content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# -*- coding: utf-8 -*- """Tests for the key interactiveshell module. Authors ------- * Julian Taylor """ #----------------------------------------------------------------------------- # Copyright (C) 2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # stdlib import sys import types import unittest from IPython.core.inputtransformer import InputTransformer from IPython.testing.decorators import skipif from IPython.utils import py3compat from IPython.testing import tools as tt # Decorator for interaction loop tests ----------------------------------- class mock_input_helper(object): """Machinery for tests of the main interact loop. Used by the mock_input decorator. """ def mock_input(testfunc): """Decorator for tests of the main interact loop. Write the test as a generator, yield-ing the input strings, which IPython will see as if they were typed in at the prompt. """ return test_method # Test classes -----------------------------------------------------------
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 51, 3558, 329, 262, 1994, 9427, 1083, 12758, 8265, 13, 198, 198, 30515, 669, 198, 26866, 198, 9, 18322, 8121, 198, 37811, 198, 2, 10097, 32501, 198, 2, 220, 15069, 357, 34, 8, 2813, 220, 383, 6101, 7535, 7712, 4816, 198, 2, 198, 2, 220, 4307, 6169, 739, 262, 2846, 286, 262, 347, 10305, 13789, 13, 220, 383, 1336, 5964, 318, 287, 198, 2, 220, 262, 2393, 27975, 45761, 11, 9387, 355, 636, 286, 428, 3788, 13, 198, 2, 10097, 32501, 198, 198, 2, 10097, 32501, 198, 2, 1846, 3742, 198, 2, 10097, 32501, 198, 2, 14367, 8019, 198, 11748, 25064, 198, 11748, 3858, 198, 11748, 555, 715, 395, 198, 198, 6738, 6101, 7535, 13, 7295, 13, 15414, 7645, 16354, 1330, 23412, 8291, 16354, 198, 6738, 6101, 7535, 13, 33407, 13, 12501, 273, 2024, 1330, 14267, 361, 198, 6738, 6101, 7535, 13, 26791, 1330, 12972, 18, 5589, 265, 198, 6738, 6101, 7535, 13, 33407, 1330, 4899, 355, 256, 83, 198, 198, 2, 4280, 273, 1352, 329, 10375, 9052, 5254, 20368, 6329, 628, 198, 4871, 15290, 62, 15414, 62, 2978, 525, 7, 15252, 2599, 628, 220, 220, 220, 37227, 49999, 15451, 329, 5254, 286, 262, 1388, 9427, 9052, 13, 628, 220, 220, 220, 16718, 416, 262, 15290, 62, 15414, 11705, 1352, 13, 198, 220, 220, 220, 37227, 628, 198, 4299, 15290, 62, 15414, 7, 9288, 20786, 2599, 198, 220, 220, 220, 37227, 10707, 273, 1352, 329, 5254, 286, 262, 1388, 9427, 9052, 13, 628, 220, 220, 220, 19430, 262, 1332, 355, 257, 17301, 11, 7800, 12, 278, 262, 5128, 13042, 11, 543, 6101, 7535, 198, 220, 220, 220, 481, 766, 355, 611, 484, 547, 25683, 287, 379, 262, 6152, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 1332, 62, 24396, 198, 198, 2, 6208, 6097, 20368, 22369, 6329, 628, 628 ]
4.388013
317
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Definitions for modified MobileNet models used in LSTD.""" import tensorflow as tf from nets import mobilenet_v1 from nets.mobilenet import conv_blocks as mobilenet_convs from nets.mobilenet import mobilenet slim = tf.contrib.slim def mobilenet_v1_lite_def(depth_multiplier, low_res=False): """Conv definitions for a lite MobileNet v1 model. Args: depth_multiplier: float depth multiplier for MobileNet. low_res: An option of low-res conv input for interleave model. Returns: Array of convolutions. Raises: ValueError: On invalid channels with provided depth multiplier. """ conv = mobilenet_v1.Conv sep_conv = mobilenet_v1.DepthSepConv return [ conv(kernel=[3, 3], stride=2, depth=32), sep_conv(kernel=[3, 3], stride=1, depth=64), sep_conv(kernel=[3, 3], stride=2, depth=128), sep_conv(kernel=[3, 3], stride=1, depth=128), sep_conv(kernel=[3, 3], stride=2, depth=256), sep_conv(kernel=[3, 3], stride=1, depth=256), sep_conv(kernel=[3, 3], stride=2, depth=512), sep_conv(kernel=[3, 3], stride=1, depth=512), sep_conv(kernel=[3, 3], stride=1, depth=512), sep_conv(kernel=[3, 3], stride=1, depth=512), sep_conv(kernel=[3, 3], stride=1, depth=512), sep_conv(kernel=[3, 3], stride=1, depth=512), sep_conv(kernel=[3, 3], stride=1 if low_res else 2, depth=1024), sep_conv( kernel=[3, 3], stride=1, depth=int(_find_target_depth(1024, depth_multiplier))) ] def mobilenet_v2_lite_def(reduced=False, is_quantized=False, low_res=False): """Conv definitions for a lite MobileNet v2 model. Args: reduced: Determines the scaling factor for expanded conv. If True, a factor of 6 is used. If False, a factor of 3 is used. is_quantized: Whether the model is trained in quantized mode. low_res: Whether the input to the model is of half resolution. Returns: Array of convolutions. """ expanded_conv = mobilenet_convs.expanded_conv expand_input = mobilenet_convs.expand_input_by_factor op = mobilenet.op return dict( defaults={ # Note: these parameters of batch norm affect the architecture # that's why they are here and not in training_scope. (slim.batch_norm,): { 'center': True, 'scale': True }, (slim.conv2d, slim.fully_connected, slim.separable_conv2d): { 'normalizer_fn': slim.batch_norm, 'activation_fn': tf.nn.relu6 }, (expanded_conv,): { 'expansion_size': expand_input(6), 'split_expansion': 1, 'normalizer_fn': slim.batch_norm, 'residual': True }, (slim.conv2d, slim.separable_conv2d): { 'padding': 'SAME' } }, spec=[ op(slim.conv2d, stride=2, num_outputs=32, kernel_size=[3, 3]), op(expanded_conv, expansion_size=expand_input(1, divisible_by=1), num_outputs=16), op(expanded_conv, expansion_size=(expand_input(3, divisible_by=1) if reduced else expand_input(6)), stride=2, num_outputs=24), op(expanded_conv, expansion_size=(expand_input(3, divisible_by=1) if reduced else expand_input(6)), stride=1, num_outputs=24), op(expanded_conv, stride=2, num_outputs=32), op(expanded_conv, stride=1, num_outputs=32), op(expanded_conv, stride=1, num_outputs=32), op(expanded_conv, stride=2, num_outputs=64), op(expanded_conv, stride=1, num_outputs=64), op(expanded_conv, stride=1, num_outputs=64), op(expanded_conv, stride=1, num_outputs=64), op(expanded_conv, stride=1, num_outputs=96), op(expanded_conv, stride=1, num_outputs=96), op(expanded_conv, stride=1, num_outputs=96), op(expanded_conv, stride=1 if low_res else 2, num_outputs=160), op(expanded_conv, stride=1, num_outputs=160), op(expanded_conv, stride=1, num_outputs=160), op(expanded_conv, stride=1, num_outputs=320, project_activation_fn=(tf.nn.relu6 if is_quantized else tf.identity)) ], )
[ 2, 15069, 13130, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 201, 198, 2, 201, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 201, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 201, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 201, 198, 2, 201, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 201, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 201, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 201, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 201, 198, 2, 11247, 739, 262, 13789, 13, 201, 198, 2, 38093, 25609, 28, 201, 198, 37811, 7469, 50101, 329, 9518, 12173, 7934, 4981, 973, 287, 406, 32147, 526, 15931, 201, 198, 201, 198, 11748, 11192, 273, 11125, 355, 48700, 201, 198, 201, 198, 6738, 31720, 1330, 17754, 268, 316, 62, 85, 16, 201, 198, 6738, 31720, 13, 76, 25898, 268, 316, 1330, 3063, 62, 27372, 355, 17754, 268, 316, 62, 1102, 14259, 201, 198, 6738, 31720, 13, 76, 25898, 268, 316, 1330, 17754, 268, 316, 201, 198, 201, 198, 82, 2475, 796, 48700, 13, 3642, 822, 13, 82, 2475, 201, 198, 201, 198, 201, 198, 4299, 17754, 268, 316, 62, 85, 16, 62, 36890, 62, 4299, 7, 18053, 62, 47945, 959, 11, 1877, 62, 411, 28, 25101, 2599, 201, 198, 220, 37227, 3103, 85, 17336, 329, 257, 300, 578, 12173, 7934, 410, 16, 2746, 13, 201, 198, 201, 198, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 6795, 62, 47945, 959, 25, 12178, 6795, 33090, 329, 12173, 7934, 13, 201, 198, 220, 220, 220, 1877, 62, 411, 25, 1052, 3038, 286, 1877, 12, 411, 3063, 5128, 329, 987, 47408, 2746, 13, 201, 198, 201, 198, 220, 16409, 25, 201, 198, 220, 220, 220, 15690, 286, 3063, 14191, 13, 201, 198, 201, 198, 220, 7567, 2696, 25, 201, 198, 220, 220, 220, 11052, 12331, 25, 1550, 12515, 9619, 351, 2810, 6795, 33090, 13, 201, 198, 220, 37227, 201, 198, 220, 3063, 796, 17754, 268, 316, 62, 85, 16, 13, 3103, 85, 201, 198, 220, 41767, 62, 42946, 796, 17754, 268, 316, 62, 85, 16, 13, 48791, 19117, 3103, 85, 201, 198, 201, 198, 220, 1441, 685, 201, 198, 220, 220, 220, 220, 220, 3063, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 17, 11, 6795, 28, 2624, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 11, 6795, 28, 2414, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 17, 11, 6795, 28, 12762, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 11, 6795, 28, 12762, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 17, 11, 6795, 28, 11645, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 11, 6795, 28, 11645, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 17, 11, 6795, 28, 25836, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 11, 6795, 28, 25836, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 11, 6795, 28, 25836, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 11, 6795, 28, 25836, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 11, 6795, 28, 25836, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 11, 6795, 28, 25836, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 33885, 41888, 18, 11, 513, 4357, 33769, 28, 16, 611, 1877, 62, 411, 2073, 362, 11, 6795, 28, 35500, 828, 201, 198, 220, 220, 220, 220, 220, 41767, 62, 42946, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 41888, 18, 11, 513, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6795, 28, 600, 28264, 19796, 62, 16793, 62, 18053, 7, 35500, 11, 6795, 62, 47945, 959, 22305, 201, 198, 220, 2361, 201, 198, 201, 198, 201, 198, 4299, 17754, 268, 316, 62, 85, 17, 62, 36890, 62, 4299, 7, 445, 19513, 28, 25101, 11, 318, 62, 40972, 1143, 28, 25101, 11, 1877, 62, 411, 28, 25101, 2599, 201, 198, 220, 37227, 3103, 85, 17336, 329, 257, 300, 578, 12173, 7934, 410, 17, 2746, 13, 201, 198, 201, 198, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 5322, 25, 360, 13221, 274, 262, 20796, 5766, 329, 9902, 3063, 13, 1002, 6407, 11, 257, 5766, 201, 198, 220, 220, 220, 220, 220, 220, 220, 286, 718, 318, 973, 13, 1002, 10352, 11, 257, 5766, 286, 513, 318, 973, 13, 201, 198, 220, 220, 220, 318, 62, 40972, 1143, 25, 10127, 262, 2746, 318, 8776, 287, 5554, 1143, 4235, 13, 201, 198, 220, 220, 220, 1877, 62, 411, 25, 10127, 262, 5128, 284, 262, 2746, 318, 286, 2063, 6323, 13, 201, 198, 201, 198, 220, 16409, 25, 201, 198, 220, 220, 220, 15690, 286, 3063, 14191, 13, 201, 198, 220, 37227, 201, 198, 220, 9902, 62, 42946, 796, 17754, 268, 316, 62, 1102, 14259, 13, 11201, 12249, 62, 42946, 201, 198, 220, 4292, 62, 15414, 796, 17754, 268, 316, 62, 1102, 14259, 13, 11201, 392, 62, 15414, 62, 1525, 62, 31412, 201, 198, 220, 1034, 796, 17754, 268, 316, 13, 404, 201, 198, 220, 1441, 8633, 7, 201, 198, 220, 220, 220, 220, 220, 26235, 34758, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 25, 777, 10007, 286, 15458, 2593, 2689, 262, 10959, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 326, 338, 1521, 484, 389, 994, 290, 407, 287, 3047, 62, 29982, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 2475, 13, 43501, 62, 27237, 11, 2599, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16159, 10354, 6407, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9888, 10354, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 2759, 62, 15236, 11, 18862, 13, 25512, 540, 62, 42946, 17, 67, 2599, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11265, 7509, 62, 22184, 10354, 18862, 13, 43501, 62, 27237, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48545, 62, 22184, 10354, 48700, 13, 20471, 13, 260, 2290, 21, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 11201, 12249, 62, 42946, 11, 2599, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11201, 5487, 62, 7857, 10354, 4292, 62, 15414, 7, 21, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35312, 62, 11201, 5487, 10354, 352, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11265, 7509, 62, 22184, 10354, 18862, 13, 43501, 62, 27237, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 411, 312, 723, 10354, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 25512, 540, 62, 42946, 17, 67, 2599, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39231, 10354, 705, 50, 10067, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 201, 198, 220, 220, 220, 220, 220, 8964, 201, 198, 220, 220, 220, 220, 220, 1020, 41888, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 82, 2475, 13, 42946, 17, 67, 11, 33769, 28, 17, 11, 997, 62, 22915, 82, 28, 2624, 11, 9720, 62, 7857, 41888, 18, 11, 513, 46570, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 62, 7857, 28, 11201, 392, 62, 15414, 7, 16, 11, 2659, 12843, 62, 1525, 28, 16, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22915, 82, 28, 1433, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 62, 7857, 16193, 11201, 392, 62, 15414, 7, 18, 11, 2659, 12843, 62, 1525, 28, 16, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5322, 2073, 4292, 62, 15414, 7, 21, 36911, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 17, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22915, 82, 28, 1731, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 62, 7857, 16193, 11201, 392, 62, 15414, 7, 18, 11, 2659, 12843, 62, 1525, 28, 16, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5322, 2073, 4292, 62, 15414, 7, 21, 36911, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22915, 82, 28, 1731, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 17, 11, 997, 62, 22915, 82, 28, 2624, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 2624, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 2624, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 17, 11, 997, 62, 22915, 82, 28, 2414, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 2414, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 2414, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 2414, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 4846, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 4846, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 4846, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 611, 1877, 62, 411, 2073, 362, 11, 997, 62, 22915, 82, 28, 14198, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 14198, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 33769, 28, 16, 11, 997, 62, 22915, 82, 28, 14198, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 7, 11201, 12249, 62, 42946, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22915, 82, 28, 19504, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1628, 62, 48545, 62, 22184, 16193, 27110, 13, 20471, 13, 260, 2290, 21, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 40972, 1143, 2073, 48700, 13, 738, 414, 4008, 201, 198, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 1267, 201, 198 ]
2.182728
2,397
import sys sys.path.append("../pipeline") import mysql.connector import pickle import argparse import json import itertools from collections import defaultdict,Counter from collections.abc import Iterable import numpy as np import time import os from scipy import stats from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import MultiLabelBinarizer from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.decomposition import TruncatedSVD if __name__ == '__main__': parser = argparse.ArgumentParser(description='Prepare data for active learning') #parser.add_argument('--db',required=True,type=str,help='JSON with database settings') parser.add_argument('--inDir',required=True,type=str,help='Output dir to put matrices') parser.add_argument('--negThreshold',required=False,default=0.3,type=float,help='Threshold below which is a confident negative (default=0.25)') parser.add_argument('--posThreshold',required=False,default=0.7,type=float,help='Threshold above which is a confident positive (default=0.75)') #parser.add_argument('--outFile',required=True,type=str,help='Output file') args = parser.parse_args() X_annotated = np.load(os.path.join(args.inDir,'X_annotated.npy')) y_annotated = np.load(os.path.join(args.inDir,'y_annotated.npy')) X_undecided = np.load(os.path.join(args.inDir,'X_undecided.npy')) undecided_scores = np.load(os.path.join(args.inDir,'undecided_scores.npy')) with open(os.path.join(args.inDir,'undecided_docs.pickle'),'rb') as f: undecided_docs = pickle.load(f) if False: with open(args.db) as f: database = json.load(f) mydb = mysql.connector.connect( host=database['host'], user=database['user'], passwd=database['passwd'], database=database['database'] ) mycursor = mydb.cursor() #loadDocumentIDMapping(mycursor,undecided_docs) #baselineConfNumber = getConfidenceNumbers(X_annotated,y_annotated[:,args.label_index],X_undecided,args.posThreshold,args.negThreshold) #print("baselineConfNumber=",baselineConfNumber) #outcomes = searchForBestDocumentToAnnotate(X_annotated,y_annotated,X_undecided,args.posThreshold) current_y = np.copy(y_annotated) current_train_X = np.copy(X_annotated) current_unknown_X = np.copy(X_undecided) num_iter = current_unknown_X.shape[0] prev_done = [] start_time = time.time() for i in range(num_iter): multi_scores = getMultiScores(current_train_X, current_y, current_unknown_X) np.savetxt('multi_scores_%04d.csv' % i, multi_scores, delimiter=',', fmt="%f") min_scores = multi_scores.min(axis=1) min_score_percentiles = stats.rankdata(min_scores,"average") / min_scores.shape[0] #print(min_score_percentiles.shape) #print(min_score_percentiles[409]) current_outcomes = searchForBestDocumentToAnnotate(current_train_X,current_y,current_unknown_X,args.posThreshold,show_time=False) for j in prev_done: current_outcomes[j,:] = -1 np.savetxt('current_outcomes_%04d.csv' % i, current_outcomes, delimiter=',', fmt="%d") best_doc_change = current_outcomes.min(axis=1).max() best_doc_index = current_outcomes.min(axis=1).argmax() best_min_score_percentile = min_score_percentiles[best_doc_index] print("# best_doc_index=%d, best_doc_change=%d, train_size=%d" % (best_doc_index,best_doc_change,current_train_X.shape[0])) print("# best_min_score_percentile = %f" % best_min_score_percentile) which_label_was_min = current_outcomes[best_doc_index,:].argmin() label_score_percentiles = stats.rankdata(multi_scores[:,which_label_was_min],"average") / multi_scores.shape[0] label_score_percentile_for_doc = label_score_percentiles[best_doc_index] num_where_label_was_min = (current_outcomes.min(axis=1) == current_outcomes[:,which_label_was_min]).sum() print("which_label_was_min = %d" % which_label_was_min) print("num_where_label_was_min = %d/%d (%.1f%%)" % (num_where_label_was_min,current_outcomes.shape[0],100*num_where_label_was_min/current_outcomes.shape[0])) print("label_score_percentile_for_doc = %f" % label_score_percentile_for_doc) prev_done.append(best_doc_index) current_train_X = np.vstack([current_train_X,current_unknown_X[best_doc_index,:]]) #current_unknown_X = np.delete(current_unknown_X,best_doc_index,0) current_y = np.vstack([current_y,np.zeros((1,current_y.shape[1]))]) current_y[current_y.shape[0]-1,current_outcomes[best_doc_index,:].argmax()] = 1 outputTimeEstimates(i,num_iter,start_time) #break np.savetxt('undecided_scores.csv', undecided_scores, delimiter=',', fmt="%f")
[ 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7203, 40720, 79, 541, 4470, 4943, 198, 198, 11748, 48761, 13, 8443, 273, 198, 11748, 2298, 293, 198, 11748, 1822, 29572, 198, 11748, 33918, 198, 11748, 340, 861, 10141, 198, 6738, 17268, 1330, 4277, 11600, 11, 31694, 198, 6738, 17268, 13, 39305, 1330, 40806, 540, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 28686, 198, 6738, 629, 541, 88, 1330, 9756, 198, 198, 6738, 1341, 35720, 13, 16680, 291, 31172, 1330, 1881, 23266, 19452, 9487, 7483, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 15237, 33986, 33, 22050, 7509, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 198, 6738, 1341, 35720, 13, 79, 541, 4470, 1330, 37709, 198, 6738, 1341, 35720, 13, 12501, 296, 9150, 1330, 833, 19524, 515, 50, 8898, 198, 197, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 37534, 533, 1366, 329, 4075, 4673, 11537, 198, 197, 2, 48610, 13, 2860, 62, 49140, 10786, 438, 9945, 3256, 35827, 28, 17821, 11, 4906, 28, 2536, 11, 16794, 11639, 40386, 351, 6831, 6460, 11537, 198, 197, 48610, 13, 2860, 62, 49140, 10786, 438, 259, 35277, 3256, 35827, 28, 17821, 11, 4906, 28, 2536, 11, 16794, 11639, 26410, 26672, 284, 1234, 2603, 45977, 11537, 198, 197, 48610, 13, 2860, 62, 49140, 10786, 438, 12480, 817, 10126, 3256, 35827, 28, 25101, 11, 12286, 28, 15, 13, 18, 11, 4906, 28, 22468, 11, 16794, 11639, 817, 10126, 2174, 543, 318, 257, 6563, 4633, 357, 12286, 28, 15, 13, 1495, 8, 11537, 198, 197, 48610, 13, 2860, 62, 49140, 10786, 438, 1930, 817, 10126, 3256, 35827, 28, 25101, 11, 12286, 28, 15, 13, 22, 11, 4906, 28, 22468, 11, 16794, 11639, 817, 10126, 2029, 543, 318, 257, 6563, 3967, 357, 12286, 28, 15, 13, 2425, 8, 11537, 198, 197, 2, 48610, 13, 2860, 62, 49140, 10786, 438, 448, 8979, 3256, 35827, 28, 17821, 11, 4906, 28, 2536, 11, 16794, 11639, 26410, 2393, 11537, 198, 197, 198, 197, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 197, 198, 197, 55, 62, 34574, 515, 796, 45941, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 259, 35277, 4032, 55, 62, 34574, 515, 13, 77, 9078, 6, 4008, 198, 197, 88, 62, 34574, 515, 796, 45941, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 259, 35277, 4032, 88, 62, 34574, 515, 13, 77, 9078, 6, 4008, 198, 197, 55, 62, 917, 35503, 796, 45941, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 259, 35277, 4032, 55, 62, 917, 35503, 13, 77, 9078, 6, 4008, 198, 197, 917, 35503, 62, 1416, 2850, 796, 45941, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 259, 35277, 4032, 917, 35503, 62, 1416, 2850, 13, 77, 9078, 6, 4008, 198, 197, 198, 197, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 259, 35277, 4032, 917, 35503, 62, 31628, 13, 27729, 293, 33809, 6, 26145, 11537, 355, 277, 25, 198, 197, 197, 917, 35503, 62, 31628, 796, 2298, 293, 13, 2220, 7, 69, 8, 198, 197, 197, 198, 197, 361, 10352, 25, 198, 197, 197, 4480, 1280, 7, 22046, 13, 9945, 8, 355, 277, 25, 198, 197, 197, 197, 48806, 796, 33918, 13, 2220, 7, 69, 8, 198, 197, 197, 197, 198, 197, 197, 1820, 9945, 796, 48761, 13, 8443, 273, 13, 8443, 7, 198, 197, 197, 197, 4774, 28, 48806, 17816, 4774, 6, 4357, 198, 197, 197, 197, 7220, 28, 48806, 17816, 7220, 6, 4357, 198, 197, 197, 197, 6603, 16993, 28, 48806, 17816, 6603, 16993, 6, 4357, 198, 197, 197, 197, 48806, 28, 48806, 17816, 48806, 20520, 198, 197, 197, 8, 198, 197, 197, 1820, 66, 21471, 796, 616, 9945, 13, 66, 21471, 3419, 198, 197, 198, 197, 197, 2, 2220, 24941, 2389, 44, 5912, 7, 1820, 66, 21471, 11, 917, 35503, 62, 31628, 8, 198, 197, 198, 197, 2, 12093, 4470, 18546, 15057, 796, 651, 18546, 1704, 49601, 7, 55, 62, 34574, 515, 11, 88, 62, 34574, 515, 58, 45299, 22046, 13, 18242, 62, 9630, 4357, 55, 62, 917, 35503, 11, 22046, 13, 1930, 817, 10126, 11, 22046, 13, 12480, 817, 10126, 8, 198, 197, 2, 4798, 7203, 12093, 4470, 18546, 15057, 28, 1600, 12093, 4470, 18546, 15057, 8, 198, 197, 198, 197, 2, 448, 8988, 796, 2989, 1890, 13014, 24941, 2514, 2025, 1662, 378, 7, 55, 62, 34574, 515, 11, 88, 62, 34574, 515, 11, 55, 62, 917, 35503, 11, 22046, 13, 1930, 817, 10126, 8, 198, 197, 198, 197, 14421, 62, 88, 796, 45941, 13, 30073, 7, 88, 62, 34574, 515, 8, 198, 197, 14421, 62, 27432, 62, 55, 796, 45941, 13, 30073, 7, 55, 62, 34574, 515, 8, 198, 197, 14421, 62, 34680, 62, 55, 796, 45941, 13, 30073, 7, 55, 62, 917, 35503, 8, 628, 197, 22510, 62, 2676, 796, 1459, 62, 34680, 62, 55, 13, 43358, 58, 15, 60, 198, 197, 47050, 62, 28060, 796, 17635, 198, 197, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 198, 197, 1640, 1312, 287, 2837, 7, 22510, 62, 2676, 2599, 198, 197, 198, 197, 197, 41684, 62, 1416, 2850, 796, 651, 29800, 3351, 2850, 7, 14421, 62, 27432, 62, 55, 11, 1459, 62, 88, 11, 1459, 62, 34680, 62, 55, 8, 198, 197, 197, 198, 197, 197, 37659, 13, 21928, 14116, 10786, 41684, 62, 1416, 2850, 62, 4, 3023, 67, 13, 40664, 6, 4064, 1312, 11, 5021, 62, 1416, 2850, 11, 46728, 2676, 28, 3256, 3256, 46996, 2625, 4, 69, 4943, 198, 197, 197, 198, 197, 197, 1084, 62, 1416, 2850, 796, 5021, 62, 1416, 2850, 13, 1084, 7, 22704, 28, 16, 8, 198, 197, 197, 1084, 62, 26675, 62, 25067, 2915, 796, 9756, 13, 43027, 7890, 7, 1084, 62, 1416, 2850, 553, 23913, 4943, 1220, 949, 62, 1416, 2850, 13, 43358, 58, 15, 60, 198, 197, 197, 2, 4798, 7, 1084, 62, 26675, 62, 25067, 2915, 13, 43358, 8, 198, 197, 197, 2, 4798, 7, 1084, 62, 26675, 62, 25067, 2915, 58, 29416, 12962, 198, 197, 197, 198, 197, 