content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from django.contrib import admin from .models import Composition, Contest, Vote, Content admin.site.register(Content) admin.site.register(Composition) admin.site.register(Contest) admin.site.register(Vote)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 955, 9150, 11, 27297, 11, 19175, 11, 14041, 198, 198, 28482, 13, 15654, 13, 30238, 7, 19746, 8, 198, 28482, 13, 15654, 13, 30238, 7, 5377, 9150, 8, 198, 28482, 13, 15654, 13, 30238, 7, 4264, 395, 8, 198, 28482, 13, 15654, 13, 30238, 7, 37394, 8, 198 ]
3.393443
61
import threading import typing import nacl.signing import time import typing as tp import logging.config from .istation import IStation, StationData, STATION_VERSION, Measurement from ..drivers.sds011 import SDS011_MODEL, SDS011 from collections import deque from connectivity.config.logging import LOGGING_CONFIG logging.config.dictConfig(LOGGING_CONFIG) logger = logging.getLogger("sensors-connectivity") class COMStation(IStation): """ Reads data from a serial port """
[ 11748, 4704, 278, 198, 11748, 19720, 198, 11748, 299, 37779, 13, 12683, 278, 198, 11748, 640, 198, 11748, 19720, 355, 256, 79, 198, 11748, 18931, 13, 11250, 198, 198, 6738, 764, 396, 341, 1330, 314, 12367, 11, 9327, 6601, 11, 3563, 6234, 62, 43717, 11, 24291, 434, 198, 6738, 11485, 36702, 13, 82, 9310, 28555, 1330, 311, 5258, 28555, 62, 33365, 3698, 11, 311, 5258, 28555, 198, 6738, 17268, 1330, 390, 4188, 198, 6738, 19843, 13, 11250, 13, 6404, 2667, 1330, 41605, 38, 2751, 62, 10943, 16254, 198, 198, 6404, 2667, 13, 11250, 13, 11600, 16934, 7, 25294, 38, 2751, 62, 10943, 16254, 8, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 82, 641, 669, 12, 8443, 3458, 4943, 628, 198, 198, 4871, 9440, 12367, 7, 40, 12367, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 82, 1366, 422, 257, 11389, 2493, 198, 220, 220, 220, 37227, 198 ]
3.202614
153
#!/usr/bin/python3 # -*- coding: utf-8 -*- from app.models.Model import Model from flask_restful import abort import sqlite3 """ A class that factorizes the behavior of models used for the API """ #
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 598, 13, 27530, 13, 17633, 1330, 9104, 198, 6738, 42903, 62, 2118, 913, 1330, 15614, 198, 11748, 44161, 578, 18, 198, 198, 37811, 198, 32, 1398, 326, 5766, 4340, 262, 4069, 286, 4981, 973, 329, 262, 7824, 198, 37811, 628, 198, 2 ]
3.045455
66
""" * The Lock class controls multiple servos to latch the door shut before the rocket spins up. * Author: Aaron Borger <[email protected] (307)534-6265> """ from devices.device import Device import RPi.GPIO as GPIO SERVO_PIN = 14 ZERO = 2.5 NINETY = 7.5 ONE_EIGHTY = 12.5
[ 37811, 198, 198, 9, 383, 13656, 1398, 6973, 3294, 1113, 418, 284, 43140, 262, 3420, 4423, 878, 262, 10701, 37621, 510, 13, 198, 198, 9, 6434, 25, 12139, 12182, 1362, 1279, 4820, 1362, 31, 20471, 84, 13, 15532, 357, 22996, 8, 20, 2682, 12, 21, 22980, 29, 198, 198, 37811, 198, 198, 6738, 4410, 13, 25202, 1330, 16232, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198, 198, 35009, 29516, 62, 44032, 796, 1478, 198, 57, 34812, 796, 362, 13, 20, 198, 45, 1268, 2767, 56, 796, 767, 13, 20, 198, 11651, 62, 36, 9947, 56, 796, 1105, 13, 20, 628 ]
2.715686
102
''' Generate features for outlier detection. ''' import json import sys from certstream_analytics.analysers import WordSegmentation from certstream_analytics.analysers import IDNADecoder from certstream_analytics.analysers import FeaturesGenerator def main(max_count=None): ''' The record is assumed to be stored in a JSON file passed in as the first parameter of the script. ''' segmenter = WordSegmentation() decoder = IDNADecoder() generator = FeaturesGenerator() with open(sys.argv[1]) as fhandle: count = 0 for line in fhandle: try: record = json.loads(line.strip()) except json.decoder.JSONDecodeError: continue record = decoder.run(record) record = segmenter.run(record) record = generator.run(record) print(json.dumps(record)) count += 1 if max_count and count > max_count: break if __name__ == '__main__': main()
[ 7061, 6, 198, 8645, 378, 3033, 329, 503, 2505, 13326, 13, 198, 7061, 6, 198, 198, 11748, 33918, 198, 11748, 25064, 198, 198, 6738, 5051, 5532, 62, 38200, 14094, 13, 272, 26266, 364, 1330, 9678, 41030, 14374, 198, 6738, 5051, 5532, 62, 38200, 14094, 13, 272, 26266, 364, 1330, 4522, 45, 2885, 721, 12342, 198, 6738, 5051, 5532, 62, 38200, 14094, 13, 272, 26266, 364, 1330, 17571, 8645, 1352, 198, 198, 4299, 1388, 7, 9806, 62, 9127, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 383, 1700, 318, 9672, 284, 307, 8574, 287, 257, 19449, 2393, 3804, 287, 355, 262, 717, 198, 220, 220, 220, 11507, 286, 262, 4226, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 10618, 263, 796, 9678, 41030, 14374, 3419, 198, 220, 220, 220, 875, 12342, 796, 4522, 45, 2885, 721, 12342, 3419, 198, 220, 220, 220, 17301, 796, 17571, 8645, 1352, 3419, 628, 220, 220, 220, 351, 1280, 7, 17597, 13, 853, 85, 58, 16, 12962, 355, 277, 28144, 25, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 28144, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 796, 33918, 13, 46030, 7, 1370, 13, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 33918, 13, 12501, 12342, 13, 40386, 10707, 1098, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 796, 875, 12342, 13, 5143, 7, 22105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 796, 10618, 263, 13, 5143, 7, 22105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 796, 17301, 13, 5143, 7, 22105, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 17752, 13, 67, 8142, 7, 22105, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 62, 9127, 290, 954, 1875, 3509, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.363218
435
import torch import numpy as np from torch.nn import functional as F import torch.nn as nn from torch.autograd import Variable
[ 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 28034, 13, 20471, 1330, 10345, 355, 376, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 628, 628, 198 ]
3.540541
37
# -*- coding: utf-8 -*- import numpy #only accept order = numpy.nan or 0
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 299, 32152, 628, 198, 2, 8807, 2453, 1502, 796, 299, 32152, 13, 12647, 393, 657, 628 ]
2.451613
31
from .storage import DatabaseManager
[ 6738, 764, 35350, 1330, 24047, 13511 ]
6
6
if __name__ == "__main__": main()
[ 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.1
20
#!/usr/bin/env python # -*- coding: utf-8 -*- import ConfigParser from helpers import get_abs_path DEFAULT_CFG_FILEPATH = 'locust-swarm.cfg' DEFAULT_MASTER_ROLE_NAME = 'locust-master' DEFAULT_SLAVE_ROLE_NAME = 'locust-slave' DEFAULT_MASTER_BOOTSTRAP_DIR = './bootstrap-master' DEFAULT_SLAVE_BOOTSTRAP_DIR = './bootstrap-slave' DEFAULT_NUM_SLAVES = 5 DEFAULT_CUSTOM_TAG_NAME = 'MachineRole' get_config = _parse # vim: filetype=python
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 17056, 46677, 198, 6738, 49385, 1330, 651, 62, 8937, 62, 6978, 628, 198, 7206, 38865, 62, 22495, 38, 62, 25664, 34219, 796, 705, 17946, 436, 12, 2032, 1670, 13, 37581, 6, 198, 7206, 38865, 62, 31180, 5781, 62, 13252, 2538, 62, 20608, 796, 705, 17946, 436, 12, 9866, 6, 198, 7206, 38865, 62, 8634, 32, 6089, 62, 13252, 2538, 62, 20608, 796, 705, 17946, 436, 12, 36341, 6, 198, 7206, 38865, 62, 31180, 5781, 62, 8202, 2394, 18601, 2969, 62, 34720, 796, 705, 19571, 18769, 26418, 12, 9866, 6, 198, 7206, 38865, 62, 8634, 32, 6089, 62, 8202, 2394, 18601, 2969, 62, 34720, 796, 705, 19571, 18769, 26418, 12, 36341, 6, 198, 7206, 38865, 62, 41359, 62, 8634, 10116, 1546, 796, 642, 198, 7206, 38865, 62, 34, 7759, 2662, 62, 42197, 62, 20608, 796, 705, 37573, 47445, 6, 628, 198, 1136, 62, 11250, 796, 4808, 29572, 198, 198, 2, 43907, 25, 2393, 4906, 28, 29412, 198 ]
2.425414
181
#-------by HYH -------# import numpy as np pCan=0.001 pNon=0.999 pPosCan=0.8 pPosNon=0.1 z='positive' if 'positive'==z: p=[pPosCan*pCan,pPosNon*pNon] else: p=[(1-pPosCan)*pCan,(1-pPosNon)*pNon] p=p/np.sum(p) print('The probability of having cancer given the %s test:\n'% z,'\n',p[0]) print('The probability of cancer free given the %s test:\n'%z,'\n',p[1])
[ 2, 26866, 1525, 43624, 39, 35656, 2, 198, 11748, 299, 32152, 355, 45941, 198, 79, 6090, 28, 15, 13, 8298, 198, 79, 15419, 28, 15, 13, 17032, 198, 79, 21604, 6090, 28, 15, 13, 23, 198, 79, 21604, 15419, 28, 15, 13, 16, 198, 89, 11639, 24561, 6, 198, 361, 705, 24561, 6, 855, 89, 25, 198, 197, 79, 41888, 79, 21604, 6090, 9, 79, 6090, 11, 79, 21604, 15419, 9, 79, 15419, 60, 198, 17772, 25, 198, 197, 79, 41888, 7, 16, 12, 79, 21604, 6090, 27493, 79, 6090, 11, 7, 16, 12, 79, 21604, 15419, 27493, 79, 15419, 60, 198, 79, 28, 79, 14, 37659, 13, 16345, 7, 79, 8, 198, 4798, 10786, 464, 12867, 286, 1719, 4890, 1813, 262, 4064, 82, 1332, 7479, 77, 6, 4, 1976, 4032, 59, 77, 3256, 79, 58, 15, 12962, 198, 4798, 10786, 464, 12867, 286, 4890, 1479, 1813, 262, 4064, 82, 1332, 7479, 77, 6, 4, 89, 4032, 59, 77, 3256, 79, 58, 16, 12962 ]
2.182927
164
import argparse, os, sys from nit import generate_tile, generate_tile_from_initials, generate_initials_from_string my_parser = argparse.ArgumentParser(prog="name initials tile generator", usage="$(prog)s [options] name save_path", description="Generate a name initials tile icon given name") my_parser.add_argument("Name", metavar="name", type=str, help="Name to generate initials.") my_parser.add_argument("Save_Path", metavar="save_path", type=str, help="Path where the generated tile should be saved.") my_parser.add_argument("-bg", "--bg_color", type=str, help="Background color to be used in tile.") my_parser.add_argument("-fg", "--fg_color", type=str, help="Color of the text to be used in tile.") args = my_parser.parse_args() if not os.path.isdir(os.path.split(args.Save_Path)[0]): print("The path does not exist.") sys.exit() kwargs = dict(text=args.Name, save_path=args.Save_Path, bgColor=args.bg_color, fgColor=args.fg_color) generate_tile_from_initials(**{k: v for k, v in kwargs.items() if v is not None})
[ 11748, 1822, 29572, 11, 28686, 11, 25064, 198, 6738, 13759, 1330, 7716, 62, 40927, 11, 7716, 62, 40927, 62, 6738, 62, 36733, 82, 11, 7716, 62, 36733, 82, 62, 6738, 62, 8841, 198, 198, 1820, 62, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 1676, 70, 2625, 3672, 47523, 17763, 17301, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8748, 2625, 3, 7, 1676, 70, 8, 82, 685, 25811, 60, 1438, 3613, 62, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 8645, 378, 257, 1438, 47523, 17763, 7196, 1813, 1438, 4943, 198, 198, 1820, 62, 48610, 13, 2860, 62, 49140, 7203, 5376, 1600, 1138, 615, 283, 2625, 3672, 1600, 2099, 28, 2536, 11, 1037, 2625, 5376, 284, 7716, 47523, 19570, 198, 1820, 62, 48610, 13, 2860, 62, 49140, 7203, 16928, 62, 15235, 1600, 1138, 615, 283, 2625, 21928, 62, 6978, 1600, 2099, 28, 2536, 11, 1037, 2625, 15235, 810, 262, 7560, 17763, 815, 307, 7448, 19570, 198, 1820, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 35904, 1600, 366, 438, 35904, 62, 8043, 1600, 2099, 28, 2536, 11, 1037, 2625, 21756, 3124, 284, 307, 973, 287, 17763, 19570, 198, 1820, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 40616, 1600, 366, 438, 40616, 62, 8043, 1600, 2099, 28, 2536, 11, 1037, 2625, 10258, 286, 262, 2420, 284, 307, 973, 287, 17763, 19570, 198, 198, 22046, 796, 616, 62, 48610, 13, 29572, 62, 22046, 3419, 198, 198, 361, 407, 28686, 13, 6978, 13, 9409, 343, 7, 418, 13, 6978, 13, 35312, 7, 22046, 13, 16928, 62, 15235, 38381, 15, 60, 2599, 198, 220, 220, 220, 3601, 7203, 464, 3108, 857, 407, 2152, 19570, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 46265, 22046, 796, 8633, 7, 5239, 28, 22046, 13, 5376, 11, 3613, 62, 6978, 28, 22046, 13, 16928, 62, 15235, 11, 275, 70, 10258, 28, 22046, 13, 35904, 62, 8043, 11, 277, 70, 10258, 28, 22046, 13, 40616, 62, 8043, 8, 198, 8612, 378, 62, 40927, 62, 6738, 62, 36733, 82, 7, 1174, 90, 74, 25, 410, 329, 479, 11, 410, 287, 479, 86, 22046, 13, 23814, 3419, 611, 410, 318, 407, 6045, 30072, 198 ]
2.641148
418
import pandas as pd labels = pd.read_csv('../Fusion_dummy_His_MUT_joined.csv', header=0) # line = pd.read_csv('../../Line1.csv', header=0) line = pd.read_csv('../EC_cyclin_expression.csv', header=0) # line['name'] = line['Proteomics_Participant_ID'] # line = line.drop(['Proteomics_Participant_ID', 'Histologic_type', 'Genomics_subtype', 'TP53_TP53'], axis=1) # labels = labels.join(line.set_index('name'), on='name') # labels['LINE1_ORF1p'] = (labels['LINE1_ORF1p'].dropna() > 0).astype(int) # labels['RAD50-S635'] = (labels['RAD50-S635'].dropna() > 0).astype(int) # labels['NBN-S343'] = (labels['NBN-S343'].dropna() > 0).astype(int) # labels['ATR-T1989'] = (labels['ATR-T1989'].dropna() > 0).astype(int) # labels['ATM-S1981'] = (labels['ATM-S1981'].dropna() > 0).astype(int) line['name'] = line['Sample_ID'].str.slice(start=0, stop=9) line = line.drop(['Sample_ID', 'Genomic_subtype'], axis=1) labels = labels.join(line.set_index('name'), on='name') labels['CCND1'] = (labels['CCND1'].dropna() > 0).astype(int) labels['CCNE1'] = (labels['CCNE1'].dropna() > 0).astype(int) labels['CCNA2'] = (labels['CCNA2'].dropna() > 0).astype(int) labels['CCNB1'] = (labels['CCNB1'].dropna() > 0).astype(int) labels.to_csv('../Fusion_dummy_His_MUT_joined.csv', index=False)
[ 11748, 19798, 292, 355, 279, 67, 198, 198, 23912, 1424, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 37, 4241, 62, 67, 13513, 62, 6653, 62, 44, 3843, 62, 46416, 13, 40664, 3256, 13639, 28, 15, 8, 198, 2, 1627, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 40720, 13949, 16, 13, 40664, 3256, 13639, 28, 15, 8, 198, 1370, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 2943, 62, 15539, 259, 62, 38011, 13, 40664, 3256, 13639, 28, 15, 8, 198, 198, 2, 1627, 17816, 3672, 20520, 796, 1627, 17816, 47, 2519, 31994, 62, 34363, 415, 62, 2389, 20520, 198, 2, 1627, 796, 1627, 13, 14781, 7, 17816, 47, 2519, 31994, 62, 34363, 415, 62, 2389, 3256, 705, 13749, 20781, 62, 4906, 3256, 705, 13746, 31994, 62, 7266, 4906, 3256, 705, 7250, 4310, 62, 7250, 4310, 6, 4357, 16488, 28, 16, 8, 198, 2, 14722, 796, 14722, 13, 22179, 7, 1370, 13, 2617, 62, 9630, 10786, 3672, 33809, 319, 11639, 3672, 11537, 198, 2, 14722, 17816, 24027, 16, 62, 1581, 37, 16, 79, 20520, 796, 357, 23912, 1424, 17816, 24027, 16, 62, 1581, 37, 16, 79, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 2, 14722, 17816, 49, 2885, 1120, 12, 50, 48250, 20520, 796, 357, 23912, 1424, 17816, 49, 2885, 1120, 12, 50, 48250, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 2, 14722, 17816, 45, 15766, 12, 50, 32118, 20520, 796, 357, 23912, 1424, 17816, 45, 15766, 12, 50, 32118, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 2, 14722, 17816, 1404, 49, 12, 51, 25475, 20520, 796, 357, 23912, 1424, 17816, 1404, 49, 12, 51, 25475, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 2, 14722, 17816, 1404, 44, 12, 50, 35411, 20520, 796, 357, 23912, 1424, 17816, 1404, 44, 12, 50, 35411, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 198, 1370, 17816, 3672, 20520, 796, 1627, 17816, 36674, 62, 2389, 6, 4083, 2536, 13, 48369, 7, 9688, 28, 15, 11, 2245, 28, 24, 8, 198, 198, 1370, 796, 1627, 13, 14781, 7, 17816, 36674, 62, 2389, 3256, 705, 13746, 10179, 62, 7266, 4906, 6, 4357, 16488, 28, 16, 8, 198, 23912, 1424, 796, 14722, 13, 22179, 7, 1370, 13, 2617, 62, 9630, 10786, 3672, 33809, 319, 11639, 3672, 11537, 198, 23912, 1424, 17816, 4093, 8575, 16, 20520, 796, 357, 23912, 1424, 17816, 4093, 8575, 16, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 23912, 1424, 17816, 4093, 12161, 16, 20520, 796, 357, 23912, 1424, 17816, 4093, 12161, 16, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 23912, 1424, 17816, 4093, 4535, 17, 20520, 796, 357, 23912, 1424, 17816, 4093, 4535, 17, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 23912, 1424, 17816, 4093, 32819, 16, 20520, 796, 357, 23912, 1424, 17816, 4093, 32819, 16, 6, 4083, 14781, 2616, 3419, 1875, 657, 737, 459, 2981, 7, 600, 8, 198, 198, 23912, 1424, 13, 1462, 62, 40664, 10786, 40720, 37, 4241, 62, 67, 13513, 62, 6653, 62, 44, 3843, 62, 46416, 13, 40664, 3256, 6376, 28, 25101, 8, 198 ]
2.285199
554
#Ler o ano de nascimento de um jovem e verificar se ele está na hora de alistar, se está muito cedo #para isso ou já passou do momento certo from datetime import date nascimento = int(input("Digite o ano do seu nascimento: ")); sexo = str(input("Você é homem ou mulher? Digite H para homem e M se for mulher: ")).upper().strip(); atual = date.today().year; idade = (atual - nascimento); if sexo == "H": if idade < 18: print(f"Você ainda tem \033[1:38m{idade}\033[m anos, ainda não está na hora de se alistar. Faltam \033[1:39m{18-idade}\033[m anos."); print(f"Você deve se alistar em {nascimento + 18}") elif idade == 18: print(f"Você já tem \033[1:35m{idade}\033[m anos, chegou a hora! Aliste-se!"); elif idade > 18: print(f"Você tem \033[1:34m{idade}\033[m anos, seu alistamento foi em \033[1:31m{nascimento + 18}\033[m. Verifique sua situação e caso necessário, regularize-a o mais rápido possível."); else: print("Como você é uma mulher, não precisa se alistar.");
[ 2, 43, 263, 267, 281, 78, 390, 299, 3372, 3681, 78, 390, 23781, 474, 659, 76, 304, 3326, 811, 283, 384, 9766, 1556, 6557, 12385, 3076, 64, 390, 435, 47229, 11, 384, 1556, 6557, 285, 5013, 78, 269, 24757, 201, 198, 2, 1845, 64, 318, 568, 267, 84, 474, 6557, 1208, 280, 466, 2589, 78, 5051, 78, 201, 198, 6738, 4818, 8079, 1330, 3128, 201, 198, 201, 198, 77, 3372, 3681, 78, 796, 493, 7, 15414, 7203, 19511, 578, 267, 281, 78, 466, 384, 84, 299, 3372, 3681, 78, 25, 366, 18125, 201, 198, 8044, 78, 796, 965, 7, 15414, 7203, 53, 420, 25792, 38251, 3488, 368, 267, 84, 35971, 372, 30, 7367, 578, 367, 31215, 3488, 368, 304, 337, 384, 329, 35971, 372, 25, 366, 29720, 45828, 22446, 36311, 9783, 201, 198, 201, 198, 265, 723, 796, 3128, 13, 40838, 22446, 1941, 26, 201, 198, 312, 671, 796, 357, 265, 723, 532, 299, 3372, 3681, 78, 1776, 201, 198, 361, 1714, 78, 6624, 366, 39, 1298, 201, 198, 220, 220, 220, 611, 4686, 671, 1279, 1248, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 53, 420, 25792, 257, 22261, 2169, 3467, 44427, 58, 16, 25, 2548, 76, 90, 312, 671, 32239, 44427, 58, 76, 281, 418, 11, 257, 22261, 299, 28749, 1556, 6557, 12385, 3076, 64, 390, 384, 435, 47229, 13, 220, 376, 2501, 321, 3467, 44427, 58, 16, 25, 2670, 76, 90, 1507, 12, 312, 671, 32239, 44427, 58, 76, 281, 418, 526, 1776, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 53, 420, 25792, 390, 303, 384, 435, 47229, 795, 1391, 77, 3372, 3681, 78, 1343, 1248, 92, 4943, 201, 198, 220, 220, 220, 1288, 361, 4686, 671, 6624, 1248, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 53, 420, 25792, 474, 6557, 2169, 3467, 44427, 58, 16, 25, 2327, 76, 90, 312, 671, 32239, 44427, 58, 76, 281, 418, 11, 1125, 70, 280, 257, 3076, 64, 0, 978, 40833, 12, 325, 2474, 1776, 201, 198, 220, 220, 220, 1288, 361, 4686, 671, 1875, 1248, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 53, 420, 25792, 2169, 3467, 44427, 58, 16, 25, 2682, 76, 90, 312, 671, 32239, 44427, 58, 76, 281, 418, 11, 384, 84, 435, 396, 3263, 78, 11511, 72, 795, 3467, 44427, 58, 16, 25, 3132, 76, 90, 77, 3372, 3681, 78, 1343, 1248, 32239, 44427, 58, 76, 13, 4643, 361, 2350, 424, 64, 1650, 6413, 16175, 28749, 304, 6124, 78, 2418, 6557, 27250, 11, 3218, 1096, 12, 64, 267, 285, 15152, 374, 6557, 79, 17305, 1184, 8836, 626, 526, 1776, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 3601, 7203, 5377, 78, 12776, 25792, 38251, 334, 2611, 35971, 372, 11, 299, 28749, 3718, 9160, 384, 435, 47229, 526, 1776, 201, 198, 201, 198, 201, 198 ]
2.146091
486
from click.testing import CliRunner import os import py import pytest import builtins import sys from typing import Any from tests import DATA_DIR from xaitk_saliency.utils.bin.sal_on_coco_dets import sal_on_coco_dets from importlib.util import find_spec deps = ['kwcoco'] specs = [find_spec(dep) for dep in deps] is_usable = all([spec is not None for spec in specs]) dets_file = os.path.join(DATA_DIR, 'test_dets.json') config_file = os.path.join(DATA_DIR, 'config.json') class TestSalOnCocoDetsNotUsable: """ These tests make use of the `tmpdir` fixture from `pytest`. Find more information here: https://docs.pytest.org/en/6.2.x/tmpdir.html """ def test_warning(self, tmpdir: py.path.local) -> None: """ Test that proper warning is displayed when required dependencies are not installed. """ output_dir = tmpdir.join('out') runner = CliRunner() if is_usable: real_import = builtins.__import__ # mock import function that acts as if kwcoco is not installed # monkeypatch import function builtins.__import__ = mock_import del sys.modules['xaitk_saliency.utils.bin.sal_on_coco_dets'] from xaitk_saliency.utils.bin.sal_on_coco_dets import sal_on_coco_dets as fail_sal_on_coco_dets result = runner.invoke(fail_sal_on_coco_dets, [str(dets_file), str(output_dir), str(config_file)]) else: result = runner.invoke(sal_on_coco_dets, [str(dets_file), str(output_dir), str(config_file)]) assert result.output == "This tool requires additional dependencies, please install 'xaitk-saliency[tools]'\n" assert not output_dir.check(dir=1) @pytest.mark.skipif(not is_usable, reason="Extra 'xaitk-saliency[tools]' not installed.") class TestSalOnCocoDets: """ These tests make use of the `tmpdir` fixture from `pytest`. Find more information here: https://docs.pytest.org/en/6.2.x/tmpdir.html """ def test_coco_sal_gen(self, tmpdir: py.path.local) -> None: """ Test saliency map generation with RandomDetector, RISEGrid, and DRISEScoring. """ output_dir = tmpdir.join('out') runner = CliRunner() runner.invoke(sal_on_coco_dets, [str(dets_file), str(output_dir), str(config_file), "-v"]) # expected created directories for image saliency maps img_dirs = [output_dir.join(d) for d in ["test_image1", "test_image2"]] # detection ids that belong to each image img_dets = [[1, 2, 3], [4, 5]] assert sorted(output_dir.listdir()) == sorted(img_dirs) for img_dir, det_ids in zip(img_dirs, img_dets): map_files = [img_dir.join(f"det_{det_id}.jpeg") for det_id in det_ids] assert sorted(img_dir.listdir()) == sorted(map_files) def test_coco_sal_gen_img_overlay(self, tmpdir: py.path.local) -> None: """ Test saliency map generation with RandomDetector, RISEGrid, and DRISEScoring with the overlay image option. """ output_dir = tmpdir.join('out') runner = CliRunner() runner.invoke(sal_on_coco_dets, [str(dets_file), str(output_dir), str(config_file), "--overlay-image"]) # expected created directories for image saliency maps img_dirs = [output_dir.join(d) for d in ["test_image1", "test_image2"]] # detection ids that belong to each image img_dets = [[1, 2, 3], [4, 5]] assert sorted(output_dir.listdir()) == sorted(img_dirs) for img_dir, det_ids in zip(img_dirs, img_dets): map_files = [img_dir.join(f"det_{det_id}.jpeg") for det_id in det_ids] assert sorted(img_dir.listdir()) == sorted(map_files) def test_config_gen(self, tmpdir: py.path.local) -> None: """ Test the generate configuration file option. """ output_dir = tmpdir.join('out') output_config = tmpdir.join('gen_conf.json') runner = CliRunner() runner.invoke(sal_on_coco_dets, [str(dets_file), str(output_dir), str(config_file), "-g", str(output_config)]) # check that config file was created assert output_config.check(file=1) # check that no output was generated assert not output_dir.check(dir=1)
[ 6738, 3904, 13, 33407, 1330, 1012, 72, 49493, 198, 11748, 28686, 198, 11748, 12972, 198, 11748, 12972, 9288, 198, 11748, 3170, 1040, 198, 11748, 25064, 198, 6738, 19720, 1330, 4377, 198, 198, 6738, 5254, 1330, 42865, 62, 34720, 198, 198, 6738, 2124, 4548, 74, 62, 21680, 6160, 13, 26791, 13, 8800, 13, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 1330, 3664, 62, 261, 62, 66, 25634, 62, 67, 1039, 198, 198, 6738, 1330, 8019, 13, 22602, 1330, 1064, 62, 16684, 198, 198, 10378, 82, 796, 37250, 46265, 66, 25634, 20520, 198, 4125, 6359, 796, 685, 19796, 62, 16684, 7, 10378, 8, 329, 1207, 287, 390, 862, 60, 198, 271, 62, 31979, 796, 477, 26933, 16684, 318, 407, 6045, 329, 1020, 287, 25274, 12962, 198, 198, 67, 1039, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 34720, 11, 705, 9288, 62, 67, 1039, 13, 17752, 11537, 198, 11250, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 34720, 11, 705, 11250, 13, 17752, 11537, 628, 198, 4871, 6208, 19221, 2202, 34, 25634, 35, 1039, 3673, 5842, 540, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2312, 5254, 787, 779, 286, 262, 4600, 22065, 15908, 63, 29220, 422, 4600, 9078, 9288, 44646, 9938, 517, 198, 220, 220, 220, 1321, 994, 25, 3740, 1378, 31628, 13, 9078, 9288, 13, 2398, 14, 268, 14, 21, 13, 17, 13, 87, 14, 22065, 15908, 13, 6494, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 43917, 7, 944, 11, 45218, 15908, 25, 12972, 13, 6978, 13, 12001, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 326, 1774, 6509, 318, 9066, 618, 2672, 20086, 389, 198, 220, 220, 220, 220, 220, 220, 220, 407, 6589, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 45218, 15908, 13, 22179, 10786, 448, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 17490, 796, 1012, 72, 49493, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 31979, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1103, 62, 11748, 796, 3170, 1040, 13, 834, 11748, 834, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15290, 1330, 2163, 326, 6529, 355, 611, 479, 86, 66, 25634, 318, 407, 6589, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 21657, 17147, 1330, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3170, 1040, 13, 834, 11748, 834, 796, 15290, 62, 11748, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 25064, 13, 18170, 17816, 87, 4548, 74, 62, 21680, 6160, 13, 26791, 13, 8800, 13, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 2124, 4548, 74, 62, 21680, 6160, 13, 26791, 13, 8800, 13, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 1330, 3664, 62, 261, 62, 66, 25634, 62, 67, 1039, 355, 2038, 62, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 17490, 13, 37669, 7, 32165, 62, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 11, 685, 2536, 7, 67, 1039, 62, 7753, 828, 965, 7, 22915, 62, 15908, 828, 965, 7, 11250, 62, 7753, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 17490, 13, 37669, 7, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 11, 685, 2536, 7, 67, 1039, 62, 7753, 828, 965, 7, 22915, 62, 15908, 828, 965, 7, 11250, 62, 7753, 8, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 1255, 13, 22915, 6624, 366, 1212, 2891, 4433, 3224, 20086, 11, 3387, 2721, 705, 87, 4548, 74, 12, 21680, 6160, 58, 31391, 49946, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 407, 5072, 62, 15908, 13, 9122, 7, 15908, 28, 16, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 1662, 318, 62, 31979, 11, 1738, 2625, 27726, 705, 87, 4548, 74, 12, 21680, 6160, 58, 31391, 49946, 407, 6589, 19570, 198, 4871, 6208, 19221, 2202, 34, 25634, 35, 1039, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2312, 5254, 787, 779, 286, 262, 4600, 22065, 15908, 63, 29220, 422, 4600, 9078, 9288, 44646, 9938, 517, 198, 220, 220, 220, 1321, 994, 25, 3740, 1378, 31628, 13, 9078, 9288, 13, 2398, 14, 268, 14, 21, 13, 17, 13, 87, 14, 22065, 15908, 13, 6494, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 66, 25634, 62, 21680, 62, 5235, 7, 944, 11, 45218, 15908, 25, 12972, 13, 6978, 13, 12001, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 3664, 6160, 3975, 5270, 351, 14534, 11242, 9250, 11, 45698, 7156, 6058, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 10560, 1797, 1546, 66, 3255, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 45218, 15908, 13, 22179, 10786, 448, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 17490, 796, 1012, 72, 49493, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 17490, 13, 37669, 7, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 11, 685, 2536, 7, 67, 1039, 62, 7753, 828, 965, 7, 22915, 62, 15908, 828, 965, 7, 11250, 62, 7753, 828, 27444, 85, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2938, 2727, 29196, 329, 2939, 3664, 6160, 8739, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 15908, 82, 796, 685, 22915, 62, 15908, 13, 22179, 7, 67, 8, 329, 288, 287, 14631, 9288, 62, 9060, 16, 1600, 366, 9288, 62, 9060, 17, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13326, 220, 2340, 326, 5594, 284, 1123, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 67, 1039, 796, 16410, 16, 11, 362, 11, 513, 4357, 685, 19, 11, 642, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 23243, 7, 22915, 62, 15908, 13, 4868, 15908, 28955, 6624, 23243, 7, 9600, 62, 15908, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 33705, 62, 15908, 11, 1062, 62, 2340, 287, 19974, 7, 9600, 62, 15908, 82, 11, 33705, 62, 67, 1039, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 16624, 796, 685, 9600, 62, 15908, 13, 22179, 7, 69, 1, 15255, 23330, 15255, 62, 312, 27422, 73, 22071, 4943, 329, 1062, 62, 312, 287, 1062, 62, 2340, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 23243, 7, 9600, 62, 15908, 13, 4868, 15908, 28955, 6624, 23243, 7, 8899, 62, 16624, 8, 628, 220, 220, 220, 825, 1332, 62, 66, 25634, 62, 21680, 62, 5235, 62, 9600, 62, 2502, 10724, 7, 944, 11, 45218, 15908, 25, 12972, 13, 6978, 13, 12001, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 3664, 6160, 3975, 5270, 351, 14534, 11242, 9250, 11, 45698, 7156, 6058, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 10560, 1797, 1546, 66, 3255, 351, 262, 33345, 2939, 3038, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 45218, 15908, 13, 22179, 10786, 448, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 17490, 796, 1012, 72, 49493, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 17490, 13, 37669, 7, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 11, 685, 2536, 7, 67, 1039, 62, 7753, 828, 965, 7, 22915, 62, 15908, 828, 965, 7, 11250, 62, 7753, 828, 366, 438, 2502, 10724, 12, 9060, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2938, 2727, 29196, 329, 2939, 3664, 6160, 8739, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 15908, 82, 796, 685, 22915, 62, 15908, 13, 22179, 7, 67, 8, 329, 288, 287, 14631, 9288, 62, 9060, 16, 1600, 366, 9288, 62, 9060, 17, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13326, 220, 2340, 326, 5594, 284, 1123, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 67, 1039, 796, 16410, 16, 11, 362, 11, 513, 4357, 685, 19, 11, 642, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 23243, 7, 22915, 62, 15908, 13, 4868, 15908, 28955, 6624, 23243, 7, 9600, 62, 15908, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 33705, 62, 15908, 11, 1062, 62, 2340, 287, 19974, 7, 9600, 62, 15908, 82, 11, 33705, 62, 67, 1039, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 16624, 796, 685, 9600, 62, 15908, 13, 22179, 7, 69, 1, 15255, 23330, 15255, 62, 312, 27422, 73, 22071, 4943, 329, 1062, 62, 312, 287, 1062, 62, 2340, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 23243, 7, 9600, 62, 15908, 13, 4868, 15908, 28955, 6624, 23243, 7, 8899, 62, 16624, 8, 628, 220, 220, 220, 825, 1332, 62, 11250, 62, 5235, 7, 944, 11, 45218, 15908, 25, 12972, 13, 6978, 13, 12001, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 262, 7716, 8398, 2393, 3038, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 45218, 15908, 13, 22179, 10786, 448, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 11250, 796, 45218, 15908, 13, 22179, 10786, 5235, 62, 10414, 13, 17752, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 17490, 796, 1012, 72, 49493, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 17490, 13, 37669, 7, 21680, 62, 261, 62, 66, 25634, 62, 67, 1039, 11, 685, 2536, 7, 67, 1039, 62, 7753, 828, 965, 7, 22915, 62, 15908, 828, 965, 7, 11250, 62, 7753, 828, 27444, 70, 1600, 965, 7, 22915, 62, 11250, 8, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 326, 4566, 2393, 373, 2727, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 5072, 62, 11250, 13, 9122, 7, 7753, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 326, 645, 5072, 373, 7560, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 407, 5072, 62, 15908, 13, 9122, 7, 15908, 28, 16, 8, 198 ]
2.372131
1,830
from setuptools import find_packages, setup import pathlib as pl DISTNAME = "gumbi" DESCRIPTION = "Gaussian Process Model Building Interface" AUTHOR = "John Goertz" AUTHOR_EMAIL = "" URL = "https://github.com/JohnGoertz/Gumbi" LICENSE = "Apache 2.0" PROJECT_ROOT = pl.Path(__file__).resolve().parent REQUIREMENTS = PROJECT_ROOT / "requirements.txt" README = PROJECT_ROOT / "README.md" VERSION = PROJECT_ROOT / "VERSION" with open(REQUIREMENTS) as f: install_reqs = f.read().splitlines() with open(README, 'r') as fh: long_description = fh.read() with open(VERSION, encoding="utf-8") as f: version = f.read().strip() classifiers = [ "Development Status :: 4 - Beta", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Mathematics", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ] setup( name=DISTNAME, version=version, author="John Goertz", author_email="", description=DESCRIPTION, long_description_content_type="text/markdown", long_description=long_description, url=URL, license=LICENSE, python_requires='>=3.7', packages=find_packages(), include_package_data=True, install_requires=install_reqs, classifiers=classifiers, #keywords=['python'], )
[ 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 201, 198, 11748, 3108, 8019, 355, 458, 201, 198, 201, 198, 35, 8808, 20608, 796, 366, 70, 2178, 72, 1, 201, 198, 30910, 40165, 796, 366, 35389, 31562, 10854, 9104, 11819, 26491, 1, 201, 198, 32, 24318, 1581, 796, 366, 7554, 1514, 861, 89, 1, 201, 198, 32, 24318, 1581, 62, 27630, 4146, 796, 13538, 201, 198, 21886, 796, 366, 5450, 1378, 12567, 13, 785, 14, 7554, 5247, 861, 89, 14, 38, 2178, 72, 1, 201, 198, 43, 2149, 24290, 796, 366, 25189, 4891, 362, 13, 15, 1, 201, 198, 201, 198, 31190, 23680, 62, 13252, 2394, 796, 458, 13, 15235, 7, 834, 7753, 834, 737, 411, 6442, 22446, 8000, 201, 198, 2200, 49128, 28957, 796, 21965, 23680, 62, 13252, 2394, 1220, 366, 8897, 18883, 13, 14116, 1, 201, 198, 15675, 11682, 796, 21965, 23680, 62, 13252, 2394, 1220, 366, 15675, 11682, 13, 9132, 1, 201, 198, 43717, 796, 21965, 23680, 62, 13252, 2394, 1220, 366, 43717, 1, 201, 198, 201, 198, 4480, 1280, 7, 2200, 49128, 28957, 8, 355, 277, 25, 201, 198, 220, 220, 220, 2721, 62, 42180, 82, 796, 277, 13, 961, 22446, 35312, 6615, 3419, 201, 198, 201, 198, 4480, 1280, 7, 15675, 11682, 11, 705, 81, 11537, 355, 277, 71, 25, 201, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 201, 198, 201, 198, 4480, 1280, 7, 43717, 11, 21004, 2625, 40477, 12, 23, 4943, 355, 277, 25, 201, 198, 220, 220, 220, 2196, 796, 277, 13, 961, 22446, 36311, 3419, 201, 198, 201, 198, 4871, 13350, 796, 685, 201, 198, 220, 220, 220, 366, 41206, 12678, 7904, 604, 532, 17993, 1600, 201, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 1600, 201, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 201, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 24, 1600, 201, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 940, 1600, 201, 198, 220, 220, 220, 366, 5317, 1631, 7591, 1240, 7904, 5800, 14, 25104, 1600, 201, 198, 220, 220, 220, 366, 33221, 7904, 22060, 14, 13798, 1586, 1600, 201, 198, 220, 220, 220, 366, 33221, 7904, 22060, 14, 13798, 1586, 7904, 39448, 1600, 201, 198, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 24843, 10442, 13789, 1600, 201, 198, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 201, 198, 60, 201, 198, 201, 198, 40406, 7, 201, 198, 220, 220, 220, 1438, 28, 35, 8808, 20608, 11, 201, 198, 220, 220, 220, 2196, 28, 9641, 11, 201, 198, 220, 220, 220, 1772, 2625, 7554, 1514, 861, 89, 1600, 201, 198, 220, 220, 220, 1772, 62, 12888, 2625, 1600, 201, 198, 220, 220, 220, 6764, 28, 30910, 40165, 11, 201, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 201, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 201, 198, 220, 220, 220, 19016, 28, 21886, 11, 201, 198, 220, 220, 220, 5964, 28, 43, 2149, 24290, 11, 201, 198, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 22, 3256, 201, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 201, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 201, 198, 220, 220, 220, 2721, 62, 47911, 28, 17350, 62, 42180, 82, 11, 201, 198, 220, 220, 220, 1398, 13350, 28, 4871, 13350, 11, 201, 198, 220, 220, 220, 1303, 2539, 10879, 28, 17816, 29412, 6, 4357, 201, 198, 8, 201, 198 ]
2.609555
607
""" Cisco_IOS_XR_mpls_te_datatypes This module contains a collection of generally useful derived YANG data types. Copyright (c) 2013\-2017 by Cisco Systems, Inc. All rights reserved. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class BfdReversePath(Enum): """ BfdReversePath (Enum Class) Bfd reverse path .. data:: bfd_reverse_path_binding_label = 1 BindingLabel """ bfd_reverse_path_binding_label = Enum.YLeaf(1, "bfd-reverse-path-binding-label") class Ctype(Enum): """ Ctype (Enum Class) Ctype .. data:: ctype_null = 0 CTYPE NULL .. data:: ctype_ipv4 = 1 CTYPE IPV4 .. data:: ctype_ipv4_p2p_tunnel = 7 CTYPE IPV4 P2P TUNNEL .. data:: ctype_ipv6_p2p_tunnel = 8 CTYPE IPV6 P2P TUNNEL .. data:: ctype_ipv4_uni = 9 CTYPE IPV4 UNI .. data:: ctype_ipv4_p2mp_tunnel = 13 CTYPE IPV4 P2MP TUNNEL .. data:: ctype_ipv6_p2mp_tunnel = 14 CTYPE IPV6 P2MP TUNNEL """ ctype_null = Enum.YLeaf(0, "ctype-null") ctype_ipv4 = Enum.YLeaf(1, "ctype-ipv4") ctype_ipv4_p2p_tunnel = Enum.YLeaf(7, "ctype-ipv4-p2p-tunnel") ctype_ipv6_p2p_tunnel = Enum.YLeaf(8, "ctype-ipv6-p2p-tunnel") ctype_ipv4_uni = Enum.YLeaf(9, "ctype-ipv4-uni") ctype_ipv4_p2mp_tunnel = Enum.YLeaf(13, "ctype-ipv4-p2mp-tunnel") ctype_ipv6_p2mp_tunnel = Enum.YLeaf(14, "ctype-ipv6-p2mp-tunnel") class MplsTeAffinityValue(Enum): """ MplsTeAffinityValue (Enum Class) Mpls te affinity value .. data:: hex_value = 1 Affinity value in Hex number .. data:: bit_position = 2 Affinity value by Bit-Position """ hex_value = Enum.YLeaf(1, "hex-value") bit_position = Enum.YLeaf(2, "bit-position") class MplsTeAttrSet(Enum): """ MplsTeAttrSet (Enum Class) Mpls te attr set .. data:: not_used = 0 Not used .. data:: static = 1 Static .. data:: lsp = 2 LSP .. data:: unassigned = 3 Unassigned .. data:: auto_backup = 4 Auto backup .. data:: auto_mesh = 5 Auto mesh .. data:: xro = 6 XRO .. data:: p2mp_te = 7 P2MP TE .. data:: otn_pp = 8 OTN Path Protection .. data:: p2p_te = 9 P2P TE """ not_used = Enum.YLeaf(0, "not-used") static = Enum.YLeaf(1, "static") lsp = Enum.YLeaf(2, "lsp") unassigned = Enum.YLeaf(3, "unassigned") auto_backup = Enum.YLeaf(4, "auto-backup") auto_mesh = Enum.YLeaf(5, "auto-mesh") xro = Enum.YLeaf(6, "xro") p2mp_te = Enum.YLeaf(7, "p2mp-te") otn_pp = Enum.YLeaf(8, "otn-pp") p2p_te = Enum.YLeaf(9, "p2p-te") class MplsTeAutorouteMetric(Enum): """ MplsTeAutorouteMetric (Enum Class) Mpls te autoroute metric .. data:: relative = 1 Relative .. data:: absolute = 2 Absolute .. data:: constant = 3 Constant """ relative = Enum.YLeaf(1, "relative") absolute = Enum.YLeaf(2, "absolute") constant = Enum.YLeaf(3, "constant") class MplsTeBackupBandwidthClass(Enum): """ MplsTeBackupBandwidthClass (Enum Class) Mpls te backup bandwidth class .. data:: class0 = 0 Class 0 .. data:: class1 = 1 Class 1 .. data:: any_class = 9 Any Class """ class0 = Enum.YLeaf(0, "class0") class1 = Enum.YLeaf(1, "class1") any_class = Enum.YLeaf(9, "any-class") class MplsTeBackupBandwidthPool(Enum): """ MplsTeBackupBandwidthPool (Enum Class) Mpls te backup bandwidth pool .. data:: any_pool = 1 Any Pool .. data:: global_pool = 2 Global Pool .. data:: sub_pool = 4 Sub Pool """ any_pool = Enum.YLeaf(1, "any-pool") global_pool = Enum.YLeaf(2, "global-pool") sub_pool = Enum.YLeaf(4, "sub-pool") class MplsTeBandwidthDste(Enum): """ MplsTeBandwidthDste (Enum Class) Mpls te bandwidth dste .. data:: standard_dste = 0 IETF-Standard DSTE .. data:: pre_standard_dste = 1 Pre-Standard DSTE """ standard_dste = Enum.YLeaf(0, "standard-dste") pre_standard_dste = Enum.YLeaf(1, "pre-standard-dste") class MplsTeBandwidthLimit(Enum): """ MplsTeBandwidthLimit (Enum Class) Mpls te bandwidth limit .. data:: unlimited = 64 Unlimited .. data:: limited = 128 Limited """ unlimited = Enum.YLeaf(64, "unlimited") limited = Enum.YLeaf(128, "limited") class MplsTeBandwidthPool(Enum): """ MplsTeBandwidthPool (Enum Class) Mpls te bandwidth pool .. data:: any_pool = 0 Any Pool .. data:: sub_pool = 1 Sub Pool """ any_pool = Enum.YLeaf(0, "any-pool") sub_pool = Enum.YLeaf(1, "sub-pool") class MplsTeBfdSessionDownAction(Enum): """ MplsTeBfdSessionDownAction (Enum Class) Mpls te bfd session down action .. data:: re_setup = 1 Tear down and resetup """ re_setup = Enum.YLeaf(1, "re-setup") class MplsTeIgpProtocol(Enum): """ MplsTeIgpProtocol (Enum Class) Mpls te igp protocol .. data:: none = 0 Not set .. data:: isis = 1 IS IS .. data:: ospf = 2 OSPF """ none = Enum.YLeaf(0, "none") isis = Enum.YLeaf(1, "isis") ospf = Enum.YLeaf(2, "ospf") class MplsTeLogFrrProtection(Enum): """ MplsTeLogFrrProtection (Enum Class) Mpls te log frr protection .. data:: frr_active_primary = 1 Track only FRR active on primary LSP .. data:: backup = 256 backup tunnel .. data:: frr_ready_primary = 512 Track only FRR ready on primary LSP .. data:: primary = 513 primary LSP .. data:: all = 769 all """ frr_active_primary = Enum.YLeaf(1, "frr-active-primary") backup = Enum.YLeaf(256, "backup") frr_ready_primary = Enum.YLeaf(512, "frr-ready-primary") primary = Enum.YLeaf(513, "primary") all = Enum.YLeaf(769, "all") class MplsTeOtnApsProtection(Enum): """ MplsTeOtnApsProtection (Enum Class) Mpls te otn aps protection .. data:: Y_1plus1_unidir_no_aps = 4 1PLUS1 UNIDIR NO APS .. data:: Y_1plus1_unidir_aps = 8 1PLUS1 UNIDIR APS .. data:: Y_1plus1_bdir_aps = 16 1PLUS1 BIDIR APS """ Y_1plus1_unidir_no_aps = Enum.YLeaf(4, "1plus1-unidir-no-aps") Y_1plus1_unidir_aps = Enum.YLeaf(8, "1plus1-unidir-aps") Y_1plus1_bdir_aps = Enum.YLeaf(16, "1plus1-bdir-aps") class MplsTeOtnApsProtectionMode(Enum): """ MplsTeOtnApsProtectionMode (Enum Class) Mpls te otn aps protection mode .. data:: revertive = 1 Revertive .. data:: non_revertive = 2 Non Revertive """ revertive = Enum.YLeaf(1, "revertive") non_revertive = Enum.YLeaf(2, "non-revertive") class MplsTeOtnApsRestorationStyle(Enum): """ MplsTeOtnApsRestorationStyle (Enum Class) Mpls te otn aps restoration style .. data:: keep_failed_lsp = 1 Keep Failed Lsp .. data:: delete_failed_lsp = 2 Delete Failed Lsp """ keep_failed_lsp = Enum.YLeaf(1, "keep-failed-lsp") delete_failed_lsp = Enum.YLeaf(2, "delete-failed-lsp") class MplsTeOtnSncMode(Enum): """ MplsTeOtnSncMode (Enum Class) Mpls te otn snc mode .. data:: snc_n = 1 SNC N .. data:: snc_i = 2 SNC I .. data:: snc_s = 3 SNC S """ snc_n = Enum.YLeaf(1, "snc-n") snc_i = Enum.YLeaf(2, "snc-i") snc_s = Enum.YLeaf(3, "snc-s") class MplsTePathDiversityConformance(Enum): """ MplsTePathDiversityConformance (Enum Class) Mpls te path diversity conformance .. data:: strict = 0 Strict .. data:: best_effort = 1 Best effort """ strict = Enum.YLeaf(0, "strict") best_effort = Enum.YLeaf(1, "best-effort") class MplsTePathOption(Enum): """ MplsTePathOption (Enum Class) Mpls te path option .. data:: not_set = 0 Not Set .. data:: dynamic = 1 Dynamic .. data:: explicit_name = 3 Explicit, identified by name .. data:: explicit_number = 4 Explicit, identified by number .. data:: no_ero = 5 No ERO .. data:: sr = 6 Segment routing """ not_set = Enum.YLeaf(0, "not-set") dynamic = Enum.YLeaf(1, "dynamic") explicit_name = Enum.YLeaf(3, "explicit-name") explicit_number = Enum.YLeaf(4, "explicit-number") no_ero = Enum.YLeaf(5, "no-ero") sr = Enum.YLeaf(6, "sr") class MplsTePathOptionProperty(Enum): """ MplsTePathOptionProperty (Enum Class) Mpls te path option property .. data:: none = 0 No property .. data:: lockdown = 1 Path is not a canditate forreoptimization .. data:: verbatim = 4 Explicit path does not require topology database .. data:: pce = 8 Dynamic path found by PCE server .. data:: segment_routing = 16 Segment Routing path """ none = Enum.YLeaf(0, "none") lockdown = Enum.YLeaf(1, "lockdown") verbatim = Enum.YLeaf(4, "verbatim") pce = Enum.YLeaf(8, "pce") segment_routing = Enum.YLeaf(16, "segment-routing") class MplsTePathOptionProtection(Enum): """ MplsTePathOptionProtection (Enum Class) Mpls te path option protection .. data:: active = 0 Active path .. data:: protecting = 1 Protecting Path """ active = Enum.YLeaf(0, "active") protecting = Enum.YLeaf(1, "protecting") class MplsTePathSelectionInvalidationTimerExpire(Enum): """ MplsTePathSelectionInvalidationTimerExpire (Enum Class) Mpls te path selection invalidation timer expire .. data:: tunnel_action_tear = 1 Tear down tunnel. .. data:: tunnel_action_drop = 2 Drop tunnel traffic. """ tunnel_action_tear = Enum.YLeaf(1, "tunnel-action-tear") tunnel_action_drop = Enum.YLeaf(2, "tunnel-action-drop") class MplsTePathSelectionMetric(Enum): """ MplsTePathSelectionMetric (Enum Class) Mpls te path selection metric .. data:: igp = 1 IGP Metric .. data:: te = 2 TE Metric .. data:: delay = 4 DELAY Metric """ igp = Enum.YLeaf(1, "igp") te = Enum.YLeaf(2, "te") delay = Enum.YLeaf(4, "delay") class MplsTePathSelectionSegmentRoutingAdjacencyProtection(Enum): """ MplsTePathSelectionSegmentRoutingAdjacencyProtection (Enum Class) Mpls te path selection segment routing adjacency protection .. data:: not_set = 0 Any segment can be used in a path. .. data:: adj_unprotected = 1 Only unprotected adjacency segments can be used in a path. .. data:: adj_protected = 2 Only protected adjacency segments can be used in a path. """ not_set = Enum.YLeaf(0, "not-set") adj_unprotected = Enum.YLeaf(1, "adj-unprotected") adj_protected = Enum.YLeaf(2, "adj-protected") class MplsTePathSelectionTiebreaker(Enum): """ MplsTePathSelectionTiebreaker (Enum Class) Mpls te path selection tiebreaker .. data:: min_fill = 1 Prefer the path with the least-utilized links .. data:: max_fill = 2 Prefer the path with the most-utilized links .. data:: random = 3 Prefer a path with links utilized randomly """ min_fill = Enum.YLeaf(1, "min-fill") max_fill = Enum.YLeaf(2, "max-fill") random = Enum.YLeaf(3, "random") class MplsTeSigNameOption(Enum): """ MplsTeSigNameOption (Enum Class) Mpls te sig name option .. data:: none = 0 None .. data:: address = 1 Address .. data:: name = 2 Name """ none = Enum.YLeaf(0, "none") address = Enum.YLeaf(1, "address") name = Enum.YLeaf(2, "name") class MplsTeSwitchingCap(Enum): """ MplsTeSwitchingCap (Enum Class) Mpls te switching cap .. data:: psc1 = 1 PSC1 .. data:: lsc = 150 LSC .. data:: fsc = 200 FSC """ psc1 = Enum.YLeaf(1, "psc1") lsc = Enum.YLeaf(150, "lsc") fsc = Enum.YLeaf(200, "fsc") class MplsTeTunnelAffinity(Enum): """ MplsTeTunnelAffinity (Enum Class) Mpls te tunnel affinity .. data:: include = 1 Include Affinity .. data:: include_strict = 2 Strictly Include Affinity .. data:: exclude = 3 Exclude Affinity .. data:: exclude_all = 4 Exclude All Affinities .. data:: ignore = 5 Ignore Affinity """ include = Enum.YLeaf(1, "include") include_strict = Enum.YLeaf(2, "include-strict") exclude = Enum.YLeaf(3, "exclude") exclude_all = Enum.YLeaf(4, "exclude-all") ignore = Enum.YLeaf(5, "ignore") class MplsTesrlgExclude(Enum): """ MplsTesrlgExclude (Enum Class) Mpls tesrlg exclude .. data:: mandatory = 1 SRLG Mandatory Exclude .. data:: preferred = 2 SRLG Preferred Exclude .. data:: weighted = 3 SRLG Weighted Exclude """ mandatory = Enum.YLeaf(1, "mandatory") preferred = Enum.YLeaf(2, "preferred") weighted = Enum.YLeaf(3, "weighted") class PathInvalidationAction(Enum): """ PathInvalidationAction (Enum Class) Path invalidation action .. data:: tear = 1 Tear .. data:: drop = 2 Drop """ tear = Enum.YLeaf(1, "tear") drop = Enum.YLeaf(2, "drop") class SrPrepend(Enum): """ SrPrepend (Enum Class) Sr prepend .. data:: none_type = 0 NoneType .. data:: next_label = 1 Next Label .. data:: bgp_n_hop = 2 BGP NHOP """ none_type = Enum.YLeaf(0, "none-type") next_label = Enum.YLeaf(1, "next-label") bgp_n_hop = Enum.YLeaf(2, "bgp-n-hop")
[ 37811, 28289, 62, 40, 2640, 62, 55, 49, 62, 76, 489, 82, 62, 660, 62, 19608, 265, 9497, 220, 198, 198, 1212, 8265, 4909, 257, 4947, 286, 4143, 4465, 198, 34631, 575, 15567, 1366, 3858, 13, 198, 198, 15269, 357, 66, 8, 2211, 41441, 5539, 416, 28289, 11998, 11, 3457, 13, 198, 3237, 2489, 10395, 13, 198, 198, 37811, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 6738, 331, 34388, 13, 19199, 1330, 20885, 11, 20885, 15235, 11, 27207, 11, 2039, 388, 11, 575, 6030, 11, 575, 3123, 1878, 11, 575, 3123, 1878, 8053, 11, 575, 8053, 11, 14697, 6601, 8053, 11, 44733, 11, 33523, 11, 4280, 4402, 2414, 198, 6738, 331, 34388, 13, 10379, 1010, 1330, 575, 22417, 198, 6738, 331, 34388, 13, 48277, 1330, 575, 12331, 11, 575, 17633, 12331, 198, 6738, 331, 34388, 13, 48277, 13, 18224, 62, 30281, 1330, 5412, 62, 4906, 62, 18224, 355, 4808, 28144, 62, 4906, 62, 18224, 628, 198, 4871, 347, 16344, 49, 964, 325, 15235, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 347, 16344, 49, 964, 325, 15235, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 347, 16344, 9575, 3108, 628, 220, 220, 220, 11485, 1366, 3712, 275, 16344, 62, 50188, 62, 6978, 62, 30786, 62, 18242, 796, 352, 628, 220, 220, 220, 220, 197, 33, 6020, 33986, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 275, 16344, 62, 50188, 62, 6978, 62, 30786, 62, 18242, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 65, 16344, 12, 50188, 12, 6978, 12, 30786, 12, 18242, 4943, 628, 198, 4871, 327, 4906, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 327, 4906, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 327, 4906, 628, 220, 220, 220, 11485, 1366, 3712, 269, 4906, 62, 8423, 796, 657, 628, 220, 220, 220, 220, 197, 4177, 56, 11401, 15697, 628, 220, 220, 220, 11485, 1366, 3712, 269, 4906, 62, 541, 85, 19, 796, 352, 628, 220, 220, 220, 220, 197, 4177, 56, 11401, 6101, 53, 19, 628, 220, 220, 220, 11485, 1366, 3712, 269, 4906, 62, 541, 85, 19, 62, 79, 17, 79, 62, 28286, 4954, 796, 767, 628, 220, 220, 220, 220, 197, 4177, 56, 11401, 6101, 53, 19, 350, 17, 47, 309, 4944, 45, 3698, 628, 220, 220, 220, 11485, 1366, 3712, 269, 4906, 62, 541, 85, 21, 62, 79, 17, 79, 62, 28286, 4954, 796, 807, 628, 220, 220, 220, 220, 197, 4177, 56, 11401, 6101, 53, 21, 350, 17, 47, 309, 4944, 45, 3698, 628, 220, 220, 220, 11485, 1366, 3712, 269, 4906, 62, 541, 85, 19, 62, 35657, 796, 860, 628, 220, 220, 220, 220, 197, 4177, 56, 11401, 6101, 53, 19, 4725, 40, 628, 220, 220, 220, 11485, 1366, 3712, 269, 4906, 62, 541, 85, 19, 62, 79, 17, 3149, 62, 28286, 4954, 796, 1511, 628, 220, 220, 220, 220, 197, 4177, 56, 11401, 6101, 53, 19, 350, 17, 7378, 309, 4944, 45, 3698, 628, 220, 220, 220, 11485, 1366, 3712, 269, 4906, 62, 541, 85, 21, 62, 79, 17, 3149, 62, 28286, 4954, 796, 1478, 628, 220, 220, 220, 220, 197, 4177, 56, 11401, 6101, 53, 21, 350, 17, 7378, 309, 4944, 45, 3698, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 269, 4906, 62, 8423, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 310, 2981, 12, 8423, 4943, 628, 220, 220, 220, 269, 4906, 62, 541, 85, 19, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 310, 2981, 12, 541, 85, 19, 4943, 628, 220, 220, 220, 269, 4906, 62, 541, 85, 19, 62, 79, 17, 79, 62, 28286, 4954, 796, 2039, 388, 13, 56, 3123, 1878, 7, 22, 11, 366, 310, 2981, 12, 541, 85, 19, 12, 79, 17, 79, 12, 28286, 4954, 4943, 628, 220, 220, 220, 269, 4906, 62, 541, 85, 21, 62, 79, 17, 79, 62, 28286, 4954, 796, 2039, 388, 13, 56, 3123, 1878, 7, 23, 11, 366, 310, 2981, 12, 541, 85, 21, 12, 79, 17, 79, 12, 28286, 4954, 4943, 628, 220, 220, 220, 269, 4906, 62, 541, 85, 19, 62, 35657, 796, 2039, 388, 13, 56, 3123, 1878, 7, 24, 11, 366, 310, 2981, 12, 541, 85, 19, 12, 35657, 4943, 628, 220, 220, 220, 269, 4906, 62, 541, 85, 19, 62, 79, 17, 3149, 62, 28286, 4954, 796, 2039, 388, 13, 56, 3123, 1878, 7, 1485, 11, 366, 310, 2981, 12, 541, 85, 19, 12, 79, 17, 3149, 12, 28286, 4954, 4943, 628, 220, 220, 220, 269, 4906, 62, 541, 85, 21, 62, 79, 17, 3149, 62, 28286, 4954, 796, 2039, 388, 13, 56, 3123, 1878, 7, 1415, 11, 366, 310, 2981, 12, 541, 85, 21, 12, 79, 17, 3149, 12, 28286, 4954, 4943, 628, 198, 4871, 337, 489, 82, 6767, 35191, 6269, 11395, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 35191, 6269, 11395, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 28430, 1988, 628, 220, 220, 220, 11485, 1366, 3712, 17910, 62, 8367, 796, 352, 628, 220, 220, 220, 220, 197, 35191, 6269, 1988, 287, 22212, 1271, 628, 220, 220, 220, 11485, 1366, 3712, 1643, 62, 9150, 796, 362, 628, 220, 220, 220, 220, 197, 35191, 6269, 1988, 416, 4722, 12, 26545, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 17910, 62, 8367, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 33095, 12, 8367, 4943, 628, 220, 220, 220, 1643, 62, 9150, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 2545, 12, 9150, 4943, 628, 198, 4871, 337, 489, 82, 6767, 8086, 81, 7248, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 8086, 81, 7248, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 708, 81, 900, 628, 220, 220, 220, 11485, 1366, 3712, 407, 62, 1484, 796, 657, 628, 220, 220, 220, 220, 197, 3673, 973, 628, 220, 220, 220, 11485, 1366, 3712, 9037, 796, 352, 628, 220, 220, 220, 220, 197, 45442, 628, 220, 220, 220, 11485, 1366, 3712, 300, 2777, 796, 362, 628, 220, 220, 220, 220, 197, 43, 4303, 628, 220, 220, 220, 11485, 1366, 3712, 555, 562, 3916, 796, 513, 628, 220, 220, 220, 220, 197, 3118, 562, 3916, 628, 220, 220, 220, 11485, 1366, 3712, 8295, 62, 1891, 929, 796, 604, 628, 220, 220, 220, 220, 197, 27722, 11559, 628, 220, 220, 220, 11485, 1366, 3712, 8295, 62, 76, 5069, 796, 642, 628, 220, 220, 220, 220, 197, 27722, 19609, 628, 220, 220, 220, 11485, 1366, 3712, 2124, 305, 796, 718, 628, 220, 220, 220, 220, 197, 55, 13252, 628, 220, 220, 220, 11485, 1366, 3712, 279, 17, 3149, 62, 660, 796, 767, 628, 220, 220, 220, 220, 197, 47, 17, 7378, 13368, 628, 220, 220, 220, 11485, 1366, 3712, 30972, 77, 62, 381, 796, 807, 628, 220, 220, 220, 220, 197, 2394, 45, 10644, 9985, 628, 220, 220, 220, 11485, 1366, 3712, 279, 17, 79, 62, 660, 796, 860, 628, 220, 220, 220, 220, 197, 47, 17, 47, 13368, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 407, 62, 1484, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 1662, 12, 1484, 4943, 628, 220, 220, 220, 9037, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 12708, 4943, 628, 220, 220, 220, 300, 2777, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 75, 2777, 4943, 628, 220, 220, 220, 555, 562, 3916, 796, 2039, 388, 13, 56, 3123, 1878, 7, 18, 11, 366, 403, 562, 3916, 4943, 628, 220, 220, 220, 8295, 62, 1891, 929, 796, 2039, 388, 13, 56, 3123, 1878, 7, 19, 11, 366, 23736, 12, 1891, 929, 4943, 628, 220, 220, 220, 8295, 62, 76, 5069, 796, 2039, 388, 13, 56, 3123, 1878, 7, 20, 11, 366, 23736, 12, 76, 5069, 4943, 628, 220, 220, 220, 2124, 305, 796, 2039, 388, 13, 56, 3123, 1878, 7, 21, 11, 366, 87, 305, 4943, 628, 220, 220, 220, 279, 17, 3149, 62, 660, 796, 2039, 388, 13, 56, 3123, 1878, 7, 22, 11, 366, 79, 17, 3149, 12, 660, 4943, 628, 220, 220, 220, 30972, 77, 62, 381, 796, 2039, 388, 13, 56, 3123, 1878, 7, 23, 11, 366, 313, 77, 12, 381, 4943, 628, 220, 220, 220, 279, 17, 79, 62, 660, 796, 2039, 388, 13, 56, 3123, 1878, 7, 24, 11, 366, 79, 17, 79, 12, 660, 4943, 628, 198, 4871, 337, 489, 82, 6767, 16541, 273, 13192, 9171, 1173, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 16541, 273, 13192, 9171, 1173, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 1960, 273, 13192, 18663, 628, 220, 220, 220, 11485, 1366, 3712, 3585, 796, 352, 628, 220, 220, 220, 220, 197, 6892, 876, 628, 220, 220, 220, 11485, 1366, 3712, 4112, 796, 362, 628, 220, 220, 220, 220, 197, 24849, 3552, 628, 220, 220, 220, 11485, 1366, 3712, 6937, 796, 513, 628, 220, 220, 220, 220, 197, 3103, 18797, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 3585, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 43762, 4943, 628, 220, 220, 220, 4112, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 48546, 4943, 628, 220, 220, 220, 6937, 796, 2039, 388, 13, 56, 3123, 1878, 7, 18, 11, 366, 9979, 415, 4943, 628, 198, 4871, 337, 489, 82, 6767, 7282, 929, 31407, 10394, 9487, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 7282, 929, 31407, 10394, 9487, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 11559, 19484, 1398, 628, 220, 220, 220, 11485, 1366, 3712, 1398, 15, 796, 657, 628, 220, 220, 220, 220, 197, 9487, 657, 628, 220, 220, 220, 11485, 1366, 3712, 1398, 16, 796, 352, 628, 220, 220, 220, 220, 197, 9487, 352, 628, 220, 220, 220, 11485, 1366, 3712, 597, 62, 4871, 796, 860, 628, 220, 220, 220, 220, 197, 7149, 5016, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1398, 15, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 4871, 15, 4943, 628, 220, 220, 220, 1398, 16, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 4871, 16, 4943, 628, 220, 220, 220, 597, 62, 4871, 796, 2039, 388, 13, 56, 3123, 1878, 7, 24, 11, 366, 1092, 12, 4871, 4943, 628, 198, 4871, 337, 489, 82, 6767, 7282, 929, 31407, 10394, 27201, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 7282, 929, 31407, 10394, 27201, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 11559, 19484, 5933, 628, 220, 220, 220, 11485, 1366, 3712, 597, 62, 7742, 796, 352, 628, 220, 220, 220, 220, 197, 7149, 19850, 628, 220, 220, 220, 11485, 1366, 3712, 3298, 62, 7742, 796, 362, 628, 220, 220, 220, 220, 197, 22289, 19850, 628, 220, 220, 220, 11485, 1366, 3712, 850, 62, 7742, 796, 604, 628, 220, 220, 220, 220, 197, 7004, 19850, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 597, 62, 7742, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 1092, 12, 7742, 4943, 628, 220, 220, 220, 3298, 62, 7742, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 20541, 12, 7742, 4943, 628, 220, 220, 220, 850, 62, 7742, 796, 2039, 388, 13, 56, 3123, 1878, 7, 19, 11, 366, 7266, 12, 7742, 4943, 628, 198, 4871, 337, 489, 82, 6767, 31407, 10394, 35, 4169, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 31407, 10394, 35, 4169, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 19484, 288, 4169, 628, 220, 220, 220, 11485, 1366, 3712, 3210, 62, 67, 4169, 796, 657, 628, 220, 220, 220, 220, 197, 40, 22274, 12, 23615, 360, 30516, 628, 220, 220, 220, 11485, 1366, 3712, 662, 62, 20307, 62, 67, 4169, 796, 352, 628, 220, 220, 220, 220, 197, 6719, 12, 23615, 360, 30516, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 3210, 62, 67, 4169, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 20307, 12, 67, 4169, 4943, 628, 220, 220, 220, 662, 62, 20307, 62, 67, 4169, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 3866, 12, 20307, 12, 67, 4169, 4943, 628, 198, 4871, 337, 489, 82, 6767, 31407, 10394, 39184, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 31407, 10394, 39184, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 19484, 4179, 628, 220, 220, 220, 11485, 1366, 3712, 15822, 796, 5598, 628, 220, 220, 220, 220, 197, 3118, 10698, 628, 220, 220, 220, 11485, 1366, 3712, 3614, 796, 13108, 628, 220, 220, 220, 220, 197, 37214, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 15822, 796, 2039, 388, 13, 56, 3123, 1878, 7, 2414, 11, 366, 403, 10698, 4943, 628, 220, 220, 220, 3614, 796, 2039, 388, 13, 56, 3123, 1878, 7, 12762, 11, 366, 10698, 4943, 628, 198, 4871, 337, 489, 82, 6767, 31407, 10394, 27201, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 31407, 10394, 27201, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 19484, 5933, 628, 220, 220, 220, 11485, 1366, 3712, 597, 62, 7742, 796, 657, 628, 220, 220, 220, 220, 197, 7149, 19850, 628, 220, 220, 220, 11485, 1366, 3712, 850, 62, 7742, 796, 352, 628, 220, 220, 220, 220, 197, 7004, 19850, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 597, 62, 7742, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 