, 18636, 198, 2, 357, 66, 8, 5045, 1659, 2959, 31509, 3099, 198, 2, 383, 2438, 318, 2716, 739, 262, 17168, 10483, 594, 13, 198, 2, 4091, 38559, 18310, 13, 14116, 290, 262, 16027, 2665, 287, 262, 20832, 11682, 329, 517, 1321, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 764, 7353, 979, 431, 1330, 2947, 979, 431, 198, 11748, 14830, 377, 1229, 312, 355, 256, 2436, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 28686, 13, 6978, 1330, 4654, 198, 6738, 629, 541, 88, 13, 18908, 4873, 1330, 985, 862, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 629, 541, 88, 13, 3849, 16104, 378, 1330, 44800, 8575, 9492, 16104, 1352, 198, 6738, 629, 541, 88, 13, 2777, 34961, 1330, 4216, 1942, 323, 198, 11748, 289, 20, 9078, 198, 198, 834, 439, 834, 796, 14631, 3118, 7249, 1522, 29239, 37535, 8973, 628, 628 ]
3.433526
173
# MIT License # Copyright (c) 2017 MassChallenge, Inc. from impact.v1.helpers import JudgingRoundHelper from impact.v1.views.base_detail_view import BaseDetailView
[ 2, 17168, 13789, 198, 2, 15069, 357, 66, 8, 2177, 5674, 41812, 3540, 11, 3457, 13, 198, 198, 6738, 2928, 13, 85, 16, 13, 16794, 364, 1330, 47024, 22685, 47429, 198, 6738, 2928, 13, 85, 16, 13, 33571, 13, 8692, 62, 49170, 62, 1177, 1330, 7308, 11242, 603, 7680, 628 ]
3.32
50
import boto3 import base64 aws_ecr_client = boto3.client('ecr') response = aws_ecr_client.describe_repositories() for repo in response['repositories']: response = aws_ecr_client.get_authorization_token(registryIds=[repo['registryId']]) print(f"{repo['repositoryName']}\t{repo['repositoryArn']}") #print(f" {response['authorizationData'][0]['proxyEndpoint']}") #print(response['authorizationData'][0]['authorizationToken'])
[ 11748, 275, 2069, 18, 198, 11748, 2779, 2414, 198, 198, 8356, 62, 721, 81, 62, 16366, 796, 275, 2069, 18, 13, 16366, 10786, 721, 81, 11537, 198, 198, 26209, 796, 3253, 82, 62, 721, 81, 62, 16366, 13, 20147, 4892, 62, 260, 1930, 270, 1749, 3419, 198, 198, 1640, 29924, 287, 2882, 17816, 260, 1930, 270, 1749, 6, 5974, 198, 220, 220, 220, 2882, 796, 3253, 82, 62, 721, 81, 62, 16366, 13, 1136, 62, 9800, 1634, 62, 30001, 7, 2301, 4592, 7390, 82, 41888, 260, 7501, 17816, 2301, 4592, 7390, 6, 11907, 8, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 260, 7501, 17816, 260, 1930, 37765, 5376, 20520, 32239, 83, 90, 260, 7501, 17816, 260, 1930, 37765, 3163, 77, 20520, 92, 4943, 198, 220, 220, 220, 1303, 4798, 7, 69, 1, 220, 1391, 26209, 17816, 9800, 1634, 6601, 6, 7131, 15, 7131, 6, 36436, 12915, 4122, 20520, 92, 4943, 198, 220, 220, 220, 1303, 4798, 7, 26209, 17816, 9800, 1634, 6601, 6, 7131, 15, 7131, 6, 9800, 1634, 30642, 6, 12962, 198 ]
2.531429
175
""" Test constants :author: Angelo Cutaia :copyright: Copyright 2021, LINKS Foundation :version: 1.0.0 .. Copyright 2021 LINKS Foundation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Standard library import os import time FAKE_DATA = os.path.join(os.path.abspath(os.path.dirname(__file__)), "fake_data.txt") """Path of the file containing the fake data""" # ------------------------------------------------------------------------------ # Module version __version_info__ = (1, 0, 0) __version__ = ".".join(str(x) for x in __version_info__) # Documentation strings format __docformat__ = "restructuredtext en" # ------------------------------------------------------------------------------ ######## # TIME # ######## TIME_MESSAGE_PAYLOAD = bytes( [ 0x1, 0x25, 0x14, 0x0, 0x0, 0x16, 0x9C, 0x16, 0xC0, 0xC9, 0x5, 0x0, 0x1C, 0xA4, 0x2, 0x0, 0x31, 0x4, 0x12, 0x7, 0x3, 0x0, 0x0, 0x0, 0xA3, 0xEF, ] ) """Time message payload with""" raw_galTow = 379328 """Galielo time of the week""" raw_galWno = 1073 """Galielo week number""" raw_leapS = 18 """Galileo leap seconds""" timestampMessage_unix = 1584609709997 """Time stamp of the message in a unix system""" timestampMessage_galileo = 649329725 """Time stamp of the message in galileo""" time_raw_ck_A = 163 """Time checksum A""" time_raw_ck_B = 239 """Time checksum B""" # ------------------------------------------------------------------------------ ########### # GALILEO # ########### UBLOX_MESSAGE_PAYLOAD = bytes( [ 0x2, 0x13, 0x2C, 0x0, 0x2, 0x12, 0x1, 0x0, 0x9, 0xE, 0x2, 0xD2, 0x34, 0x77, 0x76, 0x7, 0x5D, 0x63, 0x0, 0x1, 0xF5, 0x51, 0x22, 0x24, 0x0, 0x40, 0xF, 0x7F, 0x0, 0x40, 0x65, 0xA6, 0x2A, 0x0, 0x0, 0x0, 0xD2, 0x57, 0xAA, 0xAA, 0x0, 0x40, 0xBF, 0x3F, 0xD5, 0x9A, 0xE8, 0x3F, 0x4A, 0x7C, ] ) """Ublox message payload""" GALILEO_MESSAGE_PAYLOAD = "077677340100635d242251f57f0f40a66540000000002aaaaa57d23fbf40" """Galileo message payload""" TEST_AUTH_BYTES = bytes([0x0, 0x40, 0x65, 0xA6, 0x2A, 0x0, 0x0, 0x0]) """Bytes that contain inside the 40 auth bits""" raw_auth = 0 """Int value of the 5 authorization bytes""" raw_svId = 18 """Galielo service id""" raw_numWords = 9 """Num of words""" raw_ck_A = 74 """Galileo checksum A""" raw_ck_B = 124 """Galileo checksum B""" # ------------------------------------------------------------------------------ ################# # DATA TO STORE # ################# DATA_TO_STORE = ( time.time() * 1000, timestampMessage_unix, raw_galTow, raw_galWno, raw_leapS, UBLOX_MESSAGE_PAYLOAD.hex(), GALILEO_MESSAGE_PAYLOAD, 0, raw_svId, raw_numWords, raw_ck_B, raw_ck_A, time_raw_ck_A, time_raw_ck_B, -1, timestampMessage_galileo, ) """Data to use to test the database"""
[ 37811, 198, 14402, 38491, 198, 198, 25, 9800, 25, 48886, 9712, 64, 544, 198, 25, 22163, 4766, 25, 15069, 33448, 11, 34426, 50, 5693, 198, 25, 9641, 25, 352, 13, 15, 13, 15, 198, 198, 492, 628, 220, 220, 220, 15069, 33448, 34426, 50, 5693, 628, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 220, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 220, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 628, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 220, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 220, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 220, 220, 220, 11247, 739, 262, 13789, 13, 198, 37811, 198, 198, 2, 8997, 5888, 198, 11748, 28686, 198, 11748, 640, 198, 198, 7708, 7336, 62, 26947, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 366, 30706, 62, 7890, 13, 14116, 4943, 198, 37811, 15235, 286, 262, 2393, 7268, 262, 8390, 1366, 37811, 198, 198, 2, 16529, 26171, 198, 198, 2, 19937, 2196, 198, 834, 9641, 62, 10951, 834, 796, 357, 16, 11, 657, 11, 657, 8, 198, 834, 9641, 834, 796, 366, 526, 13, 22179, 7, 2536, 7, 87, 8, 329, 2124, 287, 11593, 9641, 62, 10951, 834, 8, 198, 198, 2, 43925, 13042, 5794, 198, 834, 15390, 18982, 834, 796, 366, 2118, 1356, 1522, 5239, 551, 1, 198, 198, 2, 16529, 26171, 628, 198, 7804, 198, 2, 20460, 1303, 198, 7804, 628, 198, 34694, 62, 44, 1546, 4090, 8264, 62, 4537, 56, 35613, 796, 9881, 7, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1415, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 24, 34, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 34, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 34, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 16, 34, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 32, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 3132, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 32, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 25425, 11, 198, 220, 220, 220, 2361, 198, 8, 198, 37811, 7575, 3275, 21437, 351, 37811, 198, 198, 1831, 62, 13528, 51, 322, 796, 45937, 34256, 198, 37811, 38, 7344, 22126, 640, 286, 262, 1285, 37811, 198, 198, 1831, 62, 13528, 54, 3919, 796, 838, 4790, 198, 37811, 38, 7344, 22126, 1285, 1271, 37811, 198, 198, 1831, 62, 293, 499, 50, 796, 1248, 198, 37811, 26552, 576, 78, 16470, 4201, 37811, 198, 198, 16514, 27823, 12837, 62, 403, 844, 796, 1315, 5705, 31751, 2154, 2079, 5607, 198, 37811, 7575, 17977, 286, 262, 3275, 287, 257, 555, 844, 1080, 37811, 198, 198, 16514, 27823, 12837, 62, 13528, 576, 78, 796, 718, 43134, 26561, 1495, 198, 