content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# -*- coding: utf-8 -*- from gevent.pool import Pool
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 4903, 1151, 13, 7742, 1330, 19850, 628 ]
2.454545
22
import argparse import datetime import json import random import time import numpy as np
[ 11748, 1822, 29572, 201, 198, 11748, 4818, 8079, 201, 198, 11748, 33918, 201, 198, 11748, 4738, 201, 198, 11748, 640, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.885714
35
from __future__ import absolute_import, division, print_function from cctbx.eltbx import covalent_radii from libtbx.test_utils import approx_equal if (__name__ == "__main__"): run()
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 6738, 269, 310, 65, 87, 13, 2120, 65, 87, 1330, 269, 8325, 298, 62, 6335, 4178, 198, 6738, 9195, 83, 65, 87, 13, 9288, 62, 26791, 1330, 5561, 62, 40496, 198, 198, 361, 357, 834, 3672, 834, 6624, 366, 834, 12417, 834, 1, 2599, 198, 220, 1057, 3419, 198 ]
2.890625
64
# Generated by Django 3.0.6 on 2020-05-06 02:47 from django.db import migrations, models import uuid
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 21, 319, 12131, 12, 2713, 12, 3312, 7816, 25, 2857, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 334, 27112, 628 ]
2.861111
36
import sys, os myPath = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, myPath + '/../') import pytest import investigate # use the local path, instead of what has been installed @pytest.fixture
[ 11748, 25064, 11, 28686, 198, 1820, 15235, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 616, 15235, 1343, 31051, 40720, 11537, 198, 198, 11748, 12972, 9288, 198, 11748, 9161, 1303, 779, 262, 1957, 3108, 11, 2427, 286, 644, 468, 587, 6589, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
2.971831
71
#!/usr/bin/env python import sys import os import shutil import stat programpath = os.path.abspath(sys.path[0]) sys.path.append(os.path.join(programpath,"Lib")) from optparse import OptionParser import PackingUnits import SPULib import OsLib parser = OptionParser(usage="%prog [-f] [-q] FILENAME APPLICATIONHOME", description="Compile, stamp and install FILENAME into the Maconomy application at APPLICATIONHOME", version="%prog 0.1.0") parser.add_option("-s", "--sources", dest="sourcefolder", help="root of sources", metavar="SOURCES") parser.add_option("--solution", dest="solution", help="install as part of SOLUTION e.g. MCS", metavar="SOLUTION") parser.add_option("-i", "--industryaccelerator", dest="accelerator", help="install as part of SOLUTION e.g. MCS", metavar="IA") parser.add_option("-q", "--quiet", action="store_false", dest="verbose", default=True, help="don't print status messages to stdout") parser.print_version() (options, args) = parser.parse_args() if len(args)<2: parser.error("Both FILENAME and APPLICATIONHOME must be specified") parser.print_help() filename=args[0] if os.path.isabs(filename): source=filename else: source=os.path.join(os.getcwd(),filename) if not os.path.exists(source): parser.error("%s does not exist" % source) homefolder=args[1] if not os.path.exists(homefolder): parser.error("%s does not exist" % homefolder) root = source[:source.find("CustomInstallation")+18] if options.verbose: print "source", source print "filename" ,filename print "homefolder", homefolder print "root", root print filename, source, homefolder print str(options) if options.solution: spuSolutions = [options.solution] else: spuDefinition = PackingUnits.getSPUDefinition(spuDefFile=os.path.join(root, PackingUnits.getSPUDefinitionBasename())) spuSolutions = [spdef[0] for spdef in spuDefinition] if source.find("CustomInstallation"): relativePath = source[source.find("CustomInstallation")+19:] if options.solution: destination = os.path.join(homefolder, "Solutions", options.solution, "Setup", relativePath) else: destination=os.path.join(homefolder, source[source.find("CustomInstallation"):]) #FIXME: Find the "Proper" solution SPULib.standalone = True SPULib.setFunctions() SPULib.logfile = "d:\Temp\Temp.txt" tempfolder=r"D:\Temp\tempsolution" destination=os.path.join(tempfolder, "Solutions", relativePath) os.makedirs(os.path.split(destination)[0]) shutil.copy(source, destination) os.chmod(destination, stat.S_IWRITE) SPULib.restructureSpuFiles(tempfolder, spuSolutions) #, fileList=[relativePath]) OsLib.move(tempfolder, homefolder, treeMove=True) elif source.find("IA."): destination=os.path.join(homefolder, source[source.find("IA."):]) #os.chmod(destination, stat.S_IWRITE)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 201, 198, 201, 198, 11748, 25064, 201, 198, 11748, 28686, 201, 198, 11748, 4423, 346, 201, 198, 11748, 1185, 201, 198, 201, 198, 1676, 2164, 696, 776, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 17597, 13, 6978, 58, 15, 12962, 201, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 1676, 2164, 696, 776, 553, 25835, 48774, 201, 198, 6738, 2172, 29572, 1330, 16018, 46677, 201, 198, 11748, 350, 5430, 3118, 896, 201, 198, 11748, 311, 5105, 25835, 201, 198, 11748, 8834, 25835, 201, 198, 201, 198, 48610, 796, 16018, 46677, 7, 26060, 2625, 4, 1676, 70, 25915, 69, 60, 25915, 80, 60, 34020, 1677, 10067, 39421, 6234, 39069, 1600, 201, 198, 220, 220, 220, 6764, 2625, 7293, 576, 11, 17977, 290, 2721, 34020, 1677, 10067, 656, 262, 4100, 30565, 3586, 379, 39421, 6234, 39069, 1600, 201, 198, 220, 220, 220, 2196, 2625, 4, 1676, 70, 657, 13, 16, 13, 15, 4943, 201, 198, 201, 198, 48610, 13, 2860, 62, 18076, 7203, 12, 82, 1600, 366, 438, 82, 2203, 1600, 2244, 2625, 10459, 43551, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15763, 286, 4237, 1600, 1138, 615, 283, 2625, 50, 2606, 7397, 1546, 4943, 201, 198, 48610, 13, 2860, 62, 18076, 7203, 438, 82, 2122, 1600, 2244, 2625, 82, 2122, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 17350, 355, 636, 286, 36817, 35354, 304, 13, 70, 13, 337, 7902, 1600, 1138, 615, 283, 2625, 50, 3535, 35354, 4943, 201, 198, 48610, 13, 2860, 62, 18076, 7203, 12, 72, 1600, 366, 438, 23213, 563, 330, 7015, 1352, 1600, 2244, 2625, 330, 7015, 1352, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 17350, 355, 636, 286, 36817, 35354, 304, 13, 70, 13, 337, 7902, 1600, 1138, 615, 283, 2625, 3539, 4943, 201, 198, 48610, 13, 2860, 62, 18076, 7203, 12, 80, 1600, 366, 438, 39624, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 9562, 1600, 2244, 2625, 19011, 577, 1600, 4277, 28, 17821, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 9099, 470, 3601, 3722, 6218, 284, 14367, 448, 4943, 201, 198, 201, 198, 48610, 13, 4798, 62, 9641, 3419, 201, 198, 7, 25811, 11, 26498, 8, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 361, 18896, 7, 22046, 8, 27, 17, 25, 201, 198, 220, 220, 220, 30751, 13, 18224, 7203, 10265, 34020, 1677, 10067, 290, 39421, 6234, 39069, 1276, 307, 7368, 4943, 201, 198, 220, 220, 220, 30751, 13, 4798, 62, 16794, 3419, 201, 198, 201, 198, 34345, 28, 22046, 58, 15, 60, 201, 198, 361, 28686, 13, 6978, 13, 271, 8937, 7, 34345, 2599, 201, 198, 220, 220, 220, 2723, 28, 34345, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 2723, 28, 418, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 34345, 8, 201, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 10459, 2599, 201, 198, 220, 220, 220, 30751, 13, 18224, 7203, 4, 82, 857, 407, 2152, 1, 4064, 2723, 8, 201, 198, 201, 198, 11195, 43551, 28, 22046, 58, 16, 60, 201, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 11195, 43551, 2599, 201, 198, 220, 220, 220, 30751, 13, 18224, 7203, 4, 82, 857, 407, 2152, 1, 4064, 1363, 43551, 8, 201, 198, 201, 198, 15763, 796, 2723, 58, 25, 10459, 13, 19796, 7203, 15022, 30838, 4943, 10, 1507, 60, 201, 198, 201, 198, 361, 3689, 13, 19011, 577, 25, 201, 198, 220, 220, 220, 3601, 366, 10459, 1600, 2723, 201, 198, 220, 220, 220, 3601, 366, 34345, 1, 837, 34345, 201, 198, 220, 220, 220, 3601, 366, 11195, 43551, 1600, 1363, 43551, 201, 198, 220, 220, 220, 3601, 366, 15763, 1600, 6808, 201, 198, 220, 220, 220, 3601, 29472, 11, 2723, 11, 1363, 43551, 201, 198, 220, 220, 220, 3601, 965, 7, 25811, 8, 201, 198, 201, 198, 361, 3689, 13, 82, 2122, 25, 201, 198, 220, 220, 220, 599, 84, 50, 14191, 796, 685, 25811, 13, 82, 2122, 60, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 599, 84, 36621, 796, 350, 5430, 3118, 896, 13, 1136, 4303, 52, 36621, 7, 2777, 84, 7469, 8979, 28, 418, 13, 6978, 13, 22179, 7, 15763, 11, 350, 5430, 3118, 896, 13, 1136, 4303, 52, 36621, 15522, 12453, 3419, 4008, 201, 198, 220, 220, 220, 599, 84, 50, 14191, 796, 685, 2777, 4299, 58, 15, 60, 329, 599, 4299, 287, 599, 84, 36621, 60, 201, 198, 201, 198, 201, 198, 361, 2723, 13, 19796, 7203, 15022, 30838, 1, 2599, 201, 198, 220, 220, 220, 3585, 15235, 796, 2723, 58, 10459, 13, 19796, 7203, 15022, 30838, 4943, 10, 1129, 47715, 201, 198, 220, 220, 220, 611, 3689, 13, 82, 2122, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 10965, 796, 28686, 13, 6978, 13, 22179, 7, 11195, 43551, 11, 366, 50, 14191, 1600, 3689, 13, 82, 2122, 11, 366, 40786, 1600, 3585, 15235, 8, 220, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 10965, 28, 418, 13, 6978, 13, 22179, 7, 11195, 43551, 11, 2723, 58, 10459, 13, 19796, 7203, 15022, 30838, 1, 2599, 12962, 220, 201, 198, 220, 220, 220, 1303, 47084, 11682, 25, 9938, 262, 366, 2964, 525, 1, 4610, 201, 198, 220, 220, 220, 311, 5105, 25835, 13, 1481, 17749, 796, 6407, 201, 198, 220, 220, 220, 311, 5105, 25835, 13, 2617, 24629, 2733, 3419, 201, 198, 220, 220, 220, 311, 5105, 25835, 13, 6404, 7753, 796, 366, 67, 7479, 30782, 59, 30782, 13, 14116, 1, 201, 198, 220, 220, 220, 20218, 43551, 28, 81, 1, 35, 7479, 30782, 59, 11498, 862, 2122, 1, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 10965, 28, 418, 13, 6978, 13, 22179, 7, 29510, 43551, 11, 366, 50, 14191, 1600, 3585, 15235, 8, 220, 201, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 35312, 7, 16520, 1883, 38381, 15, 12962, 201, 198, 220, 220, 220, 4423, 346, 13, 30073, 7, 10459, 11, 10965, 8, 201, 198, 220, 220, 220, 28686, 13, 354, 4666, 7, 16520, 1883, 11, 1185, 13, 50, 62, 40, 18564, 12709, 8, 201, 198, 201, 198, 220, 220, 220, 311, 5105, 25835, 13, 2118, 5620, 4561, 84, 25876, 7, 29510, 43551, 11, 599, 84, 50, 14191, 8, 1303, 11, 2393, 8053, 41888, 43762, 15235, 12962, 201, 198, 220, 220, 220, 8834, 25835, 13, 21084, 7, 29510, 43551, 11, 1363, 43551, 11, 5509, 21774, 28, 17821, 8, 201, 198, 417, 361, 2723, 13, 19796, 7203, 3539, 526, 2599, 201, 198, 220, 220, 220, 10965, 28, 418, 13, 6978, 13, 22179, 7, 11195, 43551, 11, 2723, 58, 10459, 13, 19796, 7203, 3539, 526, 2599, 12962, 201, 198, 201, 198, 2, 418, 13, 354, 4666, 7, 16520, 1883, 11, 1185, 13, 50, 62, 40, 18564, 12709, 8, 201, 198, 201, 198 ]
2.496737
1,226
import numpy as np from linearSearch.linearSearch import LinearSearch class NonmonotoneGLL(LinearSearch): """ """ def __init__(self, method="GLL", max_iter=100, **opt): """ :param method: :param max_iter: :param opt: """ super().__init__(method, max_iter, **opt) self.name = self.__class__.__name__ self.old_value = [] if "GLL_rho" not in self.opt or "GLL_alpha" not in self.opt\ or "GLL_sigma" not in self.opt or "GLL_M" not in self.opt: raise NameError("GLL need rho, alpha, sigma, M") if self.opt["GLL_rho"] >= 1 or self.opt["GLL_rho"] <= 0: raise ValueError("rho must be in (0, 1)") else: self.rho = self.opt["GLL_rho"] if self.opt["GLL_alpha"] <= 0: raise ValueError("alpha must be positive") else: self.alpha = self.opt["GLL_alpha"] if self.opt["GLL_M"] <= 0: raise ValueError("M must be positive") else: self.M = self.opt["GLL_M"] if self.opt["GLL_sigma"] >= 1 or self.opt["GLL_sigma"] <= 0: raise ValueError("sigma must be in (0, 1)") else: self.sigma = self.opt["GLL_sigma"] def get_step_length(self, f, g, x, d): """ :param f: :param g: :param x: :param d: :return: """ if np.dot(g(x).T, d) > 0: print("np.dot(g(x).T, d) :{}".format(np.dot(g(x).T, d))) # d = -d raise ValueError("g^T d must be negative.") residual = self.rho * np.dot(g(x).T, d)[0][0] self.old_value.append(f(x)) k = len(self.old_value)-1 ''' for mk in range(min([k, self.M])+1): for t in range(1000): if f(x+alphak*d) <= np.max(self.old_value[k-mk:]) + alphak * residual: alphak = math.pow(self.sigma, t) * self.alpha return np.max([alphak, 0.00001]) ''' mk = min([k, self.M]) alphak = self.alpha for t in range(self.max_iter): self._global_iter_increment() try: if f(x + alphak * d) <= np.max(self.old_value[k - mk:]) + alphak * residual: return alphak except: print("x is {}, alpha is {}, d is{}".format(x, alphak, d)) alphak = alphak * self.sigma return alphak raise ValueError("can not find suitable alphak in GLL")
[ 11748, 299, 32152, 355, 45941, 198, 6738, 14174, 18243, 13, 29127, 18243, 1330, 44800, 18243, 628, 198, 4871, 8504, 2144, 313, 505, 38, 3069, 7, 14993, 451, 18243, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2446, 2625, 38, 3069, 1600, 3509, 62, 2676, 28, 3064, 11, 12429, 8738, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2446, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3509, 62, 2676, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2172, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 24396, 11, 3509, 62, 2676, 11, 12429, 8738, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 2116, 13, 834, 4871, 834, 13, 834, 3672, 834, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 8367, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 38, 3069, 62, 81, 8873, 1, 407, 287, 2116, 13, 8738, 393, 366, 38, 3069, 62, 26591, 1, 407, 287, 2116, 13, 8738, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 366, 38, 3069, 62, 82, 13495, 1, 407, 287, 2116, 13, 8738, 393, 366, 38, 3069, 62, 44, 1, 407, 287, 2116, 13, 8738, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 6530, 12331, 7203, 38, 3069, 761, 374, 8873, 11, 17130, 11, 264, 13495, 11, 337, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 8738, 14692, 38, 3069, 62, 81, 8873, 8973, 18189, 352, 393, 2116, 13, 8738, 14692, 38, 3069, 62, 81, 8873, 8973, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 81, 8873, 1276, 307, 287, 357, 15, 11, 352, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 8873, 796, 2116, 13, 8738, 14692, 38, 3069, 62, 81, 8873, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 8738, 14692, 38, 3069, 62, 26591, 8973, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 26591, 1276, 307, 3967, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26591, 796, 2116, 13, 8738, 14692, 38, 3069, 62, 26591, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 8738, 14692, 38, 3069, 62, 44, 8973, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44, 1276, 307, 3967, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 44, 796, 2116, 13, 8738, 14692, 38, 3069, 62, 44, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 8738, 14692, 38, 3069, 62, 82, 13495, 8973, 18189, 352, 393, 2116, 13, 8738, 14692, 38, 3069, 62, 82, 13495, 8973, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 82, 13495, 1276, 307, 287, 357, 15, 11, 352, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 13495, 796, 2116, 13, 8738, 14692, 38, 3069, 62, 82, 13495, 8973, 628, 220, 220, 220, 825, 651, 62, 9662, 62, 13664, 7, 944, 11, 277, 11, 308, 11, 2124, 11, 288, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 308, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2124, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 26518, 7, 70, 7, 87, 737, 51, 11, 288, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37659, 13, 26518, 7, 70, 7, 87, 737, 51, 11, 288, 8, 1058, 90, 92, 1911, 18982, 7, 37659, 13, 26518, 7, 70, 7, 87, 737, 51, 11, 288, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 288, 796, 532, 67, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 70, 61, 51, 288, 1276, 307, 4633, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 29598, 796, 2116, 13, 81, 8873, 1635, 45941, 13, 26518, 7, 70, 7, 87, 737, 51, 11, 288, 38381, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 8367, 13, 33295, 7, 69, 7, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 479, 796, 18896, 7, 944, 13, 727, 62, 8367, 13219, 16, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 329, 33480, 287, 2837, 7, 1084, 26933, 74, 11, 2116, 13, 44, 12962, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 7, 87, 10, 17307, 461, 9, 67, 8, 19841, 45941, 13, 9806, 7, 944, 13, 727, 62, 8367, 58, 74, 12, 28015, 25, 12962, 1343, 435, 746, 461, 1635, 29598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 435, 746, 461, 796, 10688, 13, 79, 322, 7, 944, 13, 82, 13495, 11, 256, 8, 1635, 2116, 13, 26591, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 9806, 26933, 17307, 461, 11, 657, 13, 2388, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 33480, 796, 949, 26933, 74, 11, 2116, 13, 44, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 435, 746, 461, 796, 2116, 13, 26591, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2837, 7, 944, 13, 9806, 62, 2676, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20541, 62, 2676, 62, 24988, 434, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 7, 87, 1343, 435, 746, 461, 1635, 288, 8, 19841, 45941, 13, 9806, 7, 944, 13, 727, 62, 8367, 58, 74, 532, 33480, 25, 12962, 1343, 435, 746, 461, 1635, 29598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 435, 746, 461, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 87, 318, 1391, 5512, 17130, 318, 1391, 5512, 288, 318, 90, 92, 1911, 18982, 7, 87, 11, 435, 746, 461, 11, 288, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 435, 746, 461, 796, 435, 746, 461, 1635, 2116, 13, 82, 13495, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 435, 746, 461, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 5171, 407, 1064, 11080, 435, 746, 461, 287, 402, 3069, 4943 ]
1.849015
1,371
"""A metric.""" from dataclasses import dataclass from typing import Optional from jupiter.domain.entity_name import EntityName from jupiter.domain.metrics.metric_key import MetricKey from jupiter.domain.metrics.metric_unit import MetricUnit from jupiter.domain.recurring_task_gen_params import RecurringTaskGenParams from jupiter.framework.aggregate_root import AggregateRoot from jupiter.framework.base.entity_id import BAD_REF_ID from jupiter.framework.base.timestamp import Timestamp @dataclass() class Metric(AggregateRoot): """A metric.""" @dataclass(frozen=True) class Created(AggregateRoot.Created): """Created event.""" @dataclass(frozen=True) class Updated(AggregateRoot.Updated): """Updated event.""" _key: MetricKey _name: EntityName _collection_params: Optional[RecurringTaskGenParams] _metric_unit: Optional[MetricUnit] @staticmethod def new_metric( key: MetricKey, name: EntityName, collection_params: Optional[RecurringTaskGenParams], metric_unit: Optional[MetricUnit], created_time: Timestamp) -> 'Metric': """Create a metric.""" metric = Metric( _ref_id=BAD_REF_ID, _archived=False, _created_time=created_time, _archived_time=None, _last_modified_time=created_time, _events=[], _key=key, _name=name, _collection_params=collection_params, _metric_unit=metric_unit) metric.record_event(Metric.Created.make_event_from_frame_args(created_time)) return metric def change_name(self, name: EntityName, modification_time: Timestamp) -> 'Metric': """Change the name of the metric.""" if self._name == name: return self self._name = name self.record_event(Metric.Updated.make_event_from_frame_args(modification_time)) return self def change_collection_params( self, collection_params: Optional[RecurringTaskGenParams], modification_time: Timestamp) -> 'Metric': """Change the collection period of the metric.""" if self._collection_params == collection_params: return self self._collection_params = collection_params self.record_event(Metric.Updated.make_event_from_frame_args(modification_time)) return self @property def key(self) -> MetricKey: """The key of the metric.""" return self._key @property def name(self) -> EntityName: """The name of the metric.""" return self._name @property def collection_params(self) -> Optional[RecurringTaskGenParams]: """The collection parameters of the metric.""" return self._collection_params @property def metric_unit(self) -> Optional[MetricUnit]: """The metric unit of the metric.""" return self._metric_unit
[ 37811, 32, 18663, 526, 15931, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 474, 21251, 13, 27830, 13, 26858, 62, 3672, 1330, 20885, 5376, 198, 6738, 474, 21251, 13, 27830, 13, 4164, 10466, 13, 4164, 1173, 62, 2539, 1330, 3395, 1173, 9218, 198, 6738, 474, 21251, 13, 27830, 13, 4164, 10466, 13, 4164, 1173, 62, 20850, 1330, 3395, 1173, 26453, 198, 6738, 474, 21251, 13, 27830, 13, 8344, 14924, 62, 35943, 62, 5235, 62, 37266, 1330, 3311, 14924, 25714, 13746, 10044, 4105, 198, 6738, 474, 21251, 13, 30604, 13, 9460, 49373, 62, 15763, 1330, 19015, 49373, 30016, 198, 6738, 474, 21251, 13, 30604, 13, 8692, 13, 26858, 62, 312, 1330, 33934, 62, 31688, 62, 2389, 198, 6738, 474, 21251, 13, 30604, 13, 8692, 13, 16514, 27823, 1330, 5045, 27823, 628, 198, 31, 19608, 330, 31172, 3419, 198, 4871, 3395, 1173, 7, 46384, 49373, 30016, 2599, 198, 220, 220, 220, 37227, 32, 18663, 526, 15931, 628, 220, 220, 220, 2488, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 198, 220, 220, 220, 1398, 15622, 7, 46384, 49373, 30016, 13, 41972, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 41972, 1785, 526, 15931, 628, 220, 220, 220, 2488, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 198, 220, 220, 220, 1398, 19433, 7, 46384, 49373, 30016, 13, 17354, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17354, 1785, 526, 15931, 628, 220, 220, 220, 4808, 2539, 25, 3395, 1173, 9218, 198, 220, 220, 220, 4808, 3672, 25, 20885, 5376, 198, 220, 220, 220, 4808, 43681, 62, 37266, 25, 32233, 58, 6690, 14924, 25714, 13746, 10044, 4105, 60, 198, 220, 220, 220, 4808, 4164, 1173, 62, 20850, 25, 32233, 58, 9171, 1173, 26453, 60, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 649, 62, 4164, 1173, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 3395, 1173, 9218, 11, 1438, 25, 20885, 5376, 11, 4947, 62, 37266, 25, 32233, 58, 6690, 14924, 25714, 13746, 10044, 4105, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 62, 20850, 25, 32233, 58, 9171, 1173, 26453, 4357, 2727, 62, 2435, 25, 5045, 27823, 8, 4613, 705, 9171, 1173, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 18663, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 18663, 796, 3395, 1173, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 5420, 62, 312, 28, 33, 2885, 62, 31688, 62, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 998, 1572, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25598, 62, 2435, 28, 25598, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 998, 1572, 62, 2435, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 12957, 62, 41771, 62, 2435, 28, 25598, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 31534, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2539, 28, 2539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3672, 28, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 43681, 62, 37266, 28, 43681, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 4164, 1173, 62, 20850, 28, 4164, 1173, 62, 20850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18663, 13, 22105, 62, 15596, 7, 9171, 1173, 13, 41972, 13, 15883, 62, 15596, 62, 6738, 62, 14535, 62, 22046, 7, 25598, 62, 2435, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 18663, 628, 220, 220, 220, 825, 1487, 62, 3672, 7, 944, 11, 1438, 25, 20885, 5376, 11, 17613, 62, 2435, 25, 5045, 27823, 8, 4613, 705, 9171, 1173, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19400, 262, 1438, 286, 262, 18663, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 3672, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22105, 62, 15596, 7, 9171, 1173, 13, 17354, 13, 15883, 62, 15596, 62, 6738, 62, 14535, 62, 22046, 7, 4666, 2649, 62, 2435, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 1487, 62, 43681, 62, 37266, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 4947, 62, 37266, 25, 32233, 58, 6690, 14924, 25714, 13746, 10044, 4105, 4357, 17613, 62, 2435, 25, 5045, 27823, 8, 4613, 705, 9171, 1173, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19400, 262, 4947, 2278, 286, 262, 18663, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 43681, 62, 37266, 6624, 4947, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 43681, 62, 37266, 796, 4947, 62, 37266, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22105, 62, 15596, 7, 9171, 1173, 13, 17354, 13, 15883, 62, 15596, 62, 6738, 62, 14535, 62, 22046, 7, 4666, 2649, 62, 2435, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1994, 7, 944, 8, 4613, 3395, 1173, 9218, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 1994, 286, 262, 18663, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 2539, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 7, 944, 8, 4613, 20885, 5376, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 1438, 286, 262, 18663, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3672, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4947, 62, 37266, 7, 944, 8, 4613, 32233, 58, 6690, 14924, 25714, 13746, 10044, 4105, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 4947, 10007, 286, 262, 18663, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 43681, 62, 37266, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 18663, 62, 20850, 7, 944, 8, 4613, 32233, 58, 9171, 1173, 26453, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 18663, 4326, 286, 262, 18663, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 4164, 1173, 62, 20850, 198 ]
2.535467
1,156
import graphene from graphene.types.resolver import dict_resolver from authentication import with_default_authentication from handlers.graphql.resolvers import with_connection from handlers.graphql.types.base.objecttype import ObjectType from playbookloader import PlaybookLoader from handlers.graphql.types.vm import OSVersion import rethinkdb from tornado.options import options as opts @with_default_authentication @with_connection @with_default_authentication @with_connection
[ 11748, 42463, 198, 6738, 42463, 13, 19199, 13, 411, 14375, 1330, 8633, 62, 411, 14375, 198, 198, 6738, 18239, 1330, 351, 62, 12286, 62, 41299, 3299, 198, 6738, 32847, 13, 34960, 13976, 13, 411, 349, 690, 1330, 351, 62, 38659, 198, 6738, 32847, 13, 34960, 13976, 13, 19199, 13, 8692, 13, 15252, 4906, 1330, 9515, 6030, 198, 6738, 41794, 29356, 1330, 3811, 2070, 17401, 198, 6738, 32847, 13, 34960, 13976, 13, 19199, 13, 14761, 1330, 7294, 14815, 198, 11748, 36437, 9945, 198, 6738, 33718, 13, 25811, 1330, 3689, 355, 2172, 82, 628, 628, 198, 31, 4480, 62, 12286, 62, 41299, 3299, 198, 31, 4480, 62, 38659, 628, 198, 198, 31, 4480, 62, 12286, 62, 41299, 3299, 198, 31, 4480, 62, 38659, 628 ]
4.016393
122
import sentencepiece as spm import sys path=sys.argv[1] input=sys.argv[2] out=sys.argv[3] sp = spm.SentencePieceProcessor() sp.Load(path) with open(input) as f: with open(out,"w") as w: for item in f: w.write(" ".join(sp.EncodeAsPieces(item))+"\n")
[ 11748, 6827, 12239, 355, 599, 76, 198, 11748, 25064, 198, 6978, 28, 17597, 13, 853, 85, 58, 16, 60, 198, 15414, 28, 17597, 13, 853, 85, 58, 17, 60, 198, 448, 28, 17597, 13, 853, 85, 58, 18, 60, 198, 2777, 796, 599, 76, 13, 31837, 594, 47, 8535, 18709, 273, 3419, 198, 2777, 13, 8912, 7, 6978, 8, 198, 4480, 1280, 7, 15414, 8, 355, 277, 25, 198, 220, 220, 220, 351, 1280, 7, 448, 553, 86, 4943, 355, 266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 13, 13564, 7203, 27071, 22179, 7, 2777, 13, 4834, 8189, 1722, 48223, 728, 7, 9186, 4008, 10, 1, 59, 77, 4943, 198 ]
2.1
130
import json import logging import os import bottle from sys import argv from api import ping_response, start_response, move_response, end_response from utils.arena import Arena # Set log level LOG_LEVEL = 'DEBUG' if len(argv) > 1 and hasattr(logging, argv[1]): LOG_LEVEL = argv[1] logging.basicConfig(level=getattr(logging, LOG_LEVEL)) logger = logging.getLogger() # Constants COLOR = '#993333' HEAD = 'sand-worm' TAIL = 'pixel' WELCOME = '''-- Welcome, contestant. === TA\'AURIC, ASPECT OF WAR === ''' # Initialize arenas ARENAS = {} @bottle.route('/') @bottle.route('/static/<path:path>') def static(path): ''' Given a path, return the static file located relative to the static folder. This can be used to return the snake head URL in an API response. ''' return bottle.static_file(path, root='static/') @bottle.post('/ping') def ping(): ''' A keep-alive endpoint used to prevent cloud application platforms, such as Heroku, from sleeping the application instance. ''' return ping_response() @bottle.post('/start') def start(): '''Initialize stateful data''' logger.info(WELCOME) logger.info( "Initializing snake with\ncolour: %s\nhead: %s\ntail: %s", COLOR, HEAD, TAIL) # Initialize global arena instance (keeps state) global ARENAS data = bottle.request.json game_id = data['game']['id'] b_width = data['board']['width'] b_height = data['board']['height'] ARENAS[game_id] = Arena(b_width, b_height) return start_response(COLOR, HEAD, TAIL) @bottle.post('/move') def move(): '''Choose a direction to move!''' global ARENAS # Unpack game data data = bottle.request.json game_id = data['game']['id'] turn = data['turn'] name = data['you']['name'] health = data['you']['health'] logger.debug("\n===== (%s) TURN %s =====", name, turn) # Format data for Arena body = [(seg['x'], seg['y']) for seg in data['you']['body']] snakes = [[(s['x'], s['y']) for s in sn['body']] for sn in data['board']['snakes']] snakes = [seg for seg in snakes if seg not in body] foods = [(fd['x'], fd['y']) for fd in data['board']['food']] # Update arena arena = ARENAS[game_id] arena.update_heatmap(body, snakes, foods) logger.debug("ARENA HEATMAP:\n%s", arena.arena_to_str()) # Check for self-loops arena.check_self_loop() # Pick best move from newly created heatmap directions = arena.rank_moves() if directions: direction = directions[0] else: direction = 'up' logger.debug("GUESS I'LL DIE LMAO") logger.debug("Moving %s", direction) return move_response(direction) @bottle.post('/end') def end(): '''Clean up any stateful objects''' return end_response() # Expose WSGI app (so gunicorn can find it) application = bottle.default_app() if __name__ == '__main__': bottle.run( application, host=os.getenv('IP', '0.0.0.0'), port=os.getenv('PORT', '8080'), debug=os.getenv('DEBUG', True) )
[ 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 9294, 198, 198, 6738, 25064, 1330, 1822, 85, 198, 6738, 40391, 1330, 29400, 62, 26209, 11, 923, 62, 26209, 11, 1445, 62, 26209, 11, 886, 62, 26209, 198, 6738, 3384, 4487, 13, 533, 2616, 1330, 10937, 198, 198, 2, 5345, 2604, 1241, 198, 25294, 62, 2538, 18697, 796, 705, 30531, 6, 198, 361, 18896, 7, 853, 85, 8, 1875, 352, 290, 468, 35226, 7, 6404, 2667, 11, 1822, 85, 58, 16, 60, 2599, 198, 220, 220, 220, 41605, 62, 2538, 18697, 796, 1822, 85, 58, 16, 60, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 1136, 35226, 7, 6404, 2667, 11, 41605, 62, 2538, 18697, 4008, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 198, 2, 4757, 1187, 198, 46786, 796, 705, 2, 2079, 24840, 6, 198, 37682, 796, 705, 38142, 12, 25323, 6, 198, 5603, 4146, 796, 705, 32515, 6, 198, 198, 54, 3698, 9858, 36, 796, 705, 7061, 438, 198, 14618, 11, 44047, 13, 198, 18604, 21664, 43054, 32, 4261, 2149, 11, 34658, 9782, 3963, 11837, 24844, 198, 7061, 6, 198, 198, 2, 20768, 1096, 46168, 198, 1503, 1677, 1921, 796, 23884, 198, 198, 31, 10985, 293, 13, 38629, 10786, 14, 11537, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 12708, 14, 27, 6978, 25, 6978, 29, 11537, 198, 4299, 9037, 7, 6978, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 11259, 257, 3108, 11, 1441, 262, 9037, 2393, 5140, 3585, 198, 220, 220, 220, 284, 262, 9037, 9483, 13, 628, 220, 220, 220, 770, 460, 307, 973, 284, 1441, 262, 17522, 1182, 10289, 287, 281, 7824, 2882, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1441, 9294, 13, 12708, 62, 7753, 7, 6978, 11, 6808, 11639, 12708, 14, 11537, 628, 198, 31, 10985, 293, 13, 7353, 10786, 14, 13886, 11537, 198, 4299, 29400, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 317, 1394, 12, 282, 425, 36123, 973, 284, 2948, 6279, 3586, 9554, 11, 198, 220, 220, 220, 884, 355, 2332, 11601, 11, 422, 11029, 262, 3586, 4554, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1441, 29400, 62, 26209, 3419, 628, 198, 31, 10985, 293, 13, 7353, 10786, 14, 9688, 11537, 198, 4299, 923, 33529, 198, 220, 220, 220, 705, 7061, 24243, 1096, 1181, 913, 1366, 7061, 6, 198, 220, 220, 220, 49706, 13, 10951, 7, 54, 3698, 9858, 36, 8, 198, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 24243, 2890, 17522, 351, 59, 77, 49903, 25, 4064, 82, 59, 77, 2256, 25, 4064, 82, 59, 429, 603, 25, 4064, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 20444, 1581, 11, 39837, 11, 21664, 4146, 8, 198, 220, 220, 220, 1303, 20768, 1096, 3298, 13478, 4554, 357, 14894, 82, 1181, 8, 198, 220, 220, 220, 3298, 5923, 1677, 1921, 198, 220, 220, 220, 1366, 796, 9294, 13, 25927, 13, 17752, 198, 220, 220, 220, 983, 62, 312, 796, 1366, 17816, 6057, 6, 7131, 6, 312, 20520, 198, 220, 220, 220, 275, 62, 10394, 796, 1366, 17816, 3526, 6, 7131, 6, 10394, 20520, 198, 220, 220, 220, 275, 62, 17015, 796, 1366, 17816, 3526, 6, 7131, 6, 17015, 20520, 198, 220, 220, 220, 5923, 1677, 1921, 58, 6057, 62, 312, 60, 796, 10937, 7, 65, 62, 10394, 11, 275, 62, 17015, 8, 628, 220, 220, 220, 1441, 923, 62, 26209, 7, 46786, 11, 39837, 11, 21664, 4146, 8, 628, 198, 31, 10985, 293, 13, 7353, 10786, 14, 21084, 11537, 198, 4299, 1445, 33529, 198, 220, 220, 220, 705, 7061, 31851, 257, 4571, 284, 1445, 0, 7061, 6, 198, 220, 220, 220, 3298, 5923, 1677, 1921, 198, 220, 220, 220, 1303, 791, 8002, 983, 1366, 198, 220, 220, 220, 1366, 796, 9294, 13, 25927, 13, 17752, 198, 220, 220, 220, 983, 62, 312, 796, 1366, 17816, 6057, 6, 7131, 6, 312, 20520, 198, 220, 220, 220, 1210, 796, 1366, 17816, 15344, 20520, 198, 220, 220, 220, 1438, 796, 1366, 17816, 5832, 6, 7131, 6, 3672, 20520, 198, 220, 220, 220, 1535, 796, 1366, 17816, 5832, 6, 7131, 6, 13948, 20520, 198, 220, 220, 220, 49706, 13, 24442, 7203, 59, 77, 1421, 28, 37633, 82, 8, 309, 27064, 4064, 82, 29335, 1600, 1438, 11, 1210, 8, 628, 220, 220, 220, 1303, 18980, 1366, 329, 10937, 198, 220, 220, 220, 1767, 796, 47527, 325, 70, 17816, 87, 6, 4357, 384, 70, 17816, 88, 6, 12962, 329, 384, 70, 287, 1366, 17816, 5832, 6, 7131, 6, 2618, 6, 11907, 198, 220, 220, 220, 26042, 796, 16410, 7, 82, 17816, 87, 6, 4357, 264, 17816, 88, 6, 12962, 329, 264, 287, 3013, 17816, 2618, 6, 11907, 329, 3013, 287, 1366, 17816, 3526, 6, 7131, 6, 16184, 1124, 6, 11907, 198, 220, 220, 220, 26042, 796, 685, 325, 70, 329, 384, 70, 287, 26042, 611, 384, 70, 407, 287, 1767, 60, 198, 220, 220, 220, 9013, 796, 47527, 16344, 17816, 87, 6, 4357, 277, 67, 17816, 88, 6, 12962, 329, 277, 67, 287, 1366, 17816, 3526, 6, 7131, 6, 19425, 6, 11907, 628, 220, 220, 220, 1303, 10133, 13478, 198, 220, 220, 220, 13478, 796, 5923, 1677, 1921, 58, 6057, 62, 312, 60, 198, 220, 220, 220, 13478, 13, 19119, 62, 25080, 8899, 7, 2618, 11, 26042, 11, 9013, 8, 198, 220, 220, 220, 49706, 13, 24442, 7203, 1503, 45510, 11179, 1404, 33767, 7479, 77, 4, 82, 1600, 13478, 13, 533, 2616, 62, 1462, 62, 2536, 28955, 198, 220, 220, 220, 1303, 6822, 329, 2116, 12, 5439, 2840, 198, 220, 220, 220, 13478, 13, 9122, 62, 944, 62, 26268, 3419, 198, 220, 220, 220, 1303, 12346, 1266, 1445, 422, 8308, 2727, 4894, 8899, 198, 220, 220, 220, 11678, 796, 13478, 13, 43027, 62, 76, 5241, 3419, 198, 220, 220, 220, 611, 11678, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4571, 796, 11678, 58, 15, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4571, 796, 705, 929, 6, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 38022, 7597, 314, 6, 3069, 360, 10008, 406, 5673, 46, 4943, 198, 220, 220, 220, 49706, 13, 24442, 7203, 33622, 4064, 82, 1600, 4571, 8, 198, 220, 220, 220, 1441, 1445, 62, 26209, 7, 37295, 8, 628, 198, 31, 10985, 293, 13, 7353, 10786, 14, 437, 11537, 198, 4299, 886, 33529, 198, 220, 220, 220, 705, 7061, 32657, 510, 597, 1181, 913, 5563, 7061, 6, 198, 220, 220, 220, 1441, 886, 62, 26209, 3419, 628, 198, 2, 1475, 3455, 25290, 18878, 598, 357, 568, 2485, 291, 1211, 460, 1064, 340, 8, 198, 31438, 796, 9294, 13, 12286, 62, 1324, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 9294, 13, 5143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3586, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 28, 418, 13, 1136, 24330, 10786, 4061, 3256, 705, 15, 13, 15, 13, 15, 13, 15, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 28, 418, 13, 1136, 24330, 10786, 15490, 3256, 705, 1795, 1795, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 28, 418, 13, 1136, 24330, 10786, 30531, 3256, 6407, 8, 198, 220, 220, 220, 1267, 198 ]
2.508571
1,225
import numpy as np from .c_spheredistrib import F2GaussianSphereDistribution from ..core import FitFunction
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 764, 66, 62, 2777, 6083, 396, 822, 1330, 376, 17, 35389, 31562, 38882, 20344, 3890, 198, 6738, 11485, 7295, 1330, 25048, 22203, 628, 628 ]
3.5
32
""" Given three ints, a b c, return True if one of b or c is "close" (differing from a by at most 1), while the other is "far", differing from both other values by 2 or more. Note: abs(num) computes the absolute value of a number. close_far(1, 2, 10) → True close_far(1, 2, 3) → False close_far(4, 1, 3) → True """
[ 37811, 198, 198, 15056, 1115, 493, 82, 11, 257, 275, 269, 11, 1441, 6407, 611, 530, 286, 275, 393, 269, 318, 366, 19836, 1, 357, 26069, 1586, 422, 257, 416, 379, 749, 352, 828, 981, 262, 584, 318, 366, 16370, 1600, 28742, 422, 1111, 584, 3815, 416, 362, 393, 517, 13, 5740, 25, 2352, 7, 22510, 8, 552, 1769, 262, 4112, 1988, 286, 257, 1271, 13, 220, 198, 198, 19836, 62, 16370, 7, 16, 11, 362, 11, 838, 8, 15168, 6407, 198, 19836, 62, 16370, 7, 16, 11, 362, 11, 513, 8, 15168, 10352, 198, 19836, 62, 16370, 7, 19, 11, 352, 11, 513, 8, 15168, 6407, 198, 198, 37811, 198 ]
2.873874
111
""" This example: 1. Connects to the current model 2. Deploys a charm and waits until it reports itself active 3. Creates an offer 4. Lists the offer 3. Destroys the unit and application """ import tempfile from logging import getLogger from juju import loop from juju.controller import Controller log = getLogger(__name__) if __name__ == '__main__': loop.run(main())
[ 37811, 198, 1212, 1672, 25, 198, 198, 16, 13, 8113, 82, 284, 262, 1459, 2746, 198, 17, 13, 34706, 82, 257, 20024, 290, 28364, 1566, 340, 3136, 2346, 4075, 198, 18, 13, 7921, 274, 281, 2897, 198, 19, 13, 44968, 262, 2897, 198, 18, 13, 8145, 305, 893, 262, 4326, 290, 3586, 198, 198, 37811, 198, 11748, 20218, 7753, 198, 6738, 18931, 1330, 651, 11187, 1362, 198, 198, 6738, 7544, 14396, 1330, 9052, 198, 6738, 7544, 14396, 13, 36500, 1330, 22741, 198, 198, 6404, 796, 651, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 9052, 13, 5143, 7, 12417, 28955, 198 ]
3.239316
117
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'homework.ui' # # Created by: PyQt5 UI code generator 5.9 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 5178, 7822, 7560, 422, 3555, 334, 72, 2393, 705, 26452, 6433, 13, 9019, 6, 198, 2, 198, 2, 15622, 416, 25, 9485, 48, 83, 20, 12454, 2438, 17301, 642, 13, 24, 198, 2, 198, 2, 39410, 0, 1439, 2458, 925, 287, 428, 2393, 481, 307, 2626, 0, 198, 198, 6738, 9485, 48, 83, 20, 1330, 33734, 14055, 11, 33734, 8205, 72, 11, 33734, 54, 312, 11407, 628 ]
2.86747
83
from django.urls import path from .views import LocationCreateView app_name = 'campus' urlpatterns = [ path('location/create/', LocationCreateView.as_view(), name='create_location'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 764, 33571, 1330, 13397, 16447, 7680, 198, 198, 1324, 62, 3672, 796, 705, 43842, 6, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 24886, 14, 17953, 14, 3256, 13397, 16447, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 17953, 62, 24886, 33809, 198, 60, 198 ]
3.183333
60
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from rally.plugins.openstack.scenarios.cinder import volume_types from tests.unit import test
[ 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 15290, 198, 198, 6738, 7903, 13, 37390, 13, 9654, 25558, 13, 1416, 268, 13010, 13, 66, 5540, 1330, 6115, 62, 19199, 198, 6738, 5254, 13, 20850, 1330, 1332, 628, 198 ]
3.399038
208
"""Init file for the paci helpers"""
[ 37811, 31768, 2393, 329, 262, 23503, 72, 49385, 37811, 198 ]
3.7
10
import numpy from omuse.units import units, constants from omuse.community.iemic.interface import iemic from omuse.community.iemic.implicit_utils import newton, continuation from matplotlib import pyplot from bstream import barotropic_streamfunction, overturning_streamfunction,z_from_cellcenterz """ default OCEAN parameters: Ocean__Analyze_Jacobian: True Ocean__Belos_Solver__FGMRES_explicit_residual_test: False Ocean__Belos_Solver__FGMRES_iterations: 500 Ocean__Belos_Solver__FGMRES_output: 100 Ocean__Belos_Solver__FGMRES_restarts: 0 Ocean__Belos_Solver__FGMRES_tolerance: 1e-08 Ocean__Input_file: ocean_input.h5 Ocean__Load_mask: True Ocean__Load_salinity_flux: False Ocean__Load_state: False Ocean__Load_temperature_flux: False Ocean__Max_mask_fixes: 5 Ocean__Output_file: ocean_output.h5 Ocean__Save_column_integral: False Ocean__Save_frequency: 0 Ocean__Save_mask: True Ocean__Save_salinity_flux: True Ocean__Save_state: True Ocean__Save_temperature_flux: True Ocean__THCM__Compute_salinity_integral: True Ocean__THCM__Coriolis_Force: 1 Ocean__THCM__Coupled_Salinity: 0 Ocean__THCM__Coupled_Sea_Ice_Mask: 1 Ocean__THCM__Coupled_Temperature: 0 Ocean__THCM__Depth_hdim: 4000.0 Ocean__THCM__Fix_Pressure_Points: False Ocean__THCM__Flat_Bottom: False Ocean__THCM__Forcing_Type: 0 Ocean__THCM__Global_Bound_xmax: 350.0 Ocean__THCM__Global_Bound_xmin: 286.0 Ocean__THCM__Global_Bound_ymax: 74.0 Ocean__THCM__Global_Bound_ymin: 10.0 Ocean__THCM__Global_Grid_Size_l: 16 Ocean__THCM__Global_Grid_Size_m: 16 Ocean__THCM__Global_Grid_Size_n: 16 Ocean__THCM__Grid_Stretching_qz: 1.0 Ocean__THCM__Inhomogeneous_Mixing: 0 Ocean__THCM__Integral_row_coordinate_i: -1 Ocean__THCM__Integral_row_coordinate_j: -1 Ocean__THCM__Land_Mask: no_mask_specified Ocean__THCM__Levitus_Internal_T_S: False Ocean__THCM__Levitus_S: 1 Ocean__THCM__Levitus_T: 1 Ocean__THCM__Linear_EOS:_alpha_S: 0.00076 Ocean__THCM__Linear_EOS:_alpha_T: 0.0001 Ocean__THCM__Local_SRES_Only: False Ocean__THCM__Mixing: 1 Ocean__THCM__Periodic: False Ocean__THCM__Problem_Description: Unnamed Ocean__THCM__Read_Land_Mask: False Ocean__THCM__Read_Salinity_Perturbation_Mask: False Ocean__THCM__Restoring_Salinity_Profile: 1 Ocean__THCM__Restoring_Temperature_Profile: 1 Ocean__THCM__Rho_Mixing: True Ocean__THCM__Salinity_Forcing_Data: levitus/new/s00an1 Ocean__THCM__Salinity_Integral_Sign: -1 Ocean__THCM__Salinity_Perturbation_Mask: no_mask_specified Ocean__THCM__Scaling: THCM Ocean__THCM__Taper: 1 Ocean__THCM__Temperature_Forcing_Data: levitus/new/t00an1 Ocean__THCM__Topography: 1 Ocean__THCM__Wind_Forcing_Data: wind/trtau.dat Ocean__THCM__Wind_Forcing_Type: 2 Ocean__Use_legacy_fort.3_output: False Ocean__Use_legacy_fort.44_output: True starting (derived parameters): #~ Ocean__THCM__Starting_Parameters__ALPC: nan #~ Ocean__THCM__Starting_Parameters__AL_T: nan #~ Ocean__THCM__Starting_Parameters__ARCL: nan #~ Ocean__THCM__Starting_Parameters__CMPR: nan #~ Ocean__THCM__Starting_Parameters__CONT: nan #~ Ocean__THCM__Starting_Parameters__Combined_Forcing: nan #~ Ocean__THCM__Starting_Parameters__Energy: nan #~ Ocean__THCM__Starting_Parameters__Flux_Perturbation: nan #~ Ocean__THCM__Starting_Parameters__Horizontal_Ekman_Number: nan #~ Ocean__THCM__Starting_Parameters__Horizontal_Peclet_Number: nan #~ Ocean__THCM__Starting_Parameters__IFRICB: nan #~ Ocean__THCM__Starting_Parameters__LAMB: nan #~ Ocean__THCM__Starting_Parameters__MIXP: nan #~ Ocean__THCM__Starting_Parameters__MKAP: nan #~ Ocean__THCM__Starting_Parameters__NLES: nan #~ Ocean__THCM__Starting_Parameters__Nonlinear_Factor: nan #~ Ocean__THCM__Starting_Parameters__P_VC: nan #~ Ocean__THCM__Starting_Parameters__RESC: nan #~ Ocean__THCM__Starting_Parameters__Rayleigh_Number: nan #~ Ocean__THCM__Starting_Parameters__Rossby_Number: nan #~ Ocean__THCM__Starting_Parameters__SPL1: nan #~ Ocean__THCM__Starting_Parameters__SPL2: nan #~ Ocean__THCM__Starting_Parameters__Salinity_Forcing: nan #~ Ocean__THCM__Starting_Parameters__Salinity_Homotopy: nan #~ Ocean__THCM__Starting_Parameters__Salinity_Perturbation: nan #~ Ocean__THCM__Starting_Parameters__Solar_Forcing: nan #~ Ocean__THCM__Starting_Parameters__Temperature_Forcing: nan #~ Ocean__THCM__Starting_Parameters__Vertical_Ekman_Number: nan #~ Ocean__THCM__Starting_Parameters__Vertical_Peclet_Number: nan #~ Ocean__THCM__Starting_Parameters__Wind_Forcing: nan """ if __name__=="__main__": instance=initialize_global_iemic() xmin=instance.parameters.Ocean__THCM__Global_Bound_xmin xmax=instance.parameters.Ocean__THCM__Global_Bound_xmax ymin=instance.parameters.Ocean__THCM__Global_Bound_ymin ymax=instance.parameters.Ocean__THCM__Global_Bound_ymax print(instance.parameters) #~ instance.parameters.Continuation__destination_0=1.0 # Converge to an initial steady state x = instance.get_state() print( instance.Ocean__THCM__Starting_Parameters) x = newton(instance, x, 1e-10) #~ input() lat=instance.grid.lat lon=instance.grid.lon zc=instance.grid[0,0,:].z z=z_from_cellcenterz(zc) #~ yvar=get_yvar(instance.grid) x = continuation(instance, x, 'Ocean->THCM->Starting Parameters->Combined Forcing', 1., 0.2, 20, tol=1.e-6) """ print(instance.Continuation) instance.Continuation.destination_0=1. instance.step_continuation() x=instance.grid print(x) """ uvel=x[:,:,:].u_velocity vvel=x[:,:,:].v_velocity umax=numpy.abs(uvel).max() vmax=numpy.abs(vvel).max() print("umax, vmax:", umax,vmax) #~ fig, axs=pyplot.subplots(2,1,figsize=(8,8)) #~ im=axs[0].imshow(uvel.T, origin="lower", cmap="seismic", vmax=umax, vmin=-umax, extent=[xmin,xmax,ymin,ymax], interpolation="none") #~ fig.colorbar(im,ax=axs[0],label="uvel") #~ im=axs[1].imshow(vvel.T, origin="lower", cmap="seismic", vmax=vmax, vmin=-vmax, extent=[xmin,xmax,ymin,ymax], interpolation="none") #~ fig.colorbar(im,ax=axs[1],label="vvel") #~ pyplot.savefig("test.png") #~ pyplot.show() fig, ax=pyplot.subplots(2,1,figsize=(8,8)) dz=z[1:]-z[:-1] dy=constants.Rearth*x[...].cellsize()[1] psib=barotropic_streamfunction(x[...].u_velocity | 0.1*units.m/units.s,dz,dy) vmax=numpy.abs(psib).max().value_in(units.Sv) im=ax[0].imshow(psib.value_in(units.Sv).T, origin="lower", cmap="seismic", vmax=vmax, vmin=-vmax, extent=[xmin,xmax,ymin,ymax], interpolation="none") fig.colorbar(im,ax=ax[0],label="psib [Sv]") dx=constants.Rearth*x[...].cellsize()[0]*numpy.cos(x[0,:,0].lat.value_in(units.rad)) psim=overturning_streamfunction(x[...].v_velocity | 0.1*units.m/units.s,dz,dx) instance.stop() print("psim") print(psim[:,-1]) vmax=numpy.abs(psim).max().number#value_in(units.Sv) zmin=z.min().value_in(units.m) zmax=z.max().value_in(units.m) im=ax[1].imshow(psim.number.T, origin="lower", cmap="seismic", vmax=vmax, vmin=-vmax, extent=[ymin,ymax,zmin,zmax], interpolation="none", aspect="auto") fig.colorbar(im,ax=ax[1],label="psim [Sv]") pyplot.savefig("psib_psim.png") pyplot.show() print("done")
[ 11748, 299, 32152, 198, 198, 6738, 39030, 1904, 13, 41667, 1330, 4991, 11, 38491, 198, 198, 6738, 39030, 1904, 13, 28158, 13, 72, 5314, 13, 39994, 1330, 1312, 5314, 198, 6738, 39030, 1904, 13, 28158, 13, 72, 5314, 13, 23928, 3628, 62, 26791, 1330, 649, 1122, 11, 24659, 198, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 198, 198, 6738, 275, 5532, 1330, 2318, 46084, 62, 5532, 8818, 11, 17586, 278, 62, 5532, 8818, 11, 89, 62, 6738, 62, 3846, 16159, 89, 628, 198, 37811, 198, 12286, 440, 5222, 1565, 10007, 25, 198, 198, 46607, 834, 37702, 2736, 62, 46751, 666, 25, 6407, 198, 46607, 834, 12193, 418, 62, 50, 14375, 834, 30386, 13599, 1546, 62, 20676, 3628, 62, 411, 312, 723, 62, 9288, 25, 10352, 198, 46607, 834, 12193, 418, 62, 50, 14375, 834, 30386, 13599, 1546, 62, 2676, 602, 25, 5323, 198, 46607, 834, 12193, 418, 62, 50, 14375, 834, 30386, 13599, 1546, 62, 22915, 25, 1802, 198, 46607, 834, 12193, 418, 62, 50, 14375, 834, 30386, 13599, 1546, 62, 2118, 5889, 25, 657, 198, 46607, 834, 12193, 418, 62, 50, 14375, 834, 30386, 13599, 1546, 62, 83, 37668, 25, 352, 68, 12, 2919, 198, 46607, 834, 20560, 62, 7753, 25, 9151, 62, 15414, 13, 71, 20, 198, 46607, 834, 8912, 62, 27932, 25, 6407, 198, 46607, 834, 8912, 62, 21680, 6269, 62, 69, 22564, 25, 10352, 198, 46607, 834, 8912, 62, 5219, 25, 10352, 198, 46607, 834, 8912, 62, 11498, 21069, 62, 69, 22564, 25, 10352, 198, 46607, 834, 11518, 62, 27932, 62, 42624, 25, 642, 198, 46607, 834, 26410, 62, 7753, 25, 9151, 62, 22915, 13, 71, 20, 198, 46607, 834, 16928, 62, 28665, 62, 18908, 1373, 25, 10352, 198, 46607, 834, 16928, 62, 35324, 25, 657, 198, 46607, 834, 16928, 62, 27932, 25, 6407, 198, 46607, 834, 16928, 62, 21680, 6269, 62, 69, 22564, 25, 6407, 198, 46607, 834, 16928, 62, 5219, 25, 6407, 198, 46607, 834, 16928, 62, 11498, 21069, 62, 69, 22564, 25, 6407, 198, 46607, 834, 4221, 24187, 834, 7293, 1133, 62, 21680, 6269, 62, 18908, 1373, 25, 6407, 198, 46607, 834, 4221, 24187, 834, 10606, 1669, 271, 62, 10292, 25, 352, 198, 46607, 834, 4221, 24187, 834, 34, 280, 10137, 62, 19221, 6269, 25, 657, 198, 46607, 834, 4221, 24187, 834, 34, 280, 10137, 62, 37567, 62, 23709, 62, 45195, 25, 352, 198, 46607, 834, 4221, 24187, 834, 34, 280, 10137, 62, 42492, 25, 657, 198, 46607, 834, 4221, 24187, 834, 48791, 62, 71, 27740, 25, 30123, 13, 15, 198, 46607, 834, 4221, 24187, 834, 22743, 62, 13800, 495, 62, 40710, 25, 10352, 198, 46607, 834, 4221, 24187, 834, 7414, 265, 62, 34104, 25, 10352, 198, 46607, 834, 4221, 24187, 834, 1890, 2259, 62, 6030, 25, 657, 198, 46607, 834, 4221, 24187, 834, 22289, 62, 49646, 62, 87, 9806, 25, 13803, 13, 15, 198, 46607, 834, 4221, 24187, 834, 22289, 62, 49646, 62, 87, 1084, 25, 39697, 13, 15, 198, 46607, 834, 4221, 24187, 834, 22289, 62, 49646, 62, 4948, 897, 25, 8915, 13, 15, 198, 46607, 834, 4221, 24187, 834, 22289, 62, 49646, 62, 88, 1084, 25, 838, 13, 15, 198, 46607, 834, 4221, 24187, 834, 22289, 62, 41339, 62, 10699, 62, 75, 25, 1467, 198, 46607, 834, 4221, 24187, 834, 22289, 62, 41339, 62, 10699, 62, 76, 25, 1467, 198, 46607, 834, 4221, 24187, 834, 22289, 62, 41339, 62, 10699, 62, 77, 25, 1467, 198, 46607, 834, 4221, 24187, 834, 41339, 62, 1273, 1186, 10813, 62, 80, 89, 25, 352, 13, 15, 198, 46607, 834, 4221, 24187, 834, 818, 26452, 32269, 62, 35608, 278, 25, 657, 198, 46607, 834, 4221, 24187, 834, 34500, 1373, 62, 808, 62, 37652, 4559, 62, 72, 25, 532, 16, 198, 46607, 834, 4221, 24187, 834, 34500, 1373, 62, 808, 62, 37652, 4559, 62, 73, 25, 532, 16, 198, 46607, 834, 4221, 24187, 834, 22342, 62, 45195, 25, 645, 62, 27932, 62, 23599, 198, 46607, 834, 4221, 24187, 834, 32163, 17506, 62, 37693, 62, 51, 62, 50, 25, 10352, 198, 46607, 834, 4221, 24187, 834, 32163, 17506, 62, 50, 25, 352, 198, 46607, 834, 4221, 24187, 834, 32163, 17506, 62, 51, 25, 352, 198, 46607, 834, 4221, 24187, 834, 14993, 451, 62, 36, 2640, 25, 62, 26591, 62, 50, 25, 657, 13, 830, 4304, 198, 46607, 834, 4221, 24187, 834, 14993, 451, 62, 36, 2640, 25, 62, 26591, 62, 51, 25, 657, 13, 18005, 198, 46607, 834, 4221, 24187, 834, 14565, 62, 12562, 1546, 62, 10049, 25, 10352, 198, 46607, 834, 4221, 24187, 834, 35608, 278, 25, 352, 198, 46607, 834, 4221, 24187, 834, 5990, 2101, 291, 25, 10352, 198, 46607, 834, 4221, 24187, 834, 40781, 62, 11828, 25, 791, 13190, 198, 46607, 834, 4221, 24187, 834, 5569, 62, 22342, 62, 45195, 25, 10352, 198, 46607, 834, 4221, 24187, 834, 5569, 62, 19221, 6269, 62, 47, 861, 5945, 341, 62, 45195, 25, 10352, 198, 46607, 834, 4221, 24187, 834, 19452, 3255, 62, 19221, 6269, 62, 37046, 25, 352, 198, 46607, 834, 4221, 24187, 834, 19452, 3255, 62, 42492, 62, 37046, 25, 352, 198, 46607, 834, 4221, 24187, 834, 49, 8873, 62, 35608, 278, 25, 6407, 198, 46607, 834, 4221, 24187, 834, 19221, 6269, 62, 1890, 2259, 62, 6601, 25, 23145, 17506, 14, 3605, 14, 82, 405, 272, 16, 198, 46607, 834, 4221, 24187, 834, 19221, 6269, 62, 34500, 1373, 62, 11712, 25, 532, 16, 198, 46607, 834, 4221, 24187, 834, 19221, 6269, 62, 47, 861, 5945, 341, 62, 45195, 25, 645, 62, 27932, 62, 23599, 198, 46607, 834, 4221, 24187, 834, 3351, 4272, 25, 2320, 24187, 198, 46607, 834, 4221, 24187, 834, 51, 2136, 25, 352, 198, 46607, 834, 4221, 24187, 834, 42492, 62, 1890, 2259, 62, 6601, 25, 23145, 17506, 14, 3605, 14, 83, 405, 272, 16, 198, 46607, 834, 4221, 24187, 834, 9126, 4867, 25, 352, 198, 46607, 834, 4221, 24187, 834, 8731, 62, 1890, 2259, 62, 6601, 25, 2344, 14, 2213, 83, 559, 13, 19608, 198, 46607, 834, 4221, 24187, 834, 8731, 62, 1890, 2259, 62, 6030, 25, 362, 198, 46607, 834, 11041, 62, 1455, 1590, 62, 3319, 13, 18, 62, 22915, 25, 10352, 198, 46607, 834, 11041, 62, 1455, 1590, 62, 3319, 13, 2598, 62, 22915, 25, 6407, 198, 198, 38690, 357, 34631, 10007, 2599, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 1847, 5662, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 1847, 62, 51, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 1503, 5097, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 24187, 4805, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 37815, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 20575, 1389, 62, 1890, 2259, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 28925, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 37, 22564, 62, 47, 861, 5945, 341, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 27991, 38342, 62, 36, 74, 805, 62, 15057, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 27991, 38342, 62, 47, 721, 1616, 62, 15057, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 5064, 41132, 33, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 43, 2390, 33, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 8895, 27481, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 33907, 2969, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 45, 28378, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 15419, 29127, 62, 41384, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 47, 62, 15922, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 19535, 34, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 19591, 42342, 62, 15057, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 38328, 1525, 62, 15057, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 4303, 43, 16, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 4303, 43, 17, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 19221, 6269, 62, 1890, 2259, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 19221, 6269, 62, 28718, 313, 11081, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 19221, 6269, 62, 47, 861, 5945, 341, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 38825, 62, 1890, 2259, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 42492, 62, 1890, 2259, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 42369, 605, 62, 36, 74, 805, 62, 15057, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 42369, 605, 62, 47, 721, 1616, 62, 15057, 25, 15709, 198, 2, 93, 10692, 834, 4221, 24187, 834, 22851, 62, 48944, 834, 8731, 62, 1890, 2259, 25, 15709, 198, 37811, 198, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 4554, 28, 36733, 1096, 62, 20541, 62, 72, 5314, 3419, 628, 220, 220, 220, 2124, 1084, 28, 39098, 13, 17143, 7307, 13, 46607, 834, 4221, 24187, 834, 22289, 62, 49646, 62, 87, 1084, 198, 220, 220, 220, 2124, 9806, 28, 39098, 13, 17143, 7307, 13, 46607, 834, 4221, 24187, 834, 22289, 62, 49646, 62, 87, 9806, 198, 220, 220, 220, 331, 1084, 28, 39098, 13, 17143, 7307, 13, 46607, 834, 4221, 24187, 834, 22289, 62, 49646, 62, 88, 1084, 198, 220, 220, 220, 331, 9806, 28, 39098, 13, 17143, 7307, 13, 46607, 834, 4221, 24187, 834, 22289, 62, 49646, 62, 4948, 897, 628, 198, 220, 220, 220, 3601, 7, 39098, 13, 17143, 7307, 8, 628, 220, 220, 220, 1303, 93, 4554, 13, 17143, 7307, 13, 17875, 2288, 834, 16520, 1883, 62, 15, 28, 16, 13, 15, 628, 220, 220, 220, 1303, 35602, 469, 284, 281, 4238, 11831, 1181, 198, 220, 220, 220, 2124, 796, 4554, 13, 1136, 62, 5219, 3419, 628, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 4554, 13, 46607, 834, 4221, 24187, 834, 22851, 62, 48944, 8, 628, 220, 220, 220, 2124, 796, 649, 1122, 7, 39098, 11, 2124, 11, 352, 68, 12, 940, 8, 628, 220, 220, 220, 1303, 93, 5128, 3419, 628, 220, 220, 220, 3042, 28, 39098, 13, 25928, 13, 15460, 198, 220, 220, 220, 300, 261, 28, 39098, 13, 25928, 13, 14995, 198, 220, 220, 220, 1976, 66, 28, 39098, 13, 25928, 58, 15, 11, 15, 11, 25, 4083, 89, 628, 220, 220, 220, 1976, 28, 89, 62, 6738, 62, 3846, 16159, 89, 7, 89, 66, 8, 198, 220, 220, 220, 1303, 93, 331, 7785, 28, 1136, 62, 88, 7785, 7, 39098, 13, 25928, 8, 628, 198, 220, 220, 220, 2124, 796, 24659, 7, 39098, 11, 2124, 11, 705, 46607, 3784, 4221, 24187, 3784, 22851, 40117, 3784, 20575, 1389, 1114, 2259, 3256, 352, 1539, 657, 13, 17, 11, 1160, 11, 284, 75, 28, 16, 13, 68, 12, 21, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7, 39098, 13, 17875, 2288, 8, 628, 220, 220, 220, 4554, 13, 17875, 2288, 13, 16520, 1883, 62, 15, 28, 16, 13, 628, 220, 220, 220, 4554, 13, 9662, 62, 18487, 2288, 3419, 198, 220, 220, 220, 2124, 28, 39098, 13, 25928, 198, 220, 220, 220, 3601, 7, 87, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 334, 626, 28, 87, 58, 45299, 45299, 25, 4083, 84, 62, 626, 11683, 198, 220, 220, 220, 410, 626, 28, 87, 58, 45299, 45299, 25, 4083, 85, 62, 626, 11683, 628, 220, 220, 220, 334, 9806, 28, 77, 32152, 13, 8937, 7, 84, 626, 737, 9806, 3419, 198, 220, 220, 220, 410, 9806, 28, 77, 32152, 13, 8937, 7, 85, 626, 737, 9806, 3419, 628, 220, 220, 220, 3601, 7203, 388, 897, 11, 410, 9806, 25, 1600, 334, 9806, 11, 85, 9806, 8, 628, 220, 220, 220, 1303, 93, 2336, 11, 7877, 82, 28, 9078, 29487, 13, 7266, 489, 1747, 7, 17, 11, 16, 11, 5647, 7857, 16193, 23, 11, 23, 4008, 628, 220, 220, 220, 1303, 93, 545, 28, 897, 82, 58, 15, 4083, 320, 12860, 7, 84, 626, 13, 51, 11, 8159, 2625, 21037, 1600, 269, 8899, 2625, 325, 1042, 291, 1600, 410, 9806, 28, 388, 897, 11, 410, 1084, 10779, 388, 897, 11, 6287, 41888, 87, 1084, 11, 87, 9806, 11, 88, 1084, 11, 4948, 897, 4357, 39555, 341, 2625, 23108, 4943, 198, 220, 220, 220, 1303, 93, 2336, 13, 8043, 5657, 7, 320, 11, 897, 28, 897, 82, 58, 15, 4357, 18242, 2625, 84, 626, 4943, 628, 220, 220, 220, 1303, 93, 545, 28, 897, 82, 58, 16, 4083, 320, 12860, 7, 85, 626, 13, 51, 11, 8159, 2625, 21037, 1600, 269, 8899, 2625, 325, 1042, 291, 1600, 410, 9806, 28, 85, 9806, 11, 410, 1084, 10779, 85, 9806, 11, 6287, 41888, 87, 1084, 11, 87, 9806, 11, 88, 1084, 11, 4948, 897, 4357, 39555, 341, 2625, 23108, 4943, 198, 220, 220, 220, 1303, 93, 2336, 13, 8043, 5657, 7, 320, 11, 897, 28, 897, 82, 58, 16, 4357, 18242, 2625, 85, 626, 4943, 628, 220, 220, 220, 1303, 93, 12972, 29487, 13, 21928, 5647, 7203, 9288, 13, 11134, 4943, 628, 220, 220, 220, 1303, 93, 12972, 29487, 13, 12860, 3419, 628, 220, 220, 220, 2336, 11, 7877, 28, 9078, 29487, 13, 7266, 489, 1747, 7, 17, 11, 16, 11, 5647, 7857, 16193, 23, 11, 23, 4008, 628, 220, 220, 220, 288, 89, 28, 89, 58, 16, 25, 45297, 89, 58, 21912, 16, 60, 198, 220, 220, 220, 20268, 28, 9979, 1187, 13, 49, 16442, 9, 87, 58, 986, 4083, 3846, 7857, 3419, 58, 16, 60, 628, 220, 220, 220, 26692, 571, 28, 5657, 46084, 62, 5532, 8818, 7, 87, 58, 986, 4083, 84, 62, 626, 11683, 930, 657, 13, 16, 9, 41667, 13, 76, 14, 41667, 13, 82, 11, 67, 89, 11, 9892, 8, 628, 220, 220, 220, 410, 9806, 28, 77, 32152, 13, 8937, 7, 862, 571, 737, 9806, 22446, 8367, 62, 259, 7, 41667, 13, 50, 85, 8, 628, 220, 220, 220, 545, 28, 897, 58, 15, 4083, 320, 12860, 7, 862, 571, 13, 8367, 62, 259, 7, 41667, 13, 50, 85, 737, 51, 11, 8159, 2625, 21037, 1600, 269, 8899, 2625, 325, 1042, 291, 1600, 410, 9806, 28, 85, 9806, 11, 410, 1084, 10779, 85, 9806, 11, 6287, 41888, 87, 1084, 11, 87, 9806, 11, 88, 1084, 11, 4948, 897, 4357, 39555, 341, 2625, 23108, 4943, 198, 220, 220, 220, 2336, 13, 8043, 5657, 7, 320, 11, 897, 28, 897, 58, 15, 4357, 18242, 2625, 862, 571, 685, 50, 85, 60, 4943, 628, 220, 220, 220, 44332, 28, 9979, 1187, 13, 49, 16442, 9, 87, 58, 986, 4083, 3846, 7857, 3419, 58, 15, 60, 9, 77, 32152, 13, 6966, 7, 87, 58, 15, 11, 45299, 15, 4083, 15460, 13, 8367, 62, 259, 7, 41667, 13, 6335, 4008, 628, 220, 220, 220, 279, 14323, 28, 78, 1851, 700, 278, 62, 5532, 8818, 7, 87, 58, 986, 4083, 85, 62, 626, 11683, 930, 657, 13, 16, 9, 41667, 13, 76, 14, 41667, 13, 82, 11, 67, 89, 11, 34350, 8, 628, 220, 220, 220, 4554, 13, 11338, 3419, 198, 220, 220, 220, 3601, 7203, 862, 320, 4943, 198, 220, 220, 220, 3601, 7, 862, 320, 58, 25, 12095, 16, 12962, 628, 220, 220, 220, 410, 9806, 28, 77, 32152, 13, 8937, 7, 862, 320, 737, 9806, 22446, 17618, 2, 8367, 62, 259, 7, 41667, 13, 50, 85, 8, 198, 220, 220, 220, 1976, 1084, 28, 89, 13, 1084, 22446, 8367, 62, 259, 7, 41667, 13, 76, 8, 198, 220, 220, 220, 1976, 9806, 28, 89, 13, 9806, 22446, 8367, 62, 259, 7, 41667, 13, 76, 8, 628, 220, 220, 220, 545, 28, 897, 58, 16, 4083, 320, 12860, 7, 862, 320, 13, 17618, 13, 51, 11, 8159, 2625, 21037, 1600, 269, 8899, 2625, 325, 1042, 291, 1600, 410, 9806, 28, 85, 9806, 11, 410, 1084, 10779, 85, 9806, 11, 6287, 41888, 88, 1084, 11, 4948, 897, 11, 89, 1084, 11, 89, 9806, 4357, 39555, 341, 2625, 23108, 1600, 4843, 2625, 23736, 4943, 198, 220, 220, 220, 2336, 13, 8043, 5657, 7, 320, 11, 897, 28, 897, 58, 16, 4357, 18242, 2625, 862, 320, 685, 50, 85, 60, 4943, 628, 198, 220, 220, 220, 12972, 29487, 13, 21928, 5647, 7203, 862, 571, 62, 862, 320, 13, 11134, 4943, 628, 220, 220, 220, 12972, 29487, 13, 12860, 3419, 628, 198, 220, 220, 220, 3601, 7203, 28060, 4943, 198 ]
2.503873
2,840
#-*- coding: utf-8 -*- import unittest from utils import * from config import * import sys from websocket import create_connection if __name__ == '__main__': unittest.main()
[ 2, 12, 9, 12, 19617, 25, 3384, 69, 12, 23, 220, 532, 9, 12, 198, 198, 11748, 555, 715, 395, 198, 6738, 3384, 4487, 1330, 1635, 198, 6738, 4566, 1330, 1635, 198, 11748, 25064, 198, 6738, 2639, 5459, 1330, 2251, 62, 38659, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 628, 628, 198 ]
2.761194
67
from pycoin.networks.bitcoinish import create_bitcoinish_network network = create_bitcoinish_network( symbol="BTX", network_name="BitCore", subnet_name="mainnet", wif_prefix_hex="80", sec_prefix="BTXSEC:", address_prefix_hex="03", pay_to_script_prefix_hex="7D", bip32_prv_prefix_hex="0488ADE4", bip32_pub_prefix_hex="0488B21E", magic_header_hex="F9BEB4D9", default_port=8555, dns_bootstrap=[ "seed.bitcore.biz" ])
[ 6738, 12972, 3630, 13, 3262, 5225, 13, 35395, 680, 1330, 2251, 62, 35395, 680, 62, 27349, 198, 198, 27349, 796, 2251, 62, 35395, 680, 62, 27349, 7, 198, 220, 220, 220, 6194, 2625, 19313, 55, 1600, 3127, 62, 3672, 2625, 13128, 14055, 1600, 850, 3262, 62, 3672, 2625, 12417, 3262, 1600, 198, 220, 220, 220, 266, 361, 62, 40290, 62, 33095, 2625, 1795, 1600, 792, 62, 40290, 2625, 19313, 55, 23683, 25, 1600, 2209, 62, 40290, 62, 33095, 2625, 3070, 1600, 1414, 62, 1462, 62, 12048, 62, 40290, 62, 33095, 2625, 22, 35, 1600, 198, 220, 220, 220, 14141, 2624, 62, 1050, 85, 62, 40290, 62, 33095, 2625, 15, 33646, 19266, 19, 1600, 14141, 2624, 62, 12984, 62, 40290, 62, 33095, 2625, 15, 33646, 33, 2481, 36, 1600, 198, 220, 220, 220, 5536, 62, 25677, 62, 33095, 2625, 37, 24, 12473, 33, 19, 35, 24, 1600, 4277, 62, 634, 28, 23, 31046, 11, 198, 220, 220, 220, 288, 5907, 62, 18769, 26418, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28826, 13, 2545, 7295, 13, 42189, 1, 198, 220, 220, 220, 33761, 198 ]
2.416216
185
from accounts.permissions import UserAccess from rest_framework import mixins, status from rest_framework.filters import SearchFilter from rest_framework.response import Response from rest_framework.viewsets import GenericViewSet from ..models import FlaggedToken from ..serializers import TokenSerializer class TokenViewSet(mixins.ListModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin, mixins.CreateModelMixin, GenericViewSet): """ API endpoint that allows tokens to be manged by a user or staffer. """ serializer_class = TokenSerializer filter_backends = [SearchFilter] search_fields = ['user__username', 'write'] permission_classes = [UserAccess] def get_queryset(self): """ Limit the queryset to the current user, except for staffers. """ user = self.request.user if user.is_staff: return FlaggedToken.objects.all() return FlaggedToken.objects.filter(user_id=user.id) def list(self, request, *args, **kwargs): """Get own tokens or all tokens if admin """ return Response( self.serializer_class( self.get_queryset(), many=True, read_only=True, context={'request': request}).data) def create(self, request): """Create a new authtoken for this user. """ serializer = self.serializer_class(data=request.data, context={'request': request}) if not serializer.is_valid(): return Response(status=status.HTTP_406_NOT_ACCEPTABLE) data = serializer.validated_data token = FlaggedToken.objects.create(user=request.user, write=data.get('write', False), description=data.get('description', '')) return Response(self.serializer_class( token, context={'request': request}).data, status=status.HTTP_201_CREATED) def destroy(self, request, pk=None): """Delete a token """ try: if request.user.is_staff: FlaggedToken.objects.get(pk=pk).delete() else: FlaggedToken.objects.get(pk=pk, user=request.user).delete() except FlaggedToken.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) return Response(status=status.HTTP_204_NO_CONTENT) def update(self, request, pk=None): """Update Description oder Write Flag """ try: if request.user.is_staff: token = FlaggedToken.objects.get(pk=pk) else: token = FlaggedToken.objects.get(pk=pk, user=request.user) serializer = self.serializer_class(data=request.data, context={'request': request}) if not serializer.is_valid(): return Response(status=status.HTTP_406_NOT_ACCEPTABLE) data = serializer.validated_data token.description = data['description'] token.write = data['write'] token.save() except FlaggedToken.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) return Response(self.serializer_class( token, context={'request': request}).data, status=status.HTTP_200_OK)