1092, 12, 7742, 4943, 628, 220, 220, 220, 850, 62, 7742, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 7266, 12, 7742, 4943, 628, 198, 4871, 337, 489, 82, 6767, 33, 16344, 36044, 8048, 12502, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 33, 16344, 36044, 8048, 12502, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 275, 16344, 6246, 866, 2223, 628, 220, 220, 220, 11485, 1366, 3712, 302, 62, 40406, 796, 352, 628, 220, 220, 220, 220, 197, 51, 451, 866, 290, 13259, 929, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 302, 62, 40406, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 260, 12, 40406, 4943, 628, 198, 4871, 337, 489, 82, 6767, 40, 31197, 19703, 4668, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 40, 31197, 19703, 4668, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 45329, 79, 8435, 628, 220, 220, 220, 11485, 1366, 3712, 4844, 796, 657, 628, 220, 220, 220, 220, 197, 3673, 900, 628, 220, 220, 220, 11485, 1366, 3712, 318, 271, 796, 352, 628, 220, 220, 220, 220, 197, 1797, 3180, 628, 220, 220, 220, 11485, 1366, 3712, 267, 2777, 69, 796, 362, 628, 220, 220, 220, 220, 197, 2640, 42668, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 4844, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 23108, 4943, 628, 220, 220, 220, 318, 271, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 271, 271, 4943, 628, 220, 220, 220, 267, 2777, 69, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 2117, 69, 4943, 628, 198, 4871, 337, 489, 82, 6767, 11187, 6732, 81, 19703, 3213, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 11187, 6732, 81, 19703, 3213, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 2604, 1216, 81, 4800, 628, 220, 220, 220, 11485, 1366, 3712, 1216, 81, 62, 5275, 62, 39754, 796, 352, 628, 220, 220, 220, 220, 197, 24802, 691, 8782, 49, 4075, 319, 4165, 406, 4303, 628, 220, 220, 220, 11485, 1366, 3712, 11559, 796, 17759, 628, 220, 220, 220, 220, 197, 1891, 929, 13275, 628, 220, 220, 220, 11485, 1366, 3712, 1216, 81, 62, 1493, 62, 39754, 796, 22243, 628, 220, 220, 220, 220, 197, 24802, 691, 8782, 49, 3492, 319, 4165, 406, 4303, 628, 220, 220, 220, 11485, 1366, 3712, 4165, 796, 642, 1485, 628, 220, 220, 220, 220, 197, 39754, 406, 4303, 628, 220, 220, 220, 11485, 1366, 3712, 477, 796, 767, 3388, 628, 220, 220, 220, 220, 197, 439, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1216, 81, 62, 5275, 62, 39754, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 8310, 81, 12, 5275, 12, 39754, 4943, 628, 220, 220, 220, 11559, 796, 2039, 388, 13, 56, 3123, 1878, 7, 11645, 11, 366, 1891, 929, 4943, 628, 220, 220, 220, 1216, 81, 62, 1493, 62, 39754, 796, 2039, 388, 13, 56, 3123, 1878, 7, 25836, 11, 366, 8310, 81, 12, 1493, 12, 39754, 4943, 628, 220, 220, 220, 4165, 796, 2039, 388, 13, 56, 3123, 1878, 7, 48645, 11, 366, 39754, 4943, 628, 220, 220, 220, 477, 796, 2039, 388, 13, 56, 3123, 1878, 7, 22, 3388, 11, 366, 439, 4943, 628, 198, 4871, 337, 489, 82, 6767, 46, 34106, 32, 862, 19703, 3213, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 46, 34106, 32, 862, 19703, 3213, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 30972, 77, 257, 862, 4800, 628, 220, 220, 220, 11485, 1366, 3712, 575, 62, 16, 9541, 16, 62, 403, 312, 343, 62, 3919, 62, 1686, 796, 604, 628, 220, 220, 220, 220, 197, 16, 6489, 2937, 16, 4725, 2389, 4663, 8005, 3486, 50, 628, 220, 220, 220, 11485, 1366, 3712, 575, 62, 16, 9541, 16, 62, 403, 312, 343, 62, 1686, 796, 807, 628, 220, 220, 220, 220, 197, 16, 6489, 2937, 16, 4725, 2389, 4663, 3486, 50, 628, 220, 220, 220, 11485, 1366, 3712, 575, 62, 16, 9541, 16, 62, 65, 15908, 62, 1686, 796, 1467, 628, 220, 220, 220, 220, 197, 16, 6489, 2937, 16, 347, 2389, 4663, 3486, 50, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 575, 62, 16, 9541, 16, 62, 403, 312, 343, 62, 3919, 62, 1686, 796, 2039, 388, 13, 56, 3123, 1878, 7, 19, 11, 366, 16, 9541, 16, 12, 403, 312, 343, 12, 3919, 12, 1686, 4943, 628, 220, 220, 220, 575, 62, 16, 9541, 16, 62, 403, 312, 343, 62, 1686, 796, 2039, 388, 13, 56, 3123, 1878, 7, 23, 11, 366, 16, 9541, 16, 12, 403, 312, 343, 12, 1686, 4943, 628, 220, 220, 220, 575, 62, 16, 9541, 16, 62, 65, 15908, 62, 1686, 796, 2039, 388, 13, 56, 3123, 1878, 7, 1433, 11, 366, 16, 9541, 16, 12, 65, 15908, 12, 1686, 4943, 628, 198, 4871, 337, 489, 82, 6767, 46, 34106, 32, 862, 19703, 3213, 19076, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 46, 34106, 32, 862, 19703, 3213, 19076, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 30972, 77, 257, 862, 4800, 4235, 628, 220, 220, 220, 11485, 1366, 3712, 34052, 425, 796, 352, 628, 220, 220, 220, 220, 197, 49, 964, 83, 425, 628, 220, 220, 220, 11485, 1366, 3712, 1729, 62, 260, 1851, 425, 796, 362, 628, 220, 220, 220, 220, 197, 15419, 797, 1851, 425, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 34052, 425, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 260, 1851, 425, 4943, 628, 220, 220, 220, 1729, 62, 260, 1851, 425, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 13159, 12, 260, 1851, 425, 4943, 628, 198, 4871, 337, 489, 82, 6767, 46, 34106, 32, 862, 19452, 6944, 21466, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 46, 34106, 32, 862, 19452, 6944, 21466, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 30972, 77, 257, 862, 19414, 3918, 628, 220, 220, 220, 11485, 1366, 3712, 1394, 62, 47904, 62, 75, 2777, 796, 352, 628, 220, 220, 220, 220, 197, 15597, 22738, 406, 2777, 628, 220, 220, 220, 11485, 1366, 3712, 12233, 62, 47904, 62, 75, 2777, 796, 362, 628, 220, 220, 220, 220, 197, 38727, 22738, 406, 2777, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1394, 62, 47904, 62, 75, 2777, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 14894, 12, 47904, 12, 75, 2777, 4943, 628, 220, 220, 220, 12233, 62, 47904, 62, 75, 2777, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 33678, 12, 47904, 12, 75, 2777, 4943, 628, 198, 4871, 337, 489, 82, 6767, 46, 34106, 50, 10782, 19076, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 46, 34106, 50, 10782, 19076, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 30972, 77, 3013, 66, 4235, 628, 220, 220, 220, 11485, 1366, 3712, 3013, 66, 62, 77, 796, 352, 628, 220, 220, 220, 220, 197, 50, 7792, 399, 628, 220, 220, 220, 11485, 1366, 3712, 3013, 66, 62, 72, 796, 362, 628, 220, 220, 220, 220, 197, 50, 7792, 314, 628, 220, 220, 220, 11485, 1366, 3712, 3013, 66, 62, 82, 796, 513, 628, 220, 220, 220, 220, 197, 50, 7792, 311, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 3013, 66, 62, 77, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 82, 10782, 12, 77, 4943, 628, 220, 220, 220, 3013, 66, 62, 72, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 82, 10782, 12, 72, 4943, 628, 220, 220, 220, 3013, 66, 62, 82, 796, 2039, 388, 13, 56, 3123, 1878, 7, 18, 11, 366, 82, 10782, 12, 82, 4943, 628, 198, 4871, 337, 489, 82, 6767, 15235, 35, 1608, 3103, 10367, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 15235, 35, 1608, 3103, 10367, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 3108, 9573, 369, 10367, 628, 220, 220, 220, 11485, 1366, 3712, 7646, 796, 657, 628, 220, 220, 220, 220, 197, 1273, 2012, 628, 220, 220, 220, 11485, 1366, 3712, 1266, 62, 14822, 419, 796, 352, 628, 220, 220, 220, 220, 197, 13014, 3626, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 7646, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 301, 2012, 4943, 628, 220, 220, 220, 1266, 62, 14822, 419, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 13466, 12, 14822, 419, 4943, 628, 198, 4871, 337, 489, 82, 6767, 15235, 19722, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 15235, 19722, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 3108, 3038, 628, 220, 220, 220, 11485, 1366, 3712, 407, 62, 2617, 796, 657, 628, 220, 220, 220, 220, 197, 3673, 5345, 628, 220, 220, 220, 11485, 1366, 3712, 8925, 796, 352, 628, 220, 220, 220, 220, 197, 44090, 628, 220, 220, 220, 11485, 1366, 3712, 7952, 62, 3672, 796, 513, 628, 220, 220, 220, 220, 197, 18438, 3628, 11, 5174, 416, 1438, 628, 220, 220, 220, 11485, 1366, 3712, 7952, 62, 17618, 796, 604, 628, 220, 220, 220, 220, 197, 18438, 3628, 11, 5174, 416, 1271, 628, 220, 220, 220, 11485, 1366, 3712, 645, 62, 3529, 796, 642, 628, 220, 220, 220, 220, 197, 2949, 412, 13252, 628, 220, 220, 220, 11485, 1366, 3712, 19677, 796, 718, 628, 220, 220, 220, 220, 197, 41030, 434, 28166, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 407, 62, 2617, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 1662, 12, 2617, 4943, 628, 220, 220, 220, 8925, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 67, 28995, 4943, 628, 220, 220, 220, 7952, 62, 3672, 796, 2039, 388, 13, 56, 3123, 1878, 7, 18, 11, 366, 20676, 3628, 12, 3672, 4943, 628, 220, 220, 220, 7952, 62, 17618, 796, 2039, 388, 13, 56, 3123, 1878, 7, 19, 11, 366, 20676, 3628, 12, 17618, 4943, 628, 220, 220, 220, 645, 62, 3529, 796, 2039, 388, 13, 56, 3123, 1878, 7, 20, 11, 366, 3919, 12, 3529, 4943, 628, 220, 220, 220, 19677, 796, 2039, 388, 13, 56, 3123, 1878, 7, 21, 11, 366, 27891, 4943, 628, 198, 4871, 337, 489, 82, 6767, 15235, 19722, 21746, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 15235, 19722, 21746, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 3108, 3038, 3119, 628, 220, 220, 220, 11485, 1366, 3712, 4844, 796, 657, 628, 220, 220, 220, 220, 197, 2949, 3119, 628, 220, 220, 220, 11485, 1366, 3712, 47955, 796, 352, 628, 220, 220, 220, 220, 197, 15235, 318, 407, 257, 2658, 12027, 329, 260, 40085, 1634, 628, 220, 220, 220, 11485, 1366, 3712, 3326, 8664, 320, 796, 604, 628, 220, 220, 220, 220, 197, 18438, 3628, 3108, 857, 407, 2421, 1353, 1435, 628, 220, 220, 220, 220, 197, 48806, 628, 220, 220, 220, 11485, 1366, 3712, 279, 344, 796, 807, 628, 220, 220, 220, 220, 197, 44090, 3108, 1043, 416, 4217, 36, 4382, 628, 220, 220, 220, 11485, 1366, 3712, 10618, 62, 81, 13660, 796, 1467, 628, 220, 220, 220, 220, 197, 41030, 434, 371, 13660, 3108, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 4844, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 23108, 4943, 628, 220, 220, 220, 47955, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 5354, 2902, 4943, 628, 220, 220, 220, 3326, 8664, 320, 796, 2039, 388, 13, 56, 3123, 1878, 7, 19, 11, 366, 332, 8664, 320, 4943, 628, 220, 220, 220, 279, 344, 796, 2039, 388, 13, 56, 3123, 1878, 7, 23, 11, 366, 79, 344, 4943, 628, 220, 220, 220, 10618, 62, 81, 13660, 796, 2039, 388, 13, 56, 3123, 1878, 7, 1433, 11, 366, 325, 5154, 12, 81, 13660, 4943, 628, 198, 4871, 337, 489, 82, 6767, 15235, 19722, 19703, 3213, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 15235, 19722, 19703, 3213, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 3108, 3038, 4800, 628, 220, 220, 220, 11485, 1366, 3712, 4075, 796, 657, 628, 220, 220, 220, 220, 197, 13739, 3108, 628, 220, 220, 220, 11485, 1366, 3712, 10192, 796, 352, 628, 220, 220, 220, 220, 197, 41426, 278, 10644, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 4075, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 5275, 4943, 628, 220, 220, 220, 10192, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 35499, 278, 4943, 628, 198, 4871, 337, 489, 82, 6767, 15235, 4653, 1564, 44651, 341, 48801, 3109, 5111, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 15235, 4653, 1564, 44651, 341, 48801, 3109, 5111, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 3108, 6356, 12515, 341, 19781, 24264, 628, 220, 220, 220, 11485, 1366, 3712, 13275, 62, 2673, 62, 83, 451, 796, 352, 628, 220, 220, 220, 220, 197, 51, 451, 866, 13275, 13, 628, 220, 220, 220, 11485, 1366, 3712, 13275, 62, 2673, 62, 14781, 796, 362, 628, 220, 220, 220, 220, 197, 26932, 13275, 4979, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 13275, 62, 2673, 62, 83, 451, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 28286, 4954, 12, 2673, 12, 83, 451, 4943, 628, 220, 220, 220, 13275, 62, 2673, 62, 14781, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 28286, 4954, 12, 2673, 12, 14781, 4943, 628, 198, 4871, 337, 489, 82, 6767, 15235, 4653, 1564, 9171, 1173, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 15235, 4653, 1564, 9171, 1173, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 3108, 6356, 18663, 628, 220, 220, 220, 11485, 1366, 3712, 45329, 79, 796, 352, 628, 220, 220, 220, 220, 197, 3528, 47, 3395, 1173, 628, 220, 220, 220, 11485, 1366, 3712, 573, 796, 362, 628, 220, 220, 220, 220, 197, 9328, 3395, 1173, 628, 220, 220, 220, 11485, 1366, 3712, 5711, 796, 604, 628, 220, 220, 220, 220, 197, 35, 3698, 4792, 3395, 1173, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 45329, 79, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 328, 79, 4943, 628, 220, 220, 220, 573, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 660, 4943, 628, 220, 220, 220, 5711, 796, 2039, 388, 13, 56, 3123, 1878, 7, 19, 11, 366, 40850, 4943, 628, 198, 4871, 337, 489, 82, 6767, 15235, 4653, 1564, 41030, 434, 49, 13660, 2782, 30482, 1387, 19703, 3213, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 15235, 4653, 1564, 41030, 434, 49, 13660, 2782, 30482, 1387, 19703, 3213, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 3108, 6356, 10618, 28166, 9224, 330, 1387, 628, 220, 220, 220, 4800, 628, 220, 220, 220, 11485, 1366, 3712, 407, 62, 2617, 796, 657, 628, 220, 220, 220, 220, 197, 7149, 10618, 460, 307, 973, 287, 257, 3108, 13, 628, 220, 220, 220, 11485, 1366, 3712, 9224, 62, 403, 24326, 796, 352, 628, 220, 220, 220, 220, 197, 10049, 42069, 9224, 330, 1387, 17894, 460, 307, 973, 628, 220, 220, 220, 220, 197, 259, 257, 3108, 13, 628, 220, 220, 220, 11485, 1366, 3712, 9224, 62, 24326, 796, 362, 628, 220, 220, 220, 220, 197, 10049, 6861, 9224, 330, 1387, 17894, 460, 307, 973, 628, 220, 220, 220, 220, 197, 259, 257, 3108, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 407, 62, 2617, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 1662, 12, 2617, 4943, 628, 220, 220, 220, 9224, 62, 403, 24326, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 41255, 12, 403, 24326, 4943, 628, 220, 220, 220, 9224, 62, 24326, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 41255, 12, 24326, 4943, 628, 198, 4871, 337, 489, 82, 6767, 15235, 4653, 1564, 51, 494, 25766, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 15235, 4653, 1564, 51, 494, 25766, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 3108, 6356, 9839, 25766, 628, 220, 220, 220, 11485, 1366, 3712, 949, 62, 20797, 796, 352, 628, 220, 220, 220, 220, 197, 6719, 2232, 262, 3108, 351, 262, 1551, 12, 22602, 1143, 6117, 628, 220, 220, 220, 11485, 1366, 3712, 3509, 62, 20797, 796, 362, 628, 220, 220, 220, 220, 197, 6719, 2232, 262, 3108, 351, 262, 749, 12, 22602, 1143, 6117, 628, 220, 220, 220, 11485, 1366, 3712, 4738, 796, 513, 628, 220, 220, 220, 220, 197, 6719, 2232, 257, 3108, 351, 6117, 21487, 15456, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 949, 62, 20797, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 1084, 12, 20797, 4943, 628, 220, 220, 220, 3509, 62, 20797, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 9806, 12, 20797, 4943, 628, 220, 220, 220, 4738, 796, 2039, 388, 13, 56, 3123, 1878, 7, 18, 11, 366, 25120, 4943, 628, 198, 4871, 337, 489, 82, 6767, 50, 328, 5376, 19722, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 50, 328, 5376, 19722, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 43237, 1438, 3038, 628, 220, 220, 220, 11485, 1366, 3712, 4844, 796, 657, 628, 220, 220, 220, 220, 197, 14202, 628, 220, 220, 220, 11485, 1366, 3712, 2209, 796, 352, 628, 220, 220, 220, 220, 197, 20231, 628, 220, 220, 220, 11485, 1366, 3712, 1438, 796, 362, 628, 220, 220, 220, 220, 197, 5376, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 4844, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 23108, 4943, 628, 220, 220, 220, 2209, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 21975, 4943, 628, 220, 220, 220, 1438, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 3672, 4943, 628, 198, 4871, 337, 489, 82, 6767, 10462, 19811, 15610, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 10462, 19811, 15610, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 15430, 1451, 628, 220, 220, 220, 11485, 1366, 3712, 279, 1416, 16, 796, 352, 628, 220, 220, 220, 220, 197, 3705, 34, 16, 628, 220, 220, 220, 11485, 1366, 3712, 300, 1416, 796, 6640, 628, 220, 220, 220, 220, 197, 43, 6173, 628, 220, 220, 220, 11485, 1366, 3712, 277, 1416, 796, 939, 628, 220, 220, 220, 220, 197, 37, 6173, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 279, 1416, 16, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 27566, 16, 4943, 628, 220, 220, 220, 300, 1416, 796, 2039, 388, 13, 56, 3123, 1878, 7, 8628, 11, 366, 75, 1416, 4943, 628, 220, 220, 220, 277, 1416, 796, 2039, 388, 13, 56, 3123, 1878, 7, 2167, 11, 366, 69, 1416, 4943, 628, 198, 4871, 337, 489, 82, 6767, 51, 403, 4954, 35191, 6269, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 6767, 51, 403, 4954, 35191, 6269, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 573, 13275, 28430, 628, 220, 220, 220, 11485, 1366, 3712, 2291, 796, 352, 628, 220, 220, 220, 220, 197, 818, 9152, 6708, 6269, 628, 220, 220, 220, 11485, 1366, 3712, 2291, 62, 301, 2012, 796, 362, 628, 220, 220, 220, 220, 197, 1273, 2012, 306, 40348, 6708, 6269, 628, 220, 220, 220, 11485, 1366, 3712, 19607, 796, 513, 628, 220, 220, 220, 220, 197, 3109, 9152, 6708, 6269, 628, 220, 220, 220, 11485, 1366, 3712, 19607, 62, 439, 796, 604, 628, 220, 220, 220, 220, 197, 3109, 9152, 1439, 6708, 259, 871, 628, 220, 220, 220, 11485, 1366, 3712, 8856, 796, 642, 628, 220, 220, 220, 220, 197, 32916, 382, 6708, 6269, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2291, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 17256, 4943, 628, 220, 220, 220, 2291, 62, 301, 2012, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 17256, 12, 301, 2012, 4943, 628, 220, 220, 220, 19607, 796, 2039, 388, 13, 56, 3123, 1878, 7, 18, 11, 366, 1069, 9152, 4943, 628, 220, 220, 220, 19607, 62, 439, 796, 2039, 388, 13, 56, 3123, 1878, 7, 19, 11, 366, 1069, 9152, 12, 439, 4943, 628, 220, 220, 220, 8856, 796, 2039, 388, 13, 56, 3123, 1878, 7, 20, 11, 366, 46430, 4943, 628, 198, 4871, 337, 489, 82, 36504, 45895, 70, 3109, 9152, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 337, 489, 82, 36504, 45895, 70, 3109, 9152, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 337, 489, 82, 256, 274, 45895, 70, 19607, 628, 220, 220, 220, 11485, 1366, 3712, 13677, 796, 352, 628, 220, 220, 220, 220, 197, 50, 7836, 38, 47018, 1475, 9152, 628, 220, 220, 220, 11485, 1366, 3712, 9871, 796, 362, 628, 220, 220, 220, 220, 197, 50, 7836, 38, 31278, 1475, 9152, 628, 220, 220, 220, 11485, 1366, 3712, 26356, 796, 513, 628, 220, 220, 220, 220, 197, 50, 7836, 38, 14331, 276, 1475, 9152, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 13677, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 22249, 2870, 4943, 628, 220, 220, 220, 9871, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 3866, 18186, 4943, 628, 220, 220, 220, 26356, 796, 2039, 388, 13, 56, 3123, 1878, 7, 18, 11, 366, 6551, 276, 4943, 628, 198, 4871, 10644, 44651, 341, 12502, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10644, 44651, 341, 12502, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 10644, 12515, 341, 2223, 628, 220, 220, 220, 11485, 1366, 3712, 11626, 796, 352, 628, 220, 220, 220, 220, 197, 51, 451, 628, 220, 220, 220, 11485, 1366, 3712, 4268, 796, 362, 628, 220, 220, 220, 220, 197, 26932, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11626, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 83, 451, 4943, 628, 220, 220, 220, 4268, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 14781, 4943, 628, 198, 4871, 21714, 6719, 37038, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21714, 6719, 37038, 357, 4834, 388, 5016, 8, 628, 220, 220, 220, 21714, 3143, 437, 628, 220, 220, 220, 11485, 1366, 3712, 4844, 62, 4906, 796, 657, 628, 220, 220, 220, 220, 197, 14202, 6030, 628, 220, 220, 220, 11485, 1366, 3712, 1306, 62, 18242, 796, 352, 628, 220, 220, 220, 220, 197, 10019, 36052, 628, 220, 220, 220, 11485, 1366, 3712, 275, 31197, 62, 77, 62, 8548, 796, 362, 628, 220, 220, 220, 220, 197, 33, 16960, 24451, 3185, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 4844, 62, 4906, 796, 2039, 388, 13, 56, 3123, 1878, 7, 15, 11, 366, 23108, 12, 4906, 4943, 628, 220, 220, 220, 1306, 62, 18242, 796, 2039, 388, 13, 56, 3123, 1878, 7, 16, 11, 366, 19545, 12, 18242, 4943, 628, 220, 220, 220, 275, 31197, 62, 77, 62, 8548, 796, 2039, 388, 13, 56, 3123, 1878, 7, 17, 11, 366, 65, 31197, 12, 77, 12, 8548, 4943, 628, 628 ]
2.19214
6,412
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-05-05 01:00 from __future__ import unicode_literals from django.db import migrations
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 319, 2864, 12, 2713, 12, 2713, 5534, 25, 405, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.754717
53
""" Advent of Code: Day 03 Part 1 tldr: most prevalent bit """ from collections import defaultdict if __name__ == "__main__": main()
[ 37811, 198, 2782, 1151, 286, 6127, 25, 3596, 7643, 2142, 352, 198, 83, 335, 81, 25, 749, 21854, 1643, 198, 37811, 628, 198, 6738, 17268, 1330, 4277, 11600, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.959184
49
#!/usr/bin/env python3 # # Scrape reports from https://crsreports.congress.gov. # # This site provides many of the same reports that # are available through our own archive, but only as # PDFs and only with versions as of the site launch # date and going forward. from collections import OrderedDict import datetime import hashlib import json import os import re import subprocess import scrapelib BASE_PATH = "incoming/crsreports.congress.gov" # Create a scraper that automatically throttles our requests # so that we don't overload the CRS server. scraper = scrapelib.Scraper( requests_per_minute=35, retry_attempts=2, retry_wait_seconds=10) ProdTypeDisplayName = { "R": "CRS Report", "RS": "CRS Report", "RL": "CRS Report", "IN": "CRS Insight", "IF": "CRS In Focus", } if __name__ == "__main__": # Make the directories for the output files. os.makedirs(BASE_PATH + "/documents", exist_ok=True) os.makedirs(BASE_PATH + "/files", exist_ok=True) scrape_report_listing()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 198, 2, 1446, 13484, 3136, 422, 3740, 1378, 66, 3808, 48922, 13, 36801, 601, 13, 9567, 13, 198, 2, 198, 2, 770, 2524, 3769, 867, 286, 262, 976, 3136, 326, 198, 2, 389, 1695, 832, 674, 898, 15424, 11, 475, 691, 355, 198, 2, 12960, 82, 290, 691, 351, 6300, 355, 286, 262, 2524, 4219, 198, 2, 3128, 290, 1016, 2651, 13, 198, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 4818, 8079, 198, 11748, 12234, 8019, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 850, 14681, 198, 198, 11748, 15881, 417, 571, 198, 198, 33, 11159, 62, 34219, 796, 366, 259, 4976, 14, 66, 3808, 48922, 13, 36801, 601, 13, 9567, 1, 198, 198, 2, 13610, 257, 19320, 525, 326, 6338, 46692, 829, 674, 7007, 198, 2, 523, 326, 356, 836, 470, 31754, 262, 327, 6998, 4382, 13, 198, 1416, 38545, 796, 15881, 417, 571, 13, 3351, 38545, 7, 198, 220, 7007, 62, 525, 62, 11374, 28, 2327, 11, 198, 220, 1005, 563, 62, 1078, 1791, 82, 28, 17, 11, 198, 220, 1005, 563, 62, 17077, 62, 43012, 28, 940, 8, 198, 198, 2964, 67, 6030, 23114, 5376, 796, 1391, 198, 220, 366, 49, 1298, 366, 34, 6998, 6358, 1600, 198, 220, 366, 6998, 1298, 366, 34, 6998, 6358, 1600, 198, 220, 366, 7836, 1298, 366, 34, 6998, 6358, 1600, 198, 220, 366, 1268, 1298, 366, 34, 6998, 39917, 1600, 198, 220, 366, 5064, 1298, 366, 34, 6998, 554, 17061, 1600, 198, 92, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1303, 6889, 262, 29196, 329, 262, 5072, 3696, 13, 198, 220, 28686, 13, 76, 4335, 17062, 7, 33, 11159, 62, 34219, 1343, 12813, 15390, 2886, 1600, 2152, 62, 482, 28, 17821, 8, 198, 220, 28686, 13, 76, 4335, 17062, 7, 33, 11159, 62, 34219, 1343, 12813, 16624, 1600, 2152, 62, 482, 28, 17821, 8, 198, 220, 42778, 62, 13116, 62, 4868, 278, 3419, 198 ]
2.961538
338
# Create a light and set its specular color to bright green. # import pyvista as pv light = pv.Light() light.specular_color = '#00FF00' light.specular_color # Expected: ## (0.0, 1.0, 0.0)
[ 2, 13610, 257, 1657, 290, 900, 663, 1020, 934, 3124, 284, 6016, 4077, 13, 198, 2, 198, 11748, 12972, 85, 12523, 355, 279, 85, 198, 2971, 796, 279, 85, 13, 15047, 3419, 198, 2971, 13, 4125, 10440, 62, 8043, 796, 705, 2, 405, 5777, 405, 6, 198, 2971, 13, 4125, 10440, 62, 8043, 198, 2, 1475, 7254, 25, 198, 2235, 357, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 8, 198 ]
2.540541
74
import logging from operator import attrgetter from pathlib import Path from typing import List from opennem.db import get_database_engine from opennem.db.views.queries import ( get_all_views_query, get_query_drop_view, get_view_unique_index_query, ) from .continuous_aggregates import ( create_continuous_aggregation_query, remove_continuous_aggregation_query, ) from .schema import ContinuousAggregationPolicy, ViewDefinition logger = logging.getLogger("opennem.db.views") VIEW_PATH = Path(__file__).parent.parent / "fixtures" / "views" AggregationPolicy30Minutes = ContinuousAggregationPolicy( interval="30 minutes", start_interval="2 hours" ) AggregationPolicy2Hours = ContinuousAggregationPolicy( interval="2 hours", start_interval="6 hours", end_interval="2 hours" ) AggregationPolicy6Hours = ContinuousAggregationPolicy( interval="6 hours", start_interval="12 hours", end_interval="2 hours" ) _VIEW_MAP = [ ViewDefinition( priority=11, name="mv_facility_all", materialized=True, filepath="mv_facility_all.sql", primary_key=["trading_interval", "network_id", "code"], indexes=[], ), ViewDefinition( priority=11, name="mv_network_fueltech_days", materialized=True, filepath="mv_network_fueltech_days.sql", primary_key=["trading_day", "network_id", "code"], ), ViewDefinition( priority=15, name="mv_facility_45d", materialized=True, filepath="mv_facility_45d.sql", primary_key=["trading_interval", "network_id", "code"], ), ViewDefinition( priority=20, name="mv_region_emissions", materialized=True, filepath="mv_region_emissions.sql", primary_key=["trading_interval", "network_id", "network_region"], ), ViewDefinition( priority=30, name="mv_interchange_energy_nem_region", materialized=True, filepath="mv_interchange_energy_nem_region.sql", primary_key=["trading_interval", "network_id", "network_region"], ), ViewDefinition( priority=40, name="vw_region_flow_emissions", materialized=False, filepath="vw_region_flow_emissions.sql", ), ] POSTGIS_VIEWS = ["geography_columns", "geometry_columns", "raster_columns", "raster_overviews"] def purge_views() -> None: """Remove views that aren't in the view table""" engine = get_database_engine() all_views_query = get_all_views_query() all_views = [] with engine.connect() as c: result = list(c.execute(all_views_query)) # Dont drop postgis or mapped views all_views = [i[0] for i in result if i[0] not in POSTGIS_VIEWS + [i.name for i in _VIEW_MAP]] for view_name in all_views: with engine.connect() as c: c.execution_options(isolation_level="AUTOCOMMIT") query = "drop materialized view if exists {} cascade;".format(view_name) logger.info("Dropping view {}".format(view_name)) logger.debug(query) try: c.execute(query) except Exception as e: logger.error("Error dropping view: {}".format(e)) def init_database_views() -> None: """ Initialize all the database view """ engine = get_database_engine() views_sorted_by_priority = list(sorted(_VIEW_MAP, key=attrgetter("priority"))) for view in views_sorted_by_priority: logger.info("Initializing view {}".format(view.name)) with engine.connect() as c: c.execution_options(isolation_level="AUTOCOMMIT") # drop drop_query = get_query_drop_view(view) logger.debug(drop_query) try: c.execute(drop_query) except Exception as e: logger.warn("Could not drop view {}".format(view.name)) # create create_query = get_view_content(view) logger.debug(create_query) c.execute(create_query) # index index_create_query = get_view_unique_index_query(view) if index_create_query: logger.debug(index_create_query) try: c.execute(index_create_query) except Exception as e: logger.error("Error creating index: {}".format(e)) return None def init_aggregation_policies() -> None: """ Initializes the continuous aggregation policies """ # @TODO check what exists with query engine = get_database_engine() for view in _VIEW_MAP: if not view.aggregation_policy: logging.debug("Skipping {}".format(view.name)) continue with engine.connect() as c: drop_query = remove_continuous_aggregation_query(view) try: logger.debug(drop_query) c.execute(drop_query) except Exception: logger.warn("Could not drop continuous aggregation query: {}".format(view.name)) pass create_query = create_continuous_aggregation_query(view) logger.debug(create_query) try: c.execute(create_query) except Exception as e: logger.warn("Could not create continuous aggregation query: {}".format(e)) def get_materialized_view_names() -> List[str]: """ Returns a list of material view names in priority order """ return list( v.name for v in filter( lambda x: x.materialized is True and x.aggregation_policy is None, _VIEW_MAP ) ) def get_timescale_view_names() -> List[str]: """ Returns a list of timescale view names in priority order """ return list( v.name for v in filter(lambda x: x.materialized is True and x.aggregation_policy, _VIEW_MAP) )
[ 11748, 18931, 198, 6738, 10088, 1330, 708, 81, 1136, 353, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 1280, 77, 368, 13, 9945, 1330, 651, 62, 48806, 62, 18392, 198, 6738, 1280, 77, 368, 13, 9945, 13, 33571, 13, 421, 10640, 1330, 357, 198, 220, 220, 220, 651, 62, 439, 62, 33571, 62, 22766, 11, 198, 220, 220, 220, 651, 62, 22766, 62, 14781, 62, 1177, 11, 198, 220, 220, 220, 651, 62, 1177, 62, 34642, 62, 9630, 62, 22766, 11, 198, 8, 198, 198, 6738, 764, 18487, 5623, 62, 9460, 2301, 689, 1330, 357, 198, 220, 220, 220, 2251, 62, 18487, 5623, 62, 9460, 43068, 62, 22766, 11, 198, 220, 220, 220, 4781, 62, 18487, 5623, 62, 9460, 43068, 62, 22766, 11, 198, 8, 198, 6738, 764, 15952, 2611, 1330, 45012, 46384, 43068, 36727, 11, 3582, 36621, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 404, 1697, 368, 13, 9945, 13, 33571, 4943, 198, 198, 28206, 62, 34219, 796, 10644, 7, 834, 7753, 834, 737, 8000, 13, 8000, 1220, 366, 69, 25506, 1, 1220, 366, 33571, 1, 628, 198, 46384, 43068, 36727, 1270, 9452, 1769, 796, 45012, 46384, 43068, 36727, 7, 198, 220, 220, 220, 16654, 2625, 1270, 2431, 1600, 923, 62, 3849, 2100, 2625, 17, 2250, 1, 198, 8, 198, 198, 46384, 43068, 36727, 17, 39792, 796, 45012, 46384, 43068, 36727, 7, 198, 220, 220, 220, 16654, 2625, 17, 2250, 1600, 923, 62, 3849, 2100, 2625, 21, 2250, 1600, 886, 62, 3849, 2100, 2625, 17, 2250, 1, 198, 8, 198, 198, 46384, 43068, 36727, 21, 39792, 796, 45012, 46384, 43068, 36727, 7, 198, 220, 220, 220, 16654, 2625, 21, 2250, 1600, 923, 62, 3849, 2100, 2625, 1065, 2250, 1600, 886, 62, 3849, 2100, 2625, 17, 2250, 1, 198, 8, 198, 198, 62, 28206, 62, 33767, 796, 685, 198, 220, 220, 220, 3582, 36621, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 1157, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 76, 85, 62, 38942, 879, 62, 439, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2587, 1143, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 2625, 76, 85, 62, 38942, 879, 62, 439, 13, 25410, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 14692, 2213, 4980, 62, 3849, 2100, 1600, 366, 27349, 62, 312, 1600, 366, 8189, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 39199, 41888, 4357, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3582, 36621, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 1157, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 76, 85, 62, 27349, 62, 25802, 13670, 62, 12545, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2587, 1143, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 2625, 76, 85, 62, 27349, 62, 25802, 13670, 62, 12545, 13, 25410, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 14692, 2213, 4980, 62, 820, 1600, 366, 27349, 62, 312, 1600, 366, 8189, 33116, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3582, 36621, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 76, 85, 62, 38942, 879, 62, 2231, 67, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2587, 1143, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 2625, 76, 85, 62, 38942, 879, 62, 2231, 67, 13, 25410, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 14692, 2213, 4980, 62, 3849, 2100, 1600, 366, 27349, 62, 312, 1600, 366, 8189, 33116, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3582, 36621, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 76, 85, 62, 36996, 62, 368, 7717, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2587, 1143, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 2625, 76, 85, 62, 36996, 62, 368, 7717, 13, 25410, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 14692, 2213, 4980, 62, 3849, 2100, 1600, 366, 27349, 62, 312, 1600, 366, 27349, 62, 36996, 33116, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3582, 36621, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 1270, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 76, 85, 62, 3849, 3803, 62, 22554, 62, 77, 368, 62, 36996, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2587, 1143, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 2625, 76, 85, 62, 3849, 3803, 62, 22554, 62, 77, 368, 62, 36996, 13, 25410, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 14692, 2213, 4980, 62, 3849, 2100, 1600, 366, 27349, 62, 312, 1600, 366, 27349, 62, 36996, 33116, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 3582, 36621, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 1821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 85, 86, 62, 36996, 62, 11125, 62, 368, 7717, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2587, 1143, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 2625, 85, 86, 62, 36996, 62, 11125, 62, 368, 7717, 13, 25410, 1600, 198, 220, 220, 220, 10612, 198, 60, 628, 198, 198, 32782, 38, 1797, 62, 28206, 50, 796, 14631, 469, 4867, 62, 28665, 82, 1600, 366, 469, 15748, 62, 28665, 82, 1600, 366, 81, 1603, 62, 28665, 82, 1600, 366, 81, 1603, 62, 2502, 33571, 8973, 628, 198, 4299, 35714, 62, 33571, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 27914, 5009, 326, 3588, 470, 287, 262, 1570, 3084, 37811, 628, 220, 220, 220, 3113, 796, 651, 62, 48806, 62, 18392, 3419, 628, 220, 220, 220, 477, 62, 33571, 62, 22766, 796, 651, 62, 439, 62, 33571, 62, 22766, 3419, 198, 220, 220, 220, 477, 62, 33571, 796, 17635, 628, 220, 220, 220, 351, 3113, 13, 8443, 3419, 355, 269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1351, 7, 66, 13, 41049, 7, 439, 62, 33571, 62, 22766, 4008, 628, 220, 220, 220, 1303, 360, 756, 4268, 1281, 70, 271, 393, 27661, 5009, 198, 220, 220, 220, 477, 62, 33571, 796, 685, 72, 58, 15, 60, 329, 1312, 287, 1255, 611, 1312, 58, 15, 60, 407, 287, 24582, 38, 1797, 62, 28206, 50, 1343, 685, 72, 13, 3672, 329, 1312, 287, 4808, 28206, 62, 33767, 11907, 628, 220, 220, 220, 329, 1570, 62, 3672, 287, 477, 62, 33571, 25, 628, 220, 220, 220, 220, 220, 220, 220, 351, 3113, 13, 8443, 3419, 355, 269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 18558, 1009, 62, 25811, 7, 271, 21417, 62, 5715, 2625, 39371, 4503, 2662, 36393, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 366, 14781, 2587, 1143, 1570, 611, 7160, 23884, 44847, 26, 1911, 18982, 7, 1177, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 35442, 2105, 1570, 23884, 1911, 18982, 7, 1177, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 22766, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 12331, 12047, 1570, 25, 23884, 1911, 18982, 7, 68, 4008, 628, 198, 4299, 2315, 62, 48806, 62, 33571, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 20768, 1096, 477, 262, 6831, 1570, 37227, 628, 220, 220, 220, 3113, 796, 651, 62, 48806, 62, 18392, 3419, 628, 220, 220, 220, 5009, 62, 82, 9741, 62, 1525, 62, 49336, 796, 1351, 7, 82, 9741, 28264, 28206, 62, 33767, 11, 1994, 28, 35226, 1136, 353, 7203, 49336, 1, 22305, 628, 220, 220, 220, 329, 1570, 287, 5009, 62, 82, 9741, 62, 1525, 62, 49336, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 24243, 2890, 1570, 23884, 1911, 18982, 7, 1177, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 351, 3113, 13, 8443, 3419, 355, 269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 18558, 1009, 62, 25811, 7, 271, 21417, 62, 5715, 2625, 39371, 4503, 2662, 36393, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 22766, 796, 651, 62, 22766, 62, 14781, 62, 1177, 7, 1177, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 14781, 62, 22766, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 41049, 7, 14781, 62, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 40539, 7203, 23722, 407, 4268, 1570, 23884, 1911, 18982, 7, 1177, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 22766, 796, 651, 62, 1177, 62, 11299, 7, 1177, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 17953, 62, 22766, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 41049, 7, 17953, 62, 22766, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 17953, 62, 22766, 796, 651, 62, 1177, 62, 34642, 62, 9630, 62, 22766, 7, 1177, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 62, 17953, 62, 22766, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 9630, 62, 17953, 62, 22766, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 41049, 7, 9630, 62, 17953, 62, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 12331, 4441, 6376, 25, 23884, 1911, 18982, 7, 68, 4008, 628, 220, 220, 220, 1441, 6045, 628, 198, 4299, 2315, 62, 9460, 43068, 62, 79, 4160, 444, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 20768, 4340, 262, 12948, 46500, 4788, 37227, 628, 220, 220, 220, 1303, 2488, 51, 3727, 46, 2198, 644, 7160, 351, 12405, 628, 220, 220, 220, 3113, 796, 651, 62, 48806, 62, 18392, 3419, 628, 220, 220, 220, 329, 1570, 287, 4808, 28206, 62, 33767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1570, 13, 9460, 43068, 62, 30586, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 50, 4106, 2105, 23884, 1911, 18982, 7, 1177, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 351, 3113, 13, 8443, 3419, 355, 269, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 22766, 796, 4781, 62, 18487, 5623, 62, 9460, 43068, 62, 22766, 7, 1177, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 14781, 62, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 41049, 7, 14781, 62, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 40539, 7203, 23722, 407, 4268, 12948, 46500, 12405, 25, 23884, 1911, 18982, 7, 1177, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 22766, 796, 2251, 62, 18487, 5623, 62, 9460, 43068, 62, 22766, 7, 1177, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 17953, 62, 22766, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 41049, 7, 17953, 62, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 40539, 7203, 23722, 407, 2251, 12948, 46500, 12405, 25, 23884, 1911, 18982, 7, 68, 4008, 628, 198, 4299, 651, 62, 33665, 1143, 62, 1177, 62, 14933, 3419, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 37227, 16409, 257, 1351, 286, 2587, 1570, 3891, 287, 8475, 1502, 37227, 198, 220, 220, 220, 1441, 1351, 7, 198, 220, 220, 220, 220, 220, 220, 220, 410, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 8106, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 2124, 13, 33665, 1143, 318, 6407, 290, 2124, 13, 9460, 43068, 62, 30586, 318, 6045, 11, 4808, 28206, 62, 33767, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 198, 4299, 651, 62, 22355, 38765, 62, 1177, 62, 14933, 3419, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 37227, 16409, 257, 1351, 286, 1661, 38765, 1570, 3891, 287, 8475, 1502, 37227, 198, 220, 220, 220, 1441, 1351, 7, 198, 220, 220, 220, 220, 220, 220, 220, 410, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 8106, 7, 50033, 2124, 25, 2124, 13, 33665, 1143, 318, 6407, 290, 2124, 13, 9460, 43068, 62, 30586, 11, 4808, 28206, 62, 33767, 8, 198, 220, 220, 220, 1267, 198 ]
2.323944
2,556
#!/usr/bin/env python # # Copyright 2017 Phedorabot # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, with_statement # This is a script that shows how to handle the instant task execution post # request from the Phedorabot server, you must ensure that this is done only # with a post request # import the webhook and the webhook excdeption class from phedorabot.webhook import PhedorabotWebHookEngine from phedorabot.webhook import PhedorabotWebHookException # Wrap everything in a try/except block so we can deal with errors rightly try: # First your server should be able to read the headers sent in as dictionary # and the raw body sent in # Initialize the webhook engine engine = PhedorabotWebHookEngine() # set the headers as a raw dictionary from your server engine.set_raw_header(server.request.headers) # set the raw boy as string type this will be parsed by the engine engine.set_raw_body(server.request.body) # Next we need to ensure that we received this instant task execution payload # from Phedorabot, before we can trust the payload enough to use it for # any meaningful task execution if engine.is_valid_task_execution(): # Ok this looks good we have a valid task execution otherwise the webhook # will raise an exception for us # At this point we have a valid task execution payload we need to get # the public api key that is associated with this callback request data # so that you can provide the corresponding api secret for verifying the # integrity of the task payload api_key = engine.get_api_key() # Query for the corresponding api secret on your server, database or # configuration storage using this api key # after which set the below api secret to the corresponding secret api_secret = '' engine.set_api_secret(api_secret) # Next verify the integrity of the task execution payload if engine.verify_task_execution_payload(): # Getting this far means that the tash execution payload is valid # and can be trusted. # get the headers incase you passed customer headers when creating # the task headers = engine.get_headers() # get the payload payload = engine.get_payload() # Now you can execute the task you want to execute here using the # contents of the payload as well as the headers after that if you # want to set customer status of the task execution you can call the # engine.add_result() method, this expects a key and a value # it will be registered on your Phedorabot task execution log so # you can review it later # e.g engine.add_result('status', 'Executed Successfully') # TODO: task executtion here, after this part you are all done # Note that Phedorabot server will give your server a 30 seconds # window to get feed back from this callback scripts otherwise it # will consider it a failure except (Exception, PhedorabotWebHookException) as ex: # if this is a Phedorabot Webhook exception we need to capture it if hasattr(ex, 'what'): engine.set_error(ex.get_what()) engine.set_error_description(ex.get_reason()) else: engine.set_error('webhook_error') engine.set_error_description(str(ex)) finally: # send back response to Phedorabot so that you can see a log of how your # callback script is executing response = engine.get_response() # Print this depending on your server type print response
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 15069, 2177, 350, 704, 273, 397, 313, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 351, 62, 26090, 198, 198, 2, 770, 318, 257, 4226, 326, 2523, 703, 284, 5412, 262, 9113, 4876, 9706, 1281, 198, 2, 2581, 422, 262, 350, 704, 273, 397, 313, 4382, 11, 345, 1276, 4155, 326, 428, 318, 1760, 691, 198, 2, 351, 257, 1281, 2581, 198, 198, 2, 1330, 262, 3992, 25480, 290, 262, 3992, 25480, 2859, 2934, 1159, 1398, 198, 6738, 279, 704, 273, 397, 313, 13, 12384, 25480, 1330, 350, 704, 273, 397, 313, 13908, 39, 566, 13798, 198, 6738, 279, 704, 273, 397, 313, 13, 12384, 25480, 1330, 350, 704, 273, 397, 313, 13908, 39, 566, 16922, 198, 198, 2, 41028, 2279, 287, 257, 1949, 14, 16341, 2512, 523, 356, 460, 1730, 351, 8563, 22956, 198, 198, 28311, 25, 198, 220, 220, 220, 1303, 3274, 534, 4382, 815, 307, 1498, 284, 1100, 262, 24697, 1908, 287, 355, 22155, 198, 220, 220, 220, 1303, 290, 262, 8246, 1767, 1908, 287, 198, 220, 220, 220, 1303, 20768, 1096, 262, 3992, 25480, 3113, 198, 220, 220, 220, 3113, 796, 350, 704, 273, 397, 313, 13908, 39, 566, 13798, 3419, 198, 220, 220, 220, 1303, 900, 262, 24697, 355, 257, 8246, 22155, 422, 534, 4382, 198, 220, 220, 220, 3113, 13, 2617, 62, 1831, 62, 25677, 7, 15388, 13, 25927, 13, 50145, 8, 198, 220, 220, 220, 1303, 900, 262, 8246, 2933, 355, 4731, 2099, 428, 481, 307, 44267, 416, 262, 3113, 198, 220, 220, 220, 3113, 13, 2617, 62, 1831, 62, 2618, 7, 15388, 13, 25927, 13, 2618, 8, 628, 220, 220, 220, 1303, 7406, 356, 761, 284, 4155, 326, 356, 2722, 428, 9113, 4876, 9706, 21437, 198, 220, 220, 220, 1303, 422, 350, 704, 273, 397, 313, 11, 878, 356, 460, 3774, 262, 21437, 1576, 284, 779, 340, 329, 198, 220, 220, 220, 1303, 597, 11570, 4876, 9706, 198, 220, 220, 220, 611, 3113, 13, 271, 62, 12102, 62, 35943, 62, 18558, 1009, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6762, 428, 3073, 922, 356, 423, 257, 4938, 4876, 9706, 4306, 262, 3992, 25480, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 481, 5298, 281, 6631, 329, 514, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1629, 428, 966, 356, 423, 257, 4938, 4876, 9706, 21437, 356, 761, 284, 651, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1171, 40391, 1994, 326, 318, 3917, 351, 428, 23838, 2581, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 523, 326, 345, 460, 2148, 262, 11188, 40391, 3200, 329, 45505, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11540, 286, 262, 4876, 21437, 198, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 2539, 796, 3113, 13, 1136, 62, 15042, 62, 2539, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 43301, 329, 262, 11188, 40391, 3200, 319, 534, 4382, 11, 6831, 393, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8398, 6143, 1262, 428, 40391, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 543, 900, 262, 2174, 40391, 3200, 284, 262, 11188, 3200, 628, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 21078, 796, 10148, 628, 220, 220, 220, 220, 220, 220, 220, 3113, 13, 2617, 62, 15042, 62, 21078, 7, 15042, 62, 21078, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7406, 11767, 262, 11540, 286, 262, 4876, 9706, 21437, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3113, 13, 332, 1958, 62, 35943, 62, 18558, 1009, 62, 15577, 2220, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18067, 428, 1290, 1724, 326, 262, 256, 1077, 9706, 21437, 318, 4938, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 460, 307, 13467, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 262, 24697, 753, 589, 345, 3804, 6491, 24697, 618, 4441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 4876, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 3113, 13, 1136, 62, 50145, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 262, 21437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 3113, 13, 1136, 62, 15577, 2220, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 345, 460, 12260, 262, 4876, 345, 765, 284, 12260, 994, 1262, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10154, 286, 262, 21437, 355, 880, 355, 262, 24697, 706, 326, 611, 345, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 765, 284, 900, 6491, 3722, 286, 262, 4876, 9706, 345, 460, 869, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3113, 13, 2860, 62, 20274, 3419, 2446, 11, 428, 13423, 257, 1994, 290, 257, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 481, 307, 6823, 319, 534, 350, 704, 273, 397, 313, 4876, 9706, 2604, 523, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 345, 460, 2423, 340, 1568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 304, 13, 70, 3113, 13, 2860, 62, 20274, 10786, 13376, 3256, 705, 23002, 7241, 16282, 2759, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 4876, 3121, 5378, 994, 11, 706, 428, 636, 345, 389, 477, 1760, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 326, 350, 704, 273, 397, 313, 4382, 481, 1577, 534, 4382, 257, 1542, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4324, 284, 651, 3745, 736, 422, 428, 23838, 14750, 4306, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 481, 2074, 340, 257, 5287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 16341, 357, 16922, 11, 350, 704, 273, 397, 313, 13908, 39, 566, 16922, 8, 355, 409, 25, 198, 220, 220, 220, 1303, 611, 428, 318, 257, 350, 704, 273, 397, 313, 5313, 25480, 6631, 356, 761, 284, 8006, 340, 198, 220, 220, 220, 611, 468, 35226, 7, 1069, 11, 705, 10919, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 13, 2617, 62, 18224, 7, 1069, 13, 1136, 62, 10919, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 13, 2617, 62, 18224, 62, 11213, 7, 1069, 13, 1136, 62, 41181, 28955, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 13, 2617, 62, 18224, 10786, 12384, 25480, 62, 18224, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3113, 13, 2617, 62, 18224, 62, 11213, 7, 2536, 7, 1069, 4008, 198, 198, 69, 3289, 25, 198, 220, 220, 220, 1303, 3758, 736, 2882, 284, 350, 704, 273, 397, 313, 523, 326, 345, 460, 766, 257, 2604, 286, 703, 534, 198, 220, 220, 220, 1303, 23838, 4226, 318, 23710, 198, 220, 220, 220, 2882, 796, 3113, 13, 1136, 62, 26209, 3419, 198, 220, 220, 220, 1303, 12578, 428, 6906, 319, 534, 4382, 2099, 198, 220, 220, 220, 3601, 2882, 198 ]
3.041369
1,402
#!/usr/bin/env python2.6 """ Unit test of web.claims application as a complete Django WSGI web service. """ from __future__ import print_function import unittest import httplib import urllib2, urllib import logging, sys import os.path import datetime import base64 import subprocess, time import json logger= logging.getLogger( __file__ ) class TestWS( unittest.TestCase ): """Exercise load and fetch operations. The tests must be run in order to force the expected behavior. """ def setUpModule(): """Spawn the test server process. This should build a test database, load fixtures, and then provide the Django-based services. """ global the_proc, the_log, the_err command= ["/Library/Frameworks/Python.framework/Versions/2.6/bin/python2.6", "-m", "web.manage", "testserver", '--addrport=18000', '--settings=web.settings', '--noinput', '--verbosity=1', 'example837.json', ] log_file= 'testserver.log' err_file= 'testserver.err' logger.info( '{0} >{1} 2>{2}'.format( ' '.join( command ), log_file, err_file ) ) the_log= open( log_file, 'w', 0 ) the_err= open( err_file, 'w', 0 ) the_proc = subprocess.Popen(command, shell=False, stdout=the_log, stderr=the_err) time.sleep(6) # Wait for fixtures to load status= the_proc.poll() logger.info( 'PID %d, status %r', the_proc.pid, status ) logger.info( datetime.datetime.now() ) def tearDownModule(): """Kill the server process.""" global the_proc logger.info( "Stopping server" ) the_proc.kill() logger.debug( "Waiting for %d to finally exit", the_proc.pid ) the_proc.wait() logger.info( "PID %d, status %r", the_proc.pid, the_proc.returncode ) the_log.close() the_err.close() for f, p in (the_log, 'log>'), (the_err, 'err>'): print() with open( f.name, 'r' ) as source: for line in source: print( p, line, end='' ) print() if __name__ == "__main__": logging.basicConfig( stream=sys.stderr, level=logging.DEBUG, ) if sys.version_info[:2] <= ( 2, 6 ): #Python2.6 work-around setUpModule() tests= unittest.defaultTestLoader.loadTestsFromModule(__import__('__main__')) result= unittest.TextTestRunner().run( tests ) tearDownModule() sys.exit(not result.wasSuccessful()) #Python2.7 unittest.main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 13, 21, 198, 37811, 198, 26453, 1332, 286, 3992, 13, 6604, 82, 3586, 355, 257, 1844, 37770, 25290, 18878, 3992, 2139, 13, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 555, 715, 395, 198, 11748, 1841, 489, 571, 198, 11748, 2956, 297, 571, 17, 11, 2956, 297, 571, 198, 11748, 18931, 11, 25064, 198, 11748, 28686, 13, 6978, 198, 11748, 4818, 8079, 198, 11748, 2779, 2414, 198, 11748, 850, 14681, 11, 640, 198, 11748, 33918, 198, 198, 6404, 1362, 28, 18931, 13, 1136, 11187, 1362, 7, 11593, 7753, 834, 1267, 198, 198, 4871, 6208, 19416, 7, 555, 715, 395, 13, 14402, 20448, 15179, 198, 220, 220, 220, 37227, 3109, 23697, 3440, 290, 21207, 4560, 13, 628, 220, 220, 220, 383, 5254, 1276, 307, 1057, 287, 1502, 284, 2700, 262, 2938, 4069, 13, 198, 220, 220, 220, 37227, 198, 198, 4299, 900, 4933, 26796, 33529, 198, 220, 220, 220, 37227, 49855, 262, 1332, 4382, 1429, 13, 198, 220, 220, 220, 770, 815, 1382, 257, 1332, 6831, 11, 3440, 34609, 11, 290, 788, 2148, 198, 220, 220, 220, 262, 37770, 12, 3106, 2594, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 262, 62, 36942, 11, 262, 62, 6404, 11, 262, 62, 8056, 628, 220, 220, 220, 3141, 28, 14631, 14, 23377, 14, 42026, 14, 37906, 13, 30604, 14, 45150, 14, 17, 13, 21, 14, 8800, 14, 29412, 17, 13, 21, 1600, 27444, 76, 1600, 366, 12384, 13, 805, 496, 1600, 366, 9288, 15388, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 29851, 634, 28, 1507, 830, 3256, 705, 438, 33692, 28, 12384, 13, 33692, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 3919, 15414, 3256, 705, 438, 19011, 16579, 28, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20688, 23, 2718, 13, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 2604, 62, 7753, 28, 705, 9288, 15388, 13, 6404, 6, 198, 220, 220, 220, 11454, 62, 7753, 28, 705, 9288, 15388, 13, 8056, 6, 628, 220, 220, 220, 49706, 13, 10951, 7, 705, 90, 15, 92, 1875, 90, 16, 92, 362, 29, 90, 17, 92, 4458, 18982, 7, 705, 45302, 22179, 7, 3141, 10612, 2604, 62, 7753, 11, 11454, 62, 7753, 1267, 1267, 198, 220, 220, 220, 262, 62, 6404, 28, 1280, 7, 2604, 62, 7753, 11, 705, 86, 3256, 657, 1267, 198, 220, 220, 220, 262, 62, 8056, 28, 1280, 7, 11454, 62, 7753, 11, 705, 86, 3256, 657, 1267, 198, 220, 220, 220, 262, 62, 36942, 796, 850, 14681, 13, 47, 9654, 7, 21812, 11, 7582, 28, 25101, 11, 14367, 448, 28, 1169, 62, 6404, 11, 336, 1082, 81, 28, 1169, 62, 8056, 8, 198, 220, 220, 220, 640, 13, 42832, 7, 21, 8, 1303, 16314, 329, 34609, 284, 3440, 198, 220, 220, 220, 3722, 28, 262, 62, 36942, 13, 30393, 3419, 198, 220, 220, 220, 49706, 13, 10951, 7, 705, 47, 2389, 4064, 67, 11, 3722, 4064, 81, 3256, 262, 62, 36942, 13, 35317, 11, 3722, 1267, 628, 220, 220, 220, 49706, 13, 10951, 7, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 1267, 198, 198, 4299, 11626, 8048, 26796, 33529, 198, 220, 220, 220, 37227, 27100, 262, 4382, 1429, 526, 15931, 198, 220, 220, 220, 3298, 262, 62, 36942, 198, 220, 220, 220, 49706, 13, 10951, 7, 366, 1273, 33307, 4382, 1, 1267, 198, 220, 220, 220, 262, 62, 36942, 13, 12728, 3419, 198, 220, 220, 220, 49706, 13, 24442, 7, 366, 33484, 1780, 329, 4064, 67, 284, 3443, 8420, 1600, 262, 62, 36942, 13, 35317, 1267, 198, 220, 220, 220, 262, 62, 36942, 13, 17077, 3419, 198, 220, 220, 220, 49706, 13, 10951, 7, 366, 47, 2389, 4064, 67, 11, 3722, 4064, 81, 1600, 262, 62, 36942, 13, 35317, 11, 262, 62, 36942, 13, 7783, 8189, 1267, 198, 220, 220, 220, 262, 62, 6404, 13, 19836, 3419, 198, 220, 220, 220, 262, 62, 8056, 13, 19836, 3419, 198, 220, 220, 220, 329, 277, 11, 279, 287, 357, 1169, 62, 6404, 11, 705, 6404, 29, 33809, 357, 1169, 62, 8056, 11, 705, 8056, 29, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 277, 13, 3672, 11, 705, 81, 6, 1267, 355, 2723, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 2723, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 279, 11, 1627, 11, 886, 28, 7061, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 28, 17597, 13, 301, 1082, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 6404, 2667, 13, 30531, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 25064, 13, 9641, 62, 10951, 58, 25, 17, 60, 19841, 357, 362, 11, 718, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 37906, 17, 13, 21, 670, 12, 14145, 198, 220, 220, 220, 220, 220, 220, 220, 900, 4933, 26796, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5254, 28, 555, 715, 395, 13, 12286, 14402, 17401, 13, 2220, 51, 3558, 4863, 26796, 7, 834, 11748, 834, 10786, 834, 12417, 834, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 28, 555, 715, 395, 13, 8206, 14402, 49493, 22446, 5143, 7, 5254, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 11626, 8048, 26796, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 1662, 1255, 13, 9776, 33244, 913, 28955, 628, 220, 220, 220, 1303, 37906, 17, 13, 22, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 628 ]
2.39961
1,026
# Generated by Django 2.1.7 on 2019-03-21 13:17 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 22, 319, 13130, 12, 3070, 12, 2481, 1511, 25, 1558, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
# -*- coding: utf-8 -*- """ Conversion factors and units, in cgs. To convert a given value, in cgs, to the desired units, divide by that unit. Example: The speed of light in km·s⁻¹ would be c_km = c / km """ # length cm = 1. m = 1e2 km = 1e5 AU = 1.4959787066e13 ly = 9.460730472e17 pc = 3.0856776e18 kpc = 1e3 * pc Mpc = 1e6 * pc Gpc = 1e9 * pc mm = 1e-1 micron = 1e-4 um = micron nm = 1e-7 angstrom = 1e-8 # mass Msun = 1.9891e33 g = 1. kg = 1e3 mg = 1e-3 # time s = 1. hr = 3600. yr_Sidereal = 3.1558145e7 yr_Tropical = 3.155692519e7 yr_Gregorian = 3.1556952e7 yr_Julian = 3.15576e7 yr = yr_Julian Myr = 1e6 * yr Gyr = 1e9 * yr # energy eV = 1.6021765e-12 # one electron-volt, in erg keV = 1e3 * eV J = 1e-7 # one Joule, in erg
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 3103, 9641, 5087, 290, 4991, 11, 287, 269, 14542, 13, 1675, 10385, 257, 1813, 1988, 11, 287, 269, 14542, 11, 284, 262, 10348, 4991, 11, 198, 7146, 485, 416, 326, 4326, 13, 198, 16281, 25, 198, 220, 220, 220, 383, 2866, 286, 1657, 287, 10571, 9129, 82, 46256, 119, 126, 117, 561, 307, 198, 197, 66, 62, 13276, 796, 269, 1220, 10571, 198, 37811, 198, 2, 4129, 198, 11215, 796, 352, 13, 198, 76, 796, 352, 68, 17, 198, 13276, 796, 352, 68, 20, 198, 26830, 796, 352, 13, 2920, 3270, 3695, 2154, 2791, 68, 1485, 198, 306, 796, 860, 13, 19, 31980, 1270, 37856, 68, 1558, 198, 14751, 796, 513, 13, 2919, 20, 3134, 4304, 68, 1507, 198, 74, 14751, 796, 352, 68, 18, 1635, 40653, 198, 44, 14751, 796, 352, 68, 21, 1635, 40653, 198, 38, 14751, 796, 352, 68, 24, 1635, 40653, 198, 3020, 796, 352, 68, 12, 16, 198, 9383, 1313, 796, 352, 68, 12, 19, 198, 388, 796, 12314, 1313, 198, 21533, 796, 352, 68, 12, 22, 198, 648, 20282, 796, 352, 68, 12, 23, 198, 198, 2, 2347, 198, 10128, 403, 796, 352, 13, 4089, 6420, 68, 2091, 198, 70, 796, 352, 13, 198, 10025, 796, 352, 68, 18, 198, 11296, 796, 352, 68, 12, 18, 198, 198, 2, 640, 198, 82, 796, 352, 13, 198, 11840, 796, 4570, 405, 13, 198, 2417, 62, 24819, 5305, 796, 513, 13, 1314, 3365, 18781, 68, 22, 198, 2417, 62, 51, 1773, 605, 796, 513, 13, 18742, 3388, 1495, 1129, 68, 22, 198, 2417, 62, 25025, 22618, 796, 513, 13, 18742, 3388, 4309, 68, 22, 198, 2417, 62, 16980, 666, 796, 513, 13, 1314, 37452, 68, 22, 198, 2417, 796, 42635, 62, 16980, 666, 198, 44, 2417, 796, 352, 68, 21, 1635, 42635, 198, 38, 2417, 796, 352, 68, 24, 1635, 42635, 198, 198, 2, 2568, 198, 68, 53, 796, 352, 13, 1899, 24591, 2996, 68, 12, 1065, 220, 220, 220, 220, 220, 220, 1303, 530, 11538, 12, 37764, 11, 287, 39035, 198, 365, 53, 796, 352, 68, 18, 1635, 304, 53, 198, 41, 796, 352, 68, 12, 22, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 530, 45538, 293, 11, 287, 39035 ]
1.943734
391
import openml import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler, OneHotEncoder