37811, 7575, 17977, 286, 262, 3275, 287, 9426, 576, 78, 37811, 198, 198, 2435, 62, 1831, 62, 694, 62, 32, 796, 26826, 198, 37811, 7575, 8794, 388, 317, 37811, 198, 198, 2435, 62, 1831, 62, 694, 62, 33, 796, 32817, 198, 37811, 7575, 8794, 388, 347, 37811, 198, 198, 2, 16529, 26171, 628, 198, 7804, 21017, 198, 2, 402, 1847, 41119, 46, 1303, 198, 7804, 21017, 628, 198, 52, 9148, 48632, 62, 44, 1546, 4090, 8264, 62, 4537, 56, 35613, 796, 9881, 7, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 17, 34, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 35, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 2682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 3324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 4304, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 20, 35, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 5066, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 37, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 4349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1828, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 37, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 22, 37, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 2996, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 32, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 17, 32, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 35, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 3553, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 3838, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 3838, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 1821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 29499, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 18, 37, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 35, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 24, 32, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 36, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 18, 37, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 19, 32, 11, 198, 220, 220, 220, 220, 220, 220, 220, 657, 87, 22, 34, 11, 198, 220, 220, 220, 2361, 198, 8, 198, 37811, 52, 2436, 1140, 3275, 21437, 37811, 198, 198, 38, 1847, 41119, 46, 62, 44, 1546, 4090, 8264, 62, 4537, 56, 35613, 796, 366, 2998, 32059, 22, 2682, 486, 28041, 2327, 67, 1731, 18182, 16, 69, 3553, 69, 15, 69, 1821, 64, 2791, 4051, 10535, 34215, 24794, 64, 3553, 67, 1954, 69, 19881, 1821, 1, 198, 37811, 26552, 576, 78, 3275, 21437, 37811, 198, 198, 51, 6465, 62, 32, 24318, 62, 17513, 51, 1546, 796, 9881, 26933, 15, 87, 15, 11, 657, 87, 1821, 11, 657, 87, 2996, 11, 657, 87, 32, 21, 11, 657, 87, 17, 32, 11, 657, 87, 15, 11, 657, 87, 15, 11, 657, 87, 15, 12962, 198, 37811, 45992, 326, 3994, 2641, 262, 2319, 6284, 10340, 37811, 198, 198, 1831, 62, 18439, 796, 657, 198, 37811, 5317, 1988, 286, 262, 642, 19601, 9881, 37811, 198, 198, 1831, 62, 21370, 7390, 796, 1248, 198, 37811, 38, 7344, 22126, 2139, 4686, 37811, 198, 198, 1831, 62, 22510, 37117, 796, 860, 198, 37811, 33111, 286, 2456, 37811, 198, 198, 1831, 62, 694, 62, 32, 796, 8915, 198, 37811, 26552, 576, 78, 8794, 388, 317, 37811, 198, 198, 1831, 62, 694, 62, 33, 796, 19755, 198, 37811, 26552, 576, 78, 8794, 388, 347, 37811, 198, 198, 2, 16529, 26171, 628, 198, 14468, 2, 198, 2, 42865, 5390, 3563, 6965, 1303, 198, 14468, 2, 628, 198, 26947, 62, 10468, 62, 2257, 6965, 796, 357, 198, 220, 220, 220, 640, 13, 2435, 3419, 1635, 8576, 11, 198, 220, 220, 220, 41033, 12837, 62, 403, 844, 11, 198, 220, 220, 220, 8246, 62, 13528, 51, 322, 11, 198, 220, 220, 220, 8246, 62, 13528, 54, 3919, 11, 198, 220, 220, 220, 8246, 62, 293, 499, 50, 11, 198, 220, 220, 220, 471, 9148, 48632, 62, 44, 1546, 4090, 8264, 62, 4537, 56, 35613, 13, 33095, 22784, 198, 220, 220, 220, 402, 1847, 41119, 46, 62, 44, 1546, 4090, 8264, 62, 4537, 56, 35613, 11, 198, 220, 220, 220, 657, 11, 198, 220, 220, 220, 8246, 62, 21370, 7390, 11, 198, 220, 220, 220, 8246, 62, 22510, 37117, 11, 198, 220, 220, 220, 8246, 62, 694, 62, 33, 11, 198, 220, 220, 220, 8246, 62, 694, 62, 32, 11, 198, 220, 220, 220, 640, 62, 1831, 62, 694, 62, 32, 11, 198, 220, 220, 220, 640, 62, 1831, 62, 694, 62, 33, 11, 198, 220, 220, 220, 532, 16, 11, 198, 220, 220, 220, 41033, 12837, 62, 13528, 576, 78, 11, 198, 8, 198, 37811, 6601, 284, 779, 284, 1332, 262, 6831, 37811, 198 ]
2.034823
1,924
from datamodel_code_generator.parser.base import snake_to_upper_camel def test_snake_to_upper_camel_underscore(): """In case a name starts with a underline, we should keep it.""" assert snake_to_upper_camel('_hello') == '_Hello'
[ 6738, 4818, 321, 375, 417, 62, 8189, 62, 8612, 1352, 13, 48610, 13, 8692, 1330, 17522, 62, 1462, 62, 45828, 62, 66, 17983, 628, 198, 4299, 1332, 62, 16184, 539, 62, 1462, 62, 45828, 62, 66, 17983, 62, 41116, 7295, 33529, 198, 220, 220, 220, 37227, 818, 1339, 257, 1438, 4940, 351, 257, 739, 1370, 11, 356, 815, 1394, 340, 526, 15931, 198, 220, 220, 220, 6818, 17522, 62, 1462, 62, 45828, 62, 66, 17983, 10786, 62, 31373, 11537, 6624, 705, 62, 15496, 6, 198 ]
2.811765
85
import cv2 import numpy as np import dk_ardruino import serial cam_mtx=np.load('utils/cam_mtx.npy') dist=np.load('utils/dist.npy') newcam_mtx=np.load('utils/newcam_mtx.npy') roi=np.load('utils/roi.npy') matrix = np.load('utils/abc.npy') area1 = int(open('utils/Resolution.txt').read().split('\n')[2]) width = int(open('utils/Resolution.txt').read().split('\n')[0]) height = int(open('utils/Resolution.txt').read().split('\n')[1]) diff_low_t= int(open('utils/Resolution.txt').read().split('\n')[5]) diff_high_t= int(open('utils/Resolution.txt').read().split('\n')[6]) realwidth = int(open('utils/Resolution.txt').read().split('\n')[3]) realheight = int(open('utils/Resolution.txt').read().split('\n')[4]) camera_number = int(open('utils/Resolution.txt').read().split('\n')[7]) Serial_port = open('utils/Resolution.txt').read().split('\n')[8] bg_capture=False bg_counter=0 count = 0 cam = cv2.VideoCapture(camera_number) make_720p(cam) ser = serial.Serial(Serial_port, 9600, timeout=1) arm = True arm_c=dk_ardruino.arm_controller(ser) arm_c.wait_forready() while True: ret, frame = cam.read() frame = cv2.undistort(frame, cam_mtx, dist, None, newcam_mtx) a, b, c, d = roi frame = frame[b:b+d, a:a+c] frame1 = frame.copy() if bg_capture == False: bg_counter+=1 print(bg_counter) if bg_counter==10: crop_nen = cv2.warpPerspective(frame, matrix, (width, height)) # crop_nen= frame bg_capture=True if bg_capture == True: crop_phat_hien = cv2.warpPerspective(frame, matrix, (width, height)) # crop_phat_hien = frame target_gray = cv2.cvtColor(crop_phat_hien, cv2.COLOR_BGR2GRAY) bg_gray = cv2.cvtColor(crop_nen, cv2.COLOR_BGR2GRAY) diff_gray = cv2.absdiff(target_gray,bg_gray) diff_gray_blur = cv2.GaussianBlur(diff_gray,(9,9),0) ret,diff_tresh = cv2.threshold(diff_gray_blur,diff_low_t,diff_high_t,cv2.THRESH_BINARY) diff = cv2.GaussianBlur(diff_tresh,(9,9),0) diff = cv2.dilate(diff, None, iterations=2) contours, hierarchy = cv2.findContours(diff, cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) XYZ=[] for cnt in contours: (x,y,w,h) = cv2.boundingRect(cnt) cv2.rectangle(crop_phat_hien, (x, y), (x + w, y + h), (0, 0, 255), 2) area = w*h edge_noise=False if x==0: edge_noise=True if y==0: edge_noise=True if (x+w)== width: edge_noise=True if (y+h)== height: edge_noise=True if edge_noise==False: if area > area1: realx = (realwidth/width)*(x + (w/2)) realy = (realheight/height)*(y + (h/2)) cv2.rectangle(crop_phat_hien, (x, y), (x + w, y + h), (0, 0, 255), 2) adjust=0.1 y=int(y-((h*adjust)/2)) if y<0: y=0 x=int(x-((w*adjust)/2)) if x<0: x=0 w=int(w*(1+adjust)) h=int(h*(1+adjust)) if y<0: y=0 if x<0: x=0 if (x+w)>width: w=width-x if (y+h)>height: h=height-y if w>h: #ensure contour is centered y=int(y-((w-h)/2)) if y<0: y=0 #make a square h=w if (y+h)>height: y=height-h if h>w: x=int(x-((h-w)/2)) if x<0: x=0 w=h if (x+w)>width: x=width-w crop_img = crop_phat_hien[y:y+h, x:x+w] # cv2.rectangle(crop_phat_hien, (x, y), (x + w, y + h), (0, 0, 255), 2) # cv2.putText(crop_phat_hien, str(count), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (36,255,12), 2) XYZ.append([realx,realy]) # XYZ.append([x,y,w,h]) cv2.imshow('camera', diff) cv2.imshow('camera1', crop_phat_hien) k = cv2.waitKey(1) if k%256 == 27: # ESC pressed print("Escape hit, closing...") break if k%256 == 32: # for items in XYZ: # x,y,w,h = items # crop_img = frame1[y:y+h, x:x+w] # cv2.imwrite("dataset/frame%d.png" % count, crop_img) # count += 1 pickanddrop(XYZ,arm) if (arm==True): arm_c.move_home() cam.release() cv2.destroyAllWindows() ser.close()
