content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import re,sys, json knownRetTypes = { "V" : "Void" , "Z" : "boolean", "B" : "byte", "S" : "short", "C" : "char", "I" : "int", "J" : "long", "F" :"float", "D" : "double" } if __name__== "__main__": if len(sys.argv) > 1: print("parsing descriptors of file " + sys.argv[1] ) parseDescriptorsFile(sys.argv[1]) else: print ("arg required ( filename )")
[ 198, 11748, 302, 11, 17597, 11, 33918, 198, 198, 4002, 9781, 31431, 220, 796, 1391, 198, 197, 1, 53, 1, 1058, 366, 53, 1868, 1, 837, 198, 197, 1, 57, 1, 197, 25, 366, 2127, 21052, 1600, 198, 197, 1, 33, 1, 197, 25, 366, 26327, 1600, 198, 197, 1, 50, 1, 197, 25, 366, 19509, 1600, 198, 197, 1, 34, 1, 197, 25, 366, 10641, 1600, 198, 197, 1, 40, 1, 197, 25, 366, 600, 1600, 198, 197, 1, 41, 1, 197, 25, 366, 6511, 1600, 198, 197, 1, 37, 1, 197, 11097, 22468, 1600, 198, 197, 1, 35, 1, 197, 25, 366, 23352, 1, 198, 92, 628, 197, 628, 628, 198, 361, 11593, 3672, 834, 855, 366, 834, 12417, 834, 1298, 198, 197, 361, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 25, 198, 197, 197, 4798, 7203, 79, 945, 278, 12145, 669, 286, 2393, 366, 1343, 25064, 13, 853, 85, 58, 16, 60, 220, 1267, 198, 197, 197, 29572, 24564, 1968, 669, 8979, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 197, 17772, 25, 198, 197, 197, 4798, 5855, 853, 2672, 357, 29472, 1267, 4943, 628, 628 ]
1.973958
192
import pytest from render2.src.shared.shared_logging import get_logger, truncate, prep_for_logging, TRUNCATE_TEXT, TRUNCATE_LENGTH LONG_STRING = "zxcvbnmasdfghjklqwertyuiop1234567890zxcvbnmasdfghjklqwertyu" \ "iop1234567890zxcvbnmasdzxcvkjapeorijfaldkcfjadfjapsoeifjadf" TRUNCATED_STRING = f"{LONG_STRING[:(64 - TRUNCATE_LENGTH)]}{TRUNCATE_TEXT}" # -------------------------------------------------------------- # Tests # -------------------------------------------------------------- @pytest.mark.unit def test_prep_for_logging_truncate_long_string_in_content(): """Make sure data longer than max length gets truncated. as a by-product, this also tests that 'None' is properly handled (not truncated).""" # Setup max_length = 32 truncated_string = f"{LONG_STRING[:(max_length - TRUNCATE_LENGTH)]}{TRUNCATE_TEXT}" job = {'data': None, 'content_type': 'html', 'content': LONG_STRING} expected = {'data': None, 'content_type': 'html', 'content': truncated_string} # Execute _job_for_logging = prep_for_logging(job, max_length=max_length) # Verify assert expected == _job_for_logging assert len(_job_for_logging['content']) == max_length @pytest.mark.unit def test_prep_for_logging_truncate_long_string_in_data(): """Truncate string in data field""" # Setup max_length = 32 truncated_string = f"{LONG_STRING[:(max_length - TRUNCATE_LENGTH)]}{TRUNCATE_TEXT}" job = {'data': LONG_STRING, 'content_type': 'html', 'content': 'this_is_short'} expected = {'data': truncated_string, 'content_type': 'html', 'content': 'this_is_short'} # Execute _job_for_logging = prep_for_logging(job, max_length=max_length) # Verify assert expected == _job_for_logging assert len(_job_for_logging['data']) == max_length @pytest.mark.unit def test_prep_for_logging_truncate_long_bytes_string_in_data(): """Truncate bytes string""" # Setup max_length = 32 truncated_string = f"{LONG_STRING[:(max_length - TRUNCATE_LENGTH)]}{TRUNCATE_TEXT}" job = {'data': LONG_STRING.encode('utf-8'), 'content_type': 'html', 'content': 'this_is_short'} expected = {'data': truncated_string, 'content_type': 'html', 'content': 'this_is_short'} # Execute _job_for_logging = prep_for_logging(job, max_length=max_length) # Verify assert expected == _job_for_logging assert len(_job_for_logging['data']) == max_length @pytest.mark.unit def test_prep_for_logging_no_fields_truncated(): """Test no fields are altered if they are all equal or less than the max length.""" # Setup max_length = 13 job = {'data': 'this_is_short', 'content_type': 'html', 'content': 'this_is_short'} expected = job.copy() # Execute and verify assert expected == prep_for_logging(job, max_length=max_length) @pytest.mark.unit def test_prep_for_logging_return_only_truncated_text_due_to_small_max_length(): """Make sure both data can be redacted and html can be truncated.""" # Setup max_length = 5 job = {'data': None, 'content_type': 'html', 'content': LONG_STRING} expected = {'data': None, 'content_type': 'html', 'content': TRUNCATE_TEXT} # Execute _job_for_logging = prep_for_logging(job, max_length=max_length) # Verify assert expected == _job_for_logging assert TRUNCATE_LENGTH == len(_job_for_logging['content']) @pytest.mark.unit def test_record_truncation(caplog): """Ensure that the total LogRecord message is not over maximum size""" # Setup too_long = u"\U0001F926" * 65000 too_long_bytes = len(too_long.encode('utf-8')) logger = get_logger("test") # Execute logger.info(f"{too_long}") msg = caplog.messages[-1] truncated_bytes = len(msg.encode('utf-8')) # Verify assert truncated_bytes < too_long_bytes assert truncated_bytes < 265000
[ 11748, 12972, 9288, 198, 198, 6738, 8543, 17, 13, 10677, 13, 28710, 13, 28710, 62, 6404, 2667, 1330, 651, 62, 6404, 1362, 11, 40122, 378, 11, 3143, 62, 1640, 62, 6404, 2667, 11, 7579, 4944, 34, 6158, 62, 32541, 11, 7579, 4944, 34, 6158, 62, 43, 49494, 198, 198, 43, 18494, 62, 18601, 2751, 796, 366, 89, 25306, 85, 9374, 5356, 7568, 456, 73, 41582, 80, 15448, 774, 9019, 404, 10163, 2231, 30924, 3829, 89, 25306, 85, 9374, 5356, 7568, 456, 73, 41582, 80, 15448, 774, 84, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14922, 10163, 2231, 30924, 3829, 89, 25306, 85, 9374, 5356, 67, 89, 25306, 85, 42421, 1758, 273, 2926, 69, 1940, 74, 12993, 38442, 69, 73, 499, 568, 68, 361, 38442, 69, 1, 198, 5446, 4944, 34, 11617, 62, 18601, 2751, 796, 277, 1, 90, 43, 18494, 62, 18601, 2751, 58, 37498, 2414, 532, 7579, 4944, 34, 6158, 62, 43, 49494, 15437, 18477, 5446, 4944, 34, 6158, 62, 32541, 36786, 198, 198, 2, 20368, 1783, 26171, 198, 2, 30307, 198, 2, 20368, 1783, 26171, 628, 198, 31, 9078, 9288, 13, 4102, 13, 20850, 198, 4299, 1332, 62, 46012, 62, 1640, 62, 6404, 2667, 62, 2213, 19524, 378, 62, 6511, 62, 8841, 62, 259, 62, 11299, 33529, 198, 220, 220, 220, 37227, 12050, 1654, 1366, 2392, 621, 3509, 4129, 3011, 40122, 515, 13, 628, 220, 220, 220, 355, 257, 416, 12, 11167, 11, 428, 635, 5254, 326, 705, 14202, 6, 318, 6105, 12118, 357, 1662, 40122, 515, 21387, 15931, 628, 220, 220, 220, 1303, 31122, 198, 220, 220, 220, 3509, 62, 13664, 796, 3933, 198, 220, 220, 220, 40122, 515, 62, 8841, 796, 277, 1, 90, 43, 18494, 62, 18601, 2751, 58, 37498, 9806, 62, 13664, 532, 7579, 4944, 34, 6158, 62, 43, 49494, 15437, 18477, 5446, 4944, 34, 6158, 62, 32541, 36786, 198, 220, 220, 220, 1693, 796, 1391, 6, 7890, 10354, 6045, 11, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 44533, 62, 18601, 2751, 92, 198, 220, 220, 220, 2938, 796, 1391, 6, 7890, 10354, 6045, 11, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 40122, 515, 62, 8841, 92, 628, 220, 220, 220, 1303, 8393, 1133, 198, 220, 220, 220, 4808, 21858, 62, 1640, 62, 6404, 2667, 796, 3143, 62, 1640, 62, 6404, 2667, 7, 21858, 11, 3509, 62, 13664, 28, 9806, 62, 13664, 8, 628, 220, 220, 220, 1303, 49899, 198, 220, 220, 220, 6818, 2938, 6624, 4808, 21858, 62, 1640, 62, 6404, 2667, 198, 220, 220, 220, 6818, 18896, 28264, 21858, 62, 1640, 62, 6404, 2667, 17816, 11299, 6, 12962, 6624, 3509, 62, 13664, 628, 198, 31, 9078, 9288, 13, 4102, 13, 20850, 198, 4299, 1332, 62, 46012, 62, 1640, 62, 6404, 2667, 62, 2213, 19524, 378, 62, 6511, 62, 8841, 62, 259, 62, 7890, 33529, 198, 220, 220, 220, 37227, 2898, 19524, 378, 4731, 287, 1366, 2214, 37811, 628, 220, 220, 220, 1303, 31122, 198, 220, 220, 220, 3509, 62, 13664, 796, 3933, 198, 220, 220, 220, 40122, 515, 62, 8841, 796, 277, 1, 90, 43, 18494, 62, 18601, 2751, 58, 37498, 9806, 62, 13664, 532, 7579, 4944, 34, 6158, 62, 43, 49494, 15437, 18477, 5446, 4944, 34, 6158, 62, 32541, 36786, 198, 220, 220, 220, 1693, 796, 1391, 6, 7890, 10354, 44533, 62, 18601, 2751, 11, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 705, 5661, 62, 271, 62, 19509, 6, 92, 198, 220, 220, 220, 2938, 796, 1391, 6, 7890, 10354, 40122, 515, 62, 8841, 11, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 705, 5661, 62, 271, 62, 19509, 6, 92, 628, 220, 220, 220, 1303, 8393, 1133, 198, 220, 220, 220, 4808, 21858, 62, 1640, 62, 6404, 2667, 796, 3143, 62, 1640, 62, 6404, 2667, 7, 21858, 11, 3509, 62, 13664, 28, 9806, 62, 13664, 8, 628, 220, 220, 220, 1303, 49899, 198, 220, 220, 220, 6818, 2938, 6624, 4808, 21858, 62, 1640, 62, 6404, 2667, 198, 220, 220, 220, 6818, 18896, 28264, 21858, 62, 1640, 62, 6404, 2667, 17816, 7890, 6, 12962, 6624, 3509, 62, 13664, 628, 198, 31, 9078, 9288, 13, 4102, 13, 20850, 198, 4299, 1332, 62, 46012, 62, 1640, 62, 6404, 2667, 62, 2213, 19524, 378, 62, 6511, 62, 33661, 62, 8841, 62, 259, 62, 7890, 33529, 198, 220, 220, 220, 37227, 2898, 19524, 378, 9881, 4731, 37811, 628, 220, 220, 220, 1303, 31122, 198, 220, 220, 220, 3509, 62, 13664, 796, 3933, 198, 220, 220, 220, 40122, 515, 62, 8841, 796, 277, 1, 90, 43, 18494, 62, 18601, 2751, 58, 37498, 9806, 62, 13664, 532, 7579, 4944, 34, 6158, 62, 43, 49494, 15437, 18477, 5446, 4944, 34, 6158, 62, 32541, 36786, 198, 220, 220, 220, 1693, 796, 1391, 6, 7890, 10354, 44533, 62, 18601, 2751, 13, 268, 8189, 10786, 40477, 12, 23, 33809, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 705, 5661, 62, 271, 62, 19509, 6, 92, 198, 220, 220, 220, 2938, 796, 1391, 6, 7890, 10354, 40122, 515, 62, 8841, 11, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 705, 5661, 62, 271, 62, 19509, 6, 92, 628, 220, 220, 220, 1303, 8393, 1133, 198, 220, 220, 220, 4808, 21858, 62, 1640, 62, 6404, 2667, 796, 3143, 62, 1640, 62, 6404, 2667, 7, 21858, 11, 3509, 62, 13664, 28, 9806, 62, 13664, 8, 628, 220, 220, 220, 1303, 49899, 198, 220, 220, 220, 6818, 2938, 6624, 4808, 21858, 62, 1640, 62, 6404, 2667, 198, 220, 220, 220, 6818, 18896, 28264, 21858, 62, 1640, 62, 6404, 2667, 17816, 7890, 6, 12962, 6624, 3509, 62, 13664, 628, 198, 31, 9078, 9288, 13, 4102, 13, 20850, 198, 4299, 1332, 62, 46012, 62, 1640, 62, 6404, 2667, 62, 3919, 62, 25747, 62, 2213, 19524, 515, 33529, 198, 220, 220, 220, 37227, 14402, 645, 7032, 389, 14294, 611, 484, 389, 477, 4961, 393, 1342, 621, 198, 220, 220, 220, 262, 3509, 4129, 526, 15931, 628, 220, 220, 220, 1303, 31122, 198, 220, 220, 220, 3509, 62, 13664, 796, 1511, 198, 220, 220, 220, 1693, 796, 1391, 6, 7890, 10354, 705, 5661, 62, 271, 62, 19509, 3256, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 705, 5661, 62, 271, 62, 19509, 6, 92, 198, 220, 220, 220, 2938, 796, 1693, 13, 30073, 3419, 628, 220, 220, 220, 1303, 8393, 1133, 290, 11767, 198, 220, 220, 220, 6818, 2938, 6624, 3143, 62, 1640, 62, 6404, 2667, 7, 21858, 11, 3509, 62, 13664, 28, 9806, 62, 13664, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 20850, 198, 4299, 1332, 62, 46012, 62, 1640, 62, 6404, 2667, 62, 7783, 62, 8807, 62, 2213, 19524, 515, 62, 5239, 62, 23301, 62, 1462, 62, 17470, 62, 9806, 62, 13664, 33529, 198, 220, 220, 220, 37227, 12050, 1654, 1111, 1366, 460, 307, 44740, 290, 27711, 460, 307, 40122, 515, 526, 15931, 628, 220, 220, 220, 1303, 31122, 198, 220, 220, 220, 3509, 62, 13664, 796, 642, 198, 220, 220, 220, 1693, 796, 1391, 6, 7890, 10354, 6045, 11, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 44533, 62, 18601, 2751, 92, 198, 220, 220, 220, 2938, 796, 1391, 6, 7890, 10354, 6045, 11, 705, 11299, 62, 4906, 10354, 705, 6494, 3256, 705, 11299, 10354, 7579, 4944, 34, 6158, 62, 32541, 92, 628, 220, 220, 220, 1303, 8393, 1133, 198, 220, 220, 220, 4808, 21858, 62, 1640, 62, 6404, 2667, 796, 3143, 62, 1640, 62, 6404, 2667, 7, 21858, 11, 3509, 62, 13664, 28, 9806, 62, 13664, 8, 628, 220, 220, 220, 1303, 49899, 198, 220, 220, 220, 6818, 2938, 6624, 4808, 21858, 62, 1640, 62, 6404, 2667, 198, 220, 220, 220, 6818, 7579, 4944, 34, 6158, 62, 43, 49494, 6624, 18896, 28264, 21858, 62, 1640, 62, 6404, 2667, 17816, 11299, 6, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 20850, 198, 4299, 1332, 62, 22105, 62, 2213, 19524, 341, 7, 6888, 489, 519, 2599, 198, 220, 220, 220, 37227, 4834, 19532, 326, 262, 2472, 5972, 23739, 3275, 318, 407, 625, 5415, 2546, 37811, 628, 220, 220, 220, 1303, 31122, 198, 220, 220, 220, 1165, 62, 6511, 796, 334, 1, 59, 52, 18005, 37, 24, 2075, 1, 1635, 6135, 830, 198, 220, 220, 220, 1165, 62, 6511, 62, 33661, 796, 18896, 7, 18820, 62, 6511, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 198, 220, 220, 220, 49706, 796, 651, 62, 6404, 1362, 7203, 9288, 4943, 628, 220, 220, 220, 1303, 8393, 1133, 198, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 90, 18820, 62, 6511, 92, 4943, 198, 220, 220, 220, 31456, 796, 1275, 489, 519, 13, 37348, 1095, 58, 12, 16, 60, 198, 220, 220, 220, 40122, 515, 62, 33661, 796, 18896, 7, 19662, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 628, 220, 220, 220, 1303, 49899, 198, 220, 220, 220, 6818, 40122, 515, 62, 33661, 1279, 1165, 62, 6511, 62, 33661, 198, 220, 220, 220, 6818, 40122, 515, 62, 33661, 1279, 2608, 27641 ]
2.578457
1,504
from rest_framework import serializers from .models import StaffLog, CompanyLog from accounts.serializers import UserSerializer from company.serializers import CompanySerializer
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 198, 6738, 764, 27530, 1330, 9983, 11187, 11, 5834, 11187, 198, 6738, 5504, 13, 46911, 11341, 1330, 11787, 32634, 7509, 198, 6738, 1664, 13, 46911, 11341, 1330, 5834, 32634, 7509, 628, 198 ]
4.525
40
from dg_calibration import reflectance def toa_reflectance(radata, mtdFile, band_ids): """Estimate toa reflectance from radiometric data ignoring atmospheric, topographic and BRDF effects Parameters ---------- radata : ndarray shape (nbands, ny, nx) radiance data mtdFile : str path to IMD metadata file band_ids : sequence of int band IDs Returns ------- ndarray reflectance """ return reflectance.radiance_to_reflectance(radata, mtdFile, band_ids=band_ids)
[ 6738, 288, 70, 62, 9948, 571, 1358, 1330, 4079, 590, 628, 198, 4299, 284, 64, 62, 35051, 590, 7, 6335, 1045, 11, 285, 8671, 8979, 11, 4097, 62, 2340, 2599, 198, 220, 220, 220, 37227, 22362, 1920, 284, 64, 4079, 590, 422, 19772, 16996, 1366, 198, 220, 220, 220, 220, 220, 220, 15482, 20938, 11, 1353, 6826, 290, 11177, 8068, 3048, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2511, 1045, 1058, 299, 67, 18747, 5485, 357, 77, 21397, 11, 299, 88, 11, 299, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2511, 3610, 1366, 198, 220, 220, 220, 285, 8671, 8979, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 284, 8959, 35, 20150, 2393, 198, 220, 220, 220, 4097, 62, 2340, 1058, 8379, 286, 493, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 32373, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 4079, 590, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4079, 590, 13, 6335, 3610, 62, 1462, 62, 35051, 590, 7, 6335, 1045, 11, 285, 8671, 8979, 11, 4097, 62, 2340, 28, 3903, 62, 2340, 8, 198 ]
2.575472
212
############### # Repository: https://github.com/lgervasoni/urbansprawl # MIT License ############### from shapely.geometry import GeometryCollection import geopandas as gpd import pandas as pd import os import numpy as np import osmnx as ox from osmnx import log from .utils import get_population_extract_filename DATA_SOURCES = ["insee", "gpw"] ############################## # I/O for population data ############################## def get_df_extract(df_data, poly_gdf, operation="within"): """ Indexes input geo-data frame within an input region of interest If the region of interest is given as a polygon, its bounding box is indexed Parameters ---------- df_data : geopandas.GeoDataFrame input data frame to index poly_gdf : geopandas.GeoDataFrame geodataframe containing the region of interest in form of polygon operation : string the desired spatial join operation: 'within' or 'intersects' Returns ---------- geopandas.GeoDataFrame returns the population data frame indexed within the region of interest """ # Project to same system coordinates poly_gdf = ox.project_gdf(poly_gdf, to_crs=df_data.crs) # Spatial join df_extract = gpd.sjoin(df_data, poly_gdf, op=operation) # Keep original columns df_extract = df_extract[df_data.columns] return df_extract def get_population_df( pop_shapefile, pop_data_file, data_source, to_crs, poly_gdf ): """ Read the population shapefile from input filename/s Index the data within the bounding box Project to desired CRS Parameters ---------- pop_shapefile : string population count shapefile pop_data_file : string population data additional file (required for INSEE format) data_source : string desired population data source to_crs : dict desired coordinate reference system poly_gdf : geopandas.GeoDataFrame geodataframe containing the region of interest in form of polygon Returns ---------- geopandas.GeoDataFrame returns the indexed and projected population data frame """ ####################################### # Load GPW/INSEE population data ####################################### # Read population data df_pop = gpd.read_file(pop_shapefile) # Extract region of interest (EPSG 4326) # Filter geometries not contained in bounding box df_pop = get_df_extract(df_pop, poly_gdf) if data_source is "insee": ####################################### # Additional step for INSEE data ####################################### # Read dbf files data_pop = gpd.read_file(pop_data_file) # Get columns of interest data_pop = data_pop[["idINSPIRE", "ind_c"]] df_pop = df_pop[["geometry", "idINSPIRE"]] # Inner join to obtain population count data associated to each geometry df_pop = pd.merge(df_pop, data_pop, how="inner", on="idINSPIRE") # Rename population count column df_pop.rename( columns={"ind_c": "pop_count", "DN": "pop_count"}, inplace=True ) return ox.project_gdf(df_pop, to_crs=to_crs) def get_extract_population_data( city_ref, data_source, pop_shapefile=None, pop_data_file=None, to_crs={"init": "epsg:4326"}, polygons_gdf=None, ): """Get data population extract of desired data source for input city, calculating the convex hull of input buildings geodataframe The population data frame is projected to the desired coordinate reference system Stores the extracted shapefile Returns the stored population data for input 'data source' and 'city reference' if it was previously stored Parameters ---------- city_ref : string name of input city data_source : string desired population data source pop_shapefile : string path of population count shapefile pop_data_file : string path of population data additional file (required for INSEE format) to_crs : dict desired coordinate reference system polygons_gdf : geopandas.GeoDataFrame polygons (e.g. buildings) for input region of interest which will determine the shape to extract Returns ---------- geopandas.GeoDataFrame returns the extracted population data """ # Input data source type given? assert data_source in DATA_SOURCES # Population extract exists? if os.path.exists(get_population_extract_filename(city_ref, data_source)): log("Population extract exists for input city: " + city_ref) return gpd.read_file( get_population_extract_filename(city_ref, data_source) ) # Input shape given? assert not (np.all(polygons_gdf is None)) # Input population shapefile given? assert pop_shapefile is not None # All input files given? assert not ((data_source == "insee") and (pop_data_file is None)) # Get buildings convex hull polygon = GeometryCollection( polygons_gdf.geometry.values.tolist() ).convex_hull # Convert to geo-dataframe with defined CRS poly_gdf = gpd.GeoDataFrame( [polygon], columns=["geometry"], crs=polygons_gdf.crs ) # Compute extract df_pop = get_population_df( pop_shapefile, pop_data_file, data_source, to_crs, poly_gdf ) # Save to shapefile df_pop.to_file( get_population_extract_filename(city_ref, data_source), driver="ESRI Shapefile", ) return df_pop
[ 7804, 4242, 21017, 198, 2, 1432, 13264, 25, 3740, 1378, 12567, 13, 785, 14, 75, 70, 712, 888, 72, 14, 5945, 504, 79, 13132, 198, 2, 17168, 13789, 198, 7804, 4242, 21017, 198, 198, 6738, 5485, 306, 13, 469, 15748, 1330, 2269, 15748, 36307, 198, 11748, 30324, 392, 292, 355, 27809, 67, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 267, 5796, 77, 87, 355, 12018, 198, 198, 6738, 267, 5796, 77, 87, 1330, 2604, 198, 198, 6738, 764, 26791, 1330, 651, 62, 39748, 62, 2302, 974, 62, 34345, 198, 198, 26947, 62, 50, 2606, 7397, 1546, 796, 14631, 259, 3826, 1600, 366, 31197, 86, 8973, 198, 198, 14468, 7804, 4242, 2235, 198, 2, 314, 14, 46, 329, 3265, 1366, 198, 14468, 7804, 4242, 2235, 628, 198, 4299, 651, 62, 7568, 62, 2302, 974, 7, 7568, 62, 7890, 11, 7514, 62, 70, 7568, 11, 4905, 2625, 33479, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 274, 5128, 40087, 12, 7890, 5739, 1626, 281, 5128, 3814, 286, 1393, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 3814, 286, 1393, 318, 1813, 355, 257, 7514, 14520, 11, 663, 5421, 278, 3091, 318, 41497, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 1058, 30324, 392, 292, 13, 10082, 78, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 5739, 284, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 7514, 62, 70, 7568, 1058, 30324, 392, 292, 13, 10082, 78, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4903, 375, 1045, 14535, 7268, 262, 3814, 286, 1393, 287, 1296, 286, 7514, 14520, 198, 220, 220, 220, 220, 220, 220, 220, 4905, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 10348, 21739, 4654, 4905, 25, 705, 33479, 6, 393, 705, 3849, 8831, 82, 6, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 30324, 392, 292, 13, 10082, 78, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 3265, 1366, 5739, 41497, 1626, 262, 3814, 286, 1393, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 4935, 284, 976, 1080, 22715, 198, 220, 220, 220, 7514, 62, 70, 7568, 796, 12018, 13, 16302, 62, 70, 7568, 7, 35428, 62, 70, 7568, 11, 284, 62, 66, 3808, 28, 7568, 62, 7890, 13, 66, 3808, 8, 198, 220, 220, 220, 1303, 1338, 34961, 4654, 198, 220, 220, 220, 47764, 62, 2302, 974, 796, 27809, 67, 13, 82, 22179, 7, 7568, 62, 7890, 11, 7514, 62, 70, 7568, 11, 1034, 28, 27184, 8, 198, 220, 220, 220, 1303, 9175, 2656, 15180, 198, 220, 220, 220, 47764, 62, 2302, 974, 796, 47764, 62, 2302, 974, 58, 7568, 62, 7890, 13, 28665, 82, 60, 198, 220, 220, 220, 1441, 47764, 62, 2302, 974, 628, 198, 4299, 651, 62, 39748, 62, 7568, 7, 198, 220, 220, 220, 1461, 62, 43358, 7753, 11, 1461, 62, 7890, 62, 7753, 11, 1366, 62, 10459, 11, 284, 62, 66, 3808, 11, 7514, 62, 70, 7568, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4149, 262, 3265, 5485, 7753, 422, 5128, 29472, 14, 82, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 262, 1366, 1626, 262, 5421, 278, 3091, 198, 220, 220, 220, 220, 220, 220, 220, 4935, 284, 10348, 327, 6998, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1461, 62, 43358, 7753, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3265, 954, 5485, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 1461, 62, 7890, 62, 7753, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3265, 1366, 3224, 2393, 357, 35827, 329, 3268, 36078, 5794, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 10459, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10348, 3265, 1366, 2723, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 66, 3808, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10348, 20435, 4941, 1080, 198, 220, 220, 220, 220, 220, 220, 220, 7514, 62, 70, 7568, 1058, 30324, 392, 292, 13, 10082, 78, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4903, 375, 1045, 14535, 7268, 262, 3814, 286, 1393, 287, 1296, 286, 7514, 14520, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 30324, 392, 292, 13, 10082, 78, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 41497, 290, 13301, 3265, 1366, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 29113, 4242, 2235, 198, 220, 220, 220, 1303, 8778, 14714, 54, 14, 1268, 36078, 3265, 1366, 198, 220, 220, 220, 1303, 29113, 4242, 2235, 198, 220, 220, 220, 1303, 4149, 3265, 1366, 198, 220, 220, 220, 47764, 62, 12924, 796, 27809, 67, 13, 961, 62, 7753, 7, 12924, 62, 43358, 7753, 8, 628, 220, 220, 220, 1303, 29677, 3814, 286, 1393, 357, 36, 3705, 38, 5946, 2075, 8, 198, 220, 220, 220, 1303, 25853, 4903, 908, 1678, 407, 7763, 287, 5421, 278, 3091, 198, 220, 220, 220, 47764, 62, 12924, 796, 651, 62, 7568, 62, 2302, 974, 7, 7568, 62, 12924, 11, 7514, 62, 70, 7568, 8, 628, 220, 220, 220, 611, 1366, 62, 10459, 318, 366, 259, 3826, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 4242, 2235, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15891, 2239, 329, 3268, 36078, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 4242, 2235, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 288, 19881, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 12924, 796, 27809, 67, 13, 961, 62, 7753, 7, 12924, 62, 7890, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 15180, 286, 1393, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 12924, 796, 1366, 62, 12924, 58, 14692, 312, 1268, 4303, 41736, 1600, 366, 521, 62, 66, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 12924, 796, 47764, 62, 12924, 58, 14692, 469, 15748, 1600, 366, 312, 1268, 4303, 41736, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24877, 4654, 284, 7330, 3265, 954, 1366, 3917, 284, 1123, 22939, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 12924, 796, 279, 67, 13, 647, 469, 7, 7568, 62, 12924, 11, 1366, 62, 12924, 11, 703, 2625, 5083, 1600, 319, 2625, 312, 1268, 4303, 41736, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7152, 480, 3265, 954, 5721, 198, 220, 220, 220, 47764, 62, 12924, 13, 918, 480, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 4895, 521, 62, 66, 1298, 366, 12924, 62, 9127, 1600, 366, 35504, 1298, 366, 12924, 62, 9127, 25719, 287, 5372, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 12018, 13, 16302, 62, 70, 7568, 7, 7568, 62, 12924, 11, 284, 62, 66, 3808, 28, 1462, 62, 66, 3808, 8, 628, 198, 4299, 651, 62, 2302, 974, 62, 39748, 62, 7890, 7, 198, 220, 220, 220, 1748, 62, 5420, 11, 198, 220, 220, 220, 1366, 62, 10459, 11, 198, 220, 220, 220, 1461, 62, 43358, 7753, 28, 14202, 11, 198, 220, 220, 220, 1461, 62, 7890, 62, 7753, 28, 14202, 11, 198, 220, 220, 220, 284, 62, 66, 3808, 28, 4895, 15003, 1298, 366, 25386, 70, 25, 3559, 2075, 25719, 198, 220, 220, 220, 25052, 684, 62, 70, 7568, 28, 14202, 11, 198, 2599, 198, 220, 220, 220, 37227, 3855, 1366, 3265, 7925, 286, 10348, 1366, 2723, 329, 5128, 1748, 11, 198, 220, 220, 220, 26019, 262, 24748, 87, 23644, 286, 5128, 6832, 4903, 375, 1045, 14535, 628, 220, 220, 220, 383, 3265, 1366, 5739, 318, 13301, 284, 262, 10348, 20435, 4941, 198, 220, 220, 220, 1080, 628, 220, 220, 220, 41835, 262, 21242, 5485, 7753, 628, 220, 220, 220, 16409, 262, 8574, 3265, 1366, 329, 5128, 705, 7890, 2723, 6, 290, 705, 19205, 198, 220, 220, 220, 4941, 6, 611, 340, 373, 4271, 8574, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 5420, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 286, 5128, 1748, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 10459, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10348, 3265, 1366, 2723, 198, 220, 220, 220, 220, 220, 220, 220, 1461, 62, 43358, 7753, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 286, 3265, 954, 5485, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 1461, 62, 7890, 62, 7753, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 286, 3265, 1366, 3224, 2393, 357, 35827, 329, 3268, 36078, 5794, 8, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 66, 3808, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10348, 20435, 4941, 1080, 198, 220, 220, 220, 220, 220, 220, 220, 25052, 684, 62, 70, 7568, 1058, 30324, 392, 292, 13, 10082, 78, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25052, 684, 357, 68, 13, 70, 13, 6832, 8, 329, 5128, 3814, 286, 1393, 543, 198, 220, 220, 220, 220, 220, 220, 220, 481, 5004, 262, 5485, 284, 7925, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 30324, 392, 292, 13, 10082, 78, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 21242, 3265, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 23412, 1366, 2723, 2099, 1813, 30, 198, 220, 220, 220, 6818, 1366, 62, 10459, 287, 42865, 62, 50, 2606, 7397, 1546, 628, 220, 220, 220, 1303, 20133, 7925, 7160, 30, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 1136, 62, 39748, 62, 2302, 974, 62, 34345, 7, 19205, 62, 5420, 11, 1366, 62, 10459, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 7203, 45251, 7925, 7160, 329, 5128, 1748, 25, 366, 1343, 1748, 62, 5420, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 27809, 67, 13, 961, 62, 7753, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 39748, 62, 2302, 974, 62, 34345, 7, 19205, 62, 5420, 11, 1366, 62, 10459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 23412, 5485, 1813, 30, 198, 220, 220, 220, 6818, 407, 357, 37659, 13, 439, 7, 35428, 70, 684, 62, 70, 7568, 318, 6045, 4008, 198, 220, 220, 220, 1303, 23412, 3265, 5485, 7753, 1813, 30, 198, 220, 220, 220, 6818, 1461, 62, 43358, 7753, 318, 407, 6045, 198, 220, 220, 220, 1303, 1439, 5128, 3696, 1813, 30, 198, 220, 220, 220, 6818, 407, 14808, 7890, 62, 10459, 6624, 366, 259, 3826, 4943, 290, 357, 12924, 62, 7890, 62, 7753, 318, 6045, 4008, 628, 220, 220, 220, 1303, 3497, 6832, 24748, 87, 23644, 198, 220, 220, 220, 7514, 14520, 796, 2269, 15748, 36307, 7, 198, 220, 220, 220, 220, 220, 220, 220, 25052, 684, 62, 70, 7568, 13, 469, 15748, 13, 27160, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 6739, 1102, 303, 87, 62, 71, 724, 198, 220, 220, 220, 1303, 38240, 284, 40087, 12, 7890, 14535, 351, 5447, 327, 6998, 198, 220, 220, 220, 7514, 62, 70, 7568, 796, 27809, 67, 13, 10082, 78, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 35428, 14520, 4357, 15180, 28, 14692, 469, 15748, 33116, 1067, 82, 28, 35428, 70, 684, 62, 70, 7568, 13, 66, 3808, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 3082, 1133, 7925, 198, 220, 220, 220, 47764, 62, 12924, 796, 651, 62, 39748, 62, 7568, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1461, 62, 43358, 7753, 11, 1461, 62, 7890, 62, 7753, 11, 1366, 62, 10459, 11, 284, 62, 66, 3808, 11, 7514, 62, 70, 7568, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 12793, 284, 5485, 7753, 198, 220, 220, 220, 47764, 62, 12924, 13, 1462, 62, 7753, 7, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 39748, 62, 2302, 974, 62, 34345, 7, 19205, 62, 5420, 11, 1366, 62, 10459, 828, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 2625, 1546, 7112, 25959, 7753, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1441, 47764, 62, 12924, 198 ]
2.526564
2,334
# -------------------------------------------------------- # Tensorflow Phrase Detection # Licensed under The MIT License [see LICENSE for details] # Written by Bryan Plummer based on code from Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import matplotlib matplotlib.use('agg') from datasets.imdb import imdb import datasets.ds_utils as ds_utils from model.config import cfg, get_output_vocab import os.path as osp import sys import os import numpy as np import scipy.sparse import scipy.io as sio import pickle import json import uuid import h5py import string
[ 2, 20368, 22369, 198, 2, 309, 22854, 11125, 1380, 22789, 46254, 198, 2, 49962, 739, 383, 17168, 13789, 685, 3826, 38559, 24290, 329, 3307, 60, 198, 2, 22503, 416, 17857, 1345, 31647, 1912, 319, 2438, 422, 9847, 23837, 1477, 624, 198, 2, 20368, 22369, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 10786, 9460, 11537, 198, 198, 6738, 40522, 13, 320, 9945, 1330, 545, 9945, 198, 11748, 40522, 13, 9310, 62, 26791, 355, 288, 82, 62, 26791, 198, 6738, 2746, 13, 11250, 1330, 30218, 70, 11, 651, 62, 22915, 62, 18893, 397, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 82, 29572, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 198, 11748, 2298, 293, 198, 11748, 33918, 198, 11748, 334, 27112, 198, 11748, 289, 20, 9078, 198, 11748, 4731, 628 ]
3.927374
179
from __future__ import division import glob, os import numpy as np import cv2 import torch.utils.data as torch_data import yaml import utils.radiate_utils as radiate_utils from utils.calibration import Calibration
[ 6738, 11593, 37443, 834, 1330, 7297, 198, 11748, 15095, 11, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 28034, 13, 26791, 13, 7890, 355, 28034, 62, 7890, 198, 11748, 331, 43695, 198, 11748, 3384, 4487, 13, 6335, 9386, 62, 26791, 355, 2511, 9386, 62, 26791, 198, 6738, 3384, 4487, 13, 9948, 571, 1358, 1330, 2199, 571, 1358, 198 ]
3.34375
64
# -*- coding: utf-8 -*- from flask import Blueprint from flask_journey import route from .services import get_pilots, get_pilot from .schemas import pilot, pilots, query bp = Blueprint('pilots', __name__) @route(bp, '/<pilot_id>', methods=['GET'], marshal_with=pilot) @route(bp, '/', methods=['GET'], _query=query, marshal_with=pilots, validate=False)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 42903, 1330, 39932, 198, 6738, 42903, 62, 73, 5604, 1330, 6339, 198, 198, 6738, 764, 30416, 1330, 651, 62, 79, 346, 1747, 11, 651, 62, 79, 23439, 198, 6738, 764, 1416, 4411, 292, 1330, 8022, 11, 14982, 11, 12405, 628, 198, 46583, 796, 39932, 10786, 79, 346, 1747, 3256, 11593, 3672, 834, 8, 628, 198, 31, 38629, 7, 46583, 11, 31051, 27, 79, 23439, 62, 312, 29, 3256, 5050, 28, 17816, 18851, 6, 4357, 22397, 282, 62, 4480, 28, 79, 23439, 8, 628, 198, 31, 38629, 7, 46583, 11, 31051, 3256, 5050, 28, 17816, 18851, 6, 4357, 4808, 22766, 28, 22766, 11, 22397, 282, 62, 4480, 28, 79, 346, 1747, 11, 26571, 28, 25101, 8, 628 ]
2.734848
132
# -*- coding: utf-8 -*- from setuptools import find_packages, setup setup( name="redisfe", version="0.0.1", packages=find_packages(), entry_points={"console_scripts": ("redisfe=redisfe.main:main",)}, )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 445, 4468, 68, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 15, 13, 16, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 5726, 62, 13033, 28, 4895, 41947, 62, 46521, 1298, 5855, 445, 4468, 68, 28, 445, 4468, 68, 13, 12417, 25, 12417, 1600, 8, 5512, 198, 8, 198 ]
2.391304
92
# ---------------------------------------------------------------------------- # Title: Scientific Visualisation - Python & Matplotlib # Author: Nicolas P. Rougier # License: BSD # ---------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(5, 2)) ax = fig.add_subplot(111, xlim=(2002.5, 2021.5), ylim=(0, 6.5), yticks=([])) ax.tick_params("x", labelsize="x-small", which="major") plt.plot([2002.5, 2021.5], [0, 0], color="black", linewidth=1.0, clip_on=False) X = np.arange(2003, 2022) Y = np.zeros(len(X)) plt.scatter( X, Y, s=50, linewidth=1.0, zorder=10, clip_on=False, edgecolor="black", facecolor="white", ) annotate(ax, 2021, 4, "3.4") annotate(ax, 2020, 3, "3.3") annotate(ax, 2019, 4, "3.2") annotate(ax, 2019, 2, "3.1") annotate(ax, 2018, 3, "3.0", y0=1.5) annotate(ax, 2018, 1, "2.2", fc="#777777") annotate(ax, 2017, 4, "2.1", y0=2.5) annotate(ax, 2017, 2, "2.0") annotate(ax, 2015, 2, "1.5") annotate(ax, 2014, 1, "1.4") annotate(ax, 2013, 2, "1.3") annotate(ax, 2012, 1, "1.2") annotate(ax, 2011, 3, "1.1", y0=2.5) annotate(ax, 2011, 2, "1.0") annotate(ax, 2009, 1, "0.99") annotate(ax, 2003, 1, "0.10") x0, x1 = 2002.5, 2011.9 ax.plot([x0, x1], [5, 5], color="black", linewidth=1, marker="|", clip_on=False) ax.text((x0 + x1) / 2, 5.1, "J.D. Hunter", ha="center", va="bottom", size="x-small") x0, x1 = 2012.1, 2017.9 ax.plot([x0, x1], [5, 5], color="black", linewidth=1, marker="|", clip_on=False) ax.text((x0 + x1) / 2, 5.1, "M. Droettboom", ha="center", va="bottom", size="x-small") x0, x1 = 2014.1, 2021.5 ax.plot([x0, x1 + 1], [6, 6], color="black", linewidth=1, marker="|") ax.text((x0 + x1) / 2, 6.1, "T. Caswell", ha="center", va="bottom", size="x-small") ax.spines["right"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.set_xticks(np.arange(2003, 2022, 2)) plt.tight_layout() plt.savefig("../../figures/introduction/matplotlib-timeline.pdf") plt.savefig("../../figures/introduction/matplotlib-timeline.png", dpi=300) plt.show()
[ 2, 16529, 10541, 198, 2, 11851, 25, 220, 220, 22060, 15612, 5612, 532, 11361, 1222, 6550, 29487, 8019, 198, 2, 6434, 25, 220, 29737, 350, 13, 13876, 70, 959, 198, 2, 13789, 25, 347, 10305, 198, 2, 16529, 10541, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 198, 5647, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 20, 11, 362, 4008, 198, 897, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 16243, 11, 2124, 2475, 16193, 16942, 13, 20, 11, 33448, 13, 20, 828, 331, 2475, 16193, 15, 11, 718, 13, 20, 828, 331, 83, 3378, 16193, 21737, 4008, 198, 897, 13, 42298, 62, 37266, 7203, 87, 1600, 14722, 1096, 2625, 87, 12, 17470, 1600, 543, 2625, 22478, 4943, 198, 489, 83, 13, 29487, 26933, 16942, 13, 20, 11, 33448, 13, 20, 4357, 685, 15, 11, 657, 4357, 3124, 2625, 13424, 1600, 9493, 413, 5649, 28, 16, 13, 15, 11, 10651, 62, 261, 28, 25101, 8, 198, 55, 796, 45941, 13, 283, 858, 7, 16088, 11, 33160, 8, 198, 56, 796, 45941, 13, 9107, 418, 7, 11925, 7, 55, 4008, 198, 489, 83, 13, 1416, 1436, 7, 198, 220, 220, 220, 1395, 11, 198, 220, 220, 220, 575, 11, 198, 220, 220, 220, 264, 28, 1120, 11, 198, 220, 220, 220, 9493, 413, 5649, 28, 16, 13, 15, 11, 198, 220, 220, 220, 1976, 2875, 28, 940, 11, 198, 220, 220, 220, 10651, 62, 261, 28, 25101, 11, 198, 220, 220, 220, 5743, 8043, 2625, 13424, 1600, 198, 220, 220, 220, 1986, 8043, 2625, 11186, 1600, 198, 8, 198, 198, 34574, 378, 7, 897, 11, 33448, 11, 604, 11, 366, 18, 13, 19, 4943, 198, 34574, 378, 7, 897, 11, 12131, 11, 513, 11, 366, 18, 13, 18, 4943, 198, 34574, 378, 7, 897, 11, 13130, 11, 604, 11, 366, 18, 13, 17, 4943, 198, 34574, 378, 7, 897, 11, 13130, 11, 362, 11, 366, 18, 13, 16, 4943, 198, 34574, 378, 7, 897, 11, 2864, 11, 513, 11, 366, 18, 13, 15, 1600, 331, 15, 28, 16, 13, 20, 8, 198, 34574, 378, 7, 897, 11, 2864, 11, 352, 11, 366, 17, 13, 17, 1600, 277, 66, 25698, 3324, 3324, 3324, 4943, 198, 34574, 378, 7, 897, 11, 2177, 11, 604, 11, 366, 17, 13, 16, 1600, 331, 15, 28, 17, 13, 20, 8, 198, 34574, 378, 7, 897, 11, 2177, 11, 362, 11, 366, 17, 13, 15, 4943, 198, 34574, 378, 7, 897, 11, 1853, 11, 362, 11, 366, 16, 13, 20, 4943, 198, 34574, 378, 7, 897, 11, 1946, 11, 352, 11, 366, 16, 13, 19, 4943, 198, 34574, 378, 7, 897, 11, 2211, 11, 362, 11, 366, 16, 13, 18, 4943, 198, 34574, 378, 7, 897, 11, 2321, 11, 352, 11, 366, 16, 13, 17, 4943, 198, 34574, 378, 7, 897, 11, 2813, 11, 513, 11, 366, 16, 13, 16, 1600, 331, 15, 28, 17, 13, 20, 8, 198, 34574, 378, 7, 897, 11, 2813, 11, 362, 11, 366, 16, 13, 15, 4943, 198, 34574, 378, 7, 897, 11, 3717, 11, 352, 11, 366, 15, 13, 2079, 4943, 198, 34574, 378, 7, 897, 11, 5816, 11, 352, 11, 366, 15, 13, 940, 4943, 198, 198, 87, 15, 11, 2124, 16, 796, 6244, 13, 20, 11, 2813, 13, 24, 198, 897, 13, 29487, 26933, 87, 15, 11, 2124, 16, 4357, 685, 20, 11, 642, 4357, 3124, 2625, 13424, 1600, 9493, 413, 5649, 28, 16, 11, 18364, 2625, 91, 1600, 10651, 62, 261, 28, 25101, 8, 198, 897, 13, 5239, 19510, 87, 15, 1343, 2124, 16, 8, 1220, 362, 11, 642, 13, 16, 11, 366, 41, 13, 35, 13, 9055, 1600, 387, 2625, 16159, 1600, 46935, 2625, 22487, 1600, 2546, 2625, 87, 12, 17470, 4943, 198, 198, 87, 15, 11, 2124, 16, 796, 2321, 13, 16, 11, 2177, 13, 24, 198, 897, 13, 29487, 26933, 87, 15, 11, 2124, 16, 4357, 685, 20, 11, 642, 4357, 3124, 2625, 13424, 1600, 9493, 413, 5649, 28, 16, 11, 18364, 2625, 91, 1600, 10651, 62, 261, 28, 25101, 8, 198, 897, 13, 5239, 19510, 87, 15, 1343, 2124, 16, 8, 1220, 362, 11, 642, 13, 16, 11, 366, 44, 13, 21045, 3087, 2127, 296, 1600, 387, 2625, 16159, 1600, 46935, 2625, 22487, 1600, 2546, 2625, 87, 12, 17470, 4943, 198, 198, 87, 15, 11, 2124, 16, 796, 1946, 13, 16, 11, 33448, 13, 20, 198, 897, 13, 29487, 26933, 87, 15, 11, 2124, 16, 1343, 352, 4357, 685, 21, 11, 718, 4357, 3124, 2625, 13424, 1600, 9493, 413, 5649, 28, 16, 11, 18364, 2625, 91, 4943, 198, 897, 13, 5239, 19510, 87, 15, 1343, 2124, 16, 8, 1220, 362, 11, 718, 13, 16, 11, 366, 51, 13, 11294, 4053, 1600, 387, 2625, 16159, 1600, 46935, 2625, 22487, 1600, 2546, 2625, 87, 12, 17470, 4943, 198, 198, 897, 13, 2777, 1127, 14692, 3506, 1, 4083, 2617, 62, 23504, 7, 25101, 8, 198, 897, 13, 2777, 1127, 14692, 9464, 1, 4083, 2617, 62, 23504, 7, 25101, 8, 198, 897, 13, 2777, 1127, 14692, 4852, 1, 4083, 2617, 62, 23504, 7, 25101, 8, 198, 897, 13, 2777, 1127, 14692, 22487, 1, 4083, 2617, 62, 23504, 7, 25101, 8, 198, 897, 13, 2617, 62, 742, 3378, 7, 37659, 13, 283, 858, 7, 16088, 11, 33160, 11, 362, 4008, 198, 198, 489, 83, 13, 33464, 62, 39786, 3419, 198, 489, 83, 13, 21928, 5647, 7203, 40720, 40720, 5647, 942, 14, 27427, 596, 14, 6759, 29487, 8019, 12, 16514, 4470, 13, 12315, 4943, 198, 489, 83, 13, 21928, 5647, 7203, 40720, 40720, 5647, 942, 14, 27427, 596, 14, 6759, 29487, 8019, 12, 16514, 4470, 13, 11134, 1600, 288, 14415, 28, 6200, 8, 198, 489, 83, 13, 12860, 3419, 198 ]
2.281971
954
import tensorly as tl import numpy as np from src._als import als,nn_als from src._herals import her_Als,nn_her_Als from src._cprand import CPRAND, nn_CPRAND from src._hercprand import her_CPRAND,nn_her_CPRAND from src._base import init_factors,random_init_fac import copy import matplotlib.pyplot as plt def speedup(list_N,r,list_S,list_P,tol,noise_level=0.1,scale=True,nn=False,nb_tensors=5): """ Calculate the speed up of her CPRAND vs ALS, her ALS and CPRAND Parameters ---------- list_N : list list of dimensions (in the increasing order) r : int rank of the tensor list_S : list list of the sample sizes, same length as list_P list_P : list list of the err sample sizes, same length as list_P tol : double tolerance for the 4 algorithms noise_level : float, optional noise_level of the tensor. The default is 0.1. scale : boolean, optional whether to scale the condition number of factors or not. The default is True. nn : boolean, optional use nn methods or not. The default is False. Returns ------- None. """ vsals = np.zeros((len(list_N),len(list_S))) vsherals = np.zeros((len(list_N),len(list_S))) vscprand = np.zeros((len(list_N),len(list_S))) for i in range(len(list_N)) : time_als = 0 time_herals = 0 time_hercprand = np.zeros(len(list_S)) time_cprand = np.zeros(len(list_S)) for k in range(nb_tensors): fac_true,noise = init_factors(list_N[i], list_N[i], list_N[i], r,noise_level=noise_level,scale=scale,nn=nn) t=tl.cp_to_tensor((None,fac_true))+noise if k==0 : factors=random_init_fac(t,r) if nn==False : weights2,factors2,it2,error2,time2=als(t,r,factors=copy.deepcopy(factors),it_max=10000,tol=tol,time_rec=True) weights1,factors1,it1,error1,cpt1,time1=her_Als(t,r,factors=copy.deepcopy(factors),it_max=10000,tol=tol,time_rec=True) else : weights2,factors2,it2,error2,time2=nn_als(t,r,factors=copy.deepcopy(factors),it_max=10000,tol=tol,time_rec=True) weights1,factors1,it1,error1,cpt1,time1=nn_her_Als(t,r,factors=copy.deepcopy(factors),it_max=10000,tol=tol,time_rec=True) time_als += np.cumsum(time2)[it2-1] time_herals += np.cumsum(time1)[it1-1] for s in range(len(list_S)): if(nn==False): weights3,factors3,it3,error3,time3=CPRAND(t,r,list_S[s],list_P[s],factors=copy.deepcopy(factors),exact_err=False,it_max=10000,err_it_max=10000,tol=tol,time_rec=True) weights4,factors4,it4,error4,cpt4,time4=her_CPRAND(t,r,list_S[s],list_P[s],factors=copy.deepcopy(factors),exact_err=False,it_max=10000,err_it_max=10000,tol=tol,time_rec=True) else : weights3,factors3,it3,error3,time3=nn_CPRAND(t,r,list_S[s],list_P[s],factors=copy.deepcopy(factors),exact_err=False,it_max=10000,err_it_max=10000,tol=tol,time_rec=True) weights4,factors4,it4,error4,cpt4,time4=nn_her_CPRAND(t,r,list_S[s],list_P[s],factors=copy.deepcopy(factors),exact_err=False,it_max=10000,err_it_max=10000,tol=tol,time_rec=True) time_hercprand[s] += np.cumsum(time4)[it4-1] time_cprand[s] =+ np.cumsum(time3)[it3-1] vsals[i,:] = time_als / copy.deepcopy(time_hercprand) vsherals[i,:] =time_herals/copy.deepcopy(time_hercprand) vscprand[i,:] =copy.deepcopy(time_cprand)/copy.deepcopy(time_hercprand) # plot plt.figure(0) for s in range(len(list_S)): legend = "S = " + str(list_S[s]) +" , P = " + str(list_P[s]) plt.plot(list_N, vsals[:,s],label=legend) plt.axhline(y = 1, color = 'k',linestyle = '--',label="speed up = 1") plt.xlabel('N') plt.ylabel('Speed up factor') plt.legend(loc='best') plt.title('Speed up vs als') plt.figure(1) for s in range(len(list_S)): legend = "S = " + str(list_S[s]) +" , P = " + str(list_P[s]) plt.plot(list_N,vsherals[:,s],label=legend) plt.axhline(y = 1, color = 'k',linestyle = '--',label="speed up = 1") plt.xlabel('N') plt.ylabel('Speed up factor') plt.legend(loc='best') plt.title('Speed up vs herals') plt.figure(2) for s in range(len(list_S)): legend = "S = " + str(list_S[s]) +" , P = " + str(list_P[s]) plt.plot(list_N,vscprand[:,s],label=legend) plt.axhline(y = 1, color = 'k',linestyle = '--',label="speed up = 1") plt.xlabel('N') plt.ylabel('Speed up factor') plt.legend(loc='best') plt.title('Speed up vs cprand')
[ 11748, 11192, 273, 306, 355, 256, 75, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 12351, 13557, 874, 1330, 435, 82, 11, 20471, 62, 874, 198, 6738, 12351, 13557, 372, 874, 1330, 607, 62, 2348, 82, 11, 20471, 62, 372, 62, 2348, 82, 198, 6738, 12351, 13557, 66, 1050, 392, 1330, 42920, 6981, 11, 299, 77, 62, 34, 4805, 6981, 198, 6738, 12351, 13557, 372, 66, 1050, 392, 1330, 607, 62, 34, 4805, 6981, 11, 20471, 62, 372, 62, 34, 4805, 6981, 198, 6738, 12351, 13557, 8692, 1330, 2315, 62, 22584, 669, 11, 25120, 62, 15003, 62, 38942, 198, 11748, 4866, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 4299, 2866, 929, 7, 4868, 62, 45, 11, 81, 11, 4868, 62, 50, 11, 4868, 62, 47, 11, 83, 349, 11, 3919, 786, 62, 5715, 28, 15, 13, 16, 11, 9888, 28, 17821, 11, 20471, 28, 25101, 11, 46803, 62, 83, 641, 669, 28, 20, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27131, 378, 262, 2866, 510, 286, 607, 42920, 6981, 3691, 27249, 11, 607, 27249, 290, 42920, 6981, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1351, 62, 45, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 15225, 357, 259, 262, 3649, 1502, 8, 198, 220, 220, 220, 374, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 286, 262, 11192, 273, 198, 220, 220, 220, 1351, 62, 50, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 262, 6291, 10620, 11, 976, 4129, 355, 1351, 62, 47, 198, 220, 220, 220, 1351, 62, 47, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 262, 11454, 6291, 10620, 11, 976, 4129, 355, 1351, 62, 47, 198, 220, 220, 220, 284, 75, 1058, 4274, 198, 220, 220, 220, 220, 220, 220, 220, 15621, 329, 262, 604, 16113, 198, 220, 220, 220, 7838, 62, 5715, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 7838, 62, 5715, 286, 262, 11192, 273, 13, 383, 4277, 318, 657, 13, 16, 13, 198, 220, 220, 220, 5046, 1058, 25131, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1771, 284, 5046, 262, 4006, 1271, 286, 5087, 393, 407, 13, 383, 4277, 318, 6407, 13, 198, 220, 220, 220, 299, 77, 1058, 25131, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 779, 299, 77, 5050, 393, 407, 13, 383, 4277, 318, 10352, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 6045, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 3691, 874, 796, 45941, 13, 9107, 418, 19510, 11925, 7, 4868, 62, 45, 828, 11925, 7, 4868, 62, 50, 22305, 198, 220, 220, 220, 3691, 372, 874, 796, 45941, 13, 9107, 418, 19510, 11925, 7, 4868, 62, 45, 828, 11925, 7, 4868, 62, 50, 22305, 198, 220, 220, 220, 410, 1416, 1050, 392, 796, 45941, 13, 9107, 418, 19510, 11925, 7, 4868, 62, 45, 828, 11925, 7, 4868, 62, 50, 22305, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 4868, 62, 45, 4008, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 640, 62, 874, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 640, 62, 372, 874, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 640, 62, 372, 66, 1050, 392, 796, 45941, 13, 9107, 418, 7, 11925, 7, 4868, 62, 50, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 640, 62, 66, 1050, 392, 796, 45941, 13, 9107, 418, 7, 11925, 7, 4868, 62, 50, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 46803, 62, 83, 641, 669, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1777, 62, 7942, 11, 3919, 786, 796, 2315, 62, 22584, 669, 7, 4868, 62, 45, 58, 72, 4357, 1351, 62, 45, 58, 72, 4357, 1351, 62, 45, 58, 72, 4357, 374, 11, 3919, 786, 62, 5715, 28, 3919, 786, 62, 5715, 11, 9888, 28, 9888, 11, 20471, 28, 20471, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 28, 28781, 13, 13155, 62, 1462, 62, 83, 22854, 19510, 14202, 11, 38942, 62, 7942, 4008, 10, 3919, 786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 855, 15, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5087, 28, 25120, 62, 15003, 62, 38942, 7, 83, 11, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 77, 855, 25101, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 17, 11, 22584, 669, 17, 11, 270, 17, 11, 18224, 17, 11, 2435, 17, 28, 874, 7, 83, 11, 81, 11, 22584, 669, 28, 30073, 13, 22089, 30073, 7, 22584, 669, 828, 270, 62, 9806, 28, 49388, 11, 83, 349, 28, 83, 349, 11, 2435, 62, 8344, 28, 17821, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 16, 11, 22584, 669, 16, 11, 270, 16, 11, 18224, 16, 11, 66, 457, 16, 11, 2435, 16, 28, 372, 62, 2348, 82, 7, 83, 11, 81, 11, 22584, 669, 28, 30073, 13, 22089, 30073, 7, 22584, 669, 828, 270, 62, 9806, 28, 49388, 11, 83, 349, 28, 83, 349, 11, 2435, 62, 8344, 28, 17821, 8, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 17, 11, 22584, 669, 17, 11, 270, 17, 11, 18224, 17, 11, 2435, 17, 28, 20471, 62, 874, 7, 83, 11, 81, 11, 22584, 669, 28, 30073, 13, 22089, 30073, 7, 22584, 669, 828, 270, 62, 9806, 28, 49388, 11, 83, 349, 28, 83, 349, 11, 2435, 62, 8344, 28, 17821, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 16, 11, 22584, 669, 16, 11, 270, 16, 11, 18224, 16, 11, 66, 457, 16, 11, 2435, 16, 28, 20471, 62, 372, 62, 2348, 82, 7, 83, 11, 81, 11, 22584, 669, 28, 30073, 13, 22089, 30073, 7, 22584, 669, 828, 270, 62, 9806, 28, 49388, 11, 83, 349, 28, 83, 349, 11, 2435, 62, 8344, 28, 17821, 8, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 874, 15853, 45941, 13, 66, 5700, 388, 7, 2435, 17, 38381, 270, 17, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 372, 874, 15853, 45941, 13, 66, 5700, 388, 7, 2435, 16, 38381, 270, 16, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2837, 7, 11925, 7, 4868, 62, 50, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 20471, 855, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 18, 11, 22584, 669, 18, 11, 270, 18, 11, 18224, 18, 11, 2435, 18, 28, 34, 4805, 6981, 7, 83, 11, 81, 11, 4868, 62, 50, 58, 82, 4357, 4868, 62, 47, 58, 82, 4357, 22584, 669, 28, 30073, 13, 22089, 30073, 7, 22584, 669, 828, 1069, 529, 62, 8056, 28, 25101, 11, 270, 62, 9806, 28, 49388, 11, 8056, 62, 270, 62, 9806, 28, 49388, 11, 83, 349, 28, 83, 349, 11, 2435, 62, 8344, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 19, 11, 22584, 669, 19, 11, 270, 19, 11, 18224, 19, 11, 66, 457, 19, 11, 2435, 19, 28, 372, 62, 34, 4805, 6981, 7, 83, 11, 81, 11, 4868, 62, 50, 58, 82, 4357, 4868, 62, 47, 58, 82, 4357, 22584, 669, 28, 30073, 13, 22089, 30073, 7, 22584, 669, 828, 1069, 529, 62, 8056, 28, 25101, 11, 270, 62, 9806, 28, 49388, 11, 8056, 62, 270, 62, 9806, 28, 49388, 11, 83, 349, 28, 83, 349, 11, 2435, 62, 8344, 28, 17821, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 18, 11, 22584, 669, 18, 11, 270, 18, 11, 18224, 18, 11, 2435, 18, 28, 20471, 62, 34, 4805, 6981, 7, 83, 11, 81, 11, 4868, 62, 50, 58, 82, 4357, 4868, 62, 47, 58, 82, 4357, 22584, 669, 28, 30073, 13, 22089, 30073, 7, 22584, 669, 828, 1069, 529, 62, 8056, 28, 25101, 11, 270, 62, 9806, 28, 49388, 11, 8056, 62, 270, 62, 9806, 28, 49388, 11, 83, 349, 28, 83, 349, 11, 2435, 62, 8344, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19590, 19, 11, 22584, 669, 19, 11, 270, 19, 11, 18224, 19, 11, 66, 457, 19, 11, 2435, 19, 28, 20471, 62, 372, 62, 34, 4805, 6981, 7, 83, 11, 81, 11, 4868, 62, 50, 58, 82, 4357, 4868, 62, 47, 58, 82, 4357, 22584, 669, 28, 30073, 13, 22089, 30073, 7, 22584, 669, 828, 1069, 529, 62, 8056, 28, 25101, 11, 270, 62, 9806, 28, 49388, 11, 8056, 62, 270, 62, 9806, 28, 49388, 11, 83, 349, 28, 83, 349, 11, 2435, 62, 8344, 28, 17821, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 372, 66, 1050, 392, 58, 82, 60, 15853, 45941, 13, 66, 5700, 388, 7, 2435, 19, 38381, 270, 19, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 66, 1050, 392, 58, 82, 60, 796, 10, 45941, 13, 66, 5700, 388, 7, 2435, 18, 38381, 270, 18, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 3691, 874, 58, 72, 11, 47715, 796, 640, 62, 874, 1220, 4866, 13, 22089, 30073, 7, 2435, 62, 372, 66, 1050, 392, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3691, 372, 874, 58, 72, 11, 47715, 796, 2435, 62, 372, 874, 14, 30073, 13, 22089, 30073, 7, 2435, 62, 372, 66, 1050, 392, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1416, 1050, 392, 58, 72, 11, 47715, 796, 30073, 13, 22089, 30073, 7, 2435, 62, 66, 1050, 392, 20679, 30073, 13, 22089, 30073, 7, 2435, 62, 372, 66, 1050, 392, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 7110, 198, 220, 220, 220, 458, 83, 13, 26875, 7, 15, 8, 198, 220, 220, 220, 329, 264, 287, 2837, 7, 11925, 7, 4868, 62, 50, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8177, 796, 366, 50, 796, 366, 1343, 965, 7, 4868, 62, 50, 58, 82, 12962, 1343, 1, 837, 350, 796, 366, 1343, 965, 7, 4868, 62, 47, 58, 82, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 4868, 62, 45, 11, 3691, 874, 58, 45299, 82, 4357, 18242, 28, 1455, 437, 8, 198, 220, 220, 220, 458, 83, 13, 897, 71, 1370, 7, 88, 796, 352, 11, 220, 3124, 796, 705, 74, 3256, 2815, 10992, 796, 705, 438, 3256, 18242, 2625, 12287, 510, 796, 352, 4943, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 45, 11537, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 10786, 22785, 510, 5766, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 458, 83, 13, 7839, 10786, 22785, 510, 3691, 435, 82, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 458, 83, 13, 26875, 7, 16, 8, 198, 220, 220, 220, 329, 264, 287, 2837, 7, 11925, 7, 4868, 62, 50, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8177, 796, 366, 50, 796, 366, 1343, 965, 7, 4868, 62, 50, 58, 82, 12962, 1343, 1, 837, 350, 796, 366, 1343, 965, 7, 4868, 62, 47, 58, 82, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 4868, 62, 45, 11, 14259, 372, 874, 58, 45299, 82, 4357, 18242, 28, 1455, 437, 8, 198, 220, 220, 220, 458, 83, 13, 897, 71, 1370, 7, 88, 796, 352, 11, 3124, 796, 705, 74, 3256, 2815, 10992, 796, 705, 438, 3256, 18242, 2625, 12287, 510, 796, 352, 4943, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 45, 11537, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 10786, 22785, 510, 5766, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 458, 83, 13, 7839, 10786, 22785, 510, 3691, 607, 874, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 458, 83, 13, 26875, 7, 17, 8, 198, 220, 220, 220, 329, 264, 287, 2837, 7, 11925, 7, 4868, 62, 50, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8177, 796, 366, 50, 796, 366, 1343, 965, 7, 4868, 62, 50, 58, 82, 12962, 1343, 1, 837, 350, 796, 366, 1343, 965, 7, 4868, 62, 47, 58, 82, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 4868, 62, 45, 11, 85, 1416, 1050, 392, 58, 45299, 82, 4357, 18242, 28, 1455, 437, 8, 198, 220, 220, 220, 458, 83, 13, 897, 71, 1370, 7, 88, 796, 352, 11, 3124, 796, 705, 74, 3256, 2815, 10992, 796, 705, 438, 3256, 18242, 2625, 12287, 510, 796, 352, 4943, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 45, 11537, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 10786, 22785, 510, 5766, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 458, 83, 13, 7839, 10786, 22785, 510, 3691, 269, 1050, 392, 11537, 628, 628, 628 ]
1.954379
2,455
from datetime import date from flask import abort, Flask, Response import json from pyliturgical import calendar app = Flask(__name__) @app.route('/reformed/<date_str>') if __name__ == '__main__': app.run(host='127.0.0.1', port=8080, debug=True)
[ 6738, 4818, 8079, 1330, 3128, 198, 6738, 42903, 1330, 15614, 11, 46947, 11, 18261, 198, 11748, 33918, 198, 6738, 279, 2645, 270, 31839, 1330, 11845, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 628, 198, 31, 1324, 13, 38629, 10786, 14, 260, 12214, 14, 27, 4475, 62, 2536, 29, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 11639, 16799, 13, 15, 13, 15, 13, 16, 3256, 2493, 28, 1795, 1795, 11, 14257, 28, 17821, 8, 198 ]
2.771739
92
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import ipdb import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import * from classLSTMCore import LSTMCore
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 20966, 9945, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 1635, 198, 198, 6738, 1398, 43, 2257, 9655, 382, 1330, 406, 2257, 9655, 382, 628 ]
3.506173
81
import unittest from io import StringIO from spacegraphcats.catlas.graph_io import read_from_gxt, write_to_gxt from spacegraphcats.catlas.graph import Graph if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 33245, 1330, 10903, 9399, 198, 198, 6738, 2272, 34960, 24619, 13, 9246, 21921, 13, 34960, 62, 952, 1330, 1100, 62, 6738, 62, 70, 742, 11, 3551, 62, 1462, 62, 70, 742, 198, 6738, 2272, 34960, 24619, 13, 9246, 21921, 13, 34960, 1330, 29681, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.849315
73
from models.base_model import BaseModel import tensorflow as tf import numpy as np from label_storage import LabelStorage from tqdm import tqdm import time from copy import deepcopy # Three heads acting on the rnn output of size batchxlengthxoutput_size # They predict IoU, whether the Gt exists, and the shift to GT bounding box # IoU between two bounding boxes computation in TF # such that IoU with GT could be optimized.