197, 14421, 62, 448, 8988, 796, 2989, 1890, 13014, 24941, 2514, 2025, 1662, 378, 7, 14421, 62, 27432, 62, 55, 11, 14421, 62, 88, 11, 14421, 62, 34680, 62, 55, 11, 22046, 13, 1930, 817, 10126, 11, 12860, 62, 2435, 28, 25101, 8, 198, 197, 197, 198, 197, 197, 1640, 474, 287, 8654, 62, 28060, 25, 198, 197, 197, 197, 14421, 62, 448, 8988, 58, 73, 11, 47715, 796, 532, 16, 198, 197, 197, 197, 198, 197, 197, 37659, 13, 21928, 14116, 10786, 14421, 62, 448, 8988, 62, 4, 3023, 67, 13, 40664, 6, 4064, 1312, 11, 1459, 62, 448, 8988, 11, 46728, 2676, 28, 3256, 3256, 46996, 2625, 4, 67, 4943, 198, 197, 197, 198, 197, 197, 13466, 62, 15390, 62, 3803, 796, 1459, 62, 448, 8988, 13, 1084, 7, 22704, 28, 16, 737, 9806, 3419, 198, 197, 197, 13466, 62, 15390, 62, 9630, 796, 1459, 62, 448, 8988, 13, 1084, 7, 22704, 28, 16, 737, 853, 9806, 3419, 198, 197, 197, 13466, 62, 1084, 62, 26675, 62, 25067, 576, 796, 949, 62, 26675, 62, 25067, 2915, 58, 13466, 62, 15390, 62, 9630, 60, 198, 197, 197, 4798, 7203, 2, 1266, 62, 15390, 62, 9630, 28, 4, 67, 11, 1266, 62, 15390, 62, 3803, 28, 4, 67, 11, 4512, 62, 7857, 28, 4, 67, 1, 4064, 357, 13466, 62, 15390, 62, 9630, 11, 13466, 62, 15390, 62, 3803, 11, 14421, 62, 27432, 62, 55, 13, 43358, 58, 15, 60, 4008, 198, 197, 197, 4798, 7203, 2, 1266, 62, 1084, 62, 26675, 62, 25067, 576, 796, 4064, 69, 1, 4064, 1266, 62, 1084, 62, 26675, 62, 25067, 576, 8, 198, 197, 197, 198, 197, 197, 4758, 62, 18242, 62, 9776, 62, 1084, 796, 1459, 62, 448, 8988, 58, 13466, 62, 15390, 62, 9630, 11, 25, 4083, 853, 1084, 3419, 198, 197, 197, 18242, 62, 26675, 62, 25067, 2915, 796, 9756, 13, 43027, 7890, 7, 41684, 62, 1416, 2850, 58, 45299, 4758, 62, 18242, 62, 9776, 62, 1084, 17241, 23913, 4943, 1220, 5021, 62, 1416, 2850, 13, 43358, 58, 15, 60, 198, 197, 197, 198, 197, 197, 18242, 62, 26675, 62, 25067, 576, 62, 1640, 62, 15390, 796, 6167, 62, 26675, 62, 25067, 2915, 58, 13466, 62, 15390, 62, 9630, 60, 198, 197, 197, 198, 197, 197, 22510, 62, 3003, 62, 18242, 62, 9776, 62, 1084, 796, 357, 14421, 62, 448, 8988, 13, 1084, 7, 22704, 28, 16, 8, 6624, 1459, 62, 448, 8988, 58, 45299, 4758, 62, 18242, 62, 9776, 62, 1084, 35944, 16345, 3419, 198, 197, 197, 198, 197, 197, 4798, 7203, 4758, 62, 18242, 62, 9776, 62, 1084, 796, 4064, 67, 1, 4064, 543, 62, 18242, 62, 9776, 62, 1084, 8, 198, 197, 197, 4798, 7203, 22510, 62, 3003, 62, 18242, 62, 9776, 62, 1084, 796, 4064, 67, 14, 4, 67, 357, 7225, 16, 69, 4, 4407, 1, 4064, 357, 22510, 62, 3003, 62, 18242, 62, 9776, 62, 1084, 11, 14421, 62, 448, 8988, 13, 43358, 58, 15, 4357, 3064, 9, 22510, 62, 3003, 62, 18242, 62, 9776, 62, 1084, 14, 14421, 62, 448, 8988, 13, 43358, 58, 15, 60, 4008, 198, 197, 197, 4798, 7203, 18242, 62, 26675, 62, 25067, 576, 62, 1640, 62, 15390, 796, 4064, 69, 1, 4064, 6167, 62, 26675, 62, 25067, 576, 62, 1640, 62, 15390, 8, 198, 197, 197, 198, 197, 197, 47050, 62, 28060, 13, 33295, 7, 13466, 62, 15390, 62, 9630, 8, 198, 197, 197, 198, 197, 197, 14421, 62, 27432, 62, 55, 796, 45941, 13, 85, 25558, 26933, 14421, 62, 27432, 62, 55, 11, 14421, 62, 34680, 62, 55, 58, 13466, 62, 15390, 62, 9630, 11, 25, 11907, 8, 198, 197, 197, 2, 14421, 62, 34680, 62, 55, 796, 45941, 13, 33678, 7, 14421, 62, 34680, 62, 55, 11, 13466, 62, 15390, 62, 9630, 11, 15, 8, 198, 197, 197, 198, 197, 197, 14421, 62, 88, 796, 45941, 13, 85, 25558, 26933, 14421, 62, 88, 11, 37659, 13, 9107, 418, 19510, 16, 11, 14421, 62, 88, 13, 43358, 58, 16, 60, 4008, 12962, 198, 197, 197, 14421, 62, 88, 58, 14421, 62, 88, 13, 43358, 58, 15, 45297, 16, 11, 14421, 62, 448, 8988, 58, 13466, 62, 15390, 62, 9630, 11, 25, 4083, 853, 9806, 3419, 60, 796, 352, 198, 197, 197, 198, 197, 197, 22915, 7575, 22362, 26748, 7, 72, 11, 22510, 62, 2676, 11, 9688, 62, 2435, 8, 198, 197, 197, 2, 9032, 628, 197, 197, 198, 197, 37659, 13, 21928, 14116, 10786, 917, 35503, 62, 1416, 2850, 13, 40664, 3256, 39511, 62, 1416, 2850, 11, 46728, 2676, 28, 3256, 3256, 46996, 2625, 4, 69, 4943, 198, 197, 198, 197, 198, 197 ]
2.582307
1,786
import string import PIL.Image from .printable import Printable class _ImageHandler: """Convert PIL images to ZPL Based on Java example from: http://www.jcgonzalez.com/java-image-to-zpl-example """ @staticmethod @staticmethod @property @property
[ 11748, 4731, 198, 11748, 350, 4146, 13, 5159, 198, 198, 6738, 764, 4798, 540, 1330, 12578, 540, 628, 198, 4871, 4808, 5159, 25060, 25, 198, 220, 220, 220, 37227, 3103, 1851, 350, 4146, 4263, 284, 1168, 6489, 628, 220, 220, 220, 13403, 319, 7349, 1672, 422, 25, 198, 220, 220, 220, 2638, 1378, 2503, 13, 48055, 70, 13569, 22149, 13, 785, 14, 12355, 12, 9060, 12, 1462, 12, 89, 489, 12, 20688, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628 ]
2.759615
104
from .context import uspto import unittest class AdvancedTestSuite(unittest.TestCase): """Advanced test cases.""" print "here we go" if __name__ == '__main__': unittest.main()
[ 6738, 764, 22866, 1330, 514, 457, 78, 198, 198, 11748, 555, 715, 395, 198, 198, 4871, 13435, 14402, 5606, 578, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 28809, 1332, 2663, 526, 15931, 198, 220, 220, 220, 3601, 366, 1456, 356, 467, 1, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.690141
71
import discord from discord.ext import commands
[ 11748, 36446, 198, 6738, 36446, 13, 2302, 1330, 9729, 628 ]
4.9
10
import logging from playhouse import migrate from alcazar_logging import BraceAdapter logger = BraceAdapter(logging.getLogger(__name__))
[ 11748, 18931, 198, 198, 6738, 711, 4803, 1330, 32492, 198, 198, 6738, 435, 66, 29413, 62, 6404, 2667, 1330, 1709, 558, 47307, 198, 198, 6404, 1362, 796, 1709, 558, 47307, 7, 6404, 2667, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 4008, 628, 628, 198 ]
3.2
45
from uuid import UUID from aio_pika import Exchange from tentacruel import HeosClientProtocol HEOS_NS = UUID('003df636-ad90-11e9-aca1-9eb6d06a70c5') attributes = { "/player_volume_changed": { "device_id": "pid", "name": "heos.volume", "subattributes": ["level", "mute"] }, "/player_now_playing_progress": { "device_id": "pid", "name": "heos.progress", "subattributes": ["cur_pos", "duration"] } }
[ 6738, 334, 27112, 1330, 471, 27586, 198, 198, 6738, 257, 952, 62, 79, 9232, 1330, 12516, 198, 6738, 11105, 330, 622, 417, 1330, 679, 418, 11792, 19703, 4668, 198, 198, 13909, 2640, 62, 8035, 796, 471, 27586, 10786, 11245, 7568, 21, 2623, 12, 324, 3829, 12, 1157, 68, 24, 12, 22260, 16, 12, 24, 1765, 21, 67, 3312, 64, 2154, 66, 20, 11537, 198, 1078, 7657, 796, 1391, 198, 220, 220, 220, 12813, 7829, 62, 29048, 62, 40985, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25202, 62, 312, 1298, 366, 35317, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 258, 418, 13, 29048, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7266, 1078, 7657, 1298, 14631, 5715, 1600, 366, 76, 1133, 8973, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 12813, 7829, 62, 2197, 62, 17916, 62, 33723, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25202, 62, 312, 1298, 366, 35317, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 258, 418, 13, 33723, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7266, 1078, 7657, 1298, 14631, 22019, 62, 1930, 1600, 366, 32257, 8973, 198, 220, 220, 220, 1782, 198, 92, 198 ]
2.163551
214
import sys import cPickle as pickle from collections import OrderedDict argv = sys.argv[1:] if len(argv) < 1: print "usage: create_span_concept_dict.py <span_concept_dataset.p> <output_filename>" sys.exit() span_concept_dataset = pickle.load(open(argv[0], "rb")) output_filename = argv[1] output_file = open(output_filename, 'w') span_concept_dict = {} for id, span_concept_data in span_concept_dataset.iteritems(): for [span, pos, concept, name, ner, nx_root, concept_idx] in span_concept_data: if span_concept_dict.has_key(span): if span_concept_dict[span].has_key(concept_idx): span_concept_dict[span][concept_idx] += 1 else: span_concept_dict[span][concept_idx] = 1 else: span_concept_dict[span] = {concept_idx:1} #Sort the concepts for each span by their frequency for span, concepts in span_concept_dict.iteritems(): span_concept_dict[span] = OrderedDict(sorted(concepts.items(), key=lambda concepts: concepts[1], reverse=True)) for span, concepts in span_concept_dict.iteritems(): line = span.replace(" ", "_") + " " for (concept_idx, count) in concepts.iteritems(): line += str(concept_idx) + ":" + str(count) + " " output_file.write(line+"\n") pickle.dump(span_concept_dict, open(output_filename + ".p", "wb"))
[ 11748, 25064, 198, 11748, 269, 31686, 293, 355, 2298, 293, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 853, 85, 796, 25064, 13, 853, 85, 58, 16, 47715, 198, 361, 18896, 7, 853, 85, 8, 1279, 352, 25, 198, 197, 4798, 366, 26060, 25, 2251, 62, 12626, 62, 43169, 62, 11600, 13, 9078, 1279, 12626, 62, 43169, 62, 19608, 292, 316, 13, 79, 29, 1279, 22915, 62, 34345, 24618, 198, 197, 17597, 13, 37023, 3419, 198, 198, 12626, 62, 43169, 62, 19608, 292, 316, 796, 2298, 293, 13, 2220, 7, 9654, 7, 853, 85, 58, 15, 4357, 366, 26145, 48774, 198, 22915, 62, 34345, 796, 1822, 85, 58, 16, 60, 198, 22915, 62, 7753, 796, 1280, 7, 22915, 62, 34345, 11, 705, 86, 11537, 198, 12626, 62, 43169, 62, 11600, 796, 23884, 198, 198, 1640, 4686, 11, 11506, 62, 43169, 62, 7890, 287, 11506, 62, 43169, 62, 19608, 292, 316, 13, 2676, 23814, 33529, 198, 197, 1640, 685, 12626, 11, 1426, 11, 3721, 11, 1438, 11, 17156, 11, 299, 87, 62, 15763, 11, 3721, 62, 312, 87, 60, 287, 11506, 62, 43169, 62, 7890, 25, 198, 197, 197, 361, 11506, 62, 43169, 62, 11600, 13, 10134, 62, 2539, 7, 12626, 2599, 198, 197, 197, 197, 361, 11506, 62, 43169, 62, 11600, 58, 12626, 4083, 10134, 62, 2539, 7, 43169, 62, 312, 87, 2599, 198, 197, 197, 197, 197, 12626, 62, 43169, 62, 11600, 58, 12626, 7131, 43169, 62, 312, 87, 60, 15853, 352, 198, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 12626, 62, 43169, 62, 11600, 58, 12626, 7131, 43169, 62, 312, 87, 60, 796, 352, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 12626, 62, 43169, 62, 11600, 58, 12626, 60, 796, 1391, 43169, 62, 312, 87, 25, 16, 92, 198, 198, 2, 42758, 262, 10838, 329, 1123, 11506, 416, 511, 8373, 198, 1640, 11506, 11, 10838, 287, 11506, 62, 43169, 62, 11600, 13, 2676, 23814, 33529, 198, 197, 12626, 62, 43169, 62, 11600, 58, 12626, 60, 796, 14230, 1068, 35, 713, 7, 82, 9741, 7, 43169, 82, 13, 23814, 22784, 1994, 28, 50033, 10838, 25, 10838, 58, 16, 4357, 9575, 28, 17821, 4008, 198, 198, 1640, 11506, 11, 10838, 287, 11506, 62, 43169, 62, 11600, 13, 2676, 23814, 33529, 198, 197, 1370, 796, 11506, 13, 33491, 7203, 33172, 45434, 4943, 1343, 366, 366, 198, 197, 1640, 357, 43169, 62, 312, 87, 11, 954, 8, 287, 10838, 13, 2676, 23814, 33529, 198, 197, 197, 1370, 15853, 965, 7, 43169, 62, 312, 87, 8, 1343, 366, 11097, 1343, 965, 7, 9127, 8, 1343, 366, 366, 198, 197, 22915, 62, 7753, 13, 13564, 7, 1370, 10, 1, 59, 77, 4943, 198, 197, 198, 27729, 293, 13, 39455, 7, 12626, 62, 43169, 62, 11600, 11, 1280, 7, 22915, 62, 34345, 1343, 27071, 79, 1600, 366, 39346, 48774, 198 ]
2.663136
472
# -*- coding: utf-8 -*- from queue import Queue import random import socket import threading import unittest from coapclient import HelperClient from coapforwardproxy import CoAPForwardProxy from coapserver import CoAPServer from coapthon import defines from coapthon.messages.option import Option from coapthon.messages.request import Request from coapthon.messages.response import Response from coapthon.serializer import Serializer __author__ = 'Giacomo Tanganelli' __version__ = "2.0" if __name__ == '__main__': unittest.main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 16834, 1330, 4670, 518, 198, 11748, 4738, 198, 11748, 17802, 198, 11748, 4704, 278, 198, 11748, 555, 715, 395, 198, 198, 6738, 763, 499, 16366, 1330, 5053, 525, 11792, 198, 6738, 763, 499, 11813, 36436, 1330, 1766, 2969, 39746, 44148, 198, 6738, 763, 1686, 18497, 1330, 1766, 2969, 10697, 198, 6738, 763, 499, 400, 261, 1330, 15738, 198, 6738, 763, 499, 400, 261, 13, 37348, 1095, 13, 18076, 1330, 16018, 198, 6738, 763, 499, 400, 261, 13, 37348, 1095, 13, 25927, 1330, 19390, 198, 6738, 763, 499, 400, 261, 13, 37348, 1095, 13, 26209, 1330, 18261, 198, 6738, 763, 499, 400, 261, 13, 46911, 7509, 1330, 23283, 7509, 198, 198, 834, 9800, 834, 796, 705, 38, 9607, 17902, 18816, 272, 23225, 6, 198, 834, 9641, 834, 796, 366, 17, 13, 15, 1, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.151163
172
from datetime import datetime import pandas as pd import websocket from tests import tests_path from crypto_data.shared.utils import exclude_values from crypto_data.binance.extract import get_candles, get_latest_candle_timestamp from crypto_data.binance.schema import ( OPEN_TIME, OPEN_PRICE, CLOSE_PRICE, HIGH_PRICE, LOW_PRICE, VOLUME, COLUMNS, ) from crypto_data.shared.candle_db import CandleDB # candle_stream( # symbol="btcusdt", # interval="1h", # candles=candles, # on_open=on_open, # on_close=on_close, # on_candle=on_candle, # on_candle_close=on_candle_close, # )
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2639, 5459, 198, 198, 6738, 5254, 1330, 5254, 62, 6978, 198, 6738, 21473, 62, 7890, 13, 28710, 13, 26791, 1330, 19607, 62, 27160, 198, 6738, 21473, 62, 7890, 13, 8800, 590, 13, 2302, 974, 1330, 651, 62, 46188, 829, 11, 651, 62, 42861, 62, 46188, 293, 62, 16514, 27823, 198, 6738, 21473, 62, 7890, 13, 8800, 590, 13, 15952, 2611, 1330, 357, 198, 220, 220, 220, 38303, 62, 34694, 11, 198, 220, 220, 220, 38303, 62, 4805, 8476, 11, 198, 220, 220, 220, 7852, 14058, 62, 4805, 8476, 11, 198, 220, 220, 220, 34677, 62, 4805, 8476, 11, 198, 220, 220, 220, 46663, 62, 4805, 8476, 11, 198, 220, 220, 220, 38570, 38340, 11, 198, 220, 220, 220, 20444, 5883, 8035, 11, 198, 8, 198, 6738, 21473, 62, 7890, 13, 28710, 13, 46188, 293, 62, 9945, 1330, 44973, 11012, 628, 628, 628, 198, 198, 2, 220, 220, 220, 26839, 62, 5532, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 6194, 2625, 18347, 9042, 28664, 1600, 198, 2, 220, 220, 220, 220, 220, 220, 220, 16654, 2625, 16, 71, 1600, 198, 2, 220, 220, 220, 220, 220, 220, 220, 32268, 28, 46188, 829, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 319, 62, 9654, 28, 261, 62, 9654, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 319, 62, 19836, 28, 261, 62, 19836, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 319, 62, 46188, 293, 28, 261, 62, 46188, 293, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 319, 62, 46188, 293, 62, 19836, 28, 261, 62, 46188, 293, 62, 19836, 11, 198, 2, 220, 220, 220, 1267, 198 ]
2.261905
294
import numpy as np from NiLBS.skinning.util import redistribute_weights
[ 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 11556, 43, 4462, 13, 20407, 768, 13, 22602, 1330, 17678, 4163, 62, 43775, 198 ]
3.217391
23
import cv2 import youtube_dl import numpy as np import os import time FLASH_MINIMUM = 3 tmp_dir = 'temp/' ex = {'format': 'worstvideo[vcodec^=avc1][fps=30]/worst[vcodec^=avc1][fps=30]/worstvideo[vcodec=vp9][fps=30]/worst[vcodec=vp9][fps=30]', 'outtmpl': 'temp/temp.%(ext)s', 'recode_video': 'webm'} ytdl = youtube_dl.YoutubeDL(ex) if not os.path.isdir(tmp_dir): os.mkdir(tmp_dir) # https://www.youtube.com/watch?v=atkD-beZ9oI # baseline test # https://www.youtube.com/watch?v=Yw_YDvLWKnY # surreal video # https://www.youtube.com/watch?v=OCpzajWSp6I # mlg video # https://www.youtube.com/watch?v=FVY5uZ18-x8 #pokemon video if __name__ == '__main__': main()
[ 11748, 269, 85, 17, 198, 11748, 35116, 62, 25404, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 640, 198, 198, 3697, 11211, 62, 23678, 3955, 5883, 796, 513, 198, 198, 22065, 62, 15908, 796, 705, 29510, 14, 6, 198, 198, 1069, 796, 1391, 6, 18982, 10354, 705, 41430, 15588, 58, 85, 19815, 721, 61, 28, 615, 66, 16, 7131, 29647, 28, 1270, 60, 14, 41430, 58, 85, 19815, 721, 61, 28, 615, 66, 16, 7131, 29647, 28, 1270, 60, 14, 41430, 15588, 58, 85, 19815, 721, 28, 36133, 24, 7131, 29647, 28, 1270, 60, 14, 41430, 58, 85, 19815, 721, 28, 36133, 24, 7131, 29647, 28, 1270, 60, 3256, 705, 448, 17209, 489, 10354, 705, 29510, 14, 29510, 13, 4, 7, 2302, 8, 82, 3256, 705, 260, 8189, 62, 15588, 10354, 705, 12384, 76, 6, 92, 198, 88, 8671, 75, 796, 35116, 62, 25404, 13, 56, 9762, 19260, 7, 1069, 8, 198, 198, 361, 407, 28686, 13, 6978, 13, 9409, 343, 7, 22065, 62, 15908, 2599, 198, 220, 220, 220, 28686, 13, 28015, 15908, 7, 22065, 62, 15908, 8, 628, 628, 628, 628, 198, 2, 3740, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 265, 74, 35, 12, 1350, 57, 24, 78, 40, 1303, 14805, 1332, 198, 2, 3740, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 56, 86, 62, 35755, 85, 43, 54, 25095, 56, 1303, 28201, 2008, 198, 2, 3740, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 4503, 79, 89, 1228, 54, 4561, 21, 40, 1303, 25962, 70, 2008, 198, 2, 3740, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 37, 53, 56, 20, 84, 57, 1507, 12, 87, 23, 1303, 79, 12717, 2008, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.179487
312
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the definition of the Inception V4 architecture. As described in http://arxiv.org/abs/1602.07261. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import inception_utils slim = tf.contrib.slim def block_inception_a(inputs, scope=None, reuse=None): """Builds Inception-A block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockInceptionA', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 96, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 96, [1, 1], scope='Conv2d_0b_1x1') return tf.concat([branch_0, branch_1, branch_2, branch_3], 3) def block_reduction_a(inputs, scope=None, reuse=None): """Builds Reduction-A block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockReductionA', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 384, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, 256, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') return tf.concat([branch_0, branch_1, branch_2], 3) def block_inception_b(inputs, scope=None, reuse=None): """Builds Inception-B block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockInceptionB', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 224, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 256, [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, 224, [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, 224, [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, 256, [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1') return tf.concat([branch_0, branch_1, branch_2, branch_3], 3) def block_reduction_b(inputs, scope=None, reuse=None): """Builds Reduction-B block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockReductionB', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 256, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 320, [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, 320, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') return tf.concat([branch_0, branch_1, branch_2], 3) def block_inception_c(inputs, scope=None, reuse=None): """Builds Inception-C block for Inception v4 network.""" # By default use stride=1 and SAME padding with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d], stride=1, padding='SAME'): with tf.variable_scope(scope, 'BlockInceptionC', [inputs], reuse=reuse): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat([ slim.conv2d(branch_1, 256, [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1, 256, [3, 1], scope='Conv2d_0c_3x1')], 3) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 448, [3, 1], scope='Conv2d_0b_3x1') branch_2 = slim.conv2d(branch_2, 512, [1, 3], scope='Conv2d_0c_1x3') branch_2 = tf.concat([ slim.conv2d(branch_2, 256, [1, 3], scope='Conv2d_0d_1x3'), slim.conv2d(branch_2, 256, [3, 1], scope='Conv2d_0e_3x1')], 3) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3, 256, [1, 1], scope='Conv2d_0b_1x1') return tf.concat([branch_0, branch_1, branch_2, branch_3], 3) def inception_v4_base(inputs, final_endpoint='Mixed_7d', scope=None): """Creates the Inception V4 network up to the given final endpoint. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c', 'Mixed_7d'] scope: Optional variable_scope. Returns: logits: the logits outputs of the model. end_points: the set of end_points from the inception model. Raises: ValueError: if final_endpoint is not set to one of the predefined values, """ end_points = {} with tf.variable_scope(scope, 'InceptionV4', [inputs]): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # 299 x 299 x 3 net = slim.conv2d(inputs, 32, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points # 149 x 149 x 32 net = slim.conv2d(net, 32, [3, 3], padding='VALID', scope='Conv2d_2a_3x3') if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points # 147 x 147 x 32 net = slim.conv2d(net, 64, [3, 3], scope='Conv2d_2b_3x3') if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points # 147 x 147 x 64 with tf.variable_scope('Mixed_3a'): with tf.variable_scope('Branch_0'): branch_0 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_0a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 96, [3, 3], stride=2, padding='VALID', scope='Conv2d_0a_3x3') net = tf.concat([branch_0, branch_1], 3) if add_and_check_final('Mixed_3a', net): return net, end_points # 73 x 73 x 160 with tf.variable_scope('Mixed_4a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, 96, [3, 3], padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 64, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 64, [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, 96, [3, 3], padding='VALID', scope='Conv2d_1a_3x3') net = tf.concat([branch_0, branch_1], 3) if add_and_check_final('Mixed_4a', net): return net, end_points # 71 x 71 x 192 with tf.variable_scope('Mixed_5a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat([branch_0, branch_1], 3) if add_and_check_final('Mixed_5a', net): return net, end_points # 35 x 35 x 384 # 4 x Inception-A blocks for idx in range(4): block_scope = 'Mixed_5' + chr(ord('b') + idx) net = block_inception_a(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points # 35 x 35 x 384 # Reduction-A block net = block_reduction_a(net, 'Mixed_6a') if add_and_check_final('Mixed_6a', net): return net, end_points # 17 x 17 x 1024 # 7 x Inception-B blocks for idx in range(7): block_scope = 'Mixed_6' + chr(ord('b') + idx) net = block_inception_b(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points # 17 x 17 x 1024 # Reduction-B block net = block_reduction_b(net, 'Mixed_7a') if add_and_check_final('Mixed_7a', net): return net, end_points # 8 x 8 x 1536 # 3 x Inception-C blocks for idx in range(3): block_scope = 'Mixed_7' + chr(ord('b') + idx) net = block_inception_c(net, block_scope) if add_and_check_final(block_scope, net): return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v4(inputs, num_classes=1001, is_training=True, dropout_keep_prob=0.8, reuse=None, scope='InceptionV4', create_aux_logits=True): """Creates the Inception V4 model. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. num_classes: number of predicted classes. is_training: whether is training or not. dropout_keep_prob: float, the fraction to keep before final layer. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. create_aux_logits: Whether to include the auxilliary logits. Returns: logits: the logits outputs of the model. end_points: the set of end_points from the inception model. """ end_points = {} with tf.variable_scope(scope, 'InceptionV4', [inputs], reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): net, end_points = inception_v4_base(inputs, scope=scope) with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # Auxiliary Head logits if create_aux_logits: with tf.variable_scope('AuxLogits'): # 17 x 17 x 1024 aux_logits = end_points['Mixed_6h'] aux_logits = slim.avg_pool2d(aux_logits, [5, 5], stride=3, padding='VALID', scope='AvgPool_1a_5x5') aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='Conv2d_1b_1x1') aux_logits = slim.conv2d(aux_logits, 768, aux_logits.get_shape()[1:3], padding='VALID', scope='Conv2d_2a') aux_logits = slim.flatten(aux_logits) aux_logits = slim.fully_connected(aux_logits, num_classes, activation_fn=None, scope='Aux_logits') end_points['AuxLogits'] = aux_logits # Final pooling and prediction with tf.variable_scope('Logits'): # 8 x 8 x 1536 net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID', scope='AvgPool_1a') # 1 x 1 x 1536 net = slim.dropout(net, dropout_keep_prob, scope='Dropout_1b') net = slim.flatten(net, scope='PreLogitsFlatten') end_points['PreLogitsFlatten'] = net # 1536 logits = slim.fully_connected(net, num_classes, activation_fn=None, scope='Logits') end_points['Logits'] = logits end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions') return logits, end_points inception_v4.default_image_size = 299 inception_v4_arg_scope = inception_utils.inception_arg_scope