[ 11748, 269, 85, 17, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 288, 74, 62, 446, 622, 2879, 201, 198, 11748, 11389, 201, 198, 20991, 62, 16762, 87, 28, 37659, 13, 2220, 10786, 26791, 14, 20991, 62, 16762, 87, 13, 77, 9078, 11537, 201, 198, 17080, 28, 37659, 13, 2220, 10786, 26791, 14, 17080, 13, 77, 9078, 11537, 201, 198, 3605, 20991, 62, 16762, 87, 28, 37659, 13, 2220, 10786, 26791, 14, 3605, 20991, 62, 16762, 87, 13, 77, 9078, 11537, 201, 198, 305, 72, 28, 37659, 13, 2220, 10786, 26791, 14, 305, 72, 13, 77, 9078, 11537, 201, 198, 6759, 8609, 796, 45941, 13, 2220, 10786, 26791, 14, 39305, 13, 77, 9078, 11537, 201, 198, 20337, 16, 796, 493, 7, 9654, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 17, 12962, 201, 198, 10394, 796, 493, 7, 9654, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 15, 12962, 201, 198, 17015, 796, 493, 7, 9654, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 16, 12962, 201, 198, 26069, 62, 9319, 62, 83, 28, 493, 7, 9654, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 20, 12962, 201, 198, 26069, 62, 8929, 62, 83, 28, 493, 7, 9654, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 21, 12962, 201, 198, 5305, 10394, 796, 493, 7, 9654, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 18, 12962, 201, 198, 5305, 17015, 796, 493, 7, 9654, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 19, 12962, 201, 198, 25695, 62, 17618, 796, 493, 7, 9654, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 22, 12962, 201, 198, 32634, 62, 634, 796, 1280, 10786, 26791, 14, 4965, 2122, 13, 14116, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 58, 23, 60, 201, 198, 35904, 62, 27144, 495, 28, 25101, 201, 198, 35904, 62, 24588, 28, 15, 201, 198, 9127, 796, 657, 201, 198, 201, 198, 20991, 796, 269, 85, 17, 13, 10798, 49630, 7, 25695, 62, 17618, 8, 201, 198, 15883, 62, 23906, 79, 7, 20991, 8, 201, 198, 201, 198, 2655, 796, 11389, 13, 32634, 7, 32634, 62, 634, 11, 860, 8054, 11, 26827, 28, 16, 8, 201, 198, 1670, 796, 6407, 201, 198, 1670, 62, 66, 28, 34388, 62, 446, 622, 2879, 13, 1670, 62, 36500, 7, 2655, 8, 201, 198, 1670, 62, 66, 13, 17077, 62, 1640, 1493, 3419, 201, 198, 201, 198, 201, 198, 4514, 6407, 25, 201, 198, 220, 220, 220, 1005, 11, 5739, 796, 12172, 13, 961, 3419, 201, 198, 220, 220, 220, 5739, 796, 269, 85, 17, 13, 917, 396, 419, 7, 14535, 11, 12172, 62, 16762, 87, 11, 1233, 11, 6045, 11, 649, 20991, 62, 16762, 87, 8, 201, 198, 220, 220, 220, 257, 11, 275, 11, 269, 11, 288, 796, 686, 72, 201, 198, 220, 220, 220, 5739, 796, 5739, 58, 65, 25, 65, 10, 67, 11, 257, 25, 64, 10, 66, 60, 201, 198, 220, 220, 220, 5739, 16, 796, 5739, 13, 30073, 3419, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 611, 275, 70, 62, 27144, 495, 6624, 10352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 275, 70, 62, 24588, 47932, 16, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 35904, 62, 24588, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 275, 70, 62, 24588, 855, 940, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 62, 38572, 796, 269, 85, 17, 13, 86, 5117, 30946, 806, 425, 7, 14535, 11, 17593, 11, 357, 10394, 11, 6001, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13833, 62, 38572, 28, 5739, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 70, 62, 27144, 495, 28, 17821, 220, 220, 220, 220, 201, 198, 220, 220, 220, 611, 275, 70, 62, 27144, 495, 6624, 6407, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 13833, 62, 746, 265, 62, 71, 2013, 796, 269, 85, 17, 13, 86, 5117, 30946, 806, 425, 7, 14535, 11, 17593, 11, 357, 10394, 11, 6001, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13833, 62, 746, 265, 62, 71, 2013, 796, 5739, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 44605, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 31476, 62, 746, 265, 62, 71, 2013, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 275, 70, 62, 44605, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 31476, 62, 38572, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 814, 62, 44605, 796, 269, 85, 17, 13, 8937, 26069, 7, 16793, 62, 44605, 11, 35904, 62, 44605, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 814, 62, 44605, 62, 2436, 333, 796, 269, 85, 17, 13, 35389, 31562, 3629, 333, 7, 26069, 62, 44605, 11, 7, 24, 11, 24, 828, 15, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 11, 26069, 62, 83, 3447, 796, 269, 85, 17, 13, 400, 10126, 7, 26069, 62, 44605, 62, 2436, 333, 11, 26069, 62, 9319, 62, 83, 11, 26069, 62, 8929, 62, 83, 11, 33967, 17, 13, 4221, 19535, 39, 62, 33, 1268, 13153, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 814, 796, 269, 85, 17, 13, 35389, 31562, 3629, 333, 7, 26069, 62, 83, 3447, 11, 7, 24, 11, 24, 828, 15, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 814, 796, 269, 85, 17, 13, 67, 346, 378, 7, 26069, 11, 6045, 11, 34820, 28, 17, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 542, 4662, 11, 18911, 796, 269, 85, 17, 13, 19796, 4264, 4662, 7, 26069, 11, 269, 85, 17, 13, 2200, 5446, 62, 51, 11587, 11, 33967, 17, 13, 3398, 29833, 62, 2969, 31190, 55, 62, 48913, 16437, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 41420, 57, 28, 21737, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 429, 287, 542, 4662, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 11, 88, 11, 86, 11, 71, 8, 796, 269, 85, 17, 13, 7784, 278, 45474, 7, 66, 429, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 2554, 9248, 7, 31476, 62, 746, 265, 62, 71, 2013, 11, 357, 87, 11, 331, 828, 357, 87, 1343, 266, 11, 331, 1343, 289, 828, 357, 15, 11, 657, 11, 14280, 828, 362, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 796, 266, 9, 71, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 3919, 786, 28, 25101, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 855, 15, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 3919, 786, 28, 17821, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 855, 15, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 3919, 786, 28, 17821, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 87, 10, 86, 8, 855, 9647, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 3919, 786, 28, 17821, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 88, 10, 71, 8, 855, 6001, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 3919, 786, 28, 17821, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5743, 62, 3919, 786, 855, 25101, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1989, 1875, 1989, 16, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1103, 87, 796, 357, 5305, 10394, 14, 10394, 27493, 7, 87, 1343, 357, 86, 14, 17, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1103, 88, 796, 357, 5305, 17015, 14, 17015, 27493, 7, 88, 1343, 357, 71, 14, 17, 4008, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 2554, 9248, 7, 31476, 62, 746, 265, 62, 71, 2013, 11, 357, 87, 11, 331, 828, 357, 87, 1343, 266, 11, 331, 1343, 289, 828, 357, 15, 11, 657, 11, 14280, 828, 362, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4532, 28, 15, 13, 16, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 600, 7, 88, 12, 19510, 71, 9, 23032, 20679, 17, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 