[ 6738, 4981, 13, 8692, 62, 19849, 1330, 7308, 17633, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 6167, 62, 35350, 1330, 36052, 31425, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 640, 198, 6738, 4866, 1330, 2769, 30073, 628, 198, 2, 7683, 6665, 7205, 319, 262, 374, 20471, 5072, 286, 2546, 15458, 87, 13664, 87, 22915, 62, 7857, 198, 2, 1119, 4331, 27853, 52, 11, 1771, 262, 402, 83, 7160, 11, 290, 262, 6482, 284, 7963, 5421, 278, 3091, 198, 198, 2, 27853, 52, 1022, 734, 5421, 278, 10559, 29964, 287, 24958, 198, 2, 884, 326, 27853, 52, 351, 7963, 714, 307, 23392, 13, 628 ]
3.730435
115
from django.urls import include, path from .me import views as me_views from .auth import views as auth_views from .services import urls as services_urls app_name = 'multauth' urlpatterns = [ path('me/', me_views.MeView.as_view(), name='me'), path('me/password/', me_views.MePasswordView.as_view(), name='me-password'), path('me/passcode/', me_views.MePasscodeView.as_view(), name='me-passcode'), path('signin/', auth_views.SigninView.as_view(), name='signin'), path('signup/', auth_views.SignupView.as_view(), name='signup'), path('signup/verification/', auth_views.SignupVerificationView.as_view(), name='signup-verification'), path(r'^', include(services_urls)), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 2291, 11, 3108, 198, 198, 6738, 764, 1326, 1330, 5009, 355, 502, 62, 33571, 198, 6738, 764, 18439, 1330, 5009, 355, 6284, 62, 33571, 198, 6738, 764, 30416, 1330, 2956, 7278, 355, 2594, 62, 6371, 82, 628, 198, 1324, 62, 3672, 796, 705, 16680, 18439, 6, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 1326, 14, 3256, 502, 62, 33571, 13, 5308, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 1326, 33809, 198, 220, 220, 220, 3108, 10786, 1326, 14, 28712, 14, 3256, 502, 62, 33571, 13, 5308, 35215, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 1326, 12, 28712, 33809, 198, 220, 220, 220, 3108, 10786, 1326, 14, 6603, 8189, 14, 3256, 502, 62, 33571, 13, 5308, 14478, 8189, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 1326, 12, 6603, 8189, 33809, 198, 220, 220, 220, 3108, 10786, 12683, 259, 14, 3256, 6284, 62, 33571, 13, 11712, 259, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 12683, 259, 33809, 198, 220, 220, 220, 3108, 10786, 12683, 929, 14, 3256, 6284, 62, 33571, 13, 11712, 929, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 12683, 929, 33809, 198, 220, 220, 220, 3108, 10786, 12683, 929, 14, 332, 2649, 14, 3256, 6284, 62, 33571, 13, 11712, 929, 13414, 2649, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 12683, 929, 12, 332, 2649, 33809, 628, 220, 220, 220, 3108, 7, 81, 6, 61, 3256, 2291, 7, 30416, 62, 6371, 82, 36911, 198, 60, 198 ]
2.759843
254
import pytest import packerlicious.post_processor as post_processor
[ 11748, 12972, 9288, 198, 198, 11748, 2353, 263, 677, 699, 13, 7353, 62, 41341, 355, 1281, 62, 41341, 628, 628, 198 ]
3.47619
21
# 2015 lab 1 print('Hello World')
[ 2, 1853, 2248, 352, 198, 198, 4798, 10786, 15496, 2159, 11537, 198 ]
2.916667
12
from odoo import models, fields, api, _ from odoo.exceptions import ValidationError, Warning
[ 6738, 16298, 2238, 1330, 4981, 11, 7032, 11, 40391, 11, 4808, 198, 6738, 16298, 2238, 13, 1069, 11755, 1330, 3254, 24765, 12331, 11, 15932, 628 ]
3.76
25
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import List, Dict import math import random import aiohttp import asyncio import discord from discord.ext import commands, tasks from contents.character.Investigator import Investigator
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 6738, 19720, 1330, 7343, 11, 360, 713, 201, 198, 11748, 10688, 201, 198, 11748, 4738, 201, 198, 11748, 257, 952, 4023, 201, 198, 11748, 30351, 952, 201, 198, 201, 198, 11748, 36446, 201, 198, 6738, 36446, 13, 2302, 1330, 9729, 11, 8861, 201, 198, 201, 198, 6738, 10154, 13, 22769, 13, 19070, 23823, 1330, 49499, 201, 198, 201, 198, 201, 198 ]
3.022989
87
# Copyright Aaron Stanek 2021 # See LICENSE for more details import sys if sys.version_info[0] != 3 or sys.version_info[1] < 6: raise Exception("Python Password Utility requires Python 3.6 or later. Compatibility with any major versions after Python 3 is not guaranteed.") import hashlib import secrets import time from .chars import normalize_valid_chars, create_character_map # try to use SHA-3 if possible # default to SHA-2 if you have to if "sha3_512" in hashlib.algorithms_available: SHA512 = lambda x : hashlib.sha3_512(x).digest() SHA512_number = 3 else: SHA512 = lambda x : hashlib.sha512(x).digest() SHA512_number = 2 # this class is used to guarantee # that the input to every hash # is different
[ 2, 15069, 12139, 7299, 988, 33448, 201, 198, 2, 4091, 38559, 24290, 329, 517, 3307, 201, 198, 201, 198, 11748, 25064, 201, 198, 201, 198, 361, 25064, 13, 9641, 62, 10951, 58, 15, 60, 14512, 513, 393, 25064, 13, 9641, 62, 10951, 58, 16, 60, 1279, 718, 25, 201, 198, 220, 220, 220, 5298, 35528, 7203, 37906, 30275, 34030, 4433, 11361, 513, 13, 21, 393, 1568, 13, 46021, 351, 597, 1688, 6300, 706, 11361, 513, 318, 407, 11462, 19570, 201, 198, 201, 198, 11748, 12234, 8019, 201, 198, 11748, 13141, 201, 198, 11748, 640, 201, 198, 6738, 764, 354, 945, 1330, 3487, 1096, 62, 12102, 62, 354, 945, 11, 2251, 62, 22769, 62, 8899, 201, 198, 201, 198, 2, 1949, 284, 779, 25630, 12, 18, 611, 1744, 201, 198, 2, 4277, 284, 25630, 12, 17, 611, 345, 423, 284, 201, 198, 201, 198, 361, 366, 26270, 18, 62, 25836, 1, 287, 12234, 8019, 13, 282, 7727, 907, 62, 15182, 25, 201, 198, 220, 220, 220, 25630, 25836, 796, 37456, 2124, 1058, 12234, 8019, 13, 26270, 18, 62, 25836, 7, 87, 737, 12894, 395, 3419, 201, 198, 220, 220, 220, 25630, 25836, 62, 17618, 796, 513, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 25630, 25836, 796, 37456, 2124, 1058, 12234, 8019, 13, 26270, 25836, 7, 87, 737, 12894, 395, 3419, 201, 198, 220, 220, 220, 25630, 25836, 62, 17618, 796, 362, 201, 198, 220, 220, 220, 1303, 428, 1398, 318, 973, 284, 9149, 201, 198, 220, 220, 220, 1303, 326, 262, 5128, 284, 790, 12234, 201, 198, 220, 220, 220, 1303, 318, 1180, 201, 198 ]
2.894737
266
# =========================================================================== # tfrecords_utils.py------------------------------------------------------- # =========================================================================== """ The following functions can be used to convert a value to a type compatible with tf.Example. The tf.train.Feature message type can accept one of the following three types. Most other generic types can be coerced into one of these: tf.train.BytesList : string / byte tf.train.FloatList : float (float32) / double (float64) tf.train.Int64List : bool / enum / int32 / uint32 / int64 / uint64 In order to convert a standard TensorFlow type to a tf.Example-compatible tf.train.Feature, you can use the shortcut functions below. Note that each function takes a scalar input value and returns a tf.train.Feature containing one of the three list types above. """ # import ------------------------------------------------------------------ # --------------------------------------------------------------------------- from dl_multi.__init__ import _logger import dl_multi.utils.general as glu import dl_multi.utils.imgio from dl_multi.utils import imgtools import numpy as np import pathlib import tensorflow as tf import tifffile # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- def _bytes_feature(value, serialize=False): """Returns a bytes_list from a string / byte. Parameters ---------- value : string / byte Returns ------- feature : bytes_list Converted value compatible with tf.Example. """ if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) return feature if not serialize else feature.SerializeToString() # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- def _float_feature(value, serialize=False): """Returns a float_list from a float / double. Parameters ---------- value : float / double Returns ------- feature : float_list Converted value compatible with tf.Example. """ feature = tf.train.Feature(float_list=tf.train.FloatList(value=[value])) return feature if not serialize else feature.SerializeToString() # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- def _int64_feature(value, serialize=False): """Returns an int64_list from a bool / enum / int / uint. Parameters ---------- value : double bool / enum / int / uint Returns ------- feature : int64_list Converted value compatible with tf.Example. """ feature = tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) return feature if not serialize else feature.SerializeToString() # Create a dictionary describing the features. The key of the dict should be the same with the key in writing function. _feature_specs = { "features" : { "rows": tf.io.FixedLenFeature([], tf.int64), "cols": tf.io.FixedLenFeature([], tf.int64), "image": tf.io.FixedLenFeature([], tf.string), "height": tf.io.FixedLenFeature([], tf.string), "label": tf.io.FixedLenFeature([], tf.string) }, "images" : [ {"spec": "image", "channels": 3, "type" : tf.uint8, "ext": ".tif"}, {"spec": "height", "channels": 1, "type" : tf.float32, "ext": ".tif"}, {"spec": "label", "channels": 1, "type" : tf.uint8, "ext": ".tif"} ] } # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- def write_old_tfrecord(files, param_specs, param_tfrecord, param_label=dict()): """Create a dictionary with features that may be relevant.""" _logger.debug("Start creation of tfrecords with settings:\nparam_tfrecord:\t{}\nparam_label:\t{}".format(param_tfrecord, param_label)) # settings ------------------------------------------------------------ # ----------------------------------------------------------------------- img_in = dl_multi.utils.imgio.get_data(files, param_specs, param_label=param_label) tfrecord_file = glu.Folder().set_folder(**param_tfrecord["tfrecord"]) # execution ----------------------------------------------------------- # ----------------------------------------------------------------------- _logger.debug("[SAVE] '{}'".format(tfrecord_file)) with tf.io.TFRecordWriter(tfrecord_file) as writer: for item in iter(img_in): for item_spec in iter(item): print(item_spec.path) # img = item.spec("image").data # tf_example = get_tfrecord_features( # img.shape, # img.tostring(), # item.spec("height").data.tostring(), # imgtools.labels_to_image(item.spec("label").data, param_label).tostring() # ) # writer.write(tf_example.SerializeToString()) # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- def write_tfrecord(files, param_specs, param_tfrecord, param_label=dict()): """Create a dictionary with features that may be relevant.""" _logger.debug("Start creation of tfrecords with settings:\nparam_tfrecord:\t{}\nparam_label:\t{}".format(param_tfrecord, param_label)) # settings ------------------------------------------------------------ # ----------------------------------------------------------------------- img_in = dl_multi.utils.imgio.get_data(files, param_specs, param_label=param_label) tfrecord_file = glu.Folder().set_folder(**param_tfrecord["tfrecord"]) # execution ----------------------------------------------------------- # ----------------------------------------------------------------------- _logger.debug("[SAVE] '{}'".format(tfrecord_file)) with tf.io.TFRecordWriter(tfrecord_file) as writer: for data_set in iter(img_in): # Create a dictionary describing the features. The key of the dict should be the same with the key in writing function. shape = data_set.spec("image").data.shape feature = { "rows": _int64_feature(shape[0]), "cols": _int64_feature(shape[1]), } for data_item in iter(data_set): feature[data_item.spec] = _bytes_feature(data_item.data.tostring()) writer.write(tf.train.Example( features=tf.train.Features(feature=feature) ).SerializeToString()) # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- def get_tfrecord_features(shape, image_string, height_string, mask_string): """Create a dictionary with features that may be relevant.""" # image_shape = tf.image.decode_jpeg(image_string).shape # Create a dictionary describing the features. The key of the dict should be the same with the key in writing function. feature = { "rows": _int64_feature(shape[0]), "cols": _int64_feature(shape[1]), "image": _bytes_feature(image_string), "height": _bytes_feature(height_string), "label": _bytes_feature(mask_string), } return tf.train.Example( features=tf.train.Features( feature=feature) ) # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- # function ---------------------------------------------------------------- # --------------------------------------------------------------------------- def read_tfrecord_attempt(tfrecord_queue): """Return image/annotation tensors that are created by reading tfrecord file. The function accepts tfrecord filenames queue as an input which is usually can be created using tf.train.string_input_producer() where filename is specified with desired number of epochs. This function takes queue produced by aforemention tf.train.string_input_producer() and defines tensors converted from raw binary representations into reshaped image/annotation tensors. Parameters ---------- tfrecord_filenames_queue : tfrecord filename queue String queue object from tf.train.string_input_producer() Returns ------- image, annotation : tuple of tf.int32 (image, annotation) Tuple of image/annotation tensors """ reader = tf.TFRecordReader() _, serialized_example = reader.read(tfrecord_queue) # Create a dictionary describing the features. The key of the dict should be the same with the key in writing function. features = tf.io.parse_single_example( serialized_example, features={ 'height': tf.io.FixedLenFeature([], tf.int64), 'width': tf.io.FixedLenFeature([], tf.int64), 'data_raw': tf.io.FixedLenFeature([], tf.string), 'mask_raw': tf.io.FixedLenFeature([], tf.string) } ) image = tf.decode_raw(features['data_raw'], tf.float32) annotation = tf.decode_raw(features['mask_raw'], tf.uint8) height = tf.cast(features['height'], tf.int32) width = tf.cast(features['width'], tf.int32) image_shape = tf.stack([height, width, 4]) annotation_shape = tf.stack([height, width, 1]) image = tf.reshape(image, image_shape) annotation = tf.reshape(annotation, annotation_shape) return image, annotation
[ 2, 38093, 2559, 855, 198, 2, 220, 220, 48700, 8344, 3669, 62, 26791, 13, 9078, 3880, 19351, 6329, 198, 2, 38093, 2559, 855, 198, 198, 37811, 383, 1708, 5499, 460, 307, 973, 284, 10385, 257, 1988, 284, 257, 2099, 11670, 351, 48700, 13, 16281, 13, 628, 220, 220, 220, 383, 48700, 13, 27432, 13, 38816, 3275, 2099, 460, 2453, 530, 286, 262, 1708, 1115, 3858, 13, 4042, 584, 14276, 3858, 460, 307, 48474, 656, 530, 286, 777, 25, 628, 220, 220, 220, 48700, 13, 27432, 13, 45992, 8053, 1058, 4731, 1220, 18022, 198, 220, 220, 220, 48700, 13, 27432, 13, 43879, 8053, 1058, 12178, 357, 22468, 2624, 8, 1220, 4274, 357, 22468, 2414, 8, 628, 220, 220, 220, 48700, 13, 27432, 13, 5317, 2414, 8053, 1058, 20512, 1220, 33829, 1220, 493, 2624, 1220, 20398, 2624, 1220, 493, 2414, 1220, 20398, 2414, 628, 220, 220, 220, 554, 1502, 284, 10385, 257, 3210, 309, 22854, 37535, 2099, 284, 257, 48700, 13, 16281, 12, 38532, 48700, 13, 27432, 13, 38816, 11, 345, 460, 779, 262, 29401, 5499, 2174, 13, 5740, 326, 1123, 2163, 2753, 257, 16578, 283, 5128, 1988, 290, 5860, 257, 48700, 13, 27432, 13, 38816, 7268, 530, 286, 262, 1115, 1351, 3858, 2029, 13, 198, 37811, 198, 198, 2, 220, 220, 1330, 16529, 438, 198, 2, 16529, 32284, 198, 6738, 220, 288, 75, 62, 41684, 13, 834, 15003, 834, 1330, 4808, 6404, 1362, 198, 11748, 288, 75, 62, 41684, 13, 26791, 13, 24622, 355, 1278, 84, 198, 11748, 288, 75, 62, 41684, 13, 26791, 13, 9600, 952, 198, 6738, 288, 75, 62, 41684, 13, 26791, 1330, 545, 13655, 10141, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 3108, 8019, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 256, 361, 487, 576, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 4299, 4808, 33661, 62, 30053, 7, 8367, 11, 11389, 1096, 28, 25101, 2599, 198, 220, 220, 220, 37227, 35561, 257, 9881, 62, 4868, 422, 257, 4731, 1220, 18022, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1988, 1058, 4731, 1220, 18022, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 3895, 1058, 9881, 62, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 43433, 1988, 11670, 351, 48700, 13, 16281, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 2099, 7, 27110, 13, 9979, 415, 7, 15, 4008, 2599, 198, 220, 220, 220, 220, 220, 1988, 796, 1988, 13, 77, 32152, 3419, 1303, 2750, 4879, 8053, 1839, 470, 555, 8002, 257, 4731, 422, 281, 412, 3536, 51, 22854, 13, 198, 220, 220, 220, 3895, 796, 48700, 13, 27432, 13, 38816, 7, 33661, 62, 4868, 28, 27110, 13, 27432, 13, 45992, 8053, 7, 8367, 41888, 8367, 60, 4008, 198, 220, 220, 220, 1441, 3895, 611, 407, 11389, 1096, 2073, 3895, 13, 32634, 1096, 2514, 10100, 3419, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 4299, 4808, 22468, 62, 30053, 7, 8367, 11, 11389, 1096, 28, 25101, 2599, 198, 220, 220, 220, 37227, 35561, 257, 12178, 62, 4868, 422, 257, 12178, 1220, 4274, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1988, 1058, 12178, 1220, 4274, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 3895, 1058, 12178, 62, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 43433, 1988, 11670, 351, 48700, 13, 16281, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3895, 796, 48700, 13, 27432, 13, 38816, 7, 22468, 62, 4868, 28, 27110, 13, 27432, 13, 43879, 8053, 7, 8367, 41888, 8367, 60, 4008, 198, 220, 220, 220, 1441, 3895, 611, 407, 11389, 1096, 2073, 3895, 13, 32634, 1096, 2514, 10100, 3419, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 4299, 4808, 600, 2414, 62, 30053, 7, 8367, 11, 11389, 1096, 28, 25101, 2599, 198, 220, 220, 220, 37227, 35561, 281, 493, 2414, 62, 4868, 422, 257, 20512, 1220, 33829, 1220, 493, 1220, 20398, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1988, 1058, 4274, 20512, 1220, 33829, 1220, 493, 1220, 20398, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 3895, 1058, 493, 2414, 62, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 43433, 1988, 11670, 351, 48700, 13, 16281, 13, 198, 220, 220, 220, 37227, 220, 220, 198, 220, 220, 220, 3895, 796, 48700, 13, 27432, 13, 38816, 7, 600, 2414, 62, 4868, 28, 27110, 13, 27432, 13, 5317, 2414, 8053, 7, 8367, 41888, 8367, 60, 4008, 198, 220, 220, 220, 1441, 3895, 611, 407, 11389, 1096, 2073, 3895, 13, 32634, 1096, 2514, 10100, 3419, 198, 198, 2, 13610, 257, 22155, 12059, 262, 3033, 13, 383, 1994, 286, 262, 8633, 815, 307, 262, 976, 351, 262, 1994, 287, 3597, 2163, 13, 198, 198, 62, 30053, 62, 4125, 6359, 796, 1391, 198, 220, 220, 220, 366, 40890, 1, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8516, 1298, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 600, 2414, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4033, 82, 1298, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 600, 2414, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9060, 1298, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 8841, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17015, 1298, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 8841, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 8841, 8, 198, 220, 220, 220, 8964, 220, 198, 220, 220, 220, 366, 17566, 1, 1058, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19779, 16684, 1298, 366, 9060, 1600, 366, 354, 8961, 1298, 513, 11, 366, 4906, 1, 1058, 48700, 13, 28611, 23, 11, 366, 2302, 1298, 27071, 49929, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 19779, 16684, 1298, 366, 17015, 1600, 366, 354, 8961, 1298, 352, 11, 366, 4906, 1, 1058, 48700, 13, 22468, 2624, 11, 366, 2302, 1298, 27071, 49929, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 19779, 16684, 1298, 366, 18242, 1600, 366, 354, 8961, 1298, 352, 11, 366, 4906, 1, 1058, 48700, 13, 28611, 23, 11, 366, 2302, 1298, 27071, 49929, 20662, 220, 198, 220, 220, 220, 2361, 198, 92, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 4299, 3551, 62, 727, 62, 27110, 22105, 7, 16624, 11, 5772, 62, 4125, 6359, 11, 5772, 62, 27110, 22105, 11, 5772, 62, 18242, 28, 11600, 3419, 2599, 198, 220, 220, 220, 37227, 16447, 257, 22155, 351, 3033, 326, 743, 307, 5981, 526, 15931, 628, 220, 220, 220, 4808, 6404, 1362, 13, 24442, 7203, 10434, 6282, 286, 48700, 8344, 3669, 351, 6460, 7479, 77, 17143, 62, 27110, 22105, 7479, 83, 90, 32239, 77, 17143, 62, 18242, 7479, 83, 90, 92, 1911, 18982, 7, 17143, 62, 27110, 22105, 11, 5772, 62, 18242, 4008, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 220, 220, 6460, 20368, 1783, 10541, 198, 220, 220, 220, 1303, 16529, 26866, 198, 220, 220, 220, 33705, 62, 259, 796, 288, 75, 62, 41684, 13, 26791, 13, 9600, 952, 13, 1136, 62, 7890, 7, 16624, 11, 5772, 62, 4125, 6359, 11, 5772, 62, 18242, 28, 17143, 62, 18242, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 48700, 22105, 62, 7753, 796, 1278, 84, 13, 41092, 22446, 2617, 62, 43551, 7, 1174, 17143, 62, 27110, 22105, 14692, 27110, 22105, 8973, 8, 198, 220, 220, 198, 220, 220, 220, 1303, 220, 220, 9706, 20368, 22369, 6329, 198, 220, 220, 220, 1303, 16529, 26866, 220, 220, 198, 220, 220, 220, 4808, 6404, 1362, 13, 24442, 7203, 58, 4090, 6089, 60, 705, 90, 92, 6, 1911, 18982, 7, 27110, 22105, 62, 7753, 4008, 198, 220, 220, 220, 351, 48700, 13, 952, 13, 10234, 23739, 34379, 7, 27110, 22105, 62, 7753, 8, 355, 6260, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 11629, 7, 9600, 62, 259, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 62, 16684, 287, 11629, 7, 9186, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9186, 62, 16684, 13, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 33705, 796, 2378, 13, 16684, 7203, 9060, 11074, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 48700, 62, 20688, 796, 651, 62, 27110, 22105, 62, 40890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 33705, 13, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 33705, 13, 83, 455, 1806, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2378, 13, 16684, 7203, 17015, 11074, 7890, 13, 83, 455, 1806, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 545, 13655, 10141, 13, 23912, 1424, 62, 1462, 62, 9060, 7, 9186, 13, 16684, 7203, 18242, 11074, 7890, 11, 5772, 62, 18242, 737, 83, 455, 1806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6260, 13, 13564, 7, 27110, 62, 20688, 13, 32634, 1096, 2514, 10100, 28955, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 4299, 3551, 62, 27110, 22105, 7, 16624, 11, 5772, 62, 4125, 6359, 11, 5772, 62, 27110, 22105, 11, 5772, 62, 18242, 28, 11600, 3419, 2599, 198, 220, 220, 220, 37227, 16447, 257, 22155, 351, 3033, 326, 743, 307, 5981, 526, 15931, 628, 220, 220, 220, 4808, 6404, 1362, 13, 24442, 7203, 10434, 6282, 286, 48700, 8344, 3669, 351, 6460, 7479, 77, 17143, 62, 27110, 22105, 7479, 83, 90, 32239, 77, 17143, 62, 18242, 7479, 83, 90, 92, 1911, 18982, 7, 17143, 62, 27110, 22105, 11, 5772, 62, 18242, 4008, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 220, 220, 6460, 20368, 1783, 10541, 198, 220, 220, 220, 1303, 16529, 26866, 198, 220, 220, 220, 33705, 62, 259, 796, 288, 75, 62, 41684, 13, 26791, 13, 9600, 952, 13, 1136, 62, 7890, 7, 16624, 11, 5772, 62, 4125, 6359, 11, 5772, 62, 18242, 28, 17143, 62, 18242, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 48700, 22105, 62, 7753, 796, 1278, 84, 13, 41092, 22446, 2617, 62, 43551, 7, 1174, 17143, 62, 27110, 22105, 14692, 27110, 22105, 8973, 8, 198, 220, 220, 198, 220, 220, 220, 1303, 220, 220, 9706, 20368, 22369, 6329, 198, 220, 220, 220, 1303, 16529, 26866, 220, 220, 198, 220, 220, 220, 4808, 6404, 1362, 13, 24442, 7203, 58, 4090, 6089, 60, 705, 90, 92, 6, 1911, 18982, 7, 27110, 22105, 62, 7753, 4008, 198, 220, 220, 220, 351, 48700, 13, 952, 13, 10234, 23739, 34379, 7, 27110, 22105, 62, 7753, 8, 355, 6260, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1366, 62, 2617, 287, 11629, 7, 9600, 62, 259, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 22155, 12059, 262, 3033, 13, 383, 1994, 286, 262, 8633, 815, 307, 262, 976, 351, 262, 1994, 287, 3597, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 1366, 62, 2617, 13, 16684, 7203, 9060, 11074, 7890, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8516, 1298, 4808, 600, 2414, 62, 30053, 7, 43358, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4033, 82, 1298, 4808, 600, 2414, 62, 30053, 7, 43358, 58, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1366, 62, 9186, 287, 11629, 7, 7890, 62, 2617, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 58, 7890, 62, 9186, 13, 16684, 60, 796, 4808, 33661, 62, 30053, 7, 7890, 62, 9186, 13, 7890, 13, 83, 455, 1806, 28955, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 7, 27110, 13, 27432, 13, 16281, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 28, 27110, 13, 27432, 13, 23595, 7, 30053, 28, 30053, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 32634, 1096, 2514, 10100, 28955, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 4299, 651, 62, 27110, 22105, 62, 40890, 7, 43358, 11, 2939, 62, 8841, 11, 6001, 62, 8841, 11, 9335, 62, 8841, 2599, 198, 220, 220, 220, 37227, 16447, 257, 22155, 351, 3033, 326, 743, 307, 5981, 526, 15931, 628, 220, 220, 220, 1303, 2939, 62, 43358, 796, 48700, 13, 9060, 13, 12501, 1098, 62, 73, 22071, 7, 9060, 62, 8841, 737, 43358, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 13610, 257, 22155, 12059, 262, 3033, 13, 383, 1994, 286, 262, 8633, 815, 307, 262, 976, 351, 262, 1994, 287, 3597, 2163, 13, 198, 220, 220, 220, 3895, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8516, 1298, 4808, 600, 2414, 62, 30053, 7, 43358, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4033, 82, 1298, 4808, 600, 2414, 62, 30053, 7, 43358, 58, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9060, 1298, 4808, 33661, 62, 30053, 7, 9060, 62, 8841, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17015, 1298, 4808, 33661, 62, 30053, 7, 17015, 62, 8841, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 4808, 33661, 62, 30053, 7, 27932, 62, 8841, 828, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1441, 48700, 13, 27432, 13, 16281, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 28, 27110, 13, 27432, 13, 23595, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 28, 30053, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 198, 2, 220, 220, 2163, 16529, 198, 2, 16529, 32284, 198, 4299, 1100, 62, 27110, 22105, 62, 1078, 1791, 7, 27110, 22105, 62, 36560, 2599, 198, 220, 220, 220, 37227, 13615, 2939, 14, 1236, 14221, 11192, 669, 326, 389, 2727, 416, 3555, 48700, 22105, 2393, 13, 628, 220, 220, 220, 383, 2163, 18178, 48700, 22105, 1226, 268, 1047, 16834, 355, 281, 5128, 543, 318, 3221, 198, 220, 220, 220, 460, 307, 2727, 1262, 48700, 13, 27432, 13, 8841, 62, 15414, 62, 18230, 2189, 3419, 810, 29472, 198, 220, 220, 220, 318, 7368, 351, 10348, 1271, 286, 36835, 82, 13, 770, 2163, 2753, 16834, 198, 220, 220, 220, 4635, 416, 18036, 434, 295, 48700, 13, 27432, 13, 8841, 62, 15414, 62, 18230, 2189, 3419, 290, 15738, 198, 220, 220, 220, 11192, 669, 11513, 422, 8246, 13934, 24612, 656, 198, 220, 220, 220, 27179, 5813, 2939, 14, 1236, 14221, 11192, 669, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 48700, 22105, 62, 10379, 268, 1047, 62, 36560, 1058, 48700, 22105, 29472, 16834, 198, 220, 220, 220, 220, 220, 220, 220, 10903, 16834, 2134, 422, 48700, 13, 27432, 13, 8841, 62, 15414, 62, 18230, 2189, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2939, 11, 23025, 1058, 46545, 286, 48700, 13, 600, 2624, 357, 9060, 11, 23025, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 29291, 286, 2939, 14, 1236, 14221, 11192, 669, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 9173, 796, 48700, 13, 10234, 23739, 33634, 3419, 628, 220, 220, 220, 4808, 11, 11389, 1143, 62, 20688, 796, 9173, 13, 961, 7, 27110, 22105, 62, 36560, 8, 628, 220, 220, 220, 1303, 13610, 257, 22155, 12059, 262, 3033, 13, 383, 1994, 286, 262, 8633, 815, 307, 262, 976, 351, 262, 1994, 287, 3597, 2163, 13, 198, 220, 220, 220, 3033, 796, 48700, 13, 952, 13, 29572, 62, 29762, 62, 20688, 7, 198, 220, 220, 220, 220, 220, 11389, 1143, 62, 20688, 11, 198, 220, 220, 220, 220, 220, 3033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 600, 2414, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 10394, 10354, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 600, 2414, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 62, 1831, 10354, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 8841, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 27932, 62, 1831, 10354, 48700, 13, 952, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2939, 796, 48700, 13, 12501, 1098, 62, 1831, 7, 40890, 17816, 7890, 62, 1831, 6, 4357, 48700, 13, 22468, 2624, 8, 198, 220, 220, 220, 23025, 796, 48700, 13, 12501, 1098, 62, 1831, 7, 40890, 17816, 27932, 62, 1831, 6, 4357, 48700, 13, 28611, 23, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6001, 796, 48700, 13, 2701, 7, 40890, 17816, 17015, 6, 4357, 48700, 13, 600, 2624, 8, 198, 220, 220, 220, 9647, 796, 48700, 13, 2701, 7, 40890, 17816, 10394, 6, 4357, 48700, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2939, 62, 43358, 796, 48700, 13, 25558, 26933, 17015, 11, 9647, 11, 604, 12962, 198, 220, 220, 220, 23025, 62, 43358, 796, 48700, 13, 25558, 26933, 17015, 11, 9647, 11, 352, 12962, 198, 220, 220, 220, 2939, 796, 48700, 13, 3447, 1758, 7, 9060, 11, 2939, 62, 43358, 8, 198, 220, 220, 220, 23025, 796, 48700, 13, 3447, 1758, 7, 1236, 14221, 11, 23025, 62, 43358, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 2939, 11, 23025, 220, 220 ]
3.333749
3,209
# -*- coding: utf-8 -*- """ oreos.core ~~~~~~~~~~ The creamy white center. """ from .monkeys import SimpleCookie def dict_from_string(s): '''''' cookies = dict() c = SimpleCookie() c.load(s) for k,v in c.items(): cookies.update({k: v.value}) return cookies
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 382, 418, 13, 7295, 198, 15116, 4907, 198, 198, 464, 27892, 2330, 3641, 13, 198, 37811, 198, 198, 6738, 764, 2144, 13083, 1330, 17427, 34, 18055, 628, 198, 4299, 8633, 62, 6738, 62, 8841, 7, 82, 2599, 198, 220, 220, 220, 705, 39115, 6, 628, 198, 220, 220, 220, 14746, 796, 8633, 3419, 628, 220, 220, 220, 269, 796, 17427, 34, 18055, 3419, 198, 220, 220, 220, 269, 13, 2220, 7, 82, 8, 628, 220, 220, 220, 329, 479, 11, 85, 287, 269, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 14746, 13, 19119, 15090, 74, 25, 410, 13, 8367, 30072, 628, 220, 220, 220, 1441, 14746 ]
2.346457
127
# -*- coding: utf-8 -*- from bravado_core.spec import Spec
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 49025, 4533, 62, 7295, 13, 16684, 1330, 18291, 628, 628, 628 ]
2.461538
26
import sys import string import numpy from numpy import * import os.path import pickle import re from types import FloatType import getopt, sys import copy import gzip from btk.common import * from btk.stream import * from btk.feature import * from btk.matrix import * from btk.utils import * #from pygsl import * from pygsl import multiminimize from pygsl import sf import pygsl.errors as errors from btk import dbase from btk.modulated import * from btk.subbandBeamforming import * from btk.beamformer import * APPZERO = 1.0E-20 # @memo fun_MK() and dfun_MK() are call back functions for pygsl. # You can easily implement a new MK beamformer by writing a new class derived from # a class 'MKSubbandBeamformer' which have methods, normalizeWa( wa ), # calcKurtosis( srcX, fbinX, wa ) and gradient( srcX, fbinX, wa ). # @class maximum empirical kurtosis beamformer # usage: # 1. construct an object, mkBf = MKSubbandBeamformerGGDr( spectralSources ) # 2. calculate the fixed weights, mkBf.calcFixedWeights( sampleRate, delay ) # 3. accumulate input vectors, mkBf.accumObservations( sFrame, eFrame, R ) # 4. calculate the covariance matricies of the inputs, mkBf.calcCov() # 5. estimate active weight vectors, mkBf.estimateActiveWeights( fbinX, startpoint ) # @class maximum empirical kurtosis beamformer. # The entire weight is normalized at each step in the steepest gradient algorithm. # usage: # 1. construct an object, mkBf = MEKSubbandBeamformer_nrm( spectralSources ) # 2. calculate the fixed weights, mkBf.calcFixedWeights( sampleRate, delay ) # 3. accumulate input vectors, mkBf.accumObservations( sFrame, eFrame, R ) # 4. calculate the covariance matricies of the inputs, mkBf.calcCov() # 5. estimate active weight vectors, mkBf.estimateActiveWeights( fbinX, startpoint )
[ 11748, 25064, 198, 11748, 4731, 198, 11748, 299, 32152, 198, 6738, 299, 32152, 1330, 1635, 198, 11748, 28686, 13, 6978, 198, 11748, 2298, 293, 198, 11748, 302, 198, 6738, 3858, 1330, 48436, 6030, 198, 11748, 651, 8738, 11, 25064, 198, 11748, 4866, 198, 11748, 308, 13344, 198, 198, 6738, 275, 30488, 13, 11321, 1330, 1635, 198, 6738, 275, 30488, 13, 5532, 1330, 1635, 198, 6738, 275, 30488, 13, 30053, 1330, 1635, 198, 6738, 275, 30488, 13, 6759, 8609, 1330, 1635, 198, 6738, 275, 30488, 13, 26791, 1330, 1635, 198, 198, 2, 6738, 12972, 70, 6649, 1330, 1635, 198, 6738, 12972, 70, 6649, 1330, 43104, 259, 48439, 198, 6738, 12972, 70, 6649, 1330, 264, 69, 198, 11748, 12972, 70, 6649, 13, 48277, 355, 8563, 198, 198, 6738, 275, 30488, 1330, 288, 8692, 198, 6738, 275, 30488, 13, 4666, 4817, 1330, 1635, 198, 6738, 275, 30488, 13, 7266, 3903, 3856, 321, 15464, 1330, 1635, 198, 6738, 275, 30488, 13, 40045, 16354, 1330, 1635, 198, 198, 24805, 57, 34812, 796, 352, 13, 15, 36, 12, 1238, 198, 198, 2, 2488, 11883, 78, 1257, 62, 33907, 3419, 290, 288, 12543, 62, 33907, 3419, 389, 869, 736, 5499, 329, 12972, 70, 6649, 13, 198, 2, 220, 220, 220, 220, 220, 220, 921, 460, 3538, 3494, 257, 649, 20553, 15584, 16354, 416, 3597, 257, 649, 1398, 10944, 422, 198, 2, 220, 220, 220, 220, 220, 220, 257, 1398, 705, 33907, 7004, 3903, 3856, 321, 16354, 6, 543, 423, 5050, 11, 3487, 1096, 33484, 7, 2082, 10612, 198, 2, 220, 220, 220, 220, 220, 220, 42302, 42, 3325, 5958, 7, 12351, 55, 11, 277, 8800, 55, 11, 2082, 1267, 290, 31312, 7, 12351, 55, 11, 277, 8800, 55, 11, 2082, 6739, 198, 198, 2, 2488, 4871, 5415, 21594, 479, 3325, 5958, 15584, 16354, 220, 198, 2, 8748, 25, 198, 2, 352, 13, 5678, 281, 2134, 11, 33480, 33, 69, 796, 20553, 7004, 3903, 3856, 321, 16354, 11190, 6187, 7, 37410, 21188, 220, 1267, 198, 2, 362, 13, 15284, 262, 5969, 19590, 11, 33480, 33, 69, 13, 9948, 66, 13715, 1135, 2337, 7, 6291, 32184, 11, 5711, 1267, 198, 2, 513, 13, 29915, 5128, 30104, 11, 33480, 33, 69, 13, 4134, 388, 31310, 712, 602, 7, 264, 19778, 11, 304, 19778, 11, 371, 1267, 198, 2, 604, 13, 15284, 262, 44829, 590, 2603, 1173, 444, 286, 262, 17311, 11, 33480, 33, 69, 13, 9948, 66, 34, 709, 3419, 198, 2, 642, 13, 8636, 4075, 3463, 30104, 11, 33480, 33, 69, 13, 395, 1920, 13739, 1135, 2337, 7, 277, 8800, 55, 11, 923, 4122, 1267, 198, 198, 2, 2488, 4871, 5415, 21594, 479, 3325, 5958, 15584, 16354, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 383, 2104, 3463, 318, 39279, 379, 1123, 2239, 287, 262, 14559, 395, 31312, 11862, 13, 198, 2, 8748, 25, 198, 2, 352, 13, 5678, 281, 2134, 11, 33480, 33, 69, 796, 11948, 42, 7004, 3903, 3856, 321, 16354, 62, 77, 26224, 7, 37410, 21188, 220, 1267, 198, 2, 362, 13, 15284, 262, 5969, 19590, 11, 33480, 33, 69, 13, 9948, 66, 13715, 1135, 2337, 7, 6291, 32184, 11, 5711, 1267, 198, 2, 513, 13, 29915, 5128, 30104, 11, 33480, 33, 69, 13, 4134, 388, 31310, 712, 602, 7, 264, 19778, 11, 304, 19778, 11, 371, 1267, 198, 2, 604, 13, 15284, 262, 44829, 590, 2603, 1173, 444, 286, 262, 17311, 11, 33480, 33, 69, 13, 9948, 66, 34, 709, 3419, 198, 2, 642, 13, 8636, 4075, 3463, 30104, 11, 33480, 33, 69, 13, 395, 1920, 13739, 1135, 2337, 7, 277, 8800, 55, 11, 923, 4122, 1267, 628 ]
3.053782
595
# -*- coding: utf-8 -*- from django import forms
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 1330, 5107, 628 ]
2.5
20
import os target_names = ['-to-process.txt.subbed', '_to_process.txt.subbed', '_to-process.txt.subbed', '-to_process.txt.subbed', '-tp.txt.subbed', '_tp.txt.subbed'] target = "-Processing" for dirname, dirs, files in os.walk('.'): if target in dirname and 'tagged' not in dirname: for filename in files: if any(filename.endswith(ending) for ending in target_names): inputname = "/Users/Torri/Documents/Grad stuff/Thesis stuff/Data - Novels/Processing/" + dirname + "/" + filename inputfile = open(inputname, 'r') for ending in target_names: if filename.endswith(ending): new_filename = filename.replace(ending, '_split.txt') new_filename = new_filename.replace(' ', '_') new_filename = new_filename.replace(',', '') new_filename = new_filename.replace('!', '') print dirname + new_filename new_file = open("/Users/Torri/Documents/Grad stuff/Thesis stuff/Data - Novels/Processing/" + dirname + "/" + new_filename, 'w') for line in inputfile: for word in line.split(): #word = word.lower() word = word.rstrip('-\n\r\'.') word = word.lstrip("\'") print >>new_file, word inputfile.close()
[ 11748, 28686, 201, 198, 201, 198, 16793, 62, 14933, 796, 685, 29001, 1462, 12, 14681, 13, 14116, 13, 7266, 3077, 3256, 705, 62, 1462, 62, 14681, 13, 14116, 13, 7266, 3077, 3256, 705, 62, 1462, 12, 14681, 13, 14116, 13, 7266, 3077, 3256, 705, 12, 1462, 62, 14681, 13, 14116, 13, 7266, 3077, 3256, 705, 12, 34788, 13, 14116, 13, 7266, 3077, 3256, 705, 62, 34788, 13, 14116, 13, 7266, 3077, 20520, 201, 198, 16793, 796, 27444, 18709, 278, 1, 201, 198, 201, 198, 1640, 26672, 3672, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 10786, 2637, 2599, 201, 198, 220, 220, 220, 611, 2496, 287, 26672, 3672, 290, 705, 12985, 2004, 6, 407, 287, 26672, 3672, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 3696, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7, 34345, 13, 437, 2032, 342, 7, 1571, 8, 329, 7464, 287, 2496, 62, 14933, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 3672, 796, 12813, 14490, 14, 15884, 380, 14, 38354, 14, 42731, 3404, 14, 464, 13429, 3404, 14, 6601, 532, 24467, 82, 14, 18709, 278, 30487, 1343, 26672, 3672, 1343, 12813, 1, 1343, 29472, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 7753, 796, 1280, 7, 15414, 3672, 11, 705, 81, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7464, 287, 2496, 62, 14933, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29472, 13, 437, 2032, 342, 7, 1571, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 34345, 796, 29472, 13, 33491, 7, 1571, 11, 705, 62, 35312, 13, 14116, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 34345, 796, 649, 62, 34345, 13, 33491, 10786, 46083, 705, 62, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 34345, 796, 649, 62, 34345, 13, 33491, 7, 3256, 3256, 10148, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 34345, 796, 649, 62, 34345, 13, 33491, 10786, 0, 3256, 10148, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 26672, 3672, 1343, 649, 62, 34345, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7753, 796, 1280, 7203, 14, 14490, 14, 15884, 380, 14, 38354, 14, 42731, 3404, 14, 464, 13429, 3404, 14, 6601, 532, 24467, 82, 14, 18709, 278, 30487, 1343, 26672, 3672, 1343, 12813, 1, 1343, 649, 62, 34345, 11, 705, 86, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 5128, 7753, 25, 201, 198, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1573, 287, 1627, 13, 35312, 33529, 201, 198, 201, 198, 197, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4775, 796, 1573, 13, 21037, 3419, 201, 198, 197, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 1573, 13, 81, 36311, 10786, 12, 59, 77, 59, 81, 43054, 2637, 8, 201, 198, 197, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 1573, 13, 75, 36311, 7203, 43054, 4943, 201, 198, 197, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 3605, 62, 7753, 11, 1573, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 7753, 13, 19836, 3419 ]
2.035511
704
#!/usr/bin/env python3 ### # YoSon # @treqtl/xinput.py # produce xtreqtl input files by matching rs numbers from trait and iv summary statistics ### import pandas as pd import numpy as np import os, sys from sys import argv from os import walk from treqtl_input import read_dir if __name__ == '__main__': # if main, run test with input files ewkdir = argv[1] efile = argv[2] gwkdir = argv[3] outdf = xinput(ewkdir, efile, gwkdir)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 21017, 198, 2, 25455, 31056, 198, 2, 2488, 33945, 80, 28781, 14, 87, 15414, 13, 9078, 198, 2, 4439, 220, 742, 42180, 28781, 5128, 3696, 416, 12336, 44608, 3146, 422, 16708, 290, 21628, 10638, 7869, 198, 21017, 628, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 11, 25064, 198, 6738, 25064, 1330, 1822, 85, 198, 6738, 28686, 1330, 2513, 198, 198, 6738, 2054, 80, 28781, 62, 15414, 1330, 1100, 62, 15908, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 198, 220, 1303, 611, 1388, 11, 1057, 1332, 351, 5128, 3696, 198, 220, 304, 43021, 15908, 796, 1822, 85, 58, 16, 60, 198, 220, 304, 7753, 796, 1822, 85, 58, 17, 60, 198, 220, 308, 43021, 15908, 796, 1822, 85, 58, 18, 60, 198, 220, 220, 198, 220, 503, 7568, 796, 2124, 15414, 7, 413, 74, 15908, 11, 304, 7753, 11, 308, 43021, 15908, 8, 198, 220, 220, 198, 220, 220, 198, 220, 220 ]
2.561111
180
from aioli import Package from .controller import HttpController from .service import OpenApiService from .config import ConfigSchema export = Package( controllers=[HttpController], services=[OpenApiService], config=ConfigSchema, auto_meta=True )
[ 6738, 257, 1669, 72, 1330, 15717, 198, 198, 6738, 764, 36500, 1330, 367, 29281, 22130, 198, 6738, 764, 15271, 1330, 4946, 32, 14415, 16177, 198, 6738, 764, 11250, 1330, 17056, 27054, 2611, 198, 198, 39344, 796, 15717, 7, 198, 220, 220, 220, 20624, 41888, 43481, 22130, 4357, 198, 220, 220, 220, 2594, 41888, 11505, 32, 14415, 16177, 4357, 198, 220, 220, 220, 4566, 28, 16934, 27054, 2611, 11, 198, 220, 220, 220, 8295, 62, 28961, 28, 17821, 198, 8, 198 ]
3.3125
80
import matplotlib.pyplot as plt from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve, auc import itertools import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing import sequence from tensorflow.keras.models import Model from tensorflow.keras.layers import Input from tensorflow.keras.layers import Dense, Dropout, Activation from tensorflow.keras.layers import Embedding, BatchNormalization from tensorflow.keras.layers import Conv1D, GlobalMaxPooling1D from sklearn.model_selection import train_test_split from sklearn import metrics import dataset import evaluation from dataset import Tokenizer from tfutils import SaveBestModelOnMemory # from tfx.layers.embeddings import WordEmbeddingInitializer # classification 中 multi labels 文件 # 多分类绘制ROC、PRF等曲线的例子 # 用sigmoid进行多标签分类 # [0, 1, 1, 0, 1] # 处理数据 X, y, categoricals = dataset.load_THUCNews_title_label() X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=0.7, random_state=732) num_classes = len(categoricals) # 转化成字id ctokenizer = Tokenizer() # 严格的交叉验证,只在训练集上构建全局词表 ctokenizer.fit(X_train) X_train = ctokenizer.transform(X_train) X_test = ctokenizer.transform(X_test) # maxlen = tokenizer.find_best_maxlen(X_train, mode="mean") maxlen = 48 print("max length is", maxlen) X_train = sequence.pad_sequences( X_train, maxlen=maxlen, dtype="int32", padding="post", truncating="post", value=0) X_test = sequence.pad_sequences( X_test, maxlen=maxlen, dtype="int32", padding="post", truncating="post", value=0) y_train = tf.keras.utils.to_categorical(y_train) y_test = tf.keras.utils.to_categorical(y_test) # 模型 input_dim = ctokenizer.vocab_size # output_dim = tokenizer.find_embedding_dims(input_dim) output_dim = 128 # wi = WordEmbeddingInitializer(wm.vocab, path="/home/zhiwen/workspace/dataset/word2vec_baike/word2vec_baike") # input_dim, output_dim = wi.shape inputs = Input(shape=(maxlen,)) # (batch_size, maxlen) x = Embedding(input_dim, output_dim, embeddings_initializer="glorot_normal", input_length=maxlen, trainable=True, mask_zero=True)(inputs) # (batch_size, maxlen, output_dim) x = Dropout(0.2)(x) x = Conv1D(filters=200, kernel_size=2, padding="same", activation="relu", strides=1)(x) x = Conv1D(filters=200, kernel_size=3, padding="same", activation="relu", strides=1)(x) x = GlobalMaxPooling1D()(x) x = Dense(100)(x) x = Dropout(0.2)(x) x = Activation("relu")(x) outputs = Dense(num_classes, activation="softmax")(x) model = Model(inputs, outputs) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # 训练 batch_size = 32 epochs = 8 callbacks = [SaveBestModelOnMemory()] model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callbacks, validation_split=0.1) model.summary() y_pred = model.predict(X_test) fpr = dict() tpr = dict() roc_auc = dict() for i in range(num_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) all_fpr = np.unique(np.concatenate([fpr[i] for i in range(num_classes)])) mean_tpr = np.zeros_like(all_fpr) for i in range(num_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= num_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) lw = 1 colors = itertools.cycle( ['aqua', 'darkorange', 'cornflowerblue', 'blue', 'red']) linestyles = itertools.cycle(['']) for i, color in zip(range(num_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})'.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC to multi-class') plt.legend(loc="lower right") plt.show()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 686, 66, 62, 14272, 62, 26675, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 686, 66, 62, 22019, 303, 11, 257, 1229, 198, 11748, 340, 861, 10141, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 3866, 36948, 1330, 8379, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 27530, 1330, 9104, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 23412, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 360, 1072, 11, 14258, 448, 11, 13144, 341, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 13302, 6048, 278, 11, 347, 963, 26447, 1634, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 34872, 16, 35, 11, 8060, 11518, 27201, 278, 16, 35, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1341, 35720, 1330, 20731, 198, 198, 11748, 27039, 198, 11748, 12660, 198, 6738, 27039, 1330, 29130, 7509, 198, 198, 6738, 48700, 26791, 1330, 12793, 13014, 17633, 2202, 30871, 198, 2, 422, 256, 21373, 13, 75, 6962, 13, 20521, 67, 654, 1330, 9678, 31567, 6048, 278, 24243, 7509, 198, 198, 2, 17923, 220, 40792, 5021, 14722, 10545, 244, 229, 20015, 114, 198, 2, 36469, 248, 26344, 228, 163, 109, 119, 163, 119, 246, 26344, 114, 49, 4503, 23513, 4805, 37, 163, 255, 231, 162, 249, 110, 163, 118, 123, 21410, 160, 122, 233, 36310, 198, 198, 2, 13328, 242, 101, 82, 17225, 1868, 32573, 249, 26193, 234, 13783, 248, 43718, 229, 163, 255, 122, 26344, 228, 163, 109, 119, 198, 2, 685, 15, 11, 352, 11, 352, 11, 657, 11, 352, 60, 198, 198, 2, 36469, 226, 49426, 228, 46763, 108, 162, 235, 106, 198, 55, 11, 331, 11, 4253, 12409, 82, 796, 27039, 13, 2220, 62, 4221, 9598, 9980, 62, 7839, 62, 18242, 3419, 198, 55, 62, 27432, 11, 1395, 62, 9288, 11, 331, 62, 27432, 11, 331, 62, 9288, 796, 4512, 62, 9288, 62, 35312, 7, 198, 220, 220, 220, 1395, 11, 331, 11, 4512, 62, 7857, 28, 15, 13, 22, 11, 4738, 62, 5219, 28, 22, 2624, 8, 198, 198, 22510, 62, 37724, 796, 18896, 7, 66, 2397, 12409, 82, 8, 198, 2, 5525, 121, 105, 44293, 244, 22755, 238, 27764, 245, 312, 198, 310, 4233, 7509, 796, 29130, 7509, 3419, 198, 2, 220, 10310, 98, 43718, 120, 21410, 12859, 97, 20998, 231, 165, 103, 234, 46237, 223, 171, 120, 234, 20998, 103, 28839, 101, 164, 106, 255, 163, 119, 225, 37239, 228, 41468, 162, 252, 226, 161, 119, 118, 17739, 101, 161, 109, 222, 46237, 235, 26193, 101, 198, 310, 4233, 7509, 13, 11147, 7, 55, 62, 27432, 8, 198, 55, 62, 27432, 796, 269, 30001, 7509, 13, 35636, 7, 55, 62, 27432, 8, 198, 55, 62, 9288, 796, 269, 30001, 7509, 13, 35636, 7, 55, 62, 9288, 8, 198, 198, 2, 3509, 11925, 796, 11241, 7509, 13, 19796, 62, 13466, 62, 9806, 11925, 7, 55, 62, 27432, 11, 4235, 2625, 32604, 4943, 198, 9806, 11925, 796, 4764, 198, 4798, 7203, 9806, 4129, 318, 1600, 3509, 11925, 8, 198, 55, 62, 27432, 796, 8379, 13, 15636, 62, 3107, 3007, 7, 198, 220, 220, 220, 1395, 62, 27432, 11, 198, 220, 220, 220, 3509, 11925, 28, 9806, 11925, 11, 198, 220, 220, 220, 288, 4906, 2625, 600, 2624, 1600, 198, 220, 220, 220, 24511, 2625, 7353, 1600, 198, 220, 220, 220, 40122, 803, 2625, 7353, 1600, 198, 220, 220, 220, 1988, 28, 15, 8, 198, 198, 55, 62, 9288, 796, 8379, 13, 15636, 62, 3107, 3007, 7, 198, 220, 220, 220, 1395, 62, 9288, 11, 198, 220, 220, 220, 3509, 11925, 28, 9806, 11925, 11, 198, 220, 220, 220, 288, 4906, 2625, 600, 2624, 1600, 198, 220, 220, 220, 24511, 2625, 7353, 1600, 198, 220, 220, 220, 40122, 803, 2625, 7353, 1600, 198, 220, 220, 220, 1988, 28, 15, 8, 198, 198, 88, 62, 27432, 796, 48700, 13, 6122, 292, 13, 26791, 13, 1462, 62, 66, 2397, 12409, 7, 88, 62, 27432, 8, 198, 88, 62, 9288, 796, 48700, 13, 6122, 292, 13, 26791, 13, 1462, 62, 66, 2397, 12409, 7, 88, 62, 9288, 8, 198, 198, 2, 10545, 101, 94, 161, 252, 233, 198, 15414, 62, 27740, 796, 269, 30001, 7509, 13, 18893, 397, 62, 7857, 198, 2, 5072, 62, 27740, 796, 11241, 7509, 13, 19796, 62, 20521, 12083, 62, 67, 12078, 7, 15414, 62, 27740, 8, 198, 22915, 62, 27740, 796, 13108, 198, 198, 2, 45967, 796, 9678, 31567, 6048, 278, 24243, 7509, 7, 26377, 13, 18893, 397, 11, 3108, 35922, 11195, 14, 89, 5303, 21006, 14, 5225, 10223, 14, 19608, 292, 316, 14, 4775, 17, 35138, 62, 7012, 522, 14, 4775, 17, 35138, 62, 7012, 522, 4943, 198, 2, 5128, 62, 27740, 11, 5072, 62, 27740, 796, 45967, 13, 43358, 198, 198, 15414, 82, 796, 23412, 7, 43358, 16193, 9806, 11925, 11, 4008, 220, 1303, 357, 43501, 62, 7857, 11, 3509, 11925, 8, 198, 87, 796, 13302, 6048, 278, 7, 15414, 62, 27740, 11, 5072, 62, 27740, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 67, 654, 62, 36733, 7509, 2625, 70, 4685, 313, 62, 11265, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 13664, 28, 9806, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 540, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 22570, 28, 17821, 5769, 15414, 82, 8, 220, 1303, 357, 43501, 62, 7857, 11, 3509, 11925, 11, 5072, 62, 27740, 8, 198, 198, 87, 796, 14258, 448, 7, 15, 13, 17, 5769, 87, 8, 198, 87, 796, 34872, 16, 35, 7, 10379, 1010, 28, 2167, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 2625, 31642, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 2625, 260, 2290, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35002, 28, 16, 5769, 87, 8, 198, 198, 87, 796, 34872, 16, 35, 7, 10379, 1010, 28, 2167, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 2625, 31642, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 2625, 260, 2290, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35002, 28, 16, 5769, 87, 8, 198, 198, 87, 796, 8060, 11518, 27201, 278, 16, 35, 3419, 7, 87, 8, 198, 87, 796, 360, 1072, 7, 3064, 5769, 87, 8, 198, 87, 796, 14258, 448, 7, 15, 13, 17, 5769, 87, 8, 198, 87, 796, 13144, 341, 7203, 260, 2290, 4943, 7, 87, 8, 198, 22915, 82, 796, 360, 1072, 7, 22510, 62, 37724, 11, 14916, 2625, 4215, 9806, 4943, 7, 87, 8, 198, 198, 19849, 796, 9104, 7, 15414, 82, 11, 23862, 8, 198, 19849, 13, 5589, 576, 7, 22462, 2625, 66, 2397, 12409, 62, 19692, 298, 28338, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 2625, 324, 321, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20731, 28, 14692, 4134, 23843, 8973, 8, 198, 198, 2, 5525, 106, 255, 163, 119, 225, 198, 43501, 62, 7857, 796, 3933, 198, 538, 5374, 82, 796, 807, 198, 198, 13345, 10146, 796, 685, 16928, 13014, 17633, 2202, 30871, 3419, 60, 198, 19849, 13, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 869, 10146, 28, 13345, 10146, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 35312, 28, 15, 13, 16, 8, 198, 19849, 13, 49736, 3419, 198, 198, 88, 62, 28764, 796, 2746, 13, 79, 17407, 7, 55, 62, 9288, 8, 628, 198, 69, 1050, 796, 8633, 3419, 198, 83, 1050, 796, 8633, 3419, 198, 12204, 62, 14272, 796, 8633, 3419, 198, 198, 1640, 1312, 287, 2837, 7, 22510, 62, 37724, 2599, 198, 220, 220, 220, 277, 1050, 58, 72, 4357, 256, 1050, 58, 72, 4357, 4808, 796, 686, 66, 62, 22019, 303, 7, 88, 62, 9288, 58, 45299, 1312, 4357, 331, 62, 28764, 58, 45299, 1312, 12962, 198, 220, 220, 220, 686, 66, 62, 14272, 58, 72, 60, 796, 257, 1229, 7, 69, 1050, 58, 72, 4357, 256, 1050, 58, 72, 12962, 198, 198, 69, 1050, 14692, 24055, 33116, 256, 1050, 14692, 24055, 33116, 4808, 796, 686, 66, 62, 22019, 303, 7, 88, 62, 9288, 13, 25843, 22784, 331, 62, 28764, 13, 25843, 28955, 198, 12204, 62, 14272, 14692, 24055, 8973, 796, 257, 1229, 7, 69, 1050, 14692, 24055, 33116, 256, 1050, 14692, 24055, 8973, 8, 198, 198, 439, 62, 69, 1050, 796, 45941, 13, 34642, 7, 37659, 13, 1102, 9246, 268, 378, 26933, 69, 1050, 58, 72, 60, 329, 1312, 287, 2837, 7, 22510, 62, 37724, 15437, 4008, 198, 32604, 62, 83, 1050, 796, 45941, 13, 9107, 418, 62, 2339, 7, 439, 62, 69, 1050, 8, 198, 1640, 1312, 287, 2837, 7, 22510, 62, 37724, 2599, 198, 220, 220, 220, 1612, 62, 83, 1050, 15853, 45941, 13, 3849, 79, 7, 439, 62, 69, 1050, 11, 277, 1050, 58, 72, 4357, 256, 1050, 58, 72, 12962, 198, 32604, 62, 83, 1050, 1220, 28, 997, 62, 37724, 198, 198, 69, 1050, 14692, 20285, 305, 8973, 796, 477, 62, 69, 1050, 198, 83, 1050, 14692, 20285, 305, 8973, 796, 1612, 62, 83, 1050, 198, 12204, 62, 14272, 14692, 20285, 305, 8973, 796, 257, 1229, 7, 69, 1050, 14692, 20285, 305, 33116, 256, 1050, 14692, 20285, 305, 8973, 8, 198, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 29487, 7, 69, 1050, 14692, 24055, 33116, 256, 1050, 14692, 24055, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 11639, 24055, 12, 23913, 371, 4503, 12133, 357, 20337, 796, 1391, 15, 25, 15, 13, 17, 69, 30072, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 12204, 62, 14272, 14692, 24055, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 67, 1453, 381, 676, 3256, 9493, 10992, 28, 10354, 3256, 9493, 413, 5649, 28, 19, 8, 198, 198, 489, 83, 13, 29487, 7, 69, 1050, 14692, 20285, 305, 33116, 256, 1050, 14692, 20285, 305, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 11639, 20285, 305, 12, 23913, 371, 4503, 12133, 357, 20337, 796, 1391, 15, 25, 15, 13, 17, 69, 30072, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 12204, 62, 14272, 14692, 20285, 305, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 77, 2830, 3256, 9493, 10992, 28, 10354, 3256, 9493, 413, 5649, 28, 19, 8, 198, 198, 75, 86, 796, 352, 198, 4033, 669, 796, 340, 861, 10141, 13, 13696, 7, 198, 220, 220, 220, 37250, 36129, 64, 3256, 705, 21953, 43745, 3256, 705, 20772, 25547, 17585, 3256, 705, 17585, 3256, 705, 445, 6, 12962, 198, 2815, 42530, 796, 340, 861, 10141, 13, 13696, 26933, 7061, 12962, 198, 1640, 1312, 11, 3124, 287, 19974, 7, 9521, 7, 22510, 62, 37724, 828, 7577, 2599, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 69, 1050, 58, 72, 4357, 256, 1050, 58, 72, 4357, 3124, 28, 8043, 11, 300, 86, 28, 75, 86, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 11639, 49, 4503, 12133, 286, 1398, 1391, 15, 92, 357, 20337, 796, 1391, 16, 25, 15, 13, 17, 69, 30072, 4458, 18982, 7, 72, 11, 686, 66, 62, 14272, 58, 72, 60, 4008, 198, 198, 489, 83, 13, 29487, 26933, 15, 11, 352, 4357, 685, 15, 11, 352, 4357, 705, 74, 438, 3256, 300, 86, 28, 75, 86, 8, 198, 489, 83, 13, 87, 2475, 26933, 15, 13, 15, 11, 352, 13, 15, 12962, 198, 489, 83, 13, 88, 2475, 26933, 15, 13, 15, 11, 352, 13, 2713, 12962, 198, 489, 83, 13, 87, 18242, 10786, 25101, 33733, 14806, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 17821, 33733, 14806, 11537, 198, 489, 83, 13, 7839, 10786, 49, 4503, 284, 5021, 12, 4871, 11537, 198, 489, 83, 13, 1455, 437, 7, 17946, 2625, 21037, 826, 4943, 198, 489, 83, 13, 12860, 3419, 198 ]