[ 6738, 5504, 13, 525, 8481, 1330, 11787, 15457, 198, 6738, 1334, 62, 30604, 1330, 5022, 1040, 11, 3722, 198, 6738, 1334, 62, 30604, 13, 10379, 1010, 1330, 11140, 22417, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 1177, 28709, 1330, 42044, 7680, 7248, 198, 198, 6738, 11485, 27530, 1330, 1610, 14655, 30642, 198, 6738, 11485, 46911, 11341, 1330, 29130, 32634, 7509, 628, 198, 4871, 29130, 7680, 7248, 7, 19816, 1040, 13, 8053, 17633, 35608, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5022, 1040, 13, 10260, 17633, 35608, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5022, 1040, 13, 49174, 17633, 35608, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5022, 1040, 13, 16447, 17633, 35608, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42044, 7680, 7248, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7824, 36123, 326, 3578, 16326, 284, 307, 582, 2004, 416, 257, 2836, 393, 29685, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11389, 7509, 62, 4871, 796, 29130, 32634, 7509, 198, 220, 220, 220, 8106, 62, 1891, 2412, 796, 685, 18243, 22417, 60, 198, 220, 220, 220, 2989, 62, 25747, 796, 37250, 7220, 834, 29460, 3256, 705, 13564, 20520, 628, 220, 220, 220, 7170, 62, 37724, 796, 685, 12982, 15457, 60, 628, 220, 220, 220, 825, 651, 62, 10819, 893, 316, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27272, 262, 42517, 893, 316, 284, 262, 1459, 2836, 11, 2845, 329, 23033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 2116, 13, 25927, 13, 7220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 13, 271, 62, 28120, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1610, 14655, 30642, 13, 48205, 13, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1610, 14655, 30642, 13, 48205, 13, 24455, 7, 7220, 62, 312, 28, 7220, 13, 312, 8, 628, 220, 220, 220, 825, 1351, 7, 944, 11, 2581, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 898, 16326, 393, 477, 16326, 611, 13169, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46911, 7509, 62, 4871, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 10819, 893, 316, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 867, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1100, 62, 8807, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 34758, 6, 25927, 10354, 2581, 92, 737, 7890, 8, 628, 220, 220, 220, 825, 2251, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 649, 6284, 30001, 329, 428, 2836, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 796, 2116, 13, 46911, 7509, 62, 4871, 7, 7890, 28, 25927, 13, 7890, 11, 4732, 34758, 6, 25927, 10354, 2581, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 11389, 7509, 13, 271, 62, 12102, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 13376, 28, 13376, 13, 40717, 62, 29703, 62, 11929, 62, 2246, 5222, 47, 38148, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 11389, 7509, 13, 12102, 515, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 1610, 14655, 30642, 13, 48205, 13, 17953, 7, 7220, 28, 25927, 13, 7220, 11, 3551, 28, 7890, 13, 1136, 10786, 13564, 3256, 10352, 828, 6764, 28, 7890, 13, 1136, 10786, 11213, 3256, 10148, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 944, 13, 46911, 7509, 62, 4871, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 34758, 6, 25927, 10354, 2581, 92, 737, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 28, 13376, 13, 40717, 62, 1264, 62, 43387, 11617, 8, 628, 220, 220, 220, 825, 4117, 7, 944, 11, 2581, 11, 279, 74, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 257, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2581, 13, 7220, 13, 271, 62, 28120, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1610, 14655, 30642, 13, 48205, 13, 1136, 7, 79, 74, 28, 79, 74, 737, 33678, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1610, 14655, 30642, 13, 48205, 13, 1136, 7, 79, 74, 28, 79, 74, 11, 2836, 28, 25927, 13, 7220, 737, 33678, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1610, 14655, 30642, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 13376, 28, 13376, 13, 40717, 62, 26429, 62, 11929, 62, 37, 15919, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 13376, 28, 13376, 13, 40717, 62, 18638, 62, 15285, 62, 37815, 3525, 8, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 2581, 11, 279, 74, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 12489, 267, 1082, 19430, 19762, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2581, 13, 7220, 13, 271, 62, 28120, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 1610, 14655, 30642, 13, 48205, 13, 1136, 7, 79, 74, 28, 79, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 1610, 14655, 30642, 13, 48205, 13, 1136, 7, 79, 74, 28, 79, 74, 11, 2836, 28, 25927, 13, 7220, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 7509, 796, 2116, 13, 46911, 7509, 62, 4871, 7, 7890, 28, 25927, 13, 7890, 11, 4732, 34758, 6, 25927, 10354, 2581, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 11389, 7509, 13, 271, 62, 12102, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 13376, 28, 13376, 13, 40717, 62, 29703, 62, 11929, 62, 2246, 5222, 47, 38148, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 11389, 7509, 13, 12102, 515, 62, 7890, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 13, 11213, 796, 1366, 17816, 11213, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 13, 13564, 796, 1366, 17816, 13564, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 13, 21928, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 1610, 14655, 30642, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 13376, 28, 13376, 13, 40717, 62, 26429, 62, 11929, 62, 37, 15919, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 944, 13, 46911, 7509, 62, 4871, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 34758, 6, 25927, 10354, 2581, 92, 737, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 28, 13376, 13, 40717, 62, 2167, 62, 11380, 8, 198 ]
2.274681
1,489
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import Optional import oneflow._oneflow_internal from oneflow.compatible import single_client as flow from oneflow.compatible.single_client.framework import id_util as id_util from oneflow.compatible.single_client.framework import remote_blob as remote_blob_util def categorical_ordinal_encode( table: oneflow._oneflow_internal.BlobDesc, size: oneflow._oneflow_internal.BlobDesc, input_tensor: oneflow._oneflow_internal.BlobDesc, hash_precomputed: bool = True, name: Optional[str] = None, ) -> oneflow._oneflow_internal.BlobDesc: """This operator maintains a hash table to encode the categorical ordinal Blob. It converts a discrete input value into a continuous integer ID. Args: table (oneflow._oneflow_internal.BlobDesc): The hash table, you can assign it as a variable. size (oneflow._oneflow_internal.BlobDesc): The size of hash table. input_tensor (oneflow._oneflow_internal.BlobDesc): The input Blob. hash_precomputed (bool, optional): We currently only support the 'True' mode. The internal hash value will no longer be computed. Defaults to True. name (Optional[str], optional): The name for the operation. Defaults to None. Returns: oneflow._oneflow_internal.BlobDesc: The result Blob. For example: .. code-block:: python import oneflow.compatible.single_client as flow import numpy as np import oneflow.compatible.single_client.typing as tp @flow.global_function() def categorical_ordinal_encode_Job(x: tp.Numpy.Placeholder((3, 3), dtype=flow.int32) ) -> tp.Numpy: dtype = x.dtype with flow.scope.namespace("categorical_ordinal_encode"): table = flow.get_variable( name="Table", shape=(16,), dtype=dtype, initializer=flow.constant_initializer(0, dtype=dtype), trainable=False, reuse=False, ) size = flow.get_variable( name="Size", shape=(1,), dtype=dtype, initializer=flow.constant_initializer(0, dtype=dtype), trainable=False, reuse=False, ) return flow.categorical_ordinal_encode( table=table, size=size, input_tensor=x, name="Encode", ) x = np.array([[7, 0, 2], [1, 7, 2], [0, 1, 7]]).astype(np.int32) out = categorical_ordinal_encode_Job(x) # out [[1 0 2] # [3 1 2] # [0 3 1]] """ assert hash_precomputed is True return ( flow.user_op_builder(name or id_util.UniqueStr("CategoricalOrdinalEncode_")) .Op("CategoricalOrdinalEncode") .Input("in", [input_tensor]) .Input("table", [table]) .Input("size", [size]) .Output("out") .Attr("hash_precomputed", hash_precomputed) .Build() .InferAndTryRun() .RemoteBlobList()[0] ) def categorical_ordinal_encoder( input_tensor: oneflow._oneflow_internal.BlobDesc, capacity: int, hash_precomputed: bool = True, name: str = "CategoricalOrdinalEncoder", ) -> oneflow._oneflow_internal.BlobDesc: """This operator uses `oneflow.compatible.single_client.categorical_ordinal_encode` to encapsulate a categorical_ordinal_encoder. More details please refer to `oneflow.compatible.single_client.categorical_ordinal_encode` Args: input_tensor (oneflow._oneflow_internal.BlobDesc): The input Blob. capacity (int): The capacity of hash table. hash_precomputed (bool, optional): We currently only support the 'True' mode. The internal hash value will no longer be computed. Defaults to True. name (str, optional): The name for the operation. Defaults to "CategoricalOrdinalEncoder". Returns: oneflow._oneflow_internal.BlobDesc: The result Blob. For example: .. code-block:: python import oneflow.compatible.single_client as flow import numpy as np import oneflow.compatible.single_client.typing as tp @flow.global_function() def categorical_ordinal_encoder_Job(x: tp.Numpy.Placeholder((3, 3), dtype=flow.int32) ) -> tp.Numpy: return flow.layers.categorical_ordinal_encoder(x, 16) x = np.array([[7, 0, 2], [1, 7, 2], [0, 1, 7]]).astype(np.int32) out = categorical_ordinal_encoder_Job(x) # out [[1 0 2] # [3 1 2] # [0 3 1]] """ assert hash_precomputed is True dtype = input_tensor.dtype with flow.scope.namespace(name): table = flow.get_variable( name="Table", shape=(capacity * 2,), dtype=dtype, initializer=flow.constant_initializer(0, dtype=dtype), trainable=False, reuse=False, ) size = flow.get_variable( name="Size", shape=(1,), dtype=dtype, initializer=flow.constant_initializer(0, dtype=dtype), trainable=False, reuse=False, ) return categorical_ordinal_encode( table=table, size=size, input_tensor=input_tensor, name="Encode" )
[ 37811, 198, 15269, 12131, 383, 1881, 37535, 46665, 13, 1439, 2489, 10395, 13, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 6738, 19720, 1330, 32233, 198, 198, 11748, 530, 11125, 13557, 505, 11125, 62, 32538, 198, 6738, 530, 11125, 13, 38532, 1330, 2060, 62, 16366, 355, 5202, 198, 6738, 530, 11125, 13, 38532, 13, 29762, 62, 16366, 13, 30604, 1330, 4686, 62, 22602, 355, 4686, 62, 22602, 198, 6738, 530, 11125, 13, 38532, 13, 29762, 62, 16366, 13, 30604, 1330, 6569, 62, 2436, 672, 355, 6569, 62, 2436, 672, 62, 22602, 628, 198, 4299, 4253, 12409, 62, 585, 1292, 62, 268, 8189, 7, 198, 220, 220, 220, 3084, 25, 530, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 11, 198, 220, 220, 220, 2546, 25, 530, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 11, 198, 220, 220, 220, 5128, 62, 83, 22854, 25, 530, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 11, 198, 220, 220, 220, 12234, 62, 3866, 785, 17128, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 1438, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 8, 4613, 530, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 25, 198, 220, 220, 220, 37227, 1212, 10088, 16047, 257, 12234, 3084, 284, 37773, 262, 4253, 12409, 2760, 1292, 1086, 672, 13, 632, 26161, 257, 28810, 5128, 1988, 656, 257, 12948, 18253, 4522, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 357, 505, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 2599, 383, 12234, 3084, 11, 345, 460, 8333, 340, 355, 257, 7885, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 357, 505, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 2599, 383, 2546, 286, 12234, 3084, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 83, 22854, 357, 505, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 2599, 383, 5128, 1086, 672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12234, 62, 3866, 785, 17128, 357, 30388, 11, 11902, 2599, 775, 3058, 691, 1104, 262, 705, 17821, 6, 4235, 13, 383, 5387, 12234, 1988, 481, 645, 2392, 307, 29231, 13, 2896, 13185, 284, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 357, 30719, 58, 2536, 4357, 11902, 2599, 383, 1438, 329, 262, 4905, 13, 2896, 13185, 284, 6045, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 530, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 25, 383, 1255, 1086, 672, 13, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 13, 38532, 13, 29762, 62, 16366, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 13, 38532, 13, 29762, 62, 16366, 13, 774, 13886, 355, 256, 79, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 11125, 13, 20541, 62, 8818, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 825, 4253, 12409, 62, 585, 1292, 62, 268, 8189, 62, 33308, 7, 87, 25, 256, 79, 13, 45, 32152, 13, 27271, 13829, 19510, 18, 11, 513, 828, 288, 4906, 28, 11125, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 4613, 256, 79, 13, 45, 32152, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 2124, 13, 67, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 5202, 13, 29982, 13, 14933, 10223, 7203, 66, 2397, 12409, 62, 585, 1292, 62, 268, 8189, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 5202, 13, 1136, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 10962, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 1433, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 28, 11125, 13, 9979, 415, 62, 36733, 7509, 7, 15, 11, 288, 4906, 28, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 540, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32349, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 5202, 13, 1136, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 10699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 16, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 28, 11125, 13, 9979, 415, 62, 36733, 7509, 7, 15, 11, 288, 4906, 28, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 540, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32349, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5202, 13, 66, 2397, 12409, 62, 585, 1292, 62, 268, 8189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 28, 11487, 11, 2546, 28, 7857, 11, 5128, 62, 83, 22854, 28, 87, 11, 1438, 2625, 4834, 8189, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 45941, 13, 18747, 26933, 58, 22, 11, 657, 11, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 767, 11, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 352, 11, 767, 11907, 737, 459, 2981, 7, 37659, 13, 600, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 503, 796, 4253, 12409, 62, 585, 1292, 62, 268, 8189, 62, 33308, 7, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 503, 16410, 16, 657, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 685, 18, 352, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 685, 15, 513, 352, 11907, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 12234, 62, 3866, 785, 17128, 318, 6407, 198, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 5202, 13, 7220, 62, 404, 62, 38272, 7, 3672, 393, 4686, 62, 22602, 13, 40257, 13290, 7203, 34, 2397, 12409, 35422, 1292, 4834, 8189, 62, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 764, 18257, 7203, 34, 2397, 12409, 35422, 1292, 4834, 8189, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 764, 20560, 7203, 259, 1600, 685, 15414, 62, 83, 22854, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 764, 20560, 7203, 11487, 1600, 685, 11487, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 764, 20560, 7203, 7857, 1600, 685, 7857, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 764, 26410, 7203, 448, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 764, 8086, 81, 7203, 17831, 62, 3866, 785, 17128, 1600, 12234, 62, 3866, 785, 17128, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 15580, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 764, 818, 2232, 1870, 23433, 10987, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 764, 36510, 3629, 672, 8053, 3419, 58, 15, 60, 198, 220, 220, 220, 1267, 628, 198, 4299, 4253, 12409, 62, 585, 1292, 62, 12685, 12342, 7, 198, 220, 220, 220, 5128, 62, 83, 22854, 25, 530, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 11, 198, 220, 220, 220, 5339, 25, 493, 11, 198, 220, 220, 220, 12234, 62, 3866, 785, 17128, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 1438, 25, 965, 796, 366, 34, 2397, 12409, 35422, 1292, 27195, 12342, 1600, 198, 8, 4613, 530, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 25, 198, 220, 220, 220, 37227, 1212, 10088, 3544, 4600, 505, 11125, 13, 38532, 13, 29762, 62, 16366, 13, 66, 2397, 12409, 62, 585, 1292, 62, 268, 8189, 63, 284, 32652, 5039, 257, 4253, 12409, 62, 585, 1292, 62, 12685, 12342, 13, 3125, 3307, 3387, 3522, 284, 4600, 505, 11125, 13, 38532, 13, 29762, 62, 16366, 13, 66, 2397, 12409, 62, 585, 1292, 62, 268, 8189, 63, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 83, 22854, 357, 505, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 2599, 383, 5128, 1086, 672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 357, 600, 2599, 383, 5339, 286, 12234, 3084, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12234, 62, 3866, 785, 17128, 357, 30388, 11, 11902, 2599, 775, 3058, 691, 1104, 262, 705, 17821, 6, 4235, 13, 383, 5387, 12234, 1988, 481, 645, 2392, 307, 29231, 13, 2896, 13185, 284, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 357, 2536, 11, 11902, 2599, 383, 1438, 329, 262, 4905, 13, 2896, 13185, 284, 366, 34, 2397, 12409, 35422, 1292, 27195, 12342, 1911, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 530, 11125, 13557, 505, 11125, 62, 32538, 13, 3629, 672, 24564, 25, 383, 1255, 1086, 672, 13, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 13, 38532, 13, 29762, 62, 16366, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 13, 38532, 13, 29762, 62, 16366, 13, 774, 13886, 355, 256, 79, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 11125, 13, 20541, 62, 8818, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 825, 4253, 12409, 62, 585, 1292, 62, 12685, 12342, 62, 33308, 7, 87, 25, 256, 79, 13, 45, 32152, 13, 27271, 13829, 19510, 18, 11, 513, 828, 288, 4906, 28, 11125, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 4613, 256, 79, 13, 45, 32152, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5202, 13, 75, 6962, 13, 66, 2397, 12409, 62, 585, 1292, 62, 12685, 12342, 7, 87, 11, 1467, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 45941, 13, 18747, 26933, 58, 22, 11, 657, 11, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 767, 11, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 352, 11, 767, 11907, 737, 459, 2981, 7, 37659, 13, 600, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 503, 796, 4253, 12409, 62, 585, 1292, 62, 12685, 12342, 62, 33308, 7, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 503, 16410, 16, 657, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 685, 18, 352, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 685, 15, 513, 352, 11907, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 12234, 62, 3866, 785, 17128, 318, 6407, 198, 220, 220, 220, 288, 4906, 796, 5128, 62, 83, 22854, 13, 67, 4906, 198, 220, 220, 220, 351, 5202, 13, 29982, 13, 14933, 10223, 7, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 5202, 13, 1136, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 10962, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 42404, 1635, 362, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 28, 11125, 13, 9979, 415, 62, 36733, 7509, 7, 15, 11, 288, 4906, 28, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 540, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32349, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 5202, 13, 1136, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 10699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 16, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 28, 11125, 13, 9979, 415, 62, 36733, 7509, 7, 15, 11, 288, 4906, 28, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 540, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32349, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4253, 12409, 62, 585, 1292, 62, 268, 8189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 28, 11487, 11, 2546, 28, 7857, 11, 5128, 62, 83, 22854, 28, 15414, 62, 83, 22854, 11, 1438, 2625, 4834, 8189, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.267342
2,667
import asyncio from unittest import TestCase import jsons from jsons import InvalidDecorationError from jsons.decorators import loaded, dumped
[ 11748, 30351, 952, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 11748, 44804, 684, 198, 6738, 44804, 684, 1330, 17665, 10707, 6944, 12331, 198, 6738, 44804, 684, 13, 12501, 273, 2024, 1330, 9639, 11, 24105, 628 ]
3.815789
38
""" Airflow API (Stable) Apache Airflow management API. # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import sys import unittest import airflow_python_sdk from airflow_python_sdk.model.class_reference import ClassReference from airflow_python_sdk.model.color import Color from airflow_python_sdk.model.task_extra_links import TaskExtraLinks from airflow_python_sdk.model.time_delta import TimeDelta from airflow_python_sdk.model.trigger_rule import TriggerRule from airflow_python_sdk.model.weight_rule import WeightRule globals()['ClassReference'] = ClassReference globals()['Color'] = Color globals()['TaskExtraLinks'] = TaskExtraLinks globals()['TimeDelta'] = TimeDelta globals()['TriggerRule'] = TriggerRule globals()['WeightRule'] = WeightRule from airflow_python_sdk.model.task import Task class TestTask(unittest.TestCase): """Task unit test stubs""" def testTask(self): """Test Task""" # FIXME: construct object with mandatory attributes with example values # model = Task() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ 37811, 198, 220, 220, 220, 3701, 11125, 7824, 357, 1273, 540, 8, 628, 220, 220, 220, 24843, 3701, 11125, 4542, 7824, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 383, 2196, 286, 262, 4946, 17614, 3188, 25, 352, 13, 15, 13, 15, 198, 220, 220, 220, 14039, 25, 1976, 620, 13, 89, 13, 4528, 84, 31, 14816, 13, 785, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 198, 37811, 628, 198, 11748, 25064, 198, 11748, 555, 715, 395, 198, 198, 11748, 45771, 62, 29412, 62, 21282, 74, 198, 6738, 45771, 62, 29412, 62, 21282, 74, 13, 19849, 13, 4871, 62, 35790, 1330, 5016, 26687, 198, 6738, 45771, 62, 29412, 62, 21282, 74, 13, 19849, 13, 8043, 1330, 5315, 198, 6738, 45771, 62, 29412, 62, 21282, 74, 13, 19849, 13, 35943, 62, 26086, 62, 28751, 1330, 15941, 27726, 31815, 198, 6738, 45771, 62, 29412, 62, 21282, 74, 13, 19849, 13, 2435, 62, 67, 12514, 1330, 3862, 42430, 198, 6738, 45771, 62, 29412, 62, 21282, 74, 13, 19849, 13, 46284, 62, 25135, 1330, 24593, 31929, 198, 6738, 45771, 62, 29412, 62, 21282, 74, 13, 19849, 13, 6551, 62, 25135, 1330, 14331, 31929, 198, 4743, 672, 874, 3419, 17816, 9487, 26687, 20520, 796, 5016, 26687, 198, 4743, 672, 874, 3419, 17816, 10258, 20520, 796, 5315, 198, 4743, 672, 874, 3419, 17816, 25714, 27726, 31815, 20520, 796, 15941, 27726, 31815, 198, 4743, 672, 874, 3419, 17816, 7575, 42430, 20520, 796, 3862, 42430, 198, 4743, 672, 874, 3419, 17816, 48344, 31929, 20520, 796, 24593, 31929, 198, 4743, 672, 874, 3419, 17816, 25844, 31929, 20520, 796, 14331, 31929, 198, 6738, 45771, 62, 29412, 62, 21282, 74, 13, 19849, 13, 35943, 1330, 15941, 628, 198, 4871, 6208, 25714, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 25714, 4326, 1332, 17071, 82, 37811, 628, 220, 220, 220, 825, 1332, 25714, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 15941, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 44855, 11682, 25, 5678, 2134, 351, 13677, 12608, 351, 1672, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2746, 796, 15941, 3419, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.970516
407
import json from sqlalchemy import Numeric from sqlalchemy.sql.elements import BinaryExpression from sqlalchemy_filtering.operators import FilterOperator, SQLDialect from sqlalchemy_filtering.validators import FilterRequest, Filter, _get_numeric_types, SQLAlchemyField def filter_apply(query, entity, obj: FilterRequest = None, dialect: SQLDialect = None): """ Construct filters on SQLAlchemy query :param query: Query object of type :class:`sqlalchemy.orm.Query`. :param entity: SQLAlchemy model class. :param obj: :class:`FilterRequest` object. :param dialect: :class:`SQLDialect` enum object Example object -- Simple request obj = { "filter": [ { "field": "demographics", "node": "age", "operator": ">=", "value": 20 }, { "field": "demographics", "node": "first_name", "operator": "like", "value": "%Test%" } ], "sort": [...] } --- Simple request with operators obj = { "filter": [ "and": [ { "field": "demographics", "node": "age", "operator": ">=", "value": 20 }, { "field": "demographics", "node": "first_name", "operator": "like", "value": "%Test%" } ] ], "sort": [...] } -- JSON request obj = "filter": [ { "field": "details", "node": "user_details", "operator": "@>", "valueType": "jsonb", "value": "[{\"skill\":\"Fighting\",\"rating\":10}]" } ], "sort": [...] } :returns: Query object of type :class:`sqlalchemy.orm.Query` with applied filters. """ exps = [] if obj.filter is None: return query for key_operator in obj.filter.keys(): for f_obj in obj.filter[key_operator]: node = f_obj.node root_node = f_obj.field field = f_obj.field field_node = f_obj.field if node is None else node values = f_obj.value if type(values) is Filter: new_values: Filter = values tmp_new_node = new_values.node new_values.node = node + '.' + new_values.field if tmp_new_node is not None: new_values.node = new_values.node + '.' + tmp_new_node new_values.field = root_node new_values.operator = new_values.operator.operator query_obj = {"filter": [new_values.__dict__]} query = filter_apply(query, entity, FilterRequest(query_obj), dialect=dialect) continue # Get model field node_split = field_node.split('.') if len(node_split) == 1 and type(values) is not dict: if field == field_node: stmt = SQLAlchemyField(entity, field).get_field() else: stmt = SQLAlchemyField(entity, field).get_field()[field_node] else: stmt = SQLAlchemyField(entity, field).get_field() for n in field_node.split('.'): stmt = stmt[n] # Cast fields stmt = _cast_statement(stmt, f_obj, dialect) # Apply comparison operator stmt = f_obj.operator.execute(left=stmt, right=values) exps.append(stmt) # Add filter to query object query = query.filter(FilterOperator(key_operator).execute(*exps)) return query def _cast_statement(statement, obj: Filter = None, dialect: SQLDialect = None): """ Cast statements to match database field types. :param statement: SQLAlchemy expression of types `sqlalchemy.sql.elements.BinaryExpression` (used on simple queries) or `sqlalchemy.orm.attributes.InstrumentedAttribute` (used on advanced JSON queries). :param obj: :class:`Filter` object. :param dialect: :class:`SQLDialect` enum object :return: :class:`sqlalchemy.sql.elements.BinaryExpression` or `sqlalchemy.orm.attributes.InstrumentedAttribute`. """ values = obj.value if isinstance(statement, BinaryExpression) and dialect == SQLDialect.POSTGRESQL: value_type = type(values) if value_type is list: if len(values) != 0: element = type(values[0]) statement = statement.cast(Numeric) if element in _get_numeric_types() else statement.astext else: return statement elif value_type is str: try: json.loads(values) return statement except ValueError: statement = statement.astext elif value_type in _get_numeric_types(): statement = statement.cast(Numeric) return statement
[ 11748, 33918, 198, 6738, 44161, 282, 26599, 1330, 399, 39223, 198, 6738, 44161, 282, 26599, 13, 25410, 13, 68, 3639, 1330, 45755, 16870, 2234, 198, 198, 6738, 44161, 282, 26599, 62, 10379, 20212, 13, 3575, 2024, 1330, 25853, 18843, 1352, 11, 16363, 24400, 478, 198, 6738, 44161, 282, 26599, 62, 10379, 20212, 13, 12102, 2024, 1330, 25853, 18453, 11, 25853, 11, 4808, 1136, 62, 77, 39223, 62, 19199, 11, 16363, 2348, 26599, 15878, 628, 198, 4299, 8106, 62, 39014, 7, 22766, 11, 9312, 11, 26181, 25, 25853, 18453, 796, 6045, 11, 23637, 25, 16363, 24400, 478, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28407, 16628, 319, 16363, 2348, 26599, 12405, 628, 220, 220, 220, 1058, 17143, 12405, 25, 43301, 2134, 286, 2099, 1058, 4871, 25, 63, 25410, 282, 26599, 13, 579, 13, 20746, 44646, 198, 220, 220, 220, 1058, 17143, 9312, 25, 16363, 2348, 26599, 2746, 1398, 13, 198, 220, 220, 220, 1058, 17143, 26181, 25, 1058, 4871, 25, 63, 22417, 18453, 63, 2134, 13, 198, 220, 220, 220, 1058, 17143, 23637, 25, 1058, 4871, 25, 63, 17861, 24400, 478, 63, 33829, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 17934, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 1377, 17427, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24455, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 9536, 24188, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17440, 1298, 366, 496, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46616, 1298, 366, 29, 28, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 1298, 1160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 9536, 24188, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17440, 1298, 366, 11085, 62, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46616, 1298, 366, 2339, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 1298, 36521, 14402, 39658, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30619, 1298, 26894, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 11420, 17427, 2581, 351, 12879, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24455, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 392, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 9536, 24188, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17440, 1298, 366, 496, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46616, 1298, 366, 29, 28, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 1298, 1160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 9536, 24188, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17440, 1298, 366, 11085, 62, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46616, 1298, 366, 2339, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 1298, 36521, 14402, 39658, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30619, 1298, 26894, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1377, 19449, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24455, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 36604, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17440, 1298, 366, 7220, 62, 36604, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46616, 1298, 44212, 29, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 6030, 1298, 366, 17752, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 1298, 12878, 90, 7879, 42401, 30478, 7879, 46375, 34607, 7879, 8821, 30478, 940, 92, 30866, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30619, 1298, 26894, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 1058, 7783, 82, 25, 43301, 2134, 286, 2099, 1058, 4871, 25, 63, 25410, 282, 26599, 13, 579, 13, 20746, 63, 351, 5625, 16628, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 409, 862, 796, 17635, 198, 220, 220, 220, 611, 26181, 13, 24455, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12405, 628, 220, 220, 220, 329, 1994, 62, 46616, 287, 26181, 13, 24455, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 277, 62, 26801, 287, 26181, 13, 24455, 58, 2539, 62, 46616, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 796, 277, 62, 26801, 13, 17440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 17440, 796, 277, 62, 26801, 13, 3245, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 796, 277, 62, 26801, 13, 3245, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 17440, 796, 277, 62, 26801, 13, 3245, 611, 10139, 318, 6045, 2073, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 277, 62, 26801, 13, 8367, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 27160, 8, 318, 25853, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27160, 25, 25853, 796, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 62, 3605, 62, 17440, 796, 649, 62, 27160, 13, 17440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27160, 13, 17440, 796, 10139, 1343, 705, 2637, 1343, 649, 62, 27160, 13, 3245, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45218, 62, 3605, 62, 17440, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27160, 13, 17440, 796, 649, 62, 27160, 13, 17440, 1343, 705, 2637, 1343, 45218, 62, 3605, 62, 17440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27160, 13, 3245, 796, 6808, 62, 17440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27160, 13, 46616, 796, 649, 62, 27160, 13, 46616, 13, 46616, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 26801, 796, 19779, 24455, 1298, 685, 3605, 62, 27160, 13, 834, 11600, 834, 48999, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 8106, 62, 39014, 7, 22766, 11, 9312, 11, 25853, 18453, 7, 22766, 62, 26801, 828, 23637, 28, 38969, 478, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 2746, 2214, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 35312, 796, 2214, 62, 17440, 13, 35312, 10786, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 17440, 62, 35312, 8, 6624, 352, 290, 2099, 7, 27160, 8, 318, 407, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 6624, 2214, 62, 17440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 16762, 796, 16363, 2348, 26599, 15878, 7, 26858, 11, 2214, 737, 1136, 62, 3245, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 16762, 796, 16363, 2348, 26599, 15878, 7, 26858, 11, 2214, 737, 1136, 62, 3245, 3419, 58, 3245, 62, 17440, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 16762, 796, 16363, 2348, 26599, 15878, 7, 26858, 11, 2214, 737, 1136, 62, 3245, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2214, 62, 17440, 13, 35312, 10786, 2637, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 16762, 796, 336, 16762, 58, 77, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5833, 7032, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 16762, 796, 4808, 2701, 62, 26090, 7, 301, 16762, 11, 277, 62, 26801, 11, 23637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 7208, 10088, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 16762, 796, 277, 62, 26801, 13, 46616, 13, 41049, 7, 9464, 28, 301, 16762, 11, 826, 28, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 862, 13, 33295, 7, 301, 16762, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 8106, 284, 12405, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 13, 24455, 7, 22417, 18843, 1352, 7, 2539, 62, 46616, 737, 41049, 46491, 1069, 862, 4008, 198, 220, 220, 220, 1441, 12405, 628, 198, 4299, 4808, 2701, 62, 26090, 7, 26090, 11, 26181, 25, 25853, 796, 6045, 11, 23637, 25, 16363, 24400, 478, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5833, 6299, 284, 2872, 6831, 2214, 3858, 13, 628, 220, 220, 220, 1058, 17143, 2643, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16363, 2348, 26599, 5408, 286, 3858, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 25410, 282, 26599, 13, 25410, 13, 68, 3639, 13, 33, 3219, 16870, 2234, 63, 357, 1484, 319, 2829, 20743, 8, 198, 220, 220, 220, 220, 220, 220, 220, 393, 4600, 25410, 282, 26599, 13, 579, 13, 1078, 7657, 13, 818, 43872, 276, 33682, 63, 357, 1484, 319, 6190, 19449, 20743, 737, 198, 220, 220, 220, 1058, 17143, 26181, 25, 1058, 4871, 25, 63, 22417, 63, 2134, 13, 198, 220, 220, 220, 1058, 17143, 23637, 25, 1058, 4871, 25, 63, 17861, 24400, 478, 63, 33829, 2134, 198, 220, 220, 220, 1058, 7783, 25, 1058, 4871, 25, 63, 25410, 282, 26599, 13, 25410, 13, 68, 3639, 13, 33, 3219, 16870, 2234, 63, 393, 4600, 25410, 282, 26599, 13, 579, 13, 1078, 7657, 13, 818, 43872, 276, 33682, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3815, 796, 26181, 13, 8367, 628, 220, 220, 220, 611, 318, 39098, 7, 26090, 11, 45755, 16870, 2234, 8, 290, 23637, 6624, 16363, 24400, 478, 13, 32782, 10761, 1546, 9711, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 4906, 796, 2099, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 62, 4906, 318, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 27160, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5002, 796, 2099, 7, 27160, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2643, 796, 2643, 13, 2701, 7, 45, 39223, 8, 611, 5002, 287, 4808, 1136, 62, 77, 39223, 62, 19199, 3419, 2073, 2643, 13, 459, 2302, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2643, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1988, 62, 4906, 318, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 46030, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2643, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2643, 796, 2643, 13, 459, 2302, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1988, 62, 4906, 287, 4808, 1136, 62, 77, 39223, 62, 19199, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2643, 796, 2643, 13, 2701, 7, 45, 39223, 8, 198, 220, 220, 220, 1441, 2643, 198 ]
1.955451
2,761
from .bbox_head import BBoxHead from .convfc_bbox_head import (ConvFCBBoxHead, Shared2FCBBoxHead, Shared4Conv1FCBBoxHead) from .double_bbox_head import DoubleConvFCBBoxHead from .detr_head import DetrHead __all__ = [ 'BBoxHead', 'ConvFCBBoxHead', 'Shared2FCBBoxHead', 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', 'DetrHead', ]
[ 6738, 764, 65, 3524, 62, 2256, 1330, 12597, 1140, 13847, 198, 6738, 764, 42946, 16072, 62, 65, 3524, 62, 2256, 1330, 357, 3103, 85, 4851, 33, 14253, 13847, 11, 39403, 17, 4851, 33, 14253, 13847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39403, 19, 3103, 85, 16, 4851, 33, 14253, 13847, 8, 198, 6738, 764, 23352, 62, 65, 3524, 62, 2256, 1330, 11198, 3103, 85, 4851, 33, 14253, 13847, 198, 6738, 764, 15255, 81, 62, 2256, 1330, 4614, 81, 13847, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 33, 14253, 13847, 3256, 705, 3103, 85, 4851, 33, 14253, 13847, 3256, 705, 2484, 1144, 17, 4851, 33, 14253, 13847, 3256, 198, 220, 220, 220, 705, 2484, 1144, 19, 3103, 85, 16, 4851, 33, 14253, 13847, 3256, 705, 25628, 3103, 85, 4851, 33, 14253, 13847, 3256, 220, 198, 220, 220, 220, 705, 11242, 81, 13847, 3256, 198, 60, 198 ]
2.142045
176
from pathlib import Path from textblob import TextBlob path = Path("src/text.txt") with open(path) as f: text = f.read() blob = TextBlob(text) for sentence in blob.sentences: print(sentence.sentiment.polarity)
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 2420, 2436, 672, 1330, 8255, 3629, 672, 628, 198, 6978, 796, 10644, 7203, 10677, 14, 5239, 13, 14116, 4943, 198, 198, 4480, 1280, 7, 6978, 8, 355, 277, 25, 198, 220, 220, 220, 2420, 796, 277, 13, 961, 3419, 198, 198, 2436, 672, 796, 8255, 3629, 672, 7, 5239, 8, 198, 198, 1640, 6827, 287, 44812, 13, 34086, 3007, 25, 198, 220, 220, 220, 3601, 7, 34086, 594, 13, 34086, 3681, 13, 79, 6192, 414, 8, 198 ]
2.635294
85
# coding: utf-8 __author__ = 'Alain Lichnewsky' __license__ = 'MIT License' __version__ = '1.0' # (C) A.Lichnewsky, 2018, 2020 # # My own library organization (TBD: clean up ?) import sys import traceback sys.path.append("pylib") from UnitTest import * # Common toolkit imports import numpy as NP import numpy.random as RAND import scipy.stats as STATS from scipy import sparse from scipy import linalg # Using scikit-learn import sklearn as SKL from sklearn import linear_model, model_selection from sklearn import ensemble, tree, discriminant_analysis, svm, naive_bayes from sklearn import neighbors from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder # Using pandas import pandas as PAN # To plot pretty figures import matplotlib as MPL import matplotlib.pyplot as PLT import seaborn as SNS # Python programming from itertools import cycle import time as TIME from time import time from enum import Enum from string import ascii_uppercase import basicUtils as BU from IPython.display import display from basicDataCTE import dataModel import basicDataCTE as BCTE import basicUtils as BU import lib.utilities as LIBU # # ---------------------------------------- # TEST FUNCTIONS # ++++++++++++++++++++++++++++++++++++++++ # # # # ---------------------------------------- # TEST of Dataframe normalization functions # ++++++++++++++++++++++++++++++++++++++++ # # # ---------------------------------------- # TEST Frame # ++++++++++++++++++++++++++++++++++++++++ # class GraphicTest(ALTestFrameGraphics): """ Here we perform test of Seaborn features and of functions derived from them; many tests inspired from Seaborn manual """ def mkDF(addCat=None,**kwargs): """ Make a dataframe of floats """ print(f'In mkDF arguments:{arguments}') ### pandas.DataFrame.apply: returns a <class 'pandas.core.series.Series'> ### w/o .info method etc ### Therefore applymap is used GraphicTest.randseed=981 # make output deterministic def myRandom(): "This is my deterministic random function, good enough for generating test" GraphicTest.randseed = (GraphicTest.randseed+320)%1024 return float(GraphicTest.randseed)/512 - 1.0 od = {} LIBU.setDefaults(od, optDict=kwargs, defaultDict={'nc' : 5, 'nl':8, 'ai':1,'brand':0.1 }) nc,nl,ai,brand = list(map(lambda x: od[x], ("nc","nl","ai","brand"))) print(f"parms = {nc,nl,ai,brand}") print(od) array = [ ai*i + brand * myRandom() for i in range(0,nc*nl)] npA = NP.array(array).reshape((nl,nc)) df = PAN.DataFrame( npA, index = [ f"row{i:03}" for i in range(1,nl+1)], columns= [ f"col{i:03}" for i in range(1,nc+1)] ) if addCat: print("Miaou (Meow ! )") if "modulo" in kwargs and kwargs["modulo"]: imod= kwargs["modulo"] df.loc[:,"catCol"] = [ f"Meow{(i%imod):03}" for i in range(1,nl+1)] else: df.loc[:,"catCol"] = [ f"Meow{i:03}" for i in range(1,nl+1)] if "modulo" in kwargs and kwargs["modulo"]: imod= kwargs["modulo"] df.loc["catRow",:nc] = [ f"Miaou{(i%imod):03}" for i in range(1,nc+1)] else: df.loc["catRow",:nc] = [ f"Miaou{i:03}" for i in range(1,nc+1)] df.iloc[-1,-1] = "MIA-MEOW" return df @unittest.expectedFailure # # ---------------------------------------- # LAUNCHING TESTS # ++++++++++++++++++++++++++++++++++++++++ # __cmdspecs__ = """" testDataCTE : run tests under unittest environment Usage: tesDataCTE [ <testcase> ] [ --wait=<wait> ] [ --parm=<parm>] Options: --parm=<parm> pass parameter --wait=<wait> pass parameter Here testcase is the optional testcase in the form of <class> or <class>.<method> Please use the form --parm val and NOT --parm=val """ from docopt import docopt if __name__ == '__main__': # analyze command line args arguments = docopt(__cmdspecs__) ALTestFrameGraphics.processDocoptArgs(arguments) # Now we need to remove docopt argv arguments which unittest.main() cannot handle print ("Launching test with unittest package/framework") r= unittest.main() print ("RESULT=", r) # ---------------------------------------- # Specializing tests # ++++++++++++++++++++++++++++++++++++++++ # # Use syntax: <python>|<script> <class>[.<method>] # eg. # python3 ../source/lib/testDataCTE.py GraphicTest.test_boxplot #
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 834, 9800, 834, 796, 705, 2348, 391, 35171, 10827, 2584, 6, 198, 834, 43085, 834, 796, 705, 36393, 13789, 6, 198, 834, 9641, 834, 796, 705, 16, 13, 15, 6, 198, 198, 2, 357, 34, 8, 317, 13, 43, 488, 10827, 2584, 11, 2864, 11, 12131, 198, 2, 198, 198, 2, 220, 2011, 898, 5888, 4009, 357, 51, 14529, 25, 3424, 510, 41349, 198, 11748, 25064, 198, 11748, 12854, 1891, 198, 17597, 13, 6978, 13, 33295, 7203, 79, 2645, 571, 4943, 198, 6738, 11801, 14402, 1330, 1635, 198, 198, 2, 8070, 2891, 15813, 17944, 198, 11748, 299, 32152, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 220, 197, 22182, 198, 11748, 299, 32152, 13, 25120, 220, 220, 220, 220, 220, 355, 220, 197, 49, 6981, 198, 11748, 629, 541, 88, 13, 34242, 220, 220, 220, 220, 220, 220, 355, 220, 197, 2257, 33586, 198, 6738, 220, 220, 629, 541, 88, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 29877, 198, 6738, 220, 220, 629, 541, 88, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 300, 1292, 70, 198, 198, 2, 8554, 629, 1134, 270, 12, 35720, 198, 11748, 1341, 35720, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 14277, 43, 198, 6738, 1341, 35720, 1330, 14174, 62, 19849, 11, 220, 2746, 62, 49283, 198, 6738, 1341, 35720, 1330, 34549, 11, 5509, 11, 6534, 42483, 62, 20930, 11, 264, 14761, 11, 24354, 62, 24406, 274, 198, 6738, 1341, 35720, 1330, 197, 710, 394, 32289, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 11, 36052, 27195, 12342, 11, 1881, 21352, 27195, 12342, 198, 198, 2, 8554, 19798, 292, 198, 11748, 19798, 292, 220, 197, 197, 355, 220, 197, 47, 1565, 198, 198, 2, 1675, 7110, 2495, 5538, 198, 11748, 2603, 29487, 8019, 220, 220, 220, 220, 220, 220, 220, 355, 220, 197, 44, 6489, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 220, 197, 6489, 51, 198, 11748, 384, 397, 1211, 220, 197, 197, 355, 220, 197, 50, 8035, 628, 198, 2, 11361, 8300, 198, 6738, 340, 861, 10141, 1330, 6772, 198, 11748, 640, 355, 220, 220, 20460, 198, 6738, 640, 1330, 640, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 220, 4731, 1330, 355, 979, 72, 62, 7211, 2798, 589, 628, 198, 11748, 4096, 18274, 4487, 355, 20571, 198, 6738, 6101, 7535, 13, 13812, 1330, 3359, 198, 6738, 4096, 6601, 4177, 36, 1330, 1366, 17633, 198, 11748, 4096, 6601, 4177, 36, 220, 220, 220, 220, 355, 220, 220, 220, 347, 4177, 36, 198, 11748, 4096, 18274, 4487, 220, 220, 220, 220, 220, 220, 355, 220, 220, 220, 20571, 198, 11748, 9195, 13, 315, 2410, 220, 220, 220, 355, 220, 220, 220, 45651, 52, 628, 198, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20368, 982, 198, 2, 197, 197, 197, 51, 6465, 29397, 4177, 11053, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 44627, 44627, 14030, 45340, 198, 2, 198, 198, 2, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20368, 982, 198, 2, 197, 197, 197, 51, 6465, 286, 6060, 14535, 3487, 1634, 5499, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 44627, 44627, 14030, 45340, 198, 2, 628, 198, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20368, 982, 198, 2, 197, 197, 197, 51, 6465, 25184, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 44627, 44627, 14030, 45340, 198, 2, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4871, 43029, 14402, 7, 1847, 14402, 19778, 18172, 2599, 198, 220, 220, 220, 37227, 3423, 356, 1620, 1332, 286, 1001, 397, 1211, 3033, 290, 286, 5499, 10944, 422, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 606, 26, 867, 5254, 7867, 422, 1001, 397, 1211, 10107, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 33480, 8068, 7, 2860, 21979, 28, 14202, 11, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 6889, 257, 1366, 14535, 286, 36016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 818, 33480, 8068, 7159, 29164, 853, 2886, 92, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44386, 19798, 292, 13, 6601, 19778, 13, 39014, 25, 5860, 257, 1279, 4871, 705, 79, 392, 292, 13, 7295, 13, 25076, 13, 27996, 44167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44386, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 14, 78, 764, 10951, 2446, 3503, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44386, 8447, 4174, 8899, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43029, 14402, 13, 25192, 28826, 28, 4089, 16, 220, 1303, 787, 5072, 2206, 49228, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 616, 29531, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 318, 616, 2206, 49228, 4738, 2163, 11, 922, 1576, 329, 15453, 1332, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43029, 14402, 13, 25192, 28826, 796, 357, 38, 22262, 14402, 13, 25192, 28826, 10, 19504, 8, 4, 35500, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12178, 7, 38, 22262, 14402, 13, 25192, 28826, 20679, 25836, 532, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16298, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45651, 52, 13, 2617, 7469, 13185, 7, 375, 11, 2172, 35, 713, 28, 46265, 22046, 11, 4277, 35, 713, 34758, 6, 10782, 6, 1058, 642, 11, 705, 21283, 10354, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1872, 10354, 16, 4032, 17938, 10354, 15, 13, 16, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 66, 11, 21283, 11, 1872, 11, 17938, 796, 1351, 7, 8899, 7, 50033, 2124, 25, 16298, 58, 87, 4357, 5855, 10782, 2430, 21283, 2430, 1872, 2430, 17938, 1, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 1845, 907, 796, 1391, 10782, 11, 21283, 11, 1872, 11, 17938, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 375, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 685, 257, 72, 9, 72, 1343, 4508, 1635, 616, 29531, 3419, 329, 1312, 287, 2837, 7, 15, 11, 10782, 9, 21283, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 32, 220, 220, 796, 28498, 13, 18747, 7, 18747, 737, 3447, 1758, 19510, 21283, 11, 10782, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 40468, 13, 6601, 19778, 7, 45941, 32, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 220, 796, 685, 277, 1, 808, 90, 72, 25, 3070, 36786, 329, 1312, 287, 2837, 7, 16, 11, 21283, 10, 16, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 685, 277, 1, 4033, 90, 72, 25, 3070, 36786, 329, 1312, 287, 2837, 7, 16, 11, 10782, 10, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 751, 21979, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 44, 544, 280, 220, 357, 5308, 322, 5145, 1267, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 4666, 43348, 1, 287, 479, 86, 22046, 290, 479, 86, 22046, 14692, 4666, 43348, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 375, 28, 479, 86, 22046, 14692, 4666, 43348, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 25, 553, 9246, 5216, 8973, 796, 685, 277, 1, 5308, 322, 90, 7, 72, 4, 320, 375, 2599, 3070, 36786, 329, 1312, 287, 2837, 7, 16, 11, 21283, 10, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 25, 553, 9246, 5216, 8973, 796, 685, 277, 1, 5308, 322, 90, 72, 25, 3070, 36786, 329, 1312, 287, 2837, 7, 16, 11, 21283, 10, 16, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 4666, 43348, 1, 287, 479, 86, 22046, 290, 479, 86, 22046, 14692, 4666, 43348, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 375, 28, 479, 86, 22046, 14692, 4666, 43348, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 14692, 9246, 25166, 1600, 25, 10782, 60, 796, 685, 277, 1, 44, 544, 280, 90, 7, 72, 4, 320, 375, 2599, 3070, 36786, 329, 1312, 287, 2837, 7, 16, 11, 10782, 10, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 14692, 9246, 25166, 1600, 25, 10782, 60, 796, 685, 277, 1, 44, 544, 280, 90, 72, 25, 3070, 36786, 329, 1312, 287, 2837, 7, 16, 11, 10782, 10, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 346, 420, 58, 12, 16, 12095, 16, 60, 796, 366, 44, 3539, 12, 11682, 3913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 2488, 403, 715, 395, 13, 40319, 50015, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20368, 982, 198, 2, 197, 197, 197, 13534, 47461, 2751, 309, 1546, 4694, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 44627, 44627, 14030, 45340, 198, 2, 198, 198, 834, 28758, 4125, 6359, 834, 220, 796, 13538, 15931, 198, 220, 220, 220, 220, 220, 220, 1332, 6601, 4177, 36, 1058, 1057, 5254, 739, 555, 715, 395, 2858, 198, 198, 28350, 25, 256, 274, 6601, 4177, 36, 220, 685, 1279, 9288, 7442, 29, 2361, 685, 1377, 17077, 28, 27, 17077, 29, 2361, 685, 1377, 79, 1670, 28, 27, 79, 1670, 37981, 198, 198, 29046, 25, 198, 220, 220, 220, 220, 1377, 79, 1670, 28, 27, 79, 1670, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 11507, 198, 220, 220, 220, 220, 1377, 17077, 28, 27, 17077, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 11507, 628, 220, 220, 220, 220, 3423, 1332, 7442, 318, 262, 11902, 1332, 7442, 287, 262, 1296, 286, 1279, 4871, 29, 393, 1279, 4871, 28401, 27, 24396, 29, 220, 198, 220, 220, 220, 220, 4222, 779, 262, 1296, 1377, 79, 1670, 1188, 220, 220, 290, 5626, 1377, 79, 1670, 28, 2100, 198, 37811, 198, 198, 6738, 2205, 8738, 1330, 2205, 8738, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 16602, 3141, 1627, 26498, 220, 198, 220, 220, 220, 7159, 796, 2205, 8738, 7, 834, 28758, 4125, 6359, 834, 8, 198, 220, 220, 220, 8355, 14402, 19778, 18172, 13, 14681, 23579, 8738, 42035, 7, 853, 2886, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2735, 356, 761, 284, 4781, 2205, 8738, 1822, 85, 7159, 543, 555, 715, 395, 13, 12417, 3419, 2314, 5412, 220, 198, 220, 220, 220, 3601, 5855, 46182, 10813, 1332, 351, 555, 715, 395, 5301, 14, 30604, 4943, 198, 220, 220, 220, 374, 28, 555, 715, 395, 13, 12417, 3419, 198, 220, 220, 220, 3601, 5855, 19535, 16724, 28, 1600, 374, 8, 628, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20368, 982, 198, 2, 197, 197, 197, 13409, 2890, 5254, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 44627, 44627, 14030, 45340, 198, 2, 198, 2, 220, 220, 5765, 15582, 25, 220, 220, 1279, 29412, 29, 91, 27, 12048, 29, 220, 220, 1279, 4871, 36937, 29847, 24396, 37981, 198, 2, 220, 220, 220, 220, 220, 29206, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 21015, 18, 11485, 14, 10459, 14, 8019, 14, 9288, 6601, 4177, 36, 13, 9078, 220, 43029, 14402, 13, 9288, 62, 3524, 29487, 198, 2, 198 ]
2.112974
2,505
from funcs import * from db import * ## # SHOW ## @app.route('/'+app.config['RNG_ID']+'/ips/list/all/', defaults={'pi_id': None}) @app.route('/'+app.config['RNG_ID']+'/ips/list/all/<pi_id>/') @app.route('/'+app.config['RNG_ID']+'/ips/list/last/', defaults={'pi_id': None}) @app.route('/'+app.config['RNG_ID']+'/ips/list/last/<pi_id>/') ## # LOG ## @app.route('/'+app.config['RNG_ID']+'/ips/add/<pi_id>/', defaults={'int_ip': ''}) @app.route('/'+app.config['RNG_ID']+'/ips/add/<pi_id>/<int_ip>/') #@app.route('/'+app.config['RNG_ID']+'/ips/add/<pi_id>/<pi_ip>/') #def log_ip(pi_id, pi_ip): # # info = Ips(pi_id, request.remote_addr, pi_ip) # # db.session.add(info) # db.session.commit() # # return jsonify({'pi_id': pi_id, 'external_ip': request.remote_addr, 'internal_ip': pi_ip, 'error': False}), 200
[ 6738, 1257, 6359, 220, 220, 220, 220, 220, 220, 1330, 1635, 198, 6738, 20613, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 1635, 198, 198, 2235, 198, 2, 37041, 198, 2235, 198, 31, 1324, 13, 38629, 10786, 14, 6, 10, 1324, 13, 11250, 17816, 49, 10503, 62, 2389, 20520, 10, 26488, 2419, 14, 4868, 14, 439, 14, 3256, 26235, 34758, 6, 14415, 62, 312, 10354, 6045, 30072, 198, 31, 1324, 13, 38629, 10786, 14, 6, 10, 1324, 13, 11250, 17816, 49, 10503, 62, 2389, 20520, 10, 26488, 2419, 14, 4868, 14, 439, 14, 27, 14415, 62, 312, 29, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 6, 10, 1324, 13, 11250, 17816, 49, 10503, 62, 2389, 20520, 10, 26488, 2419, 14, 4868, 14, 12957, 14, 3256, 26235, 34758, 6, 14415, 62, 312, 10354, 6045, 30072, 198, 31, 1324, 13, 38629, 10786, 14, 6, 10, 1324, 13, 11250, 17816, 49, 10503, 62, 2389, 20520, 10, 26488, 2419, 14, 4868, 14, 12957, 14, 27, 14415, 62, 312, 29, 14, 11537, 628, 198, 2235, 198, 2, 41605, 198, 2235, 198, 31, 1324, 13, 38629, 10786, 14, 6, 10, 1324, 13, 11250, 17816, 49, 10503, 62, 2389, 20520, 10, 26488, 2419, 14, 2860, 14, 27, 14415, 62, 312, 29, 14, 3256, 26235, 34758, 6, 600, 62, 541, 10354, 10148, 30072, 198, 31, 1324, 13, 38629, 10786, 14, 6, 10, 1324, 13, 11250, 17816, 49, 10503, 62, 2389, 20520, 10, 26488, 2419, 14, 2860, 14, 27, 14415, 62, 312, 29, 14, 27, 600, 62, 541, 29, 14, 11537, 628, 198, 2, 31, 1324, 13, 38629, 10786, 14, 6, 10, 1324, 13, 11250, 17816, 49, 10503, 62, 2389, 20520, 10, 26488, 2419, 14, 2860, 14, 27, 14415, 62, 312, 29, 14, 27, 14415, 62, 541, 29, 14, 11537, 198, 2, 4299, 2604, 62, 541, 7, 14415, 62, 312, 11, 31028, 62, 541, 2599, 198, 2, 198, 2, 220, 220, 220, 7508, 796, 47177, 7, 14415, 62, 312, 11, 2581, 13, 47960, 62, 29851, 11, 31028, 62, 541, 8, 198, 2, 198, 2, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 10951, 8, 198, 2, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 198, 2, 198, 2, 220, 220, 220, 1441, 33918, 1958, 15090, 6, 14415, 62, 312, 10354, 31028, 62, 312, 11, 705, 22615, 62, 541, 10354, 2581, 13, 47960, 62, 29851, 11, 705, 32538, 62, 541, 10354, 31028, 62, 541, 11, 705, 18224, 10354, 10352, 92, 828, 939, 628, 628 ]
2.041363
411
import bisect import logging import sys from datetime import datetime from logging import handlers from youtubewatched.config import MAX_TIME_DIFFERENCE def logging_config(log_file_path: str, file_level: int = logging.DEBUG, console_out_level: int = logging.DEBUG, console_err_level: int = logging.WARNING, log_server_requests=True, log_server_requests_to_file=False): """ Configures logging to file and to stdout/err :param log_file_path: path to the log file :param file_level: logging threshold for the file handler :param console_out_level: logging threshold for the console std handler :param console_err_level: logging threshold for the console err handler :param log_server_requests: show/log werkzeug's logger messages :param log_server_requests_to_file: show/log werkzeug's logger messages :return: """ # stop non-app loggers logging.basicConfig(level=file_level, handlers=[logging.NullHandler()]) log_format = logging.Formatter('%(asctime)s {%(name)s.%(funcName)s} ' '%(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') std_format = logging.Formatter('%(asctime)s {%(funcName)s} ' '%(levelname)s: %(message)s', datefmt='%H:%M:%S') file_handler = handlers.RotatingFileHandler(log_file_path, 'a', (1024**2)*3, 5) file_handler.setLevel(file_level) file_handler.setFormatter(log_format) console_out_handler = logging.StreamHandler(stream=sys.stdout) console_out_handler.setLevel(console_out_level) console_out_handler.setFormatter(std_format) console_out_handler.addFilter(ConsoleOutFilter(logging.INFO)) console_err_handler = logging.StreamHandler(stream=sys.stderr) console_err_handler.setLevel(console_err_level) console_err_handler.setFormatter(std_format) console_err_handler.addFilter(ConsoleOutFilter(logging.CRITICAL)) app_logger = logging.getLogger('youtubewatched') app_logger.setLevel(file_level) app_logger.handlers.pop() # remove the default stream handler for handler in (file_handler, console_out_handler, console_err_handler): app_logger.addHandler(handler) if not log_server_requests: logging.getLogger('werkzeug').disabled = True if log_server_requests_to_file: logging.getLogger('werkzeug').addHandler(file_handler) return app_logger def are_different_timestamps(ts1: datetime, ts2: datetime) -> bool: """Since each archive could potentially have timestamps in a different timezone, the same ones from different files could show as multiple unique timestamps due to different day/hour This function doesn't attempt to make timestamps accurate, and it may block an extremely small number of legitimate ones from being entered. Mostly, it will block the duplicates, however""" if ts1.replace(day=1, hour=0) == ts2.replace(day=1, hour=0): return False return True def remove_timestamps_from_one_list_from_another(filter_, filteree): """Useful for when Takeouts are added out of order and/or for when stories show up as normal videos in newer Takeouts""" for timestamp in filter_: start = bisect.bisect_left(filteree, timestamp - MAX_TIME_DIFFERENCE) end = bisect.bisect_right(filteree, timestamp + MAX_TIME_DIFFERENCE) if start != end: for potential_duplicate in range(start, end): if not are_different_timestamps(timestamp, filteree[potential_duplicate]): filteree.pop(potential_duplicate) break
[ 11748, 47457, 478, 198, 11748, 18931, 198, 11748, 25064, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 18931, 1330, 32847, 198, 198, 6738, 345, 37995, 413, 14265, 13, 11250, 1330, 25882, 62, 34694, 62, 35, 5064, 24302, 18310, 628, 198, 4299, 18931, 62, 11250, 7, 6404, 62, 7753, 62, 6978, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 5715, 25, 493, 796, 18931, 13, 30531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 62, 448, 62, 5715, 25, 493, 796, 18931, 13, 30531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 62, 8056, 62, 5715, 25, 493, 796, 18931, 13, 31502, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 15388, 62, 8897, 3558, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 15388, 62, 8897, 3558, 62, 1462, 62, 7753, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17056, 942, 18931, 284, 2393, 290, 284, 14367, 448, 14, 8056, 628, 220, 220, 220, 1058, 17143, 2604, 62, 7753, 62, 6978, 25, 3108, 284, 262, 2604, 2393, 198, 220, 220, 220, 1058, 17143, 2393, 62, 5715, 25, 18931, 11387, 329, 262, 2393, 21360, 198, 220, 220, 220, 1058, 17143, 8624, 62, 448, 62, 5715, 25, 18931, 11387, 329, 262, 8624, 14367, 21360, 198, 220, 220, 220, 1058, 17143, 8624, 62, 8056, 62, 5715, 25, 18931, 11387, 329, 262, 8624, 11454, 21360, 198, 220, 220, 220, 1058, 17143, 2604, 62, 15388, 62, 8897, 3558, 25, 905, 14, 6404, 266, 9587, 2736, 1018, 338, 49706, 6218, 198, 220, 220, 220, 1058, 17143, 2604, 62, 15388, 62, 8897, 3558, 62, 1462, 62, 7753, 25, 905, 14, 6404, 266, 9587, 2736, 1018, 338, 49706, 6218, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 2245, 1729, 12, 1324, 2604, 5355, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 5715, 28, 7753, 62, 5715, 11, 32847, 41888, 6404, 2667, 13, 35067, 25060, 3419, 12962, 628, 220, 220, 220, 2604, 62, 18982, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 1391, 4, 7, 3672, 8, 82, 13, 4, 7, 20786, 5376, 8, 82, 92, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 69, 16762, 11639, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 11537, 198, 220, 220, 220, 14367, 62, 18982, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 1391, 4, 7, 20786, 5376, 8, 82, 92, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 69, 16762, 11639, 4, 39, 25, 4, 44, 25, 4, 50, 11537, 198, 220, 220, 220, 2393, 62, 30281, 796, 32847, 13, 24864, 803, 8979, 25060, 7, 6404, 62, 7753, 62, 6978, 11, 705, 64, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 35500, 1174, 17, 27493, 18, 11, 642, 8, 198, 220, 220, 220, 2393, 62, 30281, 13, 2617, 4971, 7, 7753, 62, 5715, 8, 198, 220, 220, 220, 2393, 62, 30281, 13, 2617, 8479, 1436, 7, 6404, 62, 18982, 8, 628, 220, 220, 220, 8624, 62, 448, 62, 30281, 796, 18931, 13, 12124, 25060, 7, 5532, 28, 17597, 13, 19282, 448, 8, 198, 220, 220, 220, 8624, 62, 448, 62, 30281, 13, 2617, 4971, 7, 41947, 62, 448, 62, 5715, 8, 198, 220, 220, 220, 8624, 62, 448, 62, 30281, 13, 2617, 8479, 1436, 7, 19282, 62, 18982, 8, 198, 220, 220, 220, 8624, 62, 448, 62, 30281, 13, 2860, 22417, 7, 47581, 7975, 22417, 7, 6404, 2667, 13, 10778, 4008, 628, 220, 220, 220, 8624, 62, 8056, 62, 30281, 796, 18931, 13, 12124, 25060, 7, 5532, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 8624, 62, 8056, 62, 30281, 13, 2617, 4971, 7, 41947, 62, 8056, 62, 5715, 8, 198, 220, 220, 220, 8624, 62, 8056, 62, 30281, 13, 2617, 8479, 1436, 7, 19282, 62, 18982, 8, 198, 220, 220, 220, 8624, 62, 8056, 62, 30281, 13, 2860, 22417, 7, 47581, 7975, 22417, 7, 6404, 2667, 13, 9419, 2043, 20151, 4008, 628, 220, 220, 220, 598, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 32015, 549, 413, 14265, 11537, 198, 220, 220, 220, 598, 62, 6404, 1362, 13, 2617, 4971, 7, 7753, 62, 5715, 8, 198, 220, 220, 220, 598, 62, 6404, 1362, 13, 4993, 8116, 13, 12924, 3419, 220, 1303, 4781, 262, 4277, 4269, 21360, 198, 220, 220, 220, 329, 21360, 287, 357, 7753, 62, 30281, 11, 8624, 62, 448, 62, 30281, 11, 8624, 62, 8056, 62, 30281, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 598, 62, 6404, 1362, 13, 2860, 25060, 7, 30281, 8, 628, 220, 220, 220, 611, 407, 2604, 62, 15388, 62, 8897, 3558, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 10786, 86, 9587, 2736, 1018, 27691, 47730, 796, 6407, 198, 220, 220, 220, 611, 2604, 62, 15388, 62, 8897, 3558, 62, 1462, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 10786, 86, 9587, 2736, 1018, 27691, 2860, 25060, 7, 7753, 62, 30281, 8, 628, 220, 220, 220, 1441, 598, 62, 6404, 1362, 628, 198, 4299, 389, 62, 39799, 62, 16514, 395, 9430, 7, 912, 16, 25, 4818, 8079, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40379, 17, 25, 4818, 8079, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 6385, 1123, 15424, 714, 6196, 423, 4628, 395, 9430, 287, 257, 198, 220, 220, 220, 1180, 640, 11340, 11, 262, 976, 3392, 422, 1180, 3696, 714, 198, 220, 220, 220, 905, 355, 3294, 3748, 4628, 395, 9430, 2233, 284, 1180, 1110, 14, 9769, 628, 220, 220, 220, 770, 2163, 1595, 470, 2230, 284, 787, 4628, 395, 9430, 7187, 11, 290, 340, 743, 198, 220, 220, 220, 2512, 281, 4457, 1402, 1271, 286, 9829, 3392, 422, 852, 198, 220, 220, 220, 5982, 13, 33495, 11, 340, 481, 2512, 262, 14184, 16856, 11, 2158, 37811, 198, 220, 220, 220, 611, 40379, 16, 13, 33491, 7, 820, 28, 16, 11, 1711, 28, 15, 8, 6624, 40379, 17, 13, 33491, 7, 820, 28, 16, 11, 1711, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 6407, 628, 198, 4299, 4781, 62, 16514, 395, 9430, 62, 6738, 62, 505, 62, 4868, 62, 6738, 62, 29214, 7, 24455, 62, 11, 1226, 83, 45316, 2599, 198, 220, 220, 220, 37227, 11041, 913, 329, 618, 7214, 5269, 389, 2087, 503, 286, 1502, 290, 14, 273, 329, 198, 220, 220, 220, 618, 3923, 905, 510, 355, 3487, 5861, 287, 15064, 7214, 5269, 37811, 198, 220, 220, 220, 329, 41033, 287, 8106, 62, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 47457, 478, 13, 41907, 478, 62, 9464, 7, 69, 2326, 45316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 532, 25882, 62, 34694, 62, 35, 5064, 24302, 18310, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 47457, 478, 13, 41907, 478, 62, 3506, 7, 69, 2326, 45316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 1343, 25882, 62, 34694, 62, 35, 5064, 24302, 18310, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 923, 14512, 886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2785, 62, 646, 489, 5344, 287, 2837, 7, 9688, 11, 886, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 389, 62, 39799, 62, 16514, 395, 9430, 7, 16514, 27823, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1226, 83, 45316, 58, 13059, 1843, 62, 646, 489, 5344, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1226, 83, 45316, 13, 12924, 7, 13059, 1843, 62, 646, 489, 5344, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 628 ]
2.318925
1,712
__author__ = 'Yin' # Standard imports import logging from uuid import UUID # Our imports from emission.analysis.result.carbon import getModeCarbonFootprint, carbonFootprintForMode from emission.core.common import Inside_polygon,berkeley_area,getConfirmationModeQuery from emission.core.get_database import get_section_db,get_profile_db import geojson as gj import emission.analysis.plotting.geojson.geojson_feature_converter as gfc import emission.core.wrapper.motionactivity as ecwm import emission.storage.decorations.timeline as esdt import emission.storage.decorations.local_date_queries as esdl import emission.storage.decorations.location_queries as esdlq import emission.core.wrapper.trip as ecwt import emission.core.wrapper.section as ecws import emission.storage.timeseries.geoquery as estg import emission.storage.timeseries.timequery as estt import emission.storage.timeseries.tcquery as esttc import emission.storage.decorations.analysis_timeseries_queries as esda import emission.net.usercache.abstract_usercache as enua import emission.storage.timeseries.aggregate_timeseries as estag import emission.storage.timeseries.cache_series as estc MANUAL_INCIDENT_KEY = "manual/incident" # Note that all the points here are returned in (lng, lat) format, which is the # GeoJSON format. def incident_heatmap(user_uuid, modes, time_query, region): """ Return a list of geojson points with properties for the time and the stress level related to incidents. This should not return full entries because that can expose the user_id in the aggregate case. Maybe it can return the data part only? Or should we put the other entries into the properties? :param modes: The modes that we want to query for :param time_query: The time query, in either local date or timestamp :param region: The region of interest :return: list of `incident` objects, with all metadata stripped out """ if region is None: geo_query = None else: geo_query = estg.GeoQuery(["data.loc"], region) extra_query_list = [] if modes is not None: mode_enum_list = [ecwm.MotionTypes[mode] for mode in modes] extra_query_list.append(esdlq.get_mode_query(mode_enum_list)) if user_uuid is None: incident_entry_list = esda.get_entries(MANUAL_INCIDENT_KEY, user_id=None, time_query=time_query, geo_query=geo_query, extra_query_list=extra_query_list) else: # We don't support aggregate queries on the usercache. And that is # actually fine, because we don't expect immediate results for the # aggregate case. We just want to query the usercache to ensure that # the incidents don't magically disappear just because they got pushed # to the server but are not yet processed incident_entry_list = estc.find_entries([MANUAL_INCIDENT_KEY], time_query) return {"incidents": [e.data for e in incident_entry_list]}
[ 834, 9800, 834, 796, 705, 56, 259, 6, 198, 2, 8997, 17944, 198, 11748, 18931, 198, 6738, 334, 27112, 1330, 471, 27586, 198, 198, 2, 3954, 17944, 198, 6738, 25592, 13, 20930, 13, 20274, 13, 29255, 1330, 651, 19076, 9914, 4189, 17574, 4798, 11, 6588, 17574, 4798, 1890, 19076, 198, 6738, 25592, 13, 7295, 13, 11321, 1330, 14384, 62, 35428, 14520, 11, 527, 13490, 62, 20337, 11, 1136, 18546, 36241, 19076, 20746, 198, 6738, 25592, 13, 7295, 13, 1136, 62, 48806, 1330, 651, 62, 5458, 62, 9945, 11, 1136, 62, 13317, 62, 9945, 198, 11748, 4903, 13210, 1559, 355, 308, 73, 198, 11748, 25592, 13, 20930, 13, 29487, 889, 13, 469, 13210, 1559, 13, 469, 13210, 1559, 62, 30053, 62, 1102, 332, 353, 355, 308, 16072, 198, 11748, 25592, 13, 7295, 13, 48553, 13, 38714, 21797, 355, 9940, 26377, 198, 11748, 25592, 13, 35350, 13, 12501, 273, 602, 13, 16514, 4470, 355, 1658, 28664, 198, 11748, 25592, 13, 35350, 13, 12501, 273, 602, 13, 12001, 62, 4475, 62, 421, 10640, 355, 1658, 25404, 198, 11748, 25592, 13, 35350, 13, 12501, 273, 602, 13, 24886, 62, 421, 10640, 355, 1658, 25404, 80, 198, 198, 11748, 25592, 13, 7295, 13, 48553, 13, 39813, 355, 9940, 46569, 198, 11748, 25592, 13, 7295, 13, 48553, 13, 5458, 355, 9940, 18504, 198, 11748, 25592, 13, 35350, 13, 22355, 10640, 13, 469, 22696, 1924, 355, 1556, 70, 198, 11748, 25592, 13, 35350, 13, 22355, 10640, 13, 2435, 22766, 355, 1556, 83, 198, 11748, 25592, 13, 35350, 13, 22355, 10640, 13, 23047, 22766, 355, 1556, 23047, 198, 11748, 25592, 13, 35350, 13, 12501, 273, 602, 13, 20930, 62, 22355, 10640, 62, 421, 10640, 355, 1658, 6814, 198, 198, 11748, 25592, 13, 3262, 13, 43298, 4891, 13, 397, 8709, 62, 43298, 4891, 355, 551, 6413, 198, 198, 11748, 25592, 13, 35350, 13, 22355, 10640, 13, 9460, 49373, 62, 22355, 10640, 355, 1556, 363, 198, 11748, 25592, 13, 35350, 13, 22355, 10640, 13, 23870, 62, 25076, 355, 1556, 66, 198, 198, 10725, 25620, 62, 30158, 25256, 62, 20373, 796, 366, 805, 723, 14, 1939, 738, 1, 198, 198, 2, 5740, 326, 477, 262, 2173, 994, 389, 4504, 287, 357, 75, 782, 11, 3042, 8, 5794, 11, 543, 318, 262, 198, 2, 32960, 40386, 5794, 13, 198, 198, 4299, 4519, 62, 25080, 8899, 7, 7220, 62, 12303, 312, 11, 12881, 11, 640, 62, 22766, 11, 3814, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 1351, 286, 4903, 13210, 1559, 2173, 351, 6608, 329, 262, 640, 290, 262, 5503, 1241, 198, 220, 220, 220, 3519, 284, 10207, 13, 770, 815, 407, 1441, 1336, 12784, 780, 326, 460, 198, 220, 220, 220, 15651, 262, 2836, 62, 312, 287, 262, 19406, 1339, 13, 6674, 340, 460, 1441, 262, 1366, 636, 691, 30, 198, 220, 220, 220, 1471, 815, 356, 1234, 262, 584, 12784, 656, 262, 6608, 30, 198, 220, 220, 220, 1058, 17143, 12881, 25, 383, 12881, 326, 356, 765, 284, 12405, 329, 198, 220, 220, 220, 1058, 17143, 640, 62, 22766, 25, 383, 640, 12405, 11, 287, 2035, 1957, 3128, 393, 41033, 198, 220, 220, 220, 1058, 17143, 3814, 25, 383, 3814, 286, 1393, 198, 220, 220, 220, 1058, 7783, 25, 1351, 286, 4600, 1939, 738, 63, 5563, 11, 351, 477, 20150, 18818, 503, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 3814, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 22766, 796, 6045, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 22766, 796, 1556, 70, 13, 10082, 78, 20746, 7, 14692, 7890, 13, 17946, 33116, 3814, 8, 628, 220, 220, 220, 3131, 62, 22766, 62, 4868, 796, 17635, 198, 220, 220, 220, 611, 12881, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 62, 44709, 62, 4868, 796, 685, 721, 26377, 13, 45740, 31431, 58, 14171, 60, 329, 4235, 287, 12881, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 22766, 62, 4868, 13, 33295, 7, 274, 25404, 80, 13, 1136, 62, 14171, 62, 22766, 7, 14171, 62, 44709, 62, 4868, 4008, 628, 220, 220, 220, 611, 2836, 62, 12303, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4519, 62, 13000, 62, 4868, 796, 1658, 6814, 13, 1136, 62, 298, 1678, 7, 10725, 25620, 62, 30158, 25256, 62, 20373, 11, 2836, 62, 312, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 22766, 28, 2435, 62, 22766, 11, 40087, 62, 22766, 28, 469, 78, 62, 22766, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 22766, 62, 4868, 28, 26086, 62, 22766, 62, 4868, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 836, 470, 1104, 19406, 20743, 319, 262, 514, 2798, 4891, 13, 843, 326, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1682, 3734, 11, 780, 356, 836, 470, 1607, 7103, 2482, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19406, 1339, 13, 775, 655, 765, 284, 12405, 262, 514, 2798, 4891, 284, 4155, 326, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 10207, 836, 470, 34850, 10921, 655, 780, 484, 1392, 7121, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 262, 4382, 475, 389, 407, 1865, 13686, 198, 220, 220, 220, 220, 220, 220, 220, 4519, 62, 13000, 62, 4868, 796, 1556, 66, 13, 19796, 62, 298, 1678, 26933, 10725, 25620, 62, 30158, 25256, 62, 20373, 4357, 640, 62, 22766, 8, 198, 220, 220, 220, 1441, 19779, 1939, 3231, 1298, 685, 68, 13, 7890, 329, 304, 287, 4519, 62, 13000, 62, 4868, 48999, 198 ]