27, 15, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 600, 7, 87, 12, 19510, 86, 9, 23032, 20679, 17, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 27, 15, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 28, 600, 7, 86, 9, 7, 16, 10, 23032, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 28, 600, 7, 71, 9, 7, 16, 10, 23032, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 27, 15, 25, 331, 28, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 27, 15, 25, 2124, 28, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 87, 10, 86, 8, 29, 10394, 25, 266, 28, 10394, 12, 87, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 88, 10, 71, 8, 29, 17015, 25, 289, 28, 17015, 12, 88, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 266, 29, 71, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 641, 495, 542, 454, 318, 19254, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 600, 7, 88, 12, 19510, 86, 12, 71, 20679, 17, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 27, 15, 25, 331, 28, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15883, 257, 6616, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 28, 86, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 88, 10, 71, 8, 29, 17015, 25, 331, 28, 17015, 12, 71, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 289, 29, 86, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 600, 7, 87, 12, 19510, 71, 12, 86, 20679, 17, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 27, 15, 25, 2124, 28, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 28, 71, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 87, 10, 86, 8, 29, 10394, 25, 2124, 28, 10394, 12, 86, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 62, 9600, 796, 13833, 62, 746, 265, 62, 71, 2013, 58, 88, 25, 88, 10, 71, 11, 2124, 25, 87, 10, 86, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 269, 85, 17, 13, 2554, 9248, 7, 31476, 62, 746, 265, 62, 71, 2013, 11, 357, 87, 11, 331, 828, 357, 87, 1343, 266, 11, 331, 1343, 289, 828, 357, 15, 11, 657, 11, 14280, 828, 362, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 269, 85, 17, 13, 1996, 8206, 7, 31476, 62, 746, 265, 62, 71, 2013, 11, 965, 7, 9127, 828, 357, 1120, 11, 2026, 828, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 657, 13, 20, 11, 357, 2623, 11, 13381, 11, 1065, 828, 362, 8, 220, 220, 220, 220, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41420, 57, 13, 33295, 26933, 5305, 87, 11, 260, 3400, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41420, 57, 13, 33295, 26933, 87, 11, 88, 11, 86, 11, 71, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 25695, 3256, 814, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 25695, 16, 3256, 13833, 62, 746, 265, 62, 71, 2013, 8, 201, 198, 220, 220, 220, 479, 796, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 201, 198, 220, 220, 220, 611, 479, 4, 11645, 6624, 2681, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 40251, 12070, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 36, 6794, 2277, 11, 9605, 9313, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 611, 479, 4, 11645, 6624, 3933, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 3709, 287, 41420, 57, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2124, 11, 88, 11, 86, 11, 71, 796, 3709, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 13833, 62, 9600, 796, 5739, 16, 58, 88, 25, 88, 10, 71, 11, 2124, 25, 87, 10, 86, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7203, 19608, 292, 316, 14, 14535, 4, 67, 13, 11134, 1, 4064, 954, 11, 13833, 62, 9600, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 954, 15853, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2298, 392, 14781, 7, 34278, 57, 11, 1670, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 361, 357, 1670, 855, 17821, 2599, 3211, 62, 66, 13, 21084, 62, 11195, 3419, 220, 201, 198, 20991, 13, 20979, 3419, 201, 198, 33967, 17, 13, 41659, 3237, 11209, 3419, 201, 198, 2655, 13, 19836, 3419 ]
1.649324
2,960
# coding: utf-8 """ Defines Tournesol's backend API routes """ from django.urls import include, path from rest_framework import routers from .views import ComparisonDetailApi, ComparisonListApi, ComparisonListFilteredApi from .views.email_domains import EmailDomainsList from .views.exports import ExportAllView, ExportComparisonsView, ExportPublicComparisonsView from .views.ratings import ( ContributorRatingDetail, ContributorRatingList, ContributorRatingUpdateAll, ) from .views.stats import StatisticsView from .views.user import CurrentUserView from .views.video import VideoViewSet from .views.video_rate_later import VideoRateLaterDetail, VideoRateLaterList router = routers.DefaultRouter() router.register(r'video', VideoViewSet) app_name = "tournesol" urlpatterns = [ path("", include(router.urls)), # User API path( "users/me/", CurrentUserView.as_view(), name="users_me" ), # Data exports path( "users/me/exports/comparisons/", ExportComparisonsView.as_view(), name="export_comparisons" ), path( "users/me/exports/all/", ExportAllView.as_view(), name="export_all" ), path( "exports/comparisons/", ExportPublicComparisonsView.as_view(), name="export_public" ), # Comparison API path( "users/me/comparisons/", ComparisonListApi.as_view(), name="comparisons_me_list", ), path( "users/me/comparisons/<str:video_id>/", ComparisonListFilteredApi.as_view(), name="comparisons_me_list_filtered", ), path( "users/me/comparisons/<str:video_id_a>/<str:video_id_b>/", ComparisonDetailApi.as_view(), name="comparisons_me_detail", ), # VideoRateLater API path( "users/me/video_rate_later/", VideoRateLaterList.as_view(), name="video_rate_later_list", ), path( "users/me/video_rate_later/<str:video_id>/", VideoRateLaterDetail.as_view(), name="video_rate_later_detail", ), # Ratings API path( "users/me/contributor_ratings/", ContributorRatingList.as_view(), name="ratings_me_list", ), path( "users/me/contributor_ratings/_all/", ContributorRatingUpdateAll.as_view(), name="ratings_me_list_update_is_public", ), path( "users/me/contributor_ratings/<str:video_id>/", ContributorRatingDetail.as_view(), name="ratings_me_detail", ), # Email domain API path( "domains/", EmailDomainsList.as_view(), name="email_domains_list" ), # Statistics API path( "stats/", StatisticsView.as_view(), name="statistics_detail" ) ]
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 37811, 198, 7469, 1127, 309, 1798, 274, 349, 338, 30203, 7824, 11926, 198, 37811, 198, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 2291, 11, 3108, 198, 6738, 1334, 62, 30604, 1330, 41144, 198, 198, 6738, 764, 33571, 1330, 34420, 11242, 603, 32, 14415, 11, 34420, 8053, 32, 14415, 11, 34420, 8053, 11928, 4400, 32, 14415, 198, 6738, 764, 33571, 13, 12888, 62, 3438, 1299, 1330, 9570, 24510, 1299, 8053, 198, 6738, 764, 33571, 13, 1069, 3742, 1330, 36472, 3237, 7680, 11, 36472, 50249, 9886, 7680, 11, 36472, 15202, 50249, 9886, 7680, 198, 6738, 764, 33571, 13, 10366, 654, 1330, 357, 198, 220, 220, 220, 25767, 273, 29321, 11242, 603, 11, 198, 220, 220, 220, 25767, 273, 29321, 8053, 11, 198, 220, 220, 220, 25767, 273, 29321, 10260, 3237, 11, 198, 8, 198, 6738, 764, 33571, 13, 34242, 1330, 14370, 7680, 198, 6738, 764, 33571, 13, 7220, 1330, 9236, 12982, 7680, 198, 6738, 764, 33571, 13, 15588, 1330, 7623, 7680, 7248, 198, 6738, 764, 33571, 13, 15588, 62, 4873, 62, 36760, 1330, 7623, 32184, 18602, 11242, 603, 11, 7623, 32184, 18602, 8053, 198, 198, 472, 353, 796, 41144, 13, 19463, 49, 39605, 3419, 198, 472, 353, 13, 30238, 7, 81, 6, 15588, 3256, 7623, 7680, 7248, 8, 198, 198, 1324, 62, 3672, 796, 366, 83, 1798, 274, 349, 1, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 7203, 1600, 2291, 7, 472, 353, 13, 6371, 82, 36911, 198, 220, 220, 220, 1303, 11787, 7824, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 12982, 