2.137119
2,166
"""Special options for messages from bot.""" from pydantic import BaseModel from botx.models.messages.sending.options import NotificationOptions class ResultOptions(BaseModel): """Configuration for command result or notification that is send to BotX API.""" #: send message only when stealth mode is enabled. stealth_mode: bool = False #: use in-text mentions raw_mentions: bool = False #: message options for configuring notifications. notification_opts: NotificationOptions = NotificationOptions()
[ 37811, 13409, 3689, 329, 6218, 422, 10214, 526, 15931, 198, 6738, 279, 5173, 5109, 1330, 7308, 17633, 198, 198, 6738, 10214, 87, 13, 27530, 13, 37348, 1095, 13, 82, 1571, 13, 25811, 1330, 42808, 29046, 628, 198, 4871, 25414, 29046, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 38149, 329, 3141, 1255, 393, 14483, 326, 318, 3758, 284, 18579, 55, 7824, 526, 15931, 628, 220, 220, 220, 1303, 25, 3758, 3275, 691, 618, 19159, 4235, 318, 9343, 13, 198, 220, 220, 220, 19159, 62, 14171, 25, 20512, 796, 10352, 628, 220, 220, 220, 1303, 25, 779, 287, 12, 5239, 15802, 198, 220, 220, 220, 8246, 62, 434, 507, 25, 20512, 796, 10352, 628, 220, 220, 220, 1303, 25, 3275, 3689, 329, 4566, 870, 19605, 13, 198, 220, 220, 220, 14483, 62, 404, 912, 25, 42808, 29046, 796, 42808, 29046, 3419, 198 ]
3.760563
142
# Import sqlite3 para tratar os erros import _sqlite3 # Importado para formatar a data from datetime import date, datetime # Importa a função de relatório de pedidos from source.db.tblOrder import selectAllOrderInformation, selectAllOrderBetweenDate # Exibe todos os pedidos # Exibe todos os pedidos de acordo com o periodo informado
[ 2, 17267, 44161, 578, 18, 31215, 491, 9459, 28686, 1931, 4951, 198, 11748, 4808, 25410, 578, 18, 198, 198, 2, 17267, 4533, 31215, 5794, 283, 257, 1366, 198, 6738, 4818, 8079, 1330, 3128, 11, 4818, 8079, 198, 198, 2, 17267, 64, 257, 1257, 16175, 28749, 390, 48993, 10205, 27250, 390, 7190, 312, 418, 198, 6738, 2723, 13, 9945, 13, 83, 2436, 18743, 1330, 2922, 3237, 18743, 21918, 11, 2922, 3237, 18743, 25262, 10430, 198, 198, 2, 1475, 32438, 284, 37427, 28686, 7190, 312, 418, 198, 198, 2, 1475, 32438, 284, 37427, 28686, 7190, 312, 418, 390, 936, 585, 78, 401, 267, 2278, 78, 4175, 4533 ]
3.209524
105
from tinydb import Query, where from pa import get_db from pa.config import Config
[ 6738, 7009, 9945, 1330, 43301, 11, 810, 198, 6738, 14187, 1330, 651, 62, 9945, 198, 6738, 14187, 13, 11250, 1330, 17056, 628 ]
3.818182
22
#!python3 # coding: utf-8 # Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5: # # 22=4, 23=8, 24=16, 25=32 # 32=9, 33=27, 34=81, 35=243 # 42=16, 43=64, 44=256, 45=1024 # 52=25, 53=125, 54=625, 55=3125 # If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms: # # 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 # # How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100? #https://projecteuler.net/problem=29 from time import perf_counter import matplotlib.pyplot as plt from math import log yset = [] ylist = [] xline = [] i = 1 while i < 101: start = perf_counter() using_set(i) end = perf_counter() yset.append(end - start) xline.append(i) start = perf_counter() using_list(i) end = perf_counter() ylist.append(end-start) i += (i+int(log(i))) print(i) plt.plot(xline, yset, label="set") plt.plot(xline, ylist, label="list") plt.xlabel("number of items") plt.ylabel("time (seconds)") plt.title("Set vs List time performance") plt.legend() plt.show()
[ 2, 0, 29412, 18, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 12642, 477, 18253, 17790, 286, 450, 329, 362, 41305, 257, 41305, 642, 290, 362, 41305, 275, 41305, 642, 25, 198, 2, 220, 198, 2, 2534, 28, 19, 11, 2242, 28, 23, 11, 1987, 28, 1433, 11, 1679, 28, 2624, 198, 2, 3933, 28, 24, 11, 4747, 28, 1983, 11, 4974, 28, 6659, 11, 3439, 28, 26660, 198, 2, 5433, 28, 1433, 11, 5946, 28, 2414, 11, 5846, 28, 11645, 11, 4153, 28, 35500, 198, 2, 6740, 28, 1495, 11, 7192, 28, 11623, 11, 7175, 28, 26704, 11, 5996, 28, 18, 11623, 198, 2, 1002, 484, 389, 788, 4624, 287, 29052, 1502, 11, 351, 597, 29819, 4615, 11, 356, 651, 262, 1708, 8379, 286, 1315, 7310, 2846, 25, 198, 2, 220, 198, 2, 604, 11, 807, 11, 860, 11, 1467, 11, 1679, 11, 2681, 11, 3933, 11, 5598, 11, 9773, 11, 13151, 11, 35989, 11, 17759, 11, 48868, 11, 28119, 11, 513, 11623, 198, 2, 220, 198, 2, 1374, 867, 7310, 2846, 389, 287, 262, 8379, 7560, 416, 450, 329, 362, 41305, 257, 41305, 1802, 290, 362, 41305, 275, 41305, 1802, 30, 198, 2, 5450, 1378, 16302, 68, 18173, 13, 3262, 14, 45573, 28, 1959, 198, 198, 6738, 640, 1330, 23035, 62, 24588, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 10688, 1330, 2604, 198, 198, 893, 316, 796, 17635, 198, 2645, 396, 796, 17635, 198, 87, 1370, 796, 17635, 198, 72, 796, 352, 198, 4514, 1312, 1279, 8949, 25, 198, 220, 220, 220, 923, 796, 23035, 62, 24588, 3419, 198, 220, 220, 220, 1262, 62, 2617, 7, 72, 8, 198, 220, 220, 220, 886, 796, 23035, 62, 24588, 3419, 198, 220, 220, 220, 331, 2617, 13, 33295, 7, 437, 532, 923, 8, 198, 220, 220, 220, 2124, 1370, 13, 33295, 7, 72, 8, 628, 220, 220, 220, 923, 796, 23035, 62, 24588, 3419, 198, 220, 220, 220, 1262, 62, 4868, 7, 72, 8, 198, 220, 220, 220, 886, 796, 23035, 62, 24588, 3419, 198, 220, 220, 220, 331, 4868, 13, 33295, 7, 437, 12, 9688, 8, 198, 220, 220, 220, 1312, 15853, 357, 72, 10, 600, 7, 6404, 7, 72, 22305, 198, 220, 220, 220, 3601, 7, 72, 8, 198, 489, 83, 13, 29487, 7, 87, 1370, 11, 331, 2617, 11, 6167, 2625, 2617, 4943, 198, 489, 83, 13, 29487, 7, 87, 1370, 11, 331, 4868, 11, 6167, 2625, 4868, 4943, 198, 489, 83, 13, 87, 18242, 7203, 17618, 286, 3709, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 2435, 357, 43012, 8, 4943, 198, 489, 83, 13, 7839, 7203, 7248, 3691, 7343, 640, 2854, 4943, 198, 489, 83, 13, 1455, 437, 3419, 198, 489, 83, 13, 12860, 3419, 198 ]
2.481481
459
import gspread import time from oauth2client.service_account import ServiceAccountCredentials
[ 11748, 308, 43639, 198, 11748, 640, 198, 6738, 267, 18439, 17, 16366, 13, 15271, 62, 23317, 1330, 220, 4809, 30116, 34, 445, 14817 ]
4.086957
23
import markdown with open("index.md", 'r') as md: output = markdown.markdown(md.read()) with open("public/index.html", 'w') as out: out.write(output)
[ 11748, 1317, 2902, 198, 198, 4480, 1280, 7203, 9630, 13, 9132, 1600, 705, 81, 11537, 355, 45243, 25, 198, 220, 220, 220, 5072, 796, 1317, 2902, 13, 4102, 2902, 7, 9132, 13, 961, 28955, 198, 220, 220, 220, 351, 1280, 7203, 11377, 14, 9630, 13, 6494, 1600, 705, 86, 11537, 355, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 13, 13564, 7, 22915, 8, 198 ]
2.455882
68
from numpy.linalg import inv import numpy as np import pykov import matplotlib.pyplot as plt import matplotlib.cbook as cbook from itertools import cycle import matplotlib from matplotlib.pyplot import * import brewer2mpl import seaborn as sns from scipy.stats import ks_2samp from scipy.stats import mode import pandas as pd files = ["3","4","5","6","7","8","9"] Ptype=["nsf","no_nsf"] data=[] datafitnesses=[] for fNumber in files: iterations=0 if(fNumber=="9"): iterations=100 else: iterations=1000 for ptype in Ptype: for i in range(iterations): maxF=0 with open("local-search-july-2017/"+ptype+fNumber) as f: lines = f.readlines() #reading the files for k in range(0, len(lines)): line = lines[k] if(str(i)+") - gen" in line): k=k+3 line = lines[k] linex = line.split(",") fitnesses = [] #reading the search space #1 - 0, 2 - 3, 3 - 0, 4 - 3, 5 - 3, 6 - 1, 7 - 0, 8 - 1 for item in linex: itemx = item.split("-") fitnesses.append(float(itemx[1])) fdata=[] fdata.append(fNumber) fdata.append(ptype) fdata.append(float(itemx[1])) datafitnesses.append(fdata) #calculation of good enough fitness modeF=mode(fitnesses) maxF=max(fitnesses) minF=min(fitnesses) vge=modeF[0]+(maxF-modeF[0])/2 #reading the transition probabilities if("it("+str(i)+");" in line): s1=line.split(" ") mSize=int(s1[1]) P= np.array([]).reshape(0,mSize) for j in range(mSize): line = lines[k+j+1] line=line.rstrip() row = line.split(" ") a = np.array([]) for item in row: itt = float(item) a = np.append(a, itt) P = np.vstack([P,a]) lenP=len(P) rm= [] nvge=[] allRm=[] listS=[] #Find absorbing states and optima for j in range(lenP): flag=0 ff = 0 for s in range(lenP): # if there are no outgoing probabilities, then this is a local/global optimum. if(P[j,s]>0): ff = 1 if(j not in listS and s not in listS): # plateoux of two solutions if(P[j,s]==1.0 and P[s,j]==1.0): flag=1 listS.append(j) # absorbing state if(P[j,s]==1.0 and j==s): flag=1 listS.append(j) for k in range(lenP): if(k not in listS): # plateoux of three solutions if(P[j,s]==1.0 and P[s,k]==1.0 and P[k,j]==1.0): flag=1 listS.append(j) # plateoux of four solutions if(P[j,s]==1.0 and P[s,j]>0 and P[s,k]>0 and (P[s,j]+P[s,k])==1.0 and P[k,s]==1.0): flag=1 listS.append(j) if(P[j,s]==1.0 and P[s,j]>0 and P[s,k]>0 and (P[s,j]+P[s,k])==1.0 and P[k,j]==1.0): flag=1 listS.append(j) # list that keep track of absorbing states and local/global optima if(flag==1 or ff==0): rm.append(j) allRm.append(j) if(fitnesses[j]<vge): nvge.append(j) allRm.append(j) keptFitnesses = [] removedFitnesses = [] nvgeFitnesses = [] keep=[] for j in range(lenP): if(j in nvge): nvgeFitnesses.append(fitnesses[j]) if(j not in rm and j not in nvge): keptFitnesses.append(fitnesses[j]) keep.append(j) if(j in rm): removedFitnesses.append(fitnesses[j]) R=np.zeros((len(keep),len(rm)), dtype='float') #create a vector of 1s for calculating number of visits mat1=[] # canonical representation by removing absorbing states and local for j in range(len(keep)): mat1.append(1) for s in range(len(rm)): R[j,s]=P[keep[j],rm[s]] #removing P=np.delete(P, allRm, axis=1) P=np.delete(P, allRm, axis=0) sm=0.0 sb=0.0 try: if(len(P)>0): iM=np.identity(len(P)) mM=iM-P # Fundamental matrix N = inv(mM) # probability of reaching an absorbing state from any point M=np.dot(N,R) # expected number of steps to absorbion from any state B=np.dot(N,mat1) colsM = M.shape[1] nrows=N.shape[0] # calculating the probability of reaching a global optima globalC=0 for j in range(colsM): # if the absorbing state or optimum is a global optimum if(removedFitnesses[j]==maxF): globalC=globalC+1 sumTemp=sum(row[j] for row in M) avgTemp=sumTemp/nrows sm=sm+avgTemp sm=sm/globalC ''' colsN = N.shape[1] for j in range(colsN): if(keptFitnesses[j]==max): tempf=0 for s in range(colsM): if(M[j,s]>0.0): tempf=1 if(tempf==0): sumTemp=sum(row[j] for row in N) avgTemp=sumTemp/nrows if(avgTemp>=1.0): avgTemp=1.0 sm=sm+avgTemp ''' else: countO=0 colsR = R.shape[1] for j in range(colsR): # if the absorbing state or optimum is a global optimum if(removedFitnesses[j]==maxF): countO=countO+1 sm=countO/colsR nrows=B.shape[0] globalC=0 for j in range(nrows): if(removedFitnesses[j]==maxF): globalC=globalC+1 sb=sb+B[j] sb=sb/globalC recD=[] recD.append(fNumber) recD.append(ptype) #probability reaching global optimum recD.append(sm) #number of steps recD.append(sb) recD.append(globalC) data.append(recD) except: print("error"+fNumber) # drawing the boxplots df = pd.DataFrame(data, columns=["N","PType","Probability","Steps","NGlobal"]) df.to_csv("MCresults.csv") df2 = pd.DataFrame(datafitnesses, columns=["N","PType","Fitness"]) df2.to_csv("MCfitnesses.csv")
[ 6738, 299, 32152, 13, 75, 1292, 70, 1330, 800, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 21862, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2603, 29487, 8019, 13, 66, 2070, 355, 269, 2070, 198, 6738, 340, 861, 10141, 1330, 6772, 198, 11748, 2603, 29487, 8019, 198, 6738, 2603, 29487, 8019, 13, 9078, 29487, 1330, 1635, 198, 11748, 47695, 17, 76, 489, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 6738, 629, 541, 88, 13, 34242, 1330, 479, 82, 62, 17, 82, 696, 198, 6738, 629, 541, 88, 13, 34242, 1330, 4235, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 16624, 796, 14631, 18, 2430, 19, 2430, 20, 2430, 21, 2430, 22, 2430, 23, 2430, 24, 8973, 198, 47, 4906, 28, 14692, 5907, 69, 2430, 3919, 62, 5907, 69, 8973, 198, 7890, 28, 21737, 198, 7890, 69, 3659, 274, 28, 21737, 198, 1640, 277, 15057, 287, 3696, 25, 198, 220, 220, 220, 34820, 28, 15, 198, 220, 220, 220, 611, 7, 69, 15057, 855, 1, 24, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 34820, 28, 3064, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 34820, 28, 12825, 198, 220, 220, 220, 329, 279, 4906, 287, 350, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 2676, 602, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 37, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 12001, 12, 12947, 12, 73, 2062, 12, 5539, 30487, 10, 457, 2981, 10, 69, 15057, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 277, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25782, 262, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 15, 11, 18896, 7, 6615, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 3951, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 2536, 7, 72, 47762, 4943, 532, 2429, 1, 287, 1627, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 28, 74, 10, 18, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 3951, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 87, 796, 1627, 13, 35312, 7, 2430, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13547, 274, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25782, 262, 2989, 2272, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16, 532, 657, 11, 362, 532, 513, 11, 513, 532, 657, 11, 604, 532, 513, 11, 642, 532, 513, 11, 718, 532, 352, 11, 767, 532, 657, 11, 807, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 1627, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 87, 796, 2378, 13, 35312, 7203, 12, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13547, 274, 13, 33295, 7, 22468, 7, 9186, 87, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 7890, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 7890, 13, 33295, 7, 69, 15057, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 7890, 13, 33295, 7, 457, 2981, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 7890, 13, 33295, 7, 22468, 7, 9186, 87, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 69, 3659, 274, 13, 33295, 7, 69, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9948, 14902, 286, 922, 1576, 13547, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 37, 28, 14171, 7, 69, 3659, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 37, 28, 9806, 7, 69, 3659, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 37, 28, 1084, 7, 69, 3659, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 469, 28, 14171, 37, 58, 15, 60, 33747, 9806, 37, 12, 14171, 37, 58, 15, 12962, 14, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25782, 262, 6801, 39522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7203, 270, 7203, 10, 2536, 7, 72, 47762, 15341, 1, 287, 1627, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 16, 28, 1370, 13, 35312, 7203, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 10699, 28, 600, 7, 82, 16, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 28, 45941, 13, 18747, 7, 21737, 737, 3447, 1758, 7, 15, 11, 76, 10699, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 76, 10699, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 3951, 58, 74, 10, 73, 10, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 1370, 13, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 1627, 13, 35312, 7203, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 796, 45941, 13, 18747, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 5752, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 83, 796, 12178, 7, 9186, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 796, 45941, 13, 33295, 7, 64, 11, 340, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 796, 45941, 13, 85, 25558, 26933, 47, 11, 64, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 47, 28, 11925, 7, 47, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 28, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 85, 469, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 49, 76, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 50, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16742, 34418, 2585, 290, 6436, 64, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 47, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31246, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2837, 7, 11925, 47, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 612, 389, 645, 28181, 39522, 11, 788, 428, 318, 257, 1957, 14, 20541, 39475, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 47, 58, 73, 11, 82, 60, 29, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31246, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 73, 407, 287, 1351, 50, 290, 264, 407, 287, 1351, 50, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7480, 22193, 286, 734, 8136, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 47, 58, 73, 11, 82, 60, 855, 16, 13, 15, 290, 350, 58, 82, 11, 73, 60, 855, 16, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 50, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34418, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 47, 58, 73, 11, 82, 60, 855, 16, 13, 15, 290, 474, 855, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 50, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 11925, 47, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 74, 407, 287, 1351, 50, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7480, 22193, 286, 1115, 8136, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 47, 58, 73, 11, 82, 60, 855, 16, 13, 15, 290, 350, 58, 82, 11, 74, 60, 855, 16, 13, 15, 290, 350, 58, 74, 11, 73, 60, 855, 16, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 50, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7480, 22193, 286, 1440, 8136, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 47, 58, 73, 11, 82, 60, 855, 16, 13, 15, 290, 350, 58, 82, 11, 73, 60, 29, 15, 290, 350, 58, 82, 11, 74, 60, 29, 15, 290, 357, 47, 58, 82, 11, 73, 48688, 47, 58, 82, 11, 74, 12962, 855, 16, 13, 15, 290, 350, 58, 74, 11, 82, 60, 855, 16, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 50, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 47, 58, 73, 11, 82, 60, 855, 16, 13, 15, 290, 350, 58, 82, 11, 73, 60, 29, 15, 290, 350, 58, 82, 11, 74, 60, 29, 15, 290, 357, 47, 58, 82, 11, 73, 48688, 47, 58, 82, 11, 74, 12962, 855, 16, 13, 15, 290, 350, 58, 74, 11, 73, 60, 855, 16, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 50, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1351, 326, 1394, 2610, 286, 34418, 2585, 290, 1957, 14, 20541, 6436, 64, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 32109, 855, 16, 393, 31246, 855, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 49, 76, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 69, 3659, 274, 58, 73, 60, 27, 85, 469, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 85, 469, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 49, 76, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4030, 37, 3659, 274, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4615, 37, 3659, 274, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 85, 469, 37, 3659, 274, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 47, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 73, 287, 299, 85, 469, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 85, 469, 37, 3659, 274, 13, 33295, 7, 69, 3659, 274, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 73, 407, 287, 42721, 290, 474, 407, 287, 299, 85, 469, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4030, 37, 3659, 274, 13, 33295, 7, 69, 3659, 274, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 73, 287, 42721, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4615, 37, 3659, 274, 13, 33295, 7, 69, 3659, 274, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 28, 37659, 13, 9107, 418, 19510, 11925, 7, 14894, 828, 11925, 7, 26224, 36911, 288, 4906, 11639, 22468, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17953, 257, 15879, 286, 352, 82, 329, 26019, 1271, 286, 11864, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 16, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 40091, 10552, 416, 10829, 34418, 2585, 290, 1957, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 7, 14894, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 16, 13, 33295, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2837, 7, 11925, 7, 26224, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 58, 73, 11, 82, 22241, 47, 58, 14894, 58, 73, 4357, 26224, 58, 82, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2787, 5165, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 28, 37659, 13, 33678, 7, 47, 11, 477, 49, 76, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 28, 37659, 13, 33678, 7, 47, 11, 477, 49, 76, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 28, 15, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 65, 28, 15, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 11925, 7, 47, 8, 29, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 44, 28, 37659, 13, 738, 414, 7, 11925, 7, 47, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47676, 28, 72, 44, 12, 47, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49983, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 796, 800, 7, 76, 44, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12867, 286, 8978, 281, 34418, 1181, 422, 597, 966, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 28, 37659, 13, 26518, 7, 45, 11, 49, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2938, 1271, 286, 4831, 284, 17565, 295, 422, 597, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 28, 37659, 13, 26518, 7, 45, 11, 6759, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 82, 44, 796, 337, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 8516, 28, 45, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26019, 262, 12867, 286, 8978, 257, 3298, 6436, 64, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 34, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 4033, 82, 44, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 262, 34418, 1181, 393, 39475, 318, 257, 3298, 39475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 2787, 2668, 37, 3659, 274, 58, 73, 60, 855, 9806, 37, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 34, 28, 20541, 34, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 30782, 28, 16345, 7, 808, 58, 73, 60, 329, 5752, 287, 337, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 30782, 28, 16345, 30782, 14, 77, 8516, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 28, 5796, 10, 615, 70, 30782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 28, 5796, 14, 20541, 34, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 82, 45, 796, 399, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 4033, 82, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 45089, 37, 3659, 274, 58, 73, 60, 855, 9806, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 69, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2837, 7, 4033, 82, 44, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 44, 58, 73, 11, 82, 60, 29, 15, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 69, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 29510, 69, 855, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 30782, 28, 16345, 7, 808, 58, 73, 60, 329, 5752, 287, 399, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 30782, 28, 16345, 30782, 14, 77, 8516, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 615, 70, 30782, 29, 28, 16, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42781, 30782, 28, 16, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 28, 5796, 10, 615, 70, 30782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 46, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 82, 49, 796, 371, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 4033, 82, 49, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 262, 34418, 1181, 393, 39475, 318, 257, 3298, 39475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 2787, 2668, 37, 3659, 274, 58, 73, 60, 855, 9806, 37, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 46, 28, 9127, 46, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 28, 9127, 46, 14, 4033, 82, 49, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 8516, 28, 33, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 34, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 77, 8516, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 2787, 2668, 37, 3659, 274, 58, 73, 60, 855, 9806, 37, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 34, 28, 20541, 34, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 65, 28, 36299, 10, 33, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 65, 28, 36299, 14, 20541, 34, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 35, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 35, 13, 33295, 7, 69, 15057, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 35, 13, 33295, 7, 457, 2981, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1676, 65, 1799, 8978, 3298, 39475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 35, 13, 33295, 7, 5796, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17618, 286, 4831, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 35, 13, 33295, 7, 36299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 35, 13, 33295, 7, 20541, 34, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 8344, 35, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18224, 1, 10, 69, 15057, 8, 628, 220, 220, 220, 1303, 8263, 262, 3091, 489, 1747, 198, 220, 220, 220, 220, 198, 7568, 796, 279, 67, 13, 6601, 19778, 7, 7890, 11, 15180, 28, 14692, 45, 2430, 47, 6030, 2430, 2964, 65, 1799, 2430, 8600, 82, 2430, 45, 22289, 8973, 8, 198, 7568, 13, 1462, 62, 40664, 7203, 9655, 43420, 13, 40664, 4943, 198, 7568, 17, 796, 279, 67, 13, 6601, 19778, 7, 7890, 69, 3659, 274, 11, 15180, 28, 14692, 45, 2430, 47, 6030, 2430, 37, 3659, 8973, 8, 198, 7568, 17, 13, 1462, 62, 40664, 7203, 9655, 69, 3659, 274, 13, 40664, 4943, 198 ]
1.36962
7,551
#!/usr/bin/env python3 import argparse import cv2 import depthai as dai import socket from pipelines import goal_edge_depth_detection import logging from common import target_finder from common.mjpeg_stream import MjpegStream from networktables.util import NetworkTables from common.utils import FPSHandler parser = argparse.ArgumentParser() parser.add_argument('-d', dest='debug', action="store_true", default=False, help='Start in Debug Mode') args = parser.parse_args() log = logging.getLogger(__name__) if __name__ == '__main__': log.info("Starting goal-depth-detection-host") if args.debug: MainDebug().run() else: Main().run()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 1822, 29572, 198, 11748, 269, 85, 17, 198, 11748, 6795, 1872, 355, 288, 1872, 198, 11748, 17802, 198, 198, 6738, 31108, 1330, 3061, 62, 14907, 62, 18053, 62, 15255, 3213, 198, 11748, 18931, 198, 6738, 2219, 1330, 2496, 62, 22805, 198, 198, 6738, 2219, 13, 76, 73, 22071, 62, 5532, 1330, 337, 73, 22071, 12124, 198, 6738, 3127, 83, 2977, 13, 22602, 1330, 7311, 51, 2977, 198, 6738, 2219, 13, 26791, 1330, 22082, 25060, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 67, 3256, 2244, 11639, 24442, 3256, 2223, 2625, 8095, 62, 7942, 1600, 4277, 28, 25101, 11, 1037, 11639, 10434, 287, 31687, 10363, 11537, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2604, 13, 10951, 7203, 22851, 3061, 12, 18053, 12, 15255, 3213, 12, 4774, 4943, 198, 220, 220, 220, 611, 26498, 13, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8774, 27509, 22446, 5143, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8774, 22446, 5143, 3419, 198 ]
3.004484
223
from Crypto.Cipher import AES import base64, hashlib, json from app.services import payment from app.models import Vault from app.utils import further_processing, standardize_response
[ 6738, 36579, 13, 34, 10803, 1330, 34329, 198, 11748, 2779, 2414, 11, 12234, 8019, 11, 33918, 198, 6738, 598, 13, 30416, 1330, 6074, 198, 6738, 598, 13, 27530, 1330, 23450, 198, 6738, 598, 13, 26791, 1330, 2252, 62, 36948, 11, 3210, 1096, 62, 26209, 198 ]
4.088889
45
""" This module contains unit tests, for the most important functions of ruspy.estimation.estimation_cost_parameters. The values to compare the results with are saved in resources/estimation_test. The setting of the test is documented in the inputs section in test module. """ import numpy as np import pytest from numpy.testing import assert_array_almost_equal from ruspy.config import TEST_RESOURCES_DIR from ruspy.estimation.estimation_transitions import create_transition_matrix from ruspy.model_code.choice_probabilities import choice_prob_gumbel from ruspy.model_code.cost_functions import calc_obs_costs from ruspy.model_code.cost_functions import lin_cost from ruspy.model_code.fix_point_alg import calc_fixp from ruspy.test.ranodm_init import random_init @pytest.fixture @pytest.fixture
[ 37811, 198, 1212, 8265, 4909, 4326, 5254, 11, 329, 262, 749, 1593, 5499, 286, 198, 14932, 9078, 13, 395, 18991, 13, 395, 18991, 62, 15805, 62, 17143, 7307, 13, 383, 3815, 284, 8996, 262, 2482, 351, 198, 533, 7448, 287, 4133, 14, 395, 18991, 62, 9288, 13, 383, 4634, 286, 262, 1332, 318, 12395, 287, 262, 198, 15414, 82, 2665, 287, 1332, 8265, 13, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 9288, 198, 6738, 299, 32152, 13, 33407, 1330, 6818, 62, 18747, 62, 28177, 62, 40496, 198, 198, 6738, 374, 385, 9078, 13, 11250, 1330, 43001, 62, 19535, 2606, 7397, 1546, 62, 34720, 198, 6738, 374, 385, 9078, 13, 395, 18991, 13, 395, 18991, 62, 7645, 1756, 1330, 2251, 62, 7645, 653, 62, 6759, 8609, 198, 6738, 374, 385, 9078, 13, 19849, 62, 8189, 13, 25541, 62, 1676, 65, 5738, 1330, 3572, 62, 1676, 65, 62, 70, 2178, 417, 198, 6738, 374, 385, 9078, 13, 19849, 62, 8189, 13, 15805, 62, 12543, 2733, 1330, 42302, 62, 8158, 62, 15805, 82, 198, 6738, 374, 385, 9078, 13, 19849, 62, 8189, 13, 15805, 62, 12543, 2733, 1330, 9493, 62, 15805, 198, 6738, 374, 385, 9078, 13, 19849, 62, 8189, 13, 13049, 62, 4122, 62, 14016, 1330, 42302, 62, 13049, 79, 198, 6738, 374, 385, 9078, 13, 9288, 13, 2596, 375, 76, 62, 15003, 1330, 4738, 62, 15003, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 628 ]
3.25
248
from itertools import product import numpy as np from typing import Tuple from IMLearn.learners.classifiers import DecisionStump from IMLearn.metalearners import AdaBoost from utils import * import plotly.graph_objects as go from plotly.subplots import make_subplots pio.renderers.default = "browser" def generate_data(n: int, noise_ratio: float) -> Tuple[np.ndarray, np.ndarray]: """ Generate a dataset in R^2 of specified size Parameters ---------- n: int Number of samples to generate noise_ratio: float Ratio of labels to invert Returns ------- X: np.ndarray of shape (n_samples,2) Design matrix of samples y: np.ndarray of shape (n_samples,) Labels of samples """ ''' generate samples X with shape: (num_samples, 2) and labels y with shape (num_samples). num_samples: the number of samples to generate noise_ratio: invert the label for this ratio of the samples ''' X, y = np.random.rand(n, 2) * 2 - 1, np.ones(n) y[np.sum(X ** 2, axis=1) < 0.5 ** 2] = -1 y[np.random.choice(n, int(noise_ratio * n))] *= -1 return X, y def add_partial_decision_boundary(fig, X, y, t, learner, lims, row=None, col=None): """ Plot the decision boundary of ensemble with t estimators """ # symbols = np.array(["circle", "x"])[((y + 1) / 2).astype(int)] predict = lambda X_: learner.partial_predict(X_, t) accuracy = 1 - learner.partial_loss(X, y, t) fig.add_trace(decision_surface(predict, lims[0], lims[1], showscale=False), row=row, col=col) class0 = y == -1 fig.add_trace(go.Scatter(x=X[class0][:, 0], y=X[class0][:, 1], mode="markers", name="Class -1", legendgroup='Class -1', showlegend=False, marker=dict(color="red", symbol="circle", line=dict(color="black", width=1))), row=row, col=col) class1 = y == 1 fig.add_trace(go.Scatter(x=X[class1][:, 0], y=X[class1][:, 1], mode="markers", name="Class 1", legendgroup='Class 1', showlegend=False, marker=dict(color="blue", symbol="x", line=dict(color="black", width=1))), row=row, col=col) fig.update_xaxes(title_text="x", row=row, col=col) fig.update_yaxes(title_text="y", row=row, col=col) if row is None: fig.update_layout(title_text=f"Decision boundary of ensemble with {t} estimators, Accuracy: {accuracy:.3f}") else: fig.layout.annotations[2*(row-1)+col-1].update(text=f"Using {t} estimators, Accuracy: {accuracy: .2f}") return fig if __name__ == '__main__': np.random.seed(0) fit_and_evaluate_adaboost(0) fit_and_evaluate_adaboost(0.4)
[ 6738, 340, 861, 10141, 1330, 1720, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 19720, 1330, 309, 29291, 198, 6738, 314, 5805, 451, 77, 13, 35720, 364, 13, 4871, 13350, 1330, 26423, 1273, 931, 198, 6738, 314, 5805, 451, 77, 13, 28469, 451, 2741, 1330, 47395, 45686, 198, 6738, 3384, 4487, 1330, 1635, 198, 11748, 7110, 306, 13, 34960, 62, 48205, 355, 467, 198, 6738, 7110, 306, 13, 7266, 489, 1747, 1330, 787, 62, 7266, 489, 1747, 198, 198, 79, 952, 13, 10920, 19288, 13, 12286, 796, 366, 40259, 1, 628, 198, 4299, 7716, 62, 7890, 7, 77, 25, 493, 11, 7838, 62, 10366, 952, 25, 12178, 8, 4613, 309, 29291, 58, 37659, 13, 358, 18747, 11, 45941, 13, 358, 18747, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 257, 27039, 287, 371, 61, 17, 286, 7368, 2546, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 299, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 8405, 284, 7716, 628, 220, 220, 220, 7838, 62, 10366, 952, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 33956, 286, 14722, 284, 287, 1851, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1395, 25, 45941, 13, 358, 18747, 286, 5485, 357, 77, 62, 82, 12629, 11, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8495, 17593, 286, 8405, 628, 220, 220, 220, 331, 25, 45941, 13, 358, 18747, 286, 5485, 357, 77, 62, 82, 12629, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 3498, 1424, 286, 8405, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 7716, 8405, 1395, 351, 5485, 25, 357, 22510, 62, 82, 12629, 11, 362, 8, 290, 14722, 331, 351, 5485, 357, 22510, 62, 82, 12629, 737, 198, 220, 220, 220, 997, 62, 82, 12629, 25, 262, 1271, 286, 8405, 284, 7716, 198, 220, 220, 220, 7838, 62, 10366, 952, 25, 287, 1851, 262, 6167, 329, 428, 8064, 286, 262, 8405, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1395, 11, 331, 796, 45941, 13, 25120, 13, 25192, 7, 77, 11, 362, 8, 1635, 362, 532, 352, 11, 45941, 13, 1952, 7, 77, 8, 198, 220, 220, 220, 331, 58, 37659, 13, 16345, 7, 55, 12429, 362, 11, 16488, 28, 16, 8, 1279, 657, 13, 20, 12429, 362, 60, 796, 532, 16, 198, 220, 220, 220, 331, 58, 37659, 13, 25120, 13, 25541, 7, 77, 11, 493, 7, 3919, 786, 62, 10366, 952, 1635, 299, 4008, 60, 1635, 28, 532, 16, 198, 220, 220, 220, 1441, 1395, 11, 331, 628, 198, 4299, 751, 62, 47172, 62, 12501, 1166, 62, 7784, 560, 7, 5647, 11, 1395, 11, 331, 11, 256, 11, 22454, 1008, 11, 1761, 82, 11, 5752, 28, 14202, 11, 951, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28114, 262, 2551, 18645, 286, 34549, 351, 256, 3959, 2024, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 14354, 796, 45941, 13, 18747, 7, 14692, 45597, 1600, 366, 87, 8973, 38381, 19510, 88, 1343, 352, 8, 1220, 362, 737, 459, 2981, 7, 600, 15437, 198, 220, 220, 220, 4331, 796, 37456, 1395, 62, 25, 22454, 1008, 13, 47172, 62, 79, 17407, 7, 55, 62, 11, 256, 8, 198, 220, 220, 220, 9922, 796, 352, 532, 22454, 1008, 13, 47172, 62, 22462, 7, 55, 11, 331, 11, 256, 8, 628, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 12501, 1166, 62, 42029, 7, 79, 17407, 11, 1761, 82, 58, 15, 4357, 1761, 82, 58, 16, 4357, 905, 9888, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 28, 808, 11, 951, 28, 4033, 8, 628, 220, 220, 220, 1398, 15, 796, 331, 6624, 532, 16, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 2188, 13, 3351, 1436, 7, 87, 28, 55, 58, 4871, 15, 7131, 45299, 657, 4357, 331, 28, 55, 58, 4871, 15, 7131, 45299, 352, 4357, 4235, 2625, 4102, 364, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 9487, 532, 16, 1600, 8177, 8094, 11639, 9487, 532, 16, 3256, 905, 1455, 437, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 8043, 2625, 445, 1600, 6194, 2625, 45597, 1600, 1627, 28, 11600, 7, 8043, 2625, 13424, 1600, 9647, 28, 16, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 28, 808, 11, 951, 28, 4033, 8, 628, 220, 220, 220, 1398, 16, 796, 331, 6624, 352, 198, 220, 220, 220, 2336, 13, 2860, 62, 40546, 7, 2188, 13, 3351, 1436, 7, 87, 28, 55, 58, 4871, 16, 7131, 45299, 657, 4357, 331, 28, 55, 58, 4871, 16, 7131, 45299, 352, 4357, 4235, 2625, 4102, 364, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 9487, 352, 1600, 8177, 8094, 11639, 9487, 352, 3256, 905, 1455, 437, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 8043, 2625, 17585, 1600, 6194, 2625, 87, 1600, 1627, 28, 11600, 7, 8043, 2625, 13424, 1600, 9647, 28, 16, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 28, 808, 11, 951, 28, 4033, 8, 628, 220, 220, 220, 2336, 13, 19119, 62, 87, 897, 274, 7, 7839, 62, 5239, 2625, 87, 1600, 5752, 28, 808, 11, 951, 28, 4033, 8, 198, 220, 220, 220, 2336, 13, 19119, 62, 88, 897, 274, 7, 7839, 62, 5239, 2625, 88, 1600, 5752, 28, 808, 11, 951, 28, 4033, 8, 198, 220, 220, 220, 611, 5752, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 19119, 62, 39786, 7, 7839, 62, 5239, 28, 69, 1, 10707, 1166, 18645, 286, 34549, 351, 1391, 83, 92, 3959, 2024, 11, 33222, 25, 1391, 4134, 23843, 25, 13, 18, 69, 92, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 39786, 13, 34574, 602, 58, 17, 9, 7, 808, 12, 16, 47762, 4033, 12, 16, 4083, 19119, 7, 5239, 28, 69, 1, 12814, 1391, 83, 92, 3959, 2024, 11, 33222, 25, 1391, 4134, 23843, 25, 764, 17, 69, 92, 4943, 628, 220, 220, 220, 1441, 2336, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 15, 8, 198, 220, 220, 220, 4197, 62, 392, 62, 49786, 62, 324, 34748, 455, 7, 15, 8, 198, 220, 220, 220, 4197, 62, 392, 62, 49786, 62, 324, 34748, 455, 7, 15, 13, 19, 8, 198 ]
2.275041
1,218
import torch import torch.nn.functional as F import torch.optim as optim from model import Model from video_dataset import Dataset from tensorboard_logger import log_value import utils import numpy as np from torch.autograd import Variable from classificationMAP import getClassificationMAP as cmAP from detectionMAP import getDetectionMAP as dmAP import scipy.io as sio # torch.set_default_tensor_type('torch.FloatTensor')
[ 11748, 28034, 201, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 201, 198, 11748, 28034, 13, 40085, 355, 6436, 201, 198, 6738, 2746, 1330, 9104, 201, 198, 6738, 2008, 62, 19608, 292, 316, 1330, 16092, 292, 316, 201, 198, 6738, 11192, 273, 3526, 62, 6404, 1362, 1330, 2604, 62, 8367, 201, 198, 11748, 3384, 4487, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 201, 198, 6738, 17923, 33767, 1330, 651, 9487, 2649, 33767, 355, 12067, 2969, 201, 198, 6738, 13326, 33767, 1330, 651, 11242, 3213, 33767, 355, 288, 76, 2969, 201, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 201, 198, 201, 198, 2, 28034, 13, 2617, 62, 12286, 62, 83, 22854, 62, 4906, 10786, 13165, 354, 13, 43879, 51, 22854, 11537, 201, 198, 201, 198 ]
3.195652
138
''' BSD 3-Clause License Copyright (c) 2019, Donald N. Bockoven III All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' from __future__ import division import math as m import Tkinter as tk import tkMessageBox import ttk import tkFont import tkFileDialog import bolt_group_istantaneous_center as bolt_ic if __name__ == '__main__': main()
[ 7061, 6, 201, 198, 21800, 513, 12, 2601, 682, 13789, 201, 198, 15269, 357, 66, 8, 13130, 11, 3759, 399, 13, 347, 735, 16206, 6711, 201, 198, 3237, 2489, 10395, 13, 201, 198, 7738, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 201, 198, 4666, 2649, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 201, 198, 9, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 201, 198, 220, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 201, 198, 9, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 201, 198, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 201, 198, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 201, 198, 9, 16126, 262, 1438, 286, 262, 6634, 15762, 4249, 262, 3891, 286, 663, 201, 198, 220, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 201, 198, 220, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 201, 198, 43559, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 201, 198, 6981, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 201, 198, 3955, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 201, 198, 26288, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 201, 198, 13775, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 201, 198, 35, 2390, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 201, 198, 35009, 53, 34444, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 201, 198, 8141, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 201, 198, 1581, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 201, 198, 19238, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 201, 198, 7061, 6, 201, 198, 201, 198, 6738, 11593, 37443, 834, 1330, 7297, 201, 198, 11748, 10688, 355, 285, 201, 198, 11748, 309, 74, 3849, 355, 256, 74, 201, 198, 11748, 256, 74, 12837, 14253, 201, 198, 11748, 256, 30488, 201, 198, 11748, 256, 74, 23252, 201, 198, 11748, 256, 74, 8979, 44204, 201, 198, 11748, 18100, 62, 8094, 62, 10167, 11655, 62, 16159, 355, 18100, 62, 291, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
3.439306
519
#----------------------------------------------------------------------------- # This file is part of 'SLAC Firmware Standard Library'. # It is subject to the license terms in the LICENSE.txt file found in the # top-level directory of this distribution and at: # https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html. # No part of 'SLAC Firmware Standard Library', including this file, # may be copied, modified, propagated, or distributed except according to # the terms contained in the LICENSE.txt file. #----------------------------------------------------------------------------- import pyrogue as pr import surf.devices.silabs as silabs import csv import click import fnmatch
[ 2, 10097, 32501, 198, 2, 770, 2393, 318, 636, 286, 705, 8634, 2246, 31623, 1574, 8997, 10074, 4458, 198, 2, 632, 318, 2426, 284, 262, 5964, 2846, 287, 262, 38559, 24290, 13, 14116, 2393, 1043, 287, 262, 198, 2, 1353, 12, 5715, 8619, 286, 428, 6082, 290, 379, 25, 198, 2, 220, 220, 220, 3740, 1378, 10414, 23079, 13, 6649, 330, 13, 14192, 3841, 13, 15532, 14, 13812, 14, 381, 533, 70, 14, 43, 2149, 24290, 13, 6494, 13, 198, 2, 1400, 636, 286, 705, 8634, 2246, 31623, 1574, 8997, 10074, 3256, 1390, 428, 2393, 11, 198, 2, 743, 307, 18984, 11, 9518, 11, 8928, 515, 11, 393, 9387, 2845, 1864, 284, 198, 2, 262, 2846, 7763, 287, 262, 38559, 24290, 13, 14116, 2393, 13, 198, 2, 10097, 32501, 198, 198, 11748, 12972, 3828, 518, 355, 778, 198, 11748, 9053, 13, 42034, 13, 18217, 8937, 355, 3313, 8937, 198, 11748, 269, 21370, 198, 11748, 3904, 198, 11748, 24714, 15699, 198 ]
4.3625
160
# def hypotenuse(x, y): # return 0.0 # # print(hypotenuse(3, 4)) # # def hypotenuse(x, y): # square_x = x**2 # square_y = y**2 # print('square_x is', square_x) # print('square_y is', square_y) # return 0.0 # # print(hypotenuse(3, 4)) # # def hypotenuse(x, y): # from math import sqrt # square_x = x**2 # square_y = y**2 # h_square = square_x + square_y # print('hypotenuse square is', h_square) # result = sqrt(h_square) # return result # # print(hypotenuse(3, 4)) print(hypotenuse(3, 4))
[ 2, 825, 8813, 268, 1904, 7, 87, 11, 331, 2599, 198, 2, 220, 220, 220, 220, 1441, 657, 13, 15, 198, 2, 198, 2, 3601, 7, 36362, 313, 268, 1904, 7, 18, 11, 604, 4008, 198, 2, 198, 2, 825, 8813, 268, 1904, 7, 87, 11, 331, 2599, 198, 2, 220, 220, 220, 220, 6616, 62, 87, 796, 2124, 1174, 17, 198, 2, 220, 220, 220, 220, 6616, 62, 88, 796, 331, 1174, 17, 198, 2, 220, 220, 220, 220, 3601, 10786, 23415, 62, 87, 318, 3256, 6616, 62, 87, 8, 198, 2, 220, 220, 220, 220, 3601, 10786, 23415, 62, 88, 318, 3256, 6616, 62, 88, 8, 198, 2, 220, 220, 220, 220, 1441, 657, 13, 15, 198, 2, 198, 2, 3601, 7, 36362, 313, 268, 1904, 7, 18, 11, 604, 4008, 198, 2, 198, 2, 825, 8813, 268, 1904, 7, 87, 11, 331, 2599, 198, 2, 220, 220, 220, 220, 422, 10688, 1330, 19862, 17034, 198, 2, 220, 220, 220, 220, 6616, 62, 87, 796, 2124, 1174, 17, 198, 2, 220, 220, 220, 220, 6616, 62, 88, 796, 331, 1174, 17, 198, 2, 220, 220, 220, 220, 289, 62, 23415, 796, 6616, 62, 87, 1343, 6616, 62, 88, 198, 2, 220, 220, 220, 220, 3601, 10786, 36362, 313, 268, 1904, 6616, 318, 3256, 289, 62, 23415, 8, 198, 2, 220, 220, 220, 220, 1255, 796, 19862, 17034, 7, 71, 62, 23415, 8, 198, 2, 220, 220, 220, 220, 1441, 1255, 198, 2, 198, 2, 3601, 7, 36362, 313, 268, 1904, 7, 18, 11, 604, 4008, 198, 198, 4798, 7, 36362, 313, 268, 1904, 7, 18, 11, 604, 4008, 198 ]
2
271
#!/usr/bin/env python # Plots stargazers of repositories. import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.neighbors import KernelDensity # Based on: https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/ def kde_sklearn(x, x_grid, bandwidth=0.2, **kwargs): """Kernel Density Estimation with Scikit-learn""" kde_skl = KernelDensity(bandwidth=bandwidth, **kwargs) kde_skl.fit(x[:, np.newaxis]) # score_samples() returns the log-likelihood of the samples log_pdf = kde_skl.score_samples(x_grid[:, np.newaxis]) return np.exp(log_pdf) # read CSV with base image count: df = pd.read_csv('./data/stargazers.csv').sort_values('stargazers', ascending=True) plot_data = [df['stargazers']] grid = np.linspace(1, 40000, 5000) fig, ax = plt.subplots() for data in plot_data: ax.plot(grid, kde_sklearn(data, grid, bandwidth=50), alpha=0.8) ax.legend(labels=['Overall', 'Top 1000', 'Top 100']) ax.legend(loc='upper left') ax.set_xlabel('Project stargazers') # ax.set_yscale('log') # ax.set_ylim(-0.5, 5) plt.show()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 1345, 1747, 336, 853, 1031, 364, 286, 38072, 13, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 710, 394, 32289, 1330, 32169, 35, 6377, 198, 198, 2, 13403, 319, 25, 3740, 1378, 73, 539, 20306, 79, 13, 12567, 13, 952, 14, 14036, 14, 6390, 14, 1065, 14, 486, 14, 33885, 12, 43337, 12, 395, 18991, 14, 198, 4299, 479, 2934, 62, 8135, 35720, 7, 87, 11, 2124, 62, 25928, 11, 19484, 28, 15, 13, 17, 11, 12429, 46265, 22046, 2599, 198, 220, 37227, 42, 7948, 360, 6377, 10062, 18991, 351, 10286, 15813, 12, 35720, 37811, 198, 220, 479, 2934, 62, 8135, 75, 796, 32169, 35, 6377, 7, 3903, 10394, 28, 3903, 10394, 11, 12429, 46265, 22046, 8, 198, 220, 479, 2934, 62, 8135, 75, 13, 11147, 7, 87, 58, 45299, 45941, 13, 3605, 22704, 12962, 198, 220, 1303, 4776, 62, 82, 12629, 3419, 5860, 262, 2604, 12, 2339, 11935, 286, 262, 8405, 198, 220, 2604, 62, 12315, 796, 479, 2934, 62, 8135, 75, 13, 26675, 62, 82, 12629, 7, 87, 62, 25928, 58, 45299, 45941, 13, 3605, 22704, 12962, 198, 220, 1441, 45941, 13, 11201, 7, 6404, 62, 12315, 8, 628, 198, 2, 1100, 44189, 351, 2779, 2939, 954, 25, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 4458, 14, 7890, 14, 301, 853, 1031, 364, 13, 40664, 27691, 30619, 62, 27160, 10786, 301, 853, 1031, 364, 3256, 41988, 28, 17821, 8, 198, 198, 29487, 62, 7890, 796, 685, 7568, 17816, 301, 853, 1031, 364, 6, 11907, 628, 198, 25928, 796, 45941, 13, 21602, 10223, 7, 16, 11, 604, 2388, 11, 23336, 8, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 1640, 1366, 287, 7110, 62, 7890, 25, 198, 220, 7877, 13, 29487, 7, 25928, 11, 479, 2934, 62, 8135, 35720, 7, 7890, 11, 10706, 11, 19484, 28, 1120, 828, 17130, 28, 15, 13, 23, 8, 198, 897, 13, 1455, 437, 7, 23912, 1424, 28, 17816, 16350, 3256, 705, 9126, 8576, 3256, 705, 9126, 1802, 6, 12962, 198, 897, 13, 1455, 437, 7, 17946, 11639, 45828, 1364, 11537, 198, 897, 13, 2617, 62, 87, 18242, 10786, 16775, 336, 853, 1031, 364, 11537, 198, 198, 2, 7877, 13, 2617, 62, 28349, 1000, 10786, 6404, 11537, 198, 198, 2, 7877, 13, 2617, 62, 88, 2475, 32590, 15, 13, 20, 11, 642, 8, 198, 198, 489, 83, 13, 12860, 3419 ]
2.515222
427
# # Copyright (c) 2015 Juniper Networks, Inc. All rights reserved. # from analytic_client import AnalyticApiClient import time, socket, os from topology_uve import LinkUve import gevent from gevent.lock import Semaphore from opserver.consistent_schdlr import ConsistentScheduler from topology_config_handler import TopologyConfigHandler import traceback import ConfigParser import signal import random import hashlib from sandesh.topology_info.ttypes import TopologyInfo, TopologyUVE from sandesh.link.ttypes import RemoteType, RemoteIfInfo, VRouterL2IfInfo,\ VRouterL2IfUVE
[ 2, 198, 2, 15069, 357, 66, 8, 1853, 7653, 9346, 27862, 11, 3457, 13, 1439, 2489, 10395, 13, 198, 2, 198, 6738, 49166, 62, 16366, 1330, 16213, 13370, 32, 14415, 11792, 198, 11748, 640, 11, 17802, 11, 28686, 198, 6738, 1353, 1435, 62, 45177, 1330, 7502, 52, 303, 198, 11748, 4903, 1151, 198, 6738, 4903, 1151, 13, 5354, 1330, 12449, 6570, 382, 198, 6738, 39628, 18497, 13, 5936, 7609, 62, 20601, 67, 14050, 1330, 3515, 7609, 50, 1740, 18173, 198, 6738, 1353, 1435, 62, 11250, 62, 30281, 1330, 5849, 1435, 16934, 25060, 198, 11748, 12854, 1891, 198, 11748, 17056, 46677, 198, 11748, 6737, 198, 11748, 4738, 198, 11748, 12234, 8019, 198, 6738, 6450, 5069, 13, 4852, 1435, 62, 10951, 13, 83, 19199, 1330, 5849, 1435, 12360, 11, 5849, 1435, 52, 6089, 198, 6738, 6450, 5069, 13, 8726, 13, 83, 19199, 1330, 21520, 6030, 11, 21520, 1532, 12360, 11, 6453, 39605, 43, 17, 1532, 12360, 11, 59, 198, 220, 220, 220, 6453, 39605, 43, 17, 1532, 52, 6089, 628 ]
3.452381
168