[ 11748, 1280, 4029, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 198, 6738, 1341, 35720, 13, 785, 3455, 1330, 29201, 8291, 16354, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 11, 1881, 21352, 27195, 12342, 628, 628 ]
3.96
50
''' Utilities for manipulating package-level settings. ''' import json from pathlib import Path import os from io import open import warnings from .utils import listify __all__ = ['set_option', 'set_options', 'get_option'] _config_name = 'pybids_config.json' conf_path = str(Path(__file__).absolute().parent.joinpath('layout', 'config', '{}.json')) _default_settings = { 'config_paths': { name: conf_path.format(name) for name in ['bids', 'derivatives']}, # XXX 0.16: Remove 'extension_initial_dot': True, } def set_option(key, value): """ Set a package-wide option. Args: key (str): The name of the option to set. value (object): The new value of the option. """ if key not in _settings: raise ValueError("Invalid pybids setting: '%s'" % key) # XXX 0.16: Remove elif key == "extension_initial_dot": if value is not True: raise ValueError(f"Cannot set {key!r} to {value!r} as of pybids 0.14. " "This setting is always True, and will be removed " "entirely in 0.16.") warnings.warn("Setting 'extension_initial_dot' will be removed in pybids 0.16.", FutureWarning) _settings[key] = value def set_options(**kwargs): """ Set multiple package-wide options. Args: kwargs: Keyword arguments to pass onto set_option(). """ for k, v in kwargs.items(): set_option(k, v) def get_option(key): """ Retrieve the current value of a package-wide option. Args: key (str): The name of the option to retrieve. """ if key not in _settings: raise ValueError("Invalid pybids setting: '%s'" % key) return _settings[key] def from_file(filenames, error_on_missing=True): """ Load package-wide settings from specified file(s). Args: filenames (str, list): Filename or list of filenames containing JSON dictionary of settings. error_on_missing (bool): If True, raises an error if a file doesn't exist. """ filenames = listify(filenames) for f in filenames: if Path(f).exists(): settings = json.loads(Path(f).read_text(encoding='utf-8')) _settings.update(settings) elif error_on_missing: raise ValueError("Config file '%s' does not exist." % f) def reset_options(update_from_file=False): """ Reset all options to the package defaults. Args: update_from_file (bool): If True, re-applies any config files found in standard locations. """ global _settings _settings = _default_settings.copy() if update_from_file: _update_from_standard_locations() def _update_from_standard_locations(): """ Check standard locations for config files and update settings if found. Order is user's home dir, environment variable ($PYBIDS_CONFIG), and then current directory--with later files taking precedence over earlier ones. """ locs = [ Path.home() / _config_name, Path('.') / _config_name ] if 'PYBIDS_CONFIG' in os.environ: locs.insert(1, os.environ['PYBIDS_CONFIG']) from_file(locs, False) _settings = {} reset_options(True)
[ 7061, 6, 41086, 329, 29349, 5301, 12, 5715, 6460, 13, 705, 7061, 198, 198, 11748, 33918, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 28686, 198, 6738, 33245, 1330, 1280, 198, 11748, 14601, 198, 198, 6738, 764, 26791, 1330, 1351, 1958, 198, 198, 834, 439, 834, 796, 37250, 2617, 62, 18076, 3256, 705, 2617, 62, 25811, 3256, 705, 1136, 62, 18076, 20520, 198, 198, 62, 11250, 62, 3672, 796, 705, 9078, 65, 2340, 62, 11250, 13, 17752, 6, 198, 198, 10414, 62, 6978, 796, 965, 7, 15235, 7, 834, 7753, 834, 737, 48546, 22446, 8000, 13, 22179, 6978, 10786, 39786, 3256, 705, 11250, 3256, 705, 90, 27422, 17752, 6, 4008, 198, 62, 12286, 62, 33692, 796, 1391, 198, 220, 220, 220, 705, 11250, 62, 6978, 82, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 1013, 62, 6978, 13, 18982, 7, 3672, 8, 329, 1438, 287, 37250, 65, 2340, 3256, 705, 1082, 452, 2929, 20520, 5512, 198, 220, 220, 220, 1303, 27713, 657, 13, 1433, 25, 17220, 198, 220, 220, 220, 705, 2302, 3004, 62, 36733, 62, 26518, 10354, 6407, 11, 198, 92, 628, 198, 4299, 900, 62, 18076, 7, 2539, 11, 1988, 2599, 198, 220, 220, 220, 37227, 5345, 257, 5301, 12, 4421, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 357, 2536, 2599, 383, 1438, 286, 262, 3038, 284, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 357, 15252, 2599, 383, 649, 1988, 286, 262, 3038, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1994, 407, 287, 4808, 33692, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 12972, 65, 2340, 4634, 25, 705, 4, 82, 29653, 4064, 1994, 8, 198, 220, 220, 220, 1303, 27713, 657, 13, 1433, 25, 17220, 198, 220, 220, 220, 1288, 361, 1994, 6624, 366, 2302, 3004, 62, 36733, 62, 26518, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 407, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 34, 34574, 900, 1391, 2539, 0, 81, 92, 284, 1391, 8367, 0, 81, 92, 355, 286, 12972, 65, 2340, 657, 13, 1415, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 4634, 318, 1464, 6407, 11, 290, 481, 307, 4615, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 298, 557, 306, 287, 657, 13, 1433, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 34149, 705, 2302, 3004, 62, 36733, 62, 26518, 6, 481, 307, 4615, 287, 12972, 65, 2340, 657, 13, 1433, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10898, 20361, 8, 198, 220, 220, 220, 4808, 33692, 58, 2539, 60, 796, 1988, 628, 198, 4299, 900, 62, 25811, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 5345, 3294, 5301, 12, 4421, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 25, 7383, 4775, 7159, 284, 1208, 4291, 900, 62, 18076, 22446, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 479, 11, 410, 287, 479, 86, 22046, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 900, 62, 18076, 7, 74, 11, 410, 8, 628, 198, 4299, 651, 62, 18076, 7, 2539, 2599, 198, 220, 220, 220, 37227, 4990, 30227, 262, 1459, 1988, 286, 257, 5301, 12, 4421, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 357, 2536, 2599, 383, 1438, 286, 262, 3038, 284, 19818, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1994, 407, 287, 4808, 33692, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 12972, 65, 2340, 4634, 25, 705, 4, 82, 29653, 4064, 1994, 8, 198, 220, 220, 220, 1441, 4808, 33692, 58, 2539, 60, 628, 198, 4299, 422, 62, 7753, 7, 10379, 268, 1047, 11, 4049, 62, 261, 62, 45688, 28, 17821, 2599, 198, 220, 220, 220, 37227, 8778, 5301, 12, 4421, 6460, 422, 7368, 2393, 7, 82, 737, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1226, 268, 1047, 357, 2536, 11, 1351, 2599, 7066, 12453, 393, 1351, 286, 1226, 268, 1047, 7268, 19449, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22155, 286, 6460, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 261, 62, 45688, 357, 30388, 2599, 1002, 6407, 11, 12073, 281, 4049, 611, 257, 2393, 1595, 470, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2152, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1226, 268, 1047, 796, 1351, 1958, 7, 10379, 268, 1047, 8, 198, 220, 220, 220, 329, 277, 287, 1226, 268, 1047, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10644, 7, 69, 737, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6460, 796, 33918, 13, 46030, 7, 15235, 7, 69, 737, 961, 62, 5239, 7, 12685, 7656, 11639, 40477, 12, 23, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 33692, 13, 19119, 7, 33692, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4049, 62, 261, 62, 45688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 16934, 2393, 705, 4, 82, 6, 857, 407, 2152, 526, 4064, 277, 8, 628, 198, 4299, 13259, 62, 25811, 7, 19119, 62, 6738, 62, 7753, 28, 25101, 2599, 198, 220, 220, 220, 37227, 30027, 477, 3689, 284, 262, 5301, 26235, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 6738, 62, 7753, 357, 30388, 2599, 1002, 6407, 11, 302, 12, 1324, 13508, 597, 4566, 3696, 1043, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3210, 7064, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 4808, 33692, 198, 220, 220, 220, 4808, 33692, 796, 4808, 12286, 62, 33692, 13, 30073, 3419, 198, 220, 220, 220, 611, 4296, 62, 6738, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 19119, 62, 6738, 62, 20307, 62, 17946, 602, 3419, 628, 198, 4299, 4808, 19119, 62, 6738, 62, 20307, 62, 17946, 602, 33529, 198, 220, 220, 220, 37227, 6822, 3210, 7064, 329, 4566, 3696, 290, 4296, 6460, 611, 1043, 13, 198, 220, 220, 220, 8284, 318, 2836, 338, 1363, 26672, 11, 2858, 7885, 7198, 47, 56, 33, 14255, 62, 10943, 16254, 828, 290, 788, 198, 220, 220, 220, 1459, 8619, 438, 4480, 1568, 3696, 2263, 38177, 625, 2961, 3392, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1179, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 13, 11195, 3419, 1220, 4808, 11250, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 10786, 2637, 8, 1220, 4808, 11250, 62, 3672, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 611, 705, 47, 56, 33, 14255, 62, 10943, 16254, 6, 287, 28686, 13, 268, 2268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1179, 82, 13, 28463, 7, 16, 11, 28686, 13, 268, 2268, 17816, 47, 56, 33, 14255, 62, 10943, 16254, 6, 12962, 198, 220, 220, 220, 422, 62, 7753, 7, 17946, 82, 11, 10352, 8, 628, 198, 62, 33692, 796, 23884, 198, 42503, 62, 25811, 7, 17821, 8, 198 ]
2.481818
1,320
""" Keyword extraction methods. These accept lists of strings as arguments. """ from .pos import POSTokenizer from .rake import RAKETokenizer from .apriori import AprioriTokenizer from .overkill import OverkillTokenizer
[ 37811, 198, 9218, 4775, 22236, 5050, 13, 198, 4711, 2453, 8341, 286, 13042, 355, 7159, 13, 198, 37811, 198, 198, 6738, 764, 1930, 1330, 24582, 4233, 7509, 198, 6738, 764, 33788, 1330, 371, 10206, 2767, 4233, 7509, 198, 6738, 764, 499, 7701, 72, 1330, 317, 3448, 10145, 30642, 7509, 198, 6738, 764, 2502, 12728, 1330, 3827, 12728, 30642, 7509, 198 ]
3.683333
60
from pm4py.algo.filtering.log.attributes import attributes_filter from pm4py.algo.filtering.log.end_activities import end_activities_filter from pm4py.algo.filtering.log.start_activities import start_activities_filter from pm4py.algo.filtering.log.variants import variants_filter from pm4py.objects.conversion.log import factory as conversion_factory from pm4py.objects.log.exporter.xes.versions.etree_xes_exp import export_log_as_string from pm4py.objects.log.importer.xes import factory as xes_importer from pm4py.objects.log.util import insert_classifier from pm4py.objects.log.util import xes from pm4py.statistics.traces.log import case_statistics from pm4py.util import constants from pm4pyws.handlers.xes.alignments import get_align from pm4pyws.handlers.xes.cases import variants from pm4pyws.handlers.xes.ctmc import transient from pm4pyws.handlers.xes.filtering import factory as filtering_factory from pm4pyws.handlers.xes.process_schema import factory as process_schema_factory from pm4pyws.handlers.xes.sna import get_sna as sna_obtainer from pm4pyws.handlers.xes.statistics import events_per_time, case_duration from pm4pyws.util import casestats
[ 6738, 9114, 19, 9078, 13, 282, 2188, 13, 10379, 20212, 13, 6404, 13, 1078, 7657, 1330, 12608, 62, 24455, 198, 6738, 9114, 19, 9078, 13, 282, 2188, 13, 10379, 20212, 13, 6404, 13, 437, 62, 15791, 871, 1330, 886, 62, 15791, 871, 62, 24455, 198, 6738, 9114, 19, 9078, 13, 282, 2188, 13, 10379, 20212, 13, 6404, 13, 9688, 62, 15791, 871, 1330, 923, 62, 15791, 871, 62, 24455, 198, 6738, 9114, 19, 9078, 13, 282, 2188, 13, 10379, 20212, 13, 6404, 13, 25641, 1187, 1330, 17670, 62, 24455, 198, 6738, 9114, 19, 9078, 13, 48205, 13, 1102, 9641, 13, 6404, 1330, 8860, 355, 11315, 62, 69, 9548, 198, 6738, 9114, 19, 9078, 13, 48205, 13, 6404, 13, 1069, 26634, 13, 48169, 13, 47178, 13, 316, 631, 62, 48169, 62, 11201, 1330, 10784, 62, 6404, 62, 292, 62, 8841, 198, 6738, 9114, 19, 9078, 13, 48205, 13, 6404, 13, 320, 26634, 13, 48169, 1330, 8860, 355, 2124, 274, 62, 320, 26634, 198, 6738, 9114, 19, 9078, 13, 48205, 13, 6404, 13, 22602, 1330, 7550, 62, 4871, 7483, 198, 6738, 9114, 19, 9078, 13, 48205, 13, 6404, 13, 22602, 1330, 2124, 274, 198, 6738, 9114, 19, 9078, 13, 14269, 3969, 13, 2213, 2114, 13, 6404, 1330, 1339, 62, 14269, 3969, 198, 6738, 9114, 19, 9078, 13, 22602, 1330, 38491, 198, 198, 6738, 9114, 19, 9078, 18504, 13, 4993, 8116, 13, 48169, 13, 31494, 902, 1330, 651, 62, 31494, 198, 6738, 9114, 19, 9078, 18504, 13, 4993, 8116, 13, 48169, 13, 33964, 1330, 17670, 198, 6738, 9114, 19, 9078, 18504, 13, 4993, 8116, 13, 48169, 13, 310, 23209, 1330, 32361, 198, 6738, 9114, 19, 9078, 18504, 13, 4993, 8116, 13, 48169, 13, 10379, 20212, 1330, 8860, 355, 25431, 62, 69, 9548, 198, 6738, 9114, 19, 9078, 18504, 13, 4993, 8116, 13, 48169, 13, 14681, 62, 15952, 2611, 1330, 8860, 355, 1429, 62, 15952, 2611, 62, 69, 9548, 198, 6738, 9114, 19, 9078, 18504, 13, 4993, 8116, 13, 48169, 13, 82, 2616, 1330, 651, 62, 82, 2616, 355, 264, 2616, 62, 672, 3153, 263, 198, 6738, 9114, 19, 9078, 18504, 13, 4993, 8116, 13, 48169, 13, 14269, 3969, 1330, 2995, 62, 525, 62, 2435, 11, 1339, 62, 32257, 198, 6738, 9114, 19, 9078, 18504, 13, 22602, 1330, 6124, 395, 1381, 628 ]
3.07672
378
# coding: utf-8 from abc import ABCMeta, abstractmethod
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 628, 628 ]
3
20
# -*- coding: utf-8 -*- import re import scrapy from scrapy.crawler import CrawlerProcess from scrapy.linkextractors.lxmlhtml import LxmlLinkExtractor
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 302, 198, 11748, 15881, 88, 198, 6738, 15881, 88, 13, 66, 39464, 1330, 20177, 1754, 18709, 198, 6738, 15881, 88, 13, 2815, 365, 742, 974, 669, 13, 75, 19875, 6494, 1330, 406, 19875, 11280, 11627, 40450, 198 ]
2.903846
52
from wildfireassessment.ops import * #my package import numpy as np import matplotlib.pyplot as plt from pathlib import Path from skimage import morphology from skimage.transform import resize import pandas as pd import geopandas as gpd import pickle from sklearn.impute import SimpleImputer from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB, BernoulliNB from sklearn import linear_model from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn import svm from sklearn.neural_network import MLPClassifier from sklearn.metrics import confusion_matrix, recall_score, precision_score, accuracy_score, f1_score from sklearn.externals import joblib from rasterstats import zonal_stats import fiona from joblib import Parallel, delayed import multiprocessing import time """ def writeRasters(): #read in filepaths for data print("Reading filepaths...") filepath_post = Path("./data/Paradise/post") filepath_pre = Path("./data/Paradise/pre") #WorldView Post/Pre fps_wv_post = sorted(list(filepath_post.glob("2*_clip.tif"))) fps_wv_pre = sorted(list(filepath_pre.glob("2*_clip.tif"))) #WorldView Post/Pre fps_sent2_post = sorted(list((filepath_post / "clippedB08s").glob("B08_*.tif"))) fps_sent2_pre = sorted(list((filepath_pre / "clippedB08s").glob("B08_*.tif"))) print("Loading Model") #LOAD model rf_model = joblib.load(open("models/rf_grid_bin_precision.pkl", 'rb')) print("Start reading images") for i in range(len(fps_wv_post)): print("Reading RGB...") raster_src_post, rgb_post = readRGBImg(fps_wv_post[i]) raster_src_pre, rgb_pre = readRGBImg(fps_wv_pre[i]) print("Reading S2 B8...") raster_src_post_b08, b08_post = readOneImg(fps_sent2_post[i]) raster_src_pre_b08, b08_pre = readOneImg(fps_sent2_pre[i]) print("Resizing B8 images") b08_upscaled_post = resize(b08_post, raster_src_post.shape, anti_aliasing=True) b08_upscaled_post = b08_upscaled_post * 255 b08_upscaled_post = b08_upscaled_post.astype(rasterio.uint8) b08_upscaled_pre = resize(b08_pre, raster_src_pre.shape, anti_aliasing=True) b08_upscaled_pre = b08_upscaled_pre * 255 b08_upscaled_pre = b08_upscaled_pre.astype(rasterio.uint8) print("unravel rgb, b08") #unravel rgb_rav_post = {0 : rgb_post[:,:,0].ravel().astype(float), 1 : rgb_post[:,:,1].ravel().astype(float), 2 : rgb_post[:,:,2].ravel().astype(float)} rgb_rav_pre = {0 : rgb_pre[:,:,0].ravel().astype(float), 1 : rgb_pre[:,:,1].ravel().astype(float), 2 : rgb_pre[:,:,2].ravel().astype(float)} b08_rav_post = b08_upscaled_post.ravel().astype(float) b08_rav_pre = b08_upscaled_pre.ravel().astype(float) #release mem b08_upscaled_post = None b08_upscaled_pre = None b08_post = None b08_pre = None rgb_pre = None rgb_post = None print("starting predictions with model") def processInParallel(i): X_chunk = makeChunkX(rgb_rav_post[2][i:i+100], rgb_rav_post[1][i:i+100], rgb_rav_post[0][i:i+100], b08_rav_post[i:i+100], rgb_rav_pre[2][i:i+100], rgb_rav_pre[1][i:i+100], rgb_rav_pre[0][i:i+100], b08_rav_pre[i:i+100]) #impute by mean for missing values imp = SimpleImputer(missing_values=np.nan, strategy='mean') imp.fit(X_chunk) X_chunk_imp = imp.transform(X_chunk) return rf_model.predict(X_chunk_imp) start_time = time.time() num_cores = multiprocessing.cpu_count() pred_y = Parallel(n_jobs=num_cores, backend="multiprocessing")(delayed(processInParallel)(i) for i in range(0, len(b08_rav_post), 100)) print("--- %s seconds ---" % (time.time() - start_time)) print("Create mask") #create mask pred_y_rf = np.hstack(pred_y).reshape(raster_src_post.shape) #clean mask pred_y_rf_clean = morphology.remove_small_holes(pred_y_rf==1, 500) pred_y_rf_clean = morphology.remove_small_objects(pred_y_rf_clean, 500) fileNameMask = "../results/predict_mask_rf_" + fps_wv_post[i].name.split('_')[0] + ".tif" print("Writing image mask to path:", fileNameMask) metadata = { 'driver': 'GTiff', 'dtype': 'uint8', 'width': raster_src_post.meta['width'], 'height': raster_src_post.meta['height'], 'count': 1, 'crs': raster_src_post.meta['crs'], 'transform': raster_src_post.meta['transform'] } with rasterio.open(fileNameMask, 'w', **metadata) as dst: dst.write(pred_y_rf_clean.astype(np.uint8), 1) def computeSI(b1, b2): return (b1-b2)/(b1+b2) def changedSI(SI_pre, SI_post): return SI_pre - SI_post def makeChunkX(b, g, r, n, b_p, g_p, r_p, n_p): SI_gb = (computeSI(g, b), computeSI(g_p, b_p)) #(post, pre) SI_rb = (computeSI(r, b), computeSI(r_p, b_p)) SI_rg = (computeSI(r, g), computeSI(r_p, g_p)) SI_nb = (computeSI(n, b), computeSI(n_p, b_p)) SI_ng = (computeSI(n, g), computeSI(n_p, g_p)) SI_nr = (computeSI(n, r), computeSI(n_p, r_p)) dSI_gb = changedSI(SI_gb[1], SI_gb[0]) dSI_rb = changedSI(SI_rb[1], SI_rb[0]) dSI_rg = changedSI(SI_rg[1], SI_rg[0]) dSI_nb = changedSI(SI_nb[1], SI_nb[0]) dSI_ng = changedSI(SI_ng[1], SI_ng[0]) dSI_nr = changedSI(SI_nr[1], SI_nr[0]) return np.dstack((b, b_p, g, g_p, r, r_p, n, n_p, SI_gb[0], SI_rb[0], SI_rg[0], SI_nb[0], SI_ng[0], SI_nr[0], SI_gb[1], SI_rb[1], SI_rg[1], SI_nb[1], SI_ng[1], SI_nr[1], dSI_nb, dSI_rg, dSI_rb, dSI_gb, dSI_nr, dSI_ng))[0] """
[ 6738, 44508, 562, 21687, 13, 2840, 1330, 1635, 1303, 1820, 5301, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 1341, 9060, 1330, 46320, 198, 6738, 1341, 9060, 13, 35636, 1330, 47558, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 30324, 392, 292, 355, 27809, 67, 198, 11748, 2298, 293, 198, 6738, 1341, 35720, 13, 11011, 1133, 1330, 17427, 3546, 10549, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 198, 6738, 1341, 35720, 13, 2616, 425, 62, 24406, 274, 1330, 12822, 31562, 32819, 11, 6206, 280, 15516, 32819, 198, 6738, 1341, 35720, 1330, 14174, 62, 19849, 198, 6738, 1341, 35720, 13, 710, 394, 32289, 1330, 509, 46445, 32289, 9487, 7483, 198, 6738, 1341, 35720, 13, 21048, 1330, 26423, 27660, 9487, 7483, 198, 6738, 1341, 35720, 1330, 264, 14761, 198, 6738, 1341, 35720, 13, 710, 1523, 62, 27349, 1330, 10373, 47, 9487, 7483, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 10802, 62, 6759, 8609, 11, 10014, 62, 26675, 11, 15440, 62, 26675, 11, 9922, 62, 26675, 11, 277, 16, 62, 26675, 198, 6738, 1341, 35720, 13, 1069, 759, 874, 1330, 1693, 8019, 198, 6738, 374, 1603, 34242, 1330, 1976, 20996, 62, 34242, 198, 11748, 277, 32792, 198, 6738, 1693, 8019, 1330, 42945, 11, 11038, 198, 11748, 18540, 305, 919, 278, 198, 11748, 640, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 37811, 198, 4299, 3551, 49, 7060, 33529, 198, 220, 220, 220, 1303, 961, 287, 2393, 6978, 82, 329, 1366, 198, 220, 220, 220, 3601, 7203, 36120, 2393, 6978, 82, 9313, 8, 198, 220, 220, 220, 2393, 6978, 62, 7353, 796, 10644, 7, 1911, 14, 7890, 14, 10044, 324, 786, 14, 7353, 4943, 198, 220, 220, 220, 2393, 6978, 62, 3866, 796, 10644, 7, 1911, 14, 7890, 14, 10044, 324, 786, 14, 3866, 4943, 628, 220, 220, 220, 1303, 10603, 7680, 2947, 14, 6719, 198, 220, 220, 220, 32977, 62, 86, 85, 62, 7353, 796, 23243, 7, 4868, 7, 7753, 6978, 62, 7353, 13, 4743, 672, 7203, 17, 9, 62, 15036, 13, 49929, 1, 22305, 198, 220, 220, 220, 32977, 62, 86, 85, 62, 3866, 796, 23243, 7, 4868, 7, 7753, 6978, 62, 3866, 13, 4743, 672, 7203, 17, 9, 62, 15036, 13, 49929, 1, 22305, 628, 220, 220, 220, 1303, 10603, 7680, 2947, 14, 6719, 198, 220, 220, 220, 32977, 62, 34086, 17, 62, 7353, 796, 23243, 7, 4868, 19510, 7753, 6978, 62, 7353, 1220, 366, 565, 3949, 33, 2919, 82, 11074, 4743, 672, 7203, 33, 2919, 62, 24620, 49929, 1, 22305, 198, 220, 220, 220, 32977, 62, 34086, 17, 62, 3866, 796, 23243, 7, 4868, 19510, 7753, 6978, 62, 3866, 1220, 366, 565, 3949, 33, 2919, 82, 11074, 4743, 672, 7203, 33, 2919, 62, 24620, 49929, 1, 22305, 628, 220, 220, 220, 3601, 7203, 19031, 9104, 4943, 198, 220, 220, 220, 1303, 35613, 2746, 198, 220, 220, 220, 374, 69, 62, 19849, 796, 1693, 8019, 13, 2220, 7, 9654, 7203, 27530, 14, 41871, 62, 25928, 62, 8800, 62, 3866, 16005, 13, 79, 41582, 1600, 705, 26145, 6, 4008, 628, 220, 220, 220, 3601, 7203, 10434, 3555, 4263, 4943, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 29647, 62, 86, 85, 62, 7353, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 36120, 25228, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1603, 62, 10677, 62, 7353, 11, 46140, 62, 7353, 796, 1100, 48192, 3483, 11296, 7, 29647, 62, 86, 85, 62, 7353, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1603, 62, 10677, 62, 3866, 11, 46140, 62, 3866, 796, 1100, 48192, 3483, 11296, 7, 29647, 62, 86, 85, 62, 3866, 58, 72, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 36120, 311, 17, 347, 23, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1603, 62, 10677, 62, 7353, 62, 65, 2919, 11, 275, 2919, 62, 7353, 796, 1100, 3198, 3546, 70, 7, 29647, 62, 34086, 17, 62, 7353, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1603, 62, 10677, 62, 3866, 62, 65, 2919, 11, 275, 2919, 62, 3866, 796, 1100, 3198, 3546, 70, 7, 29647, 62, 34086, 17, 62, 3866, 58, 72, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4965, 2890, 347, 23, 4263, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4739, 66, 3021, 62, 7353, 796, 47558, 7, 65, 2919, 62, 7353, 11, 374, 1603, 62, 10677, 62, 7353, 13, 43358, 11, 3098, 62, 7344, 2313, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4739, 66, 3021, 62, 7353, 796, 275, 2919, 62, 4739, 66, 3021, 62, 7353, 1635, 14280, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4739, 66, 3021, 62, 7353, 796, 275, 2919, 62, 4739, 66, 3021, 62, 7353, 13, 459, 2981, 7, 81, 1603, 952, 13, 28611, 23, 8, 628, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4739, 66, 3021, 62, 3866, 796, 47558, 7, 65, 2919, 62, 3866, 11, 374, 1603, 62, 10677, 62, 3866, 13, 43358, 11, 3098, 62, 7344, 2313, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4739, 66, 3021, 62, 3866, 796, 275, 2919, 62, 4739, 66, 3021, 62, 3866, 1635, 14280, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4739, 66, 3021, 62, 3866, 796, 275, 2919, 62, 4739, 66, 3021, 62, 3866, 13, 459, 2981, 7, 81, 1603, 952, 13, 28611, 23, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 403, 25843, 46140, 11, 275, 2919, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 403, 25843, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 4108, 62, 7353, 796, 1391, 15, 1058, 46140, 62, 7353, 58, 45299, 45299, 15, 4083, 25843, 22446, 459, 2981, 7, 22468, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 1058, 46140, 62, 7353, 58, 45299, 45299, 16, 4083, 25843, 22446, 459, 2981, 7, 22468, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1058, 46140, 62, 7353, 58, 45299, 45299, 17, 4083, 25843, 22446, 459, 2981, 7, 22468, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 4108, 62, 3866, 796, 1391, 15, 1058, 46140, 62, 3866, 58, 45299, 45299, 15, 4083, 25843, 22446, 459, 2981, 7, 22468, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 1058, 46140, 62, 3866, 58, 45299, 45299, 16, 4083, 25843, 22446, 459, 2981, 7, 22468, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1058, 46140, 62, 3866, 58, 45299, 45299, 17, 4083, 25843, 22446, 459, 2981, 7, 22468, 38165, 628, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4108, 62, 7353, 796, 275, 2919, 62, 4739, 66, 3021, 62, 7353, 13, 25843, 22446, 459, 2981, 7, 22468, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4108, 62, 3866, 796, 275, 2919, 62, 4739, 66, 3021, 62, 3866, 13, 25843, 22446, 459, 2981, 7, 22468, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20979, 1066, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4739, 66, 3021, 62, 7353, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 4739, 66, 3021, 62, 3866, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 7353, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 275, 2919, 62, 3866, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 3866, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 7353, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 38690, 16277, 351, 2746, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 825, 1429, 818, 10044, 29363, 7, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 354, 2954, 796, 787, 1925, 2954, 55, 7, 81, 22296, 62, 4108, 62, 7353, 58, 17, 7131, 72, 25, 72, 10, 3064, 4357, 46140, 62, 4108, 62, 7353, 58, 16, 7131, 72, 25, 72, 10, 3064, 4357, 46140, 62, 4108, 62, 7353, 58, 15, 7131, 72, 25, 72, 10, 3064, 4357, 275, 2919, 62, 4108, 62, 7353, 58, 72, 25, 72, 10, 3064, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 62, 4108, 62, 3866, 58, 17, 7131, 72, 25, 72, 10, 3064, 4357, 46140, 62, 4108, 62, 3866, 58, 16, 7131, 72, 25, 72, 10, 3064, 4357, 46140, 62, 4108, 62, 3866, 58, 15, 7131, 72, 25, 72, 10, 3064, 4357, 275, 2919, 62, 4108, 62, 3866, 58, 72, 25, 72, 10, 3064, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11011, 1133, 416, 1612, 329, 4814, 3815, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 848, 796, 17427, 3546, 10549, 7, 45688, 62, 27160, 28, 37659, 13, 12647, 11, 4811, 11639, 32604, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 848, 13, 11147, 7, 55, 62, 354, 2954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 354, 2954, 62, 11011, 796, 848, 13, 35636, 7, 55, 62, 354, 2954, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 69, 62, 19849, 13, 79, 17407, 7, 55, 62, 354, 2954, 62, 11011, 8, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 66, 2850, 796, 18540, 305, 919, 278, 13, 36166, 62, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 88, 796, 42945, 7, 77, 62, 43863, 28, 22510, 62, 66, 2850, 11, 30203, 2625, 16680, 541, 305, 919, 278, 4943, 7, 12381, 16548, 7, 14681, 818, 10044, 29363, 5769, 72, 8, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 65, 2919, 62, 4108, 62, 7353, 828, 1802, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6329, 4064, 82, 4201, 11420, 1, 4064, 357, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 16447, 9335, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17953, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 88, 62, 41871, 796, 45941, 13, 71, 25558, 7, 28764, 62, 88, 737, 3447, 1758, 7, 81, 1603, 62, 10677, 62, 7353, 13, 43358, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27773, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 88, 62, 41871, 62, 27773, 796, 46320, 13, 28956, 62, 17470, 62, 28439, 7, 28764, 62, 88, 62, 41871, 855, 16, 11, 5323, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 88, 62, 41871, 62, 27773, 796, 46320, 13, 28956, 62, 17470, 62, 48205, 7, 28764, 62, 88, 62, 41871, 62, 27773, 11, 5323, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 5376, 45195, 796, 366, 40720, 43420, 14, 79, 17407, 62, 27932, 62, 41871, 62, 1, 1343, 32977, 62, 86, 85, 62, 7353, 58, 72, 4083, 3672, 13, 35312, 10786, 62, 11537, 58, 15, 60, 1343, 27071, 49929, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33874, 2939, 9335, 284, 3108, 25, 1600, 2393, 5376, 45195, 8, 628, 220, 220, 220, 220, 220, 220, 220, 20150, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26230, 10354, 705, 19555, 733, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 67, 4906, 10354, 705, 28611, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10394, 10354, 374, 1603, 62, 10677, 62, 7353, 13, 28961, 17816, 10394, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 374, 1603, 62, 10677, 62, 7353, 13, 28961, 17816, 17015, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9127, 10354, 352, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 3808, 10354, 374, 1603, 62, 10677, 62, 7353, 13, 28961, 17816, 66, 3808, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35636, 10354, 374, 1603, 62, 10677, 62, 7353, 13, 28961, 17816, 35636, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 351, 374, 1603, 952, 13, 9654, 7, 7753, 5376, 45195, 11, 705, 86, 3256, 12429, 38993, 8, 355, 29636, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29636, 13, 13564, 7, 28764, 62, 88, 62, 41871, 62, 27773, 13, 459, 2981, 7, 37659, 13, 28611, 23, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 4299, 24061, 11584, 7, 65, 16, 11, 275, 17, 2599, 198, 220, 220, 220, 1441, 357, 65, 16, 12, 65, 17, 20679, 7, 65, 16, 10, 65, 17, 8, 198, 198, 4299, 3421, 11584, 7, 11584, 62, 3866, 11, 25861, 62, 7353, 2599, 198, 220, 220, 220, 1441, 25861, 62, 3866, 532, 25861, 62, 7353, 198, 198, 4299, 787, 1925, 2954, 55, 7, 65, 11, 308, 11, 374, 11, 299, 11, 275, 62, 79, 11, 308, 62, 79, 11, 374, 62, 79, 11, 299, 62, 79, 2599, 198, 220, 220, 220, 25861, 62, 22296, 796, 357, 5589, 1133, 11584, 7, 70, 11, 275, 828, 24061, 11584, 7, 70, 62, 79, 11, 275, 62, 79, 4008, 1303, 7, 7353, 11, 662, 8, 198, 220, 220, 220, 25861, 62, 26145, 796, 357, 5589, 1133, 11584, 7, 81, 11, 275, 828, 24061, 11584, 7, 81, 62, 79, 11, 275, 62, 79, 4008, 198, 220, 220, 220, 25861, 62, 41345, 796, 357, 5589, 1133, 11584, 7, 81, 11, 308, 828, 24061, 11584, 7, 81, 62, 79, 11, 308, 62, 79, 4008, 198, 220, 220, 220, 25861, 62, 46803, 796, 357, 5589, 1133, 11584, 7, 77, 11, 275, 828, 24061, 11584, 7, 77, 62, 79, 11, 275, 62, 79, 4008, 198, 220, 220, 220, 25861, 62, 782, 796, 357, 5589, 1133, 11584, 7, 77, 11, 308, 828, 24061, 11584, 7, 77, 62, 79, 11, 308, 62, 79, 4008, 198, 220, 220, 220, 25861, 62, 48624, 796, 357, 5589, 1133, 11584, 7, 77, 11, 374, 828, 24061, 11584, 7, 77, 62, 79, 11, 374, 62, 79, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 288, 11584, 62, 22296, 796, 3421, 11584, 7, 11584, 62, 22296, 58, 16, 4357, 25861, 62, 22296, 58, 15, 12962, 198, 220, 220, 220, 288, 11584, 62, 26145, 796, 3421, 11584, 7, 11584, 62, 26145, 58, 16, 4357, 25861, 62, 26145, 58, 15, 12962, 198, 220, 220, 220, 288, 11584, 62, 41345, 796, 3421, 11584, 7, 11584, 62, 41345, 58, 16, 4357, 25861, 62, 41345, 58, 15, 12962, 198, 220, 220, 220, 288, 11584, 62, 46803, 796, 3421, 11584, 7, 11584, 62, 46803, 58, 16, 4357, 25861, 62, 46803, 58, 15, 12962, 198, 220, 220, 220, 288, 11584, 62, 782, 796, 3421, 11584, 7, 11584, 62, 782, 58, 16, 4357, 25861, 62, 782, 58, 15, 12962, 198, 220, 220, 220, 288, 11584, 62, 48624, 796, 3421, 11584, 7, 11584, 62, 48624, 58, 16, 4357, 25861, 62, 48624, 58, 15, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 45941, 13, 67, 25558, 19510, 65, 11, 275, 62, 79, 11, 308, 11, 308, 62, 79, 11, 374, 11, 374, 62, 79, 11, 299, 11, 299, 62, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25861, 62, 22296, 58, 15, 4357, 25861, 62, 26145, 58, 15, 4357, 25861, 62, 41345, 58, 15, 4357, 25861, 62, 46803, 58, 15, 4357, 25861, 62, 782, 58, 15, 4357, 25861, 62, 48624, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25861, 62, 22296, 58, 16, 4357, 25861, 62, 26145, 58, 16, 4357, 25861, 62, 41345, 58, 16, 4357, 25861, 62, 46803, 58, 16, 4357, 25861, 62, 782, 58, 16, 4357, 25861, 62, 48624, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 11584, 62, 46803, 11, 288, 11584, 62, 41345, 11, 288, 11584, 62, 26145, 11, 288, 11584, 62, 22296, 11, 288, 11584, 62, 48624, 11, 288, 11584, 62, 782, 4008, 58, 15, 60, 198, 37811, 198 ]
2.055123
2,957
# -*- coding: utf-8 -*- # !/usr/bin/env python3 """ @author: zhuyuehui @contact: [email protected] @time: 2021/11/6 12:57 下午 """ name = "PyAirwave" from .PyAirwave import AirWave
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 5145, 14, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 31, 9800, 25, 1976, 71, 4669, 518, 71, 9019, 198, 31, 32057, 25, 1976, 71, 4669, 518, 71, 9019, 2999, 31, 1326, 270, 7258, 13, 785, 198, 31, 2435, 25, 33448, 14, 1157, 14, 21, 1105, 25, 3553, 220, 10310, 233, 39355, 230, 198, 37811, 198, 3672, 796, 366, 20519, 16170, 19204, 1, 198, 198, 6738, 764, 20519, 16170, 19204, 1330, 3701, 39709, 198 ]
2.043956
91
from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages setup(name = 'Adafruit_CharLCD', version = '1.0.0', author = 'Tony DiCola', author_email = '[email protected]', description = 'Library to drive character LCD display and plate.', license = 'MIT', url = 'https://github.com/adafruit/Adafruit_Python_CharLCD/', dependency_links = ['https://github.com/adafruit/Adafruit_Python_GPIO/tarball/master#egg=Adafruit-GPIO-0.4.0'], install_requires = ['Adafruit-GPIO>=0.4.0'], packages = find_packages())
[ 6738, 304, 89, 62, 40406, 1330, 779, 62, 2617, 37623, 10141, 198, 1904, 62, 2617, 37623, 10141, 3419, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 40406, 7, 3672, 220, 197, 197, 197, 197, 28, 705, 2782, 1878, 4872, 62, 12441, 5639, 35, 3256, 198, 197, 220, 2196, 220, 197, 197, 197, 28, 705, 16, 13, 15, 13, 15, 3256, 198, 197, 220, 1772, 197, 197, 197, 28, 705, 29387, 6031, 28635, 3256, 198, 197, 220, 1772, 62, 12888, 197, 197, 28, 705, 8671, 291, 5708, 31, 324, 1878, 4872, 13, 785, 3256, 198, 197, 220, 6764, 197, 197, 28, 705, 23377, 284, 3708, 2095, 23598, 3359, 290, 7480, 2637, 11, 198, 197, 220, 5964, 197, 197, 197, 28, 705, 36393, 3256, 198, 197, 220, 19016, 197, 197, 197, 197, 28, 705, 5450, 1378, 12567, 13, 785, 14, 324, 1878, 4872, 14, 2782, 1878, 4872, 62, 37906, 62, 12441, 5639, 35, 14, 3256, 198, 197, 220, 20203, 62, 28751, 197, 28, 37250, 5450, 1378, 12567, 13, 785, 14, 324, 1878, 4872, 14, 2782, 1878, 4872, 62, 37906, 62, 16960, 9399, 14, 18870, 1894, 14, 9866, 2, 33856, 28, 2782, 1878, 4872, 12, 16960, 9399, 12, 15, 13, 19, 13, 15, 6, 4357, 198, 197, 220, 2721, 62, 47911, 197, 28, 37250, 2782, 1878, 4872, 12, 16960, 9399, 29, 28, 15, 13, 19, 13, 15, 6, 4357, 198, 197, 220, 10392, 220, 197, 197, 197, 28, 1064, 62, 43789, 28955, 198 ]
2.408163
245
import explorerhat as eh from time import sleep CHAR_TABLE = [['1','2','3'],['4','5','6'],['7','8','9'],['*','0','#']] while True: ch = decode_key(key_pressed(), CHAR_TABLE) print('%s pressed' % ch) wait_for_release() sleep(0.1)
[ 11748, 39349, 5183, 355, 32622, 198, 6738, 640, 1330, 3993, 198, 198, 38019, 62, 38148, 796, 16410, 6, 16, 41707, 17, 41707, 18, 6, 4357, 17816, 19, 41707, 20, 41707, 21, 6, 4357, 17816, 22, 41707, 23, 41707, 24, 6, 4357, 17816, 9, 41707, 15, 41707, 2, 6, 11907, 628, 628, 628, 628, 198, 4514, 6407, 25, 198, 220, 220, 220, 442, 796, 36899, 62, 2539, 7, 2539, 62, 45477, 22784, 28521, 62, 38148, 8, 198, 220, 220, 220, 3601, 10786, 4, 82, 12070, 6, 4064, 442, 8, 198, 220, 220, 220, 4043, 62, 1640, 62, 20979, 3419, 198, 220, 220, 220, 3993, 7, 15, 13, 16, 8, 198 ]
2.330275
109
# Name: Linsey Schaap # Student number: 11036109 """ This script convert a csv file into a JSON format. """ import csv import json csvbestand = open("reizigerskilometers.csv", "r") jsonbestand = open("reizigerskilometers.json", "w") namen = ("Vervoerswijze", "Periode", "Provincie", "Afstand") bestand = csv.DictReader(csvbestand, namen) # Parse the CSV into JSON out = json.dumps( [ regel for regel in bestand ] ) # Save the JSON jsonbestand.write('{"data": ' + out + '}')
[ 2, 6530, 25, 5164, 4397, 35756, 499, 198, 2, 13613, 1271, 25, 9796, 2623, 14454, 198, 37811, 198, 1212, 4226, 10385, 257, 269, 21370, 2393, 656, 257, 19449, 5794, 13, 198, 37811, 198, 198, 11748, 269, 21370, 198, 11748, 33918, 628, 198, 40664, 13466, 392, 796, 1280, 7203, 260, 528, 34984, 34553, 40077, 13, 40664, 1600, 366, 81, 4943, 198, 17752, 13466, 392, 796, 1280, 7203, 260, 528, 34984, 34553, 40077, 13, 17752, 1600, 366, 86, 4943, 198, 198, 7402, 268, 796, 5855, 53, 712, 78, 364, 86, 2926, 2736, 1600, 366, 5990, 72, 1098, 1600, 366, 15946, 1939, 494, 1600, 366, 17584, 1481, 4943, 198, 13466, 392, 796, 269, 21370, 13, 35, 713, 33634, 7, 40664, 13466, 392, 11, 299, 41763, 8, 198, 198, 2, 2547, 325, 262, 44189, 656, 19449, 198, 448, 796, 33918, 13, 67, 8142, 7, 685, 842, 417, 329, 842, 417, 287, 1266, 392, 2361, 1267, 198, 2, 12793, 262, 19449, 198, 17752, 13466, 392, 13, 13564, 10786, 4895, 7890, 1298, 705, 1343, 503, 1343, 705, 92, 11537, 198 ]
2.752874
174
from . import data, update_handlers
[ 6738, 764, 1330, 1366, 11, 4296, 62, 4993, 8116 ]
3.888889
9
"""Unit tests for pyatv.protocols.mrp.variant.""" import pytest from pyatv.support.variant import read_variant, write_variant
[ 37811, 26453, 5254, 329, 12972, 265, 85, 13, 11235, 4668, 82, 13, 43395, 79, 13, 25641, 415, 526, 15931, 198, 11748, 12972, 9288, 198, 198, 6738, 12972, 265, 85, 13, 11284, 13, 25641, 415, 1330, 1100, 62, 25641, 415, 11, 3551, 62, 25641, 415, 628, 628, 628, 198 ]
2.770833
48
#!/usr/bin/env python3' # coding = utf-8 ######################################################################################## ## ## Maintainer: [email protected] ## Inspired by: https://github.com/somervda/ourbotmanager_ros.git ## ## Input: Analog potentiometer 1 + 2 + 3 (+4 ) ## Output: micro-ROS node (ROS2) that publish topic /cmd_vel with msg.type twist_stamped ## Angular = X-axis = Pull stick Left/Right ## Linear = Y-axis = Pull stick Up/Down ## Twist = Z-axis = Turn/Twist stick (Not used right now) ## ## Behaviour: ## 1) Once: Read/Set all the parameters ## 2) Repeatedly: Read analog joystick via ADC ## 3) Repeatedly: Transform indata to a +/-100% values ## 4) Repeatedly: Map where the stick are => Depending om location, then adjust behivaiur. ## 5) Repeatedly: Publish ros-topic ## ## Prerequisite: ## $ sudo apt install i2c-tools ## $ sudo apt install python3-pip ## $ sudo pip3 install smbus2 ## $ sudo pip3 install adafruit-ads1x15 ## $ sudo i2cdetect -y 1 ## $ sudo chmod a+rw /dev/i2c-1 ## ## Hardware: KY-053 Analog Digital Converter (ADS1115, 16-bit) via default I2C adr.=0x48 ## Hardware: Joystick with analog 10K resistors for X, Y and Z ## Host: Raspberry Pi 4(Ubuntu) via I2C ## ## Launch sequence: ## 1) $ ros2 run pet_mk_viii_joystick pet_potentiometer_node.py ## # TODO: Get rid of time.sleep() with something more real time/concurrent and ROS2 friendly way of wait... # Import the ROS2-stuff import rclpy # TODO: IS this line neccesary. Due to the two following lines that importing "Node" and "Parameter" from rclpy.node import Node from rclpy.parameter import Parameter from rcl_interfaces.msg import ParameterDescriptor from std_msgs.msg import Int32 # Import the Ubuntu/Linux-hardware stuff from smbus2 import SMBus import Adafruit_ADS1x15 #from gpiozero import LED # Import the common Ubuntu/Linux stuff import sys import time import signal class PotentiometerPublisher(Node): ''' Analog potentiometer class Read analog input -> Publish on ROS-topic ''' # Keep track of last joystick values. Used due to reducing communication of equal values. last_value_p0 = 0 last_value_p1 = 0 last_value_p2 = 0 last_value_p3 = 0 if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 6, 198, 2, 19617, 796, 3384, 69, 12, 23, 198, 29113, 29113, 14468, 7804, 198, 2235, 198, 2235, 337, 2913, 10613, 25, 336, 891, 272, 13, 74, 724, 31, 14816, 13, 785, 198, 2235, 45827, 416, 25, 3740, 1378, 12567, 13, 785, 14, 82, 296, 712, 6814, 14, 454, 13645, 37153, 62, 4951, 13, 18300, 198, 2235, 220, 198, 2235, 23412, 25, 50088, 16739, 72, 15635, 352, 1343, 362, 1343, 513, 11502, 19, 1267, 198, 2235, 25235, 25, 4580, 12, 49, 2640, 10139, 357, 49, 2640, 17, 8, 326, 7715, 7243, 1220, 28758, 62, 626, 351, 31456, 13, 4906, 14528, 62, 301, 13322, 198, 2235, 220, 220, 220, 28147, 796, 1395, 12, 22704, 796, 21429, 4859, 9578, 14, 11028, 198, 2235, 220, 220, 220, 44800, 220, 796, 575, 12, 22704, 796, 21429, 4859, 3205, 14, 8048, 198, 2235, 220, 220, 220, 44088, 220, 220, 796, 1168, 12, 22704, 796, 6756, 14, 5080, 396, 4859, 220, 357, 3673, 973, 826, 783, 8, 198, 2235, 198, 2235, 10407, 37716, 25, 198, 2235, 352, 8, 4874, 25, 4149, 14, 7248, 477, 262, 10007, 198, 2235, 362, 8, 30558, 515, 306, 25, 4149, 15075, 49485, 2884, 49169, 198, 2235, 513, 8, 30558, 515, 306, 25, 26981, 773, 1045, 284, 257, 29694, 3064, 4, 3815, 198, 2235, 604, 8, 30558, 515, 306, 25, 9347, 810, 262, 4859, 389, 5218, 23591, 39030, 4067, 11, 788, 4532, 1372, 452, 1872, 333, 13, 198, 2235, 642, 8, 30558, 515, 306, 25, 8525, 1836, 686, 82, 12, 26652, 198, 2235, 198, 2235, 3771, 27614, 25, 198, 2235, 720, 21061, 15409, 2721, 1312, 17, 66, 12, 31391, 198, 2235, 720, 21061, 15409, 2721, 21015, 18, 12, 79, 541, 198, 2235, 720, 21061, 7347, 18, 2721, 895, 10885, 17, 198, 2235, 720, 21061, 7347, 18, 2721, 512, 1878, 4872, 12, 5643, 16, 87, 1314, 198, 2235, 720, 21061, 1312, 17, 10210, 316, 478, 532, 88, 352, 198, 2235, 720, 21061, 442, 4666, 257, 10, 31653, 1220, 7959, 14, 72, 17, 66, 12, 16, 198, 2235, 198, 2235, 28715, 25, 33668, 12, 2713, 18, 50088, 10231, 35602, 353, 357, 47149, 1157, 1314, 11, 1467, 12, 2545, 8, 2884, 4277, 314, 17, 34, 512, 81, 13, 28, 15, 87, 2780, 198, 2235, 28715, 25, 14087, 13915, 351, 15075, 838, 42, 4180, 669, 329, 1395, 11, 575, 290, 1168, 198, 2235, 14504, 25, 24244, 13993, 604, 7, 36609, 11157, 8, 2884, 314, 17, 34, 198, 2235, 198, 2235, 21225, 8379, 25, 198, 2235, 352, 8, 720, 686, 82, 17, 1057, 4273, 62, 28015, 62, 85, 15479, 62, 2633, 13915, 4273, 62, 13059, 298, 72, 15635, 62, 17440, 13, 9078, 220, 198, 2235, 198, 198, 2, 16926, 46, 25, 3497, 5755, 286, 640, 13, 42832, 3419, 351, 1223, 517, 1103, 640, 14, 1102, 14421, 290, 48263, 17, 8030, 835, 286, 4043, 986, 198, 198, 2, 17267, 262, 48263, 17, 12, 41094, 198, 11748, 374, 565, 9078, 220, 1303, 16926, 46, 25, 3180, 428, 1627, 497, 535, 274, 560, 13, 14444, 284, 262, 734, 1708, 3951, 326, 33332, 366, 19667, 1, 290, 366, 36301, 1, 198, 6738, 374, 565, 9078, 13, 17440, 1330, 19081, 198, 6738, 374, 565, 9078, 13, 17143, 2357, 1330, 25139, 2357, 198, 6738, 374, 565, 62, 3849, 32186, 13, 19662, 1330, 25139, 2357, 24564, 1968, 273, 198, 6738, 14367, 62, 907, 14542, 13, 19662, 1330, 2558, 2624, 198, 198, 2, 17267, 262, 14949, 14, 19314, 12, 10424, 1574, 3404, 220, 198, 6738, 895, 10885, 17, 1330, 9447, 16286, 198, 11748, 1215, 1878, 4872, 62, 47149, 16, 87, 1314, 198, 2, 6738, 27809, 952, 22570, 1330, 12365, 198, 198, 2, 17267, 262, 2219, 14949, 14, 19314, 3404, 220, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 6737, 198, 198, 4871, 6902, 298, 72, 15635, 46471, 7, 19667, 2599, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 50088, 16739, 72, 15635, 1398, 198, 220, 220, 220, 4149, 15075, 5128, 4613, 8525, 1836, 319, 48263, 12, 26652, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9175, 2610, 286, 938, 49485, 3815, 13, 16718, 2233, 284, 8868, 6946, 286, 4961, 3815, 13, 198, 220, 220, 220, 938, 62, 8367, 62, 79, 15, 796, 657, 198, 220, 220, 220, 938, 62, 8367, 62, 79, 16, 796, 657, 198, 220, 220, 220, 938, 62, 8367, 62, 79, 17, 796, 657, 198, 220, 220, 220, 938, 62, 8367, 62, 79, 18, 796, 657, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.967235
763
RAW_QUEUES = { "example_timed_set": { "job_factory": lambda rawparam: { "path": "example.Print", "params": { "test": rawparam } } } }
[ 20530, 62, 48, 8924, 35409, 796, 1391, 198, 220, 366, 20688, 62, 16514, 276, 62, 2617, 1298, 1391, 198, 220, 220, 220, 366, 21858, 62, 69, 9548, 1298, 37456, 8246, 17143, 25, 1391, 198, 220, 220, 220, 220, 220, 366, 6978, 1298, 366, 20688, 13, 18557, 1600, 198, 220, 220, 220, 220, 220, 366, 37266, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 1298, 8246, 17143, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 92 ]
1.965517
87
""" Functions to download example data from public repositories. """ from .base import InputFiles, InputFilesWithSession import os import os.path as op from pathlib import Path def get_s3_register(subject_id, site, raw_keys, deriv_keys): """Get the S3 keys for a single subject's input files Parameters ---------- subject_id : string Subject ID on which to filter the s3 keys site : string Site ID from which to collect raw data raw_keys : sequence Sequence of raw data s3 keys to filter deriv_keys : sequence Sequence of derivative data s3 keys to filter Returns ------- InputFiles namedtuple If all prerequisite s3 keys are present, return a namedtuple of s3 keys. Otherwise, use the default None values. """ # Get only the s3 keys corresponding to this subject_id sub_dwi_files = [k for k in raw_keys if subject_id in k and '/dwi/' in k] sub_fmap_files = [k for k in raw_keys if subject_id in k and '/fmap/' in k] sub_deriv_files = [k for k in deriv_keys if subject_id in k] # Get the dwi files, bvec files, and bval files dwi = [f for f in sub_dwi_files if f.endswith('.nii.gz') and 'TRACEW' not in f] bvec = [f for f in sub_dwi_files if f.endswith('.bvec')] bval = [f for f in sub_dwi_files if f.endswith('.bval')] epi_nii = [f for f in sub_fmap_files if f.endswith('epi.nii.gz') and 'fMRI' not in f] epi_json = [f for f in sub_fmap_files if f.endswith('epi.json') and 'fMRI' not in f] t1w = [f for f in sub_deriv_files if f.endswith('/T1w.nii.gz')] freesurfer = [f for f in sub_deriv_files if '/freesurfer/' in f] # Use truthiness of non-empty lists to verify that all # of the required prereq files exist in `s3_keys` # TODO: If some of the files are missing, look farther up in the directory # TODO: structure to see if there are files we should inherit if all([dwi, bval, bvec, epi_nii, epi_json, t1w, freesurfer]): return InputFiles( subject=subject_id, site=site, valid=True, files=dict( dwi=dwi, bvec=bvec, bval=bval, epi_nii=epi_nii, epi_json=epi_json, freesurfer=freesurfer, t1w=t1w, ), file_type='s3' ) else: return InputFiles( subject=subject_id, site=site, valid=False, files=None, file_type='s3' ) def get_s3_keys(prefix, s3_client, bucket='fcp-indi'): """Retrieve all keys in an S3 bucket that match the prefix and site ID Parameters ---------- prefix : string S3 prefix designating the S3 "directory" in which to search. Do not include the site ID in the prefix. s3_client : boto3 client object from the get_s3_client() function bucket : string AWS S3 bucket in which to search Returns ------- list All the keys matching the prefix and site in the S3 bucket """ # Avoid duplicate trailing slash in prefix prefix = prefix.rstrip('/') response = s3_client.list_objects_v2( Bucket=bucket, Prefix=prefix, ) try: keys = [d['Key'] for d in response.get('Contents')] except TypeError: raise ValueError( 'There are no subject files in the S3 bucket with prefix ' '{pfix:s}'.format(pfix=prefix) ) while response['IsTruncated']: response = s3_client.list_objects_v2( Bucket=bucket, Prefix=prefix, ContinuationToken=response['NextContinuationToken'] ) keys += [d['Key'] for d in response.get('Contents')] return keys def keys_to_subject_register(keys, prefix, site): """Filter S3 keys based on data availability and return Parameters ---------- keys : sequence sequence of S3 keys prefix : string S3 prefix designating the S3 "directory" in which to search. Do not include the site ID in the prefix. site : string Site ID from which to collect raw data Returns ------- list List of `InputFiles` namedtuples for each valid subject """ deriv_keys = [ k for k in keys if k.startswith(prefix + '/' + site + '/derivatives/sub-') ] raw_keys = [ k for k in keys if k.startswith(prefix + '/' + site + '/sub-') ] subs_with_dwi = { get_subject_id(k) for k in raw_keys if '/dwi/' in k } subs_with_epi_nii = { get_subject_id(k) for k in raw_keys if ( k.endswith('epi.nii.gz') and '/fmap/' in k and 'fMRI' not in k ) } subs_with_epi_json = { get_subject_id(k) for k in raw_keys if ( k.endswith('epi.json') and '/fmap/' in k and 'fMRI' not in k ) } subs_with_freesurfer = { get_subject_id(k) for k in deriv_keys if '/freesurfer/' in k } subs_with_t1w = { get_subject_id(k) for k in deriv_keys if k.endswith('T1w.nii.gz') } valid_subjects = ( subs_with_dwi & subs_with_epi_nii & subs_with_epi_json & subs_with_freesurfer & subs_with_t1w ) s3_registers = [ get_s3_register(subject_id=s, site=site, raw_keys=raw_keys, deriv_keys=deriv_keys) for s in valid_subjects ] s3_registers = list(filter( lambda sub: sub.valid, s3_registers )) return s3_registers def download_register(subject_keys, s3_client, bucket='fcp-indi', directory='./input', overwrite=False): """ Parameters ---------- subject_keys : InputFiles namedtuple Input s3 keys stored in namedtuple. Must have the fields 'subject': subjectID, 'site': siteID, 'files': dictionary of S3 keys bucket : string S3 bucket from which to extract files directory : string Local directory to which to save files overwrite : bool Flag to overwrite existing files Returns ------- files : InputFiles namedtuple Input file paths stored in namedtuple. Has the fields 'subject': subjectID, 'site' : siteID, 'valid' : True, 'files' : local file paths, 'file_type' : 'local', """ subject = subject_keys.subject site = subject_keys.site input_files = InputFiles( subject=subject, site=site, valid=True, files={ k: [op.abspath(op.join( directory, site, p.split('/' + site + '/')[-1] )) for p in v] for k, v in subject_keys.files.items() }, file_type='local' ) s3keys = subject_keys.files files = input_files.files for ftype in s3keys.keys(): if isinstance(s3keys[ftype], str): download_from_s3(fname_=files[ftype], bucket_=bucket, key_=s3keys[ftype]) elif all(isinstance(x, str) for x in s3keys[ftype]): for key, fname in zip(s3keys[ftype], files[ftype]): download_from_s3(fname_=fname, bucket_=bucket, key_=key) else: raise TypeError( 'This subject {sub:s} has {ftype:s} S3 keys that are neither ' 'strings nor a sequence of strings. The S3 keys are {keys!s}' ''.format(sub=subject, ftype=ftype, keys=s3keys[ftype]) ) return input_files def determine_directions(input_files, input_type='s3', bucket=None, metadata_source='json', json_key='PhaseEncodingDirection', ap_value='j-', pa_value='j'): """Determine direction ['AP', 'PA'] of single subject's EPI nifty files Use either metadata in associated json file or filename Parameters ---------- input_files : InputFiles namedtuple The local input files for the subject input_type : "s3" or "local", default="s3" The location of the input files, local or on S3 bucket : string or None, default=None S3 Bucket where the input files are located. If input_type == 's3', then bucket must not be None metadata_source : "json" or "filename", default="json" If "filename," look for the direction in the filename, otherwise, use the json file and the other parameters json_key : string, default="PhaseEncodingDirection" The key that stores the direction information ap_value : string, default="j-" Metadata value to associate with dir-AP pa_value : string, default="j" Metadata value to associate with dir-PA Returns ------- InputFiles namedtuple An InputFiles namedtuple where all fields match the `input_files` namedtuple except that in the `files` field, the "epi_nii" and "epi_json" keys have been replaced with "epi_ap" and "epi_pa." """ if metadata_source not in ['filename', 'json']: raise ValueError('metadata_source must be "filename" or "json".') if input_type not in ['s3', 'local']: raise ValueError('input_type must be "local" or "s3".') if input_type == 's3' and bucket is None: raise ValueError('If input_type is "s3," you must supply a bucket.') epi_files = input_files.files['epi_nii'] json_files = input_files.files['epi_json'] if metadata_source == 'filename': ap_files = [f for f in epi_files if 'dir-AP' in f] pa_files = [f for f in epi_files if 'dir-PA' in f] else: # Confirm that each nifty file has a corresponding json file. required_json = set([f.replace('.nii.gz', '.json') for f in epi_files]) if set(json_files) != required_json: raise ValueError( 'There are nifty files without corresponding json files. We ' 'failed to find the following expected files: {files!s}' ''.format(files=required_json - set(json_files)) ) ap_files = [] pa_files = [] for jfile in json_files: metadata = get_json(jfile) direction = metadata.get(json_key) if direction == ap_value: if 'dir-PA' in jfile: mod_logger.warning( 'The key {key:s}={val:s} does not match the direction ' 'suggested by the filename {fn:s}'.format( key=json_key, val=direction, fn=jfile ) ) ap_files.append(jfile.replace('.json', '.nii.gz')) elif direction == pa_value: if 'dir-AP' in jfile: mod_logger.warning( 'The key {key:s}={val:s} does not match the direction ' 'suggested by the filename {fn:s}'.format( key=json_key, val=direction, fn=jfile ) ) pa_files.append(jfile.replace('.json', '.nii.gz')) elif direction is None: mod_logger.warning( 'The key {key:s} does not exist in file {jfile:s}. ' 'Falling back on filename to determine directionality.' '\n\n'.format(key=json_key, jfile=jfile) ) if 'dir-AP' in jfile: ap_files.append(jfile.replace('.json', '.nii.gz')) elif 'dir-PA' in jfile: pa_files.append(jfile.replace('.json', '.nii.gz')) else: raise ValueError( 'The key {key:s} does not exist in file {jfile:s} and ' 'the directionality could not be inferred from the ' 'file name.'.format(key=json_key, jfile=jfile) ) else: mod_logger.warning( 'The metadata in file {jfile:s} does not match the dir-PA ' 'or dir-AP values that you provided. {key:s} = {val:s}. ' 'Falling back on filename to determine directionality.\n\n' ''.format(jfile=jfile, key=json_key, val=direction) ) if 'dir-AP' in jfile: ap_files.append(jfile.replace('.json', '.nii.gz')) elif 'dir-PA' in jfile: pa_files.append(jfile.replace('.json', '.nii.gz')) else: raise ValueError( 'The metadata for key {key:s} in file {jfile:s} does ' 'not match the dir-PA or dir-AP values that you ' 'provided. {key:s} = {val:s}. And the directionality ' 'could not be inferred from the file name.'.format( key=json_key, jfile=jfile, val=direction, )) files = copy.deepcopy(input_files.files) del files['epi_nii'] del files['epi_json'] files['epi_ap'] = ap_files files['epi_pa'] = pa_files return InputFiles( subject=input_files.subject, site=input_files.site, valid=input_files.valid, files=files, file_type=input_files.file_type ) def separate_sessions(input_files, multiples_policy='sessions', assign_empty_sessions=True): """Separate input file register into different sessions Parameters ---------- input_files : InputFiles namedtuple multiples_policy : "sessions" or "concatenate" Flag that dictates how to handle multiple files in a session. If "sessions," treat multiples as different sessions and assign to new session IDs. If "concatenate," concatenate multiples into a single session assign_empty_sessions : bool If True, assign session IDs to files without a session ID in their path Returns ------- list of InputFiles namedtuples List of InputFiles namedtuples for each session ID. """ if multiples_policy not in ['sessions', 'concatenate']: raise ValueError('`multiples_policy` must be either "sessions" or ' '"concatenate"') # Take only the first of the T1W nifty files if len(input_files.files['t1w']) > 1: mod_logger.warning( 'Found more than one T1W file for subject {sub:s} at site {site:s}' '. Discarding the others.\n\n'.format(sub=input_files.subject, site=input_files.site) ) t1w = input_files.files['t1w'] # Take only the first freesurfer directory freesurfer_dirs = { f.split('/freesurfer/')[0] for f in input_files.files['freesurfer'] } if len(freesurfer_dirs) > 1: mod_logger.warning( 'Found more than one freesurfer dir for subject {sub:s} at site ' '{site:s}. Discarding the others.\n\n'.format( sub=input_files.subject, site=input_files.site ) ) freesurfer_dir = freesurfer_dirs.pop() freesurfer = [f for f in input_files.files['freesurfer'] if f.startswith(freesurfer_dir)] # Organize the files by session ID ftypes = ['dwi', 'bvec', 'bval', 'epi_ap', 'epi_pa'] sess_ids = {ft: {get_sess_id(fn) for fn in input_files.files[ft]} for ft in ftypes} if not all([s == list(sess_ids.values())[0] for s in sess_ids.values()]): mod_logger.warning( 'Session numbers are inconsistent for subject {sub:s} at site ' '{site:s}. Sess-IDs: {sess_ids!s}.\nFiles: {files!s}\n\n'.format( sub=input_files.subject, site=input_files.site, sess_ids=sess_ids, files={k: (v) for k, v in input_files.files.items() if k in ['dwi', 'bvec', 'bval', 'epi_ap', 'epi_pa']}, ) ) return [InputFilesWithSession( subject=input_files.subject, site=input_files.site, session=None, files=None, file_type=None, )] # We just confirmed that all of the session ID sets are equal so we can # pop one set of session IDs off of `sess_ids` and use it from now on sess_ids = sess_ids[ftypes[0]] # Collect files by session ID and then file type files_by_session = { sess: { ft: [ f for f in input_files.files[ft] if get_sess_id(f) == sess ] for ft in ftypes } for sess in sess_ids } output_files = [] # Loop over each session ID for session, files in files_by_session.items(): # Confirm that the subject has an equal number of each type of file n_files = {k: len(v) for k, v in files.items() if k in ['dwi', 'bvec', 'bval', 'epi_ap', 'epi_pa']} if len(set(n_files.values())) != 1: mod_logger.warning( 'The number of files is inconsistent for subject {sub:s} at ' 'site {site:s}. The file numbers are {n_files!s}\n\n'.format( sub=input_files.subject, site=input_files.site, n_files=n_files ) ) output_files.append(InputFilesWithSession( subject=input_files.subject, site=input_files.site, session=None, files=None, file_type=None, )) elif len(set(n_files.values())) == 1: # There is only one set of files in this session. Append to output. if session == 'null': output_session = 'sess-01' if assign_empty_sessions else None else: output_session = session output_files.append(InputFilesWithSession( subject=input_files.subject, site=input_files.site, session=output_session, files=dict( dwi=input_files.files['dwi'], bvec=input_files.files['bvec'], bval=input_files.files['bval'], epi_ap=input_files.files['epi_ap'], epi_pa=input_files.files['epi_pa'], t1w=t1w, freesurfer=freesurfer, ), file_type=input_files.file_type, )) else: # There are multiple copies of files for this one session ID. if multiples_policy == 'concatenate': # The multiple copies represent one session and should be # concatenated raise NotImplementedError('Concatenation of multiples not yet ' 'implemented.') else: # The multiple copies represent multiple sessions and # should be further subdivided into sessions raise NotImplementedError('Session subdivision not yet ' 'implemented.') return output_files def get_all_s3_registers(prefix, sites, bucket='fcp-indi'): """ Parameters ---------- prefix : string S3 prefix designating the S3 "directory" in which to search. Do not include the site ID in the prefix. sites : sequence of strings Site IDs from which to collect raw data bucket : string AWS S3 bucket in which to search Returns ------- dict dict where the keys are site IDs and the values are list of `InputFiles` namedtuples for each valid subject at that site """ subjects = {} for site in sites: # Get all S3 keys keys = get_s3_keys(prefix=prefix, site=site, bucket='fcp-indi') # Get all registers (without the AP/PA directions) regs = keys_to_subject_register(keys=keys, prefix=prefix, site=site) # Assign the fmap files to either AP/PA regs_pa_ap = [ determine_directions(input_files=reg, input_type='s3', bucket=bucket, metadata_source='json', json_key='PhaseEncodingDirection', ap_value='j-', pa_value='j') for reg in regs ] # Separate each subject register into different sessions regs_nested = [ separate_sessions(reg, multiples_policy='sessions', assign_empty_sessions=True) for reg in regs_pa_ap ] # But `separate_sessions` returns a list of namedtuples # so `regs_nested` is nested and needs to be flattened regs_flat = [item for sublist in regs_nested for item in sublist] subjects[site] = [reg for reg in regs_flat if reg.files is not None] return subjects