7680, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 18417, 62, 1326, 1, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 6060, 15319, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 1069, 3742, 14, 785, 1845, 9886, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36472, 50249, 9886, 7680, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 39344, 62, 785, 1845, 9886, 1, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 1069, 3742, 14, 439, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36472, 3237, 7680, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 39344, 62, 439, 1, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1069, 3742, 14, 785, 1845, 9886, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 36472, 15202, 50249, 9886, 7680, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 39344, 62, 11377, 1, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 34420, 7824, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 785, 1845, 9886, 14, 1600, 34420, 8053, 32, 14415, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 785, 1845, 9886, 62, 1326, 62, 4868, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 785, 1845, 9886, 14, 27, 2536, 25, 15588, 62, 312, 29, 14, 1600, 34420, 8053, 11928, 4400, 32, 14415, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 785, 1845, 9886, 62, 1326, 62, 4868, 62, 10379, 4400, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 785, 1845, 9886, 14, 27, 2536, 25, 15588, 62, 312, 62, 64, 29, 14, 27, 2536, 25, 15588, 62, 312, 62, 65, 29, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 34420, 11242, 603, 32, 14415, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 785, 1845, 9886, 62, 1326, 62, 49170, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 7623, 32184, 18602, 7824, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 15588, 62, 4873, 62, 36760, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 7623, 32184, 18602, 8053, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 15588, 62, 4873, 62, 36760, 62, 4868, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 15588, 62, 4873, 62, 36760, 14, 27, 2536, 25, 15588, 62, 312, 29, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 7623, 32184, 18602, 11242, 603, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 15588, 62, 4873, 62, 36760, 62, 49170, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 36826, 7824, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 3642, 2455, 273, 62, 10366, 654, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 25767, 273, 29321, 8053, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 10366, 654, 62, 1326, 62, 4868, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 3642, 2455, 273, 62, 10366, 654, 47835, 439, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 25767, 273, 29321, 10260, 3237, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 10366, 654, 62, 1326, 62, 4868, 62, 19119, 62, 271, 62, 11377, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 14, 1326, 14, 3642, 2455, 273, 62, 10366, 654, 14, 27, 2536, 25, 15588, 62, 312, 29, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 25767, 273, 29321, 11242, 603, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 10366, 654, 62, 1326, 62, 49170, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 9570, 7386, 7824, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3438, 1299, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 9570, 24510, 1299, 8053, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 12888, 62, 3438, 1299, 62, 4868, 1, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 14370, 7824, 198, 220, 220, 220, 3108, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34242, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 14370, 7680, 13, 292, 62, 1177, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 14269, 3969, 62, 49170, 1, 198, 220, 220, 220, 220, 1267, 198, 60, 198 ]
2.282093
1,223
import numpy as np import win32gui, win32api import ctypes import mss sct = mss.mss()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 1592, 2624, 48317, 11, 1592, 2624, 15042, 198, 11748, 269, 19199, 198, 11748, 285, 824, 198, 82, 310, 796, 285, 824, 13, 76, 824, 3419 ]
2.65625
32
import requests import requests_cache from collections import OrderedDict from datetime import datetime from dateutil import parser from operator import itemgetter from tabulate import tabulate SCHEDULE_URL = "http://pyohio.org/schedule/json/" def get_schedule(cache_ttl=3600): """ Get the schedule from the conference website and return the JSON. """ requests_cache.install_cache(expire_after=cache_ttl) response = requests.get(SCHEDULE_URL) response.raise_for_status() return response.json() def _session_summary(session): """ Given a detailed session dict, return a summary dict. """ summary = OrderedDict() summary['date'] = parser.parse(session.get('start', '2016')).date().isoformat() summary['start_time'] = parser.parse(session.get('start', '2016')).time().strftime('%H:%M') summary['end_time'] = parser.parse(session.get('end', '2016')).time().strftime('%H:%M') summary['room'] = session.get('room') summary['name'] = session.get('name') authors = session.get('authors', []) or [] summary['presenter'] = ", ".join(authors) return summary def make_table(schedule, start_datetime=None): """ Given a list of session summaries, return a simple text table. """ if start_datetime is None: start_datetime = datetime(1900, 1, 1) schedule_summary = [_session_summary(session) for session in schedule if \ parser.parse(session.get('start', '2016')) > start_datetime] schedule_summary.sort(key=itemgetter('date', 'start_time', 'end_time')) return tabulate(schedule_summary, tablefmt="plain")
[ 11748, 7007, 198, 11748, 7007, 62, 23870, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 3128, 22602, 1330, 30751, 198, 6738, 10088, 1330, 2378, 1136, 353, 198, 6738, 7400, 5039, 1330, 7400, 5039, 198, 198, 50, 3398, 1961, 24212, 62, 21886, 796, 366, 4023, 1378, 9078, 1219, 952, 13, 2398, 14, 15952, 5950, 14, 17752, 30487, 198, 198, 4299, 651, 62, 15952, 5950, 7, 23870, 62, 926, 75, 28, 2623, 405, 2599, 198, 220, 220, 220, 37227, 3497, 262, 7269, 422, 262, 4495, 3052, 290, 1441, 262, 19449, 13, 37227, 198, 220, 220, 220, 7007, 62, 23870, 13, 17350, 62, 23870, 7, 1069, 5111, 62, 8499, 28, 23870, 62, 926, 75, 8, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 50, 3398, 1961, 24212, 62, 21886, 8, 198, 220, 220, 220, 2882, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 220, 220, 220, 1441, 2882, 13, 17752, 3419, 198, 198, 4299, 4808, 29891, 62, 49736, 7, 29891, 2599, 198, 220, 220, 220, 37227, 11259, 257, 6496, 6246, 8633, 11, 1441, 257, 10638, 8633, 13, 37227, 198, 220, 220, 220, 10638, 796, 14230, 1068, 35, 713, 3419, 198, 220, 220, 220, 10638, 17816, 4475, 20520, 796, 30751, 13, 29572, 7, 29891, 13, 1136, 10786, 9688, 3256, 705, 5304, 11537, 737, 4475, 22446, 26786, 18982, 3419, 198, 220, 220, 220, 10638, 17816, 9688, 62, 2435, 20520, 796, 30751, 13, 29572, 7, 29891, 13, 1136, 10786, 9688, 3256, 705, 5304, 11537, 737, 2435, 22446, 2536, 31387, 10786, 4, 39, 25, 4, 44, 11537, 198, 220, 220, 220, 10638, 17816, 437, 62, 2435, 20520, 796, 30751, 13, 29572, 7, 29891, 13, 1136, 10786, 437, 3256, 705, 5304, 11537, 737, 2435, 22446, 2536, 31387, 10786, 4, 39, 25, 4, 44, 11537, 198, 220, 220, 220, 10638, 17816, 3823, 20520, 796, 6246, 13, 1136, 10786, 3823, 11537, 198, 220, 220, 220, 10638, 17816, 3672, 20520, 796, 6246, 13, 1136, 10786, 3672, 11537, 198, 220, 220, 220, 7035, 796, 6246, 13, 1136, 10786, 41617, 3256, 685, 12962, 393, 17635, 198, 220, 220, 220, 10638, 17816, 25579, 263, 20520, 796, 33172, 27071, 22179, 7, 41617, 8, 198, 220, 220, 220, 1441, 10638, 198, 198, 4299, 787, 62, 11487, 7, 15952, 5950, 11, 923, 62, 19608, 8079, 28, 14202, 2599, 198, 220, 220, 220, 37227, 11259, 257, 1351, 286, 6246, 30114, 3166, 11, 1441, 257, 2829, 2420, 3084, 13, 37227, 198, 220, 220, 220, 611, 923, 62, 19608, 8079, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 19608, 8079, 796, 4818, 8079, 7, 48104, 11, 352, 11, 352, 8, 198, 220, 220, 220, 7269, 62, 49736, 796, 685, 62, 29891, 62, 49736, 7, 29891, 8, 329, 6246, 287, 7269, 611, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 29572, 7, 29891, 13, 1136, 10786, 9688, 3256, 705, 5304, 6, 4008, 1875, 923, 62, 19608, 8079, 60, 198, 220, 220, 220, 7269, 62, 49736, 13, 30619, 7, 2539, 28, 9186, 1136, 353, 10786, 4475, 3256, 705, 9688, 62, 2435, 3256, 705, 437, 62, 2435, 6, 4008, 198, 220, 220, 220, 1441, 7400, 5039, 7, 15952, 5950, 62, 49736, 11, 3084, 69, 16762, 2625, 25638, 4943, 198 ]