[ 2, 15069, 1584, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 4264, 1299, 262, 6770, 286, 262, 554, 4516, 569, 19, 10959, 13, 198, 198, 1722, 3417, 287, 2638, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1433, 2999, 13, 2998, 30057, 13, 628, 220, 554, 4516, 12, 85, 19, 11, 554, 4516, 12, 4965, 7934, 290, 262, 17677, 286, 1874, 312, 723, 8113, 507, 198, 220, 220, 220, 319, 18252, 198, 220, 4302, 27974, 1533, 4716, 11, 36106, 314, 2364, 68, 11, 18653, 6656, 15710, 66, 365, 11, 4422, 9300, 11632, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 31720, 1330, 30839, 62, 26791, 198, 198, 82, 2475, 796, 48700, 13, 3642, 822, 13, 82, 2475, 628, 198, 4299, 2512, 62, 924, 1159, 62, 64, 7, 15414, 82, 11, 8354, 28, 14202, 11, 32349, 28, 14202, 2599, 198, 220, 37227, 15580, 82, 554, 4516, 12, 32, 2512, 329, 554, 4516, 410, 19, 3127, 526, 15931, 198, 220, 1303, 2750, 4277, 779, 33769, 28, 16, 290, 311, 10067, 24511, 198, 220, 351, 18862, 13, 853, 62, 29982, 26933, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 615, 70, 62, 7742, 17, 67, 11, 18862, 13, 9806, 62, 7742, 17, 67, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 24511, 11639, 50, 10067, 6, 2599, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7, 29982, 11, 705, 12235, 818, 4516, 32, 3256, 685, 15414, 82, 4357, 32349, 28, 260, 1904, 2599, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 9907, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 5598, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 9907, 11, 685, 18, 11, 513, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 17, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 5598, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 9907, 11, 685, 18, 11, 513, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 9907, 11, 685, 18, 11, 513, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 66, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 18, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 18, 796, 18862, 13, 615, 70, 62, 7742, 17, 67, 7, 15414, 82, 11, 685, 18, 11, 513, 4357, 8354, 11639, 48997, 27201, 62, 15, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 18, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 18, 11, 9907, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 1441, 48700, 13, 1102, 9246, 26933, 1671, 3702, 62, 15, 11, 8478, 62, 16, 11, 8478, 62, 17, 11, 8478, 62, 18, 4357, 513, 8, 628, 198, 4299, 2512, 62, 445, 8110, 62, 64, 7, 15414, 82, 11, 8354, 28, 14202, 11, 32349, 28, 14202, 2599, 198, 220, 37227, 15580, 82, 33396, 12, 32, 2512, 329, 554, 4516, 410, 19, 3127, 526, 15931, 198, 220, 1303, 2750, 4277, 779, 33769, 28, 16, 290, 311, 10067, 24511, 198, 220, 351, 18862, 13, 853, 62, 29982, 26933, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 615, 70, 62, 7742, 17, 67, 11, 18862, 13, 9806, 62, 7742, 17, 67, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 24511, 11639, 50, 10067, 6, 2599, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7, 29982, 11, 705, 12235, 7738, 8110, 32, 3256, 685, 15414, 82, 4357, 32349, 28, 260, 1904, 2599, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 40400, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 17817, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 26063, 11, 685, 18, 11, 513, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 17759, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 23428, 2389, 3256, 8354, 11639, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 17, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 9806, 62, 7742, 17, 67, 7, 15414, 82, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 11518, 27201, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 1441, 48700, 13, 1102, 9246, 26933, 1671, 3702, 62, 15, 11, 8478, 62, 16, 11, 8478, 62, 17, 4357, 513, 8, 628, 198, 4299, 2512, 62, 924, 1159, 62, 65, 7, 15414, 82, 11, 8354, 28, 14202, 11, 32349, 28, 14202, 2599, 198, 220, 37227, 15580, 82, 554, 4516, 12, 33, 2512, 329, 554, 4516, 410, 19, 3127, 526, 15931, 198, 220, 1303, 2750, 4277, 779, 33769, 28, 16, 290, 311, 10067, 24511, 198, 220, 351, 18862, 13, 853, 62, 29982, 26933, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 615, 70, 62, 7742, 17, 67, 11, 18862, 13, 9806, 62, 7742, 17, 67, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 24511, 11639, 50, 10067, 6, 2599, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7, 29982, 11, 705, 12235, 818, 4516, 33, 3256, 685, 15414, 82, 4357, 32349, 28, 260, 1904, 2599, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 40400, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 17817, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 26063, 11, 685, 16, 11, 767, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 16, 87, 22, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 17759, 11, 685, 22, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 66, 62, 22, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 17, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 17817, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 17817, 11, 685, 22, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 22, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 26063, 11, 685, 16, 11, 767, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 66, 62, 16, 87, 22, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 26063, 11, 685, 22, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 67, 62, 22, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 17759, 11, 685, 16, 11, 767, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 68, 62, 16, 87, 22, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 18, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 18, 796, 18862, 13, 615, 70, 62, 7742, 17, 67, 7, 15414, 82, 11, 685, 18, 11, 513, 4357, 8354, 11639, 48997, 27201, 62, 15, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 18, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 18, 11, 13108, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 1441, 48700, 13, 1102, 9246, 26933, 1671, 3702, 62, 15, 11, 8478, 62, 16, 11, 8478, 62, 17, 11, 8478, 62, 18, 4357, 513, 8, 628, 198, 4299, 2512, 62, 445, 8110, 62, 65, 7, 15414, 82, 11, 8354, 28, 14202, 11, 32349, 28, 14202, 2599, 198, 220, 37227, 15580, 82, 33396, 12, 33, 2512, 329, 554, 4516, 410, 19, 3127, 526, 15931, 198, 220, 1303, 2750, 4277, 779, 33769, 28, 16, 290, 311, 10067, 24511, 198, 220, 351, 18862, 13, 853, 62, 29982, 26933, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 615, 70, 62, 7742, 17, 67, 11, 18862, 13, 9806, 62, 7742, 17, 67, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 24511, 11639, 50, 10067, 6, 2599, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7, 29982, 11, 705, 12235, 7738, 8110, 33, 3256, 685, 15414, 82, 4357, 32349, 28, 260, 1904, 2599, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 17817, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 15, 11, 17817, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 23428, 2389, 3256, 8354, 11639, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 17759, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 17759, 11, 685, 16, 11, 767, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 16, 87, 22, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 20959, 11, 685, 22, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 66, 62, 22, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 20959, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 23428, 2389, 3256, 8354, 11639, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 17, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 9806, 62, 7742, 17, 67, 7, 15414, 82, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 11518, 27201, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 1441, 48700, 13, 1102, 9246, 26933, 1671, 3702, 62, 15, 11, 8478, 62, 16, 11, 8478, 62, 17, 4357, 513, 8, 628, 198, 4299, 2512, 62, 924, 1159, 62, 66, 7, 15414, 82, 11, 8354, 28, 14202, 11, 32349, 28, 14202, 2599, 198, 220, 37227, 15580, 82, 554, 4516, 12, 34, 2512, 329, 554, 4516, 410, 19, 3127, 526, 15931, 198, 220, 1303, 2750, 4277, 779, 33769, 28, 16, 290, 311, 10067, 24511, 198, 220, 351, 18862, 13, 853, 62, 29982, 26933, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 615, 70, 62, 7742, 17, 67, 11, 18862, 13, 9806, 62, 7742, 17, 67, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 24511, 11639, 50, 10067, 6, 2599, 198, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 7, 29982, 11, 705, 12235, 818, 4516, 34, 3256, 685, 15414, 82, 4357, 32349, 28, 260, 1904, 2599, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 17759, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 40400, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 48700, 13, 1102, 9246, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 17759, 11, 685, 16, 11, 513, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 16, 87, 18, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 17759, 11, 685, 18, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 66, 62, 18, 87, 16, 11537, 4357, 513, 8, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 17, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 40400, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 49989, 11, 685, 18, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 18, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 22243, 11, 685, 16, 11, 513, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 66, 62, 16, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 17, 796, 48700, 13, 1102, 9246, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 17759, 11, 685, 16, 11, 513, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 67, 62, 16, 87, 18, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 17, 11, 17759, 11, 685, 18, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 68, 62, 18, 87, 16, 11537, 4357, 513, 8, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 18, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 18, 796, 18862, 13, 615, 70, 62, 7742, 17, 67, 7, 15414, 82, 11, 685, 18, 11, 513, 4357, 8354, 11639, 48997, 27201, 62, 15, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 18, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 18, 11, 17759, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 1441, 48700, 13, 1102, 9246, 26933, 1671, 3702, 62, 15, 11, 8478, 62, 16, 11, 8478, 62, 17, 11, 8478, 62, 18, 4357, 513, 8, 628, 198, 4299, 30839, 62, 85, 19, 62, 8692, 7, 15414, 82, 11, 2457, 62, 437, 4122, 11639, 44, 2966, 62, 22, 67, 3256, 8354, 28, 14202, 2599, 198, 220, 37227, 16719, 274, 262, 554, 4516, 569, 19, 3127, 510, 284, 262, 1813, 2457, 36123, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 17311, 25, 257, 604, 12, 35, 11192, 273, 286, 2546, 685, 43501, 62, 7857, 11, 6001, 11, 9647, 11, 513, 4083, 198, 220, 220, 220, 2457, 62, 437, 4122, 25, 26052, 262, 36123, 284, 5678, 262, 3127, 510, 284, 13, 198, 220, 220, 220, 220, 220, 632, 460, 307, 530, 286, 685, 705, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 3256, 705, 3103, 85, 17, 67, 62, 17, 64, 62, 18, 87, 18, 3256, 705, 3103, 85, 17, 67, 62, 17, 65, 62, 18, 87, 18, 3256, 198, 220, 220, 220, 220, 220, 705, 44, 2966, 62, 18, 64, 3256, 705, 44, 2966, 62, 19, 64, 3256, 705, 44, 2966, 62, 20, 64, 3256, 705, 44, 2966, 62, 20, 65, 3256, 705, 44, 2966, 62, 20, 66, 3256, 705, 44, 2966, 62, 20, 67, 3256, 198, 220, 220, 220, 220, 220, 705, 44, 2966, 62, 20, 68, 3256, 705, 44, 2966, 62, 21, 64, 3256, 705, 44, 2966, 62, 21, 65, 3256, 705, 44, 2966, 62, 21, 66, 3256, 705, 44, 2966, 62, 21, 67, 3256, 705, 44, 2966, 62, 21, 68, 3256, 198, 220, 220, 220, 220, 220, 705, 44, 2966, 62, 21, 69, 3256, 705, 44, 2966, 62, 21, 70, 3256, 705, 44, 2966, 62, 21, 71, 3256, 705, 44, 2966, 62, 22, 64, 3256, 705, 44, 2966, 62, 22, 65, 3256, 705, 44, 2966, 62, 22, 66, 3256, 198, 220, 220, 220, 220, 220, 705, 44, 2966, 62, 22, 67, 20520, 198, 220, 220, 220, 8354, 25, 32233, 7885, 62, 29982, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 2604, 896, 25, 262, 2604, 896, 23862, 286, 262, 2746, 13, 198, 220, 220, 220, 886, 62, 13033, 25, 262, 900, 286, 886, 62, 13033, 422, 262, 30839, 2746, 13, 628, 220, 7567, 2696, 25, 198, 220, 220, 220, 11052, 12331, 25, 611, 2457, 62, 437, 4122, 318, 407, 900, 284, 530, 286, 262, 2747, 18156, 3815, 11, 198, 220, 37227, 198, 220, 886, 62, 13033, 796, 23884, 628, 220, 351, 48700, 13, 45286, 62, 29982, 7, 29982, 11, 705, 818, 4516, 53, 19, 3256, 685, 15414, 82, 60, 2599, 198, 220, 220, 220, 351, 18862, 13, 853, 62, 29982, 26933, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 9806, 62, 7742, 17, 67, 11, 18862, 13, 615, 70, 62, 7742, 17, 67, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 24511, 11639, 50, 10067, 6, 2599, 198, 220, 220, 220, 220, 220, 1303, 31011, 2124, 31011, 2124, 513, 198, 220, 220, 220, 220, 220, 2010, 796, 18862, 13, 42946, 17, 67, 7, 15414, 82, 11, 3933, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 23428, 2389, 3256, 8354, 11639, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 10786, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 3256, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 198, 220, 220, 220, 220, 220, 1303, 24041, 2124, 24041, 2124, 3933, 198, 220, 220, 220, 220, 220, 2010, 796, 18862, 13, 42946, 17, 67, 7, 3262, 11, 3933, 11, 685, 18, 11, 513, 4357, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 3103, 85, 17, 67, 62, 17, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 10786, 3103, 85, 17, 67, 62, 17, 64, 62, 18, 87, 18, 3256, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 198, 220, 220, 220, 220, 220, 1303, 22909, 2124, 22909, 2124, 3933, 198, 220, 220, 220, 220, 220, 2010, 796, 18862, 13, 42946, 17, 67, 7, 3262, 11, 5598, 11, 685, 18, 11, 513, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 17, 65, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 10786, 3103, 85, 17, 67, 62, 17, 65, 62, 18, 87, 18, 3256, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 198, 220, 220, 220, 220, 220, 1303, 22909, 2124, 22909, 2124, 5598, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 44, 2966, 62, 18, 64, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 9806, 62, 7742, 17, 67, 7, 3262, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 11518, 27201, 62, 15, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 3262, 11, 9907, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 48700, 13, 1102, 9246, 26933, 1671, 3702, 62, 15, 11, 8478, 62, 16, 4357, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 10786, 44, 2966, 62, 18, 64, 3256, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 628, 220, 220, 220, 220, 220, 1303, 8854, 2124, 8854, 2124, 13454, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 44, 2966, 62, 19, 64, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 3262, 11, 5598, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 15, 11, 9907, 11, 685, 18, 11, 513, 4357, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 3262, 11, 5598, 11, 685, 16, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 64, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 5598, 11, 685, 16, 11, 767, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 65, 62, 16, 87, 22, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 5598, 11, 685, 22, 11, 352, 4357, 8354, 11639, 3103, 85, 17, 67, 62, 15, 66, 62, 22, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 42946, 17, 67, 7, 1671, 3702, 62, 16, 11, 9907, 11, 685, 18, 11, 513, 4357, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 48700, 13, 1102, 9246, 26933, 1671, 3702, 62, 15, 11, 8478, 62, 16, 4357, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 10786, 44, 2966, 62, 19, 64, 3256, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 628, 220, 220, 220, 220, 220, 1303, 9166, 2124, 9166, 2124, 17817, 198, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 44, 2966, 62, 20, 64, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 15, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 15, 796, 18862, 13, 42946, 17, 67, 7, 3262, 11, 17817, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 3103, 85, 17, 67, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 33, 25642, 62, 16, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8478, 62, 16, 796, 18862, 13, 9806, 62, 7742, 17, 67, 7, 3262, 11, 685, 18, 11, 513, 4357, 33769, 28, 17, 11, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 11518, 27201, 62, 16, 64, 62, 18, 87, 18, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 48700, 13, 1102, 9246, 26933, 1671, 3702, 62, 15, 11, 8478, 62, 16, 4357, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 10786, 44, 2966, 62, 20, 64, 3256, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 628, 220, 220, 220, 220, 220, 1303, 3439, 2124, 3439, 2124, 40400, 198, 220, 220, 220, 220, 220, 1303, 604, 2124, 554, 4516, 12, 32, 7021, 198, 220, 220, 220, 220, 220, 329, 4686, 87, 287, 2837, 7, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 29982, 796, 705, 44, 2966, 62, 20, 6, 1343, 442, 81, 7, 585, 10786, 65, 11537, 1343, 4686, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 2512, 62, 924, 1159, 62, 64, 7, 3262, 11, 2512, 62, 29982, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 7, 9967, 62, 29982, 11, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 628, 220, 220, 220, 220, 220, 1303, 3439, 2124, 3439, 2124, 40400, 198, 220, 220, 220, 220, 220, 1303, 33396, 12, 32, 2512, 198, 220, 220, 220, 220, 220, 2010, 796, 2512, 62, 445, 8110, 62, 64, 7, 3262, 11, 705, 44, 2966, 62, 21, 64, 11537, 198, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 10786, 44, 2966, 62, 21, 64, 3256, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 628, 220, 220, 220, 220, 220, 1303, 1596, 2124, 1596, 2124, 28119, 198, 220, 220, 220, 220, 220, 1303, 767, 2124, 554, 4516, 12, 33, 7021, 198, 220, 220, 220, 220, 220, 329, 4686, 87, 287, 2837, 7, 22, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 29982, 796, 705, 44, 2966, 62, 21, 6, 1343, 442, 81, 7, 585, 10786, 65, 11537, 1343, 4686, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 2512, 62, 924, 1159, 62, 65, 7, 3262, 11, 2512, 62, 29982, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 7, 9967, 62, 29982, 11, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 628, 220, 220, 220, 220, 220, 1303, 1596, 2124, 1596, 2124, 28119, 198, 220, 220, 220, 220, 220, 1303, 33396, 12, 33, 2512, 198, 220, 220, 220, 220, 220, 2010, 796, 2512, 62, 445, 8110, 62, 65, 7, 3262, 11, 705, 44, 2966, 62, 22, 64, 11537, 198, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 10786, 44, 2966, 62, 22, 64, 3256, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 628, 220, 220, 220, 220, 220, 1303, 807, 2124, 807, 2124, 1315, 2623, 198, 220, 220, 220, 220, 220, 1303, 513, 2124, 554, 4516, 12, 34, 7021, 198, 220, 220, 220, 220, 220, 329, 4686, 87, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 29982, 796, 705, 44, 2966, 62, 22, 6, 1343, 442, 81, 7, 585, 10786, 65, 11537, 1343, 4686, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 2512, 62, 924, 1159, 62, 66, 7, 3262, 11, 2512, 62, 29982, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 751, 62, 392, 62, 9122, 62, 20311, 7, 9967, 62, 29982, 11, 2010, 2599, 1441, 2010, 11, 886, 62, 13033, 198, 220, 5298, 11052, 12331, 10786, 20035, 2457, 36123, 4064, 82, 6, 4064, 2457, 62, 437, 4122, 8, 628, 198, 4299, 30839, 62, 85, 19, 7, 15414, 82, 11, 997, 62, 37724, 28, 47705, 11, 318, 62, 34409, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 14894, 62, 1676, 65, 28, 15, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32349, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 818, 4516, 53, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 14644, 62, 6404, 896, 28, 17821, 2599, 198, 220, 37227, 16719, 274, 262, 554, 4516, 569, 19, 2746, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 17311, 25, 257, 604, 12, 35, 11192, 273, 286, 2546, 685, 43501, 62, 7857, 11, 6001, 11, 9647, 11, 513, 4083, 198, 220, 220, 220, 997, 62, 37724, 25, 1271, 286, 11001, 6097, 13, 198, 220, 220, 220, 318, 62, 34409, 25, 1771, 318, 3047, 393, 407, 13, 198, 220, 220, 220, 4268, 448, 62, 14894, 62, 1676, 65, 25, 12178, 11, 262, 13390, 284, 1394, 878, 2457, 7679, 13, 198, 220, 220, 220, 32349, 25, 1771, 393, 407, 262, 3127, 290, 663, 9633, 815, 307, 46823, 13, 1675, 307, 198, 220, 220, 220, 220, 220, 1498, 284, 32349, 705, 29982, 6, 1276, 307, 1813, 13, 198, 220, 220, 220, 8354, 25, 32233, 7885, 62, 29982, 13, 198, 220, 220, 220, 2251, 62, 14644, 62, 6404, 896, 25, 10127, 284, 2291, 262, 27506, 359, 8042, 2604, 896, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 2604, 896, 25, 262, 2604, 896, 23862, 286, 262, 2746, 13, 198, 220, 220, 220, 886, 62, 13033, 25, 262, 900, 286, 886, 62, 13033, 422, 262, 30839, 2746, 13, 198, 220, 37227, 198, 220, 886, 62, 13033, 796, 23884, 198, 220, 351, 48700, 13, 45286, 62, 29982, 7, 29982, 11, 705, 818, 4516, 53, 19, 3256, 685, 15414, 82, 4357, 32349, 28, 260, 1904, 8, 355, 8354, 25, 198, 220, 220, 220, 351, 18862, 13, 853, 62, 29982, 26933, 82, 2475, 13, 43501, 62, 27237, 11, 18862, 13, 14781, 448, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 34409, 28, 271, 62, 34409, 2599, 198, 220, 220, 220, 220, 220, 2010, 11, 886, 62, 13033, 796, 30839, 62, 85, 19, 62, 8692, 7, 15414, 82, 11, 8354, 28, 29982, 8, 628, 220, 220, 220, 220, 220, 351, 18862, 13, 853, 62, 29982, 26933, 82, 2475, 13, 42946, 17, 67, 11, 18862, 13, 9806, 62, 7742, 17, 67, 11, 18862, 13, 615, 70, 62, 7742, 17, 67, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 16, 11, 24511, 11639, 50, 10067, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47105, 28129, 7123, 2604, 896, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2251, 62, 14644, 62, 6404, 896, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 32, 2821, 11187, 896, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1596, 2124, 1596, 2124, 28119, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 6404, 896, 796, 886, 62, 13033, 17816, 44, 2966, 62, 21, 71, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 6404, 896, 796, 18862, 13, 615, 70, 62, 7742, 17, 67, 7, 14644, 62, 6404, 896, 11, 685, 20, 11, 642, 4357, 33769, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 48997, 27201, 62, 16, 64, 62, 20, 87, 20, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 6404, 896, 796, 18862, 13, 42946, 17, 67, 7, 14644, 62, 6404, 896, 11, 13108, 11, 685, 16, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 3103, 85, 17, 67, 62, 16, 65, 62, 16, 87, 16, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 6404, 896, 796, 18862, 13, 42946, 17, 67, 7, 14644, 62, 6404, 896, 11, 46720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 6404, 896, 13, 1136, 62, 43358, 3419, 58, 16, 25, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 23428, 2389, 3256, 8354, 11639, 3103, 85, 17, 67, 62, 17, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 6404, 896, 796, 18862, 13, 2704, 41769, 7, 14644, 62, 6404, 896, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 6404, 896, 796, 18862, 13, 2759, 62, 15236, 7, 14644, 62, 6404, 896, 11, 997, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 62, 22184, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 32, 2821, 62, 6404, 896, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 13033, 17816, 32, 2821, 11187, 896, 20520, 796, 27506, 62, 6404, 896, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8125, 5933, 278, 290, 17724, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 45286, 62, 29982, 10786, 11187, 896, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 807, 2124, 807, 2124, 1315, 2623, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 18862, 13, 615, 70, 62, 7742, 17, 67, 7, 3262, 11, 2010, 13, 1136, 62, 43358, 3419, 58, 16, 25, 18, 4357, 24511, 11639, 23428, 2389, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 48997, 27201, 62, 16, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 2124, 352, 2124, 1315, 2623, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 18862, 13, 14781, 448, 7, 3262, 11, 4268, 448, 62, 14894, 62, 1676, 65, 11, 8354, 11639, 26932, 448, 62, 16, 65, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 18862, 13, 2704, 41769, 7, 3262, 11, 8354, 11639, 6719, 11187, 896, 7414, 41769, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 13033, 17816, 6719, 11187, 896, 7414, 41769, 20520, 796, 2010, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1315, 2623, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 796, 18862, 13, 2759, 62, 15236, 7, 3262, 11, 997, 62, 37724, 11, 14916, 62, 22184, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11639, 11187, 896, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 13033, 17816, 11187, 896, 20520, 796, 2604, 896, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 13033, 17816, 39156, 9278, 20520, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 6404, 896, 11, 1438, 11639, 39156, 9278, 11537, 198, 220, 220, 220, 1441, 2604, 896, 11, 886, 62, 13033, 198, 924, 1159, 62, 85, 19, 13, 12286, 62, 9060, 62, 7857, 796, 31011, 628, 198, 924, 1159, 62, 85, 19, 62, 853, 62, 29982, 796, 30839, 62, 26791, 13, 924, 1159, 62, 853, 62, 29982, 198 ]