[ 37811, 198, 24629, 2733, 284, 4321, 1672, 1366, 422, 1171, 38072, 13, 198, 198, 37811, 198, 6738, 764, 8692, 1330, 23412, 25876, 11, 23412, 25876, 3152, 36044, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 1034, 198, 6738, 3108, 8019, 1330, 10644, 628, 628, 198, 198, 4299, 651, 62, 82, 18, 62, 30238, 7, 32796, 62, 312, 11, 2524, 11, 8246, 62, 13083, 11, 16124, 62, 13083, 2599, 198, 220, 220, 220, 37227, 3855, 262, 311, 18, 8251, 329, 257, 2060, 2426, 338, 5128, 3696, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2426, 62, 312, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 15540, 4522, 319, 543, 284, 8106, 262, 264, 18, 8251, 628, 220, 220, 220, 2524, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 14413, 4522, 422, 543, 284, 2824, 8246, 1366, 628, 220, 220, 220, 8246, 62, 13083, 1058, 8379, 198, 220, 220, 220, 220, 220, 220, 220, 45835, 286, 8246, 1366, 264, 18, 8251, 284, 8106, 628, 220, 220, 220, 16124, 62, 13083, 1058, 8379, 198, 220, 220, 220, 220, 220, 220, 220, 45835, 286, 27255, 1366, 264, 18, 8251, 284, 8106, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 23412, 25876, 3706, 83, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 477, 43119, 264, 18, 8251, 389, 1944, 11, 1441, 257, 3706, 83, 29291, 286, 198, 220, 220, 220, 220, 220, 220, 220, 264, 18, 8251, 13, 15323, 11, 779, 262, 4277, 6045, 3815, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3497, 691, 262, 264, 18, 8251, 11188, 284, 428, 2426, 62, 312, 198, 220, 220, 220, 850, 62, 67, 37686, 62, 16624, 796, 685, 74, 329, 479, 287, 8246, 62, 13083, 611, 2426, 62, 312, 287, 479, 290, 31051, 67, 37686, 14, 6, 287, 479, 60, 198, 220, 220, 220, 850, 62, 69, 8899, 62, 16624, 796, 685, 74, 329, 479, 287, 8246, 62, 13083, 611, 2426, 62, 312, 287, 479, 290, 31051, 69, 8899, 14, 6, 287, 479, 60, 198, 220, 220, 220, 850, 62, 1082, 452, 62, 16624, 796, 685, 74, 329, 479, 287, 16124, 62, 13083, 611, 2426, 62, 312, 287, 479, 60, 628, 220, 220, 220, 1303, 3497, 262, 288, 37686, 3696, 11, 275, 35138, 3696, 11, 290, 275, 2100, 3696, 198, 220, 220, 220, 288, 37686, 796, 685, 69, 329, 277, 287, 850, 62, 67, 37686, 62, 16624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 13, 437, 2032, 342, 7, 4458, 77, 4178, 13, 34586, 11537, 290, 705, 5446, 2246, 6217, 6, 407, 287, 277, 60, 198, 220, 220, 220, 275, 35138, 796, 685, 69, 329, 277, 287, 850, 62, 67, 37686, 62, 16624, 611, 277, 13, 437, 2032, 342, 7, 4458, 65, 35138, 11537, 60, 198, 220, 220, 220, 275, 2100, 796, 685, 69, 329, 277, 287, 850, 62, 67, 37686, 62, 16624, 611, 277, 13, 437, 2032, 342, 7, 4458, 65, 2100, 11537, 60, 198, 220, 220, 220, 2462, 72, 62, 77, 4178, 796, 685, 69, 329, 277, 287, 850, 62, 69, 8899, 62, 16624, 611, 277, 13, 437, 2032, 342, 10786, 538, 72, 13, 77, 4178, 13, 34586, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 705, 69, 40952, 6, 407, 287, 277, 60, 198, 220, 220, 220, 2462, 72, 62, 17752, 796, 685, 69, 329, 277, 287, 850, 62, 69, 8899, 62, 16624, 611, 277, 13, 437, 2032, 342, 10786, 538, 72, 13, 17752, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 705, 69, 40952, 6, 407, 287, 277, 60, 198, 220, 220, 220, 256, 16, 86, 796, 685, 69, 329, 277, 287, 850, 62, 1082, 452, 62, 16624, 611, 277, 13, 437, 2032, 342, 10786, 14, 51, 16, 86, 13, 77, 4178, 13, 34586, 11537, 60, 198, 220, 220, 220, 2030, 274, 333, 2232, 796, 685, 69, 329, 277, 287, 850, 62, 1082, 452, 62, 16624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31051, 69, 6037, 333, 2232, 14, 6, 287, 277, 60, 628, 220, 220, 220, 1303, 5765, 3872, 1272, 286, 1729, 12, 28920, 8341, 284, 11767, 326, 477, 198, 220, 220, 220, 1303, 286, 262, 2672, 662, 42180, 3696, 2152, 287, 4600, 82, 18, 62, 13083, 63, 198, 220, 220, 220, 1303, 16926, 46, 25, 1002, 617, 286, 262, 3696, 389, 4814, 11, 804, 18485, 510, 287, 262, 8619, 198, 220, 220, 220, 1303, 16926, 46, 25, 4645, 284, 766, 611, 612, 389, 3696, 356, 815, 16955, 198, 220, 220, 220, 611, 477, 26933, 67, 37686, 11, 275, 2100, 11, 275, 35138, 11, 2462, 72, 62, 77, 4178, 11, 2462, 72, 62, 17752, 11, 256, 16, 86, 11, 2030, 274, 333, 2232, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23412, 25876, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 32796, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 37686, 28, 67, 37686, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 35138, 28, 65, 35138, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 2100, 28, 65, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2462, 72, 62, 77, 4178, 28, 538, 72, 62, 77, 4178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2462, 72, 62, 17752, 28, 538, 72, 62, 17752, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 274, 333, 2232, 28, 69, 6037, 333, 2232, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 86, 28, 83, 16, 86, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 11639, 82, 18, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23412, 25876, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 32796, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 11639, 82, 18, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4299, 651, 62, 82, 18, 62, 13083, 7, 40290, 11, 264, 18, 62, 16366, 11, 19236, 11639, 69, 13155, 12, 521, 72, 6, 2599, 198, 220, 220, 220, 37227, 9781, 30227, 477, 8251, 287, 281, 311, 18, 19236, 326, 2872, 262, 21231, 290, 2524, 4522, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 21231, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 21231, 1486, 803, 262, 311, 18, 366, 34945, 1, 287, 543, 284, 2989, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 407, 2291, 262, 2524, 4522, 287, 262, 21231, 13, 628, 220, 220, 220, 264, 18, 62, 16366, 1058, 275, 2069, 18, 5456, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 422, 262, 651, 62, 82, 18, 62, 16366, 3419, 2163, 628, 220, 220, 220, 19236, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 30865, 311, 18, 19236, 287, 543, 284, 2989, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1439, 262, 8251, 12336, 262, 21231, 290, 2524, 287, 262, 311, 18, 19236, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 24390, 23418, 25462, 24632, 287, 21231, 198, 220, 220, 220, 21231, 796, 21231, 13, 81, 36311, 10786, 14, 11537, 628, 220, 220, 220, 2882, 796, 264, 18, 62, 16366, 13, 4868, 62, 48205, 62, 85, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 48353, 28, 27041, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3771, 13049, 28, 40290, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 685, 67, 17816, 9218, 20520, 329, 288, 287, 2882, 13, 1136, 10786, 15842, 11537, 60, 198, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1858, 389, 645, 2426, 3696, 287, 262, 311, 18, 19236, 351, 21231, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 79, 13049, 25, 82, 92, 4458, 18982, 7, 79, 13049, 28, 40290, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 981, 2882, 17816, 3792, 2898, 19524, 515, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 264, 18, 62, 16366, 13, 4868, 62, 48205, 62, 85, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48353, 28, 27041, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3771, 13049, 28, 40290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6389, 2288, 30642, 28, 26209, 17816, 10019, 17875, 2288, 30642, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 8251, 15853, 685, 67, 17816, 9218, 20520, 329, 288, 287, 2882, 13, 1136, 10786, 15842, 11537, 60, 628, 220, 220, 220, 1441, 8251, 628, 198, 4299, 8251, 62, 1462, 62, 32796, 62, 30238, 7, 13083, 11, 21231, 11, 2524, 2599, 198, 220, 220, 220, 37227, 22417, 311, 18, 8251, 1912, 319, 1366, 11500, 290, 1441, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 8251, 1058, 8379, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 286, 311, 18, 8251, 628, 220, 220, 220, 21231, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 21231, 1486, 803, 262, 311, 18, 366, 34945, 1, 287, 543, 284, 2989, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 407, 2291, 262, 2524, 4522, 287, 262, 21231, 13, 628, 220, 220, 220, 2524, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 14413, 4522, 422, 543, 284, 2824, 8246, 1366, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 4600, 20560, 25876, 63, 3706, 28047, 2374, 329, 1123, 4938, 2426, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 16124, 62, 13083, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 479, 329, 479, 287, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 13, 9688, 2032, 342, 7, 40290, 1343, 31051, 6, 1343, 2524, 1343, 31051, 1082, 452, 2929, 14, 7266, 12, 11537, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 8246, 62, 13083, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 479, 329, 479, 287, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 13, 9688, 2032, 342, 7, 40290, 1343, 31051, 6, 1343, 2524, 1343, 31051, 7266, 12, 11537, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 6352, 62, 4480, 62, 67, 37686, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 32796, 62, 312, 7, 74, 8, 329, 479, 287, 8246, 62, 13083, 198, 220, 220, 220, 220, 220, 220, 220, 611, 31051, 67, 37686, 14, 6, 287, 479, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 6352, 62, 4480, 62, 538, 72, 62, 77, 4178, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 32796, 62, 312, 7, 74, 8, 329, 479, 287, 8246, 62, 13083, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 13, 437, 2032, 342, 10786, 538, 72, 13, 77, 4178, 13, 34586, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 31051, 69, 8899, 14, 6, 287, 479, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 705, 69, 40952, 6, 407, 287, 479, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 6352, 62, 4480, 62, 538, 72, 62, 17752, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 32796, 62, 312, 7, 74, 8, 329, 479, 287, 8246, 62, 13083, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 13, 437, 2032, 342, 10786, 538, 72, 13, 17752, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 31051, 69, 8899, 14, 6, 287, 479, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 705, 69, 40952, 6, 407, 287, 479, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 6352, 62, 4480, 62, 69, 6037, 333, 2232, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 32796, 62, 312, 7, 74, 8, 329, 479, 287, 16124, 62, 13083, 198, 220, 220, 220, 220, 220, 220, 220, 611, 31051, 69, 6037, 333, 2232, 14, 6, 287, 479, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 6352, 62, 4480, 62, 83, 16, 86, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 32796, 62, 312, 7, 74, 8, 329, 479, 287, 16124, 62, 13083, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 13, 437, 2032, 342, 10786, 51, 16, 86, 13, 77, 4178, 13, 34586, 11537, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 4938, 62, 32796, 82, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6352, 62, 4480, 62, 67, 37686, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1222, 6352, 62, 4480, 62, 538, 72, 62, 77, 4178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1222, 6352, 62, 4480, 62, 538, 72, 62, 17752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1222, 6352, 62, 4480, 62, 69, 6037, 333, 2232, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1222, 6352, 62, 4480, 62, 83, 16, 86, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 264, 18, 62, 2301, 6223, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 82, 18, 62, 30238, 7, 32796, 62, 312, 28, 82, 11, 2524, 28, 15654, 11, 8246, 62, 13083, 28, 1831, 62, 13083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16124, 62, 13083, 28, 1082, 452, 62, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 4938, 62, 32796, 82, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 264, 18, 62, 2301, 6223, 796, 1351, 7, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 850, 25, 850, 13, 12102, 11, 198, 220, 220, 220, 220, 220, 220, 220, 264, 18, 62, 2301, 6223, 198, 220, 220, 220, 15306, 628, 220, 220, 220, 1441, 264, 18, 62, 2301, 6223, 628, 198, 4299, 4321, 62, 30238, 7, 32796, 62, 13083, 11, 264, 18, 62, 16366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19236, 11639, 69, 13155, 12, 521, 72, 3256, 8619, 28, 4458, 14, 15414, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49312, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2426, 62, 13083, 1058, 23412, 25876, 3706, 83, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 264, 18, 8251, 8574, 287, 3706, 83, 29291, 13, 12039, 423, 262, 7032, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32796, 10354, 2426, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15654, 10354, 2524, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16624, 10354, 22155, 286, 311, 18, 8251, 628, 220, 220, 220, 19236, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 19236, 422, 543, 284, 7925, 3696, 628, 220, 220, 220, 8619, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 10714, 8619, 284, 543, 284, 3613, 3696, 628, 220, 220, 220, 49312, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 19762, 284, 49312, 4683, 3696, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 3696, 1058, 23412, 25876, 3706, 83, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 2393, 13532, 8574, 287, 3706, 83, 29291, 13, 7875, 262, 7032, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32796, 10354, 2426, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15654, 6, 1058, 2524, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12102, 6, 1058, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16624, 6, 1058, 1957, 2393, 13532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7753, 62, 4906, 6, 1058, 705, 12001, 3256, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2426, 796, 2426, 62, 13083, 13, 32796, 198, 220, 220, 220, 2524, 796, 2426, 62, 13083, 13, 15654, 628, 220, 220, 220, 5128, 62, 16624, 796, 23412, 25876, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 25, 685, 404, 13, 397, 2777, 776, 7, 404, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 11, 2524, 11, 279, 13, 35312, 10786, 14, 6, 1343, 2524, 1343, 31051, 11537, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 329, 279, 287, 410, 60, 329, 479, 11, 410, 287, 2426, 62, 13083, 13, 16624, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 11639, 12001, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 264, 18, 13083, 796, 2426, 62, 13083, 13, 16624, 198, 220, 220, 220, 3696, 796, 5128, 62, 16624, 13, 16624, 198, 220, 220, 220, 329, 277, 4906, 287, 264, 18, 13083, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 82, 18, 13083, 58, 701, 2981, 4357, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4321, 62, 6738, 62, 82, 18, 7, 69, 3672, 62, 28, 16624, 58, 701, 2981, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19236, 62, 28, 27041, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 28, 82, 18, 13083, 58, 701, 2981, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 477, 7, 271, 39098, 7, 87, 11, 965, 8, 329, 2124, 287, 264, 18, 13083, 58, 701, 2981, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 277, 3672, 287, 19974, 7, 82, 18, 13083, 58, 701, 2981, 4357, 3696, 58, 701, 2981, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4321, 62, 6738, 62, 82, 18, 7, 69, 3672, 62, 28, 69, 3672, 11, 19236, 62, 28, 27041, 316, 11, 1994, 62, 28, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1212, 2426, 1391, 7266, 25, 82, 92, 468, 1391, 701, 2981, 25, 82, 92, 311, 18, 8251, 326, 389, 6159, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37336, 4249, 257, 8379, 286, 13042, 13, 383, 311, 18, 8251, 389, 1391, 13083, 0, 82, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 7266, 28, 32796, 11, 277, 4906, 28, 701, 2981, 11, 8251, 28, 82, 18, 13083, 58, 701, 2981, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 5128, 62, 16624, 628, 198, 4299, 5004, 62, 12942, 507, 7, 15414, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 4906, 11639, 82, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19236, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 10459, 11639, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2539, 11639, 35645, 27195, 7656, 35, 4154, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2471, 62, 8367, 11639, 73, 12, 3256, 14187, 62, 8367, 11639, 73, 6, 2599, 198, 220, 220, 220, 37227, 35, 2357, 3810, 4571, 37250, 2969, 3256, 705, 4537, 20520, 286, 2060, 2426, 338, 412, 11901, 47803, 3696, 628, 220, 220, 220, 5765, 2035, 20150, 287, 3917, 33918, 2393, 393, 29472, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 5128, 62, 16624, 1058, 23412, 25876, 3706, 83, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1957, 5128, 3696, 329, 262, 2426, 628, 220, 220, 220, 5128, 62, 4906, 1058, 366, 82, 18, 1, 393, 366, 12001, 1600, 4277, 2625, 82, 18, 1, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4067, 286, 262, 5128, 3696, 11, 1957, 393, 319, 311, 18, 628, 220, 220, 220, 19236, 1058, 4731, 393, 6045, 11, 4277, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 48353, 810, 262, 5128, 3696, 389, 5140, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 5128, 62, 4906, 6624, 705, 82, 18, 3256, 788, 19236, 1276, 407, 307, 6045, 628, 220, 220, 220, 20150, 62, 10459, 1058, 366, 17752, 1, 393, 366, 34345, 1600, 4277, 2625, 17752, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 366, 34345, 553, 804, 329, 262, 4571, 287, 262, 29472, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4306, 11, 779, 262, 33918, 2393, 290, 262, 584, 10007, 628, 220, 220, 220, 33918, 62, 2539, 1058, 4731, 11, 4277, 2625, 35645, 27195, 7656, 35, 4154, 1, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1994, 326, 7000, 262, 4571, 1321, 628, 220, 220, 220, 2471, 62, 8367, 1058, 4731, 11, 4277, 2625, 73, 21215, 198, 220, 220, 220, 220, 220, 220, 220, 3395, 14706, 1988, 284, 11602, 351, 26672, 12, 2969, 628, 220, 220, 220, 14187, 62, 8367, 1058, 4731, 11, 4277, 2625, 73, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3395, 14706, 1988, 284, 11602, 351, 26672, 12, 4537, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 23412, 25876, 3706, 83, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 23412, 25876, 3706, 83, 29291, 810, 477, 7032, 2872, 262, 4600, 15414, 62, 16624, 63, 198, 220, 220, 220, 220, 220, 220, 220, 3706, 83, 29291, 2845, 326, 287, 262, 4600, 16624, 63, 2214, 11, 262, 366, 538, 72, 62, 77, 4178, 1, 290, 198, 220, 220, 220, 220, 220, 220, 220, 366, 538, 72, 62, 17752, 1, 8251, 423, 587, 6928, 351, 366, 538, 72, 62, 499, 1, 290, 366, 538, 72, 62, 8957, 526, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 20150, 62, 10459, 407, 287, 37250, 34345, 3256, 705, 17752, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 38993, 62, 10459, 1276, 307, 366, 34345, 1, 393, 366, 17752, 1911, 11537, 628, 220, 220, 220, 611, 5128, 62, 4906, 407, 287, 37250, 82, 18, 3256, 705, 12001, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 15414, 62, 4906, 1276, 307, 366, 12001, 1, 393, 366, 82, 18, 1911, 11537, 628, 220, 220, 220, 611, 5128, 62, 4906, 6624, 705, 82, 18, 6, 290, 19236, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 1532, 5128, 62, 4906, 318, 366, 82, 18, 553, 345, 1276, 5127, 257, 19236, 2637, 8, 628, 220, 220, 220, 2462, 72, 62, 16624, 796, 5128, 62, 16624, 13, 16624, 17816, 538, 72, 62, 77, 4178, 20520, 198, 220, 220, 220, 33918, 62, 16624, 796, 5128, 62, 16624, 13, 16624, 17816, 538, 72, 62, 17752, 20520, 198, 220, 220, 220, 611, 20150, 62, 10459, 6624, 705, 34345, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2471, 62, 16624, 796, 685, 69, 329, 277, 287, 2462, 72, 62, 16624, 611, 705, 15908, 12, 2969, 6, 287, 277, 60, 198, 220, 220, 220, 220, 220, 220, 220, 14187, 62, 16624, 796, 685, 69, 329, 277, 287, 2462, 72, 62, 16624, 611, 705, 15908, 12, 4537, 6, 287, 277, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7326, 2533, 326, 1123, 47803, 2393, 468, 257, 11188, 33918, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 62, 17752, 796, 900, 26933, 69, 13, 33491, 7, 4458, 77, 4178, 13, 34586, 3256, 45302, 17752, 11537, 329, 277, 287, 2462, 72, 62, 16624, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 900, 7, 17752, 62, 16624, 8, 14512, 2672, 62, 17752, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1858, 389, 47803, 3696, 1231, 11188, 33918, 3696, 13, 775, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47904, 284, 1064, 262, 1708, 2938, 3696, 25, 1391, 16624, 0, 82, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 16624, 28, 35827, 62, 17752, 532, 900, 7, 17752, 62, 16624, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2471, 62, 16624, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 14187, 62, 16624, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 7753, 287, 33918, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 796, 651, 62, 17752, 7, 73, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4571, 796, 20150, 13, 1136, 7, 17752, 62, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4571, 6624, 2471, 62, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 15908, 12, 4537, 6, 287, 474, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 62, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 464, 1994, 1391, 2539, 25, 82, 92, 34758, 2100, 25, 82, 92, 857, 407, 2872, 262, 4571, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47811, 276, 416, 262, 29472, 1391, 22184, 25, 82, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 28, 17752, 62, 2539, 11, 1188, 28, 37295, 11, 24714, 28, 73, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2471, 62, 16624, 13, 33295, 7, 73, 7753, 13, 33491, 7, 4458, 17752, 3256, 45302, 77, 4178, 13, 34586, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4571, 6624, 14187, 62, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 15908, 12, 2969, 6, 287, 474, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 62, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 464, 1994, 1391, 2539, 25, 82, 92, 34758, 2100, 25, 82, 92, 857, 407, 2872, 262, 4571, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47811, 276, 416, 262, 29472, 1391, 22184, 25, 82, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 28, 17752, 62, 2539, 11, 1188, 28, 37295, 11, 24714, 28, 73, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14187, 62, 16624, 13, 33295, 7, 73, 7753, 13, 33491, 7, 4458, 17752, 3256, 45302, 77, 4178, 13, 34586, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4571, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 62, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 464, 1994, 1391, 2539, 25, 82, 92, 857, 407, 2152, 287, 2393, 1391, 73, 7753, 25, 82, 27422, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37, 9221, 736, 319, 29472, 284, 5004, 4571, 1483, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 59, 77, 59, 77, 4458, 18982, 7, 2539, 28, 17752, 62, 2539, 11, 474, 7753, 28, 73, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 15908, 12, 2969, 6, 287, 474, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2471, 62, 16624, 13, 33295, 7, 73, 7753, 13, 33491, 7, 4458, 17752, 3256, 45302, 77, 4178, 13, 34586, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 15908, 12, 4537, 6, 287, 474, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14187, 62, 16624, 13, 33295, 7, 73, 7753, 13, 33491, 7, 4458, 17752, 3256, 45302, 77, 4178, 13, 34586, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 464, 1994, 1391, 2539, 25, 82, 92, 857, 407, 2152, 287, 2393, 1391, 73, 7753, 25, 82, 92, 290, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1169, 4571, 1483, 714, 407, 307, 41240, 422, 262, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7753, 1438, 2637, 13, 18982, 7, 2539, 28, 17752, 62, 2539, 11, 474, 7753, 28, 73, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 62, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 464, 20150, 287, 2393, 1391, 73, 7753, 25, 82, 92, 857, 407, 2872, 262, 26672, 12, 4537, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 273, 26672, 12, 2969, 3815, 326, 345, 2810, 13, 1391, 2539, 25, 82, 92, 796, 1391, 2100, 25, 82, 27422, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37, 9221, 736, 319, 29472, 284, 5004, 4571, 1483, 13, 59, 77, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 73, 7753, 28, 73, 7753, 11, 1994, 28, 17752, 62, 2539, 11, 1188, 28, 37295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 15908, 12, 2969, 6, 287, 474, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2471, 62, 16624, 13, 33295, 7, 73, 7753, 13, 33491, 7, 4458, 17752, 3256, 45302, 77, 4178, 13, 34586, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 15908, 12, 4537, 6, 287, 474, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14187, 62, 16624, 13, 33295, 7, 73, 7753, 13, 33491, 7, 4458, 17752, 3256, 45302, 77, 4178, 13, 34586, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 464, 20150, 329, 1994, 1391, 2539, 25, 82, 92, 287, 2393, 1391, 73, 7753, 25, 82, 92, 857, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1662, 2872, 262, 26672, 12, 4537, 393, 26672, 12, 2969, 3815, 326, 345, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41279, 13, 1391, 2539, 25, 82, 92, 796, 1391, 2100, 25, 82, 27422, 843, 262, 4571, 1483, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24089, 407, 307, 41240, 422, 262, 2393, 1438, 2637, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 28, 17752, 62, 2539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 7753, 28, 73, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 28, 37295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 220, 220, 3696, 796, 4866, 13, 22089, 30073, 7, 15414, 62, 16624, 13, 16624, 8, 198, 220, 220, 220, 1619, 3696, 17816, 538, 72, 62, 77, 4178, 20520, 198, 220, 220, 220, 1619, 3696, 17816, 538, 72, 62, 17752, 20520, 198, 220, 220, 220, 3696, 17816, 538, 72, 62, 499, 20520, 796, 2471, 62, 16624, 198, 220, 220, 220, 3696, 17816, 538, 72, 62, 8957, 20520, 796, 14187, 62, 16624, 628, 220, 220, 220, 1441, 23412, 25876, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 15414, 62, 16624, 13, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15414, 62, 16624, 13, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 28, 15414, 62, 16624, 13, 12102, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 28, 15414, 62, 16624, 13, 7753, 62, 4906, 198, 220, 220, 220, 1267, 628, 198, 4299, 4553, 62, 82, 6202, 7, 15414, 62, 16624, 11, 5021, 2374, 62, 30586, 11639, 82, 6202, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8333, 62, 28920, 62, 82, 6202, 28, 17821, 2599, 198, 220, 220, 220, 37227, 19117, 30748, 5128, 2393, 7881, 656, 1180, 10991, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 5128, 62, 16624, 1058, 23412, 25876, 3706, 83, 29291, 628, 220, 220, 220, 5021, 2374, 62, 30586, 1058, 366, 82, 6202, 1, 393, 366, 1102, 9246, 268, 378, 1, 198, 220, 220, 220, 220, 220, 220, 220, 19762, 326, 35054, 703, 284, 5412, 3294, 3696, 287, 257, 6246, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 366, 82, 6202, 553, 2190, 5021, 2374, 355, 1180, 10991, 290, 8333, 198, 220, 220, 220, 220, 220, 220, 220, 284, 649, 6246, 32373, 13, 1002, 366, 1102, 9246, 268, 378, 553, 1673, 36686, 378, 5021, 2374, 656, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2060, 6246, 628, 220, 220, 220, 8333, 62, 28920, 62, 82, 6202, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 8333, 6246, 32373, 284, 3696, 1231, 257, 6246, 4522, 287, 198, 220, 220, 220, 220, 220, 220, 220, 511, 3108, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1351, 286, 23412, 25876, 3706, 28047, 2374, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 23412, 25876, 3706, 28047, 2374, 329, 1123, 6246, 4522, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5021, 2374, 62, 30586, 407, 287, 37250, 82, 6202, 3256, 705, 1102, 9246, 268, 378, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 63, 41684, 2374, 62, 30586, 63, 1276, 307, 2035, 366, 82, 6202, 1, 393, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 1102, 9246, 268, 378, 1, 11537, 628, 220, 220, 220, 1303, 7214, 691, 262, 717, 286, 262, 309, 16, 54, 47803, 3696, 198, 220, 220, 220, 611, 18896, 7, 15414, 62, 16624, 13, 16624, 17816, 83, 16, 86, 6, 12962, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 953, 62, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21077, 517, 621, 530, 309, 16, 54, 2393, 329, 2426, 1391, 7266, 25, 82, 92, 379, 2524, 1391, 15654, 25, 82, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45302, 8444, 13493, 262, 1854, 13, 59, 77, 59, 77, 4458, 18982, 7, 7266, 28, 15414, 62, 16624, 13, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15414, 62, 16624, 13, 15654, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 256, 16, 86, 796, 5128, 62, 16624, 13, 16624, 17816, 83, 16, 86, 20520, 628, 220, 220, 220, 1303, 7214, 691, 262, 717, 2030, 274, 333, 2232, 8619, 198, 220, 220, 220, 2030, 274, 333, 2232, 62, 15908, 82, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 35312, 10786, 14, 69, 6037, 333, 2232, 14, 11537, 58, 15, 60, 329, 277, 287, 5128, 62, 16624, 13, 16624, 17816, 69, 6037, 333, 2232, 20520, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 611, 18896, 7, 69, 6037, 333, 2232, 62, 15908, 82, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 953, 62, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21077, 517, 621, 530, 2030, 274, 333, 2232, 26672, 329, 2426, 1391, 7266, 25, 82, 92, 379, 2524, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 15654, 25, 82, 27422, 8444, 13493, 262, 1854, 13, 59, 77, 59, 77, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 28, 15414, 62, 16624, 13, 32796, 11, 2524, 28, 15414, 62, 16624, 13, 15654, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2030, 274, 333, 2232, 62, 15908, 796, 2030, 274, 333, 2232, 62, 15908, 82, 13, 12924, 3419, 198, 220, 220, 220, 2030, 274, 333, 2232, 796, 685, 69, 329, 277, 287, 5128, 62, 16624, 13, 16624, 17816, 69, 6037, 333, 2232, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 13, 9688, 2032, 342, 7, 69, 6037, 333, 2232, 62, 15908, 15437, 628, 220, 220, 220, 1303, 7221, 1096, 262, 3696, 416, 6246, 4522, 628, 220, 220, 220, 277, 19199, 796, 37250, 67, 37686, 3256, 705, 65, 35138, 3256, 705, 65, 2100, 3256, 705, 538, 72, 62, 499, 3256, 705, 538, 72, 62, 8957, 20520, 628, 220, 220, 220, 264, 408, 62, 2340, 796, 1391, 701, 25, 1391, 1136, 62, 82, 408, 62, 312, 7, 22184, 8, 329, 24714, 287, 5128, 62, 16624, 13, 16624, 58, 701, 48999, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10117, 287, 277, 19199, 92, 628, 220, 220, 220, 611, 407, 477, 26933, 82, 6624, 1351, 7, 82, 408, 62, 2340, 13, 27160, 28955, 58, 15, 60, 329, 264, 287, 264, 408, 62, 2340, 13, 27160, 3419, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 953, 62, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36044, 3146, 389, 18326, 329, 2426, 1391, 7266, 25, 82, 92, 379, 2524, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 15654, 25, 82, 27422, 311, 408, 12, 47954, 25, 1391, 82, 408, 62, 2340, 0, 82, 27422, 59, 77, 25876, 25, 1391, 16624, 0, 82, 32239, 77, 59, 77, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 28, 15414, 62, 16624, 13, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15414, 62, 16624, 13, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 62, 2340, 28, 82, 408, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 34758, 74, 25, 357, 85, 8, 329, 479, 11, 410, 287, 5128, 62, 16624, 13, 16624, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 37250, 67, 37686, 3256, 705, 65, 35138, 3256, 705, 65, 2100, 3256, 705, 538, 72, 62, 499, 3256, 705, 538, 72, 62, 8957, 20520, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 20560, 25876, 3152, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 15414, 62, 16624, 13, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15414, 62, 16624, 13, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 48600, 628, 220, 220, 220, 1303, 775, 655, 4999, 326, 477, 286, 262, 6246, 4522, 5621, 389, 4961, 523, 356, 460, 198, 220, 220, 220, 1303, 1461, 530, 900, 286, 6246, 32373, 572, 286, 4600, 82, 408, 62, 2340, 63, 290, 779, 340, 422, 783, 319, 198, 220, 220, 220, 264, 408, 62, 2340, 796, 264, 408, 62, 2340, 58, 701, 9497, 58, 15, 11907, 628, 220, 220, 220, 1303, 9745, 3696, 416, 6246, 4522, 290, 788, 2393, 2099, 198, 220, 220, 220, 3696, 62, 1525, 62, 29891, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 264, 408, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10117, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 329, 277, 287, 5128, 62, 16624, 13, 16624, 58, 701, 60, 611, 651, 62, 82, 408, 62, 312, 7, 69, 8, 6624, 264, 408, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10117, 287, 277, 19199, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 329, 264, 408, 287, 264, 408, 62, 2340, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 5072, 62, 16624, 796, 17635, 628, 220, 220, 220, 1303, 26304, 625, 1123, 6246, 4522, 198, 220, 220, 220, 329, 6246, 11, 3696, 287, 3696, 62, 1525, 62, 29891, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7326, 2533, 326, 262, 2426, 468, 281, 4961, 1271, 286, 1123, 2099, 286, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 16624, 796, 1391, 74, 25, 18896, 7, 85, 8, 329, 479, 11, 410, 287, 3696, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 37250, 67, 37686, 3256, 705, 65, 35138, 3256, 705, 65, 2100, 3256, 705, 538, 72, 62, 499, 3256, 705, 538, 72, 62, 8957, 20520, 92, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2617, 7, 77, 62, 16624, 13, 27160, 3419, 4008, 14512, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 62, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 464, 1271, 286, 3696, 318, 18326, 329, 2426, 1391, 7266, 25, 82, 92, 379, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15654, 1391, 15654, 25, 82, 27422, 383, 2393, 3146, 389, 1391, 77, 62, 16624, 0, 82, 32239, 77, 59, 77, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 28, 15414, 62, 16624, 13, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15414, 62, 16624, 13, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 16624, 28, 77, 62, 16624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 16624, 13, 33295, 7, 20560, 25876, 3152, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 15414, 62, 16624, 13, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15414, 62, 16624, 13, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 2617, 7, 77, 62, 16624, 13, 27160, 3419, 4008, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1318, 318, 691, 530, 900, 286, 3696, 287, 428, 6246, 13, 2034, 437, 284, 5072, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 6624, 705, 8423, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 29891, 796, 705, 82, 408, 12, 486, 6, 611, 8333, 62, 28920, 62, 82, 6202, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 29891, 796, 6246, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 16624, 13, 33295, 7, 20560, 25876, 3152, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 28, 15414, 62, 16624, 13, 32796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 28, 15414, 62, 16624, 13, 15654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 28, 22915, 62, 29891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 37686, 28, 15414, 62, 16624, 13, 16624, 17816, 67, 37686, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 35138, 28, 15414, 62, 16624, 13, 16624, 17816, 65, 35138, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 2100, 28, 15414, 62, 16624, 13, 16624, 17816, 65, 2100, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2462, 72, 62, 499, 28, 15414, 62, 16624, 13, 16624, 17816, 538, 72, 62, 499, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2462, 72, 62, 8957, 28, 15414, 62, 16624, 13, 16624, 17816, 538, 72, 62, 8957, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 16, 86, 28, 83, 16, 86, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 274, 333, 2232, 28, 69, 6037, 333, 2232, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4906, 28, 15414, 62, 16624, 13, 7753, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1318, 389, 3294, 9088, 286, 3696, 329, 428, 530, 6246, 4522, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5021, 2374, 62, 30586, 6624, 705, 1102, 9246, 268, 378, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 3294, 9088, 2380, 530, 6246, 290, 815, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1673, 36686, 515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 10786, 3103, 9246, 268, 341, 286, 5021, 2374, 407, 1865, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 1154, 12061, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 3294, 9088, 2380, 3294, 10991, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 815, 307, 2252, 45944, 1384, 656, 10991, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 10786, 36044, 29648, 407, 1865, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 320, 1154, 12061, 2637, 8, 628, 220, 220, 220, 1441, 5072, 62, 16624, 628, 198, 4299, 651, 62, 439, 62, 82, 18, 62, 2301, 6223, 7, 40290, 11, 5043, 11, 19236, 11639, 69, 13155, 12, 521, 72, 6, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 21231, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 21231, 1486, 803, 262, 311, 18, 366, 34945, 1, 287, 543, 284, 2989, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 407, 2291, 262, 2524, 4522, 287, 262, 21231, 13, 628, 220, 220, 220, 5043, 1058, 8379, 286, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 14413, 32373, 422, 543, 284, 2824, 8246, 1366, 628, 220, 220, 220, 19236, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 30865, 311, 18, 19236, 287, 543, 284, 2989, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 810, 262, 8251, 389, 2524, 32373, 290, 262, 3815, 389, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 4600, 20560, 25876, 63, 3706, 28047, 2374, 329, 1123, 4938, 2426, 198, 220, 220, 220, 220, 220, 220, 220, 379, 326, 2524, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7481, 796, 23884, 198, 220, 220, 220, 329, 2524, 287, 5043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 477, 311, 18, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 651, 62, 82, 18, 62, 13083, 7, 40290, 28, 40290, 11, 2524, 28, 15654, 11, 19236, 11639, 69, 13155, 12, 521, 72, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 477, 28441, 357, 19419, 262, 3486, 14, 4537, 11678, 8, 198, 220, 220, 220, 220, 220, 220, 220, 842, 82, 796, 8251, 62, 1462, 62, 32796, 62, 30238, 7, 13083, 28, 13083, 11, 21231, 28, 40290, 11, 2524, 28, 15654, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 570, 262, 277, 8899, 3696, 284, 2035, 3486, 14, 4537, 198, 220, 220, 220, 220, 220, 220, 220, 842, 82, 62, 8957, 62, 499, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5004, 62, 12942, 507, 7, 15414, 62, 16624, 28, 2301, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 4906, 11639, 82, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19236, 28, 27041, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 10459, 11639, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2539, 11639, 35645, 27195, 7656, 35, 4154, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2471, 62, 8367, 11639, 73, 12, 3256, 14187, 62, 8367, 11639, 73, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 842, 287, 842, 82, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8621, 30748, 1123, 2426, 7881, 656, 1180, 10991, 198, 220, 220, 220, 220, 220, 220, 220, 842, 82, 62, 77, 7287, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4553, 62, 82, 6202, 7, 2301, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5021, 2374, 62, 30586, 11639, 82, 6202, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8333, 62, 28920, 62, 82, 6202, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 842, 287, 842, 82, 62, 8957, 62, 499, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 887, 4600, 25512, 378, 62, 82, 6202, 63, 5860, 257, 1351, 286, 3706, 28047, 2374, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 523, 4600, 2301, 82, 62, 77, 7287, 63, 318, 28376, 290, 2476, 284, 307, 45096, 198, 220, 220, 220, 220, 220, 220, 220, 842, 82, 62, 38568, 796, 685, 9186, 329, 850, 4868, 287, 842, 82, 62, 77, 7287, 329, 2378, 287, 850, 4868, 60, 628, 220, 220, 220, 220, 220, 220, 220, 7481, 58, 15654, 60, 796, 685, 2301, 329, 842, 287, 842, 82, 62, 38568, 611, 842, 13, 16624, 318, 407, 6045, 60, 628, 220, 220, 220, 1441, 7481, 198 ]
2.038864
10,601
import os import boto3 AMI = os.environ['AMI'] INSTANCE_TYPE = os.environ['INSTANCE_TYPE'] KEY_NAME = os.environ['KEY_NAME'] SUBNET_ID = os.environ['SUBNET_ID'] ec2 = boto3.resource('ec2')
[ 11748, 28686, 198, 11748, 275, 2069, 18, 198, 198, 43870, 796, 28686, 13, 268, 2268, 17816, 43870, 20520, 198, 38604, 19240, 62, 25216, 796, 28686, 13, 268, 2268, 17816, 38604, 19240, 62, 25216, 20520, 198, 20373, 62, 20608, 796, 28686, 13, 268, 2268, 17816, 20373, 62, 20608, 20520, 198, 50, 10526, 12884, 62, 2389, 796, 28686, 13, 268, 2268, 17816, 50, 10526, 12884, 62, 2389, 20520, 198, 198, 721, 17, 796, 275, 2069, 18, 13, 31092, 10786, 721, 17, 11537, 198 ]
2.358025
81
############################################################ # -*- coding: utf-8 -*- # # # # # # # # # ## ## # ## # # # # # # # # # # # # # # # ## # ## ## ###### # # # # # # # # # Python-based Tool for interaction with the 10micron mounts # GUI with PyQT5 for python # # written in python3, (c) 2019-2021 by mworion # # Licence APL2.0 # ########################################################### # standard libraries import pytest import unittest.mock as mock import platform if not platform.system() == 'Windows': pytest.skip("skipping windows-only tests", allow_module_level=True) # external packages from astropy.io import fits from PyQt5.QtCore import QThreadPool, QObject, pyqtSignal from skyfield.api import Angle, wgs84 import ctypes # local import from mountcontrol.mount import Mount from logic.environment.skymeter import Skymeter from logic.camera.cameraAscom import CameraAscom from base.driverDataClass import Signals from base.ascomClass import AscomClass from base.loggerMW import setupLogging setupLogging() @pytest.fixture(autouse=True, scope='function')
[ 29113, 14468, 7804, 4242, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 1303, 220, 1303, 220, 220, 1303, 220, 220, 1303, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 220, 22492, 220, 22492, 220, 1303, 220, 22492, 220, 1303, 220, 220, 220, 1303, 198, 2, 220, 220, 220, 220, 1303, 1303, 1303, 1303, 220, 1303, 1303, 1303, 1303, 220, 220, 220, 1303, 220, 1303, 198, 2, 220, 220, 220, 1303, 220, 22492, 220, 1303, 220, 22492, 220, 22492, 220, 220, 220, 46424, 2, 198, 2, 220, 220, 1303, 220, 220, 1303, 220, 220, 1303, 220, 1303, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 198, 2, 11361, 12, 3106, 16984, 329, 10375, 351, 262, 838, 9383, 1313, 30790, 198, 2, 25757, 351, 9485, 48, 51, 20, 329, 21015, 198, 2, 198, 2, 3194, 287, 21015, 18, 11, 357, 66, 8, 13130, 12, 1238, 2481, 416, 285, 86, 273, 295, 198, 2, 198, 2, 10483, 594, 3486, 43, 17, 13, 15, 198, 2, 198, 29113, 14468, 7804, 21017, 198, 2, 3210, 12782, 198, 11748, 12972, 9288, 198, 11748, 555, 715, 395, 13, 76, 735, 355, 15290, 198, 11748, 3859, 198, 198, 361, 407, 3859, 13, 10057, 3419, 6624, 705, 11209, 10354, 198, 220, 220, 220, 12972, 9288, 13, 48267, 7203, 20545, 2105, 9168, 12, 8807, 5254, 1600, 1249, 62, 21412, 62, 5715, 28, 17821, 8, 198, 198, 2, 7097, 10392, 198, 6738, 6468, 28338, 13, 952, 1330, 11414, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1195, 16818, 27201, 11, 1195, 10267, 11, 12972, 39568, 11712, 282, 198, 6738, 6766, 3245, 13, 15042, 1330, 42375, 11, 266, 14542, 5705, 198, 11748, 269, 19199, 628, 198, 2, 1957, 1330, 198, 6738, 3817, 13716, 13, 14948, 1330, 5628, 198, 6738, 9156, 13, 38986, 13, 15688, 27231, 1330, 5274, 27231, 198, 6738, 9156, 13, 25695, 13, 25695, 1722, 785, 1330, 20432, 1722, 785, 198, 6738, 2779, 13, 26230, 6601, 9487, 1330, 5865, 874, 198, 6738, 2779, 13, 292, 785, 9487, 1330, 1081, 785, 9487, 198, 6738, 2779, 13, 6404, 1362, 14326, 1330, 9058, 11187, 2667, 198, 40406, 11187, 2667, 3419, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 2306, 1076, 28, 17821, 11, 8354, 11639, 8818, 11537, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628 ]
2.891089
404
import re import renderer LINK_PATTERN = re.compile(r'(^|\s)(http(?:s)?://[^ \<]+\w)') class LinkRenderer(renderer.RenderBase): ''' Converts standalone http or https links in text into the Markdown equivalent, so lorem ipsum http://www.example.com, etc becomes lorem ipsum [http://www.example.com](http://www.example.com), etc '''
[ 198, 198, 11748, 302, 198, 198, 11748, 9851, 11882, 628, 198, 198, 43, 17248, 62, 47, 1404, 31800, 796, 302, 13, 5589, 576, 7, 81, 6, 7, 61, 91, 59, 82, 5769, 4023, 7, 27514, 82, 19427, 1378, 58, 61, 3467, 27, 48688, 59, 86, 8, 11537, 628, 198, 4871, 7502, 49, 437, 11882, 7, 10920, 11882, 13, 45819, 14881, 2599, 198, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 1482, 24040, 27669, 2638, 393, 3740, 6117, 287, 2420, 656, 262, 2940, 2902, 198, 220, 220, 220, 220, 220, 7548, 11, 523, 220, 628, 220, 220, 220, 220, 220, 24044, 76, 220, 2419, 388, 2638, 1378, 2503, 13, 20688, 13, 785, 11, 3503, 628, 220, 220, 220, 220, 220, 4329, 628, 220, 220, 220, 220, 220, 24044, 76, 220, 2419, 388, 685, 4023, 1378, 2503, 13, 20688, 13, 785, 16151, 4023, 1378, 2503, 13, 20688, 13, 785, 828, 3503, 628, 220, 220, 705, 7061, 198 ]
2.420382
157
import niGraphParser import niGraph import sys import glob import os import random import time import re from matplotlib import pyplot import networkx as nx import networkx.algorithms.shortest_paths.dense as dense import xml.etree.ElementTree as ET import networkx.algorithms.simple_paths as nxPaths graphsDir = "..\DataSets" # print("Topological sort took " + str(durationTime) + " seconds") # pyplot.loglog(sizes, times, "o") # pyplot.xscale("log") # pyplot.yscale("log") # pyplot.show() if __name__ == "__main__": main()
[ 11748, 37628, 37065, 46677, 198, 11748, 37628, 37065, 198, 198, 11748, 25064, 198, 11748, 15095, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 640, 198, 11748, 302, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 3127, 87, 13, 282, 7727, 907, 13, 19509, 395, 62, 6978, 82, 13, 67, 1072, 355, 15715, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 11748, 3127, 87, 13, 282, 7727, 907, 13, 36439, 62, 6978, 82, 355, 299, 87, 15235, 82, 198, 198, 34960, 82, 35277, 796, 366, 492, 59, 6601, 50, 1039, 1, 628, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9126, 2770, 3297, 1718, 366, 1343, 965, 7, 32257, 7575, 8, 1343, 366, 4201, 4943, 198, 198, 2, 220, 220, 220, 12972, 29487, 13, 6404, 6404, 7, 82, 4340, 11, 220, 1661, 11, 366, 78, 4943, 198, 2, 220, 220, 220, 220, 12972, 29487, 13, 87, 9888, 7203, 6404, 4943, 198, 2, 220, 220, 220, 220, 12972, 29487, 13, 28349, 1000, 7203, 6404, 4943, 198, 2, 220, 220, 220, 12972, 29487, 13, 12860, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.661905
210
#------------------------------------------------------ # import #------------------------------------------------------ import os import cv2 #------------------------------------------------------ # global #------------------------------------------------------ LINE_COLOR = (0, 0, 255) LINE_THICKNESS = 10 FONT_STYLE = cv2.FONT_HERSHEY_SIMPLEX FONT_SCALE = 1.0 FONT_THICKNESS = 2 FONT_COLOR = (0, 0, 0) #BGR FONT_BACKGROUND_COLOR = (0, 0, 255) #------------------------------------------------------ # function #------------------------------------------------------
[ 2, 3880, 19351, 438, 198, 2, 1330, 198, 2, 3880, 19351, 438, 198, 11748, 28686, 198, 11748, 269, 85, 17, 198, 198, 2, 3880, 19351, 438, 198, 2, 3298, 198, 2, 3880, 19351, 438, 198, 24027, 62, 46786, 796, 357, 15, 11, 657, 11, 14280, 8, 198, 24027, 62, 4221, 11860, 31097, 796, 838, 198, 198, 37, 35830, 62, 2257, 56, 2538, 796, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 198, 37, 35830, 62, 6173, 21358, 796, 352, 13, 15, 198, 37, 35830, 62, 4221, 11860, 31097, 796, 362, 198, 37, 35830, 62, 46786, 796, 357, 15, 11, 657, 11, 657, 8, 1303, 33, 10761, 198, 37, 35830, 62, 31098, 46025, 62, 46786, 796, 357, 15, 11, 657, 11, 14280, 8, 198, 198, 2, 3880, 19351, 438, 198, 2, 2163, 198, 2, 3880, 19351, 438, 628 ]
3.979167
144
import os
[ 11748, 28686, 628 ]
3.666667
3
import csv import argparse parser = argparse.ArgumentParser(description='parameters for cleaning a csv file') parser.add_argument( '--columns', type=int, nargs="+", default=[], help="The columns to remove. Usage: --rows 0 1 10 25", ) parser.add_argument( '--file', type=str, default=None, help="The csv file path/name.", ) parser.add_argument( '--rows', type=int, nargs="+", default=[], help="Rows to remove." ) parser.add_argument( '--strip', action="store_true", help="Remove all leading and trailing white spaces." ) args = parser.parse_args() if __name__ == "__main__": cleaner = Cleaner(args.file, args.columns, args.rows, args.strip)
[ 11748, 269, 21370, 198, 11748, 1822, 29572, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 17143, 7307, 329, 12724, 257, 269, 21370, 2393, 11537, 198, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 705, 438, 28665, 82, 3256, 220, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 4277, 41888, 4357, 220, 198, 220, 220, 220, 1037, 2625, 464, 15180, 284, 4781, 13, 29566, 25, 1377, 8516, 657, 352, 838, 1679, 1600, 198, 8, 198, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 705, 438, 7753, 3256, 198, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 464, 269, 21370, 2393, 3108, 14, 3672, 33283, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 705, 438, 8516, 3256, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 4277, 41888, 4357, 198, 220, 220, 220, 1037, 2625, 49, 1666, 284, 4781, 526, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 705, 438, 36311, 3256, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 1037, 2625, 27914, 477, 3756, 290, 25462, 2330, 9029, 526, 198, 8, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 21723, 796, 5985, 263, 7, 22046, 13, 7753, 11, 26498, 13, 28665, 82, 11, 26498, 13, 8516, 11, 26498, 13, 36311, 8 ]
2.537102
283
#! /usr/bin/env python # -*- coding:utf-8 -*- __author__ = ["Rachel P. B. Moraes", "Igor Montagner", "Fabio Miranda"] import rospy import numpy as np import tf import math import cv2 import time from geometry_msgs.msg import Twist, Vector3, Pose from nav_msgs.msg import Odometry from sensor_msgs.msg import Image, CompressedImage from cv_bridge import CvBridge, CvBridgeError import smach import smach_ros face_cascade = cv2.CascadeClassifier('haarcascade_frontalcatface.xml') bridge = CvBridge() global cv_image global dif_x global media global centro global area1, area2 global p cv_image = None dif_x = None area1, area2 = 0,0 atraso = 1.5E9 delay_miranda = 0.05 # Variáveis para permitir que o roda_todo_frame troque dados com a máquina de estados media = 0 centro = 0 p = False ## Classes - estados # main if __name__ == '__main__': main()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 198, 834, 9800, 834, 796, 14631, 44045, 350, 13, 347, 13, 3461, 64, 274, 1600, 366, 40, 7053, 5575, 363, 1008, 1600, 366, 43957, 952, 29575, 8973, 628, 198, 11748, 686, 2777, 88, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 48700, 198, 11748, 10688, 198, 11748, 269, 85, 17, 198, 11748, 640, 198, 6738, 22939, 62, 907, 14542, 13, 19662, 1330, 44088, 11, 20650, 18, 11, 37557, 198, 6738, 6812, 62, 907, 14542, 13, 19662, 1330, 10529, 15748, 198, 6738, 12694, 62, 907, 14542, 13, 19662, 1330, 7412, 11, 3082, 2790, 5159, 198, 6738, 269, 85, 62, 9458, 1330, 327, 85, 37385, 11, 327, 85, 37385, 12331, 198, 11748, 895, 620, 198, 11748, 895, 620, 62, 4951, 628, 198, 2550, 62, 66, 28966, 796, 269, 85, 17, 13, 34, 28966, 9487, 7483, 10786, 3099, 5605, 28966, 62, 8534, 282, 9246, 2550, 13, 19875, 11537, 628, 198, 9458, 796, 327, 85, 37385, 3419, 198, 198, 20541, 269, 85, 62, 9060, 198, 20541, 288, 361, 62, 87, 198, 20541, 2056, 198, 20541, 1247, 305, 198, 20541, 1989, 16, 11, 1989, 17, 198, 20541, 279, 198, 33967, 62, 9060, 796, 6045, 198, 67, 361, 62, 87, 796, 6045, 198, 20337, 16, 11, 1989, 17, 796, 657, 11, 15, 198, 265, 8847, 78, 796, 352, 13, 20, 36, 24, 198, 40850, 62, 10793, 5282, 796, 657, 13, 2713, 198, 198, 2, 15965, 6557, 303, 271, 31215, 8749, 343, 8358, 267, 686, 6814, 62, 83, 24313, 62, 14535, 4161, 4188, 9955, 418, 401, 257, 285, 6557, 421, 1437, 390, 1556, 22484, 198, 11431, 796, 657, 198, 1087, 305, 796, 657, 198, 79, 796, 10352, 628, 628, 198, 2235, 38884, 532, 1556, 22484, 628, 198, 2, 1388, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.67284
324
################################################### # 智能小车1.0 -- 舵机模块 # # @author chenph # @date 2018/5/15 ################################################### import RPi.GPIO as GPIO import time # 初始模块 # 舵机左转 # 舵机右转 if __name__ == "__main__": try: # 19,21,23 m = ServoModule(19) m.turnLeft() time.sleep(5) m.turnRight() except KeyboardInterrupt: pass GPIO.cleanup()
[ 29113, 14468, 21017, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10545, 247, 118, 47797, 121, 22887, 237, 164, 121, 99, 16, 13, 15, 1377, 5525, 230, 113, 17312, 118, 162, 101, 94, 161, 251, 245, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 9800, 269, 831, 746, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 4475, 2864, 14, 20, 14, 1314, 198, 29113, 14468, 21017, 198, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198, 11748, 640, 628, 198, 220, 220, 220, 1303, 10263, 230, 251, 34650, 233, 162, 101, 94, 161, 251, 245, 628, 220, 220, 220, 1303, 5525, 230, 113, 17312, 118, 32432, 99, 164, 121, 105, 628, 220, 220, 220, 1303, 5525, 230, 113, 17312, 118, 20998, 111, 164, 121, 105, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 678, 11, 2481, 11, 1954, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 3116, 78, 26796, 7, 1129, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 13, 15344, 18819, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 13, 15344, 11028, 3419, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 50143, 13, 27773, 929, 3419 ]
1.806691
269
# -*- coding: utf-8 -*- import pytest from darjeeling.core import (TestOutcome, TestCoverage, FileLine, FileLineSet) @pytest.fixture
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 12972, 9288, 198, 198, 6738, 288, 283, 18015, 10809, 13, 7295, 1330, 357, 14402, 7975, 2958, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6208, 7222, 1857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9220, 13949, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9220, 13949, 7248, 8, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198 ]
1.602837
141
# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pretrain BERT""" import os import random import math import numpy as np import torch from arguments import get_args from configure_data import configure_data from fp16 import FP16_Module from fp16 import FP16_Optimizer from learning_rates import AnnealingLR from model import BertModel from model import get_params_for_weight_decay_optimization from model import DistributedDataParallel as DDP from optim import Adam from utils import Timers, save_checkpoint, load_checkpoint, check_checkpoint, move_to_cuda import pdb def get_model(tokenizer, args): """Build the model.""" print('building BERT model ...') model = BertModel(tokenizer, args) print(' > number of parameters: {}'.format( sum([p.nelement() for p in model.parameters()])), flush=True) # GPU allocation. model.cuda(torch.cuda.current_device()) # Fp16 conversion. if args.fp16: print("fp16 mode") model = FP16_Module(model) if args.fp32_embedding: model.module.model.bert.embeddings.word_embeddings.float() model.module.model.bert.embeddings.position_embeddings.float() model.module.model.bert.embeddings.token_type_embeddings.float() if args.fp32_tokentypes: model.module.model.bert.embeddings.token_type_embeddings.float() if args.fp32_layernorm: for name, _module in model.named_modules(): if 'LayerNorm' in name: _module.float() # Wrap model for distributed training. if args.world_size > 1: model = DDP(model) return model def get_optimizer(model, args): """Set up the optimizer.""" # Build parameter groups (weight decay and non-decay). while isinstance(model, (DDP, FP16_Module)): model = model.module layers = model.model.bert.encoder.layer pooler = model.model.bert.pooler lmheads = model.model.cls.predictions nspheads = model.model.cls.seq_relationship embeddings = model.model.bert.embeddings param_groups = [] param_groups += list(get_params_for_weight_decay_optimization(layers)) param_groups += list(get_params_for_weight_decay_optimization(pooler)) param_groups += list(get_params_for_weight_decay_optimization(nspheads)) param_groups += list(get_params_for_weight_decay_optimization(embeddings)) param_groups += list(get_params_for_weight_decay_optimization( lmheads.transform)) param_groups[1]['params'].append(lmheads.bias) # Use Adam. optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay) # Wrap into fp16 optimizer. if args.fp16: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale, dynamic_loss_scale=args.dynamic_loss_scale, dynamic_loss_args={ 'scale_window': args.loss_scale_window, 'min_scale': args.min_scale, 'delayed_shift': args.hysteresis}) return optimizer def get_learning_rate_scheduler(optimizer, args): """Build the learning rate scheduler.""" # Add linear learning rate scheduler. if args.lr_decay_iters is not None: num_iters = args.lr_decay_iters else: num_iters = args.train_iters * args.epochs init_step = -1 warmup_iter = args.warmup * num_iters lr_scheduler = AnnealingLR(optimizer, start_lr=args.lr, warmup_iter=warmup_iter, num_iters=num_iters, decay_style=args.lr_decay_style, last_iter=init_step) return lr_scheduler def setup_model_and_optimizer(args, tokenizer): """Setup model and optimizer.""" model = get_model(tokenizer, args) optimizer = get_optimizer(model, args) lr_scheduler = get_learning_rate_scheduler(optimizer, args) criterion = torch.nn.CrossEntropyLoss(reduction='sum', ignore_index=-1) args.continue_train = False check_checkpoint(model, optimizer, lr_scheduler, args) if args.load is not None and not args.continue_train: print("| Resume checkpoints from {}".format(args.load)) epoch, i, total_iters = load_checkpoint(model, optimizer, lr_scheduler, args) if args.resume_dataloader: args.epoch = epoch args.mid_epoch_iters = i args.total_iters = total_iters return model, optimizer, lr_scheduler, criterion def forward_step(data, model, tokenizer, criterion, args): """Forward step.""" sample = move_to_cuda(data, torch.cuda.current_device()) output, nsp, past = model(**sample["net_input"]) nsp_labels = sample["nsp_labels"] target = sample["target"] nsp_loss = criterion(nsp.view(-1, 3).contiguous().float(), nsp_labels.view(-1).contiguous()) losses = criterion(output.view(-1, tokenizer.num_tokens).contiguous().float(), target.contiguous().view(-1).contiguous()) # pdb.set_trace() return losses, nsp_loss, sample["nsentences"], sample["ntokens"] def backward_step(optimizer, model, lm_loss, nsp_loss, batch_size, batch_tokens, args): """Backward step.""" # Total loss. loss = lm_loss / batch_tokens + nsp_loss / batch_size # Backward pass. optimizer.zero_grad() if args.fp16: optimizer.backward(loss, update_master_grads=False) else: loss.backward() # Reduce across processes. lm_loss_reduced = lm_loss nsp_loss_reduced = nsp_loss if args.world_size > 1: batch_size = torch.Tensor([batch_size]).to(lm_loss.device) batch_tokens = torch.Tensor([batch_tokens]).to(lm_loss.device) reduced_losses = torch.cat((lm_loss.view(1), nsp_loss.view(1), batch_size, batch_tokens)) torch.distributed.all_reduce(reduced_losses.data) # reduced_losses.data = reduced_losses.data / args.world_size model.allreduce_params(reduce_after=False, fp32_allreduce=args.fp32_allreduce) lm_loss_reduced = reduced_losses[0] nsp_loss_reduced = reduced_losses[1] batch_size = reduced_losses[2].item() batch_tokens = reduced_losses[3].item() # Update master gradients. if args.fp16: optimizer.update_master_grads() # Clipping gradients helps prevent the exploding gradient. if args.clip_grad > 0: if not args.fp16: torch.nn.utils.clip_grad_norm(model.parameters(), args.clip_grad) else: optimizer.clip_master_grads(args.clip_grad) return lm_loss_reduced, nsp_loss_reduced, batch_size, batch_tokens def train_step(input_data, model, tokenizer, criterion, optimizer, lr_scheduler, args): """Single training step.""" # Forward model for one step. lm_loss, nsp_loss, batch_size, batch_tokens = forward_step(input_data, model, tokenizer, criterion, args) # Calculate gradients, reduce across processes, and clip. lm_loss_reduced, nsp_loss_reduced, batch_size, batch_tokens = backward_step(optimizer, model, lm_loss, nsp_loss, batch_size, batch_tokens, args) # Update parameters. optimizer.step() # Update learning rate. skipped_iter = 0 if not (args.fp16 and optimizer.overflow): lr_scheduler.step() else: skipped_iter = 1 return lm_loss_reduced, nsp_loss_reduced, skipped_iter, batch_size, batch_tokens def train_epoch(epoch, model, tokenizer, optimizer, train_data, val_data, lr_scheduler, criterion, timers, args): """Train one full epoch.""" # Turn on training mode which enables dropout. model.train() # Tracking loss. total_lm_loss = 0.0 total_nsp_loss = 0.0 # Iterations. max_iters = len(train_data) iteration = 0 update_num = 0 total_tokens = 0 total_batch = 0 skipped_iters = 0 data_iterator = iter(train_data) if args.resume_dataloader: iteration = args.mid_epoch_iters comsume_data(iteration) args.resume_dataloader = False lr_scheduler.step(max_iters * (epoch-1) + iteration) # Data iterator. timers('interval time').start() while iteration < max_iters: lm_loss, nsp_loss, skipped_iter, batch_size, batch_tokens = train_step(next(data_iterator), model, tokenizer, criterion,optimizer, lr_scheduler, args) update_num += 1 skipped_iters += skipped_iter iteration += 1 args.cur_iteration = iteration # Update losses. total_lm_loss += lm_loss.data.detach().float().item() total_nsp_loss += nsp_loss.data.detach().float().item() if nsp_loss != 0.0: total_batch += batch_size total_tokens += batch_tokens if total_batch < 1: total_batch = 1 # Logging. if iteration % args.log_interval == 0: learning_rate = optimizer.param_groups[0]['lr'] avg_nsp_loss = total_nsp_loss / total_batch avg_lm_loss = total_lm_loss / total_tokens elapsed_time = timers('interval time').elapsed() log_string = ' epoch{:2d} |'.format(epoch) log_string += ' iteration {:8d}/{:8d} |'.format(iteration, max_iters) log_string += ' lm loss {:.3f} |'.format(avg_lm_loss) log_string += ' lm ppl {:.3f} |'.format(math.exp(avg_lm_loss)) log_string += ' nsp loss {:.3f} |'.format(avg_nsp_loss) log_string += ' batch size {} |'.format(batch_size) log_string += ' learning rate {:.7f} |'.format(learning_rate) log_string += ' tpi (ms): {:.2f} |'.format( elapsed_time * 1000.0 / args.log_interval) if args.fp16: log_string += ' loss scale {:.3f} |'.format( optimizer.loss_scale) print(log_string, flush=True) if iteration % args.valid_interval == 0: lm_loss, nsp_loss = evaluate(val_data, model, tokenizer, criterion, args) val_loss = lm_loss + nsp_loss print('-' * 100) print('| end of epoch {:3d} | valid loss {:.3f} | ' 'valid LM Loss {:.3f} | valid LM PPL {:.3f} | valid NSP Loss {:.3f}'.format( epoch, val_loss, lm_loss, math.exp(lm_loss), nsp_loss)) print('-' * 100) if args.save: checkpoints_path = "checkpoints_{}_{}.pt".format(epoch, iteration) save_checkpoint(checkpoints_path, epoch, iteration, model, optimizer, lr_scheduler, args) checkpoints_path = "checkpoints-last.pt" save_checkpoint(checkpoints_path, epoch, iteration, model, optimizer, lr_scheduler, args) if val_loss < evaluate.best_val_loss: evaluate.best_val_loss = val_loss if args.save: best_path = 'checkpoints-best.pt' print('saving best model to:', os.path.join(args.save, best_path)) save_checkpoint(best_path, epoch, iteration, model, optimizer, lr_scheduler, args) if args.save: final_path = 'checkpoints_{}.pt'.format(epoch) print('saving final epoch model to:', os.path.join(args.save, final_path)) save_checkpoint(final_path, epoch + 1, 0, model, optimizer, lr_scheduler, args) cur_path = 'checkpoints-last.pt' save_checkpoint(cur_path, epoch + 1, 0, model, optimizer, lr_scheduler, args) lm_loss, nsp_loss = evaluate(val_data, model, tokenizer, criterion, args) val_loss = lm_loss + nsp_loss if val_loss < evaluate.best_val_loss: evaluate.best_val_loss = val_loss if args.save: best_path = 'checkpoints-best.pt' print('saving best model to:', os.path.join(args.save, best_path)) save_checkpoint(best_path, epoch+1, 0, model, optimizer, lr_scheduler, args) return iteration, skipped_iters def evaluate(data_source, model, tokenizer, criterion, args): """Evaluation.""" # Turn on evaluation mode which disables dropout. model.eval() total_lm_loss = 0 total_nsp_loss = 0 total_batch_size = 0 total_batch_tokens = 0 for data_loader in data_source: local_lm_loss = 0 local_batch_tokens = 0 max_iters = len(data_loader) with torch.no_grad(): data_iterator = iter(data_loader) iteration = 0 while iteration < max_iters: # Forward evaluation. lm_loss, nsp_loss, batch_size, batch_tokens = forward_step(next(data_iterator), model, tokenizer,criterion, args) # Reduce across processes. if isinstance(model, DDP): batch_size = torch.Tensor([batch_size]).to(lm_loss.device) batch_tokens = torch.Tensor([batch_tokens]).to(lm_loss.device) reduced_losses = torch.cat((lm_loss.view(1), nsp_loss.view(1), batch_size, batch_tokens)) torch.distributed.all_reduce(reduced_losses.data) # reduced_losses.data = reduced_losses.data / args.world_size lm_loss = reduced_losses[0] nsp_loss = reduced_losses[1] batch_size = reduced_losses[2].item() batch_tokens = reduced_losses[3].item() if lm_loss == 0.0: batch_size = 0 total_lm_loss += lm_loss.data.detach().float().item() total_nsp_loss += nsp_loss.data.detach().float().item() local_lm_loss += lm_loss.data.detach().float().item() local_batch_tokens += batch_tokens total_batch_size += batch_size total_batch_tokens += batch_tokens iteration += 1 local_lm_loss /= local_batch_tokens print('| LOCAL valid LM Loss {:.3f} | valid LM PPL {:.3f}'.format(local_lm_loss, math.exp(local_lm_loss))) # Move model back to the train mode. model.train() total_lm_loss /= total_batch_tokens total_nsp_loss /= total_batch_size return total_lm_loss, total_nsp_loss def initialize_distributed(args): """Initialize torch.distributed.""" # Manually set the device ids. device = args.rank % torch.cuda.device_count() if args.local_rank is not None: device = args.local_rank torch.cuda.set_device(device) # Call the init process if args.world_size > 1: init_method = 'tcp://' master_ip = os.getenv('MASTER_ADDR', 'localhost') master_port = os.getenv('MASTER_PORT', '6000') init_method += master_ip + ':' + master_port torch.distributed.init_process_group( backend=args.distributed_backend, world_size=args.world_size, rank=args.rank, init_method=init_method) suppress_output(args.rank == 0) def suppress_output(is_master): """Suppress printing on the current device. Force printing with `force=True`.""" import builtins as __builtin__ builtin_print = __builtin__.print __builtin__.print = print def set_random_seed(seed): """Set random seed for reproducability.""" if seed is not None and seed > 0: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) def main(): """Main training program.""" print('Pretrain BERT model') # Disable CuDNN. torch.backends.cudnn.enabled = False # Arguments. args = get_args() # Pytorch distributed. initialize_distributed(args) set_random_seed(args.seed) print(args) # Data stuff. data_config = configure_data() data_config.set_defaults(data_set_type='BERT', transpose=False) (train_data, val_data), tokenizer = data_config.apply(args) args.train_iters = len(train_data) evaluate.best_val_loss = float("inf") # Model, optimizer, and learning rate. model, optimizer, lr_scheduler, criterion = setup_model_and_optimizer( args, tokenizer) # evaluate(val_data, model, tokenizer, criterion, args) # At any point you can hit Ctrl + C to break out of training early. try: total_iters = 0 skipped_iters = 0 start_epoch = 1 best_val_loss = float('inf') # Resume data loader if necessary. if args.resume_dataloader: start_epoch = args.epoch total_iters = args.total_iters # For all epochs. for epoch in range(start_epoch, args.epochs + 1): timers = Timers() # if args.shuffle: # train_data.batch_sampler.sampler.set_epoch(epoch + args.seed) timers('epoch time').start() iteration, skipped = train_epoch(epoch, model, tokenizer, optimizer, train_data, val_data, lr_scheduler, criterion, timers, args) elapsed_time = timers('epoch time').elapsed() total_iters += iteration skipped_iters += skipped lm_loss, nsp_loss = evaluate(val_data, model, tokenizer, criterion, args) val_loss = lm_loss + nsp_loss print('-' * 100) print('| end of epoch {:3d} | time: {:.3f}s | valid loss {:.3f} | ' 'valid LM Loss {:.3f} | valid LM PPL {:.3f} | valid NSP Loss {:.3f}'.format( epoch, elapsed_time, val_loss, lm_loss, math.exp(lm_loss), nsp_loss)) print('-' * 100) if val_loss < evaluate.best_val_loss: evaluate.best_val_loss = val_loss if args.save: best_path = 'checkpoints-best.pt' print('saving best model to:', os.path.join(args.save, best_path)) save_checkpoint(best_path, epoch + 1, 0, model, optimizer, lr_scheduler, args) except KeyboardInterrupt: print('-' * 100) print('Exiting from training early') if args.save: cur_path = 'checkpoints-last.pt' print('saving current model to:', os.path.join(args.save, cur_path)) save_checkpoint(cur_path, epoch, args.cur_iteration, model, optimizer, lr_scheduler, args) exit() if __name__ == "__main__": main()
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 357, 66, 8, 13130, 11, 15127, 23929, 44680, 6234, 13, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 47, 1186, 3201, 347, 17395, 37811, 198, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 198, 6738, 7159, 1330, 651, 62, 22046, 198, 6738, 17425, 62, 7890, 1330, 17425, 62, 7890, 198, 6738, 277, 79, 1433, 1330, 31459, 1433, 62, 26796, 198, 6738, 277, 79, 1433, 1330, 31459, 1433, 62, 27871, 320, 7509, 198, 6738, 4673, 62, 9700, 1330, 15397, 4272, 35972, 198, 6738, 2746, 1330, 22108, 17633, 198, 6738, 2746, 1330, 651, 62, 37266, 62, 1640, 62, 6551, 62, 12501, 323, 62, 40085, 1634, 198, 6738, 2746, 1330, 4307, 6169, 6601, 10044, 29363, 355, 360, 6322, 198, 6738, 6436, 1330, 7244, 198, 6738, 3384, 4487, 1330, 5045, 364, 11, 3613, 62, 9122, 4122, 11, 3440, 62, 9122, 4122, 11, 2198, 62, 9122, 4122, 11, 1445, 62, 1462, 62, 66, 15339, 198, 11748, 279, 9945, 628, 198, 4299, 651, 62, 19849, 7, 30001, 7509, 11, 26498, 2599, 198, 220, 220, 220, 37227, 15580, 262, 2746, 526, 15931, 628, 220, 220, 220, 3601, 10786, 16894, 347, 17395, 2746, 2644, 11537, 198, 220, 220, 220, 2746, 796, 22108, 17633, 7, 30001, 7509, 11, 26498, 8, 198, 220, 220, 220, 3601, 10786, 1875, 1271, 286, 10007, 25, 23884, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 26933, 79, 13, 710, 1732, 3419, 329, 279, 287, 2746, 13, 17143, 7307, 3419, 12962, 828, 24773, 28, 17821, 8, 628, 220, 220, 220, 1303, 11362, 20157, 13, 198, 220, 220, 220, 2746, 13, 66, 15339, 7, 13165, 354, 13, 66, 15339, 13, 14421, 62, 25202, 28955, 628, 220, 220, 220, 1303, 376, 79, 1433, 11315, 13, 198, 220, 220, 220, 611, 26498, 13, 46428, 1433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 46428, 1433, 4235, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 31459, 1433, 62, 26796, 7, 19849, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 46428, 2624, 62, 20521, 12083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 21412, 13, 19849, 13, 4835, 13, 20521, 67, 654, 13, 4775, 62, 20521, 67, 654, 13, 22468, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 21412, 13, 19849, 13, 4835, 13, 20521, 67, 654, 13, 9150, 62, 20521, 67, 654, 13, 22468, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 21412, 13, 19849, 13, 4835, 13, 20521, 67, 654, 13, 30001, 62, 4906, 62, 20521, 67, 654, 13, 22468, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 46428, 2624, 62, 83, 482, 3787, 12272, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 21412, 13, 19849, 13, 4835, 13, 20521, 67, 654, 13, 30001, 62, 4906, 62, 20521, 67, 654, 13, 22468, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 46428, 2624, 62, 10724, 1142, 579, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 4808, 21412, 287, 2746, 13, 13190, 62, 18170, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 49925, 35393, 6, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 21412, 13, 22468, 3419, 198, 220, 220, 220, 1303, 41028, 2746, 329, 9387, 3047, 13, 198, 220, 220, 220, 611, 26498, 13, 6894, 62, 7857, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 360, 6322, 7, 19849, 8, 628, 220, 220, 220, 1441, 2746, 628, 198, 4299, 651, 62, 40085, 7509, 7, 19849, 11, 26498, 2599, 198, 220, 220, 220, 37227, 7248, 510, 262, 6436, 7509, 526, 15931, 628, 220, 220, 220, 1303, 10934, 11507, 2628, 357, 6551, 22119, 290, 1729, 12, 12501, 323, 737, 198, 220, 220, 220, 981, 318, 39098, 7, 19849, 11, 357, 35, 6322, 11, 31459, 1433, 62, 26796, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 2746, 13, 21412, 198, 220, 220, 220, 11685, 796, 2746, 13, 19849, 13, 4835, 13, 12685, 12342, 13, 29289, 198, 220, 220, 220, 5933, 263, 796, 2746, 13, 19849, 13, 4835, 13, 7742, 263, 198, 220, 220, 220, 300, 76, 16600, 796, 2746, 13, 19849, 13, 565, 82, 13, 28764, 9278, 198, 220, 220, 220, 299, 2777, 16600, 796, 2746, 13, 19849, 13, 565, 82, 13, 41068, 62, 39468, 1056, 198, 220, 220, 220, 11525, 67, 654, 796, 2746, 13, 19849, 13, 4835, 13, 20521, 67, 654, 198, 220, 220, 220, 5772, 62, 24432, 796, 17635, 198, 220, 220, 220, 5772, 62, 24432, 15853, 1351, 7, 1136, 62, 37266, 62, 1640, 62, 6551, 62, 12501, 323, 62, 40085, 1634, 7, 75, 6962, 4008, 198, 220, 220, 220, 5772, 62, 24432, 15853, 1351, 7, 1136, 62, 37266, 62, 1640, 62, 6551, 62, 12501, 323, 62, 40085, 1634, 7, 7742, 263, 4008, 198, 220, 220, 220, 5772, 62, 24432, 15853, 1351, 7, 1136, 62, 37266, 62, 1640, 62, 6551, 62, 12501, 323, 62, 40085, 1634, 7, 77, 2777, 16600, 4008, 198, 220, 220, 220, 5772, 62, 24432, 15853, 1351, 7, 1136, 62, 37266, 62, 1640, 62, 6551, 62, 12501, 323, 62, 40085, 1634, 7, 20521, 67, 654, 4008, 198, 220, 220, 220, 5772, 62, 24432, 15853, 1351, 7, 1136, 62, 37266, 62, 1640, 62, 6551, 62, 12501, 323, 62, 40085, 1634, 7, 198, 220, 220, 220, 220, 220, 220, 220, 300, 76, 16600, 13, 35636, 4008, 198, 220, 220, 220, 5772, 62, 24432, 58, 16, 7131, 6, 37266, 6, 4083, 33295, 7, 75, 76, 16600, 13, 65, 4448, 8, 628, 220, 220, 220, 1303, 5765, 7244, 13, 198, 220, 220, 220, 6436, 7509, 796, 7244, 7, 17143, 62, 24432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 81, 28, 22046, 13, 14050, 11, 3463, 62, 12501, 323, 28, 22046, 13, 6551, 62, 12501, 323, 8, 628, 220, 220, 220, 1303, 41028, 656, 277, 79, 1433, 6436, 7509, 13, 198, 220, 220, 220, 611, 26498, 13, 46428, 1433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 796, 31459, 1433, 62, 27871, 320, 7509, 7, 40085, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9037, 62, 22462, 62, 9888, 28, 22046, 13, 22462, 62, 9888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8925, 62, 22462, 62, 9888, 28, 22046, 13, 67, 28995, 62, 22462, 62, 9888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8925, 62, 22462, 62, 22046, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9888, 62, 17497, 10354, 26498, 13, 22462, 62, 9888, 62, 17497, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1084, 62, 9888, 10354, 26498, 13, 1084, 62, 9888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12381, 16548, 62, 30846, 10354, 26498, 13, 12114, 4169, 411, 271, 30072, 628, 220, 220, 220, 1441, 6436, 7509, 628, 198, 4299, 651, 62, 40684, 62, 4873, 62, 1416, 704, 18173, 7, 40085, 7509, 11, 26498, 2599, 198, 220, 220, 220, 37227, 15580, 262, 4673, 2494, 6038, 18173, 526, 15931, 628, 220, 220, 220, 1303, 3060, 14174, 4673, 2494, 6038, 18173, 13, 198, 220, 220, 220, 611, 26498, 13, 14050, 62, 12501, 323, 62, 270, 364, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 270, 364, 796, 26498, 13, 14050, 62, 12501, 323, 62, 270, 364, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 270, 364, 796, 26498, 13, 27432, 62, 270, 364, 1635, 26498, 13, 538, 5374, 82, 198, 220, 220, 220, 2315, 62, 9662, 796, 532, 16, 198, 220, 220, 220, 5814, 929, 62, 2676, 796, 26498, 13, 31975, 929, 1635, 997, 62, 270, 364, 198, 220, 220, 220, 300, 81, 62, 1416, 704, 18173, 796, 15397, 4272, 35972, 7, 40085, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 14050, 28, 22046, 13, 14050, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5814, 929, 62, 2676, 28, 31975, 929, 62, 2676, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 270, 364, 28, 22510, 62, 270, 364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22119, 62, 7635, 28, 22046, 13, 14050, 62, 12501, 323, 62, 7635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 2676, 28, 15003, 62, 9662, 8, 628, 220, 220, 220, 1441, 300, 81, 62, 1416, 704, 18173, 628, 198, 4299, 9058, 62, 19849, 62, 392, 62, 40085, 7509, 7, 22046, 11, 11241, 7509, 2599, 198, 220, 220, 220, 37227, 40786, 2746, 290, 6436, 7509, 526, 15931, 628, 220, 220, 220, 2746, 796, 651, 62, 19849, 7, 30001, 7509, 11, 26498, 8, 198, 220, 220, 220, 6436, 7509, 796, 651, 62, 40085, 7509, 7, 19849, 11, 26498, 8, 198, 220, 220, 220, 300, 81, 62, 1416, 704, 18173, 796, 651, 62, 40684, 62, 4873, 62, 1416, 704, 18173, 7, 40085, 7509, 11, 26498, 8, 198, 220, 220, 220, 34054, 796, 28034, 13, 20471, 13, 21544, 14539, 28338, 43, 793, 7, 445, 8110, 11639, 16345, 3256, 8856, 62, 9630, 10779, 16, 8, 198, 220, 220, 220, 26498, 13, 43043, 62, 27432, 796, 10352, 628, 220, 220, 220, 2198, 62, 9122, 4122, 7, 19849, 11, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 628, 220, 220, 220, 611, 26498, 13, 2220, 318, 407, 6045, 290, 407, 26498, 13, 43043, 62, 27432, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 91, 1874, 2454, 36628, 422, 23884, 1911, 18982, 7, 22046, 13, 2220, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 36835, 11, 1312, 11, 2472, 62, 270, 364, 796, 3440, 62, 9122, 4122, 7, 19849, 11, 6436, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 411, 2454, 62, 67, 10254, 1170, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 538, 5374, 796, 36835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 13602, 62, 538, 5374, 62, 270, 364, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 23350, 62, 270, 364, 796, 2472, 62, 270, 364, 628, 220, 220, 220, 220, 628, 220, 220, 220, 1441, 2746, 11, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 34054, 628, 198, 4299, 2651, 62, 9662, 7, 7890, 11, 2746, 11, 11241, 7509, 11, 34054, 11, 26498, 2599, 198, 220, 220, 220, 37227, 39746, 2239, 526, 15931, 628, 220, 220, 220, 6291, 796, 1445, 62, 1462, 62, 66, 15339, 7, 7890, 11, 28034, 13, 66, 15339, 13, 14421, 62, 25202, 28955, 198, 220, 220, 220, 5072, 11, 299, 2777, 11, 1613, 796, 2746, 7, 1174, 39873, 14692, 3262, 62, 15414, 8973, 8, 198, 220, 220, 220, 299, 2777, 62, 23912, 1424, 796, 6291, 14692, 77, 2777, 62, 23912, 1424, 8973, 198, 220, 220, 220, 2496, 796, 6291, 14692, 16793, 8973, 198, 220, 220, 220, 299, 2777, 62, 22462, 796, 34054, 7, 77, 2777, 13, 1177, 32590, 16, 11, 513, 737, 3642, 29709, 22446, 22468, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 2777, 62, 23912, 1424, 13, 1177, 32590, 16, 737, 3642, 29709, 28955, 198, 220, 220, 220, 9089, 796, 34054, 7, 22915, 13, 1177, 32590, 16, 11, 11241, 7509, 13, 22510, 62, 83, 482, 641, 737, 3642, 29709, 22446, 22468, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 3642, 29709, 22446, 1177, 32590, 16, 737, 3642, 29709, 28955, 198, 220, 220, 220, 1303, 279, 9945, 13, 2617, 62, 40546, 3419, 628, 220, 220, 220, 1441, 9089, 11, 299, 2777, 62, 22462, 11, 6291, 14692, 5907, 298, 3007, 33116, 6291, 14692, 429, 482, 641, 8973, 628, 198, 4299, 19528, 62, 9662, 7, 40085, 7509, 11, 2746, 11, 300, 76, 62, 22462, 11, 299, 2777, 62, 22462, 11, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 11, 26498, 2599, 198, 220, 220, 220, 37227, 7282, 904, 2239, 526, 15931, 628, 220, 220, 220, 1303, 7472, 2994, 13, 198, 220, 220, 220, 2994, 796, 300, 76, 62, 22462, 1220, 15458, 62, 83, 482, 641, 1343, 299, 2777, 62, 22462, 1220, 15458, 62, 7857, 628, 220, 220, 220, 1303, 5157, 904, 1208, 13, 198, 220, 220, 220, 6436, 7509, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 611, 26498, 13, 46428, 1433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 1891, 904, 7, 22462, 11, 4296, 62, 9866, 62, 2164, 5643, 28, 25101, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 198, 220, 220, 220, 1303, 44048, 1973, 7767, 13, 198, 220, 220, 220, 300, 76, 62, 22462, 62, 445, 19513, 796, 300, 76, 62, 22462, 198, 220, 220, 220, 299, 2777, 62, 22462, 62, 445, 19513, 796, 299, 2777, 62, 22462, 198, 220, 220, 220, 611, 26498, 13, 6894, 62, 7857, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 28034, 13, 51, 22854, 26933, 43501, 62, 7857, 35944, 1462, 7, 75, 76, 62, 22462, 13, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 83, 482, 641, 796, 28034, 13, 51, 22854, 26933, 43501, 62, 83, 482, 641, 35944, 1462, 7, 75, 76, 62, 22462, 13, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5322, 62, 22462, 274, 796, 28034, 13, 9246, 19510, 75, 76, 62, 22462, 13, 1177, 7, 16, 828, 299, 2777, 62, 22462, 13, 1177, 7, 16, 828, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 17080, 6169, 13, 439, 62, 445, 7234, 7, 445, 19513, 62, 22462, 274, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5322, 62, 22462, 274, 13, 7890, 796, 5322, 62, 22462, 274, 13, 7890, 1220, 26498, 13, 6894, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 439, 445, 7234, 62, 37266, 7, 445, 7234, 62, 8499, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 79, 2624, 62, 439, 445, 7234, 28, 22046, 13, 46428, 2624, 62, 439, 445, 7234, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 76, 62, 22462, 62, 445, 19513, 796, 5322, 62, 22462, 274, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 299, 2777, 62, 22462, 62, 445, 19513, 796, 5322, 62, 22462, 274, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 5322, 62, 22462, 274, 58, 17, 4083, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 83, 482, 641, 796, 5322, 62, 22462, 274, 58, 18, 4083, 9186, 3419, 628, 220, 220, 220, 1303, 10133, 4958, 3915, 2334, 13, 198, 220, 220, 220, 611, 26498, 13, 46428, 1433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 19119, 62, 9866, 62, 2164, 5643, 3419, 628, 220, 220, 220, 1303, 1012, 4501, 3915, 2334, 5419, 2948, 262, 30990, 31312, 13, 198, 220, 220, 220, 611, 26498, 13, 15036, 62, 9744, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 26498, 13, 46428, 1433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 20471, 13, 26791, 13, 15036, 62, 9744, 62, 27237, 7, 19849, 13, 17143, 7307, 22784, 26498, 13, 15036, 62, 9744, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 15036, 62, 9866, 62, 2164, 5643, 7, 22046, 13, 15036, 62, 9744, 8, 628, 220, 220, 220, 1441, 300, 76, 62, 22462, 62, 445, 19513, 11, 299, 2777, 62, 22462, 62, 445, 19513, 11, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 628, 198, 4299, 4512, 62, 9662, 7, 15414, 62, 7890, 11, 2746, 11, 11241, 7509, 11, 34054, 11, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 2599, 198, 220, 220, 220, 37227, 28008, 3047, 2239, 526, 15931, 198, 220, 220, 220, 1303, 19530, 2746, 329, 530, 2239, 13, 198, 220, 220, 220, 300, 76, 62, 22462, 11, 299, 2777, 62, 22462, 11, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 796, 2651, 62, 9662, 7, 15414, 62, 7890, 11, 2746, 11, 11241, 7509, 11, 34054, 11, 26498, 8, 628, 220, 220, 220, 1303, 27131, 378, 3915, 2334, 11, 4646, 1973, 7767, 11, 290, 10651, 13, 198, 220, 220, 220, 300, 76, 62, 22462, 62, 445, 19513, 11, 299, 2777, 62, 22462, 62, 445, 19513, 11, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 796, 19528, 62, 9662, 7, 40085, 7509, 11, 2746, 11, 300, 76, 62, 22462, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 2777, 62, 22462, 11, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 8, 628, 220, 220, 220, 1303, 10133, 10007, 13, 198, 220, 220, 220, 6436, 7509, 13, 9662, 3419, 628, 220, 220, 220, 1303, 10133, 4673, 2494, 13, 198, 220, 220, 220, 26684, 62, 2676, 796, 657, 198, 220, 220, 220, 611, 407, 357, 22046, 13, 46428, 1433, 290, 6436, 7509, 13, 2502, 11125, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 300, 81, 62, 1416, 704, 18173, 13, 9662, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26684, 62, 2676, 796, 352, 628, 220, 220, 220, 1441, 300, 76, 62, 22462, 62, 445, 19513, 11, 299, 2777, 62, 22462, 62, 445, 19513, 11, 26684, 62, 2676, 11, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 628, 198, 4299, 4512, 62, 538, 5374, 7, 538, 5374, 11, 2746, 11, 11241, 7509, 11, 6436, 7509, 11, 4512, 62, 7890, 11, 1188, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 81, 62, 1416, 704, 18173, 11, 34054, 11, 48085, 11, 26498, 2599, 198, 220, 220, 220, 37227, 44077, 530, 1336, 36835, 526, 15931, 628, 220, 220, 220, 1303, 6756, 319, 3047, 4235, 543, 13536, 4268, 448, 13, 198, 220, 220, 220, 2746, 13, 27432, 3419, 628, 220, 220, 220, 1303, 37169, 2994, 13, 198, 220, 220, 220, 2472, 62, 75, 76, 62, 22462, 796, 657, 13, 15, 198, 220, 220, 220, 2472, 62, 77, 2777, 62, 22462, 796, 657, 13, 15, 628, 220, 220, 220, 1303, 40806, 602, 13, 198, 220, 220, 220, 3509, 62, 270, 364, 796, 18896, 7, 27432, 62, 7890, 8, 198, 220, 220, 220, 24415, 796, 657, 198, 220, 220, 220, 4296, 62, 22510, 796, 657, 198, 220, 220, 220, 2472, 62, 83, 482, 641, 796, 657, 198, 220, 220, 220, 2472, 62, 43501, 796, 657, 198, 220, 220, 220, 26684, 62, 270, 364, 796, 657, 198, 220, 220, 220, 1366, 62, 48727, 796, 11629, 7, 27432, 62, 7890, 8, 628, 220, 220, 220, 611, 26498, 13, 411, 2454, 62, 67, 10254, 1170, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24415, 796, 26498, 13, 13602, 62, 538, 5374, 62, 270, 364, 198, 220, 220, 220, 220, 220, 220, 220, 401, 82, 2454, 62, 7890, 7, 2676, 341, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 411, 2454, 62, 67, 10254, 1170, 263, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 300, 81, 62, 1416, 704, 18173, 13, 9662, 7, 9806, 62, 270, 364, 1635, 357, 538, 5374, 12, 16, 8, 1343, 24415, 8, 628, 220, 220, 220, 1303, 6060, 41313, 13, 198, 220, 220, 220, 48085, 10786, 3849, 2100, 640, 27691, 9688, 3419, 198, 220, 220, 220, 981, 24415, 1279, 3509, 62, 270, 364, 25, 628, 220, 220, 220, 220, 220, 220, 220, 300, 76, 62, 22462, 11, 299, 2777, 62, 22462, 11, 26684, 62, 2676, 11, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 796, 4512, 62, 9662, 7, 19545, 7, 7890, 62, 48727, 828, 2746, 11, 11241, 7509, 11, 34054, 11, 40085, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 22510, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26684, 62, 270, 364, 15853, 26684, 62, 2676, 198, 220, 220, 220, 220, 220, 220, 220, 24415, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 22019, 62, 2676, 341, 796, 24415, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 9089, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 75, 76, 62, 22462, 15853, 300, 76, 62, 22462, 13, 7890, 13, 15255, 620, 22446, 22468, 22446, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 77, 2777, 62, 22462, 15853, 299, 2777, 62, 22462, 13, 7890, 13, 15255, 620, 22446, 22468, 22446, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 2777, 62, 22462, 14512, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 43501, 15853, 15458, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 83, 482, 641, 15853, 15458, 62, 83, 482, 641, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2472, 62, 43501, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 43501, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5972, 2667, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24415, 4064, 26498, 13, 6404, 62, 3849, 2100, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 796, 6436, 7509, 13, 17143, 62, 24432, 58, 15, 7131, 6, 14050, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 77, 2777, 62, 22462, 796, 2472, 62, 77, 2777, 62, 22462, 1220, 2472, 62, 43501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 75, 76, 62, 22462, 796, 2472, 62, 75, 76, 62, 22462, 1220, 2472, 62, 83, 482, 641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42118, 62, 2435, 796, 48085, 10786, 3849, 2100, 640, 27691, 417, 28361, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 796, 705, 36835, 90, 25, 17, 67, 92, 930, 4458, 18982, 7, 538, 5374, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 15853, 705, 24415, 46110, 23, 67, 92, 14, 90, 25, 23, 67, 92, 930, 4458, 18982, 7, 2676, 341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 270, 364, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 15853, 705, 300, 76, 2994, 46110, 13, 18, 69, 92, 930, 4458, 18982, 7, 615, 70, 62, 75, 76, 62, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 15853, 705, 300, 76, 279, 489, 46110, 13, 18, 69, 92, 930, 4458, 18982, 7, 11018, 13, 11201, 7, 615, 70, 62, 75, 76, 62, 22462, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 15853, 705, 299, 2777, 2994, 46110, 13, 18, 69, 92, 930, 4458, 18982, 7, 615, 70, 62, 77, 2777, 62, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 15853, 705, 15458, 2546, 23884, 930, 4458, 18982, 7, 43501, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 15853, 705, 4673, 2494, 46110, 13, 22, 69, 92, 930, 4458, 18982, 7, 40684, 62, 4873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 15853, 705, 256, 14415, 357, 907, 2599, 46110, 13, 17, 69, 92, 930, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42118, 62, 2435, 1635, 8576, 13, 15, 1220, 26498, 13, 6404, 62, 3849, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 46428, 1433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 8841, 15853, 705, 2994, 5046, 46110, 13, 18, 69, 92, 930, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 22462, 62, 9888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 62, 8841, 11, 24773, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 24415, 4064, 26498, 13, 12102, 62, 3849, 2100, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 76, 62, 22462, 11, 299, 2777, 62, 22462, 796, 13446, 7, 2100, 62, 7890, 11, 2746, 11, 11241, 7509, 11, 34054, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 22462, 796, 300, 76, 62, 22462, 1343, 299, 2777, 62, 22462, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19355, 1635, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 91, 886, 286, 36835, 46110, 18, 67, 92, 220, 930, 4938, 2994, 46110, 13, 18, 69, 92, 930, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12102, 37125, 22014, 46110, 13, 18, 69, 92, 930, 4938, 37125, 350, 6489, 46110, 13, 18, 69, 92, 930, 4938, 399, 4303, 22014, 46110, 13, 18, 69, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 11, 1188, 62, 22462, 11, 300, 76, 62, 22462, 11, 10688, 13, 11201, 7, 75, 76, 62, 22462, 828, 299, 2777, 62, 22462, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19355, 1635, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21928, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36628, 62, 6978, 796, 366, 9122, 13033, 23330, 92, 23330, 27422, 457, 1911, 18982, 7, 538, 5374, 11, 24415, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 7, 9122, 13033, 62, 6978, 11, 36835, 11, 24415, 11, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36628, 62, 6978, 796, 366, 9122, 13033, 12, 12957, 13, 457, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 7, 9122, 13033, 62, 6978, 11, 36835, 11, 24415, 11, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1188, 62, 22462, 1279, 13446, 13, 13466, 62, 2100, 62, 22462, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13446, 13, 13466, 62, 2100, 62, 22462, 796, 1188, 62, 22462, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21928, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 6978, 796, 705, 9122, 13033, 12, 13466, 13, 457, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29336, 1266, 2746, 284, 25, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 21928, 11, 1266, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 7, 13466, 62, 6978, 11, 36835, 11, 24415, 11, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 628, 220, 220, 220, 611, 26498, 13, 21928, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 6978, 796, 705, 9122, 13033, 23330, 27422, 457, 4458, 18982, 7, 538, 5374, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29336, 2457, 36835, 2746, 284, 25, 3256, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 21928, 11, 2457, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 7, 20311, 62, 6978, 11, 36835, 1343, 352, 11, 657, 11, 2746, 11, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 6978, 796, 705, 9122, 13033, 12, 12957, 13, 457, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 7, 22019, 62, 6978, 11, 36835, 1343, 352, 11, 657, 11, 2746, 11, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 628, 220, 220, 220, 220, 220, 220, 220, 300, 76, 62, 22462, 11, 299, 2777, 62, 22462, 796, 13446, 7, 2100, 62, 7890, 11, 2746, 11, 11241, 7509, 11, 34054, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 22462, 796, 300, 76, 62, 22462, 1343, 299, 2777, 62, 22462, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1188, 62, 22462, 1279, 13446, 13, 13466, 62, 2100, 62, 22462, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13446, 13, 13466, 62, 2100, 62, 22462, 796, 1188, 62, 22462, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21928, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 6978, 796, 705, 9122, 13033, 12, 13466, 13, 457, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29336, 1266, 2746, 284, 25, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 21928, 11, 1266, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 7, 13466, 62, 6978, 11, 36835, 10, 16, 11, 657, 11, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 628, 220, 220, 220, 1441, 24415, 11, 26684, 62, 270, 364, 628, 198, 4299, 13446, 7, 7890, 62, 10459, 11, 2746, 11, 11241, 7509, 11, 34054, 11, 26498, 2599, 198, 220, 220, 220, 37227, 36, 2100, 2288, 526, 15931, 628, 220, 220, 220, 1303, 6756, 319, 12660, 4235, 543, 595, 2977, 4268, 448, 13, 198, 220, 220, 220, 2746, 13, 18206, 3419, 628, 220, 220, 220, 2472, 62, 75, 76, 62, 22462, 796, 657, 198, 220, 220, 220, 2472, 62, 77, 2777, 62, 22462, 796, 657, 198, 220, 220, 220, 2472, 62, 43501, 62, 7857, 796, 657, 198, 220, 220, 220, 2472, 62, 43501, 62, 83, 482, 641, 796, 657, 198, 220, 220, 220, 329, 1366, 62, 29356, 287, 1366, 62, 10459, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 75, 76, 62, 22462, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 43501, 62, 83, 482, 641, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 270, 364, 796, 18896, 7, 7890, 62, 29356, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 48727, 796, 11629, 7, 7890, 62, 29356, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24415, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 24415, 1279, 3509, 62, 270, 364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19530, 12660, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 76, 62, 22462, 11, 299, 2777, 62, 22462, 11, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 796, 2651, 62, 9662, 7, 19545, 7, 7890, 62, 48727, 828, 2746, 11, 11241, 7509, 11, 22213, 28019, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 44048, 1973, 7767, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 19849, 11, 360, 6322, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 28034, 13, 51, 22854, 26933, 43501, 62, 7857, 35944, 1462, 7, 75, 76, 62, 22462, 13, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 83, 482, 641, 796, 28034, 13, 51, 22854, 26933, 43501, 62, 83, 482, 641, 35944, 1462, 7, 75, 76, 62, 22462, 13, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5322, 62, 22462, 274, 796, 28034, 13, 9246, 19510, 75, 76, 62, 22462, 13, 1177, 7, 16, 828, 299, 2777, 62, 22462, 13, 1177, 7, 16, 828, 15458, 62, 7857, 11, 15458, 62, 83, 482, 641, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 17080, 6169, 13, 439, 62, 445, 7234, 7, 445, 19513, 62, 22462, 274, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5322, 62, 22462, 274, 13, 7890, 796, 5322, 62, 22462, 274, 13, 7890, 1220, 26498, 13, 6894, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 76, 62, 22462, 796, 5322, 62, 22462, 274, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 2777, 62, 22462, 796, 5322, 62, 22462, 274, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 5322, 62, 22462, 274, 58, 17, 4083, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 83, 482, 641, 796, 5322, 62, 22462, 274, 58, 18, 4083, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 300, 76, 62, 22462, 6624, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 75, 76, 62, 22462, 15853, 300, 76, 62, 22462, 13, 7890, 13, 15255, 620, 22446, 22468, 22446, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 77, 2777, 62, 22462, 15853, 299, 2777, 62, 22462, 13, 7890, 13, 15255, 620, 22446, 22468, 22446, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 75, 76, 62, 22462, 15853, 300, 76, 62, 22462, 13, 7890, 13, 15255, 620, 22446, 22468, 22446, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 43501, 62, 83, 482, 641, 15853, 15458, 62, 83, 482, 641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 43501, 62, 7857, 15853, 15458, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 43501, 62, 83, 482, 641, 15853, 15458, 62, 83, 482, 641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24415, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 75, 76, 62, 22462, 1220, 28, 1957, 62, 43501, 62, 83, 482, 641, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 91, 37347, 1847, 4938, 37125, 22014, 46110, 13, 18, 69, 92, 930, 4938, 37125, 350, 6489, 46110, 13, 18, 69, 92, 4458, 18982, 7, 12001, 62, 75, 76, 62, 22462, 11, 10688, 13, 11201, 7, 12001, 62, 75, 76, 62, 22462, 22305, 628, 220, 220, 220, 1303, 10028, 2746, 736, 284, 262, 4512, 4235, 13, 198, 220, 220, 220, 2746, 13, 27432, 3419, 628, 220, 220, 220, 2472, 62, 75, 76, 62, 22462, 1220, 28, 2472, 62, 43501, 62, 83, 482, 641, 198, 220, 220, 220, 2472, 62, 77, 2777, 62, 22462, 1220, 28, 2472, 62, 43501, 62, 7857, 198, 220, 220, 220, 1441, 2472, 62, 75, 76, 62, 22462, 11, 2472, 62, 77, 2777, 62, 22462, 628, 198, 4299, 41216, 62, 17080, 6169, 7, 22046, 2599, 198, 220, 220, 220, 37227, 24243, 1096, 28034, 13, 17080, 6169, 526, 15931, 628, 220, 220, 220, 1303, 1869, 935, 900, 262, 3335, 220, 2340, 13, 198, 220, 220, 220, 3335, 796, 26498, 13, 43027, 4064, 28034, 13, 66, 15339, 13, 25202, 62, 9127, 3419, 198, 220, 220, 220, 611, 26498, 13, 12001, 62, 43027, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 26498, 13, 12001, 62, 43027, 198, 220, 220, 220, 28034, 13, 66, 15339, 13, 2617, 62, 25202, 7, 25202, 8, 198, 220, 220, 220, 1303, 4889, 262, 2315, 1429, 198, 220, 220, 220, 611, 26498, 13, 6894, 62, 7857, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 24396, 796, 705, 83, 13155, 1378, 6, 198, 220, 220, 220, 220, 220, 220, 220, 4958, 62, 541, 796, 28686, 13, 1136, 24330, 10786, 31180, 5781, 62, 2885, 7707, 3256, 705, 36750, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4958, 62, 634, 796, 28686, 13, 1136, 24330, 10786, 31180, 5781, 62, 15490, 3256, 705, 43434, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 24396, 15853, 4958, 62, 541, 1343, 705, 32105, 1343, 4958, 62, 634, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 17080, 6169, 13, 15003, 62, 14681, 62, 8094, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30203, 28, 22046, 13, 17080, 6169, 62, 1891, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 995, 62, 7857, 28, 22046, 13, 6894, 62, 7857, 11, 4279, 28, 22046, 13, 43027, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 24396, 28, 15003, 62, 24396, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18175, 62, 22915, 7, 22046, 13, 43027, 6624, 657, 8, 628, 198, 4299, 18175, 62, 22915, 7, 271, 62, 9866, 2599, 198, 220, 220, 220, 37227, 15979, 601, 13570, 319, 262, 1459, 3335, 13, 5221, 13570, 351, 4600, 3174, 28, 17821, 63, 526, 15931, 198, 220, 220, 220, 1330, 3170, 1040, 355, 11593, 18780, 259, 834, 198, 220, 220, 220, 3170, 259, 62, 4798, 796, 11593, 18780, 259, 834, 13, 4798, 628, 220, 220, 220, 11593, 18780, 259, 834, 13, 4798, 796, 3601, 628, 198, 4299, 900, 62, 25120, 62, 28826, 7, 28826, 2599, 198, 220, 220, 220, 37227, 7248, 4738, 9403, 329, 8186, 66, 1799, 526, 15931, 628, 220, 220, 220, 611, 9403, 318, 407, 6045, 290, 9403, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 13, 28826, 7, 28826, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 28826, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 805, 723, 62, 28826, 7, 28826, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 66, 15339, 13, 805, 723, 62, 28826, 7, 28826, 8, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 13383, 3047, 1430, 526, 15931, 628, 220, 220, 220, 3601, 10786, 47, 1186, 3201, 347, 17395, 2746, 11537, 628, 220, 220, 220, 1303, 31529, 14496, 35, 6144, 13, 198, 220, 220, 220, 28034, 13, 1891, 2412, 13, 66, 463, 20471, 13, 25616, 796, 10352, 198, 220, 220, 220, 1303, 20559, 2886, 13, 198, 220, 220, 220, 26498, 796, 651, 62, 22046, 3419, 628, 220, 220, 220, 1303, 9485, 13165, 354, 9387, 13, 198, 220, 220, 220, 41216, 62, 17080, 6169, 7, 22046, 8, 628, 220, 220, 220, 900, 62, 25120, 62, 28826, 7, 22046, 13, 28826, 8, 198, 220, 220, 220, 3601, 7, 22046, 8, 198, 220, 220, 220, 1303, 6060, 3404, 13, 198, 220, 220, 220, 1366, 62, 11250, 796, 17425, 62, 7890, 3419, 198, 220, 220, 220, 1366, 62, 11250, 13, 2617, 62, 12286, 82, 7, 7890, 62, 2617, 62, 4906, 11639, 13246, 51, 3256, 1007, 3455, 28, 25101, 8, 198, 220, 220, 220, 357, 27432, 62, 7890, 11, 1188, 62, 7890, 828, 11241, 7509, 796, 1366, 62, 11250, 13, 39014, 7, 22046, 8, 628, 220, 220, 220, 26498, 13, 27432, 62, 270, 364, 796, 18896, 7, 27432, 62, 7890, 8, 198, 220, 220, 220, 13446, 13, 13466, 62, 2100, 62, 22462, 796, 12178, 7203, 10745, 4943, 628, 220, 220, 220, 1303, 9104, 11, 6436, 7509, 11, 290, 4673, 2494, 13, 198, 220, 220, 220, 2746, 11, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 34054, 796, 9058, 62, 19849, 62, 392, 62, 40085, 7509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 11, 11241, 7509, 8, 198, 220, 220, 220, 1303, 13446, 7, 2100, 62, 7890, 11, 2746, 11, 11241, 7509, 11, 34054, 11, 26498, 8, 198, 220, 220, 220, 1303, 1629, 597, 966, 345, 460, 2277, 19212, 1343, 327, 284, 2270, 503, 286, 3047, 1903, 13, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 270, 364, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 26684, 62, 270, 364, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 538, 5374, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 2100, 62, 22462, 796, 12178, 10786, 10745, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 2454, 1366, 40213, 611, 3306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 411, 2454, 62, 67, 10254, 1170, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 538, 5374, 796, 26498, 13, 538, 5374, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 270, 364, 796, 26498, 13, 23350, 62, 270, 364, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 477, 36835, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 36835, 287, 2837, 7, 9688, 62, 538, 5374, 11, 26498, 13, 538, 5374, 82, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48085, 796, 5045, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 26498, 13, 1477, 18137, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 4512, 62, 7890, 13, 43501, 62, 37687, 20053, 13, 37687, 20053, 13, 2617, 62, 538, 5374, 7, 538, 5374, 1343, 26498, 13, 28826, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48085, 10786, 538, 5374, 640, 27691, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24415, 11, 26684, 796, 4512, 62, 538, 5374, 7, 538, 5374, 11, 2746, 11, 11241, 7509, 11, 6436, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 11, 1188, 62, 7890, 11, 300, 81, 62, 1416, 704, 18173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34054, 11, 48085, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42118, 62, 2435, 796, 48085, 10786, 538, 5374, 640, 27691, 417, 28361, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 270, 364, 15853, 24415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26684, 62, 270, 364, 15853, 26684, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 76, 62, 22462, 11, 299, 2777, 62, 22462, 796, 13446, 7, 2100, 62, 7890, 11, 2746, 11, 11241, 7509, 11, 34054, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 22462, 796, 300, 76, 62, 22462, 1343, 299, 2777, 62, 22462, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19355, 1635, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 91, 886, 286, 36835, 46110, 18, 67, 92, 930, 640, 25, 46110, 13, 18, 69, 92, 82, 930, 4938, 2994, 46110, 13, 18, 69, 92, 930, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12102, 37125, 22014, 46110, 13, 18, 69, 92, 930, 4938, 37125, 350, 6489, 46110, 13, 18, 69, 92, 930, 4938, 399, 4303, 22014, 46110, 13, 18, 69, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 11, 42118, 62, 2435, 11, 1188, 62, 22462, 11, 300, 76, 62, 22462, 11, 10688, 13, 11201, 7, 75, 76, 62, 22462, 828, 299, 2777, 62, 22462, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19355, 1635, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1188, 62, 22462, 1279, 13446, 13, 13466, 62, 2100, 62, 22462, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13446, 13, 13466, 62, 2100, 62, 22462, 796, 1188, 62, 22462, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21928, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 6978, 796, 705, 9122, 13033, 12, 13466, 13, 457, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29336, 1266, 2746, 284, 25, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 21928, 11, 1266, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 7, 13466, 62, 6978, 11, 36835, 1343, 352, 11, 657, 11, 2746, 11, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19355, 1635, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 3109, 1780, 422, 3047, 1903, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21928, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 6978, 796, 705, 9122, 13033, 12, 12957, 13, 457, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29336, 1459, 2746, 284, 25, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 21928, 11, 1090, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9122, 4122, 7, 22019, 62, 6978, 11, 36835, 11, 26498, 13, 22019, 62, 2676, 341, 11, 2746, 11, 6436, 7509, 11, 300, 81, 62, 1416, 704, 18173, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.127071
9,294
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ @author: julian Read (and write?) molden .freq files """ import numpy import string from molsys.util.constants import angstrom, kcalmol
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 31, 9800, 25, 474, 377, 666, 220, 220, 198, 5569, 357, 392, 3551, 10091, 15936, 268, 764, 19503, 80, 3696, 198, 37811, 198, 198, 11748, 299, 32152, 198, 11748, 4731, 198, 6738, 285, 10220, 893, 13, 22602, 13, 9979, 1187, 1330, 3550, 20282, 11, 49504, 43132, 198 ]
2.60274
73
################################################################################ # Author: Fanyang Cheng # Date: 04/07/2021 # Description: This program read the weekly gas average price txt file as input # and draw a graph for to show the data. ################################################################################ import matplotlib.pyplot as plt #read file if __name__ == '__main__': main() plt.show()
[ 29113, 29113, 14468, 198, 2, 6434, 25, 376, 1092, 648, 27692, 198, 2, 7536, 25, 8702, 14, 2998, 14, 1238, 2481, 198, 2, 12489, 25, 770, 1430, 1100, 262, 10273, 3623, 2811, 2756, 256, 742, 2393, 355, 5128, 198, 2, 290, 3197, 257, 4823, 329, 284, 905, 262, 1366, 13, 198, 29113, 29113, 14468, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 2, 961, 2393, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198 ]
4.360825
97
# JSON API classes import brainspell from article_helpers import * from base_handler import * from search_helpers import * from user_account_helpers import * # For GitHub OAuth import requests import urllib.parse import os import hashlib REQ_DESC = "The fields to search through. 'x' is experiments, 'p' is PMID, 'r' is reference, and 't' is title + authors + abstract." START_DESC = "The offset of the articles to show; e.g., start = 10 would return results 11 - 20." assert "github_frontend_client_id" in os.environ \ and "github_frontend_client_secret" in os.environ, \ "You need to set the 'github_frontend_client_id' and 'github_frontend_client_secret' environment variables." assert "github_frontend_dev_client_id" in os.environ \ and "github_frontend_dev_client_secret" in os.environ, \ "You need to set the 'github_frontend_dev_client_id' and 'github_frontend_dev_client_secret' environment variables." class ListEndpointsEndpointHandler(BaseHandler): """ Return a list of all JSON API endpoints. Do not include /help pages, or aliases. """ parameters = {} endpoint_type = Endpoint.PULL_API # BEGIN: Authentication endpoints class GithubOauthProductionEndpointHandler(BaseHandler): """ GitHub login authentication. Return the GitHub token and Brainspell API key. """ parameters = { "code": { "type": str, "description": "The code returned after GitHub OAuth." } } endpoint_type = Endpoint.PULL_API client_id_key = "github_frontend_client_id" client_secret_key = "github_frontend_client_secret" class GithubOauthDevelopmentEndpointHandler( GithubOauthProductionEndpointHandler): """ Endpoint for development OAuth. """ client_id_key = "github_frontend_dev_client_id" client_secret_key = "github_frontend_dev_client_secret" # BEGIN: search API endpoints class QueryEndpointHandler(BaseHandler): """ Endpoint to handle search queries. Return 10 results at a time. """ parameters = { "q": { "type": str, "default": "", "description": "The query to search for." }, "start": { "type": int, "default": 0, "description": START_DESC }, "req": { "type": str, "default": "t", "description": REQ_DESC } } endpoint_type = Endpoint.PULL_API class CoordinatesEndpointHandler(BaseHandler): """ API endpoint to fetch coordinates from all articles that match a query. Return 200 sets of coordinates at a time. """ parameters = { "q": { "type": str, "default": "", "description": "The search query to return the coordinates for." }, "start": { "type": int, "default": 0, "description": START_DESC }, "req": { "type": str, "default": "t", "description": REQ_DESC } } endpoint_type = Endpoint.PULL_API class RandomQueryEndpointHandler(BaseHandler): """ Return five random articles (for use on Brainspell's front page) """ parameters = {} endpoint_type = Endpoint.PULL_API class AddArticleFromPmidEndpointHandler(BaseHandler): """ Add an article to our database via PMID (for use on the search page) """ parameters = { "new_pmid": { "type": str, "description": PMID_DESC } } endpoint_type = Endpoint.PUSH_API # BEGIN: article API endpoints class ArticleEndpointHandler(BaseHandler): """ Return the contents of an article, given a PMID. Called by the view-article page. """ parameters = { "pmid": { "type": str } } endpoint_type = Endpoint.PULL_API class BulkAddEndpointHandler(BaseHandler): """ Add a large number of articles to our database at once, by parsing a file that is sent to us in a JSON format. """ parameters = {} endpoint_type = Endpoint.PUSH_API class SetArticleAuthorsEndpointHandler(BaseHandler): """ Edit the authors of an article. """ parameters = { "pmid": { "type": str }, "authors": { "type": str, "description": "The string to set as the 'authors' for this article." } } endpoint_type = Endpoint.PUSH_API class ToggleStereotaxicSpaceVoteEndpointHandler(BaseHandler): """ Toggle a user's vote for the stereotaxic space of an article. """ parameters = { "pmid": { "type": str }, "space": { "type": str, "description": "Must be 'mni' or 'talairach' without quotes." } } endpoint_type = Endpoint.PUSH_API class NumberOfSubjectsVoteEndpointHandler(BaseHandler): """ Place a vote for the number of subjects for an article. """ parameters = { "pmid": { "type": str }, "subjects": { "type": int, "description": "The number of subjects that should be set for this article." } } endpoint_type = Endpoint.PUSH_API class AddExperimentsTableViaTextEndpointHandler(BaseHandler): """ Add a table of experiment coordinates via text. Used on the view-article page. """ parameters = { "values": { "type": str, "description": "Takes a CSV formatted string of coordinates; i.e., x, y, z separated by commas, and each coordinate separated by a newline." }, "pmid": { "type": str } } endpoint_type = Endpoint.PUSH_API class ToggleUserVoteEndpointHandler(BaseHandler): """ Endpoint for a user to vote on an article tag. """ parameters = { "topic": { "type": str, "description": "The name of the tag to place a vote for." }, "pmid": { "type": str }, "direction": { "type": str, "description": "The direction that the user clicked in. Will toggle; i.e., if the user votes up on an article they've already upvoted, then it will clear the vote." } } endpoint_type = Endpoint.PUSH_API # BEGIN: table API endpoints class ToggleUserTagOnArticleEndpointHandler(BaseHandler): """ Toggle a user tag on an article in our database. """ parameters = { "pmid": { "type": str }, "tag_name": { "type": str, "description": "The name of the tag to add." } } endpoint_type = Endpoint.PUSH_API class UpdateTableVoteEndpointHandler(BaseHandler): """ Update the vote on a tag for an experiment table. """ parameters = { "tag_name": { "type": str }, "direction": { "type": str }, "experiment": { "type": int }, "pmid": { "type": str }, "column": { "type": str, "description": "The column to place the vote under. Options are 'T' for tasks, 'B' for behavioral, and 'C' for cognitive." } } endpoint_type = Endpoint.PUSH_API class FlagTableEndpointHandler(BaseHandler): """ Flag a table as inaccurate. """ parameters = { "pmid": { "type": str }, "experiment": { "type": int } } endpoint_type = Endpoint.PUSH_API class EditTableTitleCaptionEndpointHandler(BaseHandler): """ Edit the title and caption for an experiment table. """ parameters = { "pmid": { "type": str }, "experiment": { "type": int }, "title": { "type": str }, "caption": { "type": str, "default": "" } } endpoint_type = Endpoint.PUSH_API class DeleteRowEndpointHandler(BaseHandler): """ Delete a row of coordinates from an experiment table. """ parameters = { "pmid": { "type": str }, "experiment": { "type": int }, "row_number": { "type": int } } endpoint_type = Endpoint.PUSH_API class SplitTableEndpointHandler(BaseHandler): """ Split a table of coordinates for an experiment into two separate tables. """ parameters = { "pmid": { "type": str }, "experiment": { "type": int }, "row_number": { "type": int } } endpoint_type = Endpoint.PUSH_API class UpdateRowEndpointHandler(BaseHandler): """ Update a row of coordinates in an experiment table. """ parameters = { "pmid": { "type": str }, "experiment": { "type": int }, "coordinates": { "type": json.loads, "description": "Takes a JSON array of three or four coordinates. (The fourth is z-effective.)" }, "row_number": { "type": int } } endpoint_type = Endpoint.PUSH_API class AddRowEndpointHandler(BaseHandler): """ Add a single row of coordinates to an experiment table. """ parameters = { "pmid": { "type": str }, "experiment": { "type": int }, "coordinates": { "type": json.loads, "description": "Takes a JSON array of three or four coordinates. (The fourth is z-effective.)" }, "row_number": { "type": int, "default": -1, "description": "The index that this row should be located at in the table. Defaults to the end of the table." } } endpoint_type = Endpoint.PUSH_API
[ 2, 19449, 7824, 6097, 198, 198, 11748, 14290, 23506, 198, 6738, 2708, 62, 16794, 364, 1330, 1635, 198, 6738, 2779, 62, 30281, 1330, 1635, 198, 6738, 2989, 62, 16794, 364, 1330, 1635, 198, 6738, 2836, 62, 23317, 62, 16794, 364, 1330, 1635, 198, 198, 2, 1114, 21722, 440, 30515, 198, 11748, 7007, 198, 11748, 2956, 297, 571, 13, 29572, 198, 11748, 28686, 198, 11748, 12234, 8019, 198, 198, 2200, 48, 62, 30910, 34, 796, 366, 464, 7032, 284, 2989, 832, 13, 705, 87, 6, 318, 10256, 11, 705, 79, 6, 318, 3122, 2389, 11, 705, 81, 6, 318, 4941, 11, 290, 705, 83, 6, 318, 3670, 1343, 7035, 1343, 12531, 526, 198, 2257, 7227, 62, 30910, 34, 796, 366, 464, 11677, 286, 262, 6685, 284, 905, 26, 304, 13, 70, 1539, 923, 796, 838, 561, 1441, 2482, 1367, 532, 1160, 526, 198, 198, 30493, 366, 12567, 62, 8534, 437, 62, 16366, 62, 312, 1, 287, 28686, 13, 268, 2268, 3467, 198, 220, 220, 220, 290, 366, 12567, 62, 8534, 437, 62, 16366, 62, 21078, 1, 287, 28686, 13, 268, 2268, 11, 3467, 198, 220, 220, 220, 366, 1639, 761, 284, 900, 262, 705, 12567, 62, 8534, 437, 62, 16366, 62, 312, 6, 290, 705, 12567, 62, 8534, 437, 62, 16366, 62, 21078, 6, 2858, 9633, 526, 198, 198, 30493, 366, 12567, 62, 8534, 437, 62, 7959, 62, 16366, 62, 312, 1, 287, 28686, 13, 268, 2268, 3467, 198, 220, 220, 220, 290, 366, 12567, 62, 8534, 437, 62, 7959, 62, 16366, 62, 21078, 1, 287, 28686, 13, 268, 2268, 11, 3467, 198, 220, 220, 220, 366, 1639, 761, 284, 900, 262, 705, 12567, 62, 8534, 437, 62, 7959, 62, 16366, 62, 312, 6, 290, 705, 12567, 62, 8534, 437, 62, 7959, 62, 16366, 62, 21078, 6, 2858, 9633, 526, 628, 198, 4871, 7343, 12915, 13033, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 8229, 257, 1351, 286, 477, 19449, 7824, 886, 13033, 13, 198, 220, 220, 220, 2141, 407, 2291, 1220, 16794, 5468, 11, 393, 47217, 13, 37227, 628, 220, 220, 220, 10007, 796, 23884, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 5105, 3069, 62, 17614, 628, 198, 2, 347, 43312, 25, 48191, 886, 13033, 198, 198, 4871, 38994, 46, 18439, 35027, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 21722, 17594, 18239, 13, 8229, 262, 21722, 11241, 290, 198, 220, 220, 220, 1709, 1299, 23506, 7824, 1994, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8189, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 2438, 4504, 706, 21722, 440, 30515, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 5105, 3069, 62, 17614, 628, 220, 220, 220, 5456, 62, 312, 62, 2539, 796, 366, 12567, 62, 8534, 437, 62, 16366, 62, 312, 1, 198, 220, 220, 220, 5456, 62, 21078, 62, 2539, 796, 366, 12567, 62, 8534, 437, 62, 16366, 62, 21078, 1, 628, 198, 4871, 38994, 46, 18439, 41206, 12915, 4122, 25060, 7, 198, 220, 220, 220, 220, 220, 220, 220, 38994, 46, 18439, 35027, 12915, 4122, 25060, 2599, 198, 220, 220, 220, 37227, 5268, 4122, 329, 2478, 440, 30515, 13, 37227, 628, 220, 220, 220, 5456, 62, 312, 62, 2539, 796, 366, 12567, 62, 8534, 437, 62, 7959, 62, 16366, 62, 312, 1, 198, 220, 220, 220, 5456, 62, 21078, 62, 2539, 796, 366, 12567, 62, 8534, 437, 62, 7959, 62, 16366, 62, 21078, 1, 198, 198, 2, 347, 43312, 25, 2989, 7824, 886, 13033, 628, 198, 4871, 