2.957328
539
from django.contrib.auth.models import User from rest_framework import serializers from django.contrib.auth import authenticate from django.core import exceptions from rest_framework.serializers import ModelSerializer from django.utils.translation import ugettext_lazy as _
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 8323, 5344, 198, 6738, 42625, 14208, 13, 7295, 1330, 13269, 198, 6738, 1334, 62, 30604, 13, 46911, 11341, 1330, 9104, 32634, 7509, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 628 ]
3.928571
70
# Generated by Django 3.1.5 on 2021-01-08 22:16 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 20, 319, 33448, 12, 486, 12, 2919, 2534, 25, 1433, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
# encoding: utf-8 from __future__ import absolute_import, division, print_function, unicode_literals from django import VERSION as DJANGO_VERSION from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.db.models.loading import get_app, get_model, get_models from django.utils.importlib import import_module __all__ = ['haystack_get_models', 'haystack_load_apps'] APP = 'app' MODEL = 'model' if DJANGO_VERSION >= (1, 7): from django.apps import apps def haystack_get_app_modules(): """Return the Python module for each installed app""" return [i.module for i in apps.get_app_configs()] def haystack_load_apps(): """Return a list of app labels for all installed applications which have models""" return [i.label for i in apps.get_app_configs() if i.models_module is not None] else: def haystack_get_app_modules(): """Return the Python module for each installed app""" return [import_module(i) for i in settings.INSTALLED_APPS]
[ 2, 21004, 25, 3384, 69, 12, 23, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 1330, 44156, 2849, 355, 13004, 1565, 11230, 62, 43717, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 13, 1069, 11755, 1330, 12205, 525, 306, 16934, 1522, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 25138, 1330, 651, 62, 1324, 11, 651, 62, 19849, 11, 651, 62, 27530, 198, 6738, 42625, 14208, 13, 26791, 13, 11748, 8019, 1330, 1330, 62, 21412, 198, 198, 834, 439, 834, 796, 37250, 71, 323, 25558, 62, 1136, 62, 27530, 3256, 705, 71, 323, 25558, 62, 2220, 62, 18211, 20520, 628, 198, 24805, 796, 705, 1324, 6, 198, 33365, 3698, 796, 705, 19849, 6, 628, 198, 361, 13004, 1565, 11230, 62, 43717, 18189, 357, 16, 11, 767, 2599, 198, 220, 220, 220, 422, 42625, 14208, 13, 18211, 1330, 6725, 628, 220, 220, 220, 825, 27678, 25558, 62, 1136, 62, 1324, 62, 18170, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 11361, 8265, 329, 1123, 6589, 598, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 72, 13, 21412, 329, 1312, 287, 6725, 13, 1136, 62, 1324, 62, 11250, 82, 3419, 60, 628, 220, 220, 220, 825, 27678, 25558, 62, 2220, 62, 18211, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 1351, 286, 598, 14722, 329, 477, 6589, 5479, 543, 423, 4981, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 72, 13, 18242, 329, 1312, 287, 6725, 13, 1136, 62, 1324, 62, 11250, 82, 3419, 611, 1312, 13, 27530, 62, 21412, 318, 407, 6045, 60, 198, 198, 17772, 25, 628, 220, 220, 220, 825, 27678, 25558, 62, 1136, 62, 1324, 62, 18170, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 11361, 8265, 329, 1123, 6589, 598, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 11748, 62, 21412, 7, 72, 8, 329, 1312, 287, 6460, 13, 38604, 7036, 1961, 62, 2969, 3705, 60, 198 ]
2.932584
356
# Copyright 2019 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. import json import os import sys import time import signal signal.signal( ( signal.SIGBREAK # pylint: disable=no-member if sys.platform.startswith('win') else signal.SIGTERM ), lambda _signum, _frame: sys.exit(0)) try: print "Starting up!" print >>sys.stderr, ">> SLEEPING 5s" time.sleep(5) with open(sys.argv[1], 'wb') as pid_file: json.dump({ # Note, you could put whatever connection information you wanted here. 'pid': os.getpid(), }, pid_file) print >>sys.stderr, ">> DUMPED PIDFILE" for x in xrange(30): print "Hi! %s" % x time.sleep(1) except SystemExit: print >>sys.stderr, ">> QUITQUITQUIT" raise
[ 2, 15069, 13130, 383, 406, 9598, 40, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 198, 2, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 6737, 198, 198, 12683, 282, 13, 12683, 282, 7, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 6737, 13, 50, 3528, 40438, 10206, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 220, 220, 220, 220, 220, 611, 25064, 13, 24254, 13, 9688, 2032, 342, 10786, 5404, 11537, 2073, 198, 220, 220, 220, 220, 220, 6737, 13, 50, 3528, 5781, 44, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 37456, 4808, 12683, 388, 11, 4808, 14535, 25, 25064, 13, 37023, 7, 15, 4008, 198, 198, 28311, 25, 198, 220, 3601, 366, 22851, 510, 2474, 198, 220, 3601, 9609, 17597, 13, 301, 1082, 81, 11, 366, 4211, 311, 2538, 8905, 2751, 642, 82, 1, 198, 220, 640, 13, 42832, 7, 20, 8, 628, 220, 351, 1280, 7, 17597, 13, 853, 85, 58, 16, 4357, 705, 39346, 11537, 355, 46514, 62, 7753, 25, 198, 220, 220, 220, 33918, 13, 39455, 15090, 198, 220, 220, 220, 220, 220, 1303, 5740, 11, 345, 714, 1234, 4232, 4637, 1321, 345, 2227, 994, 13, 198, 220, 220, 220, 220, 220, 705, 35317, 10354, 28686, 13, 1136, 35317, 22784, 198, 220, 220, 220, 8964, 46514, 62, 7753, 8, 198, 220, 3601, 9609, 17597, 13, 301, 1082, 81, 11, 366, 4211, 360, 20476, 1961, 37022, 25664, 1, 628, 220, 329, 2124, 287, 2124, 9521, 7, 1270, 2599, 198, 220, 220, 220, 3601, 366, 17250, 0, 4064, 82, 1, 4064, 2124, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 16341, 4482, 30337, 25, 198, 220, 3601, 9609, 17597, 13, 301, 1082, 81, 11, 366, 4211, 19604, 2043, 10917, 2043, 10917, 2043, 1, 198, 220, 5298, 198 ]
2.564179
335
from time import sleep import os from animations import progress_bar from threading import Thread import sys import time # for i in range(100): # time.sleep(0.1) # sys.stdout.write(f'salutare-{i}\n') # sys.stdout.write(f'andrew-{i}\n') # sys.stdout.write("\x1b[1A") # cursor up one line # sys.stdout.write("\x1b[2K") # delete the last line # sys.stdout.write("\x1b[1A") # cursor up one line # sys.stdout.write("\x1b[2K") # delete the last line from random import randrange from random import uniform work_ref = [0] total_range = 100 work_thread = Thread(target=work, args=(total_range, work_ref)) work_thread.start() work_ref2 = [0] total_range2 = 100 work_thread2 = Thread(target=work2, args=(total_range2, work_ref2)) work_thread2.start() while 1: p = progress_bar(work_ref[0], total_range, color="yellow", title="work_thread") print(p) p = progress_bar(work_ref2[0], total_range2, color="yellow", title="work_thread") print(p) if not work_thread.is_alive() and not work_thread2.is_alive(): break clear_lines(2) sleep(0.01) # if j < 100: # j += 2 # p = progress_bar(j, 100, color="yellow", title="tqdm") # print(p) # if j >= 100 and index >= 100: # break