# conda install scikit-learn # conda install -c conda-forge scikit-optimize # conda install -c conda-forge rdkit import pandas as pd # from Tools.Clustering.butina import cluster_molecules from molml.Datastructures.molecule import Dataset from molml.Data import read_csv from molml.Representations.descriptors import ecfp from molml.Representations.strings import smiles_one_hot from sklearn.ensemble import GradientBoostingRegressor from molml.Tools.optimize import BayesianOpt from molml.Tools.metrics import rmse import numpy as np molecules = read_csv(f"example_data/CHEMBL2047_EC50.csv", smiles_col='smiles', label_col='exp_mean [nM]') data = Dataset(molecules[:50], name='CHEMBL2047', transform=smiles_one_hot, target_transform=minlog) data.process() data.show(10) from molml.Tools.cluster import spectral from molml.Viz.multivariate import TSNE, PCA import seaborn as sns clusters = spectral(molecules, k=10) tsne = TSNE(n_components=2, perplexity=50, n_iter=500) tsne.fit(molecules, use_n_principal_components=50) tsne.show(color_by=clusters, palette=sns.color_palette("hls", 10)) pca = PCA(n_components=2) pca.fit(molecules) pca.show(color_by=clusters, palette=sns.color_palette("hls", 10)) from molml.Tools.splitting import stratified_split_molecules train, test, val = stratified_split_molecules(molecules, labels=clusters) data = Dataset(molecules, name='CHEMBL2047', transform=ecfp, target_transform=minlog) data.process() data.show(13) hpm = {"learning_rate": [0.1, 0.01], "max_depth": [1, 2, 3, 4, 5, 6, 7, 8], "n_estimators": [5, 10, 20, 100, 200, 300]} model = GradientBoostingRegressor opt = BayesianOpt(model, data) opt.opt(hpm, rmse, cv=5, n_calls=20) opt.show() # def fold_split_knn(dataset, k: int = 10, random_state: int = 42): # from sklearn.cluster import KMeans # # clust = KMeans(n_clusters=10) # clust.fit(x) history = [(1,0.7201,0.7201),(2,0.6329,0.6329),(3,0.6305,0.6305),(4,0.6323,0.6305),(5,0.7195,0.6305),(6,0.6137,0.6137), (7,0.6201,0.6137),(8,0.6239,0.6137),(9,0.6404,0.6137),(10,0.6264,0.6137),(11,0.6718,0.6137),(12,0.6368,0.6137), (13,0.6337,0.6137),(14,0.6502,0.6137),(15,0.6235,0.6137),(16,0.6303,0.6137),(17,0.6171,0.6137),(18,0.6268,0.6137), (19,0.6117,0.6117),(20,0.6170,0.6117)] history = pd.DataFrame( columns=['Iteration', 'Score', 'Best Score']) history['Score'].tolist()[-1] len(history['Score']) pd.DataFrame({'Iteration': [21], 'Score': [0.544], 'Best Score': [0.544]}) ## TODO active learning # split data train test -> make TSNE # optimize model on train # train model # predict on test # find most uncertain compounds # # python setup.py bdist_wheel # python -m pip install dist/MoleculeACE-1.0.5-py3-none-any.whl # # twine upload dist/*
[ 2, 1779, 64, 2721, 629, 1134, 270, 12, 35720, 198, 2, 1779, 64, 2721, 532, 66, 1779, 64, 12, 30293, 629, 1134, 270, 12, 40085, 1096, 198, 2, 1779, 64, 2721, 532, 66, 1779, 64, 12, 30293, 374, 67, 15813, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 422, 20003, 13, 2601, 436, 1586, 13, 4360, 1437, 1330, 13946, 62, 76, 2305, 13930, 198, 6738, 18605, 4029, 13, 27354, 459, 1356, 942, 13, 76, 2305, 23172, 1330, 16092, 292, 316, 198, 6738, 18605, 4029, 13, 6601, 1330, 1100, 62, 40664, 198, 6738, 18605, 4029, 13, 40171, 602, 13, 20147, 1968, 669, 1330, 9940, 46428, 198, 6738, 18605, 4029, 13, 40171, 602, 13, 37336, 1330, 21845, 62, 505, 62, 8940, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 17701, 1153, 45686, 278, 8081, 44292, 198, 6738, 18605, 4029, 13, 33637, 13, 40085, 1096, 1330, 4696, 35610, 27871, 198, 6738, 18605, 4029, 13, 33637, 13, 4164, 10466, 1330, 42721, 325, 198, 11748, 299, 32152, 355, 45941, 198, 198, 76, 2305, 13930, 796, 1100, 62, 40664, 7, 69, 1, 20688, 62, 7890, 14, 3398, 3620, 9148, 1238, 2857, 62, 2943, 1120, 13, 40664, 1600, 21845, 62, 4033, 11639, 5796, 2915, 3256, 6167, 62, 4033, 11639, 11201, 62, 32604, 685, 77, 44, 60, 11537, 198, 198, 7890, 796, 16092, 292, 316, 7, 76, 2305, 13930, 58, 25, 1120, 4357, 1438, 11639, 3398, 3620, 9148, 1238, 2857, 3256, 6121, 28, 5796, 2915, 62, 505, 62, 8940, 11, 2496, 62, 35636, 28, 1084, 6404, 8, 198, 7890, 13, 14681, 3419, 198, 198, 7890, 13, 12860, 7, 940, 8, 198, 198, 6738, 18605, 4029, 13, 33637, 13, 565, 5819, 1330, 37410, 198, 6738, 18605, 4029, 13, 53, 528, 13, 16680, 42524, 1330, 26136, 12161, 11, 4217, 32, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 198, 565, 13654, 796, 37410, 7, 76, 2305, 13930, 11, 479, 28, 940, 8, 628, 198, 912, 710, 796, 26136, 12161, 7, 77, 62, 5589, 3906, 28, 17, 11, 35682, 414, 28, 1120, 11, 299, 62, 2676, 28, 4059, 8, 198, 912, 710, 13, 11147, 7, 76, 2305, 13930, 11, 779, 62, 77, 62, 1050, 1939, 8521, 62, 5589, 3906, 28, 1120, 8, 198, 912, 710, 13, 12860, 7, 8043, 62, 1525, 28, 565, 13654, 11, 27043, 28, 82, 5907, 13, 8043, 62, 18596, 5857, 7203, 71, 7278, 1600, 838, 4008, 198, 198, 79, 6888, 796, 4217, 32, 7, 77, 62, 5589, 3906, 28, 17, 8, 198, 79, 6888, 13, 11147, 7, 76, 2305, 13930, 8, 198, 79, 6888, 13, 12860, 7, 8043, 62, 1525, 28, 565, 13654, 11, 27043, 28, 82, 5907, 13, 8043, 62, 18596, 5857, 7203, 71, 7278, 1600, 838, 4008, 628, 198, 198, 6738, 18605, 4029, 13, 33637, 13, 22018, 2535, 1330, 25369, 1431, 62, 35312, 62, 76, 2305, 13930, 198, 198, 27432, 11, 1332, 11, 1188, 796, 25369, 1431, 62, 35312, 62, 76, 2305, 13930, 7, 76, 2305, 13930, 11, 14722, 28, 565, 13654, 8, 628, 198, 7890, 796, 16092, 292, 316, 7, 76, 2305, 13930, 11, 1438, 11639, 3398, 3620, 9148, 1238, 2857, 3256, 6121, 28, 721, 46428, 11, 2496, 62, 35636, 28, 1084, 6404, 8, 198, 7890, 13, 14681, 3419, 198, 198, 7890, 13, 12860, 7, 1485, 8, 198, 198, 71, 4426, 796, 19779, 40684, 62, 4873, 1298, 685, 15, 13, 16, 11, 657, 13, 486, 4357, 198, 220, 220, 220, 220, 220, 220, 366, 9806, 62, 18053, 1298, 685, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 4357, 198, 220, 220, 220, 220, 220, 220, 366, 77, 62, 395, 320, 2024, 1298, 685, 20, 11, 838, 11, 1160, 11, 1802, 11, 939, 11, 5867, 48999, 198, 198, 19849, 796, 17701, 1153, 45686, 278, 8081, 44292, 198, 198, 8738, 796, 4696, 35610, 27871, 7, 19849, 11, 1366, 8, 198, 8738, 13, 8738, 7, 71, 4426, 11, 42721, 325, 11, 269, 85, 28, 20, 11, 299, 62, 66, 5691, 28, 1238, 8, 198, 8738, 13, 12860, 3419, 628, 198, 2, 825, 5591, 62, 35312, 62, 15418, 77, 7, 19608, 292, 316, 11, 479, 25, 493, 796, 838, 11, 4738, 62, 5219, 25, 493, 796, 5433, 2599, 198, 2, 220, 220, 220, 220, 422, 1341, 35720, 13, 565, 5819, 1330, 509, 5308, 504, 198, 2, 198, 2, 220, 220, 220, 220, 32966, 796, 509, 5308, 504, 7, 77, 62, 565, 13654, 28, 940, 8, 198, 2, 220, 220, 220, 220, 32966, 13, 11147, 7, 87, 8, 628, 198, 23569, 796, 47527, 16, 11, 15, 13, 22, 1264, 11, 15, 13, 22, 1264, 828, 7, 17, 11, 15, 13, 5066, 1959, 11, 15, 13, 5066, 1959, 828, 7, 18, 11, 15, 13, 21, 22515, 11, 15, 13, 21, 22515, 828, 7, 19, 11, 15, 13, 5066, 1954, 11, 15, 13, 21, 22515, 828, 7, 20, 11, 15, 13, 22, 22186, 11, 15, 13, 21, 22515, 828, 7, 21, 11, 15, 13, 21, 19708, 11, 15, 13, 21, 19708, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22, 11, 15, 13, 21, 1264, 11, 15, 13, 21, 19708, 828, 7, 23, 11, 15, 13, 21, 23516, 11, 15, 13, 21, 19708, 828, 7, 24, 11, 15, 13, 21, 26429, 11, 15, 13, 21, 19708, 828, 7, 940, 11, 15, 13, 21, 18897, 11, 15, 13, 21, 19708, 828, 7, 1157, 11, 15, 13, 3134, 1507, 11, 15, 13, 21, 19708, 828, 7, 1065, 11, 15, 13, 21, 27412, 11, 15, 13, 21, 19708, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1485, 11, 15, 13, 21, 31496, 11, 15, 13, 21, 19708, 828, 7, 1415, 11, 15, 13, 17544, 17, 11, 15, 13, 21, 19708, 828, 7, 1314, 11, 15, 13, 21, 22370, 11, 15, 13, 21, 19708, 828, 7, 1433, 11, 15, 13, 21, 22572, 11, 15, 13, 21, 19708, 828, 7, 1558, 11, 15, 13, 21, 27192, 11, 15, 13, 21, 19708, 828, 7, 1507, 11, 15, 13, 21, 25022, 11, 15, 13, 21, 19708, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1129, 11, 15, 13, 21, 17657, 11, 15, 13, 21, 17657, 828, 7, 1238, 11, 15, 13, 21, 17279, 11, 15, 13, 21, 17657, 15437, 628, 198, 23569, 796, 279, 67, 13, 6601, 19778, 7, 15180, 28, 17816, 29993, 341, 3256, 705, 26595, 3256, 705, 13014, 15178, 6, 12962, 198, 198, 23569, 17816, 26595, 6, 4083, 83, 349, 396, 3419, 58, 12, 16, 60, 198, 11925, 7, 23569, 17816, 26595, 6, 12962, 198, 30094, 13, 6601, 19778, 15090, 6, 29993, 341, 10354, 685, 2481, 4357, 705, 26595, 10354, 685, 15, 13, 47576, 4357, 705, 13014, 15178, 10354, 685, 15, 13, 47576, 60, 30072, 628, 198, 2235, 16926, 46, 4075, 4673, 198, 2, 6626, 1366, 4512, 1332, 4613, 787, 26136, 12161, 198, 2, 27183, 2746, 319, 4512, 198, 2, 4512, 2746, 198, 2, 4331, 319, 1332, 198, 2, 1064, 749, 8627, 16439, 198, 2, 198, 198, 2, 21015, 9058, 13, 9078, 275, 17080, 62, 22001, 198, 2, 21015, 532, 76, 7347, 2721, 1233, 14, 44, 2305, 23172, 11598, 12, 16, 13, 15, 13, 20, 12, 9078, 18, 12, 23108, 12, 1092, 13, 1929, 75, 198, 2, 198, 2, 665, 500, 9516, 1233, 15211, 628, 198 ]
2.307884
1,205
alphabet = "0123456789." code = input() grid = [] variables = [] loops = 10 for i in range(100): grid.append(00) while code[0] != "3" or code[1] != "." or code[-1] != "4": code = input("Code invalid. ") code += "000000" i = 2 while i < len(code) - 6: variables = [] variables.append(int(code[i+1] + code[i+2])) variables.append(int(code[i+3] + code[i+4])) variables.append(int(code[i+5] + code[i+6])) if code[i] == "0": grid[variables[0]] = grid[variables[1]] + grid[variables[2]] i += 7 elif code[i] == "1": grid[variables[0]] = grid[variables[1]] - grid[variables[2]] i += 7 elif code[i] == "2": grid[variables[0]] = grid[variables[1]] * grid[variables[2]] i += 7 elif code[i] == "3": grid[variables[0]] = grid[variables[1]] / grid[variables[2]] i += 7 elif code[i] == "4": i = len(code) elif code[i] == "5": print(chr(grid[variables[0]]),end='') i += 3 elif code[i] == "6": grid[variables[0]] = variables[1] i += 5 elif code[i] == "7": grid[variables[0]] = ord(input()) i += 3 elif code[i] == "8": if grid[variables[0]] == 0: found = False nests = 0 while found == False: i += 1 if code[i] == "8": nests += 1 elif code[i] == "9": if nests == 0: i += 1 found = True else: nests -= 1 elif grid[variables[0]] != 0: i += 1 found = True elif code[i] == "9": storei = i nests = 0 returned = False while returned == False: i -= 1 if code[i] == "9": nests += 1 elif code[i] == "8": if nests == 0: if grid[int(str(code[i+1]) + str(code[i+2]))] == 0: i = storei returned = True else: returned = True else: print("Error found with character " + code[i])
[ 17307, 8380, 796, 366, 486, 1954, 2231, 3134, 4531, 526, 198, 8189, 796, 5128, 3419, 198, 25928, 796, 17635, 198, 25641, 2977, 796, 17635, 198, 5439, 2840, 796, 838, 198, 198, 1640, 1312, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 10706, 13, 33295, 7, 405, 8, 198, 198, 4514, 2438, 58, 15, 60, 14512, 366, 18, 1, 393, 2438, 58, 16, 60, 14512, 366, 526, 393, 2438, 58, 12, 16, 60, 14512, 366, 19, 1298, 198, 220, 220, 220, 2438, 796, 5128, 7203, 10669, 12515, 13, 366, 8, 198, 198, 8189, 15853, 366, 10535, 1, 198, 198, 72, 796, 362, 198, 198, 4514, 1312, 1279, 18896, 7, 8189, 8, 532, 718, 25, 198, 220, 220, 220, 9633, 796, 17635, 198, 220, 220, 220, 9633, 13, 33295, 7, 600, 7, 8189, 58, 72, 10, 16, 60, 1343, 2438, 58, 72, 10, 17, 60, 4008, 198, 220, 220, 220, 9633, 13, 33295, 7, 600, 7, 8189, 58, 72, 10, 18, 60, 1343, 2438, 58, 72, 10, 19, 60, 4008, 198, 220, 220, 220, 9633, 13, 33295, 7, 600, 7, 8189, 58, 72, 10, 20, 60, 1343, 2438, 58, 72, 10, 21, 60, 4008, 198, 220, 220, 220, 611, 2438, 58, 72, 60, 6624, 366, 15, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 25641, 2977, 58, 15, 11907, 796, 10706, 58, 25641, 2977, 58, 16, 11907, 1343, 10706, 58, 25641, 2977, 58, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 767, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 16, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 25641, 2977, 58, 15, 11907, 796, 10706, 58, 25641, 2977, 58, 16, 11907, 532, 10706, 58, 25641, 2977, 58, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 767, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 17, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 25641, 2977, 58, 15, 11907, 796, 10706, 58, 25641, 2977, 58, 16, 11907, 1635, 10706, 58, 25641, 2977, 58, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 767, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 18, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 25641, 2977, 58, 15, 11907, 796, 10706, 58, 25641, 2977, 58, 16, 11907, 1220, 10706, 58, 25641, 2977, 58, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 767, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 19, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 18896, 7, 8189, 8, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 20, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 354, 81, 7, 25928, 58, 25641, 2977, 58, 15, 11907, 828, 437, 28, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 513, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 21, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 25641, 2977, 58, 15, 11907, 796, 9633, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 642, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 22, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 25641, 2977, 58, 15, 11907, 796, 2760, 7, 15414, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 513, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 23, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10706, 58, 25641, 2977, 58, 15, 11907, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44382, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 1043, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2438, 58, 72, 60, 6624, 366, 23, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44382, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 24, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 44382, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44382, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 10706, 58, 25641, 2977, 58, 15, 11907, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 6407, 198, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 24, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3650, 72, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 44382, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 4504, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 981, 4504, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2438, 58, 72, 60, 6624, 366, 24, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44382, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2438, 58, 72, 60, 6624, 366, 23, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 44382, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10706, 58, 600, 7, 2536, 7, 8189, 58, 72, 10, 16, 12962, 1343, 965, 7, 8189, 58, 72, 10, 17, 60, 4008, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 3650, 72, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4504, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4504, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 1043, 351, 2095, 366, 1343, 2438, 58, 72, 12962, 198 ]
1.740188
1,274
# coding: utf-8 """ Paasta API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from paasta_tools.paastaapi.configuration import Configuration class MarathonAutoscalingInfo(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'current_instances': 'int', 'current_utilization': 'float', 'max_instances': 'int', 'min_instances': 'int', 'target_instances': 'int' } attribute_map = { 'current_instances': 'current_instances', 'current_utilization': 'current_utilization', 'max_instances': 'max_instances', 'min_instances': 'min_instances', 'target_instances': 'target_instances' } def __init__(self, current_instances=None, current_utilization=None, max_instances=None, min_instances=None, target_instances=None, local_vars_configuration=None): # noqa: E501 """MarathonAutoscalingInfo - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._current_instances = None self._current_utilization = None self._max_instances = None self._min_instances = None self._target_instances = None self.discriminator = None if current_instances is not None: self.current_instances = current_instances if current_utilization is not None: self.current_utilization = current_utilization if max_instances is not None: self.max_instances = max_instances if min_instances is not None: self.min_instances = min_instances if target_instances is not None: self.target_instances = target_instances @property def current_instances(self): """Gets the current_instances of this MarathonAutoscalingInfo. # noqa: E501 The number of instances of the service currently running # noqa: E501 :return: The current_instances of this MarathonAutoscalingInfo. # noqa: E501 :rtype: int """ return self._current_instances @current_instances.setter def current_instances(self, current_instances): """Sets the current_instances of this MarathonAutoscalingInfo. The number of instances of the service currently running # noqa: E501 :param current_instances: The current_instances of this MarathonAutoscalingInfo. # noqa: E501 :type current_instances: int """ self._current_instances = current_instances @property def current_utilization(self): """Gets the current_utilization of this MarathonAutoscalingInfo. # noqa: E501 The current utilization of the instances' allocated resources # noqa: E501 :return: The current_utilization of this MarathonAutoscalingInfo. # noqa: E501 :rtype: float """ return self._current_utilization @current_utilization.setter def current_utilization(self, current_utilization): """Sets the current_utilization of this MarathonAutoscalingInfo. The current utilization of the instances' allocated resources # noqa: E501 :param current_utilization: The current_utilization of this MarathonAutoscalingInfo. # noqa: E501 :type current_utilization: float """ self._current_utilization = current_utilization @property def max_instances(self): """Gets the max_instances of this MarathonAutoscalingInfo. # noqa: E501 The maximum number of instances that the autoscaler will scale to # noqa: E501 :return: The max_instances of this MarathonAutoscalingInfo. # noqa: E501 :rtype: int """ return self._max_instances @max_instances.setter def max_instances(self, max_instances): """Sets the max_instances of this MarathonAutoscalingInfo. The maximum number of instances that the autoscaler will scale to # noqa: E501 :param max_instances: The max_instances of this MarathonAutoscalingInfo. # noqa: E501 :type max_instances: int """ self._max_instances = max_instances @property def min_instances(self): """Gets the min_instances of this MarathonAutoscalingInfo. # noqa: E501 The minimum number of instances that the autoscaler will scale to # noqa: E501 :return: The min_instances of this MarathonAutoscalingInfo. # noqa: E501 :rtype: int """ return self._min_instances @min_instances.setter def min_instances(self, min_instances): """Sets the min_instances of this MarathonAutoscalingInfo. The minimum number of instances that the autoscaler will scale to # noqa: E501 :param min_instances: The min_instances of this MarathonAutoscalingInfo. # noqa: E501 :type min_instances: int """ self._min_instances = min_instances @property def target_instances(self): """Gets the target_instances of this MarathonAutoscalingInfo. # noqa: E501 The autoscaler's current target number of instances of this service to run # noqa: E501 :return: The target_instances of this MarathonAutoscalingInfo. # noqa: E501 :rtype: int """ return self._target_instances @target_instances.setter def target_instances(self, target_instances): """Sets the target_instances of this MarathonAutoscalingInfo. The autoscaler's current target number of instances of this service to run # noqa: E501 :param target_instances: The target_instances of this MarathonAutoscalingInfo. # noqa: E501 :type target_instances: int """ self._target_instances = target_instances def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, MarathonAutoscalingInfo): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, MarathonAutoscalingInfo): return True return self.to_dict() != other.to_dict()
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 37811, 198, 220, 220, 220, 11243, 40197, 7824, 628, 220, 220, 220, 1400, 6764, 2810, 357, 27568, 416, 4946, 15042, 35986, 3740, 1378, 12567, 13, 785, 14, 9654, 499, 270, 10141, 14, 9654, 15042, 12, 8612, 1352, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 383, 2196, 286, 262, 4946, 17614, 3188, 25, 352, 13, 15, 13, 15, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 198, 37811, 628, 198, 11748, 279, 4798, 198, 11748, 302, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 11748, 2237, 198, 198, 6738, 14187, 40197, 62, 31391, 13, 8957, 40197, 15042, 13, 11250, 3924, 1330, 28373, 628, 198, 4871, 24828, 16541, 17500, 4272, 12360, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 4946, 17614, 35986, 13, 198, 220, 220, 220, 6524, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 1280, 15042, 62, 19199, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 11688, 2099, 13, 198, 220, 220, 220, 220, 220, 11688, 62, 8899, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 33918, 1994, 287, 6770, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1280, 15042, 62, 19199, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 8625, 1817, 10354, 705, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 22602, 1634, 10354, 705, 22468, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 8625, 1817, 10354, 705, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1084, 62, 8625, 1817, 10354, 705, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16793, 62, 8625, 1817, 10354, 705, 600, 6, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 11688, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 8625, 1817, 10354, 705, 14421, 62, 8625, 1817, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 22602, 1634, 10354, 705, 14421, 62, 22602, 1634, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 8625, 1817, 10354, 705, 9806, 62, 8625, 1817, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1084, 62, 8625, 1817, 10354, 705, 1084, 62, 8625, 1817, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16793, 62, 8625, 1817, 10354, 705, 16793, 62, 8625, 1817, 6, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1459, 62, 8625, 1817, 28, 14202, 11, 1459, 62, 22602, 1634, 28, 14202, 11, 3509, 62, 8625, 1817, 28, 14202, 11, 949, 62, 8625, 1817, 28, 14202, 11, 2496, 62, 8625, 1817, 28, 14202, 11, 1957, 62, 85, 945, 62, 11250, 3924, 28, 14202, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7676, 12938, 16541, 17500, 4272, 12360, 532, 257, 2746, 5447, 287, 4946, 17614, 37811, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1957, 62, 85, 945, 62, 11250, 3924, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 85, 945, 62, 11250, 3924, 796, 28373, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12001, 62, 85, 945, 62, 11250, 3924, 796, 1957, 62, 85, 945, 62, 11250, 3924, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14421, 62, 8625, 1817, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14421, 62, 22602, 1634, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9806, 62, 8625, 1817, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1084, 62, 8625, 1817, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 62, 8625, 1817, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15410, 3036, 20900, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 8625, 1817, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 8625, 1817, 796, 1459, 62, 8625, 1817, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 22602, 1634, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 22602, 1634, 796, 1459, 62, 22602, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 62, 8625, 1817, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 8625, 1817, 796, 3509, 62, 8625, 1817, 198, 220, 220, 220, 220, 220, 220, 220, 611, 949, 62, 8625, 1817, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1084, 62, 8625, 1817, 796, 949, 62, 8625, 1817, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2496, 62, 8625, 1817, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 8625, 1817, 796, 2496, 62, 8625, 1817, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1459, 62, 8625, 1817, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1459, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 10245, 286, 262, 2139, 3058, 2491, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 1459, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 14421, 62, 8625, 1817, 628, 220, 220, 220, 2488, 14421, 62, 8625, 1817, 13, 2617, 353, 198, 220, 220, 220, 825, 1459, 62, 8625, 1817, 7, 944, 11, 1459, 62, 8625, 1817, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1459, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 10245, 286, 262, 2139, 3058, 2491, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1459, 62, 8625, 1817, 25, 383, 1459, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1459, 62, 8625, 1817, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14421, 62, 8625, 1817, 796, 1459, 62, 8625, 1817, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1459, 62, 22602, 1634, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1459, 62, 22602, 1634, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1459, 32121, 286, 262, 10245, 6, 19171, 4133, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 1459, 62, 22602, 1634, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 14421, 62, 22602, 1634, 628, 220, 220, 220, 2488, 14421, 62, 22602, 1634, 13, 2617, 353, 198, 220, 220, 220, 825, 1459, 62, 22602, 1634, 7, 944, 11, 1459, 62, 22602, 1634, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1459, 62, 22602, 1634, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1459, 32121, 286, 262, 10245, 6, 19171, 4133, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1459, 62, 22602, 1634, 25, 383, 1459, 62, 22602, 1634, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1459, 62, 22602, 1634, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14421, 62, 22602, 1634, 796, 1459, 62, 22602, 1634, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3509, 62, 8625, 1817, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 3509, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 10245, 326, 262, 44619, 9948, 263, 481, 5046, 284, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 3509, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 9806, 62, 8625, 1817, 628, 220, 220, 220, 2488, 9806, 62, 8625, 1817, 13, 2617, 353, 198, 220, 220, 220, 825, 3509, 62, 8625, 1817, 7, 944, 11, 3509, 62, 8625, 1817, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 3509, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 10245, 326, 262, 44619, 9948, 263, 481, 5046, 284, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3509, 62, 8625, 1817, 25, 383, 3509, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 3509, 62, 8625, 1817, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9806, 62, 8625, 1817, 796, 3509, 62, 8625, 1817, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 949, 62, 8625, 1817, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 949, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 1271, 286, 10245, 326, 262, 44619, 9948, 263, 481, 5046, 284, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 949, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1084, 62, 8625, 1817, 628, 220, 220, 220, 2488, 1084, 62, 8625, 1817, 13, 2617, 353, 198, 220, 220, 220, 825, 949, 62, 8625, 1817, 7, 944, 11, 949, 62, 8625, 1817, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 949, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 1271, 286, 10245, 326, 262, 44619, 9948, 263, 481, 5046, 284, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 949, 62, 8625, 1817, 25, 383, 949, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 949, 62, 8625, 1817, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1084, 62, 8625, 1817, 796, 949, 62, 8625, 1817, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2496, 62, 8625, 1817, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 2496, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 383, 44619, 9948, 263, 338, 1459, 2496, 1271, 286, 10245, 286, 428, 2139, 284, 1057, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 2496, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 62, 8625, 1817, 628, 220, 220, 220, 2488, 16793, 62, 8625, 1817, 13, 2617, 353, 198, 220, 220, 220, 825, 2496, 62, 8625, 1817, 7, 944, 11, 2496, 62, 8625, 1817, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 2496, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 44619, 9948, 263, 338, 1459, 2496, 1271, 286, 10245, 286, 428, 2139, 284, 1057, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2496, 62, 8625, 1817, 25, 383, 2496, 62, 8625, 1817, 286, 428, 24828, 16541, 17500, 4272, 12360, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2496, 62, 8625, 1817, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 62, 8625, 1817, 796, 2496, 62, 8625, 1817, 628, 220, 220, 220, 825, 284, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 2746, 6608, 355, 257, 8633, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 708, 81, 11, 4808, 287, 2237, 13, 2676, 23814, 7, 944, 13, 9654, 15042, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 651, 35226, 7, 944, 11, 708, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1351, 7, 8899, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 2124, 13, 1462, 62, 11600, 3419, 611, 468, 35226, 7, 87, 11, 366, 1462, 62, 11600, 4943, 2073, 2124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 468, 35226, 7, 8367, 11, 366, 1462, 62, 11600, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1988, 13, 1462, 62, 11600, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 8367, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 8633, 7, 8899, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2378, 25, 357, 9186, 58, 15, 4357, 2378, 58, 16, 4083, 1462, 62, 11600, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 9186, 58, 16, 4357, 366, 1462, 62, 11600, 4943, 2073, 2378, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 284, 62, 2536, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 4731, 10552, 286, 262, 2746, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 4798, 13, 79, 18982, 7, 944, 13, 1462, 62, 11600, 28955, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1890, 4600, 4798, 63, 290, 4600, 381, 22272, 63, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 2536, 3419, 628, 220, 220, 220, 825, 11593, 27363, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2081, 611, 1111, 5563, 389, 4961, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 847, 11, 24828, 16541, 17500, 4272, 12360, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 11600, 3419, 6624, 584, 13, 1462, 62, 11600, 3419, 628, 220, 220, 220, 825, 11593, 710, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2081, 611, 1111, 5563, 389, 407, 4961, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 847, 11, 24828, 16541, 17500, 4272, 12360, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 11600, 3419, 14512, 584, 13, 1462, 62, 11600, 3419, 198 ]
2.46485
3,229
#!/usr/bin/env python import numpy as np from pymvg.test.utils import _build_points_3d, make_M import os from pymvg.util import normalize from pymvg.camera_model import CameraModel DRAW=int(os.environ.get('DRAW','0')) if DRAW: import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from pymvg.plot_utils import plot_camera if __name__=='__main__': test_simple_projection() test_lookat()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 279, 4948, 45119, 13, 9288, 13, 26791, 1330, 4808, 11249, 62, 13033, 62, 18, 67, 11, 787, 62, 44, 198, 11748, 28686, 198, 198, 6738, 279, 4948, 45119, 13, 22602, 1330, 3487, 1096, 198, 6738, 279, 4948, 45119, 13, 25695, 62, 19849, 1330, 20432, 17633, 198, 198, 35, 20530, 28, 600, 7, 418, 13, 268, 2268, 13, 1136, 10786, 35, 20530, 41707, 15, 6, 4008, 198, 361, 360, 20530, 25, 198, 220, 220, 220, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 220, 220, 220, 422, 285, 489, 62, 25981, 74, 896, 13, 76, 29487, 18, 67, 1330, 12176, 274, 18, 35, 198, 220, 220, 220, 422, 279, 4948, 45119, 13, 29487, 62, 26791, 1330, 7110, 62, 25695, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 62, 36439, 62, 16302, 295, 3419, 198, 220, 220, 220, 1332, 62, 5460, 265, 3419, 198 ]
2.502924
171
name = "colored_graph"
[ 3672, 796, 366, 25717, 62, 34960, 1, 198 ]
2.875
8
import random import math from common import ( ROW_COUNT, COLUMN_COUNT, MINIMAX, MONTE_CARLO, RANDOM, RANDOM_IMPR, Observer, ) YELLOW_PLAYER = 1 RED_PLAYER = -1 PLAYERS = {1: "Yellow", -1: "Red"} class Bot(Observer): """ This class handles the different bots that were used. It includes a Random Bot, an Improved Random Bot, the MCTS bot, and the MiniMax bot. """ def __init__( self, game, bot_type=None, depth=None, iteration=None, pruning=True ): """ Constructor of the Bot class. :param game: corresponding Connect4Game instance :param bot_type: specifies the bot (MCTS, MiniMax, Random, ...) :param depth: depth used in the Minimax algorithm if the Minimax bot is used :param iteration: number of iterations used in the MCTS algorithm in case the MCTS bot is used :param pruning: boolean used for the pruning in the Minimax algorithm if the Minimax bot is used """ self._game = game # Bot type determines how the bot picks his moves self._type = bot_type if self._type == MINIMAX: self._depth = depth self._pruning = pruning elif self._type == MONTE_CARLO: self._iteration = iteration def make_move(self): """ Picks the column in which the bot should place the next disc. The considered moving options depend on the bot type. :return: the column number where the bot should play the next move """ # print(PLAYERS[self._game._turn] + " is about to play :") column = None # In case the bot type is RANDOM, the bot checks for winning moves, and if there aren't, # then picks a valid random move. if self._type == RANDOM: win_col = self.get_winning_move() if win_col is not None: column = win_col else: column = self.get_random_move() # In case the bot type is RANDOM IMPROVED, the bot checks for winning moves, and if there aren't, # then checks if there is any move that blocks a direct winning move for the opponent. # If there is no such move, it picks a valid random move. elif self._type == RANDOM_IMPR: win_col = self.get_winning_move() if win_col is not None: # print("Winning column :", win_col) column = win_col else: def_move = self.get_defensive_move() if def_move is not None: # print("Defensive column :", def_move) column = def_move else: column = self.get_random_move() # print("Random move", column) elif self._type == MINIMAX: column, minimax_score = self.minimax( self._game._board, self._depth, -math.inf, math.inf, True, self._pruning, ) # print(column) elif self._type == MONTE_CARLO: o = Node(self._game.copy_state()) column = self.monte_carlo_tree_search(self._iteration, o, 2.0) else: column = 0 # print("-------------------------") self._game.place(column) def get_winning_move(self): """ Checks whether there is a winning column available for the next move of the bot. :return: winning column """ column = None for c_win in range(self._game._cols): for r in range(self._game._rows): if self._game._board[c_win][r] == 0: self._game._board[c_win][r] = self._game._turn is_winner = self._game.check_win((c_win, r)) self._game._board[c_win][r] = 0 if is_winner: column = c_win return column break return column def get_valid_locations(self, board): """ Returns all the valid columns where the player can play, aka the columns that are not full :param board: actual state of the game, board of the game :return: list of all valid column indices """ free_cols = [] for i in range(COLUMN_COUNT): if board[i][ROW_COUNT - 1] == 0: free_cols.append(i) # print() if len(free_cols) == 0: return None return free_cols def get_random_move(self): """ Picks a valid random column where the bot can play his next move. :return: valid random column """ free_cols = self.get_valid_locations(self._game._board) column = random.choice(free_cols) return column def get_defensive_move(self): """ Checks whether the bot could play a move that blocks a direct winning move from the opponent. :return: column to be played to avoid losing immediatly """ column = None for c_win in range(self._game._cols): for r in range(self._game._rows): if self._game._board[c_win][r] == 0: self._game._board[c_win][r] = -1 * self._game._turn is_winner = self._game.check_win((c_win, r)) self._game._board[c_win][r] = 0 if is_winner: column = c_win return column break return column class Node: """ This class is used to represent nodes of the tree of boards used during Monte-Carlo Tree Search. """ def add_child(self, child_state, move): """ Add a child to the current node. :param child_state: state of the child to add :param move: move to do to get to the newly added child """ child = Node(child_state, parent=self) self.children.append(child) self.children_moves.append(move) def update(self, reward): """ Update the node's reward (indicates how good a certain node is according to the MCTS algorithm) :param reward: reward to be added to the node """ self.reward += reward self.visits += 1 def fully_explored(self): """ Checks if the node is fully explored (which means we can not add any more children to this node) :return: True of False depending on if it is fully epxlored or not """ if len(self.children) == len(self.state.get_valid_locations()): return True return False
[ 11748, 4738, 198, 11748, 10688, 198, 6738, 2219, 1330, 357, 198, 220, 220, 220, 371, 3913, 62, 34, 28270, 11, 198, 220, 220, 220, 20444, 5883, 45, 62, 34, 28270, 11, 198, 220, 220, 220, 20625, 3955, 25922, 11, 198, 220, 220, 220, 25000, 9328, 62, 20034, 21982, 11, 198, 220, 220, 220, 46920, 2662, 11, 198, 220, 220, 220, 46920, 2662, 62, 3955, 4805, 11, 198, 220, 220, 220, 27058, 11, 198, 8, 198, 198, 56, 23304, 3913, 62, 31519, 1137, 796, 352, 198, 22083, 62, 31519, 1137, 796, 532, 16, 198, 198, 31519, 4877, 796, 1391, 16, 25, 366, 39499, 1600, 532, 16, 25, 366, 7738, 20662, 628, 198, 4871, 18579, 7, 31310, 18497, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 17105, 262, 1180, 29641, 326, 547, 973, 13, 198, 220, 220, 220, 632, 3407, 257, 14534, 18579, 11, 281, 24125, 14534, 18579, 11, 262, 337, 4177, 50, 10214, 11, 198, 220, 220, 220, 290, 262, 12558, 11518, 10214, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 983, 11, 10214, 62, 4906, 28, 14202, 11, 6795, 28, 14202, 11, 24415, 28, 14202, 11, 778, 46493, 28, 17821, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 286, 262, 18579, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 983, 25, 11188, 8113, 19, 8777, 4554, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10214, 62, 4906, 25, 26052, 262, 10214, 357, 44, 4177, 50, 11, 12558, 11518, 11, 14534, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6795, 25, 6795, 973, 287, 262, 1855, 320, 897, 11862, 611, 262, 1855, 320, 897, 10214, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 24415, 25, 1271, 286, 34820, 973, 287, 262, 337, 4177, 50, 11862, 287, 1339, 262, 337, 4177, 50, 10214, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 778, 46493, 25, 25131, 973, 329, 262, 778, 46493, 287, 262, 1855, 320, 897, 11862, 611, 262, 1855, 320, 897, 10214, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 796, 983, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18579, 2099, 15947, 703, 262, 10214, 11103, 465, 6100, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4906, 796, 10214, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 4906, 6624, 20625, 3955, 25922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18053, 796, 6795, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1050, 46493, 796, 778, 46493, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 4906, 6624, 25000, 9328, 62, 20034, 21982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2676, 341, 796, 24415, 628, 220, 220, 220, 825, 787, 62, 21084, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33957, 262, 5721, 287, 543, 262, 10214, 815, 1295, 262, 1306, 1221, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3177, 3867, 3689, 4745, 319, 262, 10214, 2099, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 262, 5721, 1271, 810, 262, 10214, 815, 711, 262, 1306, 1445, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 31519, 4877, 58, 944, 13557, 6057, 13557, 15344, 60, 1343, 366, 318, 546, 284, 711, 1058, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 1339, 262, 10214, 2099, 318, 46920, 2662, 11, 262, 10214, 8794, 329, 5442, 6100, 11, 290, 611, 612, 3588, 470, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 788, 11103, 257, 4938, 4738, 1445, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 4906, 6624, 46920, 2662, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 4033, 796, 2116, 13, 1136, 62, 14463, 62, 21084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1592, 62, 4033, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 1592, 62, 4033, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 2116, 13, 1136, 62, 25120, 62, 21084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 1339, 262, 10214, 2099, 318, 46920, 2662, 8959, 41283, 1961, 11, 262, 10214, 8794, 329, 5442, 6100, 11, 290, 611, 612, 3588, 470, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 788, 8794, 611, 612, 318, 597, 1445, 326, 7021, 257, 1277, 5442, 1445, 329, 262, 6125, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 612, 318, 645, 884, 1445, 11, 340, 11103, 257, 4938, 4738, 1445, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 4906, 6624, 46920, 2662, 62, 3955, 4805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1592, 62, 4033, 796, 2116, 13, 1136, 62, 14463, 62, 21084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1592, 62, 4033, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 16643, 768, 5721, 1058, 1600, 1592, 62, 4033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 1592, 62, 4033, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 62, 21084, 796, 2116, 13, 1136, 62, 4299, 2021, 62, 21084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 825, 62, 21084, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 7469, 2021, 5721, 1058, 1600, 825, 62, 21084, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 825, 62, 21084, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 2116, 13, 1136, 62, 25120, 62, 21084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 29531, 1445, 1600, 5721, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 4906, 6624, 20625, 3955, 25922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 11, 10356, 897, 62, 26675, 796, 2116, 13, 1084, 320, 897, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 13557, 3526, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11018, 13, 10745, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10688, 13, 10745, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1050, 46493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 28665, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 4906, 6624, 25000, 9328, 62, 20034, 21982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 796, 19081, 7, 944, 13557, 6057, 13, 30073, 62, 5219, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 2116, 13, 2144, 660, 62, 7718, 5439, 62, 21048, 62, 12947, 7, 944, 13557, 2676, 341, 11, 267, 11, 362, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 22369, 12, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 13, 5372, 7, 28665, 8, 628, 220, 220, 220, 825, 651, 62, 14463, 62, 21084, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 1771, 612, 318, 257, 5442, 5721, 1695, 329, 262, 1306, 198, 220, 220, 220, 220, 220, 220, 220, 1445, 286, 262, 10214, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 5442, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 62, 5404, 287, 2837, 7, 944, 13557, 6057, 13557, 4033, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 374, 287, 2837, 7, 944, 13557, 6057, 13557, 8516, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 6057, 13557, 3526, 58, 66, 62, 5404, 7131, 81, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 13557, 3526, 58, 66, 62, 5404, 7131, 81, 60, 796, 2116, 13557, 6057, 13557, 15344, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 39791, 796, 2116, 13557, 6057, 13, 9122, 62, 5404, 19510, 66, 62, 5404, 11, 374, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 13557, 3526, 58, 66, 62, 5404, 7131, 81, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 39791, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 269, 62, 5404, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5721, 628, 220, 220, 220, 825, 651, 62, 12102, 62, 17946, 602, 7, 944, 11, 3096, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 477, 262, 4938, 15180, 810, 262, 2137, 460, 711, 11, 22430, 262, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 326, 389, 407, 1336, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3096, 25, 4036, 1181, 286, 262, 983, 11, 3096, 286, 262, 983, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 286, 477, 4938, 5721, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 62, 4033, 82, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 25154, 5883, 45, 62, 34, 28270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3096, 58, 72, 7131, 49, 3913, 62, 34, 28270, 532, 352, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1479, 62, 4033, 82, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 5787, 62, 4033, 82, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1479, 62, 4033, 82, 628, 220, 220, 220, 825, 651, 62, 25120, 62, 21084, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33957, 257, 4938, 4738, 5721, 810, 262, 10214, 460, 711, 465, 1306, 1445, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 4938, 4738, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1479, 62, 4033, 82, 796, 2116, 13, 1136, 62, 12102, 62, 17946, 602, 7, 944, 13557, 6057, 13557, 3526, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 4738, 13, 25541, 7, 5787, 62, 4033, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5721, 628, 220, 220, 220, 825, 651, 62, 4299, 2021, 62, 21084, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 1771, 262, 10214, 714, 711, 257, 1445, 326, 7021, 257, 1277, 5442, 198, 220, 220, 220, 220, 220, 220, 220, 1445, 422, 262, 6125, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 5721, 284, 307, 2826, 284, 3368, 6078, 2729, 265, 306, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 62, 5404, 287, 2837, 7, 944, 13557, 6057, 13557, 4033, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 374, 287, 2837, 7, 944, 13557, 6057, 13557, 8516, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 6057, 13557, 3526, 58, 66, 62, 5404, 7131, 81, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 13557, 3526, 58, 66, 62, 5404, 7131, 81, 60, 796, 532, 16, 1635, 2116, 13557, 6057, 13557, 15344, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 39791, 796, 2116, 13557, 6057, 13, 9122, 62, 5404, 19510, 66, 62, 5404, 11, 374, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 13557, 3526, 58, 66, 62, 5404, 7131, 81, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 39791, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 796, 269, 62, 5404, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5721, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5721, 628, 198, 4871, 19081, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 318, 973, 284, 2380, 13760, 286, 262, 5509, 286, 11490, 973, 1141, 198, 220, 220, 220, 22489, 12, 9914, 5439, 12200, 11140, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 751, 62, 9410, 7, 944, 11, 1200, 62, 5219, 11, 1445, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 257, 1200, 284, 262, 1459, 10139, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1200, 62, 5219, 25, 1181, 286, 262, 1200, 284, 751, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1445, 25, 1445, 284, 466, 284, 651, 284, 262, 8308, 2087, 1200, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 796, 19081, 7, 9410, 62, 5219, 11, 2560, 28, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17197, 13, 33295, 7, 9410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17197, 62, 76, 5241, 13, 33295, 7, 21084, 8, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 6721, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10133, 262, 10139, 338, 6721, 357, 521, 16856, 703, 922, 257, 1728, 10139, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1864, 284, 262, 337, 4177, 50, 11862, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6721, 25, 6721, 284, 307, 2087, 284, 262, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 904, 15853, 6721, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4703, 896, 15853, 352, 628, 220, 220, 220, 825, 3938, 62, 20676, 1850, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 611, 262, 10139, 318, 3938, 18782, 357, 4758, 1724, 356, 460, 407, 751, 198, 220, 220, 220, 220, 220, 220, 220, 597, 517, 1751, 284, 428, 10139, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6407, 286, 10352, 6906, 319, 611, 340, 318, 3938, 2462, 87, 75, 1850, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 944, 13, 17197, 8, 6624, 18896, 7, 944, 13, 5219, 13, 1136, 62, 12102, 62, 17946, 602, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198 ]
2.143263
3,169
from revoscalepy import rx_lin_mod, rx_serialize_model, rx_summary import pandas as pd import pyodbc import os conn_str = 'Driver=SQL Server;Server=<Server Name>;Database=MLDB;Uid=<User Name>;Pwd=<Password>;' cnxn = pyodbc.connect(conn_str) cnxn.setencoding("utf-8") inputsql = 'select "RentalCount", "Year", "Month", "Day", "WeekDay", "Snow", "Holiday", "FWeekDay" from dbo.rental_data where Year < 2015' rental_train_data = pd.read_sql(inputsql, cnxn) rental_train_data["Holiday"] = rental_train_data["Holiday"].astype("category") rental_train_data["Snow"] = rental_train_data["Snow"].astype("category") rental_train_data["WeekDay"] = rental_train_data["WeekDay"].astype("category") linmod_model = rx_lin_mod("RentalCount ~ Month + Day + WeekDay + Snow + Holiday", data = rental_train_data) trained_model = rx_serialize_model(linmod_model, realtime_scoring_only = True) print(rx_summary("RentalCount ~ Month + Day + WeekDay + Snow + Holiday", rental_train_data)) # Dump learned model to file with open(r'c:\model\trained_model.pickle', mode='wb') as f: f.write(trained_model) # Dump learned model to Table cursor=cnxn.cursor() cursor.execute(\ ''' MERGE rental_models AS target USING (SELECT ? as model_name) AS source ON(target.model_name = source.model_name) WHEN MATCHED THEN UPDATE SET native_model = ? WHEN NOT MATCHED BY TARGET THEN INSERT (model_name, lang, native_model) VALUES(?,?,?); ''', \ ("linear_model", trained_model, "linear_model", "Python", trained_model)) cnxn.commit()
[ 6738, 2710, 418, 9948, 538, 88, 1330, 374, 87, 62, 2815, 62, 4666, 11, 374, 87, 62, 46911, 1096, 62, 19849, 11, 374, 87, 62, 49736, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 12972, 375, 15630, 198, 11748, 28686, 198, 198, 37043, 62, 2536, 796, 705, 32103, 28, 17861, 9652, 26, 10697, 28, 27, 10697, 6530, 29, 26, 38105, 28, 5805, 11012, 26, 52, 312, 28, 27, 12982, 6530, 29, 26, 47, 16993, 28, 27, 35215, 29, 26, 6, 198, 31522, 87, 77, 796, 12972, 375, 15630, 13, 8443, 7, 37043, 62, 2536, 8, 198, 31522, 87, 77, 13, 2617, 12685, 7656, 7203, 40477, 12, 23, 4943, 198, 15414, 25410, 796, 705, 19738, 366, 49, 2470, 12332, 1600, 366, 17688, 1600, 366, 31948, 1600, 366, 12393, 1600, 366, 20916, 12393, 1600, 366, 28974, 1600, 366, 28115, 2567, 1600, 366, 37, 20916, 12393, 1, 422, 288, 2127, 13, 1156, 282, 62, 7890, 810, 6280, 1279, 1853, 6, 198, 1156, 282, 62, 27432, 62, 7890, 796, 279, 67, 13, 961, 62, 25410, 7, 15414, 25410, 11, 269, 77, 87, 77, 8, 198, 198, 1156, 282, 62, 27432, 62, 7890, 14692, 28115, 2567, 8973, 796, 14447, 62, 27432, 62, 7890, 14692, 28115, 2567, 1, 4083, 459, 2981, 7203, 22872, 4943, 198, 1156, 282, 62, 27432, 62, 7890, 14692, 28974, 8973, 796, 14447, 62, 27432, 62, 7890, 14692, 28974, 1, 4083, 459, 2981, 7203, 22872, 4943, 198, 1156, 282, 62, 27432, 62, 7890, 14692, 20916, 12393, 8973, 796, 14447, 62, 27432, 62, 7890, 14692, 20916, 12393, 1, 4083, 459, 2981, 7203, 22872, 4943, 198, 198, 2815, 4666, 62, 19849, 796, 374, 87, 62, 2815, 62, 4666, 7203, 49, 2470, 12332, 5299, 16061, 1343, 3596, 1343, 6119, 12393, 1343, 7967, 1343, 22770, 1600, 1366, 796, 14447, 62, 27432, 62, 7890, 8, 198, 35311, 62, 19849, 796, 374, 87, 62, 46911, 1096, 62, 19849, 7, 2815, 4666, 62, 19849, 11, 1103, 2435, 62, 46536, 62, 8807, 796, 6407, 8, 198, 198, 4798, 7, 40914, 62, 49736, 7203, 49, 2470, 12332, 5299, 16061, 1343, 3596, 1343, 6119, 12393, 1343, 7967, 1343, 22770, 1600, 14447, 62, 27432, 62, 7890, 4008, 198, 198, 2, 360, 931, 4499, 2746, 284, 2393, 198, 4480, 1280, 7, 81, 6, 66, 7479, 19849, 59, 35311, 62, 19849, 13, 27729, 293, 3256, 4235, 11639, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7, 35311, 62, 19849, 8, 198, 198, 2, 360, 931, 4499, 2746, 284, 8655, 198, 66, 21471, 28, 31522, 87, 77, 13, 66, 21471, 3419, 198, 66, 21471, 13, 41049, 38016, 198, 7061, 6, 198, 29296, 8264, 14447, 62, 27530, 7054, 2496, 198, 2937, 2751, 357, 46506, 5633, 355, 2746, 62, 3672, 8, 7054, 2723, 198, 1340, 7, 16793, 13, 19849, 62, 3672, 796, 2723, 13, 19849, 62, 3672, 8, 198, 12418, 1677, 337, 11417, 1961, 42243, 35717, 25823, 6868, 62, 19849, 796, 5633, 198, 12418, 1677, 5626, 337, 11417, 1961, 11050, 309, 46095, 42243, 29194, 17395, 357, 19849, 62, 3672, 11, 42392, 11, 6868, 62, 19849, 8, 26173, 35409, 7, 21747, 21747, 30, 1776, 198, 7061, 3256, 3467, 198, 7203, 29127, 62, 19849, 1600, 8776, 62, 19849, 11, 366, 29127, 62, 19849, 1600, 366, 37906, 1600, 8776, 62, 19849, 4008, 198, 31522, 87, 77, 13, 41509, 3419, 198 ]