43301, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 5268, 4122, 284, 5412, 2989, 20743, 13, 8229, 838, 2482, 379, 257, 640, 13, 37227, 198, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 80, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 12405, 284, 2989, 329, 526, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9688, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 33303, 62, 30910, 34, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 42180, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 366, 83, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 4526, 48, 62, 30910, 34, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 5105, 3069, 62, 17614, 628, 198, 4871, 22819, 17540, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7824, 36123, 284, 21207, 22715, 422, 477, 6685, 326, 2872, 257, 12405, 13, 198, 220, 220, 220, 8229, 939, 5621, 286, 22715, 379, 257, 640, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 80, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 2989, 12405, 284, 1441, 262, 22715, 329, 526, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9688, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 33303, 62, 30910, 34, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 42180, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 366, 83, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 4526, 48, 62, 30910, 34, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 5105, 3069, 62, 17614, 628, 198, 4871, 14534, 20746, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 8229, 1936, 4738, 6685, 357, 1640, 779, 319, 1709, 1299, 23506, 338, 2166, 2443, 8, 37227, 628, 220, 220, 220, 10007, 796, 23884, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 5105, 3069, 62, 17614, 628, 198, 4871, 3060, 14906, 4863, 47, 13602, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 3060, 281, 2708, 284, 674, 6831, 2884, 3122, 2389, 357, 1640, 779, 319, 262, 2989, 2443, 8, 37227, 198, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3605, 62, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 3122, 2389, 62, 30910, 34, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 2, 347, 43312, 25, 2708, 7824, 886, 13033, 628, 198, 4871, 10172, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 10154, 286, 281, 2708, 11, 1813, 257, 3122, 2389, 13, 198, 220, 220, 220, 34099, 416, 262, 1570, 12, 20205, 2443, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 5105, 3069, 62, 17614, 628, 198, 4871, 47900, 4550, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3060, 257, 1588, 1271, 286, 6685, 284, 674, 6831, 379, 1752, 11, 198, 220, 220, 220, 416, 32096, 257, 2393, 326, 318, 1908, 284, 514, 287, 257, 19449, 5794, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10007, 796, 23884, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 5345, 14906, 30515, 669, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 5312, 262, 7035, 286, 281, 2708, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41617, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 4731, 284, 900, 355, 262, 705, 41617, 6, 329, 428, 2708, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 34098, 1273, 567, 313, 897, 291, 14106, 37394, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 34098, 257, 2836, 338, 3015, 329, 262, 10268, 313, 897, 291, 2272, 286, 281, 2708, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13200, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 34320, 307, 705, 76, 8461, 6, 393, 705, 39240, 958, 620, 6, 1231, 13386, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 7913, 5189, 19776, 82, 37394, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 8474, 257, 3015, 329, 262, 1271, 286, 7481, 329, 281, 2708, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32796, 82, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 1271, 286, 7481, 326, 815, 307, 900, 329, 428, 2708, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 3060, 20468, 6800, 10962, 30754, 8206, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3060, 257, 3084, 286, 6306, 22715, 2884, 2420, 13, 198, 220, 220, 220, 16718, 319, 262, 1570, 12, 20205, 2443, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27160, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 51, 1124, 257, 44189, 39559, 4731, 286, 22715, 26, 1312, 13, 68, 1539, 2124, 11, 331, 11, 1976, 11266, 416, 725, 292, 11, 290, 1123, 20435, 11266, 416, 257, 649, 1370, 526, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 34098, 12982, 37394, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 5268, 4122, 329, 257, 2836, 284, 3015, 319, 281, 2708, 7621, 13, 37227, 198, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 26652, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 1438, 286, 262, 7621, 284, 1295, 257, 3015, 329, 526, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37295, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 4571, 326, 262, 2836, 28384, 287, 13, 2561, 19846, 26, 1312, 13, 68, 1539, 611, 262, 2836, 5690, 510, 319, 281, 2708, 484, 1053, 1541, 510, 85, 5191, 11, 788, 340, 481, 1598, 262, 3015, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 198, 198, 2, 347, 43312, 25, 3084, 7824, 886, 13033, 628, 198, 4871, 34098, 12982, 24835, 2202, 14906, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 34098, 257, 2836, 7621, 319, 281, 2708, 287, 674, 6831, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12985, 62, 3672, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 1438, 286, 262, 7621, 284, 751, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 10133, 10962, 37394, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 10133, 262, 3015, 319, 257, 7621, 329, 281, 6306, 3084, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12985, 62, 3672, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37295, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23100, 3681, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28665, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 5721, 284, 1295, 262, 3015, 739, 13, 18634, 389, 705, 51, 6, 329, 8861, 11, 705, 33, 6, 329, 17211, 11, 290, 705, 34, 6, 329, 10870, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 19762, 10962, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 19762, 257, 3084, 355, 21873, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23100, 3681, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 5312, 10962, 19160, 24334, 1159, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 5312, 262, 3670, 290, 8305, 329, 281, 6306, 3084, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23100, 3681, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7839, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6888, 1159, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 23520, 25166, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 23520, 257, 5752, 286, 22715, 422, 281, 6306, 3084, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23100, 3681, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 808, 62, 17618, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 27758, 10962, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27758, 257, 3084, 286, 22715, 329, 281, 6306, 656, 734, 198, 220, 220, 220, 4553, 8893, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23100, 3681, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 808, 62, 17618, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 10133, 25166, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 10133, 257, 5752, 286, 22715, 287, 281, 6306, 3084, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23100, 3681, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37652, 17540, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 33918, 13, 46030, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 51, 1124, 257, 19449, 7177, 286, 1115, 393, 1440, 22715, 13, 357, 464, 5544, 318, 1976, 12, 16803, 2014, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 808, 62, 17618, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 628, 198, 4871, 3060, 25166, 12915, 4122, 25060, 7, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 3060, 257, 2060, 5752, 286, 22715, 284, 281, 6306, 3084, 13, 37227, 628, 220, 220, 220, 10007, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4426, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23100, 3681, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37652, 17540, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 33918, 13, 46030, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 51, 1124, 257, 19449, 7177, 286, 1115, 393, 1440, 22715, 13, 357, 464, 5544, 318, 1976, 12, 16803, 2014, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 808, 62, 17618, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 532, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 464, 6376, 326, 428, 5752, 815, 307, 5140, 379, 287, 262, 3084, 13, 2896, 13185, 284, 262, 886, 286, 262, 3084, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 36123, 62, 4906, 796, 5268, 4122, 13, 47, 27143, 62, 17614, 198 ]
2.314132
4,288
#!/usr/bin/env python3 # This file is covered by the LICENSE file in the root of this project. import imp import os import time import numpy as np from matplotlib import pyplot as plt import torch import torch.backends.cudnn as cudnn from torch import nn import __init__ as booger from tasks.semantic.modules.segmentator import * from tasks.semantic.postproc.KNN import KNN
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 770, 2393, 318, 5017, 416, 262, 38559, 24290, 2393, 287, 262, 6808, 286, 428, 1628, 13, 198, 198, 11748, 848, 198, 11748, 28686, 198, 11748, 640, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 1891, 2412, 13, 66, 463, 20471, 355, 269, 463, 20471, 198, 6738, 28034, 1330, 299, 77, 198, 198, 11748, 11593, 15003, 834, 355, 1489, 519, 263, 198, 6738, 8861, 13, 43616, 5109, 13, 18170, 13, 325, 5154, 1352, 1330, 1635, 198, 6738, 8861, 13, 43616, 5109, 13, 7353, 36942, 13, 42, 6144, 1330, 509, 6144, 628, 198, 220, 220, 220, 220, 220, 628 ]
3.071429
126
import random import settings import finance_utils import asyncio import aiohttp from time import strftime from datetime import date from sanic import Sanic, response from sanic.response import json app = Sanic() @app.route('/vitruvina', methods=['POST']) if __name__ == '__main__': app.run(host='0.0.0.0', port=80)
[ 11748, 4738, 198, 11748, 6460, 198, 11748, 9604, 62, 26791, 220, 198, 11748, 30351, 952, 198, 11748, 257, 952, 4023, 628, 198, 6738, 640, 1330, 965, 31387, 198, 6738, 4818, 8079, 1330, 3128, 198, 198, 6738, 5336, 291, 1330, 2986, 291, 11, 2882, 198, 6738, 5336, 291, 13, 26209, 1330, 33918, 628, 198, 1324, 796, 2986, 291, 3419, 198, 198, 31, 1324, 13, 38629, 10786, 14, 85, 270, 622, 85, 1437, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 11639, 15, 13, 15, 13, 15, 13, 15, 3256, 2493, 28, 1795, 8 ]
2.853448
116
# flake8: noqa """ Copyright 2020 - Present Okta, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # AUTO-GENERATED! DO NOT EDIT FILE DIRECTLY # SEE CONTRIBUTOR DOCUMENTATION from okta.okta_object import OktaObject class ApplicationAccessibility( OktaObject ): """ A class for ApplicationAccessibility objects. """
[ 2, 781, 539, 23, 25, 645, 20402, 198, 37811, 198, 15269, 12131, 532, 21662, 6762, 8326, 11, 3457, 13, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 198, 4023, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 198, 2, 47044, 46, 12, 35353, 1137, 11617, 0, 8410, 5626, 48483, 45811, 42242, 11319, 198, 2, 31107, 27342, 9865, 3843, 1581, 37760, 5883, 3525, 6234, 198, 198, 6738, 12876, 8326, 13, 482, 8326, 62, 15252, 1330, 6762, 8326, 10267, 628, 198, 4871, 15678, 15457, 2247, 7, 198, 220, 220, 220, 6762, 8326, 10267, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1398, 329, 15678, 15457, 2247, 5563, 13, 198, 220, 220, 220, 37227, 198 ]
3.517241
232
#Import necessary modules import arcpy from arcpy.sa import * import numpy #Check-out necessary extensions arcpy.CheckOutExtension('Spatial') #Set input parameters elevation_raster = arcpy.GetParameterAsText(0) conRL = arcpy.GetParameter(1) conRL_ouRaster = arcpy.GetParameterAsText(2) conH2OSat = arcpy.GetParameter(3) conH2OSat_outRaster = arcpy.GetParameterAsText(4) #Set up workspace scratchWS = arcpy.env.scratchWorkspace scratchGDB = arcpy.env.scratchGDB #output cell size and processing extent should be the same as elevation raster arcpy.env.cellSize = elevation_raster output_cell_size = arcpy.env.cellSize arcpy.env.extent = elevation_raster extent = arcpy.env.extent arcpy.env.overwriteOutput = True arcpy.env.parallelProcessingFactor = "75%" arcpy.Delete_management("in_memory") #Get coordinate system information desc = arcpy.Describe(elevation_raster) coordSystem = desc.spatialReference arcpy.AddMessage("Creating constant roughness length raster") rlConstant = CreateConstantRaster(conRL, "FLOAT", output_cell_size, extent) arcpy.DefineProjection_management(rlConstant, coordSystem) rlConstant.save(conRL_ouRaster) arcpy.AddMessage("Creating constant liquid water saturation raster") waterConstant = CreateConstantRaster(conH2OSat, "FLOAT", output_cell_size, extent) arcpy.DefineProjection_management(waterConstant, coordSystem) waterConstant.save(conH2OSat_outRaster)
[ 2, 20939, 3306, 13103, 198, 11748, 10389, 9078, 198, 6738, 10389, 9078, 13, 11400, 1330, 1635, 198, 11748, 299, 32152, 198, 198, 2, 9787, 12, 448, 3306, 18366, 198, 5605, 9078, 13, 9787, 7975, 11627, 3004, 10786, 4561, 34961, 11537, 198, 198, 2, 7248, 5128, 10007, 198, 68, 2768, 341, 62, 81, 1603, 796, 10389, 9078, 13, 3855, 36301, 1722, 8206, 7, 15, 8, 198, 1102, 7836, 796, 10389, 9078, 13, 3855, 36301, 7, 16, 8, 198, 1102, 7836, 62, 280, 49, 1603, 796, 10389, 9078, 13, 3855, 36301, 1722, 8206, 7, 17, 8, 198, 1102, 39, 17, 2640, 265, 796, 10389, 9078, 13, 3855, 36301, 7, 18, 8, 198, 1102, 39, 17, 2640, 265, 62, 448, 49, 1603, 796, 10389, 9078, 13, 3855, 36301, 1722, 8206, 7, 19, 8, 198, 198, 2, 7248, 510, 44573, 198, 1416, 36722, 19416, 796, 10389, 9078, 13, 24330, 13, 1416, 36722, 23044, 10223, 198, 1416, 36722, 38, 11012, 796, 10389, 9078, 13, 24330, 13, 1416, 36722, 38, 11012, 198, 2, 22915, 2685, 2546, 290, 7587, 6287, 815, 307, 262, 976, 355, 22910, 374, 1603, 198, 5605, 9078, 13, 24330, 13, 3846, 10699, 796, 22910, 62, 81, 1603, 198, 22915, 62, 3846, 62, 7857, 796, 10389, 9078, 13, 24330, 13, 3846, 10699, 198, 5605, 9078, 13, 24330, 13, 2302, 298, 796, 22910, 62, 81, 1603, 198, 2302, 298, 796, 10389, 9078, 13, 24330, 13, 2302, 298, 198, 5605, 9078, 13, 24330, 13, 2502, 13564, 26410, 796, 6407, 198, 5605, 9078, 13, 24330, 13, 1845, 29363, 18709, 278, 41384, 796, 366, 2425, 39658, 198, 5605, 9078, 13, 38727, 62, 27604, 7203, 259, 62, 31673, 4943, 198, 198, 2, 3855, 20435, 1080, 1321, 198, 20147, 796, 10389, 9078, 13, 24564, 4892, 7, 68, 2768, 341, 62, 81, 1603, 8, 198, 37652, 11964, 796, 1715, 13, 2777, 34961, 26687, 628, 198, 5605, 9078, 13, 4550, 12837, 7203, 32071, 6937, 5210, 1108, 4129, 374, 1603, 4943, 198, 45895, 3103, 18797, 796, 13610, 3103, 18797, 49, 1603, 7, 1102, 7836, 11, 366, 3697, 46, 1404, 1600, 5072, 62, 3846, 62, 7857, 11, 6287, 8, 198, 5605, 9078, 13, 7469, 500, 16775, 295, 62, 27604, 7, 45895, 3103, 18797, 11, 6349, 11964, 8, 198, 45895, 3103, 18797, 13, 21928, 7, 1102, 7836, 62, 280, 49, 1603, 8, 198, 198, 5605, 9078, 13, 4550, 12837, 7203, 32071, 6937, 8122, 1660, 36275, 374, 1603, 4943, 198, 7050, 3103, 18797, 796, 13610, 3103, 18797, 49, 1603, 7, 1102, 39, 17, 2640, 265, 11, 366, 3697, 46, 1404, 1600, 5072, 62, 3846, 62, 7857, 11, 6287, 8, 198, 5605, 9078, 13, 7469, 500, 16775, 295, 62, 27604, 7, 7050, 3103, 18797, 11, 6349, 11964, 8, 198, 7050, 3103, 18797, 13, 21928, 7, 1102, 39, 17, 2640, 265, 62, 448, 49, 1603, 8 ]
3.037118
458
from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np if __name__ == "__main__": import unittest unittest.main()
[ 628, 628, 198, 6738, 21121, 17, 13, 29412, 1330, 4755, 198, 6738, 14078, 1330, 1813, 198, 11748, 21121, 17, 13, 29412, 13, 36362, 313, 8497, 62, 9288, 62, 22602, 355, 289, 84, 198, 11748, 21121, 17, 13, 29412, 13, 46911, 1143, 62, 9288, 13, 46911, 1143, 62, 9288, 62, 22602, 355, 11389, 198, 11748, 14078, 13, 2536, 2397, 444, 355, 336, 198, 11748, 299, 32152, 355, 45941, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 555, 715, 395, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.080808
99
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import llnl.util.tty as tty import llnl.util.tty.color as color import spack.paths def shell_init_instructions(cmd, equivalent): """Print out instructions for users to initialize shell support. Arguments: cmd (str): the command the user tried to run that requires shell support in order to work equivalent (str): a command they can run instead, without enabling shell support """ shell_specific = "{sh_arg}" in equivalent msg = [ "`%s` requires spack's shell support." % cmd, "", "To set up shell support, run the command below for your shell.", "", color.colorize("@*c{For bash/zsh/sh:}"), " . %s/setup-env.sh" % spack.paths.share_path, "", color.colorize("@*c{For csh/tcsh:}"), " source %s/setup-env.csh" % spack.paths.share_path, "", color.colorize("@*c{For fish:}"), " source %s/setup-env.fish" % spack.paths.share_path, "", "Or, if you do not want to use shell support, run " + ( "one of these" if shell_specific else "this") + " instead:", "", ] if shell_specific: msg += [ equivalent.format(sh_arg="--sh ") + " # bash/zsh/sh", equivalent.format(sh_arg="--csh ") + " # csh/tcsh", equivalent.format(sh_arg="--fish") + " # fish", ] else: msg += [" " + equivalent] msg += [''] tty.error(*msg)
[ 2, 15069, 2211, 12, 1238, 2481, 13914, 45036, 3549, 2351, 4765, 11, 11419, 290, 584, 198, 2, 1338, 441, 4935, 34152, 13, 4091, 262, 1353, 12, 5715, 27975, 38162, 9947, 2393, 329, 3307, 13, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 357, 25189, 4891, 12, 17, 13, 15, 6375, 17168, 8, 198, 198, 11748, 32660, 21283, 13, 22602, 13, 42852, 355, 256, 774, 198, 11748, 32660, 21283, 13, 22602, 13, 42852, 13, 8043, 355, 3124, 198, 198, 11748, 599, 441, 13, 6978, 82, 628, 198, 4299, 7582, 62, 15003, 62, 259, 7249, 507, 7, 28758, 11, 7548, 2599, 198, 220, 220, 220, 37227, 18557, 503, 7729, 329, 2985, 284, 41216, 7582, 1104, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 357, 2536, 2599, 262, 3141, 262, 2836, 3088, 284, 1057, 326, 4433, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 1104, 287, 1502, 284, 670, 198, 220, 220, 220, 220, 220, 220, 220, 7548, 357, 2536, 2599, 257, 3141, 484, 460, 1057, 2427, 11, 1231, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15882, 7582, 1104, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 7582, 62, 11423, 796, 45144, 1477, 62, 853, 36786, 287, 7548, 628, 220, 220, 220, 31456, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 63, 4, 82, 63, 4433, 599, 441, 338, 7582, 1104, 526, 4064, 23991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2514, 900, 510, 7582, 1104, 11, 1057, 262, 3141, 2174, 329, 534, 7582, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 13, 8043, 1096, 7203, 31, 9, 66, 90, 1890, 27334, 14, 89, 1477, 14, 1477, 25, 92, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 764, 4064, 82, 14, 40406, 12, 24330, 13, 1477, 1, 4064, 599, 441, 13, 6978, 82, 13, 20077, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 13, 8043, 1096, 7203, 31, 9, 66, 90, 1890, 269, 1477, 14, 23047, 1477, 25, 92, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 2723, 4064, 82, 14, 40406, 12, 24330, 13, 66, 1477, 1, 4064, 599, 441, 13, 6978, 82, 13, 20077, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 13, 8043, 1096, 7203, 31, 9, 66, 90, 1890, 5916, 25, 92, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 2723, 4064, 82, 14, 40406, 12, 24330, 13, 11084, 1, 4064, 599, 441, 13, 6978, 82, 13, 20077, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5574, 11, 611, 345, 466, 407, 765, 284, 779, 7582, 1104, 11, 1057, 366, 1343, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 505, 286, 777, 1, 611, 7582, 62, 11423, 2073, 366, 5661, 4943, 1343, 366, 2427, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 611, 7582, 62, 11423, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 15853, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7548, 13, 18982, 7, 1477, 62, 853, 2625, 438, 1477, 220, 366, 8, 1343, 366, 220, 1303, 27334, 14, 89, 1477, 14, 1477, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7548, 13, 18982, 7, 1477, 62, 853, 2625, 438, 66, 1477, 366, 8, 1343, 366, 220, 1303, 269, 1477, 14, 23047, 1477, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7548, 13, 18982, 7, 1477, 62, 853, 2625, 438, 11084, 4943, 1343, 366, 220, 1303, 5916, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 15853, 14631, 220, 366, 1343, 7548, 60, 628, 220, 220, 220, 31456, 15853, 685, 7061, 60, 198, 220, 220, 220, 256, 774, 13, 18224, 46491, 19662, 8, 198 ]
2.294679
733
""" MIT License Copyright (c) 2018 Samuel Wilder Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Contains several utilities for parsing with the Pyparsing library as well as all of the parsers for all the compilers. """ from pyparsing import * from red_utils import fix_hex_num ''' Simple function to return a lambda to replace 'tokens' with 'replace'. Usage: >>> op_exponent = Literal('**').setParseAction(ReplaceWith('^')) ''' ReplaceWith = lambda replace: lambda string, loc, tokens: replace ''' Convenience function to shorten the syntax necessary to use the 'ReplaceWith' lambda. Usage A vs. B: A. op_exponent = Replace(Literal('**'), '^') # <- Way shorter B. op_exponent = Literal('**').setParseAction(ReplaceWith('^')) ''' Replace = lambda parser, string: parser.setParseAction(ReplaceWith(string)) ''' Kills the storage specifiers of C integers because they cannot be compiled in Red/System. ''' IntegerSuffix = ( CaselessLiteral('ui8').suppress() | CaselessLiteral('ui16').suppress() | CaselessLiteral('ui32').suppress() | CaselessLiteral('ui64').suppress() | CaselessLiteral('ull').suppress() | CaselessLiteral('ul').suppress() | CaselessLiteral('u').suppress() | CaselessLiteral('ll').suppress() | CaselessLiteral('l').suppress() | CaselessLiteral('i8').suppress() | CaselessLiteral('i16').suppress() | CaselessLiteral('i32').suppress() | CaselessLiteral('i64').suppress() ) ''' Kills the storage specifiers of C floats because they cannot be compiled in Red/System. ''' FloatSuffix = ( CaselessLiteral('f8').suppress() | CaselessLiteral('f16').suppress() | CaselessLiteral('f32').suppress() | CaselessLiteral('f64').suppress() | CaselessLiteral('f').suppress() ) ''' Parses a hex literal and automatically changes it to the Red/System equivalent. ''' HexNumber = Combine( Literal('0x') + Word(nums + 'abcdefABCDEF') + Optional(IntegerSuffix) # Make sure that the replacement of the '0x' to 'h' happens here ).setParseAction(lambda s, l, tokens: fix_hex_num(tokens[0]))('HexNumber') ''' Parses a C integer. ''' Integer = Combine( Optional(Literal('-')) + ( Word(nums) + CaselessLiteral('e') + ( Literal('+') | Literal('-') ) + Word(nums) + Optional(IntegerSuffix) | Word(nums) + Optional(IntegerSuffix) ) )('Integer') ''' Parses a C floating point decimal. ''' FloatNumber = Combine( Optional(Literal('-')) + ( Optional(Word(nums)) + Literal('.') + Word(nums) + CaselessLiteral('e') + (Literal('+') | Literal('-')) + Word(nums) + Optional(FloatSuffix | IntegerSuffix) | Optional(Word(nums)) + Literal('.') + Word(nums) + Optional(FloatSuffix | IntegerSuffix) ) )('FloatNumber') ''' Parses any type of C integer literal. ''' Number = FloatNumber | HexNumber | Integer ''' Identifier: age _123 __abc123 th1s1samaz3box ''' Identifier = Word(alphas + '_', bodyChars=alphanums + '_') ''' Parses a C pound define. ''' PoundDefine = ( Keyword('#define') + Identifier + Optional( OneOrMore( Number | quotedString | Identifier | Keyword('()') | Keyword('( )') | Literal('(') | Literal(')') | Literal(',') | Keyword('...') | Word('!@#$%^&*-=+|.') ) ) ) ''' Parses a C macro. ''' Macro = ( Keyword('#define').suppress() + Identifier + Literal('(').suppress() + Group( ZeroOrMore( Identifier | Literal(',') | Keyword('...') ) ) + Literal(')').suppress() ) ''' Parses a C prefix such as a function return type. Replaces any occurance of a specific storage type with a single type so it can be ingested by RGB. ''' Prefix = OneOrMore( Keyword('__declspec(dllimport)').suppress() | Keyword('__declspec(dllexport)').suppress() | Keyword('__declspec(noreturn)').suppress() | Keyword('__stdcall').suppress() | Keyword('__cdecl').suppress() | Keyword('unsigned').suppress() | Keyword('signed').suppress() | Keyword('long long unsigned int').setParseAction(ReplaceWith('int')) | Keyword('long long signed int').setParseAction(ReplaceWith('int')) | Keyword('long long int').setParseAction(ReplaceWith('int')) | Keyword('long long').setParseAction(ReplaceWith('long')) | Keyword('long unsinged int').setParseAction(ReplaceWith('int')) | Keyword('long signed int').setParseAction(ReplaceWith('int')) | Keyword('long int').setParseAction(ReplaceWith('int')) | Keyword('long double').setParseAction(ReplaceWith('double')) | Keyword('short int').setParseAction(ReplaceWith('int')) | Keyword('const').suppress() | Identifier ) ''' Parses a C function pointer. ''' FunctionPtr = ( Keyword('typedef void').suppress() + Literal('(').suppress() + Optional(Keyword('__stdcall').suppress() | Keyword('__cdecl').suppress()) + Literal('*').suppress() + Identifier + Literal(')').suppress() + Literal('(').suppress() + Group( ZeroOrMore( (Prefix | Literal('*')) + Optional(Literal(',')) ) ) + Literal(')').suppress() + Literal(';').suppress() ) ''' Any C type. Filters out simple unacceptable occurances. ''' Types = OneOrMore( Keyword('unsigned').suppress() | Keyword('signed').suppress() | Replace(Keyword('long long unsigned int'), 'int') | Replace(Keyword('long long signed int'), 'int') | Replace(Keyword('long long int'), 'int') | Replace(Keyword('long long'), 'long') | Replace(Keyword('long unsigned int'), 'int') | Replace(Keyword('long signed int'), 'int') | Replace(Keyword('long int'), 'int') | Replace(Keyword('long double'), 'double') | Replace(Keyword('short int'), 'int') | Keyword('const').suppress() | Identifier ) ''' Parses a C typedef. ''' Typedef = ( Keyword('typedef').suppress() + OneOrMore(Types) ) ''' Parses a C function. ''' Function = ( Group(OneOrMore(Prefix) + Optional(OneOrMore(Literal('*'))) + Optional(Prefix)) + Literal('(').suppress() + Group(ZeroOrMore( Prefix | Literal('*') | Literal(',') | Keyword('...') )) + Literal(')').suppress() + Literal(';').suppress() ) ''' Parses a C global variable. ''' GlobalVar = ( Keyword('extern').suppress() + OneOrMore(Prefix | Literal('*')) + Literal(';').suppress() ) ''' Parses a C struct prefix. ''' StructPrefix = OneOrMore( Keyword('__declspec(dllimport)').suppress() | Keyword('__declspec(dllexport)').suppress() | Keyword('__declspec(noreturn)').suppress() | Keyword('__stdcall').suppress() | Keyword('__cdecl').suppress() | Keyword('unsigned').suppress() | Keyword('signed').suppress() | Keyword('long long unsigned int').setParseAction(ReplaceWith('int')) | Keyword('long long signed int').setParseAction(ReplaceWith('int')) | Keyword('long long int').setParseAction(ReplaceWith('int')) | Keyword('long long').setParseAction(ReplaceWith('long')) | Keyword('long unsinged int').setParseAction(ReplaceWith('int')) | Keyword('long signed int').setParseAction(ReplaceWith('int')) | Keyword('long int').setParseAction(ReplaceWith('int')) | Keyword('long double').setParseAction(ReplaceWith('double')) | Keyword('short int').setParseAction(ReplaceWith('int')) | Keyword('const').suppress() ) ''' Parses a variable declaration within a struct. ''' Decl = OneOrMore( StructPrefix | Identifier | Literal('*') ) + Literal(';').suppress() ''' Parses the start of a C struct. ''' StructStart = ( Optional(Keyword('typedef').suppress()) + Keyword('struct').suppress() + Identifier ) ''' Parses the end of a C struct. ''' StructEnd = ( Literal('}').suppress() + Group( ZeroOrMore(Identifier + Optional(Literal(','))) + Literal(';').suppress() )) ''' Parses a C enum. ''' Enum = ( Keyword('enum').suppress() + Identifier + Literal('{').suppress() + Group(OneOrMore( Identifier + Replace(Literal('='), ': ') + Word(alphanums + '_-.\'"') + Literal(',') | Identifier + Replace(Literal('='), ': ') + Word(alphanums + '_-.\'"') | Identifier + Literal(',') | Identifier )) + Literal('}').suppress() + Optional(Identifier) + Literal(';').suppress() )
[ 37811, 198, 36393, 13789, 198, 198, 15269, 357, 66, 8, 2864, 17100, 6183, 263, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 22163, 444, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 15821, 37485, 13, 198, 198, 4264, 1299, 1811, 20081, 329, 32096, 351, 262, 350, 4464, 945, 278, 5888, 355, 880, 355, 198, 439, 286, 262, 13544, 364, 329, 477, 262, 552, 34393, 13, 198, 37811, 198, 198, 6738, 279, 4464, 945, 278, 1330, 1635, 198, 6738, 2266, 62, 26791, 1330, 4259, 62, 33095, 62, 22510, 628, 198, 7061, 6, 198, 26437, 2163, 284, 1441, 257, 37456, 284, 6330, 705, 83, 482, 641, 6, 351, 705, 33491, 4458, 198, 198, 28350, 25, 198, 33409, 1034, 62, 11201, 3471, 796, 25659, 1691, 10786, 1174, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 61, 6, 4008, 198, 7061, 6, 198, 3041, 5372, 3152, 796, 37456, 6330, 25, 37456, 4731, 11, 1179, 11, 16326, 25, 6330, 628, 198, 7061, 6, 198, 3103, 574, 1240, 2163, 284, 45381, 262, 15582, 3306, 284, 779, 262, 705, 3041, 5372, 3152, 6, 198, 50033, 13, 198, 198, 28350, 317, 3691, 13, 347, 25, 198, 197, 32, 13, 1034, 62, 11201, 3471, 796, 40177, 7, 43, 270, 1691, 10786, 1174, 33809, 705, 61, 11537, 1303, 24293, 6378, 12238, 198, 197, 33, 13, 1034, 62, 11201, 3471, 796, 25659, 1691, 10786, 1174, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 61, 6, 4008, 198, 7061, 6, 198, 3041, 5372, 796, 37456, 30751, 11, 4731, 25, 30751, 13, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 7, 8841, 4008, 198, 198, 7061, 6, 198, 42, 2171, 262, 6143, 1020, 13350, 286, 327, 37014, 780, 484, 2314, 307, 14102, 287, 198, 7738, 14, 11964, 13, 198, 7061, 6, 198, 46541, 50, 1648, 844, 796, 357, 198, 197, 35155, 5321, 43, 270, 1691, 10786, 9019, 23, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 9019, 1433, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 9019, 2624, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 9019, 2414, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 724, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 377, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 84, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 297, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 75, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 72, 23, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 72, 1433, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 72, 2624, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 72, 2414, 27691, 18608, 601, 3419, 198, 8, 198, 198, 7061, 6, 198, 42, 2171, 262, 6143, 1020, 13350, 286, 327, 36016, 780, 484, 2314, 307, 14102, 287, 198, 7738, 14, 11964, 13, 198, 7061, 6, 198, 43879, 50, 1648, 844, 796, 357, 198, 197, 35155, 5321, 43, 270, 1691, 10786, 69, 23, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 69, 1433, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 69, 2624, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 69, 2414, 27691, 18608, 601, 3419, 198, 197, 91, 11294, 5321, 43, 270, 1691, 10786, 69, 27691, 18608, 601, 3419, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 17910, 18875, 290, 6338, 2458, 340, 284, 262, 2297, 14, 11964, 7548, 13, 198, 7061, 6, 198, 39, 1069, 15057, 796, 29176, 7, 198, 197, 43, 270, 1691, 10786, 15, 87, 11537, 1343, 198, 197, 26449, 7, 77, 5700, 1343, 705, 39305, 4299, 24694, 32988, 11537, 1343, 198, 197, 30719, 7, 46541, 50, 1648, 844, 8, 198, 197, 2, 6889, 1654, 326, 262, 9014, 286, 262, 705, 15, 87, 6, 284, 705, 71, 6, 4325, 994, 198, 737, 2617, 10044, 325, 12502, 7, 50033, 264, 11, 300, 11, 16326, 25, 4259, 62, 33095, 62, 22510, 7, 83, 482, 641, 58, 15, 60, 4008, 10786, 39, 1069, 15057, 11537, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 18253, 13, 198, 7061, 6, 198, 46541, 796, 29176, 7, 198, 197, 30719, 7, 43, 270, 1691, 10786, 19355, 4008, 1343, 198, 197, 7, 198, 197, 197, 26449, 7, 77, 5700, 8, 1343, 11294, 5321, 43, 270, 1691, 10786, 68, 11537, 1343, 357, 198, 197, 197, 197, 43, 270, 1691, 10786, 10, 11537, 930, 25659, 1691, 10786, 12, 11537, 198, 197, 197, 8, 1343, 198, 197, 197, 26449, 7, 77, 5700, 8, 1343, 32233, 7, 46541, 50, 1648, 844, 8, 198, 197, 197, 91, 9678, 7, 77, 5700, 8, 1343, 32233, 7, 46541, 50, 1648, 844, 8, 198, 197, 8, 198, 5769, 6, 46541, 11537, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 12462, 966, 32465, 13, 198, 7061, 6, 198, 43879, 15057, 796, 29176, 7, 198, 197, 30719, 7, 43, 270, 1691, 10786, 19355, 4008, 1343, 357, 198, 197, 197, 30719, 7, 26449, 7, 77, 5700, 4008, 1343, 25659, 1691, 10786, 2637, 8, 1343, 9678, 7, 77, 5700, 8, 1343, 11294, 5321, 43, 270, 1691, 10786, 68, 11537, 1343, 357, 43, 270, 1691, 10786, 10, 11537, 930, 25659, 1691, 10786, 19355, 4008, 1343, 9678, 7, 77, 5700, 8, 1343, 32233, 7, 43879, 50, 1648, 844, 930, 34142, 50, 1648, 844, 8, 198, 197, 197, 91, 32233, 7, 26449, 7, 77, 5700, 4008, 1343, 25659, 1691, 10786, 2637, 8, 1343, 9678, 7, 77, 5700, 8, 1343, 32233, 7, 43879, 50, 1648, 844, 930, 34142, 50, 1648, 844, 8, 198, 197, 8, 198, 5769, 6, 43879, 15057, 11537, 198, 198, 7061, 6, 198, 47, 945, 274, 597, 2099, 286, 327, 18253, 18875, 13, 198, 7061, 6, 198, 15057, 796, 48436, 15057, 930, 22212, 15057, 930, 34142, 198, 198, 7061, 6, 198, 33234, 7483, 25, 198, 197, 496, 198, 197, 62, 10163, 198, 197, 834, 39305, 10163, 198, 197, 400, 16, 82, 16, 37687, 1031, 18, 3524, 198, 7061, 6, 198, 33234, 7483, 796, 9678, 7, 282, 5902, 1343, 705, 62, 3256, 1767, 1925, 945, 28, 17307, 272, 5700, 1343, 705, 62, 11537, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 14896, 8160, 13, 198, 7061, 6, 198, 47, 633, 7469, 500, 796, 357, 198, 197, 9218, 4775, 10786, 2, 13086, 11537, 1343, 198, 197, 33234, 7483, 1343, 198, 197, 30719, 7, 198, 197, 197, 3198, 5574, 5167, 7, 198, 197, 197, 197, 15057, 198, 197, 197, 197, 91, 10947, 10100, 198, 197, 197, 197, 91, 11440, 7483, 198, 197, 197, 197, 91, 7383, 4775, 10786, 3419, 11537, 198, 197, 197, 197, 91, 7383, 4775, 10786, 7, 1267, 11537, 198, 197, 197, 197, 91, 25659, 1691, 10786, 10786, 8, 198, 197, 197, 197, 91, 25659, 1691, 10786, 8, 11537, 198, 197, 197, 197, 91, 25659, 1691, 7, 3256, 11537, 198, 197, 197, 197, 91, 7383, 4775, 10786, 986, 11537, 198, 197, 197, 197, 91, 9678, 10786, 0, 31, 29953, 4, 61, 5, 9, 12, 28, 10, 91, 2637, 8, 198, 197, 197, 8, 198, 197, 8, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 15021, 13, 198, 7061, 6, 198, 14155, 305, 796, 357, 198, 197, 9218, 4775, 10786, 2, 13086, 27691, 18608, 601, 3419, 1343, 198, 197, 33234, 7483, 1343, 198, 197, 43, 270, 1691, 10786, 10786, 737, 18608, 601, 3419, 1343, 198, 197, 13247, 7, 198, 197, 197, 28667, 5574, 5167, 7, 198, 197, 197, 197, 33234, 7483, 198, 197, 197, 197, 91, 25659, 1691, 7, 3256, 11537, 198, 197, 197, 197, 91, 7383, 4775, 10786, 986, 11537, 198, 197, 197, 8, 198, 197, 8, 1343, 198, 197, 43, 270, 1691, 10786, 8, 27691, 18608, 601, 3419, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 21231, 884, 355, 257, 2163, 1441, 2099, 13, 18407, 2114, 597, 3051, 590, 286, 257, 198, 11423, 6143, 2099, 351, 257, 2060, 2099, 523, 340, 460, 307, 44694, 416, 25228, 13, 198, 7061, 6, 198, 36698, 844, 796, 1881, 5574, 5167, 7, 198, 197, 9218, 4775, 10786, 834, 32446, 16684, 7, 12736, 11748, 8, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 834, 32446, 16684, 7, 25404, 2588, 634, 8, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 834, 32446, 16684, 7, 77, 9997, 700, 8, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 834, 19282, 13345, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 834, 66, 32446, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 43375, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 32696, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 6511, 890, 22165, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 890, 4488, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 890, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 890, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 6511, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 5576, 24431, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 4488, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 4274, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 23352, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 19509, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 9979, 27691, 18608, 601, 3419, 198, 197, 91, 11440, 7483, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 2163, 17562, 13, 198, 7061, 6, 198, 22203, 46745, 796, 357, 198, 197, 9218, 4775, 10786, 774, 9124, 891, 7951, 27691, 18608, 601, 3419, 1343, 198, 197, 43, 270, 1691, 10786, 10786, 737, 18608, 601, 3419, 1343, 198, 197, 30719, 7, 9218, 4775, 10786, 834, 19282, 13345, 27691, 18608, 601, 3419, 930, 7383, 4775, 10786, 834, 66, 32446, 27691, 18608, 601, 28955, 1343, 198, 197, 43, 270, 1691, 10786, 9, 27691, 18608, 601, 3419, 1343, 198, 197, 33234, 7483, 1343, 198, 197, 43, 270, 1691, 10786, 8, 27691, 18608, 601, 3419, 1343, 198, 197, 43, 270, 1691, 10786, 10786, 737, 18608, 601, 3419, 1343, 198, 197, 13247, 7, 198, 197, 197, 28667, 5574, 5167, 7, 198, 197, 197, 197, 7, 36698, 844, 930, 25659, 1691, 10786, 9, 6, 4008, 1343, 198, 197, 197, 197, 30719, 7, 43, 270, 1691, 7, 41707, 4008, 198, 197, 197, 8, 198, 197, 8, 1343, 198, 197, 43, 270, 1691, 10786, 8, 27691, 18608, 601, 3419, 1343, 198, 197, 43, 270, 1691, 10786, 26, 27691, 18608, 601, 3419, 198, 8, 198, 198, 7061, 6, 198, 7149, 327, 2099, 13, 220, 7066, 1010, 503, 2829, 18010, 3051, 1817, 13, 198, 7061, 6, 198, 31431, 796, 1881, 5574, 5167, 7, 198, 197, 9218, 4775, 10786, 43375, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 32696, 27691, 18608, 601, 3419, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 6511, 890, 22165, 493, 33809, 705, 600, 11537, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 6511, 890, 4488, 493, 33809, 705, 600, 11537, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 6511, 890, 493, 33809, 705, 600, 11537, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 6511, 890, 33809, 705, 6511, 11537, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 6511, 22165, 493, 33809, 705, 600, 11537, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 6511, 4488, 493, 33809, 705, 600, 11537, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 6511, 493, 33809, 705, 600, 11537, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 6511, 4274, 33809, 705, 23352, 11537, 198, 197, 91, 40177, 7, 9218, 4775, 10786, 19509, 493, 33809, 705, 600, 11537, 198, 197, 91, 7383, 4775, 10786, 9979, 27691, 18608, 601, 3419, 198, 197, 91, 11440, 7483, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 25683, 891, 13, 198, 7061, 6, 198, 31467, 276, 891, 796, 357, 198, 197, 9218, 4775, 10786, 774, 9124, 891, 27691, 18608, 601, 3419, 1343, 198, 197, 3198, 5574, 5167, 7, 31431, 8, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 2163, 13, 198, 7061, 6, 198, 22203, 796, 357, 198, 197, 13247, 7, 3198, 5574, 5167, 7, 36698, 844, 8, 1343, 32233, 7, 3198, 5574, 5167, 7, 43, 270, 1691, 10786, 9, 6, 22305, 1343, 32233, 7, 36698, 844, 4008, 1343, 198, 197, 43, 270, 1691, 10786, 10786, 737, 18608, 601, 3419, 1343, 198, 197, 13247, 7, 28667, 5574, 5167, 7, 198, 197, 197, 36698, 844, 198, 197, 197, 91, 25659, 1691, 10786, 9, 11537, 198, 197, 197, 91, 25659, 1691, 7, 3256, 11537, 198, 197, 197, 91, 7383, 4775, 10786, 986, 11537, 198, 197, 4008, 1343, 198, 197, 43, 270, 1691, 10786, 8, 27691, 18608, 601, 3419, 1343, 198, 197, 43, 270, 1691, 10786, 26, 27691, 18608, 601, 3419, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 3298, 7885, 13, 198, 7061, 6, 198, 22289, 19852, 796, 357, 198, 197, 9218, 4775, 10786, 1069, 759, 27691, 18608, 601, 3419, 1343, 198, 197, 3198, 5574, 5167, 7, 36698, 844, 930, 25659, 1691, 10786, 9, 6, 4008, 1343, 198, 197, 43, 270, 1691, 10786, 26, 27691, 18608, 601, 3419, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 2878, 21231, 13, 198, 7061, 6, 198, 44909, 36698, 844, 796, 1881, 5574, 5167, 7, 198, 197, 9218, 4775, 10786, 834, 32446, 16684, 7, 12736, 11748, 8, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 834, 32446, 16684, 7, 25404, 2588, 634, 8, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 834, 32446, 16684, 7, 77, 9997, 700, 8, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 834, 19282, 13345, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 834, 66, 32446, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 43375, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 32696, 27691, 18608, 601, 3419, 198, 197, 91, 7383, 4775, 10786, 6511, 890, 22165, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 890, 4488, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 890, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 890, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 6511, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 5576, 24431, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 4488, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 6511, 4274, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 23352, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 19509, 493, 27691, 2617, 10044, 325, 12502, 7, 3041, 5372, 3152, 10786, 600, 6, 4008, 198, 197, 91, 7383, 4775, 10786, 9979, 27691, 18608, 601, 3419, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 7885, 14305, 1626, 257, 2878, 13, 198, 7061, 6, 198, 37835, 796, 1881, 5574, 5167, 7, 198, 197, 44909, 36698, 844, 198, 197, 91, 11440, 7483, 198, 197, 91, 25659, 1691, 10786, 9, 11537, 198, 8, 1343, 25659, 1691, 10786, 26, 27691, 18608, 601, 3419, 198, 198, 7061, 6, 198, 47, 945, 274, 262, 923, 286, 257, 327, 2878, 13, 198, 7061, 6, 198, 44909, 10434, 796, 357, 198, 197, 30719, 7, 9218, 4775, 10786, 774, 9124, 891, 27691, 18608, 601, 28955, 1343, 198, 197, 9218, 4775, 10786, 7249, 27691, 18608, 601, 3419, 1343, 198, 197, 33234, 7483, 198, 8, 198, 198, 7061, 6, 198, 47, 945, 274, 262, 886, 286, 257, 327, 2878, 13, 198, 7061, 6, 198, 44909, 12915, 796, 357, 198, 197, 43, 270, 1691, 10786, 92, 27691, 18608, 601, 3419, 1343, 198, 197, 13247, 7, 198, 197, 28667, 5574, 5167, 7, 33234, 7483, 1343, 198, 197, 30719, 7, 43, 270, 1691, 7, 41707, 22305, 1343, 198, 197, 43, 270, 1691, 10786, 26, 27691, 18608, 601, 3419, 198, 4008, 198, 198, 7061, 6, 198, 47, 945, 274, 257, 327, 33829, 13, 198, 7061, 6, 198, 4834, 388, 796, 357, 198, 197, 9218, 4775, 10786, 44709, 27691, 18608, 601, 3419, 1343, 198, 197, 33234, 7483, 1343, 198, 197, 43, 270, 1691, 10786, 90, 27691, 18608, 601, 3419, 1343, 198, 197, 13247, 7, 3198, 5574, 5167, 7, 198, 197, 197, 33234, 7483, 1343, 40177, 7, 43, 270, 1691, 10786, 11639, 828, 705, 25, 705, 8, 1343, 9678, 7, 17307, 272, 5700, 1343, 705, 22955, 13, 59, 29653, 11537, 1343, 25659, 1691, 7, 3256, 11537, 198, 197, 197, 91, 11440, 7483, 1343, 40177, 7, 43, 270, 1691, 10786, 11639, 828, 705, 25, 705, 8, 1343, 9678, 7, 17307, 272, 5700, 1343, 705, 22955, 13, 59, 29653, 11537, 198, 197, 197, 91, 11440, 7483, 1343, 25659, 1691, 7, 3256, 11537, 198, 197, 197, 91, 11440, 7483, 198, 197, 4008, 1343, 198, 197, 43, 270, 1691, 10786, 92, 27691, 18608, 601, 3419, 1343, 198, 197, 30719, 7, 33234, 7483, 8, 1343, 198, 197, 43, 270, 1691, 10786, 26, 27691, 18608, 601, 3419, 198, 8, 198 ]
2.71064
3,252
# %% # %% import pandas as pd import numpy as np import pathlib import matplotlib import matplotlib.pyplot as plt from our_plot_config import derived_dir, fig_dir, raw_dir, setplotstyle from kappas import do_one_period setplotstyle() # %% # Input files f_cereal = raw_dir / 'cereal.parquet' f_airlines = raw_dir / 'airlines.parquet' f_firm_info = derived_dir / 'firm-info.parquet' f_kappas = derived_dir / 'official-kappas.parquet' # Figure outputs fig_both = fig_dir / 'figure16_airlines_cereal_banks.pdf' # %% # ### Read in the (Cleaned) Parquet File of Beta's # - Read in stata file # - Create the "quarter" variable # - Apply the $\kappa$ calculations period by period # - Save the output to a new parquet file # - Write a Stata file. # %% # read in, create quarter and drop kappa_ff df_cereal = process_df(f_cereal) # Clean up airlines a bit more df_airlines = process_df(f_airlines) df_airlines = df_airlines[df_airlines.kappa < 4].copy() df_firms = pd.read_parquet(f_firm_info) df_firms2 = df_firms.loc[df_firms['siccd'] == 6021, ['permno', 'quarter', 'comnam']].copy() df_k = pd.read_parquet(f_kappas) df_banks = pd.merge(pd.merge(df_k[df_k['from'] != df_k['to']], df_firms2, left_on=['quarter', 'from'], right_on=['quarter', 'permno']), df_firms2, left_on=['quarter', 'to'], right_on=['quarter', 'permno']) # %% df_tot = pd.concat([df_cereal.groupby(['quarter'])['kappa'].median(), df_airlines.groupby( ['quarter'])['kappa'].median(), df_banks.groupby(['quarter'])['kappa'].median()], axis=1) # %% df_tot[df_tot.index > '1999-01-01'].plot(figsize=(20, 10), color=['navy', 'maroon', 'darkgreen']) plt.legend(['RTE Cereal', 'Airlines', 'Banks']) plt.ylabel(r"Median Pairwise Profit Weights $(\kappa)$") plt.xlabel("") plt.ylim(0, 1) plt.savefig(fig_both, bbox_inches='tight')
[ 2, 43313, 198, 2, 43313, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 3108, 8019, 198, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 674, 62, 29487, 62, 11250, 1330, 10944, 62, 15908, 11, 2336, 62, 15908, 11, 8246, 62, 15908, 11, 900, 29487, 7635, 198, 6738, 479, 1324, 292, 1330, 466, 62, 505, 62, 41007, 198, 198, 2617, 29487, 7635, 3419, 198, 198, 2, 43313, 198, 2, 23412, 3696, 198, 69, 62, 344, 5305, 796, 8246, 62, 15908, 1220, 705, 344, 5305, 13, 1845, 21108, 6, 198, 69, 62, 958, 6615, 796, 8246, 62, 15908, 1220, 705, 958, 6615, 13, 1845, 21108, 6, 198, 69, 62, 69, 2533, 62, 10951, 796, 10944, 62, 15908, 1220, 705, 69, 2533, 12, 10951, 13, 1845, 21108, 6, 198, 69, 62, 74, 1324, 292, 796, 10944, 62, 15908, 1220, 705, 16841, 12, 74, 1324, 292, 13, 1845, 21108, 6, 198, 198, 2, 11291, 23862, 198, 5647, 62, 16885, 796, 2336, 62, 15908, 1220, 705, 26875, 1433, 62, 958, 6615, 62, 344, 5305, 62, 43558, 13, 12315, 6, 198, 198, 2, 43313, 198, 2, 44386, 4149, 287, 262, 357, 32657, 276, 8, 2547, 21108, 9220, 286, 17993, 338, 198, 2, 532, 4149, 287, 336, 1045, 2393, 198, 2, 532, 13610, 262, 366, 24385, 1, 7885, 198, 2, 532, 27967, 262, 39280, 74, 20975, 3, 16765, 2278, 416, 2278, 198, 2, 532, 12793, 262, 5072, 284, 257, 649, 1582, 21108, 2393, 198, 2, 532, 19430, 257, 520, 1045, 2393, 13, 198, 198, 2, 43313, 198, 2, 1100, 287, 11, 2251, 3860, 290, 4268, 479, 20975, 62, 487, 628, 198, 198, 7568, 62, 344, 5305, 796, 1429, 62, 7568, 7, 69, 62, 344, 5305, 8, 198, 2, 5985, 510, 26225, 257, 1643, 517, 198, 7568, 62, 958, 6615, 796, 1429, 62, 7568, 7, 69, 62, 958, 6615, 8, 198, 7568, 62, 958, 6615, 796, 47764, 62, 958, 6615, 58, 7568, 62, 958, 6615, 13, 74, 20975, 1279, 604, 4083, 30073, 3419, 198, 198, 7568, 62, 69, 8789, 796, 279, 67, 13, 961, 62, 1845, 21108, 7, 69, 62, 69, 2533, 62, 10951, 8, 198, 7568, 62, 69, 8789, 17, 796, 47764, 62, 69, 8789, 13, 17946, 58, 7568, 62, 69, 8789, 17816, 21383, 10210, 20520, 6624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3126, 2481, 11, 37250, 16321, 3919, 3256, 705, 24385, 3256, 705, 785, 7402, 20520, 4083, 30073, 3419, 198, 198, 7568, 62, 74, 796, 279, 67, 13, 961, 62, 1845, 21108, 7, 69, 62, 74, 1324, 292, 8, 198, 198, 7568, 62, 43558, 796, 279, 67, 13, 647, 469, 7, 30094, 13, 647, 469, 7, 7568, 62, 74, 58, 7568, 62, 74, 17816, 6738, 20520, 14512, 47764, 62, 74, 17816, 1462, 20520, 4357, 47764, 62, 69, 8789, 17, 11, 1364, 62, 261, 28, 17816, 24385, 3256, 705, 6738, 6, 4357, 826, 62, 261, 28, 17816, 24385, 3256, 705, 16321, 3919, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 69, 8789, 17, 11, 1364, 62, 261, 28, 17816, 24385, 3256, 705, 1462, 6, 4357, 826, 62, 261, 28, 17816, 24385, 3256, 705, 16321, 3919, 6, 12962, 198, 198, 2, 43313, 198, 7568, 62, 83, 313, 796, 279, 67, 13, 1102, 9246, 26933, 7568, 62, 344, 5305, 13, 8094, 1525, 7, 17816, 24385, 6, 12962, 17816, 74, 20975, 6, 4083, 1150, 666, 22784, 47764, 62, 958, 6615, 13, 8094, 1525, 7, 198, 220, 220, 220, 37250, 24385, 6, 12962, 17816, 74, 20975, 6, 4083, 1150, 666, 22784, 47764, 62, 43558, 13, 8094, 1525, 7, 17816, 24385, 6, 12962, 17816, 74, 20975, 6, 4083, 1150, 666, 3419, 4357, 16488, 28, 16, 8, 198, 198, 2, 43313, 198, 7568, 62, 83, 313, 58, 7568, 62, 83, 313, 13, 9630, 1875, 198, 220, 220, 220, 220, 220, 220, 705, 18946, 12, 486, 12, 486, 6, 4083, 29487, 7, 5647, 7857, 16193, 1238, 11, 838, 828, 3124, 28, 17816, 77, 2830, 3256, 705, 3876, 2049, 3256, 705, 21953, 14809, 6, 12962, 198, 489, 83, 13, 1455, 437, 7, 17816, 49, 9328, 26532, 282, 3256, 705, 32, 1901, 1127, 3256, 705, 33, 2283, 6, 12962, 198, 489, 83, 13, 2645, 9608, 7, 81, 1, 9921, 666, 39645, 3083, 42886, 775, 2337, 29568, 59, 74, 20975, 8, 3, 4943, 198, 489, 83, 13, 87, 18242, 7203, 4943, 198, 489, 83, 13, 88, 2475, 7, 15, 11, 352, 8, 198, 489, 83, 13, 21928, 5647, 7, 5647, 62, 16885, 11, 275, 3524, 62, 45457, 11639, 33464, 11537, 198 ]
2.355781
787
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. class Module: """ Callable class from which user-defined layers can inherit. The #build method should be overriden and should build the subgraph. The benefit of inheriting from this class rather than passing a function is that you can save input tensors as fields on `self`, then later when you call the subgraph, you can pass a mapping from the input tensor ids to the corresponding parent tensor you wish to pass. """
[ 2, 15069, 357, 66, 8, 33448, 29681, 7295, 12052, 13, 1439, 2489, 10395, 13, 198, 4871, 19937, 25, 198, 220, 220, 220, 37227, 198, 220, 4889, 540, 1398, 422, 543, 2836, 12, 23211, 11685, 460, 16955, 13, 628, 220, 383, 1303, 11249, 2446, 815, 307, 625, 6058, 268, 290, 815, 1382, 262, 850, 34960, 13, 628, 220, 383, 4414, 286, 10639, 1780, 422, 428, 1398, 2138, 621, 6427, 257, 2163, 318, 198, 220, 326, 345, 460, 3613, 5128, 11192, 669, 355, 7032, 319, 4600, 944, 47671, 788, 1568, 618, 345, 869, 198, 220, 262, 850, 34960, 11, 345, 460, 1208, 257, 16855, 422, 262, 5128, 11192, 273, 220, 2340, 284, 262, 198, 220, 11188, 2560, 11192, 273, 345, 4601, 284, 1208, 13, 198, 220, 37227, 198 ]
3.944444
126
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import cv2 import os import time import oxuva from scripts import * if __name__ == '__main__': main()
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 1822, 29572, 198, 11748, 269, 85, 17, 198, 11748, 28686, 198, 11748, 640, 198, 198, 11748, 12018, 84, 6862, 198, 6738, 14750, 1330, 1635, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.287671
73
# Import classes from your brand new package from naive_tree import GeneTree from naive_tree import GeneNetwork # Create an object of Mammals class & call a method of it myTree = GeneTree() myTree.build_network() myTree.print_gene_network_summary() myTree.gene_network.print_test_edge(4140) # then get network between source and list-of-leaves. vs = myTree.get_subcomponent(source='CXCL10', target=['PTGDR2','PTGDR']) print('subcomponent length') print(len(vs)) # and we can prune the tree to just nodes # reachable from the source myTree.prune_tree(vs) # doing a search starting from the root to make sure we can # reach all nodes vs = myTree.pruned_graph.bfs( myTree.pruned_graph.vs.find(name='CXCL10').index, mode='out') print('len vs: ' + str(len(vs[0]))) # and we can create a spanning tree based on # edge weights. myTree.get_spanning_tree() myTree.compute_conditionals()
[ 2, 17267, 6097, 422, 534, 4508, 649, 5301, 198, 6738, 24354, 62, 21048, 1330, 13005, 27660, 198, 6738, 24354, 62, 21048, 1330, 13005, 26245, 198, 198, 2, 13610, 281, 2134, 286, 39502, 874, 1398, 1222, 869, 257, 2446, 286, 340, 198, 1820, 27660, 796, 13005, 27660, 3419, 198, 1820, 27660, 13, 11249, 62, 27349, 3419, 198, 1820, 27660, 13, 4798, 62, 70, 1734, 62, 27349, 62, 49736, 3419, 198, 1820, 27660, 13, 70, 1734, 62, 27349, 13, 4798, 62, 9288, 62, 14907, 7, 19, 15187, 8, 198, 198, 2, 788, 651, 3127, 1022, 2723, 290, 1351, 12, 1659, 12, 293, 3080, 13, 198, 14259, 796, 616, 27660, 13, 1136, 62, 7266, 42895, 7, 10459, 11639, 34, 55, 5097, 940, 3256, 2496, 28, 17816, 11571, 38, 7707, 17, 41707, 11571, 38, 7707, 6, 12962, 198, 4798, 10786, 7266, 42895, 4129, 11537, 198, 4798, 7, 11925, 7, 14259, 4008, 198, 198, 2, 290, 356, 460, 778, 1726, 262, 5509, 284, 655, 13760, 198, 2, 3151, 540, 422, 262, 2723, 198, 1820, 27660, 13, 1050, 1726, 62, 21048, 7, 14259, 8, 198, 198, 2, 1804, 257, 2989, 3599, 422, 262, 6808, 284, 787, 1654, 356, 460, 198, 2, 3151, 477, 13760, 198, 14259, 796, 616, 27660, 13, 1050, 40881, 62, 34960, 13, 65, 9501, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 616, 27660, 13, 1050, 40881, 62, 34960, 13, 14259, 13, 19796, 7, 3672, 11639, 34, 55, 5097, 940, 27691, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 448, 11537, 198, 198, 4798, 10786, 11925, 3691, 25, 705, 1343, 965, 7, 11925, 7, 14259, 58, 15, 60, 22305, 198, 198, 2, 290, 356, 460, 2251, 257, 32557, 5509, 1912, 319, 198, 2, 5743, 19590, 13, 198, 1820, 27660, 13, 1136, 62, 12626, 768, 62, 21048, 3419, 198, 198, 1820, 27660, 13, 5589, 1133, 62, 31448, 874, 3419 ]
2.855346
318
#!/usr/bin/python import numpy as np from scipy import optimize from sympy import * import matplotlib.pyplot as plt import pdb import random import os # Symbolic function to evaluate shape functions shape_functions=lambda x: np.matrix([(1-x)/DX,x/DX]) xn = np.array([0.,1.]) DX = 1. ## required for plotting residual CFL=np.linspace(0.,1.,100.) samples=1000 number_prev = Rand(1, 4, samples) position_prev = RandPosition(number_prev) number_curr = Rand(1, 4, samples) position_curr = RandPosition(number_curr) if not os.path.exists('eulerRandom.npy'): eulerSolution=[] rk2Solution=[] eulerSolution_id=[] rk2Solution_id=[] for i in range(samples): print "Computing critical CFL for sample ",i,": ",number_curr[i]," particles" shapes_prev=shape_functions(position_prev[i]) shapes_curr=shape_functions(position_curr[i]) solution_euler=[] solution_rk2=[] solution_euler_id=[] solution_rk2_id=[] for k in range(number_curr[i]): # if number_curr[i]<number_prev[i] : # print "Attention ca va merder !!!!!!" # else: # print "Ca va le faire..." res=residual(k,position_curr[i],position_prev[i],1) solution_euler.append(gridSearch(res)) res=residual(k,position_curr[i],position_curr[i],1) solution_euler_id.append(gridSearch(res)) res=residual(k,position_curr[i],position_prev[i],2) solution_rk2.append(gridSearch(res)) res=residual(k,position_curr[i],position_curr[i],2) solution_rk2_id.append(gridSearch(res)) eulerSolution.append(min(solution_euler)) rk2Solution.append(min(solution_rk2)) eulerSolution_id.append(min(solution_euler_id)) rk2Solution_id.append(min(solution_rk2_id)) np.save('eulerRandom.npy',eulerSolution) np.save('rk2Random.npy',rk2Solution) np.save('eulerRandom_id.npy',eulerSolution_id) np.save('rk2Random_id.npy',rk2Solution_id) else : eulerSolution=np.load('eulerRandom.npy') rk2Solution=np.load('rk2Random.npy') eulerSolution_id=np.load('eulerRandom_id.npy') rk2Solution_id=np.load('rk2Random_id.npy') import statistics print "Mean CFL for euler periodic: ", statistics.mean(eulerSolution_id) print "Mean CFL for euler non-periodic: ", statistics.mean(eulerSolution) print "Mean CFL for rk2 periodic: ", statistics.mean(rk2Solution_id) print "Mean CFL for rk2 non-periodic: ", statistics.mean(rk2Solution) print " " print "Median CFL for euler periodic: ", statistics.median(eulerSolution_id) print "Median CFL for euler non-periodic: ", statistics.median(eulerSolution) print "Median CFL for rk2 periodic: ", statistics.median(rk2Solution_id) print "Median CFL for rk2 non-periodic: ", statistics.median(rk2Solution) pdb.set_trace() barsEuler=np.histogram(eulerSolution,bins=np.linspace(0.,1.,11)) barsRk2=np.histogram(rk2Solution,bins=np.linspace(0.,1.,11)) export2DTeXFile('cflStatistics.tex',barsEuler[1],np.array([barsEuler[0]/float(samples),barsRk2[0]/float(samples)]),['Euler','RK2']) barsEuler2=np.histogram(eulerSolution_id,bins=np.linspace(0.,1.,11)) barsRk22=np.histogram(rk2Solution_id,bins=np.linspace(0.,1.,11)) pdb.set_trace() export2DTeXFile('cflStatistics_id.tex',barsEuler2[1],np.array([barsEuler2[0]/float(samples),barsRk22[0]/float(samples)]),['Euler','RK2'])