[ 198, 6738, 640, 1330, 3993, 198, 11748, 28686, 198, 6738, 22407, 1330, 4371, 62, 5657, 198, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 11748, 25064, 198, 11748, 640, 198, 198, 2, 329, 1312, 287, 2837, 7, 3064, 2599, 198, 2, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 16, 8, 198, 2, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 69, 338, 282, 315, 533, 12, 90, 72, 32239, 77, 11537, 198, 2, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 69, 6, 392, 1809, 12, 90, 72, 32239, 77, 11537, 198, 198, 2, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7203, 59, 87, 16, 65, 58, 16, 32, 4943, 220, 1303, 23493, 510, 530, 1627, 198, 2, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7203, 59, 87, 16, 65, 58, 17, 42, 4943, 220, 1303, 12233, 262, 938, 1627, 198, 198, 2, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7203, 59, 87, 16, 65, 58, 16, 32, 4943, 220, 1303, 23493, 510, 530, 1627, 198, 2, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7203, 59, 87, 16, 65, 58, 17, 42, 4943, 220, 1303, 12233, 262, 938, 1627, 628, 628, 198, 6738, 4738, 1330, 43720, 9521, 198, 6738, 4738, 1330, 8187, 628, 628, 198, 1818, 62, 5420, 796, 685, 15, 60, 198, 23350, 62, 9521, 796, 1802, 198, 1818, 62, 16663, 796, 14122, 7, 16793, 28, 1818, 11, 26498, 16193, 23350, 62, 9521, 11, 670, 62, 5420, 4008, 198, 1818, 62, 16663, 13, 9688, 3419, 628, 198, 1818, 62, 5420, 17, 796, 685, 15, 60, 198, 23350, 62, 9521, 17, 796, 1802, 198, 1818, 62, 16663, 17, 796, 14122, 7, 16793, 28, 1818, 17, 11, 26498, 16193, 23350, 62, 9521, 17, 11, 670, 62, 5420, 17, 4008, 198, 1818, 62, 16663, 17, 13, 9688, 3419, 198, 198, 4514, 352, 25, 198, 220, 220, 220, 279, 796, 4371, 62, 5657, 7, 1818, 62, 5420, 58, 15, 4357, 2472, 62, 9521, 11, 3124, 2625, 36022, 1600, 3670, 2625, 1818, 62, 16663, 4943, 198, 220, 220, 220, 3601, 7, 79, 8, 628, 220, 220, 220, 279, 796, 4371, 62, 5657, 7, 1818, 62, 5420, 17, 58, 15, 4357, 2472, 62, 9521, 17, 11, 3124, 2625, 36022, 1600, 3670, 2625, 1818, 62, 16663, 4943, 198, 220, 220, 220, 3601, 7, 79, 8, 628, 220, 220, 220, 611, 407, 670, 62, 16663, 13, 271, 62, 282, 425, 3419, 290, 407, 670, 62, 16663, 17, 13, 271, 62, 282, 425, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1598, 62, 6615, 7, 17, 8, 198, 220, 220, 220, 3993, 7, 15, 13, 486, 8, 628, 220, 220, 220, 1303, 611, 474, 1279, 1802, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 474, 15853, 362, 198, 220, 220, 220, 1303, 279, 796, 4371, 62, 5657, 7, 73, 11, 1802, 11, 3124, 2625, 36022, 1600, 3670, 2625, 83, 80, 36020, 4943, 198, 220, 220, 220, 1303, 3601, 7, 79, 8, 628, 220, 220, 220, 1303, 611, 474, 18189, 1802, 290, 6376, 18189, 1802, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2270, 628 ]
2.383613
537
from attributes.unit_test.discoverer import TestDiscoverer
[ 6738, 12608, 13, 20850, 62, 9288, 13, 15410, 659, 11751, 1330, 6208, 15642, 659, 11751, 628 ]
3.75
16
import garble import wx from multiprocessing import freeze_support import sys import os from pathlib import Path # pyinstaller GarbleExecutable.py --onefile -w --add-data ./venv/Lib/site-packages/clkhash/data;clkhash/data --add-data ./venv/Lib/site-packages/clkhash/schemas;clkhash/schemas --add-data ./example-schema;example-schema if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'): os.chdir(sys._MEIPASS) if __name__ == '__main__': freeze_support() main()
[ 11748, 5482, 903, 198, 11748, 266, 87, 198, 6738, 18540, 305, 919, 278, 1330, 16611, 62, 11284, 198, 11748, 25064, 198, 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 2, 12972, 17350, 263, 7164, 903, 23002, 18187, 13, 9078, 220, 1377, 505, 7753, 532, 86, 1377, 2860, 12, 7890, 24457, 574, 85, 14, 25835, 14, 15654, 12, 43789, 14, 565, 14636, 1077, 14, 7890, 26, 565, 14636, 1077, 14, 7890, 1377, 2860, 12, 7890, 24457, 574, 85, 14, 25835, 14, 15654, 12, 43789, 14, 565, 14636, 1077, 14, 1416, 4411, 292, 26, 565, 14636, 1077, 14, 1416, 4411, 292, 1377, 2860, 12, 7890, 24457, 20688, 12, 15952, 2611, 26, 20688, 12, 15952, 2611, 628, 198, 361, 651, 35226, 7, 17597, 11, 705, 69, 42005, 3256, 10352, 8, 290, 468, 35226, 7, 17597, 11, 705, 62, 11682, 4061, 10705, 6, 2599, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 17597, 13557, 11682, 4061, 10705, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 16611, 62, 11284, 3419, 198, 220, 220, 220, 1388, 3419, 198 ]
2.648649
185
''' ================================================================= @version 2.0 @author Ashwin Ramadevanahalli @title Testing. Main module. ================================================================= ''' import os import sys import subprocess import testset_parse import gcov_parse import rand_pri import tot_pri import add_pri import pickle ''' Initializations ''' pname=str(str(subprocess.check_output("pwd",shell=True)).split('/')[-1].strip()) location="" maxlimit={'tcas':96.67,'totinfo':97.04,'printtokens':95.34,'printtokens2':99.50,'replace':95.02,'schedule':98.67,'schedule2':99.23} #location="/Users/Ashwin/Downloads/benchmarks/"+pname+"/" ''' Cleaning ''' print "################################\nEntered CLeanig\n################################\n" subprocess.call("rm -r outputs",shell=True) subprocess.call("mkdir outputs",shell=True) ''' Testset parse module returns: A dictionary with Key in range '1 to No_of_tests' and value as the testcases and total number of statements in program. input: program name, location of program. ''' print "################################\nEntered Testset parse module\n################################\n" testset,tot_statements,No_of_tests=testset_parse.parse(pname,location) print testset print tot_statements ''' Gcov parse module returns: state_testset=list of <No of statements it covers,testcase> and Brances_testset=list of <No of brances it covers,testcase> and both. input: testset and total number of statements ''' print "################################\nEntered Gcov parse module\n################################\n" state_testset,branch_testset,sb_testset=gcov_parse.parse(testset,tot_statements) print state_testset ''' Random prioritization returns: Random prioritizated testsets for statement, branch and both coverage. input: testset, program name and location of program, max coverage ''' print "################################\nEntered Random prioritization\n################################\n" Ran_S,Ran_B,Ran_SB=rand_pri.pri(testset.values(),pname,location,maxlimit) ''' Total coverage prioritization returns: Total coverage prioritizated testsets for statement, branch and both coverage. input: testsets with coverage information, program name and location of program, max coverage ''' Tot_S,Tot_B,Tot_SB=tot_pri.pri(state_testset,branch_testset,sb_testset,pname,location,maxlimit) ''' Additional coverage prioritization returns: Additional coverage prioritizated testsets for statement, branch and both coverage. input: testsets with coverage information, program name and location of program, max coverage ''' Add_S,Add_B,Add_SB=add_pri.pri(state_testset,branch_testset,sb_testset,pname,location,maxlimit) print "################################\nResult Section\n################################\n" print len(Ran_S) print len(Ran_B) print len(Ran_SB) print len(Tot_S) print len(Tot_B) print len(Tot_SB) print len(Add_S) print len(Add_B) print len(Add_SB) print "Total number of test cases=",No_of_tests '''Storing Results''' subprocess.call("rm -r results",shell=True) subprocess.call("mkdir results",shell=True) test=open("results/sran","w") pickle.dump(Ran_S, test) test.close() test=open("results/bran","w") pickle.dump(Ran_B, test) test.close() test=open("results/sbran","w") pickle.dump(Ran_SB, test) test.close() test=open("results/stot","w") pickle.dump(Tot_S, test) test.close() test=open("results/btot","w") pickle.dump(Tot_B, test) test.close() test=open("results/sbtot","w") pickle.dump(Tot_SB, test) test.close() test=open("results/sadd","w") pickle.dump(Add_S, test) test.close() test=open("results/badd","w") pickle.dump(Add_B, test) test.close() test=open("results/sbadd","w") pickle.dump(Add_SB, test) test.close() print "Task Complete.Thank you."