2.764273
543
import numpy as np def uniform_grid(n_centers, low, high): """ This function is used to create the parameters of uniformly spaced radial basis functions with 25% of overlap. It creates a uniformly spaced grid of ``n_centers[i]`` points in each ``ranges[i]``. Also returns a vector containing the appropriate scales of the radial basis functions. Args: n_centers (list): number of centers of each dimension; low (np.ndarray): lowest value for each dimension; high (np.ndarray): highest value for each dimension. Returns: The uniformly spaced grid and the scale vector. """ n_features = len(low) b = np.zeros(n_features) c = list() tot_points = 1 for i, n in enumerate(n_centers): start = low[i] end = high[i] b[i] = (end - start) ** 2 / n ** 3 m = abs(start - end) / n if n == 1: c_i = (start + end) / 2. c.append(np.array([c_i])) else: c_i = np.linspace(start - m * .1, end + m * .1, n) c.append(c_i) tot_points *= n n_rows = 1 n_cols = 0 grid = np.zeros((tot_points, n_features)) for discrete_values in c: i1 = 0 dim = len(discrete_values) for i in range(dim): for r in range(n_rows): idx_r = r + i * n_rows for c in range(n_cols): grid[idx_r, c] = grid[r, c] grid[idx_r, n_cols] = discrete_values[i1] i1 += 1 n_cols += 1 n_rows *= len(discrete_values) return grid, b
[ 11748, 299, 32152, 355, 45941, 628, 198, 4299, 8187, 62, 25928, 7, 77, 62, 1087, 364, 11, 1877, 11, 1029, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 318, 973, 284, 2251, 262, 10007, 286, 42096, 38980, 44503, 198, 220, 220, 220, 4308, 5499, 351, 1679, 4, 286, 21721, 13, 632, 8075, 257, 42096, 38980, 10706, 286, 198, 220, 220, 220, 7559, 77, 62, 1087, 364, 58, 72, 60, 15506, 2173, 287, 1123, 7559, 81, 6231, 58, 72, 60, 15506, 13, 4418, 5860, 257, 15879, 198, 220, 220, 220, 7268, 262, 5035, 16252, 286, 262, 44503, 4308, 5499, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 1087, 364, 357, 4868, 2599, 1271, 286, 10399, 286, 1123, 15793, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1877, 357, 37659, 13, 358, 18747, 2599, 9016, 1988, 329, 1123, 15793, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 357, 37659, 13, 358, 18747, 2599, 4511, 1988, 329, 1123, 15793, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 42096, 38980, 10706, 290, 262, 5046, 15879, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 62, 40890, 796, 18896, 7, 9319, 8, 198, 220, 220, 220, 275, 796, 45941, 13, 9107, 418, 7, 77, 62, 40890, 8, 198, 220, 220, 220, 269, 796, 1351, 3419, 198, 220, 220, 220, 2006, 62, 13033, 796, 352, 198, 220, 220, 220, 329, 1312, 11, 299, 287, 27056, 378, 7, 77, 62, 1087, 364, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 1877, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 1029, 58, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 275, 58, 72, 60, 796, 357, 437, 532, 923, 8, 12429, 362, 1220, 299, 12429, 513, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 2352, 7, 9688, 532, 886, 8, 1220, 299, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 62, 72, 796, 357, 9688, 1343, 886, 8, 1220, 362, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 33295, 7, 37659, 13, 18747, 26933, 66, 62, 72, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 62, 72, 796, 45941, 13, 21602, 10223, 7, 9688, 532, 285, 1635, 764, 16, 11, 886, 1343, 285, 1635, 764, 16, 11, 299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 33295, 7, 66, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2006, 62, 13033, 1635, 28, 299, 628, 220, 220, 220, 299, 62, 8516, 796, 352, 198, 220, 220, 220, 299, 62, 4033, 82, 796, 657, 628, 220, 220, 220, 10706, 796, 45941, 13, 9107, 418, 19510, 83, 313, 62, 13033, 11, 299, 62, 40890, 4008, 628, 220, 220, 220, 329, 28810, 62, 27160, 287, 269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 16, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 796, 18896, 7, 15410, 8374, 62, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 27740, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 374, 287, 2837, 7, 77, 62, 8516, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 81, 796, 374, 1343, 1312, 1635, 299, 62, 8516, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 2837, 7, 77, 62, 4033, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 312, 87, 62, 81, 11, 269, 60, 796, 10706, 58, 81, 11, 269, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 312, 87, 62, 81, 11, 299, 62, 4033, 82, 60, 796, 28810, 62, 27160, 58, 72, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 16, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 299, 62, 4033, 82, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 8516, 1635, 28, 18896, 7, 15410, 8374, 62, 27160, 8, 628, 220, 220, 220, 1441, 10706, 11, 275, 198 ]
2.086008
779
from PyQt5.QtChart import * import PyQt5.QtCore as QtCore import PyQt5.QtGui as QtGui import PyQt5.QtWidgets as QtWidgets import config import nav import yfinance as yf
[ 6738, 9485, 48, 83, 20, 13, 48, 83, 45488, 1330, 1635, 198, 11748, 9485, 48, 83, 20, 13, 48, 83, 14055, 355, 33734, 14055, 198, 11748, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 355, 33734, 8205, 72, 198, 11748, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 355, 33734, 54, 312, 11407, 198, 198, 11748, 4566, 198, 11748, 6812, 198, 11748, 331, 69, 14149, 355, 331, 69, 628, 628, 628, 628, 628, 628, 628, 198 ]
2.329114
79
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Maximum flow by Dinic # jill-jênn vie et christoph dürr - 2015-2018 from collections import deque from sys import setrecursionlimit from tryalgo.graph import add_reverse_arcs setrecursionlimit(5010) # necessary for big graphs # snip{ def dinic(graph, capacity, source, target): """Maximum flow by Dinic :param graph: directed graph in listlist or listdict format :param capacity: in matrix format or same listdict graph :param int source: vertex :param int target: vertex :returns: skew symmetric flow matrix, flow value :complexity: :math:`O(|V|^2 |E|)` """ assert source != target add_reverse_arcs(graph, capacity) Q = deque() total = 0 n = len(graph) flow = [[0] * n for u in range(n)] # flow initially empty while True: # repeat while we can increase Q.appendleft(source) lev = [None] * n # build levels, None = inaccessible lev[source] = 0 # by BFS while Q: u = Q.pop() for v in graph[u]: if lev[v] is None and capacity[u][v] > flow[u][v]: lev[v] = lev[u] + 1 Q.appendleft(v) if lev[target] is None: # stop if sink is not reachable return flow, total up_bound = sum(capacity[source][v] for v in graph[source]) - total total += _dinic_step(graph, capacity, lev, flow, source, target, up_bound) def _dinic_step(graph, capacity, lev, flow, u, target, limit): """ tenter de pousser le plus de flot de u à target, sans dépasser limit """ if limit <= 0: return 0 if u == target: return limit val = 0 for v in graph[u]: residual = capacity[u][v] - flow[u][v] if lev[v] == lev[u] + 1 and residual > 0: z = min(limit, residual) aug = _dinic_step(graph, capacity, lev, flow, v, target, z) flow[u][v] += aug flow[v][u] -= aug val += aug limit -= aug if val == 0: lev[u] = None # remove unreachable node return val # snip}
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 22246, 5202, 416, 23448, 291, 198, 2, 474, 359, 12, 73, 25792, 20471, 410, 494, 2123, 33826, 2522, 288, 9116, 21062, 532, 1853, 12, 7908, 628, 198, 6738, 17268, 1330, 390, 4188, 198, 6738, 25064, 1330, 900, 8344, 24197, 32374, 198, 6738, 1949, 282, 2188, 13, 34960, 1330, 751, 62, 50188, 62, 5605, 82, 628, 198, 2617, 8344, 24197, 32374, 7, 20, 20943, 8, 220, 1303, 3306, 329, 1263, 28770, 628, 198, 2, 3013, 541, 90, 198, 4299, 16278, 291, 7, 34960, 11, 5339, 11, 2723, 11, 2496, 2599, 198, 220, 220, 220, 37227, 40541, 5202, 416, 23448, 291, 628, 220, 220, 220, 1058, 17143, 4823, 25, 7924, 4823, 287, 1351, 4868, 393, 1351, 11600, 5794, 198, 220, 220, 220, 1058, 17143, 5339, 25, 287, 17593, 5794, 393, 976, 1351, 11600, 4823, 198, 220, 220, 220, 1058, 17143, 493, 2723, 25, 37423, 198, 220, 220, 220, 1058, 17143, 493, 2496, 25, 37423, 198, 220, 220, 220, 1058, 7783, 82, 25, 43370, 23606, 19482, 5202, 17593, 11, 5202, 1988, 198, 220, 220, 220, 1058, 41887, 414, 25, 1058, 11018, 25, 63, 46, 7, 91, 53, 91, 61, 17, 930, 36, 91, 8, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 2723, 14512, 2496, 198, 220, 220, 220, 751, 62, 50188, 62, 5605, 82, 7, 34960, 11, 5339, 8, 198, 220, 220, 220, 1195, 796, 390, 4188, 3419, 198, 220, 220, 220, 2472, 796, 657, 198, 220, 220, 220, 299, 796, 18896, 7, 34960, 8, 198, 220, 220, 220, 5202, 796, 16410, 15, 60, 1635, 299, 329, 334, 287, 2837, 7, 77, 15437, 220, 220, 1303, 5202, 7317, 6565, 198, 220, 220, 220, 981, 6407, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9585, 981, 356, 460, 2620, 198, 220, 220, 220, 220, 220, 220, 220, 1195, 13, 33295, 9464, 7, 10459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 23145, 796, 685, 14202, 60, 1635, 299, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1382, 2974, 11, 6045, 796, 40604, 198, 220, 220, 220, 220, 220, 220, 220, 23145, 58, 10459, 60, 796, 657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 416, 347, 10652, 198, 220, 220, 220, 220, 220, 220, 220, 981, 1195, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 796, 1195, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 4823, 58, 84, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 23145, 58, 85, 60, 318, 6045, 290, 5339, 58, 84, 7131, 85, 60, 1875, 5202, 58, 84, 7131, 85, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23145, 58, 85, 60, 796, 23145, 58, 84, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1195, 13, 33295, 9464, 7, 85, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 23145, 58, 16793, 60, 318, 6045, 25, 220, 220, 1303, 2245, 611, 14595, 318, 407, 3151, 540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5202, 11, 2472, 198, 220, 220, 220, 220, 220, 220, 220, 510, 62, 7784, 796, 2160, 7, 42404, 58, 10459, 7131, 85, 60, 329, 410, 287, 4823, 58, 10459, 12962, 532, 2472, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 15853, 4808, 25194, 291, 62, 9662, 7, 34960, 11, 5339, 11, 23145, 11, 5202, 11, 2723, 11, 2496, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 62, 7784, 8, 628, 198, 4299, 4808, 25194, 291, 62, 9662, 7, 34960, 11, 5339, 11, 23145, 11, 5202, 11, 334, 11, 2496, 11, 4179, 2599, 198, 220, 220, 220, 37227, 256, 9255, 390, 279, 516, 2655, 443, 5556, 390, 781, 313, 390, 334, 28141, 2496, 11, 38078, 39073, 6603, 263, 4179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4179, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 611, 334, 6624, 2496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4179, 198, 220, 220, 220, 1188, 796, 657, 198, 220, 220, 220, 329, 410, 287, 4823, 58, 84, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 29598, 796, 5339, 58, 84, 7131, 85, 60, 532, 5202, 58, 84, 7131, 85, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 23145, 58, 85, 60, 6624, 23145, 58, 84, 60, 1343, 352, 290, 29598, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 796, 949, 7, 32374, 11, 29598, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16339, 796, 4808, 25194, 291, 62, 9662, 7, 34960, 11, 5339, 11, 23145, 11, 5202, 11, 410, 11, 2496, 11, 1976, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5202, 58, 84, 7131, 85, 60, 15853, 16339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5202, 58, 85, 7131, 84, 60, 48185, 16339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 15853, 16339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4179, 48185, 16339, 198, 220, 220, 220, 611, 1188, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23145, 58, 84, 60, 796, 6045, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4781, 14880, 34446, 10139, 198, 220, 220, 220, 1441, 1188, 198, 2, 3013, 541, 92, 198 ]
2.195025
1,005
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM). Adapted from `examples/text-classification/run_glue.py`""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np from datasets import load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.20.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ max_seq_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=True, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) server_ip: Optional[str] = field(default=None, metadata={"help": "For distant debugging."}) server_port: Optional[str] = field(default=None, metadata={"help": "For distant debugging."}) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) language: str = field( default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) train_language: Optional[str] = field( default=None, metadata={"help": "Train language if it is different from the evaluation language."} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) do_lower_case: Optional[bool] = field( default=False, metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." ) }, ) ignore_mismatched_sizes: bool = field( default=False, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 2864, 383, 3012, 9552, 15417, 4816, 46665, 290, 383, 12905, 2667, 32388, 3457, 13, 1074, 13, 198, 2, 15069, 357, 66, 8, 2864, 11, 15127, 23929, 44680, 6234, 13, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 4463, 316, 46493, 5021, 12, 1359, 723, 4981, 319, 1395, 45, 31271, 357, 68, 13, 70, 13, 22108, 11, 4307, 346, 13246, 51, 11, 16276, 44, 737, 198, 220, 220, 220, 30019, 276, 422, 4600, 1069, 12629, 14, 5239, 12, 4871, 2649, 14, 5143, 62, 4743, 518, 13, 9078, 63, 37811, 198, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 25064, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 6738, 19720, 1330, 32233, 198, 198, 11748, 40522, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 40522, 1330, 3440, 62, 19608, 292, 316, 11, 3440, 62, 4164, 1173, 198, 198, 11748, 6121, 364, 198, 6738, 6121, 364, 1330, 357, 198, 220, 220, 220, 11160, 16934, 11, 198, 220, 220, 220, 11160, 17633, 1890, 44015, 594, 9487, 2649, 11, 198, 220, 220, 220, 11160, 30642, 7509, 11, 198, 220, 220, 220, 6060, 22667, 1352, 3152, 47, 26872, 11, 198, 220, 220, 220, 26439, 39156, 2867, 11, 198, 220, 220, 220, 367, 69, 28100, 1713, 46677, 11, 198, 220, 220, 220, 31924, 11, 198, 220, 220, 220, 13614, 28100, 2886, 11, 198, 220, 220, 220, 4277, 62, 7890, 62, 26000, 1352, 11, 198, 220, 220, 220, 900, 62, 28826, 11, 198, 8, 198, 6738, 6121, 364, 13, 2213, 10613, 62, 26791, 1330, 651, 62, 12957, 62, 9122, 4122, 198, 6738, 6121, 364, 13, 26791, 1330, 2198, 62, 1084, 62, 9641, 198, 6738, 6121, 364, 13, 26791, 13, 47178, 1330, 2421, 62, 9641, 628, 198, 2, 2561, 4049, 611, 262, 10926, 2196, 286, 39185, 318, 407, 6589, 13, 17220, 379, 534, 898, 7476, 13, 198, 9122, 62, 1084, 62, 9641, 7203, 19, 13, 1238, 13, 15, 13, 7959, 15, 4943, 198, 198, 46115, 62, 9641, 7203, 19608, 292, 1039, 29, 28, 16, 13, 23, 13, 15, 1600, 366, 2514, 4259, 25, 7347, 2721, 532, 81, 6096, 14, 9078, 13165, 354, 14, 5239, 12, 4871, 2649, 14, 8897, 18883, 13, 14116, 4943, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 31, 19608, 330, 31172, 198, 4871, 6060, 44357, 28100, 2886, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20559, 2886, 27113, 284, 644, 1366, 356, 389, 1016, 284, 5128, 674, 2746, 329, 3047, 290, 5418, 13, 628, 220, 220, 220, 8554, 4600, 39, 69, 28100, 1713, 46677, 63, 356, 460, 1210, 428, 1398, 198, 220, 220, 220, 656, 1822, 29572, 7159, 284, 307, 1498, 284, 11986, 606, 319, 198, 220, 220, 220, 262, 3141, 1627, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3509, 62, 41068, 62, 13664, 25, 32233, 58, 600, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 12762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16794, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 464, 5415, 2472, 5128, 8379, 4129, 706, 11241, 1634, 13, 24604, 3007, 2392, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14813, 428, 481, 307, 40122, 515, 11, 16311, 12238, 481, 307, 44582, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 49312, 62, 23870, 25, 20512, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 20150, 28, 4895, 16794, 1298, 366, 5886, 13564, 262, 39986, 662, 14681, 276, 40522, 393, 407, 526, 92, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 14841, 62, 1462, 62, 9806, 62, 13664, 25, 20512, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16794, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15354, 284, 14841, 477, 8405, 284, 4600, 9806, 62, 41068, 62, 13664, 44646, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1532, 10352, 11, 481, 14841, 262, 8405, 32366, 618, 15458, 278, 284, 262, 5415, 4129, 287, 262, 15458, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3509, 62, 27432, 62, 82, 12629, 25, 32233, 58, 600, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16794, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1890, 28769, 4959, 393, 20061, 3047, 11, 40122, 378, 262, 1271, 286, 3047, 6096, 284, 428, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 611, 900, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3509, 62, 18206, 62, 82, 12629, 25, 32233, 58, 600, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16794, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1890, 28769, 4959, 393, 20061, 3047, 11, 40122, 378, 262, 1271, 286, 12660, 6096, 284, 428, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 611, 900, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3509, 62, 79, 17407, 62, 82, 12629, 25, 32233, 58, 600, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16794, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1890, 28769, 4959, 393, 20061, 3047, 11, 40122, 378, 262, 1271, 286, 17724, 6096, 284, 428, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 611, 900, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4382, 62, 541, 25, 32233, 58, 2536, 60, 796, 2214, 7, 12286, 28, 14202, 11, 20150, 28, 4895, 16794, 1298, 366, 1890, 12899, 28769, 526, 30072, 198, 220, 220, 220, 4382, 62, 634, 25, 32233, 58, 2536, 60, 796, 2214, 7, 12286, 28, 14202, 11, 20150, 28, 4895, 16794, 1298, 366, 1890, 12899, 28769, 526, 30072, 628, 198, 31, 19608, 330, 31172, 198, 4871, 9104, 28100, 2886, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20559, 2886, 27113, 284, 543, 2746, 14, 11250, 14, 30001, 7509, 356, 389, 1016, 284, 3734, 12, 83, 1726, 422, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2746, 62, 3672, 62, 273, 62, 6978, 25, 965, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 20150, 28, 4895, 16794, 1298, 366, 15235, 284, 2181, 13363, 2746, 393, 2746, 27421, 422, 46292, 2550, 13, 1073, 14, 27530, 20662, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3303, 25, 965, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 20150, 28, 4895, 16794, 1298, 366, 36, 2100, 2288, 3303, 13, 4418, 4512, 3303, 611, 4600, 27432, 62, 16129, 63, 318, 900, 284, 6045, 526, 92, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4512, 62, 16129, 25, 32233, 58, 2536, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 20150, 28, 4895, 16794, 1298, 366, 44077, 3303, 611, 340, 318, 1180, 422, 262, 12660, 3303, 526, 92, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4566, 62, 3672, 25, 32233, 58, 2536, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 20150, 28, 4895, 16794, 1298, 366, 47, 1186, 13363, 4566, 1438, 393, 3108, 611, 407, 262, 976, 355, 2746, 62, 3672, 20662, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 11241, 7509, 62, 3672, 25, 32233, 58, 2536, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 20150, 28, 4895, 16794, 1298, 366, 47, 1186, 13363, 11241, 7509, 1438, 393, 3108, 611, 407, 262, 976, 355, 2746, 62, 3672, 20662, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 12940, 62, 15908, 25, 32233, 58, 2536, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 366, 8496, 466, 345, 765, 284, 3650, 262, 2181, 13363, 4981, 15680, 422, 46292, 2550, 13, 1073, 25719, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 466, 62, 21037, 62, 7442, 25, 32233, 58, 30388, 60, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 366, 853, 284, 7603, 611, 11241, 7509, 815, 466, 2793, 1339, 287, 11160, 30642, 7509, 13, 6738, 62, 5310, 13363, 3419, 25719, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 779, 62, 7217, 62, 30001, 7509, 25, 20512, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 366, 15354, 284, 779, 530, 286, 262, 3049, 11241, 7509, 357, 17078, 416, 262, 11241, 11341, 5888, 8, 393, 407, 526, 5512, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2746, 62, 260, 10178, 25, 965, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 12417, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 366, 464, 2176, 2746, 2196, 284, 779, 357, 5171, 307, 257, 8478, 1438, 11, 7621, 1438, 393, 4589, 4686, 21387, 5512, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 779, 62, 18439, 62, 30001, 25, 20512, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16794, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8743, 779, 262, 11241, 7560, 618, 2491, 4600, 35636, 364, 12, 44506, 17594, 63, 357, 49986, 284, 779, 428, 4226, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4480, 2839, 4981, 21387, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 8856, 62, 76, 1042, 14265, 62, 82, 4340, 25, 20512, 796, 2214, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 28, 4895, 16794, 1298, 366, 8743, 7139, 284, 3440, 257, 2181, 13363, 2746, 3025, 1182, 15225, 389, 1180, 526, 5512, 198, 220, 220, 220, 1267, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.698029
2,232
from swsscommon import swsscommon import time import re import json
[ 6738, 1509, 824, 11321, 1330, 1509, 824, 11321, 198, 11748, 640, 198, 11748, 302, 198, 11748, 33918, 198 ]
3.777778
18
# ***************************************************************** # Copyright 2015 MIT Lincoln Laboratory # Project: SPAR # Authors: JCH # Description: Various classes to inform user of progress # # Modifications: # Date Name Modification # ---- ---- ------------ # 19 Oct 2012 jch Original file # ***************************************************************** """ This module holds various progress-informers: classes which will keep track of various forms of progress (file-processing, row-generating, etc) and keep the user appropriately informed of progress. """ import os import sys this_dir = os.path.dirname(os.path.abspath(__file__)) base_dir = os.path.join(this_dir, '..', '..') sys.path.append(base_dir) import datetime
[ 2, 41906, 17174, 9, 198, 2, 220, 15069, 1853, 17168, 12406, 18643, 220, 220, 198, 2, 220, 4935, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6226, 1503, 198, 2, 220, 46665, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 449, 3398, 198, 2, 220, 12489, 25, 220, 220, 220, 220, 220, 220, 220, 26386, 6097, 284, 4175, 2836, 286, 4371, 198, 2, 220, 198, 2, 220, 3401, 6637, 25, 198, 2, 220, 7536, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3401, 2649, 198, 2, 220, 13498, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13498, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10541, 198, 2, 220, 678, 2556, 2321, 220, 474, 354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13745, 2393, 198, 2, 41906, 17174, 9, 198, 198, 37811, 198, 1212, 8265, 6622, 2972, 4371, 12, 259, 687, 364, 25, 6097, 543, 481, 1394, 2610, 198, 1659, 2972, 5107, 286, 4371, 357, 7753, 12, 36948, 11, 5752, 12, 8612, 803, 11, 3503, 8, 290, 198, 14894, 262, 2836, 20431, 7981, 286, 4371, 13, 198, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 5661, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 8692, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 5661, 62, 15908, 11, 705, 492, 3256, 705, 492, 11537, 198, 17597, 13, 6978, 13, 33295, 7, 8692, 62, 15908, 8, 198, 198, 11748, 4818, 8079, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 198 ]
2.834437
302
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Models for next-sentence prediction task on ROCStories. """ import collections from absl import logging import gin import gin.tf import tensorflow.compat.v2 as tf gfile = tf.io.gfile @gin.configurable class LinearModel(tf.keras.Model): """Multi-layer perceptron with embedding matrix at end.""" def __init__( self, num_input_sentences=None, embedding_matrix=None, embedding_dim=None): """Creates a small MLP, then multiplies outputs by embedding matrix. Either an embedding matrix or an embedding dimension should be specified. If the former, predictions are made by multiplying the NN outputs by this embedding matrix. If only an embedding dimension is provided, call() outputs an embedding, but no predictions. Args: num_input_sentences: Integer number of input sentences. embedding_matrix: Matrix of size [embedding_dim * num_last_ouputs] embedding_dim: Matrix of size [embedding_dim * num_last_ouputs] """ super(LinearModel, self).__init__() assert (embedding_matrix is None) ^ (embedding_dim is None) self._loss_object = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True) self._num_input_sentences = num_input_sentences self.embedding_matrix = embedding_matrix if self.embedding_matrix is not None: self._embedding_dim = self.embedding_matrix.shape[1] else: self._embedding_dim = embedding_dim x_input, x_output = self._build_network() super(LinearModel, self).__init__( inputs=x_input, outputs=x_output, name='model') @gin.configurable('LinearModel.hparams') def _build_network(self, relu_layers=(2048, 1024), dropout_amount=0.5, normalize_embeddings=False, final_dropout=True, small_context_loss_weight=0.0, max_num_distractors=-1): """Builds the network. Args: relu_layers: Dimensions of linear+RELU layers to add to MLP. These do not need to include the final projection down to embedding_dim. dropout_amount: If training, how much dropout to use in each layer. normalize_embeddings: If True, normalize sentence embeddings (both input and predicted) to mean 0, unit variance. final_dropout: If True, adds dropout to the final embedding layer. small_context_loss_weight: If >0, in addition to the loss with many distractors, add another loss where the only distractors are the sentences of the context. max_num_distractors: If non-negative, randomly pick a window of this many distractors around the true 5th sentence. Returns: A Keras model. """ self.small_context_loss_weight = small_context_loss_weight self._max_num_distractors = max_num_distractors # x starts off with dimension [batch_size x num_sentences x emb_size]. # Convert it to [batch_size x (num_sentences*emb_size)]. x_input = tf.keras.Input( shape=[self._num_input_sentences, self._embedding_dim]) flattened_shape = [-1, self._num_input_sentences * self._embedding_dim] x = tf.reshape(x_input, flattened_shape) mlp = tf.keras.Sequential() if normalize_embeddings: mlp.add(tf.keras.layers.LayerNormalization(axis=1)) for layer_output_dim in relu_layers: mlp.add( tf.keras.layers.Dense(layer_output_dim, activation='relu')) mlp.add(tf.keras.layers.Dropout(dropout_amount)) # Final layer bring us back to embedding dimension. mlp.add(tf.keras.layers.Dense(self._embedding_dim, activation='linear')) if final_dropout: mlp.add(tf.keras.layers.Dropout(dropout_amount)) if normalize_embeddings: mlp.add(tf.keras.layers.LayerNormalization(axis=1)) return x_input, mlp(x) def create_metrics(self): """Outputs a dictionary containing all the metrics we want to log.""" metrics = [ tf.keras.metrics.Mean(name='train_loss'), tf.keras.metrics.SparseCategoricalAccuracy(name='train_acc'), tf.keras.metrics.Accuracy(name='valid_nolabel_acc'), tf.keras.metrics.Accuracy(name='train_subset_acc'), tf.keras.metrics.Accuracy(name='valid_spring2016_acc'), tf.keras.metrics.Accuracy(name='valid_winter2018_acc')] if self.small_context_loss_weight > 0.0: metrics.append(tf.keras.metrics.Mean(name='main_loss')) metrics.append(tf.keras.metrics.Mean(name='small_context_loss')) metrics = collections.OrderedDict((m.name, m) for m in metrics) return metrics @gin.configurable class ResidualModel(LinearModel): """Residual multi-layer perceptron with embedding matrix at end.""" @gin.configurable('ResidualModel.hparams') def _build_network(self, residual_layer_size=1024, num_residual_layers=2, dropout_amount=0.5, small_context_loss_weight=0.0, max_num_distractors=-1): """Builds an MLP with residual connections. Args: residual_layer_size: Dimension for linear layer to add to MLP. num_residual_layers: Number of residual layer. dropout_amount: If training, how much dropout to use in each layer. small_context_loss_weight: If >0, in addition to the loss with many distractors, add another loss where the only distractors are the sentences of the context. max_num_distractors: The maximum number of distractors provided at each train step. Returns: The input and output tensors for the network, with the input being a placeholder variable. """ self.small_context_loss_weight = small_context_loss_weight self._max_num_distractors = max_num_distractors # x starts off with dimension [batch_size x num_sentences x emb_size]. # Convert it to [batch_size x (num_sentences*emb_size)]. x_input = tf.keras.Input( shape=[self._num_input_sentences, self._embedding_dim]) flattened_shape = [-1, self._num_input_sentences * self._embedding_dim] x = tf.reshape(x_input, flattened_shape) x = tf.keras.layers.LayerNormalization(axis=1)(x) # First bring dimension down to desired. x = tf.keras.layers.Dense(residual_layer_size)(x) # Add specified number of residual layers. for _ in range(num_residual_layers): x = block(x, residual_layer_size) # Go back up to desired dimension. x = tf.keras.layers.Dense(self._embedding_dim, activation='linear')(x) x = tf.keras.layers.LayerNormalization(axis=1)(x) return x_input, x @gin.configurable(allowlist=['network_class']) def build_model(num_input_sentences, embedding_matrix=None, embedding_dim=None, network_class=None): """Creates the model object and returns it.""" if network_class is None: # Default to the fully connected model. model = LinearModel(num_input_sentences, embedding_matrix, embedding_dim) else: model = network_class(num_input_sentences, embedding_matrix, embedding_dim) return model
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 33160, 383, 3012, 4992, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 5841, 1424, 329, 1306, 12, 34086, 594, 17724, 4876, 319, 371, 4503, 1273, 1749, 13, 198, 37811, 198, 198, 11748, 17268, 198, 198, 6738, 2352, 75, 1330, 18931, 198, 11748, 39733, 198, 11748, 39733, 13, 27110, 198, 11748, 11192, 273, 11125, 13, 5589, 265, 13, 85, 17, 355, 48700, 198, 198, 70, 7753, 796, 48700, 13, 952, 13, 70, 7753, 628, 198, 31, 1655, 13, 11250, 11970, 198, 4871, 44800, 17633, 7, 27110, 13, 6122, 292, 13, 17633, 2599, 198, 220, 37227, 29800, 12, 29289, 34953, 1313, 351, 11525, 12083, 17593, 379, 886, 526, 15931, 628, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 997, 62, 15414, 62, 34086, 3007, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 11525, 12083, 62, 6759, 8609, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 28, 14202, 2599, 198, 220, 220, 220, 37227, 16719, 274, 257, 1402, 10373, 47, 11, 788, 15082, 444, 23862, 416, 11525, 12083, 17593, 13, 628, 220, 220, 220, 15467, 281, 11525, 12083, 17593, 393, 281, 11525, 12083, 15793, 815, 307, 7368, 13, 198, 220, 220, 220, 1002, 262, 1966, 11, 16277, 389, 925, 416, 48816, 262, 399, 45, 23862, 416, 428, 198, 220, 220, 220, 11525, 12083, 17593, 13, 1002, 691, 281, 11525, 12083, 15793, 318, 2810, 11, 869, 3419, 198, 220, 220, 220, 23862, 281, 11525, 12083, 11, 475, 645, 16277, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 997, 62, 15414, 62, 34086, 3007, 25, 34142, 1271, 286, 5128, 13439, 13, 198, 220, 220, 220, 220, 220, 11525, 12083, 62, 6759, 8609, 25, 24936, 286, 2546, 685, 20521, 12083, 62, 27740, 1635, 997, 62, 12957, 62, 280, 1996, 82, 60, 198, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 25, 24936, 286, 2546, 685, 20521, 12083, 62, 27740, 1635, 997, 62, 12957, 62, 280, 1996, 82, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 7, 14993, 451, 17633, 11, 2116, 737, 834, 15003, 834, 3419, 198, 220, 220, 220, 6818, 357, 20521, 12083, 62, 6759, 8609, 318, 6045, 8, 10563, 357, 20521, 12083, 62, 27740, 318, 6045, 8, 628, 220, 220, 220, 2116, 13557, 22462, 62, 15252, 796, 48700, 13, 6122, 292, 13, 22462, 274, 13, 50, 29572, 34, 2397, 12409, 21544, 298, 28338, 7, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 6404, 896, 28, 17821, 8, 628, 220, 220, 220, 2116, 13557, 22510, 62, 15414, 62, 34086, 3007, 796, 997, 62, 15414, 62, 34086, 3007, 198, 220, 220, 220, 2116, 13, 20521, 12083, 62, 6759, 8609, 796, 11525, 12083, 62, 6759, 8609, 628, 220, 220, 220, 611, 2116, 13, 20521, 12083, 62, 6759, 8609, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 20521, 12083, 62, 27740, 796, 2116, 13, 20521, 12083, 62, 6759, 8609, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 20521, 12083, 62, 27740, 796, 11525, 12083, 62, 27740, 628, 220, 220, 220, 2124, 62, 15414, 11, 2124, 62, 22915, 796, 2116, 13557, 11249, 62, 27349, 3419, 198, 220, 220, 220, 2208, 7, 14993, 451, 17633, 11, 2116, 737, 834, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 87, 62, 15414, 11, 23862, 28, 87, 62, 22915, 11, 1438, 11639, 19849, 11537, 628, 220, 2488, 1655, 13, 11250, 11970, 10786, 14993, 451, 17633, 13, 71, 37266, 11537, 198, 220, 825, 4808, 11249, 62, 27349, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 84, 62, 75, 6962, 16193, 1238, 2780, 11, 28119, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 17287, 28, 15, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 62, 20521, 67, 654, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 14781, 448, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1402, 62, 22866, 62, 22462, 62, 6551, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22510, 62, 17080, 974, 669, 10779, 16, 2599, 198, 220, 220, 220, 37227, 15580, 82, 262, 3127, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 823, 84, 62, 75, 6962, 25, 41265, 286, 14174, 10, 16448, 52, 11685, 284, 751, 284, 10373, 47, 13, 2312, 466, 407, 198, 220, 220, 220, 220, 220, 220, 220, 761, 284, 2291, 262, 2457, 20128, 866, 284, 11525, 12083, 62, 27740, 13, 198, 220, 220, 220, 220, 220, 4268, 448, 62, 17287, 25, 1002, 3047, 11, 703, 881, 4268, 448, 284, 779, 287, 1123, 7679, 13, 198, 220, 220, 220, 220, 220, 3487, 1096, 62, 20521, 67, 654, 25, 1002, 6407, 11, 3487, 1096, 6827, 11525, 67, 654, 357, 16885, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 290, 11001, 8, 284, 1612, 657, 11, 4326, 24198, 13, 198, 220, 220, 220, 220, 220, 2457, 62, 14781, 448, 25, 1002, 6407, 11, 6673, 4268, 448, 284, 262, 2457, 11525, 12083, 7679, 13, 198, 220, 220, 220, 220, 220, 1402, 62, 22866, 62, 22462, 62, 6551, 25, 1002, 1875, 15, 11, 287, 3090, 284, 262, 2994, 351, 867, 198, 220, 220, 220, 220, 220, 220, 220, 11786, 669, 11, 751, 1194, 2994, 810, 262, 691, 11786, 669, 389, 262, 198, 220, 220, 220, 220, 220, 220, 220, 13439, 286, 262, 4732, 13, 198, 220, 220, 220, 220, 220, 3509, 62, 22510, 62, 17080, 974, 669, 25, 1002, 1729, 12, 31591, 11, 15456, 2298, 257, 4324, 286, 428, 867, 198, 220, 220, 220, 220, 220, 220, 220, 11786, 669, 1088, 262, 2081, 642, 400, 6827, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 17337, 292, 2746, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 17470, 62, 22866, 62, 22462, 62, 6551, 796, 1402, 62, 22866, 62, 22462, 62, 6551, 198, 220, 220, 220, 2116, 13557, 9806, 62, 22510, 62, 17080, 974, 669, 796, 3509, 62, 22510, 62, 17080, 974, 669, 628, 220, 220, 220, 1303, 2124, 4940, 572, 351, 15793, 685, 43501, 62, 7857, 2124, 997, 62, 34086, 3007, 2124, 4072, 62, 7857, 4083, 198, 220, 220, 220, 1303, 38240, 340, 284, 685, 43501, 62, 7857, 2124, 357, 22510, 62, 34086, 3007, 9, 24419, 62, 7857, 25295, 198, 220, 220, 220, 2124, 62, 15414, 796, 48700, 13, 6122, 292, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 41888, 944, 13557, 22510, 62, 15414, 62, 34086, 3007, 11, 2116, 13557, 20521, 12083, 62, 27740, 12962, 198, 220, 220, 220, 45096, 62, 43358, 796, 25915, 16, 11, 2116, 13557, 22510, 62, 15414, 62, 34086, 3007, 1635, 2116, 13557, 20521, 12083, 62, 27740, 60, 198, 220, 220, 220, 2124, 796, 48700, 13, 3447, 1758, 7, 87, 62, 15414, 11, 45096, 62, 43358, 8, 628, 220, 220, 220, 25962, 79, 796, 48700, 13, 6122, 292, 13, 44015, 1843, 3419, 198, 220, 220, 220, 611, 3487, 1096, 62, 20521, 67, 654, 25, 198, 220, 220, 220, 220, 220, 25962, 79, 13, 2860, 7, 27110, 13, 6122, 292, 13, 75, 6962, 13, 49925, 26447, 1634, 7, 22704, 28, 16, 4008, 198, 220, 220, 220, 329, 7679, 62, 22915, 62, 27740, 287, 823, 84, 62, 75, 6962, 25, 198, 220, 220, 220, 220, 220, 25962, 79, 13, 2860, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 75, 6962, 13, 35, 1072, 7, 29289, 62, 22915, 62, 27740, 11, 14916, 11639, 260, 2290, 6, 4008, 198, 220, 220, 220, 220, 220, 25962, 79, 13, 2860, 7, 27110, 13, 6122, 292, 13, 75, 6962, 13, 26932, 448, 7, 14781, 448, 62, 17287, 4008, 628, 220, 220, 220, 1303, 8125, 7679, 2222, 514, 736, 284, 11525, 12083, 15793, 13, 198, 220, 220, 220, 25962, 79, 13, 2860, 7, 27110, 13, 6122, 292, 13, 75, 6962, 13, 35, 1072, 7, 944, 13557, 20521, 12083, 62, 27740, 11, 14916, 11639, 29127, 6, 4008, 198, 220, 220, 220, 611, 2457, 62, 14781, 448, 25, 198, 220, 220, 220, 220, 220, 25962, 79, 13, 2860, 7, 27110, 13, 6122, 292, 13, 75, 6962, 13, 26932, 448, 7, 14781, 448, 62, 17287, 4008, 198, 220, 220, 220, 611, 3487, 1096, 62, 20521, 67, 654, 25, 198, 220, 220, 220, 220, 220, 25962, 79, 13, 2860, 7, 27110, 13, 6122, 292, 13, 75, 6962, 13, 49925, 26447, 1634, 7, 22704, 28, 16, 4008, 198, 220, 220, 220, 1441, 2124, 62, 15414, 11, 25962, 79, 7, 87, 8, 628, 220, 825, 2251, 62, 4164, 10466, 7, 944, 2599, 198, 220, 220, 220, 37227, 26410, 82, 257, 22155, 7268, 477, 262, 20731, 356, 765, 284, 2604, 526, 15931, 628, 220, 220, 220, 20731, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 4164, 10466, 13, 5308, 272, 7, 3672, 11639, 27432, 62, 22462, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 4164, 10466, 13, 50, 29572, 34, 2397, 12409, 17320, 23843, 7, 3672, 11639, 27432, 62, 4134, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 4164, 10466, 13, 17320, 23843, 7, 3672, 11639, 12102, 62, 77, 349, 9608, 62, 4134, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 4164, 10466, 13, 17320, 23843, 7, 3672, 11639, 27432, 62, 7266, 2617, 62, 4134, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 4164, 10466, 13, 17320, 23843, 7, 3672, 11639, 12102, 62, 16469, 5304, 62, 4134, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 4164, 10466, 13, 17320, 23843, 7, 3672, 11639, 12102, 62, 40078, 7908, 62, 4134, 11537, 60, 628, 220, 220, 220, 611, 2116, 13, 17470, 62, 22866, 62, 22462, 62, 6551, 1875, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 20731, 13, 33295, 7, 27110, 13, 6122, 292, 13, 4164, 10466, 13, 5308, 272, 7, 3672, 11639, 12417, 62, 22462, 6, 4008, 198, 220, 220, 220, 220, 220, 20731, 13, 33295, 7, 27110, 13, 6122, 292, 13, 4164, 10466, 13, 5308, 272, 7, 3672, 11639, 17470, 62, 22866, 62, 22462, 6, 4008, 628, 220, 220, 220, 20731, 796, 17268, 13, 35422, 1068, 35, 713, 19510, 76, 13, 3672, 11, 285, 8, 329, 285, 287, 20731, 8, 198, 220, 220, 220, 1441, 20731, 628, 198, 31, 1655, 13, 11250, 11970, 198, 4871, 1874, 312, 723, 17633, 7, 14993, 451, 17633, 2599, 198, 220, 37227, 4965, 312, 723, 5021, 12, 29289, 34953, 1313, 351, 11525, 12083, 17593, 379, 886, 526, 15931, 628, 220, 2488, 1655, 13, 11250, 11970, 10786, 4965, 312, 723, 17633, 13, 71, 37266, 11537, 198, 220, 825, 4808, 11249, 62, 27349, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29598, 62, 29289, 62, 7857, 28, 35500, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 411, 312, 723, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 17287, 28, 15, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1402, 62, 22866, 62, 22462, 62, 6551, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22510, 62, 17080, 974, 669, 10779, 16, 2599, 198, 220, 220, 220, 37227, 15580, 82, 281, 10373, 47, 351, 29598, 8787, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 29598, 62, 29289, 62, 7857, 25, 34024, 329, 14174, 7679, 284, 751, 284, 10373, 47, 13, 198, 220, 220, 220, 220, 220, 997, 62, 411, 312, 723, 62, 75, 6962, 25, 7913, 286, 29598, 7679, 13, 198, 220, 220, 220, 220, 220, 4268, 448, 62, 17287, 25, 1002, 3047, 11, 703, 881, 4268, 448, 284, 779, 287, 1123, 7679, 13, 198, 220, 220, 220, 220, 220, 1402, 62, 22866, 62, 22462, 62, 6551, 25, 1002, 1875, 15, 11, 287, 3090, 284, 262, 2994, 351, 867, 198, 220, 220, 220, 220, 220, 220, 220, 11786, 669, 11, 751, 1194, 2994, 810, 262, 691, 11786, 669, 389, 262, 198, 220, 220, 220, 220, 220, 220, 220, 13439, 286, 262, 4732, 13, 198, 220, 220, 220, 220, 220, 3509, 62, 22510, 62, 17080, 974, 669, 25, 383, 5415, 1271, 286, 11786, 669, 2810, 379, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 2239, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 383, 5128, 290, 5072, 11192, 669, 329, 262, 3127, 11, 351, 262, 5128, 852, 257, 198, 220, 220, 220, 220, 220, 46076, 7885, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 17470, 62, 22866, 62, 22462, 62, 6551, 796, 1402, 62, 22866, 62, 22462, 62, 6551, 198, 220, 220, 220, 2116, 13557, 9806, 62, 22510, 62, 17080, 974, 669, 796, 3509, 62, 22510, 62, 17080, 974, 669, 628, 220, 220, 220, 1303, 2124, 4940, 572, 351, 15793, 685, 43501, 62, 7857, 2124, 997, 62, 34086, 3007, 2124, 4072, 62, 7857, 4083, 198, 220, 220, 220, 1303, 38240, 340, 284, 685, 43501, 62, 7857, 2124, 357, 22510, 62, 34086, 3007, 9, 24419, 62, 7857, 25295, 198, 220, 220, 220, 2124, 62, 15414, 796, 48700, 13, 6122, 292, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 41888, 944, 13557, 22510, 62, 15414, 62, 34086, 3007, 11, 2116, 13557, 20521, 12083, 62, 27740, 12962, 198, 220, 220, 220, 45096, 62, 43358, 796, 25915, 16, 11, 2116, 13557, 22510, 62, 15414, 62, 34086, 3007, 1635, 2116, 13557, 20521, 12083, 62, 27740, 60, 198, 220, 220, 220, 2124, 796, 48700, 13, 3447, 1758, 7, 87, 62, 15414, 11, 45096, 62, 43358, 8, 628, 220, 220, 220, 2124, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 49925, 26447, 1634, 7, 22704, 28, 16, 5769, 87, 8, 628, 220, 220, 220, 1303, 3274, 2222, 15793, 866, 284, 10348, 13, 198, 220, 220, 220, 2124, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 35, 1072, 7, 411, 312, 723, 62, 29289, 62, 7857, 5769, 87, 8, 628, 220, 220, 220, 1303, 3060, 7368, 1271, 286, 29598, 11685, 13, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 22510, 62, 411, 312, 723, 62, 75, 6962, 2599, 198, 220, 220, 220, 220, 220, 2124, 796, 2512, 7, 87, 11, 29598, 62, 29289, 62, 7857, 8, 628, 220, 220, 220, 1303, 1514, 736, 510, 284, 10348, 15793, 13, 198, 220, 220, 220, 2124, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 35, 1072, 7, 944, 13557, 20521, 12083, 62, 27740, 11, 14916, 11639, 29127, 6, 5769, 87, 8, 198, 220, 220, 220, 2124, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 49925, 26447, 1634, 7, 22704, 28, 16, 5769, 87, 8, 198, 220, 220, 220, 1441, 2124, 62, 15414, 11, 2124, 628, 198, 31, 1655, 13, 11250, 11970, 7, 12154, 4868, 28, 17816, 27349, 62, 4871, 6, 12962, 198, 4299, 1382, 62, 19849, 7, 22510, 62, 15414, 62, 34086, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 6759, 8609, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3127, 62, 4871, 28, 14202, 2599, 198, 220, 37227, 16719, 274, 262, 2746, 2134, 290, 5860, 340, 526, 15931, 198, 220, 611, 3127, 62, 4871, 318, 6045, 25, 198, 220, 220, 220, 1303, 15161, 284, 262, 3938, 5884, 2746, 13, 198, 220, 220, 220, 2746, 796, 44800, 17633, 7, 22510, 62, 15414, 62, 34086, 3007, 11, 11525, 12083, 62, 6759, 8609, 11, 11525, 12083, 62, 27740, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 2746, 796, 3127, 62, 4871, 7, 22510, 62, 15414, 62, 34086, 3007, 11, 11525, 12083, 62, 6759, 8609, 11, 11525, 12083, 62, 27740, 8, 198, 220, 1441, 2746, 198 ]
2.590361
2,988
import abc # Good old composite pattern # This is used when we want to create a hierachy of instances that contain other instances, # but we want to operate on all instances somewhat equally # Here the composite instances can contain other composites or leafs # All implement the operation method, where the composite will be sure to # call the same method on all its childred # Note that some methods are not implemented on Leaf as that does not make sense. # They throw errors for the sake of safety, but they kinda need to be there # so that Composites and Leafs can be treated in a similar way c1 = Composite() c1.add(Leaf()) c1.add(Leaf()) c2 = Composite() c2.add(Leaf()) c2.add(c1) print(c2.operation())
[ 11748, 450, 66, 198, 2, 4599, 1468, 24185, 3912, 198, 2, 770, 318, 973, 618, 356, 765, 284, 2251, 257, 13550, 35586, 286, 10245, 326, 3994, 584, 10245, 11, 198, 2, 475, 356, 765, 284, 8076, 319, 477, 10245, 6454, 8603, 198, 198, 2, 3423, 262, 24185, 10245, 460, 3994, 584, 18882, 2737, 393, 12835, 82, 198, 2, 1439, 3494, 262, 4905, 2446, 11, 810, 262, 24185, 481, 307, 1654, 284, 198, 2, 869, 262, 976, 2446, 319, 477, 663, 1200, 445, 198, 198, 2, 5740, 326, 617, 5050, 389, 407, 9177, 319, 14697, 355, 326, 857, 407, 787, 2565, 13, 198, 2, 1119, 3714, 8563, 329, 262, 11060, 286, 3747, 11, 475, 484, 17855, 761, 284, 307, 612, 220, 198, 2, 523, 326, 29936, 2737, 290, 25479, 460, 307, 5716, 287, 257, 2092, 835, 198, 198, 66, 16, 796, 49355, 3419, 198, 66, 16, 13, 2860, 7, 3123, 1878, 28955, 198, 66, 16, 13, 2860, 7, 3123, 1878, 28955, 198, 198, 66, 17, 796, 49355, 3419, 198, 66, 17, 13, 2860, 7, 3123, 1878, 28955, 198, 66, 17, 13, 2860, 7, 66, 16, 8, 198, 198, 4798, 7, 66, 17, 13, 27184, 28955 ]
3.685567
194
from unittest import TestCase from itertools import product from genki.http.url.parse import parse_url, url_parse_result from genki.http.request import RequestBuilder from genki.http.constants import Scheme from genki.http.url.exceptions import InvalidURL
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 340, 861, 10141, 1330, 1720, 198, 198, 6738, 2429, 4106, 13, 4023, 13, 6371, 13, 29572, 1330, 21136, 62, 6371, 11, 19016, 62, 29572, 62, 20274, 198, 6738, 2429, 4106, 13, 4023, 13, 25927, 1330, 19390, 32875, 198, 6738, 2429, 4106, 13, 4023, 13, 9979, 1187, 1330, 32448, 198, 6738, 2429, 4106, 13, 4023, 13, 6371, 13, 1069, 11755, 1330, 17665, 21886, 628, 198 ]
3.547945
73
from textwrap import dedent from typing import List import pytest import gen from gen.tests.utils import make_arguments, true_false_msg, validate_error class TestAdminRouterTLSConfig: """ Tests for the Admin Router TLS Config creation. """ def test_default(self): """ By default, the configuration specifies certain TLS settings. This test is a sanity check for the configuration template logic rather than a particularly useful feature test. """ config_path = '/etc/adminrouter-tls.conf' arguments = make_arguments(new_arguments={}) generated = gen.generate(arguments=arguments) package = generated.templates['dcos-config.yaml']['package'] [config] = [item for item in package if item['path'] == config_path] expected_configuration = dedent( """\ # Ref: https://github.com/cloudflare/sslconfig/blob/master/conf # Modulo ChaCha20 cipher. ssl_ciphers EECDH+AES128:RSA+AES128:EECDH+AES256:RSA+AES256:EECDH+3DES:RSA+3DES:!MD5; ssl_prefer_server_ciphers on; # To manually test which TLS versions are enabled on a node, use # `openssl` commands. # # See comments on https://jira.mesosphere.com/browse/DCOS-13437 for more # details. ssl_protocols TLSv1.1 TLSv1.2; """ ) assert config['content'] == expected_configuration class TestToggleTLS1: """ Tests for toggling TLS 1.0. To manually test that this is, in fact, a working toggle for TLS 1.0, use `openssl` commands. See comments on https://jira.mesosphere.com/browse/DCOS-13437 for more details. """ def supported_ssl_protocols(self, new_config_arguments) -> List[str]: """ This finds a line which looks like the following: ssl protocols TLSv1, TLSv1.1; in the Admin Router TLS configuration. It then returns the listed protocols. Args: new_config_arguments: Arguments which are added to the 'standard' set of arguments before generating configuration files. Returns: A ``list`` of supported SSL protocols. """ arguments = make_arguments(new_arguments=new_config_arguments) generated = gen.generate(arguments=arguments) package = generated.templates['dcos-config.yaml']['package'] config_path = '/etc/adminrouter-tls.conf' [config] = [item for item in package if item['path'] == config_path] [ssl_protocols_line] = [ line for line in config['content'].split('\n') if # We strip whitespace from the beginning of the line as NGINX # configuration lines can start with whitespace. line.lstrip().startswith('ssl_protocols ') ] ssl_protocols_line = ssl_protocols_line.strip(';') protocols = ssl_protocols_line.split()[1:] return protocols def test_validation(self): """ The config variable `tls_1_0_enabled` must be 'true' or 'false'. """ validate_error( new_arguments={'adminrouter_tls_1_0_enabled': 'foo'}, key='adminrouter_tls_1_0_enabled', message=true_false_msg, ) @pytest.mark.parametrize( 'new_arguments', [{}, {'adminrouter_tls_1_0_enabled': 'false'}] ) def test_default(self, new_arguments): """ By default TLS 1.0 is disabled, and therefore by default the config variable is set to 'false'. This test is parametrized to demonstrate that having no configuration produces the same results as setting the config variable to `'false'`. """ protocols = self.supported_ssl_protocols( new_config_arguments=new_arguments, ) assert protocols == ['TLSv1.1', 'TLSv1.2'] def test_enable(self): """ Setting the config variable to 'true' enables TLS 1.0. """ new_arguments = {'adminrouter_tls_1_0_enabled': 'true'} protocols = self.supported_ssl_protocols( new_config_arguments=new_arguments, ) assert protocols == ['TLSv1', 'TLSv1.1', 'TLSv1.2']