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 27183, 198, 6738, 10558, 88, 1330, 1635, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 279, 9945, 198, 11748, 4738, 198, 11748, 28686, 628, 198, 198, 2, 41327, 4160, 2163, 284, 13446, 5485, 5499, 198, 43358, 62, 12543, 2733, 28, 50033, 2124, 25, 45941, 13, 6759, 8609, 26933, 7, 16, 12, 87, 20679, 36227, 11, 87, 14, 36227, 12962, 198, 198, 87, 77, 796, 45941, 13, 18747, 26933, 15, 1539, 16, 8183, 8, 198, 36227, 796, 352, 13, 198, 198, 2235, 2672, 329, 29353, 29598, 198, 34, 3697, 28, 37659, 13, 21602, 10223, 7, 15, 1539, 16, 1539, 3064, 2014, 198, 198, 82, 12629, 28, 12825, 198, 17618, 62, 47050, 796, 8790, 7, 16, 11, 604, 11, 8405, 8, 198, 9150, 62, 47050, 796, 8790, 26545, 7, 17618, 62, 47050, 8, 198, 198, 17618, 62, 22019, 81, 796, 8790, 7, 16, 11, 604, 11, 8405, 8, 198, 9150, 62, 22019, 81, 796, 8790, 26545, 7, 17618, 62, 22019, 81, 8, 628, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 10786, 68, 18173, 29531, 13, 77, 9078, 6, 2599, 198, 220, 220, 220, 304, 18173, 46344, 28, 21737, 198, 220, 220, 220, 374, 74, 17, 46344, 28, 21737, 198, 220, 220, 220, 304, 18173, 46344, 62, 312, 28, 21737, 198, 220, 220, 220, 374, 74, 17, 46344, 62, 312, 28, 21737, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 82, 12629, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 5377, 48074, 4688, 45239, 329, 6291, 33172, 72, 553, 25, 33172, 17618, 62, 22019, 81, 58, 72, 17241, 13166, 1, 198, 220, 220, 220, 220, 220, 220, 220, 15268, 62, 47050, 28, 43358, 62, 12543, 2733, 7, 9150, 62, 47050, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 15268, 62, 22019, 81, 28, 43358, 62, 12543, 2733, 7, 9150, 62, 22019, 81, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 68, 18173, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 81, 74, 17, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 68, 18173, 62, 312, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 81, 74, 17, 62, 312, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 17618, 62, 22019, 81, 58, 72, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1271, 62, 22019, 81, 58, 72, 60, 27, 17618, 62, 47050, 58, 72, 60, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 366, 8086, 1463, 1275, 46935, 4017, 1082, 37867, 10185, 2474, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 366, 24334, 46935, 443, 37063, 9313, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 28, 411, 312, 723, 7, 74, 11, 9150, 62, 22019, 81, 58, 72, 4357, 9150, 62, 47050, 58, 72, 4357, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 68, 18173, 13, 33295, 7, 25928, 18243, 7, 411, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 28, 411, 312, 723, 7, 74, 11, 9150, 62, 22019, 81, 58, 72, 4357, 9150, 62, 22019, 81, 58, 72, 4357, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 68, 18173, 62, 312, 13, 33295, 7, 25928, 18243, 7, 411, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 28, 411, 312, 723, 7, 74, 11, 9150, 62, 22019, 81, 58, 72, 4357, 9150, 62, 47050, 58, 72, 4357, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 81, 74, 17, 13, 33295, 7, 25928, 18243, 7, 411, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 28, 411, 312, 723, 7, 74, 11, 9150, 62, 22019, 81, 58, 72, 4357, 9150, 62, 22019, 81, 58, 72, 4357, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 81, 74, 17, 62, 312, 13, 33295, 7, 25928, 18243, 7, 411, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 304, 18173, 46344, 13, 33295, 7, 1084, 7, 82, 2122, 62, 68, 18173, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 374, 74, 17, 46344, 13, 33295, 7, 1084, 7, 82, 2122, 62, 81, 74, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 304, 18173, 46344, 62, 312, 13, 33295, 7, 1084, 7, 82, 2122, 62, 68, 18173, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 374, 74, 17, 46344, 62, 312, 13, 33295, 7, 1084, 7, 82, 2122, 62, 81, 74, 17, 62, 312, 4008, 198, 220, 220, 220, 45941, 13, 21928, 10786, 68, 18173, 29531, 13, 77, 9078, 3256, 68, 18173, 46344, 8, 198, 220, 220, 220, 45941, 13, 21928, 10786, 81, 74, 17, 29531, 13, 77, 9078, 3256, 81, 74, 17, 46344, 8, 198, 220, 220, 220, 45941, 13, 21928, 10786, 68, 18173, 29531, 62, 312, 13, 77, 9078, 3256, 68, 18173, 46344, 62, 312, 8, 198, 220, 220, 220, 45941, 13, 21928, 10786, 81, 74, 17, 29531, 62, 312, 13, 77, 9078, 3256, 81, 74, 17, 46344, 62, 312, 8, 198, 17772, 1058, 198, 220, 220, 220, 304, 18173, 46344, 28, 37659, 13, 2220, 10786, 68, 18173, 29531, 13, 77, 9078, 11537, 198, 220, 220, 220, 374, 74, 17, 46344, 28, 37659, 13, 2220, 10786, 81, 74, 17, 29531, 13, 77, 9078, 11537, 198, 220, 220, 220, 304, 18173, 46344, 62, 312, 28, 37659, 13, 2220, 10786, 68, 18173, 29531, 62, 312, 13, 77, 9078, 11537, 198, 220, 220, 220, 374, 74, 17, 46344, 62, 312, 28, 37659, 13, 2220, 10786, 81, 74, 17, 29531, 62, 312, 13, 77, 9078, 11537, 198, 198, 11748, 7869, 198, 4798, 366, 5308, 272, 45239, 329, 304, 18173, 27458, 25, 33172, 7869, 13, 32604, 7, 68, 18173, 46344, 62, 312, 8, 198, 4798, 366, 5308, 272, 45239, 329, 304, 18173, 1729, 12, 41007, 291, 25, 33172, 7869, 13, 32604, 7, 68, 18173, 46344, 8, 198, 4798, 366, 5308, 272, 45239, 329, 374, 74, 17, 27458, 25, 33172, 7869, 13, 32604, 7, 81, 74, 17, 46344, 62, 312, 8, 198, 4798, 366, 5308, 272, 45239, 329, 374, 74, 17, 1729, 12, 41007, 291, 25, 33172, 7869, 13, 32604, 7, 81, 74, 17, 46344, 8, 198, 4798, 366, 366, 198, 4798, 366, 9921, 666, 45239, 329, 304, 18173, 27458, 25, 33172, 7869, 13, 1150, 666, 7, 68, 18173, 46344, 62, 312, 8, 198, 4798, 366, 9921, 666, 45239, 329, 304, 18173, 1729, 12, 41007, 291, 25, 33172, 7869, 13, 1150, 666, 7, 68, 18173, 46344, 8, 198, 4798, 366, 9921, 666, 45239, 329, 374, 74, 17, 27458, 25, 33172, 7869, 13, 1150, 666, 7, 81, 74, 17, 46344, 62, 312, 8, 198, 4798, 366, 9921, 666, 45239, 329, 374, 74, 17, 1729, 12, 41007, 291, 25, 33172, 7869, 13, 1150, 666, 7, 81, 74, 17, 46344, 8, 198, 79, 9945, 13, 2617, 62, 40546, 3419, 198, 34046, 36, 18173, 28, 37659, 13, 10034, 21857, 7, 68, 18173, 46344, 11, 65, 1040, 28, 37659, 13, 21602, 10223, 7, 15, 1539, 16, 1539, 1157, 4008, 198, 34046, 49, 74, 17, 28, 37659, 13, 10034, 21857, 7, 81, 74, 17, 46344, 11, 65, 1040, 28, 37659, 13, 21602, 10223, 7, 15, 1539, 16, 1539, 1157, 4008, 198, 198, 39344, 17, 35, 49568, 8979, 10786, 66, 2704, 48346, 13, 16886, 3256, 34046, 36, 18173, 58, 16, 4357, 37659, 13, 18747, 26933, 34046, 36, 18173, 58, 15, 60, 14, 22468, 7, 82, 12629, 828, 34046, 49, 74, 17, 58, 15, 60, 14, 22468, 7, 82, 12629, 15437, 828, 17816, 36, 18173, 41707, 49, 42, 17, 6, 12962, 198, 198, 34046, 36, 18173, 17, 28, 37659, 13, 10034, 21857, 7, 68, 18173, 46344, 62, 312, 11, 65, 1040, 28, 37659, 13, 21602, 10223, 7, 15, 1539, 16, 1539, 1157, 4008, 198, 34046, 49, 74, 1828, 28, 37659, 13, 10034, 21857, 7, 81, 74, 17, 46344, 62, 312, 11, 65, 1040, 28, 37659, 13, 21602, 10223, 7, 15, 1539, 16, 1539, 1157, 4008, 198, 79, 9945, 13, 2617, 62, 40546, 3419, 198, 39344, 17, 35, 49568, 8979, 10786, 66, 2704, 48346, 62, 312, 13, 16886, 3256, 34046, 36, 18173, 17, 58, 16, 4357, 37659, 13, 18747, 26933, 34046, 36, 18173, 17, 58, 15, 60, 14, 22468, 7, 82, 12629, 828, 34046, 49, 74, 1828, 58, 15, 60, 14, 22468, 7, 82, 12629, 15437, 828, 17816, 36, 18173, 41707, 49, 42, 17, 6, 12962, 198 ]
2.268082
1,507
# Copyright (C) 2018 Alpha Griffin # @%@~LICENSE~@%@ from . import config, TokenError from bitcash.format import public_key_to_address from os import path import sqlite3 from hashlib import sha256
[ 2, 15069, 357, 34, 8, 2864, 12995, 16525, 198, 2, 2488, 4, 31, 93, 43, 2149, 24290, 93, 31, 4, 31, 198, 198, 6738, 764, 1330, 4566, 11, 29130, 12331, 198, 198, 6738, 1643, 30350, 13, 18982, 1330, 1171, 62, 2539, 62, 1462, 62, 21975, 198, 198, 6738, 28686, 1330, 3108, 198, 11748, 44161, 578, 18, 198, 6738, 12234, 8019, 1330, 427, 64, 11645, 628, 198 ]
3.060606
66
import json from configparser import ConfigParser from subprocess import PIPE, Popen from .archivesspace import ArchivesSpaceClient from .helpers import create_tag, format_aspace_date, get_closest_dates
[ 11748, 33918, 198, 6738, 4566, 48610, 1330, 17056, 46677, 198, 6738, 850, 14681, 1330, 350, 4061, 36, 11, 8099, 268, 198, 198, 6738, 764, 998, 452, 408, 10223, 1330, 22275, 14106, 11792, 198, 6738, 764, 16794, 364, 1330, 2251, 62, 12985, 11, 5794, 62, 5126, 558, 62, 4475, 11, 651, 62, 565, 418, 395, 62, 19581, 628 ]
3.596491
57
import pytest from conftest import twitter_session, BASE_URL from utils import get_home_tweets # status list to tweet status_list = {"We welcome you to MSD family :)", "Hello World !!"} @pytest.mark.run(order=1) ## ording test cases -- make tweet first as first test case @pytest.mark.parametrize("status_text", status_list) ## making it parametrized with the iterable "status text" def test_make_tweet(twitter_session, status_text): ''' Test Case for the creation of a tweet. Args: twitter_session - the OAuth1Session from the pytest fixture. status_text - the text which will be dumped in the tweet created for testing. ''' # making API call to post the tweet with the status_text provide resp = twitter_session.post(f"{BASE_URL}/statuses/update.json", params={'status': status_text}) print (f"\nTweet Response - {resp.text}") ## response shall be captured from std # Assert to confirm if the tweet is made successfully assert resp.status_code == 200 # Assert to Confirm if the tweet made is having correct data assert resp.json()['text'] == status_text @pytest.mark.run(order=4) ## ordering test cases -- delete the tweet after all the test cases are done def test_delete_tweet(twitter_session): ''' Test Case for the deletion of a tweet. This test case is executed post creation. We will be searching for the tweet from the home timeline and deleting it. Args: twitter_session - the OAuth1Session from the pytest fixture. ''' # loop through the tweets made as part of test case for tweet in get_home_tweets(twitter_session, tweet_count=len(status_list)): # verifing if its the same tweet we had made, before deleting if tweet['text'] in status_list: # API call to delete the tweet resp = twitter_session.post(f"{BASE_URL}/statuses/destroy/{tweet['id']}.json") print (f"\nDelete tweet Response - {resp.text}") ## response shall be captured from std # Assert to confirm if the request made successfully assert resp.status_code == 200
[ 11748, 12972, 9288, 198, 6738, 369, 701, 395, 1330, 17044, 62, 29891, 11, 49688, 62, 21886, 198, 6738, 3384, 4487, 1330, 651, 62, 11195, 62, 83, 732, 1039, 198, 198, 2, 3722, 1351, 284, 6126, 198, 13376, 62, 4868, 796, 19779, 1135, 7062, 345, 284, 6579, 35, 1641, 14373, 1600, 366, 15496, 2159, 5145, 2474, 92, 198, 198, 31, 9078, 9288, 13, 4102, 13, 5143, 7, 2875, 28, 16, 8, 22492, 2760, 278, 1332, 2663, 1377, 787, 6126, 717, 355, 717, 1332, 1339, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 13376, 62, 5239, 1600, 3722, 62, 4868, 8, 22492, 1642, 340, 5772, 316, 380, 8863, 351, 262, 11629, 540, 366, 13376, 2420, 1, 198, 4299, 1332, 62, 15883, 62, 83, 7277, 7, 6956, 62, 29891, 11, 3722, 62, 5239, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6208, 8913, 329, 262, 6282, 286, 257, 6126, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 17044, 62, 29891, 532, 262, 440, 30515, 16, 36044, 422, 262, 12972, 9288, 29220, 13, 198, 220, 220, 220, 3722, 62, 5239, 532, 262, 2420, 543, 481, 307, 24105, 287, 262, 6126, 2727, 329, 4856, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 1642, 7824, 869, 284, 1281, 262, 6126, 351, 262, 3722, 62, 5239, 2148, 198, 220, 220, 220, 1217, 796, 17044, 62, 29891, 13, 7353, 7, 69, 1, 90, 33, 11159, 62, 21886, 92, 14, 14269, 2664, 14, 19119, 13, 17752, 1600, 42287, 34758, 6, 13376, 10354, 3722, 62, 5239, 30072, 198, 220, 220, 220, 3601, 357, 69, 1, 59, 77, 47845, 18261, 532, 1391, 4363, 13, 5239, 92, 4943, 22492, 2882, 2236, 307, 7907, 422, 14367, 198, 220, 220, 220, 1303, 2195, 861, 284, 6216, 611, 262, 6126, 318, 925, 7675, 198, 220, 220, 220, 6818, 1217, 13, 13376, 62, 8189, 6624, 939, 198, 220, 220, 220, 1303, 2195, 861, 284, 7326, 2533, 611, 262, 6126, 925, 318, 1719, 3376, 1366, 198, 220, 220, 220, 6818, 1217, 13, 17752, 3419, 17816, 5239, 20520, 6624, 3722, 62, 5239, 198, 198, 31, 9078, 9288, 13, 4102, 13, 5143, 7, 2875, 28, 19, 8, 22492, 16216, 1332, 2663, 1377, 12233, 262, 6126, 706, 477, 262, 1332, 2663, 389, 1760, 198, 4299, 1332, 62, 33678, 62, 83, 7277, 7, 6956, 62, 29891, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6208, 8913, 329, 262, 39948, 286, 257, 6126, 13, 198, 220, 220, 220, 770, 1332, 1339, 318, 10945, 1281, 6282, 13, 198, 220, 220, 220, 775, 481, 307, 10342, 329, 262, 6126, 422, 262, 1363, 15264, 290, 34817, 340, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 17044, 62, 29891, 532, 262, 440, 30515, 16, 36044, 422, 262, 12972, 9288, 29220, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 9052, 832, 262, 12665, 925, 355, 636, 286, 1332, 1339, 198, 220, 220, 220, 329, 6126, 287, 651, 62, 11195, 62, 83, 732, 1039, 7, 6956, 62, 29891, 11, 6126, 62, 9127, 28, 11925, 7, 13376, 62, 4868, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3326, 361, 278, 611, 663, 262, 976, 6126, 356, 550, 925, 11, 878, 34817, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6126, 17816, 5239, 20520, 287, 3722, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7824, 869, 284, 12233, 262, 6126, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 17044, 62, 29891, 13, 7353, 7, 69, 1, 90, 33, 11159, 62, 21886, 92, 14, 14269, 2664, 14, 41659, 14, 90, 83, 7277, 17816, 312, 20520, 27422, 17752, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 69, 1, 59, 77, 38727, 6126, 18261, 532, 1391, 4363, 13, 5239, 92, 4943, 22492, 2882, 2236, 307, 7907, 422, 14367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 861, 284, 6216, 611, 262, 2581, 925, 7675, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 1217, 13, 13376, 62, 8189, 6624, 939, 198 ]
3.011445
699
import pickle import operator import re prog = re.compile( r"^([\^\~\&\|])\((\w+),?(\w+)?\)$" ) with open("sha_decoded.pp", "r") as file: _h, _REFERENCES_, _DEPENDENCY_ ,_INV_DEP_, _COST_ = pickle.load( file ) inv_refs = {v: k for k, v in _REFERENCES_.iteritems()} #sorted_COST = sorted(_COST_.items(), key=operator.itemgetter(1)) opsByDiv = {} # CONSTRAINTS = {} # for i in range(2): # for j in _h[i]: # CONSTRAINTS[ _h[i][j] ] = 0 for i in _COST_.items(): if( i[1] not in opsByDiv ): opsByDiv[i[1]]=[] opsByDiv[i[1]].append(i[0]) csv = open("sha2562hash.csv","w") csv.write("\n"*10) opsResultCell = {} for n in opsByDiv: line = [] c = 0 for opRef in (opsByDiv[n]): opsResultCell[opRef] = toCell(n+10,c) op = inv_refs[opRef] a,b = getElements( op ) if(a[0]=='r'): cella = opsResultCell[a] elif( a[0] == 't'): cella = '1' elif( a[0] == 'f' ): cella = '0' elif( a[0]=='b'): cella = toCell(1,int(a[1:])) else: cella = a if( b!= None and b[0]=='r' ): cellb = opsResultCell[b] elif( b!= None and b[0] == 't'): cellb = '1' elif( b!= None and b[0] == 'f' ): cellb = '0' elif( b!= None and b[0]=='b'): cellb = toCell(1,int(b[1:])) else: cellb = b if(op[0]=='^'): line.append("=XOR("+cella+";"+cellb+")") elif(op[0]=='|'): line.append("=OR("+cella+";"+cellb+")") elif(op[0]=='&'): line.append("=AND("+cella+";"+cellb+")") elif(op[0]=='~'): line.append("=NOT("+cella+")") c+=1 csv.write('\t'.join(line)+"\n") csv.close()
[ 11748, 2298, 293, 198, 11748, 10088, 198, 11748, 302, 198, 1676, 70, 796, 302, 13, 5589, 576, 7, 374, 1, 61, 26933, 59, 61, 59, 93, 59, 5, 59, 91, 12962, 59, 19510, 59, 86, 10, 828, 30, 38016, 86, 10, 19427, 22725, 3, 1, 1267, 628, 198, 4480, 1280, 7203, 26270, 62, 12501, 9043, 13, 381, 1600, 366, 81, 4943, 355, 2393, 25, 198, 197, 62, 71, 11, 4808, 2200, 24302, 24181, 1546, 62, 11, 4808, 46162, 10619, 45155, 62, 837, 62, 1268, 53, 62, 46162, 62, 11, 4808, 8220, 2257, 62, 796, 2298, 293, 13, 2220, 7, 2393, 1267, 198, 16340, 62, 5420, 82, 796, 1391, 85, 25, 479, 329, 479, 11, 410, 287, 4808, 2200, 24302, 24181, 1546, 44807, 2676, 23814, 3419, 92, 198, 2, 82, 9741, 62, 8220, 2257, 796, 23243, 28264, 8220, 2257, 44807, 23814, 22784, 1994, 28, 46616, 13, 9186, 1136, 353, 7, 16, 4008, 198, 198, 2840, 3886, 24095, 796, 23884, 198, 2, 7102, 2257, 3861, 1268, 4694, 796, 23884, 198, 2, 329, 1312, 287, 2837, 7, 17, 2599, 198, 2, 220, 197, 1640, 474, 287, 4808, 71, 58, 72, 5974, 198, 2, 220, 197, 197, 10943, 2257, 3861, 1268, 4694, 58, 4808, 71, 58, 72, 7131, 73, 60, 2361, 796, 657, 198, 198, 1640, 1312, 287, 4808, 8220, 2257, 44807, 23814, 33529, 198, 197, 361, 7, 1312, 58, 16, 60, 407, 287, 39628, 3886, 24095, 15179, 198, 197, 197, 2840, 3886, 24095, 58, 72, 58, 16, 11907, 28, 21737, 198, 197, 2840, 3886, 24095, 58, 72, 58, 16, 60, 4083, 33295, 7, 72, 58, 15, 12962, 198, 198, 40664, 796, 1280, 7203, 26270, 1495, 5237, 17831, 13, 40664, 2430, 86, 4943, 198, 198, 40664, 13, 13564, 7203, 59, 77, 1, 9, 940, 8, 198, 2840, 23004, 28780, 796, 23884, 198, 1640, 299, 287, 39628, 3886, 24095, 25, 198, 197, 1370, 796, 17635, 198, 197, 66, 796, 657, 198, 197, 1640, 1034, 8134, 287, 357, 2840, 3886, 24095, 58, 77, 60, 2599, 198, 197, 197, 2840, 23004, 28780, 58, 404, 8134, 60, 796, 284, 28780, 7, 77, 10, 940, 11, 66, 8, 198, 197, 197, 404, 796, 800, 62, 5420, 82, 58, 404, 8134, 60, 198, 197, 197, 64, 11, 65, 796, 651, 36, 3639, 7, 1034, 1267, 198, 197, 197, 361, 7, 64, 58, 15, 60, 855, 6, 81, 6, 2599, 198, 197, 197, 197, 3846, 64, 796, 39628, 23004, 28780, 58, 64, 60, 198, 197, 197, 417, 361, 7, 257, 58, 15, 60, 6624, 705, 83, 6, 2599, 198, 197, 197, 197, 3846, 64, 796, 705, 16, 6, 198, 197, 197, 417, 361, 7, 257, 58, 15, 60, 6624, 705, 69, 6, 15179, 198, 197, 197, 197, 3846, 64, 796, 705, 15, 6, 198, 197, 197, 417, 361, 7, 257, 58, 15, 60, 855, 6, 65, 6, 2599, 198, 197, 197, 197, 3846, 64, 796, 284, 28780, 7, 16, 11, 600, 7, 64, 58, 16, 47715, 4008, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 3846, 64, 796, 257, 628, 197, 197, 361, 7, 275, 0, 28, 6045, 290, 275, 58, 15, 60, 855, 6, 81, 6, 15179, 198, 197, 197, 197, 3846, 65, 796, 39628, 23004, 28780, 58, 65, 60, 198, 197, 197, 417, 361, 7, 275, 0, 28, 6045, 290, 275, 58, 15, 60, 6624, 705, 83, 6, 2599, 198, 197, 197, 197, 3846, 65, 796, 705, 16, 6, 198, 197, 197, 417, 361, 7, 275, 0, 28, 6045, 290, 275, 58, 15, 60, 6624, 705, 69, 6, 15179, 198, 197, 197, 197, 3846, 65, 796, 705, 15, 6, 198, 197, 197, 417, 361, 7, 275, 0, 28, 6045, 290, 275, 58, 15, 60, 855, 6, 65, 6, 2599, 198, 197, 197, 197, 3846, 65, 796, 284, 28780, 7, 16, 11, 600, 7, 65, 58, 16, 47715, 4008, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 3846, 65, 796, 275, 628, 197, 197, 361, 7, 404, 58, 15, 60, 855, 6, 61, 6, 2599, 198, 197, 197, 197, 1370, 13, 33295, 7203, 28, 55, 1581, 7203, 10, 3846, 64, 10, 8172, 1, 10, 3846, 65, 10, 4943, 4943, 198, 197, 197, 417, 361, 7, 404, 58, 15, 60, 855, 6, 91, 6, 2599, 198, 197, 197, 197, 1370, 13, 33295, 7203, 28, 1581, 7203, 10, 3846, 64, 10, 8172, 1, 10, 3846, 65, 10, 4943, 4943, 198, 197, 197, 417, 361, 7, 404, 58, 15, 60, 855, 6, 5, 6, 2599, 198, 197, 197, 197, 1370, 13, 33295, 7203, 28, 6981, 7203, 10, 3846, 64, 10, 8172, 1, 10, 3846, 65, 10, 4943, 4943, 198, 197, 197, 417, 361, 7, 404, 58, 15, 60, 855, 6, 93, 6, 2599, 198, 197, 197, 197, 1370, 13, 33295, 7203, 28, 11929, 7203, 10, 3846, 64, 10, 4943, 4943, 628, 198, 197, 197, 66, 47932, 16, 628, 197, 40664, 13, 13564, 10786, 59, 83, 4458, 22179, 7, 1370, 47762, 1, 59, 77, 4943, 198, 198, 40664, 13, 19836, 3419 ]
1.847375
819
import os from channels.routing import ChannelNameRouter, ProtocolTypeRouter from django.core.asgi import get_asgi_application from notifications import consumers os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'notifs.settings') application = ProtocolTypeRouter( { 'http': get_asgi_application(), 'channel': ChannelNameRouter( { 'django_notifs': consumers.DjangoNotifsConsumer.as_asgi(), } ), } )
[ 11748, 28686, 198, 198, 6738, 9619, 13, 81, 13660, 1330, 11102, 5376, 49, 39605, 11, 20497, 6030, 49, 39605, 198, 6738, 42625, 14208, 13, 7295, 13, 292, 12397, 1330, 651, 62, 292, 12397, 62, 31438, 198, 198, 6738, 19605, 1330, 7008, 198, 198, 418, 13, 268, 2268, 13, 2617, 12286, 10786, 35028, 1565, 11230, 62, 28480, 51, 20754, 62, 33365, 24212, 3256, 705, 1662, 361, 82, 13, 33692, 11537, 198, 198, 31438, 796, 20497, 6030, 49, 39605, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4023, 10354, 651, 62, 292, 12397, 62, 31438, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17620, 10354, 11102, 5376, 49, 39605, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28241, 14208, 62, 1662, 361, 82, 10354, 7008, 13, 35, 73, 14208, 3673, 361, 82, 49106, 13, 292, 62, 292, 12397, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1782, 198, 8, 198 ]
2.38191
199
import threading # pls thinking about if there not use mutex... # you must try it, comment the line 12 and the line 14... mutex = threading.Lock() num = 0 if __name__ == "__main__": main()
[ 11748, 4704, 278, 198, 198, 2, 458, 82, 3612, 546, 611, 612, 407, 779, 4517, 1069, 986, 198, 2, 345, 1276, 1949, 340, 11, 2912, 262, 1627, 1105, 290, 262, 1627, 1478, 986, 198, 21973, 1069, 796, 4704, 278, 13, 25392, 3419, 198, 22510, 796, 657, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 220, 198 ]
2.756757
74
import contextlib import pathlib import shutil import sys import tempfile import typing as ty import click import click_pathlib import jsonlines import numpy as np import spacy import ujson as json from typing import Any, Dict, List, Literal, Optional, TextIO from typing_extensions import TypedDict from decofre.formats import formats from decofre import detmentions, score, clusterize spacy.tokens.Doc.set_extension("clusters", default=None) spacy.tokens.Span.set_extension("cluster", default=None) spacy.tokens.Span.set_extension("singleton", default=True) @contextlib.contextmanager def smart_open( filename: str, mode: str = "r", *args, **kwargs ) -> ty.Generator[ty.IO, None, None]: """Open files and i/o streams transparently.""" if filename == "-": if "r" in mode: stream = sys.stdin else: stream = sys.stdout if "b" in mode: fh = stream.buffer # type: ty.IO else: fh = stream close = False else: fh = open(filename, mode, *args, **kwargs) close = True try: yield fh finally: if close: try: fh.close() except AttributeError: pass @contextlib.contextmanager def dir_manager( path: ty.Optional[ty.Union[pathlib.Path, str]] = None, cleanup=None ) -> ty.Generator[pathlib.Path, None, None]: """A context manager to deal with a directory, default to a self-destruct temp one.""" if path is None: d_path = pathlib.Path(tempfile.mkdtemp()) if cleanup is None: cleanup = True else: d_path = pathlib.Path(path).resolve() d_path.mkdir(parents=True, exist_ok=True) if cleanup is None: cleanup = False elif cleanup: if d_path.glob("*"): raise ValueError(f"{d_path} is not empty.") try: yield d_path finally: if cleanup: shutil.rmtree(d_path) def antecedents_from_mentions( mentions: ty.Iterable[ty.Dict[str, ty.Any]], max_candidates: int = 128, distance_buckets: ty.Sequence[int] = (1, 2, 3, 4, 5, 7, 15, 32, 63), ) -> ty.Dict[str, ty.Dict[str, AntecedentFeaturesDict]]: """Extract an antecedent dataset from a list of detected mentions.""" sorted_mentions = sorted(mentions, key=lambda m: (m["start"], m["end"])) if len(sorted_mentions) < 2: return dict() # The first mention in a document has no antecedent candidates res = dict() for i, mention in enumerate(sorted_mentions[1:], start=1): mention_content_set = set(mention["content"]) antecedent_candidates = sorted_mentions[max(0, i - max_candidates) : i] antecedents: ty.Dict[str, AntecedentFeaturesDict] = dict() for j, candidate in enumerate(antecedent_candidates): candidate_content_set = set(candidate["content"]) w_distance = int( np.digitize( mention["start"] - candidate["end"], bins=distance_buckets, right=True, ) ) u_distance = int( np.digitize( mention["sentence"] - candidate["sentence"], bins=distance_buckets, ) ) m_distance: int = int( np.digitize( len(antecedent_candidates) - j, bins=distance_buckets, right=True, ) ) spk_agreement = mention.get("speaker") == candidate.get("speaker") intersect = len(mention_content_set.intersection(candidate_content_set)) token_incl_ratio = int( 10 * intersect / min(len(mention_content_set), len(candidate_content_set)) ) token_com_ratio = int( 10 * intersect / len(mention_content_set.union(candidate_content_set)) ) overlap = mention["start"] < candidate["end"] antecedents[candidate["span_id"]] = { "w_distance": w_distance, "u_distance": u_distance, "m_distance": m_distance, "spk_agreement": spk_agreement, "overlap": overlap, "token_incl": token_incl_ratio, "token_com": token_com_ratio, } res[mention["span_id"]] = antecedents return res @click.command(help="End-to-end coreference resolution") @click.argument( "detect-model", type=click_pathlib.Path(exists=True, dir_okay=False), ) @click.argument( "coref-model", type=click_pathlib.Path(exists=True, dir_okay=False), ) @click.argument( "input_file", type=click.File("r"), ) @click.argument( "output_file", type=click.File("w", atomic=True), default="-", ) @click.option( "--from", "input_format", type=click.Choice(formats.keys()), default="raw_text", help="The input format", show_default=True, ) @click.option( "--intermediary-dir", "intermediary_dir_path", type=click_pathlib.Path(resolve_path=True, file_okay=False), help="A path to a directory to use for intermediary files, defaults to a self-destructing temp dir", ) @click.option( "--lang", default="fr_core_news_lg", help="A spaCy model handle for the document.", show_default=True, ) @click.option( "--to", "output_format", type=click.Choice(["latex", "prodigy", "sacr", "text"]), default="text", help="Output formats (experimental)", ) if __name__ == "__main__": main_entry_point()
[ 11748, 4732, 8019, 198, 11748, 3108, 8019, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 11748, 20218, 7753, 198, 11748, 19720, 355, 1259, 198, 198, 11748, 3904, 198, 11748, 3904, 62, 6978, 8019, 198, 11748, 33918, 6615, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 599, 1590, 198, 11748, 334, 17752, 355, 33918, 198, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 11, 25659, 1691, 11, 32233, 11, 8255, 9399, 198, 6738, 19720, 62, 2302, 5736, 1330, 17134, 276, 35, 713, 198, 198, 6738, 875, 1659, 260, 13, 687, 1381, 1330, 17519, 198, 6738, 875, 1659, 260, 1330, 1062, 434, 507, 11, 4776, 11, 13946, 1096, 628, 198, 2777, 1590, 13, 83, 482, 641, 13, 23579, 13, 2617, 62, 2302, 3004, 7203, 565, 13654, 1600, 4277, 28, 14202, 8, 198, 2777, 1590, 13, 83, 482, 641, 13, 4561, 272, 13, 2617, 62, 2302, 3004, 7203, 565, 5819, 1600, 4277, 28, 14202, 8, 198, 2777, 1590, 13, 83, 482, 641, 13, 4561, 272, 13, 2617, 62, 2302, 3004, 7203, 12215, 10565, 1600, 4277, 28, 17821, 8, 628, 198, 31, 22866, 8019, 13, 22866, 37153, 198, 4299, 4451, 62, 9654, 7, 198, 220, 220, 220, 29472, 25, 965, 11, 4235, 25, 965, 796, 366, 81, 1600, 1635, 22046, 11, 12429, 46265, 22046, 198, 8, 4613, 1259, 13, 8645, 1352, 58, 774, 13, 9399, 11, 6045, 11, 6045, 5974, 198, 220, 220, 220, 37227, 11505, 3696, 290, 1312, 14, 78, 15190, 13245, 306, 526, 15931, 198, 220, 220, 220, 611, 29472, 6624, 27444, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 81, 1, 287, 4235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4269, 796, 25064, 13, 19282, 259, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4269, 796, 25064, 13, 19282, 448, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 65, 1, 287, 4235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 796, 4269, 13, 22252, 220, 1303, 2099, 25, 1259, 13, 9399, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 796, 4269, 198, 220, 220, 220, 220, 220, 220, 220, 1969, 796, 10352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 71, 796, 1280, 7, 34345, 11, 4235, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1969, 796, 6407, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 277, 71, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1969, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 31, 22866, 8019, 13, 22866, 37153, 198, 4299, 26672, 62, 37153, 7, 198, 220, 220, 220, 3108, 25, 1259, 13, 30719, 58, 774, 13, 38176, 58, 6978, 8019, 13, 15235, 11, 965, 11907, 796, 6045, 11, 27425, 28, 14202, 198, 8, 4613, 1259, 13, 8645, 1352, 58, 6978, 8019, 13, 15235, 11, 6045, 11, 6045, 5974, 198, 220, 220, 220, 37227, 32, 4732, 4706, 284, 1730, 351, 257, 8619, 11, 4277, 284, 257, 2116, 12, 35678, 20218, 530, 526, 15931, 198, 220, 220, 220, 611, 3108, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 6978, 796, 3108, 8019, 13, 15235, 7, 29510, 7753, 13, 28015, 67, 29510, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27425, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27425, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 6978, 796, 3108, 8019, 13, 15235, 7, 6978, 737, 411, 6442, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 6978, 13, 28015, 15908, 7, 23743, 28, 17821, 11, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27425, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27425, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27425, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 62, 6978, 13, 4743, 672, 7203, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 90, 67, 62, 6978, 92, 318, 407, 6565, 19570, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 288, 62, 6978, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27425, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 67, 62, 6978, 8, 628, 198, 198, 4299, 29692, 771, 658, 62, 6738, 62, 434, 507, 7, 198, 220, 220, 220, 15802, 25, 1259, 13, 29993, 540, 58, 774, 13, 35, 713, 58, 2536, 11, 1259, 13, 7149, 60, 4357, 198, 220, 220, 220, 3509, 62, 46188, 37051, 25, 493, 796, 13108, 11, 198, 220, 220, 220, 5253, 62, 27041, 1039, 25, 1259, 13, 44015, 594, 58, 600, 60, 796, 357, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 767, 11, 1315, 11, 3933, 11, 8093, 828, 198, 8, 4613, 1259, 13, 35, 713, 58, 2536, 11, 1259, 13, 35, 713, 58, 2536, 11, 3738, 721, 276, 298, 23595, 35, 713, 60, 5974, 198, 220, 220, 220, 37227, 11627, 974, 281, 29692, 771, 298, 27039, 422, 257, 1351, 286, 12326, 15802, 526, 15931, 628, 220, 220, 220, 23243, 62, 434, 507, 796, 23243, 7, 434, 507, 11, 1994, 28, 50033, 285, 25, 357, 76, 14692, 9688, 33116, 285, 14692, 437, 8973, 4008, 198, 220, 220, 220, 611, 18896, 7, 82, 9741, 62, 434, 507, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8633, 3419, 628, 220, 220, 220, 1303, 383, 717, 3068, 287, 257, 3188, 468, 645, 29692, 771, 298, 5871, 628, 220, 220, 220, 581, 796, 8633, 3419, 198, 220, 220, 220, 329, 1312, 11, 3068, 287, 27056, 378, 7, 82, 9741, 62, 434, 507, 58, 16, 25, 4357, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3068, 62, 11299, 62, 2617, 796, 900, 7, 434, 295, 14692, 11299, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29692, 771, 298, 62, 46188, 37051, 796, 23243, 62, 434, 507, 58, 9806, 7, 15, 11, 1312, 532, 3509, 62, 46188, 37051, 8, 1058, 1312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 29692, 771, 658, 25, 1259, 13, 35, 713, 58, 2536, 11, 3738, 721, 276, 298, 23595, 35, 713, 60, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 11, 4540, 287, 27056, 378, 7, 415, 721, 276, 298, 62, 46188, 37051, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4540, 62, 11299, 62, 2617, 796, 900, 7, 46188, 20540, 14692, 11299, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 30246, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 27003, 1096, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3068, 14692, 9688, 8973, 532, 4540, 14692, 437, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41701, 28, 30246, 62, 27041, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 826, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 62, 30246, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 27003, 1096, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3068, 14692, 34086, 594, 8973, 532, 4540, 14692, 34086, 594, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41701, 28, 30246, 62, 27041, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 30246, 25, 493, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 27003, 1096, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 415, 721, 276, 298, 62, 46188, 37051, 8, 532, 474, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41701, 28, 30246, 62, 27041, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 826, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 599, 74, 62, 363, 10237, 796, 3068, 13, 1136, 7203, 4125, 3110, 4943, 6624, 4540, 13, 1136, 7203, 4125, 3110, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36177, 796, 18896, 7, 434, 295, 62, 11299, 62, 2617, 13, 3849, 5458, 7, 46188, 20540, 62, 11299, 62, 2617, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 259, 565, 62, 10366, 952, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 36177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 949, 7, 11925, 7, 434, 295, 62, 11299, 62, 2617, 828, 18896, 7, 46188, 20540, 62, 11299, 62, 2617, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 785, 62, 10366, 952, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 838, 1635, 36177, 1220, 18896, 7, 434, 295, 62, 11299, 62, 2617, 13, 24592, 7, 46188, 20540, 62, 11299, 62, 2617, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21721, 796, 3068, 14692, 9688, 8973, 1279, 4540, 14692, 437, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29692, 771, 658, 58, 46188, 20540, 14692, 12626, 62, 312, 8973, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 86, 62, 30246, 1298, 266, 62, 30246, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 84, 62, 30246, 1298, 334, 62, 30246, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 76, 62, 30246, 1298, 285, 62, 30246, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2777, 74, 62, 363, 10237, 1298, 599, 74, 62, 363, 10237, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2502, 37796, 1298, 21721, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30001, 62, 259, 565, 1298, 11241, 62, 259, 565, 62, 10366, 952, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30001, 62, 785, 1298, 11241, 62, 785, 62, 10366, 952, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 581, 58, 434, 295, 14692, 12626, 62, 312, 8973, 60, 796, 29692, 771, 658, 198, 220, 220, 220, 1441, 581, 628, 628, 628, 198, 198, 31, 12976, 13, 21812, 7, 16794, 2625, 12915, 12, 1462, 12, 437, 4755, 4288, 6323, 4943, 198, 31, 12976, 13, 49140, 7, 198, 220, 220, 220, 366, 15255, 478, 12, 19849, 1600, 198, 220, 220, 220, 2099, 28, 12976, 62, 6978, 8019, 13, 15235, 7, 1069, 1023, 28, 17821, 11, 26672, 62, 482, 323, 28, 25101, 828, 198, 8, 198, 31, 12976, 13, 49140, 7, 198, 220, 220, 220, 366, 7295, 69, 12, 19849, 1600, 198, 220, 220, 220, 2099, 28, 12976, 62, 6978, 8019, 13, 15235, 7, 1069, 1023, 28, 17821, 11, 26672, 62, 482, 323, 28, 25101, 828, 198, 8, 198, 31, 12976, 13, 49140, 7, 198, 220, 220, 220, 366, 15414, 62, 7753, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 8979, 7203, 81, 12340, 198, 8, 198, 31, 12976, 13, 49140, 7, 198, 220, 220, 220, 366, 22915, 62, 7753, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 8979, 7203, 86, 1600, 17226, 28, 17821, 828, 198, 220, 220, 220, 4277, 2625, 12, 1600, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 6738, 1600, 198, 220, 220, 220, 366, 15414, 62, 18982, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 46770, 7, 687, 1381, 13, 13083, 3419, 828, 198, 220, 220, 220, 4277, 2625, 1831, 62, 5239, 1600, 198, 220, 220, 220, 1037, 2625, 464, 5128, 5794, 1600, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 3849, 2379, 560, 12, 15908, 1600, 198, 220, 220, 220, 366, 3849, 2379, 560, 62, 15908, 62, 6978, 1600, 198, 220, 220, 220, 2099, 28, 12976, 62, 6978, 8019, 13, 15235, 7, 411, 6442, 62, 6978, 28, 17821, 11, 2393, 62, 482, 323, 28, 25101, 828, 198, 220, 220, 220, 1037, 2625, 32, 3108, 284, 257, 8619, 284, 779, 329, 45193, 3696, 11, 26235, 284, 257, 2116, 12, 35678, 278, 20218, 26672, 1600, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 17204, 1600, 198, 220, 220, 220, 4277, 2625, 8310, 62, 7295, 62, 10827, 62, 75, 70, 1600, 198, 220, 220, 220, 1037, 2625, 32, 41900, 20418, 2746, 5412, 329, 262, 3188, 33283, 198, 220, 220, 220, 905, 62, 12286, 28, 17821, 11, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 1462, 1600, 198, 220, 220, 220, 366, 22915, 62, 18982, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 46770, 7, 14692, 17660, 87, 1600, 366, 1676, 41923, 1600, 366, 30584, 81, 1600, 366, 5239, 8973, 828, 198, 220, 220, 220, 4277, 2625, 5239, 1600, 198, 220, 220, 220, 1037, 2625, 26410, 17519, 357, 23100, 9134, 42501, 198, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 62, 13000, 62, 4122, 3419, 198 ]
2.124861
2,691
""" Migration script for the job state history table """ from __future__ import print_function import datetime import logging from sqlalchemy import Column, DateTime, ForeignKey, Integer, MetaData, String, Table from galaxy.model.custom_types import TrimmedString from galaxy.model.migrate.versions.util import create_table, drop_table now = datetime.datetime.utcnow log = logging.getLogger(__name__) metadata = MetaData() JobStateHistory_table = Table("job_state_history", metadata, Column("id", Integer, primary_key=True), Column("create_time", DateTime, default=now), Column("update_time", DateTime, default=now, onupdate=now), Column("job_id", Integer, ForeignKey("job.id"), index=True), Column("state", String(64), index=True), Column("info", TrimmedString(255)))
[ 37811, 198, 44, 4254, 4226, 329, 262, 1693, 1181, 2106, 3084, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 4818, 8079, 198, 11748, 18931, 198, 198, 6738, 44161, 282, 26599, 1330, 29201, 11, 7536, 7575, 11, 8708, 9218, 11, 34142, 11, 30277, 6601, 11, 10903, 11, 8655, 198, 198, 6738, 16161, 13, 19849, 13, 23144, 62, 19199, 1330, 833, 320, 1150, 10100, 198, 6738, 16161, 13, 19849, 13, 76, 42175, 13, 47178, 13, 22602, 1330, 2251, 62, 11487, 11, 4268, 62, 11487, 198, 198, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 315, 66, 2197, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 38993, 796, 30277, 6601, 3419, 198, 198, 33308, 9012, 18122, 62, 11487, 796, 8655, 7203, 21858, 62, 5219, 62, 23569, 1600, 20150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 312, 1600, 34142, 11, 4165, 62, 2539, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 17953, 62, 2435, 1600, 7536, 7575, 11, 4277, 28, 2197, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 19119, 62, 2435, 1600, 7536, 7575, 11, 4277, 28, 2197, 11, 319, 19119, 28, 2197, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 21858, 62, 312, 1600, 34142, 11, 8708, 9218, 7203, 21858, 13, 312, 12340, 6376, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 5219, 1600, 10903, 7, 2414, 828, 6376, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 7203, 10951, 1600, 833, 320, 1150, 10100, 7, 13381, 22305, 628, 198 ]
2.360494
405
#!/usr/bin/env python3 """ Deploy DST configuration using Ansible. Copyright (c) 2020, Copyright (c) 2020, Cisco Systems, Inc. or its affiliates All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import print_function from builtins import input from dst_topology import DSTTopology import argparse import sys import subprocess from dst_utils import * import time import tempfile import os import re from yaml import load, dump try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 49322, 360, 2257, 8398, 1262, 28038, 856, 13, 198, 198, 15269, 357, 66, 8, 12131, 11, 15069, 357, 66, 8, 12131, 11, 28289, 11998, 11, 3457, 13, 393, 663, 29116, 198, 3237, 2489, 10395, 13, 198, 198, 7738, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 4666, 2649, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 198, 16, 13, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 198, 220, 220, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 198, 17, 13, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 198, 18, 13, 16126, 262, 1438, 286, 262, 6634, 15762, 4249, 262, 3891, 286, 663, 198, 220, 220, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 198, 220, 220, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 198, 43559, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 198, 6981, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 198, 3955, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 26288, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 198, 13775, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 198, 35, 2390, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 198, 35009, 53, 34444, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 198, 8141, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 198, 1581, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 198, 19238, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 3170, 1040, 1330, 5128, 198, 6738, 29636, 62, 4852, 1435, 1330, 360, 2257, 9126, 1435, 198, 11748, 1822, 29572, 198, 11748, 25064, 198, 11748, 850, 14681, 198, 6738, 29636, 62, 26791, 1330, 1635, 198, 11748, 640, 198, 11748, 20218, 7753, 198, 11748, 28686, 198, 11748, 302, 198, 6738, 331, 43695, 1330, 3440, 11, 10285, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 331, 43695, 1330, 7852, 1170, 263, 355, 8778, 263, 11, 6458, 15829, 355, 360, 15829, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 331, 43695, 1330, 8778, 263, 11, 360, 15829, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.571429
567
####################################################################### # Godot RST File to MediaWiki converter # ####################################################################### import re import pandas as pd import sys source=sys.argv[1] with open(source) as file: file_contents = file.read() class_name=file_contents.splitlines()[8] print("<tr><td><a target=_blank href='http://godotestarrive.ovh/index.php?title="+class_name+"_GD&action=edit'>Wiki "+class_name+"</a></td>") print("<td><a target=_new href='mw/"+class_name+".mw'>"+class_name+" MW File</a></td></tr>")
[ 29113, 29113, 4242, 21017, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1793, 313, 371, 2257, 9220, 284, 6343, 32603, 38394, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 201, 198, 29113, 29113, 4242, 21017, 201, 198, 201, 198, 11748, 302, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 25064, 201, 198, 201, 198, 10459, 28, 17597, 13, 853, 85, 58, 16, 60, 201, 198, 201, 198, 4480, 1280, 7, 10459, 8, 355, 2393, 25, 201, 198, 220, 220, 220, 2393, 62, 3642, 658, 796, 2393, 13, 961, 3419, 201, 198, 201, 198, 220, 220, 220, 1398, 62, 3672, 28, 7753, 62, 3642, 658, 13, 35312, 6615, 3419, 58, 23, 60, 201, 198, 201, 198, 201, 198, 220, 220, 220, 3601, 7203, 27, 2213, 6927, 8671, 6927, 64, 2496, 28, 62, 27190, 13291, 11639, 4023, 1378, 25344, 313, 395, 283, 11590, 13, 709, 71, 14, 9630, 13, 10121, 30, 7839, 2625, 10, 4871, 62, 3672, 10, 1, 62, 45113, 5, 2673, 28, 19312, 44167, 32603, 43825, 4871, 62, 3672, 10, 1, 3556, 64, 12240, 8671, 29, 4943, 201, 198, 220, 220, 220, 3601, 7203, 27, 8671, 6927, 64, 2496, 28, 62, 3605, 13291, 11639, 76, 86, 30487, 10, 4871, 62, 3672, 10, 1911, 76, 86, 6, 24618, 10, 4871, 62, 3672, 10, 1, 29961, 9220, 3556, 64, 12240, 8671, 12240, 2213, 29, 4943, 201, 198 ]
2.630081
246
# Yu Zhang yz2729 # Lab 2 Date: 09/23/21 import RPi.GPIO as GPIO import pygame # Import pygame graphics library import time import os # for OS calls CODERUN = True GPIO.setmode(GPIO.BCM) GPIO.setup(17,GPIO.IN,pull_up_down = GPIO.PUD_UP) GPIO.add_event_detect(17, GPIO.FALLING, callback=GPIO17_callback, bouncetime=300) # Environment Setting os.putenv('SDL_VIDEODRIVER', 'fbcon') # Display on piTFT os.putenv('SDL_FBDEV', '/dev/fb0') pygame.init() # Screen Setting size = (width, height) = (320, 240) # size = (width, height) = (800, 800) screen = pygame.display.set_mode(size) black = 0, 0, 0 FPS = 40 clock = pygame.time.Clock() # Big Ball speed_big = [1,1] ball_big = pygame.image.load("magic_ball.png") ballrect_big = ball_big.get_rect() ballrect_big.left = 192 ballrect_big.bottom = 128 # Small Ball speed_small = [-2,-2] ball_small = pygame.image.load("soccer-ball.png") ballrect_small = ball_small.get_rect() ballrect_small.right = 50 ballrect_small.bottom = 240 start_time = time.time() while (time.time() - start_time <= 360) and CODERUN: # time.sleep(0.02) clock.tick(FPS) ballrect_big = ballrect_big.move(speed_big) if ballrect_big.left < 0 or ballrect_big.right > width: speed_big[0] = -speed_big[0] if ballrect_big.top < 0 or ballrect_big.bottom > height: speed_big[1] = -speed_big[1] ballrect_small= ballrect_small.move(speed_small) if ballrect_small.left < 0 or ballrect_small.right > width: speed_small[0] = -speed_small[0] if ballrect_small.top < 0 or ballrect_small.bottom > height: speed_small[1] = -speed_small[1] if ballrect_big.colliderect(ballrect_small): # tmp = speed_big speed_big[0] = - speed_big[0] speed_big[1] = - speed_big[1] speed_small[0] = - speed_small[0] speed_small[1] = - speed_small[1] screen.fill(black) # Erase the Work space screen.blit(ball_big, ballrect_big) # Combine Ball surface with workspace surface screen.blit(ball_small, ballrect_small) pygame.display.flip() # display workspace on screen GPIO.cleanup()
[ 2, 10605, 19439, 331, 89, 1983, 1959, 198, 2, 3498, 362, 220, 7536, 25, 7769, 14, 1954, 14, 2481, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198, 11748, 12972, 6057, 220, 220, 220, 220, 1303, 17267, 12972, 6057, 9382, 5888, 198, 11748, 640, 198, 11748, 28686, 220, 220, 220, 1303, 329, 7294, 3848, 628, 198, 34, 3727, 1137, 4944, 796, 6407, 198, 198, 16960, 9399, 13, 2617, 14171, 7, 16960, 9399, 13, 2749, 44, 8, 198, 16960, 9399, 13, 40406, 7, 1558, 11, 16960, 9399, 13, 1268, 11, 31216, 62, 929, 62, 2902, 796, 50143, 13, 5105, 35, 62, 8577, 8, 220, 220, 220, 220, 198, 16960, 9399, 13, 2860, 62, 15596, 62, 15255, 478, 7, 1558, 11, 50143, 13, 37, 7036, 2751, 11, 23838, 28, 16960, 9399, 1558, 62, 47423, 11, 31283, 66, 8079, 28, 6200, 8, 198, 198, 2, 9344, 25700, 220, 198, 418, 13, 1996, 24330, 10786, 10305, 43, 62, 11008, 36, 3727, 49, 38757, 3256, 705, 21855, 1102, 11537, 220, 220, 1303, 16531, 319, 31028, 51, 9792, 198, 418, 13, 1996, 24330, 10786, 10305, 43, 62, 26001, 39345, 3256, 31051, 7959, 14, 21855, 15, 11537, 220, 220, 220, 198, 9078, 6057, 13, 15003, 3419, 198, 198, 2, 15216, 25700, 198, 7857, 796, 357, 10394, 11, 6001, 8, 796, 357, 19504, 11, 14956, 8, 198, 2, 2546, 796, 357, 10394, 11, 6001, 8, 796, 357, 7410, 11, 10460, 8, 220, 198, 9612, 796, 12972, 6057, 13, 13812, 13, 2617, 62, 14171, 7, 7857, 8, 198, 13424, 796, 657, 11, 657, 11, 657, 198, 37, 3705, 796, 2319, 198, 15750, 796, 12972, 6057, 13, 2435, 13, 44758, 3419, 198, 198, 2, 4403, 6932, 220, 198, 12287, 62, 14261, 796, 685, 16, 11, 16, 60, 220, 198, 1894, 62, 14261, 796, 12972, 6057, 13, 9060, 13, 2220, 7203, 32707, 62, 1894, 13, 11134, 4943, 198, 1894, 2554, 62, 14261, 796, 2613, 62, 14261, 13, 1136, 62, 2554, 3419, 198, 1894, 2554, 62, 14261, 13, 9464, 796, 17817, 198, 1894, 2554, 62, 14261, 13, 22487, 796, 13108, 198, 198, 2, 10452, 6932, 198, 12287, 62, 17470, 796, 25915, 17, 12095, 17, 60, 220, 198, 1894, 62, 17470, 796, 12972, 6057, 13, 9060, 13, 2220, 7203, 35634, 2189, 12, 1894, 13, 11134, 4943, 198, 1894, 2554, 62, 17470, 796, 2613, 62, 17470, 13, 1136, 62, 2554, 3419, 198, 1894, 2554, 62, 17470, 13, 3506, 796, 2026, 198, 1894, 2554, 62, 17470, 13, 22487, 796, 14956, 198, 198, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 198, 4514, 357, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 19841, 11470, 8, 290, 327, 3727, 1137, 4944, 25, 220, 220, 198, 220, 220, 220, 1303, 640, 13, 42832, 7, 15, 13, 2999, 8, 220, 220, 198, 220, 220, 220, 8801, 13, 42298, 7, 37, 3705, 8, 198, 220, 220, 220, 2613, 2554, 62, 14261, 796, 2613, 2554, 62, 14261, 13, 21084, 7, 12287, 62, 14261, 8, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2613, 2554, 62, 14261, 13, 9464, 1279, 657, 393, 2613, 2554, 62, 14261, 13, 3506, 1875, 9647, 25, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 14261, 58, 15, 60, 796, 532, 12287, 62, 14261, 58, 15, 60, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2613, 2554, 62, 14261, 13, 4852, 1279, 657, 393, 2613, 2554, 62, 14261, 13, 22487, 1875, 6001, 25, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 14261, 58, 16, 60, 796, 532, 12287, 62, 14261, 58, 16, 60, 628, 220, 220, 220, 2613, 2554, 62, 17470, 28, 2613, 2554, 62, 17470, 13, 21084, 7, 12287, 62, 17470, 8, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2613, 2554, 62, 17470, 13, 9464, 1279, 657, 393, 2613, 2554, 62, 17470, 13, 3506, 1875, 9647, 25, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 17470, 58, 15, 60, 796, 532, 12287, 62, 17470, 58, 15, 60, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2613, 2554, 62, 17470, 13, 4852, 1279, 657, 393, 2613, 2554, 62, 17470, 13, 22487, 1875, 6001, 25, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 17470, 58, 16, 60, 796, 532, 12287, 62, 17470, 58, 16, 60, 628, 220, 220, 220, 611, 2613, 2554, 62, 14261, 13, 26000, 485, 2554, 7, 1894, 2554, 62, 17470, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 45218, 796, 2866, 62, 14261, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 14261, 58, 15, 60, 796, 532, 2866, 62, 14261, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 14261, 58, 16, 60, 796, 532, 2866, 62, 14261, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 17470, 58, 15, 60, 796, 532, 2866, 62, 17470, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 62, 17470, 58, 16, 60, 796, 532, 2866, 62, 17470, 58, 16, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3159, 13, 20797, 7, 13424, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5256, 589, 262, 5521, 2272, 198, 220, 220, 220, 3159, 13, 2436, 270, 7, 1894, 62, 14261, 11, 2613, 2554, 62, 14261, 8, 220, 220, 1303, 29176, 6932, 4417, 351, 44573, 4417, 198, 220, 220, 220, 3159, 13, 2436, 270, 7, 1894, 62, 17470, 11, 2613, 2554, 62, 17470, 8, 220, 198, 220, 220, 220, 12972, 6057, 13, 13812, 13, 2704, 541, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3359, 44573, 319, 3159, 198, 198, 16960, 9399, 13, 27773, 929, 3419 ]
2.271784
964
from abc import ABCMeta, abstractmethod import numpy as np _epsilon = np.finfo('double').eps
[ 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 198, 198, 11748, 299, 32152, 355, 45941, 628, 198, 62, 538, 18217, 261, 796, 45941, 13, 69, 10951, 10786, 23352, 27691, 25386, 628, 628, 198 ]
2.941176
34
# This file will consist of some wrapper for using MySQL # It is mainly used for preparing and calling mysql cli import logging from mysql_autoxtrabackup.general_conf import path_config from mysql_autoxtrabackup.general_conf.generalops import GeneralClass from mysql_autoxtrabackup.process_runner.process_runner import ProcessRunner logger = logging.getLogger(__name__)
[ 2, 770, 2393, 481, 3473, 286, 617, 29908, 329, 1262, 33476, 198, 2, 632, 318, 8384, 973, 329, 10629, 290, 4585, 48761, 537, 72, 198, 11748, 18931, 198, 198, 6738, 48761, 62, 23736, 742, 25619, 441, 929, 13, 24622, 62, 10414, 1330, 3108, 62, 11250, 198, 6738, 48761, 62, 23736, 742, 25619, 441, 929, 13, 24622, 62, 10414, 13, 24622, 2840, 1330, 3611, 9487, 198, 6738, 48761, 62, 23736, 742, 25619, 441, 929, 13, 14681, 62, 16737, 13, 14681, 62, 16737, 1330, 10854, 49493, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.73
100
# Faça um programa que leia 5 valores e guarde-os em uma lista, no final mostre qual é o maior e o menor valor e qual # A sua posição na lista valores = list() # cria uma lista for c in range(0, 5): valores.append(int(input(f'Digite um valor para a posição {c}: '))) # inserindo os números dentro da lista print(f'Os valores digitadores foram {valores}') # lista com os números inseridos print(f'O maior valor digitado foi {max(valores)} na posição: ', end='') # maior valor e a posição do mesmo for posição in range(0, 5): if valores[posição] == max(valores): print(posição, end=' ') print(f'\nO menor valor digitado foi {min(valores)} na posição: ', end='') # menor valor e a posição do mesmo for posição in range(0, 5): if valores[posição] == min(valores): print(posição, end=' ')
[ 2, 18350, 50041, 23781, 1430, 64, 8358, 443, 544, 642, 1188, 2850, 304, 4860, 68, 12, 418, 795, 334, 2611, 1351, 64, 11, 645, 2457, 749, 260, 4140, 38251, 267, 17266, 1504, 304, 267, 1450, 273, 1188, 273, 304, 4140, 198, 2, 317, 424, 64, 1426, 72, 16175, 28749, 12385, 1351, 64, 198, 198, 2100, 2850, 796, 1351, 3419, 1303, 269, 7496, 334, 2611, 1351, 64, 198, 198, 1640, 269, 287, 2837, 7, 15, 11, 642, 2599, 198, 220, 220, 220, 1188, 2850, 13, 33295, 7, 600, 7, 15414, 7, 69, 6, 19511, 578, 23781, 1188, 273, 31215, 257, 1426, 72, 16175, 28749, 1391, 66, 38362, 705, 22305, 1303, 1035, 263, 521, 78, 28686, 299, 21356, 647, 418, 18794, 305, 12379, 1351, 64, 198, 198, 4798, 7, 69, 6, 16748, 1188, 2850, 16839, 324, 2850, 329, 321, 1391, 2100, 2850, 92, 11537, 1303, 1351, 64, 401, 28686, 299, 21356, 647, 418, 1035, 263, 312, 418, 198, 198, 4798, 7, 69, 6, 46, 17266, 1504, 1188, 273, 16839, 4533, 11511, 72, 1391, 9806, 7, 2100, 2850, 38165, 12385, 1426, 72, 16175, 28749, 25, 46083, 886, 28, 7061, 8, 1303, 17266, 1504, 1188, 273, 304, 257, 1426, 72, 16175, 28749, 466, 18842, 5908, 198, 1640, 1426, 72, 16175, 28749, 287, 2837, 7, 15, 11, 642, 2599, 198, 220, 220, 220, 611, 1188, 2850, 58, 1930, 72, 16175, 28749, 60, 6624, 3509, 7, 2100, 2850, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1930, 72, 16175, 28749, 11, 886, 11639, 705, 8, 198, 198, 4798, 7, 69, 6, 59, 77, 46, 1450, 273, 1188, 273, 16839, 4533, 11511, 72, 1391, 1084, 7, 2100, 2850, 38165, 12385, 1426, 72, 16175, 28749, 25, 46083, 886, 28, 7061, 8, 1303, 1450, 273, 1188, 273, 304, 257, 1426, 72, 16175, 28749, 466, 18842, 5908, 198, 1640, 1426, 72, 16175, 28749, 287, 2837, 7, 15, 11, 642, 2599, 198, 220, 220, 220, 611, 1188, 2850, 58, 1930, 72, 16175, 28749, 60, 6624, 949, 7, 2100, 2850, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1930, 72, 16175, 28749, 11, 886, 11639, 705, 8, 198 ]
2.321023
352
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # S_EllipsoidTestSVI [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=S_EllipsoidTestSVI&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=ExerSVIiid). # ## Prepare the environment # + import os import os.path as path import sys sys.path.append(path.abspath('../../functions-legacy')) from numpy import diff from scipy.io import loadmat import matplotlib.pyplot as plt from matplotlib.pyplot import figure plt.style.use('seaborn') from CONFIG import GLOBAL_DB, TEMPORARY_DB from ARPM_utils import save_plot from autocorrelation import autocorrelation from InvarianceTestEllipsoid import InvarianceTestEllipsoid # - # ## Load the database generated by script S_FitSVI # + try: db = loadmat(os.path.join(GLOBAL_DB, 'db_FitSVI'), squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_FitSVI'), squeeze_me=True) theta = db['theta'] # - # ## Compute increments and autocorrelations # + lag_ = 10 # preallocating variables delta_theta = {} acf_delta_theta = {} for k in range(6): delta_theta[k] = diff(theta[[k],:]) # increments acf_delta_theta[k] = autocorrelation(delta_theta[k], lag_) # autocorrelations # - # ## IID test for SVI parameters # + lag = 10 # lag to be printed ell_scale = 2 # ellipsoid radius coefficient fit = 0 # fitting pos = [] # use default settings for plot positions # names of figures name = {} name[0]=r'Invariance test(increments of $\theta_1$)' name[1]=r'Invariance test(increments of $\theta_2$)' name[2]=r'Invariance test(increments of $\theta_3$)' name[3]=r'Invariance test(increments of $\theta_4$)' name[4]=r'Invariance test(increments of $\theta_5$)' name[5]=r'Invariance test(increments of $\theta_6$)' for k in range(6): f = figure(figsize=(12,6)) InvarianceTestEllipsoid(delta_theta[k], acf_delta_theta[k][0,1:], lag, fit, ell_scale, pos, name[k]); # save_plot(ax=plt.gca(), extension='png', scriptname=os.path.basename('.')[:-3], count=plt.get_fignums()[-1])
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 11420, 198, 2, 474, 929, 88, 353, 25, 198, 2, 220, 220, 474, 929, 88, 5239, 25, 198, 2, 220, 220, 220, 220, 2420, 62, 15603, 341, 25, 198, 2, 220, 220, 220, 220, 220, 220, 7552, 25, 764, 9078, 198, 2, 220, 220, 220, 220, 220, 220, 5794, 62, 3672, 25, 1657, 198, 2, 220, 220, 220, 220, 220, 220, 5794, 62, 9641, 25, 705, 16, 13, 19, 6, 198, 2, 220, 220, 220, 220, 220, 220, 474, 929, 88, 5239, 62, 9641, 25, 352, 13, 16, 13, 19, 198, 2, 220, 220, 50207, 43106, 25, 198, 2, 220, 220, 220, 220, 3359, 62, 3672, 25, 11361, 513, 198, 2, 220, 220, 220, 220, 3303, 25, 21015, 198, 2, 220, 220, 220, 220, 1438, 25, 21015, 18, 198, 2, 11420, 198, 198, 2, 1303, 311, 62, 30639, 541, 568, 312, 14402, 50, 12861, 685, 27, 9600, 12351, 2625, 5450, 1378, 2503, 13, 283, 4426, 13, 1073, 14, 23912, 14, 34280, 14, 4749, 62, 525, 31000, 13, 11134, 1, 9647, 28, 1270, 6001, 28, 1270, 3918, 2625, 13812, 25, 26098, 26, 5320, 16151, 5450, 1378, 2503, 13, 283, 4426, 13, 1073, 14, 23912, 14, 445, 1060, 13, 10121, 30, 8189, 28, 50, 62, 30639, 541, 568, 312, 14402, 50, 12861, 5, 8189, 43, 648, 28, 37906, 8, 198, 2, 1114, 3307, 11, 766, 685, 1456, 16151, 5450, 1378, 2503, 13, 283, 4426, 13, 1073, 14, 23912, 14, 445, 1060, 13, 10121, 30, 525, 31000, 28, 3109, 263, 50, 12861, 72, 312, 737, 198, 198, 2, 22492, 43426, 262, 2858, 198, 198, 2, 1343, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 3108, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 13, 33295, 7, 6978, 13, 397, 2777, 776, 10786, 40720, 40720, 12543, 2733, 12, 1455, 1590, 6, 4008, 198, 198, 6738, 299, 32152, 1330, 814, 198, 198, 6738, 629, 541, 88, 13, 952, 1330, 3440, 6759, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 9078, 29487, 1330, 3785, 198, 198, 489, 83, 13, 7635, 13, 1904, 10786, 325, 397, 1211, 11537, 198, 198, 6738, 25626, 1330, 10188, 9864, 1847, 62, 11012, 11, 309, 39494, 1581, 13153, 62, 11012, 198, 6738, 5923, 5868, 62, 26791, 1330, 3613, 62, 29487, 198, 6738, 1960, 420, 273, 49501, 1330, 1960, 420, 273, 49501, 198, 6738, 10001, 2743, 590, 14402, 30639, 541, 568, 312, 1330, 10001, 2743, 590, 14402, 30639, 541, 568, 312, 198, 2, 532, 198, 198, 2, 22492, 8778, 262, 6831, 7560, 416, 4226, 311, 62, 31805, 50, 12861, 198, 198, 2, 1343, 198, 28311, 25, 198, 220, 220, 220, 20613, 796, 3440, 6759, 7, 418, 13, 6978, 13, 22179, 7, 8763, 9864, 1847, 62, 11012, 11, 705, 9945, 62, 31805, 50, 12861, 33809, 21229, 62, 1326, 28, 17821, 8, 198, 16341, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 20613, 796, 3440, 6759, 7, 418, 13, 6978, 13, 22179, 7, 51, 39494, 1581, 13153, 62, 11012, 11, 705, 9945, 62, 31805, 50, 12861, 33809, 21229, 62, 1326, 28, 17821, 8, 198, 198, 1169, 8326, 796, 20613, 17816, 1169, 8326, 20520, 198, 2, 532, 198, 198, 2, 22492, 3082, 1133, 41867, 290, 1960, 420, 273, 39468, 198, 198, 2, 1343, 198, 30909, 62, 796, 838, 198, 2, 662, 439, 27123, 9633, 198, 67, 12514, 62, 1169, 8326, 796, 23884, 198, 330, 69, 62, 67, 12514, 62, 1169, 8326, 796, 23884, 198, 198, 1640, 479, 287, 2837, 7, 21, 2599, 198, 220, 220, 220, 25979, 62, 1169, 8326, 58, 74, 60, 796, 814, 7, 1169, 8326, 30109, 74, 4357, 25, 12962, 220, 1303, 41867, 198, 220, 220, 220, 936, 69, 62, 67, 12514, 62, 1169, 8326, 58, 74, 60, 796, 1960, 420, 273, 49501, 7, 67, 12514, 62, 1169, 8326, 58, 74, 4357, 19470, 62, 8, 220, 1303, 1960, 420, 273, 39468, 198, 2, 532, 198, 198, 2, 22492, 314, 2389, 1332, 329, 311, 12861, 10007, 198, 198, 2, 1343, 198, 30909, 796, 838, 220, 1303, 19470, 284, 307, 10398, 198, 695, 62, 9888, 796, 362, 220, 1303, 30004, 541, 568, 312, 16874, 35381, 198, 11147, 796, 657, 220, 1303, 15830, 198, 1930, 796, 17635, 220, 1303, 779, 4277, 6460, 329, 220, 7110, 6116, 198, 198, 2, 3891, 286, 5538, 198, 3672, 796, 23884, 198, 3672, 58, 15, 22241, 81, 6, 19904, 2743, 590, 1332, 7, 24988, 902, 286, 39280, 1169, 8326, 62, 16, 3, 33047, 198, 3672, 58, 16, 22241, 81, 6, 19904, 2743, 590, 1332, 7, 24988, 902, 286, 39280, 1169, 8326, 62, 17, 3, 33047, 198, 3672, 58, 17, 22241, 81, 6, 19904, 2743, 590, 1332, 7, 24988, 902, 286, 39280, 1169, 8326, 62, 18, 3, 33047, 198, 3672, 58, 18, 22241, 81, 6, 19904, 2743, 590, 1332, 7, 24988, 902, 286, 39280, 1169, 8326, 62, 19, 3, 33047, 198, 3672, 58, 19, 22241, 81, 6, 19904, 2743, 590, 1332, 7, 24988, 902, 286, 39280, 1169, 8326, 62, 20, 3, 33047, 198, 3672, 58, 20, 22241, 81, 6, 19904, 2743, 590, 1332, 7, 24988, 902, 286, 39280, 1169, 8326, 62, 21, 3, 33047, 198, 1640, 479, 287, 2837, 7, 21, 2599, 198, 220, 220, 220, 277, 796, 3785, 7, 5647, 7857, 16193, 1065, 11, 21, 4008, 198, 220, 220, 220, 10001, 2743, 590, 14402, 30639, 541, 568, 312, 7, 67, 12514, 62, 1169, 8326, 58, 74, 4357, 936, 69, 62, 67, 12514, 62, 1169, 8326, 58, 74, 7131, 15, 11, 16, 25, 4357, 19470, 11, 4197, 11, 30004, 62, 9888, 11, 1426, 11, 1438, 58, 74, 36563, 198, 220, 220, 220, 1303, 3613, 62, 29487, 7, 897, 28, 489, 83, 13, 70, 6888, 22784, 7552, 11639, 11134, 3256, 4226, 3672, 28, 418, 13, 6978, 13, 12093, 12453, 10786, 2637, 38381, 21912, 18, 4357, 954, 28, 489, 83, 13, 1136, 62, 69, 570, 5700, 3419, 58, 12, 16, 12962, 198 ]
2.442211
995
from gssa.core import search from gssa.graph_search import breadth_first_search from gssa.secretenv import author_first, author_last, vancouver_author author = author_first + ' ' + author_last publist = search(author, nres=100, overwrite=False) breadth_first_search(publist[:100], levels=2, filters=(has_author, special))
[ 6738, 308, 824, 64, 13, 7295, 1330, 2989, 198, 6738, 308, 824, 64, 13, 34960, 62, 12947, 1330, 32483, 62, 11085, 62, 12947, 198, 6738, 308, 824, 64, 13, 21078, 24330, 1330, 1772, 62, 11085, 11, 1772, 62, 12957, 11, 410, 10264, 62, 9800, 198, 198, 9800, 796, 1772, 62, 11085, 1343, 705, 705, 1343, 1772, 62, 12957, 198, 12984, 4868, 796, 2989, 7, 9800, 11, 299, 411, 28, 3064, 11, 49312, 28, 25101, 8, 628, 628, 198, 198, 29573, 400, 62, 11085, 62, 12947, 7, 12984, 4868, 58, 25, 3064, 4357, 2974, 28, 17, 11, 16628, 16193, 10134, 62, 9800, 11, 2041, 4008, 198 ]
3.12381
105
from . import data from . import cube from . import rss from . import spectrum1d from . import ssplibrary from . import parameters from . import fit_profile from . import header import copyreg as copy_reg from types import * copy_reg.pickle(MethodType, _pickle_method, _unpickle_method)
[ 6738, 764, 1330, 1366, 198, 6738, 764, 1330, 23441, 198, 6738, 764, 1330, 374, 824, 198, 6738, 764, 1330, 10958, 16, 67, 198, 6738, 764, 1330, 264, 22018, 4115, 198, 6738, 764, 1330, 10007, 198, 6738, 764, 1330, 4197, 62, 13317, 198, 6738, 764, 1330, 13639, 198, 198, 11748, 4866, 2301, 355, 4866, 62, 2301, 198, 6738, 3858, 1330, 1635, 628, 628, 198, 30073, 62, 2301, 13, 27729, 293, 7, 17410, 6030, 11, 4808, 27729, 293, 62, 24396, 11, 4808, 403, 27729, 293, 62, 24396, 8, 198 ]
3.356322
87
import math
[ 11748, 10688, 201 ]
4
3
from random import choice, gauss, random from neat.config import ConfigParameter # TODO: There is probably a lot of room for simplification of these classes using metaprogramming.