2.972441
1,016
import time import json import os import unittest from web3 import Web3 from uniswap.uniswap import UniswapV2Client, UniswapV2Utils class UniswapV2ClientTest(BaseTest): # FIXME add way to retrieve current liquidity balance for a par """def test_remove_liquidity(self): tx = self.uniswap.remove_liquidity( token_a=self.token_0["address"], token_b=self.token_1["address"], liquidity=100, min_a=0, min_b=0, to=self.address, deadline=int(time.time()) + 1000 ) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"]) def test_remove_liquidity_eth(self): token = Web3.toChecksumAddress("0x20fe562d797a42dcb3399062ae9546cd06f63280") liquidity = 1 * 10 ** 15 min_token = 1 * 10 ** 15 min_eth = 2 * 10 ** 13 deadline = int(time.time()) + 1000 tx = self.uniswap.remove_liquidity_eth( token=self.token_2["address"], liquidity=1, min_token=0, min_eth=0, to=self.address, deadline=int(time.time()) + 1000 ) receipt = self.uniswap.conn.eth.waitForTransactionReceipt(tx, timeout=2000) self.assertIsNotNone(receipt) self.assertTrue(receipt["status"])"""
[ 11748, 640, 198, 11748, 33918, 198, 11748, 28686, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 3992, 18, 1330, 5313, 18, 198, 198, 6738, 555, 271, 86, 499, 13, 403, 271, 86, 499, 1330, 791, 271, 86, 499, 53, 17, 11792, 11, 791, 271, 86, 499, 53, 17, 18274, 4487, 628, 198, 198, 4871, 791, 271, 86, 499, 53, 17, 11792, 14402, 7, 14881, 14402, 2599, 628, 220, 220, 220, 1303, 44855, 11682, 751, 835, 284, 19818, 1459, 31061, 5236, 329, 257, 1582, 198, 220, 220, 220, 37227, 4299, 1332, 62, 28956, 62, 39250, 414, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 796, 2116, 13, 403, 271, 86, 499, 13, 28956, 62, 39250, 414, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 64, 28, 944, 13, 30001, 62, 15, 14692, 21975, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 65, 28, 944, 13, 30001, 62, 16, 14692, 21975, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31061, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 64, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 65, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 28, 944, 13, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12508, 28, 600, 7, 2435, 13, 2435, 28955, 1343, 8576, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 14507, 796, 2116, 13, 403, 271, 86, 499, 13, 37043, 13, 2788, 13, 17077, 1890, 48720, 3041, 344, 10257, 7, 17602, 11, 26827, 28, 11024, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 3673, 14202, 7, 260, 344, 10257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 260, 344, 10257, 14692, 13376, 8973, 8, 628, 220, 220, 220, 825, 1332, 62, 28956, 62, 39250, 414, 62, 2788, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 5313, 18, 13, 1462, 7376, 4657, 388, 20231, 7203, 15, 87, 1238, 5036, 43918, 67, 44673, 64, 3682, 17896, 65, 2091, 2079, 3312, 17, 3609, 3865, 3510, 10210, 3312, 69, 21, 2624, 1795, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 31061, 796, 352, 1635, 838, 12429, 1315, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 30001, 796, 352, 1635, 838, 12429, 1315, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2788, 796, 362, 1635, 838, 12429, 1511, 198, 220, 220, 220, 220, 220, 220, 220, 12508, 796, 493, 7, 2435, 13, 2435, 28955, 1343, 8576, 628, 220, 220, 220, 220, 220, 220, 220, 27765, 796, 2116, 13, 403, 271, 86, 499, 13, 28956, 62, 39250, 414, 62, 2788, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 28, 944, 13, 30001, 62, 17, 14692, 21975, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31061, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 30001, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2788, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 28, 944, 13, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12508, 28, 600, 7, 2435, 13, 2435, 28955, 1343, 8576, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 14507, 796, 2116, 13, 403, 271, 86, 499, 13, 37043, 13, 2788, 13, 17077, 1890, 48720, 3041, 344, 10257, 7, 17602, 11, 26827, 28, 11024, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 3673, 14202, 7, 260, 344, 10257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 260, 344, 10257, 14692, 13376, 8973, 8, 37811, 628 ]
2.056358
692
#!/usr/bin/python # # Script for checking global health of host running VMware ESX/ESXi # # Licence : GNU General Public Licence (GPL) http://www.gnu.org/ # Pre-req : pywbem # #@--------------------------------------------------- #@ History #@--------------------------------------------------- #@ Date : 20080820 #@ Author : David Ligeret #@ Reason : Initial release #@--------------------------------------------------- #@ Date : 20080821 #@ Author : David Ligeret #@ Reason : Add verbose mode #@--------------------------------------------------- #@ Date : #@ Author : #@ Reason : #@--------------------------------------------------- # import sys import time import pywbem NS = 'root/cimv2' # define classes to check 'OperationStatus' instance ClassesToCheck = [ 'CIM_ComputerSystem', 'CIM_NumericSensor', 'CIM_Memory', 'CIM_Processor', 'CIM_RecordLog', 'OMC_DiscreteSensor', 'VMware_StorageExtent', 'VMware_Controller', 'VMware_StorageVolume', 'VMware_Battery', 'VMware_SASSATAPort' ] # define exit codes ExitOK = 0 ExitWarning = 1 ExitCritical = 2 ExitUnknown = 3 # check input arguments if len(sys.argv) < 4: sys.stderr.write('Usage : ' + sys.argv[0] + ' hostname user password\n') sys.stderr.write('Example : ' + sys.argv[0] + ' https://myesxi:5989 root password\n') sys.exit(1) verbose = 0 if len(sys.argv) == 5 : if sys.argv[4] == "verbose" : verbose = 1 # connection to host verboseoutput("Connection to "+sys.argv[1], verbose) wbemclient = pywbem.WBEMConnection(sys.argv[1], (sys.argv[2], sys.argv[3]), NS, no_verification=True) # run the check for each defined class GlobalStatus = ExitOK ExitMsg = "" for classe in ClassesToCheck : verboseoutput("Check classe "+classe, verbose) instance_list = wbemclient.EnumerateInstances(classe) for instance in instance_list : elementName = instance['ElementName'] verboseoutput("Element Name = "+elementName, verbose) if instance['OperationalStatus'] is not None : elementStatus = instance['OperationalStatus'][0] verboseoutput("Element Op Status = %d" % elementStatus, verbose) interpretStatus = { 0 : ExitOK, # Unknown 1 : ExitCritical, # Other 2 : ExitOK, # OK 3 : ExitWarning, # Degraded 4 : ExitWarning, # Stressed 5 : ExitWarning, # Predictive Failure 6 : ExitCritical, # Error 7 : ExitCritical, # Non-Recoverable Error 8 : ExitWarning, # Starting 9 : ExitWarning, # Stopping 10 : ExitCritical, # Stopped 11 : ExitOK, # In Service 12 : ExitWarning, # No Contact 13 : ExitCritical, # Lost Communication 14 : ExitCritical, # Aborted 15 : ExitOK, # Dormant 16 : ExitCritical, # Supporting Entity in Error 17 : ExitOK, # Completed 18 : ExitOK, # Power Mode 19 : ExitOK, # DMTF Reserved 20 : ExitOK # Vendor Reserved }[elementStatus] if (interpretStatus == ExitCritical) : verboseoutput("GLobal exit set to CRITICAL", verbose) GlobalStatus = ExitCritical ExitMsg += "CRITICAL : %s<br>" % elementName if (interpretStatus == ExitWarning and GlobalStatus != ExitCritical) : verboseoutput("GLobal exit set to WARNING", verbose) GlobalStatus = ExitWarning ExitMsg += "WARNING : %s<br>" % elementName if GlobalStatus == 0 : print "OK" else : print ExitMsg sys.exit (GlobalStatus)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 198, 2, 12327, 329, 10627, 3298, 1535, 286, 2583, 2491, 37754, 13380, 55, 14, 1546, 42528, 198, 2, 198, 2, 10483, 594, 1058, 22961, 3611, 5094, 10483, 594, 357, 38, 6489, 8, 2638, 1378, 2503, 13, 41791, 13, 2398, 14, 198, 2, 3771, 12, 42180, 1058, 12972, 39346, 368, 198, 2, 198, 2, 31, 47232, 6329, 198, 2, 31, 7443, 198, 2, 31, 47232, 6329, 198, 2, 31, 7536, 220, 220, 1058, 939, 28362, 1238, 198, 2, 31, 6434, 1058, 3271, 406, 328, 31229, 198, 2, 31, 23219, 1058, 20768, 2650, 198, 2, 31, 47232, 6329, 198, 2, 31, 7536, 220, 220, 1058, 939, 28362, 2481, 198, 2, 31, 6434, 1058, 3271, 406, 328, 31229, 198, 2, 31, 23219, 1058, 3060, 15942, 577, 4235, 198, 2, 31, 47232, 6329, 198, 2, 31, 7536, 220, 220, 1058, 220, 198, 2, 31, 6434, 1058, 220, 198, 2, 31, 23219, 1058, 220, 198, 2, 31, 47232, 6329, 198, 2, 198, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 12972, 39346, 368, 198, 198, 8035, 796, 705, 15763, 14, 66, 320, 85, 17, 6, 198, 198, 2, 8160, 6097, 284, 2198, 705, 32180, 19580, 6, 4554, 198, 9487, 274, 2514, 9787, 796, 685, 198, 197, 6, 34, 3955, 62, 34556, 11964, 3256, 198, 197, 6, 34, 3955, 62, 45, 39223, 47864, 3256, 198, 197, 6, 34, 3955, 62, 30871, 3256, 198, 197, 6, 34, 3955, 62, 18709, 273, 3256, 198, 197, 6, 34, 3955, 62, 23739, 11187, 3256, 198, 197, 6, 2662, 34, 62, 15642, 8374, 47864, 3256, 198, 197, 6, 15996, 1574, 62, 31425, 11627, 298, 3256, 198, 197, 6, 15996, 1574, 62, 22130, 3256, 198, 197, 6, 15996, 1574, 62, 31425, 31715, 3256, 198, 197, 6, 15996, 1574, 62, 47006, 3256, 198, 197, 6, 15996, 1574, 62, 50, 10705, 1404, 2969, 419, 6, 198, 60, 198, 198, 2, 8160, 8420, 12416, 198, 30337, 11380, 796, 657, 198, 30337, 20361, 796, 352, 198, 30337, 41000, 796, 362, 198, 30337, 20035, 796, 513, 198, 198, 2, 2198, 5128, 7159, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 1279, 604, 25, 198, 197, 17597, 13, 301, 1082, 81, 13, 13564, 10786, 28350, 220, 220, 1058, 705, 1343, 25064, 13, 853, 85, 58, 15, 60, 1343, 705, 2583, 3672, 2836, 9206, 59, 77, 11537, 198, 197, 17597, 13, 301, 1082, 81, 13, 13564, 10786, 16281, 1058, 705, 1343, 25064, 13, 853, 85, 58, 15, 60, 1343, 705, 3740, 1378, 1820, 274, 29992, 25, 3270, 4531, 6808, 9206, 59, 77, 11537, 198, 197, 17597, 13, 37023, 7, 16, 8, 198, 19011, 577, 796, 657, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 6624, 642, 1058, 198, 197, 361, 25064, 13, 853, 85, 58, 19, 60, 6624, 366, 19011, 577, 1, 1058, 198, 197, 197, 19011, 577, 796, 352, 198, 198, 2, 4637, 284, 2583, 198, 19011, 577, 22915, 7203, 32048, 284, 43825, 17597, 13, 853, 85, 58, 16, 4357, 15942, 577, 8, 198, 39346, 368, 16366, 796, 12972, 39346, 368, 13, 45607, 3620, 32048, 7, 17597, 13, 853, 85, 58, 16, 4357, 357, 17597, 13, 853, 85, 58, 17, 4357, 25064, 13, 853, 85, 58, 18, 46570, 10896, 11, 645, 62, 332, 2649, 28, 17821, 8, 198, 198, 2, 1057, 262, 2198, 329, 1123, 5447, 1398, 198, 22289, 19580, 796, 29739, 11380, 198, 30337, 50108, 796, 13538, 198, 1640, 537, 21612, 287, 38884, 2514, 9787, 1058, 198, 197, 19011, 577, 22915, 7203, 9787, 537, 21612, 43825, 565, 21612, 11, 15942, 577, 8, 198, 197, 39098, 62, 4868, 796, 266, 65, 368, 16366, 13, 4834, 6975, 378, 6310, 1817, 7, 565, 21612, 8, 198, 197, 1640, 4554, 287, 4554, 62, 4868, 1058, 198, 197, 197, 30854, 5376, 796, 4554, 17816, 20180, 5376, 20520, 198, 197, 197, 19011, 577, 22915, 7203, 20180, 6530, 796, 43825, 30854, 5376, 11, 15942, 577, 8, 198, 197, 197, 361, 4554, 17816, 18843, 864, 19580, 20520, 318, 407, 6045, 1058, 198, 197, 197, 197, 30854, 19580, 796, 4554, 17816, 18843, 864, 19580, 6, 7131, 15, 60, 198, 197, 197, 197, 19011, 577, 22915, 7203, 20180, 8670, 12678, 796, 4064, 67, 1, 4064, 5002, 19580, 11, 15942, 577, 8, 198, 197, 197, 197, 27381, 19580, 796, 1391, 198, 197, 197, 197, 197, 15, 220, 1058, 29739, 11380, 11, 197, 197, 2, 16185, 198, 197, 197, 197, 197, 16, 220, 1058, 29739, 41000, 11, 197, 2, 3819, 198, 197, 197, 197, 197, 17, 220, 1058, 29739, 11380, 11, 197, 197, 2, 7477, 198, 197, 197, 197, 197, 18, 220, 1058, 29739, 20361, 11, 197, 2, 1024, 21791, 198, 197, 197, 197, 197, 19, 220, 1058, 29739, 20361, 11, 197, 2, 520, 2790, 198, 197, 197, 197, 197, 20, 220, 1058, 29739, 20361, 11, 197, 2, 14322, 45279, 25743, 198, 197, 197, 197, 197, 21, 220, 1058, 29739, 41000, 11, 197, 2, 13047, 198, 197, 197, 197, 197, 22, 220, 1058, 29739, 41000, 11, 197, 2, 8504, 12, 6690, 2502, 540, 13047, 198, 197, 197, 197, 197, 23, 220, 1058, 29739, 20361, 11, 197, 2, 17962, 198, 197, 197, 197, 197, 24, 220, 1058, 29739, 20361, 11, 197, 2, 22025, 2105, 198, 197, 197, 197, 197, 940, 1058, 29739, 41000, 11, 197, 2, 22025, 1496, 198, 197, 197, 197, 197, 1157, 1058, 29739, 11380, 11, 197, 197, 2, 554, 4809, 198, 197, 197, 197, 197, 1065, 1058, 29739, 20361, 11, 197, 2, 1400, 14039, 198, 197, 197, 197, 197, 1485, 1058, 29739, 41000, 11, 197, 2, 9164, 26117, 198, 197, 197, 197, 197, 1415, 1058, 29739, 41000, 11, 197, 2, 2275, 9741, 198, 197, 197, 197, 197, 1314, 1058, 29739, 11380, 11, 197, 197, 2, 360, 579, 415, 198, 197, 197, 197, 197, 1433, 1058, 29739, 41000, 11, 197, 2, 44188, 20885, 287, 13047, 198, 197, 197, 197, 197, 1558, 1058, 29739, 11380, 11, 197, 197, 2, 32983, 198, 197, 197, 197, 197, 1507, 1058, 29739, 11380, 11, 197, 197, 2, 4333, 10363, 198, 197, 197, 197, 197, 1129, 1058, 29739, 11380, 11, 197, 197, 2, 14848, 10234, 33876, 198, 197, 197, 197, 197, 1238, 1058, 29739, 11380, 197, 197, 2, 39896, 33876, 198, 197, 197, 197, 92, 58, 30854, 19580, 60, 198, 197, 197, 197, 361, 357, 27381, 19580, 6624, 29739, 41000, 8, 1058, 198, 197, 197, 197, 197, 19011, 577, 22915, 7203, 8763, 2572, 8420, 900, 284, 8740, 2043, 20151, 1600, 15942, 577, 8, 198, 197, 197, 197, 197, 22289, 19580, 796, 29739, 41000, 198, 197, 197, 197, 197, 30337, 50108, 15853, 366, 9419, 2043, 20151, 1058, 4064, 82, 27, 1671, 24618, 4064, 5002, 5376, 198, 197, 197, 197, 361, 357, 27381, 19580, 6624, 29739, 20361, 290, 8060, 19580, 14512, 29739, 41000, 8, 1058, 198, 197, 197, 197, 197, 19011, 577, 22915, 7203, 8763, 2572, 8420, 900, 284, 39410, 1600, 15942, 577, 8, 198, 197, 197, 197, 197, 22289, 19580, 796, 29739, 20361, 198, 197, 197, 197, 197, 30337, 50108, 15853, 366, 31502, 1058, 4064, 82, 27, 1671, 24618, 4064, 5002, 5376, 198, 198, 361, 8060, 19580, 6624, 657, 1058, 198, 197, 4798, 366, 11380, 1, 198, 17772, 1058, 198, 197, 4798, 29739, 50108, 198, 17597, 13, 37023, 357, 22289, 19580, 8, 198 ]
2.791421
1,189
import datetime import unittest from .context import date_utilities as d_utils ########################################################################### # Unit tests for get_datestamp() ########################################################################### # Test names are of the format: # test_<func>_<in_fmt>_<out_fmt>_<date> # # Where: # <func> Function name being tested. # (get_datestamp) # <in_fmt> Date element separator format for input. # (s=slash, d=dashed, c=contiguous, x=default) # <out_fmt> Date element separator format for output. # (s=slash, d=dashed, c=contiguous, x=default) # <date> Expected return boolean value. # (y=y2k, x=default) ########################################################################### # Unit tests for is_date() ########################################################################### # Test names are of the format: # test_<func>_<standard>_<format>_<return>_{<bound>} # # Where: # <func> Function name being tested. # (is_date) # <standard> Date standard tested. # (i=ISO 8601, n=Non-ISO) # <format> Date element separator format. # (s=slash, d=dashed, c=contiguous) # <return> Expected return boolean value. # (t=True, f=False) # <bound> (optional) For False returns, what offending date bound is # being tested. # (u=upper, l=lower) ########################################################################### # Non-ISO slash format is_date() tests ########################################################################### ########################################################################### # Non-ISO dashed format is_date() tests ########################################################################### ########################################################################### # ISO 8601 dashed format is_date() tests ########################################################################### ########################################################################### # ISO 8601 dashed format is_date() tests ########################################################################### ########################################################################### # ISO-8601 contiguous format is_date() tests ###########################################################################
[ 11748, 4818, 8079, 198, 11748, 555, 715, 395, 198, 198, 6738, 764, 22866, 1330, 3128, 62, 315, 2410, 355, 288, 62, 26791, 628, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198, 220, 220, 220, 1303, 11801, 5254, 329, 651, 62, 19608, 27823, 3419, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 628, 220, 220, 220, 1303, 6208, 3891, 389, 286, 262, 5794, 25, 198, 220, 220, 220, 1303, 220, 220, 1332, 62, 27, 20786, 29, 62, 27, 259, 62, 69, 16762, 29, 62, 27, 448, 62, 69, 16762, 29, 62, 27, 4475, 29, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 6350, 25, 198, 220, 220, 220, 1303, 220, 220, 1279, 20786, 29, 220, 220, 220, 220, 220, 15553, 1438, 852, 6789, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1136, 62, 19608, 27823, 8, 198, 220, 220, 220, 1303, 220, 220, 1279, 259, 62, 69, 16762, 29, 220, 220, 220, 7536, 5002, 2880, 1352, 5794, 329, 5128, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 28, 6649, 1077, 11, 288, 28, 67, 5263, 11, 269, 28, 3642, 29709, 11, 2124, 28, 12286, 8, 198, 220, 220, 220, 1303, 220, 220, 1279, 448, 62, 69, 16762, 29, 220, 220, 7536, 5002, 2880, 1352, 5794, 329, 5072, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 28, 6649, 1077, 11, 288, 28, 67, 5263, 11, 269, 28, 3642, 29709, 11, 2124, 28, 12286, 8, 198, 220, 220, 220, 1303, 220, 220, 1279, 4475, 29, 220, 220, 220, 220, 220, 1475, 7254, 1441, 25131, 1988, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 88, 28, 88, 17, 74, 11, 2124, 28, 12286, 8, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198, 220, 220, 220, 1303, 11801, 5254, 329, 318, 62, 4475, 3419, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 628, 220, 220, 220, 1303, 6208, 3891, 389, 286, 262, 5794, 25, 198, 220, 220, 220, 1303, 220, 220, 1332, 62, 27, 20786, 29, 62, 27, 20307, 29, 62, 27, 18982, 29, 62, 27, 7783, 29, 23330, 27, 7784, 29, 92, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 6350, 25, 198, 220, 220, 220, 1303, 220, 220, 1279, 20786, 29, 220, 220, 220, 220, 220, 15553, 1438, 852, 6789, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 271, 62, 4475, 8, 198, 220, 220, 220, 1303, 220, 220, 1279, 20307, 29, 220, 7536, 3210, 6789, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 28, 40734, 9849, 486, 11, 299, 28, 15419, 12, 40734, 8, 198, 220, 220, 220, 1303, 220, 220, 1279, 18982, 29, 220, 220, 220, 7536, 5002, 2880, 1352, 5794, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 28, 6649, 1077, 11, 288, 28, 67, 5263, 11, 269, 28, 3642, 29709, 8, 198, 220, 220, 220, 1303, 220, 220, 1279, 7783, 29, 220, 220, 220, 1475, 7254, 1441, 25131, 1988, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 28, 17821, 11, 277, 28, 25101, 8, 198, 220, 220, 220, 1303, 220, 220, 1279, 7784, 29, 220, 220, 220, 220, 357, 25968, 8, 1114, 10352, 5860, 11, 644, 30810, 3128, 5421, 318, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 852, 6789, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 84, 28, 45828, 11, 300, 28, 21037, 8, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198, 220, 220, 220, 1303, 8504, 12, 40734, 24632, 5794, 318, 62, 4475, 3419, 5254, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198, 220, 220, 220, 1303, 8504, 12, 40734, 37901, 5794, 318, 62, 4475, 3419, 5254, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198, 220, 220, 220, 1303, 19694, 9849, 486, 37901, 5794, 318, 62, 4475, 3419, 5254, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198, 220, 220, 220, 1303, 19694, 9849, 486, 37901, 5794, 318, 62, 4475, 3419, 5254, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198, 220, 220, 220, 1303, 19694, 12, 4521, 486, 48627, 5794, 318, 62, 4475, 3419, 5254, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198 ]
3.048698
883
from django.template.loader import render_to_string from djaveLogin.widgets.email_base import EmailBase from djaveLogin.models import new_sign_up_url
[ 198, 6738, 42625, 14208, 13, 28243, 13, 29356, 1330, 8543, 62, 1462, 62, 8841, 198, 6738, 42625, 1015, 47790, 13, 28029, 11407, 13, 12888, 62, 8692, 1330, 9570, 14881, 198, 6738, 42625, 1015, 47790, 13, 27530, 1330, 649, 62, 12683, 62, 929, 62, 6371, 628 ]
3.377778
45
import pygame # The play scene function
[ 11748, 12972, 6057, 198, 198, 2, 383, 711, 3715, 2163, 198 ]
3.727273
11
from django.urls import path from . import views urlpatterns = [ path("scripts/", views.GetAddScripts.as_view()), path("<int:pk>/script/", views.GetUpdateDeleteScript.as_view()), path("<int:pk>/download/", views.download), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 1330, 5009, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 7203, 46521, 14, 1600, 5009, 13, 3855, 4550, 7391, 82, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 7203, 27, 600, 25, 79, 74, 29, 14, 12048, 14, 1600, 5009, 13, 3855, 10260, 38727, 7391, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 7203, 27, 600, 25, 79, 74, 29, 14, 15002, 14, 1600, 5009, 13, 15002, 828, 198, 60, 198 ]
2.586957
92
# -*- coding: utf-8 -*- import json import os.path import random import re from flask import Flask, send_from_directory from flask import request, abort from flaskrun.flaskrun import flask_run import datab.social_database as db app = Flask(__name__) # Regular expression to only accept certain files fileChecker = re.compile(r"(.*\.js|.*\.html|.*\.png|.*\.css|.*\.map)$") numberOfAnswers = 4 random.seed(7) @app.route('/') @app.route('/<path:filename>') @app.route('/register') @app.route('/join_room') @app.route('/answered_room') @app.route('/get_user_id') @app.route('/create_room') @app.route('/get_rooms') @app.route('/fill_room', methods=['POST']) @app.route('/open_room') @app.route('/close_room') @app.route('/finish_room') @app.route('/room_status') @app.route('/get_room_questions') @app.route('/post_room_answers', methods=['POST']) @app.route('/get_quiz_question') @app.route('/post_quiz_answer') if __name__ == '__main__': flask_run(app)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 33918, 198, 11748, 28686, 13, 6978, 198, 11748, 4738, 198, 11748, 302, 198, 198, 6738, 42903, 1330, 46947, 11, 3758, 62, 6738, 62, 34945, 198, 6738, 42903, 1330, 2581, 11, 15614, 198, 198, 6738, 42903, 5143, 13, 2704, 2093, 5143, 1330, 42903, 62, 5143, 198, 11748, 4818, 397, 13, 14557, 62, 48806, 355, 20613, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 2, 23603, 5408, 284, 691, 2453, 1728, 3696, 198, 7753, 9787, 263, 796, 302, 13, 5589, 576, 7, 81, 18109, 15885, 17405, 8457, 91, 15885, 17405, 6494, 91, 15885, 17405, 11134, 91, 15885, 17405, 25471, 91, 15885, 17405, 8899, 8, 3, 4943, 198, 17618, 5189, 2025, 37848, 796, 604, 198, 198, 25120, 13, 28826, 7, 22, 8, 628, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 27, 6978, 25, 34345, 29, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 30238, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 22179, 62, 3823, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 31966, 62, 3823, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 1136, 62, 7220, 62, 312, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 17953, 62, 3823, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 1136, 62, 9649, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 20797, 62, 3823, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 31, 1324, 13, 38629, 10786, 14, 9654, 62, 3823, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 19836, 62, 3823, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 15643, 680, 62, 3823, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 3823, 62, 13376, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 1136, 62, 3823, 62, 6138, 507, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 7353, 62, 3823, 62, 504, 86, 364, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 31, 1324, 13, 38629, 10786, 14, 1136, 62, 421, 528, 62, 25652, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 7353, 62, 421, 528, 62, 41484, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 42903, 62, 5143, 7, 1324, 8, 198 ]
2.545918
392
#!/usr/bin/env python # encoding: utf-8 # Taken from legacy python unittest class WritelnDecorator: """Used to decorate file-like objects with a handy 'writeln' method"""
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 25, 3384, 69, 12, 23, 628, 198, 2, 30222, 422, 10655, 21015, 555, 715, 395, 198, 4871, 12257, 45542, 10707, 273, 1352, 25, 198, 220, 220, 220, 37227, 38052, 284, 11705, 378, 2393, 12, 2339, 5563, 351, 257, 15728, 705, 8933, 45542, 6, 2446, 37811, 198 ]
3.105263
57
# -*- coding: utf-8 -*- """ Functions to capture oscilloscope data. The curves are saved into a single file within the 'ScopeData' directory. Version 1.0 (2018-10-11) Daan Wielens - PhD at ICE/QTM University of Twente [email protected] """ import visa import numpy as np from struct import unpack import matplotlib.pyplot as plt import time import os
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 24629, 2733, 284, 8006, 24969, 40326, 1366, 13, 383, 23759, 389, 7448, 656, 257, 2060, 198, 7753, 1626, 262, 705, 43642, 6601, 6, 8619, 13, 198, 198, 14815, 352, 13, 15, 357, 7908, 12, 940, 12, 1157, 8, 198, 26531, 272, 370, 8207, 641, 532, 16394, 379, 23358, 14, 48, 15972, 198, 21009, 286, 1815, 21872, 198, 6814, 272, 31, 6814, 272, 86, 8207, 641, 13, 785, 198, 37811, 198, 198, 11748, 14552, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2878, 1330, 555, 8002, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 640, 198, 11748, 28686, 198 ]
2.991597
119
# top.py - top words ''' input: txt files from ./books folder output: csv files into the ./data folder This is a program that will find the top 100 words from a book discluding the stop words. These 100 top words will be stored in a csv file in the ./data folder for later use in the set.py program. ''' # https://towardsdatascience.com/very-simple-python-script-for-extracting-most-common-words-from-a-story-1e3570d0b9d0 import collections import os from os import listdir from os.path import isfile, join import pandas as pd import matplotlib.pyplot as plt import csv # Read input file, note the encoding is specified here # It may be different in your text file ##### CHANGE THE FILE = OPEN() LINE ##### bookPath = 'books/' fileNames = [f for f in listdir(bookPath) if isfile(join(bookPath, f))] fileNames = [os.path.splitext(x)[0] for x in fileNames] for file in fileNames: createVector(file)
[ 2, 1353, 13, 9078, 532, 1353, 2456, 198, 198, 7061, 6, 198, 15414, 25, 256, 742, 3696, 422, 24457, 12106, 9483, 198, 22915, 25, 269, 21370, 3696, 656, 262, 24457, 7890, 9483, 198, 198, 1212, 318, 257, 1430, 326, 481, 1064, 262, 1353, 1802, 2456, 422, 257, 1492, 595, 6360, 262, 2245, 2456, 13, 2312, 1802, 1353, 2456, 481, 198, 1350, 8574, 287, 257, 269, 21370, 2393, 287, 262, 24457, 7890, 9483, 329, 1568, 779, 287, 262, 900, 13, 9078, 1430, 13, 198, 7061, 6, 628, 198, 2, 3740, 1378, 83, 322, 1371, 19608, 292, 4234, 13, 785, 14, 548, 12, 36439, 12, 29412, 12, 12048, 12, 1640, 12, 2302, 974, 278, 12, 1712, 12, 11321, 12, 10879, 12, 6738, 12, 64, 12, 13571, 12, 16, 68, 2327, 2154, 67, 15, 65, 24, 67, 15, 198, 198, 11748, 17268, 198, 11748, 28686, 198, 6738, 28686, 1330, 1351, 15908, 198, 6738, 28686, 13, 6978, 1330, 318, 7753, 11, 4654, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 269, 21370, 198, 198, 2, 4149, 5128, 2393, 11, 3465, 262, 21004, 318, 7368, 994, 220, 198, 2, 632, 743, 307, 1180, 287, 534, 2420, 2393, 198, 4242, 2, 5870, 27746, 3336, 45811, 796, 38303, 3419, 48920, 46424, 198, 198, 2070, 15235, 796, 705, 12106, 14, 6, 198, 7753, 36690, 796, 685, 69, 329, 277, 287, 1351, 15908, 7, 2070, 15235, 8, 611, 318, 7753, 7, 22179, 7, 2070, 15235, 11, 277, 4008, 60, 198, 7753, 36690, 796, 685, 418, 13, 6978, 13, 22018, 578, 742, 7, 87, 38381, 15, 60, 329, 2124, 287, 2393, 36690, 60, 198, 198, 1640, 2393, 287, 2393, 36690, 25, 198, 220, 220, 220, 2251, 38469, 7, 7753, 8, 198 ]
3.105802
293
import numpy as np import geopandas as geo import pandas as pd from skimage.segmentation import find_boundaries from shapely.geometry import Polygon from scipy.sparse import csr_matrix from scipy.sparse.csgraph import connected_components from merfishdecoder.core import zplane from merfishdecoder.core import dataset from cellpose import utils from cellpose import models def extract_polygon_per_index( img, idx): """Extract features from a segmented image. Parameters ---------- img : np.array Segmented image. idx : int Index of the feature. Returns ------- A Polygon object. """ from functools import reduce import operator import math (y, x) = np.where( find_boundaries( img == idx, mode='inner')) points = np.array([x, y]).T if points.shape[0] == 0: return None else: hull = None if (points[:,0].max() - points[:,0].min() > 0) & \ (points[:,1].max() - points[:,1].min() > 0): coords = [[x, y] for (x, y) in points] center = tuple(map(operator.truediv, reduce(lambda x, y: map(operator.add, x, y), coords), [len(coords)] * 2)) pointsOrdered = sorted(coords, key=lambda coord: (-135 - math.degrees(math.atan2(*tuple(map(operator.sub, coord, center))[::-1]))) % 360) hull = Polygon(pointsOrdered) return hull def run_cell_pose( gpu = False, modelType = "nuclei", images: list = None, diameter: int = 150, channels: list = None, do_3D: bool = False ) -> np.ndarray: """Run cell pose for cell segmentation Parameters ---------- gpu : bool A boolen variable indicates whether to use GPU model_type : str Type of segmentation (nuclei or cyto) images : np.ndarray Input image stack for segmentation. diameter : int Average diameter for features channels : list list of channels, either of length 2 or of length number of images by 2. First element of list is the channel to segment (0=grayscale, 1=red, 2=blue, 3=green). Second element of list is the optional nuclear channel (0=none, 1=red, 2=blue, 3=green). For instance, to segment grayscale images, input [0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To segment one grayscale image and one image with cells in green and nuclei in blue, input [[0,0], [2,3]]. do_3D: bool set to True to run 3D segmentation on 4D image input Returns ------- masks: list of 2D arrays, or single 3D array (if do_3D=True) labelled image, where 0=no masks; 1,2,...=mask labels """ model = models.Cellpose( gpu = gpu, model_type = modelType) masks, flows, styles, diams = \ model.eval( images, diameter = diameter, do_3D = do_3D, channels= [[0, 0]] * len(images)) return masks
[ 11748, 299, 32152, 355, 45941, 198, 11748, 30324, 392, 292, 355, 40087, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 1341, 9060, 13, 325, 5154, 341, 1330, 1064, 62, 7784, 3166, 198, 6738, 5485, 306, 13, 469, 15748, 1330, 12280, 14520, 198, 6738, 629, 541, 88, 13, 82, 29572, 1330, 269, 27891, 62, 6759, 8609, 198, 6738, 629, 541, 88, 13, 82, 29572, 13, 6359, 34960, 1330, 5884, 62, 5589, 3906, 198, 198, 6738, 4017, 11084, 12501, 12342, 13, 7295, 1330, 1976, 14382, 198, 6738, 4017, 11084, 12501, 12342, 13, 7295, 1330, 27039, 198, 198, 6738, 2685, 3455, 1330, 3384, 4487, 198, 6738, 2685, 3455, 1330, 4981, 628, 198, 4299, 7925, 62, 35428, 14520, 62, 525, 62, 9630, 7, 198, 220, 220, 220, 33705, 11, 4686, 87, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 11627, 974, 3033, 422, 257, 10618, 276, 2939, 13, 220, 198, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 33705, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1001, 5154, 276, 2939, 13, 628, 220, 220, 220, 4686, 87, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 286, 262, 3895, 13, 220, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 317, 12280, 14520, 2134, 13, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 422, 1257, 310, 10141, 1330, 4646, 198, 220, 220, 220, 1330, 10088, 198, 220, 220, 220, 1330, 10688, 198, 220, 220, 220, 220, 198, 220, 220, 220, 357, 88, 11, 2124, 8, 796, 45941, 13, 3003, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1064, 62, 7784, 3166, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 6624, 4686, 87, 11, 4235, 11639, 5083, 6, 4008, 198, 220, 220, 220, 2173, 796, 45941, 13, 18747, 26933, 87, 11, 331, 35944, 51, 628, 220, 220, 220, 611, 2173, 13, 43358, 58, 15, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23644, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 13033, 58, 45299, 15, 4083, 9806, 3419, 532, 2173, 58, 45299, 15, 4083, 1084, 3419, 1875, 657, 8, 1222, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 13033, 58, 45299, 16, 4083, 9806, 3419, 532, 2173, 58, 45299, 16, 4083, 1084, 3419, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 796, 16410, 87, 11, 331, 60, 329, 357, 87, 11, 331, 8, 287, 2173, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3641, 796, 46545, 7, 8899, 7, 46616, 13, 83, 21556, 452, 11, 4646, 7, 50033, 2124, 11, 331, 25, 3975, 7, 46616, 13, 2860, 11, 2124, 11, 331, 828, 763, 3669, 828, 685, 11925, 7, 1073, 3669, 15437, 1635, 362, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 35422, 1068, 796, 23243, 7, 1073, 3669, 11, 1994, 28, 50033, 6349, 25, 13841, 17059, 532, 10688, 13, 13500, 6037, 7, 11018, 13, 39036, 17, 46491, 83, 29291, 7, 8899, 7, 46616, 13, 7266, 11, 6349, 11, 3641, 4008, 58, 3712, 12, 16, 60, 22305, 4064, 11470, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23644, 796, 12280, 14520, 7, 13033, 35422, 1068, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23644, 198, 198, 4299, 1057, 62, 3846, 62, 3455, 7, 198, 220, 220, 220, 308, 19944, 796, 10352, 11, 198, 220, 220, 220, 2746, 6030, 796, 366, 77, 14913, 72, 1600, 198, 220, 220, 220, 4263, 25, 1351, 796, 6045, 11, 198, 220, 220, 220, 14753, 25, 493, 796, 6640, 11, 198, 220, 220, 220, 9619, 25, 1351, 796, 6045, 11, 198, 220, 220, 220, 466, 62, 18, 35, 25, 20512, 796, 10352, 198, 220, 220, 220, 1267, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 10987, 2685, 12705, 329, 2685, 10618, 341, 198, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 308, 19944, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 317, 20512, 268, 7885, 9217, 1771, 284, 779, 11362, 198, 220, 220, 220, 2746, 62, 4906, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 5994, 286, 10618, 341, 357, 77, 14913, 72, 393, 3075, 1462, 8, 198, 220, 220, 220, 4263, 1058, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 2939, 8931, 329, 10618, 341, 13, 198, 220, 220, 220, 14753, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 13475, 14753, 329, 3033, 198, 220, 220, 220, 9619, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 9619, 11, 2035, 286, 4129, 362, 393, 286, 4129, 1271, 286, 4263, 416, 362, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3274, 5002, 286, 1351, 318, 262, 6518, 284, 10618, 357, 15, 28, 2164, 592, 38765, 11, 352, 28, 445, 11, 362, 28, 17585, 11, 513, 28, 14809, 737, 198, 220, 220, 220, 220, 220, 220, 220, 5498, 5002, 286, 1351, 318, 262, 11902, 4523, 6518, 357, 15, 28, 23108, 11, 352, 28, 445, 11, 362, 28, 17585, 11, 513, 28, 14809, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 4554, 11, 284, 10618, 1036, 592, 38765, 4263, 11, 5128, 685, 15, 11, 15, 4083, 1675, 10618, 4263, 351, 4778, 198, 220, 220, 220, 220, 220, 220, 220, 287, 4077, 290, 17751, 72, 287, 4171, 11, 5128, 685, 17, 11, 18, 4083, 1675, 10618, 530, 1036, 592, 38765, 2939, 290, 530, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 351, 4778, 287, 4077, 290, 17751, 72, 287, 4171, 11, 5128, 16410, 15, 11, 15, 4357, 685, 17, 11, 18, 60, 4083, 198, 220, 220, 220, 466, 62, 18, 35, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 900, 284, 6407, 284, 1057, 513, 35, 10618, 341, 319, 604, 35, 2939, 5128, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 20680, 25, 1351, 286, 362, 35, 26515, 11, 393, 2060, 513, 35, 7177, 357, 361, 466, 62, 18, 35, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30538, 2939, 11, 810, 657, 28, 3919, 20680, 26, 352, 11, 17, 42303, 28, 27932, 14722, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2746, 796, 4981, 13, 28780, 3455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 796, 308, 19944, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 4906, 796, 2746, 6030, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20680, 11, 15623, 11, 12186, 11, 48428, 82, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 18206, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 14753, 796, 14753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 466, 62, 18, 35, 796, 466, 62, 18, 35, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9619, 28, 16410, 15, 11, 657, 11907, 1635, 18896, 7, 17566, 4008, 628, 220, 220, 220, 1441, 20680, 198 ]
2.426164
1,246
""" Implementation of bot that automates browsing for watch live broadcasts of tvs. """ from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains TV_NONE = None TV_FOX = 1 TV_STAR = 2 TV_KANALD = 3 TV_SHOW = 4 TV_TRT = 5 TV_ATV = 6 TV_TV2 = 7 class TVBot(object): """ Handles automated operations """ def open(self, tv_id): """ Opens specified tv channel to watch. Available TV channels are listed below: TV_FOX = 1 TV_STAR = 2 TV_KANALD = 3 TV_SHOW = 4 TV_TRT = 5 TV_ATV = 6 TV_TV2 = 7 """ if self.closed: self.driver = webdriver.Chrome() self.closed = False self.driver.maximize_window() try: if tv_id == TV_FOX: self.driver.get("http://www.fox.com.tr/canli-yayin") self.current_tv = TV_FOX self.driver.find_element_by_css_selector("button..vjs-fullscreen-control.vjs-control.vjs-button").click() elif tv_id == TV_STAR: self.driver.get("https://www.youtube.com/watch?v=jWP3ntl64I4") self.current_tv = TV_STAR self.driver.find_element_by_css_selector("button.ytp-fullscreen-button.ytp-button").click() elif tv_id == TV_KANALD: self.driver.get("https://www.kanald.com.tr/canli-yayin") self.current_tv = TV_KANALD self.driver.find_element_by_css_selector("button.vjs-fullscreen-control.vjs-control.vjs-button").click() elif tv_id == TV_SHOW: self.driver.get("http://www.showtv.com.tr/canli-yayin") self.current_tv = TV_SHOW self.driver.find_element_by_css_selector("button.vjs-fullscreen-control.vjs-control.vjs-button").click() elif tv_id == TV_TRT: self.driver.get("http://www.trt.net.tr/anasayfa/canli.aspx?y=tv&k=trt1") self.current_tv = TV_TRT self.driver.find_element_by_css_selector('#trtnettrjwplayer').click() self.driver.find_element_by_css_selector(".jw-icon.jw-icon-inline.jw-button-color.jw-reset.jw-icon-fullscreen").click() elif tv_id == TV_ATV: self.driver.get("http://www.atv.com.tr/webtv/canli-yayin") self.current_tv = TV_ATV self.driver.find_element_by_css_selector('div.player').click() self.driver.find_element_by_css_selector(".jw-icon.jw-icon-inline.jw-button-color.jw-reset.jw-icon-fullscreen").click() self.driver.find_element_by_css_selector('div.player').click() elif tv_id == TV_TV2: self.driver.get("http://www.teve2.com.tr/canli-yayin") self.current_tv = TV_TV2 self.driver.find_element_by_css_selector('#player-container').click() self.driver.find_element_by_css_selector('button.vjs-fullscreen-control.vjs-control.vjs-button').click() except: pass
[ 37811, 198, 220, 220, 220, 46333, 286, 10214, 326, 3557, 689, 23182, 198, 220, 220, 220, 329, 2342, 2107, 30423, 286, 256, 14259, 13, 198, 37811, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 13083, 1330, 26363, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 2673, 62, 38861, 1330, 7561, 1925, 1299, 198, 198, 6849, 62, 45, 11651, 796, 6045, 198, 6849, 62, 47853, 796, 352, 198, 6849, 62, 46678, 796, 362, 198, 6849, 62, 42, 1565, 44071, 796, 513, 198, 6849, 62, 9693, 3913, 796, 604, 198, 6849, 62, 5446, 51, 796, 642, 198, 6849, 62, 1404, 53, 796, 718, 198, 6849, 62, 6849, 17, 796, 767, 628, 198, 4871, 3195, 20630, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7157, 829, 16359, 4560, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1280, 7, 944, 11, 31557, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8670, 641, 7368, 31557, 6518, 284, 2342, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14898, 3195, 9619, 389, 5610, 2174, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3195, 62, 47853, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3195, 62, 46678, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3195, 62, 42, 1565, 44071, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3195, 62, 9693, 3913, 796, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3195, 62, 5446, 51, 796, 642, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3195, 62, 1404, 53, 796, 718, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3195, 62, 6849, 17, 796, 767, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 20225, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 796, 3992, 26230, 13, 1925, 5998, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20225, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 9806, 48439, 62, 17497, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31557, 62, 312, 6624, 3195, 62, 47853, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 1136, 7203, 4023, 1378, 2503, 13, 12792, 13, 785, 13, 2213, 14, 5171, 4528, 12, 88, 323, 259, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 14981, 796, 3195, 62, 47853, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 7203, 16539, 492, 85, 8457, 12, 12853, 9612, 12, 13716, 13, 85, 8457, 12, 13716, 13, 85, 8457, 12, 16539, 11074, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 31557, 62, 312, 6624, 3195, 62, 46678, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 1136, 7203, 5450, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 73, 25527, 18, 429, 75, 2414, 40, 19, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 14981, 796, 3195, 62, 46678, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 7203, 16539, 13, 20760, 79, 12, 12853, 9612, 12, 16539, 13, 20760, 79, 12, 16539, 11074, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 31557, 62, 312, 6624, 3195, 62, 42, 1565, 44071, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 1136, 7203, 5450, 1378, 2503, 13, 27541, 1940, 13, 785, 13, 2213, 14, 5171, 4528, 12, 88, 323, 259, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 14981, 796, 3195, 62, 42, 1565, 44071, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 7203, 16539, 13, 85, 8457, 12, 12853, 9612, 12, 13716, 13, 85, 8457, 12, 13716, 13, 85, 8457, 12, 16539, 11074, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 31557, 62, 312, 6624, 3195, 62, 9693, 3913, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 1136, 7203, 4023, 1378, 2503, 13, 12860, 14981, 13, 785, 13, 2213, 14, 5171, 4528, 12, 88, 323, 259, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 14981, 796, 3195, 62, 9693, 3913, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 7203, 16539, 13, 85, 8457, 12, 12853, 9612, 12, 13716, 13, 85, 8457, 12, 13716, 13, 85, 8457, 12, 16539, 11074, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 31557, 62, 312, 6624, 3195, 62, 5446, 51, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 1136, 7203, 4023, 1378, 2503, 13, 2213, 83, 13, 3262, 13, 2213, 14, 15991, 323, 13331, 14, 5171, 4528, 13, 31740, 30, 88, 28, 14981, 5, 74, 28, 2213, 83, 16, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 14981, 796, 3195, 62, 5446, 51, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 2, 2213, 83, 3262, 2213, 73, 86, 7829, 27691, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 7, 1911, 73, 86, 12, 4749, 13, 73, 86, 12, 4749, 12, 45145, 13, 73, 86, 12, 16539, 12, 8043, 13, 73, 86, 12, 42503, 13, 73, 86, 12, 4749, 12, 12853, 9612, 11074, 12976, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 31557, 62, 312, 6624, 3195, 62, 1404, 53, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 1136, 7203, 4023, 1378, 2503, 13, 265, 85, 13, 785, 13, 2213, 14, 12384, 14981, 14, 5171, 4528, 12, 88, 323, 259, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 14981, 796, 3195, 62, 1404, 53, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 7146, 13, 7829, 27691, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 7, 1911, 73, 86, 12, 4749, 13, 73, 86, 12, 4749, 12, 45145, 13, 73, 86, 12, 16539, 12, 8043, 13, 73, 86, 12, 42503, 13, 73, 86, 12, 4749, 12, 12853, 9612, 11074, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 7146, 13, 7829, 27691, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 31557, 62, 312, 6624, 3195, 62, 6849, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 1136, 7203, 4023, 1378, 2503, 13, 660, 303, 17, 13, 785, 13, 2213, 14, 5171, 4528, 12, 88, 323, 259, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 14981, 796, 3195, 62, 6849, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 2, 7829, 12, 34924, 27691, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26230, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 16539, 13, 85, 8457, 12, 12853, 9612, 12, 13716, 13, 85, 8457, 12, 13716, 13, 85, 8457, 12, 16539, 27691, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
1.917759
1,678
import numpy as np import torch def do_mixup(x, mixup_lambda): """Mixup x of even indexes (0, 2, 4, ...) with x of odd indexes (1, 3, 5, ...). Args: x: (batch_size * 2, ...) mixup_lambda: (batch_size * 2,) Returns: out: (batch_size, ...) """ out = (x[0 :: 2].transpose(0, -1) * mixup_lambda[0 :: 2] + \ x[1 :: 2].transpose(0, -1) * mixup_lambda[1 :: 2]).transpose(0, -1) return out def forward(model, generator, return_input=False, return_target=False): """Forward data to a model. Args: model: object generator: object return_input: bool return_target: bool Returns: audio_name: (audios_num,) clipwise_output: (audios_num, classes_num) (ifexist) segmentwise_output: (audios_num, segments_num, classes_num) (ifexist) framewise_output: (audios_num, frames_num, classes_num) (optional) return_input: (audios_num, segment_samples) (optional) return_target: (audios_num, classes_num) """ output_dict = {} device = next(model.parameters()).device # Forward data to a model in mini-batches for n, batch_data_dict in enumerate(generator): print(n) batch_waveform = move_data_to_device(batch_data_dict['waveform'], device) with torch.no_grad(): model.eval() batch_output = model(batch_waveform) append_to_dict(output_dict, 'audio_name', batch_data_dict['audio_name']) append_to_dict(output_dict, 'clipwise_output', batch_output['clipwise_output'].data.cpu().numpy()) if return_input: append_to_dict(output_dict, 'waveform', batch_data_dict['waveform']) if return_target: if 'target' in batch_data_dict.keys(): append_to_dict(output_dict, 'target', batch_data_dict['target']) for key in output_dict.keys(): output_dict[key] = np.concatenate(output_dict[key], axis=0) return output_dict def interpolate(x, ratio): """Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN. Args: x: (batch_size, time_steps, classes_num) ratio: int, ratio to interpolate Returns: upsampled: (batch_size, time_steps * ratio, classes_num) """ (batch_size, time_steps, classes_num) = x.shape upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1) upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num) return upsampled def pad_framewise_output(framewise_output, frames_num): """Pad framewise_output to the same length as input frames. The pad value is the same as the value of the last frame. Args: framewise_output: (batch_size, frames_num, classes_num) frames_num: int, number of frames to pad Outputs: output: (batch_size, frames_num, classes_num) """ pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1) """tensor for padding""" output = torch.cat((framewise_output, pad), dim=1) """(batch_size, frames_num, classes_num)""" return output
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 628, 198, 198, 4299, 466, 62, 19816, 929, 7, 87, 11, 5022, 929, 62, 50033, 2599, 198, 220, 220, 220, 37227, 35608, 929, 2124, 286, 772, 39199, 357, 15, 11, 362, 11, 604, 11, 2644, 8, 351, 2124, 286, 5629, 39199, 198, 220, 220, 220, 357, 16, 11, 513, 11, 642, 11, 2644, 737, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 2124, 25, 357, 43501, 62, 7857, 1635, 362, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 5022, 929, 62, 50033, 25, 357, 43501, 62, 7857, 1635, 362, 35751, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 503, 25, 357, 43501, 62, 7857, 11, 2644, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 796, 357, 87, 58, 15, 7904, 362, 4083, 7645, 3455, 7, 15, 11, 532, 16, 8, 1635, 5022, 929, 62, 50033, 58, 15, 7904, 362, 60, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 58, 16, 7904, 362, 4083, 7645, 3455, 7, 15, 11, 532, 16, 8, 1635, 5022, 929, 62, 50033, 58, 16, 7904, 362, 35944, 7645, 3455, 7, 15, 11, 532, 16, 8, 198, 220, 220, 220, 1441, 503, 628, 198, 198, 4299, 2651, 7, 19849, 11, 17301, 11, 1441, 62, 15414, 28, 25101, 11, 198, 220, 220, 220, 1441, 62, 16793, 28, 25101, 2599, 198, 220, 220, 220, 37227, 39746, 1366, 284, 257, 2746, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 2746, 25, 2134, 198, 220, 220, 220, 220, 220, 17301, 25, 2134, 198, 220, 220, 220, 220, 220, 1441, 62, 15414, 25, 20512, 198, 220, 220, 220, 220, 220, 1441, 62, 16793, 25, 20512, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 6597, 62, 3672, 25, 357, 3885, 4267, 62, 22510, 35751, 198, 220, 220, 220, 220, 220, 10651, 3083, 62, 22915, 25, 357, 3885, 4267, 62, 22510, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 357, 901, 87, 396, 8, 10618, 3083, 62, 22915, 25, 357, 3885, 4267, 62, 22510, 11, 17894, 62, 22510, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 357, 901, 87, 396, 8, 5346, 413, 786, 62, 22915, 25, 357, 3885, 4267, 62, 22510, 11, 13431, 62, 22510, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 357, 25968, 8, 1441, 62, 15414, 25, 357, 3885, 4267, 62, 22510, 11, 10618, 62, 82, 12629, 8, 198, 220, 220, 220, 220, 220, 357, 25968, 8, 1441, 62, 16793, 25, 357, 3885, 4267, 62, 22510, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5072, 62, 11600, 796, 23884, 198, 220, 220, 220, 3335, 796, 1306, 7, 19849, 13, 17143, 7307, 3419, 737, 25202, 628, 220, 220, 220, 1303, 19530, 1366, 284, 257, 2746, 287, 9927, 12, 8664, 2052, 198, 220, 220, 220, 329, 299, 11, 15458, 62, 7890, 62, 11600, 287, 27056, 378, 7, 8612, 1352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 19204, 687, 796, 1445, 62, 7890, 62, 1462, 62, 25202, 7, 43501, 62, 7890, 62, 11600, 17816, 19204, 687, 6, 4357, 3335, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 18206, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 22915, 796, 2746, 7, 43501, 62, 19204, 687, 8, 628, 220, 220, 220, 220, 220, 220, 220, 24443, 62, 1462, 62, 11600, 7, 22915, 62, 11600, 11, 705, 24051, 62, 3672, 3256, 15458, 62, 7890, 62, 11600, 17816, 24051, 62, 3672, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 24443, 62, 1462, 62, 11600, 7, 22915, 62, 11600, 11, 705, 15036, 3083, 62, 22915, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 22915, 17816, 15036, 3083, 62, 22915, 6, 4083, 7890, 13, 36166, 22446, 77, 32152, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 15414, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24443, 62, 1462, 62, 11600, 7, 22915, 62, 11600, 11, 705, 19204, 687, 3256, 15458, 62, 7890, 62, 11600, 17816, 19204, 687, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 16793, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 16793, 6, 287, 15458, 62, 7890, 62, 11600, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24443, 62, 1462, 62, 11600, 7, 22915, 62, 11600, 11, 705, 16793, 3256, 15458, 62, 7890, 62, 11600, 17816, 16793, 6, 12962, 628, 220, 220, 220, 329, 1994, 287, 5072, 62, 11600, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 11600, 58, 2539, 60, 796, 45941, 13, 1102, 9246, 268, 378, 7, 22915, 62, 11600, 58, 2539, 4357, 16488, 28, 15, 8, 628, 220, 220, 220, 1441, 5072, 62, 11600, 628, 198, 4299, 39555, 378, 7, 87, 11, 8064, 2599, 198, 220, 220, 220, 37227, 9492, 16104, 378, 1366, 287, 640, 7386, 13, 770, 318, 973, 284, 21392, 262, 198, 220, 220, 220, 6323, 7741, 287, 21838, 321, 11347, 286, 257, 8100, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 2124, 25, 357, 43501, 62, 7857, 11, 640, 62, 20214, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 8064, 25, 493, 11, 8064, 284, 39555, 378, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 19649, 321, 10137, 25, 357, 43501, 62, 7857, 11, 640, 62, 20214, 1635, 8064, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 357, 43501, 62, 7857, 11, 640, 62, 20214, 11, 6097, 62, 22510, 8, 796, 2124, 13, 43358, 198, 220, 220, 220, 19649, 321, 10137, 796, 2124, 58, 45299, 1058, 11, 6045, 11, 1058, 4083, 44754, 7, 16, 11, 352, 11, 8064, 11, 352, 8, 198, 220, 220, 220, 19649, 321, 10137, 796, 19649, 321, 10137, 13, 3447, 1758, 7, 43501, 62, 7857, 11, 640, 62, 20214, 1635, 8064, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 1441, 19649, 321, 10137, 628, 198, 4299, 14841, 62, 19298, 413, 786, 62, 22915, 7, 19298, 413, 786, 62, 22915, 11, 13431, 62, 22510, 2599, 198, 220, 220, 220, 37227, 26114, 5346, 413, 786, 62, 22915, 284, 262, 976, 4129, 355, 5128, 13431, 13, 383, 14841, 1988, 198, 220, 220, 220, 318, 262, 976, 355, 262, 1988, 286, 262, 938, 5739, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 5346, 413, 786, 62, 22915, 25, 357, 43501, 62, 7857, 11, 13431, 62, 22510, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 13431, 62, 22510, 25, 493, 11, 1271, 286, 13431, 284, 14841, 198, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 5072, 25, 357, 43501, 62, 7857, 11, 13431, 62, 22510, 11, 6097, 62, 22510, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14841, 796, 5346, 413, 786, 62, 22915, 58, 45299, 532, 16, 1058, 11, 1058, 4083, 44754, 7, 16, 11, 13431, 62, 22510, 532, 5346, 413, 786, 62, 22915, 13, 43358, 58, 16, 4357, 352, 8, 198, 220, 220, 220, 37227, 83, 22854, 329, 24511, 37811, 628, 220, 220, 220, 5072, 796, 28034, 13, 9246, 19510, 19298, 413, 786, 62, 22915, 11, 14841, 828, 5391, 28, 16, 8, 198, 220, 220, 220, 13538, 18109, 43501, 62, 7857, 11, 13431, 62, 22510, 11, 6097, 62, 22510, 8, 37811, 628, 220, 220, 220, 1441, 5072 ]
2.398324
1,313
import copy import os import time import threading import typing import queue from cv2 import cv2 from genicam.gentl import TimeoutException from harvesters.core import Harvester import numpy as np from .._file_utils import create_output_dir from .._image_utils import RGB8Image from .._s3_utils import s3_upload_files, s3_bucket_exists from .._settings import ( DEFAULT_LOCAL_DATA_DIR, DEFAULT_S3_DATA_DIR, DEFAULT_GENTL_PRODUCER_PATH, IMAGE_DIR_NAME, IMAGE_FILE_TYPE, NETWORKS, ) WINDOW_NAME = "Capture" if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "--gentl_producer_path", type=str, default=DEFAULT_GENTL_PRODUCER_PATH, help="Path to the GenTL producer .cti file to use", ) parser.add_argument("--s3_bucket_name", type=str) parser.add_argument( "--s3_data_dir", type=str, default=DEFAULT_S3_DATA_DIR, help="Prefix of the s3 data objects", ) parser.add_argument( "--local_data_dir", type=str, default=DEFAULT_LOCAL_DATA_DIR, ) parser.add_argument( "--frame_rate", type=float, default=30.0, ) parser.add_argument( "--display_width", type=int, default=1080, ) args = parser.parse_args() main(args)
[ 11748, 4866, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 4704, 278, 198, 11748, 19720, 198, 11748, 16834, 198, 198, 6738, 269, 85, 17, 1330, 269, 85, 17, 198, 6738, 2429, 291, 321, 13, 6783, 75, 1330, 3862, 448, 16922, 198, 6738, 3971, 1158, 1010, 13, 7295, 1330, 2113, 1158, 353, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 11485, 62, 7753, 62, 26791, 1330, 2251, 62, 22915, 62, 15908, 198, 6738, 11485, 62, 9060, 62, 26791, 1330, 25228, 23, 5159, 198, 6738, 11485, 62, 82, 18, 62, 26791, 1330, 264, 18, 62, 25850, 62, 16624, 11, 264, 18, 62, 27041, 316, 62, 1069, 1023, 198, 198, 6738, 11485, 62, 33692, 1330, 357, 198, 220, 220, 220, 5550, 38865, 62, 29701, 1847, 62, 26947, 62, 34720, 11, 198, 220, 220, 220, 5550, 38865, 62, 50, 18, 62, 26947, 62, 34720, 11, 198, 220, 220, 220, 5550, 38865, 62, 38, 3525, 43, 62, 4805, 3727, 9598, 1137, 62, 34219, 11, 198, 220, 220, 220, 8959, 11879, 62, 34720, 62, 20608, 11, 198, 220, 220, 220, 8959, 11879, 62, 25664, 62, 25216, 11, 198, 220, 220, 220, 49791, 50, 11, 198, 8, 198, 198, 28929, 3913, 62, 20608, 796, 366, 49630, 1, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1330, 1822, 29572, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 6783, 75, 62, 18230, 2189, 62, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 7206, 38865, 62, 38, 3525, 43, 62, 4805, 3727, 9598, 1137, 62, 34219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 262, 5215, 14990, 9920, 764, 310, 72, 2393, 284, 779, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 82, 18, 62, 27041, 316, 62, 3672, 1600, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 82, 18, 62, 7890, 62, 15908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 7206, 38865, 62, 50, 18, 62, 26947, 62, 34720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 36698, 844, 286, 262, 264, 18, 1366, 5563, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 12001, 62, 7890, 62, 15908, 1600, 2099, 28, 2536, 11, 4277, 28, 7206, 38865, 62, 29701, 1847, 62, 26947, 62, 34720, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 14535, 62, 4873, 1600, 2099, 28, 22468, 11, 4277, 28, 1270, 13, 15, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 13812, 62, 10394, 1600, 2099, 28, 600, 11, 4277, 28, 24045, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 1388, 7, 22046, 8, 628 ]
2.320069
578
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 11, 15720, 602, 628 ]
2.891892
37
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Legacy Operators (:mod:`qiskit.opflow.legacy`) ====================================================== .. currentmodule:: qiskit.opflow.legacy These are the Operators provided by Aqua up until the 0.6 release. These are being replaced by the operator flow function and we encourage you to use this. Note: At some future time this legacy operator logic will be deprecated and removed. Legacy Operators ================ .. autosummary:: :toctree: ../stubs/ :nosignatures: LegacyBaseOperator WeightedPauliOperator TPBGroupedWeightedPauliOperator MatrixOperator Legacy Operator support ======================= .. autosummary:: :toctree: ../stubs/ :nosignatures: evolution_instruction suzuki_expansion_slice_pauli_list pauli_measurement measure_pauli_z covariance row_echelon_F2 kernel_F2 commutator check_commutativity PauliGraph Z2Symmetries """ from .common import (evolution_instruction, suzuki_expansion_slice_pauli_list, pauli_measurement, measure_pauli_z, covariance, row_echelon_F2, kernel_F2, commutator, check_commutativity) from .base_operator import LegacyBaseOperator from .weighted_pauli_operator import WeightedPauliOperator, Z2Symmetries from .matrix_operator import MatrixOperator from .tpb_grouped_weighted_pauli_operator import TPBGroupedWeightedPauliOperator from .pauli_graph import PauliGraph __all__ = [ 'evolution_instruction', 'suzuki_expansion_slice_pauli_list', 'pauli_measurement', 'measure_pauli_z', 'covariance', 'row_echelon_F2', 'kernel_F2', 'commutator', 'check_commutativity', 'PauliGraph', 'LegacyBaseOperator', 'WeightedPauliOperator', 'Z2Symmetries', 'TPBGroupedWeightedPauliOperator', 'MatrixOperator' ]
[ 2, 770, 2438, 318, 636, 286, 1195, 1984, 270, 13, 198, 2, 198, 2, 357, 34, 8, 15069, 19764, 2864, 11, 12131, 13, 198, 2, 198, 2, 770, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 13, 921, 743, 198, 2, 7330, 257, 4866, 286, 428, 5964, 287, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 198, 2, 286, 428, 2723, 5509, 393, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 198, 2, 198, 2, 4377, 19008, 393, 27255, 2499, 286, 428, 2438, 1276, 12377, 428, 198, 2, 6634, 4003, 11, 290, 9518, 3696, 761, 284, 3283, 257, 4003, 12739, 198, 2, 326, 484, 423, 587, 14294, 422, 262, 47324, 13, 198, 198, 37811, 198, 11484, 1590, 6564, 2024, 357, 25, 4666, 25, 63, 80, 1984, 270, 13, 404, 11125, 13, 1455, 1590, 63, 8, 198, 10052, 4770, 50155, 198, 198, 492, 1459, 21412, 3712, 10662, 1984, 270, 13, 404, 11125, 13, 1455, 1590, 198, 198, 4711, 389, 262, 6564, 2024, 2810, 416, 24838, 510, 1566, 262, 657, 13, 21, 2650, 13, 2312, 389, 852, 6928, 198, 1525, 262, 10088, 5202, 2163, 290, 356, 7898, 345, 284, 779, 428, 13, 198, 198, 6425, 25, 198, 220, 220, 220, 1629, 617, 2003, 640, 428, 10655, 10088, 9156, 481, 307, 39224, 290, 4615, 13, 198, 198, 11484, 1590, 6564, 2024, 198, 4770, 198, 198, 492, 44619, 388, 6874, 3712, 198, 220, 220, 1058, 1462, 310, 631, 25, 11485, 14, 301, 23161, 14, 198, 220, 220, 1058, 39369, 570, 6691, 25, 628, 220, 220, 14843, 14881, 18843, 1352, 198, 220, 220, 14331, 276, 12041, 72, 18843, 1352, 198, 220, 220, 24525, 33, 13247, 276, 25844, 276, 12041, 72, 18843, 1352, 198, 220, 220, 24936, 18843, 1352, 198, 198, 11484, 1590, 35946, 1104, 198, 4770, 1421, 18604, 198, 198, 492, 44619, 388, 6874, 3712, 198, 220, 220, 1058, 1462, 310, 631, 25, 11485, 14, 301, 23161, 14, 198, 220, 220, 1058, 39369, 570, 6691, 25, 628, 220, 220, 220, 6954, 62, 8625, 2762, 198, 220, 220, 220, 424, 89, 11308, 62, 11201, 5487, 62, 48369, 62, 79, 2518, 72, 62, 4868, 198, 220, 220, 220, 279, 2518, 72, 62, 1326, 5015, 434, 198, 220, 220, 220, 3953, 62, 79, 2518, 72, 62, 89, 198, 220, 220, 220, 44829, 590, 198, 220, 220, 220, 5752, 62, 721, 2978, 261, 62, 37, 17, 198, 220, 220, 220, 9720, 62, 37, 17, 198, 220, 220, 220, 725, 315, 1352, 198, 220, 220, 220, 2198, 62, 9503, 315, 22055, 198, 220, 220, 220, 3362, 72, 37065, 198, 220, 220, 220, 1168, 17, 13940, 3020, 316, 1678, 198, 37811, 198, 6738, 764, 11321, 1330, 357, 1990, 2122, 62, 8625, 2762, 11, 424, 89, 11308, 62, 11201, 5487, 62, 48369, 62, 79, 2518, 72, 62, 4868, 11, 279, 2518, 72, 62, 1326, 5015, 434, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3953, 62, 79, 2518, 72, 62, 89, 11, 44829, 590, 11, 5752, 62, 721, 2978, 261, 62, 37, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 37, 17, 11, 725, 315, 1352, 11, 2198, 62, 9503, 315, 22055, 8, 198, 198, 6738, 764, 8692, 62, 46616, 1330, 14843, 14881, 18843, 1352, 198, 6738, 764, 6551, 276, 62, 79, 2518, 72, 62, 46616, 1330, 14331, 276, 12041, 72, 18843, 1352, 11, 1168, 17, 13940, 3020, 316, 1678, 198, 6738, 764, 6759, 8609, 62, 46616, 1330, 24936, 18843, 1352, 198, 6738, 764, 34788, 65, 62, 8094, 276, 62, 6551, 276, 62, 79, 2518, 72, 62, 46616, 1330, 24525, 33, 13247, 276, 25844, 276, 12041, 72, 18843, 1352, 198, 6738, 764, 79, 2518, 72, 62, 34960, 1330, 3362, 72, 37065, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 1990, 2122, 62, 8625, 2762, 3256, 198, 220, 220, 220, 705, 2385, 89, 11308, 62, 11201, 5487, 62, 48369, 62, 79, 2518, 72, 62, 4868, 3256, 198, 220, 220, 220, 705, 79, 2518, 72, 62, 1326, 5015, 434, 3256, 198, 220, 220, 220, 705, 1326, 5015, 62, 79, 2518, 72, 62, 89, 3256, 198, 220, 220, 220, 705, 66, 709, 2743, 590, 3256, 198, 220, 220, 220, 705, 808, 62, 721, 2978, 261, 62, 37, 17, 3256, 198, 220, 220, 220, 705, 33885, 62, 37, 17, 3256, 198, 220, 220, 220, 705, 9503, 315, 1352, 3256, 198, 220, 220, 220, 705, 9122, 62, 9503, 315, 22055, 3256, 198, 220, 220, 220, 705, 12041, 72, 37065, 3256, 198, 220, 220, 220, 705, 11484, 1590, 14881, 18843, 1352, 3256, 198, 220, 220, 220, 705, 25844, 276, 12041, 72, 18843, 1352, 3256, 198, 220, 220, 220, 705, 57, 17, 13940, 3020, 316, 1678, 3256, 198, 220, 220, 220, 705, 7250, 33, 13247, 276, 25844, 276, 12041, 72, 18843, 1352, 3256, 198, 220, 220, 220, 705, 46912, 18843, 1352, 6, 198, 60, 198 ]
2.752086
839
# coding:utf-8 from __future__ import absolute_import, unicode_literals from sanic import Sanic from sanic.response import html, json import os from .api import bp from sanic_cors import CORS from sanic_auth import Auth, User __author__ = "golden" __date__ = '2018/6/1'
[ 2, 19617, 25, 40477, 12, 23, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 28000, 1098, 62, 17201, 874, 198, 6738, 5336, 291, 1330, 2986, 291, 198, 6738, 5336, 291, 13, 26209, 1330, 27711, 11, 33918, 198, 11748, 28686, 198, 6738, 764, 15042, 1330, 275, 79, 198, 6738, 5336, 291, 62, 66, 669, 1330, 327, 20673, 198, 6738, 5336, 291, 62, 18439, 1330, 26828, 11, 11787, 198, 198, 834, 9800, 834, 796, 366, 24267, 268, 1, 198, 834, 4475, 834, 796, 705, 7908, 14, 21, 14, 16, 6, 628 ]
2.989011
91
from flask import Blueprint bp = Blueprint("main", __name__) from napalm_inspector.main import routes # noqa
[ 6738, 42903, 1330, 39932, 198, 198, 46583, 796, 39932, 7203, 12417, 1600, 11593, 3672, 834, 8, 198, 198, 6738, 25422, 38182, 62, 1040, 806, 273, 13, 12417, 1330, 11926, 220, 1303, 645, 20402, 198 ]
3.294118
34
peso = float(input('Qual é o seu peso: (KG) ')) altura = float(input('Qual é a sua altura: (m)')) imc = peso / (altura ** 2) if imc < 18.5: print('Abaixo do peso.') elif imc < 25: print('Peso Ideal.') elif imc < 30: print('Sobrepeso') elif imc < 40: print('obesidade') else: print('Obesidade mórbida.')