2.030542
7,596
from queue import Queue from queue import Empty from threading import Thread from pyopentsdb import errors from pyopentsdb.utils import request_post from pyopentsdb.conf import QueryPointer class IterableQueue(object): """ Transform standard python Queue instance to iterable one""" def __init__(self, source_queue): """ :param source_queue: queue.Queue, (mandatory) """ self.source_queue = source_queue def tsdb_query_metrics_validation(**kwargs): """ looking for metric and all related and required arguments in kwargs specified in OpenTSDB http api :param kwargs: dict :return: """ # tsdb query kwargs have to contain 'metrics' argument if not kwargs.get('metrics'): raise errors.MissingArgumentError("Missing argument 'metrics' in query") # metrics can contain more than one metric in list for metric_object in kwargs['metrics']: # each metric in metrics has to specify aggregator function if not metric_object.get('metric') or not metric_object.get('aggregator'): raise errors.MissingArgumentError("Missing argument 'metric' or 'aggregator' in metrics object") # each metric can contain filters if metric_object.get('filters'): for metric_filter in metric_object['filters']: # if filter is presented , it has contain 'type', 'tagk' and 'filter' (filter definition) if not metric_filter.get('type') or not metric_filter.get('tagk') or \ metric_filter.get('filter') is None: raise errors.MissingArgumentError( "Missing argument 'type', 'tagk' or 'filter' in filters object") def query(host, r_session, **kwargs): """ :param host: str :param r_session: requests.Session :param kwargs: dict :return: dict """ # todo: make sure kwargs of tsdb are not colliding kwargs of requests try: start = kwargs.pop('start') except KeyError: raise errors.MissingArgumentError("'start' is a required argument") try: tsdb_query_metrics_validation(**kwargs) except errors.MissingArgumentError as e: raise errors.MissingArgumentError(str(e)) # general driven arguments end = kwargs.pop('end', None) ms_resolution = bool(kwargs.pop('ms', False)) show_tsuids = bool(kwargs.pop('show_tsuids', False)) no_annotations = bool(kwargs.pop('no_annotations', False)) global_annotations = bool(kwargs.pop('global_annotations', False)) show_summary = bool(kwargs.pop('show_summary', False)) show_stats = bool(kwargs.pop('show_stats', False)) show_query = bool(kwargs.pop('show_query', False)) delete_match = bool(kwargs.pop('delete', False)) timezone = kwargs.pop('timezone', 'UTC') use_calendar = bool(kwargs.pop('use_calendar', False)) queries = kwargs.pop('metrics') params = { 'start': '{}'.format(int(start.timestamp())), 'msResolution': ms_resolution, 'showTSUIDs': show_tsuids, 'noAnnotations': no_annotations, 'globalAnnotations': global_annotations, 'showSummary': show_summary, 'showStats': show_stats, 'showQuery': show_query, 'delete': delete_match, 'timezone': timezone, 'useCalendar': use_calendar, 'queries': list(), } if end: params.update({'end': int(end.timestamp())}) params.update({'queries': queries}) kwargs.update(dict(data=params)) return request_post(api_url(host, pointer=QueryPointer.QUERY), r_session, **kwargs) def multiquery(host, r_session, query_chunks, max_tsdb_concurrency=40, **kwargs): """ OpenTSDB /api/query/ concurrency wrapper :param host: str (mandatory); OpenTSDB host :param r_session: requests.Session :param query_chunks: list (mandatory); list of json serializable dicts representing OpenTSDB query :param max_tsdb_concurrency: int (optional), default=40; maximum number of concurrency threads hitting OpenTSDB api :return: dict; json serializable """ __WORKER_RUN__ = True # todo: optimize, in case one of worker fail, terminate execution n_threads = min(len(query_chunks), max_tsdb_concurrency) query_queue = Queue(maxsize=len(query_chunks) + n_threads) result_queue = Queue(maxsize=len(query_chunks) + n_threads) error_queue = Queue() threads = list() try: for q in query_chunks: # valiate all queries in query_chunks tsdb_query_metrics_validation(**q) # add query kwargs to queue for future execution in threads query_queue.put(q) for _ in range(n_threads): query_queue.put("TERMINATOR") for _ in range(n_threads): t = Thread(target=tsdb_worker) threads.append(t) t.daemon = True t.start() for t in threads: t.join() except KeyboardInterrupt: raise finally: __WORKER_RUN__ = False if not error_queue.empty(): # if not empty, error_queue has to contain exception from tsdb_worker raise error_queue.get() if result_queue.qsize() != len(query_chunks): # this statement is probably not necessary raise errors.TsdbError("Number of queries and responses is not the same") # make sure any other kind of response code won't be propagated to this place and will be catched and processed # in previous part of code return sum([val for val in IterableQueue(result_queue)], list())
[ 6738, 16834, 1330, 4670, 518, 198, 6738, 16834, 1330, 33523, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 6738, 12972, 404, 658, 9945, 1330, 8563, 198, 6738, 12972, 404, 658, 9945, 13, 26791, 1330, 2581, 62, 7353, 198, 6738, 12972, 404, 658, 9945, 13, 10414, 1330, 43301, 18833, 3849, 628, 198, 4871, 40806, 540, 34991, 7, 15252, 2599, 198, 220, 220, 220, 37227, 26981, 3210, 21015, 4670, 518, 4554, 284, 11629, 540, 530, 37811, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2723, 62, 36560, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2723, 62, 36560, 25, 16834, 13, 34991, 11, 357, 22249, 2870, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10459, 62, 36560, 796, 2723, 62, 36560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4299, 40379, 9945, 62, 22766, 62, 4164, 10466, 62, 12102, 341, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2045, 329, 18663, 290, 477, 3519, 290, 2672, 7159, 287, 479, 86, 22046, 7368, 287, 4946, 4694, 11012, 2638, 40391, 628, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 40379, 9945, 12405, 479, 86, 22046, 423, 284, 3994, 705, 4164, 10466, 6, 4578, 198, 220, 220, 220, 611, 407, 479, 86, 22046, 13, 1136, 10786, 4164, 10466, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 43730, 28100, 1713, 12331, 7203, 43730, 4578, 705, 4164, 10466, 6, 287, 12405, 4943, 628, 220, 220, 220, 1303, 20731, 460, 3994, 517, 621, 530, 18663, 287, 1351, 198, 220, 220, 220, 329, 18663, 62, 15252, 287, 479, 86, 22046, 17816, 4164, 10466, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1123, 18663, 287, 20731, 468, 284, 11986, 13262, 1352, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18663, 62, 15252, 13, 1136, 10786, 4164, 1173, 11537, 393, 407, 18663, 62, 15252, 13, 1136, 10786, 9460, 2301, 1352, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 43730, 28100, 1713, 12331, 7203, 43730, 4578, 705, 4164, 1173, 6, 393, 705, 9460, 2301, 1352, 6, 287, 20731, 2134, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1123, 18663, 460, 3994, 16628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18663, 62, 15252, 13, 1136, 10786, 10379, 1010, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 18663, 62, 24455, 287, 18663, 62, 15252, 17816, 10379, 1010, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 8106, 318, 5545, 837, 340, 468, 3994, 705, 4906, 3256, 705, 12985, 74, 6, 290, 705, 24455, 6, 357, 24455, 6770, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18663, 62, 24455, 13, 1136, 10786, 4906, 11537, 393, 407, 18663, 62, 24455, 13, 1136, 10786, 12985, 74, 11537, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 62, 24455, 13, 1136, 10786, 24455, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 43730, 28100, 1713, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43730, 4578, 705, 4906, 3256, 705, 12985, 74, 6, 393, 705, 24455, 6, 287, 16628, 2134, 4943, 628, 198, 4299, 12405, 7, 4774, 11, 374, 62, 29891, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 17143, 2583, 25, 965, 198, 220, 220, 220, 1058, 17143, 374, 62, 29891, 25, 7007, 13, 36044, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 1058, 7783, 25, 8633, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 284, 4598, 25, 787, 1654, 479, 86, 22046, 286, 40379, 9945, 389, 407, 2927, 2530, 479, 86, 22046, 286, 7007, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 479, 86, 22046, 13, 12924, 10786, 9688, 11537, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 43730, 28100, 1713, 12331, 7203, 6, 9688, 6, 318, 257, 2672, 4578, 4943, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40379, 9945, 62, 22766, 62, 4164, 10466, 62, 12102, 341, 7, 1174, 46265, 22046, 8, 198, 220, 220, 220, 2845, 8563, 13, 43730, 28100, 1713, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 43730, 28100, 1713, 12331, 7, 2536, 7, 68, 4008, 628, 220, 220, 220, 1303, 2276, 7986, 7159, 198, 220, 220, 220, 886, 796, 479, 86, 22046, 13, 12924, 10786, 437, 3256, 6045, 8, 198, 220, 220, 220, 13845, 62, 29268, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 907, 3256, 10352, 4008, 198, 220, 220, 220, 905, 62, 912, 84, 2340, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 12860, 62, 912, 84, 2340, 3256, 10352, 4008, 198, 220, 220, 220, 645, 62, 34574, 602, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 3919, 62, 34574, 602, 3256, 10352, 4008, 198, 220, 220, 220, 3298, 62, 34574, 602, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 20541, 62, 34574, 602, 3256, 10352, 4008, 198, 220, 220, 220, 905, 62, 49736, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 12860, 62, 49736, 3256, 10352, 4008, 198, 220, 220, 220, 905, 62, 34242, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 12860, 62, 34242, 3256, 10352, 4008, 198, 220, 220, 220, 905, 62, 22766, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 12860, 62, 22766, 3256, 10352, 4008, 198, 220, 220, 220, 12233, 62, 15699, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 33678, 3256, 10352, 4008, 198, 220, 220, 220, 640, 11340, 796, 479, 86, 22046, 13, 12924, 10786, 2435, 11340, 3256, 705, 17429, 11537, 198, 220, 220, 220, 779, 62, 9948, 9239, 796, 20512, 7, 46265, 22046, 13, 12924, 10786, 1904, 62, 9948, 9239, 3256, 10352, 4008, 628, 220, 220, 220, 20743, 796, 479, 86, 22046, 13, 12924, 10786, 4164, 10466, 11537, 628, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9688, 10354, 705, 90, 92, 4458, 18982, 7, 600, 7, 9688, 13, 16514, 27823, 28955, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 907, 4965, 2122, 10354, 13845, 62, 29268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12860, 4694, 27586, 82, 10354, 905, 62, 912, 84, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3919, 2025, 30078, 10354, 645, 62, 34574, 602, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20541, 2025, 30078, 10354, 3298, 62, 34574, 602, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12860, 22093, 10354, 905, 62, 49736, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12860, 29668, 10354, 905, 62, 34242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12860, 20746, 10354, 905, 62, 22766, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33678, 10354, 12233, 62, 15699, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2435, 11340, 10354, 640, 11340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1904, 9771, 9239, 10354, 779, 62, 9948, 9239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 421, 10640, 10354, 1351, 22784, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 611, 886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 13, 19119, 15090, 6, 437, 10354, 493, 7, 437, 13, 16514, 27823, 28955, 30072, 198, 220, 220, 220, 42287, 13, 19119, 15090, 6, 421, 10640, 10354, 20743, 30072, 198, 220, 220, 220, 479, 86, 22046, 13, 19119, 7, 11600, 7, 7890, 28, 37266, 4008, 198, 220, 220, 220, 1441, 2581, 62, 7353, 7, 15042, 62, 6371, 7, 4774, 11, 17562, 28, 20746, 18833, 3849, 13, 10917, 19664, 828, 374, 62, 29891, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 1963, 1557, 1924, 7, 4774, 11, 374, 62, 29891, 11, 12405, 62, 354, 14125, 11, 3509, 62, 912, 9945, 62, 1102, 34415, 28, 1821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4946, 4694, 11012, 1220, 15042, 14, 22766, 14, 1673, 13382, 29908, 628, 220, 220, 220, 1058, 17143, 2583, 25, 965, 357, 22249, 2870, 1776, 4946, 4694, 11012, 2583, 198, 220, 220, 220, 1058, 17143, 374, 62, 29891, 25, 7007, 13, 36044, 198, 220, 220, 220, 1058, 17143, 12405, 62, 354, 14125, 25, 1351, 357, 22249, 2870, 1776, 1351, 286, 33918, 11389, 13821, 8633, 82, 10200, 4946, 4694, 11012, 12405, 198, 220, 220, 220, 1058, 17143, 3509, 62, 912, 9945, 62, 1102, 34415, 25, 493, 357, 25968, 828, 4277, 28, 1821, 26, 5415, 1271, 286, 1673, 13382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14390, 9008, 4946, 4694, 11012, 40391, 198, 220, 220, 220, 1058, 7783, 25, 8633, 26, 33918, 11389, 13821, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 33249, 1137, 62, 49, 4944, 834, 796, 6407, 628, 220, 220, 220, 1303, 284, 4598, 25, 27183, 11, 287, 1339, 530, 286, 8383, 2038, 11, 23654, 9706, 628, 220, 220, 220, 299, 62, 16663, 82, 796, 949, 7, 11925, 7, 22766, 62, 354, 14125, 828, 3509, 62, 912, 9945, 62, 1102, 34415, 8, 198, 220, 220, 220, 12405, 62, 36560, 796, 4670, 518, 7, 9806, 7857, 28, 11925, 7, 22766, 62, 354, 14125, 8, 1343, 299, 62, 16663, 82, 8, 198, 220, 220, 220, 1255, 62, 36560, 796, 4670, 518, 7, 9806, 7857, 28, 11925, 7, 22766, 62, 354, 14125, 8, 1343, 299, 62, 16663, 82, 8, 198, 220, 220, 220, 4049, 62, 36560, 796, 4670, 518, 3419, 628, 220, 220, 220, 14390, 796, 1351, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10662, 287, 12405, 62, 354, 14125, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1188, 9386, 477, 20743, 287, 12405, 62, 354, 14125, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40379, 9945, 62, 22766, 62, 4164, 10466, 62, 12102, 341, 7, 1174, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 12405, 479, 86, 22046, 284, 16834, 329, 2003, 9706, 287, 14390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 36560, 13, 1996, 7, 80, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 77, 62, 16663, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 36560, 13, 1996, 7203, 5781, 23678, 25633, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 77, 62, 16663, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 14122, 7, 16793, 28, 912, 9945, 62, 28816, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14390, 13, 33295, 7, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 6814, 7966, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 14390, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 22179, 3419, 628, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 33249, 1137, 62, 49, 4944, 834, 796, 10352, 628, 220, 220, 220, 611, 407, 4049, 62, 36560, 13, 28920, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 407, 6565, 11, 4049, 62, 36560, 468, 284, 3994, 6631, 422, 40379, 9945, 62, 28816, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 4049, 62, 36560, 13, 1136, 3419, 628, 220, 220, 220, 611, 1255, 62, 36560, 13, 80, 7857, 3419, 14512, 18896, 7, 22766, 62, 354, 14125, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 2643, 318, 2192, 407, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 8563, 13, 33758, 9945, 12331, 7203, 15057, 286, 20743, 290, 9109, 318, 407, 262, 976, 4943, 628, 220, 220, 220, 1303, 787, 1654, 597, 584, 1611, 286, 2882, 2438, 1839, 470, 307, 8928, 515, 284, 428, 1295, 290, 481, 307, 3797, 1740, 290, 13686, 198, 220, 220, 220, 1303, 287, 2180, 636, 286, 2438, 198, 220, 220, 220, 1441, 2160, 26933, 2100, 329, 1188, 287, 40806, 540, 34991, 7, 20274, 62, 36560, 8, 4357, 1351, 28955, 628 ]
2.509267
2,266
import numpy as np import torch import torch.nn.functional as F import sparseconvnet as scn import data_util UNK_THRESH = 2 #UNK_THRESH = 3 UNK_ID = -1 # note: weight_missing_geo must be > 1 # hierarchical loss
[ 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 11748, 29877, 42946, 3262, 355, 629, 77, 198, 198, 11748, 1366, 62, 22602, 198, 198, 4944, 42, 62, 4221, 19535, 39, 796, 362, 198, 2, 4944, 42, 62, 4221, 19535, 39, 796, 513, 198, 198, 4944, 42, 62, 2389, 796, 532, 16, 198, 198, 2, 3465, 25, 3463, 62, 45688, 62, 469, 78, 1276, 307, 1875, 352, 628, 198, 198, 2, 38958, 2994, 220, 628 ]
2.611765
85
r"""Integrator functions used when no closed forms are available. Lead author: Nicolas Guigui. These are designed for first order ODE written of a variable x and a time variable t: .. math:: \frac{dx}{dt} = force(x, t) where :math: `x` is called the state variable. It may represent many variables by stacking arrays, e.g. position and velocity in a geodesic equation. """ from geomstats.errors import check_parameter_accepted_values STEP_FUNCTIONS = { "euler": "euler_step", "symp_euler": "symplectic_euler_step", "leapfrog": "leapfrog_step", "rk4": "rk4_step", "rk2": "rk2_step", } def euler_step(force, state, time, dt): """Compute one step of the euler approximation. Parameters ---------- force : callable Vector field that is being integrated. state : array-like, shape=[2, dim] State at time t, corresponds to position and velocity variables at time t. time : float Time variable. dt : float Time-step in the integration. Returns ------- point_new : array-like, shape=[,,,, {dim, [n, n]}] First variable at time t + dt. vector_new : array-like, shape=[,,,, {dim, [n, n]}] Second variable at time t + dt. """ derivatives = force(state, time) new_state = state + derivatives * dt return new_state def symplectic_euler_step(force, state, time, dt): """Compute one step of the symplectic euler approximation. Parameters ---------- state : array-like, shape=[2, dim] State at time t, corresponds to position and velocity variables at time t. force : callable Vector field that is being integrated. time : float Time variable. dt : float Time-step in the integration. Returns ------- point_new : array-like, shape=[,,,, {dim, [n, n]}] First variable at time t + dt. vector_new : array-like, shape=[,,,, {dim, [n, n]}] Second variable at time t + dt. """ raise NotImplementedError def leapfrog_step(force, state, time, dt): """Compute one step of the leapfrog approximation. Parameters ---------- state : array-like, shape=[2, dim] State at time t, corresponds to position and velocity variables at time t. force : callable Vector field that is being integrated. time : float Time variable. dt : float Time-step in the integration. Returns ------- point_new : array-like, shape=[,,,, {dim, [n, n]}] First variable at time t + dt. vector_new : array-like, shape=[,,,, {dim, [n, n]}] Second variable at time t + dt. """ raise NotImplementedError def rk2_step(force, state, time, dt): """Compute one step of the rk2 approximation. Parameters ---------- force : callable Vector field that is being integrated. state : array-like, shape=[2, dim] State at time t, corresponds to position and velocity variables at time t. time : float Time variable. dt : float Time-step in the integration. Returns ------- point_new : array-like, shape=[,,,, {dim, [n, n]}] First variable at time t + dt. vector_new : array-like, shape=[,,,, {dim, [n, n]}] Second variable at time t + dt. See Also -------- https://en.wikipedia.org/wiki/Runge–Kutta_methods """ k1 = force(state, time) k2 = force(state + dt / 2 * k1, time + dt / 2) new_state = state + dt * k2 return new_state def rk4_step(force, state, time, dt): """Compute one step of the rk4 approximation. Parameters ---------- force : callable Vector field that is being integrated. state : array-like, shape=[2, dim] State at time t, corresponds to position and velocity variables at time t. time : float Time variable. dt : float Time-step in the integration. Returns ------- point_new : array-like, shape=[,,,, {dim, [n, n]}] First variable at time t + dt. vector_new : array-like, shape=[,,,, {dim, [n, n]}] Second variable at time t + dt. See Also -------- https://en.wikipedia.org/wiki/Runge–Kutta_methods """ k1 = force(state, time) k2 = force(state + dt / 2 * k1, time + dt / 2) k3 = force(state + dt / 2 * k2, time + dt / 2) k4 = force(state + dt * k3, time + dt) new_state = state + dt / 6 * (k1 + 2 * k2 + 2 * k3 + k4) return new_state def integrate(function, initial_state, end_time=1.0, n_steps=10, step="euler"): """Compute the flow under the vector field using symplectic euler. Integration function to compute flows of vector fields on a regular grid between 0 and a finite time from an initial state. Parameters ---------- function : callable Vector field to integrate. initial_state : tuple of arrays Initial position and speed. end_time : float Final integration time. Optional, default : 1. n_steps : int Number of integration steps to use. Optional, default : 10. step : str, {'euler', 'rk4', 'group_rk2', 'group_rk4'} Numerical scheme to use for elementary integration steps. Optional, default : 'euler'. Returns ------- final_state : tuple sequences of solutions every end_time / n_steps. The shape of each element of the sequence is the same as the vectors passed in initial_state. """ check_parameter_accepted_values(step, "step", STEP_FUNCTIONS) dt = end_time / n_steps states = [initial_state] current_state = initial_state step_function = globals()[STEP_FUNCTIONS[step]] for i in range(n_steps): current_state = step_function( state=current_state, force=function, time=i * dt, dt=dt ) states.append(current_state) return states