[ 6738, 4738, 1330, 3572, 11, 31986, 1046, 11, 4738, 198, 6738, 15049, 13, 11250, 1330, 17056, 36301, 198, 198, 2, 16926, 46, 25, 1318, 318, 2192, 257, 1256, 286, 2119, 329, 7106, 2649, 286, 777, 6097, 1262, 1138, 499, 39529, 2229, 13, 628, 628 ]
4.181818
44
import numpy as np import cv2 import os import caffe from scipy.spatial.distance import cosine image_folder = './images' output_folder = './features' model = './train/code/sphereface_deploy.prototxt' weights = './train/result/sphereface_model.caffemodel' net = caffe.Net(model, weights, caffe.TEST) if __name__ == '__main__': #save_feature_vectors() print(detect_from_img('./Aaron_Peirsol_0003.jpg')) #img_feature = extract_deep_feature('./Aaron_Peirsol_0003.jpg', net)
[ 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 28686, 198, 11748, 21121, 198, 6738, 629, 541, 88, 13, 2777, 34961, 13, 30246, 1330, 8615, 500, 198, 198, 9060, 62, 43551, 796, 705, 19571, 17566, 6, 198, 22915, 62, 43551, 796, 705, 19571, 40890, 6, 198, 19849, 796, 705, 19571, 27432, 14, 8189, 14, 2777, 1456, 2550, 62, 2934, 1420, 13, 11235, 313, 742, 6, 198, 43775, 796, 705, 19571, 27432, 14, 20274, 14, 2777, 1456, 2550, 62, 19849, 13, 66, 2001, 368, 375, 417, 6, 198, 3262, 796, 21121, 13, 7934, 7, 19849, 11, 19590, 11, 21121, 13, 51, 6465, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 21928, 62, 30053, 62, 303, 5217, 3419, 198, 220, 220, 220, 3601, 7, 15255, 478, 62, 6738, 62, 9600, 7, 4458, 14, 34451, 62, 6435, 17062, 349, 62, 830, 18, 13, 9479, 6, 4008, 198, 220, 220, 220, 1303, 9600, 62, 30053, 796, 7925, 62, 22089, 62, 30053, 7, 4458, 14, 34451, 62, 6435, 17062, 349, 62, 830, 18, 13, 9479, 3256, 2010, 8, 198, 220, 220, 220, 220 ]
2.554974
191
""" Common helpers in the grid package """ __all__ = ['isNestedInstance', 'pretty_size_print'] def isNestedInstance(obj, cl): """ Test for sub-classes types I could not find a universal test keywords -------- obj: object instance object to test cl: Class top level class to test returns ------- r: bool True if obj is indeed an instance or subclass instance of cl """ tree = [] for k in cl.__subclasses__(): tree += k.__subclasses__() tree += cl.__subclasses__() + [ cl ] return issubclass(obj.__class__, tuple(tree)) def pretty_size_print(num_bytes): """ Output number of bytes in a human readable format keywords -------- num_bytes: int number of bytes to convert returns ------- output: str string representation of the size with appropriate unit scale """ if num_bytes is None: return KiB = 1024 MiB = KiB * KiB GiB = KiB * MiB TiB = KiB * GiB PiB = KiB * TiB EiB = KiB * PiB ZiB = KiB * EiB YiB = KiB * ZiB if num_bytes > YiB: output = '%.3g YB' % (num_bytes / YiB) elif num_bytes > ZiB: output = '%.3g ZB' % (num_bytes / ZiB) elif num_bytes > EiB: output = '%.3g EB' % (num_bytes / EiB) elif num_bytes > PiB: output = '%.3g PB' % (num_bytes / PiB) elif num_bytes > TiB: output = '%.3g TB' % (num_bytes / TiB) elif num_bytes > GiB: output = '%.3g GB' % (num_bytes / GiB) elif num_bytes > MiB: output = '%.3g MB' % (num_bytes / MiB) elif num_bytes > KiB: output = '%.3g KB' % (num_bytes / KiB) else: output = '%.3g Bytes' % (num_bytes) return output
[ 37811, 8070, 49385, 287, 262, 10706, 5301, 37227, 198, 198, 834, 439, 834, 796, 37250, 271, 45, 7287, 33384, 3256, 705, 37784, 62, 7857, 62, 4798, 20520, 198, 198, 4299, 318, 45, 7287, 33384, 7, 26801, 11, 537, 2599, 198, 220, 220, 220, 37227, 6208, 329, 850, 12, 37724, 3858, 198, 220, 220, 220, 220, 220, 220, 220, 314, 714, 407, 1064, 257, 10112, 1332, 628, 220, 220, 220, 220, 220, 220, 220, 26286, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 25, 2134, 4554, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2134, 284, 1332, 628, 220, 220, 220, 220, 220, 220, 220, 537, 25, 5016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 1241, 1398, 284, 1332, 628, 220, 220, 220, 220, 220, 220, 220, 5860, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 374, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 611, 26181, 318, 5600, 281, 4554, 393, 47611, 4554, 286, 537, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5509, 796, 17635, 198, 220, 220, 220, 329, 479, 287, 537, 13, 834, 7266, 37724, 834, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 15853, 479, 13, 834, 7266, 37724, 834, 3419, 198, 220, 220, 220, 5509, 15853, 537, 13, 834, 7266, 37724, 834, 3419, 1343, 685, 537, 2361, 198, 220, 220, 220, 1441, 1189, 549, 4871, 7, 26801, 13, 834, 4871, 834, 11, 46545, 7, 21048, 4008, 628, 198, 4299, 2495, 62, 7857, 62, 4798, 7, 22510, 62, 33661, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25235, 1271, 286, 9881, 287, 257, 1692, 31744, 5794, 628, 220, 220, 220, 26286, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 997, 62, 33661, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 9881, 284, 10385, 628, 220, 220, 220, 5860, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 5072, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 10552, 286, 262, 2546, 351, 5035, 4326, 5046, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 997, 62, 33661, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 21927, 33, 796, 28119, 198, 220, 220, 220, 13756, 33, 796, 21927, 33, 1635, 21927, 33, 198, 220, 220, 220, 8118, 33, 796, 21927, 33, 1635, 13756, 33, 198, 220, 220, 220, 16953, 33, 796, 21927, 33, 1635, 8118, 33, 198, 220, 220, 220, 13993, 33, 796, 21927, 33, 1635, 16953, 33, 198, 220, 220, 220, 412, 72, 33, 796, 21927, 33, 1635, 13993, 33, 198, 220, 220, 220, 45643, 33, 796, 21927, 33, 1635, 412, 72, 33, 198, 220, 220, 220, 26463, 33, 796, 21927, 33, 1635, 45643, 33, 628, 220, 220, 220, 611, 997, 62, 33661, 1875, 26463, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 575, 33, 6, 4064, 357, 22510, 62, 33661, 1220, 26463, 33, 8, 198, 220, 220, 220, 1288, 361, 997, 62, 33661, 1875, 45643, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 1168, 33, 6, 4064, 357, 22510, 62, 33661, 1220, 45643, 33, 8, 198, 220, 220, 220, 1288, 361, 997, 62, 33661, 1875, 412, 72, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 43374, 6, 4064, 357, 22510, 62, 33661, 1220, 412, 72, 33, 8, 198, 220, 220, 220, 1288, 361, 997, 62, 33661, 1875, 13993, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 30524, 6, 4064, 357, 22510, 62, 33661, 1220, 13993, 33, 8, 198, 220, 220, 220, 1288, 361, 997, 62, 33661, 1875, 16953, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 23799, 6, 4064, 357, 22510, 62, 33661, 1220, 16953, 33, 8, 198, 220, 220, 220, 1288, 361, 997, 62, 33661, 1875, 8118, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 13124, 6, 4064, 357, 22510, 62, 33661, 1220, 8118, 33, 8, 198, 220, 220, 220, 1288, 361, 997, 62, 33661, 1875, 13756, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 10771, 6, 4064, 357, 22510, 62, 33661, 1220, 13756, 33, 8, 198, 220, 220, 220, 1288, 361, 997, 62, 33661, 1875, 21927, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 14204, 6, 4064, 357, 22510, 62, 33661, 1220, 21927, 33, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 705, 7225, 18, 70, 2750, 4879, 6, 4064, 357, 22510, 62, 33661, 8, 628, 220, 220, 220, 1441, 5072, 198 ]
2.178528
829
from deepjets.generate import generate_events for event in generate_events('w_vincia.config', 1, write_to='vincia.hepmc', shower='vincia', random_state=1, verbosity=0): pass for event, weight in generate_events('w.config', 1, write_to='dire.hepmc', shower='dire', random_state=1, verbosity=0): print weight
[ 6738, 2769, 73, 1039, 13, 8612, 378, 1330, 7716, 62, 31534, 198, 198, 1640, 1785, 287, 7716, 62, 31534, 10786, 86, 62, 85, 1939, 544, 13, 11250, 3256, 352, 11, 3551, 62, 1462, 11639, 85, 1939, 544, 13, 258, 4426, 66, 3256, 14643, 11639, 85, 1939, 544, 3256, 4738, 62, 5219, 28, 16, 11, 15942, 16579, 28, 15, 2599, 198, 220, 220, 220, 1208, 198, 198, 1640, 1785, 11, 3463, 287, 7716, 62, 31534, 10786, 86, 13, 11250, 3256, 352, 11, 3551, 62, 1462, 11639, 67, 557, 13, 258, 4426, 66, 3256, 14643, 11639, 67, 557, 3256, 4738, 62, 5219, 28, 16, 11, 15942, 16579, 28, 15, 2599, 198, 220, 220, 220, 3601, 3463, 198 ]
2.756522
115
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import division import unittest import numpy as np from singa import loss from singa import tensor if __name__ == '__main__': unittest.main()
[ 2, 198, 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 198, 2, 393, 517, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 198, 2, 9387, 351, 428, 670, 329, 3224, 1321, 198, 2, 5115, 6634, 9238, 13, 220, 383, 7054, 37, 16625, 428, 2393, 198, 2, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 198, 11748, 555, 715, 395, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 1702, 64, 1330, 2994, 198, 6738, 1702, 64, 1330, 11192, 273, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.804781
251
import Sticks import stick import time import pygame pygame.init() board = pygame.display.set_mode((400, 400)) while 1: for e in pygame.event.get(): if e.type == pygame.KEYDOWN and e.key == pygame.K_TAB: print("pressed tab") """ # ///---=== FIND STICK TEST ===--- ex1 = Sticks.Sticks() ex1.new_sticks(10) a = [i.length for i in ex1.sticks] print(a) print([ex1.find_stick(i, 0).location for i in a]) print([ex1.find_stick(i, 0).location for i in a]) # ///---=== FIND STICK TEST ===--- """ """ # ///---=== SWAP STICK TEST ===--- s1 = stick.Stick(20, 130) s2 = stick.Stick(13, 1) s3 = stick.Stick(103, 58) print("s1 nesnesinin id'si: %d konumu: %d" % (s1.o_id, s1.location)) print("s2 nesnesinin id'si: %d konumu: %d" % (s2.o_id, s2.location)) print("s2 nesnesinin id'si: %d konumu: %d" % (s3.o_id, s3.location)) Sticks.Sticks().swap_stick_locations(s1, s2) print("\nKonumlar değiştirildi (s1, s2)!!\n") print("s1 nesnesinin id'si: %d konumu: %d" % (s1.o_id, s1.location)) print("s2 nesnesinin id'si: %d konumu: %d" % (s2.o_id, s2.location)) print("s2 nesnesinin id'si: %d konumu: %d" % (s3.o_id, s3.location)) Sticks.Sticks().swap_stick_locations(s1, s3) print("\nKonumlar değiştirildi (s1, s3)!!\n") print("s1 nesnesinin id'si: %d konumu: %d" % (s1.o_id, s1.location)) print("s2 nesnesinin id'si: %d konumu: %d" % (s2.o_id, s2.location)) print("s2 nesnesinin id'si: %d konumu: %d" % (s3.o_id, s3.location)) # ///---=== SWAP STICK TEST ===--- """
[ 11748, 520, 3378, 198, 11748, 4859, 198, 11748, 640, 198, 11748, 12972, 6057, 198, 198, 9078, 6057, 13, 15003, 3419, 198, 3526, 796, 12972, 6057, 13, 13812, 13, 2617, 62, 14171, 19510, 7029, 11, 7337, 4008, 198, 198, 4514, 352, 25, 198, 220, 220, 220, 329, 304, 287, 12972, 6057, 13, 15596, 13, 1136, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 4906, 6624, 12972, 6057, 13, 20373, 41925, 290, 304, 13, 2539, 6624, 12972, 6057, 13, 42, 62, 5603, 33, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 45477, 7400, 4943, 198, 198, 37811, 198, 2, 34013, 6329, 18604, 376, 12115, 220, 3563, 11860, 43001, 24844, 6329, 198, 198, 1069, 16, 796, 520, 3378, 13, 1273, 3378, 3419, 198, 1069, 16, 13, 3605, 62, 34810, 7, 940, 8, 198, 64, 796, 685, 72, 13, 13664, 329, 1312, 287, 409, 16, 13, 34810, 60, 198, 4798, 7, 64, 8, 198, 4798, 26933, 1069, 16, 13, 19796, 62, 13915, 7, 72, 11, 657, 737, 24886, 329, 1312, 287, 257, 12962, 198, 4798, 26933, 1069, 16, 13, 19796, 62, 13915, 7, 72, 11, 657, 737, 24886, 329, 1312, 287, 257, 12962, 198, 198, 2, 34013, 6329, 18604, 376, 12115, 220, 3563, 11860, 43001, 24844, 6329, 198, 37811, 198, 198, 37811, 198, 220, 220, 220, 1303, 34013, 6329, 18604, 12672, 2969, 3563, 11860, 43001, 24844, 6329, 198, 198, 82, 16, 796, 4859, 13, 1273, 624, 7, 1238, 11, 11323, 8, 198, 82, 17, 796, 4859, 13, 1273, 624, 7, 1485, 11, 352, 8, 198, 82, 18, 796, 4859, 13, 1273, 624, 7, 15197, 11, 7618, 8, 198, 198, 4798, 7203, 82, 16, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 16, 13, 78, 62, 312, 11, 264, 16, 13, 24886, 4008, 198, 4798, 7203, 82, 17, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 17, 13, 78, 62, 312, 11, 264, 17, 13, 24886, 4008, 198, 4798, 7203, 82, 17, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 18, 13, 78, 62, 312, 11, 264, 18, 13, 24886, 4008, 198, 198, 1273, 3378, 13, 1273, 3378, 22446, 2032, 499, 62, 13915, 62, 17946, 602, 7, 82, 16, 11, 264, 17, 8, 198, 4798, 7203, 59, 77, 42, 261, 388, 21681, 390, 33133, 72, 46481, 83, 343, 688, 72, 357, 82, 16, 11, 264, 17, 8, 3228, 59, 77, 4943, 198, 198, 4798, 7203, 82, 16, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 16, 13, 78, 62, 312, 11, 264, 16, 13, 24886, 4008, 198, 4798, 7203, 82, 17, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 17, 13, 78, 62, 312, 11, 264, 17, 13, 24886, 4008, 198, 4798, 7203, 82, 17, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 18, 13, 78, 62, 312, 11, 264, 18, 13, 24886, 4008, 198, 198, 1273, 3378, 13, 1273, 3378, 22446, 2032, 499, 62, 13915, 62, 17946, 602, 7, 82, 16, 11, 264, 18, 8, 198, 4798, 7203, 59, 77, 42, 261, 388, 21681, 390, 33133, 72, 46481, 83, 343, 688, 72, 357, 82, 16, 11, 264, 18, 8, 3228, 59, 77, 4943, 198, 198, 4798, 7203, 82, 16, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 16, 13, 78, 62, 312, 11, 264, 16, 13, 24886, 4008, 198, 4798, 7203, 82, 17, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 17, 13, 78, 62, 312, 11, 264, 17, 13, 24886, 4008, 198, 4798, 7203, 82, 17, 299, 274, 2516, 259, 259, 4686, 338, 72, 25, 4064, 67, 479, 261, 388, 84, 25, 4064, 67, 1, 4064, 357, 82, 18, 13, 78, 62, 312, 11, 264, 18, 13, 24886, 4008, 628, 220, 220, 220, 1303, 34013, 6329, 18604, 12672, 2969, 3563, 11860, 43001, 24844, 6329, 198, 37811, 198 ]
2.024423
737
# Generated by Django 3.1.2 on 2020-11-30 02:52 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 17, 319, 12131, 12, 1157, 12, 1270, 7816, 25, 4309, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
'''This plots the results of the parameter sweep for the OOHI example. ''' from os import mkdir from os.path import isdir from pickle import load from numpy import arange, array, atleast_2d, hstack, sum, where, zeros from matplotlib.pyplot import close, colorbar, imshow, set_cmap, subplots from mpl_toolkits.axes_grid1 import make_axes_locatable from seaborn import heatmap if isdir('plots/oohi') is False: mkdir('plots/oohi') with open('outputs/oohi/results.pkl','rb') as f: (vuln_peaks, vuln_end, iso_peaks, cum_iso, iso_method_range, iso_rate_range, iso_prob_range) = load(f) vp_min = vuln_peaks.min() vp_max = vuln_peaks.max() ve_min = vuln_end.min() ve_max = vuln_end.max() ip_min = iso_peaks.min() ip_max = iso_peaks.max() ci_min = cum_iso.min() ci_max = cum_iso.max() fig, (ax1, ax2) = subplots(1,2,sharex=True) axim=ax1.imshow(vuln_peaks[0,:,:], origin='lower', extent=(iso_rate_range[0],iso_rate_range[1],0,1), vmin=vp_min, vmax=vp_max) ax1.set_xlabel('Detection rate') ax1.set_ylabel('Adherence probability') ax2.imshow(vuln_peaks[1,:,:], origin='lower', extent=(iso_rate_range[0],iso_rate_range[1],0,1), vmin=vp_min, vmax=vp_max) ax2.set_xlabel('Detection rate') ax2.get_yaxis().set_ticks([]) divider = make_axes_locatable(ax2) cax = divider.append_axes("right", size="5%", pad=0.05) cbar = colorbar(axim, label="Peak % prevalence in vulnerable population", cax=cax) fig.savefig('plots/oohi/vuln_peaks.png', bbox_inches='tight', dpi=300) close() fig, (ax1, ax2) = subplots(1,2,sharex=True) axim=ax1.imshow(vuln_end[0,:,:], origin='lower', extent=(iso_rate_range[0],iso_rate_range[1],0,1), vmin=ve_min, vmax=ve_max) ax1.set_xlabel('Detection rate') ax1.set_ylabel('Adherence probability') ax2.imshow(vuln_end[1,:,:], origin='lower', extent=(iso_rate_range[0],iso_rate_range[1],0,1), vmin=ve_min, vmax=ve_max) ax2.set_xlabel('Detection rate') ax2.get_yaxis().set_ticks([]) divider = make_axes_locatable(ax2) cax = divider.append_axes("right", size="5%", pad=0.05) cbar = colorbar(axim, label="Cumulative % infected in vulnerable population", cax=cax) fig.savefig('plots/oohi/cum_vuln_cases.png', bbox_inches='tight', dpi=300) close() fig, (ax1, ax2) = subplots(1,2,sharex=True) axim=ax1.imshow(iso_peaks[0,:,:], origin='lower', extent=(iso_rate_range[0],iso_rate_range[1],0,1), vmin=ip_min, vmax=ip_max) ax1.set_xlabel('Detection rate') ax1.set_ylabel('Adherence probability') ax2.imshow(iso_peaks[1,:,:], origin='lower', extent=(iso_rate_range[0],iso_rate_range[1],0,1), vmin=ip_min, vmax=ip_max) ax2.set_xlabel('Detection rate') ax2.get_yaxis().set_ticks([]) divider = make_axes_locatable(ax2) cax = divider.append_axes("right", size="5%", pad=0.05) cbar = colorbar(axim, label="Peak % population isolating", cax=cax) fig.savefig('plots/oohi/iso_peak.png', bbox_inches='tight', dpi=300) close() fig, (ax1, ax2) = subplots(1,2,sharex=True) axim=ax1.imshow(cum_iso[0,:,:], origin='lower', extent=(iso_rate_range[0],iso_rate_range[1],0,1), vmin=ci_min, vmax=ci_max) ax1.set_xlabel('Detection rate') ax1.set_ylabel('Adherence probability') ax2.imshow(cum_iso[1,:,:], origin='lower', extent=(iso_rate_range[0],iso_rate_range[1],0,1), vmin=ci_min, vmax=ci_max) ax2.set_xlabel('Detection rate') ax2.get_yaxis().set_ticks([]) divider = make_axes_locatable(ax2) cax = divider.append_axes("right", size="5%", pad=0.05) cbar = colorbar(axim, label="Cumulative % isolating", cax=cax) fig.savefig('plots/oohi/cum_iso.png', bbox_inches='tight', dpi=300) close()
[ 7061, 6, 1212, 21528, 262, 2482, 286, 262, 11507, 16085, 329, 262, 440, 12096, 40, 198, 20688, 13, 198, 7061, 6, 198, 6738, 28686, 1330, 33480, 15908, 198, 6738, 28686, 13, 6978, 1330, 318, 15908, 198, 6738, 2298, 293, 1330, 3440, 198, 6738, 299, 32152, 1330, 610, 858, 11, 7177, 11, 379, 293, 459, 62, 17, 67, 11, 289, 25558, 11, 2160, 11, 810, 11, 1976, 27498, 198, 6738, 2603, 29487, 8019, 13, 9078, 29487, 1330, 1969, 11, 3124, 5657, 11, 545, 12860, 11, 900, 62, 66, 8899, 11, 850, 489, 1747, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 897, 274, 62, 25928, 16, 1330, 787, 62, 897, 274, 62, 17946, 21156, 198, 6738, 384, 397, 1211, 1330, 4894, 8899, 198, 198, 361, 318, 15908, 10786, 489, 1747, 14, 78, 1219, 72, 11537, 318, 10352, 25, 198, 220, 220, 220, 33480, 15908, 10786, 489, 1747, 14, 78, 1219, 72, 11537, 198, 198, 4480, 1280, 10786, 22915, 82, 14, 78, 1219, 72, 14, 43420, 13, 79, 41582, 41707, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 357, 85, 377, 77, 62, 431, 4730, 11, 198, 220, 220, 220, 220, 24477, 77, 62, 437, 11, 198, 220, 220, 220, 220, 47279, 62, 431, 4730, 11, 198, 220, 220, 220, 220, 10973, 62, 26786, 11, 198, 220, 220, 220, 220, 47279, 62, 24396, 62, 9521, 11, 198, 220, 220, 220, 220, 47279, 62, 4873, 62, 9521, 11, 198, 220, 220, 220, 220, 47279, 62, 1676, 65, 62, 9521, 8, 796, 3440, 7, 69, 8, 198, 198, 36133, 62, 1084, 796, 24477, 77, 62, 431, 4730, 13, 1084, 3419, 198, 36133, 62, 9806, 796, 24477, 77, 62, 431, 4730, 13, 9806, 3419, 198, 303, 62, 1084, 796, 24477, 77, 62, 437, 13, 1084, 3419, 198, 303, 62, 9806, 796, 24477, 77, 62, 437, 13, 9806, 3419, 198, 541, 62, 1084, 796, 47279, 62, 431, 4730, 13, 1084, 3419, 198, 541, 62, 9806, 796, 47279, 62, 431, 4730, 13, 9806, 3419, 198, 979, 62, 1084, 796, 10973, 62, 26786, 13, 1084, 3419, 198, 979, 62, 9806, 796, 10973, 62, 26786, 13, 9806, 3419, 198, 198, 5647, 11, 357, 897, 16, 11, 7877, 17, 8, 796, 850, 489, 1747, 7, 16, 11, 17, 11, 20077, 87, 28, 17821, 8, 198, 897, 320, 28, 897, 16, 13, 320, 12860, 7, 85, 377, 77, 62, 431, 4730, 58, 15, 11, 45299, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 11639, 21037, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 16193, 26786, 62, 4873, 62, 9521, 58, 15, 4357, 26786, 62, 4873, 62, 9521, 58, 16, 4357, 15, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 36133, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 36133, 62, 9806, 8, 198, 897, 16, 13, 2617, 62, 87, 18242, 10786, 11242, 3213, 2494, 11537, 198, 897, 16, 13, 2617, 62, 2645, 9608, 10786, 2782, 23545, 12867, 11537, 198, 897, 17, 13, 320, 12860, 7, 85, 377, 77, 62, 431, 4730, 58, 16, 11, 45299, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 11639, 21037, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 16193, 26786, 62, 4873, 62, 9521, 58, 15, 4357, 26786, 62, 4873, 62, 9521, 58, 16, 4357, 15, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 36133, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 36133, 62, 9806, 8, 198, 897, 17, 13, 2617, 62, 87, 18242, 10786, 11242, 3213, 2494, 11537, 198, 198, 897, 17, 13, 1136, 62, 88, 22704, 22446, 2617, 62, 83, 3378, 26933, 12962, 198, 7146, 1304, 796, 787, 62, 897, 274, 62, 17946, 21156, 7, 897, 17, 8, 198, 66, 897, 796, 2659, 1304, 13, 33295, 62, 897, 274, 7203, 3506, 1600, 2546, 2625, 20, 4, 1600, 14841, 28, 15, 13, 2713, 8, 198, 66, 5657, 796, 3124, 5657, 7, 897, 320, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 6435, 461, 4064, 16815, 287, 8826, 3265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 897, 28, 66, 897, 8, 198, 5647, 13, 21928, 5647, 10786, 489, 1747, 14, 78, 1219, 72, 14, 85, 377, 77, 62, 431, 4730, 13, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 45457, 11639, 33464, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14415, 28, 6200, 8, 198, 19836, 3419, 198, 198, 5647, 11, 357, 897, 16, 11, 7877, 17, 8, 796, 850, 489, 1747, 7, 16, 11, 17, 11, 20077, 87, 28, 17821, 8, 198, 897, 320, 28, 897, 16, 13, 320, 12860, 7, 85, 377, 77, 62, 437, 58, 15, 11, 45299, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 11639, 21037, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 16193, 26786, 62, 4873, 62, 9521, 58, 15, 4357, 26786, 62, 4873, 62, 9521, 58, 16, 4357, 15, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 303, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 303, 62, 9806, 8, 198, 897, 16, 13, 2617, 62, 87, 18242, 10786, 11242, 3213, 2494, 11537, 198, 897, 16, 13, 2617, 62, 2645, 9608, 10786, 2782, 23545, 12867, 11537, 198, 897, 17, 13, 320, 12860, 7, 85, 377, 77, 62, 437, 58, 16, 11, 45299, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 11639, 21037, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 16193, 26786, 62, 4873, 62, 9521, 58, 15, 4357, 26786, 62, 4873, 62, 9521, 58, 16, 4357, 15, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 303, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 303, 62, 9806, 8, 198, 897, 17, 13, 2617, 62, 87, 18242, 10786, 11242, 3213, 2494, 11537, 198, 198, 897, 17, 13, 1136, 62, 88, 22704, 22446, 2617, 62, 83, 3378, 26933, 12962, 198, 7146, 1304, 796, 787, 62, 897, 274, 62, 17946, 21156, 7, 897, 17, 8, 198, 66, 897, 796, 2659, 1304, 13, 33295, 62, 897, 274, 7203, 3506, 1600, 2546, 2625, 20, 4, 1600, 14841, 28, 15, 13, 2713, 8, 198, 66, 5657, 796, 3124, 5657, 7, 897, 320, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 34, 388, 13628, 4064, 14112, 287, 8826, 3265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 897, 28, 66, 897, 8, 198, 198, 5647, 13, 21928, 5647, 10786, 489, 1747, 14, 78, 1219, 72, 14, 36340, 62, 85, 377, 77, 62, 33964, 13, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 45457, 11639, 33464, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14415, 28, 6200, 8, 198, 19836, 3419, 198, 198, 5647, 11, 357, 897, 16, 11, 7877, 17, 8, 796, 850, 489, 1747, 7, 16, 11, 17, 11, 20077, 87, 28, 17821, 8, 198, 897, 320, 28, 897, 16, 13, 320, 12860, 7, 26786, 62, 431, 4730, 58, 15, 11, 45299, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 11639, 21037, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 16193, 26786, 62, 4873, 62, 9521, 58, 15, 4357, 26786, 62, 4873, 62, 9521, 58, 16, 4357, 15, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 541, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 541, 62, 9806, 8, 198, 897, 16, 13, 2617, 62, 87, 18242, 10786, 11242, 3213, 2494, 11537, 198, 897, 16, 13, 2617, 62, 2645, 9608, 10786, 2782, 23545, 12867, 11537, 198, 897, 17, 13, 320, 12860, 7, 26786, 62, 431, 4730, 58, 16, 11, 45299, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 11639, 21037, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 16193, 26786, 62, 4873, 62, 9521, 58, 15, 4357, 26786, 62, 4873, 62, 9521, 58, 16, 4357, 15, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 541, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 541, 62, 9806, 8, 198, 897, 17, 13, 2617, 62, 87, 18242, 10786, 11242, 3213, 2494, 11537, 198, 198, 897, 17, 13, 1136, 62, 88, 22704, 22446, 2617, 62, 83, 3378, 26933, 12962, 198, 7146, 1304, 796, 787, 62, 897, 274, 62, 17946, 21156, 7, 897, 17, 8, 198, 66, 897, 796, 2659, 1304, 13, 33295, 62, 897, 274, 7203, 3506, 1600, 2546, 2625, 20, 4, 1600, 14841, 28, 15, 13, 2713, 8, 198, 66, 5657, 796, 3124, 5657, 7, 897, 320, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 6435, 461, 4064, 3265, 7010, 803, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 897, 28, 66, 897, 8, 198, 198, 5647, 13, 21928, 5647, 10786, 489, 1747, 14, 78, 1219, 72, 14, 26786, 62, 36729, 13, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 45457, 11639, 33464, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14415, 28, 6200, 8, 198, 19836, 3419, 198, 198, 5647, 11, 357, 897, 16, 11, 7877, 17, 8, 796, 850, 489, 1747, 7, 16, 11, 17, 11, 20077, 87, 28, 17821, 8, 198, 897, 320, 28, 897, 16, 13, 320, 12860, 7, 36340, 62, 26786, 58, 15, 11, 45299, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 11639, 21037, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 16193, 26786, 62, 4873, 62, 9521, 58, 15, 4357, 26786, 62, 4873, 62, 9521, 58, 16, 4357, 15, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 979, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 979, 62, 9806, 8, 198, 897, 16, 13, 2617, 62, 87, 18242, 10786, 11242, 3213, 2494, 11537, 198, 897, 16, 13, 2617, 62, 2645, 9608, 10786, 2782, 23545, 12867, 11537, 198, 897, 17, 13, 320, 12860, 7, 36340, 62, 26786, 58, 16, 11, 45299, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 11639, 21037, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 16193, 26786, 62, 4873, 62, 9521, 58, 15, 4357, 26786, 62, 4873, 62, 9521, 58, 16, 4357, 15, 11, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 979, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 979, 62, 9806, 8, 198, 897, 17, 13, 2617, 62, 87, 18242, 10786, 11242, 3213, 2494, 11537, 198, 198, 897, 17, 13, 1136, 62, 88, 22704, 22446, 2617, 62, 83, 3378, 26933, 12962, 198, 7146, 1304, 796, 787, 62, 897, 274, 62, 17946, 21156, 7, 897, 17, 8, 198, 66, 897, 796, 2659, 1304, 13, 33295, 62, 897, 274, 7203, 3506, 1600, 2546, 2625, 20, 4, 1600, 14841, 28, 15, 13, 2713, 8, 198, 66, 5657, 796, 3124, 5657, 7, 897, 320, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 34, 388, 13628, 4064, 7010, 803, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 897, 28, 66, 897, 8, 198, 198, 5647, 13, 21928, 5647, 10786, 489, 1747, 14, 78, 1219, 72, 14, 36340, 62, 26786, 13, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 45457, 11639, 33464, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14415, 28, 6200, 8, 198, 19836, 3419, 198 ]
1.92015
2,129
from DHT import DHT_Read import paho.mqtt.client as mqtt import json import requests import time try: file=open("config.json", "r") json_str = file.read() file.close() except: raise KeyError("Error opening config file. Please check.") config_json = json.loads(json_str) url = config_json["catalog"]["url"] ID = config_json["zoneID"] response = requests.get(url+"/broker") brokerData=response.json() broker = brokerData["IP"] port = brokerData["port"] del brokerData del response updateTime = 1 sensor = DHT_Read(17) publisher = DHT_Pub("DHT11", broker, port) publisher.start() while True: val=sensor.read() if val is not None: jsonDic=json.loads(val) print jsonDic #Publish Temperature temp='{"temperature": ' + str(jsonDic["temperature"])+', "time": '+str(jsonDic["time"])+'}' publisher.publish("/"+ID+"/temperature",temp) #Publish Humidity hum='{"humidity": ' + str(jsonDic["humidity"])+', "time": '+str(jsonDic["time"])+'}' publisher.publish("/"+ID+"/humidity",hum) else: print "Error reading from sensor" time.sleep(updateTime)
[ 6738, 360, 6535, 1330, 360, 6535, 62, 5569, 198, 11748, 279, 17108, 13, 76, 80, 926, 13, 16366, 355, 285, 80, 926, 198, 11748, 33918, 198, 11748, 7007, 198, 11748, 640, 198, 198, 28311, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 28, 9654, 7203, 11250, 13, 17752, 1600, 366, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 796, 2393, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 19836, 3419, 198, 16341, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7203, 12331, 4756, 4566, 2393, 13, 4222, 2198, 19570, 198, 198, 11250, 62, 17752, 796, 33918, 13, 46030, 7, 17752, 62, 2536, 8, 198, 6371, 796, 4566, 62, 17752, 14692, 9246, 11794, 1, 7131, 1, 6371, 8973, 198, 2389, 796, 4566, 62, 17752, 14692, 11340, 2389, 8973, 628, 198, 26209, 796, 7007, 13, 1136, 7, 6371, 10, 1, 14, 7957, 6122, 4943, 198, 7957, 6122, 6601, 28, 26209, 13, 17752, 3419, 198, 198, 7957, 6122, 796, 20426, 6601, 14692, 4061, 8973, 198, 634, 796, 20426, 6601, 14692, 634, 8973, 198, 198, 12381, 20426, 6601, 198, 12381, 2882, 198, 198, 19119, 7575, 796, 352, 198, 198, 82, 22854, 796, 360, 6535, 62, 5569, 7, 1558, 8, 628, 198, 12984, 8191, 796, 360, 6535, 62, 14876, 7203, 35, 6535, 1157, 1600, 20426, 11, 2493, 8, 198, 12984, 8191, 13, 9688, 3419, 198, 198, 4514, 6407, 25, 628, 197, 2100, 28, 82, 22854, 13, 961, 3419, 220, 198, 197, 198, 197, 361, 1188, 318, 407, 6045, 25, 198, 197, 197, 17752, 35, 291, 28, 17752, 13, 46030, 7, 2100, 8, 198, 197, 197, 4798, 33918, 35, 291, 198, 197, 197, 198, 197, 197, 2, 14876, 1836, 34467, 198, 197, 197, 29510, 11639, 4895, 11498, 21069, 1298, 705, 1343, 965, 7, 17752, 35, 291, 14692, 11498, 21069, 8973, 47762, 3256, 366, 2435, 1298, 705, 10, 2536, 7, 17752, 35, 291, 14692, 2435, 8973, 47762, 6, 92, 6, 198, 197, 197, 12984, 8191, 13, 12984, 1836, 7203, 30487, 10, 2389, 10, 1, 14, 11498, 21069, 1600, 29510, 8, 220, 198, 197, 197, 198, 197, 197, 2, 14876, 1836, 11054, 17995, 198, 197, 197, 17047, 11639, 4895, 17047, 17995, 1298, 705, 1343, 965, 7, 17752, 35, 291, 14692, 17047, 17995, 8973, 47762, 3256, 366, 2435, 1298, 705, 10, 2536, 7, 17752, 35, 291, 14692, 2435, 8973, 47762, 6, 92, 6, 198, 197, 197, 12984, 8191, 13, 12984, 1836, 7203, 30487, 10, 2389, 10, 1, 14, 17047, 17995, 1600, 17047, 8, 220, 198, 197, 197, 197, 198, 197, 17772, 25, 198, 197, 197, 4798, 366, 12331, 3555, 422, 12694, 1, 198, 197, 2435, 13, 42832, 7, 19119, 7575, 8, 198 ]
2.478842
449
from django.shortcuts import render import json from urllib.error import HTTPError import urllib # Create your views here.
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 11748, 33918, 198, 6738, 2956, 297, 571, 13, 18224, 1330, 14626, 12331, 198, 11748, 2956, 297, 571, 198, 2, 13610, 534, 5009, 994, 13, 198 ]
3.617647
34
"""The module for loading MANE Transcript mappings to genes.""" from typing import Dict, Optional, List import pandas as pd from uta_tools import MANE_SUMMARY_PATH, logger class MANETranscriptMappings: """The MANE Transcript mappings class.""" def __init__(self, mane_data_path: str = MANE_SUMMARY_PATH) -> None: """Initialize the MANE Transcript mappings class. :param str mane_data_path: Path to RefSeq MANE summary data """ self.mane_data_path = mane_data_path self.df = self._load_mane_transcript_data() def _load_mane_transcript_data(self) -> pd.core.frame.DataFrame: """Load RefSeq MANE data file into DataFrame. :return: DataFrame containing RefSeq MANE Transcript data """ return pd.read_csv(self.mane_data_path, delimiter="\t") def get_gene_mane_data(self, gene_symbol: str) -> Optional[List[Dict]]: """Return MANE Transcript data for a gene. :param str gene_symbol: HGNC Gene Symbol :return: MANE Transcript data (Transcript accessions, gene, and location information) """ data = self.df.loc[self.df["symbol"] == gene_symbol.upper()] if len(data) == 0: logger.warning(f"Unable to get MANE Transcript data for gene: " f"{gene_symbol}") return None # Ordering: MANE Plus Clinical (If it exists), MANE Select data = data.sort_values("MANE_status") return data.to_dict("records") def get_mane_from_transcripts(self, transcripts: List[str]) -> List[Dict]: """Get mane transcripts from a list of transcripts :param List[str] transcripts: RefSeq transcripts on c. coordinate :return: MANE data """ mane_rows = self.df["RefSeq_nuc"].isin(transcripts) result = self.df[mane_rows] if len(result) == 0: return [] return result.to_dict("records")
[ 37811, 464, 8265, 329, 11046, 17254, 36, 42978, 285, 39242, 284, 10812, 526, 15931, 198, 6738, 19720, 1330, 360, 713, 11, 32233, 11, 7343, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 3384, 64, 62, 31391, 1330, 17254, 36, 62, 50, 5883, 44, 13153, 62, 34219, 11, 49706, 628, 198, 4871, 17254, 2767, 26084, 6519, 44, 39242, 25, 198, 220, 220, 220, 37227, 464, 17254, 36, 42978, 285, 39242, 1398, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 582, 68, 62, 7890, 62, 6978, 25, 965, 796, 17254, 36, 62, 50, 5883, 44, 13153, 62, 34219, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 17254, 36, 42978, 285, 39242, 1398, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 582, 68, 62, 7890, 62, 6978, 25, 10644, 284, 6524, 4653, 80, 17254, 36, 10638, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 805, 68, 62, 7890, 62, 6978, 796, 582, 68, 62, 7890, 62, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 796, 2116, 13557, 2220, 62, 805, 68, 62, 7645, 6519, 62, 7890, 3419, 628, 220, 220, 220, 825, 4808, 2220, 62, 805, 68, 62, 7645, 6519, 62, 7890, 7, 944, 8, 4613, 279, 67, 13, 7295, 13, 14535, 13, 6601, 19778, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 6524, 4653, 80, 17254, 36, 1366, 2393, 656, 6060, 19778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6060, 19778, 7268, 6524, 4653, 80, 17254, 36, 42978, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 67, 13, 961, 62, 40664, 7, 944, 13, 805, 68, 62, 7890, 62, 6978, 11, 46728, 2676, 2625, 59, 83, 4943, 628, 220, 220, 220, 825, 651, 62, 70, 1734, 62, 805, 68, 62, 7890, 7, 944, 11, 9779, 62, 1837, 23650, 25, 965, 8, 4613, 32233, 58, 8053, 58, 35, 713, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 17254, 36, 42978, 1366, 329, 257, 9779, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 9779, 62, 1837, 23650, 25, 48698, 7792, 13005, 38357, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 17254, 36, 42978, 1366, 357, 8291, 6519, 1895, 507, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 11, 290, 4067, 1321, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2116, 13, 7568, 13, 17946, 58, 944, 13, 7568, 14692, 1837, 23650, 8973, 6624, 9779, 62, 1837, 23650, 13, 45828, 3419, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7890, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 69, 1, 3118, 540, 284, 651, 17254, 36, 42978, 1366, 329, 9779, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 70, 1734, 62, 1837, 23650, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8284, 278, 25, 17254, 36, 8227, 21234, 357, 1532, 340, 7160, 828, 17254, 36, 9683, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 13, 30619, 62, 27160, 7203, 10725, 36, 62, 13376, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 13, 1462, 62, 11600, 7203, 8344, 3669, 4943, 628, 220, 220, 220, 825, 651, 62, 805, 68, 62, 6738, 62, 7645, 6519, 82, 7, 944, 11, 29351, 25, 7343, 58, 2536, 12962, 4613, 7343, 58, 35, 713, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 582, 68, 29351, 422, 257, 1351, 286, 29351, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7343, 58, 2536, 60, 29351, 25, 6524, 4653, 80, 29351, 319, 269, 13, 20435, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 17254, 36, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 582, 68, 62, 8516, 796, 2116, 13, 7568, 14692, 8134, 4653, 80, 62, 77, 1229, 1, 4083, 45763, 7, 7645, 6519, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 7568, 58, 805, 68, 62, 8516, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20274, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 13, 1462, 62, 11600, 7203, 8344, 3669, 4943, 198 ]
2.371671
826
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Tianheng Cheng([email protected]) # ------------------------------------------------------------------------------ from .aflw import AFLW from .cofw import COFW from .cofwsd import COFWSD from .face300w import Face300W from .face300wsd import Face300WSD from .wflw import WFLW from .wflwsd import WFLWSD from .wflwe70 import WFLWE70 from .free import FreeData __all__ = ['AFLW', 'COFW', 'Face300W', 'WFLW', 'get_dataset']
[ 2, 16529, 26171, 198, 2, 15069, 357, 66, 8, 5413, 198, 2, 49962, 739, 262, 17168, 13789, 13, 198, 2, 22503, 416, 20834, 31753, 27692, 7, 83, 666, 31753, 2395, 782, 31, 14816, 13, 785, 8, 198, 2, 16529, 26171, 198, 198, 6738, 764, 1878, 75, 86, 1330, 25363, 54, 198, 6738, 764, 1073, 44482, 1330, 7375, 24160, 198, 6738, 764, 1073, 69, 18504, 67, 1330, 7375, 24160, 10305, 198, 6738, 764, 2550, 6200, 86, 1330, 15399, 6200, 54, 198, 6738, 764, 2550, 6200, 18504, 67, 1330, 15399, 6200, 54, 10305, 198, 6738, 764, 86, 2704, 86, 1330, 370, 3697, 54, 198, 6738, 764, 86, 2704, 18504, 67, 1330, 370, 3697, 54, 10305, 198, 6738, 764, 86, 2704, 732, 2154, 1330, 370, 3697, 8845, 2154, 198, 6738, 764, 5787, 1330, 3232, 6601, 198, 198, 834, 439, 834, 796, 37250, 32, 3697, 54, 3256, 705, 8220, 24160, 3256, 705, 32388, 6200, 54, 3256, 705, 54, 3697, 54, 3256, 705, 1136, 62, 19608, 292, 316, 20520, 628, 198 ]
3.53012
166
import tensorflow as tf from merlin.spec import Spec, Default
[ 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 4017, 2815, 13, 16684, 1330, 18291, 11, 15161, 628 ]
3.555556
18
"""Digest tests.""" import unittest from ocfl.ntree import Ntree class TestAll(unittest.TestCase): """TestAll class to run tests.""" def test01_encode(self): """Test encode.""" nt = Ntree() self.assertEqual(nt.encode(''), '') self.assertEqual(nt.encode('a'), 'a') self.assertEqual(nt.encode('a/b:?'), 'a=b+^3f') def test02_decode(self): """Test decode.""" nt = Ntree() self.assertEqual(nt.decode(''), '') self.assertEqual(nt.decode('a'), 'a') self.assertEqual(nt.decode('a=b+^3f'), 'a/b:?') def test03_identifier_to_path(self): """Test path creation.""" nt = Ntree(n=2, encapsulate=False) self.assertEqual(nt.identifier_to_path(''), '') self.assertEqual(nt.identifier_to_path('a'), 'a') self.assertEqual(nt.identifier_to_path('ab'), 'ab') self.assertEqual(nt.identifier_to_path('abc'), 'ab/c') self.assertEqual(nt.identifier_to_path('abcde'), 'ab/cd/e') nt = Ntree(n=3, encapsulate=False) self.assertEqual(nt.identifier_to_path('abcdefg'), 'abc/def/g') self.assertEqual(nt.identifier_to_path('abcdefgh'), 'abc/def/gh') self.assertEqual(nt.identifier_to_path('abcdefghi'), 'abc/def/ghi') nt = Ntree(n=2) self.assertEqual(nt.identifier_to_path(''), '') self.assertEqual(nt.identifier_to_path('a'), 'a/a') self.assertEqual(nt.identifier_to_path('ab'), 'ab/ab') self.assertEqual(nt.identifier_to_path('abc'), 'ab/c/abc') self.assertEqual(nt.identifier_to_path('abcde'), 'ab/cd/e/abcde') nt = Ntree(n=3) self.assertEqual(nt.identifier_to_path('abcdefg'), 'abc/def/g/abcdefg') self.assertEqual(nt.identifier_to_path('abcdefgh'), 'abc/def/gh/abcdefgh') self.assertEqual(nt.identifier_to_path('abcdefghi'), 'abc/def/ghi/abcdefghi') def test03_path_to_identifier(self): """Test path interpretation.""" nt = Ntree(n=2, encapsulate=False) self.assertEqual(nt.path_to_identifier(''), '') self.assertEqual(nt.path_to_identifier('a'), 'a') self.assertEqual(nt.path_to_identifier('ab'), 'ab') self.assertEqual(nt.path_to_identifier('ab/c'), 'abc') self.assertEqual(nt.path_to_identifier('ab/cd/e'), 'abcde') nt = Ntree(n=3, encapsulate=False) self.assertEqual(nt.path_to_identifier('abc/def/g'), 'abcdefg') self.assertEqual(nt.path_to_identifier('abc/def/gh'), 'abcdefgh') self.assertEqual(nt.path_to_identifier('abc/def/ghi'), 'abcdefghi') nt = Ntree(n=2) self.assertEqual(nt.path_to_identifier(''), '') self.assertEqual(nt.path_to_identifier('a/a'), 'a') self.assertEqual(nt.path_to_identifier('ab/ab'), 'ab') self.assertEqual(nt.path_to_identifier('ab/c/abc'), 'abc') self.assertEqual(nt.path_to_identifier('ab/cd/e/abcde'), 'abcde') nt = Ntree(n=3) self.assertEqual(nt.path_to_identifier('abc/def/g/abcdefg'), 'abcdefg') self.assertEqual(nt.path_to_identifier('abc/def/gh/abcdefgh'), 'abcdefgh') self.assertEqual(nt.path_to_identifier('abc/def/ghi/abcdefghi'), 'abcdefghi') # Bad ones self.assertRaises(Exception, nt.path_to_identifier, 'abc/def/g/a-diff-g')
[ 37811, 19511, 395, 5254, 526, 15931, 198, 11748, 555, 715, 395, 198, 6738, 267, 66, 2704, 13, 429, 631, 1330, 399, 21048, 628, 198, 4871, 6208, 3237, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 14402, 3237, 1398, 284, 1057, 5254, 526, 15931, 628, 220, 220, 220, 825, 1332, 486, 62, 268, 8189, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 37773, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 268, 8189, 7, 7061, 828, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 268, 8189, 10786, 64, 33809, 705, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 268, 8189, 10786, 64, 14, 65, 25, 8348, 828, 705, 64, 28, 65, 10, 61, 18, 69, 11537, 628, 220, 220, 220, 825, 1332, 2999, 62, 12501, 1098, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 36899, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 12501, 1098, 7, 7061, 828, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 12501, 1098, 10786, 64, 33809, 705, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 12501, 1098, 10786, 64, 28, 65, 10, 61, 18, 69, 33809, 705, 64, 14, 65, 25, 8348, 8, 628, 220, 220, 220, 825, 1332, 3070, 62, 738, 7483, 62, 1462, 62, 6978, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 3108, 6282, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 7, 77, 28, 17, 11, 32652, 5039, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 7, 7061, 828, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 64, 33809, 705, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 397, 33809, 705, 397, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 33809, 705, 397, 14, 66, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 2934, 33809, 705, 397, 14, 10210, 14, 68, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 7, 77, 28, 18, 11, 32652, 5039, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 4299, 70, 33809, 705, 39305, 14, 4299, 14, 70, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 4299, 456, 33809, 705, 39305, 14, 4299, 14, 456, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 4299, 456, 72, 33809, 705, 39305, 14, 4299, 14, 456, 72, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 7, 77, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 7, 7061, 828, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 64, 33809, 705, 64, 14, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 397, 33809, 705, 397, 14, 397, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 33809, 705, 397, 14, 66, 14, 39305, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 2934, 33809, 705, 397, 14, 10210, 14, 68, 14, 39305, 2934, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 7, 77, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 4299, 70, 33809, 705, 39305, 14, 4299, 14, 70, 14, 39305, 4299, 70, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 4299, 456, 33809, 705, 39305, 14, 4299, 14, 456, 14, 39305, 4299, 456, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 738, 7483, 62, 1462, 62, 6978, 10786, 39305, 4299, 456, 72, 33809, 705, 39305, 14, 4299, 14, 456, 72, 14, 39305, 4299, 456, 72, 11537, 628, 220, 220, 220, 825, 1332, 3070, 62, 6978, 62, 1462, 62, 738, 7483, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 3108, 10794, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 7, 77, 28, 17, 11, 32652, 5039, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 7, 7061, 828, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 64, 33809, 705, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 397, 33809, 705, 397, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 397, 14, 66, 33809, 705, 39305, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 397, 14, 10210, 14, 68, 33809, 705, 39305, 2934, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 7, 77, 28, 18, 11, 32652, 5039, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 39305, 14, 4299, 14, 70, 33809, 705, 39305, 4299, 70, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 39305, 14, 4299, 14, 456, 33809, 705, 39305, 4299, 456, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 39305, 14, 4299, 14, 456, 72, 33809, 705, 39305, 4299, 456, 72, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 7, 77, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 7, 7061, 828, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 64, 14, 64, 33809, 705, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 397, 14, 397, 33809, 705, 397, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 397, 14, 66, 14, 39305, 33809, 705, 39305, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 397, 14, 10210, 14, 68, 14, 39305, 2934, 33809, 705, 39305, 2934, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 796, 399, 21048, 7, 77, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 39305, 14, 4299, 14, 70, 14, 39305, 4299, 70, 33809, 705, 39305, 4299, 70, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 39305, 14, 4299, 14, 456, 14, 39305, 4299, 456, 33809, 705, 39305, 4299, 456, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 429, 13, 6978, 62, 1462, 62, 738, 7483, 10786, 39305, 14, 4299, 14, 456, 72, 14, 39305, 4299, 456, 72, 33809, 705, 39305, 4299, 456, 72, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7772, 3392, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 16922, 11, 299, 83, 13, 6978, 62, 1462, 62, 738, 7483, 11, 705, 39305, 14, 4299, 14, 70, 14, 64, 12, 26069, 12, 70, 11537, 198 ]
2.052142
1,611