[ 12272, 78, 796, 12178, 7, 15414, 10786, 46181, 38251, 267, 384, 84, 32317, 78, 25, 357, 42, 38, 8, 705, 4008, 198, 2501, 5330, 796, 12178, 7, 15414, 10786, 46181, 38251, 257, 424, 64, 5988, 5330, 25, 357, 76, 33047, 4008, 198, 320, 66, 796, 32317, 78, 1220, 357, 2501, 5330, 12429, 362, 8, 198, 198, 361, 545, 66, 1279, 1248, 13, 20, 25, 198, 220, 220, 220, 3601, 10786, 4826, 64, 844, 78, 466, 32317, 78, 2637, 8, 198, 417, 361, 545, 66, 1279, 1679, 25, 198, 220, 220, 220, 3601, 10786, 47, 274, 78, 41765, 2637, 8, 198, 417, 361, 545, 66, 1279, 1542, 25, 198, 220, 220, 220, 3601, 10786, 50, 672, 7856, 274, 78, 11537, 198, 417, 361, 545, 66, 1279, 2319, 25, 198, 220, 220, 220, 3601, 10786, 672, 274, 312, 671, 11537, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 5944, 274, 312, 671, 285, 10205, 26145, 3755, 2637, 8 ]
2.057325
157
from smt.surrogate_models import IDW from .smt_model import SMTModel class IDWModel(SMTModel): '''Inverse distance weighting model, implemented by SMT.''' @staticmethod @staticmethod
[ 6738, 895, 83, 13, 11793, 3828, 378, 62, 27530, 1330, 4522, 54, 198, 198, 6738, 764, 5796, 83, 62, 19849, 1330, 9447, 51, 17633, 628, 198, 198, 4871, 4522, 54, 17633, 7, 12310, 51, 17633, 2599, 198, 220, 220, 220, 705, 7061, 818, 4399, 5253, 3463, 278, 2746, 11, 9177, 416, 9447, 51, 2637, 7061, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 198 ]
2.871429
70
import os import os.path as ospx import torch split = "1" os.environ["CUDA_VISIBLE_DEVICES"] = "7" RESTORE_FROM_WHERE = "pretrained" EMBEDDING = "all" lambdaa = 0.2 #USE_CPU = True DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") BATCH_SIZE = 9 NUM_WORKERS = 3 ITER_SIZE = 1 IGNORE_LABEL = 255 # the background INPUT_SIZE = "512,512" LEARNING_RATE = 1e-4 MOMENTUM = 0.9 NUM_CLASSES = 21 NUM_EPOCHS = 50 POWER = 0.9 RANDOM_SEED = 1234 SAVE_NUM_IMAGES = 2 SAVE_PRED_EVERY = 500 WEIGHT_DECAY = 0.0005 LOG_DIR = "./log" weak_size = BATCH_SIZE weak_proportion = 0.2 DATA_PATH = "dataset/" PRETRAINED_OUR_PATH = "model/segmentation/pretrained/our_qfsl_confidence" SNAPSHOT_PATH = "model/segmentation/snapshots/vgg/lambda_split_single_1" PATH = "output/" DATA_VOC = DATA_PATH + "voc2012/" DATA_SEM = DATA_PATH # Semantic embeddings path SNAPSHOT_DIR = PATH + SNAPSHOT_PATH + "/" + EMBEDDING RESULT_DIR = PATH + SNAPSHOT_PATH + "/" + "result.txt"
[ 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 87, 198, 11748, 28034, 198, 198, 35312, 796, 366, 16, 1, 198, 418, 13, 268, 2268, 14692, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 8973, 796, 366, 22, 1, 198, 49, 6465, 6965, 62, 10913, 2662, 62, 47357, 796, 366, 5310, 13363, 1, 198, 3620, 33, 1961, 35, 2751, 796, 366, 439, 1, 198, 50033, 64, 796, 657, 13, 17, 198, 2, 19108, 62, 36037, 796, 6407, 198, 7206, 27389, 796, 28034, 13, 25202, 7203, 66, 15339, 25, 15, 1, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 366, 36166, 4943, 198, 198, 33, 11417, 62, 33489, 796, 860, 198, 41359, 62, 33249, 4877, 796, 513, 198, 2043, 1137, 62, 33489, 796, 352, 198, 16284, 6965, 62, 48780, 3698, 796, 14280, 1303, 262, 4469, 198, 1268, 30076, 62, 33489, 796, 366, 25836, 11, 25836, 1, 198, 2538, 1503, 15871, 62, 49, 6158, 796, 352, 68, 12, 19, 198, 44, 2662, 3525, 5883, 796, 657, 13, 24, 198, 41359, 62, 31631, 1546, 796, 2310, 198, 41359, 62, 8905, 46, 3398, 50, 796, 2026, 198, 47, 36048, 796, 657, 13, 24, 198, 49, 6981, 2662, 62, 5188, 1961, 796, 1105, 2682, 198, 4090, 6089, 62, 41359, 62, 3955, 25552, 796, 362, 198, 4090, 6089, 62, 4805, 1961, 62, 36, 5959, 56, 796, 5323, 198, 8845, 9947, 62, 41374, 4792, 796, 657, 13, 830, 20, 198, 25294, 62, 34720, 796, 366, 19571, 6404, 1, 198, 38695, 62, 7857, 796, 347, 11417, 62, 33489, 198, 38695, 62, 1676, 16864, 796, 657, 13, 17, 198, 198, 26947, 62, 34219, 796, 366, 19608, 292, 316, 30487, 198, 47, 26087, 3861, 1268, 1961, 62, 11698, 62, 34219, 796, 366, 19849, 14, 325, 5154, 341, 14, 5310, 13363, 14, 454, 62, 80, 69, 6649, 62, 39745, 1, 198, 15571, 2969, 9693, 2394, 62, 34219, 796, 366, 19849, 14, 325, 5154, 341, 14, 45380, 20910, 14, 85, 1130, 14, 50033, 62, 35312, 62, 29762, 62, 16, 1, 198, 34219, 796, 366, 22915, 30487, 628, 198, 26947, 62, 53, 4503, 796, 42865, 62, 34219, 1343, 366, 18893, 6999, 30487, 198, 26947, 62, 50, 3620, 796, 42865, 62, 34219, 1303, 12449, 5109, 11525, 67, 654, 3108, 198, 15571, 2969, 9693, 2394, 62, 34720, 796, 46490, 1343, 48592, 9693, 2394, 62, 34219, 1343, 12813, 1, 1343, 412, 10744, 1961, 35, 2751, 198, 19535, 16724, 62, 34720, 796, 46490, 1343, 48592, 9693, 2394, 62, 34219, 1343, 12813, 1, 1343, 366, 20274, 13, 14116, 1, 198 ]
2.324519
416
name = "pyupload" from .main import pyuploader
[ 3672, 796, 366, 9078, 25850, 1, 198, 6738, 764, 12417, 1330, 12972, 25850, 263 ]
3.285714
14
import random import os import argparse from cv2 import cv2 from model import Classifier from matplotlib import pyplot as plt def parse_arguments(): """ Object for parsing command line strings into Python objects. """ arg = argparse.ArgumentParser() arg.add_argument('--source', '-s', type=str, default='data/EuroSAT/2750', help="give main source directory") arg.add_argument('--device', '-d', default='cuda', type=str, choices=['cuda', 'cpu']) arg.add_argument('--model_path', '-m', type=str, default='saved_models/model_best.pth', help="give saved model path") arg.add_argument('--display', action='store_true') arg.add_argument('--colab', action='store_true') arg.add_argument('--save_path', '-sa', type=str, default='predict_results/') return vars(arg.parse_args()) def display(img, gt, pred, is_colab, save_path): """ Display the image and the prediction """ if gt == pred: text = f"Correct. Pred: {pred}" else: text = f"Incorrect. GT: {gt}, Pred: {pred}" if is_colab: plt.imshow(img) plt.title(text) plt.savefig(f'{save_path}/{gt}.png') else: cv2.imshow(f'{text}', img) cv2.waitKey(0) if __name__ == "__main__": kwargs = parse_arguments() device = kwargs.pop('device') source = kwargs.pop('source') model_path = kwargs.pop('model_path') is_display = kwargs.pop('display') is_colab = kwargs.pop('colab') save_path = kwargs.pop('save_path') random.seed(42) if not os.path.exists(save_path): os.makedirs(save_path, exist_ok=True) model = Classifier() model = model.from_pretrained(model_path).to(device) category_list = os.listdir(source) for category in category_list: category_path = os.path.join(source, category) category_img_list = os.listdir(category_path) random_selected = random.choice(category_img_list) img = cv2.imread(os.path.join( category_path, random_selected)) result = model.predict(img) max_proba_result = max(result[0], key=result[0].get) print("--"*20) print(f"Ground truth: {category}") print(f"Predicted: {max_proba_result}") print( f"Result: {'Correct' if category == max_proba_result else 'Incorrect'}") if is_display: display(img, category, max_proba_result, is_colab, save_path)
[ 11748, 4738, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 6738, 269, 85, 17, 1330, 269, 85, 17, 198, 6738, 2746, 1330, 5016, 7483, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 628, 198, 4299, 21136, 62, 853, 2886, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9515, 329, 32096, 3141, 1627, 13042, 656, 11361, 5563, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1822, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 1822, 13, 2860, 62, 49140, 10786, 438, 10459, 3256, 705, 12, 82, 3256, 2099, 28, 2536, 11, 4277, 11639, 7890, 14, 14398, 50, 1404, 14, 1983, 1120, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 26535, 1388, 2723, 8619, 4943, 198, 220, 220, 220, 1822, 13, 2860, 62, 49140, 10786, 438, 25202, 3256, 705, 12, 67, 3256, 4277, 11639, 66, 15339, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 7747, 28, 17816, 66, 15339, 3256, 705, 36166, 6, 12962, 198, 220, 220, 220, 1822, 13, 2860, 62, 49140, 10786, 438, 19849, 62, 6978, 3256, 705, 12, 76, 3256, 2099, 28, 2536, 11, 4277, 11639, 82, 9586, 62, 27530, 14, 19849, 62, 13466, 13, 79, 400, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 26535, 7448, 2746, 3108, 4943, 198, 220, 220, 220, 1822, 13, 2860, 62, 49140, 10786, 438, 13812, 3256, 2223, 11639, 8095, 62, 7942, 11537, 198, 220, 220, 220, 1822, 13, 2860, 62, 49140, 10786, 438, 4033, 397, 3256, 2223, 11639, 8095, 62, 7942, 11537, 198, 220, 220, 220, 1822, 13, 2860, 62, 49140, 10786, 438, 21928, 62, 6978, 3256, 705, 12, 11400, 3256, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 79, 17407, 62, 43420, 14, 11537, 628, 220, 220, 220, 1441, 410, 945, 7, 853, 13, 29572, 62, 22046, 28955, 628, 198, 4299, 3359, 7, 9600, 11, 308, 83, 11, 2747, 11, 318, 62, 4033, 397, 11, 3613, 62, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16531, 262, 2939, 290, 262, 17724, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 308, 83, 6624, 2747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 277, 1, 42779, 13, 14322, 25, 1391, 28764, 36786, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 277, 1, 818, 30283, 13, 7963, 25, 1391, 13655, 5512, 14322, 25, 1391, 28764, 36786, 628, 220, 220, 220, 611, 318, 62, 4033, 397, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7839, 7, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 69, 6, 90, 21928, 62, 6978, 92, 14, 90, 13655, 27422, 11134, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7, 69, 6, 90, 5239, 92, 3256, 33705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 17077, 9218, 7, 15, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 479, 86, 22046, 796, 21136, 62, 853, 2886, 3419, 198, 220, 220, 220, 3335, 796, 479, 86, 22046, 13, 12924, 10786, 25202, 11537, 198, 220, 220, 220, 2723, 796, 479, 86, 22046, 13, 12924, 10786, 10459, 11537, 198, 220, 220, 220, 2746, 62, 6978, 796, 479, 86, 22046, 13, 12924, 10786, 19849, 62, 6978, 11537, 198, 220, 220, 220, 318, 62, 13812, 796, 479, 86, 22046, 13, 12924, 10786, 13812, 11537, 198, 220, 220, 220, 318, 62, 4033, 397, 796, 479, 86, 22046, 13, 12924, 10786, 4033, 397, 11537, 198, 220, 220, 220, 3613, 62, 6978, 796, 479, 86, 22046, 13, 12924, 10786, 21928, 62, 6978, 11537, 198, 220, 220, 220, 4738, 13, 28826, 7, 3682, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 21928, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 21928, 62, 6978, 11, 2152, 62, 482, 28, 17821, 8, 628, 220, 220, 220, 2746, 796, 5016, 7483, 3419, 198, 220, 220, 220, 2746, 796, 2746, 13, 6738, 62, 5310, 13363, 7, 19849, 62, 6978, 737, 1462, 7, 25202, 8, 628, 220, 220, 220, 6536, 62, 4868, 796, 28686, 13, 4868, 15908, 7, 10459, 8, 198, 220, 220, 220, 329, 6536, 287, 6536, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6536, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 10459, 11, 6536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6536, 62, 9600, 62, 4868, 796, 28686, 13, 4868, 15908, 7, 22872, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 34213, 796, 4738, 13, 25541, 7, 22872, 62, 9600, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 269, 85, 17, 13, 320, 961, 7, 418, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 62, 6978, 11, 4738, 62, 34213, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2746, 13, 79, 17407, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 1676, 7012, 62, 20274, 796, 3509, 7, 20274, 58, 15, 4357, 1994, 28, 20274, 58, 15, 4083, 1136, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 438, 1, 9, 1238, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 35539, 3872, 25, 1391, 22872, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 39156, 5722, 25, 1391, 9806, 62, 1676, 7012, 62, 20274, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 23004, 25, 1391, 6, 42779, 6, 611, 6536, 6624, 3509, 62, 1676, 7012, 62, 20274, 2073, 705, 818, 30283, 6, 92, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 13812, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 7, 9600, 11, 6536, 11, 3509, 62, 1676, 7012, 62, 20274, 11, 318, 62, 4033, 397, 11, 3613, 62, 6978, 8, 198 ]
2.25
1,120
""" Provides a class for torch model evaluation. """ from __future__ import absolute_import import warnings import torch from .utils import common from pdb import set_trace as st class PyTorchModel: """ Class for torch model evaluation. Provide predict, intermediate_layer_outputs and adversarial_attack methods for model evaluation. Set callback functions for each method to process the results. Parameters ---------- model : instance of torch.nn.Module torch model to evaluate. Notes ---------- All operations will be done using GPU if the environment is available and set properly. """ def predict(self, dataset, callbacks, batch_size=16): """Predict with the model. The method will use the model to do prediction batch by batch. For every batch, callback functions will be invoked. Labels and predictions will be passed to the callback functions to do further process. Parameters ---------- dataset : instance of torch.utils.data.Dataset Dataset from which to load the data. callbacks : list of functions Callback functions, each of which will be invoked when a batch is done. batch_size : integer Batch size for prediction See Also -------- :class:`metrics.accuracy.Accuracy` """ dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size) with torch.no_grad(): for data, labels in dataloader: data = data.to(self._device) labels = labels.to(self._device) y_mini_batch_pred = self._model(data) for callback in callbacks: callback(labels, y_mini_batch_pred) # def intermediate_layer_outputs(self, dataset, callbacks, batch_size=8): # """Get the intermediate layer outputs of the model. # The method will use the model to do prediction batch by batch. For # every batch, the the intermediate layer outputs will be captured and # callback functions will be invoked. all intermediate layer output # will be passed to the callback functions to do further process. # Parameters # ---------- # dataset : instance of torch.utils.data.Dataset # Dataset from which to load the data. # callbacks : list of functions # Callback functions, each of which will be invoked when a batch is done. # batch_size : integer # Batch size for getting intermediate layer outputs. # See Also # -------- # :class:`metrics.neuron_coverage.NeuronCoverage` # """ # dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size) # y_mini_batch_outputs = [] # hook_handles = [] # intermediate_layers = self._intermediate_layers(self._model) # for intermediate_layer in intermediate_layers: # def hook(module, input, output): # y_mini_batch_outputs.append(output) # handle = intermediate_layer.register_forward_hook(hook) # hook_handles.append(handle) # with torch.no_grad(): # for data in dataloader: # if isinstance(data, list): # data = data[0] # y_mini_batch_outputs.clear() # data = data.to(self._device) # self._model(data) # for callback in callbacks: # callback(y_mini_batch_outputs, 0) # for handle in hook_handles: # handle.remove() def _intermediate_layers(self, module, pre_name=""): """Get the intermediate layers of the model. The method will get some intermediate layers of the model which might be useful for neuron coverage computation. Some layers such as dropout layers are excluded empirically. Returns ------- list of torch.nn.modules Intermediate layers of the model. """ intermediate_layers = [] for name, submodule in module.named_children(): full_name = f"{pre_name}.{name}" if len(submodule._modules) > 0: intermediate_layers += self._intermediate_layers(submodule, full_name) else: # if 'Dropout' in str(submodule.type) or 'BatchNorm' in str(submodule.type) or 'ReLU' in str(submodule.type): if 'Dropout' in str(submodule.type) or 'ReLU' in str(submodule.type) or 'Linear' in str(submodule.type) or 'Pool' in str(submodule.type): continue if self.intermedia_mode == "layer": if type(self._model).__name__ == "ResNet": if not full_name[-5:] == "1.bn2": continue else: ... intermediate_layers.append(submodule) # print(full_name, ) return intermediate_layers
[ 37811, 198, 15946, 1460, 257, 1398, 329, 28034, 2746, 12660, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 14601, 198, 198, 11748, 28034, 198, 198, 6738, 764, 26791, 1330, 2219, 198, 6738, 279, 9945, 1330, 900, 62, 40546, 355, 336, 198, 198, 4871, 9485, 15884, 354, 17633, 25, 198, 220, 220, 220, 37227, 5016, 329, 28034, 2746, 12660, 13, 628, 220, 220, 220, 44290, 4331, 11, 19898, 62, 29289, 62, 22915, 82, 290, 16907, 36098, 62, 20358, 198, 220, 220, 220, 5050, 329, 2746, 12660, 13, 5345, 23838, 5499, 329, 1123, 2446, 198, 220, 220, 220, 284, 1429, 262, 2482, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2746, 1058, 4554, 286, 28034, 13, 20471, 13, 26796, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 2746, 284, 13446, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1439, 4560, 481, 307, 1760, 1262, 11362, 611, 262, 2858, 318, 1695, 198, 220, 220, 220, 290, 900, 6105, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4331, 7, 944, 11, 27039, 11, 869, 10146, 11, 15458, 62, 7857, 28, 1433, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47, 17407, 351, 262, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2446, 481, 779, 262, 2746, 284, 466, 17724, 15458, 416, 15458, 13, 1114, 198, 220, 220, 220, 220, 220, 220, 220, 790, 15458, 11, 23838, 5499, 481, 307, 24399, 13, 3498, 1424, 290, 16277, 198, 220, 220, 220, 220, 220, 220, 220, 481, 307, 3804, 284, 262, 23838, 5499, 284, 466, 2252, 1429, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 1058, 4554, 286, 28034, 13, 26791, 13, 7890, 13, 27354, 292, 316, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16092, 292, 316, 422, 543, 284, 3440, 262, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 869, 10146, 1058, 1351, 286, 5499, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4889, 1891, 5499, 11, 1123, 286, 543, 481, 307, 24399, 618, 257, 15458, 318, 1760, 13, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 1058, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 963, 2546, 329, 17724, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 4418, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 4164, 10466, 13, 4134, 23843, 13, 17320, 23843, 63, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 282, 1170, 263, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 19608, 292, 316, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1366, 11, 14722, 287, 4818, 282, 1170, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 13, 1462, 7, 944, 13557, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 14722, 13, 1462, 7, 944, 13557, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 45313, 62, 43501, 62, 28764, 796, 2116, 13557, 19849, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 23838, 287, 869, 10146, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23838, 7, 23912, 1424, 11, 331, 62, 45313, 62, 43501, 62, 28764, 8, 628, 220, 220, 220, 1303, 825, 19898, 62, 29289, 62, 22915, 82, 7, 944, 11, 27039, 11, 869, 10146, 11, 15458, 62, 7857, 28, 23, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 37227, 3855, 262, 19898, 7679, 23862, 286, 262, 2746, 13, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 383, 2446, 481, 779, 262, 2746, 284, 466, 17724, 15458, 416, 15458, 13, 1114, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 790, 15458, 11, 262, 262, 19898, 7679, 23862, 481, 307, 7907, 290, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 23838, 5499, 481, 307, 24399, 13, 477, 19898, 7679, 5072, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 481, 307, 3804, 284, 262, 23838, 5499, 284, 466, 2252, 1429, 13, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 27039, 1058, 4554, 286, 28034, 13, 26791, 13, 7890, 13, 27354, 292, 316, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 16092, 292, 316, 422, 543, 284, 3440, 262, 1366, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 869, 10146, 1058, 1351, 286, 5499, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 4889, 1891, 5499, 11, 1123, 286, 543, 481, 307, 24399, 618, 257, 15458, 318, 1760, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 15458, 62, 7857, 1058, 18253, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 347, 963, 2546, 329, 1972, 19898, 7679, 23862, 13, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 4091, 4418, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1058, 4871, 25, 63, 4164, 10466, 13, 710, 44372, 62, 1073, 1857, 13, 8199, 44372, 7222, 1857, 63, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 4818, 282, 1170, 263, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 19608, 292, 316, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 331, 62, 45313, 62, 43501, 62, 22915, 82, 796, 17635, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 8011, 62, 4993, 829, 796, 17635, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 19898, 62, 75, 6962, 796, 2116, 13557, 3849, 13857, 62, 75, 6962, 7, 944, 13557, 19849, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 19898, 62, 29289, 287, 19898, 62, 75, 6962, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 825, 8011, 7, 21412, 11, 5128, 11, 5072, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 45313, 62, 43501, 62, 22915, 82, 13, 33295, 7, 22915, 8, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 5412, 796, 19898, 62, 29289, 13, 30238, 62, 11813, 62, 25480, 7, 25480, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 8011, 62, 4993, 829, 13, 33295, 7, 28144, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1366, 287, 4818, 282, 1170, 263, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 7890, 11, 1351, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 58, 15, 60, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 45313, 62, 43501, 62, 22915, 82, 13, 20063, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 13, 1462, 7, 944, 13557, 25202, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19849, 7, 7890, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 23838, 287, 869, 10146, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23838, 7, 88, 62, 45313, 62, 43501, 62, 22915, 82, 11, 657, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 5412, 287, 8011, 62, 4993, 829, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 28956, 3419, 628, 198, 220, 220, 220, 825, 4808, 3849, 13857, 62, 75, 6962, 7, 944, 11, 8265, 11, 662, 62, 3672, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 19898, 11685, 286, 262, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2446, 481, 651, 617, 19898, 11685, 286, 262, 2746, 543, 1244, 198, 220, 220, 220, 220, 220, 220, 220, 307, 4465, 329, 43164, 5197, 29964, 13, 2773, 11685, 884, 355, 4268, 448, 198, 220, 220, 220, 220, 220, 220, 220, 11685, 389, 15009, 18097, 1146, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 28034, 13, 20471, 13, 18170, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42540, 11685, 286, 262, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19898, 62, 75, 6962, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 850, 21412, 287, 8265, 13, 13190, 62, 17197, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 3672, 796, 277, 1, 90, 3866, 62, 3672, 27422, 90, 3672, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7266, 21412, 13557, 18170, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19898, 62, 75, 6962, 15853, 2116, 13557, 3849, 13857, 62, 75, 6962, 7, 7266, 21412, 11, 1336, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 705, 26932, 448, 6, 287, 965, 7, 7266, 21412, 13, 4906, 8, 393, 705, 33, 963, 35393, 6, 287, 965, 7, 7266, 21412, 13, 4906, 8, 393, 705, 3041, 41596, 6, 287, 965, 7, 7266, 21412, 13, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 26932, 448, 6, 287, 965, 7, 7266, 21412, 13, 4906, 8, 393, 705, 3041, 41596, 6, 287, 965, 7, 7266, 21412, 13, 4906, 8, 393, 705, 14993, 451, 6, 287, 965, 7, 7266, 21412, 13, 4906, 8, 393, 705, 27201, 6, 287, 965, 7, 7266, 21412, 13, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3849, 11431, 62, 14171, 6624, 366, 29289, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 944, 13557, 19849, 737, 834, 3672, 834, 6624, 366, 4965, 7934, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1336, 62, 3672, 58, 12, 20, 47715, 6624, 366, 16, 13, 9374, 17, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19898, 62, 75, 6962, 13, 33295, 7, 7266, 21412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 12853, 62, 3672, 11, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19898, 62, 75, 6962, 198 ]
2.34663
2,181
from django.conf.urls import patterns, url from views import index_view, search, purchase, get_balance urlpatterns = patterns('', url(r'^$', index_view, name='index'), url(r'^search/(?P<sobject>[\w\-]+)/(?P<name>[\w\- ]+)$', search), url(r'^purchase/(?P<sobject>[\w\-]+)$', purchase), url(r'^getBalance$', get_balance), )
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 7572, 11, 19016, 198, 6738, 5009, 1330, 6376, 62, 1177, 11, 2989, 11, 5001, 11, 651, 62, 20427, 628, 198, 6371, 33279, 82, 796, 7572, 10786, 3256, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 6376, 62, 1177, 11, 1438, 11639, 9630, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 12947, 29006, 30, 47, 27, 568, 65, 752, 36937, 59, 86, 41441, 48688, 20679, 7, 30, 47, 27, 3672, 36937, 59, 86, 41441, 2361, 28988, 3, 3256, 2989, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 79, 18737, 29006, 30, 47, 27, 568, 65, 752, 36937, 59, 86, 41441, 60, 28988, 3, 3256, 5001, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1136, 45866, 3, 3256, 651, 62, 20427, 828, 198, 8 ]
2.421429
140
import numpy as np from matplotlib import pyplot import h5py import healpy as hp import sys from tqdm import tqdm from comancpipeline.Tools import Coordinates from matplotlib.transforms import ScaledTranslation from scipy.signal import fftconvolve def MAD(d,axis=0): """ Return Median Absolute Deviation for array along one axis """ med_d = np.nanmedian(d,axis=axis) rms = np.sqrt(np.nanmedian((d-med_d)**2,axis=axis))*1.48 return rms def AutoRMS(tod): """ Auto-differenced RMS """ if len(tod.shape) == 2: N = (tod.shape[0]//2)*2 diff = tod[1:N:2,:] - tod[:N:2,:] rms = np.nanstd(diff,axis=0)/np.sqrt(2) else: N = (tod.size//2)*2 diff = tod[1:N:2] - tod[:N:2] rms = np.nanstd(diff)/np.sqrt(2) return rms def TsysRMS(tod,sample_rate,bandwidth): """ Calculate Tsys from the RMS """ rms = AutoRMS(tod) Tsys = rms*np.sqrt(bandwidth/sample_rate) return Tsys def weighted_mean(x,e): """ calculate the weighted mean """ return np.sum(x/e**2)/np.sum(1./e**2) def weighted_var(x,e): """ calculate weighted variance """ m = weighted_mean(x,e) v = np.sum((x-m)**2/e**2)/np.sum(1./e**2) return v
[ 11748, 299, 32152, 355, 45941, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 198, 11748, 289, 20, 9078, 198, 11748, 12035, 9078, 355, 27673, 198, 11748, 25064, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 401, 1192, 79, 541, 4470, 13, 33637, 1330, 22819, 17540, 198, 6738, 2603, 29487, 8019, 13, 7645, 23914, 1330, 1446, 3021, 48313, 198, 6738, 629, 541, 88, 13, 12683, 282, 1330, 277, 701, 42946, 6442, 628, 198, 4299, 45878, 7, 67, 11, 22704, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 26178, 36532, 6245, 3920, 329, 7177, 1863, 530, 16488, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1117, 62, 67, 796, 45941, 13, 12647, 1150, 666, 7, 67, 11, 22704, 28, 22704, 8, 198, 220, 220, 220, 374, 907, 796, 45941, 13, 31166, 17034, 7, 37659, 13, 12647, 1150, 666, 19510, 67, 12, 1150, 62, 67, 8, 1174, 17, 11, 22704, 28, 22704, 4008, 9, 16, 13, 2780, 628, 220, 220, 220, 1441, 374, 907, 198, 198, 4299, 11160, 49, 5653, 7, 83, 375, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11160, 12, 26069, 14226, 771, 371, 5653, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 18896, 7, 83, 375, 13, 43358, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 399, 796, 357, 83, 375, 13, 43358, 58, 15, 60, 1003, 17, 27493, 17, 198, 220, 220, 220, 220, 220, 220, 220, 814, 796, 284, 67, 58, 16, 25, 45, 25, 17, 11, 47715, 532, 284, 67, 58, 25, 45, 25, 17, 11, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 374, 907, 796, 45941, 13, 12647, 19282, 7, 26069, 11, 22704, 28, 15, 20679, 37659, 13, 31166, 17034, 7, 17, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 399, 796, 357, 83, 375, 13, 7857, 1003, 17, 27493, 17, 198, 220, 220, 220, 220, 220, 220, 220, 814, 796, 284, 67, 58, 16, 25, 45, 25, 17, 60, 532, 284, 67, 58, 25, 45, 25, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 374, 907, 796, 45941, 13, 12647, 19282, 7, 26069, 20679, 37659, 13, 31166, 17034, 7, 17, 8, 628, 220, 220, 220, 1441, 374, 907, 198, 198, 4299, 13146, 893, 49, 5653, 7, 83, 375, 11, 39873, 62, 4873, 11, 3903, 10394, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27131, 378, 13146, 893, 422, 262, 371, 5653, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 374, 907, 796, 220, 11160, 49, 5653, 7, 83, 375, 8, 220, 198, 220, 220, 220, 13146, 893, 796, 374, 907, 9, 37659, 13, 31166, 17034, 7, 3903, 10394, 14, 39873, 62, 4873, 8, 198, 220, 220, 220, 1441, 13146, 893, 198, 198, 4299, 26356, 62, 32604, 7, 87, 11, 68, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15284, 262, 26356, 1612, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 45941, 13, 16345, 7, 87, 14, 68, 1174, 17, 20679, 37659, 13, 16345, 7, 16, 19571, 68, 1174, 17, 8, 198, 198, 4299, 26356, 62, 7785, 7, 87, 11, 68, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15284, 26356, 24198, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 285, 796, 26356, 62, 32604, 7, 87, 11, 68, 8, 628, 220, 220, 220, 410, 796, 45941, 13, 16345, 19510, 87, 12, 76, 8, 1174, 17, 14, 68, 1174, 17, 20679, 37659, 13, 16345, 7, 16, 19571, 68, 1174, 17, 8, 198, 220, 220, 220, 1441, 410, 198 ]
2.091514
601
from datetime import datetime from itemloaders.processors import Compose, MapCompose, TakeFirst from scrapy.loader import ItemLoader
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 2378, 2220, 364, 13, 14681, 669, 1330, 3082, 577, 11, 9347, 7293, 577, 11, 7214, 5962, 198, 6738, 15881, 88, 13, 29356, 1330, 9097, 17401, 628, 628 ]
3.805556
36
import numpy as np from scipy.sparse import csr_matrix, lil_matrix
[ 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 82, 29572, 1330, 269, 27891, 62, 6759, 8609, 11, 42280, 62, 6759, 8609, 198 ]
2.68
25
from ignite.contrib.metrics.average_precision import AveragePrecision from ignite.contrib.metrics.roc_auc import ROC_AUC import ignite.contrib.metrics.regression
[ 6738, 44794, 13, 3642, 822, 13, 4164, 10466, 13, 23913, 62, 3866, 16005, 1330, 13475, 6719, 16005, 198, 6738, 44794, 13, 3642, 822, 13, 4164, 10466, 13, 12204, 62, 14272, 1330, 371, 4503, 62, 32, 9598, 198, 11748, 44794, 13, 3642, 822, 13, 4164, 10466, 13, 2301, 2234, 198 ]
3.306122
49
from functools import wraps from typing import List from flask_jwt_extended import jwt_required, get_jwt_identity from cusg.db.schema import User from cusg.utils.http import ForbiddenError from cusg.utils.managers import UserManager from cusg.repository.repos import UserRepository, UserGroupRepository
[ 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 42903, 62, 73, 46569, 62, 2302, 1631, 1330, 474, 46569, 62, 35827, 11, 651, 62, 73, 46569, 62, 738, 414, 198, 198, 6738, 269, 385, 70, 13, 9945, 13, 15952, 2611, 1330, 11787, 198, 6738, 269, 385, 70, 13, 26791, 13, 4023, 1330, 46014, 12331, 198, 6738, 269, 385, 70, 13, 26791, 13, 805, 10321, 1330, 11787, 13511, 198, 6738, 269, 385, 70, 13, 260, 1930, 37765, 13, 260, 1930, 1330, 11787, 6207, 13264, 11, 11787, 13247, 6207, 13264, 628, 628 ]
3.242105
95
import logging import os import shutil import numpy as np
[ 11748, 18931, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 198, 11748, 299, 32152, 355, 45941, 628, 628 ]
3.444444
18
import csv, json import numpy as np from pprint import pprint import difflib import numeral from scipy.stats.kde import gaussian_kde from tqdm import tqdm import Levenshtein import itertools NUMBERS = "0123456789" DELIMITERS = "~!@#$%^*()_+`-={}|[]:<>?;',/'\\" + '"' ROMAN = "IVXL" CATEGORY_RATIO = 0.3 CATEGORY_NUMBER = 5 FREQUENCY_RATIO = 0.1 FREQUENCY_NUMBER = 1 DISTANCE_THRESHOLD = 1 SIMILARITY_THRESHOLD = 0.9 little_result_counter = 0 if __name__ == '__main__': extract_data()
[ 11748, 269, 21370, 11, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 11748, 814, 8019, 198, 11748, 997, 1691, 198, 6738, 629, 541, 88, 13, 34242, 13, 74, 2934, 1330, 31986, 31562, 62, 74, 2934, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 1004, 574, 1477, 22006, 198, 11748, 340, 861, 10141, 198, 198, 41359, 33, 4877, 796, 366, 486, 1954, 2231, 3134, 4531, 1, 198, 35, 3698, 3955, 2043, 4877, 796, 366, 93, 0, 31, 29953, 4, 61, 9, 3419, 62, 10, 63, 12, 34758, 92, 91, 58, 5974, 27, 29, 30, 26, 3256, 14, 6, 6852, 1, 1343, 705, 30543, 198, 33676, 1565, 796, 366, 3824, 32457, 1, 198, 198, 34, 6158, 38, 15513, 62, 49, 1404, 9399, 796, 657, 13, 18, 198, 34, 6158, 38, 15513, 62, 41359, 13246, 796, 642, 198, 198, 37, 2200, 10917, 45155, 62, 49, 1404, 9399, 796, 657, 13, 16, 198, 37, 2200, 10917, 45155, 62, 41359, 13246, 796, 352, 198, 198, 35, 8808, 19240, 62, 4221, 19535, 39, 15173, 796, 352, 198, 48913, 4146, 1503, 9050, 62, 4221, 19535, 39, 15173, 796, 657, 13, 24, 198, 198, 31629, 62, 20274, 62, 24588, 796, 657, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 7925, 62, 7890, 3419, 198 ]
2.201754
228
# Generated by Django 2.2.2 on 2019-06-27 15:12 from django.db import migrations import multiselectfield.db.fields
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 17, 319, 13130, 12, 3312, 12, 1983, 1315, 25, 1065, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 198, 11748, 1963, 786, 801, 3245, 13, 9945, 13, 25747, 628 ]
2.925
40
import requests
[ 11748, 7007, 198 ]
5.333333
3
# -*- coding: utf-8 -*- """ Temporal framework doctests """ import doctest import unittest from openeo_udf.api import collection_base, feature_collection, datacube, \ machine_learn_model, spatial_extent, udf_data, structured_data def load_tests(loader, tests, ignore): """Load all doctests from the base implementation as unittests""" tests.addTests(doctest.DocTestSuite(collection_base)) tests.addTests(doctest.DocTestSuite(feature_collection)) tests.addTests(doctest.DocTestSuite(datacube)) tests.addTests(doctest.DocTestSuite(machine_learn_model)) tests.addTests(doctest.DocTestSuite(spatial_extent)) tests.addTests(doctest.DocTestSuite(structured_data)) tests.addTests(doctest.DocTestSuite(udf_data)) return tests if __name__ == '__main__': unittest.main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 12966, 35738, 9355, 10412, 3558, 198, 37811, 198, 198, 11748, 10412, 395, 198, 11748, 555, 715, 395, 198, 6738, 1280, 68, 78, 62, 463, 69, 13, 15042, 1330, 4947, 62, 8692, 11, 3895, 62, 43681, 11, 4818, 330, 3266, 11, 3467, 198, 220, 220, 220, 4572, 62, 35720, 62, 19849, 11, 21739, 62, 2302, 298, 11, 334, 7568, 62, 7890, 11, 20793, 62, 7890, 628, 198, 4299, 3440, 62, 41989, 7, 29356, 11, 5254, 11, 8856, 2599, 198, 220, 220, 220, 37227, 8912, 477, 10412, 3558, 422, 262, 2779, 7822, 355, 555, 715, 3558, 37811, 198, 220, 220, 220, 5254, 13, 2860, 51, 3558, 7, 4598, 310, 395, 13, 23579, 14402, 5606, 578, 7, 43681, 62, 8692, 4008, 198, 220, 220, 220, 5254, 13, 2860, 51, 3558, 7, 4598, 310, 395, 13, 23579, 14402, 5606, 578, 7, 30053, 62, 43681, 4008, 198, 220, 220, 220, 5254, 13, 2860, 51, 3558, 7, 4598, 310, 395, 13, 23579, 14402, 5606, 578, 7, 19608, 330, 3266, 4008, 198, 220, 220, 220, 5254, 13, 2860, 51, 3558, 7, 4598, 310, 395, 13, 23579, 14402, 5606, 578, 7, 30243, 62, 35720, 62, 19849, 4008, 198, 220, 220, 220, 5254, 13, 2860, 51, 3558, 7, 4598, 310, 395, 13, 23579, 14402, 5606, 578, 7, 2777, 34961, 62, 2302, 298, 4008, 198, 220, 220, 220, 5254, 13, 2860, 51, 3558, 7, 4598, 310, 395, 13, 23579, 14402, 5606, 578, 7, 7249, 1522, 62, 7890, 4008, 198, 220, 220, 220, 5254, 13, 2860, 51, 3558, 7, 4598, 310, 395, 13, 23579, 14402, 5606, 578, 7, 463, 69, 62, 7890, 4008, 198, 220, 220, 220, 1441, 5254, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.638436
307
from pic2vec import ImageFeaturizer import os import argparse parser = argparse.ArgumentParser() parser.add_argument('--path', help='Path to the images') parser.add_argument('--depth', help='Depth of Xception') parser.set_defaults(depth=2) args = parser.parse_args() image_column_name = 'images' my_featurizer = ImageFeaturizer(model='xception', depth=int(args.depth), autosample=True) featurized_df = my_featurizer.featurize(image_column_name, image_path=args.path) featurized_df.to_csv(os.path.join(args.path, 'features.csv'), index=False)
[ 6738, 8301, 17, 35138, 1330, 7412, 14304, 2541, 7509, 198, 11748, 28686, 198, 198, 11748, 1822, 29572, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 6978, 3256, 1037, 11639, 15235, 284, 262, 4263, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 18053, 3256, 1037, 11639, 48791, 286, 1395, 4516, 11537, 198, 48610, 13, 2617, 62, 12286, 82, 7, 18053, 28, 17, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 9060, 62, 28665, 62, 3672, 796, 705, 17566, 6, 198, 198, 1820, 62, 5036, 2541, 7509, 796, 7412, 14304, 2541, 7509, 7, 19849, 11639, 87, 4516, 3256, 6795, 28, 600, 7, 22046, 13, 18053, 828, 44619, 1403, 28, 17821, 8, 198, 198, 5036, 2541, 1143, 62, 7568, 796, 616, 62, 5036, 2541, 7509, 13, 5036, 2541, 1096, 7, 9060, 62, 28665, 62, 3672, 11, 2939, 62, 6978, 28, 22046, 13, 6978, 8, 198, 198, 5036, 2541, 1143, 62, 7568, 13, 1462, 62, 40664, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 6978, 11, 705, 40890, 13, 40664, 33809, 6376, 28, 25101, 8 ]
2.919786
187
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-06-25 13:41 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 319, 2864, 12, 3312, 12, 1495, 1511, 25, 3901, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.8
55
filename = 'risk tickers.xlsx' xls = pd.ExcelFile(filename) sht = xls.sheet_names for i in sht: print i df = pd.read_excel(filename,sheetname='Iron Steel') #print the column names print df.columns #get the values for a given column FLDS = df['Tickers'].values for i in FLDS: print i FLDS.shape FLDS = FLDS.tolist() FLDS = [x for x in FLDS if str(x) != 'nan'] len(FLDS) setup_bbg() start_date = '1/1/2010' starting = time.time() sids = mgr[FLDS] x = sids.get_historical("PX_LAST", start_date, date.today()) #ISO FX x.backup = x.copy print(time.time()-starting) # fill na x = x.fillna(method="ffill") #x = x.fillna(method="bfill") # hindsight biases x.tail() x.plot() x.apply(normalise_max_min).plot() #============================================================================== # R^2 explanation #============================================================================== from sklearn import datasets, linear_model regr = linear_model.LinearRegression(normalize = True, n_jobs = -1) x.T.tail() X = df_dropna(x.drop('ISIXSTSC Index',axis=1),axis=0) Y = df_dropna(x['ISIXSTSC Index'].to_frame(),axis=0) merged = pd.concat([Y,X],axis=1,join='inner') #merged = merged.dropna(axis=0) X = merged.iloc[:,1:] Y = merged.iloc[:,0] # regression model outputs regr.fit(X, Y) # scipy.linalg stored result in global envir regr.intercept_ regr.coef_ #plot residuals regr_res = Y - regr.predict(X) regr_res.plot() #merge for plotting if len(regr.predict(X)) == Y.shape[0]: Y1 = pd.concat([Y,pd.DataFrame(regr.predict(X),index=Y.index)],axis=1) Y1.columns = ['Actual','Predicted'] Y1.head() Y1.plot() # plot regression coefficients plot_coeff(regr.coef_) for i in r1: print i.get_x() #============================================================================== # STATS TOOLS #============================================================================== # test stationary pairs - cointegration import statsmodels.tsa.stattools as tsa import statsmodels.graphics.tsaplots as tsa_plots tsa.adfuller(regr_res) setup_bbg() start_date = '1/1/2010' starting = time.time() sids = mgr['GOOG US Equity'] x = sids.get_historical("PX_LAST", start_date, date.today()) #ISO FX Y = x.fillna(method="ffill") acf_ = tsa_plots.plot_acf(x=Y,alpha =.05, use_vlines=True, lags=100, unbiased=True) acf_ = tsa_plots.plot_acf(x=log_return(Y),alpha =.05, use_vlines=True, lags=100, unbiased=True) ret=log_return(Y) ret.describe() ret.plot() #ACF acf_, ci, Q, pvalue = tsa.acf(ret, nlags=30, alpha=.05, qstat=True) # use FFT is long ts tsa_plots.plot_acf(x=ret,alpha =.05, use_vlines=True, lags=30, unbiased=True) out=np.column_stack((acf_,ci)) in_cf=map(lambda x : x[0]>=x[1] and x[0]<=x[2], out) #PACF pacf_, ci = tsa.pacf(ret, nlags=30, alpha=.05) # use FFT is long ts tsa_plots.plot_pacf(x=ret,alpha =.05, use_vlines=True, lags=30) out=np.column_stack((pacf_,ci)) in_cf=map(lambda x : x[0]>=x[1] and x[0]<=x[2], out) X #============================================================================== # decomposition of features - PCA with Varimax roration #============================================================================== from numpy import eye, asarray, dot, sum, diag from numpy.linalg import svd #============================================================================== # example regression #============================================================================== from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean squared error print("Mean squared error: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show() #============================================================================== # stats model regression / ROLLING #============================================================================== x.shape y=x.iloc[:,0] X=x.iloc[:,1:] model = pd.stats.ols.MovingOLS(y=y, x=X, window_type='rolling', window=100, intercept=True) #r.agg r.apply r.count r.exclusions r.max r.median r.name r.skew r.sum #r.aggregate r.corr r.cov r.kurt r.mean r.min r.quantile r.std r.var x.rolling(window=62,center=False).mean() x.rolling(window=62,center=False).apply(normalise_max_min,axis=0) R = x.rolling(window=62,min_periods=20,center=False) R.mean() R.agg({'result1' : np.sum,'result2' : np.mean}) R.apply(lambda x: np.std(x)) C=R.corr(x[x.columns.values[0]],pairwise=True) C.columns R.apply(corr,x[x.columns.values[0]],pairwise=True) R.corr(pairwise=True) import inspect print inspect.getsource(clustered_corr) print inspect.getsource(R.corr) R.corr?? R.apply?? C.columns C.tail(2) C.iloc[:,1].plot() x.shape # 2 arguments mapper with lambda f = lambda (x, y): (x+y, x-y) t1=x.iloc[:,0] t2=x.iloc[:,1] from itertools import repeat zz=map(f, zip(t1,t2)) h=pd.DataFrame() h['a'],h['b']=zip(*zz) h.tail() type(h) #lambda (x,y) for correlation from scipy.stats.stats import pearsonr pearsonr(t1,t2,) f = lambda (x, y): (x+y, x-y) t1=x.iloc[:,0] t2=x.iloc[:,1] from itertools import repeat zz=map(f, zip(t1,t2)) zz=x.iloc[:,:2].apply(tuple,axis=1) h=pd.DataFrame() h['a'],h['b']=zip(*zz) h.tail() type(h) plot_pdf_level_one(C,nrow=3,ncol=3,total=C.shape[1],sz=(10,8),filename="rolling_corr.pdf") #============================================================================== # ROLLING OLS REGRESSION PAIRWISE R^2 take TOP 3 #============================================================================== y = x['ISIXSTSC Index'].to_frame() x = x.drop(['ISIXSTSC Index'],axis=1) y.shape x.shape pairwise_R2(y,x,start_date='2015',lookback=21,min_pd=5,sz=(15,15),filename='pairwise_rollingR2.pdf') #============================================================================== # MANUAL PCA #============================================================================== X = df_dropna(x) eigenvals, components = np.linalg.eig(np.cov(X.transpose())) vr_components = pretty_matrix(mat=varimax(components[:,:3]),digits=7) pd.DataFrame(vr_components,index=mgr[X.columns].NAME) # find index of coeff != 0 in components ID_tup = zip(*np.where(vr_components != 0)) ID = pd.DataFrame(ID_tup).iloc[:,1].values mgr[X.columns[ID]].NAME #============================================================================== # AUTO PCA #============================================================================== pca = PCA(n_components=3) # tol for singular SVD X = df_dropna(x) fit = pca.fit(X) trans_X = pca.transform(X) trans_X = pd.DataFrame(trans_X, index = X.index, columns=["PC"+str(i+1) for i in xrange(trans_X.shape[1])]) trans_X.plot() # plot first 3 components trans_X.corr() trans_X.shape trans_X.describe() trans_X.head() y.head() # summarize components print("Explained Variance: %s") % fit.explained_variance_ratio_ var1=np.cumsum(np.round(fit.explained_variance_ratio_, decimals=4)*100) var1 plt.plot(var1) #np.set_printoptions(threshold=np.inf) print(fit.components_.T) fit.n_features_ fit.n_components_ pairwise_R2(y,trans_X,start_date='2015', lookback=21,min_pd=5,sz=(15,15),filename='pairwise_rollingR2 PCA.pdf') #============================================================================== # regress 1 #============================================================================== from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_boston() type(diabetes) diabetes.keys() diabetes.data.shape type(diabetes_X) type(diabetes.target) # Use only one feature diabetes_X = diabetes.data[:, ] len(diabetes_X) # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) regr.score(diabetes_X_train, diabetes_y_train) regr.intercept_ diabetes.data regr.columns # The coefficients print('Coefficients: \n', regr.coef_) # The mean squared error print("Mean squared error: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
[ 34345, 796, 705, 19121, 4378, 364, 13, 87, 7278, 87, 6, 198, 87, 7278, 796, 279, 67, 13, 3109, 5276, 8979, 7, 34345, 8, 198, 1477, 83, 796, 2124, 7278, 13, 21760, 62, 14933, 198, 1640, 1312, 287, 427, 83, 25, 3601, 1312, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 1069, 5276, 7, 34345, 11, 21760, 3672, 11639, 22797, 7851, 11537, 198, 2, 4798, 262, 5721, 3891, 198, 4798, 47764, 13, 28665, 82, 198, 198, 2, 1136, 262, 3815, 329, 257, 1813, 5721, 198, 3697, 5258, 796, 47764, 17816, 51, 21630, 6, 4083, 27160, 198, 1640, 1312, 287, 9977, 5258, 25, 3601, 1312, 198, 3697, 5258, 13, 43358, 198, 3697, 5258, 796, 9977, 5258, 13, 83, 349, 396, 3419, 198, 3697, 5258, 796, 685, 87, 329, 2124, 287, 9977, 5258, 611, 965, 7, 87, 8, 14512, 705, 12647, 20520, 198, 198, 11925, 7, 3697, 5258, 8, 198, 198, 40406, 62, 11848, 70, 3419, 198, 9688, 62, 4475, 796, 705, 16, 14, 16, 14, 10333, 6, 198, 38690, 796, 640, 13, 2435, 3419, 198, 82, 2340, 796, 285, 2164, 58, 3697, 5258, 60, 198, 87, 796, 264, 2340, 13, 1136, 62, 10034, 12409, 7203, 47, 55, 62, 43, 11262, 1600, 923, 62, 4475, 11, 3128, 13, 40838, 28955, 1303, 40734, 19534, 198, 87, 13, 1891, 929, 796, 2124, 13, 30073, 198, 4798, 7, 2435, 13, 2435, 3419, 12, 38690, 8, 628, 198, 2, 6070, 12385, 198, 87, 796, 2124, 13, 20797, 2616, 7, 24396, 2625, 487, 359, 4943, 220, 198, 2, 87, 796, 2124, 13, 20797, 2616, 7, 24396, 2625, 19881, 359, 4943, 1303, 36412, 29275, 198, 87, 13, 13199, 3419, 198, 198, 87, 13, 29487, 3419, 198, 87, 13, 39014, 7, 11265, 786, 62, 9806, 62, 1084, 737, 29487, 3419, 628, 198, 2, 23926, 25609, 855, 198, 2, 371, 61, 17, 7468, 198, 2, 23926, 25609, 855, 198, 6738, 1341, 35720, 1330, 40522, 11, 14174, 62, 19849, 198, 260, 2164, 796, 14174, 62, 19849, 13, 14993, 451, 8081, 2234, 7, 11265, 1096, 796, 6407, 11, 299, 62, 43863, 796, 532, 16, 8, 198, 198, 87, 13, 51, 13, 13199, 3419, 198, 198, 55, 796, 47764, 62, 14781, 2616, 7, 87, 13, 14781, 10786, 1797, 10426, 2257, 6173, 12901, 3256, 22704, 28, 16, 828, 22704, 28, 15, 8, 198, 56, 796, 47764, 62, 14781, 2616, 7, 87, 17816, 1797, 10426, 2257, 6173, 12901, 6, 4083, 1462, 62, 14535, 22784, 22704, 28, 15, 8, 198, 647, 2004, 796, 279, 67, 13, 1102, 9246, 26933, 56, 11, 55, 4357, 22704, 28, 16, 11, 22179, 11639, 5083, 11537, 1303, 647, 2004, 796, 23791, 13, 14781, 2616, 7, 22704, 28, 15, 8, 198, 55, 796, 23791, 13, 346, 420, 58, 45299, 16, 47715, 198, 56, 796, 23791, 13, 346, 420, 58, 45299, 15, 60, 198, 198, 2, 20683, 2746, 23862, 198, 260, 2164, 13, 11147, 7, 55, 11, 575, 8, 1303, 629, 541, 88, 13, 75, 1292, 70, 8574, 1255, 287, 3298, 17365, 343, 198, 260, 2164, 13, 3849, 984, 62, 198, 260, 2164, 13, 1073, 891, 62, 198, 198, 2, 29487, 29598, 82, 198, 260, 2164, 62, 411, 796, 575, 532, 842, 81, 13, 79, 17407, 7, 55, 8, 198, 260, 2164, 62, 411, 13, 29487, 3419, 198, 198, 2, 647, 469, 329, 29353, 198, 361, 18896, 7, 260, 2164, 13, 79, 17407, 7, 55, 4008, 6624, 575, 13, 43358, 58, 15, 5974, 220, 198, 220, 220, 220, 575, 16, 796, 279, 67, 13, 1102, 9246, 26933, 56, 11, 30094, 13, 6601, 19778, 7, 260, 2164, 13, 79, 17407, 7, 55, 828, 9630, 28, 56, 13, 9630, 8, 4357, 22704, 28, 16, 8, 198, 56, 16, 13, 28665, 82, 796, 37250, 6398, 723, 41707, 39156, 5722, 20520, 198, 56, 16, 13, 2256, 3419, 198, 56, 16, 13, 29487, 3419, 198, 198, 2, 7110, 20683, 44036, 198, 29487, 62, 1073, 14822, 7, 260, 2164, 13, 1073, 891, 62, 8, 198, 198, 1640, 1312, 287, 374, 16, 25, 3601, 1312, 13, 1136, 62, 87, 3419, 628, 198, 2, 23926, 25609, 855, 198, 2, 37889, 5390, 3535, 50, 198, 2, 23926, 25609, 855, 198, 198, 2, 1332, 31607, 14729, 532, 763, 18908, 1358, 198, 11748, 9756, 27530, 13, 912, 64, 13, 301, 1078, 10141, 355, 256, 11400, 198, 11748, 9756, 27530, 13, 70, 11549, 13, 912, 64, 489, 1747, 355, 256, 11400, 62, 489, 1747, 198, 198, 912, 64, 13, 324, 12853, 263, 7, 260, 2164, 62, 411, 8, 198, 198, 40406, 62, 11848, 70, 3419, 198, 9688, 62, 4475, 796, 705, 16, 14, 16, 14, 10333, 6, 198, 38690, 796, 640, 13, 2435, 3419, 198, 82, 2340, 796, 285, 2164, 17816, 38, 6684, 38, 1294, 35659, 20520, 198, 87, 796, 264, 2340, 13, 1136, 62, 10034, 12409, 7203, 47, 55, 62, 43, 11262, 1600, 923, 62, 4475, 11, 3128, 13, 40838, 28955, 1303, 40734, 19534, 198, 56, 796, 2124, 13, 20797, 2616, 7, 24396, 2625, 487, 359, 4943, 220, 628, 198, 330, 69, 62, 796, 256, 11400, 62, 489, 1747, 13, 29487, 62, 330, 69, 7, 87, 28, 56, 11, 26591, 796, 13, 2713, 11, 779, 62, 85, 6615, 28, 17821, 11, 300, 3775, 28, 3064, 11, 46735, 28, 17821, 8, 198, 330, 69, 62, 796, 256, 11400, 62, 489, 1747, 13, 29487, 62, 330, 69, 7, 87, 28, 6404, 62, 7783, 7, 56, 828, 26591, 796, 13, 2713, 11, 779, 62, 85, 6615, 28, 17821, 11, 300, 3775, 28, 3064, 11, 46735, 28, 17821, 8, 198, 198, 1186, 28, 6404, 62, 7783, 7, 56, 8, 198, 1186, 13, 20147, 4892, 3419, 198, 1186, 13, 29487, 3419, 198, 2, 2246, 37, 198, 330, 69, 62, 11, 269, 72, 11, 1195, 11, 279, 8367, 796, 256, 11400, 13, 330, 69, 7, 1186, 11, 299, 75, 3775, 28, 1270, 11, 17130, 28, 13, 2713, 11, 10662, 14269, 28, 17821, 8, 1303, 779, 376, 9792, 318, 890, 40379, 198, 912, 64, 62, 489, 1747, 13, 29487, 62, 330, 69, 7, 87, 28, 1186, 11, 26591, 796, 13, 2713, 11, 779, 62, 85, 6615, 28, 17821, 11, 300, 3775, 28, 1270, 11, 46735, 28, 17821, 8, 198, 448, 28, 37659, 13, 28665, 62, 25558, 19510, 330, 69, 62, 11, 979, 4008, 198, 259, 62, 12993, 28, 8899, 7, 50033, 2124, 1058, 2124, 58, 15, 60, 29, 28, 87, 58, 16, 60, 290, 2124, 58, 15, 60, 27, 28, 87, 58, 17, 4357, 503, 8, 198, 198, 2, 44938, 37, 198, 33587, 69, 62, 11, 269, 72, 796, 256, 11400, 13, 33587, 69, 7, 1186, 11, 299, 75, 3775, 28, 1270, 11, 17130, 28, 13, 2713, 8, 1303, 779, 376, 9792, 318, 890, 40379, 198, 912, 64, 62, 489, 1747, 13, 29487, 62, 33587, 69, 7, 87, 28, 1186, 11, 26591, 796, 13, 2713, 11, 779, 62, 85, 6615, 28, 17821, 11, 300, 3775, 28, 1270, 8, 198, 448, 28, 37659, 13, 28665, 62, 25558, 19510, 33587, 69, 62, 11, 979, 4008, 198, 259, 62, 12993, 28, 8899, 7, 50033, 2124, 1058, 2124, 58, 15, 60, 29, 28, 87, 58, 16, 60, 290, 2124, 58, 15, 60, 27, 28, 87, 58, 17, 4357, 503, 8, 198, 198, 55, 628, 628, 198, 2, 23926, 25609, 855, 198, 2, 26969, 9150, 286, 3033, 532, 4217, 32, 351, 12372, 320, 897, 374, 6944, 198, 2, 23926, 25609, 855, 198, 198, 6738, 299, 32152, 1330, 4151, 11, 355, 18747, 11, 16605, 11, 2160, 11, 2566, 363, 198, 6738, 299, 32152, 13, 75, 1292, 70, 1330, 264, 20306, 628, 198, 198, 2, 23926, 25609, 855, 198, 2, 1672, 20683, 198, 2, 23926, 25609, 855, 198, 6738, 1341, 35720, 1330, 40522, 11, 14174, 62, 19849, 198, 198, 2, 8778, 262, 12593, 27039, 198, 10989, 11064, 796, 40522, 13, 2220, 62, 10989, 11064, 3419, 628, 198, 2, 5765, 691, 530, 3895, 198, 10989, 11064, 62, 55, 796, 12593, 13, 7890, 58, 45299, 45941, 13, 3605, 22704, 11, 362, 60, 198, 198, 2, 27758, 262, 1366, 656, 3047, 14, 33407, 5621, 198, 10989, 11064, 62, 55, 62, 27432, 796, 12593, 62, 55, 58, 21912, 1238, 60, 198, 10989, 11064, 62, 55, 62, 9288, 796, 12593, 62, 55, 58, 12, 1238, 47715, 198, 198, 2, 27758, 262, 6670, 656, 3047, 14, 33407, 5621, 198, 10989, 11064, 62, 88, 62, 27432, 796, 12593, 13, 16793, 58, 21912, 1238, 60, 198, 10989, 11064, 62, 88, 62, 9288, 796, 12593, 13, 16793, 58, 12, 1238, 47715, 198, 198, 2, 13610, 14174, 20683, 2134, 198, 260, 2164, 796, 14174, 62, 19849, 13, 14993, 451, 8081, 2234, 3419, 198, 198, 2, 16835, 262, 2746, 1262, 262, 3047, 5621, 198, 260, 2164, 13, 11147, 7, 10989, 11064, 62, 55, 62, 27432, 11, 12593, 62, 88, 62, 27432, 8, 198, 198, 2, 383, 44036, 198, 4798, 10786, 34, 2577, 2108, 2334, 25, 3467, 77, 3256, 842, 81, 13, 1073, 891, 62, 8, 198, 2, 383, 1612, 44345, 4049, 198, 4798, 7203, 5308, 272, 44345, 4049, 25, 4064, 13, 17, 69, 1, 198, 220, 220, 220, 220, 220, 4064, 45941, 13, 32604, 19510, 260, 2164, 13, 79, 17407, 7, 10989, 11064, 62, 55, 62, 9288, 8, 532, 12593, 62, 88, 62, 9288, 8, 12429, 362, 4008, 198, 2, 5905, 1328, 24198, 4776, 25, 352, 318, 2818, 17724, 198, 4798, 10786, 23907, 590, 4776, 25, 4064, 13, 17, 69, 6, 4064, 842, 81, 13, 26675, 7, 10989, 11064, 62, 55, 62, 9288, 11, 12593, 62, 88, 62, 9288, 4008, 198, 198, 2, 28114, 23862, 198, 489, 83, 13, 1416, 1436, 7, 10989, 11064, 62, 55, 62, 9288, 11, 12593, 62, 88, 62, 9288, 11, 220, 3124, 11639, 13424, 11537, 198, 489, 83, 13, 29487, 7, 10989, 11064, 62, 55, 62, 9288, 11, 842, 81, 13, 79, 17407, 7, 10989, 11064, 62, 55, 62, 9288, 828, 3124, 11639, 17585, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 18, 8, 198, 198, 489, 83, 13, 742, 3378, 7, 28955, 198, 489, 83, 13, 20760, 3378, 7, 28955, 198, 198, 489, 83, 13, 12860, 3419, 198, 198, 2, 23926, 25609, 855, 198, 2, 9756, 2746, 20683, 1220, 15107, 3069, 2751, 198, 2, 23926, 25609, 855, 198, 87, 13, 43358, 198, 88, 28, 87, 13, 346, 420, 58, 45299, 15, 60, 198, 55, 28, 87, 13, 346, 420, 58, 45299, 16, 47715, 198, 19849, 796, 279, 67, 13, 34242, 13, 10220, 13, 33622, 3535, 50, 7, 88, 28, 88, 11, 2124, 28, 55, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4324, 62, 4906, 11639, 18886, 3256, 4324, 28, 3064, 11, 15788, 28, 17821, 8, 628, 198, 198, 2, 81, 13, 9460, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 39014, 220, 220, 220, 220, 220, 220, 374, 13, 9127, 220, 220, 220, 220, 220, 220, 374, 13, 1069, 11539, 220, 374, 13, 9806, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 1150, 666, 220, 220, 220, 220, 220, 374, 13, 3672, 220, 220, 220, 220, 220, 220, 220, 374, 13, 82, 365, 86, 220, 220, 220, 220, 220, 220, 220, 374, 13, 16345, 198, 2, 81, 13, 9460, 49373, 220, 220, 374, 13, 10215, 81, 220, 220, 220, 220, 220, 220, 220, 374, 13, 66, 709, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 74, 3325, 220, 220, 220, 220, 220, 220, 220, 374, 13, 32604, 220, 220, 220, 220, 220, 220, 220, 374, 13, 1084, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 40972, 576, 220, 220, 220, 374, 13, 19282, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 7785, 198, 198, 87, 13, 18886, 7, 17497, 28, 5237, 11, 16159, 28, 25101, 737, 32604, 3419, 198, 198, 87, 13, 18886, 7, 17497, 28, 5237, 11, 16159, 28, 25101, 737, 39014, 7, 11265, 786, 62, 9806, 62, 1084, 11, 22704, 28, 15, 8, 198, 198, 49, 796, 2124, 13, 18886, 7, 17497, 28, 5237, 11, 1084, 62, 41007, 82, 28, 1238, 11, 16159, 28, 25101, 8, 198, 49, 13, 32604, 3419, 198, 198, 49, 13, 9460, 15090, 6, 20274, 16, 6, 1058, 45941, 13, 16345, 4032, 20274, 17, 6, 1058, 45941, 13, 32604, 30072, 198, 198, 49, 13, 39014, 7, 50033, 2124, 25, 45941, 13, 19282, 7, 87, 4008, 628, 198, 34, 28, 49, 13, 10215, 81, 7, 87, 58, 87, 13, 28665, 82, 13, 27160, 58, 15, 60, 4357, 24874, 3083, 28, 17821, 8, 198, 34, 13, 28665, 82, 198, 49, 13, 39014, 7, 10215, 81, 11, 87, 58, 87, 13, 28665, 82, 13, 27160, 58, 15, 60, 4357, 24874, 3083, 28, 17821, 8, 198, 49, 13, 10215, 81, 7, 24874, 3083, 28, 17821, 8, 198, 198, 11748, 10104, 198, 4798, 10104, 13, 11407, 1668, 7, 565, 436, 1068, 62, 10215, 81, 8, 198, 4798, 10104, 13, 11407, 1668, 7, 49, 13, 10215, 81, 8, 198, 49, 13, 10215, 81, 3548, 198, 49, 13, 39014, 3548, 198, 198, 34, 13, 28665, 82, 198, 34, 13, 13199, 7, 17, 8, 198, 34, 13, 346, 420, 58, 45299, 16, 4083, 29487, 3419, 198, 87, 13, 43358, 628, 198, 2, 362, 7159, 285, 11463, 351, 37456, 198, 69, 796, 37456, 357, 87, 11, 331, 2599, 357, 87, 10, 88, 11, 2124, 12, 88, 8, 198, 83, 16, 28, 87, 13, 346, 420, 58, 45299, 15, 60, 198, 83, 17, 28, 87, 13, 346, 420, 58, 45299, 16, 60, 198, 6738, 340, 861, 10141, 1330, 9585, 198, 3019, 28, 8899, 7, 69, 11, 19974, 7, 83, 16, 11, 83, 17, 4008, 198, 198, 71, 28, 30094, 13, 6601, 19778, 3419, 198, 71, 17816, 64, 6, 4357, 71, 17816, 65, 20520, 28, 13344, 46491, 3019, 8, 198, 71, 13, 13199, 3419, 198, 4906, 7, 71, 8, 198, 198, 2, 50033, 357, 87, 11, 88, 8, 329, 16096, 198, 6738, 629, 541, 88, 13, 34242, 13, 34242, 1330, 25286, 1559, 81, 198, 431, 12613, 81, 7, 83, 16, 11, 83, 17, 35751, 198, 69, 796, 37456, 357, 87, 11, 331, 2599, 357, 87, 10, 88, 11, 2124, 12, 88, 8, 198, 83, 16, 28, 87, 13, 346, 420, 58, 45299, 15, 60, 198, 83, 17, 28, 87, 13, 346, 420, 58, 45299, 16, 60, 198, 6738, 340, 861, 10141, 1330, 9585, 198, 3019, 28, 8899, 7, 69, 11, 19974, 7, 83, 16, 11, 83, 17, 4008, 198, 3019, 28, 87, 13, 346, 420, 58, 45299, 25, 17, 4083, 39014, 7, 83, 29291, 11, 22704, 28, 16, 8, 198, 198, 71, 28, 30094, 13, 6601, 19778, 3419, 198, 71, 17816, 64, 6, 4357, 71, 17816, 65, 20520, 28, 13344, 46491, 3019, 8, 198, 71, 13, 13199, 3419, 198, 4906, 7, 71, 8, 198, 198, 29487, 62, 12315, 62, 5715, 62, 505, 7, 34, 11, 77, 808, 28, 18, 11, 77, 4033, 28, 18, 11, 23350, 28, 34, 13, 43358, 58, 16, 4357, 82, 89, 16193, 940, 11, 23, 828, 34345, 2625, 18886, 62, 10215, 81, 13, 12315, 4943, 628, 198, 198, 2, 23926, 25609, 855, 198, 2, 15107, 3069, 2751, 440, 6561, 4526, 10761, 47621, 8147, 4663, 54, 24352, 371, 61, 17, 1011, 28662, 513, 198, 2, 23926, 25609, 855, 198, 198, 88, 796, 2124, 17816, 1797, 10426, 2257, 6173, 12901, 6, 4083, 1462, 62, 14535, 3419, 198, 87, 796, 2124, 13, 14781, 7, 17816, 1797, 10426, 2257, 6173, 12901, 6, 4357, 22704, 28, 16, 8, 198, 88, 13, 43358, 198, 87, 13, 43358, 198, 24874, 3083, 62, 49, 17, 7, 88, 11, 87, 11, 9688, 62, 4475, 11639, 4626, 3256, 5460, 1891, 28, 2481, 11, 1084, 62, 30094, 28, 20, 11, 82, 89, 16193, 1314, 11, 1314, 828, 34345, 11639, 24874, 3083, 62, 18886, 49, 17, 13, 12315, 11537, 628, 198, 2, 23926, 25609, 855, 198, 2, 17254, 25620, 4217, 32, 198, 2, 23926, 25609, 855, 198, 55, 796, 47764, 62, 14781, 2616, 7, 87, 8, 198, 68, 9324, 12786, 11, 6805, 796, 45941, 13, 75, 1292, 70, 13, 68, 328, 7, 37659, 13, 66, 709, 7, 55, 13, 7645, 3455, 3419, 4008, 198, 198, 37020, 62, 5589, 3906, 796, 2495, 62, 6759, 8609, 7, 6759, 28, 7785, 320, 897, 7, 5589, 3906, 58, 45299, 25, 18, 46570, 12894, 896, 28, 22, 8, 198, 30094, 13, 6601, 19778, 7, 37020, 62, 5589, 3906, 11, 9630, 28, 76, 2164, 58, 55, 13, 28665, 82, 4083, 20608, 8, 628, 198, 2, 1064, 6376, 286, 763, 14822, 14512, 657, 287, 6805, 198, 2389, 62, 83, 929, 796, 19974, 46491, 37659, 13, 3003, 7, 37020, 62, 5589, 3906, 14512, 657, 4008, 198, 2389, 796, 279, 67, 13, 6601, 19778, 7, 2389, 62, 83, 929, 737, 346, 420, 58, 45299, 16, 4083, 27160, 198, 76, 2164, 58, 55, 13, 28665, 82, 58, 2389, 60, 4083, 20608, 628, 198, 198, 2, 23926, 25609, 855, 198, 2, 47044, 46, 4217, 32, 198, 2, 23926, 25609, 855, 198, 79, 6888, 796, 4217, 32, 7, 77, 62, 5589, 3906, 28, 18, 8, 1303, 284, 75, 329, 18032, 311, 8898, 198, 55, 796, 47764, 62, 14781, 2616, 7, 87, 8, 198, 11147, 796, 279, 6888, 13, 11147, 7, 55, 8, 198, 198, 7645, 62, 55, 796, 279, 6888, 13, 35636, 7, 55, 8, 198, 7645, 62, 55, 796, 279, 67, 13, 6601, 19778, 7, 7645, 62, 55, 11, 6376, 796, 1395, 13, 9630, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 14692, 5662, 1, 10, 2536, 7, 72, 10, 16, 8, 329, 1312, 287, 2124, 9521, 7, 7645, 62, 55, 13, 43358, 58, 16, 12962, 12962, 198, 7645, 62, 55, 13, 29487, 3419, 1303, 7110, 717, 513, 6805, 198, 7645, 62, 55, 13, 10215, 81, 3419, 628, 198, 7645, 62, 55, 13, 43358, 198, 7645, 62, 55, 13, 20147, 4892, 3419, 198, 7645, 62, 55, 13, 2256, 3419, 198, 88, 13, 2256, 3419, 198, 198, 2, 35743, 6805, 198, 4798, 7203, 18438, 1328, 15965, 590, 25, 4064, 82, 4943, 4064, 4197, 13, 20676, 1328, 62, 25641, 590, 62, 10366, 952, 62, 198, 7785, 16, 28, 37659, 13, 66, 5700, 388, 7, 37659, 13, 744, 7, 11147, 13, 20676, 1328, 62, 25641, 590, 62, 10366, 952, 62, 11, 875, 320, 874, 28, 19, 27493, 3064, 8, 198, 7785, 16, 198, 489, 83, 13, 29487, 7, 7785, 16, 8, 198, 198, 2, 37659, 13, 2617, 62, 4798, 25811, 7, 400, 10126, 28, 37659, 13, 10745, 8, 198, 4798, 7, 11147, 13, 5589, 3906, 44807, 51, 8, 198, 11147, 13, 77, 62, 40890, 62, 198, 11147, 13, 77, 62, 5589, 3906, 62, 628, 198, 24874, 3083, 62, 49, 17, 7, 88, 11, 7645, 62, 55, 11, 9688, 62, 4475, 11639, 4626, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 804, 1891, 28, 2481, 11, 1084, 62, 30094, 28, 20, 11, 82, 89, 16193, 1314, 11, 1314, 828, 34345, 11639, 24874, 3083, 62, 18886, 49, 17, 4217, 32, 13, 12315, 11537, 628, 198, 2, 23926, 25609, 855, 198, 2, 50252, 352, 198, 2, 23926, 25609, 855, 198, 6738, 1341, 35720, 1330, 40522, 11, 14174, 62, 19849, 198, 198, 2, 8778, 262, 12593, 27039, 198, 10989, 11064, 796, 40522, 13, 2220, 62, 65, 5744, 3419, 198, 198, 4906, 7, 10989, 11064, 8, 198, 10989, 11064, 13, 13083, 3419, 198, 10989, 11064, 13, 7890, 13, 43358, 198, 198, 4906, 7, 10989, 11064, 62, 55, 8, 198, 4906, 7, 10989, 11064, 13, 16793, 8, 198, 198, 2, 5765, 691, 530, 3895, 198, 10989, 11064, 62, 55, 796, 12593, 13, 7890, 58, 45299, 2361, 198, 11925, 7, 10989, 11064, 62, 55, 8, 198, 198, 2, 27758, 262, 1366, 656, 3047, 14, 33407, 5621, 198, 10989, 11064, 62, 55, 62, 27432, 796, 12593, 62, 55, 58, 21912, 1238, 60, 198, 10989, 11064, 62, 55, 62, 9288, 796, 12593, 62, 55, 58, 12, 1238, 47715, 198, 198, 2, 27758, 262, 6670, 656, 3047, 14, 33407, 5621, 198, 10989, 11064, 62, 88, 62, 27432, 796, 12593, 13, 16793, 58, 21912, 1238, 60, 198, 10989, 11064, 62, 88, 62, 9288, 796, 12593, 13, 16793, 58, 12, 1238, 47715, 198, 198, 2, 13610, 14174, 20683, 2134, 198, 260, 2164, 796, 14174, 62, 19849, 13, 14993, 451, 8081, 2234, 3419, 198, 198, 2, 16835, 262, 2746, 1262, 262, 3047, 5621, 198, 260, 2164, 13, 11147, 7, 10989, 11064, 62, 55, 62, 27432, 11, 12593, 62, 88, 62, 27432, 8, 198, 198, 260, 2164, 13, 26675, 7, 10989, 11064, 62, 55, 62, 27432, 11, 12593, 62, 88, 62, 27432, 8, 628, 842, 81, 13, 3849, 984, 62, 198, 198, 10989, 11064, 13, 7890, 198, 198, 260, 2164, 13, 28665, 82, 198, 198, 2, 383, 44036, 198, 4798, 10786, 34, 2577, 2108, 2334, 25, 3467, 77, 3256, 842, 81, 13, 1073, 891, 62, 8, 198, 2, 383, 1612, 44345, 4049, 198, 4798, 7203, 5308, 272, 44345, 4049, 25, 4064, 13, 17, 69, 1, 198, 220, 220, 220, 220, 220, 4064, 45941, 13, 32604, 19510, 260, 2164, 13, 79, 17407, 7, 10989, 11064, 62, 55, 62, 9288, 8, 532, 12593, 62, 88, 62, 9288, 8, 12429, 362, 4008, 198, 2, 5905, 1328, 24198, 4776, 25, 352, 318, 2818, 17724, 198, 4798, 10786, 23907, 590, 4776, 25, 4064, 13, 17, 69, 6, 4064, 842, 81, 13, 26675, 7, 10989, 11064, 62, 55, 62, 9288, 11, 12593, 62, 88, 62, 9288, 4008, 198, 198, 2, 28114, 23862, 198, 489, 83, 13, 1416, 1436, 7, 10989, 11064, 62, 55, 62, 9288, 11, 12593, 62, 88, 62, 9288, 11, 220, 3124, 11639, 13424, 11537, 198, 489, 83, 13, 29487, 7, 10989, 11064, 62, 55, 62, 9288, 11, 842, 81, 13, 79, 17407, 7, 10989, 11064, 62, 55, 62, 9288, 828, 3124, 11639, 17585, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 18, 8, 198, 198, 489, 83, 13, 742, 3378, 7, 28955, 198, 489, 83, 13, 20760, 3378, 7, 28955, 198, 198, 489, 83, 13, 12860, 3419, 628 ]
2.633919
3,644