[ 6738, 2420, 37150, 1330, 4648, 298, 198, 6738, 19720, 1330, 7343, 198, 198, 11748, 12972, 9288, 198, 198, 11748, 2429, 198, 6738, 2429, 13, 41989, 13, 26791, 1330, 787, 62, 853, 2886, 11, 2081, 62, 9562, 62, 19662, 11, 26571, 62, 18224, 628, 198, 4871, 6208, 46787, 49, 39605, 51, 6561, 16934, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 262, 32053, 48538, 33855, 17056, 6282, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 12286, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2750, 4277, 11, 262, 8398, 26052, 1728, 33855, 6460, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1332, 318, 257, 34182, 2198, 329, 262, 8398, 11055, 9156, 198, 220, 220, 220, 220, 220, 220, 220, 2138, 621, 257, 3573, 4465, 3895, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 6978, 796, 31051, 14784, 14, 28482, 472, 353, 12, 83, 7278, 13, 10414, 6, 198, 220, 220, 220, 220, 220, 220, 220, 7159, 796, 787, 62, 853, 2886, 7, 3605, 62, 853, 2886, 34758, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 796, 2429, 13, 8612, 378, 7, 853, 2886, 28, 853, 2886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 796, 7560, 13, 11498, 17041, 17816, 67, 6966, 12, 11250, 13, 88, 43695, 6, 7131, 6, 26495, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 685, 11250, 60, 796, 685, 9186, 329, 2378, 287, 5301, 611, 2378, 17816, 6978, 20520, 6624, 4566, 62, 6978, 60, 628, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 11250, 3924, 796, 4648, 298, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6524, 25, 3740, 1378, 12567, 13, 785, 14, 17721, 2704, 533, 14, 45163, 11250, 14, 2436, 672, 14, 9866, 14, 10414, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3401, 43348, 20703, 1925, 64, 1238, 38012, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 66, 541, 7084, 412, 27295, 39, 10, 32, 1546, 12762, 25, 49, 4090, 10, 32, 1546, 12762, 25, 36, 27295, 39, 10, 32, 1546, 11645, 25, 49, 4090, 10, 32, 1546, 11645, 25, 36, 27295, 39, 10, 18, 30910, 25, 49, 4090, 10, 18, 30910, 25, 0, 12740, 20, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 3866, 2232, 62, 15388, 62, 66, 541, 7084, 319, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 14500, 1332, 543, 33855, 6300, 389, 9343, 319, 257, 10139, 11, 779, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4600, 44813, 6649, 63, 9729, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 3651, 319, 3740, 1378, 73, 8704, 13, 6880, 22829, 13, 785, 14, 25367, 325, 14, 9697, 2640, 12, 19880, 2718, 329, 517, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3307, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 11235, 4668, 82, 33855, 85, 16, 13, 16, 33855, 85, 16, 13, 17, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 4566, 17816, 11299, 20520, 6624, 2938, 62, 11250, 3924, 628, 198, 4871, 6208, 51, 20258, 51, 6561, 16, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 284, 1130, 1359, 33855, 352, 13, 15, 13, 628, 220, 220, 220, 1675, 14500, 1332, 326, 428, 318, 11, 287, 1109, 11, 257, 1762, 19846, 329, 33855, 352, 13, 15, 11, 779, 198, 220, 220, 220, 4600, 44813, 6649, 63, 9729, 13, 628, 220, 220, 220, 4091, 3651, 319, 3740, 1378, 73, 8704, 13, 6880, 22829, 13, 785, 14, 25367, 325, 14, 9697, 2640, 12, 19880, 2718, 329, 517, 198, 220, 220, 220, 3307, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4855, 62, 45163, 62, 11235, 4668, 82, 7, 944, 11, 649, 62, 11250, 62, 853, 2886, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 7228, 257, 1627, 543, 3073, 588, 262, 1708, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 19565, 33855, 85, 16, 11, 33855, 85, 16, 13, 16, 26, 198, 220, 220, 220, 220, 220, 220, 220, 287, 262, 32053, 48538, 33855, 8398, 13, 198, 220, 220, 220, 220, 220, 220, 220, 632, 788, 5860, 262, 5610, 19565, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 11250, 62, 853, 2886, 25, 20559, 2886, 543, 389, 2087, 284, 262, 705, 20307, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 286, 7159, 878, 15453, 8398, 3696, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 7559, 4868, 15506, 286, 4855, 25952, 19565, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7159, 796, 787, 62, 853, 2886, 7, 3605, 62, 853, 2886, 28, 3605, 62, 11250, 62, 853, 2886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 796, 2429, 13, 8612, 378, 7, 853, 2886, 28, 853, 2886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 796, 7560, 13, 11498, 17041, 17816, 67, 6966, 12, 11250, 13, 88, 43695, 6, 7131, 6, 26495, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 6978, 796, 31051, 14784, 14, 28482, 472, 353, 12, 83, 7278, 13, 10414, 6, 198, 220, 220, 220, 220, 220, 220, 220, 685, 11250, 60, 796, 685, 9186, 329, 2378, 287, 5301, 611, 2378, 17816, 6978, 20520, 6624, 4566, 62, 6978, 60, 198, 220, 220, 220, 220, 220, 220, 220, 685, 45163, 62, 11235, 4668, 82, 62, 1370, 60, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 329, 1627, 287, 4566, 17816, 11299, 6, 4083, 35312, 10786, 59, 77, 11537, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 10283, 13216, 10223, 422, 262, 3726, 286, 262, 1627, 355, 39058, 1268, 55, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8398, 3951, 460, 923, 351, 13216, 10223, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 75, 36311, 22446, 9688, 2032, 342, 10786, 45163, 62, 11235, 4668, 82, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 264, 6649, 62, 11235, 4668, 82, 62, 1370, 796, 264, 6649, 62, 11235, 4668, 82, 62, 1370, 13, 36311, 10786, 26, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 19565, 796, 264, 6649, 62, 11235, 4668, 82, 62, 1370, 13, 35312, 3419, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19565, 628, 220, 220, 220, 825, 1332, 62, 12102, 341, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4566, 7885, 4600, 83, 7278, 62, 16, 62, 15, 62, 25616, 63, 1276, 307, 705, 7942, 6, 393, 705, 9562, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 853, 2886, 34758, 6, 28482, 472, 353, 62, 83, 7278, 62, 16, 62, 15, 62, 25616, 10354, 705, 21943, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 11639, 28482, 472, 353, 62, 83, 7278, 62, 16, 62, 15, 62, 25616, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 28, 7942, 62, 9562, 62, 19662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3605, 62, 853, 2886, 3256, 685, 90, 5512, 1391, 6, 28482, 472, 353, 62, 83, 7278, 62, 16, 62, 15, 62, 25616, 10354, 705, 9562, 6, 92, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 825, 1332, 62, 12286, 7, 944, 11, 649, 62, 853, 2886, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2750, 4277, 33855, 352, 13, 15, 318, 10058, 11, 290, 4361, 416, 4277, 262, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 7885, 318, 900, 284, 705, 9562, 4458, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1332, 318, 5772, 316, 380, 8863, 284, 10176, 326, 1719, 645, 8398, 198, 220, 220, 220, 220, 220, 220, 220, 11073, 262, 976, 2482, 355, 4634, 262, 4566, 7885, 284, 4600, 6, 9562, 6, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19565, 796, 2116, 13, 15999, 62, 45163, 62, 11235, 4668, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 11250, 62, 853, 2886, 28, 3605, 62, 853, 2886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 19565, 6624, 37250, 51, 6561, 85, 16, 13, 16, 3256, 705, 51, 6561, 85, 16, 13, 17, 20520, 628, 220, 220, 220, 825, 1332, 62, 21633, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25700, 262, 4566, 7885, 284, 705, 7942, 6, 13536, 33855, 352, 13, 15, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 853, 2886, 796, 1391, 6, 28482, 472, 353, 62, 83, 7278, 62, 16, 62, 15, 62, 25616, 10354, 705, 7942, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 19565, 796, 2116, 13, 15999, 62, 45163, 62, 11235, 4668, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 11250, 62, 853, 2886, 28, 3605, 62, 853, 2886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 19565, 6624, 37250, 51, 6561, 85, 16, 3256, 705, 51, 6561, 85, 16, 13, 16, 3256, 705, 51, 6561, 85, 16, 13, 17, 20520, 198 ]
2.314995
1,854
#!/usr/bin/env python engine = 'innodb' host = 'localhost' db_name = '' user = '' passwd = '' skip_tables = () import MySQLdb db = MySQLdb.connect(user=user, passwd=passwd, db=db_name, host=host) c = db.cursor() c.execute("show tables") row = c.fetchone() while row: table = row[0] print 'Converting Table: %s' % table e = db.cursor() e.execute("SHOW TABLE STATUS from `%s` LIKE '%s'" % (db_name, table)) info = e.fetchone() if table in skip_tables or info[1] == engine: print 'Skipping' row = c.fetchone() continue e.execute('ALTER TABLE `%s` ENGINE = %s, tablespace ts_1 storage disk' % (MySQLdb.escape_string(table), engine)) row = c.fetchone() print 'Done' c.close()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 18392, 796, 705, 3732, 375, 65, 6, 198, 4774, 796, 705, 36750, 6, 198, 9945, 62, 3672, 796, 10148, 198, 7220, 796, 10148, 198, 6603, 16993, 796, 10148, 198, 48267, 62, 83, 2977, 796, 7499, 198, 198, 11748, 33476, 9945, 198, 198, 9945, 796, 33476, 9945, 13, 8443, 7, 7220, 28, 7220, 11, 1208, 16993, 28, 6603, 16993, 11, 20613, 28, 9945, 62, 3672, 11, 2583, 28, 4774, 8, 198, 198, 66, 796, 20613, 13, 66, 21471, 3419, 198, 66, 13, 41049, 7203, 12860, 8893, 4943, 198, 198, 808, 796, 269, 13, 69, 7569, 505, 3419, 198, 4514, 5752, 25, 198, 220, 220, 220, 3084, 796, 5752, 58, 15, 60, 198, 220, 220, 220, 3601, 705, 3103, 48820, 8655, 25, 4064, 82, 6, 4064, 3084, 198, 220, 220, 220, 304, 796, 20613, 13, 66, 21471, 3419, 198, 220, 220, 220, 304, 13, 41049, 7203, 9693, 3913, 43679, 15486, 2937, 422, 4600, 4, 82, 63, 34178, 705, 4, 82, 29653, 4064, 357, 9945, 62, 3672, 11, 3084, 4008, 198, 220, 220, 220, 7508, 796, 304, 13, 69, 7569, 505, 3419, 198, 220, 220, 220, 611, 3084, 287, 14267, 62, 83, 2977, 393, 7508, 58, 16, 60, 6624, 3113, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 50, 4106, 2105, 6, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 269, 13, 69, 7569, 505, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 304, 13, 41049, 10786, 1847, 5781, 43679, 4600, 4, 82, 63, 36924, 8881, 796, 4064, 82, 11, 8893, 10223, 40379, 62, 16, 6143, 11898, 6, 4064, 357, 3666, 17861, 9945, 13, 41915, 62, 8841, 7, 11487, 828, 3113, 4008, 198, 220, 220, 220, 5752, 796, 269, 13, 69, 7569, 505, 3419, 198, 220, 220, 220, 3601, 705, 45677, 6, 198, 66, 13, 19836, 3419, 198 ]
2.333333
315
from .bsdict import bsdict, memoizer
[ 6738, 764, 1443, 11600, 1330, 275, 82, 11600, 11, 16155, 7509, 198 ]
3.083333
12
t = int(input()) while(t>0): a=list(map(int,input().split(' '))) D=a[0] d=a[1] p=a[2] q=a[3] remainder=D%d n=D//d value=(n*p*d) + (d*q*(n*(n-1)//2))+(p*remainder+(remainder*q*n)) print(value,"\n") t=t-1
[ 83, 796, 493, 7, 15414, 28955, 198, 4514, 7, 83, 29, 15, 2599, 198, 220, 220, 220, 257, 28, 4868, 7, 8899, 7, 600, 11, 15414, 22446, 35312, 10786, 705, 22305, 198, 220, 220, 220, 360, 28, 64, 58, 15, 60, 198, 220, 220, 220, 288, 28, 64, 58, 16, 60, 198, 220, 220, 220, 279, 28, 64, 58, 17, 60, 198, 220, 220, 220, 10662, 28, 64, 58, 18, 60, 198, 220, 220, 220, 17675, 28, 35, 4, 67, 198, 220, 220, 220, 299, 28, 35, 1003, 67, 198, 220, 220, 220, 1988, 16193, 77, 9, 79, 9, 67, 8, 1343, 357, 67, 9, 80, 9, 7, 77, 9, 7, 77, 12, 16, 8, 1003, 17, 4008, 33747, 79, 9, 2787, 391, 1082, 33747, 2787, 391, 1082, 9, 80, 9, 77, 4008, 198, 220, 220, 220, 3601, 7, 8367, 553, 59, 77, 4943, 198, 220, 220, 220, 256, 28, 83, 12, 16, 198, 220, 220, 220, 220 ]
1.563291
158
from django.db import models from cajas.users.models.user import User from cajas.office.models.officeCountry import OfficeCountry class BoxDailySquare(models.Model): """Modelo para la caja de un cuadre diario """ user = models.ForeignKey( User, verbose_name='Usuario', on_delete=models.SET_NULL, blank=True, null=True, related_name='related_daily_box' ) office = models.ForeignKey( OfficeCountry, verbose_name='Oficina', related_name='related_daily_square_boxes', blank=True, null=True, on_delete=models.SET_NULL ) balance = models.IntegerField( "Saldo de la caja", default=0 ) is_active = models.BooleanField( "Caja Activa?", default=True ) last_movement_id = models.IntegerField( 'id último movimiento', default=0 ) is_closed = models.BooleanField( "Caja cerrada?", default=False )
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 6738, 269, 1228, 292, 13, 18417, 13, 27530, 13, 7220, 1330, 11787, 198, 6738, 269, 1228, 292, 13, 31810, 13, 27530, 13, 31810, 33921, 1330, 4452, 33921, 628, 198, 4871, 8315, 28545, 48011, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 17633, 78, 31215, 8591, 269, 27792, 390, 555, 18912, 324, 260, 2566, 4982, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2836, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 11787, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 11639, 52, 2385, 4982, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 9242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 5363, 62, 29468, 62, 3524, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2607, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4452, 33921, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 11639, 5189, 291, 1437, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 5363, 62, 29468, 62, 23415, 62, 29305, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 9242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 5236, 796, 4981, 13, 46541, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 50, 41476, 390, 8591, 269, 27792, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 15, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 318, 62, 5275, 796, 4981, 13, 46120, 13087, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34, 27792, 2191, 12151, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 938, 62, 21084, 434, 62, 312, 796, 4981, 13, 46541, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 312, 6184, 118, 2528, 25147, 1409, 320, 1153, 78, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 15, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 318, 62, 20225, 796, 4981, 13, 46120, 13087, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34, 27792, 269, 8056, 4763, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 198, 220, 220, 220, 1267, 198 ]
2.215247
446
from monster import Monster
[ 6738, 9234, 1330, 12635, 628 ]
5.8
5
import dump_instance
[ 198, 198, 11748, 10285, 62, 39098, 628 ]
3.428571
7
"""twoject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import url, include from twapp import views as twapp_views from django.contrib.auth import views as auth_views from rest_framework import routers from rest_framework_simplejwt.views import TokenRefreshView from knox import views as knox_views from rest_framework.authtoken.views import obtain_auth_token urlpatterns = [ path('admin/', admin.site.urls), path('', include('twapp.urls')), path('auth/login/', twapp_views.LoginView.as_view(), name="login"), path('auth/login/refresh/', TokenRefreshView.as_view(), name='login_refresh'), path('auth/register/', twapp_views.RegisterView.as_view(), name='register'), path('auth/logout/', knox_views.LogoutView.as_view(), name="logout"), path('auth/logoutall/', knox_views.LogoutAllView.as_view(), name="logoutall"), ]
[ 37811, 11545, 752, 10289, 28373, 198, 198, 464, 4600, 6371, 33279, 82, 63, 1351, 11926, 32336, 284, 5009, 13, 1114, 517, 1321, 3387, 766, 25, 198, 220, 220, 220, 3740, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 18, 13, 17, 14, 4852, 873, 14, 4023, 14, 6371, 82, 14, 198, 27730, 25, 198, 22203, 5009, 198, 220, 220, 220, 352, 13, 3060, 281, 1330, 25, 220, 422, 616, 62, 1324, 1330, 5009, 198, 220, 220, 220, 362, 13, 3060, 257, 10289, 284, 19016, 33279, 82, 25, 220, 3108, 10786, 3256, 5009, 13, 11195, 11, 1438, 11639, 11195, 11537, 198, 9487, 12, 3106, 5009, 198, 220, 220, 220, 352, 13, 3060, 281, 1330, 25, 220, 422, 584, 62, 1324, 13, 33571, 1330, 5995, 198, 220, 220, 220, 362, 13, 3060, 257, 10289, 284, 19016, 33279, 82, 25, 220, 3108, 10786, 3256, 5995, 13, 292, 62, 1177, 22784, 1438, 11639, 11195, 11537, 198, 818, 6360, 1194, 10289, 10414, 198, 220, 220, 220, 352, 13, 17267, 262, 2291, 3419, 2163, 25, 422, 42625, 14208, 13, 6371, 82, 1330, 2291, 11, 3108, 198, 220, 220, 220, 362, 13, 3060, 257, 10289, 284, 19016, 33279, 82, 25, 220, 3108, 10786, 14036, 14, 3256, 2291, 10786, 14036, 13, 6371, 82, 6, 4008, 198, 37811, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 11, 2291, 198, 6738, 665, 1324, 1330, 5009, 355, 665, 1324, 62, 33571, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 5009, 355, 6284, 62, 33571, 198, 6738, 1334, 62, 30604, 1330, 41144, 198, 6738, 1334, 62, 30604, 62, 36439, 73, 46569, 13, 33571, 1330, 29130, 8134, 3447, 7680, 198, 6738, 638, 1140, 1330, 5009, 355, 638, 1140, 62, 33571, 198, 6738, 1334, 62, 30604, 13, 18439, 30001, 13, 33571, 1330, 7330, 62, 18439, 62, 30001, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 28482, 14, 3256, 13169, 13, 15654, 13, 6371, 82, 828, 198, 220, 220, 220, 3108, 10786, 3256, 2291, 10786, 4246, 1324, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 3108, 10786, 18439, 14, 38235, 14, 3256, 665, 1324, 62, 33571, 13, 47790, 7680, 13, 292, 62, 1177, 22784, 1438, 2625, 38235, 12340, 198, 220, 220, 220, 3108, 10786, 18439, 14, 38235, 14, 5420, 3447, 14, 3256, 29130, 8134, 3447, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 38235, 62, 5420, 3447, 33809, 198, 220, 220, 220, 3108, 10786, 18439, 14, 30238, 14, 3256, 665, 1324, 62, 33571, 13, 38804, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 30238, 33809, 198, 220, 220, 220, 3108, 10786, 18439, 14, 6404, 448, 14, 3256, 638, 1140, 62, 33571, 13, 11187, 448, 7680, 13, 292, 62, 1177, 22784, 1438, 2625, 6404, 448, 12340, 198, 220, 220, 220, 3108, 10786, 18439, 14, 6404, 448, 439, 14, 3256, 638, 1140, 62, 33571, 13, 11187, 448, 3237, 7680, 13, 292, 62, 1177, 22784, 1438, 2625, 6404, 448, 439, 12340, 198, 60, 198 ]
2.952941
510
''' Date: 2022-01-11 16:05:39 LastEditors: Waterking LastEditTime: 2022-01-12 18:21:49 FilePath: /stocknet-code/src/stat_logger.py ''' #!/usr/local/bin/python import metrics as metrics from ConfigLoader import logger
[ 7061, 6, 198, 10430, 25, 33160, 12, 486, 12, 1157, 1467, 25, 2713, 25, 2670, 198, 5956, 18378, 669, 25, 5638, 3364, 198, 5956, 18378, 7575, 25, 33160, 12, 486, 12, 1065, 1248, 25, 2481, 25, 2920, 198, 8979, 15235, 25, 1220, 13578, 3262, 12, 8189, 14, 10677, 14, 14269, 62, 6404, 1362, 13, 9078, 198, 7061, 6, 198, 2, 48443, 14629, 14, 12001, 14, 8800, 14, 29412, 198, 11748, 20731, 355, 20731, 198, 6738, 17056, 17401, 1330, 49706, 628, 628 ]
2.716049
81
# This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # Copyright 2009 Red Hat, Inc - # written by seth vidal skvidal at fedoraproject.org import os import sys import fnmatch import time import yumbased import shutil from bz2 import BZ2File from urlgrabber import grabber import tempfile import stat import fcntl import subprocess from select import select from yum import misc, Errors from yum.repoMDObject import RepoMD, RepoData from yum.sqlutils import executeSQL from yum.packageSack import MetaSack from yum.packages import YumAvailablePackage import rpmUtils.transaction from utils import _, errorprint, MDError, lzma, _available_compression import readMetadata try: import sqlite3 as sqlite except ImportError: import sqlite try: import sqlitecachec except ImportError: pass from utils import _gzipOpen, compressFile, compressOpen, checkAndMakeDir, GzipFile, \ checksum_and_rename, split_list_into_equal_chunks from utils import num_cpus_online import deltarpms __version__ = '0.9.9' class SplitMetaDataGenerator(MetaDataGenerator): """takes a series of dirs and creates repodata for all of them most commonly used with -u media:// - if no outputdir is specified it will create the repodata in the first dir in the list of dirs """ def doPkgMetadata(self): """all the heavy lifting for the package metadata""" if len(self.conf.directories) == 1: MetaDataGenerator.doPkgMetadata(self) return if self.conf.update: self._setup_old_metadata_lookup() filematrix = {} for mydir in self.conf.directories: if os.path.isabs(mydir): thisdir = mydir else: if mydir.startswith('../'): thisdir = os.path.realpath(mydir) else: thisdir = os.path.join(self.conf.basedir, mydir) filematrix[mydir] = self.getFileList(thisdir, '.rpm') # pkglist is a bit different for split media, as we have to know # which dir. it belongs to. So we walk the dir. and then filter. # We could be faster by not walking the dir. ... but meh. if self.conf.pkglist: pkglist = set(self.conf.pkglist) pkgs = [] for fname in filematrix[mydir]: if fname not in pkglist: continue pkgs.append(fname) filematrix[mydir] = pkgs self.trimRpms(filematrix[mydir]) self.pkgcount += len(filematrix[mydir]) mediano = 1 self.current_pkg = 0 self.conf.baseurl = self._getFragmentUrl(self.conf.baseurl, mediano) try: self.openMetadataDocs() for mydir in self.conf.directories: self.conf.baseurl = self._getFragmentUrl(self.conf.baseurl, mediano) self.writeMetadataDocs(filematrix[mydir], mydir) mediano += 1 self.conf.baseurl = self._getFragmentUrl(self.conf.baseurl, 1) self.closeMetadataDocs() except (IOError, OSError) as e: raise MDError(_('Cannot access/write repodata files: %s') % e)
[ 2, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 286, 262, 13789, 11, 393, 198, 2, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 22961, 10074, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 1863, 351, 428, 1430, 26, 611, 407, 11, 3551, 284, 262, 3232, 10442, 198, 2, 5693, 11, 3457, 1539, 7863, 10857, 8474, 532, 26264, 25508, 11, 6182, 11, 8779, 7816, 16243, 12, 12952, 22, 11, 4916, 13, 198, 2, 15069, 3717, 220, 2297, 10983, 11, 3457, 532, 198, 2, 3194, 416, 900, 71, 410, 11624, 1341, 85, 11624, 379, 11672, 273, 499, 305, 752, 13, 2398, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 24714, 15699, 198, 11748, 640, 198, 11748, 331, 2178, 839, 198, 11748, 4423, 346, 198, 6738, 220, 275, 89, 17, 1330, 347, 57, 17, 8979, 198, 6738, 19016, 32393, 527, 1330, 5552, 527, 198, 11748, 20218, 7753, 198, 11748, 1185, 198, 11748, 277, 66, 429, 75, 198, 11748, 850, 14681, 198, 6738, 2922, 1330, 2922, 198, 198, 6738, 331, 388, 1330, 12747, 11, 44225, 198, 6738, 331, 388, 13, 260, 7501, 12740, 10267, 1330, 1432, 78, 12740, 11, 1432, 78, 6601, 198, 6738, 331, 388, 13, 25410, 26791, 1330, 12260, 17861, 198, 6738, 331, 388, 13, 26495, 50, 441, 1330, 30277, 50, 441, 198, 6738, 331, 388, 13, 43789, 1330, 575, 388, 10493, 27813, 198, 198, 11748, 37542, 18274, 4487, 13, 7645, 2673, 198, 6738, 3384, 4487, 1330, 4808, 11, 4049, 4798, 11, 337, 7206, 81, 1472, 11, 300, 89, 2611, 11, 4808, 15182, 62, 5589, 2234, 198, 11748, 1100, 9171, 14706, 198, 28311, 25, 198, 220, 220, 220, 1330, 44161, 578, 18, 355, 44161, 578, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 44161, 578, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 44161, 578, 23870, 66, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 6738, 3384, 4487, 1330, 4808, 70, 13344, 11505, 11, 27413, 8979, 11, 27413, 11505, 11, 2198, 1870, 12050, 35277, 11, 402, 13344, 8979, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8794, 388, 62, 392, 62, 918, 480, 11, 6626, 62, 4868, 62, 20424, 62, 40496, 62, 354, 14125, 198, 6738, 3384, 4487, 1330, 997, 62, 13155, 385, 62, 25119, 198, 11748, 1619, 83, 5117, 907, 198, 198, 834, 9641, 834, 796, 705, 15, 13, 24, 13, 24, 6, 628, 628, 628, 198, 4871, 27758, 48526, 6601, 8645, 1352, 7, 48526, 6601, 8645, 1352, 2599, 198, 220, 220, 220, 37227, 83, 1124, 257, 2168, 286, 288, 17062, 290, 8075, 1128, 375, 1045, 329, 477, 286, 606, 198, 220, 220, 220, 220, 220, 220, 749, 8811, 973, 351, 532, 84, 2056, 1378, 532, 611, 645, 5072, 15908, 318, 7368, 198, 220, 220, 220, 220, 220, 220, 340, 481, 2251, 262, 1128, 375, 1045, 287, 262, 717, 26672, 287, 262, 1351, 286, 288, 17062, 198, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 466, 47, 10025, 9171, 14706, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 439, 262, 4334, 16842, 329, 262, 5301, 20150, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 944, 13, 10414, 13, 12942, 1749, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30277, 6601, 8645, 1352, 13, 4598, 47, 10025, 9171, 14706, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10414, 13, 19119, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 40406, 62, 727, 62, 38993, 62, 5460, 929, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 6759, 8609, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 616, 15908, 287, 2116, 13, 10414, 13, 12942, 1749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 271, 8937, 7, 1820, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 15908, 796, 616, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 616, 15908, 13, 9688, 2032, 342, 10786, 40720, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 15908, 796, 28686, 13, 6978, 13, 5305, 6978, 7, 1820, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 10414, 13, 3106, 343, 11, 616, 15908, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6759, 8609, 58, 1820, 15908, 60, 796, 2116, 13, 1136, 8979, 8053, 7, 5661, 15908, 11, 45302, 48235, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 279, 74, 4743, 396, 318, 257, 1643, 1180, 329, 6626, 2056, 11, 355, 356, 423, 284, 760, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 543, 26672, 13, 340, 14448, 284, 13, 1406, 356, 2513, 262, 26672, 13, 290, 788, 8106, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 714, 307, 5443, 416, 407, 6155, 262, 26672, 13, 2644, 475, 502, 71, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10414, 13, 79, 74, 4743, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 74, 4743, 396, 796, 900, 7, 944, 13, 10414, 13, 79, 74, 4743, 396, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 10025, 82, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 277, 3672, 287, 2393, 6759, 8609, 58, 1820, 15908, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 3672, 407, 287, 279, 74, 4743, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 10025, 82, 13, 33295, 7, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6759, 8609, 58, 1820, 15908, 60, 796, 279, 10025, 82, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2213, 320, 49, 79, 907, 7, 7753, 6759, 8609, 58, 1820, 15908, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35339, 9127, 15853, 18896, 7, 7753, 6759, 8609, 58, 1820, 15908, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1117, 10115, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 35339, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10414, 13, 8692, 6371, 796, 2116, 13557, 1136, 42974, 434, 28165, 7, 944, 13, 10414, 13, 8692, 6371, 11, 1117, 10115, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9654, 9171, 14706, 23579, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 616, 15908, 287, 2116, 13, 10414, 13, 12942, 1749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10414, 13, 8692, 6371, 796, 2116, 13557, 1136, 42974, 434, 28165, 7, 944, 13, 10414, 13, 8692, 6371, 11, 1117, 10115, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 9171, 14706, 23579, 82, 7, 7753, 6759, 8609, 58, 1820, 15908, 4357, 616, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1117, 10115, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10414, 13, 8692, 6371, 796, 2116, 13557, 1136, 42974, 434, 28165, 7, 944, 13, 10414, 13, 8692, 6371, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 9171, 14706, 23579, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 9399, 12331, 11, 440, 5188, 81, 1472, 8, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 337, 7206, 81, 1472, 28264, 10786, 34, 34574, 1895, 14, 13564, 1128, 375, 1045, 3696, 25, 4064, 82, 11537, 4064, 304, 8, 628, 198 ]
2.398414
1,639
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader import json def create_pretrain_mask(tokens, mask_cnt, vocab_list): """ masking subwords(15% of entire subwords) - mask_cnt: len(subwords) * 0.15 - [MASK]: 80% of masking candidate token - original token: 10% of masking candidate token - another token: 10% of masking candidate token """ candidate_idx = [] ## subwords in the same list augment a sementic word ## eg. [[0], [1], [2], [4, 5]] -> token_idx 4 + 5 is semantic word # A list represent a sementic word for i, token in enumerate(tokens): if token == '[CLS]' or token == '[SEP]': continue if 0 < len(candidate_idx) and token.find(u'\u2581') < 0: # LOWER ONE EIGHTH BLOCK # if 0 < len(candidate_idx) and token.find('_') < 0: # test code candidate_idx[-1].append(i) else: candidate_idx.append([i]) np.random.shuffle(candidate_idx) mask_lms = [] for idx_set in candidate_idx: # check if len(mask_lms) exceeds threshold if len(mask_lms) >= mask_cnt: break if len(mask_lms) + len(idx_set) > mask_cnt: continue ## masking subwords with 15% probability ## mask_cnt is len(subwords) * 0.15 # iter subwords idx for sub_idx in idx_set: masked_token = None ### assign value to masked token: [MASK], original token, random token # 80% of masking candidate are replaced with '[MASK]' token if np.random.uniform() < 0.8: masked_token = '[MASK]' # remainng 20% of masking candidate else: # 10% of remaining preserve original token if np.random.uniform() < 0.5: masked_token = tokens[sub_idx] # 10% of ones are replaced with rnadom token else: masked_token = np.random.choice(vocab_list) ### replace subword with masked_token value mask_lms.append({'idx': sub_idx, 'label':tokens[sub_idx]}) tokens[sub_idx] = masked_token mask_lms = sorted(mask_lms, key=lambda x: x['idx']) mask_idx = [mask_dict['idx'] for mask_dict in mask_lms] mask_label = [mask_dict['label'] for mask_dict in mask_lms] # print(candidate_idx) # print(mask_lms) print(mask_idx, mask_label) return tokens, mask_idx, k_label def truncate_token(tokenA, tokenB, max_seq): """ truncate long sequence """ while True: total_len = len(tokenA) + len(tokenB) print('max token {}\ntotal_len {} = {} + {}'.format(max_seq, total_len, len(tokenA), len(tokenB))) if total_len <= max_seq: break if len(tokenA) > len(tokenB): tokenA.pop() else: tokenB.pop() def create_pretrain_instances(paragraph_ls, paragraph_idx, paragraph, n_seq, mask_prob, vocab_list): """ create NSP train set """ # 3 special token: [CLS], [SEP] for sent A, [SEP] for sent B max_seq_len = n_seq - 2 - 1 target_seq_len = max_seq_len # [CLS], segmentA, segmentA, ..., [SEP], segmentB, segmentB, ... instances = [] temp_sentence = [] temp_sent_seq_length = 0 # num of tokens max_num_tokens = 256 target_seq_len = np.random.randint(2, max_num_tokens) # min len of tokens for i, sent in enumerate(paragraph): ## A. not the last sentence of the paragraph temp_sentence.append(sent) temp_sent_seq_length += len(sent) ## B. check if it is the last sentence of the paragraph ## or temp_sent_seq_length is longer than or equal to target_seq_len if i == len(paragraph) - 1 or temp_sent_seq_length >= target_seq_len: if temp_sentence: ## A. sentence A segment: from 0 to a_end a_end = 1 if len(temp_sentence) != 1: a_end = np.random.randint(1, len(temp_sentence)) # append the sentences to tokenA # from the front to the back tokenA = [] for _, s in enumerate(temp_sentence[:a_end]): tokenA.extend(s) ## B. sentence B segment tokenB = [] # A. Actual next # is_next will be the label for NSP pretrain if len(temp_sentence) > 1 and np.random.uniform() >= 0.5: is_next = True for j in range(a_end, len(temp_sentence)): tokenB.extend(temp_sentence[j]) # B. random next else: is_next = False tokenB_len = target_seq_len - len(tokenA) random_para_idx = para_idx while para_idx == random_para_idx: random_para_idx = np.random.randint(0, len(paragraph_ls)) random_para = paragraph[random_para_idx] random_start = np.random.randint(0, len(random_para)) for j in range(random_start, len(random_para)): tokenB.extend(random_para[j]) truncate_token(tokenA, tokenB, max_seq) assert 0 < len(tokenA) assert 0 < len(tokenB) tokens = ["[CLS]"] + tokenA + ["[SEP]"] + tokenB + ["[SEP]"] segment = [0]*(len(tokenA) + 2) + [1]*(len(tokenB) + 1) tokens, mask_idx, mask_label = \ create_pretrain_mask(tokens, int((len(tokens)-3)*mask_prob), vocab_list) instance = { 'tokens': tokens, 'segment': segment, 'is_next': is_next, 'mask_idx': mask_idx, 'mask_label': mask_label } instances.append(instance) # reset segment candidate temp_sentence = [] temp_sent_seq_length = 0 return instances def make_pretrain_data(vocab, in_file, out_file, count, n_seq, mask_prob): """ read text and return train data set format """ vocab_list = [] for id_ in range(vocab.get_piece_size()): if not vocab.is_unknown(id_): vocab_list.append(vocab.id_to_piece(id_)) paragraph_ls = [] with open(in_file, 'r') as in_f: paragraph = [] for i, sent in enumerate(in_f): sent = sent.strip() ## blank means end of the paragraph if sent == '': # if not the beggining of the paragraph # it is the end of the paragraph if 0 < len(paragraph): paragraph_ls.append(paragraph) paragraph = [] # generate new paragraph list # check if exceeding 100 thaousand paragraphs if 1e+5 < len(paragraph_ls): break ## subwords in list is part of semantic token # eg. ['▁지','미','▁카','터'] else: pieces = vocab.encode_as_pieces(sent) if 0 < len(pieces): paragraph.append(pieces) if paragraph: paragraph_ls.append(paragraph) # masking def: create_pretrain_mask for index in range(count): output = out_file.format(index) # if os.path.isfile(output): # continue with open(output, 'w') as out_f: for i, paragraph in enumerate(paragraph_ls): masking_info = create_pretrain_instances(paragraph_ls, i, paragraph, n_seq, mask_prob, vocab_list) for elem in masking_info: out_f.write(json.dumps(elem)) out_f.write('\n') class PretrainDataset(Dataset): """ eg. instance {tokens: ['[CLS]', '▁지', ', '대학교', '를', '▁졸업', '하였다', '.', '▁그', '▁후', ...], segment: [0, 0, 0, 0, 0, 0, ..., 1, 1, 1], is_next: True, mask_idx: [16, 21, ..., 41], mask_label: ['▁192', '▁1', '일', '▁~', '는', ..., '▁조지', '법을']} """ def pretrain_collate_fn(inputs): """ padding batch """ labels_cls, labels_lm, inputs, segments = list(zip(*inputs)) labels_lm = torch.nn.utils.rnn.pad_sequence(labels_lm, batch_first=True, padding_value=-1) inputs = torch.nn.utils.rnn.pad_sequence(inputs, batch_first=True, padding_value=0) segments = torch.nn.utils.rnn.pad_sequence(segments, batch_first=True, padding_value=0) batch = [ torch.stack(labels_cls, dim=0), labels_lm, inputs, segments, ] return batch
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 11, 6060, 17401, 198, 11748, 33918, 198, 198, 4299, 2251, 62, 5310, 3201, 62, 27932, 7, 83, 482, 641, 11, 9335, 62, 66, 429, 11, 12776, 397, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9335, 278, 850, 10879, 7, 1314, 4, 286, 2104, 850, 10879, 8, 198, 220, 220, 220, 532, 9335, 62, 66, 429, 25, 18896, 7, 7266, 10879, 8, 1635, 657, 13, 1314, 198, 220, 220, 220, 532, 685, 31180, 42, 5974, 4019, 4, 286, 9335, 278, 4540, 11241, 198, 220, 220, 220, 532, 2656, 11241, 25, 838, 4, 286, 9335, 278, 4540, 11241, 198, 220, 220, 220, 532, 1194, 11241, 25, 838, 4, 286, 9335, 278, 4540, 11241, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4540, 62, 312, 87, 796, 17635, 628, 220, 220, 220, 22492, 850, 10879, 287, 262, 976, 1351, 35016, 257, 264, 972, 291, 1573, 220, 198, 220, 220, 220, 22492, 29206, 13, 16410, 15, 4357, 685, 16, 4357, 685, 17, 4357, 685, 19, 11, 642, 11907, 4613, 11241, 62, 312, 87, 604, 1343, 642, 318, 37865, 1573, 198, 220, 220, 220, 1303, 317, 1351, 2380, 257, 264, 972, 291, 1573, 198, 220, 220, 220, 329, 1312, 11, 11241, 287, 27056, 378, 7, 83, 482, 641, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 11241, 6624, 44438, 5097, 50, 49946, 393, 11241, 6624, 44438, 5188, 47, 60, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 657, 1279, 18896, 7, 46188, 20540, 62, 312, 87, 8, 290, 11241, 13, 19796, 7, 84, 6, 59, 84, 1495, 6659, 11537, 1279, 657, 25, 1303, 220, 406, 36048, 16329, 412, 18060, 4221, 9878, 11290, 198, 2, 220, 220, 220, 220, 220, 220, 220, 611, 657, 1279, 18896, 7, 46188, 20540, 62, 312, 87, 8, 290, 11241, 13, 19796, 10786, 62, 11537, 1279, 657, 25, 1303, 220, 1332, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4540, 62, 312, 87, 58, 12, 16, 4083, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4540, 62, 312, 87, 13, 33295, 26933, 72, 12962, 198, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 46188, 20540, 62, 312, 87, 8, 628, 220, 220, 220, 9335, 62, 75, 907, 796, 17635, 198, 220, 220, 220, 329, 4686, 87, 62, 2617, 287, 4540, 62, 312, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 18896, 7, 27932, 62, 75, 907, 8, 21695, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 27932, 62, 75, 907, 8, 18189, 9335, 62, 66, 429, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 27932, 62, 75, 907, 8, 1343, 18896, 7, 312, 87, 62, 2617, 8, 1875, 9335, 62, 66, 429, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 9335, 278, 850, 10879, 351, 1315, 4, 12867, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 9335, 62, 66, 429, 318, 18896, 7, 7266, 10879, 8, 1635, 657, 13, 1314, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11629, 850, 10879, 4686, 87, 198, 220, 220, 220, 220, 220, 220, 220, 329, 850, 62, 312, 87, 287, 4686, 87, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29229, 62, 30001, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44386, 8333, 1988, 284, 29229, 11241, 25, 685, 31180, 42, 4357, 2656, 11241, 11, 4738, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4019, 4, 286, 9335, 278, 4540, 389, 6928, 351, 44438, 31180, 42, 49946, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 25120, 13, 403, 6933, 3419, 1279, 657, 13, 23, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29229, 62, 30001, 796, 44438, 31180, 42, 49946, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3520, 782, 1160, 4, 286, 9335, 278, 4540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 838, 4, 286, 5637, 12201, 2656, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 25120, 13, 403, 6933, 3419, 1279, 657, 13, 20, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29229, 62, 30001, 796, 16326, 58, 7266, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 838, 4, 286, 3392, 389, 6928, 351, 374, 77, 324, 296, 11241, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29229, 62, 30001, 796, 45941, 13, 25120, 13, 25541, 7, 18893, 397, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44386, 6330, 850, 4775, 351, 29229, 62, 30001, 1988, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 75, 907, 13, 33295, 15090, 6, 312, 87, 10354, 850, 62, 312, 87, 11, 705, 18242, 10354, 83, 482, 641, 58, 7266, 62, 312, 87, 60, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 58, 7266, 62, 312, 87, 60, 796, 29229, 62, 30001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 9335, 62, 75, 907, 796, 23243, 7, 27932, 62, 75, 907, 11, 1994, 28, 50033, 2124, 25, 2124, 17816, 312, 87, 6, 12962, 198, 220, 220, 220, 9335, 62, 312, 87, 796, 685, 27932, 62, 11600, 17816, 312, 87, 20520, 329, 9335, 62, 11600, 287, 9335, 62, 75, 907, 60, 198, 220, 220, 220, 9335, 62, 18242, 796, 685, 27932, 62, 11600, 17816, 18242, 20520, 329, 9335, 62, 11600, 287, 9335, 62, 75, 907, 60, 198, 2, 220, 220, 220, 220, 3601, 7, 46188, 20540, 62, 312, 87, 8, 198, 2, 220, 220, 220, 220, 3601, 7, 27932, 62, 75, 907, 8, 198, 220, 220, 220, 3601, 7, 27932, 62, 312, 87, 11, 9335, 62, 18242, 8, 198, 220, 220, 220, 1441, 16326, 11, 9335, 62, 312, 87, 11, 479, 62, 18242, 198, 198, 4299, 40122, 378, 62, 30001, 7, 30001, 32, 11, 11241, 33, 11, 3509, 62, 41068, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40122, 378, 890, 8379, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 11925, 796, 18896, 7, 30001, 32, 8, 1343, 18896, 7, 30001, 33, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9806, 11241, 23884, 59, 429, 4997, 62, 11925, 23884, 796, 23884, 1343, 23884, 4458, 18982, 7, 9806, 62, 41068, 11, 2472, 62, 11925, 11, 18896, 7, 30001, 32, 828, 18896, 7, 30001, 33, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2472, 62, 11925, 19841, 3509, 62, 41068, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 30001, 32, 8, 1875, 18896, 7, 30001, 33, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 32, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 33, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 2251, 62, 5310, 3201, 62, 8625, 1817, 7, 20360, 62, 7278, 11, 7322, 62, 312, 87, 11, 7322, 11, 299, 62, 41068, 11, 9335, 62, 1676, 65, 11, 12776, 397, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2251, 399, 4303, 4512, 900, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 513, 2041, 11241, 25, 685, 5097, 50, 4357, 685, 5188, 47, 60, 329, 1908, 317, 11, 685, 5188, 47, 60, 329, 1908, 347, 198, 220, 220, 220, 3509, 62, 41068, 62, 11925, 796, 299, 62, 41068, 532, 362, 532, 352, 198, 220, 220, 220, 2496, 62, 41068, 62, 11925, 796, 3509, 62, 41068, 62, 11925, 1303, 685, 5097, 50, 4357, 10618, 32, 11, 10618, 32, 11, 2644, 11, 685, 5188, 47, 4357, 10618, 33, 11, 10618, 33, 11, 2644, 628, 220, 220, 220, 10245, 796, 17635, 198, 220, 220, 220, 20218, 62, 34086, 594, 796, 17635, 198, 220, 220, 220, 20218, 62, 34086, 62, 41068, 62, 13664, 796, 657, 1303, 997, 286, 16326, 628, 220, 220, 220, 3509, 62, 22510, 62, 83, 482, 641, 796, 17759, 198, 220, 220, 220, 2496, 62, 41068, 62, 11925, 796, 45941, 13, 25120, 13, 25192, 600, 7, 17, 11, 3509, 62, 22510, 62, 83, 482, 641, 8, 1303, 949, 18896, 286, 16326, 198, 220, 220, 220, 329, 1312, 11, 1908, 287, 27056, 378, 7, 20360, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 317, 13, 407, 262, 938, 6827, 286, 262, 7322, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 34086, 594, 13, 33295, 7, 34086, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 34086, 62, 41068, 62, 13664, 15853, 18896, 7, 34086, 8, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 347, 13, 2198, 611, 340, 318, 262, 938, 6827, 286, 262, 7322, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 393, 20218, 62, 34086, 62, 41068, 62, 13664, 318, 2392, 621, 393, 4961, 284, 2496, 62, 41068, 62, 11925, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 18896, 7, 20360, 8, 532, 352, 393, 20218, 62, 34086, 62, 41068, 62, 13664, 18189, 2496, 62, 41068, 62, 11925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20218, 62, 34086, 594, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 317, 13, 6827, 317, 10618, 25, 422, 657, 284, 257, 62, 437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 437, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 29510, 62, 34086, 594, 8, 14512, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 437, 796, 45941, 13, 25120, 13, 25192, 600, 7, 16, 11, 18896, 7, 29510, 62, 34086, 594, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24443, 262, 13439, 284, 11241, 32, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 422, 262, 2166, 284, 262, 736, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 32, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 264, 287, 27056, 378, 7, 29510, 62, 34086, 594, 58, 25, 64, 62, 437, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 32, 13, 2302, 437, 7, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 347, 13, 6827, 347, 10618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 33, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 317, 13, 33520, 1306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 62, 19545, 481, 307, 262, 6167, 329, 399, 4303, 2181, 3201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 29510, 62, 34086, 594, 8, 1875, 352, 290, 45941, 13, 25120, 13, 403, 6933, 3419, 18189, 657, 13, 20, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 19545, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 64, 62, 437, 11, 18896, 7, 29510, 62, 34086, 594, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 33, 13, 2302, 437, 7, 29510, 62, 34086, 594, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 347, 13, 4738, 1306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 19545, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 33, 62, 11925, 796, 2496, 62, 41068, 62, 11925, 532, 18896, 7, 30001, 32, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 1845, 64, 62, 312, 87, 796, 31215, 62, 312, 87, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 31215, 62, 312, 87, 6624, 4738, 62, 1845, 64, 62, 312, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 1845, 64, 62, 312, 87, 796, 45941, 13, 25120, 13, 25192, 600, 7, 15, 11, 18896, 7, 20360, 62, 7278, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 1845, 64, 796, 7322, 58, 25120, 62, 1845, 64, 62, 312, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 9688, 796, 45941, 13, 25120, 13, 25192, 600, 7, 15, 11, 18896, 7, 25120, 62, 1845, 64, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 25120, 62, 9688, 11, 18896, 7, 25120, 62, 1845, 64, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 33, 13, 2302, 437, 7, 25120, 62, 1845, 64, 58, 73, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 378, 62, 30001, 7, 30001, 32, 11, 11241, 33, 11, 3509, 62, 41068, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 657, 1279, 18896, 7, 30001, 32, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 657, 1279, 18896, 7, 30001, 33, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 796, 14631, 58, 5097, 50, 60, 8973, 1343, 11241, 32, 1343, 14631, 58, 5188, 47, 60, 8973, 1343, 11241, 33, 1343, 14631, 58, 5188, 47, 60, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10618, 796, 685, 15, 60, 9, 7, 11925, 7, 30001, 32, 8, 220, 1343, 362, 8, 1343, 685, 16, 60, 9, 7, 11925, 7, 30001, 33, 8, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 11, 9335, 62, 312, 87, 11, 9335, 62, 18242, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 5310, 3201, 62, 27932, 7, 83, 482, 641, 11, 493, 19510, 11925, 7, 83, 482, 641, 13219, 18, 27493, 27932, 62, 1676, 65, 828, 12776, 397, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4554, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 482, 641, 10354, 16326, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 325, 5154, 10354, 10618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 19545, 10354, 318, 62, 19545, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27932, 62, 312, 87, 10354, 9335, 62, 312, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27932, 62, 18242, 10354, 9335, 62, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10245, 13, 33295, 7, 39098, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13259, 10618, 4540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 34086, 594, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 34086, 62, 41068, 62, 13664, 796, 657, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 10245, 198, 198, 4299, 787, 62, 5310, 3201, 62, 7890, 7, 18893, 397, 11, 287, 62, 7753, 11, 503, 62, 7753, 11, 954, 11, 299, 62, 41068, 11, 9335, 62, 1676, 65, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1100, 2420, 290, 1441, 4512, 1366, 900, 5794, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12776, 397, 62, 4868, 796, 17635, 198, 220, 220, 220, 329, 4686, 62, 287, 2837, 7, 18893, 397, 13, 1136, 62, 12239, 62, 7857, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 12776, 397, 13, 271, 62, 34680, 7, 312, 62, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 4868, 13, 33295, 7, 18893, 397, 13, 312, 62, 1462, 62, 12239, 7, 312, 62, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 7322, 62, 7278, 796, 17635, 198, 220, 220, 220, 351, 1280, 7, 259, 62, 7753, 11, 705, 81, 11537, 355, 287, 62, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7322, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1908, 287, 27056, 378, 7, 259, 62, 69, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1908, 796, 1908, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 9178, 1724, 886, 286, 262, 7322, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1908, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 407, 262, 44887, 3191, 286, 262, 7322, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 318, 262, 886, 286, 262, 7322, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 657, 1279, 18896, 7, 20360, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7322, 62, 7278, 13, 33295, 7, 20360, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7322, 796, 17635, 1303, 7716, 649, 7322, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 23353, 1802, 28110, 29910, 23549, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 352, 68, 10, 20, 1279, 18896, 7, 20360, 62, 7278, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 850, 10879, 287, 1351, 318, 636, 286, 37865, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29206, 13, 37250, 5008, 223, 168, 100, 222, 41707, 167, 107, 116, 41707, 5008, 223, 168, 117, 112, 41707, 169, 226, 108, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 796, 12776, 397, 13, 268, 8189, 62, 292, 62, 34154, 7, 34086, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 657, 1279, 18896, 7, 34154, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7322, 13, 33295, 7, 34154, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7322, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7322, 62, 7278, 13, 33295, 7, 20360, 8, 198, 220, 220, 220, 1303, 9335, 278, 825, 25, 2251, 62, 5310, 3201, 62, 27932, 198, 220, 220, 220, 329, 6376, 287, 2837, 7, 9127, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 503, 62, 7753, 13, 18982, 7, 9630, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 22915, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 22915, 11, 705, 86, 11537, 355, 503, 62, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 7322, 287, 27056, 378, 7, 20360, 62, 7278, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 278, 62, 10951, 796, 2251, 62, 5310, 3201, 62, 8625, 1817, 7, 20360, 62, 7278, 11, 1312, 11, 7322, 11, 299, 62, 41068, 11, 9335, 62, 1676, 65, 11, 12776, 397, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9766, 76, 287, 9335, 278, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 69, 13, 13564, 7, 17752, 13, 67, 8142, 7, 68, 10671, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 69, 13, 13564, 10786, 59, 77, 11537, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4871, 37123, 3201, 27354, 292, 316, 7, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29206, 13, 4554, 198, 220, 220, 220, 1391, 83, 482, 641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 58, 5097, 50, 60, 3256, 705, 5008, 223, 168, 100, 222, 3256, 46083, 705, 167, 234, 222, 47991, 247, 166, 113, 238, 3256, 705, 167, 98, 120, 3256, 705, 5008, 223, 168, 94, 116, 168, 245, 227, 3256, 705, 47991, 246, 168, 246, 222, 46695, 97, 3256, 705, 2637, 11, 705, 5008, 223, 166, 115, 116, 3256, 705, 5008, 223, 169, 249, 226, 3256, 2644, 4357, 198, 220, 220, 220, 10618, 25, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 2644, 11, 352, 11, 352, 11, 352, 4357, 198, 220, 220, 220, 318, 62, 19545, 25, 6407, 11, 198, 220, 220, 220, 9335, 62, 312, 87, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1433, 11, 2310, 11, 2644, 11, 6073, 4357, 198, 220, 220, 220, 9335, 62, 18242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 5008, 223, 17477, 3256, 705, 5008, 223, 16, 3256, 705, 35975, 120, 3256, 705, 5008, 223, 93, 3256, 705, 167, 232, 242, 3256, 2644, 11, 705, 5008, 223, 168, 94, 108, 168, 100, 222, 3256, 705, 167, 110, 243, 35975, 226, 20520, 92, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 4299, 2181, 3201, 62, 26000, 378, 62, 22184, 7, 15414, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24511, 15458, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14722, 62, 565, 82, 11, 14722, 62, 75, 76, 11, 17311, 11, 17894, 796, 1351, 7, 13344, 46491, 15414, 82, 4008, 198, 220, 220, 220, 14722, 62, 75, 76, 796, 28034, 13, 20471, 13, 26791, 13, 81, 20471, 13, 15636, 62, 43167, 7, 23912, 1424, 62, 75, 76, 11, 15458, 62, 11085, 28, 17821, 11, 24511, 62, 8367, 10779, 16, 8, 198, 220, 220, 220, 17311, 796, 28034, 13, 20471, 13, 26791, 13, 81, 20471, 13, 15636, 62, 43167, 7, 15414, 82, 11, 15458, 62, 11085, 28, 17821, 11, 24511, 62, 8367, 28, 15, 8, 198, 220, 220, 220, 17894, 796, 28034, 13, 20471, 13, 26791, 13, 81, 20471, 13, 15636, 62, 43167, 7, 325, 11726, 11, 15458, 62, 11085, 28, 17821, 11, 24511, 62, 8367, 28, 15, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 15458, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 25558, 7, 23912, 1424, 62, 565, 82, 11, 5391, 28, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 75, 76, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17894, 11, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 1441, 15458 ]
1.926819
4,646
from matscholar import Rester import bson import tqdm import os import pymongo client = pymongo.MongoClient('mongodb+srv://%s:%[email protected]/test:27017' % (os.getenv('ATLAS_USER_RW'), os.getenv('ATLAS_USER_PASSWORD_RW')), authSource='admin') db = client['matstract_db'] c = db.MRS_abstracts LIMIT = 0 rester = Rester() print(c.count_documents({}, limit=5)) for d in tqdm.tqdm(c.find({}, limit=LIMIT)): id = bson.ObjectId(d["_id"]) suggestions = rester.get_journal_suggestion(abstract=d["abstract"]) # print(d) c.update({"_id": id}, {"$set": {"journal_suggestions": suggestions}}) # print(d["abstract"]) # print(suggestions) # print("-----------\n\n\n\n")
[ 6738, 46054, 354, 6192, 1330, 1874, 353, 198, 11748, 275, 1559, 198, 11748, 256, 80, 36020, 198, 11748, 28686, 198, 11748, 279, 4948, 25162, 198, 198, 16366, 796, 279, 4948, 25162, 13, 44, 25162, 11792, 10786, 31059, 375, 65, 10, 27891, 85, 1378, 4, 82, 25, 4, 82, 31, 6759, 8709, 12, 74, 303, 3901, 13, 31059, 375, 65, 13, 3262, 14, 9288, 25, 1983, 29326, 6, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 418, 13, 1136, 24330, 10786, 1404, 43, 1921, 62, 29904, 62, 46747, 33809, 28686, 13, 1136, 24330, 10786, 1404, 43, 1921, 62, 29904, 62, 47924, 54, 12532, 62, 46747, 11537, 828, 6284, 7416, 11639, 28482, 11537, 198, 9945, 796, 5456, 17816, 6759, 8709, 62, 9945, 20520, 198, 66, 796, 20613, 13, 44, 6998, 62, 397, 8709, 82, 198, 198, 43, 3955, 2043, 796, 657, 198, 260, 1706, 796, 1874, 353, 3419, 198, 198, 4798, 7, 66, 13, 9127, 62, 15390, 2886, 15090, 5512, 4179, 28, 20, 4008, 198, 198, 1640, 288, 287, 256, 80, 36020, 13, 83, 80, 36020, 7, 66, 13, 19796, 15090, 5512, 4179, 28, 43, 3955, 2043, 8, 2599, 198, 220, 220, 220, 4686, 796, 275, 1559, 13, 10267, 7390, 7, 67, 14692, 62, 312, 8973, 8, 198, 220, 220, 220, 11776, 796, 1334, 263, 13, 1136, 62, 24891, 62, 47811, 295, 7, 397, 8709, 28, 67, 14692, 397, 8709, 8973, 8, 198, 220, 220, 220, 1303, 3601, 7, 67, 8, 198, 220, 220, 220, 269, 13, 19119, 7, 4895, 62, 312, 1298, 4686, 5512, 19779, 3, 2617, 1298, 19779, 24891, 62, 47811, 507, 1298, 11776, 11709, 8, 628, 220, 220, 220, 1303, 3601, 7, 67, 14692, 397, 8709, 8973, 8, 198, 220, 220, 220, 1303, 3601, 7, 47811, 507, 8, 198, 220, 220, 220, 1303, 3601, 7203, 32284, 59, 77, 59, 77, 59, 77, 59, 77, 4943, 628, 198 ]
2.220544
331
#!/usr/local/bin/python # -*-: coding utf-8 -*- """ Snips core and nlu server. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from rasa_core.agent import Agent import os import os.path import re from rasa_core.domain import TemplateDomain from rasa_core.featurizers import Featurizer from rasa_core.interpreter import NaturalLanguageInterpreter from rasa_core.policies.ensemble import PolicyEnsemble from rasa_core.utils import read_yaml_file from rasa_core.policies.keras_policy import KerasPolicy from rasa_core.policies.memoization import MemoizationPolicy from rasa_nlu.utils.md_to_json import MarkdownToJson from rasa_nlu.utils.md_to_json import comment_regex,synonym_regex,intent_regex,INTENT_PARSING_STATE,SYNONYM_PARSING_STATE # Customised Agent class to use custom SnipsDomain and pass core server through to the Domain for scope access # Customised Domain to allow reference to core server for access to sessionId and other server scope.