[ 81, 37811, 34500, 12392, 5499, 973, 618, 645, 4838, 5107, 389, 1695, 13, 198, 198, 20451, 1772, 25, 29737, 1962, 328, 9019, 13, 198, 198, 4711, 389, 3562, 329, 717, 1502, 440, 7206, 3194, 286, 257, 7885, 2124, 290, 257, 640, 198, 45286, 256, 25, 198, 492, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 31944, 90, 34350, 18477, 28664, 92, 796, 2700, 7, 87, 11, 256, 8, 198, 198, 3003, 1058, 11018, 25, 4600, 87, 63, 318, 1444, 262, 1181, 7885, 13, 632, 743, 2380, 867, 198, 25641, 2977, 416, 41228, 26515, 11, 304, 13, 70, 13, 2292, 290, 15432, 287, 257, 4903, 4147, 291, 198, 4853, 341, 13, 198, 37811, 198, 198, 6738, 4903, 296, 34242, 13, 48277, 1330, 2198, 62, 17143, 2357, 62, 13635, 276, 62, 27160, 198, 198, 42135, 62, 42296, 4177, 11053, 796, 1391, 198, 220, 220, 220, 366, 68, 18173, 1298, 366, 68, 18173, 62, 9662, 1600, 198, 220, 220, 220, 366, 1837, 3149, 62, 68, 18173, 1298, 366, 1837, 3149, 42009, 62, 68, 18173, 62, 9662, 1600, 198, 220, 220, 220, 366, 293, 499, 49956, 1298, 366, 293, 499, 49956, 62, 9662, 1600, 198, 220, 220, 220, 366, 81, 74, 19, 1298, 366, 81, 74, 19, 62, 9662, 1600, 198, 220, 220, 220, 366, 81, 74, 17, 1298, 366, 81, 74, 17, 62, 9662, 1600, 198, 92, 628, 198, 4299, 304, 18173, 62, 9662, 7, 3174, 11, 1181, 11, 640, 11, 288, 83, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 530, 2239, 286, 262, 304, 18173, 40874, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2700, 1058, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 2214, 326, 318, 852, 11521, 13, 198, 220, 220, 220, 1181, 1058, 7177, 12, 2339, 11, 5485, 41888, 17, 11, 5391, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1812, 379, 640, 256, 11, 24866, 284, 2292, 290, 15432, 9633, 379, 198, 220, 220, 220, 220, 220, 220, 220, 640, 256, 13, 198, 220, 220, 220, 640, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 7885, 13, 198, 220, 220, 220, 288, 83, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 12, 9662, 287, 262, 11812, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 966, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3274, 7885, 379, 640, 256, 1343, 288, 83, 13, 198, 220, 220, 220, 15879, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5498, 7885, 379, 640, 256, 1343, 288, 83, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28486, 796, 2700, 7, 5219, 11, 640, 8, 198, 220, 220, 220, 649, 62, 5219, 796, 1181, 1343, 28486, 1635, 288, 83, 198, 220, 220, 220, 1441, 649, 62, 5219, 628, 198, 4299, 10558, 42009, 62, 68, 18173, 62, 9662, 7, 3174, 11, 1181, 11, 640, 11, 288, 83, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 530, 2239, 286, 262, 10558, 42009, 304, 18173, 40874, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1181, 1058, 7177, 12, 2339, 11, 5485, 41888, 17, 11, 5391, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1812, 379, 640, 256, 11, 24866, 284, 2292, 290, 15432, 9633, 379, 198, 220, 220, 220, 220, 220, 220, 220, 640, 256, 13, 198, 220, 220, 220, 2700, 1058, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 2214, 326, 318, 852, 11521, 13, 198, 220, 220, 220, 640, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 7885, 13, 198, 220, 220, 220, 288, 83, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 12, 9662, 287, 262, 11812, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 966, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3274, 7885, 379, 640, 256, 1343, 288, 83, 13, 198, 220, 220, 220, 15879, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5498, 7885, 379, 640, 256, 1343, 288, 83, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 198, 4299, 16470, 49956, 62, 9662, 7, 3174, 11, 1181, 11, 640, 11, 288, 83, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 530, 2239, 286, 262, 16470, 49956, 40874, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1181, 1058, 7177, 12, 2339, 11, 5485, 41888, 17, 11, 5391, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1812, 379, 640, 256, 11, 24866, 284, 2292, 290, 15432, 9633, 379, 198, 220, 220, 220, 220, 220, 220, 220, 640, 256, 13, 198, 220, 220, 220, 2700, 1058, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 2214, 326, 318, 852, 11521, 13, 198, 220, 220, 220, 640, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 7885, 13, 198, 220, 220, 220, 288, 83, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 12, 9662, 287, 262, 11812, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 966, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3274, 7885, 379, 640, 256, 1343, 288, 83, 13, 198, 220, 220, 220, 15879, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5498, 7885, 379, 640, 256, 1343, 288, 83, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 198, 4299, 374, 74, 17, 62, 9662, 7, 3174, 11, 1181, 11, 640, 11, 288, 83, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 530, 2239, 286, 262, 374, 74, 17, 40874, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2700, 1058, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 2214, 326, 318, 852, 11521, 13, 198, 220, 220, 220, 1181, 1058, 7177, 12, 2339, 11, 5485, 41888, 17, 11, 5391, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1812, 379, 640, 256, 11, 24866, 284, 2292, 290, 15432, 9633, 379, 198, 220, 220, 220, 220, 220, 220, 220, 640, 256, 13, 198, 220, 220, 220, 640, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 7885, 13, 198, 220, 220, 220, 288, 83, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 12, 9662, 287, 262, 11812, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 966, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3274, 7885, 379, 640, 256, 1343, 288, 83, 13, 198, 220, 220, 220, 15879, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5498, 7885, 379, 640, 256, 1343, 288, 83, 13, 628, 220, 220, 220, 4091, 4418, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 10987, 469, 1906, 42, 315, 8326, 62, 24396, 82, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 16, 796, 2700, 7, 5219, 11, 640, 8, 198, 220, 220, 220, 479, 17, 796, 2700, 7, 5219, 1343, 288, 83, 1220, 362, 1635, 479, 16, 11, 640, 1343, 288, 83, 1220, 362, 8, 198, 220, 220, 220, 649, 62, 5219, 796, 1181, 1343, 288, 83, 1635, 479, 17, 198, 220, 220, 220, 1441, 649, 62, 5219, 628, 198, 4299, 374, 74, 19, 62, 9662, 7, 3174, 11, 1181, 11, 640, 11, 288, 83, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 530, 2239, 286, 262, 374, 74, 19, 40874, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2700, 1058, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 2214, 326, 318, 852, 11521, 13, 198, 220, 220, 220, 1181, 1058, 7177, 12, 2339, 11, 5485, 41888, 17, 11, 5391, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1812, 379, 640, 256, 11, 24866, 284, 2292, 290, 15432, 9633, 379, 198, 220, 220, 220, 220, 220, 220, 220, 640, 256, 13, 198, 220, 220, 220, 640, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 7885, 13, 198, 220, 220, 220, 288, 83, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 12, 9662, 287, 262, 11812, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 966, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3274, 7885, 379, 640, 256, 1343, 288, 83, 13, 198, 220, 220, 220, 15879, 62, 3605, 1058, 7177, 12, 2339, 11, 5485, 41888, 23846, 1391, 27740, 11, 685, 77, 11, 299, 48999, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5498, 7885, 379, 640, 256, 1343, 288, 83, 13, 628, 220, 220, 220, 4091, 4418, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 10987, 469, 1906, 42, 315, 8326, 62, 24396, 82, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 16, 796, 2700, 7, 5219, 11, 640, 8, 198, 220, 220, 220, 479, 17, 796, 2700, 7, 5219, 1343, 288, 83, 1220, 362, 1635, 479, 16, 11, 640, 1343, 288, 83, 1220, 362, 8, 198, 220, 220, 220, 479, 18, 796, 2700, 7, 5219, 1343, 288, 83, 1220, 362, 1635, 479, 17, 11, 640, 1343, 288, 83, 1220, 362, 8, 198, 220, 220, 220, 479, 19, 796, 2700, 7, 5219, 1343, 288, 83, 1635, 479, 18, 11, 640, 1343, 288, 83, 8, 198, 220, 220, 220, 649, 62, 5219, 796, 1181, 1343, 288, 83, 1220, 718, 1635, 357, 74, 16, 1343, 362, 1635, 479, 17, 1343, 362, 1635, 479, 18, 1343, 479, 19, 8, 198, 220, 220, 220, 1441, 649, 62, 5219, 628, 198, 4299, 19386, 7, 8818, 11, 4238, 62, 5219, 11, 886, 62, 2435, 28, 16, 13, 15, 11, 299, 62, 20214, 28, 940, 11, 2239, 2625, 68, 18173, 1, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 262, 5202, 739, 262, 15879, 2214, 1262, 10558, 42009, 304, 18173, 13, 628, 220, 220, 220, 38410, 2163, 284, 24061, 15623, 286, 15879, 7032, 198, 220, 220, 220, 319, 257, 3218, 10706, 1022, 657, 290, 257, 27454, 640, 422, 281, 4238, 1181, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2163, 1058, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 2214, 284, 19386, 13, 198, 220, 220, 220, 4238, 62, 5219, 1058, 46545, 286, 26515, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 2292, 290, 2866, 13, 198, 220, 220, 220, 886, 62, 2435, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 8125, 11812, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 32233, 11, 4277, 1058, 352, 13, 198, 220, 220, 220, 299, 62, 20214, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 11812, 4831, 284, 779, 13, 198, 220, 220, 220, 220, 220, 220, 220, 32233, 11, 4277, 1058, 838, 13, 198, 220, 220, 220, 2239, 1058, 965, 11, 1391, 6, 68, 18173, 3256, 705, 81, 74, 19, 3256, 705, 8094, 62, 81, 74, 17, 3256, 705, 8094, 62, 81, 74, 19, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 399, 6975, 605, 7791, 284, 779, 329, 19823, 11812, 4831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 32233, 11, 4277, 1058, 705, 68, 18173, 4458, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2457, 62, 5219, 1058, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 16311, 286, 8136, 790, 886, 62, 2435, 1220, 299, 62, 20214, 13, 383, 5485, 286, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 5002, 286, 262, 8379, 318, 262, 976, 355, 262, 30104, 3804, 287, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 5219, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2198, 62, 17143, 2357, 62, 13635, 276, 62, 27160, 7, 9662, 11, 366, 9662, 1600, 49154, 62, 42296, 4177, 11053, 8, 628, 220, 220, 220, 288, 83, 796, 886, 62, 2435, 1220, 299, 62, 20214, 198, 220, 220, 220, 2585, 796, 685, 36733, 62, 5219, 60, 198, 220, 220, 220, 1459, 62, 5219, 796, 4238, 62, 5219, 628, 220, 220, 220, 2239, 62, 8818, 796, 15095, 874, 3419, 58, 42135, 62, 42296, 4177, 11053, 58, 9662, 11907, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 62, 20214, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5219, 796, 2239, 62, 8818, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 28, 14421, 62, 5219, 11, 2700, 28, 8818, 11, 640, 28, 72, 1635, 288, 83, 11, 288, 83, 28, 28664, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2585, 13, 33295, 7, 14421, 62, 5219, 8, 198, 220, 220, 220, 1441, 2585, 198 ]
2.547081
2,347
""" This module schedules all the tasks according to config.rules. """ import click import logging import multiprocessing import schedule import time from scrapy.crawler import CrawlerRunner from scrapy.utils.project import get_project_settings from twisted.internet import reactor from haipproxy.client import SquidClient from haipproxy.config.rules import CRAWLER_TASKS, CRAWLER_QUEUE_MAPS from haipproxy.crawler.spiders import SPIDER_MAP from haipproxy.settings import ( SPIDER_AJAX_Q, SPIDER_GFW_Q, SPIDER_AJAX_GFW_Q, TIMER_RECORDER, ) from haipproxy.utils import get_redis_conn, acquire_lock, release_lock DEFAULT_CRAWLER_QS = [SPIDER_AJAX_Q, SPIDER_GFW_Q, SPIDER_AJAX_GFW_Q] logger = logging.getLogger(__name__) def scheduler_start(tasks): """Start specified scheduler.""" default_tasks = CRAWLER_TASKS SchedulerCls = CrawlerScheduler scheduler = SchedulerCls(default_tasks) scheduler.schedule_all_right_now() scheduler.schedule_with_delay()
[ 37811, 198, 1212, 8265, 24025, 477, 262, 8861, 1864, 284, 4566, 13, 38785, 13, 198, 37811, 198, 11748, 3904, 198, 11748, 18931, 198, 11748, 18540, 305, 919, 278, 198, 11748, 7269, 198, 11748, 640, 198, 198, 6738, 15881, 88, 13, 66, 39464, 1330, 20177, 1754, 49493, 198, 6738, 15881, 88, 13, 26791, 13, 16302, 1330, 651, 62, 16302, 62, 33692, 198, 6738, 19074, 13, 37675, 1330, 21905, 198, 198, 6738, 387, 3974, 42059, 13, 16366, 1330, 48799, 11792, 198, 6738, 387, 3974, 42059, 13, 11250, 13, 38785, 1330, 327, 20530, 39878, 62, 51, 1921, 27015, 11, 327, 20530, 39878, 62, 48, 8924, 8924, 62, 33767, 50, 198, 6738, 387, 3974, 42059, 13, 66, 39464, 13, 2777, 4157, 1330, 6226, 41237, 62, 33767, 198, 6738, 387, 3974, 42059, 13, 33692, 1330, 357, 198, 220, 220, 220, 6226, 41237, 62, 32, 41, 25922, 62, 48, 11, 198, 220, 220, 220, 6226, 41237, 62, 21713, 54, 62, 48, 11, 198, 220, 220, 220, 6226, 41237, 62, 32, 41, 25922, 62, 21713, 54, 62, 48, 11, 198, 220, 220, 220, 31742, 1137, 62, 38827, 12532, 1137, 11, 198, 8, 198, 6738, 387, 3974, 42059, 13, 26791, 1330, 651, 62, 445, 271, 62, 37043, 11, 12831, 62, 5354, 11, 2650, 62, 5354, 198, 198, 7206, 38865, 62, 34, 20530, 39878, 62, 48, 50, 796, 685, 4303, 41237, 62, 32, 41, 25922, 62, 48, 11, 6226, 41237, 62, 21713, 54, 62, 48, 11, 6226, 41237, 62, 32, 41, 25922, 62, 21713, 54, 62, 48, 60, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 198, 4299, 6038, 18173, 62, 9688, 7, 83, 6791, 2599, 198, 220, 220, 220, 37227, 10434, 7368, 6038, 18173, 526, 15931, 198, 220, 220, 220, 4277, 62, 83, 6791, 796, 327, 20530, 39878, 62, 51, 1921, 27015, 198, 220, 220, 220, 27774, 18173, 2601, 82, 796, 20177, 1754, 50, 1740, 18173, 628, 220, 220, 220, 6038, 18173, 796, 27774, 18173, 2601, 82, 7, 12286, 62, 83, 6791, 8, 198, 220, 220, 220, 6038, 18173, 13, 15952, 5950, 62, 439, 62, 3506, 62, 2197, 3419, 198, 220, 220, 220, 6038, 18173, 13, 15952, 5950, 62, 4480, 62, 40850, 3419, 628 ]
2.734247
365
import os import subprocess as sp from .srbColour import Colour
[ 11748, 28686, 198, 11748, 850, 14681, 355, 599, 198, 198, 6738, 764, 82, 26145, 5216, 454, 1330, 38773, 628 ]
3.473684
19
#!/usr/bin/env python # coding: utf8 from __future__ import unicode_literals import random import operator from typing import Dict categories = {'FAULT': 0, 'INFO': 0, 'TOXIC': 0, 'REPAIR': 0}
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 23, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 11748, 4738, 198, 11748, 10088, 198, 6738, 19720, 1330, 360, 713, 198, 198, 66, 26129, 796, 1391, 6, 38865, 10354, 657, 11, 705, 10778, 10354, 657, 11, 705, 10468, 55, 2149, 10354, 657, 11, 705, 2200, 4537, 4663, 10354, 657, 92, 628 ]
2.8
70
input_num = '22235253534090' reverse(input_num)
[ 198, 15414, 62, 22510, 796, 705, 1828, 22370, 1495, 2327, 23601, 3829, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 50188, 7, 15414, 62, 22510, 8, 628, 198 ]
1.90625
32
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """cct model""" import mindspore.common.initializer as weight_init import mindspore.nn as nn from src.models.cct.tokenizer import Tokenizer from src.models.cct.transformers import TransformerClassifier from src.models.cct.var_init import KaimingNormal class CCT(nn.Cell): """CCT Model""" def init_weights(self): """init_weights""" for _, cell in self.cells_and_names(): if isinstance(cell, nn.Conv2d): cell.weight.set_data( weight_init.initializer( KaimingNormal( mode='fan_in'), cell.weight.shape, cell.weight.dtype)) elif isinstance(cell, nn.Dense): cell.weight.set_data( weight_init.initializer( weight_init.TruncatedNormal( sigma=0.02), cell.weight.shape, cell.weight.dtype)) if cell.bias is not None: cell.bias.set_data( weight_init.initializer( weight_init.Zero(), cell.bias.shape, cell.bias.dtype)) def _cct(arch, num_layers, num_heads, mlp_ratio, embedding_dim, kernel_size=3, stride=None, padding=None, **kwargs): """get cct model with parameters""" print(f'=> using arch: {arch}') stride = stride if stride is not None else max(1, (kernel_size // 2) - 1) padding = padding if padding is not None else max(1, (kernel_size // 2)) model = CCT(num_layers=num_layers, num_heads=num_heads, mlp_ratio=mlp_ratio, embedding_dim=embedding_dim, kernel_size=kernel_size, stride=stride, padding=padding, **kwargs) return model def cct_2(arch, **kwargs): """cct_2""" return _cct( arch, num_layers=2, num_heads=2, mlp_ratio=1, embedding_dim=128, **kwargs) def cct_4(arch, **kwargs): """cct_4""" return _cct( arch, num_layers=4, num_heads=2, mlp_ratio=1, embedding_dim=128, **kwargs) def cct_6(arch, **kwargs): """cct_6""" return _cct( arch, num_layers=6, num_heads=4, mlp_ratio=2, embedding_dim=256, **kwargs) def cct_7(arch, **kwargs): """cct_7""" return _cct( arch, num_layers=7, num_heads=4, mlp_ratio=2, embedding_dim=256, **kwargs) def cct_14(arch, **kwargs): """cct_14""" return _cct( arch, num_layers=14, num_heads=6, mlp_ratio=3, embedding_dim=384, **kwargs) def cct_2_3x2_32( img_size=32, positional_embedding='learnable', num_classes=10, **kwargs): """cct_2_3x2_32""" return cct_2( 'cct_2_3x2_32', kernel_size=3, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_2_3x2_32_sine( img_size=32, positional_embedding='sine', num_classes=10, **kwargs): """cct_2_3x2_32_sine""" return cct_2( 'cct_2_3x2_32_sine', kernel_size=3, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_4_3x2_32( img_size=32, positional_embedding='learnable', num_classes=10, **kwargs): """cct_2_3x2_32_sine""" return cct_4( 'cct_4_3x2_32', kernel_size=3, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_4_3x2_32_sine( img_size=32, positional_embedding='sine', num_classes=10, **kwargs): """cct_2_3x2_32_sine""" return cct_4( 'cct_4_3x2_32_sine', kernel_size=3, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_6_3x1_32(img_size=32, positional_embedding='learnable', num_classes=10, **kwargs): """cct_2_3x2_32_sine""" return cct_6( 'cct_6_3x1_32', kernel_size=3, n_conv_layers=1, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_6_3x1_32_sine( img_size=32, positional_embedding='sine', num_classes=10, **kwargs): """cct_2_3x2_32_sine""" return cct_6( 'cct_6_3x1_32_sine', kernel_size=3, n_conv_layers=1, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_6_3x2_32( img_size=32, positional_embedding='learnable', num_classes=10, **kwargs): """cct_2_3x2_32_sine""" return cct_6( 'cct_6_3x2_32', kernel_size=3, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_6_3x2_32_sine( img_size=32, positional_embedding='sine', num_classes=10, **kwargs): """cct_6_3x2_32_sine""" return cct_6( 'cct_6_3x2_32_sine', kernel_size=3, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_7_3x1_32( img_size=32, positional_embedding='learnable', num_classes=10, **kwargs): """cct_7_3x1_32""" return cct_7( 'cct_7_3x1_32', kernel_size=3, n_conv_layers=1, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_7_3x1_32_sine( img_size=32, positional_embedding='sine', num_classes=10, **kwargs): """cct_7_3x1_32_sine""" return cct_7( 'cct_7_3x1_32_sine', kernel_size=3, n_conv_layers=1, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_7_3x1_32_c100( img_size=32, positional_embedding='learnable', num_classes=100, **kwargs): """cct_7_3x1_32_c100""" return cct_7( 'cct_7_3x1_32_c100', kernel_size=3, n_conv_layers=1, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_7_3x1_32_sine_c100( img_size=32, positional_embedding='sine', num_classes=100, **kwargs): """cct_7_3x1_32_sine_c100""" return cct_7( 'cct_7_3x1_32_sine_c100', kernel_size=3, n_conv_layers=1, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_7_3x2_32( img_size=32, positional_embedding='learnable', num_classes=10, **kwargs): """cct_7_3x2_32""" return cct_7( 'cct_7_3x2_32', kernel_size=3, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_7_3x2_32_sine( img_size=32, positional_embedding='sine', num_classes=10, **kwargs): """cct_7_3x2_32_sine""" return cct_7( 'cct_7_3x2_32_sine', kernel_size=3, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_7_7x2_224( img_size=224, positional_embedding='learnable', num_classes=102): """cct_7_7x2_224""" return cct_7( 'cct_7_7x2_224', kernel_size=7, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes) def cct_7_7x2_224_sine( img_size=224, positional_embedding='sine', num_classes=102, **kwargs): """cct_7_7x2_224_sine""" return cct_7( 'cct_7_7x2_224_sine', kernel_size=7, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_14_7x2_224( img_size=224, positional_embedding='learnable', num_classes=1000, **kwargs): """cct_14_7x2_224""" return cct_14( 'cct_14_7x2_224', kernel_size=7, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_14_7x2_384( img_size=384, positional_embedding='learnable', num_classes=1000, **kwargs): """cct_14_7x2_384""" return cct_14( 'cct_14_7x2_384', kernel_size=7, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs) def cct_14_7x2_384_fl( img_size=384, positional_embedding='learnable', num_classes=102, **kwargs): """cct_14_7x2_384_fl""" return cct_14( 'cct_14_7x2_384_fl', kernel_size=7, n_conv_layers=2, img_size=img_size, positional_embedding=positional_embedding, num_classes=num_classes, **kwargs)
[ 2, 15069, 33448, 43208, 21852, 1766, 1539, 12052, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 37811, 66, 310, 2746, 37811, 198, 11748, 2000, 2777, 382, 13, 11321, 13, 36733, 7509, 355, 3463, 62, 15003, 198, 11748, 2000, 2777, 382, 13, 20471, 355, 299, 77, 198, 198, 6738, 12351, 13, 27530, 13, 66, 310, 13, 30001, 7509, 1330, 29130, 7509, 198, 6738, 12351, 13, 27530, 13, 66, 310, 13, 35636, 364, 1330, 3602, 16354, 9487, 7483, 198, 6738, 12351, 13, 27530, 13, 66, 310, 13, 7785, 62, 15003, 1330, 509, 1385, 278, 26447, 628, 198, 4871, 327, 4177, 7, 20471, 13, 28780, 2599, 198, 220, 220, 220, 37227, 4093, 51, 9104, 37811, 628, 220, 220, 220, 825, 2315, 62, 43775, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15003, 62, 43775, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 2685, 287, 2116, 13, 46342, 62, 392, 62, 14933, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 3846, 11, 299, 77, 13, 3103, 85, 17, 67, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 6551, 13, 2617, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 15003, 13, 36733, 7509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 1385, 278, 26447, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 24408, 62, 259, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 6551, 13, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 6551, 13, 67, 4906, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 3846, 11, 299, 77, 13, 35, 1072, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 6551, 13, 2617, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 15003, 13, 36733, 7509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 15003, 13, 2898, 19524, 515, 26447, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 28, 15, 13, 2999, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 6551, 13, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 6551, 13, 67, 4906, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2685, 13, 65, 4448, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 65, 4448, 13, 2617, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 15003, 13, 36733, 7509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 15003, 13, 28667, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 65, 4448, 13, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 13, 65, 4448, 13, 67, 4906, 4008, 628, 198, 4299, 4808, 66, 310, 7, 998, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 75, 6962, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 25962, 79, 62, 10366, 952, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 1136, 269, 310, 2746, 351, 10007, 37811, 198, 220, 220, 220, 3601, 7, 69, 6, 14804, 1262, 3934, 25, 1391, 998, 92, 11537, 198, 220, 220, 220, 33769, 796, 33769, 611, 33769, 318, 407, 6045, 2073, 3509, 7, 16, 11, 357, 33885, 62, 7857, 3373, 362, 8, 532, 352, 8, 198, 220, 220, 220, 24511, 796, 24511, 611, 24511, 318, 407, 6045, 2073, 3509, 7, 16, 11, 357, 33885, 62, 7857, 3373, 362, 4008, 198, 220, 220, 220, 2746, 796, 327, 4177, 7, 22510, 62, 75, 6962, 28, 22510, 62, 75, 6962, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 28, 22510, 62, 16600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25962, 79, 62, 10366, 952, 28, 4029, 79, 62, 10366, 952, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 28, 20521, 12083, 62, 27740, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 33885, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33769, 28, 2536, 485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 28, 39231, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 198, 220, 220, 220, 1441, 2746, 628, 198, 4299, 269, 310, 62, 17, 7, 998, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 17, 37811, 198, 220, 220, 220, 1441, 4808, 66, 310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3934, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25962, 79, 62, 10366, 952, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 28, 12762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 19, 7, 998, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 19, 37811, 198, 220, 220, 220, 1441, 4808, 66, 310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3934, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 75, 6962, 28, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25962, 79, 62, 10366, 952, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 28, 12762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 21, 7, 998, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 21, 37811, 198, 220, 220, 220, 1441, 4808, 66, 310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3934, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 75, 6962, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 28, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25962, 79, 62, 10366, 952, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 28, 11645, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 22, 7, 998, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 37811, 198, 220, 220, 220, 1441, 4808, 66, 310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3934, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 75, 6962, 28, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 28, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25962, 79, 62, 10366, 952, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 28, 11645, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 1415, 7, 998, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 1415, 37811, 198, 220, 220, 220, 1441, 4808, 66, 310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3934, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 75, 6962, 28, 1415, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16600, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25962, 79, 62, 10366, 952, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 27740, 28, 22842, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 19, 62, 18, 87, 17, 62, 2624, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 19, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 19, 62, 18, 87, 17, 62, 2624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 19, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 19, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 19, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 21, 62, 18, 87, 16, 62, 2624, 7, 9600, 62, 7857, 28, 2624, 11, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 21, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 21, 62, 18, 87, 16, 62, 2624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 21, 62, 18, 87, 16, 62, 2624, 62, 82, 500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 21, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 21, 62, 18, 87, 16, 62, 2624, 62, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 21, 62, 18, 87, 17, 62, 2624, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 17, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 21, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 21, 62, 18, 87, 17, 62, 2624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 21, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 21, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 21, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 21, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 22, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 82, 500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 22, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 66, 3064, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 66, 3064, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 22, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 66, 3064, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 82, 500, 62, 66, 3064, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 82, 500, 62, 66, 3064, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 22, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 22, 62, 18, 87, 16, 62, 2624, 62, 82, 500, 62, 66, 3064, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 22, 62, 18, 87, 17, 62, 2624, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 62, 18, 87, 17, 62, 2624, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 22, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 22, 62, 18, 87, 17, 62, 2624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 22, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 22, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 22, 62, 18, 87, 17, 62, 2624, 62, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 22, 62, 22, 87, 17, 62, 24137, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 24137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 15377, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 62, 22, 87, 17, 62, 24137, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 22, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 22, 62, 22, 87, 17, 62, 24137, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 8, 628, 198, 4299, 269, 310, 62, 22, 62, 22, 87, 17, 62, 24137, 62, 82, 500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 24137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 15377, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 22, 62, 22, 87, 17, 62, 24137, 62, 82, 500, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 22, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 22, 62, 22, 87, 17, 62, 24137, 62, 82, 500, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 1415, 62, 22, 87, 17, 62, 24137, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 24137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 1415, 62, 22, 87, 17, 62, 24137, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 1415, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 1415, 62, 22, 87, 17, 62, 24137, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 1415, 62, 22, 87, 17, 62, 22842, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 22842, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 1415, 62, 22, 87, 17, 62, 22842, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 1415, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 1415, 62, 22, 87, 17, 62, 22842, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 269, 310, 62, 1415, 62, 22, 87, 17, 62, 22842, 62, 2704, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 22842, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 11639, 35720, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 15377, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 66, 310, 62, 1415, 62, 22, 87, 17, 62, 22842, 62, 2704, 37811, 198, 220, 220, 220, 1441, 269, 310, 62, 1415, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 310, 62, 1415, 62, 22, 87, 17, 62, 22842, 62, 2704, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 28, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 42946, 62, 75, 6962, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7857, 28, 9600, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 45203, 62, 20521, 12083, 28, 1930, 1859, 62, 20521, 12083, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 22510, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 198 ]
1.813442
5,907
from array import array def _copytobuffer(x): """ return a copy of x as an object that supports the python Buffer API (python array if input is float, list or tuple, numpy array if input is a numpy array). returns copyofx, isfloat, islist, istuple (islist is True if input is a list, istuple is true if input is a tuple, isfloat is true if input is a float). """ # make sure x supports Buffer API and contains doubles. isfloat = False islist = False istuple = False # first, if it's a numpy array scalar convert to float # (array scalars don't support buffer API) if hasattr(x, "shape"): if x.shape == (): return _copytobuffer_return_scalar(x) else: try: # typecast numpy arrays to double. # (this makes a copy - which is crucial # since buffer is modified in place) x.dtype.char # Basemap issue # https://github.com/matplotlib/basemap/pull/223/files # (deal with input array in fortran order) inx = x.copy(order="C").astype("d") # inx,isfloat,islist,istuple return inx, False, False, False except: try: # perhaps they are Numeric/numarrays? # sorry, not tested yet. # i don't know Numeric/numarrays has `shape'. x.typecode() inx = x.astype("d") # inx,isfloat,islist,istuple return inx, False, False, False except: raise TypeError("input must be an array, list, tuple or scalar") else: # perhaps they are regular python arrays? if hasattr(x, "typecode"): # x.typecode inx = array("d", x) # try to convert to python array # a list. elif type(x) == list: inx = array("d", x) islist = True # a tuple. elif type(x) == tuple: inx = array("d", x) istuple = True # a scalar? else: return _copytobuffer_return_scalar(x) return inx, isfloat, islist, istuple
[ 6738, 7177, 1330, 7177, 628, 198, 198, 4299, 4808, 30073, 83, 672, 13712, 7, 87, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 257, 4866, 286, 2124, 355, 281, 2134, 326, 6971, 262, 21015, 47017, 198, 220, 220, 220, 7824, 357, 29412, 7177, 611, 5128, 318, 12178, 11, 1351, 393, 46545, 11, 299, 32152, 7177, 198, 220, 220, 220, 611, 5128, 318, 257, 299, 32152, 7177, 737, 5860, 4866, 1659, 87, 11, 318, 22468, 11, 318, 4868, 11, 198, 220, 220, 220, 318, 83, 29291, 357, 3044, 396, 318, 6407, 611, 5128, 318, 257, 1351, 11, 318, 83, 29291, 318, 2081, 611, 198, 220, 220, 220, 5128, 318, 257, 46545, 11, 318, 22468, 318, 2081, 611, 5128, 318, 257, 12178, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 787, 1654, 2124, 6971, 47017, 7824, 290, 4909, 21938, 13, 198, 220, 220, 220, 318, 22468, 796, 10352, 198, 220, 220, 220, 318, 4868, 796, 10352, 198, 220, 220, 220, 318, 83, 29291, 796, 10352, 198, 220, 220, 220, 1303, 717, 11, 611, 340, 338, 257, 299, 32152, 7177, 16578, 283, 10385, 284, 12178, 198, 220, 220, 220, 1303, 357, 18747, 16578, 945, 836, 470, 1104, 11876, 7824, 8, 198, 220, 220, 220, 611, 468, 35226, 7, 87, 11, 366, 43358, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 43358, 6624, 357, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 30073, 83, 672, 13712, 62, 7783, 62, 1416, 282, 283, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 2701, 299, 32152, 26515, 284, 4274, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 5661, 1838, 257, 4866, 532, 543, 318, 8780, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 1201, 11876, 318, 9518, 287, 1295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 67, 4906, 13, 10641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6455, 368, 499, 2071, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3740, 1378, 12567, 13, 785, 14, 6759, 29487, 8019, 14, 12093, 368, 499, 14, 31216, 14, 22047, 14, 16624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 31769, 351, 5128, 7177, 287, 329, 2213, 272, 1502, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 87, 796, 2124, 13, 30073, 7, 2875, 2625, 34, 11074, 459, 2981, 7203, 67, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 87, 11, 271, 22468, 11, 3044, 396, 11, 396, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 287, 87, 11, 10352, 11, 10352, 11, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 220, 1303, 3737, 484, 389, 399, 39223, 14, 22510, 3258, 592, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7926, 11, 407, 6789, 1865, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1312, 836, 470, 760, 399, 39223, 14, 22510, 3258, 592, 468, 4600, 43358, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 4906, 8189, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 87, 796, 2124, 13, 459, 2981, 7203, 67, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 87, 11, 271, 22468, 11, 3044, 396, 11, 396, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 287, 87, 11, 10352, 11, 10352, 11, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 15414, 1276, 307, 281, 7177, 11, 1351, 11, 46545, 393, 16578, 283, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3737, 484, 389, 3218, 21015, 26515, 30, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 87, 11, 366, 4906, 8189, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2124, 13, 4906, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 87, 796, 7177, 7203, 67, 1600, 2124, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1949, 284, 10385, 284, 21015, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 87, 8, 6624, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 87, 796, 7177, 7203, 67, 1600, 2124, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 4868, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 46545, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 87, 8, 6624, 46545, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 87, 796, 7177, 7203, 67, 1600, 2124, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 83, 29291, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 16578, 283, 30, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 30073, 83, 672, 13712, 62, 7783, 62, 1416, 282, 283, 7, 87, 8, 198, 220, 220, 220, 1441, 287, 87, 11, 318, 22468, 11, 318, 4868, 11, 318, 83, 29291, 628 ]
2.011576
1,123
import importlib package = 'aao.spiders.bookmakers' SpiderBet365 = importlib.import_module( '.bet365', package).SpiderBet365 SpiderBwin = importlib.import_module( '.bwin', package).SpiderBwin Spider888sport = importlib.import_module( '.888sport', package).Spider888sport SpiderWilliamhill = importlib.import_module( '.williamhill', package).SpiderWilliamhill spiders = { 'bet365': SpiderBet365, 'bwin': SpiderBwin, '888sport': Spider888sport, 'williamhill': SpiderWilliamhill, }
[ 11748, 1330, 8019, 198, 198, 26495, 796, 705, 64, 5488, 13, 2777, 4157, 13, 2070, 6620, 6, 198, 198, 41294, 13056, 24760, 796, 1330, 8019, 13, 11748, 62, 21412, 7, 198, 220, 220, 220, 45302, 11181, 24760, 3256, 5301, 737, 41294, 13056, 24760, 198, 41294, 33, 5404, 796, 1330, 8019, 13, 11748, 62, 21412, 7, 198, 220, 220, 220, 45302, 65, 5404, 3256, 5301, 737, 41294, 33, 5404, 198, 41294, 28011, 82, 634, 796, 1330, 8019, 13, 11748, 62, 21412, 7, 198, 220, 220, 220, 45302, 28011, 82, 634, 3256, 5301, 737, 41294, 28011, 82, 634, 198, 41294, 17121, 12639, 796, 1330, 8019, 13, 11748, 62, 21412, 7, 198, 220, 220, 220, 45302, 10594, 1789, 12639, 3256, 5301, 737, 41294, 17121, 12639, 198, 198, 2777, 4157, 796, 1391, 198, 220, 220, 220, 705, 11181, 24760, 10354, 12648, 13056, 24760, 11, 198, 220, 220, 220, 705, 65, 5404, 10354, 12648, 33, 5404, 11, 198, 220, 220, 220, 705, 28011, 82, 634, 10354, 12648, 28011, 82, 634, 11, 198, 220, 220, 220, 705, 10594, 1789, 12639, 10354, 12648, 17121, 12639, 11, 198, 92, 198 ]
2.824176
182
#!/usr/bin/env python3 from reporting.category import Category from statsSend.jenkins.jenkinsBuild import JenkinsBuild
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 6447, 13, 22872, 1330, 21743, 198, 6738, 9756, 25206, 13, 48796, 5331, 13, 48796, 5331, 15580, 1330, 21835, 15580 ]
3.83871
31
#! /usr/bin/env python3 # SPDX-FileCopyrightText: 2022 geisserml <[email protected]> # SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause # Download the PDFium binaries and generate ctypes bindings import os import sys import shutil import tarfile import argparse import traceback from urllib import request from os.path import join, abspath, dirname from concurrent.futures import ThreadPoolExecutor sys.path.insert(0, dirname(dirname(abspath(__file__)))) from pl_setup.packaging_base import ( DataTree, VerNamespace, PlatformNames, run_cmd, call_ctypesgen, set_version, ) ReleaseRepo = "https://github.com/bblanchon/pdfium-binaries" ReleaseURL = ReleaseRepo + "/releases/download/chromium%2F" ReleaseExtension = "tgz" ReleaseNames = { PlatformNames.darwin_x64 : "pdfium-mac-x64", PlatformNames.darwin_arm64 : "pdfium-mac-arm64", PlatformNames.linux_x64 : "pdfium-linux-x64", PlatformNames.linux_x86 : "pdfium-linux-x86", PlatformNames.linux_arm64 : "pdfium-linux-arm64", PlatformNames.linux_arm32 : "pdfium-linux-arm", PlatformNames.musllinux_x64 : "pdfium-linux-musl-x64", PlatformNames.musllinux_x86 : "pdfium-linux-musl-x86", PlatformNames.windows_x64 : "pdfium-win-x64", PlatformNames.windows_x86 : "pdfium-win-x86", PlatformNames.windows_arm64 : "pdfium-win-arm64", } if __name__ == "__main__": run_cli()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 30628, 55, 12, 8979, 15269, 8206, 25, 33160, 4903, 747, 263, 4029, 1279, 469, 747, 263, 4029, 31, 14816, 13, 785, 29, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 6375, 347, 10305, 12, 18, 12, 2601, 682, 198, 198, 2, 10472, 262, 12960, 1505, 38640, 290, 7716, 269, 19199, 34111, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 4423, 346, 198, 11748, 13422, 7753, 198, 11748, 1822, 29572, 198, 11748, 12854, 1891, 198, 6738, 2956, 297, 571, 1330, 2581, 198, 6738, 28686, 13, 6978, 1330, 4654, 11, 2352, 6978, 11, 26672, 3672, 198, 6738, 24580, 13, 69, 315, 942, 1330, 14122, 27201, 23002, 38409, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 26672, 3672, 7, 15908, 3672, 7, 397, 2777, 776, 7, 834, 7753, 834, 35514, 198, 6738, 458, 62, 40406, 13, 8002, 3039, 62, 8692, 1330, 357, 198, 220, 220, 220, 6060, 27660, 11, 198, 220, 220, 220, 4643, 36690, 10223, 11, 198, 220, 220, 220, 19193, 36690, 11, 198, 220, 220, 220, 1057, 62, 28758, 11, 198, 220, 220, 220, 869, 62, 310, 9497, 5235, 11, 198, 220, 220, 220, 900, 62, 9641, 11, 198, 8, 628, 198, 26362, 6207, 78, 796, 366, 5450, 1378, 12567, 13, 785, 14, 65, 2436, 3702, 261, 14, 12315, 1505, 12, 8800, 3166, 1, 198, 26362, 21886, 796, 13868, 6207, 78, 1343, 12813, 260, 29329, 14, 15002, 14, 28663, 1505, 4, 17, 37, 1, 198, 26362, 11627, 3004, 796, 366, 25297, 89, 1, 198, 26362, 36690, 796, 1391, 198, 220, 220, 220, 19193, 36690, 13, 27455, 5404, 62, 87, 2414, 220, 220, 220, 1058, 366, 12315, 1505, 12, 20285, 12, 87, 2414, 1600, 198, 220, 220, 220, 19193, 36690, 13, 27455, 5404, 62, 1670, 2414, 220, 1058, 366, 12315, 1505, 12, 20285, 12, 1670, 2414, 1600, 198, 220, 220, 220, 19193, 36690, 13, 23289, 62, 87, 2414, 220, 220, 220, 220, 1058, 366, 12315, 1505, 12, 23289, 12, 87, 2414, 1600, 198, 220, 220, 220, 19193, 36690, 13, 23289, 62, 87, 4521, 220, 220, 220, 220, 1058, 366, 12315, 1505, 12, 23289, 12, 87, 4521, 1600, 198, 220, 220, 220, 19193, 36690, 13, 23289, 62, 1670, 2414, 220, 220, 1058, 366, 12315, 1505, 12, 23289, 12, 1670, 2414, 1600, 198, 220, 220, 220, 19193, 36690, 13, 23289, 62, 1670, 2624, 220, 220, 1058, 366, 12315, 1505, 12, 23289, 12, 1670, 1600, 198, 220, 220, 220, 19193, 36690, 13, 14664, 297, 259, 2821, 62, 87, 2414, 1058, 366, 12315, 1505, 12, 23289, 12, 14664, 75, 12, 87, 2414, 1600, 198, 220, 220, 220, 19193, 36690, 13, 14664, 297, 259, 2821, 62, 87, 4521, 1058, 366, 12315, 1505, 12, 23289, 12, 14664, 75, 12, 87, 4521, 1600, 198, 220, 220, 220, 19193, 36690, 13, 28457, 62, 87, 2414, 220, 220, 1058, 366, 12315, 1505, 12, 5404, 12, 87, 2414, 1600, 198, 220, 220, 220, 19193, 36690, 13, 28457, 62, 87, 4521, 220, 220, 1058, 366, 12315, 1505, 12, 5404, 12, 87, 4521, 1600, 198, 220, 220, 220, 19193, 36690, 13, 28457, 62, 1670, 2414, 1058, 366, 12315, 1505, 12, 5404, 12, 1670, 2414, 1600, 198, 92, 628, 628, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1057, 62, 44506, 3419, 198 ]
2.535587
562
from gin.i_o.from_smiles import to_mols import pandas as pd df = pd.read_csv('data/delaney-processed.csv') smiles_array = df[['smiles']].values.flatten() mols = to_mols(smiles_array) for mol in mols: print(mol)
[ 6738, 39733, 13, 72, 62, 78, 13, 6738, 62, 5796, 2915, 1330, 284, 62, 76, 10220, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 7890, 14, 12381, 22297, 12, 14681, 276, 13, 40664, 11537, 198, 5796, 2915, 62, 18747, 796, 47764, 58, 17816, 5796, 2915, 20520, 4083, 27160, 13, 2704, 41769, 3419, 198, 76, 10220, 796, 284, 62, 76, 10220, 7, 5796, 2915, 62, 18747, 8, 198, 198, 1640, 18605, 287, 285, 10220, 25, 198, 220, 220, 220, 3601, 7, 43132, 8, 198 ]
2.333333
93
# -*- coding: utf-8 -*- # Generated by Django 1.9.9 on 2017-01-16 17:12 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 24, 13, 24, 319, 2177, 12, 486, 12, 1433, 1596, 25, 1065, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.724638
69
PhoneDirectory = ['John:009878788677' , 'Jefrey:67654654645' , 'Maria:8787677766'] for entry in PhoneDirectory: if '7' in entry: print('yeah')
[ 6132, 43055, 796, 37250, 7554, 25, 405, 4089, 41019, 3459, 40179, 6, 837, 705, 41, 891, 4364, 25, 3134, 39111, 2996, 3510, 2231, 6, 837, 705, 46827, 25, 23, 3695, 32059, 3324, 2791, 20520, 628, 198, 1640, 5726, 287, 14484, 43055, 25, 198, 220, 220, 220, 611, 705, 22, 6, 287, 5726, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 43669, 11537, 198 ]
2.378788
66
FILENAME = './puzzle15/data/input' small_cave = [] with open(FILENAME) as file: for line in file: small_cave.append([int(x) for x in list(line.strip())]) small_n = len(small_cave) large_n = small_n * 5 cave = [[ 0 for _ in range(large_n)] for _ in range(large_n)] for i in range(large_n): for j in range(large_n): change_i, i_l = divmod(i, small_n) change_j, j_l = divmod(j, small_n) if small_cave[i_l][j_l] + change_i + change_j > 9: cave[i][j] = small_cave[i_l][j_l] - 9 + change_i + change_j else: cave[i][j] = small_cave[i_l][j_l] + change_i + change_j scores = [[ 0 for _ in range(len(cave))] for _ in range(len(cave))] for i in range(len(cave) - 1, -1 , -1): for j in range(len(cave) - 1, -1 , -1): if i < len(cave) - 1 and j < len(cave) - 1: scores[i][j] = cave[i][j] + min([scores[i + 1][j], scores[i][j + 1]]) elif i < len(cave) - 1 and j == len(cave) - 1: scores[i][j] = cave[i][j] + scores[i + 1][j] elif i == len(cave) - 1 and j < len(cave) - 1: scores[i][j] = cave[i][j] + scores[i][j + 1] elif i == len(cave) - 1 and j == len(cave) - 1: scores[i][j] = cave[i][j] # b # a c # d prev_value = 1000000000 current_value = 100000000 while current_value != prev_value: prev_value = current_value for i in range(0, len(cave)): for j in range(0, len(cave)): a, b, c, d = 100000, 100000, 100000, 100000 if i > 0: a = scores[i - 1][j] if j > 0: b = scores[i][j - 1] if i < len(cave) - 1: d = scores[i + 1][j] if j < len(cave) - 1: c = scores[i][j + 1] if i < len(cave) - 1 and j < len(cave) - 1: scores[i][j] = cave[i][j] + min([a, b, c, d]) current_value = sum([sum(x) for x in scores]) print(current_value) print(scores[0][0] - cave[0][0])
[ 46700, 1677, 10067, 796, 705, 19571, 79, 9625, 1314, 14, 7890, 14, 15414, 6, 201, 198, 201, 198, 17470, 62, 66, 1015, 796, 17635, 201, 198, 4480, 1280, 7, 46700, 1677, 10067, 8, 355, 2393, 25, 201, 198, 220, 220, 220, 329, 1627, 287, 2393, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1402, 62, 66, 1015, 13, 33295, 26933, 600, 7, 87, 8, 329, 2124, 287, 1351, 7, 1370, 13, 36311, 28955, 12962, 201, 198, 201, 198, 17470, 62, 77, 796, 18896, 7, 17470, 62, 66, 1015, 8, 201, 198, 11664, 62, 77, 796, 1402, 62, 77, 1635, 642, 201, 198, 201, 198, 66, 1015, 796, 16410, 657, 329, 4808, 287, 2837, 7, 11664, 62, 77, 15437, 329, 4808, 287, 2837, 7, 11664, 62, 77, 15437, 201, 198, 201, 198, 1640, 1312, 287, 2837, 7, 11664, 62, 77, 2599, 201, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 11664, 62, 77, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1487, 62, 72, 11, 1312, 62, 75, 796, 2659, 4666, 7, 72, 11, 1402, 62, 77, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1487, 62, 73, 11, 474, 62, 75, 796, 2659, 4666, 7, 73, 11, 1402, 62, 77, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1402, 62, 66, 1015, 58, 72, 62, 75, 7131, 73, 62, 75, 60, 1343, 1487, 62, 72, 1343, 1487, 62, 73, 1875, 860, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11527, 58, 72, 7131, 73, 60, 796, 1402, 62, 66, 1015, 58, 72, 62, 75, 7131, 73, 62, 75, 60, 532, 860, 1343, 1487, 62, 72, 1343, 1487, 62, 73, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11527, 58, 72, 7131, 73, 60, 796, 1402, 62, 66, 1015, 58, 72, 62, 75, 7131, 73, 62, 75, 60, 1343, 1487, 62, 72, 1343, 1487, 62, 73, 201, 198, 201, 198, 1416, 2850, 796, 16410, 657, 329, 4808, 287, 2837, 7, 11925, 7, 66, 1015, 4008, 60, 329, 4808, 287, 2837, 7, 11925, 7, 66, 1015, 4008, 60, 201, 198, 201, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 66, 1015, 8, 532, 352, 11, 532, 16, 837, 532, 16, 2599, 201, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 7, 66, 1015, 8, 532, 352, 11, 532, 16, 837, 532, 16, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1279, 18896, 7, 66, 1015, 8, 532, 352, 290, 474, 1279, 18896, 7, 66, 1015, 8, 532, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 58, 72, 7131, 73, 60, 796, 11527, 58, 72, 7131, 73, 60, 1343, 949, 26933, 1416, 2850, 58, 72, 1343, 352, 7131, 73, 4357, 8198, 58, 72, 7131, 73, 1343, 352, 11907, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1312, 1279, 18896, 7, 66, 1015, 8, 532, 352, 290, 474, 6624, 18896, 7, 66, 1015, 8, 532, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 58, 72, 7131, 73, 60, 796, 11527, 58, 72, 7131, 73, 60, 1343, 8198, 58, 72, 1343, 352, 7131, 73, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1312, 6624, 18896, 7, 66, 1015, 8, 532, 352, 290, 474, 1279, 18896, 7, 66, 1015, 8, 532, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 58, 72, 7131, 73, 60, 796, 11527, 58, 72, 7131, 73, 60, 1343, 8198, 58, 72, 7131, 73, 1343, 352, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1312, 6624, 18896, 7, 66, 1015, 8, 532, 352, 290, 474, 6624, 18896, 7, 66, 1015, 8, 532, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 58, 72, 7131, 73, 60, 796, 11527, 58, 72, 7131, 73, 60, 201, 198, 201, 198, 2, 220, 220, 275, 201, 198, 2, 257, 220, 220, 269, 201, 198, 2, 220, 220, 288, 201, 198, 201, 198, 201, 198, 47050, 62, 8367, 796, 1802, 24598, 201, 198, 14421, 62, 8367, 796, 1802, 10535, 201, 198, 201, 198, 4514, 1459, 62, 8367, 14512, 8654, 62, 8367, 25, 201, 198, 220, 220, 220, 8654, 62, 8367, 796, 1459, 62, 8367, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 66, 1015, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 15, 11, 18896, 7, 66, 1015, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 11, 275, 11, 269, 11, 288, 796, 1802, 830, 11, 1802, 830, 11, 1802, 830, 11, 1802, 830, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 796, 8198, 58, 72, 532, 352, 7131, 73, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 1875, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 796, 8198, 58, 72, 7131, 73, 532, 352, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1279, 18896, 7, 66, 1015, 8, 532, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 8198, 58, 72, 1343, 352, 7131, 73, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 1279, 18896, 7, 66, 1015, 8, 532, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 8198, 58, 72, 7131, 73, 1343, 352, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1279, 18896, 7, 66, 1015, 8, 532, 352, 290, 474, 1279, 18896, 7, 66, 1015, 8, 532, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 58, 72, 7131, 73, 60, 796, 11527, 58, 72, 7131, 73, 60, 1343, 949, 26933, 64, 11, 275, 11, 269, 11, 288, 12962, 201, 198, 220, 220, 220, 1459, 62, 8367, 796, 2160, 26933, 16345, 7, 87, 8, 329, 2124, 287, 8198, 12962, 201, 198, 220, 220, 220, 3601, 7, 14421, 62, 8367, 8, 201, 198, 201, 198, 201, 198, 4798, 7, 1416, 2850, 58, 15, 7131, 15, 60, 532, 11527, 58, 15, 7131, 15, 12962 ]
1.804214
1,139
#!/bin/python3 print("Hello, World!")