# -*- coding: utf-8 -*- """ Created on Fri Oct 11 20:36:35 2019 @author: Stuart """ import torch import torch.nn as nn import torch.nn.utils.rnn as rnn_utils import neural_layers as nl # from transf_decoder import Transformer import utils import matplotlib.pyplot as plt plt.switch_backend('agg') import argparse """class Seq2SeqModel: def __init__(self, output_lang, VOCAB_SIZE): hidden_size = 256 #self.encoder = nl.BERTEncoder.from_pretrained('bert-base-multilingual-cased', num_labels=hidden_size ).to(nl.device) #self.encoder = nl.BERTEncoder.from_pretrained('bert-base-uncased', num_labels=hidden_size ).to(nl.device) self.encoder = nl.BERTEncoder.from_pretrained('bert-large-cased', num_labels=hidden_size ).to(nl.device) self.encoder.get_embedding(VOCAB_SIZE) #self.decoder = nl.DecoderRNN(hidden_size = 256, output_size = output_lang.n_words).to(nl.device) self.decoder = nl.AttnDecoderRNN(hidden_size = 256, output_size = output_lang.n_words).to(nl.device) def trainItersBert(self, training_pairs, eval_pairs, input_lang, output_lang): nl.trainItersBert(self.encoder, self.decoder, 75000, training_pairs, eval_pairs, input_lang, output_lang, print_every=500, learning_rate=0.01, mom=0.001) def translate(self, sentence, training_ans, eval_pairs, input_lang, output_lang): output_words, attentions = nl.evaluate(self.encoder, self.decoder, sentence, training_ans, input_lang, output_lang ) plt.matshow(attentions.numpy()) return output_words, attentions def load_model(self, load_model_name ): enc_path, dec_path = "./model/qald-test/%(model_name)s/%(model_name)s.encoder"%{"model_name":load_model_name} , "./model/qald-test/%(model_name)s/%(model_name)s.decoder"%{"model_name":load_model_name} self.encoder.load_state_dict(torch.load(enc_path)) self.encoder.eval() self.decoder.load_state_dict(torch.load(dec_path)) self.decoder.eval() print("\n ...model loaded.") """ """class Transformer(nn.Module): def __init__(self, src_vocab_size, src_max_len, tgt_vocab_size, tgt_max_len, num_layers=6, model_dim=512, num_heads=8, ffn_dim=2048, dropout=0.2): super(Transformer, self).__init__() self.encoder = nl.BERTEncoder.from_pretrained('bert-large-cased', num_labels=model_dim ).to(nl.device) # Encoder(src_vocab_size, src_max_len, num_layers, model_dim, num_heads, ffn_dim, dropout) self.decoder = Decoder(tgt_vocab_size, tgt_max_len, num_layers, model_dim, num_heads, ffn_dim, dropout) self.linear = nn.Linear(model_dim, tgt_vocab_size, bias=False) self.softmax = nn.Softmax(dim=2) def forward(self, src_seq, src_len, tgt_seq, tgt_len): context_attn_mask = padding_mask(tgt_seq, src_seq) output, enc_self_attn = self.encoder(src_seq, src_len) output, dec_self_attn, ctx_attn = self.decoder( tgt_seq, tgt_len, output, context_attn_mask) output = self.linear(output) output = self.softmax(output) return output, enc_self_attn, dec_self_attn, ctx_attn """ if __name__ == "__main__": parser = argparse.ArgumentParser(description=" Neural Knowledge-graph QA Model Based On Pretrained BERT & Reinforcement Learning ") parser.add_argument('--train_dataset', type=str, default="./data/qald9/dataset.txt") parser.add_argument('--eval_dataset', type=str, default="./data/qald9/train.txt") parser.add_argument('--train', type=str, default = None) parser.add_argument('--pretrain', type=str, default = None) parser.add_argument('--translate', type=str, default = None) parser.add_argument('--model_name', type=str, default = None) parser.add_argument('--batch_size', type=int, default = 62 ) args = parser.parse_args() training_fp = args.train_dataset eval_fp = args.eval_dataset train = args.train load_model_name = args.pretrain sentence = args.translate batch_size = args.batch_size model_name = args.model_name if args.model_name is not None else str().join(str(training_fp.split("/")[-1]).split(".")[:-1] ) input_lang, output_lang, training_pairs, eval_pairs, VOCAB_SIZE = utils.prepareData(training_fp, eval_fp, False) ''' eval_tensors = [utils.tensorsFromPair(pair, input_lang, output_lang, nl.device) for pair in eval_pairs ] eval_inputs = [ tensors[0] for tensors in eval_tensors ] eval_targets = [ tensors[1] for tensors in eval_tensors ] eval_inputs = rnn_utils.pad_sequence(eval_inputs, batch_first=True, padding_value=0) eval_targets = rnn_utils.pad_sequence(eval_targets, batch_first=True, padding_value=0) torch.save(eval_inputs, "./model/eval_inputs.pt") torch.save(eval_targets, "./model/eval_targets.pt")''' seq2seq = Transformer(input_lang, output_lang)#Seq2SeqModel(output_lang, VOCAB_SIZE) if load_model_name is not None: seq2seq.load_model(load_model_name) ; if train is not None: #seq2seq.trainItersBert(training_pairs, eval_pairs, input_lang, output_lang) nl.trainItersBert(model=seq2seq, n_iters=75000, training_pairs=training_pairs, eval_pairs=eval_pairs, input_lang=input_lang, output_lang=output_lang, batch_size=batch_size, model_name="q-dev") #if train or load is not None: # seq2seq.translate(sentence, input_lang, output_lang)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 19480, 2556, 1367, 1160, 25, 2623, 25, 2327, 13130, 198, 198, 31, 9800, 25, 22559, 198, 37811, 198, 11748, 28034, 220, 198, 11748, 28034, 13, 20471, 355, 299, 77, 220, 198, 11748, 28034, 13, 20471, 13, 26791, 13, 81, 20471, 355, 374, 20471, 62, 26791, 198, 198, 11748, 17019, 62, 75, 6962, 355, 299, 75, 1303, 220, 198, 6738, 13501, 62, 12501, 12342, 1330, 3602, 16354, 198, 11748, 3384, 4487, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 489, 83, 13, 31943, 62, 1891, 437, 10786, 9460, 11537, 220, 198, 198, 11748, 1822, 29572, 628, 198, 198, 37811, 4871, 1001, 80, 17, 4653, 80, 17633, 25, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5072, 62, 17204, 11, 569, 4503, 6242, 62, 33489, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 7857, 796, 17759, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 12685, 12342, 796, 299, 75, 13, 13246, 51, 27195, 12342, 13, 6738, 62, 5310, 13363, 10786, 4835, 12, 8692, 12, 16680, 34900, 12, 66, 839, 3256, 997, 62, 23912, 1424, 28, 30342, 62, 7857, 6739, 1462, 7, 21283, 13, 25202, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 12685, 12342, 796, 299, 75, 13, 13246, 51, 27195, 12342, 13, 6738, 62, 5310, 13363, 10786, 4835, 12, 8692, 12, 19524, 839, 3256, 997, 62, 23912, 1424, 28, 30342, 62, 7857, 6739, 1462, 7, 21283, 13, 25202, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12685, 12342, 796, 299, 75, 13, 13246, 51, 27195, 12342, 13, 6738, 62, 5310, 13363, 10786, 4835, 12, 11664, 12, 66, 839, 3256, 997, 62, 23912, 1424, 28, 30342, 62, 7857, 6739, 1462, 7, 21283, 13, 25202, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12685, 12342, 13, 1136, 62, 20521, 12083, 7, 53, 4503, 6242, 62, 33489, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 12501, 12342, 796, 299, 75, 13, 10707, 12342, 49, 6144, 7, 30342, 62, 7857, 796, 17759, 11, 5072, 62, 7857, 796, 5072, 62, 17204, 13, 77, 62, 10879, 737, 1462, 7, 21283, 13, 25202, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 12342, 796, 299, 75, 13, 8086, 77, 10707, 12342, 49, 6144, 7, 30342, 62, 7857, 796, 17759, 11, 5072, 62, 7857, 796, 5072, 62, 17204, 13, 77, 62, 10879, 737, 1462, 7, 21283, 13, 25202, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 825, 4512, 40, 1010, 33, 861, 7, 944, 11, 3047, 62, 79, 3468, 11, 5418, 62, 79, 3468, 11, 5128, 62, 17204, 11, 5072, 62, 17204, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 299, 75, 13, 27432, 40, 1010, 33, 861, 7, 944, 13, 12685, 12342, 11, 2116, 13, 12501, 12342, 11, 5441, 830, 11, 3047, 62, 79, 3468, 11, 5418, 62, 79, 3468, 11, 5128, 62, 17204, 11, 5072, 62, 17204, 11, 3601, 62, 16833, 28, 4059, 11, 4673, 62, 4873, 28, 15, 13, 486, 11, 1995, 28, 15, 13, 8298, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 15772, 7, 944, 11, 6827, 11, 3047, 62, 504, 11, 5418, 62, 79, 3468, 11, 5128, 62, 17204, 11, 5072, 62, 17204, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 10879, 11, 32649, 507, 796, 299, 75, 13, 49786, 7, 944, 13, 12685, 12342, 11, 2116, 13, 12501, 12342, 11, 6827, 11, 3047, 62, 504, 11, 5128, 62, 17204, 11, 5072, 62, 17204, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 76, 1381, 4919, 7, 1078, 298, 507, 13, 77, 32152, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 62, 10879, 11, 32649, 507, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 3440, 62, 19849, 7, 944, 11, 3440, 62, 19849, 62, 3672, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 62, 6978, 11, 875, 62, 6978, 796, 366, 19571, 19849, 14, 80, 1940, 12, 9288, 14, 4, 7, 19849, 62, 3672, 8, 82, 14, 4, 7, 19849, 62, 3672, 8, 82, 13, 12685, 12342, 1, 4, 4895, 19849, 62, 3672, 1298, 2220, 62, 19849, 62, 3672, 92, 837, 366, 19571, 19849, 14, 80, 1940, 12, 9288, 14, 4, 7, 19849, 62, 3672, 8, 82, 14, 4, 7, 19849, 62, 3672, 8, 82, 13, 12501, 12342, 1, 4, 4895, 19849, 62, 3672, 1298, 2220, 62, 19849, 62, 3672, 92, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12685, 12342, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 12685, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12685, 12342, 13, 18206, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 12342, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 12501, 62, 6978, 4008, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 12342, 13, 18206, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 2644, 19849, 9639, 19570, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 37811, 4871, 3602, 16354, 7, 20471, 13, 26796, 2599, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 18893, 397, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 9806, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13655, 62, 18893, 397, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13655, 62, 9806, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 75, 6962, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 27740, 28, 25836, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 28, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 22184, 62, 27740, 28, 1238, 2780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 28, 15, 13, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 8291, 16354, 11, 2116, 737, 834, 15003, 834, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12685, 12342, 796, 299, 75, 13, 13246, 51, 27195, 12342, 13, 6738, 62, 5310, 13363, 10786, 4835, 12, 11664, 12, 66, 839, 3256, 997, 62, 23912, 1424, 28, 19849, 62, 27740, 6739, 1462, 7, 21283, 13, 25202, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14711, 12342, 7, 10677, 62, 18893, 397, 62, 7857, 11, 12351, 62, 9806, 62, 11925, 11, 997, 62, 75, 6962, 11, 2746, 62, 27740, 11, 997, 62, 16600, 11, 277, 22184, 62, 27740, 11, 4268, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 12342, 796, 34580, 7, 83, 13655, 62, 18893, 397, 62, 7857, 11, 256, 13655, 62, 9806, 62, 11925, 11, 997, 62, 75, 6962, 11, 2746, 62, 27740, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 11, 277, 22184, 62, 27740, 11, 4268, 448, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 796, 299, 77, 13, 14993, 451, 7, 19849, 62, 27740, 11, 256, 13655, 62, 18893, 397, 62, 7857, 11, 10690, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4215, 9806, 796, 299, 77, 13, 18380, 9806, 7, 27740, 28, 17, 8, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 12351, 62, 41068, 11, 12351, 62, 11925, 11, 256, 13655, 62, 41068, 11, 256, 13655, 62, 11925, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 1078, 77, 62, 27932, 796, 24511, 62, 27932, 7, 83, 13655, 62, 41068, 11, 12351, 62, 41068, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 11, 2207, 62, 944, 62, 1078, 77, 796, 2116, 13, 12685, 12342, 7, 10677, 62, 41068, 11, 12351, 62, 11925, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 11, 875, 62, 944, 62, 1078, 77, 11, 269, 17602, 62, 1078, 77, 796, 2116, 13, 12501, 12342, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13655, 62, 41068, 11, 256, 13655, 62, 11925, 11, 5072, 11, 4732, 62, 1078, 77, 62, 27932, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2116, 13, 29127, 7, 22915, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2116, 13, 4215, 9806, 7, 22915, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 11, 2207, 62, 944, 62, 1078, 77, 11, 875, 62, 944, 62, 1078, 77, 11, 269, 17602, 62, 1078, 77, 37227, 628, 220, 220, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 47986, 20414, 12, 34960, 1195, 32, 9104, 13403, 1550, 37123, 13363, 347, 17395, 1222, 22299, 13442, 18252, 366, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 27432, 62, 19608, 292, 316, 3256, 2099, 28, 2536, 11, 4277, 28, 1911, 14, 7890, 14, 80, 1940, 24, 14, 19608, 292, 316, 13, 14116, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 18206, 62, 19608, 292, 316, 3256, 2099, 28, 2536, 11, 4277, 28, 1911, 14, 7890, 14, 80, 1940, 24, 14, 27432, 13, 14116, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 27432, 3256, 2099, 28, 2536, 11, 4277, 796, 6045, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 5310, 3201, 3256, 2099, 28, 2536, 11, 4277, 796, 6045, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 7645, 17660, 3256, 2099, 28, 2536, 11, 4277, 796, 6045, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 19849, 62, 3672, 3256, 2099, 28, 2536, 11, 4277, 796, 6045, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 43501, 62, 7857, 3256, 2099, 28, 600, 11, 4277, 796, 8190, 1267, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 220, 198, 220, 220, 220, 3047, 62, 46428, 796, 26498, 13, 27432, 62, 19608, 292, 316, 198, 220, 220, 220, 5418, 62, 46428, 796, 26498, 13, 18206, 62, 19608, 292, 316, 220, 198, 220, 220, 220, 4512, 796, 26498, 13, 27432, 198, 220, 220, 220, 3440, 62, 19849, 62, 3672, 796, 26498, 13, 5310, 3201, 198, 220, 220, 220, 6827, 796, 26498, 13, 7645, 17660, 198, 220, 220, 220, 15458, 62, 7857, 796, 26498, 13, 43501, 62, 7857, 220, 198, 220, 220, 220, 2746, 62, 3672, 796, 26498, 13, 19849, 62, 3672, 611, 26498, 13, 19849, 62, 3672, 318, 407, 6045, 2073, 965, 22446, 22179, 7, 2536, 7, 34409, 62, 46428, 13, 35312, 7203, 14, 4943, 58, 12, 16, 35944, 35312, 7203, 19570, 58, 21912, 16, 60, 1267, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5128, 62, 17204, 11, 5072, 62, 17204, 11, 3047, 62, 79, 3468, 11, 5418, 62, 79, 3468, 11, 569, 4503, 6242, 62, 33489, 796, 3384, 4487, 13, 46012, 533, 6601, 7, 34409, 62, 46428, 11, 5418, 62, 46428, 11, 10352, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5418, 62, 83, 641, 669, 796, 685, 26791, 13, 83, 641, 669, 4863, 47, 958, 7, 24874, 11, 5128, 62, 17204, 11, 5072, 62, 17204, 11, 299, 75, 13, 25202, 8, 329, 5166, 287, 5418, 62, 79, 3468, 2361, 220, 198, 220, 220, 220, 5418, 62, 15414, 82, 796, 685, 11192, 669, 58, 15, 60, 329, 11192, 669, 287, 5418, 62, 83, 641, 669, 2361, 198, 220, 220, 220, 5418, 62, 83, 853, 1039, 796, 685, 11192, 669, 58, 16, 60, 329, 11192, 669, 287, 5418, 62, 83, 641, 669, 2361, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5418, 62, 15414, 82, 220, 796, 374, 20471, 62, 26791, 13, 15636, 62, 43167, 7, 18206, 62, 15414, 82, 11, 15458, 62, 11085, 28, 17821, 11, 24511, 62, 8367, 28, 15, 8, 198, 220, 220, 220, 5418, 62, 83, 853, 1039, 796, 374, 20471, 62, 26791, 13, 15636, 62, 43167, 7, 18206, 62, 83, 853, 1039, 11, 15458, 62, 11085, 28, 17821, 11, 24511, 62, 8367, 28, 15, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 28034, 13, 21928, 7, 18206, 62, 15414, 82, 11, 366, 19571, 19849, 14, 18206, 62, 15414, 82, 13, 457, 4943, 198, 220, 220, 220, 28034, 13, 21928, 7, 18206, 62, 83, 853, 1039, 11, 366, 19571, 19849, 14, 18206, 62, 83, 853, 1039, 13, 457, 4943, 7061, 6, 628, 220, 220, 220, 33756, 17, 41068, 796, 3602, 16354, 7, 15414, 62, 17204, 11, 5072, 62, 17204, 8, 2, 4653, 80, 17, 4653, 80, 17633, 7, 22915, 62, 17204, 11, 569, 4503, 6242, 62, 33489, 8, 628, 220, 220, 220, 611, 3440, 62, 19849, 62, 3672, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 17, 41068, 13, 2220, 62, 19849, 7, 2220, 62, 19849, 62, 3672, 8, 2162, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 4512, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41068, 17, 41068, 13, 27432, 40, 1010, 33, 861, 7, 34409, 62, 79, 3468, 11, 5418, 62, 79, 3468, 11, 5128, 62, 17204, 11, 5072, 62, 17204, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 75, 13, 27432, 40, 1010, 33, 861, 7, 19849, 28, 41068, 17, 41068, 11, 299, 62, 270, 364, 28, 2425, 830, 11, 3047, 62, 79, 3468, 28, 34409, 62, 79, 3468, 11, 5418, 62, 79, 3468, 28, 18206, 62, 79, 3468, 11, 5128, 62, 17204, 28, 15414, 62, 17204, 11, 5072, 62, 17204, 28, 22915, 62, 17204, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 11, 2746, 62, 3672, 2625, 80, 12, 7959, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 361, 4512, 393, 3440, 318, 407, 6045, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 33756, 17, 41068, 13, 7645, 17660, 7, 34086, 594, 11, 5128, 62, 17204, 11, 5072, 62, 17204, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.247721
2,523
import argparse if __name__ == '__main__': args = parse_args() if args.mode == 'sensitivity': organize_accuracy(args.input, args.output) elif args.mode == 'unaligned': organize_unaligned(args.input, args.output) elif args.mode == 'num_incorrect': organize_numincorrect(args.input, args.output) else: print ('invalid mode:', args.mode) exit()
[ 11748, 1822, 29572, 628, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26498, 796, 21136, 62, 22046, 3419, 198, 220, 220, 220, 611, 26498, 13, 14171, 6624, 705, 82, 40545, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 16481, 62, 4134, 23843, 7, 22046, 13, 15414, 11, 26498, 13, 22915, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 14171, 6624, 705, 18835, 3916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 16481, 62, 18835, 3916, 7, 22046, 13, 15414, 11, 26498, 13, 22915, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 14171, 6624, 705, 22510, 62, 1939, 47315, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 16481, 62, 22510, 1939, 47315, 7, 22046, 13, 15414, 11, 26498, 13, 22915, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 259, 12102, 4235, 25, 3256, 26498, 13, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 628 ]
2.369942
173
# Copyright 2021 The Brax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the URDF converter.""" from absl.testing import absltest from brax.tools import urdf _TEST_XML = """ <robot name="test robot"> <joint name="test_joint" type="revolute"> <parent link="parent_link" /> <child link="child_link" /> <dynamics damping="1.0" friction="0.0001" /> <origin rpy="1.57080 0.0 1.57080" xyz="0.1 0.2 -0.3" /> <axis xyz="1.00000 0.00000 0.00000" /> </joint> <link name="parent_link"> <inertial> <origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000" /> <mass value="1.00000" /> <inertia ixx="0.00100" ixy="0" ixz="0" iyy="0.00100" iyz="0" izz="0.00100" /> </inertial> <visual> <origin rpy="0.00000 -0.00000 0.00000" xyz="0.00000 0.00000 0.00000" /> <geometry> <sphere radius="0.05000" /> </geometry> </visual> </link> <link name="child_link"> <inertial> <origin rpy="0.00000 -0.00000 0.00000" xyz="0.0 0.0 -0.0" /> <mass value="2.0" /> <inertia ixx="0.1" ixy="0" ixz="0" iyy="0.1" iyz="0" izz="0.1" /> </inertial> <visual> <origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.0" /> <geometry> <cylinder length="0.5" radius="0.1" /> </geometry> </visual> <collision> <origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.0" /> <geometry> <cylinder length="0.5" radius="0.1" /> </geometry> </collision> </link> </robot> """ if __name__ == '__main__': absltest.main()
[ 2, 15069, 33448, 383, 9718, 87, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 51, 3558, 329, 262, 37902, 8068, 38394, 526, 15931, 198, 198, 6738, 2352, 75, 13, 33407, 1330, 2352, 2528, 395, 198, 6738, 8290, 87, 13, 31391, 1330, 220, 2799, 69, 628, 198, 62, 51, 6465, 62, 55, 5805, 796, 37227, 198, 27, 305, 13645, 1438, 2625, 9288, 9379, 5320, 198, 197, 27, 73, 1563, 1438, 2625, 9288, 62, 73, 1563, 1, 2099, 2625, 18218, 3552, 5320, 198, 197, 197, 27, 8000, 2792, 2625, 8000, 62, 8726, 1, 11037, 198, 197, 197, 27, 9410, 2792, 2625, 9410, 62, 8726, 1, 11037, 198, 197, 197, 27, 67, 4989, 873, 21151, 278, 2625, 16, 13, 15, 1, 23822, 2625, 15, 13, 18005, 1, 11037, 198, 197, 197, 27, 47103, 374, 9078, 2625, 16, 13, 39254, 1795, 657, 13, 15, 352, 13, 39254, 1795, 1, 2124, 45579, 2625, 15, 13, 16, 657, 13, 17, 532, 15, 13, 18, 1, 11037, 198, 197, 197, 27, 22704, 2124, 45579, 2625, 16, 13, 20483, 657, 13, 20483, 657, 13, 20483, 1, 11037, 198, 197, 3556, 73, 1563, 29, 198, 220, 1279, 8726, 1438, 2625, 8000, 62, 8726, 5320, 198, 220, 220, 220, 220, 220, 1279, 259, 861, 498, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 47103, 374, 9078, 2625, 15, 13, 20483, 532, 15, 13, 20483, 657, 13, 20483, 1, 2124, 45579, 2625, 15, 13, 20483, 657, 13, 20483, 657, 13, 20483, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 22208, 1988, 2625, 16, 13, 20483, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 259, 861, 544, 220, 844, 87, 2625, 15, 13, 405, 3064, 1, 220, 844, 88, 2625, 15, 1, 220, 844, 89, 2625, 15, 1, 1312, 22556, 2625, 15, 13, 405, 3064, 1, 1312, 45579, 2625, 15, 1, 220, 6457, 2625, 15, 13, 405, 3064, 1, 11037, 198, 220, 220, 220, 220, 220, 7359, 259, 861, 498, 29, 198, 220, 220, 220, 220, 220, 1279, 41464, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 47103, 374, 9078, 2625, 15, 13, 20483, 532, 15, 13, 20483, 657, 13, 20483, 1, 2124, 45579, 2625, 15, 13, 20483, 657, 13, 20483, 657, 13, 20483, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 469, 15748, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 2777, 1456, 16874, 2625, 15, 13, 2713, 830, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 469, 15748, 29, 198, 220, 220, 220, 220, 220, 7359, 41464, 29, 198, 220, 220, 220, 7359, 8726, 29, 198, 220, 220, 220, 1279, 8726, 1438, 2625, 9410, 62, 8726, 5320, 198, 220, 220, 220, 220, 220, 1279, 259, 861, 498, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 47103, 374, 9078, 2625, 15, 13, 20483, 532, 15, 13, 20483, 657, 13, 20483, 1, 2124, 45579, 2625, 15, 13, 15, 657, 13, 15, 532, 15, 13, 15, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 22208, 1988, 2625, 17, 13, 15, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 259, 861, 544, 220, 844, 87, 2625, 15, 13, 16, 1, 220, 844, 88, 2625, 15, 1, 220, 844, 89, 2625, 15, 1, 1312, 22556, 2625, 15, 13, 16, 1, 1312, 45579, 2625, 15, 1, 220, 6457, 2625, 15, 13, 16, 1, 11037, 198, 220, 220, 220, 220, 220, 7359, 259, 861, 498, 29, 198, 220, 220, 220, 220, 220, 1279, 41464, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 47103, 374, 9078, 2625, 15, 13, 15, 657, 13, 15, 657, 13, 15, 1, 2124, 45579, 2625, 15, 13, 15, 657, 13, 15, 657, 13, 15, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 469, 15748, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 38801, 5540, 4129, 2625, 15, 13, 20, 1, 16874, 2625, 15, 13, 16, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 469, 15748, 29, 198, 220, 220, 220, 220, 220, 7359, 41464, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 26000, 1166, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 47103, 374, 9078, 2625, 15, 13, 15, 657, 13, 15, 657, 13, 15, 1, 2124, 45579, 2625, 15, 13, 15, 657, 13, 15, 657, 13, 15, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 469, 15748, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 38801, 5540, 4129, 2625, 15, 13, 20, 1, 16874, 2625, 15, 13, 16, 1, 11037, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7359, 469, 15748, 29, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 26000, 1166, 29, 198, 220, 220, 220, 220, 220, 7359, 8726, 29, 198, 3556, 305, 13645, 29, 198, 37811, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 2352, 2528, 395, 13, 12417, 3419, 198 ]
2.16565
984
# Generated by Django 1.11.15 on 2018-11-25 08:34 import django.contrib.auth.validators from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 1314, 319, 2864, 12, 1157, 12, 1495, 8487, 25, 2682, 198, 198, 11748, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12102, 2024, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.977273
44
import sys,os import collections sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),'..'))) from work import Ohio import unittest Ohio = Ohio() # #need to delete all files from testing folders if __name__=='__main__': unittest.main( )
[ 11748, 25064, 11, 418, 198, 11748, 17268, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 6, 492, 6, 22305, 198, 6738, 670, 1330, 6835, 198, 11748, 555, 715, 395, 198, 31274, 796, 6835, 3419, 198, 220, 1303, 220, 220, 220, 220, 220, 1303, 31227, 284, 12233, 477, 3696, 422, 4856, 24512, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 7, 220, 220, 1267, 198 ]
2.68
100
from ecoreleve_server.Models import Base,DBSession from sqlalchemy import Column, DateTime, Float, ForeignKey, Index, Integer, Numeric, String, Text, Unicode, text,Sequence,orm,and_,text from sqlalchemy.dialects.mssql.base import BIT from sqlalchemy.orm import relationship FieldSizeToClass = {0:'col-md-3',1:'col-md-6',2:'col-md-12'}
[ 6738, 304, 7295, 293, 303, 62, 15388, 13, 5841, 1424, 1330, 7308, 11, 35, 4462, 2521, 198, 6738, 44161, 282, 26599, 1330, 29201, 11, 7536, 7575, 11, 48436, 11, 8708, 9218, 11, 12901, 11, 34142, 11, 399, 39223, 11, 10903, 11, 8255, 11, 34371, 11, 2420, 11, 44015, 594, 11, 579, 11, 392, 62, 11, 5239, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 13, 76, 824, 13976, 13, 8692, 1330, 36992, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 198, 198, 15878, 10699, 2514, 9487, 796, 1391, 15, 32105, 4033, 12, 9132, 12, 18, 3256, 16, 32105, 4033, 12, 9132, 12, 21, 3256, 17, 32105, 4033, 12, 9132, 12, 1065, 6, 92, 628, 198 ]
2.888889
117
# # File: # scatter2.py # # Synopsis: # Draws random markers using user-defined markers. # # Category: # XY plots # polymarkers # # Author: # Mary Haley # # Date of initial publication: # December, 2005 # # Description: # This example generates some random data and plots the data as an # XY plot using markers created by the Ngl.new_marker function. # # Effects illustrated: # o Defining your own markers. # o Usage of the the Python "random" module. # # Output: # A single visualization is produced showing the random markers # on an XY plot. # # Notes: # # # Import numpy and random. # from __future__ import print_function import numpy import random # # Import Ngl support functions. # import Ngl random.seed(10) # set a seed for the random number generator # # Generate some dummy data. # y = numpy.zeros([3,100],'f') for i in range(100): y[0,i] = 90.*random.random()+105. y[1,i] = 90.*random.random()+105. y[2,i] = 90.*random.random()+105. wks_type = "png" wks = Ngl.open_wks(wks_type,"scatter2") # # Set up parameters for creating some new markers. # mrk_indices = numpy.zeros(3,'i') mstrings = ["u","z","y"] # triangle, star, sqaure fontnums = [34,35,35] yoffsets = [0.4, 0.0, 0.0] sizes = [2.0, 1.5, 1.0] mrk_indices[0] = Ngl.new_marker(wks, mstrings[0], fontnums[0], 0, \ yoffsets[0], 1, sizes[0], 15.) mrk_indices[1] = Ngl.new_marker(wks, mstrings[1], fontnums[1], 0, \ yoffsets[1], 1, sizes[1], 0.) mrk_indices[2] = Ngl.new_marker(wks, mstrings[2], fontnums[2], 0, \ yoffsets[2], 1, sizes[2], 0.) # # Set up resource list for XY plot. # res = Ngl.Resources() res.xyMarkLineMode = "Markers" # Default is to draw lines. res.xyMonoMarkLineMode = True # Default is only one marker style. res.xyMarkers = mrk_indices # Set new markers res.xyMarkerColors = ["red","green","blue"] res.tiMainString = "Scatter plot with user-defined markers" plot = Ngl.y(wks,y,res) # Draw the plot. Ngl.end()
[ 2, 198, 2, 220, 9220, 25, 198, 2, 220, 220, 220, 41058, 17, 13, 9078, 198, 2, 198, 2, 220, 16065, 24608, 25, 198, 2, 220, 220, 220, 15315, 82, 4738, 19736, 1262, 2836, 12, 23211, 19736, 13, 198, 2, 198, 2, 220, 21743, 25, 198, 2, 220, 220, 220, 41420, 21528, 198, 2, 220, 220, 220, 7514, 4102, 364, 198, 2, 198, 2, 220, 6434, 25, 198, 2, 220, 220, 220, 5335, 30646, 198, 2, 220, 220, 198, 2, 220, 7536, 286, 4238, 9207, 25, 198, 2, 220, 220, 220, 3426, 11, 5075, 198, 2, 198, 2, 220, 12489, 25, 198, 2, 220, 220, 220, 770, 1672, 18616, 617, 4738, 1366, 290, 21528, 262, 1366, 355, 281, 198, 2, 220, 220, 220, 41420, 7110, 1262, 19736, 2727, 416, 262, 399, 4743, 13, 3605, 62, 4102, 263, 2163, 13, 198, 2, 198, 2, 220, 17417, 18542, 25, 198, 2, 220, 220, 220, 220, 220, 267, 220, 2896, 3191, 534, 898, 19736, 13, 198, 2, 220, 220, 220, 220, 220, 267, 220, 29566, 286, 262, 262, 11361, 366, 25120, 1, 8265, 13, 198, 2, 198, 2, 220, 25235, 25, 198, 2, 220, 220, 220, 220, 317, 2060, 32704, 318, 4635, 4478, 262, 4738, 19736, 198, 2, 220, 220, 220, 220, 319, 281, 41420, 7110, 13, 198, 2, 198, 2, 220, 11822, 25, 198, 2, 220, 220, 220, 220, 220, 198, 198, 2, 198, 2, 220, 17267, 299, 32152, 290, 4738, 13, 198, 2, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 299, 32152, 220, 198, 11748, 4738, 198, 198, 2, 198, 2, 220, 17267, 399, 4743, 1104, 5499, 13, 198, 2, 198, 11748, 399, 4743, 198, 198, 25120, 13, 28826, 7, 940, 8, 220, 220, 1303, 900, 257, 9403, 329, 262, 4738, 1271, 17301, 198, 198, 2, 198, 2, 2980, 378, 617, 31548, 1366, 13, 198, 2, 198, 88, 796, 299, 32152, 13, 9107, 418, 26933, 18, 11, 3064, 60, 4032, 69, 11537, 198, 1640, 1312, 287, 2837, 7, 3064, 2599, 198, 220, 331, 58, 15, 11, 72, 60, 796, 4101, 15885, 25120, 13, 25120, 3419, 10, 13348, 13, 198, 220, 331, 58, 16, 11, 72, 60, 796, 4101, 15885, 25120, 13, 25120, 3419, 10, 13348, 13, 198, 220, 331, 58, 17, 11, 72, 60, 796, 4101, 15885, 25120, 13, 25120, 3419, 10, 13348, 13, 198, 198, 86, 591, 62, 4906, 796, 366, 11134, 1, 198, 86, 591, 796, 399, 4743, 13, 9654, 62, 86, 591, 7, 86, 591, 62, 4906, 553, 1416, 1436, 17, 4943, 198, 198, 2, 198, 2, 5345, 510, 10007, 329, 4441, 617, 649, 19736, 13, 198, 2, 198, 43395, 74, 62, 521, 1063, 796, 299, 32152, 13, 9107, 418, 7, 18, 4032, 72, 11537, 198, 198, 76, 37336, 796, 14631, 84, 2430, 89, 2430, 88, 8973, 220, 220, 220, 220, 1303, 22950, 11, 3491, 11, 19862, 64, 495, 198, 10331, 77, 5700, 796, 685, 2682, 11, 2327, 11, 2327, 60, 198, 88, 8210, 1039, 796, 685, 15, 13, 19, 11, 657, 13, 15, 11, 657, 13, 15, 60, 198, 82, 4340, 220, 220, 220, 796, 685, 17, 13, 15, 11, 352, 13, 20, 11, 352, 13, 15, 60, 198, 43395, 74, 62, 521, 1063, 58, 15, 60, 796, 399, 4743, 13, 3605, 62, 4102, 263, 7, 86, 591, 11, 285, 37336, 58, 15, 4357, 10369, 77, 5700, 58, 15, 4357, 657, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 8210, 1039, 58, 15, 4357, 352, 11, 10620, 58, 15, 4357, 1315, 2014, 198, 43395, 74, 62, 521, 1063, 58, 16, 60, 796, 399, 4743, 13, 3605, 62, 4102, 263, 7, 86, 591, 11, 285, 37336, 58, 16, 4357, 10369, 77, 5700, 58, 16, 4357, 657, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 8210, 1039, 58, 16, 4357, 352, 11, 10620, 58, 16, 4357, 657, 2014, 198, 43395, 74, 62, 521, 1063, 58, 17, 60, 796, 399, 4743, 13, 3605, 62, 4102, 263, 7, 86, 591, 11, 285, 37336, 58, 17, 4357, 10369, 77, 5700, 58, 17, 4357, 657, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 8210, 1039, 58, 17, 4357, 352, 11, 10620, 58, 17, 4357, 657, 2014, 198, 198, 2, 198, 2, 5345, 510, 8271, 1351, 329, 41420, 7110, 13, 198, 2, 198, 411, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 399, 4743, 13, 33236, 3419, 198, 411, 13, 5431, 9704, 13949, 19076, 220, 220, 220, 220, 220, 796, 366, 9704, 364, 1, 220, 220, 220, 220, 220, 220, 220, 1303, 15161, 318, 284, 3197, 3951, 13, 198, 411, 13, 5431, 9069, 78, 9704, 13949, 19076, 220, 796, 6407, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15161, 318, 691, 530, 18364, 3918, 13, 198, 411, 13, 5431, 9704, 364, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 285, 81, 74, 62, 521, 1063, 220, 220, 220, 220, 220, 1303, 5345, 649, 19736, 198, 411, 13, 5431, 9704, 263, 5216, 669, 220, 220, 220, 220, 220, 796, 14631, 445, 2430, 14809, 2430, 17585, 8973, 198, 411, 13, 20259, 13383, 10100, 220, 220, 220, 220, 220, 220, 220, 796, 366, 3351, 1436, 7110, 351, 2836, 12, 23211, 19736, 1, 198, 220, 220, 198, 29487, 796, 399, 4743, 13, 88, 7, 86, 591, 11, 88, 11, 411, 8, 220, 220, 220, 1303, 15315, 262, 7110, 13, 198, 198, 45, 4743, 13, 437, 3419, 198 ]
2.190863
985
#!/usr/bin/env python3 from base64 import b64encode, b64decode from sys import byteorder
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 6738, 2779, 2414, 1330, 275, 2414, 268, 8189, 11, 275, 2414, 12501, 1098, 198, 6738, 25064, 1330, 18022, 2875, 628 ]
3
30
"""TileSet class. TiledImageVisual uses this class to track the tiles it's drawing. """ from typing import Dict, List, NamedTuple, Set from ...layers.image.experimental import OctreeChunk, OctreeChunkKey from .texture_atlas import AtlasTile class TileData(NamedTuple): """TileSet stores one TileData per tile. Attributes ---------- octree_chunk : OctreeChunk The chunk that created the tile. atlas_tile : AtlasTile The tile that was created from the chunk. """ octree_chunk: OctreeChunk atlas_tile: AtlasTile class TileSet: """The tiles we are drawing. Fast test for membership in both directions: dict and a set. Attributes ---------- _tiles : Dict[int, TileData] Maps tile_index to the the TileData we have for that tile. _chunks : Set[OctreeChunkKey] The chunks we have in the set, for fast membership tests. """ def __len__(self) -> int: """Return the number of tiles in the set. Return ------ int The number of tiles in the set. """ return len(self._tiles) def clear(self) -> None: """Clear out all our tiles and chunks. Forget everything.""" self._tiles.clear() self._chunks.clear() def add(self, octree_chunk: OctreeChunk, atlas_tile: AtlasTile) -> None: """Add this TiledData to the set. Parameters ---------- octree_chunk : OctreeChunk The chunk we are adding to the tile set. atlas_tile : AtlasTile The atlas tile that was created for this chunks. """ tile_index = atlas_tile.index self._tiles[tile_index] = TileData(octree_chunk, atlas_tile) self._chunks.add(octree_chunk.key) def remove(self, tile_index: int) -> None: """Remove the TileData at this index from the set. tile_index : int Remove the TileData at this index. """ octree_chunk = self._tiles[tile_index].octree_chunk self._chunks.remove(octree_chunk.key) del self._tiles[tile_index] @property def chunk_set(self) -> Set[OctreeChunkKey]: """Return the set of chunks we drawing. Return ------ Set[OctreeChunkKey] The set of chunks we are drawing. """ return self._chunks @property def chunks(self) -> List[OctreeChunk]: """Return all the chunks we are tracking. Return ------ List[OctreeChunk] All the chunks in the set. """ return [tile_data.octree_chunk for tile_data in self._tiles.values()] @property def tile_data(self) -> List[TileData]: """Return the data for all tiles in the set, unsorted. Return ------ List[TileData] Data for all the tiles in the set sorted back to front. """ return self._tiles.values() @property def tile_data_sorted(self) -> List[TileData]: """Return the data for all tiles in the set, sorted back to front. We return tiles from higher octree levels first. These are the larger coarser tiles. These are "the background" while smaller higher resolution tiles are drawn in front. So we show the "best available" data in all locations. Return ------ List[TileData] Data for all the tiles in the set sorted back to front. """ return sorted( self._tiles.values(), key=lambda x: x.octree_chunk.location.level_index, reverse=True, ) def contains_octree_chunk(self, octree_chunk: OctreeChunk) -> bool: """Return True if the set contains this chunk. Parameters ---------- octree_chunk : OctreeChunk Check if this chunk is in the set. Return ------ bool True if the set contains this chunk data. """ return octree_chunk.key in self._chunks
[ 37811, 35103, 7248, 1398, 13, 198, 198, 51, 3902, 5159, 36259, 3544, 428, 1398, 284, 2610, 262, 19867, 340, 338, 8263, 13, 198, 37811, 198, 6738, 19720, 1330, 360, 713, 11, 7343, 11, 34441, 51, 29291, 11, 5345, 198, 198, 6738, 2644, 75, 6962, 13, 9060, 13, 23100, 9134, 1330, 2556, 631, 1925, 2954, 11, 2556, 631, 1925, 2954, 9218, 198, 6738, 764, 41293, 62, 265, 21921, 1330, 22494, 35103, 628, 198, 4871, 47870, 6601, 7, 45, 2434, 51, 29291, 2599, 198, 220, 220, 220, 37227, 35103, 7248, 7000, 530, 47870, 6601, 583, 17763, 13, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 19318, 631, 62, 354, 2954, 1058, 2556, 631, 1925, 2954, 198, 220, 220, 220, 220, 220, 220, 220, 383, 16058, 326, 2727, 262, 17763, 13, 628, 220, 220, 220, 379, 21921, 62, 40927, 1058, 22494, 35103, 198, 220, 220, 220, 220, 220, 220, 220, 383, 17763, 326, 373, 2727, 422, 262, 16058, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19318, 631, 62, 354, 2954, 25, 2556, 631, 1925, 2954, 198, 220, 220, 220, 379, 21921, 62, 40927, 25, 22494, 35103, 628, 198, 4871, 47870, 7248, 25, 198, 220, 220, 220, 37227, 464, 19867, 356, 389, 8263, 13, 628, 220, 220, 220, 12549, 1332, 329, 9931, 287, 1111, 11678, 25, 8633, 290, 257, 900, 13, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4808, 83, 2915, 1058, 360, 713, 58, 600, 11, 47870, 6601, 60, 198, 220, 220, 220, 220, 220, 220, 220, 20347, 17763, 62, 9630, 284, 262, 262, 47870, 6601, 356, 423, 329, 326, 17763, 13, 198, 220, 220, 220, 4808, 354, 14125, 1058, 5345, 58, 12349, 631, 1925, 2954, 9218, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 22716, 356, 423, 287, 262, 900, 11, 329, 3049, 9931, 5254, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1271, 286, 19867, 287, 262, 900, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 19867, 287, 262, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13557, 83, 2915, 8, 628, 220, 220, 220, 825, 1598, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19856, 503, 477, 674, 19867, 290, 22716, 13, 29624, 2279, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 83, 2915, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 354, 14125, 13, 20063, 3419, 628, 220, 220, 220, 825, 751, 7, 944, 11, 19318, 631, 62, 354, 2954, 25, 2556, 631, 1925, 2954, 11, 379, 21921, 62, 40927, 25, 22494, 35103, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 428, 309, 3902, 6601, 284, 262, 900, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 19318, 631, 62, 354, 2954, 1058, 2556, 631, 1925, 2954, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 16058, 356, 389, 4375, 284, 262, 17763, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 379, 21921, 62, 40927, 1058, 22494, 35103, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 379, 21921, 17763, 326, 373, 2727, 329, 428, 22716, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17763, 62, 9630, 796, 379, 21921, 62, 40927, 13, 9630, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 83, 2915, 58, 40927, 62, 9630, 60, 796, 47870, 6601, 7, 38441, 631, 62, 354, 2954, 11, 379, 21921, 62, 40927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 354, 14125, 13, 2860, 7, 38441, 631, 62, 354, 2954, 13, 2539, 8, 628, 220, 220, 220, 825, 4781, 7, 944, 11, 17763, 62, 9630, 25, 493, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27914, 262, 47870, 6601, 379, 428, 6376, 422, 262, 900, 13, 628, 220, 220, 220, 220, 220, 220, 220, 17763, 62, 9630, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17220, 262, 47870, 6601, 379, 428, 6376, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19318, 631, 62, 354, 2954, 796, 2116, 13557, 83, 2915, 58, 40927, 62, 9630, 4083, 38441, 631, 62, 354, 2954, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 354, 14125, 13, 28956, 7, 38441, 631, 62, 354, 2954, 13, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 2116, 13557, 83, 2915, 58, 40927, 62, 9630, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 16058, 62, 2617, 7, 944, 8, 4613, 5345, 58, 12349, 631, 1925, 2954, 9218, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 900, 286, 22716, 356, 8263, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 58, 12349, 631, 1925, 2954, 9218, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 900, 286, 22716, 356, 389, 8263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 354, 14125, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 22716, 7, 944, 8, 4613, 7343, 58, 12349, 631, 1925, 2954, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 477, 262, 22716, 356, 389, 9646, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 58, 12349, 631, 1925, 2954, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1439, 262, 22716, 287, 262, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 40927, 62, 7890, 13, 38441, 631, 62, 354, 2954, 329, 17763, 62, 7890, 287, 2116, 13557, 83, 2915, 13, 27160, 3419, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 17763, 62, 7890, 7, 944, 8, 4613, 7343, 58, 35103, 6601, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1366, 329, 477, 19867, 287, 262, 900, 11, 5576, 9741, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 58, 35103, 6601, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6060, 329, 477, 262, 19867, 287, 262, 900, 23243, 736, 284, 2166, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 83, 2915, 13, 27160, 3419, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 17763, 62, 7890, 62, 82, 9741, 7, 944, 8, 4613, 7343, 58, 35103, 6601, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1366, 329, 477, 19867, 287, 262, 900, 11, 23243, 736, 284, 2166, 13, 628, 220, 220, 220, 220, 220, 220, 220, 775, 1441, 19867, 422, 2440, 19318, 631, 2974, 717, 13, 2312, 389, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4025, 763, 28198, 19867, 13, 2312, 389, 366, 1169, 4469, 1, 981, 4833, 198, 220, 220, 220, 220, 220, 220, 220, 2440, 6323, 19867, 389, 7428, 287, 2166, 13, 1406, 356, 905, 262, 366, 13466, 198, 220, 220, 220, 220, 220, 220, 220, 1695, 1, 1366, 287, 477, 7064, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 58, 35103, 6601, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6060, 329, 477, 262, 19867, 287, 262, 900, 23243, 736, 284, 2166, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 83, 2915, 13, 27160, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 28, 50033, 2124, 25, 2124, 13, 38441, 631, 62, 354, 2954, 13, 24886, 13, 5715, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9575, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4909, 62, 38441, 631, 62, 354, 2954, 7, 944, 11, 19318, 631, 62, 354, 2954, 25, 2556, 631, 1925, 2954, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 6407, 611, 262, 900, 4909, 428, 16058, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 19318, 631, 62, 354, 2954, 1058, 2556, 631, 1925, 2954, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6822, 611, 428, 16058, 318, 287, 262, 900, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 611, 262, 900, 4909, 428, 16058, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19318, 631, 62, 354, 2954, 13, 2539, 287, 2116, 13557, 354, 14125, 198 ]
2.380645
1,705
from __future__ import annotations import logging import datetime from fastapi import APIRouter, Depends, params from typing import List, Optional from app.core.auth import get_current_user from app.ratelimit.time_bucketed import rate_limit from app.routes.businesses.service.business_metrics.business_metric_service import BusinessMetricService from app.exceptions.application_exception import exception from app.routes.businesses.service.business_metrics.dto.media_topics_output import MediaTopicsOutput from app.routes.businesses.service.business_metrics.dto.keywords_output import KeywordsOutput from app.routes.businesses.service.business_metrics.dto.redflag_output import RedFlagOutput from app.routes.businesses.service.business_metrics.dto.public_perception_output import PublicPerceptionOutput from app.routes.businesses.service.business_metrics.dto.entity_details_output import EntityDetailsOutput from app.routes.businesses.service.business_metrics.dto.sentiment_distribution_output import SentimentDistributionOutput from app.routes.businesses.service.business_metrics.dto.average_senetiment_output import AverageSenetimentOutput from app.routes.businesses.service.business_metrics.dto.platform_index_output import PlatformIndexOutput from app.routes.businesses.service.business_metrics.dto.news_output import NewsOutput from app.routes.businesses.service.business_metrics.dto.watch_level_metric_output import WatchLevelOutput from app.routes.businesses.service.business_metrics.dto.bsi_score_metric_output import BsiScoreMetricOutput router = APIRouter(prefix="/business-metric") CALLS = 900 PERIOD = 900 start = datetime.date.today().isoformat() @router.get("/bsi-score", tags=["Business Metrics"], response_model=List[BsiScoreMetricOutput]) async def bsi_score( business_id: int, date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the media presence of the company on a given date. This is calculated using the ‘Business Sentiment Index’ formula. - **business_id**: unique id of the business - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id, 'date': date, } return BusinessMetricService.get_bsi_score(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/watch-level", tags=["Business Metrics"], response_model=WatchLevelOutput) async def watch_level( business_id: int, date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the watch level for the company on a given date. Watch Levels can be categorized into different types based on ‘Business Sentiment Index’. - **business_id**: unique id of the business - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id, 'date': date, 'account_id': int(auth.account_id) } return BusinessMetricService.get_watch_level(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/credit-bureau-score", tags=["Business Metrics"], include_in_schema=False) @router.get("/recent-news", tags=["Business Metrics"], response_model=List[NewsOutput]) async def recent_news( date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Lists the most negative business sentiment articles in the given month, in the order of date published. - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'date': date, 'account_id': int(auth.account_id) } return BusinessMetricService.get_recent_news(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/top-news", tags=["Business Metrics"], response_model=List[NewsOutput]) async def top_news(auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Lists the most negative business sentiment articles in the past 3 months, in the descending order of sentiment value. \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'account_id': int(auth.account_id) } return BusinessMetricService.get_top_news(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/current-platform-index", tags=["Business Metrics"], response_model=List[PlatformIndexOutput]) async def current_platform_index( business_id: int, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the media presence of the company (Platform level) on a given date. This is calculated using the ‘Business Sentiment Index’ formula. - **business_id**: unique id of the business \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id} return BusinessMetricService.get_current_platform_index(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/average-sentiment", tags=["Business Metrics"], response_model=List[AverageSenetimentOutput]) async def avg_sentiment( business_id: int, date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the monthly average sentiment for the company on the given date. - **business_id**: unique id of the business - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id, 'date': date } return BusinessMetricService.get_avg_sentiment(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/sentiment-distribution", tags=["Business Metrics"], response_model=List[SentimentDistributionOutput]) async def sentiment_distribution( business_id: int, date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the monthly sentiment distribution for the company on the given date. Sentiment are categorized into positive, neutral and negative. - **business_id**: unique id of the business - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id, 'date': date } return BusinessMetricService.get_sentiment_distribution(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/entity-details", tags=["Business Metrics"], response_model=List[EntityDetailsOutput]) async def entity_details( business_id: int, date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the entity details of the given company. - **business_id**: unique id of the business \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id, 'date': date } return BusinessMetricService.get_entity_details(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/public-perception", tags=["Business Metrics"], response_model=PublicPerceptionOutput) async def public_perception( business_id: int, date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the emotions expressed by customers in their reviews. The average values for the sentiment data are calculated using the proprietary formula. The data is collected on the selected month. - **business_id**: unique id of the business - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id, 'date': date } return BusinessMetricService.get_public_perception(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/redflags", tags=["Business Metrics"], response_model=List[RedFlagOutput]) async def redflags( date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the name of certain flagged phrases in the company’s media and news feeds on the give month. - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'date': date, 'account_id': int(auth.account_id) } return BusinessMetricService.get_redflags(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/keywords", tags=["Business Metrics"], response_model=List[KeywordsOutput]) async def keywords( business_id: int, date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows the various topics in the reviews mentioned by the customers in the news and media feed on the given month. - **business_id**: unique id of the business - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id, 'date': date } return BusinessMetricService.get_keywords(params) except Exception as error: logging.error(error) raise exception.internal_server_error() @router.get("/media_topics", tags=["Business Metrics"], response_model=List[MediaTopicsOutput]) async def media_topics( business_id: int, date: Optional[datetime.date] = start, auth: Depends = Depends(get_current_user), ) -> dict[str, int]: """ Shows a representation of the various topics in the reviews mentioned by the customers in the news and media feed on the given date. - **business_id**: unique id of the business - **date**: any date. If not given, current date will be taken \f :param item: User input. """ try: rate_limit(auth.client_id, CALLS, PERIOD) params = { 'business_id': business_id, 'date': date } return BusinessMetricService.get_media_topics(params) except Exception as error: logging.error(error) raise exception.internal_server_error()
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 11748, 18931, 198, 11748, 4818, 8079, 198, 6738, 3049, 15042, 1330, 3486, 4663, 39605, 11, 2129, 2412, 11, 42287, 198, 6738, 19720, 1330, 7343, 11, 32233, 198, 6738, 598, 13, 7295, 13, 18439, 1330, 651, 62, 14421, 62, 7220, 198, 6738, 598, 13, 4873, 32374, 13, 2435, 62, 27041, 316, 276, 1330, 2494, 62, 32374, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 22680, 62, 4164, 1173, 62, 15271, 1330, 7320, 9171, 1173, 16177, 198, 6738, 598, 13, 1069, 11755, 13, 31438, 62, 1069, 4516, 1330, 6631, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 11431, 62, 4852, 873, 62, 22915, 1330, 6343, 25902, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 2539, 10879, 62, 22915, 1330, 7383, 10879, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 445, 32109, 62, 22915, 1330, 2297, 34227, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 11377, 62, 525, 4516, 62, 22915, 1330, 5094, 5990, 4516, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 26858, 62, 36604, 62, 22915, 1330, 20885, 24259, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 34086, 3681, 62, 17080, 3890, 62, 22915, 1330, 11352, 3681, 20344, 3890, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 23913, 62, 6248, 316, 3681, 62, 22915, 1330, 13475, 10445, 316, 3681, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 24254, 62, 9630, 62, 22915, 1330, 19193, 15732, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 10827, 62, 22915, 1330, 3000, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 8340, 62, 5715, 62, 4164, 1173, 62, 22915, 1330, 6305, 4971, 26410, 198, 6738, 598, 13, 81, 448, 274, 13, 22680, 274, 13, 15271, 13, 22680, 62, 4164, 10466, 13, 67, 1462, 13, 1443, 72, 62, 26675, 62, 4164, 1173, 62, 22915, 1330, 347, 13396, 26595, 9171, 1173, 26410, 198, 472, 353, 796, 3486, 4663, 39605, 7, 40290, 35922, 22680, 12, 4164, 1173, 4943, 198, 34, 1847, 6561, 796, 15897, 198, 18973, 40, 3727, 796, 15897, 198, 9688, 796, 4818, 8079, 13, 4475, 13, 40838, 22446, 26786, 18982, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 1443, 72, 12, 26675, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 33, 13396, 26595, 9171, 1173, 26410, 12962, 198, 292, 13361, 825, 275, 13396, 62, 26675, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 2056, 4931, 286, 262, 1664, 319, 257, 1813, 3128, 13, 770, 318, 10488, 1262, 262, 564, 246, 24749, 11352, 3681, 12901, 447, 247, 10451, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 1443, 72, 62, 26675, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 8340, 12, 5715, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 10723, 4971, 26410, 8, 198, 292, 13361, 825, 2342, 62, 5715, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 2342, 1241, 329, 262, 1664, 319, 257, 1813, 3128, 13, 6305, 28248, 460, 307, 37661, 656, 1180, 3858, 1912, 319, 564, 246, 24749, 11352, 3681, 12901, 447, 247, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23317, 62, 312, 10354, 493, 7, 18439, 13, 23317, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 8340, 62, 5715, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 43082, 12, 65, 6262, 12, 26675, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2291, 62, 259, 62, 15952, 2611, 28, 25101, 8, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 49921, 12, 10827, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 9980, 26410, 12962, 198, 292, 13361, 825, 2274, 62, 10827, 7, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44968, 262, 749, 4633, 1597, 15598, 6685, 287, 262, 1813, 1227, 11, 287, 262, 1502, 286, 3128, 3199, 13, 628, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23317, 62, 312, 10354, 493, 7, 18439, 13, 23317, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 49921, 62, 10827, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 4852, 12, 10827, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 9980, 26410, 12962, 198, 292, 13361, 825, 1353, 62, 10827, 7, 18439, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44968, 262, 749, 4633, 1597, 15598, 6685, 287, 262, 1613, 513, 1933, 11, 287, 262, 31491, 1502, 286, 15598, 1988, 13, 220, 628, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23317, 62, 312, 10354, 493, 7, 18439, 13, 23317, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 4852, 62, 10827, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 14421, 12, 24254, 12, 9630, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 37148, 15732, 26410, 12962, 198, 292, 13361, 825, 1459, 62, 24254, 62, 9630, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 2056, 4931, 286, 262, 1664, 357, 37148, 1241, 8, 319, 257, 1813, 3128, 13, 770, 318, 10488, 1262, 262, 564, 246, 24749, 11352, 3681, 12901, 447, 247, 10451, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 14421, 62, 24254, 62, 9630, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 23913, 12, 34086, 3681, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 26287, 10445, 316, 3681, 26410, 12962, 198, 292, 13361, 825, 42781, 62, 34086, 3681, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 9651, 2811, 15598, 329, 262, 1664, 319, 262, 1813, 3128, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 615, 70, 62, 34086, 3681, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 34086, 3681, 12, 17080, 3890, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 31837, 3681, 20344, 3890, 26410, 12962, 198, 292, 13361, 825, 15598, 62, 17080, 3890, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 9651, 15598, 6082, 329, 262, 1664, 319, 262, 1813, 3128, 13, 11352, 3681, 389, 37661, 656, 3967, 11, 8500, 290, 4633, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 34086, 3681, 62, 17080, 3890, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 26858, 12, 36604, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 32398, 24259, 26410, 12962, 198, 292, 13361, 825, 9312, 62, 36604, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 9312, 3307, 286, 262, 1813, 1664, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 26858, 62, 36604, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 11377, 12, 525, 4516, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 15202, 5990, 4516, 26410, 8, 198, 292, 13361, 825, 1171, 62, 525, 4516, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 10825, 6241, 416, 4297, 287, 511, 8088, 13, 383, 2811, 3815, 329, 262, 15598, 1366, 389, 10488, 1262, 262, 20622, 10451, 13, 383, 1366, 318, 7723, 319, 262, 6163, 1227, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 11377, 62, 525, 4516, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 445, 33152, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 7738, 34227, 26410, 12962, 198, 292, 13361, 825, 2266, 33152, 7, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 1438, 286, 1728, 34060, 20144, 287, 262, 1664, 447, 247, 82, 2056, 290, 1705, 21318, 319, 262, 1577, 1227, 13, 628, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23317, 62, 312, 10354, 493, 7, 18439, 13, 23317, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 445, 33152, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 2539, 10879, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 9218, 10879, 26410, 12962, 198, 292, 13361, 825, 26286, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 262, 2972, 10233, 287, 262, 8088, 4750, 416, 262, 4297, 287, 262, 1705, 290, 2056, 3745, 319, 262, 1813, 1227, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 2539, 10879, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 11431, 62, 4852, 873, 1600, 15940, 28, 14692, 24749, 3395, 10466, 33116, 2882, 62, 19849, 28, 8053, 58, 13152, 25902, 26410, 12962, 198, 292, 13361, 825, 2056, 62, 4852, 873, 7, 198, 220, 220, 220, 1597, 62, 312, 25, 493, 11, 198, 220, 220, 220, 3128, 25, 32233, 58, 19608, 8079, 13, 4475, 60, 796, 923, 11, 198, 220, 220, 220, 6284, 25, 2129, 2412, 796, 2129, 2412, 7, 1136, 62, 14421, 62, 7220, 828, 198, 8, 4613, 8633, 58, 2536, 11, 493, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25156, 257, 10552, 286, 262, 2972, 10233, 287, 262, 8088, 4750, 416, 262, 4297, 287, 262, 1705, 290, 2056, 3745, 319, 262, 1813, 3128, 13, 628, 220, 220, 220, 532, 12429, 22680, 62, 312, 1174, 25, 3748, 4686, 286, 262, 1597, 198, 220, 220, 220, 532, 12429, 4475, 1174, 25, 597, 3128, 13, 1002, 407, 1813, 11, 1459, 3128, 481, 307, 2077, 198, 220, 220, 220, 3467, 69, 198, 220, 220, 220, 1058, 17143, 2378, 25, 11787, 5128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2494, 62, 32374, 7, 18439, 13, 16366, 62, 312, 11, 33290, 6561, 11, 19878, 40, 3727, 8, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22680, 62, 312, 10354, 1597, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7320, 9171, 1173, 16177, 13, 1136, 62, 11431, 62, 4852, 873, 7, 37266, 8, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 18224, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32538, 62, 15388, 62, 18224, 3419, 198 ]
2.687643
4,370
from django.contrib import admin from .models import CarMake, CarModel # Car Model Inline # Car Make Inline # Car Make Admin # Car Model Admin admin.site.register(CarMake) admin.site.register(CarModel)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 1879, 12050, 11, 1879, 17633, 628, 198, 2, 1879, 9104, 554, 1370, 628, 198, 2, 1879, 6889, 554, 1370, 628, 198, 2, 1879, 6889, 32053, 628, 198, 2, 1879, 9104, 32053, 628, 198, 28482, 13, 15654, 13, 30238, 7, 9914, 12050, 8, 198, 28482, 13, 15654, 13, 30238, 7, 9914, 17633, 8, 198 ]
3.212121
66
# System import unittest import json import logging import pprint try: exePath=os.path.dirname(os.path.abspath(__file__)) parentPath,childDir=os.path.split(exePath) sys.path.insert(1,os.path.join(parentPath,"lib")) except: print "Unable to load local library paths" sys.exit(1) # Local import NDE import setup_logging if __name__ == '__main__': unittest.main()
[ 2, 4482, 198, 11748, 555, 715, 395, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 279, 4798, 198, 198, 28311, 25, 198, 220, 220, 220, 409, 68, 15235, 28, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 2560, 15235, 11, 9410, 35277, 28, 418, 13, 6978, 13, 35312, 7, 13499, 15235, 8, 198, 220, 220, 220, 25064, 13, 6978, 13, 28463, 7, 16, 11, 418, 13, 6978, 13, 22179, 7, 8000, 15235, 553, 8019, 48774, 198, 16341, 25, 198, 220, 220, 3601, 366, 3118, 540, 284, 3440, 1957, 5888, 13532, 1, 198, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 2, 10714, 198, 11748, 399, 7206, 198, 11748, 9058, 62, 6404, 2667, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 198, 220, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.418182
165
"""ZCM type definitions This file automatically generated by zcm. DO NOT MODIFY BY HAND!!!! """ try: import cStringIO.StringIO as BytesIO except ImportError: from io import BytesIO import struct
[ 37811, 57, 24187, 2099, 17336, 198, 1212, 2393, 6338, 7560, 416, 1976, 11215, 13, 198, 18227, 5626, 19164, 5064, 56, 11050, 367, 6981, 13896, 198, 37811, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 269, 10100, 9399, 13, 10100, 9399, 355, 2750, 4879, 9399, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 33245, 1330, 2750, 4879, 9399, 198, 11748, 2878, 628 ]
3.203125
64
''' Module of Android API for plyer.devicename. ''' from jnius import autoclass from plyer.facades import DeviceName Build = autoclass('android.os.Build') class AndroidDeviceName(DeviceName): ''' Implementation of Android devicename API. ''' def _get_device_name(self): """ Method to get the device name aka model in an android environment. Changed the implementation from 'android.provider.Settings.Global' to 'android.os.Build' because 'android.provider.Settings.Global' was introduced in API 17 whereas 'android.os.Build' is present since API 1 Thereby making this method more backward compatible. """ return Build.MODEL def instance(): ''' Instance for facade proxy. ''' return AndroidDeviceName()
[ 7061, 6, 198, 26796, 286, 5565, 7824, 329, 35960, 263, 13, 7959, 291, 12453, 13, 198, 7061, 6, 198, 198, 6738, 474, 77, 3754, 1330, 1960, 420, 31172, 198, 6738, 35960, 263, 13, 38942, 2367, 1330, 16232, 5376, 198, 198, 15580, 796, 1960, 420, 31172, 10786, 19411, 13, 418, 13, 15580, 11537, 628, 198, 4871, 5565, 24728, 5376, 7, 24728, 5376, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 46333, 286, 5565, 1614, 291, 12453, 7824, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 4808, 1136, 62, 25202, 62, 3672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 284, 651, 262, 3335, 1438, 22430, 2746, 287, 281, 19286, 2858, 13, 628, 220, 220, 220, 220, 220, 220, 220, 32068, 262, 7822, 422, 705, 19411, 13, 15234, 1304, 13, 26232, 13, 22289, 6, 284, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19411, 13, 418, 13, 15580, 6, 780, 705, 19411, 13, 15234, 1304, 13, 26232, 13, 22289, 6, 373, 198, 220, 220, 220, 220, 220, 220, 220, 5495, 287, 7824, 1596, 9472, 705, 19411, 13, 418, 13, 15580, 6, 318, 1944, 1201, 7824, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1318, 1525, 1642, 428, 2446, 517, 19528, 11670, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10934, 13, 33365, 3698, 628, 198, 4299, 4554, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2262, 590, 329, 43562, 15741, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1441, 5565, 24728, 5376, 3419, 198 ]
2.871886
281
""" "ReTry" (c) by Ignacio Slater M. "ReTry" is licensed under a Creative Commons Attribution 4.0 International License. You should have received a copy of the license along with this work. If not, see <https://creativecommons.org/licenses/by/4.0/>. """ from retry.geometry import Point from retry.tree.rtree import RTree if __name__ == '__main__': import random rng = random.Random() tree = RTree(2, 5) for _ in range(0, 100): tree.insert(Point(rng.random() * 100, rng.random() * 100)) tree.draw(100, 100)
[ 37811, 198, 1, 3041, 23433, 1, 357, 66, 8, 416, 16583, 48711, 44289, 337, 13, 198, 1, 3041, 23433, 1, 318, 11971, 739, 257, 198, 16719, 425, 13815, 45336, 604, 13, 15, 4037, 13789, 13, 198, 1639, 815, 423, 2722, 257, 4866, 286, 262, 5964, 1863, 351, 428, 198, 1818, 13, 1002, 407, 11, 766, 1279, 5450, 1378, 20123, 425, 9503, 684, 13, 2398, 14, 677, 4541, 14, 1525, 14, 19, 13, 15, 15913, 13, 198, 37811, 198, 6738, 1005, 563, 13, 469, 15748, 1330, 6252, 198, 6738, 1005, 563, 13, 21048, 13, 17034, 631, 1330, 11923, 631, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 4738, 628, 220, 220, 220, 374, 782, 796, 4738, 13, 29531, 3419, 628, 220, 220, 220, 5509, 796, 11923, 631, 7, 17, 11, 642, 8, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 15, 11, 1802, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 28463, 7, 12727, 7, 81, 782, 13, 25120, 3419, 1635, 1802, 11, 374, 782, 13, 25120, 3419, 1635, 1802, 4008, 198, 220, 220, 220, 5509, 13, 19334, 7, 3064, 11, 1802, 8, 198 ]
2.744898
196
# Copyright 2021 cms.rendner (Daniel Schmidt) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from plugin_code.apply_fallback_patch import ApplyFallbackPatch from plugin_code.apply_map_fallback_patch import ApplyMapFallbackPatch from plugin_code.background_gradient_patch import BackgroundGradientPatch from plugin_code.base_apply_map_patcher import BaseApplyMapPatcher from plugin_code.base_apply_patcher import BaseApplyPatcher from plugin_code.exported_style import ExportedStyle from plugin_code.highlight_extrema_patch import HighlightExtremaPatch from plugin_code.table_structure import TableStructure # == copy after here == import inspect import numpy as np from pandas import DataFrame from pandas.io.formats.style import Styler from typing import Callable, List, Tuple, Union
[ 2, 220, 15069, 33448, 269, 907, 13, 10920, 1008, 357, 19962, 24740, 8, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 6738, 13877, 62, 8189, 13, 39014, 62, 7207, 1891, 62, 17147, 1330, 27967, 24750, 1891, 33952, 198, 6738, 13877, 62, 8189, 13, 39014, 62, 8899, 62, 7207, 1891, 62, 17147, 1330, 27967, 13912, 24750, 1891, 33952, 198, 6738, 13877, 62, 8189, 13, 25249, 62, 49607, 62, 17147, 1330, 25353, 42731, 1153, 33952, 198, 6738, 13877, 62, 8189, 13, 8692, 62, 39014, 62, 8899, 62, 8071, 2044, 1330, 7308, 44836, 13912, 12130, 2044, 198, 6738, 13877, 62, 8189, 13, 8692, 62, 39014, 62, 8071, 2044, 1330, 7308, 44836, 12130, 2044, 198, 6738, 13877, 62, 8189, 13, 1069, 9213, 62, 7635, 1330, 1475, 9213, 21466, 198, 6738, 13877, 62, 8189, 13, 8929, 2971, 62, 2302, 260, 2611, 62, 17147, 1330, 3334, 2971, 11627, 260, 2611, 33952, 198, 6738, 13877, 62, 8189, 13, 11487, 62, 301, 5620, 1330, 8655, 1273, 5620, 198, 198, 2, 6624, 4866, 706, 994, 6624, 198, 11748, 10104, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 19798, 292, 1330, 6060, 19778, 198, 6738, 19798, 292, 13, 952, 13, 687, 1381, 13, 7635, 1330, 42378, 1754, 198, 6738, 19720, 1330, 4889, 540, 11, 7343, 11, 309, 29291, 11, 4479, 628 ]
3.650704
355
from flask import Flask from .proxy import create_proxy from . import stats def create_app(config): """Create flask app""" app = Flask(__name__) routes = config["routes"] @app.route("/") for route in routes: create_proxy(app, route["path_prefix"], route["backend"], config["backends"]) @app.errorhandler(404) @app.route("/stats") return app
[ 6738, 42903, 1330, 46947, 198, 198, 6738, 764, 36436, 1330, 2251, 62, 36436, 198, 6738, 764, 1330, 9756, 628, 198, 4299, 2251, 62, 1324, 7, 11250, 2599, 198, 220, 220, 220, 37227, 16447, 42903, 598, 37811, 198, 220, 220, 220, 598, 796, 46947, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 11926, 796, 4566, 14692, 81, 448, 274, 8973, 628, 220, 220, 220, 2488, 1324, 13, 38629, 7203, 14, 4943, 628, 220, 220, 220, 329, 6339, 287, 11926, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 36436, 7, 1324, 11, 6339, 14692, 6978, 62, 40290, 33116, 6339, 14692, 1891, 437, 33116, 4566, 14692, 1891, 2412, 8973, 8, 628, 220, 220, 220, 2488, 1324, 13, 18224, 30281, 7, 26429, 8, 628, 220, 220, 220, 2488, 1324, 13, 38629, 7203, 14, 34242, 4943, 628, 220, 220, 220, 1441, 598, 198 ]
2.739437
142
import numpy as np from scipy.ndimage import shift import random from targets import one_hot
[ 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 358, 9060, 1330, 6482, 198, 11748, 4738, 198, 6738, 6670, 1330, 530, 62, 8940, 628, 628, 198 ]
3.464286
28
# Modify the program to show the numbers from 1 to 100. x=1 while x<=100: print(x) x=x+1
[ 2, 3401, 1958, 262, 1430, 284, 905, 262, 3146, 422, 352, 284, 1802, 13, 198, 87, 28, 16, 198, 4514, 2124, 27, 28, 3064, 25, 198, 220, 220, 220, 3601, 7, 87, 8, 198, 220, 220, 220, 2124, 28, 87, 10, 16 ]
2.285714
42