[ 2, 48443, 14629, 14, 12001, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 25, 19617, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 5489, 2419, 4755, 290, 299, 2290, 4382, 13, 37227, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 374, 15462, 62, 7295, 13, 25781, 1330, 15906, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 11748, 302, 198, 198, 6738, 374, 15462, 62, 7295, 13, 27830, 1330, 37350, 43961, 198, 6738, 374, 15462, 62, 7295, 13, 5036, 2541, 11341, 1330, 5452, 2541, 7509, 198, 6738, 374, 15462, 62, 7295, 13, 3849, 3866, 353, 1330, 12068, 32065, 9492, 3866, 353, 198, 6738, 374, 15462, 62, 7295, 13, 79, 4160, 444, 13, 1072, 11306, 1330, 220, 7820, 4834, 15140, 198, 6738, 374, 15462, 62, 7295, 13, 26791, 1330, 1100, 62, 88, 43695, 62, 7753, 198, 6738, 374, 15462, 62, 7295, 13, 79, 4160, 444, 13, 6122, 292, 62, 30586, 1330, 17337, 292, 36727, 198, 6738, 374, 15462, 62, 7295, 13, 79, 4160, 444, 13, 11883, 78, 1634, 1330, 4942, 78, 1634, 36727, 198, 198, 6738, 374, 15462, 62, 77, 2290, 13, 26791, 13, 9132, 62, 1462, 62, 17752, 1330, 2940, 2902, 2514, 41, 1559, 198, 6738, 374, 15462, 62, 77, 2290, 13, 26791, 13, 9132, 62, 1462, 62, 17752, 1330, 2912, 62, 260, 25636, 11, 28869, 5177, 62, 260, 25636, 11, 48536, 62, 260, 25636, 11, 12394, 3525, 62, 27082, 50, 2751, 62, 44724, 11, 23060, 45, 40508, 44, 62, 27082, 50, 2751, 62, 44724, 628, 198, 2, 8562, 1417, 15906, 1398, 284, 779, 2183, 5489, 2419, 43961, 290, 1208, 4755, 4382, 832, 284, 262, 20021, 329, 8354, 1895, 198, 198, 2, 8562, 1417, 20021, 284, 1249, 4941, 284, 4755, 4382, 329, 1895, 284, 6246, 7390, 290, 584, 4382, 8354, 13, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
3.177515
338
from getratings.models.ratings import Ratings
[ 6738, 651, 10366, 654, 13, 27530, 13, 10366, 654, 1330, 36826, 201, 198, 201, 198 ]
3.266667
15
# https://machinelearningmastery.com/predict-sentiment-movie-reviews-using-deep-learning/ import os import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpoint from keras.layers import Embedding, Conv1D, MaxPooling1D, Flatten, Dense, Input, Dropout from keras.models import Model import matplotlib.pyplot as plt from keras.layers import LSTM, Bidirectional import pickle do_early_stopping = True # top words to be considered in Tokenizer NUM_WORDS = 20000 # Length of phrases for padding if shorter or cropping if longer MAX_SEQUENCE_LENGTH = 500 EMBEDDING_DIM = 300 # preparing train-set from text data train_text = np.load('Res/train_text.npy') train_label = np.load('Res/train_label.npy') print('TrainSet is composed of %s texts.' % len(train_text)) # preparing test-set from text data test_text = np.load('Res/test_text.npy') test_label = np.load('Res/test_label.npy') print('TestSet is composed of %s texts.' % len(test_text)) # Formatting text samples and labels in tensors. with open('Res/tokenizer.pickle', 'rb') as handle: tokenizer = pickle.load(handle) train_sequences = tokenizer.texts_to_sequences(train_text) # Splits words by space (split=” “), Filters out punctuation, Converts text to lowercase. For each text returns a list of integers (same words a codified by same integer) test_sequences = tokenizer.texts_to_sequences(test_text) word_index = tokenizer.word_index # dictionary mapping words (str) to their index starting from 0 (int) print('Found %s unique tokens.' % len(word_index)) train_data = pad_sequences(train_sequences, maxlen=MAX_SEQUENCE_LENGTH) # each element of sequences is cropped or padded to reach maxlen  test_data = pad_sequences(test_sequences, maxlen=MAX_SEQUENCE_LENGTH) train_label = np.asarray(train_label) test_label = np.asarray(test_label) print('Shape of data tensor:', train_data.shape) #shuffle dataset indices = np.arange(train_data.shape[0]) np.random.shuffle(indices) train_data = train_data[indices] train_label = train_label[indices] # split the data into a training set and a validation set num_validation_samples = int(0.1 * train_data.shape[0]) x_train = train_data[:-num_validation_samples] y_train = train_label[:-num_validation_samples] x_val = train_data[-num_validation_samples:] y_val = train_label[-num_validation_samples:] x_test = test_data y_test = test_label embedding_matrix = np.load('Res/embedding_matrix.npy') #All that the Embedding layer does is to map the integer inputs to the vectors found at the corresponding index in the embedding matrix, i.e. the sequence [1, 2] would be converted to [embeddings[1], embeddings[2]]. This means that the output of the Embedding layer will be a 3D tensor of shape (samples, sequence_length, embedding_dim). sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32') embedding_layer = Embedding(len(word_index)+1, EMBEDDING_DIM, weights=[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH, trainable=False) x = embedding_layer(sequence_input) x = Dropout(0.3)(x) x = Bidirectional(LSTM(100))(x) x = Dropout(0.3)(x) prob = Dense(1, activation='sigmoid')(x) model = Model(sequence_input, prob) model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy']) tensorboard = TensorBoard(log_dir='./GraphLSTM', histogram_freq=0, write_graph=True) print('model compiled') print(model.summary()) early_stopping = EarlyStopping(monitor='val_loss', patience = 2, mode = 'min') cp = ModelCheckpoint('ModelBLSTM.h5', monitor='val_acc', save_best_only=True, mode='max') if do_early_stopping: print('using early stopping strategy') history = model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=4, batch_size=128, callbacks = [early_stopping, tensorboard]) else: history = model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=8, batch_size=128) loss, acc = model.evaluate(x_test, y_test) print("loss: "+str(loss)) print("accuracy: "+str(acc)) model.save('my_model3.h5') plotting(history)
[ 198, 2, 3740, 1378, 30243, 40684, 9866, 88, 13, 785, 14, 79, 17407, 12, 34086, 3681, 12, 41364, 12, 19023, 82, 12, 3500, 12, 22089, 12, 40684, 14, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 41927, 292, 13, 3866, 36948, 13, 5239, 1330, 29130, 7509, 198, 6738, 41927, 292, 13, 3866, 36948, 13, 43167, 1330, 14841, 62, 3107, 3007, 198, 6738, 41927, 292, 13, 26791, 1330, 284, 62, 66, 2397, 12409, 198, 6738, 41927, 292, 13, 13345, 10146, 1330, 12556, 1273, 33307, 11, 309, 22854, 29828, 11, 9104, 9787, 4122, 198, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 13302, 6048, 278, 11, 34872, 16, 35, 11, 5436, 27201, 278, 16, 35, 11, 1610, 41769, 11, 360, 1072, 11, 23412, 11, 14258, 448, 198, 6738, 41927, 292, 13, 27530, 1330, 9104, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 406, 2257, 44, 11, 43484, 4154, 282, 628, 198, 11748, 2298, 293, 628, 198, 4598, 62, 11458, 62, 301, 33307, 796, 6407, 198, 2, 1353, 2456, 284, 307, 3177, 287, 29130, 7509, 198, 41359, 62, 45359, 5258, 796, 939, 405, 198, 198, 2, 22313, 286, 20144, 329, 24511, 611, 12238, 393, 6763, 2105, 611, 2392, 198, 22921, 62, 5188, 10917, 18310, 62, 43, 49494, 796, 5323, 198, 198, 3620, 33, 1961, 35, 2751, 62, 35, 3955, 796, 5867, 198, 198, 2, 10629, 4512, 12, 2617, 422, 2420, 1366, 198, 27432, 62, 5239, 796, 45941, 13, 2220, 10786, 4965, 14, 27432, 62, 5239, 13, 77, 9078, 11537, 198, 27432, 62, 18242, 796, 45941, 13, 2220, 10786, 4965, 14, 27432, 62, 18242, 13, 77, 9078, 11537, 198, 198, 4798, 10786, 44077, 7248, 318, 13160, 286, 4064, 82, 13399, 2637, 4064, 18896, 7, 27432, 62, 5239, 4008, 198, 198, 2, 10629, 1332, 12, 2617, 422, 2420, 1366, 198, 9288, 62, 5239, 796, 45941, 13, 2220, 10786, 4965, 14, 9288, 62, 5239, 13, 77, 9078, 11537, 198, 9288, 62, 18242, 796, 45941, 13, 2220, 10786, 4965, 14, 9288, 62, 18242, 13, 77, 9078, 11537, 198, 198, 4798, 10786, 14402, 7248, 318, 13160, 286, 4064, 82, 13399, 2637, 4064, 18896, 7, 9288, 62, 5239, 4008, 198, 198, 2, 18980, 889, 2420, 8405, 290, 14722, 287, 11192, 669, 13, 198, 4480, 1280, 10786, 4965, 14, 30001, 7509, 13, 27729, 293, 3256, 705, 26145, 11537, 355, 5412, 25, 198, 220, 220, 220, 11241, 7509, 796, 2298, 293, 13, 2220, 7, 28144, 8, 198, 198, 27432, 62, 3107, 3007, 796, 11241, 7509, 13, 5239, 82, 62, 1462, 62, 3107, 3007, 7, 27432, 62, 5239, 8, 1303, 13341, 896, 2456, 416, 2272, 357, 35312, 28, 447, 251, 564, 250, 828, 7066, 1010, 503, 21025, 2288, 11, 1482, 24040, 2420, 284, 2793, 7442, 13, 1114, 1123, 2420, 5860, 257, 1351, 286, 37014, 357, 31642, 2456, 257, 14873, 1431, 416, 976, 18253, 8, 198, 198, 9288, 62, 3107, 3007, 796, 11241, 7509, 13, 5239, 82, 62, 1462, 62, 3107, 3007, 7, 9288, 62, 5239, 8, 198, 4775, 62, 9630, 796, 11241, 7509, 13, 4775, 62, 9630, 1303, 22155, 16855, 2456, 357, 2536, 8, 284, 511, 6376, 3599, 422, 657, 357, 600, 8, 198, 4798, 10786, 21077, 4064, 82, 3748, 16326, 2637, 4064, 18896, 7, 4775, 62, 9630, 4008, 198, 198, 27432, 62, 7890, 796, 14841, 62, 3107, 3007, 7, 27432, 62, 3107, 3007, 11, 3509, 11925, 28, 22921, 62, 5188, 10917, 18310, 62, 43, 49494, 8, 1303, 1123, 5002, 286, 16311, 318, 48998, 393, 44582, 284, 3151, 3509, 11925, 1849, 198, 9288, 62, 7890, 796, 14841, 62, 3107, 3007, 7, 9288, 62, 3107, 3007, 11, 3509, 11925, 28, 22921, 62, 5188, 10917, 18310, 62, 43, 49494, 8, 198, 198, 27432, 62, 18242, 796, 45941, 13, 292, 18747, 7, 27432, 62, 18242, 8, 198, 9288, 62, 18242, 796, 45941, 13, 292, 18747, 7, 9288, 62, 18242, 8, 198, 4798, 10786, 33383, 286, 1366, 11192, 273, 25, 3256, 4512, 62, 7890, 13, 43358, 8, 198, 198, 2, 1477, 18137, 27039, 198, 521, 1063, 796, 45941, 13, 283, 858, 7, 27432, 62, 7890, 13, 43358, 58, 15, 12962, 198, 37659, 13, 25120, 13, 1477, 18137, 7, 521, 1063, 8, 198, 27432, 62, 7890, 796, 4512, 62, 7890, 58, 521, 1063, 60, 198, 27432, 62, 18242, 796, 4512, 62, 18242, 58, 521, 1063, 60, 198, 198, 2, 6626, 262, 1366, 656, 257, 3047, 900, 290, 257, 21201, 900, 198, 198, 22510, 62, 12102, 341, 62, 82, 12629, 796, 493, 7, 15, 13, 16, 1635, 4512, 62, 7890, 13, 43358, 58, 15, 12962, 198, 198, 87, 62, 27432, 796, 4512, 62, 7890, 58, 21912, 22510, 62, 12102, 341, 62, 82, 12629, 60, 198, 88, 62, 27432, 796, 4512, 62, 18242, 58, 21912, 22510, 62, 12102, 341, 62, 82, 12629, 60, 198, 198, 87, 62, 2100, 796, 4512, 62, 7890, 58, 12, 22510, 62, 12102, 341, 62, 82, 12629, 47715, 198, 88, 62, 2100, 796, 4512, 62, 18242, 58, 12, 22510, 62, 12102, 341, 62, 82, 12629, 47715, 198, 198, 87, 62, 9288, 796, 1332, 62, 7890, 198, 88, 62, 9288, 796, 1332, 62, 18242, 628, 198, 20521, 12083, 62, 6759, 8609, 796, 45941, 13, 2220, 10786, 4965, 14, 20521, 12083, 62, 6759, 8609, 13, 77, 9078, 11537, 628, 198, 2, 3237, 326, 262, 13302, 6048, 278, 7679, 857, 318, 284, 3975, 262, 18253, 17311, 284, 262, 30104, 1043, 379, 262, 11188, 6376, 287, 262, 11525, 12083, 17593, 11, 1312, 13, 68, 13, 262, 8379, 685, 16, 11, 362, 60, 561, 307, 11513, 284, 685, 20521, 67, 654, 58, 16, 4357, 11525, 67, 654, 58, 17, 60, 4083, 770, 1724, 326, 262, 5072, 286, 262, 13302, 6048, 278, 7679, 481, 307, 257, 513, 35, 11192, 273, 286, 5485, 357, 82, 12629, 11, 8379, 62, 13664, 11, 11525, 12083, 62, 27740, 737, 198, 198, 43167, 62, 15414, 796, 23412, 7, 43358, 16193, 22921, 62, 5188, 10917, 18310, 62, 43, 49494, 11, 828, 288, 4906, 11639, 600, 2624, 11537, 198, 198, 20521, 12083, 62, 29289, 796, 13302, 6048, 278, 7, 11925, 7, 4775, 62, 9630, 47762, 16, 11, 412, 10744, 1961, 35, 2751, 62, 35, 3955, 11, 19590, 41888, 20521, 12083, 62, 6759, 8609, 4357, 5128, 62, 13664, 28, 22921, 62, 5188, 10917, 18310, 62, 43, 49494, 11, 4512, 540, 28, 25101, 8, 198, 198, 87, 796, 11525, 12083, 62, 29289, 7, 43167, 62, 15414, 8, 198, 87, 796, 14258, 448, 7, 15, 13, 18, 5769, 87, 8, 198, 87, 796, 43484, 4154, 282, 7, 43, 2257, 44, 7, 3064, 4008, 7, 87, 8, 198, 87, 796, 14258, 448, 7, 15, 13, 18, 5769, 87, 8, 198, 1676, 65, 796, 360, 1072, 7, 16, 11, 14916, 11639, 82, 17225, 1868, 6, 5769, 87, 8, 198, 198, 19849, 796, 9104, 7, 43167, 62, 15414, 11, 1861, 8, 198, 198, 19849, 13, 5589, 576, 7, 22462, 11639, 39491, 62, 19692, 298, 28338, 3256, 40085, 7509, 11639, 324, 321, 3256, 20731, 28, 17816, 4134, 23843, 6, 12962, 198, 198, 83, 22854, 3526, 796, 309, 22854, 29828, 7, 6404, 62, 15908, 28, 4458, 14, 37065, 43, 2257, 44, 3256, 1554, 21857, 62, 19503, 80, 28, 15, 11, 3551, 62, 34960, 28, 17821, 8, 198, 198, 4798, 10786, 19849, 14102, 11537, 198, 198, 4798, 7, 19849, 13, 49736, 28955, 220, 198, 198, 11458, 62, 301, 33307, 796, 12556, 1273, 33307, 7, 41143, 11639, 2100, 62, 22462, 3256, 16336, 796, 362, 11, 4235, 796, 705, 1084, 11537, 198, 13155, 796, 9104, 9787, 4122, 10786, 17633, 9148, 2257, 44, 13, 71, 20, 3256, 5671, 11639, 2100, 62, 4134, 3256, 3613, 62, 13466, 62, 8807, 28, 17821, 11, 4235, 11639, 9806, 11537, 628, 198, 361, 466, 62, 11458, 62, 301, 33307, 25, 198, 220, 220, 220, 3601, 10786, 3500, 1903, 12225, 4811, 11537, 198, 220, 220, 220, 2106, 796, 2746, 13, 11147, 7, 87, 62, 27432, 11, 331, 62, 27432, 11, 21201, 62, 7890, 16193, 87, 62, 2100, 11, 331, 62, 2100, 828, 36835, 82, 28, 19, 11, 15458, 62, 7857, 28, 12762, 11, 869, 10146, 796, 685, 11458, 62, 301, 33307, 11, 11192, 273, 3526, 12962, 198, 17772, 25, 198, 220, 220, 220, 2106, 796, 2746, 13, 11147, 7, 87, 62, 27432, 11, 331, 62, 27432, 11, 21201, 62, 7890, 16193, 87, 62, 2100, 11, 331, 62, 2100, 828, 36835, 82, 28, 23, 11, 15458, 62, 7857, 28, 12762, 8, 628, 198, 22462, 11, 697, 796, 2746, 13, 49786, 7, 87, 62, 9288, 11, 331, 62, 9288, 8, 198, 198, 4798, 7203, 22462, 25, 43825, 2536, 7, 22462, 4008, 198, 4798, 7203, 4134, 23843, 25, 43825, 2536, 7, 4134, 4008, 220, 198, 198, 19849, 13, 21928, 10786, 1820, 62, 19849, 18, 13, 71, 20, 11537, 198, 198, 29487, 889, 7, 23569, 8, 628, 198 ]
2.893426
1,445
import mbuild as mb class NH(mb.Compound): """A nitrogen with a hydrogen and two open ports. """ if __name__ == '__main__': nh = NH()
[ 11748, 285, 11249, 355, 285, 65, 628, 198, 4871, 24451, 7, 2022, 13, 7293, 633, 2599, 198, 220, 220, 220, 37227, 32, 23417, 351, 257, 17669, 290, 734, 1280, 14090, 13, 37227, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 299, 71, 796, 24451, 3419, 198 ]
2.685185
54
from Jumpscale import j import os __version__ = "0.0.1"
[ 6738, 449, 8142, 38765, 1330, 474, 198, 11748, 28686, 198, 198, 834, 9641, 834, 796, 366, 15, 13, 15, 13, 16, 1, 628 ]
2.521739
23
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from instrosetta.interfaces.optomechanics import filter_wheel_pb2 as instrosetta_dot_interfaces_dot_optomechanics_dot_filter__wheel__pb2
[ 2, 2980, 515, 416, 262, 308, 49, 5662, 11361, 8435, 17050, 13877, 13, 8410, 5626, 48483, 0, 198, 11748, 1036, 14751, 198, 198, 6738, 916, 305, 2617, 8326, 13, 3849, 32186, 13, 8738, 462, 3147, 873, 1330, 8106, 62, 22001, 62, 40842, 17, 355, 916, 305, 2617, 8326, 62, 26518, 62, 3849, 32186, 62, 26518, 62, 8738, 462, 3147, 873, 62, 26518, 62, 24455, 834, 22001, 834, 40842, 17, 628, 628 ]
3.140845
71
print('hello') """ Compare the number of operations and the time needed to compute Fibonacci numbers recursively versus that needed to compute them iteratively """ # recursive work # Python program to display the Fibonacci sequence import time recursive_data = Data_tracker() number_of_terms = 40 recursive_data.start_time = time.time() # check if the number of terms is valid if number_of_terms <= 0: print("Plese enter a positive integer") else: print(f"Fibonacci number for {number_of_terms} terms:") print(recur_fibo((number_of_terms - 1), recursive_data)) recursive_data.stop_time = time.time() print('\n\nRECUSIVE DATA') recursive_data.print_function_data() # iterative work # https://www.programiz.com/python-programming/examples/fibonacci-sequence # Program to display the Fibonacci sequence up to n-th term iterative_data = Data_tracker() # first two terms n1, n2 = 0, 1 count = 0 # check if the number of terms is valid if number_of_terms <= 0: print("Please enter a positive integer") # if there is only one term, return n1 elif number_of_terms == 1: print("Fibonacci sequence upto",number_of_terms,":") print(n1) # generate fibonacci sequence else: print("Fibonacci sequence:") iterative_data.start_time = time.time() while count < number_of_terms: iterative_data.increment_if_count() #print(n1) iterative_data.increment_add_count() nth = n1 + n2 # update values iterative_data.increment_assignment_count() n1 = n2 iterative_data.increment_assignment_count() n2 = nth iterative_data.increment_assignment_count() count += 1 iterative_data.stop_time = time.time() print('\n\nITERATIVE DATA') iterative_data.print_function_data()
[ 4798, 10786, 31373, 11537, 198, 198, 37811, 198, 41488, 262, 1271, 286, 4560, 290, 262, 640, 2622, 198, 1462, 24061, 41566, 261, 44456, 3146, 664, 1834, 2280, 9051, 326, 198, 27938, 284, 24061, 606, 11629, 9404, 198, 37811, 628, 198, 2, 45115, 670, 198, 2, 11361, 1430, 284, 3359, 262, 41566, 261, 44456, 8379, 198, 198, 11748, 640, 198, 198, 8344, 30753, 62, 7890, 796, 6060, 62, 2213, 10735, 3419, 198, 198, 17618, 62, 1659, 62, 38707, 796, 2319, 198, 198, 8344, 30753, 62, 7890, 13, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 198, 198, 2, 2198, 611, 262, 1271, 286, 2846, 318, 4938, 198, 361, 1271, 62, 1659, 62, 38707, 19841, 657, 25, 198, 220, 220, 3601, 7203, 47, 829, 68, 3802, 257, 3967, 18253, 4943, 198, 17772, 25, 198, 220, 220, 3601, 7, 69, 1, 37, 571, 261, 44456, 1271, 329, 1391, 17618, 62, 1659, 62, 38707, 92, 2846, 25, 4943, 198, 220, 220, 3601, 7, 8344, 333, 62, 69, 26762, 19510, 17618, 62, 1659, 62, 38707, 532, 352, 828, 45115, 62, 7890, 4008, 198, 198, 8344, 30753, 62, 7890, 13, 11338, 62, 2435, 796, 640, 13, 2435, 3419, 198, 198, 4798, 10786, 59, 77, 59, 77, 38827, 2937, 9306, 42865, 11537, 198, 8344, 30753, 62, 7890, 13, 4798, 62, 8818, 62, 7890, 3419, 198, 198, 2, 11629, 876, 670, 628, 198, 2, 3740, 1378, 2503, 13, 23065, 528, 13, 785, 14, 29412, 12, 23065, 2229, 14, 1069, 12629, 14, 69, 571, 261, 44456, 12, 43167, 198, 198, 2, 6118, 284, 3359, 262, 41566, 261, 44456, 8379, 510, 284, 299, 12, 400, 3381, 198, 198, 2676, 876, 62, 7890, 796, 6060, 62, 2213, 10735, 3419, 198, 198, 2, 717, 734, 2846, 198, 77, 16, 11, 299, 17, 796, 657, 11, 352, 198, 9127, 796, 657, 198, 198, 2, 2198, 611, 262, 1271, 286, 2846, 318, 4938, 198, 361, 1271, 62, 1659, 62, 38707, 19841, 657, 25, 198, 220, 220, 3601, 7203, 5492, 3802, 257, 3967, 18253, 4943, 198, 2, 611, 612, 318, 691, 530, 3381, 11, 1441, 299, 16, 198, 417, 361, 1271, 62, 1659, 62, 38707, 6624, 352, 25, 198, 220, 220, 3601, 7203, 37, 571, 261, 44456, 8379, 18529, 78, 1600, 17618, 62, 1659, 62, 38707, 553, 25, 4943, 198, 220, 220, 3601, 7, 77, 16, 8, 198, 2, 7716, 12900, 261, 44456, 8379, 198, 17772, 25, 198, 220, 220, 3601, 7203, 37, 571, 261, 44456, 8379, 25, 4943, 198, 220, 220, 11629, 876, 62, 7890, 13, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 981, 954, 1279, 1271, 62, 1659, 62, 38707, 25, 198, 220, 220, 220, 220, 220, 220, 11629, 876, 62, 7890, 13, 24988, 434, 62, 361, 62, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 77, 16, 8, 198, 220, 220, 220, 220, 220, 220, 11629, 876, 62, 7890, 13, 24988, 434, 62, 2860, 62, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 299, 400, 796, 299, 16, 1343, 299, 17, 198, 220, 220, 220, 220, 220, 220, 1303, 4296, 3815, 198, 220, 220, 220, 220, 220, 220, 11629, 876, 62, 7890, 13, 24988, 434, 62, 562, 16747, 62, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 299, 16, 796, 299, 17, 198, 220, 220, 220, 220, 220, 220, 11629, 876, 62, 7890, 13, 24988, 434, 62, 562, 16747, 62, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 299, 17, 796, 299, 400, 198, 220, 220, 220, 220, 220, 220, 11629, 876, 62, 7890, 13, 24988, 434, 62, 562, 16747, 62, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 198, 2676, 876, 62, 7890, 13, 11338, 62, 2435, 796, 640, 13, 2435, 3419, 198, 4798, 10786, 59, 77, 59, 77, 2043, 1137, 37045, 42865, 11537, 198, 2676, 876, 62, 7890, 13, 4798, 62, 8818, 62, 7890, 3419, 198 ]
2.742991
642
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (c) 2011 Openstack, LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """ arch linux network helper module """ # Arch has two different kinds of network configuration. More recently, # there's 'netcfg' and previously (for lack of a better term) 'legacy'. # # legacy uses: # - 1 shell-script-style global configuration (/etc/rc.conf) # - one IP per interface # - routes are per interface # - gateways are global # - DNS is per interface # # netcfg uses: # - multiple shell-script-style network configurations, 1 per interface # - one IP per configuration # - routes are per interface # - gateways are per interface # - DNS is global (/etc/resolv.conf) # # netcfg is designed for one IP per configuration, but it's not tolerant # of the older style colon interfaces for IP aliasing. So we have to use # a hack to get IP aliasing working: # https://bbs.archlinux.org/viewtopic.php?pid=951573#p951573 # # Arch is a rolling release, meaning new features and updated packages # roll out on a unpredictable schedule. It also means there is no such # thing as v1.0 or v2.0. We check if the netcfg package is installed to # determine which format should be used. import os import re import time import subprocess import logging from cStringIO import StringIO import commands.network CONF_FILE = "/etc/rc.conf" NETWORK_DIR = "/etc/network.d" NETCTL_DIR = "/etc/netctl/" def get_hostname(): """ Just required to check /etc/rc.conf for SysVInit based Archlinux images. All updated SystemD supporting images have it at default /etc/hostname Will fetch current hostname of VM if any and return. Looks at /etc/rc.conf config for Archlinux server using SysVInit. """ try: with open(CONF_FILE) as hostname_fyl: for line in hostname_fyl.readlines(): hn = re.search('HOSTNAME="(.*)"', line) if hn: return hn.group(1) return None except Exception, e: logging.info("Init support Arch hostname enquiry failed: %s." % str(e)) return None def get_hostname_file(infile, hostname): """ Update hostname on system """ outfile = StringIO() found = False for line in infile: line = line.strip() if '=' in line: k, v = line.split('=', 1) k = k.strip() if k == "HOSTNAME": print >> outfile, 'HOSTNAME="%s"' % hostname found = True else: print >> outfile, line else: print >> outfile, line if not found: print >> outfile, 'HOSTNAME="%s"' % hostname outfile.seek(0) return outfile.read() def _update_rc_conf_legacy(infile, interfaces): """ Return data for (sub-)interfaces and routes """ # Updating this file happens in two phases since it's non-trivial to # update. The INTERFACES and ROUTES variables the key lines, but they # will in turn reference other variables, which may be before or after. # As a result, we need to load the entire file, find the main variables # and then remove the reference variables. When that is done, we add # the lines for the new config. # First generate new config ifaces = [] routes = [] gateway4, gateway6 = commands.network.get_gateways(interfaces) ifnames = interfaces.keys() ifnames.sort() for ifname_prefix in ifnames: interface = interfaces[ifname_prefix] ip4s = interface['ip4s'] ip6s = interface['ip6s'] ifname_suffix_num = 0 for ip4, ip6 in map(None, ip4s, ip6s): if ifname_suffix_num: ifname = "%s:%d" % (ifname_prefix, ifname_suffix_num) else: ifname = ifname_prefix line = [ifname] if ip4: line.append('%(address)s netmask %(netmask)s' % ip4) if ip6: line.append('add %(address)s/%(prefixlen)s' % ip6) ifname_suffix_num += 1 ifaces.append((ifname.replace(':', '_'), ' '.join(line))) for i, route in enumerate(interface['routes']): if route['network'] == '0.0.0.0' and \ route['netmask'] == '0.0.0.0' and \ route['gateway'] == gateway4: continue line = "-net %(network)s netmask %(netmask)s gw %(gateway)s" % \ route routes.append(('%s_route%d' % (ifname_prefix, i), line)) if gateway4: routes.append(('gateway', 'default gw %s' % gateway4)) if gateway6: routes.append(('gateway6', 'default gw %s' % gateway6)) # Then load old file lines, variables = _parse_config(infile) # Update INTERFACES lineno = variables.get('INTERFACES') if lineno is not None: # Remove old lines for name in _parse_variable(lines[lineno], strip_bang=True): if name in variables: lines[variables[name]] = None else: lines.append('') lineno = len(lines) - 1 config = [] names = [] for name, line in ifaces: config.append('%s="%s"' % (name, line)) names.append(name) config.append('INTERFACES=(%s)' % ' '.join(names)) lines[lineno] = '\n'.join(config) # Update ROUTES lineno = variables.get('ROUTES') if lineno is not None: # Remove old lines for name in _parse_variable(lines[lineno], strip_bang=True): if name in variables: lines[variables[name]] = None else: lines.append('') lineno = len(lines) - 1 config = [] names = [] for name, line in routes: config.append('%s="%s"' % (name, line)) names.append(name) config.append('ROUTES=(%s)' % ' '.join(names)) lines[lineno] = '\n'.join(config) # (Possibly) comment out NETWORKS lineno = variables.get('NETWORKS') if lineno is not None: for name in _parse_variable(lines[lineno], strip_bang=True): nlineno = variables.get(name) if nlineno is not None: lines[nlineno] = '#' + lines[lineno] lines[lineno] = '#' + lines[lineno] # (Possibly) update DAEMONS lineno = variables.get('DAEMONS') if lineno is not None: daemons = _parse_variable(lines[lineno]) try: network = daemons.index('!network') daemons[network] = 'network' if '@net-profiles' in daemons: daemons.remove('@net-profiles') lines[lineno] = 'DAEMONS=(%s)' % ' '.join(daemons) except ValueError: pass # Filter out any removed lines lines = filter(lambda l: l is not None, lines) # Serialize into new file outfile = StringIO() for line in lines: print >> outfile, line outfile.seek(0) return outfile.read() def _get_file_data_netcfg(ifname, interface): """ Return data for (sub-)interfaces """ ifaces = [] label = interface['label'] ip4s = interface['ip4s'] ip6s = interface['ip6s'] gateway4 = interface['gateway4'] gateway6 = interface['gateway6'] dns = interface['dns'] outfile = StringIO() if label: print >>outfile, "# Label %s" % label print >>outfile, 'CONNECTION="ethernet"' print >>outfile, 'INTERFACE=%s' % ifname if ip4s: ip4 = ip4s.pop(0) print >>outfile, 'IP="static"' print >>outfile, 'ADDR="%(address)s"' % ip4 print >>outfile, 'NETMASK="%(netmask)s"' % ip4 if gateway4: print >>outfile, 'GATEWAY="%s"' % gateway4 if ip6s: ip6 = ip6s.pop(0) print >>outfile, 'IP6="static"' print >>outfile, 'ADDR6="%(address)s/%(prefixlen)s"' % ip6 if gateway6: print >>outfile, 'GATEWAY6="%s"' % gateway6 routes = ['"%(network)s/%(netmask)s via %(gateway)s"' % route for route in interface['routes'] if not route['network'] == '0.0.0.0' and not route['netmask'] == '0.0.0.0' and not route['gateway'] == gateway4] if routes: print >>outfile, 'ROUTES=(%s)' % ' '.join(routes) if dns: print >>outfile, 'DNS=(%s)' % ' '.join(dns) # Finally add remaining aliases. This is kind of hacky, see comment at # top for explanation aliases = ['%(address)s/%(netmask)s' % ip4 for ip4 in ip4s] + \ ['%(address)s/%(prefixlen)s' % ip6 for ip6 in ip6s] if aliases: commands = '; '.join(['ip addr add %s dev %s' % (a, ifname) for a in aliases]) print >>outfile, 'POST_UP="%s"' % commands aliases.reverse() commands = '; '.join(['ip addr del %s dev %s' % (a, ifname) for a in aliases]) print >>outfile, 'PRE_DOWN="%s"' % commands outfile.seek(0) return outfile.read() def process_interface_files_legacy(update_files, interfaces): """Generate changeset for interface configuration""" infile = StringIO(update_files.get(CONF_FILE, '')) data = _update_rc_conf_legacy(infile, interfaces) update_files[CONF_FILE] = data def process_interface_files_netctl(update_files, interfaces): """Generate changeset for interface configuration""" # Enumerate all of the existing network files remove_files = set() for filename in os.listdir(NETCTL_DIR): filepath = os.path.join(NETCTL_DIR, filename) if not filename.endswith('~') and not os.path.isdir(filepath): remove_files.add(filepath) netnames = [] for ifname, interface in interfaces.iteritems(): data = _get_file_data_netctl(ifname, interface) filepath = os.path.join(NETCTL_DIR, ifname) update_files[filepath] = data if filepath in remove_files: remove_files.remove(filepath) netnames.append(ifname) return remove_files, netnames def process_interface_files_netcfg(update_files, interfaces): """Generate changeset for interface configuration""" # Enumerate all of the existing network files remove_files = set() for filename in os.listdir(NETWORK_DIR): filepath = os.path.join(NETWORK_DIR, filename) if not filename.endswith('~') and not os.path.isdir(filepath): remove_files.add(filepath) netnames = [] for ifname, interface in interfaces.iteritems(): data = _get_file_data_netcfg(ifname, interface) filepath = os.path.join(NETWORK_DIR, ifname) update_files[filepath] = data if filepath in remove_files: remove_files.remove(filepath) netnames.append(ifname) infile = StringIO(update_files.get(CONF_FILE, '')) data = _update_rc_conf_netcfg(infile, netnames) update_files[CONF_FILE] = data return remove_files, netnames
[ 2, 43907, 25, 7400, 11338, 28, 19, 6482, 10394, 28, 19, 2705, 8658, 11338, 28, 19, 198, 2, 198, 2, 220, 15069, 357, 66, 8, 2813, 4946, 25558, 11, 11419, 13, 198, 2, 220, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 220, 739, 262, 13789, 13, 198, 2, 198, 198, 37811, 198, 998, 32639, 3127, 31904, 8265, 198, 37811, 198, 198, 2, 5579, 468, 734, 1180, 6982, 286, 3127, 8398, 13, 3125, 2904, 11, 198, 2, 612, 338, 705, 3262, 37581, 6, 290, 4271, 357, 1640, 3092, 286, 257, 1365, 3381, 8, 705, 1455, 1590, 4458, 198, 2, 198, 2, 10655, 3544, 25, 198, 2, 532, 352, 7582, 12, 12048, 12, 7635, 3298, 8398, 50247, 14784, 14, 6015, 13, 10414, 8, 198, 2, 532, 530, 6101, 583, 7071, 198, 2, 532, 11926, 389, 583, 7071, 198, 2, 532, 8946, 1322, 389, 3298, 198, 2, 532, 18538, 318, 583, 7071, 198, 2, 198, 2, 2010, 37581, 3544, 25, 198, 2, 532, 3294, 7582, 12, 12048, 12, 7635, 3127, 25412, 11, 352, 583, 7071, 198, 2, 532, 530, 6101, 583, 8398, 198, 2, 532, 11926, 389, 583, 7071, 198, 2, 532, 8946, 1322, 389, 583, 7071, 198, 2, 532, 18538, 318, 3298, 50247, 14784, 14, 411, 349, 85, 13, 10414, 8, 198, 2, 198, 2, 2010, 37581, 318, 3562, 329, 530, 6101, 583, 8398, 11, 475, 340, 338, 407, 33435, 198, 2, 286, 262, 4697, 3918, 7633, 20314, 329, 6101, 34965, 2313, 13, 1406, 356, 423, 284, 779, 198, 2, 257, 8156, 284, 651, 6101, 34965, 2313, 1762, 25, 198, 2, 3740, 1378, 65, 1443, 13, 998, 23289, 13, 2398, 14, 1177, 26652, 13, 10121, 30, 35317, 28, 3865, 1314, 4790, 2, 79, 3865, 1314, 4790, 198, 2, 198, 2, 5579, 318, 257, 10708, 2650, 11, 3616, 649, 3033, 290, 6153, 10392, 198, 2, 4836, 503, 319, 257, 22900, 7269, 13, 632, 635, 1724, 612, 318, 645, 884, 198, 2, 1517, 355, 410, 16, 13, 15, 393, 410, 17, 13, 15, 13, 775, 2198, 611, 262, 2010, 37581, 5301, 318, 6589, 284, 198, 2, 5004, 543, 5794, 815, 307, 973, 13, 198, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 640, 198, 11748, 850, 14681, 198, 11748, 18931, 198, 6738, 269, 10100, 9399, 1330, 10903, 9399, 198, 198, 11748, 9729, 13, 27349, 198, 198, 10943, 37, 62, 25664, 796, 12813, 14784, 14, 6015, 13, 10414, 1, 198, 12884, 33249, 62, 34720, 796, 12813, 14784, 14, 27349, 13, 67, 1, 198, 12884, 4177, 43, 62, 34720, 796, 12813, 14784, 14, 3262, 34168, 30487, 628, 628, 198, 4299, 651, 62, 4774, 3672, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2329, 2672, 284, 2198, 1220, 14784, 14, 6015, 13, 10414, 329, 311, 893, 53, 31768, 1912, 5579, 23289, 4263, 13, 198, 220, 220, 220, 1439, 6153, 4482, 35, 6493, 4263, 423, 340, 379, 4277, 1220, 14784, 14, 4774, 3672, 198, 220, 220, 220, 2561, 21207, 1459, 2583, 3672, 286, 16990, 611, 597, 290, 1441, 13, 198, 220, 220, 220, 29403, 379, 1220, 14784, 14, 6015, 13, 10414, 4566, 329, 5579, 23289, 4382, 1262, 311, 893, 53, 31768, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 10943, 37, 62, 25664, 8, 355, 2583, 3672, 62, 69, 2645, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 2583, 3672, 62, 69, 2645, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 77, 796, 302, 13, 12947, 10786, 39, 10892, 20608, 2625, 7, 15885, 16725, 3256, 1627, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 289, 77, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 289, 77, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 2845, 35528, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 31768, 1104, 5579, 2583, 3672, 34593, 9045, 4054, 25, 4064, 82, 526, 4064, 965, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 198, 198, 4299, 651, 62, 4774, 3672, 62, 7753, 7, 259, 7753, 11, 2583, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10133, 2583, 3672, 319, 1080, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 503, 7753, 796, 10903, 9399, 3419, 198, 220, 220, 220, 1043, 796, 10352, 198, 220, 220, 220, 329, 1627, 287, 1167, 576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 11639, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 11, 410, 796, 1627, 13, 35312, 10786, 28, 3256, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 796, 479, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 6624, 366, 39, 10892, 20608, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 503, 7753, 11, 705, 39, 10892, 20608, 2625, 4, 82, 30543, 4064, 2583, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 503, 7753, 11, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 503, 7753, 11, 1627, 628, 220, 220, 220, 611, 407, 1043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 503, 7753, 11, 705, 39, 10892, 20608, 2625, 4, 82, 30543, 4064, 2583, 3672, 628, 220, 220, 220, 503, 7753, 13, 36163, 7, 15, 8, 198, 220, 220, 220, 1441, 503, 7753, 13, 961, 3419, 628, 628, 198, 4299, 4808, 19119, 62, 6015, 62, 10414, 62, 1455, 1590, 7, 259, 7753, 11, 20314, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 1366, 329, 357, 7266, 25106, 3849, 32186, 290, 11926, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 3205, 38734, 428, 2393, 4325, 287, 734, 21164, 1201, 340, 338, 1729, 12, 83, 15104, 498, 284, 198, 220, 220, 220, 1303, 4296, 13, 383, 23255, 37, 2246, 1546, 290, 371, 12425, 1546, 9633, 262, 1994, 3951, 11, 475, 484, 198, 220, 220, 220, 1303, 481, 287, 1210, 4941, 584, 9633, 11, 543, 743, 307, 878, 393, 706, 13, 198, 220, 220, 220, 1303, 1081, 257, 1255, 11, 356, 761, 284, 3440, 262, 2104, 2393, 11, 1064, 262, 1388, 9633, 198, 220, 220, 220, 1303, 290, 788, 4781, 262, 4941, 9633, 13, 1649, 326, 318, 1760, 11, 356, 751, 198, 220, 220, 220, 1303, 262, 3951, 329, 262, 649, 4566, 13, 628, 220, 220, 220, 1303, 3274, 7716, 649, 4566, 198, 220, 220, 220, 611, 2114, 796, 17635, 198, 220, 220, 220, 11926, 796, 17635, 628, 220, 220, 220, 24308, 19, 11, 24308, 21, 796, 9729, 13, 27349, 13, 1136, 62, 10494, 1322, 7, 3849, 32186, 8, 628, 220, 220, 220, 611, 14933, 796, 20314, 13, 13083, 3419, 198, 220, 220, 220, 611, 14933, 13, 30619, 3419, 628, 220, 220, 220, 329, 611, 3672, 62, 40290, 287, 611, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7071, 796, 20314, 58, 361, 3672, 62, 40290, 60, 628, 220, 220, 220, 220, 220, 220, 220, 20966, 19, 82, 796, 7071, 17816, 541, 19, 82, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 21, 82, 796, 7071, 17816, 541, 21, 82, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3672, 62, 37333, 844, 62, 22510, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 329, 20966, 19, 11, 20966, 21, 287, 3975, 7, 14202, 11, 20966, 19, 82, 11, 20966, 21, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 611, 3672, 62, 37333, 844, 62, 22510, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3672, 796, 36521, 82, 25, 4, 67, 1, 4064, 357, 361, 3672, 62, 40290, 11, 611, 3672, 62, 37333, 844, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3672, 796, 611, 3672, 62, 40290, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 685, 361, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20966, 19, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 33295, 10786, 4, 7, 21975, 8, 82, 2010, 27932, 4064, 7, 3262, 27932, 8, 82, 6, 4064, 20966, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20966, 21, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 33295, 10786, 2860, 4064, 7, 21975, 8, 82, 14, 4, 7, 40290, 11925, 8, 82, 6, 4064, 20966, 21, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3672, 62, 37333, 844, 62, 22510, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2114, 13, 33295, 19510, 361, 3672, 13, 33491, 7, 10354, 3256, 705, 62, 33809, 705, 45302, 22179, 7, 1370, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 6339, 287, 27056, 378, 7, 39994, 17816, 81, 448, 274, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6339, 17816, 27349, 20520, 6624, 705, 15, 13, 15, 13, 15, 13, 15, 6, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17816, 3262, 27932, 20520, 6624, 705, 15, 13, 15, 13, 15, 13, 15, 6, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17816, 10494, 1014, 20520, 6624, 24308, 19, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 27444, 3262, 4064, 7, 27349, 8, 82, 2010, 27932, 4064, 7, 3262, 27932, 8, 82, 308, 86, 4064, 7, 10494, 1014, 8, 82, 1, 4064, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11926, 13, 33295, 7, 10786, 4, 82, 62, 38629, 4, 67, 6, 4064, 357, 361, 3672, 62, 40290, 11, 1312, 828, 1627, 4008, 628, 220, 220, 220, 611, 24308, 19, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11926, 13, 33295, 7, 10786, 10494, 1014, 3256, 705, 12286, 308, 86, 4064, 82, 6, 4064, 24308, 19, 4008, 198, 220, 220, 220, 611, 24308, 21, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11926, 13, 33295, 7, 10786, 10494, 1014, 21, 3256, 705, 12286, 308, 86, 4064, 82, 6, 4064, 24308, 21, 4008, 628, 220, 220, 220, 1303, 3244, 3440, 1468, 2393, 198, 220, 220, 220, 3951, 11, 9633, 796, 4808, 29572, 62, 11250, 7, 259, 7753, 8, 628, 220, 220, 220, 1303, 10133, 23255, 37, 2246, 1546, 198, 220, 220, 220, 9493, 23397, 796, 9633, 13, 1136, 10786, 41358, 37, 2246, 1546, 11537, 198, 220, 220, 220, 611, 9493, 23397, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 1468, 3951, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 4808, 29572, 62, 45286, 7, 6615, 58, 2815, 23397, 4357, 10283, 62, 36668, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 287, 9633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 58, 25641, 2977, 58, 3672, 11907, 796, 6045, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9493, 23397, 796, 18896, 7, 6615, 8, 532, 352, 628, 220, 220, 220, 4566, 796, 17635, 198, 220, 220, 220, 3891, 796, 17635, 198, 220, 220, 220, 329, 1438, 11, 1627, 287, 611, 2114, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 33295, 10786, 4, 82, 2625, 4, 82, 30543, 4064, 357, 3672, 11, 1627, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 13, 33295, 7, 3672, 8, 628, 220, 220, 220, 4566, 13, 33295, 10786, 41358, 37, 2246, 1546, 16193, 4, 82, 33047, 4064, 705, 45302, 22179, 7, 14933, 4008, 198, 220, 220, 220, 3951, 58, 2815, 23397, 60, 796, 705, 59, 77, 4458, 22179, 7, 11250, 8, 628, 220, 220, 220, 1303, 10133, 371, 12425, 1546, 198, 220, 220, 220, 9493, 23397, 796, 9633, 13, 1136, 10786, 49, 12425, 1546, 11537, 198, 220, 220, 220, 611, 9493, 23397, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 1468, 3951, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 4808, 29572, 62, 45286, 7, 6615, 58, 2815, 23397, 4357, 10283, 62, 36668, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 287, 9633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 58, 25641, 2977, 58, 3672, 11907, 796, 6045, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9493, 23397, 796, 18896, 7, 6615, 8, 532, 352, 628, 220, 220, 220, 4566, 796, 17635, 198, 220, 220, 220, 3891, 796, 17635, 198, 220, 220, 220, 329, 1438, 11, 1627, 287, 11926, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 33295, 10786, 4, 82, 2625, 4, 82, 30543, 4064, 357, 3672, 11, 1627, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 13, 33295, 7, 3672, 8, 628, 220, 220, 220, 4566, 13, 33295, 10786, 49, 12425, 1546, 16193, 4, 82, 33047, 4064, 705, 45302, 22179, 7, 14933, 4008, 198, 220, 220, 220, 3951, 58, 2815, 23397, 60, 796, 705, 59, 77, 4458, 22179, 7, 11250, 8, 628, 220, 220, 220, 1303, 357, 47, 20846, 8, 2912, 503, 49791, 50, 198, 220, 220, 220, 9493, 23397, 796, 9633, 13, 1136, 10786, 12884, 33249, 50, 11537, 198, 220, 220, 220, 611, 9493, 23397, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 4808, 29572, 62, 45286, 7, 6615, 58, 2815, 23397, 4357, 10283, 62, 36668, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 2815, 23397, 796, 9633, 13, 1136, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 2815, 23397, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 58, 77, 2815, 23397, 60, 796, 705, 2, 6, 1343, 3951, 58, 2815, 23397, 60, 628, 220, 220, 220, 220, 220, 220, 220, 3951, 58, 2815, 23397, 60, 796, 705, 2, 6, 1343, 3951, 58, 2815, 23397, 60, 628, 220, 220, 220, 1303, 357, 47, 20846, 8, 4296, 17051, 3620, 19213, 198, 220, 220, 220, 9493, 23397, 796, 9633, 13, 1136, 10786, 5631, 3620, 19213, 11537, 198, 220, 220, 220, 611, 9493, 23397, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12379, 368, 684, 796, 4808, 29572, 62, 45286, 7, 6615, 58, 2815, 23397, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3127, 796, 12379, 368, 684, 13, 9630, 10786, 0, 27349, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12379, 368, 684, 58, 27349, 60, 796, 705, 27349, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 31, 3262, 12, 5577, 2915, 6, 287, 12379, 368, 684, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12379, 368, 684, 13, 28956, 10786, 31, 3262, 12, 5577, 2915, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 58, 2815, 23397, 60, 796, 705, 5631, 3620, 19213, 16193, 4, 82, 33047, 4064, 705, 45302, 22179, 7, 6814, 368, 684, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 1303, 25853, 503, 597, 4615, 3951, 198, 220, 220, 220, 3951, 796, 8106, 7, 50033, 300, 25, 300, 318, 407, 6045, 11, 3951, 8, 628, 220, 220, 220, 1303, 23283, 1096, 656, 649, 2393, 198, 220, 220, 220, 503, 7753, 796, 10903, 9399, 3419, 198, 220, 220, 220, 329, 1627, 287, 3951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 503, 7753, 11, 1627, 628, 220, 220, 220, 503, 7753, 13, 36163, 7, 15, 8, 198, 220, 220, 220, 1441, 503, 7753, 13, 961, 3419, 198, 198, 4299, 4808, 1136, 62, 7753, 62, 7890, 62, 3262, 37581, 7, 361, 3672, 11, 7071, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 1366, 329, 357, 7266, 25106, 3849, 32186, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 2114, 796, 17635, 628, 220, 220, 220, 6167, 796, 7071, 17816, 18242, 20520, 628, 220, 220, 220, 20966, 19, 82, 796, 7071, 17816, 541, 19, 82, 20520, 198, 220, 220, 220, 20966, 21, 82, 796, 7071, 17816, 541, 21, 82, 20520, 628, 220, 220, 220, 24308, 19, 796, 7071, 17816, 10494, 1014, 19, 20520, 198, 220, 220, 220, 24308, 21, 796, 7071, 17816, 10494, 1014, 21, 20520, 628, 220, 220, 220, 288, 5907, 796, 7071, 17816, 67, 5907, 20520, 628, 220, 220, 220, 503, 7753, 796, 10903, 9399, 3419, 628, 220, 220, 220, 611, 6167, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 25113, 36052, 4064, 82, 1, 4064, 6167, 198, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 10943, 45, 24565, 2625, 316, 2881, 316, 30543, 198, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 41358, 49836, 28, 4, 82, 6, 4064, 611, 3672, 628, 220, 220, 220, 611, 20966, 19, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 19, 796, 20966, 19, 82, 13, 12924, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 4061, 2625, 12708, 30543, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 2885, 7707, 2625, 4, 7, 21975, 8, 82, 30543, 4064, 20966, 19, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 12884, 31180, 42, 2625, 4, 7, 3262, 27932, 8, 82, 30543, 4064, 20966, 19, 628, 220, 220, 220, 220, 220, 220, 220, 611, 24308, 19, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 38, 6158, 27285, 2625, 4, 82, 30543, 4064, 24308, 19, 628, 220, 220, 220, 611, 20966, 21, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 21, 796, 20966, 21, 82, 13, 12924, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 4061, 21, 2625, 12708, 30543, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 2885, 7707, 21, 2625, 4, 7, 21975, 8, 82, 14, 4, 7, 40290, 11925, 8, 82, 30543, 4064, 20966, 21, 628, 220, 220, 220, 220, 220, 220, 220, 611, 24308, 21, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 38, 6158, 27285, 21, 2625, 4, 82, 30543, 4064, 24308, 21, 628, 220, 220, 220, 11926, 796, 685, 29653, 4, 7, 27349, 8, 82, 14, 4, 7, 3262, 27932, 8, 82, 2884, 4064, 7, 10494, 1014, 8, 82, 30543, 4064, 6339, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6339, 287, 7071, 17816, 81, 448, 274, 20520, 611, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17816, 27349, 20520, 6624, 705, 15, 13, 15, 13, 15, 13, 15, 6, 290, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17816, 3262, 27932, 20520, 6624, 705, 15, 13, 15, 13, 15, 13, 15, 6, 290, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17816, 10494, 1014, 20520, 6624, 24308, 19, 60, 628, 220, 220, 220, 611, 11926, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 49, 12425, 1546, 16193, 4, 82, 33047, 4064, 705, 45302, 22179, 7, 81, 448, 274, 8, 628, 220, 220, 220, 611, 288, 5907, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 35, 8035, 16193, 4, 82, 33047, 4064, 705, 45302, 22179, 7, 67, 5907, 8, 628, 220, 220, 220, 1303, 9461, 751, 5637, 47217, 13, 770, 318, 1611, 286, 8156, 88, 11, 766, 2912, 379, 198, 220, 220, 220, 1303, 1353, 329, 7468, 198, 220, 220, 220, 47217, 796, 37250, 4, 7, 21975, 8, 82, 14, 4, 7, 3262, 27932, 8, 82, 6, 4064, 20966, 19, 329, 20966, 19, 287, 20966, 19, 82, 60, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 4, 7, 21975, 8, 82, 14, 4, 7, 40290, 11925, 8, 82, 6, 4064, 20966, 21, 329, 20966, 21, 287, 20966, 21, 82, 60, 628, 220, 220, 220, 611, 47217, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9729, 796, 705, 26, 45302, 22179, 7, 17816, 541, 37817, 751, 4064, 82, 1614, 4064, 82, 6, 4064, 357, 64, 11, 611, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 257, 287, 47217, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 32782, 62, 8577, 2625, 4, 82, 30543, 4064, 9729, 628, 220, 220, 220, 220, 220, 220, 220, 47217, 13, 50188, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 9729, 796, 705, 26, 45302, 22179, 7, 17816, 541, 37817, 1619, 4064, 82, 1614, 4064, 82, 6, 4064, 357, 64, 11, 611, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 257, 287, 47217, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 9609, 448, 7753, 11, 705, 46437, 62, 41925, 2625, 4, 82, 30543, 4064, 9729, 628, 220, 220, 220, 503, 7753, 13, 36163, 7, 15, 8, 198, 220, 220, 220, 1441, 503, 7753, 13, 961, 3419, 628, 628, 198, 4299, 1429, 62, 39994, 62, 16624, 62, 1455, 1590, 7, 19119, 62, 16624, 11, 20314, 2599, 198, 220, 220, 220, 37227, 8645, 378, 2458, 316, 329, 7071, 8398, 37811, 628, 220, 220, 220, 1167, 576, 796, 10903, 9399, 7, 19119, 62, 16624, 13, 1136, 7, 10943, 37, 62, 25664, 11, 10148, 4008, 198, 220, 220, 220, 1366, 796, 4808, 19119, 62, 6015, 62, 10414, 62, 1455, 1590, 7, 259, 7753, 11, 20314, 8, 198, 220, 220, 220, 4296, 62, 16624, 58, 10943, 37, 62, 25664, 60, 796, 1366, 628, 198, 4299, 1429, 62, 39994, 62, 16624, 62, 3262, 34168, 7, 19119, 62, 16624, 11, 20314, 2599, 198, 220, 220, 220, 37227, 8645, 378, 2458, 316, 329, 7071, 8398, 37811, 628, 220, 220, 220, 1303, 2039, 6975, 378, 477, 286, 262, 4683, 3127, 3696, 198, 220, 220, 220, 4781, 62, 16624, 796, 900, 3419, 198, 220, 220, 220, 329, 29472, 287, 28686, 13, 4868, 15908, 7, 12884, 4177, 43, 62, 34720, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 12884, 4177, 43, 62, 34720, 11, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 29472, 13, 437, 2032, 342, 10786, 93, 11537, 290, 407, 28686, 13, 6978, 13, 9409, 343, 7, 7753, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 16624, 13, 2860, 7, 7753, 6978, 8, 628, 220, 220, 220, 2010, 14933, 796, 17635, 198, 220, 220, 220, 329, 611, 3672, 11, 7071, 287, 20314, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 4808, 1136, 62, 7753, 62, 7890, 62, 3262, 34168, 7, 361, 3672, 11, 7071, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 12884, 4177, 43, 62, 34720, 11, 611, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 16624, 58, 7753, 6978, 60, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6978, 287, 4781, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 16624, 13, 28956, 7, 7753, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2010, 14933, 13, 33295, 7, 361, 3672, 8, 628, 220, 220, 220, 1441, 4781, 62, 16624, 11, 2010, 14933, 198, 4299, 1429, 62, 39994, 62, 16624, 62, 3262, 37581, 7, 19119, 62, 16624, 11, 20314, 2599, 198, 220, 220, 220, 37227, 8645, 378, 2458, 316, 329, 7071, 8398, 37811, 628, 220, 220, 220, 1303, 2039, 6975, 378, 477, 286, 262, 4683, 3127, 3696, 198, 220, 220, 220, 4781, 62, 16624, 796, 900, 3419, 198, 220, 220, 220, 329, 29472, 287, 28686, 13, 4868, 15908, 7, 12884, 33249, 62, 34720, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 12884, 33249, 62, 34720, 11, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 29472, 13, 437, 2032, 342, 10786, 93, 11537, 290, 407, 28686, 13, 6978, 13, 9409, 343, 7, 7753, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 16624, 13, 2860, 7, 7753, 6978, 8, 628, 220, 220, 220, 2010, 14933, 796, 17635, 198, 220, 220, 220, 329, 611, 3672, 11, 7071, 287, 20314, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 4808, 1136, 62, 7753, 62, 7890, 62, 3262, 37581, 7, 361, 3672, 11, 7071, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 12884, 33249, 62, 34720, 11, 611, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 16624, 58, 7753, 6978, 60, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6978, 287, 4781, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 16624, 13, 28956, 7, 7753, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2010, 14933, 13, 33295, 7, 361, 3672, 8, 628, 220, 220, 220, 1167, 576, 796, 10903, 9399, 7, 19119, 62, 16624, 13, 1136, 7, 10943, 37, 62, 25664, 11, 10148, 4008, 198, 220, 220, 220, 1366, 796, 4808, 19119, 62, 6015, 62, 10414, 62, 3262, 37581, 7, 259, 7753, 11, 2010, 14933, 8, 198, 220, 220, 220, 4296, 62, 16624, 58, 10943, 37, 62, 25664, 60, 796, 1366, 628, 220, 220, 220, 1441, 4781, 62, 16624, 11, 2010, 14933, 198 ]