[ 7061, 6, 220, 220, 198, 23926, 28, 198, 197, 31, 9641, 220, 362, 13, 15, 198, 197, 31, 9800, 220, 220, 7844, 5404, 7431, 671, 10438, 993, 36546, 198, 197, 31, 7839, 220, 220, 220, 23983, 13, 628, 198, 197, 13383, 8265, 13, 198, 23926, 28, 198, 7061, 6, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 850, 14681, 198, 11748, 1332, 2617, 62, 29572, 198, 11748, 308, 66, 709, 62, 29572, 198, 11748, 43720, 62, 3448, 198, 11748, 2006, 62, 3448, 198, 11748, 751, 62, 3448, 198, 11748, 2298, 293, 628, 198, 7061, 6, 198, 24243, 4582, 198, 7061, 6, 198, 79, 3672, 28, 2536, 7, 2536, 7, 7266, 14681, 13, 9122, 62, 22915, 7203, 79, 16993, 1600, 29149, 28, 17821, 29720, 35312, 10786, 14, 11537, 58, 12, 16, 4083, 36311, 28955, 198, 24886, 33151, 198, 9806, 32374, 34758, 6, 23047, 292, 10354, 4846, 13, 3134, 4032, 83, 313, 10951, 10354, 5607, 13, 3023, 4032, 4798, 83, 482, 641, 10354, 3865, 13, 2682, 4032, 4798, 83, 482, 641, 17, 10354, 2079, 13, 1120, 4032, 33491, 10354, 3865, 13, 2999, 4032, 15952, 5950, 10354, 4089, 13, 3134, 4032, 15952, 5950, 17, 10354, 2079, 13, 1954, 92, 198, 2, 24886, 35922, 14490, 14, 26754, 5404, 14, 10002, 82, 14, 26968, 14306, 30487, 10, 79, 3672, 10, 1, 30487, 628, 198, 7061, 6, 198, 34, 25909, 198, 7061, 6, 198, 4798, 366, 29113, 59, 77, 14539, 1068, 327, 35806, 328, 59, 77, 29113, 59, 77, 1, 198, 7266, 14681, 13, 13345, 7203, 26224, 532, 81, 23862, 1600, 29149, 28, 17821, 8, 198, 7266, 14681, 13, 13345, 7203, 28015, 15908, 23862, 1600, 29149, 28, 17821, 8, 628, 198, 7061, 6, 198, 14402, 2617, 21136, 8265, 220, 198, 7783, 82, 25, 220, 197, 32, 22155, 351, 7383, 287, 2837, 705, 16, 284, 1400, 62, 1659, 62, 41989, 6, 290, 1988, 355, 262, 1332, 33964, 290, 2472, 1271, 286, 6299, 287, 1430, 13, 198, 15414, 25, 220, 197, 197, 23065, 1438, 11, 4067, 286, 1430, 13, 198, 7061, 6, 198, 4798, 366, 29113, 59, 77, 14539, 1068, 6208, 2617, 21136, 8265, 59, 77, 29113, 59, 77, 1, 198, 9288, 2617, 11, 83, 313, 62, 14269, 3196, 11, 2949, 62, 1659, 62, 41989, 28, 9288, 2617, 62, 29572, 13, 29572, 7, 79, 3672, 11, 24886, 8, 198, 4798, 1332, 2617, 198, 4798, 2006, 62, 14269, 3196, 198, 198, 7061, 6, 198, 38, 66, 709, 21136, 8265, 220, 198, 7783, 82, 25, 197, 5219, 62, 9288, 2617, 28, 4868, 286, 1279, 2949, 286, 6299, 340, 8698, 11, 9288, 7442, 29, 290, 1709, 1817, 62, 9288, 2617, 28, 4868, 286, 1279, 2949, 286, 865, 1817, 340, 8698, 11, 9288, 7442, 29, 290, 1111, 13, 198, 15414, 25, 197, 197, 9288, 2617, 290, 2472, 1271, 286, 6299, 198, 7061, 6, 198, 4798, 366, 29113, 59, 77, 14539, 1068, 402, 66, 709, 21136, 8265, 59, 77, 29113, 59, 77, 1, 198, 5219, 62, 9288, 2617, 11, 1671, 3702, 62, 9288, 2617, 11, 36299, 62, 9288, 2617, 28, 36484, 709, 62, 29572, 13, 29572, 7, 9288, 2617, 11, 83, 313, 62, 14269, 3196, 8, 198, 4798, 1181, 62, 9288, 2617, 628, 198, 198, 7061, 6, 198, 29531, 19086, 1634, 198, 7783, 82, 25, 197, 29531, 3161, 3029, 515, 5254, 1039, 329, 2643, 11, 8478, 290, 1111, 5197, 13, 198, 15414, 25, 197, 197, 9288, 2617, 11, 1430, 1438, 290, 4067, 286, 1430, 11, 3509, 5197, 198, 7061, 6, 198, 4798, 366, 29113, 59, 77, 14539, 1068, 14534, 19086, 1634, 59, 77, 29113, 59, 77, 1, 198, 49, 272, 62, 50, 11, 49, 272, 62, 33, 11, 49, 272, 62, 16811, 28, 25192, 62, 3448, 13, 3448, 7, 9288, 2617, 13, 27160, 22784, 79, 3672, 11, 24886, 11, 9806, 32374, 8, 198, 198, 7061, 6, 198, 14957, 5197, 19086, 1634, 198, 7783, 82, 25, 197, 14957, 5197, 3161, 3029, 515, 5254, 1039, 329, 2643, 11, 8478, 290, 1111, 5197, 13, 198, 15414, 25, 197, 197, 41989, 1039, 351, 5197, 1321, 11, 1430, 1438, 290, 4067, 286, 1430, 11, 3509, 5197, 198, 7061, 6, 198, 51, 313, 62, 50, 11, 51, 313, 62, 33, 11, 51, 313, 62, 16811, 28, 83, 313, 62, 3448, 13, 3448, 7, 5219, 62, 9288, 2617, 11, 1671, 3702, 62, 9288, 2617, 11, 36299, 62, 9288, 2617, 11, 79, 3672, 11, 24886, 11, 9806, 32374, 8, 628, 198, 7061, 6, 198, 17699, 5197, 19086, 1634, 198, 7783, 82, 25, 197, 17699, 5197, 3161, 3029, 515, 5254, 1039, 329, 2643, 11, 8478, 290, 1111, 5197, 13, 198, 15414, 25, 197, 197, 41989, 1039, 351, 5197, 1321, 11, 1430, 1438, 290, 4067, 286, 1430, 11, 3509, 5197, 198, 7061, 6, 198, 198, 4550, 62, 50, 11, 4550, 62, 33, 11, 4550, 62, 16811, 28, 2860, 62, 3448, 13, 3448, 7, 5219, 62, 9288, 2617, 11, 1671, 3702, 62, 9288, 2617, 11, 36299, 62, 9288, 2617, 11, 79, 3672, 11, 24886, 11, 9806, 32374, 8, 198, 198, 4798, 366, 29113, 59, 77, 23004, 7275, 59, 77, 29113, 59, 77, 1, 198, 198, 4798, 18896, 7, 49, 272, 62, 50, 8, 198, 4798, 18896, 7, 49, 272, 62, 33, 8, 198, 4798, 18896, 7, 49, 272, 62, 16811, 8, 198, 4798, 18896, 7, 51, 313, 62, 50, 8, 198, 4798, 18896, 7, 51, 313, 62, 33, 8, 198, 4798, 18896, 7, 51, 313, 62, 16811, 8, 198, 4798, 18896, 7, 4550, 62, 50, 8, 198, 4798, 18896, 7, 4550, 62, 33, 8, 198, 4798, 18896, 7, 4550, 62, 16811, 8, 628, 198, 198, 4798, 366, 14957, 1271, 286, 1332, 2663, 28, 1600, 2949, 62, 1659, 62, 41989, 628, 198, 7061, 6, 1273, 3255, 15691, 7061, 6, 198, 7266, 14681, 13, 13345, 7203, 26224, 532, 81, 2482, 1600, 29149, 28, 17821, 8, 198, 198, 7266, 14681, 13, 13345, 7203, 28015, 15908, 2482, 1600, 29149, 28, 17821, 8, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 82, 2596, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 49, 272, 62, 50, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 1671, 272, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 49, 272, 62, 33, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 82, 1671, 272, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 49, 272, 62, 16811, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 301, 313, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 51, 313, 62, 50, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 18347, 313, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 51, 313, 62, 33, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 82, 18347, 313, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 51, 313, 62, 16811, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 82, 2860, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 4550, 62, 50, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 65, 2860, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 4550, 62, 33, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 9288, 28, 9654, 7203, 43420, 14, 36299, 2860, 2430, 86, 4943, 198, 27729, 293, 13, 39455, 7, 4550, 62, 16811, 11, 1332, 8, 198, 9288, 13, 19836, 3419, 198, 198, 4798, 366, 25714, 13248, 13, 10449, 345, 526, 628, 628 ]
3.033466
1,255