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author Eric Bullen <[email protected]> @application jtune.py @version 4.0.1 @abstract This tool will give detailed information about the running JVM in real-time. It produces useful information that can further assist the user in debugging and optimization. @license Copyright 2015 LinkedIn Corp. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ import atexit import datetime import getpass import locale import logging import math import os import re import resource import shlex import socket import subprocess as sp import sys import textwrap import time from decimal import Decimal from itertools import zip_longest, count import argparse import multiprocessing as mp try: locale.setlocale(locale.LC_ALL, 'en_US') except locale.Error: # Try UTF8 variant before failing locale.setlocale(locale.LC_ALL, 'en_US.utf8') handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('%(asctime)s: "%(name)s" (line: %(lineno)d) - %(levelname)s: %(message)s')) logger = logging.getLogger() logger.setLevel(logging.INFO) logger.addHandler(handler) # For me to use in PyCharm to read flight recorder files DEBUG = False class GCRecord(object): """Object definition for a single gc record.""" _version = "1.0" def __repr__(self): """This prints out the gc record so that it looks as though it came straight from the logs.""" output = list() output.append("{0} Runtime: {1} GC Type: {2}".format(self.record_timestamp, self.jvm_running_time, self.gc_type)) output.append("Desired Survivor Size: {0}, Curr Threshold: {1} (Max: {2})".format(self.desired_survivor_size, self.curr_threshold, self.max_threshold)) for age in self.ages: if age[1] > -1 or age[2] > -1: output.append("- Age {0}: {1:>10} bytes, {2:>10} total".format(age[0], age[1], age[2])) output.append("YG Before GC: {0}K, YG After GC: {1}K (Total: {2}K), {3} secs".format(self.young_size_before_gc, self.young_size_after_gc, self.young_size_total, self.young_gc_time)) output.append("Total Heap Before GC: {0}K, Total Heap After GC: {1}K (Total: {2}K), {3} secs".format(self.total_heap_before_gc, self.total_heap_after_gc, self.total_heap, self.total_gc_time)) return "\n".join(output) def _parse_record(self): """This loops through record_array to set the class variables that make up the record.""" self.record_timestamp, record_array = self.raw_gc_record ############################################################# # Capture STW (Full GC, remarks, etc.). Yeah, I could combine # these three, but this is good enough for now. if any("CMS Initial Mark" in line for line in record_array): match = re.search(r", ([\d\.]+) secs\] ", record_array[-1]) if match: self.gc_type = "CMS-STW" self.is_stw_gc = True self.valid_record = True self.stw_time += float(match.group(1)) if any("CMS Final Remark" in line for line in record_array): match = re.search(r", ([\d\.]+) secs\] ", record_array[-1]) if match: self.gc_type = "CMS-STW" self.is_stw_gc = True self.valid_record = True self.stw_time += float(match.group(1)) if any("Full GC" in line for line in record_array): match = re.search(r", ([\d\.]+) secs\] ", record_array[-1]) if match: self.gc_type = "FULL" self.is_stw_gc = True self.valid_record = True self.stw_time += float(match.group(1)) if not self.is_stw_gc: for line in record_array: if "CMS-concurrent-sweep: " in line: match = re.match(r"^\d+-\d+-\d+T\d+:\d+:[\d\.]+[+-]\d+: ([\d\.]+): \[CMS-concurrent-sweep: [\d\.]+/([\d\.]+) secs", line) if match: self.is_cms_gc = True self.valid_record = True self.gc_type = "CMS" self.jvm_running_time = float(match.group(1)) self.cms_sweep_time = float(match.group(2)) break if not (self.jvm_running_time or self.gc_type): match = re.match(r"^\d+-\d+-\d+T\d+:\d+:[\d\.]+[+-]\d+: ([\d\.]+): .*\[(\S+)", line) if match: self.jvm_running_time = float(match.group(1)) self.gc_type = match.group(2) if not (self.desired_survivor_size or self.curr_threshold or self.max_threshold): match = re.match(r"^Desired survivor size (\d+) bytes, new threshold (\d+) \(max (\d+)\)", line) if match: self.valid_record = True self.desired_survivor_size = int(match.group(1)) self.curr_threshold = int(match.group(2)) self.max_threshold = int(match.group(3)) # Here I set the survivor size beforehand, for any that # may be missing as I want all the ages even if they aren't # being used for comparison between GCs for age in range(1, self.max_threshold + 1): self.ages.append((age, -1, -1)) continue ################################################ # Skipping records when the JVM has been running # for less than 300 seconds if self.jvm_running_time < 300: self.valid_record = False break ############################# # Capture survivor ages, etc. match = re.match(r"^- age\s+(\d+):\s+(\d+) bytes,\s+(\d+) total", line) if match: ############################################################ # This while logic block catches any ages that were # fully reaped, and fills them with zeros. This is important # as the analytics needs to know this to determine survivor # death rates/ratios age = int(match.group(1)) curr_size = int(match.group(2)) max_size = int(match.group(3)) self.ages[age - 1] = (age, curr_size, max_size) continue ############################### # Capture gc reallocation stats match = re.match(r"^: (\d+)\w->(\d+)\w\((\d+)\w\), ([\d\.]+) secs\] (\d+)\w->(\d+)\w\((\d+)\w\), ([\d\.]+) secs\]", line) if match: self.young_size_before_gc = int(match.group(1)) * 1024 self.young_size_after_gc = int(match.group(2)) * 1024 self.young_size_total = int(match.group(3)) * 1024 self.young_gc_time = Decimal(match.group(4)) self.total_heap_before_gc = int(match.group(5)) * 1024 self.total_heap_after_gc = int(match.group(6)) * 1024 self.total_heap = int(match.group(7)) * 1024 self.total_gc_time = Decimal(match.group(8)) self.og_used = self.total_heap_after_gc - self.young_size_after_gc def liverun(cmd=None): """Run cmd, and return an iterator of said cmd. Keyword arguments: cmd -- the command to run """ global subproc env = dict(os.environ) # Combining stdout and stderr. I can't find a way to keep both separate # while getting the data 'live'. itertools.izip_longest seemed like it'd # almost do it, but it caches the results before sending it out... subproc = sp.Popen(shlex.split(cmd), stdout=sp.PIPE, stderr=sp.STDOUT, env=env) return iter(subproc.stdout.readline, b'') def reduce_seconds(secs=None): """Return a compressed representation of time in seconds Keyword arguments: secs -- a float/int representing the seconds to be 'compressed' """ # The nested if statements keep it from being too long, # by lopping off the non significant values retval = "" secs = int(float(secs)) mins, secs = divmod(secs, 60) hours, mins = divmod(mins, 60) days, hours = divmod(hours, 24) secs = int("{0:0.0f}".format(secs)) if days: retval += "{0}d".format(days) if hours: retval += "{0}h".format(hours) if days > 0: return retval if mins: retval += "{0}m".format(mins) if hours or days: return retval if secs: retval += "{0:}s".format(secs) return retval def sec_diff(first_time=None, second_time=None): """Return the number of seconds between two datetime objects Keyword arguments: first_time -- The (typically) older time of the two second_time -- The (typically) newer time of the two """ time_delta = second_time - first_time return time_delta.days * 86400 + time_delta.seconds + Decimal(str(time_delta.microseconds / float(1000000))) def _min(values=None): """A wrapper around the min() function so that it does not error on an empty list""" try: return min(values) except ValueError: return 0 def _max(values=None): """A wrapper around the max() function so that it does not error on an empty list""" try: return max(values) except ValueError: return 0 def median(values=None): """Return the median of 'values' Keyword arguments: values -- the list of numbers """ sorts = sorted(values) length = len(sorts) result = None if not values: result = 0 # raise ValueError, "I can't find the median of an empty list." elif not length % 2: result = (sorts[(length // 2)] + sorts[(length // 2) - 1]) / 2.0 else: result = sorts[length // 2] return result def mean(values=None, _length=None): """Return the mean of 'values' Keyword arguments: values -- the list of numbers _length -- mostly not usable for end-users, needed by the stdev function """ result = None if not _length: _length = len(values) if _length > 0: result = Decimal(str(sum(values))) / _length else: result = 0 return result def stdev(values=None): """Return the standard deviation of values Keyword arguments: values -- The poorly named argument that contains the list of numbers """ values_mean = mean(values) variance = [math.pow(Decimal(str(x)) - values_mean, 2) for x in values] return math.sqrt(mean(variance, len(variance) - 1)) def percentile(values=None, pct=None): """Return the percentile of a given values Keyword arguments: values -- The list of numbers to be analyzed pct -- The percentile (can be a float) to be used (100 == 100%, not 1 = 100%, etc.) """ watermark_index = int(round((float(pct) / 100) * len(values) + .5)) watermark = sorted(values)[watermark_index - 1] return [element for element in values if element <= watermark] def reduce_k(size=None, precision=2, short_form=True, _place_holder=0): """Return a compressed representation of a given number of bytes Keyword arguments: size -- the size in bytes precision -- what precision should be used (places to the right of the decimal) short_form -- (true/false). Use 'K' instead of 'KiB', etc. """ if not isinstance(size, Decimal): size = Decimal(str(size)) # You know.. just in case we ever get to a yottabyte if short_form: iec_scale = ['K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y'] else: iec_scale = ['KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB', 'ZiB', 'YiB'] if not isinstance(size, Decimal): size = Decimal(str(size)) if abs(size) >= 1024: _place_holder += 1 return reduce_k(size / Decimal("1024.0"), precision=precision, short_form=short_form, _place_holder=_place_holder) else: value = Decimal("{0:.{1}f}".format(size, precision)) if Decimal(str(int(value))) == value: value = int(value) if short_form: return "{0}{1}".format(value, iec_scale[_place_holder]) else: return "{0} {1}".format(value, iec_scale[_place_holder]) def _run_analysis(gc_data=None, jmap_data=None, jstat_data=None, proc_details=None, optimized_for_ygcs_rate=None): """The meat-and-potatoes of this tool. This takes in numerous data structures, and prints out a report of the analysis of them.""" # Formulas to get the JVM configuration just from JMap: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # eden_size == (newsize * survivor_ratio)/(2 + survivor_ratio) # survivor_size == eden_size * (1/survivor_ratio) # og_size == max_heap_size - eden_size - survivor_size # og_used == heap_used - eden_used if not gc_data: logger.error("I can't do any analysis for this sample period because there wasn't enough data in the GC log. Exiting.") sys.exit(1) ############################################################ # Get some summary data that doesn't require GC log analysis # Loop through the GC data array to find all CMS events, and capture # how long they took. cms_times = [record.cms_sweep_time for record in gc_data if record.is_cms_gc] display.render("\n") display.render("Meta:\n") display.render("~~~~~\n") sample_time_secs = sec_diff(gc_data[0].record_timestamp, gc_data[-1].record_timestamp) if sample_time_secs < 60: display.render("GC Sample Time: {0} seconds\n".format(sample_time_secs)) else: display.render("GC Sample Time: {0} ({1} seconds)\n".format(reduce_seconds(sample_time_secs), sample_time_secs)) display.render("GC Sample Time from {0} to {1}\n".format(gc_data[0].record_timestamp, gc_data[-1].record_timestamp)) if proc_details: cpu_count = mp.cpu_count() cpu_uptime = cpu_count * proc_details['sys_uptime_seconds'] proc_utime_pct = proc_details['proc_utime_seconds'] / cpu_uptime proc_stime_pct = proc_details['proc_stime_seconds'] / cpu_uptime display.render("System Uptime: {0}\n".format(reduce_seconds(proc_details['sys_uptime_seconds']))) display.render("Proc Uptime: {0}\n".format(reduce_seconds(proc_details['proc_uptime_seconds']))) display.render("Proc Usertime: {0} ({1:0.2%})\n".format(reduce_seconds(proc_details['proc_utime_seconds']), proc_utime_pct)) display.render("Proc Systime: {0} ({1:0.2%})\n".format(reduce_seconds(proc_details['proc_stime_seconds']), proc_stime_pct)) display.render("Proc RSS: {0}\n".format(reduce_k(proc_details['proc_rss_bytes'] / 1024))) display.render("Proc VSize: {0}\n".format(reduce_k(proc_details['proc_vsize_bytes'] / 1024))) display.render("Proc # Threads: {0}\n".format(proc_details['num_threads'])) display.render("\n") # Exit out as I don't have enough gc_data to do any analysis on if len(gc_data) < 2: display.render("\n") display.render("* NOTE: There wasn't enough data to do any analysis. Please let the tool\n") display.render(" gather at least 2 complete gc.log records (found {0}).\n".format(len(gc_data))) return False survivor_info = dict() young_gc_count_delta = len([record.is_stw_gc for record in gc_data if not record.is_stw_gc]) full_gc_count_delta = len([record.is_stw_gc for record in gc_data if record.is_stw_gc]) sample_gc_time = sum(record.total_gc_time for record in gc_data) sample_gc_load = (sample_gc_time / Decimal(str(sample_time_secs))) * 100 ####################################################### # Get young gen allocation rates over the sample period yg_rates = list() for first_gc, second_gc in zip(gc_data, gc_data[1:]): if any([second_gc.is_stw_gc, first_gc.is_stw_gc, first_gc.is_cms_gc, second_gc.is_cms_gc]): continue # Iterate over the gc logs 2 at a time # [1, 2, 3, 4] -> # [(1, 2), (2, 3), (3, 4)] # time_delta = sec_diff(first_gc.record_timestamp, second_gc.record_timestamp) try: yg_size_delta = second_gc.young_size_before_gc - first_gc.young_size_after_gc yg_growth_delta = second_gc.young_size_after_gc - first_gc.young_size_after_gc except TypeError: display.render("\n".join(textwrap.wrap("Warning: Something is really wrong with this JVM; I couldn't get correct GC data for it.", display.textwrap_offset))) display.render("") yg_size_delta = 0 yg_growth_delta = 0 # These are in KiB/s yg_alloc_rate = yg_size_delta / time_delta yg_growth_rate = yg_growth_delta / time_delta yg_rates.append((yg_alloc_rate, yg_growth_rate)) ##################################################### # Get old gen promotion rates over the sample period og_rates = list() for first_gc, second_gc in zip(gc_data, gc_data[1:]): if any([second_gc.is_stw_gc, first_gc.is_stw_gc, first_gc.is_cms_gc, second_gc.is_cms_gc]): continue time_delta = sec_diff(first_gc.record_timestamp, second_gc.record_timestamp) # These are in KiB/s og_allocation_delta = (second_gc.og_used - first_gc.og_used) / Decimal("1024") og_allocation_rate = og_allocation_delta / time_delta ############################################################################ # I only want when the old gen is growing. If it's decreasing, it's probably # b/c there was a FGC, and space is being reclaimed. if og_allocation_delta > 0: # This is in KiB/s og_rates.append(og_allocation_rate) ############################ # Calc survivor death ratios gc_survivor_death_rates = list() for first_gc, second_gc in zip(gc_data, gc_data[1:]): if any([second_gc.is_stw_gc, first_gc.is_stw_gc, first_gc.is_cms_gc, second_gc.is_cms_gc]): continue survivor_death_rates = list() for first_age, second_age in zip(first_gc.ages, second_gc.ages[1:]): # The second age CAN be bigger than the first age. I verified # this in the gc.logs (still not sure how/why) # ID 0 is the age number # ID 1 is bytes in that age # ID 2 is the total bytes for that age if second_age[1] == -1: # I don't think I want to capture any changes if # the survivor space didn't exist (-1 as a default value- see above) continue # survivor_death_rates.append(Decimal(0)) else: survivor_death_rates.append(1 - (Decimal(second_age[1]) / first_age[1])) gc_survivor_death_rates.append(survivor_death_rates) ################################################################################# # Since I have 2 in-scope valid GCs, I'm going to calculate some needed JVM sizes # the sizes will be fixed if I have a fixed heap size (which we do in prod) jvm_mem_cfg = dict() try: jvm_mem_cfg["og_size"] = (first_gc.total_heap - first_gc.young_size_total) * 1024 except TypeError: display.render("\n".join(textwrap.wrap("Error: I could not find a non CMS/FGC GC record for analysis. Exiting.", display.textwrap_offset))) display.render("") sys.exit(1) jvm_mem_cfg["survivor_size"] = (first_gc.desired_survivor_size * 2) jvm_mem_cfg["eden_size"] = (first_gc.young_size_total * 1024) - jvm_mem_cfg["survivor_size"] jvm_mem_cfg["total_heap"] = (first_gc.total_heap * 1024) + jvm_mem_cfg["survivor_size"] jvm_mem_cfg["new_size"] = (jvm_mem_cfg["eden_size"] + (jvm_mem_cfg["survivor_size"] * 2)) ######################################################### # Now that I have a crap-ton of curated data, report out. # This grabs the first part of the tuple (which is # the total allocation for that gc (not growth!) yg_alloc_rates = [entry[0] for entry in yg_rates] min_yg_rate, mean_yg_rate, max_yg_rate = _min(yg_alloc_rates), mean(yg_alloc_rates), _max(yg_alloc_rates) display.render("YG Allocation Rates*:\n") display.render("~~~~~~~~~~~~~~~~~~~~~\n") display.render("per sec (min/mean/max): {0:>13} {1:>13} {2:>13}\n".format(reduce_k(min_yg_rate) + "/s", reduce_k(mean_yg_rate) + "/s", reduce_k(max_yg_rate) + "/s")) display.render("per hr (min/mean/max): {0:>13} {1:>13} {2:>13}\n".format(reduce_k(min_yg_rate * 3600) + "/h", reduce_k(mean_yg_rate * 3600) + "/h", reduce_k(max_yg_rate * 3600) + "/h")) display.render("\n") # This grabs the second part of the tuple (which is # the total growth for that gc (not allocation rate!) min_og_rate, mean_og_rate, max_og_rate = _min(og_rates), mean(og_rates), _max(og_rates) display.render("OG Promotion Rates:\n") display.render("~~~~~~~~~~~~~~~~~~~\n") display.render("per sec (min/mean/max): {0:>13} {1:>13} {2:>13}\n".format(reduce_k(min_og_rate) + "/s", reduce_k(mean_og_rate) + "/s", reduce_k(max_og_rate) + "/s")) display.render("per hr (min/mean/max): {0:>13} {1:>13} {2:>13}\n".format(reduce_k(min_og_rate * 3600) + "/h", reduce_k(mean_og_rate * 3600) + "/h", reduce_k(max_og_rate * 3600) + "/h")) display.render("\n") ################################################ # Survivor Lengths- wanted to make a nested list # comprehension, but I suppose that's a bit ugly # to debug/read display.render("Survivor Death Rates:\n") display.render("~~~~~~~~~~~~~~~~~~~~~\n") survivor_lengths = list() for sub_arr in gc_survivor_death_rates: survivor_lengths.append(len([elem for elem in sub_arr if elem > 0])) display.render("Lengths (min/mean/max): {0}/{1:0.1f}/{2}\n".format(_min(survivor_lengths), mean(survivor_lengths), _max(survivor_lengths))) display.render("Death Rate Breakdown:\n") cuml_pct = 1 death_ages = list() for survivor_num, pct_list in enumerate(zip_longest(*gc_survivor_death_rates, fillvalue=0), 1): min_pct = min(pct_list) mean_pct = mean(pct_list) max_pct = max(pct_list) cuml_pct *= 1 - mean_pct death_ages.append(mean_pct) survivor_info[survivor_num] = min_pct, mean_pct, max_pct display.render(" Age {0}: {1:>5} / {2:>5} / {3:>5} / {4:>5} (min/mean/max/cuml alive %)\n".format(survivor_num, "{0:0.1%}".format(min_pct), "{0:0.1%}".format(mean_pct), "{0:0.1%}".format(max_pct), "{0:0.1%}".format(cuml_pct))) ################################## # GC Times young_gc_times = [record.young_gc_time * 1000 for record in gc_data if not record.is_stw_gc] full_gc_times = [record.stw_time * 1000 for record in gc_data if record.is_stw_gc] if sample_time_secs: if young_gc_count_delta: ygc_rate = (young_gc_count_delta / sample_time_secs) * 60 else: ygc_rate = 0 if full_gc_count_delta: fgc_rate = (full_gc_count_delta / sample_time_secs) * 60 else: fgc_rate = 0 display.render("\n") display.render("GC Information:\n") display.render("~~~~~~~~~~~~~~~\n") display.render("YGC/FGC Count: {0}/{1} (Rate: {2:0.2f}/min, {3:0.2f}/min)\n".format(young_gc_count_delta, full_gc_count_delta, ygc_rate, fgc_rate)) display.render("\n") display.render("Sample Period GC Load: {0:0.2f}%\n".format(sample_gc_load)) display.render("") display.render("CMS Sweep Times: {0:0.3f}s / {1:0.3f}s / {2:0.3f}s / {3:0.2f} (min/mean/max/stdev)\n".format(_min(cms_times), mean(cms_times), _max(cms_times), stdev(cms_times))) display.render("YGC Times: {0:0.0f}ms / {1:0.0f}ms / {2:0.0f}ms / {3:0.2f} (min/mean/max/stdev)\n".format(_min(young_gc_times), mean(young_gc_times), _max(young_gc_times), stdev(young_gc_times))) display.render("FGC Times: {0:0.0f}ms / {1:0.0f}ms / {2:0.0f}ms / {3:0.2f} (min/mean/max/stdev)\n".format(_min(full_gc_times), mean(full_gc_times), _max(full_gc_times), stdev(full_gc_times))) agg_ygc_time = sum(young_gc_times) agg_fgc_time = sum(full_gc_times) display.render("Agg. YGC Time: {0:0.0f}ms\n".format(agg_ygc_time)) display.render("Agg. FGC Time: {0:0.0f}ms\n".format(agg_fgc_time)) display.render("\n") if og_rates: display.render( "Est. Time Between FGCs (min/mean/max): {0:>10} {1:>10} {2:>10}\n".format(reduce_seconds(jvm_mem_cfg["og_size"] / min_og_rate), reduce_seconds(jvm_mem_cfg["og_size"] / mean_og_rate), reduce_seconds(jvm_mem_cfg["og_size"] / max_og_rate))) else: display.render("Est. Time Between FGCs (min/mean/max): {0:>10} {1:>10} {2:>10}\n".format("n/a", "n/a", "n/a")) display.render("Est. OG Size for 1 FGC/hr (min/mean/max): {0:>10} {1:>10} {2:>10}\n".format(reduce_k(min_og_rate * 3600), reduce_k(mean_og_rate * 3600), reduce_k(max_og_rate * 3600))) display.render("\n") display.render("Overall JVM Efficiency Score*: {0:0.3f}%\n".format(100 - sample_gc_load)) display.render("\n") ################################### # JMap Data display.render("Current JVM Mem Configuration:\n") display.render("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n") if jmap_data: for k, v in jmap_data.items(): if "Size" in k: v = reduce_k(v / 1024) display.render("{0:>17}: {1}\n".format(k, v)) else: for k, v in jvm_mem_cfg.items(): display.render("{0:>17}: {1}\n".format(k, reduce_k(v / 1024))) display.render("\n") ###################### # Show recommendations _show_recommendations(death_ages, young_gc_times, full_gc_times, fgc_rate, ygc_rate, yg_alloc_rates, og_rates, jvm_mem_cfg, jmap_data, jstat_data, gc_data, cms_times, survivor_info, optimized_for_ygcs_rate, proc_details) display.render("~~~\n") display.render("* The allocation rate is the increase in usage before a GC done. Growth rate\n") display.render(" is the increase in usage after a GC is done.\n") display.render("\n") display.render("* The JVM efficiency score is a convenient way to quantify how efficient the\n") display.render(" JVM is. The most efficient JVM is 100% (pretty much impossible to obtain).\n") if full_gc_count_delta == 0: display.render("\n") display.render("* There were no full GCs during this sample period. This reporting will\n") display.render(" be less useful/accurate as a result.\n") display.render("\n") display.render("* A copy of the critical data used to generate this report is stored\n") display.render(" in /tmp/jtune_data-{0}.bin.bz2. Please copy this to your homedir if you\n".format(user)) display.render(" want to save/analyze this further.\n") def _get_survivor_info(death_ages=None, survivor_info=None, gc_data=None, survivor_problem_pct=None, curr_ng_size=None, adj_ng_size=None): """This looks at the survivor info data structure, and will return the max tenuring size, and max tenuring age that it feels is needed.""" # This is roughly how much larger the survivor space should be to counteract the increase # in the frequency of ygcs caused from the smaller NG size as it pushes data into the # survivor space more often. I don't need to change the MaxTenuringThreshold as that is # mostly constant depending on how data ages. # # I'm adjusting the size of the survivor space based on the eden change. It MAY be better # adjusting this based on time of how frequent the ygcs are happening. ng_size_delta = curr_ng_size - adj_ng_size # Going to use this to change the maxtenuringtrheshold parameter. The reason is that # ygcs will happen less/more often if I change the ng size, and I'll need to counter # that by increasing/decreasing the tenuring threshold to keep things in balance. ng_size_delta_pct = adj_ng_size / curr_ng_size # Changing the 'survivor_problem_pct' which is the watermark # for objects still alive. If it's over that amount, then the # tenuring threshold needs to be increased, if it's less, then # the age is good. HOWEVER, I use death rate, so[-1] a 85% death # rate is a 15% survivor rate. survivor_watermark = 100 - survivor_problem_pct # Get the max survivor age allowed per the jvm configuration max_survivor_age = gc_data[0].max_threshold # The survivor_info structure is the decrease in size for that # age going into the next, so if the max here is 6, the actual max # survivor size used is 7. longest_used_ratio = len(survivor_info) + 1 # Survivor percentage of surviving objects age_objects_still_alive = list() current_percentage = 100 for key in sorted(survivor_info): # [1] is the average, [2] is the max mean_death_rate_pct = survivor_info[key][1] current_percentage *= 1 - mean_death_rate_pct age_objects_still_alive.append(current_percentage) error_msg = None if max_survivor_age < 15: if longest_used_ratio == max_survivor_age: if age_objects_still_alive[-1] > ((100 - survivor_watermark) / 100.0): error_msg = "The survivor ratio of {0} is too small as {1:0.1f}% of the objects are still alive. Try increasing the MaxTenuringThreshold (Max: 15) parameter, and running this analysis again.".format( longest_used_ratio, age_objects_still_alive[-1]) elif not survivor_info: error_msg = "For the examined sample period, I could not retrieve any meaningful survivor statistics from the gc.log. This JVM is either sick, or the sample period was too short." elif not survivor_info: error_msg = "For the examined sample period, I could not retrieve any meaningful survivor statistics from the gc.log. This JVM is either sick, or the sample period was too short." elif not survivor_info: error_msg = "For the examined sample period, I could not retrieve any meaningful survivor statistics from the gc.log. This JVM is either sick, or the sample period was too short." if error_msg: raise ValueError(error_msg) ########################################################### # Don't confuse the 'min()' with the 'max' variable. I want # the first age where it's less than survivor_problem_pct try: max_tenuring_age = min([k for k, v in enumerate(age_objects_still_alive, 1) if v <= survivor_problem_pct]) except ValueError: max_tenuring_age = 0 if not max_tenuring_age: # Not sure if I like this algorithm, but it seems close enough below_threshold_ct = len([death_pct for death_pct in death_ages if death_pct <= Decimal(".04")]) below_threshold_pct = below_threshold_ct / float(len(death_ages)) # If more than 33% of the ages are at or below 4%, make a note of it. if below_threshold_pct > .33: # It's speculative that I should add to the heap any objects that aren't reaped # after cutting off the MaxTenuringThrehold, but since it's not getting reaped anyway, # it may not change anything, so not adjusting for the time being. # We're using all the available ages, but objects are still alive... if max_survivor_age == len(death_ages): display.render("\n".join(textwrap.wrap( "* Warning: It looks like your tenuring threshold is too high - {0:0.0%} of your ages are reaping at or below 4% of the objects. We could make it easier for the JVM if we reduce your MaxTenuringThreshold by {1} to {2} instead of {3}.".format( below_threshold_pct, below_threshold_ct, len(death_ages) - below_threshold_ct, max_survivor_age)))) else: display.render("\n".join(textwrap.wrap( "* Warning: It looks like your tenuring threshold is too high - {0:0.0%} of your ages are reaping at or below 4% of the objects. We could make it easier for the JVM if we reduce your MaxTenuringThreshold by {1} to {2} instead of {3}. BE CAREFUL - your max *used* age in the gc.logs of {4} is less than the configured max age of {3} - make sure that you used a large enough sample size, and let the JVM go through 3 FGCs (option: '-s 3') and is being checked during peak traffic.".format( below_threshold_pct, below_threshold_ct, len(death_ages) - below_threshold_ct, max_survivor_age, len(death_ages))))) max_tenuring_age = len(death_ages) - below_threshold_ct else: display.render("\n".join(textwrap.wrap( "* Warning: Your survivor age is too short, your last age of {0} has {1:0.2f}% of its objects still alive. Because of this, I'm unable to reliably determine how your objects are aging. Unset or increase the MaxTenuringThreshold (max: 15) to mitigate this problem.".format( len(age_objects_still_alive), age_objects_still_alive[-1])))) tenure_sizes = list() for gc_record in gc_data: try: tenure_sizes.append(gc_record.ages[max_tenuring_age - 1][2]) except IndexError: # I saw a gc record that doesn't have that age # level, so skip it. pass # It's recommended to have the tenuring size 2x the max tenure size, I then # add in the change in newgen (ng_size_delta) to offset the decrease/increase # in newgen as calculated in this parent's function. The 'ng_size_delta / 2' is # such that I increase the whole max_tenuring_size by ng_size_delta, but since # there are two survivor spaces, I need to split the ng_size_delta by 2 for each # survivor space max_tenuring_size = (max(tenure_sizes) * 2) + (ng_size_delta / 2) survivor_ratio = adj_ng_size / max_tenuring_size # Checking if survivor space is LARGER than the newgen size if survivor_ratio < 1: display.render("\n".join(textwrap.wrap( "* Warning: The calculated recommended survivor ratio of {0:0.2f} is less than 1. This is not possible, so I increased the size of newgen by {1}, and set the survivor ratio to 1. Try the tuning suggestions, and watch closely.\n".format( survivor_ratio, reduce_k((max_tenuring_size - adj_ng_size) / 1024)), display.textwrap_offset)) + "\n\n") # This is close, but still wrong. If I run into this condition, then I need to # also fix the newgen size b/c the tenured size is based off of the newgen # size before I knew there was an issue. I think this is probably close enough # for now. survivor_ratio = 1 adj_ng_size = max_tenuring_size else: adj_ng_size += max_tenuring_size # Now, change the max tenuring age/threshold max_tenuring_age *= (1 / ng_size_delta_pct) return adj_ng_size, survivor_ratio, max_tenuring_size, max_tenuring_age def _show_recommendations(death_ages=None, young_gc_times=None, full_gc_times=None, fgc_rate=None, ygc_rate=None, yg_alloc_rates=None, og_rates=None, jvm_mem_cfg=None, jmap_data=None, jstat_data=None, gc_data=None, cms_times=None, survivor_info=None, optimized_for_ygcs_rate=None, proc_details=None): """This is where any jvm tuning recommendations happens.""" ########################################################################### # The basis of these recommendations are as follows: # # 1) More frequent YGCs which take less time is almost always better # than less frequent YGCs, but taking longer; consistently slow is # better than periodically slower # 2) YGC times should have a low standard deviation(<= 5) # 3) YGC times should be low (<= 50ms, ideally) display.render("Recommendation Summary:\n") display.render("~~~~~~~~~~~~~~~~~~~~~~~\n") # This is how many ygcs/sec should be happening, if the mean ygc # times are higher than desired ygc_time_goal_ms = 50 ygc_stdev_goal = 5 # YGC mean ms percentile - lop off the worst offenders # I am changing it instead of a mean of the 99p, doing a # max of the 75p; may be better ygc_pctile = 75 # This is just for analysis purposes; need a decent sample set count ygc_count_goal = 10 fgc_count_goal = 3 # Marker for indicating if current config is good for # the Java G1 garbage collector ready_for_g1 = False survivor_problem_pct = 10 ygc_stdev = stdev(percentile(young_gc_times, ygc_pctile)) ygc_mean_ms = float(max(percentile(young_gc_times, ygc_pctile))) if jmap_data: curr_ng_size = jmap_data['NewSize'] curr_og_size = jmap_data['OldSize'] # Not using b/c this data is not in the GC logs (and # really doesn't need to be tuned... # if "PermSize" in jmap_data: # curr_pg_ms_size = jmap_data['PermSize'] # else: # curr_pg_ms_size = jmap_data['MetaspaceSize'] max_heap_size = jmap_data['MaxHeapSize'] else: curr_ng_size = jvm_mem_cfg["new_size"] curr_og_size = jvm_mem_cfg["og_size"] max_heap_size = jvm_mem_cfg["total_heap"] adj_ng_size = curr_ng_size ######################################################################################################### # This is an estimate. Because we use CMS for FGCs, it's an iterative process, and while the CMS reset is # happening, more objects are being tenured into OG. The best we can do (I think) is to find the minimum # size of OU, and go from there. This is why it's super important to have more than 2 FGCs to look at. # # This is tricky. I need to find the first record where the previous og size is bigger than # the current. This identifies when the first CMS runs, and from there, I can find the minimum normal_gc_data = [x for x in gc_data if x.og_used > 0] try: record_num = [record_num for record_num, first_gc, second_gc in zip(count(), normal_gc_data, normal_gc_data[1:]) if first_gc.og_used > second_gc.og_used][0] except IndexError: live_data_size_bytes = None else: live_data_size_bytes = _min(record.og_used for record in normal_gc_data[record_num:]) if proc_details and proc_details['proc_uptime_seconds'] < 300: display.render("\n".join(textwrap.wrap( "Warning: The process I'm doing the analysis on has been up for {0}, and may not be in a steady-state. It's best to let it be up for more than 5 minutes to get more realistic results.\n".format( reduce_seconds(proc_details['proc_uptime_seconds'])))) + "\n\n") ################################################# # Find the recommended NewGen size if len(young_gc_times) < ygc_count_goal: display.render("\n".join( textwrap.wrap("Warning: There were only {0} YGC entries to do the analysis on. It's better to have > {1} to get more realistic results.\n".format(len(young_gc_times), ygc_count_goal), display.textwrap_offset)) + "\n\n") if ygc_stdev > ygc_stdev_goal * 4: comment = "VERY inconsistent" elif ygc_stdev > ygc_stdev_goal * 2: comment = "pretty inconsistent" elif ygc_stdev > ygc_stdev_goal: comment = "somewhat consistent" ready_for_g1 = True else: comment = "very consistent" ready_for_g1 = True messages = list() # This logic block goes through different optimizaion scenarios that it # uses to find an optimal setting. # messages.append("- The mean YGC rate is {0:0.2f}/min, and the max {1} percentile YGC time is {2:0.0f}ms (stdev of {3:0.2f} which is {4}). It's best to have the mean YGC time be at or below {5}ms, and the YGC stdev at or below {6} if possible.".format(ygc_rate, ord_num(ygc_pctile), ygc_mean_ms, ygc_stdev, comment, ygc_time_goal_ms, ygc_stdev_goal)) # TODO: Too much repetition in this code block if (optimized_for_ygcs_rate > ygc_rate) and (ygc_stdev > ygc_stdev_goal or ygc_mean_ms > ygc_time_goal_ms): adj_ng_size = curr_ng_size * (ygc_rate / optimized_for_ygcs_rate) ###################################################################### # Figure out Tenuring Threshold & size for the survivor spaces, basing # it on the last age where below 10% still live try: new_adj_ng_size, survivor_ratio, max_tenuring_size, max_tenuring_age = _get_survivor_info(death_ages, survivor_info, gc_data, survivor_problem_pct, curr_ng_size, adj_ng_size) # Go ahead and set it regardless adj_ng_size = new_adj_ng_size except ValueError as msg: display.render("\n" + "\n".join(textwrap.wrap("* Error: {0}".format(msg), display.textwrap_offset)) + "\n\n") display.render("") return False messages.append( "- With a mean YGC time goal of {0:0.0f}ms, the suggested (optimized for a YGC rate of {1:0.2f}/min) size of NewGen (including adjusting for calculated max tenuring size) considering the above criteria should be {2:0.0f} MiB (currently: {3:0.0f} MiB).".format( ygc_time_goal_ms, optimized_for_ygcs_rate, float(adj_ng_size) / 1024.0 / 1024.0, float(curr_ng_size) / 1024.0 / 1024.0)) if new_adj_ng_size < curr_ng_size: messages.append( "- Because we're decreasing the size of NewGen, it can have an impact on system load due to increased memory management requirements. There's not an easy way to predict the impact to the application, so watch this after it's tuned.") elif ygc_mean_ms > ygc_time_goal_ms: adj_ng_size = curr_ng_size * (ygc_time_goal_ms / ygc_mean_ms) ###################################################################### # Figure out Tenuring Threshold & size for the survivor spaces, basing # it on the last age where below 10% still live try: new_adj_ng_size, survivor_ratio, max_tenuring_size, max_tenuring_age = _get_survivor_info(death_ages, survivor_info, gc_data, survivor_problem_pct, curr_ng_size, adj_ng_size) # Go ahead and set it regardless adj_ng_size = new_adj_ng_size except ValueError as msg: display.render("\n" + "\n".join(textwrap.wrap("* Error: {0}".format(msg), display.textwrap_offset)) + "\n\n") display.render("") return False messages.append( "- With a mean YGC time goal of {0:0.0f}ms, the suggested (optimized for YGC time) size of NewGen (including adjusting for calculated max tenuring size) considering the above criteria should be {1:0.0f} MiB (currently: {2:0.0f} MiB).".format( ygc_time_goal_ms, float(adj_ng_size) / 1024.0 / 1024.0, float(curr_ng_size) / 1024.0 / 1024.0)) if new_adj_ng_size < curr_ng_size: messages.append( "- Because we're decreasing the size of NewGen, it can have an impact on system load due to increased memory management requirements. There's not an easy way to predict the impact to the application, so watch this after it's tuned.") else: adj_ng_size = curr_ng_size ###################################################################### # Figure out Tenuring Threshold & size for the survivor spaces, basing # it on the last age where below 10% still alive try: new_adj_ng_size, survivor_ratio, max_tenuring_size, max_tenuring_age = _get_survivor_info(death_ages, survivor_info, gc_data, survivor_problem_pct, curr_ng_size, adj_ng_size) # Go ahead and set it regardless adj_ng_size = new_adj_ng_size except ValueError as msg: display.render("\n" + "\n".join(textwrap.wrap("* Error: {0}".format(msg), display.textwrap_offset)) + "\n\n") display.render("") return False messages.append("- The mean YGC rate is {0:0.2f}/min, and the mean YGC time is {1:0.0f}ms (stdev of {2:0.2f} which is {3}).".format(ygc_rate, ygc_mean_ms, ygc_stdev, comment)) for message in messages: display.render("\n".join(textwrap.wrap(message)) + "\n") ################################################# # Find the recommended PermGen size # # Removing this block b/c permgen/metaspace usage isn't in the gc.logs # ############################################ # Find out what the survivor ratio should be display.render("\n".join( textwrap.wrap("- Looking at the worst (max) survivor percentages for all the ages, it looks like a TenuringThreshold of {0:0.0f} is ideal.".format(max_tenuring_age), display.textwrap_offset)) + "\n") display.render("\n".join(textwrap.wrap( "- The survivor size should be 2x the max size for tenuring threshold of {0:0.0f} given above. Given this, the survivor size of {1:0.0f}M is ideal.".format(max_tenuring_age, max_tenuring_size / 1024 / 1024), display.textwrap_offset)) + "\n") display.render("\n".join(textwrap.wrap("- To ensure enough survivor space is allocated, a survivor ratio of {0:0.0f} should be used.".format(survivor_ratio), display.textwrap_offset)) + "\n") ################################################# # Find the recommended max heap size if len(full_gc_times) < fgc_count_goal: display.render("\n" + "\n".join(textwrap.wrap( "* Error: You really need to have at least {0} (preferably more) FGCs happen (I found {1}) before doing any OG size recommendation analysis. Stopping any further analysis.\n".format( fgc_count_goal, len(full_gc_times)), display.textwrap_offset)) + "\n\n") display.render("\n") return False recommended_max_heap_size = 3.5 * float(live_data_size_bytes) + float(max_tenuring_size + adj_ng_size) if max_heap_size != recommended_max_heap_size: display.render("\n".join(textwrap.wrap( "- It's recommended to have the max heap size 3-4x the size of the live data size (OldGen + PermGen), and adjusted to include the recommended survivor and newgen size. New recommended size is {0:0.0f}MiB (currently: {1:0.0f}MiB).".format( float(recommended_max_heap_size) / 1024.0 / 1024.0, float(max_heap_size) / 1024.0 / 1024.0), display.textwrap_offset)) + "\n") ################################################# # Figure out the occupancy fraction max_cms_time = float(_max(cms_times)) # Not doing the MAX, but a max of a percentile of the og rates- I think that's better # maybe doing a mean of a percentile? pct_number = 99 # KiB -> B max_og_rate = float(_max(percentile(og_rates, pct_number))) * 1024 oldgen_offset = curr_og_size - (float(_max(yg_alloc_rates) / 1024) * max_cms_time) - (max_cms_time * max_og_rate) occ_fraction = math.floor((float(oldgen_offset) / curr_og_size) * 100) display.render("\n".join(textwrap.wrap( "- With a max {0} percentile OG promotion rate of {1}/s, and the max CMS sweep time of {2}s, you should not have a occupancy fraction any higher than {3:0.0f}.".format(ord_num(pct_number), reduce_k(Decimal(str( max_og_rate / 1024.0))), max_cms_time, occ_fraction), display.textwrap_offset)) + "\n") # Java 7 G1 Stuff display.render("\n") display.render("Java G1 Settings:\n") display.render("~~~~~~~~~~~~~~~~~~~\n") if ready_for_g1: display.render("\n".join(textwrap.wrap( "- With a max ygc stdev of {0:0.2f}, and a {1} percentile ygc mean ms of {2:0.0f}ms, your config is good enough to move to the G1 garbage collector.".format(ygc_stdev, ord_num(pct_number), ygc_mean_ms), display.textwrap_offset)) + "\n") display.render("\n".join(textwrap.wrap("- Since G1 uses one space for everything, the consolidated heap size should be {0:0.0f}MiB.".format(float(recommended_max_heap_size) / 1024.0 / 1024.0), display.textwrap_offset)) + "\n") else: display.render("\n".join(textwrap.wrap( "- With a max ygc stdev of {0:0.2f}, and a {1} percentile ygc mean ms of {2:0.0f}ms, your config is probably not ready to move to the G1 garbage collector. Try tuning the JVM, and see if that improves things first.".format( ygc_stdev, ord_num(pct_number), ygc_mean_ms), display.textwrap_offset)) + "\n") display.render("\n") display.render("The JVM arguments from the above recommendations:\n") display.render("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n") display.render("\n".join(textwrap.wrap("-Xmx{0:0.0f}m -Xms{0:0.0f}m -Xmn{1:0.0f}m -XX:SurvivorRatio={2:0.0f} -XX:MaxTenuringThreshold={3:0.0f} -XX:CMSInitiatingOccupancyFraction={4:0.0f}".format(recommended_max_heap_size / 1024.0 / 1024.0, float(adj_ng_size) / 1024.0 / 1024.0, survivor_ratio, max_tenuring_age, occ_fraction), display.textwrap_offset)) + "\n") if ready_for_g1: display.render("\n") display.render("The JVM arguments for G1:\n") display.render("~~~~~~~~~~~~~~~~~~~~~~~~~\n") display.render("\n".join(textwrap.wrap("-XX:+UseG1GC -XX:MaxGCPauseMillis={0:0.0f} -Xms{1:0.0f}m -Xmx{1:0.0f}m ".format(ygc_mean_ms, recommended_max_heap_size / 1024.0 / 1024.0), display.textwrap_offset)) + "\n") def get_proc_info(pid=None): """Return a data structure with details of the given process id Keyword arguments: pid -- the process id of the process to be checked """ details = dict() try: cpu_ticks_per_sec = int(os.sysconf(os.sysconf_names['SC_CLK_TCK'])) bytes_per_page = resource.getpagesize() details['gc_file_rotation'] = False for line in liverun("readlink /proc/{0}/cwd".format(pid)): line = line.decode() details['proc_cwd'] = line.strip() with open("/proc/{0}/cmdline".format(pid), "r") as _file: for blob in _file: for line in blob.split("\0"): if "-Xloggc" in line: gc_path = line.split(":", 1)[1] if gc_path.startswith("/"): details['gc_log_path'] = gc_path else: details['gc_log_path'] = details['proc_cwd'] + "/" + gc_path elif "/bin/java" in line: details['java_path'] = os.path.dirname(line) elif "-XX:+UseGCLogFileRotation" in line: details['gc_file_rotation'] = True elif "-Xms" in line: details['min_heap_size'] = line.split("ms")[1] elif "-Xmx" in line: details['max_heap_size'] = line.split("mx")[1] elif "-XX:+PrintGCDateStamps" in line: details['print_gc_date_stamps'] = True elif "-XX:+PrintGCDetails" in line: details['print_gc_details'] = True elif "-XX:+PrintTenuringDistribution" in line: details['print_tenuring_distribution'] = True elif "-XX:SurvivorRatio=" in line: details['survivor_ratio'] = line.split("SurvivorRatio=")[1] elif "-XX:+UseConcMarkSweepGC" in line: details['use_cms'] = True elif "-XX:+UseParNewGC" in line: details['use_parnew'] = True if 'java_path' not in details: details['java_path'] = ''.join(liverun("which java")).strip().replace("/java", "") with open("/proc/uptime", "r") as _file: for line in _file: details['sys_uptime_seconds'] = Decimal(line.split()[0]) break with open("/proc/{0}/stat".format(pid), "r") as _file: for line in _file: field = line.split() utime_ticks = int(field[13]) stime_ticks = int(field[14]) num_threads = int(field[19]) uptime_ticks = int(field[21]) vsize_bytes = int(field[22]) rss_bytes = int(field[23]) * bytes_per_page details['proc_uptime_seconds'] = (details['sys_uptime_seconds']) - Decimal(str(uptime_ticks / float(cpu_ticks_per_sec))) details['proc_utime_seconds'] = utime_ticks / Decimal(cpu_ticks_per_sec) details['proc_stime_seconds'] = stime_ticks / Decimal(cpu_ticks_per_sec) details['proc_rss_bytes'] = rss_bytes details['proc_vsize_bytes'] = vsize_bytes details['num_threads'] = num_threads break for line in liverun("{0}/java -version".format(details['java_path'])): line = line.decode() if "java version" in line: line = line.strip().replace("\"", "") fields = line.split() details['java_build_version'] = fields[-1] match = re.match(r"^(\d+)\.(\d+)\.(\d+)", details['java_build_version']) details['java_ver_int'] = match.group(2) break except IOError: # The data structure will be empty, and I'll catch it when # I get a key error on accessing it pass return details def process_gclog(log_file=None, log_file_pos=0): """Pretty basic function that iterates through a gc log, and returns a data structure of the log data. Keyword arguments: log_file -- the gc log file to be read log_file_pos -- the offset of the log file from whence to start (as bytes) """ gc_log_queue = list() try: line_num = 0 print() print("* Reading gc.log file...", end=" ") current_size = os.stat(log_file).st_size if current_size < log_file_pos: print("log file was truncated/rotated; reading from the start", end=" ") log_file_pos = 0 start_time = datetime.datetime.now() with open(log_file, "r") as _file: _file.seek(log_file_pos) for line in _file: gc_log_queue.append(line) line_num += 1 elapsed_time = sec_diff(start_time, datetime.datetime.now()) print("done. Scanned {0} lines in {1:0.4f} seconds.".format(line_num, elapsed_time)) except IOError: # I don't want/need to check the exception. If it fails, it fails. pass else: gc_log_queue.append("END_OF_FILE") return gc_log_queue def _run_jmap(pid=None, procdetails=None): """Rung jmap for the given process id, and java path, returning a data structure with the information""" jmap_data = dict() java_path = procdetails['java_path'] try: for line in liverun("{0}/jmap -J-Xmx128M -heap {1}".format(java_path, pid)): line = line.decode() field = line.split() if "MinHeapFreeRatio" in line: jmap_data['MinHeapFreeRatio'] = int(field[2]) elif "MaxHeapFreeRatio" in line: jmap_data['MaxHeapFreeRatio'] = int(field[2]) elif "MaxHeapSize" in line: jmap_data['MaxHeapSize'] = int(field[2]) elif "NewSize" in line: jmap_data['NewSize'] = int(field[2]) elif "MaxNewSize" in line: jmap_data['MaxNewSize'] = int(field[2]) elif "OldSize" in line: # JMap seems to be scaled wrong. Comparing it to jstat, it shows that # it's off by about 1000 (1024). There's a bug in Java6 where this is in KB # not bytes like the others. Appears to be fixed in Java8 (maybe Java7, too) java_int = int(procdetails['java_ver_int']) if java_int < 8: jmap_data['OldSize'] = int(field[2]) * 1024 else: jmap_data['OldSize'] = int(field[2]) elif "NewRatio" in line: jmap_data['NewRatio'] = int(field[2]) elif "SurvivorRatio" in line: jmap_data['SurvivorRatio'] = int(field[2]) elif "PermSize" in line: jmap_data['PermSize'] = int(field[2]) elif "MaxPermSize" in line: jmap_data['MaxPermSize'] = int(field[2]) elif "MaxMetaspaceSize" in line: if "MB" in line: jmap_data['MaxMetaspaceSize'] = int(field[2]) * 1024 * 1024 else: jmap_data['MaxMetaspaceSize'] = int(field[2]) elif "MetaspaceSize" in line: jmap_data['MetaspaceSize'] = int(field[2]) except (IOError, KeyboardInterrupt): pass return jmap_data def run_jstat(pid=None, java_path=None, no_jstat_output=None, fgc_stop_count=None, max_count=None, ygc_stop_count=None): """Rung jstat, and outputs the data in a nice column and aligned layout. Keyword arguments: pid -- the process pid to run jstat against java_path -- the path to use to run jstat no_jstat_output -- true/false that tells this function to not output any data fgc_stop_count -- the integer value that tells this function to stop at this number of full (cms) gcs max_count -- the max number of lines the function should display ygc_stop_count -- the integer value that tells this function to stop at this number of young gcs """ global subproc jstat_data = dict() jstat_data['TIME_STAMP'] = list() # This is how the columns will be displayed in order. ordered_fields = ["EC", "EP", "EU", "S0C/S1C", "S0C", "S1C", "S0U", "S1U", "OC", "OP", "OU", "MC", "MU", "PC", "PU", "YGC", "YGCD", "FGC", "FGCD"] displayed_output = False combined_survivors = False field_map = dict() line_num = 0 field_widths = dict() first_fgc_ct = None prev_fgc_ct = None last_fgc_ct = None total_fgcs = None total_ygcs = None short_fields = True # Being able to use python3's print function that I could override would # work much better here; instead I have to do this ghetto way... display.render("#" * 5 + "\n") display.render("# Start Time: {0} GMT\n".format(datetime.datetime.now())) display.render("# Host: {0}\n".format(socket.getfqdn())) display.render("#" * 5 + "\n") if max_count > 0: cmd = "{0}/jstat -J-Xmx128M -gc {1} 1000 {2}".format(java_path, pid, max_count) else: cmd = "{0}/jstat -J-Xmx128M -gc {1} 1000".format(java_path, pid) try: for line in liverun(cmd): line = line.decode() timestamp = datetime.datetime.now() line = line.strip() ####################################################################### # Print the header, and first two lines should be printed. After that, # the logic block at the end (to see if there's been a fgc or not) # takes over, and prints the line conditionally with decoration field_num = 0 for field in line.split(): if line_num == 0: jstat_data[field] = list() field_map[field_num] = field else: field_name = field_map[field_num] if field_name in ['YGCT', 'FGCT', 'GCT']: jstat_data[field_name].append(Decimal(field)) else: # Minding sigfigs- no decimal needed for large numbers; that's # just silly jstat_data[field_name].append(Decimal("{0:0.0f}".format(Decimal(field)))) field_num += 1 if jstat_data['OC'] and jstat_data['OU']: # Better to handle the percentage-awareness here instead # of making a unique conditional later on if "OP" not in jstat_data: jstat_data['OP'] = list() jstat_data['OP'].append("{0:0.1%}".format(jstat_data['OU'][-1] / jstat_data['OC'][-1])) if jstat_data['EC'] and jstat_data['EU']: # Better to handle the percentage-awareness here instead # of making a unique conditional later on if "EP" not in jstat_data: jstat_data['EP'] = list() jstat_data['EP'].append("{0:0.1%}".format(jstat_data['EU'][-1] / jstat_data['EC'][-1])) if jstat_data['GCT']: if "YGCD" not in jstat_data: jstat_data['YGCD'] = list() if "FGCD" not in jstat_data: jstat_data['FGCD'] = list() # Young gc count delta try: if jstat_data['YGC'][-1] > jstat_data['YGC'][-2]: delta = "+" + str(jstat_data['YGC'][-1] - jstat_data['YGC'][-2]) else: delta = "-" except IndexError: delta = "-" jstat_data['YGCD'].append(delta) # full gc count delta try: if jstat_data['FGC'][-1] > jstat_data['FGC'][-2]: delta = "+" + str(jstat_data['FGC'][-1] - jstat_data['FGC'][-2]) else: delta = "-" except IndexError: delta = "-" jstat_data['FGCD'].append(delta) ################################## # I need at least two lines to get # historical data if line_num >= 2: # Keep a timestamp for each record (to get sub-second granularity) first_fgc_ct = jstat_data['FGC'][0] first_ygc_ct = jstat_data['YGC'][0] prev_fgc_ct = jstat_data['FGC'][-2] last_fgc_ct = jstat_data['FGC'][-1] last_ygc_ct = jstat_data['YGC'][-1] total_fgcs = last_fgc_ct - first_fgc_ct total_ygcs = last_ygc_ct - first_ygc_ct ############################################# # line 1 is actual data, 0 is just the header if line_num > 0: jstat_data['TIME_STAMP'].append(timestamp) #################################################### # See if I can combine the S0C/S1C fields (probably) if jstat_data['S0C'][-1] == jstat_data['S1C'][-1]: if "S0C/S1C" not in jstat_data: jstat_data['S0C/S1C'] = list() jstat_data['S0C/S1C'].append(jstat_data['S0C'][-1]) combined_survivors = True else: # This is redundant as I catch it earlier. Leaving it here for now. logger.error("Looks like you're not running with the CMS garbage collector. You can enable this option by setting your JVM arguments to use '-XX:+UseConcMarkSweepGC'.") sys.exit(1) if not field_widths: field_widths = _get_widths(jstat_data, short_fields) if not displayed_output: displayed_output = True ############################################# # Don't display any output, just continue to # the next iteration. Ick, double-negative.. if no_jstat_output: continue # Print the column header display.render(" ", keep_newline=False) for field in ordered_fields: if combined_survivors and field != "S0C" and field != "S1C": if field in field_widths: width = field_widths[field] display.render("{0:>{1}}".format(field, width + 1), keep_newline=False) display.render("\n") # Print a nice line spacer all even-like display.render(" ", keep_newline=False) for field in ordered_fields: if combined_survivors and field != "S0C" and field != "S1C": if field in field_widths: width = field_widths[field] display.render("{0:>{1}}".format("~" * width, width + 1), keep_newline=False) display.render("\n") # Print the first row of data that was cached so it can # be used to determine field widths display.render(" ", keep_newline=False) for field in ordered_fields: if field in field_widths: width = field_widths[field] # Get the last value if combined_survivors and field != "S0C" and field != "S1C": value = jstat_data[field][0] if short_fields and field not in ['EP', 'OP', 'YGC', 'YGCT', 'FGC', 'FGCT', 'GCT', 'FGCD', 'YGCD']: value = reduce_k(value, precision=1) display.render("{0:>{1}}".format(value, width + 1), keep_newline=False) display.render("\n") else: ################################# # Don't display any output, just # continue to the next iteration. if no_jstat_output: if last_fgc_ct > prev_fgc_ct: display.render("* ", keep_newline=False) else: display.render(" ", keep_newline=False) # Now print the actual numbers for field in ordered_fields: if field in field_widths: width = field_widths[field] # Get the last value if combined_survivors and field != "S0C" and field != "S1C": value = jstat_data[field][-1] if short_fields and field not in ['EP', 'OP', 'YGC', 'YGCT', 'FGC', 'FGCT', 'GCT', 'FGCD', 'YGCD']: value = reduce_k(value, precision=1) display.render("{0:>{1}}".format(value, width + 1), keep_newline=False) display.render("\n") else: if last_fgc_ct > prev_fgc_ct: display.render("* ", keep_newline=False) else: display.render(" ", keep_newline=False) # Now print the actual numbers for field in ordered_fields: if field in field_widths: width = field_widths[field] # Get the last value if combined_survivors and field != "S0C" and field != "S1C": value = jstat_data[field][-1] if short_fields and field not in ['EP', 'OP', 'YGC', 'YGCT', 'FGC', 'FGCT', 'GCT', 'FGCD', 'YGCD']: value = reduce_k(value, precision=1) display.render("{0:>{1}}".format(value, width + 1), keep_newline=False) display.render("\n") if 0 < fgc_stop_count <= total_fgcs: break if 0 < ygc_stop_count <= total_ygcs: break line_num += 1 except (IOError, KeyboardInterrupt): # This triggers if I exit the 'liverun' pass finally: if subproc and subproc.poll() is None: # The process hasn't terminated subproc.terminate() return jstat_data def _get_widths(jstat_data=None, short_fields=False): """Function that returns the recommended field widths of the jstat output""" widths = dict() for field in jstat_data: max_width = max(list(map(len, list(map(str, jstat_data[field]))))) field_width = len(field) if field_width > max_width: widths[field] = field_width else: widths[field] = max_width ################################################################## # Special handling for survivor spaces (S0C, S1C, S0U, S1U) should # all be the same width, and b/c S{01}U alternate, it's better to # set the width from S{01}C if short_fields: # The '5' accounts for 'x.xxN' (3.23K/M/G), etc. survivor_max = 6 newgen_max = 6 oldgen_max = 6 else: survivor_max = max(widths['S0C'], widths['S1C'], widths['S0U'], widths['S1U']) newgen_max = max(widths['EC'], widths['EU']) oldgen_max = max(widths['OC'], widths['OU']) widths['OC'] = oldgen_max widths['OU'] = oldgen_max widths['EC'] = newgen_max widths['EU'] = newgen_max widths['S0C'] = survivor_max widths['S1C'] = survivor_max widths['S0U'] = survivor_max widths['S1U'] = survivor_max widths['EP'] = 6 widths['OP'] = 6 return widths def _at_exit(raw_gc_log=None, jmap_data=None, jstat_data=None, proc_details=None, optimized_for_ygcs_rate=None): """The exit function that is called when the user presses ctrl-c, or when it exits after X number of jstat iterations. It calls various functions to display useful information to the end-user.""" gc_data = list() in_stanza = False date_time = None entry = list() # I don't know if I like this, but I wouldn't get to # this point unless I asked for GC data from stdin... if not raw_gc_log: raw_gc_log = sys.stdin for line in raw_gc_log: ############################################################################# # Since I'm using the timestamp as the record stanza delimiter, I may as well # convert it to a datetime object here instead of doing it later. match = re.match(r"^(\d+)-(\d+)-(\d+)T(\d+):(\d+):([\d\.]+)[+-]\d+: ([\d\.]+):", line) if match: in_stanza = True # If I'm at the start of a new block, save the previous block if date_time and entry: gc_record = GCRecord((date_time, entry)) if gc_data: prev_gc_record = gc_data[-1] if gc_record.jvm_running_time and prev_gc_record.jvm_running_time > gc_record.jvm_running_time: logger.warning("The JVM restarted at {0}. Re-initing the internal datastructures.".format(gc_record.record_timestamp)) gc_data = list() if gc_record.valid_record: gc_data.append(gc_record) entry = list() year = int(match.group(1)) month = int(match.group(2)) day = int(match.group(3)) hour = int(match.group(4)) minute = int(match.group(5)) second = Decimal(match.group(6)) # up_time = Decimal(match.group(7)) date_time = datetime.datetime.strptime("{0}-{1}-{2} {3}:{4}:{5}".format(year, month, day, hour, minute, second), "%Y-%m-%d %H:%M:%S.%f") if in_stanza: entry.append(line) _run_analysis(gc_data, jmap_data, jstat_data, proc_details, optimized_for_ygcs_rate) def get_rotated_log_file(gc_log_file): """Function will scan existing log files to determine latest rotated log, if none found will return non rotated file name. """ log_number = 0 while os.path.isfile("{0}.{1}".format(gc_log_file, log_number)): log_number += 1 if log_number: gc_log_file = "{0}.{1}".format(gc_log_file, (log_number - 1)) else: logger.debug("\n".join( textwrap.wrap( "Was not able to find a rotated GC log for this process, defaulting to gc log from process.", display.textwrap_offset))) return gc_log_file def get_jmap_data(pid=None, procdetails=None): """Function that runs jmap, only needed b/c jmap may not start, and this retries on failure.""" jmap_data = None for seconds in [x * 2 for x in range(1, 8)]: jmap_data = _run_jmap(pid, procdetails) if "NewSize" in jmap_data: break else: logger.warning("Couldn't connect to jvm via jmap to get valid data. Sleeping {0:0.0f} seconds, and trying again.".format(seconds)) time.sleep(seconds) return jmap_data ################################################################ # Main user = os.environ.get("SUDO_USER", None) if not user: user = getpass.getuser() subproc = None display = Display() if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 31, 9800, 220, 220, 220, 220, 220, 7651, 8266, 268, 1279, 1765, 724, 268, 31, 25614, 259, 13, 785, 29, 198, 31, 31438, 474, 83, 1726, 13, 9078, 198, 31, 9641, 220, 220, 220, 220, 604, 13, 15, 13, 16, 198, 31, 397, 8709, 220, 220, 220, 770, 2891, 481, 1577, 6496, 1321, 546, 262, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 449, 15996, 287, 1103, 12, 2435, 13, 632, 11073, 4465, 1321, 326, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2252, 3342, 262, 2836, 287, 28769, 290, 23989, 13, 198, 31, 43085, 220, 220, 220, 220, 15069, 1853, 27133, 11421, 13, 1439, 2489, 10395, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 262, 13789, 13, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2035, 4911, 393, 17142, 13, 198, 37811, 198, 11748, 379, 37023, 198, 11748, 4818, 8079, 198, 11748, 651, 6603, 198, 11748, 36693, 198, 11748, 18931, 198, 11748, 10688, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 8271, 198, 11748, 427, 2588, 198, 11748, 17802, 198, 11748, 850, 14681, 355, 599, 198, 11748, 25064, 198, 11748, 2420, 37150, 198, 11748, 640, 198, 6738, 32465, 1330, 4280, 4402, 198, 6738, 340, 861, 10141, 1330, 19974, 62, 6511, 395, 11, 954, 198, 11748, 1822, 29572, 198, 11748, 18540, 305, 919, 278, 355, 29034, 198, 198, 28311, 25, 198, 220, 220, 220, 36693, 13, 2617, 17946, 1000, 7, 17946, 1000, 13, 5639, 62, 7036, 11, 705, 268, 62, 2937, 11537, 198, 16341, 36693, 13, 12331, 25, 198, 220, 220, 220, 1303, 9993, 41002, 23, 15304, 878, 9894, 198, 220, 220, 220, 36693, 13, 2617, 17946, 1000, 7, 17946, 1000, 13, 5639, 62, 7036, 11, 705, 268, 62, 2937, 13, 40477, 23, 11537, 198, 198, 30281, 796, 18931, 13, 12124, 25060, 3419, 198, 30281, 13, 2617, 8479, 1436, 7, 6404, 2667, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 25, 36521, 7, 3672, 8, 82, 1, 357, 1370, 25, 4064, 7, 2815, 23397, 8, 67, 8, 532, 4064, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 6, 4008, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 6404, 1362, 13, 2860, 25060, 7, 30281, 8, 198, 198, 2, 1114, 502, 284, 779, 287, 9485, 1925, 1670, 284, 1100, 5474, 38156, 3696, 198, 30531, 796, 10352, 628, 198, 198, 4871, 20145, 23739, 7, 15252, 2599, 198, 220, 220, 220, 37227, 10267, 6770, 329, 257, 2060, 308, 66, 1700, 526, 15931, 628, 220, 220, 220, 4808, 9641, 796, 366, 16, 13, 15, 1, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 20842, 503, 262, 308, 66, 1700, 523, 326, 340, 3073, 355, 996, 340, 1625, 3892, 422, 198, 220, 220, 220, 220, 220, 220, 220, 262, 17259, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 33295, 7203, 90, 15, 92, 43160, 25, 1391, 16, 92, 20145, 5994, 25, 1391, 17, 92, 1911, 18982, 7, 944, 13, 22105, 62, 16514, 27823, 11, 2116, 13, 73, 14761, 62, 20270, 62, 2435, 11, 2116, 13, 36484, 62, 4906, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 33295, 7203, 5960, 1202, 23740, 12849, 25, 1391, 15, 5512, 4424, 81, 536, 10126, 25, 1391, 16, 92, 357, 11518, 25, 1391, 17, 30072, 1911, 18982, 7, 944, 13, 8906, 1202, 62, 48846, 452, 273, 62, 7857, 11, 2116, 13, 22019, 81, 62, 400, 10126, 11, 2116, 13, 9806, 62, 400, 10126, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2479, 287, 2116, 13, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2479, 58, 16, 60, 1875, 532, 16, 393, 2479, 58, 17, 60, 1875, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 33295, 7203, 12, 7129, 1391, 15, 38362, 1391, 16, 25, 29, 940, 92, 9881, 11, 1391, 17, 25, 29, 940, 92, 2472, 1911, 18982, 7, 496, 58, 15, 4357, 2479, 58, 16, 4357, 2479, 58, 17, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 33295, 7203, 56, 38, 7413, 20145, 25, 1391, 15, 92, 42, 11, 575, 38, 2293, 20145, 25, 1391, 16, 92, 42, 357, 14957, 25, 1391, 17, 92, 42, 828, 1391, 18, 92, 792, 82, 1911, 18982, 7, 944, 13, 35465, 62, 7857, 62, 19052, 62, 36484, 11, 2116, 13, 35465, 62, 7857, 62, 8499, 62, 36484, 11, 2116, 13, 35465, 62, 7857, 62, 23350, 11, 2116, 13, 35465, 62, 36484, 62, 2435, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 33295, 7203, 14957, 679, 499, 7413, 20145, 25, 1391, 15, 92, 42, 11, 7472, 679, 499, 2293, 20145, 25, 1391, 16, 92, 42, 357, 14957, 25, 1391, 17, 92, 42, 828, 1391, 18, 92, 792, 82, 1911, 18982, 7, 944, 13, 23350, 62, 258, 499, 62, 19052, 62, 36484, 11, 2116, 13, 23350, 62, 258, 499, 62, 8499, 62, 36484, 11, 2116, 13, 23350, 62, 258, 499, 11, 2116, 13, 23350, 62, 36484, 62, 2435, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 37082, 77, 1911, 22179, 7, 22915, 8, 628, 220, 220, 220, 825, 4808, 29572, 62, 22105, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 23607, 832, 1700, 62, 18747, 284, 900, 262, 1398, 9633, 326, 787, 510, 262, 1700, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22105, 62, 16514, 27823, 11, 1700, 62, 18747, 796, 2116, 13, 1831, 62, 36484, 62, 22105, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 14468, 7804, 4242, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 31793, 3563, 54, 357, 13295, 20145, 11, 10252, 11, 3503, 15729, 9425, 11, 314, 714, 12082, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 777, 1115, 11, 475, 428, 318, 922, 1576, 329, 783, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7203, 34, 5653, 20768, 2940, 1, 287, 1627, 329, 1627, 287, 1700, 62, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 12947, 7, 81, 1600, 29565, 59, 67, 59, 8183, 28988, 792, 82, 59, 60, 33172, 1700, 62, 18747, 58, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36484, 62, 4906, 796, 366, 34, 5653, 12, 2257, 54, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 301, 86, 62, 36484, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12102, 62, 22105, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 86, 62, 2435, 15853, 12178, 7, 15699, 13, 8094, 7, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7203, 34, 5653, 8125, 3982, 668, 1, 287, 1627, 329, 1627, 287, 1700, 62, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 12947, 7, 81, 1600, 29565, 59, 67, 59, 8183, 28988, 792, 82, 59, 60, 33172, 1700, 62, 18747, 58, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36484, 62, 4906, 796, 366, 34, 5653, 12, 2257, 54, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 301, 86, 62, 36484, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12102, 62, 22105, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 86, 62, 2435, 15853, 12178, 7, 15699, 13, 8094, 7, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7203, 13295, 20145, 1, 287, 1627, 329, 1627, 287, 1700, 62, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 12947, 7, 81, 1600, 29565, 59, 67, 59, 8183, 28988, 792, 82, 59, 60, 33172, 1700, 62, 18747, 58, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36484, 62, 4906, 796, 366, 37, 9994, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 301, 86, 62, 36484, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12102, 62, 22105, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 86, 62, 2435, 15853, 12178, 7, 15699, 13, 8094, 7, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 271, 62, 301, 86, 62, 36484, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 1700, 62, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 34, 5653, 12, 1102, 14421, 12, 46280, 538, 25, 366, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 15699, 7, 81, 1, 61, 59, 67, 10, 12, 59, 67, 10, 12, 59, 67, 10, 51, 59, 67, 10, 7479, 67, 10, 33250, 59, 67, 59, 8183, 10, 58, 10, 12, 60, 59, 67, 10, 25, 29565, 59, 67, 59, 8183, 10, 2599, 3467, 58, 34, 5653, 12, 1102, 14421, 12, 46280, 538, 25, 685, 59, 67, 59, 8183, 10, 14, 26933, 59, 67, 59, 8183, 28988, 792, 82, 1600, 1627, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 46406, 62, 36484, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12102, 62, 22105, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36484, 62, 4906, 796, 366, 34, 5653, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 73, 14761, 62, 20270, 62, 2435, 796, 12178, 7, 15699, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46406, 62, 46280, 538, 62, 2435, 796, 12178, 7, 15699, 13, 8094, 7, 17, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 944, 13, 73, 14761, 62, 20270, 62, 2435, 393, 2116, 13, 36484, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 15699, 7, 81, 1, 61, 59, 67, 10, 12, 59, 67, 10, 12, 59, 67, 10, 51, 59, 67, 10, 7479, 67, 10, 33250, 59, 67, 59, 8183, 10, 58, 10, 12, 60, 59, 67, 10, 25, 29565, 59, 67, 59, 8183, 10, 2599, 764, 9, 59, 58, 38016, 50, 28988, 1600, 1627, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 73, 14761, 62, 20270, 62, 2435, 796, 12178, 7, 15699, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36484, 62, 4906, 796, 2872, 13, 8094, 7, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 944, 13, 8906, 1202, 62, 48846, 452, 273, 62, 7857, 393, 2116, 13, 22019, 81, 62, 400, 10126, 393, 2116, 13, 9806, 62, 400, 10126, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 15699, 7, 81, 1, 61, 5960, 1202, 23446, 2546, 357, 59, 67, 28988, 9881, 11, 649, 11387, 357, 59, 67, 28988, 16792, 9806, 357, 59, 67, 10, 19415, 42501, 1627, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12102, 62, 22105, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8906, 1202, 62, 48846, 452, 273, 62, 7857, 796, 493, 7, 15699, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22019, 81, 62, 400, 10126, 796, 493, 7, 15699, 13, 8094, 7, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 400, 10126, 796, 493, 7, 15699, 13, 8094, 7, 18, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3423, 314, 900, 262, 23446, 2546, 27091, 11, 329, 597, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 743, 307, 4814, 355, 314, 765, 477, 262, 9337, 772, 611, 484, 3588, 470, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 852, 973, 329, 7208, 1022, 20145, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2479, 287, 2837, 7, 16, 11, 2116, 13, 9806, 62, 400, 10126, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1095, 13, 33295, 19510, 496, 11, 532, 16, 11, 532, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 7804, 4242, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3661, 4501, 4406, 618, 262, 449, 15996, 468, 587, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 1342, 621, 5867, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 73, 14761, 62, 20270, 62, 2435, 1279, 5867, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12102, 62, 22105, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14468, 7804, 4242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 31793, 23446, 9337, 11, 3503, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 15699, 7, 81, 1, 61, 12, 2479, 59, 82, 33747, 59, 67, 10, 2599, 59, 82, 33747, 59, 67, 28988, 9881, 11, 59, 82, 33747, 59, 67, 28988, 2472, 1600, 1627, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 14468, 7804, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 981, 9156, 2512, 17591, 597, 9337, 326, 547, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3938, 302, 5813, 11, 290, 23816, 606, 351, 1976, 27498, 13, 770, 318, 1593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 355, 262, 23696, 2476, 284, 760, 428, 284, 5004, 23446, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1918, 3965, 14, 10366, 4267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2479, 796, 493, 7, 15699, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 7857, 796, 493, 7, 15699, 13, 8094, 7, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 7857, 796, 493, 7, 15699, 13, 8094, 7, 18, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1095, 58, 496, 532, 352, 60, 796, 357, 496, 11, 1090, 81, 62, 7857, 11, 3509, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14468, 7804, 4242, 2235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 31793, 308, 66, 302, 439, 5040, 9756, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 15699, 7, 81, 1, 61, 25, 357, 59, 67, 10, 19415, 86, 3784, 38016, 67, 10, 19415, 86, 59, 19510, 59, 67, 10, 19415, 86, 59, 828, 29565, 59, 67, 59, 8183, 28988, 792, 82, 59, 60, 357, 59, 67, 10, 19415, 86, 3784, 38016, 67, 10, 19415, 86, 59, 19510, 59, 67, 10, 19415, 86, 59, 828, 29565, 59, 67, 59, 8183, 28988, 792, 82, 59, 60, 1600, 1627, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35465, 62, 7857, 62, 19052, 62, 36484, 796, 493, 7, 15699, 13, 8094, 7, 16, 4008, 1635, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35465, 62, 7857, 62, 8499, 62, 36484, 796, 493, 7, 15699, 13, 8094, 7, 17, 4008, 1635, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35465, 62, 7857, 62, 23350, 796, 493, 7, 15699, 13, 8094, 7, 18, 4008, 1635, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35465, 62, 36484, 62, 2435, 796, 4280, 4402, 7, 15699, 13, 8094, 7, 19, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 258, 499, 62, 19052, 62, 36484, 796, 493, 7, 15699, 13, 8094, 7, 20, 4008, 1635, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 258, 499, 62, 8499, 62, 36484, 796, 493, 7, 15699, 13, 8094, 7, 21, 4008, 1635, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 258, 499, 796, 493, 7, 15699, 13, 8094, 7, 22, 4008, 1635, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 36484, 62, 2435, 796, 4280, 4402, 7, 15699, 13, 8094, 7, 23, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 519, 62, 1484, 796, 2116, 13, 23350, 62, 258, 499, 62, 8499, 62, 36484, 532, 2116, 13, 35465, 62, 7857, 62, 8499, 62, 36484, 628, 198, 4299, 14383, 403, 7, 28758, 28, 14202, 2599, 198, 220, 220, 220, 37227, 10987, 23991, 11, 290, 1441, 281, 41313, 286, 531, 23991, 13, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 23991, 1377, 262, 3141, 284, 1057, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 850, 36942, 628, 220, 220, 220, 17365, 796, 8633, 7, 418, 13, 268, 2268, 8, 628, 220, 220, 220, 1303, 14336, 3191, 14367, 448, 290, 336, 1082, 81, 13, 314, 460, 470, 1064, 257, 835, 284, 1394, 1111, 4553, 198, 220, 220, 220, 1303, 981, 1972, 262, 1366, 705, 12583, 4458, 340, 861, 10141, 13, 528, 541, 62, 6511, 395, 3947, 588, 340, 1549, 198, 220, 220, 220, 1303, 2048, 466, 340, 11, 475, 340, 50177, 262, 2482, 878, 7216, 340, 503, 986, 198, 220, 220, 220, 850, 36942, 796, 599, 13, 47, 9654, 7, 1477, 2588, 13, 35312, 7, 28758, 828, 14367, 448, 28, 2777, 13, 47, 4061, 36, 11, 336, 1082, 81, 28, 2777, 13, 36886, 11, 17365, 28, 24330, 8, 628, 220, 220, 220, 1441, 11629, 7, 7266, 36942, 13, 19282, 448, 13, 961, 1370, 11, 275, 7061, 8, 628, 198, 4299, 4646, 62, 43012, 7, 2363, 82, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 257, 25388, 10552, 286, 640, 287, 4201, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 792, 82, 1377, 257, 12178, 14, 600, 10200, 262, 4201, 284, 307, 705, 5589, 2790, 6, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 383, 28376, 220, 611, 6299, 1394, 340, 422, 852, 1165, 890, 11, 198, 220, 220, 220, 1303, 416, 2376, 2105, 572, 262, 1729, 2383, 3815, 198, 220, 220, 220, 1005, 2100, 796, 13538, 628, 220, 220, 220, 792, 82, 796, 493, 7, 22468, 7, 2363, 82, 4008, 628, 220, 220, 220, 23550, 11, 792, 82, 796, 2659, 4666, 7, 2363, 82, 11, 3126, 8, 198, 220, 220, 220, 2250, 11, 23550, 796, 2659, 4666, 7, 42951, 11, 3126, 8, 198, 220, 220, 220, 1528, 11, 2250, 796, 2659, 4666, 7, 24425, 11, 1987, 8, 628, 220, 220, 220, 792, 82, 796, 493, 7203, 90, 15, 25, 15, 13, 15, 69, 92, 1911, 18982, 7, 2363, 82, 4008, 628, 220, 220, 220, 611, 1528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 2100, 15853, 45144, 15, 92, 67, 1911, 18982, 7, 12545, 8, 628, 220, 220, 220, 611, 2250, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 2100, 15853, 45144, 15, 92, 71, 1911, 18982, 7, 24425, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1528, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 2100, 628, 220, 220, 220, 611, 23550, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 2100, 15853, 45144, 15, 92, 76, 1911, 18982, 7, 42951, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2250, 393, 1528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 2100, 628, 220, 220, 220, 611, 792, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 2100, 15853, 45144, 15, 25, 92, 82, 1911, 18982, 7, 2363, 82, 8, 628, 220, 220, 220, 1441, 1005, 2100, 628, 198, 4299, 792, 62, 26069, 7, 11085, 62, 2435, 28, 14202, 11, 1218, 62, 2435, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 262, 1271, 286, 4201, 1022, 734, 4818, 8079, 5563, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 717, 