2.353698
4,894
file = open('./input') w = 25 h = 6 ppl = 25 * 6 line = file.readline() layers = [] for start in range(0, len(line), ppl): layer = line[start:start+ppl] layers.append([int(pixel) for pixel in layer]) img = [] for i in range(ppl): for layer in layers: if layer[i] != 2: img.append(layer[i]) break for row in range(h): print(img[row * w:(row + 1) * w])
[ 7753, 796, 1280, 7, 4458, 14, 15414, 11537, 198, 198, 86, 796, 1679, 198, 71, 796, 718, 198, 381, 75, 796, 1679, 1635, 718, 198, 198, 1370, 796, 2393, 13, 961, 1370, 3419, 198, 198, 75, 6962, 796, 17635, 198, 198, 1640, 923, 287, 2837, 7, 15, 11, 18896, 7, 1370, 828, 279, 489, 2599, 198, 220, 220, 220, 7679, 796, 1627, 58, 9688, 25, 9688, 10, 381, 75, 60, 198, 220, 220, 220, 11685, 13, 33295, 26933, 600, 7, 32515, 8, 329, 17465, 287, 7679, 12962, 198, 198, 9600, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 381, 75, 2599, 198, 220, 220, 220, 329, 7679, 287, 11685, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7679, 58, 72, 60, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 13, 33295, 7, 29289, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 1640, 5752, 287, 2837, 7, 71, 2599, 198, 220, 220, 220, 3601, 7, 9600, 58, 808, 1635, 266, 37498, 808, 1343, 352, 8, 1635, 266, 12962, 198 ]
2.154255
188
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['MediaGraph']
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 17202, 39410, 25, 428, 2393, 373, 7560, 416, 262, 21624, 12994, 26144, 35986, 13, 17202, 198, 2, 17202, 2141, 407, 4370, 416, 1021, 4556, 345, 821, 1728, 345, 760, 644, 345, 389, 1804, 0, 17202, 198, 198, 11748, 14601, 198, 11748, 17472, 12994, 198, 11748, 17472, 12994, 13, 43282, 198, 6738, 19720, 1330, 4377, 11, 337, 5912, 11, 32233, 11, 45835, 11, 4479, 198, 6738, 2644, 1330, 4808, 315, 2410, 11, 4808, 83, 2977, 198, 6738, 764, 1330, 23862, 198, 6738, 47540, 268, 5700, 1330, 1635, 198, 6738, 47540, 15414, 82, 1330, 1635, 198, 198, 834, 439, 834, 796, 37250, 13152, 37065, 20520, 628, 198 ]
3.637168
113
# Time: O(b^(d/2)), b is the branch factor of bfs, d is the result depth # Space: O(w * l), w is the number of words, l is the max length of words from collections import defaultdict from string import ascii_lowercase # Time: O(b^d), b is the branch factor of bfs, d is the result depth # Space: O(w * l), w is the number of words, l is the max length of words
[ 2, 3862, 25, 220, 440, 7, 65, 61, 7, 67, 14, 17, 36911, 275, 318, 262, 8478, 5766, 286, 275, 9501, 11, 288, 318, 262, 1255, 6795, 198, 2, 4687, 25, 440, 7, 86, 1635, 300, 828, 266, 318, 262, 1271, 286, 2456, 11, 300, 318, 262, 3509, 4129, 286, 2456, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 4731, 1330, 355, 979, 72, 62, 21037, 7442, 628, 198, 198, 2, 3862, 25, 220, 440, 7, 65, 61, 67, 828, 275, 318, 262, 8478, 5766, 286, 275, 9501, 11, 288, 318, 262, 1255, 6795, 198, 2, 4687, 25, 440, 7, 86, 1635, 300, 828, 266, 318, 262, 1271, 286, 2456, 11, 300, 318, 262, 3509, 4129, 286, 2456, 198 ]
3.058333
120
from abc import ABCMeta class Writer(metaclass=ABCMeta): """ 動画書き込みの、抽象基底クラス """ def open(self, **kwargs): """ 書き込み機能を開く """ pass def write(self, **kwargs): """ 出力する """ pass def close(self, **kwargs): """ 処理を終了する """ pass
[ 6738, 450, 66, 1330, 9738, 48526, 628, 198, 4871, 26606, 7, 4164, 330, 31172, 28, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10263, 233, 243, 18796, 119, 162, 249, 116, 33778, 164, 122, 120, 2515, 123, 5641, 23513, 162, 232, 121, 164, 109, 94, 161, 253, 118, 41753, 243, 14099, 9263, 8943, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 1280, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 249, 116, 33778, 164, 122, 120, 2515, 123, 49960, 47797, 121, 31758, 38461, 233, 31917, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 3551, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 229, 118, 27950, 249, 33623, 25748, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 1969, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 229, 99, 49426, 228, 31758, 163, 113, 224, 12859, 228, 33623, 25748, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
1.427984
243
from contextlib import contextmanager, ExitStack from pathlib import Path from typing import Iterator from npipes.utils.typeshed import pathlike @contextmanager def autoDeleteFile(path:pathlike) -> Iterator[pathlike]: """Context manager that deletes a single file when the context ends """ try: yield path finally: if Path(path).is_file(): Path(path).unlink() class AutoDeleter(ExitStack): """Stack manager for auto-deleting files; allows files to be added incrementally. Useful for working with temporary files on disk that should be removed at the end of a computation. Ex: with AutoDeleter() as deleter: deleter.add(file_1) # ... deleter.add(file_2) # ... file_3 = deleter.add("some_file.txt") # file_1, file_2, and file_3 are deleted here automatically """ def add(self, path:pathlike) -> pathlike: """Returns path after adding it to the auto-deletion context. """ return self.enter_context(autoDeleteFile(path))
[ 6738, 4732, 8019, 1330, 4732, 37153, 11, 29739, 25896, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 40806, 1352, 198, 198, 6738, 45941, 18636, 13, 26791, 13, 19199, 704, 1330, 3108, 2339, 198, 198, 31, 22866, 37153, 198, 4299, 8295, 38727, 8979, 7, 6978, 25, 6978, 2339, 8, 4613, 40806, 1352, 58, 6978, 2339, 5974, 198, 220, 220, 220, 37227, 21947, 4706, 326, 28128, 274, 257, 2060, 2393, 618, 262, 4732, 5645, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 3108, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10644, 7, 6978, 737, 271, 62, 7753, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 7, 6978, 737, 403, 8726, 3419, 628, 198, 4871, 11160, 5005, 293, 353, 7, 30337, 25896, 2599, 198, 220, 220, 220, 37227, 25896, 4706, 329, 8295, 12, 2934, 293, 889, 3696, 26, 3578, 3696, 284, 307, 2087, 18703, 453, 13, 628, 220, 220, 220, 49511, 329, 1762, 351, 8584, 3696, 319, 11898, 326, 815, 307, 198, 220, 220, 220, 4615, 379, 262, 886, 286, 257, 29964, 13, 628, 220, 220, 220, 1475, 25, 198, 220, 220, 220, 351, 11160, 5005, 293, 353, 3419, 355, 10881, 353, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10881, 353, 13, 2860, 7, 7753, 62, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 10881, 353, 13, 2860, 7, 7753, 62, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 18, 796, 10881, 353, 13, 2860, 7203, 11246, 62, 7753, 13, 14116, 4943, 628, 220, 220, 220, 1303, 2393, 62, 16, 11, 2393, 62, 17, 11, 290, 2393, 62, 18, 389, 13140, 994, 6338, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 751, 7, 944, 11, 3108, 25, 6978, 2339, 8, 4613, 3108, 2339, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 3108, 706, 4375, 340, 284, 262, 8295, 12, 2934, 1616, 295, 4732, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 9255, 62, 22866, 7, 23736, 38727, 8979, 7, 6978, 4008, 198 ]
2.707379
393
from bottle import run,post,request,response,route import os import urllib @post('/test') @route('/path',method="post") if __name__ == '__main__': port_config = int(os.getenv('PORT', 5000)) run(host='0.0.0.0', port=port_config)
[ 6738, 9294, 1330, 1057, 11, 7353, 11, 25927, 11, 26209, 11, 38629, 198, 11748, 28686, 198, 11748, 2956, 297, 571, 198, 198, 31, 7353, 10786, 14, 9288, 11537, 198, 198, 31, 38629, 10786, 14, 6978, 3256, 24396, 2625, 7353, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2493, 62, 11250, 796, 493, 7, 418, 13, 1136, 24330, 10786, 15490, 3256, 23336, 4008, 198, 220, 220, 220, 1057, 7, 4774, 11639, 15, 13, 15, 13, 15, 13, 15, 3256, 2493, 28, 634, 62, 11250, 8, 198 ]
2.553191
94
import time as time_lib import numpy as np import sounddevice as sd duration = 50 # in seconds warmup_time = 2 # in seconds max_pop_time = 3 # in seconds time pop_threshold = 15 # in volume units min_pop_time = 512 # in milliseconds pop_times = [] if __name__ == '__main__': main()
[ 11748, 640, 355, 640, 62, 8019, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2128, 25202, 355, 45647, 198, 198, 32257, 796, 2026, 220, 1303, 287, 4201, 198, 31975, 929, 62, 2435, 796, 362, 220, 1303, 287, 4201, 198, 9806, 62, 12924, 62, 2435, 796, 513, 220, 1303, 287, 4201, 640, 198, 12924, 62, 400, 10126, 796, 1315, 220, 1303, 287, 6115, 4991, 198, 1084, 62, 12924, 62, 2435, 796, 22243, 220, 1303, 287, 38694, 198, 12924, 62, 22355, 796, 17635, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.893204
103
# Functions specific to restricted boltzmann machines # Adapted from MFP/Functions.py import numpy as np # BASIS FUNCTIONS: Regression # Diagonalize first dimension of an n-dimensional array tau = 1 # Sigmoid threshold unit basis_logistic = Function('basis', 'logistic', # Commonly known as 'Sigmoid' [lambda x: tau * (1 + np.exp(-x/tau))**-1, # S lambda x: np.diag(np.exp(x / tau) / (np.exp(x / tau) + 1) ** 2)]) # S * (1 - S) # BASIS FUNCTIONS: Classification basis_softmax = Function('basis', 'SMax', [softmax, lambda x: diag(softmax(x)) - softmax(x) @ softmax(x).T]) # ANNEALING FUNCTIONS (learning rate) anneal_fixed = Function('learn', 'fixed', [lambda t, d, lim: 1]) anneal_linear = Function('learn', 'linear', [lambda t, d, lim: 1 - t/lim]) anneal_inverse = Function('learn', 'inverse', [lambda t, d, lim: 1 / (d * t)]) anneal_power = Function('learn', 'power', [lambda t, d, lim: d**t]) anneal_exp = Function('learn', 'exp', [lambda t, d, lim: np.exp(-t / l)]) # DISTRIBUTION FUNCTIONS dist_uniform = Function('dist', 'uniform', [lambda *args: np.random.uniform(low=-1, high=1, size=[*args])]) dist_normal = Function('dist', 'normal', [lambda *args: np.random.normal(loc=0, scale=1, size=[*args])])
[ 2, 40480, 2176, 284, 10770, 18100, 89, 9038, 8217, 198, 2, 30019, 276, 422, 337, 5837, 14, 24629, 2733, 13, 9078, 198, 198, 11748, 299, 32152, 355, 45941, 628, 198, 198, 2, 29809, 1797, 29397, 4177, 11053, 25, 3310, 2234, 198, 2, 6031, 27923, 1096, 717, 15793, 286, 281, 299, 12, 19577, 7177, 198, 198, 83, 559, 796, 352, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 311, 17225, 1868, 11387, 4326, 198, 12093, 271, 62, 6404, 2569, 796, 15553, 10786, 12093, 271, 3256, 705, 6404, 2569, 3256, 220, 1303, 8070, 306, 1900, 355, 705, 50, 17225, 1868, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 50033, 2124, 25, 256, 559, 1635, 357, 16, 1343, 45941, 13, 11201, 32590, 87, 14, 83, 559, 4008, 1174, 12, 16, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 311, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 45941, 13, 10989, 363, 7, 37659, 13, 11201, 7, 87, 1220, 256, 559, 8, 1220, 357, 37659, 13, 11201, 7, 87, 1220, 256, 559, 8, 1343, 352, 8, 12429, 362, 8, 12962, 220, 1303, 311, 1635, 357, 16, 532, 311, 8, 628, 198, 2, 29809, 1797, 29397, 4177, 11053, 25, 40984, 198, 198, 12093, 271, 62, 4215, 9806, 796, 15553, 10786, 12093, 271, 3256, 705, 50, 11518, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 4215, 9806, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 2566, 363, 7, 4215, 9806, 7, 87, 4008, 532, 2705, 9806, 7, 87, 8, 2488, 2705, 9806, 7, 87, 737, 51, 12962, 628, 198, 2, 3537, 12161, 1847, 2751, 29397, 4177, 11053, 357, 40684, 2494, 8, 198, 21952, 282, 62, 34021, 220, 220, 796, 15553, 10786, 35720, 3256, 705, 34021, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 50033, 256, 11, 288, 11, 1761, 25, 352, 12962, 198, 198, 21952, 282, 62, 29127, 220, 796, 15553, 10786, 35720, 3256, 705, 29127, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 50033, 256, 11, 288, 11, 1761, 25, 352, 532, 256, 14, 2475, 12962, 198, 198, 21952, 282, 62, 259, 4399, 796, 15553, 10786, 35720, 3256, 705, 259, 4399, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 50033, 256, 11, 288, 11, 1761, 25, 352, 1220, 357, 67, 1635, 256, 8, 12962, 198, 198, 21952, 282, 62, 6477, 220, 220, 796, 15553, 10786, 35720, 3256, 705, 6477, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 50033, 256, 11, 288, 11, 1761, 25, 288, 1174, 83, 12962, 198, 198, 21952, 282, 62, 11201, 220, 220, 220, 220, 796, 15553, 10786, 35720, 3256, 705, 11201, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 50033, 256, 11, 288, 11, 1761, 25, 45941, 13, 11201, 32590, 83, 1220, 300, 8, 12962, 628, 198, 2, 34957, 9865, 35354, 29397, 4177, 11053, 198, 17080, 62, 403, 6933, 796, 15553, 10786, 17080, 3256, 705, 403, 6933, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 50033, 1635, 22046, 25, 45941, 13, 25120, 13, 403, 6933, 7, 9319, 10779, 16, 11, 1029, 28, 16, 11, 2546, 41888, 9, 22046, 12962, 12962, 198, 198, 17080, 62, 11265, 220, 796, 15553, 10786, 17080, 3256, 705, 11265, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 50033, 1635, 22046, 25, 45941, 13, 25120, 13, 11265, 7, 17946, 28, 15, 11, 5046, 28, 16, 11, 2546, 41888, 9, 22046, 12962, 12962, 198 ]
1.984615
780
# encoding: utf-8 from manet.utils import read_image import os
[ 2, 21004, 25, 3384, 69, 12, 23, 198, 6738, 582, 316, 13, 26791, 1330, 1100, 62, 9060, 198, 11748, 28686, 628, 198 ]
2.954545
22
from .models import Menu
[ 6738, 764, 27530, 1330, 21860, 628 ]
4.333333
6
from .dialogs import OpenView from src.utils import EmbedFactory from disnake.ext import commands class Ide(commands.Cog): """Ide cog""" @commands.command() @commands.max_concurrency(1, commands.BucketType.channel) def setup(bot: commands.Bot) -> None: """Setup Ide cog""" bot.add_cog(Ide(bot))
[ 6738, 764, 38969, 18463, 1330, 4946, 7680, 198, 6738, 12351, 13, 26791, 1330, 13302, 276, 22810, 198, 6738, 595, 77, 539, 13, 2302, 1330, 9729, 628, 198, 4871, 16714, 7, 9503, 1746, 13, 34, 519, 2599, 198, 220, 220, 220, 37227, 41452, 43072, 37811, 628, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 3419, 198, 220, 220, 220, 2488, 9503, 1746, 13, 9806, 62, 1102, 34415, 7, 16, 11, 9729, 13, 33, 38811, 6030, 13, 17620, 8, 628, 198, 4299, 9058, 7, 13645, 25, 9729, 13, 20630, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 40786, 16714, 43072, 37811, 628, 220, 220, 220, 10214, 13, 2860, 62, 66, 519, 7, 41452, 7, 13645, 4008, 198 ]
2.767241
116
# Creates C data structures for binary lookup table of entities, # using python's html5 entity data. # Usage: python3 tools/make_entities_inc.py > src/entities.inc import html entities5 = html.entities.html5 # remove keys without semicolons. For some reason the list # has duplicates of a few things, like auml, one with and one # without a semicolon. entities = sorted([(k[:-1], entities5[k].encode('utf-8')) for k in entities5.keys() if k[-1] == ';']) # Print out the header: print("""/* Autogenerated by tools/make_headers_inc.py */ struct cmark_entity_node { unsigned char *entity; unsigned char bytes[8]; }; #define CMARK_ENTITY_MIN_LENGTH 2 #define CMARK_ENTITY_MAX_LENGTH 31""") print("#define CMARK_NUM_ENTITIES " + str(len(entities))); print("\nstatic const struct cmark_entity_node cmark_entities[] = {"); for (ent, bs) in entities: print('{(unsigned char*)"' + ent + '", {' + ', '.join(map(str, bs)) + ', 0}},') print("};")
[ 2, 7921, 274, 327, 1366, 8573, 329, 13934, 35847, 3084, 286, 12066, 11, 198, 2, 1262, 21015, 338, 27711, 20, 9312, 1366, 13, 198, 2, 29566, 25, 21015, 18, 4899, 14, 15883, 62, 298, 871, 62, 1939, 13, 9078, 1875, 12351, 14, 298, 871, 13, 1939, 198, 198, 11748, 27711, 198, 198, 298, 871, 20, 796, 27711, 13, 298, 871, 13, 6494, 20, 198, 198, 2, 4781, 8251, 1231, 5026, 27045, 684, 13, 220, 1114, 617, 1738, 262, 1351, 198, 2, 468, 14184, 16856, 286, 257, 1178, 1243, 11, 588, 257, 388, 75, 11, 530, 351, 290, 530, 198, 2, 1231, 257, 5026, 27045, 261, 13, 198, 298, 871, 796, 23243, 26933, 7, 74, 58, 21912, 16, 4357, 12066, 20, 58, 74, 4083, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 329, 479, 287, 12066, 20, 13, 13083, 3419, 611, 479, 58, 12, 16, 60, 6624, 705, 26, 6, 12962, 198, 198, 2, 12578, 503, 262, 13639, 25, 198, 4798, 7203, 15931, 15211, 5231, 519, 877, 515, 416, 4899, 14, 15883, 62, 50145, 62, 1939, 13, 9078, 9466, 198, 198, 7249, 269, 4102, 62, 26858, 62, 17440, 1391, 198, 197, 43375, 1149, 1635, 26858, 26, 198, 220, 220, 220, 220, 220, 220, 220, 22165, 1149, 9881, 58, 23, 11208, 198, 19629, 198, 198, 2, 13086, 16477, 14175, 62, 3525, 9050, 62, 23678, 62, 43, 49494, 362, 198, 2, 13086, 16477, 14175, 62, 3525, 9050, 62, 22921, 62, 43, 49494, 3261, 15931, 4943, 198, 198, 4798, 7203, 2, 13086, 16477, 14175, 62, 41359, 62, 3525, 30383, 366, 1343, 965, 7, 11925, 7, 298, 871, 4008, 1776, 198, 198, 4798, 7203, 59, 77, 12708, 1500, 2878, 269, 4102, 62, 26858, 62, 17440, 269, 4102, 62, 298, 871, 21737, 796, 1391, 15341, 198, 198, 1640, 357, 298, 11, 275, 82, 8, 287, 12066, 25, 198, 220, 3601, 10786, 90, 7, 43375, 1149, 9, 16725, 6, 1343, 920, 1343, 705, 1600, 1391, 6, 1343, 46083, 45302, 22179, 7, 8899, 7, 2536, 11, 275, 82, 4008, 1343, 46083, 657, 11709, 4032, 8, 198, 198, 4798, 7203, 19629, 4943, 198 ]
2.781977
344
print "You enter a dark room with two doors. Do you go thorugh door #1 or door # 2" door = raw_input(">" ) if door == "1": print "Theres a giant bear here earting a cheescake. What do you do?" print "Option '1'. Take the cake" print "Option '2'. Scream at the bear." bear = raw_input("> ") if bear == "1": print "The bears eats your face off. Loser face! " elif bear == "2": print "The bear eats your legs off. Good job Legless face! " else: #haha error in the indentiuon in the book. print "Well, doing $s is pribably better. Bear runs way " % bear elif door == "2": print "You stare into the endless abyss at Cthulhu's retina. " print "1. Blueberries." print "2. Yellow Hacket clothespins." print "3. Understanding revolvers yelling melodies. " insanity = raw_input("> ") if insanity == "1" or insanity == "2": print "Your body survives powered by a mind of hjello. Greatness!" else: print "The insanity rots your eyes int a pool of muck. great!" else: print "You stumble around and fall on a knife and die. You suck!"
[ 4798, 366, 1639, 3802, 257, 3223, 2119, 351, 734, 8215, 13, 2141, 345, 467, 41899, 6724, 3420, 1303, 16, 393, 3420, 1303, 362, 1, 198, 198, 9424, 796, 8246, 62, 15414, 7, 5320, 1, 1267, 198, 198, 361, 3420, 6624, 366, 16, 1298, 198, 220, 220, 220, 3601, 366, 464, 411, 257, 6175, 6842, 994, 304, 433, 278, 257, 1125, 3798, 539, 13, 1867, 466, 345, 466, 1701, 198, 220, 220, 220, 3601, 366, 19722, 705, 16, 4458, 7214, 262, 12187, 1, 198, 220, 220, 220, 3601, 366, 19722, 705, 17, 4458, 36306, 379, 262, 6842, 526, 628, 220, 220, 220, 6842, 796, 8246, 62, 15414, 7, 5320, 366, 8, 628, 220, 220, 220, 611, 6842, 6624, 366, 16, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 464, 13062, 25365, 534, 1986, 572, 13, 5401, 263, 1986, 0, 366, 198, 220, 220, 220, 1288, 361, 6842, 6624, 366, 17, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 464, 6842, 25365, 534, 7405, 572, 13, 4599, 1693, 3564, 1203, 1986, 0, 366, 198, 220, 220, 220, 2073, 25, 1303, 71, 12236, 4049, 287, 262, 33793, 16115, 261, 287, 262, 1492, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 5779, 11, 1804, 720, 82, 318, 279, 822, 1346, 1365, 13, 14732, 4539, 835, 366, 4064, 6842, 198, 417, 361, 3420, 6624, 366, 17, 1298, 198, 220, 220, 220, 3601, 366, 1639, 24170, 656, 262, 13079, 37678, 379, 39316, 338, 45804, 13, 366, 198, 220, 220, 220, 3601, 366, 16, 13, 4518, 20853, 526, 198, 220, 220, 220, 3601, 366, 17, 13, 12550, 367, 8317, 8242, 49556, 526, 198, 220, 220, 220, 3601, 366, 18, 13, 28491, 35891, 690, 22187, 47077, 13, 366, 628, 220, 220, 220, 30949, 796, 8246, 62, 15414, 7, 5320, 366, 8, 628, 220, 220, 220, 611, 30949, 6624, 366, 16, 1, 393, 30949, 6624, 366, 17, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 7120, 1767, 36417, 13232, 416, 257, 2000, 286, 289, 73, 11109, 13, 3878, 1108, 2474, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 464, 30949, 686, 912, 534, 2951, 493, 257, 5933, 286, 285, 1347, 13, 1049, 2474, 198, 198, 17772, 25, 198, 220, 220, 220, 3601, 366, 1639, 35174, 1088, 290, 2121, 319, 257, 9845, 290, 4656, 13, 921, 10110, 2474, 198 ]
2.827068
399
line0.timing_system.channels.hsc.delay = 4.97e-06 line0.Phase [s] = 5.4527e-06 line0.ChopX = 36.78 line0.ChopY = 30.11 line0.description = 'S-1t' line0.updated = '2019-05-30 14:18:48' line1.timing_system.channels.hsc.delay = 0.0 line1.ChopX = 36.78 line1.ChopY = 31.136 line1.description = 'S-1' line1.updated = '2019-05-30 14:25:48' line2.timing_system.channels.hsc.delay = 8.232e-09 line2.ChopX = 36.78 line2.ChopY = 31.0579 line2.description = 'S-3' line2.updated = '2019-05-30 14:28:12' line3.timing_system.channels.hsc.delay = 1.372e-08 line3.ChopX = 36.78 line3.ChopY = 30.982499999999998 line3.description = 'S-5' line3.updated = '2019-05-30 14:28:12' line4.timing_system.channels.hsc.delay = 3.0184e-08 line4.ChopX = 36.78 line4.ChopY = 30.7563 line4.description = 'S-11' line4.updated = '2019-05-30 14:28:12' line5.timing_system.channels.hsc.delay = 6.86e-08 line5.ChopX = 36.78 line5.ChopY = 30.2285 line5.description = 'S-25' line5.updated = '2019-05-30 14:28:12' line6.timing_system.channels.hsc.delay = 0.0 line6.ChopX = 36.78 line6.ChopY = 30.555 line6.description = 'H-1' line6.updated = '2019-05-30 14:19:34' line7.timing_system.channels.hsc.delay = 0.0 line7.ChopX = 36.78 line7.ChopY = 30.555 line7.description = 'H-56' line7.updated = '2019-05-30 14:17:51' line8.timing_system.channels.hsc.delay = 0.0 line8.ChopX = 27.67 line8.ChopY = 30.925 line8.description = 'Bypass' line8.updated = '2019-05-30 14:17:51' motor_names = ['ChopX', 'ChopY', 'timing_system.channels.hsc.delay', 'timing_system.p0_shift'] motor_labels = ['X', 'Y', 'Phase', 'P0 Shift'] nrows = 12 formats = ['%+6.4f', '%+6.4f', 'time', 'time'] title = 'High-Speed Julich Chopper Modes' line9.description = 'S-15' line9.updated = '2019-05-30 14:28:12' line9.ChopX = 36.78 line9.ChopY = 30.6055 line9.timing_system.channels.hsc.delay = 4.116e-08 line10.description = 'S-19' line10.updated = '2019-05-30 14:28:12' line10.ChopX = 36.78 line10.ChopY = 30.4547 line10.timing_system.channels.hsc.delay = 5.2136e-08 tolerance = [0.002, 0.002, 2.8e-09, 2.8e-09] command_row = 9 widths = [100, 100, 100] show_in_list = True show_stop_button = True command_rows = [11] row_height = 21 names = ['X', 'Y', 'phase', 'p0_shift'] line7.timing_system.p0_shift = -1.84e-06 line8.timing_system.p0_shift = 0.0 line9.timing_system.p0_shift = -2.7871134923018455e-13 line6.timing_system.p0_shift = 0.0 line5.timing_system.p0_shift = 0.0 line4.timing_system.p0_shift = 0.0 line3.timing_system.p0_shift = -2.7871134923018455e-13 line2.timing_system.p0_shift = 0.0 line1.timing_system.p0_shift = -2.7871134923018455e-13 line0.timing_system.p0_shift = 0.0 line10.timing_system.p0_shift = 0.0 line11.ChopX = 36.78 line11.updated = '2019-06-01 08:36:18' line11.ChopY = 30.9071 line11.timing_system.channels.hsc.delay = 1.9170000000000002e-08 line11.timing_system.p0_shift = -2.7871134923018455e-13 line11.description = 'S-7'
[ 1370, 15, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 604, 13, 5607, 68, 12, 3312, 198, 1370, 15, 13, 35645, 685, 82, 60, 796, 642, 13, 2231, 1983, 68, 12, 3312, 198, 1370, 15, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 15, 13, 1925, 404, 56, 796, 1542, 13, 1157, 198, 1370, 15, 13, 11213, 796, 705, 50, 12, 16, 83, 6, 198, 1370, 15, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 1507, 25, 2780, 6, 198, 1370, 16, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 657, 13, 15, 198, 1370, 16, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 16, 13, 1925, 404, 56, 796, 3261, 13, 20809, 198, 1370, 16, 13, 11213, 796, 705, 50, 12, 16, 6, 198, 1370, 16, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 1495, 25, 2780, 6, 198, 1370, 17, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 807, 13, 24339, 68, 12, 2931, 198, 1370, 17, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 17, 13, 1925, 404, 56, 796, 3261, 13, 2713, 3720, 198, 1370, 17, 13, 11213, 796, 705, 50, 12, 18, 6, 198, 1370, 17, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 2078, 25, 1065, 6, 198, 1370, 18, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 352, 13, 36720, 68, 12, 2919, 198, 1370, 18, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 18, 13, 1925, 404, 56, 796, 1542, 13, 4089, 1731, 24214, 24214, 34808, 198, 1370, 18, 13, 11213, 796, 705, 50, 12, 20, 6, 198, 1370, 18, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 2078, 25, 1065, 6, 198, 1370, 19, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 513, 13, 486, 5705, 68, 12, 2919, 198, 1370, 19, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 19, 13, 1925, 404, 56, 796, 1542, 13, 2425, 5066, 198, 1370, 19, 13, 11213, 796, 705, 50, 12, 1157, 6, 198, 1370, 19, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 2078, 25, 1065, 6, 198, 1370, 20, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 718, 13, 4521, 68, 12, 2919, 198, 1370, 20, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 20, 13, 1925, 404, 56, 796, 1542, 13, 1828, 5332, 198, 1370, 20, 13, 11213, 796, 705, 50, 12, 1495, 6, 198, 1370, 20, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 2078, 25, 1065, 6, 198, 1370, 21, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 657, 13, 15, 198, 1370, 21, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 21, 13, 1925, 404, 56, 796, 1542, 13, 31046, 198, 1370, 21, 13, 11213, 796, 705, 39, 12, 16, 6, 198, 1370, 21, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 1129, 25, 2682, 6, 198, 1370, 22, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 657, 13, 15, 198, 1370, 22, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 22, 13, 1925, 404, 56, 796, 1542, 13, 31046, 198, 1370, 22, 13, 11213, 796, 705, 39, 12, 3980, 6, 198, 1370, 22, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 1558, 25, 4349, 6, 198, 1370, 23, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 657, 13, 15, 198, 1370, 23, 13, 1925, 404, 55, 796, 2681, 13, 3134, 198, 1370, 23, 13, 1925, 404, 56, 796, 1542, 13, 46351, 198, 1370, 23, 13, 11213, 796, 705, 3886, 6603, 6, 198, 1370, 23, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 1558, 25, 4349, 6, 198, 76, 20965, 62, 14933, 796, 37250, 1925, 404, 55, 3256, 705, 1925, 404, 56, 3256, 705, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 3256, 705, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 20520, 198, 76, 20965, 62, 23912, 1424, 796, 37250, 55, 3256, 705, 56, 3256, 705, 35645, 3256, 705, 47, 15, 15576, 20520, 198, 77, 8516, 796, 1105, 198, 687, 1381, 796, 37250, 4, 10, 21, 13, 19, 69, 3256, 705, 4, 10, 21, 13, 19, 69, 3256, 705, 2435, 3256, 705, 2435, 20520, 198, 7839, 796, 705, 11922, 12, 22785, 5979, 488, 10031, 2848, 42082, 6, 198, 1370, 24, 13, 11213, 796, 705, 50, 12, 1314, 6, 198, 1370, 24, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 2078, 25, 1065, 6, 198, 1370, 24, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 24, 13, 1925, 404, 56, 796, 1542, 13, 1899, 2816, 198, 1370, 24, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 604, 13, 18298, 68, 12, 2919, 198, 1370, 940, 13, 11213, 796, 705, 50, 12, 1129, 6, 198, 1370, 940, 13, 43162, 796, 705, 23344, 12, 2713, 12, 1270, 1478, 25, 2078, 25, 1065, 6, 198, 1370, 940, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 940, 13, 1925, 404, 56, 796, 1542, 13, 2231, 2857, 198, 1370, 940, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 642, 13, 17, 20809, 68, 12, 2919, 198, 83, 37668, 796, 685, 15, 13, 21601, 11, 657, 13, 21601, 11, 362, 13, 23, 68, 12, 2931, 11, 362, 13, 23, 68, 12, 2931, 60, 198, 21812, 62, 808, 796, 860, 198, 10394, 82, 796, 685, 3064, 11, 1802, 11, 1802, 60, 198, 12860, 62, 259, 62, 4868, 796, 6407, 198, 12860, 62, 11338, 62, 16539, 796, 6407, 198, 21812, 62, 8516, 796, 685, 1157, 60, 198, 808, 62, 17015, 796, 2310, 198, 14933, 796, 37250, 55, 3256, 705, 56, 3256, 705, 40715, 3256, 705, 79, 15, 62, 30846, 20520, 198, 1370, 22, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 532, 16, 13, 5705, 68, 12, 3312, 198, 1370, 23, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 657, 13, 15, 198, 1370, 24, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 532, 17, 13, 41019, 1157, 27371, 1954, 29159, 30505, 68, 12, 1485, 198, 1370, 21, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 657, 13, 15, 198, 1370, 20, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 657, 13, 15, 198, 1370, 19, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 657, 13, 15, 198, 1370, 18, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 532, 17, 13, 41019, 1157, 27371, 1954, 29159, 30505, 68, 12, 1485, 198, 1370, 17, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 657, 13, 15, 198, 1370, 16, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 532, 17, 13, 41019, 1157, 27371, 1954, 29159, 30505, 68, 12, 1485, 198, 1370, 15, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 657, 13, 15, 198, 1370, 940, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 657, 13, 15, 198, 1370, 1157, 13, 1925, 404, 55, 796, 4570, 13, 3695, 198, 1370, 1157, 13, 43162, 796, 705, 23344, 12, 3312, 12, 486, 8487, 25, 2623, 25, 1507, 6, 198, 1370, 1157, 13, 1925, 404, 56, 796, 1542, 13, 24, 2998, 16, 198, 1370, 1157, 13, 16514, 278, 62, 10057, 13, 354, 8961, 13, 71, 1416, 13, 40850, 796, 352, 13, 24, 1558, 8269, 2388, 17, 68, 12, 2919, 198, 1370, 1157, 13, 16514, 278, 62, 10057, 13, 79, 15, 62, 30846, 796, 532, 17, 13, 41019, 1157, 27371, 1954, 29159, 30505, 68, 12, 1485, 198, 1370, 1157, 13, 11213, 796, 705, 50, 12, 22, 6 ]
2.134074
1,350
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals """ Using Classifier and String Features ======================================== This is a famous `shogun` classifier example that predicts family name of Shogun from his first name. """ from jubakit.classifier import Classifier, Schema, Dataset, Config from jubakit.loader.csv import CSVLoader # Load the shogun dataset. train_loader = CSVLoader('shogun.train.csv') test_loader = CSVLoader('shogun.test.csv') # Define a Schema that defines types for each columns of the CSV file. schema = Schema({ 'family_name': Schema.LABEL, 'first_name': Schema.STRING, }) # Create a Dataset. train_dataset = Dataset(train_loader, schema).shuffle() test_dataset = Dataset(test_loader, schema) # Create a Classifier Service. cfg = Config( method = 'PA', converter = { 'string_rules': [{'key': 'first_name', 'type': 'unigram', 'sample_weight': 'bin', 'global_weight': 'bin'}] } ) classifier = Classifier.run(cfg) # Train the classifier. for _ in classifier.train(train_dataset): pass # Classify using the classifier. for (idx, label, result) in classifier.classify(test_dataset): true_family_name = label pred_family_name = result[0][0] first_name = test_dataset.get(idx)['first_name'] print("{0} {1} ({2})".format( pred_family_name, first_name, 'correct!' if pred_family_name == true_family_name else 'incorrect' )) # Stop the classifier. classifier.stop()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 37811, 198, 12814, 5016, 7483, 290, 10903, 17571, 198, 10052, 2559, 198, 198, 1212, 318, 257, 5863, 4600, 1477, 39918, 63, 1398, 7483, 1672, 326, 26334, 1641, 1438, 198, 1659, 46775, 422, 465, 717, 1438, 13, 198, 37811, 198, 198, 6738, 474, 549, 461, 270, 13, 4871, 7483, 1330, 5016, 7483, 11, 10011, 2611, 11, 16092, 292, 316, 11, 17056, 198, 6738, 474, 549, 461, 270, 13, 29356, 13, 40664, 1330, 44189, 17401, 198, 198, 2, 8778, 262, 427, 39918, 27039, 13, 198, 27432, 62, 29356, 796, 44189, 17401, 10786, 1477, 39918, 13, 27432, 13, 40664, 11537, 198, 9288, 62, 29356, 796, 44189, 17401, 10786, 1477, 39918, 13, 9288, 13, 40664, 11537, 198, 198, 2, 2896, 500, 257, 10011, 2611, 326, 15738, 3858, 329, 1123, 15180, 286, 262, 44189, 2393, 13, 198, 15952, 2611, 796, 10011, 2611, 15090, 198, 220, 705, 17989, 62, 3672, 10354, 10011, 2611, 13, 48780, 3698, 11, 198, 220, 705, 11085, 62, 3672, 10354, 10011, 2611, 13, 18601, 2751, 11, 198, 30072, 198, 198, 2, 13610, 257, 16092, 292, 316, 13, 198, 27432, 62, 19608, 292, 316, 796, 16092, 292, 316, 7, 27432, 62, 29356, 11, 32815, 737, 1477, 18137, 3419, 198, 9288, 62, 19608, 292, 316, 796, 16092, 292, 316, 7, 9288, 62, 29356, 11, 32815, 8, 198, 198, 2, 13610, 257, 5016, 7483, 4809, 13, 198, 37581, 796, 17056, 7, 198, 220, 2446, 796, 705, 4537, 3256, 198, 220, 38394, 796, 1391, 198, 220, 220, 220, 705, 8841, 62, 38785, 10354, 685, 90, 6, 2539, 10354, 705, 11085, 62, 3672, 3256, 705, 4906, 10354, 705, 403, 328, 859, 3256, 705, 39873, 62, 6551, 10354, 705, 8800, 3256, 705, 20541, 62, 6551, 10354, 705, 8800, 6, 92, 60, 198, 220, 1782, 198, 8, 198, 4871, 7483, 796, 5016, 7483, 13, 5143, 7, 37581, 8, 198, 198, 2, 16835, 262, 1398, 7483, 13, 198, 1640, 4808, 287, 1398, 7483, 13, 27432, 7, 27432, 62, 19608, 292, 316, 2599, 1208, 198, 198, 2, 5016, 1958, 1262, 262, 1398, 7483, 13, 198, 1640, 357, 312, 87, 11, 6167, 11, 1255, 8, 287, 1398, 7483, 13, 4871, 1958, 7, 9288, 62, 19608, 292, 316, 2599, 198, 220, 2081, 62, 17989, 62, 3672, 796, 6167, 198, 220, 2747, 62, 17989, 62, 3672, 796, 1255, 58, 15, 7131, 15, 60, 198, 220, 717, 62, 3672, 796, 1332, 62, 19608, 292, 316, 13, 1136, 7, 312, 87, 8, 17816, 11085, 62, 3672, 20520, 198, 220, 3601, 7203, 90, 15, 92, 1391, 16, 92, 37913, 17, 30072, 1911, 18982, 7, 198, 220, 220, 220, 2747, 62, 17989, 62, 3672, 11, 198, 220, 220, 220, 717, 62, 3672, 11, 198, 220, 220, 220, 705, 30283, 13679, 611, 2747, 62, 17989, 62, 3672, 6624, 2081, 62, 17989, 62, 3672, 2073, 705, 1939, 47315, 6, 198, 220, 15306, 198, 198, 2, 13707, 262, 1398, 7483, 13, 198, 4871, 7483, 13, 11338, 3419, 198 ]
2.90631
523
from PIL import Image import matplotlib.pyplot as plt import numpy as np from PIL import ImageOps '''def turnWhite(imageName, newName): img = Image.open(imageName+'.png') img = img.convert("RGBA") datas = img.getdata() newData = [] for item in datas: if item[3]!=0: newData.append((255, 255, 255, 255)) else: newData.append(item) img.putdata(newData) img.save(newName+".png", "PNG") ''' img = Image.open("shoe1.jpg") img = ImageOps.grayscale(img) np_im = np.array(img) print(np_im.shape) np_im = (np_im - np.min(np_im))/np.ptp(np_im) #print(np_im.shape) #datas=img.getdata() #print(datas) #newData = [] #for item in datas: #newData.append((item[0]/255,item[1]/255,item[2]/255,item[3])) #img.putdata(newData) plt.imshow(np_im) plt.show() #img.save("new"+".jpg", "JPEG") #new_im = Image.fromarray(np_im) #new_im.save("new.jpg") img.close() #np_im = np.array(im) #print(np_im) #new_arr = ((np_im + 0) * (1/1) * 255).astype('uint8') #print(new_arr)
[ 6738, 350, 4146, 1330, 7412, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 41472, 198, 198, 7061, 6, 4299, 1210, 12256, 7, 9060, 5376, 11, 649, 5376, 2599, 198, 220, 220, 220, 33705, 796, 7412, 13, 9654, 7, 9060, 5376, 10, 4458, 11134, 11537, 198, 220, 220, 220, 33705, 796, 33705, 13, 1102, 1851, 7203, 48192, 4339, 4943, 198, 220, 220, 220, 19395, 796, 33705, 13, 1136, 7890, 3419, 628, 220, 220, 220, 649, 6601, 796, 17635, 198, 220, 220, 220, 329, 2378, 287, 19395, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 58, 18, 60, 0, 28, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 6601, 13, 33295, 19510, 13381, 11, 14280, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 6601, 13, 33295, 7, 9186, 8, 628, 220, 220, 220, 33705, 13, 1996, 7890, 7, 3605, 6601, 8, 198, 220, 220, 220, 33705, 13, 21928, 7, 3605, 5376, 10, 1911, 11134, 1600, 366, 47, 10503, 4943, 705, 7061, 198, 198, 9600, 796, 7412, 13, 9654, 7203, 1477, 2577, 16, 13, 9479, 4943, 198, 9600, 796, 7412, 41472, 13, 2164, 592, 38765, 7, 9600, 8, 198, 198, 37659, 62, 320, 796, 45941, 13, 18747, 7, 9600, 8, 198, 4798, 7, 37659, 62, 320, 13, 43358, 8, 198, 37659, 62, 320, 796, 357, 37659, 62, 320, 532, 45941, 13, 1084, 7, 37659, 62, 320, 4008, 14, 37659, 13, 457, 79, 7, 37659, 62, 320, 8, 198, 198, 2, 4798, 7, 37659, 62, 320, 13, 43358, 8, 198, 2, 19608, 292, 28, 9600, 13, 1136, 7890, 3419, 198, 2, 4798, 7, 19608, 292, 8, 198, 2, 3605, 6601, 796, 17635, 198, 198, 2, 1640, 2378, 287, 19395, 25, 198, 220, 220, 220, 1303, 3605, 6601, 13, 33295, 19510, 9186, 58, 15, 60, 14, 13381, 11, 9186, 58, 16, 60, 14, 13381, 11, 9186, 58, 17, 60, 14, 13381, 11, 9186, 58, 18, 60, 4008, 198, 2, 9600, 13, 1996, 7890, 7, 3605, 6601, 8, 198, 489, 83, 13, 320, 12860, 7, 37659, 62, 320, 8, 198, 489, 83, 13, 12860, 3419, 198, 2, 9600, 13, 21928, 7203, 3605, 1, 10, 1911, 9479, 1600, 366, 12889, 7156, 4943, 198, 2, 3605, 62, 320, 796, 7412, 13, 6738, 18747, 7, 37659, 62, 320, 8, 198, 2, 3605, 62, 320, 13, 21928, 7203, 3605, 13, 9479, 4943, 198, 9600, 13, 19836, 3419, 198, 2, 37659, 62, 320, 796, 45941, 13, 18747, 7, 320, 8, 198, 198, 2, 4798, 7, 37659, 62, 320, 8, 198, 2, 3605, 62, 3258, 796, 14808, 37659, 62, 320, 1343, 657, 8, 1635, 357, 16, 14, 16, 8, 1635, 14280, 737, 459, 2981, 10786, 28611, 23, 11537, 198, 2, 4798, 7, 3605, 62, 3258, 8 ]
2.09407
489
import os import requests from base64 import b64encode from flask import render_template BASE_URL = os.getenv("NSO_URL", "http://localhost:8080") API_ROOT = BASE_URL + '/api/running' NSO_USERNAME = os.getenv("NSO_USERNAME", "admin") NSO_PASSWORD = os.getenv("NSO_PASSWORD", "admin") HEADERS = { 'Content-Type': "application/vnd.yang.data+json", 'authorization': "Basic {}".format(b64encode(b':'.join((NSO_USERNAME, NSO_PASSWORD) ) ).strip() ), 'accept': "application/vnd.yang.collection+json" } def send_post(url): """ used to pass through NSO requests """ HEADERS['accept'] = 'application/vnd.yang.data+json' if not url.startswith('/'): url = "/{}".format(url) url = BASE_URL + url resp = requests.post(url, headers=HEADERS) return resp
[ 11748, 28686, 198, 11748, 7007, 198, 6738, 2779, 2414, 1330, 275, 2414, 268, 8189, 198, 6738, 42903, 1330, 8543, 62, 28243, 198, 198, 33, 11159, 62, 21886, 796, 28686, 13, 1136, 24330, 7203, 8035, 46, 62, 21886, 1600, 366, 4023, 1378, 36750, 25, 1795, 1795, 4943, 198, 17614, 62, 13252, 2394, 796, 49688, 62, 21886, 1343, 31051, 15042, 14, 20270, 6, 198, 198, 8035, 46, 62, 29904, 20608, 796, 28686, 13, 1136, 24330, 7203, 8035, 46, 62, 29904, 20608, 1600, 366, 28482, 4943, 198, 8035, 46, 62, 47924, 54, 12532, 796, 28686, 13, 1136, 24330, 7203, 8035, 46, 62, 47924, 54, 12532, 1600, 366, 28482, 4943, 198, 198, 37682, 4877, 796, 1391, 198, 220, 220, 220, 705, 19746, 12, 6030, 10354, 366, 31438, 14, 85, 358, 13, 17859, 13, 7890, 10, 17752, 1600, 198, 220, 220, 220, 705, 9800, 1634, 10354, 366, 26416, 23884, 1911, 18982, 7, 65, 2414, 268, 8189, 7, 65, 10354, 4458, 22179, 19510, 8035, 46, 62, 29904, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10896, 46, 62, 47924, 54, 12532, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 705, 13635, 10354, 366, 31438, 14, 85, 358, 13, 17859, 13, 43681, 10, 17752, 1, 198, 220, 220, 220, 1782, 198, 198, 4299, 3758, 62, 7353, 7, 6371, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 973, 284, 1208, 832, 10896, 46, 7007, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 39837, 4877, 17816, 13635, 20520, 796, 705, 31438, 14, 85, 358, 13, 17859, 13, 7890, 10, 17752, 6, 198, 220, 220, 220, 611, 407, 19016, 13, 9688, 2032, 342, 10786, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 12813, 90, 92, 1911, 18982, 7, 6371, 8, 198, 220, 220, 220, 19016, 796, 49688, 62, 21886, 1343, 19016, 198, 220, 220, 220, 1217, 796, 7007, 13, 7353, 7, 6371, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1441, 1217, 628 ]
1.916031
524