62, 2435, 220, 1377, 383, 357, 48126, 8, 4697, 640, 286, 262, 734, 198, 220, 220, 220, 1218, 62, 2435, 1377, 383, 357, 48126, 8, 15064, 640, 286, 262, 734, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 640, 62, 67, 12514, 796, 1218, 62, 2435, 532, 717, 62, 2435, 198, 220, 220, 220, 1441, 640, 62, 67, 12514, 13, 12545, 1635, 807, 2414, 405, 1343, 640, 62, 67, 12514, 13, 43012, 1343, 4280, 4402, 7, 2536, 7, 2435, 62, 67, 12514, 13, 24055, 43012, 1220, 12178, 7, 16, 10535, 22305, 628, 198, 4299, 4808, 1084, 7, 27160, 28, 14202, 2599, 198, 220, 220, 220, 37227, 32, 29908, 1088, 262, 949, 3419, 2163, 523, 326, 340, 857, 407, 4049, 319, 281, 6565, 1351, 37811, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 949, 7, 27160, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 628, 198, 4299, 4808, 9806, 7, 27160, 28, 14202, 2599, 198, 220, 220, 220, 37227, 32, 29908, 1088, 262, 3509, 3419, 2163, 523, 326, 340, 857, 407, 4049, 319, 281, 6565, 1351, 37811, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3509, 7, 27160, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 628, 198, 4299, 14288, 7, 27160, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 262, 14288, 286, 705, 27160, 6, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 3815, 1377, 262, 1351, 286, 3146, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10524, 796, 23243, 7, 27160, 8, 198, 220, 220, 220, 4129, 796, 18896, 7, 82, 2096, 8, 198, 220, 220, 220, 1255, 796, 6045, 628, 220, 220, 220, 611, 407, 3815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5298, 11052, 12331, 11, 366, 40, 460, 470, 1064, 262, 14288, 286, 281, 6565, 1351, 526, 198, 220, 220, 220, 1288, 361, 407, 4129, 4064, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 357, 82, 2096, 58, 7, 13664, 3373, 362, 15437, 1343, 10524, 58, 7, 13664, 3373, 362, 8, 532, 352, 12962, 1220, 362, 13, 15, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 10524, 58, 13664, 3373, 362, 60, 628, 220, 220, 220, 1441, 1255, 628, 198, 4299, 1612, 7, 27160, 28, 14202, 11, 4808, 13664, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 262, 1612, 286, 705, 27160, 6, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 3815, 1377, 262, 1351, 286, 3146, 198, 220, 220, 220, 4808, 13664, 1377, 4632, 407, 24284, 329, 886, 12, 18417, 11, 2622, 416, 262, 336, 7959, 2163, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1255, 796, 6045, 628, 220, 220, 220, 611, 407, 4808, 13664, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 13664, 796, 18896, 7, 27160, 8, 628, 220, 220, 220, 611, 4808, 13664, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 4280, 4402, 7, 2536, 7, 16345, 7, 27160, 22305, 1220, 4808, 13664, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 657, 628, 220, 220, 220, 1441, 1255, 628, 198, 4299, 336, 7959, 7, 27160, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 262, 3210, 28833, 286, 3815, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 3815, 1377, 383, 13455, 3706, 4578, 326, 4909, 262, 1351, 286, 3146, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3815, 62, 32604, 796, 1612, 7, 27160, 8, 198, 220, 220, 220, 24198, 796, 685, 11018, 13, 79, 322, 7, 10707, 4402, 7, 2536, 7, 87, 4008, 532, 3815, 62, 32604, 11, 362, 8, 329, 2124, 287, 3815, 60, 628, 220, 220, 220, 1441, 10688, 13, 31166, 17034, 7, 32604, 7, 25641, 590, 11, 18896, 7, 25641, 590, 8, 532, 352, 4008, 628, 198, 4299, 37894, 7, 27160, 28, 14202, 11, 279, 310, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 262, 37894, 286, 257, 1813, 3815, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 3815, 1377, 383, 1351, 286, 3146, 284, 307, 15475, 198, 220, 220, 220, 279, 310, 1377, 383, 37894, 357, 5171, 307, 257, 12178, 8, 284, 307, 973, 357, 3064, 6624, 1802, 7441, 407, 352, 796, 1802, 7441, 3503, 2014, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1660, 4102, 62, 9630, 796, 493, 7, 744, 19510, 22468, 7, 79, 310, 8, 1220, 1802, 8, 1635, 18896, 7, 27160, 8, 1343, 764, 20, 4008, 198, 220, 220, 220, 1660, 4102, 796, 23243, 7, 27160, 38381, 7050, 4102, 62, 9630, 532, 352, 60, 628, 220, 220, 220, 1441, 685, 30854, 329, 5002, 287, 3815, 611, 5002, 19841, 1660, 4102, 60, 628, 198, 198, 4299, 4646, 62, 74, 7, 7857, 28, 14202, 11, 15440, 28, 17, 11, 1790, 62, 687, 28, 17821, 11, 4808, 5372, 62, 13829, 28, 15, 2599, 198, 220, 220, 220, 37227, 13615, 257, 25388, 10552, 286, 257, 1813, 1271, 286, 9881, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 2546, 1377, 262, 2546, 287, 9881, 198, 220, 220, 220, 15440, 1377, 644, 15440, 815, 307, 973, 357, 23625, 284, 262, 826, 286, 262, 32465, 8, 198, 220, 220, 220, 1790, 62, 687, 1377, 357, 7942, 14, 9562, 737, 5765, 705, 42, 6, 2427, 286, 705, 42, 72, 33, 3256, 3503, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 318, 39098, 7, 7857, 11, 4280, 4402, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 4280, 4402, 7, 2536, 7, 7857, 4008, 628, 220, 220, 220, 1303, 921, 760, 492, 655, 287, 1339, 356, 1683, 651, 284, 257, 331, 1252, 37828, 198, 220, 220, 220, 611, 1790, 62, 687, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37941, 66, 62, 9888, 796, 37250, 42, 3256, 705, 44, 3256, 705, 38, 3256, 705, 51, 3256, 705, 47, 3256, 705, 36, 3256, 705, 57, 3256, 705, 56, 20520, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37941, 66, 62, 9888, 796, 37250, 42, 72, 33, 3256, 705, 41541, 33, 3256, 705, 33704, 33, 3256, 705, 40533, 33, 3256, 705, 38729, 33, 3256, 705, 36, 72, 33, 3256, 705, 57, 72, 33, 3256, 705, 56, 72, 33, 20520, 628, 220, 220, 220, 611, 407, 318, 39098, 7, 7857, 11, 4280, 4402, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 4280, 4402, 7, 2536, 7, 7857, 4008, 628, 220, 220, 220, 611, 2352, 7, 7857, 8, 18189, 28119, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 5372, 62, 13829, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4646, 62, 74, 7, 7857, 1220, 4280, 4402, 7203, 35500, 13, 15, 12340, 15440, 28, 3866, 16005, 11, 1790, 62, 687, 28, 19509, 62, 687, 11, 4808, 5372, 62, 13829, 28, 62, 5372, 62, 13829, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4280, 4402, 7203, 90, 15, 25, 13, 90, 16, 92, 69, 92, 1911, 18982, 7, 7857, 11, 15440, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4280, 4402, 7, 2536, 7, 600, 7, 8367, 22305, 6624, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 493, 7, 8367, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1790, 62, 687, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 45144, 15, 18477, 16, 92, 1911, 18982, 7, 8367, 11, 37941, 66, 62, 9888, 29795, 5372, 62, 13829, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 45144, 15, 92, 1391, 16, 92, 1911, 18982, 7, 8367, 11, 37941, 66, 62, 9888, 29795, 5372, 62, 13829, 12962, 628, 198, 4299, 4808, 5143, 62, 20930, 7, 36484, 62, 7890, 28, 14202, 11, 474, 8899, 62, 7890, 28, 14202, 11, 474, 14269, 62, 7890, 28, 14202, 11, 13834, 62, 36604, 28, 14202, 11, 23392, 62, 1640, 62, 35641, 6359, 62, 4873, 28, 14202, 2599, 198, 220, 220, 220, 37227, 464, 6174, 12, 392, 12, 13059, 15048, 286, 428, 2891, 13, 770, 2753, 287, 6409, 1366, 8573, 11, 198, 220, 220, 220, 290, 20842, 503, 257, 989, 286, 262, 3781, 286, 606, 526, 15931, 628, 220, 220, 220, 1303, 5178, 25283, 284, 651, 262, 449, 15996, 8398, 655, 422, 449, 13912, 25, 198, 220, 220, 220, 1303, 220, 27156, 27156, 27156, 8728, 4907, 198, 220, 220, 220, 1303, 1225, 268, 62, 7857, 6624, 357, 3605, 7857, 1635, 23446, 62, 10366, 952, 20679, 7, 17, 1343, 23446, 62, 10366, 952, 8, 198, 220, 220, 220, 1303, 23446, 62, 7857, 6624, 1225, 268, 62, 7857, 1635, 357, 16, 14, 48846, 452, 273, 62, 10366, 952, 8, 198, 220, 220, 220, 1303, 267, 70, 62, 7857, 6624, 3509, 62, 258, 499, 62, 7857, 532, 1225, 268, 62, 7857, 532, 23446, 62, 7857, 198, 220, 220, 220, 1303, 267, 70, 62, 1484, 6624, 24575, 62, 1484, 532, 1225, 268, 62, 1484, 628, 220, 220, 220, 611, 407, 308, 66, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 40, 460, 470, 466, 597, 3781, 329, 428, 6291, 2278, 780, 612, 2492, 470, 1576, 1366, 287, 262, 20145, 2604, 13, 1475, 1780, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 1303, 29113, 14468, 7804, 21017, 198, 220, 220, 220, 1303, 3497, 617, 10638, 1366, 326, 1595, 470, 2421, 20145, 2604, 3781, 628, 220, 220, 220, 1303, 26304, 832, 262, 20145, 1366, 7177, 284, 1064, 477, 40773, 2995, 11, 290, 8006, 198, 220, 220, 220, 1303, 703, 890, 484, 1718, 13, 198, 220, 220, 220, 269, 907, 62, 22355, 796, 685, 22105, 13, 46406, 62, 46280, 538, 62, 2435, 329, 1700, 287, 308, 66, 62, 7890, 611, 1700, 13, 271, 62, 46406, 62, 36484, 60, 628, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 48526, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 8728, 93, 59, 77, 4943, 628, 220, 220, 220, 6291, 62, 2435, 62, 2363, 82, 796, 792, 62, 26069, 7, 36484, 62, 7890, 58, 15, 4083, 22105, 62, 16514, 27823, 11, 308, 66, 62, 7890, 58, 12, 16, 4083, 22105, 62, 16514, 27823, 8, 628, 220, 220, 220, 611, 6291, 62, 2435, 62, 2363, 82, 1279, 3126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 15916, 27565, 3862, 25, 1391, 15, 92, 4201, 59, 77, 1911, 18982, 7, 39873, 62, 2435, 62, 2363, 82, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 15916, 27565, 3862, 25, 1391, 15, 92, 37913, 16, 92, 4201, 19415, 77, 1911, 18982, 7, 445, 7234, 62, 43012, 7, 39873, 62, 2435, 62, 2363, 82, 828, 6291, 62, 2435, 62, 2363, 82, 4008, 628, 220, 220, 220, 3359, 13, 13287, 7203, 15916, 27565, 3862, 422, 1391, 15, 92, 284, 1391, 16, 32239, 77, 1911, 18982, 7, 36484, 62, 7890, 58, 15, 4083, 22105, 62, 16514, 27823, 11, 308, 66, 62, 7890, 58, 12, 16, 4083, 22105, 62, 16514, 27823, 4008, 628, 220, 220, 220, 611, 13834, 62, 36604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 62, 9127, 796, 29034, 13, 36166, 62, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 62, 37623, 524, 796, 42804, 62, 9127, 1635, 13834, 62, 36604, 17816, 17597, 62, 37623, 524, 62, 43012, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 315, 524, 62, 79, 310, 796, 13834, 62, 36604, 17816, 36942, 62, 315, 524, 62, 43012, 20520, 1220, 42804, 62, 37623, 524, 198, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 301, 524, 62, 79, 310, 796, 13834, 62, 36604, 17816, 36942, 62, 301, 524, 62, 43012, 20520, 1220, 42804, 62, 37623, 524, 628, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 11964, 471, 457, 524, 25, 220, 1391, 15, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 43012, 7, 36942, 62, 36604, 17816, 17597, 62, 37623, 524, 62, 43012, 20520, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 2964, 66, 471, 457, 524, 25, 220, 220, 220, 1391, 15, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 43012, 7, 36942, 62, 36604, 17816, 36942, 62, 37623, 524, 62, 43012, 20520, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 2964, 66, 4021, 861, 524, 25, 220, 1391, 15, 92, 37913, 16, 25, 15, 13, 17, 4, 92, 19415, 77, 1911, 18982, 7, 445, 7234, 62, 43012, 7, 36942, 62, 36604, 17816, 36942, 62, 315, 524, 62, 43012, 20520, 828, 13834, 62, 315, 524, 62, 79, 310, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 2964, 66, 1632, 301, 524, 25, 220, 220, 1391, 15, 92, 37913, 16, 25, 15, 13, 17, 4, 92, 19415, 77, 1911, 18982, 7, 445, 7234, 62, 43012, 7, 36942, 62, 36604, 17816, 36942, 62, 301, 524, 62, 43012, 20520, 828, 13834, 62, 301, 524, 62, 79, 310, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 2964, 66, 25012, 25, 220, 220, 220, 220, 220, 220, 1391, 15, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 74, 7, 36942, 62, 36604, 17816, 36942, 62, 42216, 62, 33661, 20520, 1220, 28119, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 2964, 66, 569, 10699, 25, 220, 220, 220, 220, 1391, 15, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 74, 7, 36942, 62, 36604, 17816, 36942, 62, 85, 7857, 62, 33661, 20520, 1220, 28119, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 2964, 66, 1303, 14122, 82, 25, 1391, 15, 32239, 77, 1911, 18982, 7, 36942, 62, 36604, 17816, 22510, 62, 16663, 82, 20520, 4008, 628, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 1303, 29739, 503, 355, 314, 836, 470, 423, 1576, 308, 66, 62, 7890, 284, 466, 597, 3781, 319, 198, 220, 220, 220, 611, 18896, 7, 36484, 62, 7890, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 9, 24550, 25, 1318, 2492, 470, 1576, 1366, 284, 466, 597, 3781, 13, 4222, 1309, 262, 2891, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 220, 220, 220, 220, 220, 220, 220, 6431, 379, 1551, 362, 1844, 308, 66, 13, 6404, 4406, 357, 9275, 1391, 15, 92, 737, 59, 77, 1911, 18982, 7, 11925, 7, 36484, 62, 7890, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 23446, 62, 10951, 796, 8633, 3419, 198, 220, 220, 220, 1862, 62, 36484, 62, 9127, 62, 67, 12514, 796, 18896, 26933, 22105, 13, 271, 62, 301, 86, 62, 36484, 329, 1700, 287, 308, 66, 62, 7890, 611, 407, 1700, 13, 271, 62, 301, 86, 62, 36484, 12962, 198, 220, 220, 220, 1336, 62, 36484, 62, 9127, 62, 67, 12514, 796, 18896, 26933, 22105, 13, 271, 62, 301, 86, 62, 36484, 329, 1700, 287, 308, 66, 62, 7890, 611, 1700, 13, 271, 62, 301, 86, 62, 36484, 12962, 198, 220, 220, 220, 6291, 62, 36484, 62, 2435, 796, 2160, 7, 22105, 13, 23350, 62, 36484, 62, 2435, 329, 1700, 287, 308, 66, 62, 7890, 8, 198, 220, 220, 220, 6291, 62, 36484, 62, 2220, 796, 357, 39873, 62, 36484, 62, 2435, 1220, 4280, 4402, 7, 2536, 7, 39873, 62, 2435, 62, 2363, 82, 22305, 1635, 1802, 628, 220, 220, 220, 1303, 29113, 14468, 4242, 2235, 198, 220, 220, 220, 1303, 3497, 1862, 2429, 20157, 3965, 625, 262, 6291, 2278, 198, 220, 220, 220, 331, 70, 62, 9700, 796, 1351, 3419, 198, 220, 220, 220, 329, 717, 62, 36484, 11, 1218, 62, 36484, 287, 19974, 7, 36484, 62, 7890, 11, 308, 66, 62, 7890, 58, 16, 47715, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 597, 26933, 12227, 62, 36484, 13, 271, 62, 301, 86, 62, 36484, 11, 717, 62, 36484, 13, 271, 62, 301, 86, 62, 36484, 11, 717, 62, 36484, 13, 271, 62, 46406, 62, 36484, 11, 1218, 62, 36484, 13, 271, 62, 46406, 62, 36484, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 40806, 378, 625, 262, 308, 66, 17259, 362, 379, 257, 640, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 16, 11, 362, 11, 513, 11, 604, 60, 4613, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47527, 16, 11, 362, 828, 357, 17, 11, 513, 828, 357, 18, 11, 604, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 640, 62, 67, 12514, 796, 792, 62, 26069, 7, 11085, 62, 36484, 13, 22105, 62, 16514, 27823, 11, 1218, 62, 36484, 13, 22105, 62, 16514, 27823, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 70, 62, 7857, 62, 67, 12514, 796, 1218, 62, 36484, 13, 35465, 62, 7857, 62, 19052, 62, 36484, 532, 717, 62, 36484, 13, 35465, 62, 7857, 62, 8499, 62, 36484, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 70, 62, 27922, 62, 67, 12514, 796, 1218, 62, 36484, 13, 35465, 62, 7857, 62, 8499, 62, 36484, 532, 717, 62, 36484, 13, 35465, 62, 7857, 62, 8499, 62, 36484, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 20361, 25, 13742, 318, 1107, 2642, 351, 428, 449, 15996, 26, 314, 3521, 470, 651, 3376, 20145, 1366, 329, 340, 33283, 3359, 13, 5239, 37150, 62, 28968, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 70, 62, 7857, 62, 67, 12514, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 70, 62, 27922, 62, 67, 12514, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2312, 389, 287, 21927, 33, 14, 82, 198, 220, 220, 220, 220, 220, 220, 220, 331, 70, 62, 32332, 62, 4873, 796, 331, 70, 62, 7857, 62, 67, 12514, 1220, 640, 62, 67, 12514, 198, 220, 220, 220, 220, 220, 220, 220, 331, 70, 62, 27922, 62, 4873, 796, 331, 70, 62, 27922, 62, 67, 12514, 1220, 640, 62, 67, 12514, 628, 220, 220, 220, 220, 220, 220, 220, 331, 70, 62, 9700, 13, 33295, 19510, 35641, 62, 32332, 62, 4873, 11, 331, 70, 62, 27922, 62, 4873, 4008, 628, 220, 220, 220, 1303, 29113, 14468, 4242, 198, 220, 220, 220, 1303, 3497, 1468, 2429, 12148, 3965, 625, 262, 6291, 2278, 198, 220, 220, 220, 267, 70, 62, 9700, 796, 1351, 3419, 198, 220, 220, 220, 329, 717, 62, 36484, 11, 1218, 62, 36484, 287, 19974, 7, 36484, 62, 7890, 11, 308, 66, 62, 7890, 58, 16, 47715, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 597, 26933, 12227, 62, 36484, 13, 271, 62, 301, 86, 62, 36484, 11, 717, 62, 36484, 13, 271, 62, 301, 86, 62, 36484, 11, 717, 62, 36484, 13, 271, 62, 46406, 62, 36484, 11, 1218, 62, 36484, 13, 271, 62, 46406, 62, 36484, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 640, 62, 67, 12514, 796, 792, 62, 26069, 7, 11085, 62, 36484, 13, 22105, 62, 16514, 27823, 11, 1218, 62, 36484, 13, 22105, 62, 16514, 27823, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2312, 389, 287, 21927, 33, 14, 82, 198, 220, 220, 220, 220, 220, 220, 220, 267, 70, 62, 439, 5040, 62, 67, 12514, 796, 357, 12227, 62, 36484, 13, 519, 62, 1484, 532, 717, 62, 36484, 13, 519, 62, 1484, 8, 1220, 4280, 4402, 7203, 35500, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 267, 70, 62, 439, 5040, 62, 4873, 796, 267, 70, 62, 439, 5040, 62, 67, 12514, 1220, 640, 62, 67, 12514, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 7804, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 314, 691, 765, 618, 262, 1468, 2429, 318, 3957, 13, 1002, 340, 338, 24030, 11, 340, 338, 2192, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 275, 14, 66, 612, 373, 257, 376, 15916, 11, 290, 2272, 318, 852, 50225, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 267, 70, 62, 439, 5040, 62, 67, 12514, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 287, 21927, 33, 14, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 70, 62, 9700, 13, 33295, 7, 519, 62, 439, 5040, 62, 4873, 8, 628, 220, 220, 220, 1303, 14468, 7804, 21017, 198, 220, 220, 220, 1303, 2199, 66, 23446, 1918, 22423, 198, 220, 220, 220, 308, 66, 62, 48846, 452, 273, 62, 22595, 62, 9700, 796, 1351, 3419, 628, 220, 220, 220, 329, 717, 62, 36484, 11, 1218, 62, 36484, 287, 19974, 7, 36484, 62, 7890, 11, 308, 66, 62, 7890, 58, 16, 47715, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 597, 26933, 12227, 62, 36484, 13, 271, 62, 301, 86, 62, 36484, 11, 717, 62, 36484, 13, 271, 62, 301, 86, 62, 36484, 11, 717, 62, 36484, 13, 271, 62, 46406, 62, 36484, 11, 1218, 62, 36484, 13, 271, 62, 46406, 62, 36484, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 23446, 62, 22595, 62, 9700, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 717, 62, 496, 11, 1218, 62, 496, 287, 19974, 7, 11085, 62, 36484, 13, 1095, 11, 1218, 62, 36484, 13, 1095, 58, 16, 47715, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 1218, 2479, 15628, 307, 5749, 621, 262, 717, 2479, 13, 314, 19000, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 287, 262, 308, 66, 13, 6404, 82, 357, 24219, 407, 1654, 703, 14, 22850, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4522, 657, 318, 262, 2479, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4522, 352, 318, 9881, 287, 326, 2479, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4522, 362, 318, 262, 2472, 9881, 329, 326, 2479, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1218, 62, 496, 58, 16, 60, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 314, 836, 470, 892, 314, 765, 284, 8006, 597, 2458, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 23446, 2272, 1422, 470, 2152, 13841, 16, 355, 257, 4277, 1988, 12, 766, 2029, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23446, 62, 22595, 62, 9700, 13, 33295, 7, 10707, 4402, 7, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23446, 62, 22595, 62, 9700, 13, 33295, 7, 16, 532, 357, 10707, 4402, 7, 12227, 62, 496, 58, 16, 12962, 1220, 717, 62, 496, 58, 16, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 48846, 452, 273, 62, 22595, 62, 9700, 13, 33295, 7, 48846, 452, 273, 62, 22595, 62, 9700, 8, 628, 220, 220, 220, 1303, 29113, 29113, 14468, 198, 220, 220, 220, 1303, 4619, 314, 423, 362, 287, 12, 29982, 4938, 20145, 82, 11, 314, 1101, 1016, 284, 15284, 617, 2622, 449, 15996, 10620, 198, 220, 220, 220, 1303, 262, 10620, 481, 307, 5969, 611, 314, 423, 257, 5969, 24575, 2546, 357, 4758, 356, 466, 287, 40426, 8, 198, 220, 220, 220, 474, 14761, 62, 11883, 62, 37581, 796, 8633, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 474, 14761, 62, 11883, 62, 37581, 14692, 519, 62, 7857, 8973, 796, 357, 11085, 62, 36484, 13, 23350, 62, 258, 499, 532, 717, 62, 36484, 13, 35465, 62, 7857, 62, 23350, 8, 1635, 28119, 198, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 12331, 25, 314, 714, 407, 1064, 257, 1729, 40773, 14, 37, 15916, 20145, 1700, 329, 3781, 13, 1475, 1780, 33283, 3359, 13, 5239, 37150, 62, 28968, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 474, 14761, 62, 11883, 62, 37581, 14692, 48846, 452, 273, 62, 7857, 8973, 796, 357, 11085, 62, 36484, 13, 8906, 1202, 62, 48846, 452, 273, 62, 7857, 1635, 362, 8, 198, 220, 220, 220, 474, 14761, 62, 11883, 62, 37581, 14692, 31829, 62, 7857, 8973, 796, 357, 11085, 62, 36484, 13, 35465, 62, 7857, 62, 23350, 1635, 28119, 8, 532, 474, 14761, 62, 11883, 62, 37581, 14692, 48846, 452, 273, 62, 7857, 8973, 198, 220, 220, 220, 474, 14761, 62, 11883, 62, 37581, 14692, 23350, 62, 258, 499, 8973, 796, 357, 11085, 62, 36484, 13, 23350, 62, 258, 499, 1635, 28119, 8, 1343, 474, 14761, 62, 11883, 62, 37581, 14692, 48846, 452, 273, 62, 7857, 8973, 198, 220, 220, 220, 474, 14761, 62, 11883, 62, 37581, 14692, 3605, 62, 7857, 8973, 796, 357, 73, 14761, 62, 11883, 62, 37581, 14692, 31829, 62, 7857, 8973, 1343, 357, 73, 14761, 62, 11883, 62, 37581, 14692, 48846, 452, 273, 62, 7857, 8973, 1635, 362, 4008, 628, 220, 220, 220, 1303, 29113, 14468, 7804, 198, 220, 220, 220, 1303, 2735, 326, 314, 423, 257, 18824, 12, 1122, 286, 36768, 1366, 11, 989, 503, 13, 198, 220, 220, 220, 1303, 770, 22378, 262, 717, 636, 286, 262, 46545, 357, 4758, 318, 198, 220, 220, 220, 1303, 262, 2472, 20157, 329, 326, 308, 66, 357, 1662, 3349, 8133, 198, 220, 220, 220, 331, 70, 62, 32332, 62, 9700, 796, 685, 13000, 58, 15, 60, 329, 5726, 287, 331, 70, 62, 9700, 60, 198, 220, 220, 220, 949, 62, 35641, 62, 4873, 11, 1612, 62, 35641, 62, 4873, 11, 3509, 62, 35641, 62, 4873, 796, 4808, 1084, 7, 35641, 62, 32332, 62, 9700, 828, 1612, 7, 35641, 62, 32332, 62, 9700, 828, 4808, 9806, 7, 35641, 62, 32332, 62, 9700, 8, 628, 220, 220, 220, 3359, 13, 13287, 7203, 56, 38, 1439, 5040, 34864, 9, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 27156, 8728, 93, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 525, 792, 357, 1084, 14, 32604, 14, 9806, 2599, 1391, 15, 25, 29, 1485, 92, 1391, 16, 25, 29, 1485, 92, 1391, 17, 25, 29, 1485, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 74, 7, 1084, 62, 35641, 62, 4873, 8, 1343, 12813, 82, 1600, 4646, 62, 74, 7, 32604, 62, 35641, 62, 4873, 8, 1343, 12813, 82, 1600, 4646, 62, 74, 7, 9806, 62, 35641, 62, 4873, 8, 1343, 12813, 82, 48774, 198, 220, 220, 220, 3359, 13, 13287, 7203, 525, 39436, 220, 357, 1084, 14, 32604, 14, 9806, 2599, 1391, 15, 25, 29, 1485, 92, 1391, 16, 25, 29, 1485, 92, 1391, 17, 25, 29, 1485, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 74, 7, 1084, 62, 35641, 62, 4873, 1635, 4570, 405, 8, 1343, 12813, 71, 1600, 4646, 62, 74, 7, 32604, 62, 35641, 62, 4873, 1635, 4570, 405, 8, 1343, 12813, 71, 1600, 4646, 62, 74, 7, 9806, 62, 35641, 62, 4873, 1635, 4570, 405, 8, 1343, 12813, 71, 48774, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 1303, 770, 22378, 262, 1218, 636, 286, 262, 46545, 357, 4758, 318, 198, 220, 220, 220, 1303, 262, 2472, 3349, 329, 326, 308, 66, 357, 1662, 20157, 2494, 8133, 198, 220, 220, 220, 949, 62, 519, 62, 4873, 11, 1612, 62, 519, 62, 4873, 11, 3509, 62, 519, 62, 4873, 796, 4808, 1084, 7, 519, 62, 9700, 828, 1612, 7, 519, 62, 9700, 828, 4808, 9806, 7, 519, 62, 9700, 8, 628, 220, 220, 220, 3359, 13, 13287, 7203, 7730, 42868, 34864, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 27156, 4907, 93, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 525, 792, 357, 1084, 14, 32604, 14, 9806, 2599, 1391, 15, 25, 29, 1485, 92, 1391, 16, 25, 29, 1485, 92, 1391, 17, 25, 29, 1485, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 74, 7, 1084, 62, 519, 62, 4873, 8, 1343, 12813, 82, 1600, 4646, 62, 74, 7, 32604, 62, 519, 62, 4873, 8, 1343, 12813, 82, 1600, 4646, 62, 74, 7, 9806, 62, 519, 62, 4873, 8, 1343, 12813, 82, 48774, 198, 220, 220, 220, 3359, 13, 13287, 7203, 525, 39436, 220, 357, 1084, 14, 32604, 14, 9806, 2599, 1391, 15, 25, 29, 1485, 92, 1391, 16, 25, 29, 1485, 92, 1391, 17, 25, 29, 1485, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 74, 7, 1084, 62, 519, 62, 4873, 1635, 4570, 405, 8, 1343, 12813, 71, 1600, 4646, 62, 74, 7, 32604, 62, 519, 62, 4873, 1635, 4570, 405, 8, 1343, 12813, 71, 1600, 4646, 62, 74, 7, 9806, 62, 519, 62, 4873, 1635, 4570, 405, 8, 1343, 12813, 71, 48774, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 1303, 29113, 7804, 4242, 21017, 198, 220, 220, 220, 1303, 23740, 22313, 82, 12, 2227, 284, 787, 257, 28376, 1351, 198, 220, 220, 220, 1303, 35915, 11, 475, 314, 11691, 326, 338, 257, 1643, 13400, 198, 220, 220, 220, 1303, 284, 14257, 14, 961, 628, 220, 220, 220, 3359, 13, 13287, 7203, 34652, 452, 273, 5830, 34864, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 27156, 8728, 93, 59, 77, 4943, 628, 220, 220, 220, 23446, 62, 13664, 82, 796, 1351, 3419, 198, 220, 220, 220, 329, 850, 62, 3258, 287, 308, 66, 62, 48846, 452, 273, 62, 22595, 62, 9700, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23446, 62, 13664, 82, 13, 33295, 7, 11925, 26933, 68, 10671, 329, 9766, 76, 287, 850, 62, 3258, 611, 9766, 76, 1875, 657, 60, 4008, 628, 220, 220, 220, 3359, 13, 13287, 7203, 24539, 82, 357, 1084, 14, 32604, 14, 9806, 2599, 1391, 15, 92, 14, 90, 16, 25, 15, 13, 16, 69, 92, 14, 90, 17, 32239, 77, 1911, 18982, 28264, 1084, 7, 48846, 452, 273, 62, 13664, 82, 828, 1612, 7, 48846, 452, 273, 62, 13664, 82, 828, 4808, 9806, 7, 48846, 452, 273, 62, 13664, 82, 22305, 198, 220, 220, 220, 3359, 13, 13287, 7203, 20148, 14806, 12243, 2902, 7479, 77, 4943, 628, 220, 220, 220, 10973, 75, 62, 79, 310, 796, 352, 198, 220, 220, 220, 1918, 62, 1095, 796, 1351, 3419, 198, 220, 220, 220, 329, 23446, 62, 22510, 11, 279, 310, 62, 4868, 287, 27056, 378, 7, 13344, 62, 6511, 395, 46491, 36484, 62, 48846, 452, 273, 62, 22595, 62, 9700, 11, 6070, 8367, 28, 15, 828, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 79, 310, 796, 949, 7, 79, 310, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 79, 310, 796, 1612, 7, 79, 310, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 79, 310, 796, 3509, 7, 79, 310, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10973, 75, 62, 79, 310, 1635, 28, 352, 532, 1612, 62, 79, 310, 628, 220, 220, 220, 220, 220, 220, 220, 1918, 62, 1095, 13, 33295, 7, 32604, 62, 79, 310, 8, 628, 220, 220, 220, 220, 220, 220, 220, 23446, 62, 10951, 58, 48846, 452, 273, 62, 22510, 60, 796, 949, 62, 79, 310, 11, 1612, 62, 79, 310, 11, 3509, 62, 79, 310, 628, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 220, 220, 7129, 1391, 15, 38362, 1391, 16, 25, 29, 20, 92, 1220, 1391, 17, 25, 29, 20, 92, 1220, 1391, 18, 25, 29, 20, 92, 1220, 1391, 19, 25, 29, 20, 92, 357, 1084, 14, 32604, 14, 9806, 14, 36340, 75, 6776, 4064, 19415, 77, 1911, 18982, 7, 48846, 452, 273, 62, 22510, 11, 45144, 15, 25, 15, 13, 16, 4, 92, 1911, 18982, 7, 1084, 62, 79, 310, 828, 45144, 15, 25, 15, 13, 16, 4, 92, 1911, 18982, 7, 32604, 62, 79, 310, 828, 45144, 15, 25, 15, 13, 16, 4, 92, 1911, 18982, 7, 9806, 62, 79, 310, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 15, 25, 15, 13, 16, 4, 92, 1911, 18982, 7, 36340, 75, 62, 79, 310, 22305, 628, 220, 220, 220, 1303, 29113, 2, 198, 220, 220, 220, 1303, 20145, 3782, 198, 220, 220, 220, 1862, 62, 36484, 62, 22355, 796, 685, 22105, 13, 35465, 62, 36484, 62, 2435, 1635, 8576, 329, 1700, 287, 308, 66, 62, 7890, 611, 407, 1700, 13, 271, 62, 301, 86, 62, 36484, 60, 198, 220, 220, 220, 1336, 62, 36484, 62, 22355, 796, 685, 22105, 13, 301, 86, 62, 2435, 1635, 8576, 329, 1700, 287, 308, 66, 62, 7890, 611, 1700, 13, 271, 62, 301, 86, 62, 36484, 60, 628, 220, 220, 220, 611, 6291, 62, 2435, 62, 2363, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1862, 62, 36484, 62, 9127, 62, 67, 12514, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 36484, 62, 4873, 796, 357, 35465, 62, 36484, 62, 9127, 62, 67, 12514, 1220, 6291, 62, 2435, 62, 2363, 82, 8, 1635, 3126, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 36484, 62, 4873, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1336, 62, 36484, 62, 9127, 62, 67, 12514, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 36484, 62, 4873, 796, 357, 12853, 62, 36484, 62, 9127, 62, 67, 12514, 1220, 6291, 62, 2435, 62, 2363, 82, 8, 1635, 3126, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 36484, 62, 4873, 796, 657, 628, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 15916, 6188, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 15116, 8728, 4907, 93, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 56, 15916, 14, 37, 15916, 2764, 25, 1391, 15, 92, 14, 90, 16, 92, 357, 32184, 25, 1391, 17, 25, 15, 13, 17, 69, 92, 14, 1084, 11, 1391, 18, 25, 15, 13, 17, 69, 92, 14, 1084, 19415, 77, 1911, 18982, 7, 35465, 62, 36484, 62, 9127, 62, 67, 12514, 11, 1336, 62, 36484, 62, 9127, 62, 67, 12514, 11, 331, 36484, 62, 4873, 11, 277, 36484, 62, 4873, 4008, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 36674, 18581, 20145, 8778, 25, 220, 220, 220, 220, 1391, 15, 25, 15, 13, 17, 69, 92, 4, 59, 77, 1911, 18982, 7, 39873, 62, 36484, 62, 2220, 4008, 198, 220, 220, 220, 3359, 13, 13287, 7203, 4943, 628, 220, 220, 220, 3359, 13, 13287, 7203, 34, 5653, 42818, 3782, 25, 1391, 15, 25, 15, 13, 18, 69, 92, 82, 1220, 220, 1391, 16, 25, 15, 13, 18, 69, 92, 82, 1220, 220, 1391, 17, 25, 15, 13, 18, 69, 92, 82, 1220, 1391, 18, 25, 15, 13, 17, 69, 92, 357, 1084, 14, 32604, 14, 9806, 14, 301, 7959, 19415, 77, 1911, 18982, 28264, 1084, 7, 46406, 62, 22355, 828, 1612, 7, 46406, 62, 22355, 828, 4808, 9806, 7, 46406, 62, 22355, 828, 336, 7959, 7, 46406, 62, 22355, 22305, 198, 220, 220, 220, 3359, 13, 13287, 7203, 56, 15916, 3782, 25, 220, 220, 220, 220, 220, 220, 1391, 15, 25, 15, 13, 15, 69, 92, 907, 1220, 1391, 16, 25, 15, 13, 15, 69, 92, 907, 1220, 1391, 17, 25, 15, 13, 15, 69, 92, 907, 1220, 1391, 18, 25, 15, 13, 17, 69, 92, 357, 1084, 14, 32604, 14, 9806, 14, 301, 7959, 19415, 77, 1911, 18982, 28264, 1084, 7, 35465, 62, 36484, 62, 22355, 828, 1612, 7, 35465, 62, 36484, 62, 22355, 828, 4808, 9806, 7, 35465, 62, 36484, 62, 22355, 828, 336, 7959, 7, 35465, 62, 36484, 62, 22355, 22305, 198, 220, 220, 220, 3359, 13, 13287, 7203, 37, 15916, 3782, 25, 220, 220, 220, 220, 220, 220, 1391, 15, 25, 15, 13, 15, 69, 92, 907, 1220, 1391, 16, 25, 15, 13, 15, 69, 92, 907, 1220, 1391, 17, 25, 15, 13, 15, 69, 92, 907, 1220, 1391, 18, 25, 15, 13, 17, 69, 92, 357, 1084, 14, 32604, 14, 9806, 14, 301, 7959, 19415, 77, 1911, 18982, 28264, 1084, 7, 12853, 62, 36484, 62, 22355, 828, 1612, 7, 12853, 62, 36484, 62, 22355, 828, 4808, 9806, 7, 12853, 62, 36484, 62, 22355, 828, 336, 7959, 7, 12853, 62, 36484, 62, 22355, 22305, 628, 220, 220, 220, 4194, 62, 35641, 66, 62, 2435, 796, 2160, 7, 35465, 62, 36484, 62, 22355, 8, 198, 220, 220, 220, 4194, 62, 69, 36484, 62, 2435, 796, 2160, 7, 12853, 62, 36484, 62, 22355, 8, 628, 220, 220, 220, 3359, 13, 13287, 7203, 46384, 13, 575, 15916, 3862, 25, 220, 220, 1391, 15, 25, 15, 13, 15, 69, 92, 907, 59, 77, 1911, 18982, 7, 9460, 62, 35641, 66, 62, 2435, 4008, 198, 220, 220, 220, 3359, 13, 13287, 7203, 46384, 13, 376, 15916, 3862, 25, 220, 220, 1391, 15, 25, 15, 13, 15, 69, 92, 907, 59, 77, 1911, 18982, 7, 9460, 62, 69, 36484, 62, 2435, 4008, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 611, 267, 70, 62, 9700, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22362, 13, 3862, 14307, 376, 15916, 82, 357, 1084, 14, 32604, 14, 9806, 2599, 220, 220, 220, 1391, 15, 25, 29, 940, 92, 1391, 16, 25, 29, 940, 92, 1391, 17, 25, 29, 940, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 43012, 7, 73, 14761, 62, 11883, 62, 37581, 14692, 519, 62, 7857, 8973, 1220, 949, 62, 519, 62, 4873, 828, 4646, 62, 43012, 7, 73, 14761, 62, 11883, 62, 37581, 14692, 519, 62, 7857, 8973, 1220, 1612, 62, 519, 62, 4873, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4646, 62, 43012, 7, 73, 14761, 62, 11883, 62, 37581, 14692, 519, 62, 7857, 8973, 1220, 3509, 62, 519, 62, 4873, 22305, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 22362, 13, 3862, 14307, 376, 15916, 82, 357, 1084, 14, 32604, 14, 9806, 2599, 220, 220, 220, 1391, 15, 25, 29, 940, 92, 1391, 16, 25, 29, 940, 92, 1391, 17, 25, 29, 940, 32239, 77, 1911, 18982, 7203, 77, 14, 64, 1600, 366, 77, 14, 64, 1600, 366, 77, 14, 64, 48774, 628, 220, 220, 220, 3359, 13, 13287, 7203, 22362, 13, 34498, 12849, 329, 352, 376, 15916, 14, 11840, 357, 1084, 14, 32604, 14, 9806, 2599, 1391, 15, 25, 29, 940, 92, 1391, 16, 25, 29, 940, 92, 1391, 17, 25, 29, 940, 32239, 77, 1911, 18982, 7, 445, 7234, 62, 74, 7, 1084, 62, 519, 62, 4873, 1635, 4570, 405, 828, 4646, 62, 74, 7, 32604, 62, 519, 62, 4873, 1635, 4570, 405, 828, 4646, 62, 74, 7, 9806, 62, 519, 62, 4873, 1635, 4570, 405, 22305, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 3359, 13, 13287, 7203, 16350, 449, 15996, 45728, 15178, 47026, 1391, 15, 25, 15, 13, 18, 69, 92, 4, 59, 77, 1911, 18982, 7, 3064, 532, 6291, 62, 36484, 62, 2220, 4008, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 1303, 29113, 2235, 198, 220, 220, 220, 1303, 449, 13912, 6060, 198, 220, 220, 220, 3359, 13, 13287, 7203, 11297, 449, 15996, 4942, 28373, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 27156, 15116, 8728, 4907, 59, 77, 4943, 628, 220, 220, 220, 611, 474, 8899, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 474, 8899, 62, 7890, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 10699, 1, 287, 479, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 4646, 62, 74, 7, 85, 1220, 28119, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 90, 15, 25, 29, 1558, 38362, 1391, 16, 32239, 77, 1911, 18982, 7, 74, 11, 410, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 474, 14761, 62, 11883, 62, 37581, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 90, 15, 25, 29, 1558, 38362, 1391, 16, 32239, 77, 1911, 18982, 7, 74, 11, 4646, 62, 74, 7, 85, 1220, 28119, 22305, 628, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 1303, 14468, 4242, 2, 198, 220, 220, 220, 1303, 5438, 10763, 198, 220, 220, 220, 4808, 12860, 62, 47335, 437, 602, 7, 22595, 62, 1095, 11, 1862, 62, 36484, 62, 22355, 11, 1336, 62, 36484, 62, 22355, 11, 277, 36484, 62, 4873, 11, 331, 36484, 62, 4873, 11, 331, 70, 62, 32332, 62, 9700, 11, 267, 70, 62, 9700, 11, 474, 14761, 62, 11883, 62, 37581, 11, 474, 8899, 62, 7890, 11, 474, 14269, 62, 7890, 11, 308, 66, 62, 7890, 11, 269, 907, 62, 22355, 11, 23446, 62, 10951, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23392, 62, 1640, 62, 35641, 6359, 62, 4873, 11, 13834, 62, 36604, 8, 628, 220, 220, 220, 3359, 13, 13287, 7203, 4907, 93, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 9, 383, 20157, 2494, 318, 262, 2620, 287, 8748, 878, 257, 20145, 1760, 13, 19045, 2494, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 220, 318, 262, 2620, 287, 8748, 706, 257, 20145, 318, 1760, 13, 59, 77, 4943, 628, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 9, 383, 449, 15996, 9332, 4776, 318, 257, 11282, 835, 284, 36336, 703, 6942, 262, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 220, 449, 15996, 318, 13, 383, 749, 6942, 449, 15996, 318, 1802, 4, 357, 37784, 881, 5340, 284, 7330, 737, 59, 77, 4943, 628, 220, 220, 220, 611, 1336, 62, 36484, 62, 9127, 62, 67, 12514, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 9, 1318, 547, 645, 1336, 20145, 82, 1141, 428, 6291, 2278, 13, 770, 6447, 481, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 220, 307, 1342, 4465, 14, 4134, 15537, 355, 257, 1255, 13, 59, 77, 4943, 628, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 9, 317, 4866, 286, 262, 4688, 1366, 973, 284, 7716, 428, 989, 318, 8574, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 220, 287, 1220, 22065, 14, 73, 83, 1726, 62, 7890, 12, 90, 15, 27422, 8800, 13, 65, 89, 17, 13, 4222, 4866, 428, 284, 534, 3488, 276, 343, 611, 345, 59, 77, 1911, 18982, 7, 7220, 4008, 198, 220, 220, 220, 3359, 13, 13287, 7203, 220, 765, 284, 3613, 14, 38200, 2736, 428, 2252, 13, 59, 77, 4943, 628, 198, 4299, 4808, 1136, 62, 48846, 452, 273, 62, 10951, 7, 22595, 62, 1095, 28, 14202, 11, 23446, 62, 10951, 28, 14202, 11, 308, 66, 62, 7890, 28, 14202, 11, 23446, 62, 45573, 62, 79, 310, 28, 14202, 11, 1090, 81, 62, 782, 62, 7857, 28, 14202, 11, 9224, 62, 782, 62, 7857, 28, 14202, 2599, 198, 220, 220, 220, 37227, 1212, 3073, 379, 262, 23446, 7508, 1366, 4645, 11, 290, 481, 1441, 262, 3509, 198, 220, 220, 220, 3478, 870, 2546, 11, 290, 3509, 3478, 870, 2479, 326, 340, 5300, 318, 2622, 526, 15931, 628, 220, 220, 220, 1303, 770, 318, 7323, 703, 881, 4025, 262, 23446, 2272, 815, 307, 284, 47578, 262, 2620, 198, 220, 220, 220, 1303, 287, 262, 8373, 286, 331, 70, 6359, 4073, 422, 262, 4833, 39058, 2546, 355, 340, 20070, 1366, 656, 262, 198, 220, 220, 220, 1303, 23446, 2272, 517, 1690, 13, 314, 836, 470, 761, 284, 1487, 262, 5436, 24893, 870, 817, 10126, 355, 326, 318, 198, 220, 220, 220, 1303, 4632, 6937, 6906, 319, 703, 1366, 9337, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 314, 1101, 22000, 262, 2546, 286, 262, 23446, 2272, 1912, 319, 262, 1225, 268, 1487, 13, 632, 26720, 307, 1365, 198, 220, 220, 220, 1303, 22000, 428, 1912, 319, 640, 286, 703, 10792, 262, 331, 70, 6359, 389, 5836, 13, 198, 220, 220, 220, 23370, 62, 7857, 62, 67, 12514, 796, 1090, 81, 62, 782, 62, 7857, 532, 9224, 62, 782, 62, 7857, 628, 220, 220, 220, 1303, 19219, 284, 779, 428, 284, 1487, 262, 17266, 742, 268, 870, 2213, 956, 2946, 11507, 13, 383, 1738, 318, 326, 198, 220, 220, 220, 1303, 331, 70, 6359, 481, 1645, 1342, 14, 3549, 1690, 611, 314, 1487, 262, 23370, 2546, 11, 290, 314, 1183, 761, 284, 3753, 198, 220, 220, 220, 1303, 326, 416, 3649, 14, 12501, 260, 2313, 262, 3478, 870, 11387, 284, 1394, 1243, 287, 5236, 13, 198, 220, 220, 220, 23370, 62, 7857, 62, 67, 12514, 62, 79, 310, 796, 9224, 62, 782, 62, 7857, 1220, 1090, 81, 62, 782, 62, 7857, 628, 220, 220, 220, 1303, 33680, 262, 705, 48846, 452, 273, 62, 45573, 62, 79, 310, 6, 543, 318, 262, 1660, 4102, 198, 220, 220, 220, 1303, 329, 5563, 991, 6776, 13, 1002, 340, 338, 625, 326, 2033, 11, 788, 262, 198, 220, 220, 220, 1303, 3478, 870, 11387, 2476, 284, 307, 3220, 11, 611, 340, 338, 1342, 11, 788, 198, 220, 220, 220, 1303, 262, 2479, 318, 922, 13, 29630, 36, 5959, 11, 314, 779, 1918, 2494, 11, 523, 58, 12, 16, 60, 257, 7600, 4, 1918, 198, 220, 220, 220, 1303, 2494, 318, 257, 1315, 4, 23446, 2494, 13, 198, 220, 220, 220, 23446, 62, 7050, 4102, 796, 1802, 532, 23446, 62, 45573, 62, 79, 310, 628, 220, 220, 220, 1303, 3497, 262, 3509, 23446, 2479, 3142, 583, 262, 474, 14761, 8398, 198, 220, 220, 220, 3509, 62, 48846, 452, 273, 62, 496, 796, 308, 66, 62, 7890, 58, 15, 4083, 9806, 62, 400, 10126, 628, 220, 220, 220, 1303, 383, 23446, 62, 10951, 4645, 318, 262, 10070, 287, 2546, 329, 326, 198, 220, 220, 220, 1303, 2479, 1016, 656, 262, 1306, 11, 523, 611, 262, 3509, 994, 318, 718, 11, 262, 4036, 3509, 198, 220, 220, 220, 1303, 23446, 2546, 973, 318, 767, 13, 198, 220, 220, 220, 14069, 62, 1484, 62, 10366, 952, 796, 18896, 7, 48846, 452, 273, 62, 10951, 8, 1343, 352, 628, 220, 220, 220, 1303, 23740, 5873, 286, 16997, 5563, 198, 220, 220, 220, 2479, 62, 48205, 62, 24219, 62, 282, 425, 796, 1351, 3419, 198, 220, 220, 220, 1459, 62, 25067, 496, 796, 1802, 628, 220, 220, 220, 329, 1994, 287, 23243, 7, 48846, 452, 273, 62, 10951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 16, 60, 318, 262, 2811, 11, 685, 17, 60, 318, 262, 3509, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 22595, 62, 4873, 62, 79, 310, 796, 23446, 62, 10951, 58, 2539, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 25067, 496, 1635, 28, 352, 532, 1612, 62, 22595, 62, 4873, 62, 79, 310, 628, 220, 220, 220, 220, 220, 220, 220, 2479, 62, 48205, 62, 24219, 62, 282, 425, 13, 33295, 7, 14421, 62, 25067, 496, 8, 628, 220, 220, 220, 4049, 62, 19662, 796, 6045, 628, 220, 220, 220, 611, 3509, 62, 48846, 452, 273, 62, 496, 1279, 1315, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14069, 62, 1484, 62, 10366, 952, 6624, 3509, 62, 48846, 452, 273, 62, 496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2479, 62, 48205, 62, 24219, 62, 282, 425, 58, 12, 16, 60, 1875, 14808, 3064, 532, 23446, 62, 7050, 4102, 8, 1220, 1802, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 19662, 796, 366, 464, 23446, 8064, 286, 1391, 15, 92, 318, 1165, 1402, 355, 1391, 16, 25, 15, 13, 16, 69, 92, 4, 286, 262, 5563, 389, 991, 6776, 13, 9993, 3649, 262, 5436, 24893, 870, 817, 10126, 357, 11518, 25, 1315, 8, 11507, 11, 290, 2491, 428, 3781, 757, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14069, 62, 1484, 62, 10366, 952, 11, 2479, 62, 48205, 62, 24219, 62, 282, 425, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 23446, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 19662, 796, 366, 1890, 262, 11068, 6291, 2278, 11, 314, 714, 407, 19818, 597, 11570, 23446, 7869, 422, 262, 308, 66, 13, 6404, 13, 770, 449, 15996, 318, 2035, 6639, 11, 393, 262, 6291, 2278, 373, 1165, 1790, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 23446, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 19662, 796, 366, 1890, 262, 11068, 6291, 2278, 11, 314, 714, 407, 19818, 597, 11570, 23446, 7869, 422, 262, 308, 66, 13, 6404, 13, 770, 449, 15996, 318, 2035, 6639, 11, 393, 262, 6291, 2278, 373, 1165, 1790, 526, 198, 220, 220, 220, 1288, 361, 407, 23446, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 19662, 796, 366, 1890, 262, 11068, 6291, 2278, 11, 314, 714, 407, 19818, 597, 11570, 23446, 7869, 422, 262, 308, 66, 13, 6404, 13, 770, 449, 15996, 318, 2035, 6639, 11, 393, 262, 6291, 2278, 373, 1165, 1790, 526, 628, 220, 220, 220, 611, 4049, 62, 19662, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 18224, 62, 19662, 8, 628, 220, 220, 220, 1303, 29113, 14468, 7804, 2235, 198, 220, 220, 220, 1303, 2094, 470, 27531, 262, 705, 1084, 3419, 6, 351, 262, 705, 9806, 6, 7885, 13, 314, 765, 198, 220, 220, 220, 1303, 262, 717, 2479, 810, 340, 338, 1342, 621, 23446, 62, 45573, 62, 79, 310, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 1452, 870, 62, 496, 796, 949, 26933, 74, 329, 479, 11, 410, 287, 27056, 378, 7, 496, 62, 48205, 62, 24219, 62, 282, 425, 11, 352, 8, 611, 410, 19841, 23446, 62, 45573, 62, 79, 310, 12962, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 1452, 870, 62, 496, 796, 657, 628, 220, 220, 220, 611, 407, 3509, 62, 1452, 870, 62, 496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1892, 1654, 611, 314, 588, 428, 11862, 11, 475, 340, 2331, 1969, 1576, 198, 220, 220, 220, 220, 220, 220, 220, 2174, 62, 400, 10126, 62, 310, 796, 18896, 26933, 22595, 62, 79, 310, 329, 1918, 62, 79, 310, 287, 1918, 62, 1095, 611, 1918, 62, 79, 310, 19841, 4280, 4402, 7, 1911, 3023, 4943, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2174, 62, 400, 10126, 62, 79, 310, 796, 2174, 62, 400, 10126, 62, 310, 1220, 12178, 7, 11925, 7, 22595, 62, 1095, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 517, 621, 4747, 4, 286, 262, 9337, 389, 379, 393, 2174, 604, 7441, 787, 257, 3465, 286, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2174, 62, 400, 10126, 62, 79, 310, 1875, 764, 2091, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 632, 338, 28991, 326, 314, 815, 751, 284, 262, 24575, 597, 5563, 326, 3588, 470, 302, 5813, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 7720, 572, 262, 5436, 24893, 870, 817, 260, 2946, 11, 475, 1201, 340, 338, 407, 1972, 302, 5813, 6949, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 743, 407, 1487, 1997, 11, 523, 407, 22000, 329, 262, 640, 852, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 821, 1262, 477, 262, 1695, 9337, 11, 475, 5563, 389, 991, 6776, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 62, 48846, 452, 273, 62, 496, 6624, 18896, 7, 22595, 62, 1095, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9, 15932, 25, 632, 3073, 588, 534, 3478, 870, 11387, 318, 1165, 1029, 532, 1391, 15, 25, 15, 13, 15, 4, 92, 286, 534, 9337, 389, 302, 9269, 379, 393, 2174, 604, 4, 286, 262, 5563, 13, 775, 714, 787, 340, 4577, 329, 262, 449, 15996, 611, 356, 4646, 534, 5436, 24893, 870, 817, 10126, 416, 1391, 16, 92, 284, 1391, 17, 92, 2427, 286, 1391, 18, 92, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2174, 62, 400, 10126, 62, 79, 310, 11, 2174, 62, 400, 10126, 62, 310, 11, 18896, 7, 22595, 62, 1095, 8, 532, 2174, 62, 400, 10126, 62, 310, 11, 3509, 62, 48846, 452, 273, 62, 496, 35514, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9, 15932, 25, 632, 3073, 588, 534, 3478, 870, 11387, 318, 1165, 1029, 532, 1391, 15, 25, 15, 13, 15, 4, 92, 286, 534, 9337, 389, 302, 9269, 379, 393, 2174, 604, 4, 286, 262, 5563, 13, 775, 714, 787, 340, 4577, 329, 262, 449, 15996, 611, 356, 4646, 534, 5436, 24893, 870, 817, 10126, 416, 1391, 16, 92, 284, 1391, 17, 92, 2427, 286, 1391, 18, 27422, 9348, 47342, 46476, 532, 534, 3509, 1635, 1484, 9, 2479, 287, 262, 308, 66, 13, 6404, 82, 286, 1391, 19, 92, 318, 1342, 621, 262, 17839, 3509, 2479, 286, 1391, 18, 92, 532, 787, 1654, 326, 345, 973, 257, 1588, 1576, 6291, 2546, 11, 290, 1309, 262, 449, 15996, 467, 832, 513, 376, 15916, 82, 357, 18076, 25, 705, 12, 82, 513, 11537, 290, 318, 852, 10667, 1141, 9103, 4979, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2174, 62, 400, 10126, 62, 79, 310, 11, 2174, 62, 400, 10126, 62, 310, 11, 18896, 7, 22595, 62, 1095, 8, 532, 2174, 62, 400, 10126, 62, 310, 11, 3509, 62, 48846, 452, 273, 62, 496, 11, 18896, 7, 22595, 62, 1095, 4008, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 1452, 870, 62, 496, 796, 18896, 7, 22595, 62, 1095, 8, 532, 2174, 62, 400, 10126, 62, 310, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9, 15932, 25, 3406, 23446, 2479, 318, 1165, 1790, 11, 534, 938, 2479, 286, 1391, 15, 92, 468, 1391, 16, 25, 15, 13, 17, 69, 92, 4, 286, 663, 5563, 991, 6776, 13, 4362, 286, 428, 11, 314, 1101, 5906, 284, 26995, 5004, 703, 534, 5563, 389, 14736, 13, 791, 2617, 393, 2620, 262, 5436, 24893, 870, 817, 10126, 357, 9806, 25, 1315, 8, 284, 24237, 428, 1917, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 496, 62, 48205, 62, 24219, 62, 282, 425, 828, 2479, 62, 48205, 62, 24219, 62, 282, 425, 58, 12, 16, 60, 35514, 628, 220, 220, 220, 17081, 62, 82, 4340, 796, 1351, 3419, 198, 220, 220, 220, 329, 308, 66, 62, 22105, 287, 308, 66, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17081, 62, 82, 4340, 13, 33295, 7, 36484, 62, 22105, 13, 1095, 58, 9806, 62, 1452, 870, 62, 496, 532, 352, 7131, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 314, 2497, 257, 308, 66, 1700, 326, 1595, 470, 423, 326, 2479, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1241, 11, 523, 14267, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 1303, 632, 338, 7151, 284, 423, 262, 3478, 870, 2546, 362, 87, 262, 3509, 17081, 2546, 11, 314, 788, 198, 220, 220, 220, 1303, 751, 287, 262, 1487, 287, 649, 5235, 357, 782, 62, 7857, 62, 67, 12514, 8, 284, 11677, 262, 10070, 14, 24988, 589, 198, 220, 220, 220, 1303, 287, 649, 5235, 355, 10488, 287, 428, 2560, 338, 2163, 13, 383, 705, 782, 62, 7857, 62, 67, 12514, 1220, 362, 6, 318, 198, 220, 220, 220, 1303, 884, 326, 314, 2620, 262, 2187, 3509, 62, 1452, 870, 62, 7857, 416, 23370, 62, 7857, 62, 67, 12514, 11, 475, 1201, 198, 220, 220, 220, 1303, 612, 389, 734, 23446, 9029, 11, 314, 761, 284, 6626, 262, 23370, 62, 7857, 62, 67, 12514, 416, 362, 329, 1123, 198, 220, 220, 220, 1303, 23446, 2272, 198, 220, 220, 220, 3509, 62, 1452, 870, 62, 7857, 796, 357, 9806, 7, 1452, 495, 62, 82, 4340, 8, 1635, 362, 8, 1343, 357, 782, 62, 7857, 62, 67, 12514, 1220, 362, 8, 198, 220, 220, 220, 23446, 62, 10366, 952, 796, 9224, 62, 782, 62, 7857, 1220, 3509, 62, 1452, 870, 62, 7857, 628, 220, 220, 220, 1303, 39432, 611, 23446, 2272, 318, 47211, 30373, 621, 262, 649, 5235, 2546, 198, 220, 220, 220, 611, 23446, 62, 10366, 952, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9, 15932, 25, 383, 10488, 7151, 23446, 8064, 286, 1391, 15, 25, 15, 13, 17, 69, 92, 318, 1342, 621, 352, 13, 770, 318, 407, 1744, 11, 523, 314, 3220, 262, 2546, 286, 649, 5235, 416, 1391, 16, 5512, 290, 900, 262, 23446, 8064, 284, 352, 13, 9993, 262, 24549, 11776, 11, 290, 2342, 7173, 13, 59, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23446, 62, 10366, 952, 11, 4646, 62, 74, 19510, 9806, 62, 1452, 870, 62, 7857, 532, 9224, 62, 782, 62, 7857, 8, 1220, 28119, 36911, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 1969, 11, 475, 991, 2642, 13, 1002, 314, 1057, 656, 428, 4006, 11, 788, 314, 761, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 635, 4259, 262, 649, 5235, 2546, 275, 14, 66, 262, 3478, 1522, 2546, 318, 1912, 572, 286, 262, 649, 5235, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2546, 878, 314, 2993, 612, 373, 281, 2071, 13, 314, 892, 428, 318, 2192, 1969, 1576, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 783, 13, 198, 220, 220, 220, 220, 220, 220, 220, 23446, 62, 10366, 952, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 782, 62, 7857, 796, 3509, 62, 1452, 870, 62, 7857, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 782, 62, 7857, 15853, 3509, 62, 1452, 870, 62, 7857, 628, 220, 220, 220, 1303, 2735, 11, 1487, 262, 3509, 3478, 870, 2479, 14, 400, 10126, 198, 220, 220, 220, 3509, 62, 1452, 870, 62, 496, 1635, 28, 357, 16, 1220, 23370, 62, 7857, 62, 67, 12514, 62, 79, 310, 8, 628, 220, 220, 220, 1441, 9224, 62, 782, 62, 7857, 11, 23446, 62, 10366, 952, 11, 3509, 62, 1452, 870, 62, 7857, 11, 3509, 62, 1452, 870, 62, 496, 628, 198, 4299, 4808, 12860, 62, 47335, 437, 602, 7, 22595, 62, 1095, 28, 14202, 11, 1862, 62, 36484, 62, 22355, 28, 14202, 11, 1336, 62, 36484, 62, 22355, 28, 14202, 11, 277, 36484, 62, 4873, 28, 14202, 11, 331, 36484, 62, 4873, 28, 14202, 11, 331, 70, 62, 32332, 62, 9700, 28, 14202, 11, 267, 70, 62, 9700, 28, 14202, 11, 474, 14761, 62, 11883, 62, 37581, 28, 14202, 11, 474, 8899, 62, 7890, 28, 14202, 11, 474, 14269, 62, 7890, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 7890, 28, 14202, 11, 269, 907, 62, 22355, 28, 14202, 11, 23446, 62, 10951, 28, 14202, 11, 23392, 62, 1640, 62, 35641, 6359, 62, 4873, 28, 14202, 11, 13834, 62, 36604, 28, 14202, 2599, 198, 220, 220, 220, 37227, 1212, 318, 810, 597, 474, 14761, 24549, 10763, 4325, 526, 15931, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2235, 198, 220, 220, 220, 1303, 383, 4308, 286, 777, 10763, 389, 355, 5679, 25, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 352, 8, 3125, 10792, 575, 15916, 82, 543, 1011, 1342, 640, 318, 2048, 1464, 1365, 198, 220, 220, 220, 1303, 220, 220, 220, 621, 1342, 10792, 575, 15916, 82, 11, 475, 2263, 2392, 26, 9835, 3105, 318, 198, 220, 220, 220, 1303, 220, 220, 220, 1365, 621, 26034, 13611, 198, 220, 220, 220, 1303, 362, 8, 575, 15916, 1661, 815, 423, 257, 1877, 3210, 28833, 7, 27, 28, 642, 8, 198, 220, 220, 220, 1303, 513, 8, 575, 15916, 1661, 815, 307, 1877, 38155, 28, 2026, 907, 11, 30274, 8, 628, 220, 220, 220, 3359, 13, 13287, 7203, 41248, 341, 21293, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 27156, 8728, 4907, 93, 59, 77, 4943, 628, 220, 220, 220, 1303, 770, 318, 703, 867, 331, 70, 6359, 14, 2363, 815, 307, 5836, 11, 611, 262, 1612, 331, 36484, 198, 220, 220, 220, 1303, 1661, 389, 2440, 621, 10348, 198, 220, 220, 220, 331, 36484, 62, 2435, 62, 35231, 62, 907, 796, 2026, 198, 220, 220, 220, 331, 36484, 62, 301, 7959, 62, 35231, 796, 642, 628, 220, 220, 220, 1303, 575, 15916, 1612, 13845, 37894, 532, 300, 404, 572, 262, 5290, 17120, 198, 220, 220, 220, 1303, 314, 716, 5609, 340, 2427, 286, 257, 1612, 286, 262, 7388, 79, 11, 1804, 257, 198, 220, 220, 220, 1303, 3509, 286, 262, 5441, 79, 26, 743, 307, 1365, 198, 220, 220, 220, 331, 36484, 62, 79, 310, 576, 796, 5441, 628, 220, 220, 220, 1303, 770, 318, 655, 329, 3781, 4959, 26, 761, 257, 7709, 6291, 900, 954, 198, 220, 220, 220, 331, 36484, 62, 9127, 62, 35231, 796, 838, 198, 220, 220, 220, 277, 36484, 62, 9127, 62, 35231, 796, 513, 628, 220, 220, 220, 1303, 2940, 263, 329, 12739, 611, 1459, 4566, 318, 922, 329, 198, 220, 220, 220, 1303, 262, 7349, 402, 16, 15413, 22967, 198, 220, 220, 220, 3492, 62, 1640, 62, 70, 16, 796, 10352, 628, 220, 220, 220, 23446, 62, 45573, 62, 79, 310, 796, 838, 628, 220, 220, 220, 331, 36484, 62, 301, 7959, 796, 336, 7959, 7, 25067, 576, 7, 35465, 62, 36484, 62, 22355, 11, 331, 36484, 62, 79, 310, 576, 4008, 198, 220, 220, 220, 331, 36484, 62, 32604, 62, 907, 796, 12178, 7, 9806, 7, 25067, 576, 7, 35465, 62, 36484, 62, 22355, 11, 331, 36484, 62, 79, 310, 576, 22305, 628, 220, 220, 220, 611, 474, 8899, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 782, 62, 7857, 796, 474, 8899, 62, 7890, 17816, 3791, 10699, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 519, 62, 7857, 796, 474, 8899, 62, 7890, 17816, 19620, 10699, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1892, 1262, 275, 14, 66, 428, 1366, 318, 407, 287, 262, 20145, 17259, 357, 392, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1107, 1595, 470, 761, 284, 307, 16524, 986, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 366, 5990, 76, 10699, 1, 287, 474, 8899, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 1090, 81, 62, 6024, 62, 907, 62, 7857, 796, 474, 8899, 62, 7890, 17816, 5990, 76, 10699, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 1090, 81, 62, 6024, 62, 907, 62, 7857, 796, 474, 8899, 62, 7890, 17816, 9171, 5126, 558, 10699, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 258, 499, 62, 7857, 796, 474, 8899, 62, 7890, 17816, 11518, 1544, 499, 10699, 20520, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 782, 62, 7857, 796, 474, 14761, 62, 11883, 62, 37581, 14692, 3605, 62, 7857, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 519, 62, 7857, 796, 474, 14761, 62, 11883, 62, 37581, 14692, 519, 62, 7857, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 258, 499, 62, 7857, 796, 474, 14761, 62, 11883, 62, 37581, 14692, 23350, 62, 258, 499, 8973, 628, 220, 220, 220, 9224, 62, 782, 62, 7857, 796, 1090, 81, 62, 782, 62, 7857, 628, 220, 220, 220, 1303, 29113, 29113, 29113, 7804, 198, 220, 220, 220, 1303, 770, 318, 281, 8636, 13, 4362, 356, 779, 40773, 329, 376, 15916, 82, 11, 340, 338, 281, 11629, 876, 1429, 11, 290, 981, 262, 40773, 13259, 318, 198, 220, 220, 220, 1303, 5836, 11, 517, 5563, 389, 852, 3478, 1522, 656, 34498, 13, 383, 1266, 356, 460, 466, 357, 40, 892, 8, 318, 284, 1064, 262, 5288, 198, 220, 220, 220, 1303, 2546, 286, 47070, 11, 290, 467, 422, 612, 13, 770, 318, 1521, 340, 338, 2208, 1593, 284, 423, 517, 621, 362, 376, 15916, 82, 284, 804, 379, 13, 198, 220, 220, 220, 1303, 628, 220, 220, 220, 1303, 770, 318, 17198, 13, 314, 761, 284, 1064, 262, 717, 1700, 810, 262, 2180, 267, 70, 2546, 318, 5749, 621, 198, 220, 220, 220, 1303, 262, 1459, 13, 770, 21079, 618, 262, 717, 40773, 4539, 11, 290, 422, 612, 11, 314, 460, 1064, 262, 5288, 628, 220, 220, 220, 3487, 62, 36484, 62, 7890, 796, 685, 87, 329, 2124, 287, 308, 66, 62, 7890, 611, 2124, 13, 519, 62, 1484, 1875, 657, 60, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1700, 62, 22510, 796, 685, 22105, 62, 22510, 329, 1700, 62, 22510, 11, 717, 62, 36484, 11, 1218, 62, 36484, 287, 19974, 7, 9127, 22784, 3487, 62, 36484, 62, 7890, 11, 3487, 62, 36484, 62, 7890, 58, 16, 25, 12962, 611, 717, 62, 36484, 13, 519, 62, 1484, 1875, 1218, 62, 36484, 13, 519, 62, 1484, 7131, 15, 60, 198, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2107, 62, 7890, 62, 7857, 62, 33661, 796, 6045, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2107, 62, 7890, 62, 7857, 62, 33661, 796, 4808, 1084, 7, 22105, 13, 519, 62, 1484, 329, 1700, 287, 3487, 62, 36484, 62, 7890, 58, 22105, 62, 22510, 25, 12962, 628, 220, 220, 220, 611, 13834, 62, 36604, 290, 13834, 62, 36604, 17816, 36942, 62, 37623, 524, 62, 43012, 20520, 1279, 5867, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20361, 25, 383, 1429, 314, 1101, 1804, 262, 3781, 319, 468, 587, 510, 329, 1391, 15, 5512, 290, 743, 407, 307, 287, 257, 11831, 12, 5219, 13, 632, 338, 1266, 284, 1309, 340, 307, 510, 329, 517, 621, 642, 2431, 284, 651, 517, 12653, 2482, 13, 59, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4646, 62, 43012, 7, 36942, 62, 36604, 17816, 36942, 62, 37623, 524, 62, 43012, 20520, 35514, 1343, 37082, 77, 59, 77, 4943, 628, 220, 220, 220, 1303, 29113, 14468, 198, 220, 220, 220, 1303, 9938, 262, 7151, 968, 13746, 2546, 198, 220, 220, 220, 611, 18896, 7, 35465, 62, 36484, 62, 22355, 8, 1279, 331, 36484, 62, 9127, 62, 35231, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 37150, 13, 37150, 7203, 20361, 25, 1318, 547, 691, 1391, 15, 92, 575, 15916, 12784, 284, 466, 262, 3781, 319, 13, 632, 338, 1365, 284, 423, 1875, 1391, 16, 92, 284, 651, 517, 12653, 2482, 13, 59, 77, 1911, 18982, 7, 11925, 7, 35465, 62, 36484, 62, 22355, 828, 331, 36484, 62, 9127, 62, 35231, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 59, 77, 4943, 628, 220, 220, 220, 611, 331, 36484, 62, 301, 7959, 1875, 331, 36484, 62, 301, 7959, 62, 35231, 1635, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2912, 796, 366, 5959, 56, 18326, 1, 198, 220, 220, 220, 1288, 361, 331, 36484, 62, 301, 7959, 1875, 331, 36484, 62, 301, 7959, 62, 35231, 1635, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2912, 796, 366, 37784, 18326, 1, 198, 220, 220, 220, 1288, 361, 331, 36484, 62, 301, 7959, 1875, 331, 36484, 62, 301, 7959, 62, 35231, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2912, 796, 366, 82, 28030, 5183, 6414, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3492, 62, 1640, 62, 70, 16, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2912, 796, 366, 548, 6414, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3492, 62, 1640, 62, 70, 16, 796, 6407, 628, 220, 220, 220, 6218, 796, 1351, 3419, 628, 220, 220, 220, 1303, 770, 9156, 2512, 2925, 832, 1180, 6436, 23638, 295, 13858, 326, 340, 198, 220, 220, 220, 1303, 3544, 284, 1064, 281, 16586, 4634, 13, 198, 220, 220, 220, 1303, 6218, 13, 33295, 7203, 12, 383, 1612, 575, 15916, 2494, 318, 1391, 15, 25, 15, 13, 17, 69, 92, 14, 1084, 11, 290, 262, 3509, 1391, 16, 92, 37894, 575, 15916, 640, 318, 1391, 17, 25, 15, 13, 15, 69, 92, 907, 357, 301, 7959, 286, 1391, 18, 25, 15, 13, 17, 69, 92, 543, 318, 1391, 19, 92, 737, 632, 338, 1266, 284, 423, 262, 1612, 575, 15916, 640, 307, 379, 393, 2174, 1391, 20, 92, 907, 11, 290, 262, 575, 15916, 336, 7959, 379, 393, 2174, 1391, 21, 92, 611, 1744, 526, 13, 18982, 7, 35641, 66, 62, 4873, 11, 2760, 62, 22510, 7, 35641, 66, 62, 79, 310, 576, 828, 331, 36484, 62, 32604, 62, 907, 11, 331, 36484, 62, 301, 7959, 11, 2912, 11, 331, 36484, 62, 2435, 62, 35231, 62, 907, 11, 331, 36484, 62, 301, 7959, 62, 35231, 4008, 628, 220, 220, 220, 1303, 16926, 46, 25, 14190, 881, 29693, 287, 428, 2438, 2512, 198, 220, 220, 220, 611, 357, 40085, 1143, 62, 1640, 62, 35641, 6359, 62, 4873, 1875, 331, 36484, 62, 4873, 8, 290, 357, 35641, 66, 62, 301, 7959, 1875, 331, 36484, 62, 301, 7959, 62, 35231, 393, 331, 36484, 62, 32604, 62, 907, 1875, 331, 36484, 62, 2435, 62, 35231, 62, 907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 782, 62, 7857, 796, 1090, 81, 62, 782, 62, 7857, 1635, 357, 35641, 66, 62, 4873, 1220, 23392, 62, 1640, 62, 35641, 6359, 62, 4873, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 4242, 2, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 9368, 870, 536, 10126, 1222, 2546, 329, 262, 23446, 9029, 11, 1615, 278, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 319, 262, 938, 2479, 810, 2174, 838, 4, 991, 2107, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 41255, 62, 782, 62, 7857, 11, 23446, 62, 10366, 952, 11, 3509, 62, 1452, 870, 62, 7857, 11, 3509, 62, 1452, 870, 62, 496, 796, 4808, 1136, 62, 48846, 452, 273, 62, 10951, 7, 22595, 62, 1095, 11, 23446, 62, 10951, 11, 308, 66, 62, 7890, 11, 23446, 62, 45573, 62, 79, 310, 11, 1090, 81, 62, 782, 62, 7857, 11, 9224, 62, 782, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1514, 4058, 290, 900, 340, 7692, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 782, 62, 7857, 796, 649, 62, 41255, 62, 782, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 355, 31456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1, 1343, 37082, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 9, 13047, 25, 1391, 15, 92, 1911, 18982, 7, 19662, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 6218, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 2080, 257, 1612, 575, 15916, 640, 3061, 286, 1391, 15, 25, 15, 13, 15, 69, 92, 907, 11, 262, 5220, 357, 40085, 1143, 329, 257, 575, 15916, 2494, 286, 1391, 16, 25, 15, 13, 17, 69, 92, 14, 1084, 8, 2546, 286, 968, 13746, 357, 8201, 22000, 329, 10488, 3509, 3478, 870, 2546, 8, 6402, 262, 2029, 9987, 815, 307, 1391, 17, 25, 15, 13, 15, 69, 92, 13756, 33, 357, 41745, 25, 1391, 18, 25, 15, 13, 15, 69, 92, 13756, 33, 21387, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 36484, 62, 2435, 62, 35231, 62, 907, 11, 23392, 62, 1640, 62, 35641, 6359, 62, 4873, 11, 12178, 7, 41255, 62, 782, 62, 7857, 8, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 11, 12178, 7, 22019, 81, 62, 782, 62, 7857, 8, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 41255, 62, 782, 62, 7857, 1279, 1090, 81, 62, 782, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6218, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 4362, 356, 821, 24030, 262, 2546, 286, 968, 13746, 11, 340, 460, 423, 281, 2928, 319, 1080, 3440, 2233, 284, 3220, 4088, 4542, 5359, 13, 1318, 338, 407, 281, 2562, 835, 284, 4331, 262, 2928, 284, 262, 3586, 11, 523, 2342, 428, 706, 340, 338, 16524, 19570, 628, 220, 220, 220, 1288, 361, 331, 36484, 62, 32604, 62, 907, 1875, 331, 36484, 62, 2435, 62, 35231, 62, 907, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 782, 62, 7857, 796, 1090, 81, 62, 782, 62, 7857, 1635, 357, 35641, 66, 62, 2435, 62, 35231, 62, 907, 1220, 331, 36484, 62, 32604, 62, 907, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 4242, 2, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 9368, 870, 536, 10126, 1222, 2546, 329, 262, 23446, 9029, 11, 1615, 278, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 319, 262, 938, 2479, 810, 2174, 838, 4, 991, 2107, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 41255, 62, 782, 62, 7857, 11, 23446, 62, 10366, 952, 11, 3509, 62, 1452, 870, 62, 7857, 11, 3509, 62, 1452, 870, 62, 496, 796, 4808, 1136, 62, 48846, 452, 273, 62, 10951, 7, 22595, 62, 1095, 11, 23446, 62, 10951, 11, 308, 66, 62, 7890, 11, 23446, 62, 45573, 62, 79, 310, 11, 1090, 81, 62, 782, 62, 7857, 11, 9224, 62, 782, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1514, 4058, 290, 900, 340, 7692, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 782, 62, 7857, 796, 649, 62, 41255, 62, 782, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 355, 31456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1, 1343, 37082, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 9, 13047, 25, 1391, 15, 92, 1911, 18982, 7, 19662, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 6218, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 2080, 257, 1612, 575, 15916, 640, 3061, 286, 1391, 15, 25, 15, 13, 15, 69, 92, 907, 11, 262, 5220, 357, 40085, 1143, 329, 575, 15916, 640, 8, 2546, 286, 968, 13746, 357, 8201, 22000, 329, 10488, 3509, 3478, 870, 2546, 8, 6402, 262, 2029, 9987, 815, 307, 1391, 16, 25, 15, 13, 15, 69, 92, 13756, 33, 357, 41745, 25, 1391, 17, 25, 15, 13, 15, 69, 92, 13756, 33, 21387, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 36484, 62, 2435, 62, 35231, 62, 907, 11, 12178, 7, 41255, 62, 782, 62, 7857, 8, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 11, 12178, 7, 22019, 81, 62, 782, 62, 7857, 8, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 41255, 62, 782, 62, 7857, 1279, 1090, 81, 62, 782, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6218, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 4362, 356, 821, 24030, 262, 2546, 286, 968, 13746, 11, 340, 460, 423, 281, 2928, 319, 1080, 3440, 2233, 284, 3220, 4088, 4542, 5359, 13, 1318, 338, 407, 281, 2562, 835, 284, 4331, 262, 2928, 284, 262, 3586, 11, 523, 2342, 428, 706, 340, 338, 16524, 19570, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 782, 62, 7857, 796, 1090, 81, 62, 782, 62, 7857, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 4242, 2, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 9368, 870, 536, 10126, 1222, 2546, 329, 262, 23446, 9029, 11, 1615, 278, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 319, 262, 938, 2479, 810, 2174, 838, 4, 991, 6776, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 41255, 62, 782, 62, 7857, 11, 23446, 62, 10366, 952, 11, 3509, 62, 1452, 870, 62, 7857, 11, 3509, 62, 1452, 870, 62, 496, 796, 4808, 1136, 62, 48846, 452, 273, 62, 10951, 7, 22595, 62, 1095, 11, 23446, 62, 10951, 11, 308, 66, 62, 7890, 11, 23446, 62, 45573, 62, 79, 310, 11, 1090, 81, 62, 782, 62, 7857, 11, 9224, 62, 782, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1514, 4058, 290, 900, 340, 7692, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 62, 782, 62, 7857, 796, 649, 62, 41255, 62, 782, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 355, 31456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1, 1343, 37082, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 9, 13047, 25, 1391, 15, 92, 1911, 18982, 7, 19662, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 6218, 13, 33295, 7203, 12, 383, 1612, 575, 15916, 2494, 318, 1391, 15, 25, 15, 13, 17, 69, 92, 14, 1084, 11, 290, 262, 1612, 575, 15916, 640, 318, 1391, 16, 25, 15, 13, 15, 69, 92, 907, 357, 301, 7959, 286, 1391, 17, 25, 15, 13, 17, 69, 92, 543, 318, 1391, 18, 92, 21387, 13, 18982, 7, 35641, 66, 62, 4873, 11, 331, 36484, 62, 32604, 62, 907, 11, 331, 36484, 62, 301, 7959, 11, 2912, 4008, 628, 220, 220, 220, 329, 3275, 287, 6218, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 20500, 4008, 1343, 37082, 77, 4943, 628, 220, 220, 220, 1303, 29113, 14468, 198, 220, 220, 220, 1303, 9938, 262, 7151, 2448, 76, 13746, 2546, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 3982, 5165, 428, 2512, 275, 14, 66, 9943, 5235, 14, 4164, 5126, 558, 8748, 2125, 470, 287, 262, 308, 66, 13, 6404, 82, 198, 220, 220, 220, 1303, 628, 220, 220, 220, 1303, 29113, 7804, 21017, 198, 220, 220, 220, 1303, 9938, 503, 644, 262, 23446, 8064, 815, 307, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 37150, 13, 37150, 7203, 12, 15616, 379, 262, 5290, 357, 9806, 8, 23446, 28071, 329, 477, 262, 9337, 11, 340, 3073, 588, 257, 9368, 870, 817, 10126, 286, 1391, 15, 25, 15, 13, 15, 69, 92, 318, 7306, 526, 13, 18982, 7, 9806, 62, 1452, 870, 62, 496, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 383, 23446, 2546, 815, 307, 362, 87, 262, 3509, 2546, 329, 3478, 870, 11387, 286, 1391, 15, 25, 15, 13, 15, 69, 92, 1813, 2029, 13, 11259, 428, 11, 262, 23446, 2546, 286, 1391, 16, 25, 15, 13, 15, 69, 92, 44, 318, 7306, 526, 13, 18982, 7, 9806, 62, 1452, 870, 62, 496, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 1452, 870, 62, 7857, 1220, 28119, 1220, 28119, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 12, 1675, 4155, 1576, 23446, 2272, 318, 19171, 11, 257, 23446, 8064, 286, 1391, 15, 25, 15, 13, 15, 69, 92, 815, 307, 973, 526, 13, 18982, 7, 48846, 452, 273, 62, 10366, 952, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 628, 220, 220, 220, 1303, 29113, 14468, 198, 220, 220, 220, 1303, 9938, 262, 7151, 3509, 24575, 2546, 198, 220, 220, 220, 611, 18896, 7, 12853, 62, 36484, 62, 22355, 8, 1279, 277, 36484, 62, 9127, 62, 35231, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1, 1343, 37082, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9, 13047, 25, 921, 1107, 761, 284, 423, 379, 1551, 1391, 15, 92, 357, 3866, 2232, 1346, 517, 8, 376, 15916, 82, 1645, 357, 40, 1043, 1391, 16, 30072, 878, 1804, 597, 34498, 2546, 15602, 3781, 13, 22025, 2105, 597, 2252, 3781, 13, 59, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 36484, 62, 9127, 62, 35231, 11, 18896, 7, 12853, 62, 36484, 62, 22355, 36911, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 7151, 62, 9806, 62, 258, 499, 62, 7857, 796, 513, 13, 20, 1635, 12178, 7, 12583, 62, 7890, 62, 7857, 62, 33661, 8, 1343, 12178, 7, 9806, 62, 1452, 870, 62, 7857, 1343, 9224, 62, 782, 62, 7857, 8, 198, 220, 220, 220, 611, 3509, 62, 258, 499, 62, 7857, 14512, 7151, 62, 9806, 62, 258, 499, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 632, 338, 7151, 284, 423, 262, 3509, 24575, 2546, 513, 12, 19, 87, 262, 2546, 286, 262, 2107, 1366, 2546, 357, 19620, 13746, 1343, 2448, 76, 13746, 828, 290, 12328, 284, 2291, 262, 7151, 23446, 290, 649, 5235, 2546, 13, 968, 7151, 2546, 318, 1391, 15, 25, 15, 13, 15, 69, 92, 41541, 33, 357, 41745, 25, 1391, 16, 25, 15, 13, 15, 69, 92, 41541, 33, 21387, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12178, 7, 47335, 1631, 62, 9806, 62, 258, 499, 62, 7857, 8, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 11, 12178, 7, 9806, 62, 258, 499, 62, 7857, 8, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 628, 220, 220, 220, 1303, 29113, 14468, 198, 220, 220, 220, 1303, 11291, 503, 262, 42498, 13390, 198, 220, 220, 220, 3509, 62, 46406, 62, 2435, 796, 12178, 28264, 9806, 7, 46406, 62, 22355, 4008, 198, 220, 220, 220, 1303, 1892, 1804, 262, 25882, 11, 475, 257, 3509, 286, 257, 37894, 286, 262, 267, 70, 3965, 12, 314, 892, 326, 338, 1365, 198, 220, 220, 220, 1303, 3863, 1804, 257, 1612, 286, 257, 37894, 30, 198, 220, 220, 220, 279, 310, 62, 17618, 796, 7388, 628, 220, 220, 220, 1303, 21927, 33, 4613, 347, 198, 220, 220, 220, 3509, 62, 519, 62, 4873, 796, 12178, 28264, 9806, 7, 25067, 576, 7, 519, 62, 9700, 11, 279, 310, 62, 17618, 22305, 1635, 28119, 198, 220, 220, 220, 1468, 5235, 62, 28968, 796, 1090, 81, 62, 519, 62, 7857, 532, 357, 22468, 28264, 9806, 7, 35641, 62, 32332, 62, 9700, 8, 1220, 28119, 8, 1635, 3509, 62, 46406, 62, 2435, 8, 532, 357, 9806, 62, 46406, 62, 2435, 1635, 3509, 62, 519, 62, 4873, 8, 198, 220, 220, 220, 1609, 62, 69, 7861, 796, 10688, 13, 28300, 19510, 22468, 7, 727, 5235, 62, 28968, 8, 1220, 1090, 81, 62, 519, 62, 7857, 8, 1635, 1802, 8, 628, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 2080, 257, 3509, 1391, 15, 92, 37894, 34498, 12148, 2494, 286, 1391, 16, 92, 14, 82, 11, 290, 262, 3509, 40773, 16085, 640, 286, 1391, 17, 92, 82, 11, 345, 815, 407, 423, 257, 42498, 13390, 597, 2440, 621, 1391, 18, 25, 15, 13, 15, 69, 92, 526, 13, 18982, 7, 585, 62, 22510, 7, 79, 310, 62, 17618, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4646, 62, 74, 7, 10707, 4402, 7, 2536, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 519, 62, 4873, 1220, 28119, 13, 15, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 46406, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1609, 62, 69, 7861, 828, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 628, 220, 220, 220, 1303, 7349, 767, 402, 16, 27864, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 29584, 402, 16, 16163, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 27156, 4907, 93, 59, 77, 4943, 198, 220, 220, 220, 611, 3492, 62, 1640, 62, 70, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 2080, 257, 3509, 331, 36484, 336, 7959, 286, 1391, 15, 25, 15, 13, 17, 69, 5512, 290, 257, 1391, 16, 92, 37894, 331, 36484, 1612, 13845, 286, 1391, 17, 25, 15, 13, 15, 69, 92, 907, 11, 534, 4566, 318, 922, 1576, 284, 1445, 284, 262, 402, 16, 15413, 22967, 526, 13, 18982, 7, 35641, 66, 62, 301, 7959, 11, 2760, 62, 22510, 7, 79, 310, 62, 17618, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 36484, 62, 32604, 62, 907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 12, 4619, 402, 16, 3544, 530, 2272, 329, 2279, 11, 262, 27890, 24575, 2546, 815, 307, 1391, 15, 25, 15, 13, 15, 69, 92, 41541, 33, 526, 13, 18982, 7, 22468, 7, 47335, 1631, 62, 9806, 62, 258, 499, 62, 7857, 8, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 2080, 257, 3509, 331, 36484, 336, 7959, 286, 1391, 15, 25, 15, 13, 17, 69, 5512, 290, 257, 1391, 16, 92, 37894, 331, 36484, 1612, 13845, 286, 1391, 17, 25, 15, 13, 15, 69, 92, 907, 11, 534, 4566, 318, 2192, 407, 3492, 284, 1445, 284, 262, 402, 16, 15413, 22967, 13, 9993, 24549, 262, 449, 15996, 11, 290, 766, 611, 326, 19575, 1243, 717, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 36484, 62, 301, 7959, 11, 2760, 62, 22510, 7, 79, 310, 62, 17618, 828, 331, 36484, 62, 32604, 62, 907, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 628, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 464, 449, 15996, 7159, 422, 262, 2029, 10763, 7479, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 27156, 27156, 27156, 93, 59, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 12, 55, 36802, 90, 15, 25, 15, 13, 15, 69, 92, 76, 532, 55, 907, 90, 15, 25, 15, 13, 15, 69, 92, 76, 532, 55, 10295, 90, 16, 25, 15, 13, 15, 69, 92, 76, 532, 8051, 25, 34652, 452, 273, 29665, 952, 34758, 17, 25, 15, 13, 15, 69, 92, 532, 8051, 25, 11518, 24893, 870, 817, 10126, 34758, 18, 25, 15, 13, 15, 69, 92, 532, 8051, 25, 34, 5653, 818, 8846, 803, 47658, 3883, 37, 7861, 34758, 19, 25, 15, 13, 15, 69, 92, 1911, 18982, 7, 47335, 1631, 62, 9806, 62, 258, 499, 62, 7857, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 11, 12178, 7, 41255, 62, 782, 62, 7857, 8, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 11, 23446, 62, 10366, 952, 11, 3509, 62, 1452, 870, 62, 496, 11, 1609, 62, 69, 7861, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 628, 220, 220, 220, 611, 3492, 62, 1640, 62, 70, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 464, 449, 15996, 7159, 329, 402, 16, 7479, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 27156, 15116, 93, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 1911, 22179, 7, 5239, 37150, 13, 37150, 7203, 12, 8051, 25, 10, 11041, 38, 16, 15916, 532, 8051, 25, 11518, 38, 8697, 682, 22603, 271, 34758, 15, 25, 15, 13, 15, 69, 92, 532, 55, 907, 90, 16, 25, 15, 13, 15, 69, 92, 76, 532, 55, 36802, 90, 16, 25, 15, 13, 15, 69, 92, 76, 27071, 18982, 7, 35641, 66, 62, 32604, 62, 907, 11, 7151, 62, 9806, 62, 258, 499, 62, 7857, 1220, 28119, 13, 15, 1220, 28119, 13, 15, 828, 3359, 13, 5239, 37150, 62, 28968, 4008, 1343, 37082, 77, 4943, 628, 198, 4299, 651, 62, 36942, 62, 10951, 7, 35317, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 257, 1366, 4645, 351, 3307, 286, 262, 1813, 1429, 4686, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 46514, 1377, 262, 1429, 4686, 286, 262, 1429, 284, 307, 10667, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3307, 796, 8633, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42804, 62, 83, 3378, 62, 525, 62, 2363, 796, 493, 7, 418, 13, 17597, 10414, 7, 418, 13, 17597, 10414, 62, 14933, 17816, 6173, 62, 5097, 42, 62, 4825, 42, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 9881, 62, 525, 62, 7700, 796, 8271, 13, 1136, 31126, 1096, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36484, 62, 7753, 62, 10599, 341, 20520, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 14383, 403, 7203, 961, 8726, 1220, 36942, 14, 90, 15, 92, 14, 66, 16993, 1911, 18982, 7, 35317, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 12501, 1098, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36942, 62, 66, 16993, 20520, 796, 1627, 13, 36311, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 14, 36942, 14, 90, 15, 92, 14, 28758, 1370, 1911, 18982, 7, 35317, 828, 366, 81, 4943, 355, 4808, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 44812, 287, 4808, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 44812, 13, 35312, 7203, 59, 15, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27444, 55, 6404, 36484, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 6978, 796, 1627, 13, 35312, 7, 1298, 1600, 352, 38381, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 308, 66, 62, 6978, 13, 9688, 2032, 342, 7203, 30487, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36484, 62, 6404, 62, 6978, 20520, 796, 308, 66, 62, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36484, 62, 6404, 62, 6978, 20520, 796, 3307, 17816, 36942, 62, 66, 16993, 20520, 1343, 12813, 1, 1343, 308, 66, 62, 6978, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 12813, 8800, 14, 12355, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 12355, 62, 6978, 20520, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 8051, 25, 10, 11041, 38, 5097, 519, 8979, 49, 14221, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36484, 62, 7753, 62, 10599, 341, 20520, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 55, 907, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 1084, 62, 258, 499, 62, 7857, 20520, 796, 1627, 13, 35312, 7203, 907, 4943, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 55, 36802, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 9806, 62, 258, 499, 62, 7857, 20520, 796, 1627, 13, 35312, 7203, 36802, 4943, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 8051, 25, 10, 18557, 38, 8610, 378, 1273, 9430, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 4798, 62, 36484, 62, 4475, 62, 301, 9430, 20520, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 8051, 25, 10, 18557, 38, 8610, 316, 1768, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 4798, 62, 36484, 62, 36604, 20520, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 8051, 25, 10, 18557, 24893, 870, 20344, 3890, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 4798, 62, 1452, 870, 62, 17080, 3890, 20520, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 8051, 25, 34652, 452, 273, 29665, 952, 2625, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 48846, 452, 273, 62, 10366, 952, 20520, 796, 1627, 13, 35312, 7203, 34652, 452, 273, 29665, 952, 2625, 38381, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 8051, 25, 10, 11041, 3103, 66, 9704, 40783, 538, 15916, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 1904, 62, 46406, 20520, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 27444, 8051, 25, 10, 11041, 10044, 3791, 15916, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 1904, 62, 79, 1501, 413, 20520, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 12355, 62, 6978, 6, 407, 287, 3307, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 12355, 62, 6978, 20520, 796, 705, 4458, 22179, 7, 75, 1428, 403, 7203, 4758, 20129, 4943, 737, 36311, 22446, 33491, 7203, 14, 12355, 1600, 366, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 14, 36942, 14, 37623, 524, 1600, 366, 81, 4943, 355, 4808, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 4808, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 17597, 62, 37623, 524, 62, 43012, 20520, 796, 4280, 4402, 7, 1370, 13, 35312, 3419, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 14, 36942, 14, 90, 15, 92, 14, 14269, 1911, 18982, 7, 35317, 828, 366, 81, 4943, 355, 4808, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 4808, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 796, 1627, 13, 35312, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 524, 62, 83, 3378, 796, 493, 7, 3245, 58, 1485, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 524, 62, 83, 3378, 796, 493, 7, 3245, 58, 1415, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16663, 82, 796, 493, 7, 3245, 58, 1129, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18529, 524, 62, 83, 3378, 796, 493, 7, 3245, 58, 2481, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3691, 1096, 62, 33661, 796, 493, 7, 3245, 58, 1828, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 824, 62, 33661, 796, 493, 7, 3245, 58, 1954, 12962, 1635, 9881, 62, 525, 62, 7700, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36942, 62, 37623, 524, 62, 43012, 20520, 796, 357, 36604, 17816, 17597, 62, 37623, 524, 62, 43012, 6, 12962, 532, 4280, 4402, 7, 2536, 7, 37623, 524, 62, 83, 3378, 1220, 12178, 7, 36166, 62, 83, 3378, 62, 525, 62, 2363, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36942, 62, 315, 524, 62, 43012, 20520, 796, 3384, 524, 62, 83, 3378, 1220, 4280, 4402, 7, 36166, 62, 83, 3378, 62, 525, 62, 2363, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36942, 62, 301, 524, 62, 43012, 20520, 796, 336, 524, 62, 83, 3378, 1220, 4280, 4402, 7, 36166, 62, 83, 3378, 62, 525, 62, 2363, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36942, 62, 42216, 62, 33661, 20520, 796, 374, 824, 62, 33661, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 36942, 62, 85, 7857, 62, 33661, 20520, 796, 3691, 1096, 62, 33661, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 22510, 62, 16663, 82, 20520, 796, 997, 62, 16663, 82, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 14383, 403, 7203, 90, 15, 92, 14, 12355, 532, 9641, 1911, 18982, 7, 36604, 17816, 12355, 62, 6978, 6, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 12501, 1098, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 12355, 2196, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 22446, 33491, 7203, 7879, 1600, 366, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 1627, 13, 35312, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 12355, 62, 11249, 62, 9641, 20520, 796, 7032, 58, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 15699, 7, 81, 1, 61, 38016, 67, 10, 19415, 12195, 59, 67, 10, 19415, 12195, 59, 67, 28988, 1600, 3307, 17816, 12355, 62, 11249, 62, 9641, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3307, 17816, 12355, 62, 332, 62, 600, 20520, 796, 2872, 13, 8094, 7, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 1366, 4645, 481, 307, 6565, 11, 290, 314, 1183, 4929, 340, 618, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 314, 651, 257, 1994, 4049, 319, 22534, 340, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 1441, 3307, 628, 198, 4299, 1429, 62, 70, 565, 519, 7, 6404, 62, 7753, 28, 14202, 11, 2604, 62, 7753, 62, 1930, 28, 15, 2599, 198, 220, 220, 220, 37227, 35700, 4096, 2163, 326, 11629, 689, 832, 257, 308, 66, 2604, 11, 290, 5860, 257, 1366, 4645, 198, 220, 220, 220, 286, 262, 2604, 1366, 13, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 2604, 62, 7753, 1377, 262, 308, 66, 2604, 2393, 284, 307, 1100, 198, 220, 220, 220, 2604, 62, 7753, 62, 1930, 1377, 262, 11677, 286, 262, 2604, 2393, 422, 44012, 284, 923, 357, 292, 9881, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 308, 66, 62, 6404, 62, 36560, 796, 1351, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 22510, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9, 11725, 308, 66, 13, 6404, 2393, 9313, 11, 886, 2625, 366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 7857, 796, 28686, 13, 14269, 7, 6404, 62, 7753, 737, 301, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 7857, 1279, 2604, 62, 7753, 62, 1930, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6404, 2393, 373, 40122, 515, 14, 10599, 515, 26, 3555, 422, 262, 923, 1600, 886, 2625, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 7753, 62, 1930, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6404, 62, 7753, 11, 366, 81, 4943, 355, 4808, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7753, 13, 36163, 7, 6404, 62, 7753, 62, 1930, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 4808, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 6404, 62, 36560, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 22510, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 42118, 62, 2435, 796, 792, 62, 26069, 7, 9688, 62, 2435, 11, 4818, 8079, 13, 19608, 8079, 13, 2197, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 28060, 13, 1446, 3577, 1391, 15, 92, 3951, 287, 1391, 16, 25, 15, 13, 19, 69, 92, 4201, 526, 13, 18982, 7, 1370, 62, 22510, 11, 42118, 62, 2435, 4008, 198, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 314, 836, 470, 765, 14, 31227, 284, 2198, 262, 6631, 13, 1002, 340, 10143, 11, 340, 10143, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 6404, 62, 36560, 13, 33295, 7203, 10619, 62, 19238, 62, 25664, 4943, 628, 220, 220, 220, 1441, 308, 66, 62, 6404, 62, 36560, 628, 198, 4299, 4808, 5143, 62, 73, 8899, 7, 35317, 28, 14202, 11, 386, 10210, 316, 1768, 28, 14202, 2599, 198, 220, 220, 220, 37227, 49, 2150, 474, 8899, 329, 262, 1813, 1429, 4686, 11, 290, 20129, 3108, 11, 8024, 198, 220, 220, 220, 257, 1366, 4645, 351, 262, 1321, 37811, 628, 220, 220, 220, 474, 8899, 62, 7890, 796, 8633, 3419, 198, 220, 220, 220, 20129, 62, 6978, 796, 386, 10210, 316, 1768, 17816, 12355, 62, 6978, 20520, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 14383, 403, 7203, 90, 15, 92, 14, 73, 8899, 532, 41, 12, 55, 36802, 12762, 44, 532, 258, 499, 1391, 16, 92, 1911, 18982, 7, 12355, 62, 6978, 11, 46514, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 12501, 1098, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 796, 1627, 13, 35312, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 9452, 1544, 499, 11146, 29665, 952, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 9452, 1544, 499, 11146, 29665, 952, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 11518, 1544, 499, 11146, 29665, 952, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 11518, 1544, 499, 11146, 29665, 952, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 11518, 1544, 499, 10699, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 11518, 1544, 499, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 3791, 10699, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 3791, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 11518, 3791, 10699, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 11518, 3791, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 19620, 10699, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 449, 13912, 2331, 284, 307, 27464, 2642, 13, 3082, 1723, 340, 284, 474, 14269, 11, 340, 2523, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 338, 572, 416, 546, 8576, 357, 35500, 737, 1318, 338, 257, 5434, 287, 7349, 21, 810, 428, 318, 287, 14204, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 9881, 588, 262, 1854, 13, 31254, 284, 307, 5969, 287, 7349, 23, 357, 25991, 7349, 22, 11, 1165, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20129, 62, 600, 796, 493, 7, 1676, 10210, 316, 1768, 17816, 12355, 62, 332, 62, 600, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20129, 62, 600, 1279, 807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 19620, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 1635, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 19620, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 3791, 29665, 952, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 3791, 29665, 952, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 34652, 452, 273, 29665, 952, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 34652, 452, 273, 29665, 952, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 5990, 76, 10699, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 5990, 76, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 11518, 5990, 76, 10699, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 11518, 5990, 76, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 11518, 9171, 5126, 558, 10699, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 10744, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 11518, 9171, 5126, 558, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 1635, 28119, 1635, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 11518, 9171, 5126, 558, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 9171, 5126, 558, 10699, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 17816, 9171, 5126, 558, 10699, 20520, 796, 493, 7, 3245, 58, 17, 12962, 628, 220, 220, 220, 2845, 357, 9399, 12331, 11, 31973, 9492, 3622, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 1441, 474, 8899, 62, 7890, 628, 198, 4299, 1057, 62, 73, 14269, 7, 35317, 28, 14202, 11, 20129, 62, 6978, 28, 14202, 11, 645, 62, 73, 14269, 62, 22915, 28, 14202, 11, 277, 36484, 62, 11338, 62, 9127, 28, 14202, 11, 3509, 62, 9127, 28, 14202, 11, 331, 36484, 62, 11338, 62, 9127, 28, 14202, 2599, 198, 220, 220, 220, 37227, 49, 2150, 474, 14269, 11, 290, 23862, 262, 1366, 287, 257, 3621, 5721, 290, 19874, 12461, 13, 628, 220, 220, 220, 7383, 4775, 7159, 25, 198, 220, 220, 220, 46514, 1377, 262, 1429, 46514, 284, 1057, 474, 14269, 1028, 198, 220, 220, 220, 20129, 62, 6978, 1377, 262, 3108, 284, 779, 284, 1057, 474, 14269, 198, 220, 220, 220, 645, 62, 73, 14269, 62, 22915, 1377, 2081, 14, 9562, 326, 4952, 428, 2163, 284, 407, 5072, 597, 1366, 198, 220, 220, 220, 277, 36484, 62, 11338, 62, 9127, 1377, 262, 18253, 1988, 326, 4952, 428, 2163, 284, 2245, 379, 428, 1271, 286, 1336, 357, 46406, 8, 308, 6359, 198, 220, 220, 220, 3509, 62, 9127, 1377, 262, 3509, 1271, 286, 3951, 262, 2163, 815, 3359, 198, 220, 220, 220, 331, 36484, 62, 11338, 62, 9127, 1377, 262, 18253, 1988, 326, 4952, 428, 2163, 284, 2245, 379, 428, 1271, 286, 1862, 308, 6359, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 850, 36942, 628, 220, 220, 220, 474, 14269, 62, 7890, 796, 8633, 3419, 198, 220, 220, 220, 474, 14269, 62, 7890, 17816, 34694, 62, 2257, 23518, 20520, 796, 1351, 3419, 628, 220, 220, 220, 1303, 770, 318, 703, 262, 15180, 481, 307, 9066, 287, 1502, 13, 198, 220, 220, 220, 6149, 62, 25747, 796, 14631, 2943, 1600, 366, 8905, 1600, 366, 19684, 1600, 366, 50, 15, 34, 14, 50, 16, 34, 1600, 366, 50, 15, 34, 1600, 366, 50, 16, 34, 1600, 366, 50, 15, 52, 1600, 366, 50, 16, 52, 1600, 366, 4503, 1600, 366, 3185, 1600, 366, 2606, 1600, 366, 9655, 1600, 366, 42422, 1600, 366, 5662, 1600, 366, 5105, 1600, 366, 56, 15916, 1600, 366, 56, 38, 8610, 1600, 366, 37, 15916, 1600, 366, 30386, 8610, 8973, 628, 220, 220, 220, 9066, 62, 22915, 796, 10352, 198, 220, 220, 220, 5929, 62, 48846, 452, 669, 796, 10352, 628, 220, 220, 220, 2214, 62, 8899, 796, 8633, 3419, 198, 220, 220, 220, 1627, 62, 22510, 796, 657, 198, 220, 220, 220, 2214, 62, 10394, 82, 796, 8633, 3419, 628, 220, 220, 220, 717, 62, 69, 36484, 62, 310, 796, 6045, 198, 220, 220, 220, 8654, 62, 69, 36484, 62, 310, 796, 6045, 198, 220, 220, 220, 938, 62, 69, 36484, 62, 310, 796, 6045, 198, 220, 220, 220, 2472, 62, 40616, 6359, 796, 6045, 198, 220, 220, 220, 2472, 62, 35641, 6359, 796, 6045, 628, 220, 220, 220, 1790, 62, 25747, 796, 6407, 628, 220, 220, 220, 1303, 11204, 1498, 284, 779, 21015, 18, 338, 3601, 2163, 326, 314, 714, 20957, 561, 198, 220, 220, 220, 1303, 670, 881, 1365, 994, 26, 2427, 314, 423, 284, 466, 428, 46482, 835, 986, 198, 220, 220, 220, 3359, 13, 13287, 7203, 2, 1, 1635, 642, 1343, 37082, 77, 4943, 198, 220, 220, 220, 3359, 13, 13287, 7203, 2, 7253, 3862, 25, 220, 1391, 15, 92, 16987, 59, 77, 1911, 18982, 7, 19608, 8079, 13, 19608, 8079, 13, 2197, 3419, 4008, 198, 220, 220, 220, 3359, 13, 13287, 7203, 2, 14504, 25, 220, 220, 220, 220, 220, 220, 220, 1391, 15, 32239, 77, 1911, 18982, 7, 44971, 13, 1136, 69, 80, 32656, 3419, 4008, 198, 220, 220, 220, 3359, 13, 13287, 7203, 2, 1, 1635, 642, 1343, 37082, 77, 4943, 628, 220, 220, 220, 611, 3509, 62, 9127, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 45144, 15, 92, 14, 73, 14269, 532, 41, 12, 55, 36802, 12762, 44, 532, 36484, 1391, 16, 92, 8576, 1391, 17, 92, 1911, 18982, 7, 12355, 62, 6978, 11, 46514, 11, 3509, 62, 9127, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 45144, 15, 92, 14, 73, 14269, 532, 41, 12, 55, 36802, 12762, 44, 532, 36484, 1391, 16, 92, 8576, 1911, 18982, 7, 12355, 62, 6978, 11, 46514, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 14383, 403, 7, 28758, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 12501, 1098, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 4242, 2235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12578, 262, 13639, 11, 290, 717, 734, 3951, 815, 307, 10398, 13, 2293, 326, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 9156, 2512, 379, 262, 886, 357, 1462, 766, 611, 612, 338, 587, 257, 277, 36484, 393, 407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2753, 625, 11, 290, 20842, 262, 1627, 4006, 453, 351, 42050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 22510, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 1627, 13, 35312, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 62, 22510, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 58, 3245, 60, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 8899, 58, 3245, 62, 22510, 60, 796, 2214, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 3672, 796, 2214, 62, 8899, 58, 3245, 62, 22510, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 3672, 287, 37250, 56, 38, 4177, 3256, 705, 30386, 4177, 3256, 705, 38, 4177, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 58, 3245, 62, 3672, 4083, 33295, 7, 10707, 4402, 7, 3245, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 337, 6020, 43237, 5647, 82, 12, 645, 32465, 2622, 329, 1588, 3146, 26, 326, 338, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 655, 14397, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 58, 3245, 62, 3672, 4083, 33295, 7, 10707, 4402, 7203, 90, 15, 25, 15, 13, 15, 69, 92, 1911, 18982, 7, 10707, 4402, 7, 3245, 35514, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 22510, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 14269, 62, 7890, 17816, 4503, 20520, 290, 474, 14269, 62, 7890, 17816, 2606, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11625, 284, 5412, 262, 5873, 12, 47812, 994, 2427, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 1642, 257, 3748, 26340, 1568, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 3185, 1, 407, 287, 474, 14269, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 3185, 20520, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 3185, 6, 4083, 33295, 7203, 90, 15, 25, 15, 13, 16, 4, 92, 1911, 18982, 7, 73, 14269, 62, 7890, 17816, 2606, 6, 7131, 12, 16, 60, 1220, 474, 14269, 62, 7890, 17816, 4503, 6, 7131, 12, 16, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 14269, 62, 7890, 17816, 2943, 20520, 290, 474, 14269, 62, 7890, 17816, 19684, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11625, 284, 5412, 262, 5873, 12, 47812, 994, 2427, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 1642, 257, 3748, 26340, 1568, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 8905, 1, 407, 287, 474, 14269, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 8905, 20520, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 8905, 6, 4083, 33295, 7203, 90, 15, 25, 15, 13, 16, 4, 92, 1911, 18982, 7, 73, 14269, 62, 7890, 17816, 19684, 6, 7131, 12, 16, 60, 1220, 474, 14269, 62, 7890, 17816, 2943, 6, 7131, 12, 16, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 14269, 62, 7890, 17816, 38, 4177, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 56, 38, 8610, 1, 407, 287, 474, 14269, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 56, 38, 8610, 20520, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 30386, 8610, 1, 407, 287, 474, 14269, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 30386, 8610, 20520, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6960, 308, 66, 954, 25979, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 14269, 62, 7890, 17816, 56, 15916, 6, 7131, 12, 16, 60, 1875, 474, 14269, 62, 7890, 17816, 56, 15916, 6, 7131, 12, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 43825, 1, 1343, 965, 7, 73, 14269, 62, 7890, 17816, 56, 15916, 6, 7131, 12, 16, 60, 532, 474, 14269, 62, 7890, 17816, 56, 15916, 6, 7131, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 366, 21215, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 366, 21215, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 56, 38, 8610, 6, 4083, 33295, 7, 67, 12514, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1336, 308, 66, 954, 25979, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 14269, 62, 7890, 17816, 37, 15916, 6, 7131, 12, 16, 60, 1875, 474, 14269, 62, 7890, 17816, 37, 15916, 6, 7131, 12, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 43825, 1, 1343, 965, 7, 73, 14269, 62, 7890, 17816, 37, 15916, 6, 7131, 12, 16, 60, 532, 474, 14269, 62, 7890, 17816, 37, 15916, 6, 7131, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 366, 21215, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 366, 21215, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 30386, 8610, 6, 4083, 33295, 7, 67, 12514, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 2, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 314, 761, 379, 1551, 734, 3951, 284, 651, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6754, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 62, 22510, 18189, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9175, 257, 41033, 329, 1123, 1700, 357, 1462, 651, 850, 12, 12227, 19468, 33737, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 69, 36484, 62, 310, 796, 474, 14269, 62, 7890, 17816, 37, 15916, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 35641, 66, 62, 310, 796, 474, 14269, 62, 7890, 17816, 56, 15916, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 69, 36484, 62, 310, 796, 474, 14269, 62, 7890, 17816, 37, 15916, 6, 7131, 12, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 69, 36484, 62, 310, 796, 474, 14269, 62, 7890, 17816, 37, 15916, 6, 7131, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 35641, 66, 62, 310, 796, 474, 14269, 62, 7890, 17816, 56, 15916, 6, 7131, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 40616, 6359, 796, 938, 62, 69, 36484, 62, 310, 532, 717, 62, 69, 36484, 62, 310, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 35641, 6359, 796, 938, 62, 35641, 66, 62, 310, 532, 717, 62, 35641, 66, 62, 310, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 7804, 4242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1627, 352, 318, 4036, 1366, 11, 657, 318, 655, 262, 13639, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 62, 22510, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 34694, 62, 2257, 23518, 6, 4083, 33295, 7, 16514, 27823, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 14468, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 611, 314, 460, 12082, 262, 311, 15, 34, 14, 50, 16, 34, 7032, 357, 26949, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 14269, 62, 7890, 17816, 50, 15, 34, 6, 7131, 12, 16, 60, 6624, 474, 14269, 62, 7890, 17816, 50, 16, 34, 6, 7131, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 50, 15, 34, 14, 50, 16, 34, 1, 407, 287, 474, 14269, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 50, 15, 34, 14, 50, 16, 34, 20520, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 14269, 62, 7890, 17816, 50, 15, 34, 14, 50, 16, 34, 6, 4083, 33295, 7, 73, 14269, 62, 7890, 17816, 50, 15, 34, 6, 7131, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5929, 62, 48846, 452, 669, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 30806, 355, 314, 4929, 340, 2961, 13, 38068, 340, 994, 329, 783, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 41102, 588, 345, 821, 407, 2491, 351, 262, 40773, 15413, 22967, 13, 921, 460, 7139, 428, 3038, 416, 4634, 534, 449, 15996, 7159, 284, 779, 705, 12, 8051, 25, 10, 11041, 3103, 66, 9704, 40783, 538, 15916, 6, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2214, 62, 10394, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 10394, 82, 796, 4808, 1136, 62, 10394, 82, 7, 73, 14269, 62, 7890, 11, 1790, 62, 25747, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9066, 62, 22915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9066, 62, 22915, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 7804, 4242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2094, 470, 3359, 597, 5072, 11, 655, 2555, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1306, 24415, 13, 314, 694, 11, 4274, 12, 31591, 492, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 645, 62, 73, 14269, 62, 22915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12578, 262, 5721, 13639, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 220, 33172, 1394, 62, 3605, 1370, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 6149, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5929, 62, 48846, 452, 669, 290, 2214, 14512, 366, 50, 15, 34, 1, 290, 2214, 14512, 366, 50, 16, 34, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 287, 2214, 62, 10394, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 796, 2214, 62, 10394, 82, 58, 3245, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 90, 15, 25, 29, 90, 16, 11709, 1911, 18982, 7, 3245, 11, 9647, 1343, 352, 828, 1394, 62, 3605, 1370, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12578, 257, 3621, 1627, 599, 11736, 477, 772, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 220, 33172, 1394, 62, 3605, 1370, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 6149, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5929, 62, 48846, 452, 669, 290, 2214, 14512, 366, 50, 15, 34, 1, 290, 2214, 14512, 366, 50, 16, 34, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 287, 2214, 62, 10394, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 796, 2214, 62, 10394, 82, 58, 3245, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 90, 15, 25, 29, 90, 16, 11709, 1911, 18982, 7203, 93, 1, 1635, 9647, 11, 9647, 1343, 352, 828, 1394, 62, 3605, 1370, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12578, 262, 717, 5752, 286, 1366, 326, 373, 39986, 523, 340, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 307, 973, 284, 5004, 2214, 9647, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 220, 33172, 1394, 62, 3605, 1370, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 6149, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 287, 2214, 62, 10394, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 796, 2214, 62, 10394, 82, 58, 3245, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 938, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5929, 62, 48846, 452, 669, 290, 2214, 14512, 366, 50, 15, 34, 1, 290, 2214, 14512, 366, 50, 16, 34, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 474, 14269, 62, 7890, 58, 3245, 7131, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1790, 62, 25747, 290, 2214, 407, 287, 37250, 8905, 3256, 705, 3185, 3256, 705, 56, 15916, 3256, 705, 56, 38, 4177, 3256, 705, 37, 15916, 3256, 705, 30386, 4177, 3256, 705, 38, 4177, 3256, 705, 30386, 8610, 3256, 705, 56, 38, 8610, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4646, 62, 74, 7, 8367, 11, 15440, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 90, 15, 25, 29, 90, 16, 11709, 1911, 18982, 7, 8367, 11, 9647, 1343, 352, 828, 1394, 62, 3605, 1370, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2094, 470, 3359, 597, 5072, 11, 655, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2555, 284, 262, 1306, 24415, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 645, 62, 73, 14269, 62, 22915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 938, 62, 69, 36484, 62, 310, 1875, 8654, 62, 69, 36484, 62, 310, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 9, 33172, 1394, 62, 3605, 1370, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 220, 33172, 1394, 62, 3605, 1370, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 3601, 262, 4036, 3146, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 6149, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 287, 2214, 62, 10394, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 796, 2214, 62, 10394, 82, 58, 3245, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 938, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5929, 62, 48846, 452, 669, 290, 2214, 14512, 366, 50, 15, 34, 1, 290, 2214, 14512, 366, 50, 16, 34, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 474, 14269, 62, 7890, 58, 3245, 7131, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1790, 62, 25747, 290, 2214, 407, 287, 37250, 8905, 3256, 705, 3185, 3256, 705, 56, 15916, 3256, 705, 56, 38, 4177, 3256, 705, 37, 15916, 3256, 705, 30386, 4177, 3256, 705, 38, 4177, 3256, 705, 30386, 8610, 3256, 705, 56, 38, 8610, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4646, 62, 74, 7, 8367, 11, 15440, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 90, 15, 25, 29, 90, 16, 11709, 1911, 18982, 7, 8367, 11, 9647, 1343, 352, 828, 1394, 62, 3605, 1370, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 938, 62, 69, 36484, 62, 310, 1875, 8654, 62, 69, 36484, 62, 310, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 9, 33172, 1394, 62, 3605, 1370, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 220, 33172, 1394, 62, 3605, 1370, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 3601, 262, 4036, 3146, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 6149, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 287, 2214, 62, 10394, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 796, 2214, 62, 10394, 82, 58, 3245, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 938, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5929, 62, 48846, 452, 669, 290, 2214, 14512, 366, 50, 15, 34, 1, 290, 2214, 14512, 366, 50, 16, 34, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 474, 14269, 62, 7890, 58, 3245, 7131, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1790, 62, 25747, 290, 2214, 407, 287, 37250, 8905, 3256, 705, 3185, 3256, 705, 56, 15916, 3256, 705, 56, 38, 4177, 3256, 705, 37, 15916, 3256, 705, 30386, 4177, 3256, 705, 38, 4177, 3256, 705, 30386, 8610, 3256, 705, 56, 38, 8610, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4646, 62, 74, 7, 8367, 11, 15440, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 90, 15, 25, 29, 90, 16, 11709, 1911, 18982, 7, 8367, 11, 9647, 1343, 352, 828, 1394, 62, 3605, 1370, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 13287, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 657, 1279, 277, 36484, 62, 11338, 62, 9127, 19841, 2472, 62, 40616, 6359, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 657, 1279, 331, 36484, 62, 11338, 62, 9127, 19841, 2472, 62, 35641, 6359, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 22510, 15853, 352, 628, 220, 220, 220, 2845, 357, 9399, 12331, 11, 31973, 9492, 3622, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 20022, 611, 314, 8420, 262, 705, 75, 1428, 403, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 850, 36942, 290, 850, 36942, 13, 30393, 3419, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 1429, 5818, 470, 23083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 36942, 13, 23705, 378, 3419, 628, 220, 220, 220, 1441, 474, 14269, 62, 7890, 628, 198, 4299, 4808, 1136, 62, 10394, 82, 7, 73, 14269, 62, 7890, 28, 14202, 11, 1790, 62, 25747, 28, 25101, 2599, 198, 220, 220, 220, 37227, 22203, 326, 5860, 262, 7151, 2214, 9647, 82, 286, 262, 474, 14269, 5072, 37811, 628, 220, 220, 220, 9647, 82, 796, 8633, 3419, 628, 220, 220, 220, 329, 2214, 287, 474, 14269, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 10394, 796, 3509, 7, 4868, 7, 8899, 7, 11925, 11, 1351, 7, 8899, 7, 2536, 11, 474, 14269, 62, 7890, 58, 3245, 60, 4008, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 10394, 796, 18896, 7, 3245, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 10394, 1875, 3509, 62, 10394, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 82, 58, 3245, 60, 796, 2214, 62, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 82, 58, 3245, 60, 796, 3509, 62, 10394, 628, 220, 220, 220, 1303, 29113, 29113, 2, 198, 220, 220, 220, 1303, 6093, 9041, 329, 23446, 9029, 357, 50, 15, 34, 11, 311, 16, 34, 11, 311, 15, 52, 11, 311, 16, 52, 8, 815, 198, 220, 220, 220, 1303, 477, 307, 262, 976, 9647, 11, 290, 275, 14, 66, 311, 90, 486, 92, 52, 13527, 11, 340, 338, 1365, 284, 198, 220, 220, 220, 1303, 900, 262, 9647, 422, 311, 90, 486, 92, 34, 628, 220, 220, 220, 611, 1790, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 705, 20, 6, 5504, 329, 705, 87, 13, 5324, 45, 6, 357, 18, 13, 1954, 42, 14, 44, 14, 38, 828, 3503, 13, 198, 220, 220, 220, 220, 220, 220, 220, 23446, 62, 9806, 796, 718, 198, 220, 220, 220, 220, 220, 220, 220, 649, 5235, 62, 9806, 796, 718, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 5235, 62, 9806, 796, 718, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23446, 62, 9806, 796, 3509, 7, 10394, 82, 17816, 50, 15, 34, 6, 4357, 9647, 82, 17816, 50, 16, 34, 6, 4357, 9647, 82, 17816, 50, 15, 52, 6, 4357, 9647, 82, 17816, 50, 16, 52, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 649, 5235, 62, 9806, 796, 3509, 7, 10394, 82, 17816, 2943, 6, 4357, 9647, 82, 17816, 19684, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 5235, 62, 9806, 796, 3509, 7, 10394, 82, 17816, 4503, 6, 4357, 9647, 82, 17816, 2606, 6, 12962, 628, 220, 220, 220, 9647, 82, 17816, 4503, 20520, 796, 1468, 5235, 62, 9806, 198, 220, 220, 220, 9647, 82, 17816, 2606, 20520, 796, 1468, 5235, 62, 9806, 628, 220, 220, 220, 9647, 82, 17816, 2943, 20520, 796, 649, 5235, 62, 9806, 198, 220, 220, 220, 9647, 82, 17816, 19684, 20520, 796, 649, 5235, 62, 9806, 628, 220, 220, 220, 9647, 82, 17816, 50, 15, 34, 20520, 796, 23446, 62, 9806, 198, 220, 220, 220, 9647, 82, 17816, 50, 16, 34, 20520, 796, 23446, 62, 9806, 198, 220, 220, 220, 9647, 82, 17816, 50, 15, 52, 20520, 796, 23446, 62, 9806, 198, 220, 220, 220, 9647, 82, 17816, 50, 16, 52, 20520, 796, 23446, 62, 9806, 628, 220, 220, 220, 9647, 82, 17816, 8905, 20520, 796, 718, 198, 220, 220, 220, 9647, 82, 17816, 3185, 20520, 796, 718, 628, 220, 220, 220, 1441, 9647, 82, 628, 198, 4299, 4808, 265, 62, 37023, 7, 1831, 62, 36484, 62, 6404, 28, 14202, 11, 474, 8899, 62, 7890, 28, 14202, 11, 474, 14269, 62, 7890, 28, 14202, 11, 13834, 62, 36604, 28, 14202, 11, 23392, 62, 1640, 62, 35641, 6359, 62, 4873, 28, 14202, 2599, 198, 220, 220, 220, 37227, 464, 8420, 2163, 326, 318, 1444, 618, 262, 2836, 31048, 269, 14859, 12, 66, 11, 393, 618, 340, 30151, 706, 1395, 1271, 198, 220, 220, 220, 286, 474, 14269, 34820, 13, 632, 3848, 2972, 5499, 284, 3359, 4465, 1321, 284, 262, 886, 12, 7220, 526, 15931, 628, 220, 220, 220, 308, 66, 62, 7890, 796, 1351, 3419, 198, 220, 220, 220, 287, 62, 14192, 4496, 796, 10352, 198, 220, 220, 220, 3128, 62, 2435, 796, 6045, 198, 220, 220, 220, 5726, 796, 1351, 3419, 628, 220, 220, 220, 1303, 314, 836, 470, 760, 611, 314, 588, 428, 11, 475, 314, 3636, 470, 651, 284, 198, 220, 220, 220, 1303, 428, 966, 4556, 314, 1965, 329, 20145, 1366, 422, 14367, 259, 986, 198, 220, 220, 220, 611, 407, 8246, 62, 36484, 62, 6404, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 36484, 62, 6404, 796, 25064, 13, 19282, 259, 628, 220, 220, 220, 329, 1627, 287, 8246, 62, 36484, 62, 6404, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 29113, 7804, 4242, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4619, 314, 1101, 1262, 262, 41033, 355, 262, 1700, 336, 35819, 46728, 2676, 11, 314, 743, 355, 880, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10385, 340, 284, 257, 4818, 8079, 2134, 994, 2427, 286, 1804, 340, 1568, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 302, 13, 15699, 7, 81, 1, 61, 38016, 67, 10, 13219, 38016, 67, 10, 13219, 38016, 67, 28988, 51, 38016, 67, 10, 2599, 38016, 67, 10, 2599, 26933, 59, 67, 59, 8183, 28988, 58, 10, 12, 60, 59, 67, 10, 25, 29565, 59, 67, 59, 8183, 10, 2599, 1600, 1627, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 14192, 4496, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 314, 1101, 379, 262, 923, 286, 257, 649, 2512, 11, 3613, 262, 2180, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3128, 62, 2435, 290, 5726, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 22105, 796, 20145, 23739, 19510, 4475, 62, 2435, 11, 5726, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 308, 66, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 36484, 62, 22105, 796, 308, 66, 62, 7890, 58, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 308, 66, 62, 22105, 13, 73, 14761, 62, 20270, 62, 2435, 290, 8654, 62, 36484, 62, 22105, 13, 73, 14761, 62, 20270, 62, 2435, 1875, 308, 66, 62, 22105, 13, 73, 14761, 62, 20270, 62, 2435, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 464, 449, 15996, 15765, 276, 379, 1391, 15, 27422, 797, 12, 259, 1780, 262, 5387, 4818, 459, 1356, 942, 526, 13, 18982, 7, 36484, 62, 22105, 13, 22105, 62, 16514, 27823, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 7890, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 308, 66, 62, 22105, 13, 12102, 62, 22105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 7890, 13, 33295, 7, 36484, 62, 22105, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 796, 493, 7, 15699, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1227, 796, 493, 7, 15699, 13, 8094, 7, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1110, 796, 493, 7, 15699, 13, 8094, 7, 18, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 796, 493, 7, 15699, 13, 8094, 7, 19, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5664, 796, 493, 7, 15699, 13, 8094, 7, 20, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1218, 796, 4280, 4402, 7, 15699, 13, 8094, 7, 21, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 510, 62, 2435, 796, 4280, 4402, 7, 15699, 13, 8094, 7, 22, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7203, 90, 15, 92, 12, 90, 16, 92, 12, 90, 17, 92, 1391, 18, 92, 29164, 19, 92, 29164, 20, 92, 1911, 18982, 7, 1941, 11, 1227, 11, 1110, 11, 1711, 11, 5664, 11, 1218, 828, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 287, 62, 14192, 4496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 13, 33295, 7, 1370, 8, 628, 220, 220, 220, 4808, 5143, 62, 20930, 7, 36484, 62, 7890, 11, 474, 8899, 62, 7890, 11, 474, 14269, 62, 7890, 11, 13834, 62, 36604, 11, 23392, 62, 1640, 62, 35641, 6359, 62, 4873, 8, 628, 198, 4299, 651, 62, 10599, 515, 62, 6404, 62, 7753, 7, 36484, 62, 6404, 62, 7753, 2599, 198, 220, 220, 220, 37227, 22203, 481, 9367, 4683, 2604, 3696, 284, 5004, 3452, 38375, 2604, 11, 611, 4844, 1043, 481, 1441, 198, 220, 220, 220, 220, 220, 220, 1729, 38375, 2393, 1438, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2604, 62, 17618, 796, 657, 198, 220, 220, 220, 981, 28686, 13, 6978, 13, 4468, 576, 7203, 90, 15, 27422, 90, 16, 92, 1911, 18982, 7, 36484, 62, 6404, 62, 7753, 11, 2604, 62, 17618, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 17618, 15853, 352, 628, 220, 220, 220, 611, 2604, 62, 17618, 25, 198, 220, 220, 220, 220, 220, 220, 220, 308, 66, 62, 6404, 62, 7753, 796, 45144, 15, 27422, 90, 16, 92, 1911, 18982, 7, 36484, 62, 6404, 62, 7753, 11, 357, 6404, 62, 17618, 532, 352, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 59, 77, 1911, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 37150, 13, 37150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16973, 407, 1498, 284, 1064, 257, 38375, 20145, 2604, 329, 428, 1429, 11, 4277, 278, 284, 308, 66, 2604, 422, 1429, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 13, 5239, 37150, 62, 28968, 22305, 628, 220, 220, 220, 1441, 308, 66, 62, 6404, 62, 7753, 628, 198, 198, 4299, 651, 62, 73, 8899, 62, 7890, 7, 35317, 28, 14202, 11, 386, 10210, 316, 1768, 28, 14202, 2599, 198, 220, 220, 220, 37227, 22203, 326, 4539, 474, 8899, 11, 691, 2622, 275, 14, 66, 474, 8899, 743, 407, 923, 11, 290, 428, 1005, 1678, 319, 5287, 526, 15931, 628, 220, 220, 220, 474, 8899, 62, 7890, 796, 6045, 628, 220, 220, 220, 329, 4201, 287, 685, 87, 1635, 362, 329, 2124, 287, 2837, 7, 16, 11, 807, 8, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 474, 8899, 62, 7890, 796, 4808, 5143, 62, 73, 8899, 7, 35317, 11, 386, 10210, 316, 1768, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 3791, 10699, 1, 287, 474, 8899, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 23722, 77, 470, 2018, 284, 474, 14761, 2884, 474, 8899, 284, 651, 4938, 1366, 13, 31148, 1391, 15, 25, 15, 13, 15, 69, 92, 4201, 11, 290, 2111, 757, 526, 13, 18982, 7, 43012, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 43012, 8, 628, 220, 220, 220, 1441, 474, 8899, 62, 7890, 628, 198, 29113, 29113, 198, 2, 8774, 198, 7220, 796, 28686, 13, 268, 2268, 13, 1136, 7203, 50, 8322, 46, 62, 29904, 1600, 6045, 8, 198, 198, 361, 407, 2836, 25, 198, 220, 220, 220, 2836, 796, 651, 6603, 13, 1136, 7220, 3419, 198, 198, 7266, 36942, 796, 6045, 198, 13812, 796, 16531, 3419, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.208069
34,229
"""LightningFlower Model""" import flwr as fl import pytorch_lightning as pl
[ 37811, 15047, 768, 7414, 789, 9104, 37811, 198, 11748, 781, 18351, 355, 781, 198, 11748, 12972, 13165, 354, 62, 2971, 768, 355, 458, 628 ]
3.25
24
#coding:utf-8 from flask import * import pymysql import db,modules
[ 2, 66, 7656, 25, 40477, 12, 23, 198, 6738, 42903, 1330, 1635, 198, 11748, 279, 4948, 893, 13976, 198, 11748, 20613, 11, 18170, 198 ]
2.791667
24
# # The sphinx-jinja extension is available from https://github.com/tardyp/sphinx-jinja, # licensed under the MIT License. # # # The MIT License # # Copyright (c) 2016-2019 Pierre Tardy # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import codecs import os import sys import urllib from docutils import nodes from docutils.parsers.rst import Directive from docutils.parsers.rst import directives from docutils.statemachine import StringList from jinja2 import FileSystemLoader, Environment import sphinx.util
[ 2, 198, 2, 383, 599, 20079, 87, 12, 18594, 6592, 7552, 318, 1695, 422, 3740, 1378, 12567, 13, 785, 14, 83, 446, 4464, 14, 82, 746, 28413, 12, 18594, 6592, 11, 198, 2, 11971, 739, 262, 17168, 13789, 13, 198, 2, 198, 2, 198, 2, 383, 17168, 13789, 198, 2, 198, 2, 15069, 357, 66, 8, 1584, 12, 23344, 21204, 309, 39124, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 2, 3336, 47466, 13, 628, 198, 11748, 40481, 82, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 2956, 297, 571, 198, 198, 6738, 2205, 26791, 1330, 13760, 198, 6738, 2205, 26791, 13, 79, 945, 364, 13, 81, 301, 1330, 34736, 198, 6738, 2205, 26791, 13, 79, 945, 364, 13, 81, 301, 1330, 34819, 198, 6738, 2205, 26791, 13, 14269, 368, 20480, 1330, 10903, 8053, 198, 6738, 474, 259, 6592, 17, 1330, 9220, 11964, 17401, 11, 9344, 198, 11748, 599, 20079, 87, 13, 22602, 628, 198 ]
3.672289
415
import identifiers_api from .identifier_object_builder import set_identifier_object def manage_ids(jsons_data, **metadata_properties): """ :param jsons_data: :param kwargs: :return: """ organism = metadata_properties.get("organism", None) for dataset in jsons_data: collection_name = dataset.get("collectionName", None) collection_data = dataset.get("collectionData", None) ontology_name = dataset.get("ontologyName", None) metadata_properties["classAcronym"] = dataset.get("classAcronym", None) metadata_properties["subClassAcronym"] = dataset.get("subClassAcronym", None) metadata_properties["ontologyName"] = ontology_name # Trying to obtain identifiers from the collection that is been # processed, in order to check if the pre-identifier that is been # processed is going to be updated or created collection_identifiers = identifiers_api.regulondbmultigenomic.get_identifiers_by(type=collection_name, ontology_name=ontology_name, organism=organism) for json_object in collection_data: identifier_object = set_identifier_object(json_object, collection_name, **metadata_properties) handle_id(identifier_object, collection_identifiers)
[ 11748, 42814, 62, 15042, 198, 198, 6738, 764, 738, 7483, 62, 15252, 62, 38272, 1330, 900, 62, 738, 7483, 62, 15252, 628, 198, 198, 4299, 6687, 62, 2340, 7, 8457, 684, 62, 7890, 11, 12429, 38993, 62, 48310, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 44804, 684, 62, 7890, 25, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 26433, 796, 20150, 62, 48310, 13, 1136, 7203, 9971, 1042, 1600, 6045, 8, 628, 220, 220, 220, 329, 27039, 287, 44804, 684, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 3672, 796, 27039, 13, 1136, 7203, 43681, 5376, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 7890, 796, 27039, 13, 1136, 7203, 43681, 6601, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 39585, 1435, 62, 3672, 796, 27039, 13, 1136, 7203, 756, 1435, 5376, 1600, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 48310, 14692, 4871, 12832, 1313, 4948, 8973, 796, 27039, 13, 1136, 7203, 4871, 12832, 1313, 4948, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 48310, 14692, 7266, 9487, 12832, 1313, 4948, 8973, 796, 27039, 13, 1136, 7203, 7266, 9487, 12832, 1313, 4948, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 62, 48310, 14692, 756, 1435, 5376, 8973, 796, 39585, 1435, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31165, 284, 7330, 42814, 422, 262, 4947, 326, 318, 587, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13686, 11, 287, 1502, 284, 2198, 611, 262, 662, 12, 738, 7483, 326, 318, 587, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13686, 318, 1016, 284, 307, 6153, 393, 2727, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 738, 13350, 796, 42814, 62, 15042, 13, 2301, 377, 623, 65, 16680, 9324, 10179, 13, 1136, 62, 738, 13350, 62, 1525, 7, 4906, 28, 43681, 62, 3672, 11, 39585, 1435, 62, 3672, 28, 756, 1435, 62, 3672, 11, 26433, 28, 9971, 1042, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 33918, 62, 15252, 287, 4947, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27421, 62, 15252, 796, 900, 62, 738, 7483, 62, 15252, 7, 17752, 62, 15252, 11, 4947, 62, 3672, 11, 12429, 38993, 62, 48310, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5412, 62, 312, 7, 738, 7483, 62, 15252, 11, 4947, 62, 738, 13350, 8 ]
2.898649
444
from .preprocessing.filter_genes import filter_genes from .preprocessing.normalize import normalize_total from .preprocessing.log_scale import log1p from .preprocessing.log_scale import scale from .preprocessing.graph import neighbors from .image_preprocessing.image_tiling import tiling from .image_preprocessing.feature_extractor import extract_feature
[ 6738, 764, 3866, 36948, 13, 24455, 62, 5235, 274, 1330, 8106, 62, 5235, 274, 198, 6738, 764, 3866, 36948, 13, 11265, 1096, 1330, 3487, 1096, 62, 23350, 198, 6738, 764, 3866, 36948, 13, 6404, 62, 9888, 1330, 2604, 16, 79, 198, 6738, 764, 3866, 36948, 13, 6404, 62, 9888, 1330, 5046, 198, 6738, 764, 3866, 36948, 13, 34960, 1330, 12020, 198, 6738, 764, 9060, 62, 3866, 36948, 13, 9060, 62, 83, 4386, 1330, 256, 4386, 198, 6738, 764, 9060, 62, 3866, 36948, 13, 30053, 62, 2302, 40450, 1330, 7925, 62, 30053, 198 ]
3.858696
92
# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. from __future__ import print_function import os import numpy as np import random import unittest import logging import warnings import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid import core from paddle.fluid.optimizer import AdamOptimizer from paddle.fluid.framework import IrGraph from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware from paddle.fluid.dygraph.container import Sequential from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX from paddle.nn.layer import ReLU, LeakyReLU, Sigmoid, Softmax, PReLU from paddle.nn import Linear, Conv2D, Softmax, BatchNorm2D, MaxPool2D from paddle.fluid.log_helper import get_logger from paddle.fluid.dygraph import nn from imperative_test_utils import fix_model_dict, train_lenet paddle.enable_static() os.environ["CPU_NUM"] = "1" if core.is_compiled_with_cuda(): fluid.set_flags({"FLAGS_cudnn_deterministic": True}) _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') if __name__ == '__main__': unittest.main()
[ 2, 220, 220, 6634, 357, 66, 8, 2864, 39517, 79, 37382, 7035, 13, 477, 2489, 10395, 13, 198, 2, 198, 2, 11971, 739, 262, 2471, 4891, 5964, 11, 2196, 362, 13, 15, 357, 1169, 366, 43085, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 5964, 13, 198, 2, 345, 743, 7330, 257, 4866, 286, 262, 5964, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43085, 12, 17, 13, 15, 198, 2, 198, 2, 4556, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 5964, 318, 9387, 319, 281, 366, 292, 318, 1, 4308, 11, 198, 2, 1231, 50174, 393, 3403, 286, 597, 1611, 11, 2035, 4911, 393, 17142, 13, 198, 2, 766, 262, 5964, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 5964, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 11748, 555, 715, 395, 198, 11748, 18931, 198, 11748, 14601, 198, 198, 11748, 39517, 198, 11748, 39517, 13, 35522, 312, 355, 11711, 198, 11748, 39517, 13, 35522, 312, 13, 75, 6962, 355, 11685, 198, 6738, 39517, 13, 35522, 312, 1330, 4755, 198, 6738, 39517, 13, 35522, 312, 13, 40085, 7509, 1330, 7244, 27871, 320, 7509, 198, 6738, 39517, 13, 35522, 312, 13, 30604, 1330, 5686, 37065, 198, 6738, 39517, 13, 35522, 312, 13, 3642, 822, 13, 82, 2475, 13, 40972, 1634, 1330, 28185, 876, 24915, 32, 1574, 198, 6738, 39517, 13, 35522, 312, 13, 9892, 34960, 13, 34924, 1330, 24604, 1843, 198, 6738, 39517, 13, 35522, 312, 13, 9892, 34960, 13, 952, 1330, 3268, 24302, 62, 33365, 3698, 62, 12564, 5777, 10426, 11, 3268, 24302, 62, 27082, 40834, 62, 12564, 5777, 10426, 198, 6738, 39517, 13, 20471, 13, 29289, 1330, 797, 41596, 11, 1004, 15492, 3041, 41596, 11, 311, 17225, 1868, 11, 8297, 9806, 11, 350, 3041, 41596, 198, 6738, 39517, 13, 20471, 1330, 44800, 11, 34872, 17, 35, 11, 8297, 9806, 11, 347, 963, 35393, 17, 35, 11, 5436, 27201, 17, 35, 198, 6738, 39517, 13, 35522, 312, 13, 6404, 62, 2978, 525, 1330, 651, 62, 6404, 1362, 198, 6738, 39517, 13, 35522, 312, 13, 9892, 34960, 1330, 299, 77, 198, 198, 6738, 23602, 62, 9288, 62, 26791, 1330, 4259, 62, 19849, 62, 11600, 11, 4512, 62, 11925, 316, 198, 198, 79, 37382, 13, 21633, 62, 12708, 3419, 198, 198, 418, 13, 268, 2268, 14692, 36037, 62, 41359, 8973, 796, 366, 16, 1, 198, 361, 4755, 13, 271, 62, 5589, 3902, 62, 4480, 62, 66, 15339, 33529, 198, 220, 220, 220, 11711, 13, 2617, 62, 33152, 7, 4895, 38948, 50, 62, 66, 463, 20471, 62, 67, 2357, 49228, 1298, 6407, 30072, 198, 198, 62, 6404, 1362, 796, 651, 62, 6404, 1362, 7, 198, 220, 220, 220, 11593, 3672, 834, 11, 18931, 13, 10778, 11, 46996, 11639, 4, 7, 292, 310, 524, 8, 82, 12, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 11537, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.194444
540
# Generated by Django 2.2.3 on 2019-08-08 02:52 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 18, 319, 13130, 12, 2919, 12, 2919, 7816, 25, 4309, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
from Tkinter import * from pytesser import image_to_string from PIL import Image, ImageFilter, ImageEnhance, ImageTk import picamera from datetime import datetime from pic_window import pic_window ##TODO: implement all these functions ##from parnter implementations
[ 6738, 309, 74, 3849, 1330, 1635, 198, 6738, 12972, 83, 408, 263, 1330, 2939, 62, 1462, 62, 8841, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 22417, 11, 7412, 35476, 590, 11, 7412, 51, 74, 198, 11748, 8301, 18144, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 8301, 62, 17497, 1330, 8301, 62, 17497, 628, 197, 2235, 51, 3727, 46, 25, 3494, 477, 777, 5499, 220, 198, 197, 2235, 6738, 279, 1501, 353, 25504, 628, 628, 628, 628 ]
3.506329
79
nums = [4, 6, 2, 6, 7, 2, 1]
[ 198, 77, 5700, 796, 685, 19, 11, 718, 11, 362, 11, 718, 11, 767, 11, 362, 11, 352, 60 ]
1.526316
19
#!/usr/bin/env python # coding: utf-8 # In this Kernel, I'd like to show you a very basic segmentation technique whihc only applies pure computer vision techniques. Nothing fancy. # # At first, I'll show the step-by-step processing and after that I will create the submission for the competition. # # With this kernel, I could reach *0.229 LB* which is not very nice but I am sure that with a few tweaks we could get better score. And consider that **we don't even use the train data**! which is pretty awesome in my opinion. # In[ ]: import numpy as np import pandas as pd import os from os.path import join import glob import cv2 import matplotlib.pyplot as plt # In[ ]: TRAIN_PATH = "../input/stage1_train/" TEST_PATH = "../input/stage1_test/" # In[ ]: train_ids = os.listdir(TRAIN_PATH) test_ids = os.listdir(TEST_PATH) # In[ ]: test_image_paths = [ glob.glob(join(TEST_PATH, test_id, "images", "*"))[0] for test_id in test_ids ] # # Step-by-step processing # In[ ]: tmp_image_path = np.random.choice(test_image_paths) tmp_image = cv2.imread(tmp_image_path, cv2.IMREAD_GRAYSCALE) # In[ ]: plt.imshow(tmp_image) # Now comes the crucial part of the processing. First we would like to create a binary matrix from the original image. The ones in the matrix are considered to be objects and the zeros are the background. So If we don't do this correctly we're going to loose a lot of inforamtion. # In[ ]: ret, thresh = cv2.threshold(tmp_image, 100, 255, cv2.THRESH_OTSU) # In[ ]: fig, axs = plt.subplots(1, 2, figsize=(10, 10)) axs[0].imshow(tmp_image) axs[1].imshow(thresh) # There are images where the thresholding does not help because the ones will be the background and the zeros the objects. This happend when the background is more brighter than the objects. # # But how we detect this? # # We just have to find the contours of the objects. Than calculate the area of the contour and if it is above some threshold value than we will just invert the image. # In[ ]: _, cnts, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnts = sorted(cnts, key=cv2.contourArea, reverse=True) # In[ ]: max_cnt_area = cv2.contourArea(cnts[0]) # In[ ]: print("The area of the largest object is: {0}".format(max_cnt_area)) # This is the part where we invert the threshold image if we are not satisfied with the area of the largest contour # In[ ]: if max_cnt_area > 50000: ret, thresh = cv2.threshold( tmp_image, 100, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY_INV ) # And here comes the *morphology*. # # We will use: # - Dilation (read more: https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm) # - Erosion (read more: https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm) # In[ ]: mask = cv2.dilate(thresh, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))) mask = cv2.erode(mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))) # In[ ]: fig, axs = plt.subplots(1, 4, figsize=(30, 30)) axs[0].imshow(tmp_image) axs[1].imshow(thresh) axs[2].imshow(mask) axs[3].imshow(cv2.bitwise_and(tmp_image, tmp_image, mask=mask)) # # Process the test images for submission # I separated the logic into 2 funcrtions so it is easier to use it. # In[ ]: # Now we only have to create the mask images from the test images # In[ ]: segmented = [] for test_image_path in test_image_paths: tmp_image = cv2.imread(test_image_path, cv2.IMREAD_GRAYSCALE) thresh = threshold(tmp_image) mask = apply_morphology(thresh) segmented.append(mask) # In[ ]: # Run length Encoding from https://www.kaggle.com/rakhlin/fast-run-length-encoding-python from skimage.morphology import label # In[ ]: new_test_ids = [] rles = [] for n, id_ in enumerate(test_ids): rle = list(prob_to_rles(segmented[n])) rles.extend(rle) new_test_ids.extend([id_] * len(rle)) # In[ ]: submission_df = pd.DataFrame() submission_df["ImageId"] = new_test_ids submission_df["EncodedPixels"] = pd.Series(rles).apply( lambda x: " ".join(str(y) for y in x) ) # In[ ]: submission_df.sample(3) # In[ ]: if not len(np.unique(submission_df["ImageId"])) == len(test_ids): print("Submission is not complete") print( "Missing test ids: {0}".format( set(test_ids).difference(set(np.unique(submission_df["ImageId"]))) ) ) else: print("Submission is complete") # In[ ]: submission_df.to_csv("submission_pure_cv.csv", index=False) # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 428, 32169, 11, 314, 1549, 588, 284, 905, 345, 257, 845, 4096, 10618, 341, 8173, 348, 4449, 66, 691, 8991, 5899, 3644, 5761, 7605, 13, 10528, 14996, 13, 198, 2, 198, 2, 1629, 717, 11, 314, 1183, 905, 262, 2239, 12, 1525, 12, 9662, 7587, 290, 706, 326, 314, 481, 2251, 262, 14498, 329, 262, 5449, 13, 198, 2, 198, 2, 2080, 428, 9720, 11, 314, 714, 3151, 1635, 15, 13, 23539, 22199, 9, 543, 318, 407, 845, 3621, 475, 314, 716, 1654, 326, 351, 257, 1178, 26957, 356, 714, 651, 1365, 4776, 13, 843, 2074, 326, 12429, 732, 836, 470, 772, 779, 262, 4512, 1366, 1174, 0, 543, 318, 2495, 7427, 287, 616, 4459, 13, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 6738, 28686, 13, 6978, 1330, 4654, 198, 11748, 15095, 198, 11748, 269, 85, 17, 628, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 51, 3861, 1268, 62, 34219, 796, 366, 40720, 15414, 14, 14247, 16, 62, 27432, 30487, 198, 51, 6465, 62, 34219, 796, 366, 40720, 15414, 14, 14247, 16, 62, 9288, 30487, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 27432, 62, 2340, 796, 28686, 13, 4868, 15908, 7, 51, 3861, 1268, 62, 34219, 8, 198, 9288, 62, 2340, 796, 28686, 13, 4868, 15908, 7, 51, 6465, 62, 34219, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 9288, 62, 9060, 62, 6978, 82, 796, 685, 198, 220, 220, 220, 15095, 13, 4743, 672, 7, 22179, 7, 51, 6465, 62, 34219, 11, 1332, 62, 312, 11, 366, 17566, 1600, 366, 9, 48774, 58, 15, 60, 329, 1332, 62, 312, 287, 1332, 62, 2340, 198, 60, 628, 198, 2, 1303, 5012, 12, 1525, 12, 9662, 7587, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 22065, 62, 9060, 62, 6978, 796, 45941, 13, 25120, 13, 25541, 7, 9288, 62, 9060, 62, 6978, 82, 8, 198, 22065, 62, 9060, 796, 269, 85, 17, 13, 320, 961, 7, 22065, 62, 9060, 62, 6978, 11, 269, 85, 17, 13, 3955, 15675, 62, 38, 30631, 6173, 21358, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 489, 83, 13, 320, 12860, 7, 22065, 62, 9060, 8, 628, 198, 2, 2735, 2058, 262, 8780, 636, 286, 262, 7587, 13, 3274, 356, 561, 588, 284, 2251, 257, 13934, 17593, 422, 262, 2656, 2939, 13, 383, 3392, 287, 262, 17593, 389, 3177, 284, 307, 5563, 290, 262, 1976, 27498, 389, 262, 4469, 13, 1406, 1002, 356, 836, 470, 466, 428, 9380, 356, 821, 1016, 284, 9155, 257, 1256, 286, 1167, 273, 321, 5378, 13, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 1186, 11, 294, 3447, 796, 269, 85, 17, 13, 400, 10126, 7, 22065, 62, 9060, 11, 1802, 11, 14280, 11, 269, 85, 17, 13, 4221, 19535, 39, 62, 2394, 12564, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 5647, 11, 7877, 82, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 362, 11, 2336, 7857, 16193, 940, 11, 838, 4008, 198, 897, 82, 58, 15, 4083, 320, 12860, 7, 22065, 62, 9060, 8, 198, 897, 82, 58, 16, 4083, 320, 12860, 7, 400, 3447, 8, 628, 198, 2, 1318, 389, 4263, 810, 262, 11387, 278, 857, 407, 1037, 780, 262, 3392, 481, 307, 262, 4469, 290, 262, 1976, 27498, 262, 5563, 13, 770, 1147, 437, 618, 262, 4469, 318, 517, 26083, 621, 262, 5563, 13, 198, 2, 198, 2, 887, 703, 356, 4886, 428, 30, 198, 2, 198, 2, 775, 655, 423, 284, 1064, 262, 542, 4662, 286, 262, 5563, 13, 17924, 15284, 262, 1989, 286, 262, 542, 454, 290, 611, 340, 318, 2029, 617, 11387, 1988, 621, 356, 481, 655, 287, 1851, 262, 2939, 13, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 62, 11, 269, 429, 82, 11, 4808, 796, 269, 85, 17, 13, 19796, 4264, 4662, 7, 400, 3447, 11, 269, 85, 17, 13, 2200, 5446, 62, 51, 11587, 11, 269, 85, 17, 13, 3398, 29833, 62, 2969, 31190, 55, 62, 48913, 16437, 8, 198, 66, 429, 82, 796, 23243, 7, 66, 429, 82, 11, 1994, 28, 33967, 17, 13, 3642, 454, 30547, 11, 9575, 28, 17821, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 9806, 62, 66, 429, 62, 20337, 796, 269, 85, 17, 13, 3642, 454, 30547, 7, 66, 429, 82, 58, 15, 12962, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 4798, 7203, 464, 1989, 286, 262, 4387, 2134, 318, 25, 1391, 15, 92, 1911, 18982, 7, 9806, 62, 66, 429, 62, 20337, 4008, 628, 198, 2, 770, 318, 262, 636, 810, 356, 287, 1851, 262, 11387, 2939, 611, 356, 389, 407, 11378, 351, 262, 1989, 286, 262, 4387, 542, 454, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 361, 3509, 62, 66, 429, 62, 20337, 1875, 642, 2388, 25, 198, 220, 220, 220, 1005, 11, 294, 3447, 796, 269, 85, 17, 13, 400, 10126, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 62, 9060, 11, 1802, 11, 14280, 11, 269, 85, 17, 13, 4221, 19535, 39, 62, 2394, 12564, 930, 269, 85, 17, 13, 4221, 19535, 39, 62, 33, 1268, 13153, 62, 1268, 53, 198, 220, 220, 220, 1267, 628, 198, 2, 843, 994, 2058, 262, 1635, 24503, 1435, 24620, 198, 2, 198, 2, 775, 481, 779, 25, 198, 2, 532, 360, 10520, 357, 961, 517, 25, 3740, 1378, 11195, 31126, 13, 10745, 13, 276, 13, 330, 13, 2724, 14, 81, 19881, 14, 39, 4061, 49, 17, 14, 67, 346, 378, 13, 19211, 8, 198, 2, 532, 412, 4951, 295, 357, 961, 517, 25, 3740, 1378, 11195, 31126, 13, 10745, 13, 276, 13, 330, 13, 2724, 14, 81, 19881, 14, 39, 4061, 49, 17, 14, 263, 1098, 13, 19211, 8, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 27932, 796, 269, 85, 17, 13, 67, 346, 378, 7, 400, 3447, 11, 269, 85, 17, 13, 1136, 44909, 870, 20180, 7, 33967, 17, 13, 44, 1581, 11909, 62, 23304, 47643, 36, 11, 357, 20, 11, 642, 22305, 198, 27932, 796, 269, 85, 17, 13, 263, 1098, 7, 27932, 11, 269, 85, 17, 13, 1136, 44909, 870, 20180, 7, 33967, 17, 13, 44, 1581, 11909, 62, 23304, 47643, 36, 11, 357, 20, 11, 642, 22305, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 5647, 11, 7877, 82, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 604, 11, 2336, 7857, 16193, 1270, 11, 1542, 4008, 198, 897, 82, 58, 15, 4083, 320, 12860, 7, 22065, 62, 9060, 8, 198, 897, 82, 58, 16, 4083, 320, 12860, 7, 400, 3447, 8, 198, 897, 82, 58, 17, 4083, 320, 12860, 7, 27932, 8, 198, 897, 82, 58, 18, 4083, 320, 12860, 7, 33967, 17, 13, 2545, 3083, 62, 392, 7, 22065, 62, 9060, 11, 45218, 62, 9060, 11, 9335, 28, 27932, 4008, 628, 198, 2, 1303, 10854, 262, 1332, 4263, 329, 14498, 198, 198, 2, 314, 11266, 262, 9156, 656, 362, 1257, 6098, 45240, 523, 340, 318, 4577, 284, 779, 340, 13, 198, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 2, 2735, 356, 691, 423, 284, 2251, 262, 9335, 4263, 422, 262, 1332, 4263, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 325, 5154, 276, 796, 17635, 198, 1640, 1332, 62, 9060, 62, 6978, 287, 1332, 62, 9060, 62, 6978, 82, 25, 198, 220, 220, 220, 45218, 62, 9060, 796, 269, 85, 17, 13, 320, 961, 7, 9288, 62, 9060, 62, 6978, 11, 269, 85, 17, 13, 3955, 15675, 62, 38, 30631, 6173, 21358, 8, 628, 220, 220, 220, 294, 3447, 796, 11387, 7, 22065, 62, 9060, 8, 198, 220, 220, 220, 9335, 796, 4174, 62, 24503, 1435, 7, 400, 3447, 8, 628, 220, 220, 220, 10618, 276, 13, 33295, 7, 27932, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 5660, 4129, 14711, 7656, 422, 3740, 1378, 2503, 13, 74, 9460, 293, 13, 785, 14, 430, 14636, 2815, 14, 7217, 12, 5143, 12, 13664, 12, 12685, 7656, 12, 29412, 198, 198, 6738, 1341, 9060, 13, 24503, 1435, 1330, 6167, 628, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 3605, 62, 9288, 62, 2340, 796, 17635, 198, 81, 829, 796, 17635, 198, 1640, 299, 11, 4686, 62, 287, 27056, 378, 7, 9288, 62, 2340, 2599, 198, 220, 220, 220, 374, 293, 796, 1351, 7, 1676, 65, 62, 1462, 62, 81, 829, 7, 325, 5154, 276, 58, 77, 60, 4008, 198, 220, 220, 220, 374, 829, 13, 2302, 437, 7, 81, 293, 8, 198, 220, 220, 220, 649, 62, 9288, 62, 2340, 13, 2302, 437, 26933, 312, 62, 60, 1635, 18896, 7, 81, 293, 4008, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 7266, 3411, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 7266, 3411, 62, 7568, 14692, 5159, 7390, 8973, 796, 649, 62, 9288, 62, 2340, 198, 7266, 3411, 62, 7568, 14692, 27195, 9043, 47, 14810, 8973, 796, 279, 67, 13, 27996, 7, 81, 829, 737, 39014, 7, 198, 220, 220, 220, 37456, 2124, 25, 366, 27071, 22179, 7, 2536, 7, 88, 8, 329, 331, 287, 2124, 8, 198, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 7266, 3411, 62, 7568, 13, 39873, 7, 18, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 361, 407, 18896, 7, 37659, 13, 34642, 7, 7266, 3411, 62, 7568, 14692, 5159, 7390, 8973, 4008, 6624, 18896, 7, 9288, 62, 2340, 2599, 198, 220, 220, 220, 3601, 7203, 7004, 3411, 318, 407, 1844, 4943, 198, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 43730, 1332, 220, 2340, 25, 1391, 15, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 7, 9288, 62, 2340, 737, 26069, 1945, 7, 2617, 7, 37659, 13, 34642, 7, 7266, 3411, 62, 7568, 14692, 5159, 7390, 8973, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 7004, 3411, 318, 1844, 4943, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 7266, 3411, 62, 7568, 13, 1462, 62, 40664, 7203, 7266, 3411, 62, 37424, 62, 33967, 13, 40664, 1600, 6376, 28, 25101, 8, 628, 198, 2, 554, 58, 2361, 25, 198 ]
2.562607
1,749