[ 2, 48443, 8800, 14, 29412, 18, 198, 198, 4798, 7203, 15496, 11, 2159, 2474, 8 ]
2.533333
15
#! /usr/bin/env python # -*- coding: UTF-8 -*- #------------------------------------------------------------------------------ # https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Procedures/Procedures.html #------------------------------------------------------------------------------ import sys, os, subprocess #------------------------------------------------------------------------------ # FOR PRINTING IN COLOR #------------------------------------------------------------------------------ BLACK = '\033[90m' RED = '\033[91m' GREEN = '\033[92m' YELLOW = '\033[93m' BLUE = '\033[94m' MAGENTA = '\033[95m' CYAN = '\033[96m' WHITE = '\033[97m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' BLINK = '\033[5m' #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # MAIN #------------------------------------------------------------------------------ #--- Get script absolute path scriptDir = os.path.dirname (os.path.abspath (sys.argv [0])) #--- Free routing dir FREEROUTING_DIR = scriptDir + "/freerouting" APP_VERSION = "1.4.4-pm" #--- Goto Freerouting dir os.chdir (FREEROUTING_DIR) #--- Compile for distribution runCommand (["bash", "gradlew", "dist"]) print (BLUE + BOLD + "DONE" + ENDC) #--- Download and install JDK # https://jdk.java.net/14/ JPACKAGE_JVM="https://download.java.net/java/GA/jdk14/076bab302c7b4508975440c56f6cc26a/36/GPL/openjdk-14_osx-x64_bin.tar.gz" JPKG_DIR = scriptDir + "/jdk14" JPKG_HOME = JPKG_DIR + "/jdk-14.jdk/Contents/Home" JPKG_ARCHIVE = "jdk14.tar.gz" if os.path.exists (JPKG_HOME) : print (BLUE + BOLD + "JDK already installed" + ENDC) else: if not os.path.exists (JPKG_DIR) : runCommand (["mkdir", "-p", JPKG_DIR]) os.chdir (JPKG_DIR) #--- Download ? if not os.path.exists (JPKG_ARCHIVE) : print (BLUE + "Download JDK" + ENDC) runCommand (["curl", "-o", JPKG_ARCHIVE, JPACKAGE_JVM]) #--- Install ? if not os.path.exists (JPKG_DIR + "/runtime") : print (BLUE + "Unpack JDK" + ENDC) runCommand (["tar", "xvzf", JPKG_ARCHIVE]) print (BLUE + "Create runtime image" + ENDC) runCommand ([ JPKG_HOME + "/bin/jlink", "--module-path", JPKG_HOME + "/jmods", "--add-modules", "java.desktop", "--strip-debug", "--no-header-files", "--no-man-pages", "--strip-native-commands", "--vm=server", "--compress=2", "--output", "runtime" ]) #--- Build executable os.chdir (scriptDir) FREE_ROUTING_NAME = "Freerouting-" + APP_VERSION runCommand (["rm", "-fr", FREE_ROUTING_NAME + ".app"]) runCommand ([ JPKG_HOME + "/bin/jpackage", "--input", FREEROUTING_DIR + "/build/dist/", "--name", FREE_ROUTING_NAME, "--main-jar", "freerouting-executable.jar", "--type", "app-image", "--runtime-image", "jdk14/runtime", # "--mac-sign", # "--mac-signing-key-user-name", "[email protected]", "--app-version", APP_VERSION ]) runCommand ([ "/usr/bin/codesign", "--force", "--sign", "Apple Development: [email protected]", "--deep", FREE_ROUTING_NAME + ".app" ]) runCommand ([ "/usr/bin/codesign", "-dv", "--verbose=4", FREE_ROUTING_NAME + ".app" ]) runCommand ([ "/usr/bin/codesign", "--verify", "--deep", "--strict", "--verbose=2", FREE_ROUTING_NAME + ".app" ]) # runCommand ([ # "spctl", # "-a", # FREE_ROUTING_NAME + ".app" # ]) # runCommand ([ # "spctl", # "--assess", # "--verbose=4", # "--type", "execute", # FREE_ROUTING_NAME + ".app" # ]) #--- Build DMG PACKAGE_FILE = FREE_ROUTING_NAME + ".pkg" runCommand (["/usr/bin/productbuild", "--component-compression", "auto", "--component", FREE_ROUTING_NAME + ".app", "/Applications", PACKAGE_FILE]) DISTRIBUTION_DIR = "Freerouting-" + APP_VERSION runCommand (["/bin/rm", "-rf", DISTRIBUTION_DIR]) runCommand (["/bin/rm", "-f", FREE_ROUTING_NAME + ".dmg"]) runCommand (["/bin/mkdir", DISTRIBUTION_DIR]) runCommand (["/bin/cp", PACKAGE_FILE, DISTRIBUTION_DIR]) runCommand (["/usr/bin/hdiutil", "create", "-srcfolder", FREE_ROUTING_NAME, FREE_ROUTING_NAME + ".dmg", "-fs", "HFS+"]) runCommand (["/bin/rm", PACKAGE_FILE]) runCommand (["/bin/rm", "-rf", DISTRIBUTION_DIR]) #------------------------------------------------------------------------------
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 2, 10097, 26171, 198, 2, 3740, 1378, 16244, 263, 13, 18040, 13, 785, 14, 32016, 14, 17474, 14, 22897, 341, 14, 24074, 14, 3103, 984, 723, 14, 10669, 11712, 278, 47889, 14, 2964, 771, 942, 14, 2964, 771, 942, 13, 6494, 198, 2, 10097, 26171, 198, 198, 11748, 25064, 11, 28686, 11, 850, 14681, 198, 198, 2, 10097, 26171, 198, 2, 220, 220, 7473, 4810, 12394, 2751, 3268, 20444, 1581, 198, 2, 10097, 26171, 198, 198, 9148, 8120, 796, 705, 59, 44427, 58, 3829, 76, 6, 198, 22083, 796, 705, 59, 44427, 58, 6420, 76, 6, 198, 43016, 796, 705, 59, 44427, 58, 5892, 76, 6, 198, 56, 23304, 3913, 796, 705, 59, 44427, 58, 6052, 76, 6, 198, 9148, 8924, 796, 705, 59, 44427, 58, 5824, 76, 6, 198, 45820, 3525, 32, 796, 705, 59, 44427, 58, 3865, 76, 6, 198, 34, 56, 1565, 796, 705, 59, 44427, 58, 4846, 76, 6, 198, 12418, 12709, 796, 705, 59, 44427, 58, 5607, 76, 6, 198, 1677, 9697, 796, 705, 59, 44427, 58, 15, 76, 6, 198, 33, 15173, 796, 705, 59, 44427, 58, 16, 76, 6, 198, 4944, 14418, 24027, 796, 705, 59, 44427, 58, 19, 76, 6, 198, 9148, 17248, 796, 705, 59, 44427, 58, 20, 76, 6, 198, 198, 2, 10097, 26171, 628, 198, 2, 10097, 26171, 198, 2, 220, 220, 8779, 1268, 198, 2, 10097, 26171, 198, 198, 2, 6329, 3497, 4226, 4112, 3108, 198, 12048, 35277, 796, 28686, 13, 6978, 13, 15908, 3672, 357, 418, 13, 6978, 13, 397, 2777, 776, 357, 17597, 13, 853, 85, 685, 15, 60, 4008, 198, 2, 6329, 3232, 28166, 26672, 198, 37, 2200, 1137, 12425, 2751, 62, 34720, 796, 4226, 35277, 1343, 12813, 19503, 263, 13660, 1, 198, 24805, 62, 43717, 796, 366, 16, 13, 19, 13, 19, 12, 4426, 1, 198, 2, 6329, 402, 2069, 4848, 263, 13660, 26672, 198, 418, 13, 354, 15908, 357, 37, 2200, 1137, 12425, 2751, 62, 34720, 8, 198, 2, 6329, 3082, 576, 329, 6082, 198, 5143, 21575, 357, 14692, 41757, 1600, 366, 9744, 293, 86, 1600, 366, 17080, 8973, 8, 198, 4798, 357, 9148, 8924, 1343, 347, 15173, 1343, 366, 35, 11651, 1, 1343, 23578, 34, 8, 198, 2, 6329, 10472, 290, 2721, 28591, 42, 198, 2, 3740, 1378, 73, 34388, 13, 12355, 13, 3262, 14, 1415, 14, 198, 12889, 8120, 11879, 62, 41, 15996, 2625, 5450, 1378, 15002, 13, 12355, 13, 3262, 14, 12355, 14, 9273, 14, 73, 34388, 1415, 14, 2998, 21, 65, 397, 22709, 66, 22, 65, 17885, 4531, 2425, 25644, 66, 3980, 69, 21, 535, 2075, 64, 14, 2623, 14, 38, 6489, 14, 9654, 73, 34388, 12, 1415, 62, 418, 87, 12, 87, 2414, 62, 8800, 13, 18870, 13, 34586, 1, 198, 12889, 42, 38, 62, 34720, 796, 4226, 35277, 1343, 12813, 73, 34388, 1415, 1, 198, 12889, 42, 38, 62, 39069, 796, 21331, 42, 38, 62, 34720, 1343, 12813, 73, 34388, 12, 1415, 13, 73, 34388, 14, 15842, 14, 16060, 1, 198, 12889, 42, 38, 62, 31315, 9306, 796, 366, 73, 34388, 1415, 13, 18870, 13, 34586, 1, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 357, 12889, 42, 38, 62, 39069, 8, 1058, 198, 220, 3601, 357, 9148, 8924, 1343, 347, 15173, 1343, 366, 37882, 42, 1541, 6589, 1, 1343, 23578, 34, 8, 198, 17772, 25, 198, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 357, 12889, 42, 38, 62, 34720, 8, 1058, 198, 220, 220, 220, 1057, 21575, 357, 14692, 28015, 15908, 1600, 27444, 79, 1600, 21331, 42, 38, 62, 34720, 12962, 198, 220, 28686, 13, 354, 15908, 357, 12889, 42, 38, 62, 34720, 8, 198, 220, 1303, 6329, 10472, 5633, 198, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 357, 12889, 42, 38, 62, 31315, 9306, 8, 1058, 198, 220, 220, 220, 3601, 357, 9148, 8924, 1343, 366, 10002, 28591, 42, 1, 1343, 23578, 34, 8, 198, 220, 220, 220, 1057, 21575, 357, 14692, 66, 6371, 1600, 27444, 78, 1600, 21331, 42, 38, 62, 31315, 9306, 11, 21331, 8120, 11879, 62, 41, 15996, 12962, 198, 220, 1303, 6329, 15545, 5633, 198, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 357, 12889, 42, 38, 62, 34720, 1343, 12813, 43282, 4943, 1058, 198, 220, 220, 220, 3601, 357, 9148, 8924, 1343, 366, 3118, 8002, 28591, 42, 1, 1343, 23578, 34, 8, 198, 220, 220, 220, 1057, 21575, 357, 14692, 18870, 1600, 366, 87, 85, 89, 69, 1600, 21331, 42, 38, 62, 31315, 9306, 12962, 198, 220, 220, 220, 3601, 357, 9148, 8924, 1343, 366, 16447, 19124, 2939, 1, 1343, 23578, 34, 8, 198, 220, 220, 220, 1057, 21575, 29565, 198, 220, 220, 220, 220, 220, 21331, 42, 38, 62, 39069, 1343, 12813, 8800, 14, 73, 8726, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 21412, 12, 6978, 1600, 21331, 42, 38, 62, 39069, 1343, 12813, 73, 24122, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 2860, 12, 18170, 1600, 366, 12355, 13, 41375, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 36311, 12, 24442, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 3919, 12, 25677, 12, 16624, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 3919, 12, 805, 12, 31126, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 36311, 12, 30191, 12, 9503, 1746, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 14761, 28, 15388, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 5589, 601, 28, 17, 1600, 198, 220, 220, 220, 220, 220, 366, 438, 22915, 1600, 366, 43282, 1, 198, 220, 220, 220, 33761, 198, 2, 6329, 10934, 28883, 198, 418, 13, 354, 15908, 357, 12048, 35277, 8, 198, 39274, 62, 49, 12425, 2751, 62, 20608, 796, 366, 20366, 263, 13660, 21215, 1343, 43504, 62, 43717, 198, 5143, 21575, 357, 14692, 26224, 1600, 27444, 8310, 1600, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 1324, 8973, 8, 198, 5143, 21575, 29565, 198, 220, 21331, 42, 38, 62, 39069, 1343, 12813, 8800, 14, 73, 26495, 1600, 198, 220, 366, 438, 15414, 1600, 44253, 1137, 12425, 2751, 62, 34720, 1343, 12813, 11249, 14, 17080, 14, 1600, 198, 220, 366, 438, 3672, 1600, 17189, 62, 49, 12425, 2751, 62, 20608, 11, 198, 220, 366, 438, 12417, 12, 9491, 1600, 366, 19503, 263, 13660, 12, 18558, 18187, 13, 9491, 1600, 198, 220, 366, 438, 4906, 1600, 366, 1324, 12, 9060, 1600, 198, 220, 366, 438, 43282, 12, 9060, 1600, 366, 73, 34388, 1415, 14, 43282, 1600, 198, 2, 220, 366, 438, 20285, 12, 12683, 1600, 198, 2, 220, 220, 366, 438, 20285, 12, 12683, 278, 12, 2539, 12, 7220, 12, 3672, 1600, 366, 79, 31058, 31, 79, 11215, 24910, 12022, 13, 3672, 1600, 198, 220, 366, 438, 1324, 12, 9641, 1600, 43504, 62, 43717, 198, 12962, 198, 5143, 21575, 29565, 198, 220, 12813, 14629, 14, 8800, 14, 40148, 570, 1600, 198, 220, 366, 438, 3174, 1600, 198, 220, 366, 438, 12683, 1600, 366, 16108, 7712, 25, 17748, 260, 31, 79, 11215, 24910, 12022, 13, 3672, 1600, 198, 220, 366, 438, 22089, 1600, 198, 220, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 1324, 1, 198, 12962, 198, 5143, 21575, 29565, 198, 220, 12813, 14629, 14, 8800, 14, 40148, 570, 1600, 198, 220, 27444, 67, 85, 1600, 198, 220, 366, 438, 19011, 577, 28, 19, 1600, 198, 220, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 1324, 1, 198, 12962, 198, 5143, 21575, 29565, 198, 220, 12813, 14629, 14, 8800, 14, 40148, 570, 1600, 198, 220, 366, 438, 332, 1958, 1600, 198, 220, 366, 438, 22089, 1600, 198, 220, 366, 438, 301, 2012, 1600, 198, 220, 366, 438, 19011, 577, 28, 17, 1600, 198, 220, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 1324, 1, 198, 12962, 198, 2, 1057, 21575, 29565, 198, 2, 220, 220, 366, 2777, 34168, 1600, 198, 2, 220, 220, 27444, 64, 1600, 198, 2, 220, 220, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 1324, 1, 198, 2, 33761, 198, 2, 1057, 21575, 29565, 198, 2, 220, 220, 366, 2777, 34168, 1600, 198, 2, 220, 220, 366, 438, 562, 408, 1600, 198, 2, 220, 220, 366, 438, 19011, 577, 28, 19, 1600, 198, 2, 220, 220, 366, 438, 4906, 1600, 366, 41049, 1600, 198, 2, 220, 220, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 1324, 1, 198, 2, 33761, 198, 2, 6329, 10934, 14848, 38, 198, 47, 8120, 11879, 62, 25664, 796, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 35339, 1, 198, 5143, 21575, 357, 14692, 14, 14629, 14, 8800, 14, 11167, 11249, 1600, 366, 438, 42895, 12, 5589, 2234, 1600, 366, 23736, 1600, 366, 438, 42895, 1600, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 1324, 1600, 12813, 41995, 1600, 47035, 11879, 62, 25664, 12962, 198, 26288, 5446, 9865, 35354, 62, 34720, 796, 366, 20366, 263, 13660, 21215, 1343, 43504, 62, 43717, 198, 5143, 21575, 357, 14692, 14, 8800, 14, 26224, 1600, 27444, 41871, 1600, 34957, 9865, 35354, 62, 34720, 12962, 198, 5143, 21575, 357, 14692, 14, 8800, 14, 26224, 1600, 27444, 69, 1600, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 67, 11296, 8973, 8, 198, 5143, 21575, 357, 14692, 14, 8800, 14, 28015, 15908, 1600, 34957, 9865, 35354, 62, 34720, 12962, 198, 5143, 21575, 357, 14692, 14, 8800, 14, 13155, 1600, 47035, 11879, 62, 25664, 11, 34957, 9865, 35354, 62, 34720, 12962, 198, 5143, 21575, 357, 14692, 14, 14629, 14, 8800, 14, 71, 10989, 22602, 1600, 366, 17953, 1600, 27444, 10677, 43551, 1600, 17189, 62, 49, 12425, 2751, 62, 20608, 11, 17189, 62, 49, 12425, 2751, 62, 20608, 1343, 27071, 67, 11296, 1600, 27444, 9501, 1600, 366, 39, 10652, 10, 8973, 8, 198, 5143, 21575, 357, 14692, 14, 8800, 14, 26224, 1600, 47035, 11879, 62, 25664, 12962, 198, 5143, 21575, 357, 14692, 14, 8800, 14, 26224, 1600, 27444, 41871, 1600, 34957, 9865, 35354, 62, 34720, 12962, 628, 198, 2, 10097, 26171, 198 ]
2.616447
1,666
from __future__ import print_function import argparse from cProfile import label from dis import dis import os import random from socket import MSG_DONTROUTE from sklearn import cluster import torch import torch.nn.parallel import torch.optim as optim import torch.utils.data from pointnet.dataset import LidarDataset, BoxDataset from pointnet.box_model import BoxNet import torch.nn.functional as F from tqdm import tqdm import numpy as np import matplotlib.pyplot as plt import time from model_utils import BoxNetLoss, parse_output_to_tensors, get_box3d_corners_helper, get_box3d_corners import open3d as o3d from provider import angle2class, size2class, class2angle, class2size, compute_box3d_iou, size2class2, give_pred_box_corners, get_3d_box #from viz_util import draw_lidar, draw_lidar_simple Loss = BoxNetLoss() NUM_HEADING_BIN = 12 NUM_SIZE_CLUSTER = 3 # one cluster for each type NUM_OBJECT_POINT = 512 def boxes_to_corners_3d(boxes3d): """ 7 -------- 4 /| /| 6 -------- 5 . | | | | . 3 -------- 0 |/ |/ 2 -------- 1 Args: boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center Returns: corners3d: (N, 8, 3) """ template = np.array([ [1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1], [1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1], ]) / 2 corners3d = boxes3d[:, None, 3:6] * template[None, :, :] corners3d = rotate_points_along_z(corners3d, boxes3d[:, 6]).reshape(-1, 8, 3) corners3d += boxes3d[:, None, 0:3] return corners3d def rotate_points_along_z(points, angle): """ Args: points: (B, N, 3) angle: (B), angle along z-axis, angle increases x ==> y Returns: """ cosa = np.cos(angle) sina = np.sin(angle) ones = np.ones_like(angle, dtype=np.float32) zeros = np.zeros_like(angle, dtype=np.float32) rot_matrix = np.stack(( cosa, sina, zeros, -sina, cosa, zeros, zeros, zeros, ones ), axis=1).reshape(-1, 3, 3) points_rot = np.matmul(points, rot_matrix) return points_rot parser = argparse.ArgumentParser() parser.add_argument('--batchSize', type=int, default=32, help='input batch size') parser.add_argument('--num_points', type=int, default=128, help='input size') parser.add_argument('--workers', type=int, help='number of data loading workers', default=4) parser.add_argument('--nepoch', type=int, default=250, help='number of epochs to train for') parser.add_argument('--outf', type=str, default='cls', help='output folder') parser.add_argument('--model', type=str, default='', help='model path') parser.add_argument('--dataset', type=str, required=False, help="dataset path") parser.add_argument('--dataset_type', type=str, default='bbox', help="dataset type bbox|lidar") opt = parser.parse_args() print(opt) blue = lambda x: '\033[94m' + x + '\033[0m' opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) if opt.dataset_type == 'bbox': box_dataset = BoxDataset( #root=opt.dataset, root='train_unbbox_dataset', classification=True, npoints=opt.num_points, data_augmentation=False) test_box_dataset = BoxDataset( #root=opt.dataset, root='test_unbbox_dataset', classification=True, split='test', npoints=opt.num_points, data_augmentation=False) else: exit('wrong dataset type') box_dataloader = torch.utils.data.DataLoader( box_dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) testboxdataloader = torch.utils.data.DataLoader( test_box_dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) print(len(box_dataset), len(test_box_dataset)) num_classes = len(box_dataset.classes) print('classes', num_classes) try: os.makedirs(opt.outf) except OSError: pass classifier = BoxNet(n_classes=num_classes, n_channel=3) if opt.model != '': classifier.load_state_dict(torch.load(opt.model)) optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999),eps=1e-08, weight_decay=0.0) #scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=20, gamma=0.1) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1) #optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999)) #scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5) classifier.cuda() num_batch = len(box_dataset) / opt.batchSize plt.ion() figure = plt.figure() ax = figure.add_subplot(111) idx = [] test_loss = [] train_loss = [] plot1, = ax.plot(idx, test_loss, label='test') plot2, = ax.plot(idx, train_loss, label='train') plt.ylim(0, 10) plt.xlim(0, 158200) plt.xlabel("i") plt.ylabel("loss") plt.legend(loc="lower left") plt.title("loss-iteration") for epoch in range(opt.nepoch): scheduler.step() for i, data in enumerate(box_dataloader, 0): points, bbox_target, target, _, dist, cluster_center, voxel = data points1 = points + cluster_center[:, None] target = target[:, 0] dist = dist[:, None] voxel = voxel[:, :, None] # transform target scalar to 3x one hot vector hot1 = torch.zeros(len(data[0])) hot1[target == 0] = 1 hot2 = torch.zeros(len(data[0])) hot2[target == 2] = 1 hot3 = torch.zeros(len(data[0])) hot3[target == 1] = 1 one_hot = torch.vstack((hot1, hot2, hot3)) one_hot = one_hot.transpose(1, 0) points = points.transpose(2, 1) points, target, bbox_target, one_hot, dist, cluster_center, voxel = points.cuda(), target.cuda(), bbox_target.cuda(), one_hot.cuda(), dist.cuda().float(), cluster_center.cuda(), voxel.cuda().float() optimizer.zero_grad() classifier = classifier.train() # NN box_pred, center_delta = classifier(points, one_hot, dist, voxel) center_boxnet, \ heading_scores, heading_residual_normalized, heading_residual, \ size_scores, size_residual_normalized, size_residual = \ parse_output_to_tensors(box_pred) #box3d_center = center_boxnet + center_delta stage1_center = cluster_center + center_delta # original cluster center in the world box3d_center = center_boxnet + stage1_center # heading_scores (32, 12) which bin is the heading # heading_residual (32, 12) residual angle # size_scores (32, 3) which bin is the size # size_residual (32, 3, 3) residual size ''' 2.Center center: torch.Size([32, 3]) torch.float32 stage1_center: torch.Size([32, 3]) torch.float32 center_label:[32,3] 3.Heading heading_scores: torch.Size([32, 12]) torch.float32 heading_residual_normalized: torch.Size([32, 12]) torch.float32 heading_residual: torch.Size([32, 12]) torch.float32 heading_class_label:(32) heading_residual_label:(32) 4.Size size_scores: torch.Size([32, 8]) torch.float32 size_residual_normalized: torch.Size([32, 8, 3]) torch.float32 size_residual: torch.Size([32, 8, 3]) torch.float32 size_class_label:(32) size_residual_label:(32,3)''' # compute GT bbox_target[:,:3] = bbox_target[:,:3] + cluster_center box3d_center_label = bbox_target[:,:3] angle = bbox_target[:, 6] heading_class_label, heading_residual_label = angle2class(angle, NUM_HEADING_BIN) size_class_label, size_residual_label = size2class2(bbox_target[:,3:6], target) #print(' ') #print(heading_class_label) #print(heading_scores.data.max(1)[1]) #print(heading_residual_label) #print(heading_residual) #print(size_class_label) #print(size_scores.data.max(1)[1]) #print(size_residual_label) #scls_onehot = torch.eye(NUM_SIZE_CLUSTER)[size_class_label.long()].cuda() # 32,8 #scls_onehot_repeat = scls_onehot.view(-1, NUM_SIZE_CLUSTER, 1).repeat(1, 1, 3) # 32,8,3 #predicted_size_residual = torch.sum( \ # size_residual * scls_onehot_repeat.cuda(), dim=1)#32,3 #print(size_residual_label-predicted_size_residual) #print(size_residual_label-size_residual) #print(box3d_center_label) #print(box3d_center) #print(' ') # losses losses = Loss(box3d_center, box3d_center_label, stage1_center, \ heading_scores, heading_residual_normalized, \ heading_residual, \ heading_class_label, heading_residual_label, \ size_scores, size_residual_normalized, \ size_residual, \ size_class_label, size_residual_label) loss = losses['total_loss'] # accuracy (FIX: flipped box results in IOU = 0 maybe) ioubev, iou3dbox = compute_box3d_iou(box3d_center.cpu().detach().numpy(), heading_scores.cpu().detach().numpy(), \ heading_residual.cpu().detach().numpy(), size_scores.cpu().detach().numpy(), size_residual.cpu().detach().numpy(), \ box3d_center_label.cpu().detach().numpy(), heading_class_label.cpu().detach().numpy(), \ heading_residual_label.cpu().detach().numpy(), size_class_label.cpu().detach().numpy(), \ size_residual_label.cpu().detach().numpy()) # matplotlib viz pred_box_corners = give_pred_box_corners(box3d_center.cpu().detach().numpy(), heading_scores.cpu().detach().numpy(), \ heading_residual.cpu().detach().numpy(), size_scores.cpu().detach().numpy(), size_residual.cpu().detach().numpy()) np_bbox_target = bbox_target.cpu().detach().numpy() gt_corners = boxes_to_corners_3d(np_bbox_target) if i > 0 and epoch == -1: for cc in range(32): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') np_points = points1.cpu().detach().numpy() pts = np_points[cc] gt_b = gt_corners[cc] # (8, 3) b = pred_box_corners[cc] ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2], s=5, c='b', lw=0, alpha=1) for k in range(0, 4): xx = 0 yy = 1 zz = 2 # pred i, j = k, (k + 1) % 4 ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]], color='r') i, j = k + 4, (k + 1) % 4 + 4 ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]], color='r') i, j = k, k + 4 ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]], color='r') # gt i, j = k, (k + 1) % 4 ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]], color='g') i, j = k + 4, (k + 1) % 4 + 4 ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]], color='g') i, j = k, k + 4 ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]], color='g') #visual_right_scale(corners3d.reshape(-1, 3), ax) ax.title.set_text('IOU: {}'.format(iou3dbox[cc])) ax.view_init(elev=30., azim=-45) ax.set_box_aspect([1,1,1]) #ax.set_xlim3d(-3, 3) #ax.set_ylim3d(-3, 3) #ax.set_zlim3d(-3, 3) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() '''# Our lines span from points 0 to 1, 1 to 2, 2 to 3, etc... lines = [[0, 1], [1, 2], [2, 3], [0, 3], [4, 5], [5, 6], [6, 7], [4, 7], [0, 4], [1, 5], [2, 6], [3, 7]] # Use the same color for all lines colors = [[1, 0, 0] for _ in range(len(lines))] colors1 = [[0, 1, 0] for _ in range(len(lines))] line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(np_pred_box[0]) line_set.lines = o3d.utility.Vector2iVector(lines) line_set.colors = o3d.utility.Vector3dVector(colors) line_set1 = o3d.geometry.LineSet() line_set1.points = o3d.utility.Vector3dVector(np_gt_box[0]) line_set1.lines = o3d.utility.Vector2iVector(lines) line_set1.colors = o3d.utility.Vector3dVector(colors1) # Create a visualization object and window #vis = o3d.visualization.Visualizer() #vis.create_window() # Display the bounding boxes: #vis.add_geometry(line_set) #o3d.visualization.draw_geometries([line_set,line_set1,pcd]) #o3d.visualization.draw_geometries([line_set1]) #np_points = points1.cpu().detach().numpy() #np_points = np.transpose(np_points) #pcd = o3d.geometry.PointCloud() #pcd.points = o3d.utility.Vector3dVector(np_points) #o3d.visualization.draw_geometries([pcd]) o3d.visualization.draw_geometries([line_set, line_set1])''' loss.backward() optimizer.step() print('[%d: %d/%d] train loss: %f MIOU: %f' % (epoch, i, num_batch, loss.item(), np.mean(iou3dbox))) #print('[%d: %d/%d] train loss: %f' % (epoch, i, num_batch, loss.item())) loss_train = loss.item() if i % 10 == 0: j, data = next(enumerate(testboxdataloader, 0)) points, bbox_target, target, _, dist, cluster_center, voxel = data points1 = points + cluster_center[:, None] target = target[:, 0] dist = dist[:, None] voxel = voxel[:, :, None] # transform target scalar to 3x one hot vector hot1 = torch.zeros(len(data[0])) hot1[target == 0] = 1 hot2 = torch.zeros(len(data[0])) hot2[target == 2] = 1 hot3 = torch.zeros(len(data[0])) hot3[target == 1] = 1 one_hot = torch.vstack((hot1, hot2, hot3)) one_hot = one_hot.transpose(1, 0) points = points.transpose(2, 1) points, target, bbox_target, one_hot, dist, cluster_center, voxel = points.cuda(), target.cuda(), bbox_target.cuda(), one_hot.cuda(), dist.cuda().float(), cluster_center.cuda(), voxel.cuda().float() classifier = classifier.eval() # NN box_pred, center_delta = classifier(points, one_hot, dist, voxel) center_boxnet, \ heading_scores, heading_residual_normalized, heading_residual, \ size_scores, size_residual_normalized, size_residual = \ parse_output_to_tensors(box_pred) stage1_center = cluster_center + center_delta # original cluster center in the world box3d_center = center_boxnet + stage1_center # compute GT, probably wrong setup bbox_target[:,:3] = bbox_target[:,:3] + cluster_center box3d_center_label = bbox_target[:,:3] angle = bbox_target[:, 6] #+ 3/2*np.pi heading_class_label, heading_residual_label = angle2class(angle, NUM_HEADING_BIN) size_class_label, size_residual_label = size2class2(bbox_target[:,3:6], target) # losses losses = Loss(box3d_center, box3d_center_label, stage1_center, \ heading_scores, heading_residual_normalized, \ heading_residual, \ heading_class_label, heading_residual_label, \ size_scores, size_residual_normalized, \ size_residual, \ size_class_label, size_residual_label) loss = losses['total_loss'] # accuracy ioubev, iou3dbox = compute_box3d_iou(box3d_center.cpu().detach().numpy(), heading_scores.cpu().detach().numpy(), \ heading_residual.cpu().detach().numpy(), size_scores.cpu().detach().numpy(), size_residual.cpu().detach().numpy(), \ box3d_center_label.cpu().detach().numpy(), heading_class_label.cpu().detach().numpy(), \ heading_residual_label.cpu().detach().numpy(), size_class_label.cpu().detach().numpy(), \ size_residual_label.cpu().detach().numpy()) # matplotlib viz pred_box_corners = give_pred_box_corners(box3d_center.cpu().detach().numpy(), heading_scores.cpu().detach().numpy(), \ heading_residual.cpu().detach().numpy(), size_scores.cpu().detach().numpy(), size_residual.cpu().detach().numpy()) np_bbox_target = bbox_target.cpu().detach().numpy() gt_corners = boxes_to_corners_3d(np_bbox_target) if i > 0 and epoch == -1: for cc in range(32): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') np_points = points1.cpu().detach().numpy() pts = np_points[cc] gt_b = gt_corners[cc] # (8, 3) b = pred_box_corners[cc] ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2], s=5, c='b', lw=0, alpha=1) for k in range(0, 4): xx = 0 yy = 1 zz = 2 # pred i, j = k, (k + 1) % 4 ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]], color='r') i, j = k + 4, (k + 1) % 4 + 4 ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]], color='r') i, j = k, k + 4 ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]], color='r') # gt i, j = k, (k + 1) % 4 ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]], color='g') i, j = k + 4, (k + 1) % 4 + 4 ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]], color='g') i, j = k, k + 4 ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]], color='g') #visual_right_scale(corners3d.reshape(-1, 3), ax) ax.title.set_text('IOU: {}'.format(iou3dbox[cc])) ax.view_init(elev=30., azim=-45) ax.set_box_aspect([1,1,1]) #ax.set_xlim3d(-3, 3) #ax.set_ylim3d(-3, 3) #ax.set_zlim3d(-3, 3) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() print('[%d: %d/%d] %s loss: %f MIOU: %f' % (epoch, i, num_batch, blue('test'), loss.item(), np.mean(iou3dbox))) test_loss.append(loss.item()) train_loss.append(loss_train) #loss_list[epoch*791 + i] = loss.item() idx.append(epoch*791 + i) plot1.set_xdata(idx) plot1.set_ydata(test_loss) plot2.set_xdata(idx) plot2.set_ydata(train_loss) figure.canvas.draw() figure.canvas.flush_events() time.sleep(0.01) torch.save(classifier.state_dict(), '%s/cls_model_%d.pth' % (opt.outf, epoch)) '''total_correct = 0 total_testset = 0 for i,data in tqdm(enumerate(testdataloader, 0)): points, target = data target = target[:, 0] points = points.transpose(2, 1) points, target = points.cuda(), target.cuda() classifier = classifier.eval() pred, _, _, _ = classifier(points) pred_choice = pred.data.max(1)[1] correct = pred_choice.eq(target.data).cpu().sum() total_correct += correct.item() total_testset += points.size()[0] print("final accuracy {}".format(total_correct / float(total_testset)))'''
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 1822, 29572, 198, 6738, 269, 37046, 1330, 6167, 198, 6738, 595, 1330, 595, 198, 11748, 28686, 198, 11748, 4738, 198, 6738, 17802, 1330, 49064, 62, 41173, 5446, 2606, 9328, 198, 6738, 1341, 35720, 1330, 13946, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 1845, 29363, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 11748, 28034, 13, 26791, 13, 7890, 198, 6738, 966, 3262, 13, 19608, 292, 316, 1330, 406, 312, 283, 27354, 292, 316, 11, 8315, 27354, 292, 316, 198, 6738, 966, 3262, 13, 3524, 62, 19849, 1330, 8315, 7934, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 640, 198, 6738, 2746, 62, 26791, 1330, 8315, 7934, 43, 793, 11, 21136, 62, 22915, 62, 1462, 62, 83, 641, 669, 11, 651, 62, 3524, 18, 67, 62, 20772, 364, 62, 2978, 525, 11, 651, 62, 3524, 18, 67, 62, 20772, 364, 198, 11748, 1280, 18, 67, 355, 267, 18, 67, 198, 6738, 10131, 1330, 9848, 17, 4871, 11, 2546, 17, 4871, 11, 1398, 17, 9248, 11, 1398, 17, 7857, 11, 24061, 62, 3524, 18, 67, 62, 72, 280, 11, 2546, 17, 4871, 17, 11, 1577, 62, 28764, 62, 3524, 62, 20772, 364, 11, 651, 62, 18, 67, 62, 3524, 198, 2, 6738, 48569, 62, 22602, 1330, 3197, 62, 75, 312, 283, 11, 3197, 62, 75, 312, 283, 62, 36439, 198, 198, 43, 793, 796, 8315, 7934, 43, 793, 3419, 198, 41359, 62, 37682, 2751, 62, 33, 1268, 796, 1105, 198, 41359, 62, 33489, 62, 5097, 7759, 1137, 796, 513, 1303, 530, 13946, 329, 1123, 2099, 198, 41359, 62, 9864, 23680, 62, 16402, 12394, 796, 22243, 198, 198, 4299, 10559, 62, 1462, 62, 20772, 364, 62, 18, 67, 7, 29305, 18, 67, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 767, 24200, 604, 198, 220, 220, 220, 220, 220, 220, 1220, 91, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 91, 198, 220, 220, 220, 220, 220, 718, 24200, 642, 764, 198, 220, 220, 220, 220, 220, 930, 930, 220, 220, 220, 220, 220, 220, 220, 930, 930, 198, 220, 220, 220, 220, 220, 764, 513, 24200, 657, 198, 220, 220, 220, 220, 220, 930, 14, 220, 220, 220, 220, 220, 220, 220, 220, 930, 14, 198, 220, 220, 220, 220, 220, 362, 24200, 352, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10559, 18, 67, 25, 220, 357, 45, 11, 767, 8, 685, 87, 11, 331, 11, 1976, 11, 44332, 11, 20268, 11, 288, 89, 11, 9087, 4357, 357, 87, 11, 331, 11, 1976, 8, 318, 262, 3091, 3641, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14371, 18, 67, 25, 357, 45, 11, 807, 11, 513, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11055, 796, 45941, 13, 18747, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 352, 11, 532, 16, 4357, 685, 16, 11, 532, 16, 11, 532, 16, 4357, 25915, 16, 11, 532, 16, 11, 532, 16, 4357, 25915, 16, 11, 352, 11, 532, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 352, 11, 352, 4357, 685, 16, 11, 532, 16, 11, 352, 4357, 25915, 16, 11, 532, 16, 11, 352, 4357, 25915, 16, 11, 352, 11, 352, 4357, 198, 220, 220, 220, 33761, 1220, 362, 628, 220, 220, 220, 14371, 18, 67, 796, 10559, 18, 67, 58, 45299, 6045, 11, 513, 25, 21, 60, 1635, 11055, 58, 14202, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 14371, 18, 67, 796, 23064, 62, 13033, 62, 24176, 62, 89, 7, 20772, 364, 18, 67, 11, 10559, 18, 67, 58, 45299, 718, 35944, 3447, 1758, 32590, 16, 11, 807, 11, 513, 8, 198, 220, 220, 220, 14371, 18, 67, 15853, 10559, 18, 67, 58, 45299, 6045, 11, 657, 25, 18, 60, 198, 220, 220, 220, 1441, 14371, 18, 67, 198, 198, 4299, 23064, 62, 13033, 62, 24176, 62, 89, 7, 13033, 11, 9848, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2173, 25, 357, 33, 11, 399, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9848, 25, 357, 33, 828, 9848, 1863, 1976, 12, 22704, 11, 9848, 5732, 2124, 6624, 29, 331, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 269, 8546, 796, 45941, 13, 6966, 7, 9248, 8, 198, 220, 220, 220, 264, 1437, 796, 45941, 13, 31369, 7, 9248, 8, 198, 220, 220, 220, 3392, 796, 45941, 13, 1952, 62, 2339, 7, 9248, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 1976, 27498, 796, 45941, 13, 9107, 418, 62, 2339, 7, 9248, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 5724, 62, 6759, 8609, 796, 45941, 13, 25558, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 269, 8546, 11, 220, 264, 1437, 11, 1976, 27498, 11, 198, 220, 220, 220, 220, 220, 220, 220, 532, 82, 1437, 11, 269, 8546, 11, 1976, 27498, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 27498, 11, 1976, 27498, 11, 3392, 198, 220, 220, 220, 10612, 16488, 28, 16, 737, 3447, 1758, 32590, 16, 11, 513, 11, 513, 8, 198, 220, 220, 220, 2173, 62, 10599, 796, 45941, 13, 6759, 76, 377, 7, 13033, 11, 5724, 62, 6759, 8609, 8, 198, 220, 220, 220, 1441, 2173, 62, 10599, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 43501, 10699, 3256, 2099, 28, 600, 11, 4277, 28, 2624, 11, 1037, 11639, 15414, 15458, 2546, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 13033, 3256, 2099, 28, 600, 11, 4277, 28, 12762, 11, 1037, 11639, 15414, 2546, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 22896, 3256, 2099, 28, 600, 11, 1037, 11639, 17618, 286, 1366, 11046, 3259, 3256, 4277, 28, 19, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 77, 538, 5374, 3256, 2099, 28, 600, 11, 4277, 28, 9031, 11, 1037, 11639, 17618, 286, 36835, 82, 284, 4512, 329, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 448, 69, 3256, 2099, 28, 2536, 11, 4277, 11639, 565, 82, 3256, 1037, 11639, 22915, 9483, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 19849, 3256, 2099, 28, 2536, 11, 4277, 11639, 3256, 1037, 11639, 19849, 3108, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 19608, 292, 316, 3256, 2099, 28, 2536, 11, 2672, 28, 25101, 11, 1037, 2625, 19608, 292, 316, 3108, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 19608, 292, 316, 62, 4906, 3256, 2099, 28, 2536, 11, 4277, 11639, 65, 3524, 3256, 1037, 2625, 19608, 292, 316, 2099, 275, 3524, 91, 75, 312, 283, 4943, 198, 198, 8738, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 4798, 7, 8738, 8, 198, 198, 17585, 796, 37456, 2124, 25, 705, 59, 44427, 58, 5824, 76, 6, 1343, 2124, 1343, 705, 59, 44427, 58, 15, 76, 6, 198, 198, 8738, 13, 805, 723, 50, 2308, 796, 4738, 13, 25192, 600, 7, 16, 11, 33028, 8, 220, 1303, 4259, 9403, 198, 4798, 7203, 29531, 23262, 25, 33172, 2172, 13, 805, 723, 50, 2308, 8, 198, 25120, 13, 28826, 7, 8738, 13, 805, 723, 50, 2308, 8, 198, 13165, 354, 13, 805, 723, 62, 28826, 7, 8738, 13, 805, 723, 50, 2308, 8, 198, 198, 361, 2172, 13, 19608, 292, 316, 62, 4906, 6624, 705, 65, 3524, 10354, 198, 220, 220, 220, 3091, 62, 19608, 292, 316, 796, 8315, 27354, 292, 316, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15763, 28, 8738, 13, 19608, 292, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 11639, 27432, 62, 403, 65, 3524, 62, 19608, 292, 316, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 17923, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 13033, 28, 8738, 13, 22510, 62, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 559, 5154, 341, 28, 25101, 8, 628, 220, 220, 220, 1332, 62, 3524, 62, 19608, 292, 316, 796, 8315, 27354, 292, 316, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15763, 28, 8738, 13, 19608, 292, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 11639, 9288, 62, 403, 65, 3524, 62, 19608, 292, 316, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 17923, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6626, 11639, 9288, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 299, 13033, 28, 8738, 13, 22510, 62, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 559, 5154, 341, 28, 25101, 8, 198, 17772, 25, 198, 220, 220, 220, 8420, 10786, 36460, 27039, 2099, 11537, 198, 198, 3524, 62, 67, 10254, 1170, 263, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 3091, 62, 19608, 292, 316, 11, 198, 220, 220, 220, 15458, 62, 7857, 28, 8738, 13, 43501, 10699, 11, 198, 220, 220, 220, 36273, 28, 17821, 11, 198, 220, 220, 220, 997, 62, 22896, 28, 600, 7, 8738, 13, 22896, 4008, 198, 198, 9288, 3524, 67, 10254, 1170, 263, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 1332, 62, 3524, 62, 19608, 292, 316, 11, 198, 220, 220, 220, 15458, 62, 7857, 28, 8738, 13, 43501, 10699, 11, 198, 220, 220, 220, 36273, 28, 17821, 11, 198, 220, 220, 220, 997, 62, 22896, 28, 600, 7, 8738, 13, 22896, 4008, 198, 198, 4798, 7, 11925, 7, 3524, 62, 19608, 292, 316, 828, 18896, 7, 9288, 62, 3524, 62, 19608, 292, 316, 4008, 198, 22510, 62, 37724, 796, 18896, 7, 3524, 62, 19608, 292, 316, 13, 37724, 8, 198, 4798, 10786, 37724, 3256, 997, 62, 37724, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 8738, 13, 448, 69, 8, 198, 16341, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 1208, 198, 198, 4871, 7483, 796, 8315, 7934, 7, 77, 62, 37724, 28, 22510, 62, 37724, 11, 299, 62, 17620, 28, 18, 8, 198, 198, 361, 2172, 13, 19849, 14512, 10148, 25, 198, 220, 220, 220, 1398, 7483, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 8738, 13, 19849, 4008, 628, 628, 198, 40085, 7509, 796, 6436, 13, 23159, 7, 4871, 7483, 13, 17143, 7307, 22784, 300, 81, 28, 15, 13, 8298, 11, 731, 292, 16193, 15, 13, 24, 11, 657, 13, 17032, 828, 25386, 28, 16, 68, 12, 2919, 11, 3463, 62, 12501, 323, 28, 15, 13, 15, 8, 198, 198, 2, 1416, 704, 18173, 796, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 13, 29800, 8600, 35972, 7, 40085, 7509, 11, 41926, 28, 1238, 11, 34236, 28, 15, 13, 16, 8, 198, 1416, 704, 18173, 796, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 13, 8600, 35972, 7, 40085, 7509, 11, 2239, 62, 7857, 28, 1238, 11, 34236, 28, 15, 13, 16, 8, 628, 198, 198, 2, 40085, 7509, 796, 6436, 13, 23159, 7, 4871, 7483, 13, 17143, 7307, 22784, 300, 81, 28, 15, 13, 8298, 11, 731, 292, 16193, 15, 13, 24, 11, 657, 13, 17032, 4008, 198, 2, 1416, 704, 18173, 796, 6436, 13, 14050, 62, 1416, 704, 18173, 13, 8600, 35972, 7, 40085, 7509, 11, 2239, 62, 7857, 28, 1238, 11, 34236, 28, 15, 13, 20, 8, 220, 198, 4871, 7483, 13, 66, 15339, 3419, 198, 198, 22510, 62, 43501, 796, 18896, 7, 3524, 62, 19608, 292, 316, 8, 1220, 2172, 13, 43501, 10699, 198, 198, 489, 83, 13, 295, 3419, 198, 26875, 796, 458, 83, 13, 26875, 3419, 198, 897, 796, 3785, 13, 2860, 62, 7266, 29487, 7, 16243, 8, 198, 312, 87, 796, 17635, 198, 9288, 62, 22462, 796, 17635, 198, 27432, 62, 22462, 796, 17635, 198, 29487, 16, 11, 796, 7877, 13, 29487, 7, 312, 87, 11, 1332, 62, 22462, 11, 6167, 11639, 9288, 11537, 198, 29487, 17, 11, 796, 7877, 13, 29487, 7, 312, 87, 11, 4512, 62, 22462, 11, 6167, 11639, 27432, 11537, 198, 489, 83, 13, 88, 2475, 7, 15, 11, 838, 8, 198, 489, 83, 13, 87, 2475, 7, 15, 11, 24063, 2167, 8, 198, 489, 83, 13, 87, 18242, 7203, 72, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 22462, 4943, 198, 489, 83, 13, 1455, 437, 7, 17946, 2625, 21037, 1364, 4943, 198, 489, 83, 13, 7839, 7203, 22462, 12, 2676, 341, 4943, 198, 198, 1640, 36835, 287, 2837, 7, 8738, 13, 77, 538, 5374, 2599, 198, 220, 220, 220, 6038, 18173, 13, 9662, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 1312, 11, 1366, 287, 27056, 378, 7, 3524, 62, 67, 10254, 1170, 263, 11, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2173, 11, 275, 3524, 62, 16793, 11, 2496, 11, 4808, 11, 1233, 11, 13946, 62, 16159, 11, 410, 1140, 417, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2173, 16, 796, 2173, 1343, 13946, 62, 16159, 58, 45299, 6045, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2496, 58, 45299, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 1233, 58, 45299, 6045, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1140, 417, 796, 410, 1140, 417, 58, 45299, 1058, 11, 6045, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6121, 2496, 16578, 283, 284, 513, 87, 530, 3024, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 3024, 16, 796, 28034, 13, 9107, 418, 7, 11925, 7, 7890, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3024, 16, 58, 16793, 6624, 657, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3024, 17, 796, 28034, 13, 9107, 418, 7, 11925, 7, 7890, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3024, 17, 58, 16793, 6624, 362, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3024, 18, 796, 28034, 13, 9107, 418, 7, 11925, 7, 7890, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3024, 18, 58, 16793, 6624, 352, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 530, 62, 8940, 796, 28034, 13, 85, 25558, 19510, 8940, 16, 11, 3024, 17, 11, 3024, 18, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 530, 62, 8940, 796, 530, 62, 8940, 13, 7645, 3455, 7, 16, 11, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2173, 796, 2173, 13, 7645, 3455, 7, 17, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2173, 11, 2496, 11, 275, 3524, 62, 16793, 11, 530, 62, 8940, 11, 1233, 11, 13946, 62, 16159, 11, 410, 1140, 417, 796, 2173, 13, 66, 15339, 22784, 2496, 13, 66, 15339, 22784, 275, 3524, 62, 16793, 13, 66, 15339, 22784, 530, 62, 8940, 13, 66, 15339, 22784, 1233, 13, 66, 15339, 22446, 22468, 22784, 13946, 62, 16159, 13, 66, 15339, 22784, 410, 1140, 417, 13, 66, 15339, 22446, 22468, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 7483, 796, 1398, 7483, 13, 27432, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 399, 45, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 62, 28764, 11, 3641, 62, 67, 12514, 796, 1398, 7483, 7, 13033, 11, 530, 62, 8940, 11, 1233, 11, 410, 1140, 417, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3641, 62, 3524, 3262, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 1416, 2850, 11, 9087, 62, 411, 312, 723, 62, 11265, 1143, 11, 9087, 62, 411, 312, 723, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 1416, 2850, 11, 2546, 62, 411, 312, 723, 62, 11265, 1143, 11, 2546, 62, 411, 312, 723, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 22915, 62, 1462, 62, 83, 641, 669, 7, 3524, 62, 28764, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3524, 18, 67, 62, 16159, 796, 3641, 62, 3524, 3262, 1343, 3641, 62, 67, 12514, 198, 220, 220, 220, 220, 220, 220, 220, 3800, 16, 62, 16159, 796, 13946, 62, 16159, 1343, 3641, 62, 67, 12514, 1303, 2656, 13946, 3641, 287, 262, 995, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 18, 67, 62, 16159, 796, 3641, 62, 3524, 3262, 1343, 3800, 16, 62, 16159, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9087, 62, 1416, 2850, 357, 2624, 11, 1105, 8, 543, 9874, 318, 262, 9087, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9087, 62, 411, 312, 723, 357, 2624, 11, 1105, 8, 29598, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2546, 62, 1416, 2850, 357, 2624, 11, 513, 8, 543, 9874, 318, 262, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2546, 62, 411, 312, 723, 357, 2624, 11, 513, 11, 513, 8, 29598, 2546, 628, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 23656, 198, 220, 220, 220, 220, 220, 220, 220, 3641, 25, 28034, 13, 10699, 26933, 2624, 11, 513, 12962, 28034, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 3800, 16, 62, 16159, 25, 28034, 13, 10699, 26933, 2624, 11, 513, 12962, 28034, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 3641, 62, 18242, 33250, 2624, 11, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 513, 13, 13847, 278, 198, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 1416, 2850, 25, 28034, 13, 10699, 26933, 2624, 11, 1105, 12962, 28034, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 62, 11265, 1143, 25, 28034, 13, 10699, 26933, 2624, 11, 1105, 12962, 28034, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 25, 28034, 13, 10699, 26933, 2624, 11, 1105, 12962, 28034, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 4871, 62, 18242, 37498, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 62, 18242, 37498, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 604, 13, 10699, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 1416, 2850, 25, 28034, 13, 10699, 26933, 2624, 11, 807, 12962, 28034, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 411, 312, 723, 62, 11265, 1143, 25, 28034, 13, 10699, 26933, 2624, 11, 807, 11, 513, 12962, 28034, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 411, 312, 723, 25, 28034, 13, 10699, 26933, 2624, 11, 807, 11, 513, 12962, 28034, 13, 22468, 2624, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 4871, 62, 18242, 37498, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 411, 312, 723, 62, 18242, 37498, 2624, 11, 18, 8, 7061, 6, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 24061, 7963, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 16793, 58, 45299, 25, 18, 60, 796, 275, 3524, 62, 16793, 58, 45299, 25, 18, 60, 1343, 13946, 62, 16159, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 18, 67, 62, 16159, 62, 18242, 796, 275, 3524, 62, 16793, 58, 45299, 25, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 275, 3524, 62, 16793, 58, 45299, 718, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 4871, 62, 18242, 11, 9087, 62, 411, 312, 723, 62, 18242, 796, 9848, 17, 4871, 7, 9248, 11, 36871, 62, 37682, 2751, 62, 33, 1268, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 4871, 62, 18242, 11, 2546, 62, 411, 312, 723, 62, 18242, 796, 2546, 17, 4871, 17, 7, 65, 3524, 62, 16793, 58, 45299, 18, 25, 21, 4357, 2496, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 33878, 62, 4871, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 33878, 62, 1416, 2850, 13, 7890, 13, 9806, 7, 16, 38381, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 33878, 62, 411, 312, 723, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 33878, 62, 411, 312, 723, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 7857, 62, 4871, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 7857, 62, 1416, 2850, 13, 7890, 13, 9806, 7, 16, 38381, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 7857, 62, 411, 312, 723, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38528, 82, 62, 505, 8940, 796, 28034, 13, 25379, 7, 41359, 62, 33489, 62, 5097, 7759, 1137, 38381, 7857, 62, 4871, 62, 18242, 13, 6511, 3419, 4083, 66, 15339, 3419, 220, 1303, 3933, 11, 23, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38528, 82, 62, 505, 8940, 62, 44754, 796, 264, 565, 82, 62, 505, 8940, 13, 1177, 32590, 16, 11, 36871, 62, 33489, 62, 5097, 7759, 1137, 11, 352, 737, 44754, 7, 16, 11, 352, 11, 513, 8, 220, 1303, 3933, 11, 23, 11, 18, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28764, 5722, 62, 7857, 62, 411, 312, 723, 796, 28034, 13, 16345, 7, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 2546, 62, 411, 312, 723, 1635, 264, 565, 82, 62, 505, 8940, 62, 44754, 13, 66, 15339, 22784, 5391, 28, 16, 8, 2, 2624, 11, 18, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 7857, 62, 411, 312, 723, 62, 18242, 12, 28764, 5722, 62, 7857, 62, 411, 312, 723, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 7857, 62, 411, 312, 723, 62, 18242, 12, 7857, 62, 411, 312, 723, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 3524, 18, 67, 62, 16159, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 3524, 18, 67, 62, 16159, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 705, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9089, 198, 220, 220, 220, 220, 220, 220, 220, 9089, 796, 22014, 7, 3524, 18, 67, 62, 16159, 11, 3091, 18, 67, 62, 16159, 62, 18242, 11, 3800, 16, 62, 16159, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 1416, 2850, 11, 9087, 62, 411, 312, 723, 62, 11265, 1143, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 4871, 62, 18242, 11, 9087, 62, 411, 312, 723, 62, 18242, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 1416, 2850, 11, 2546, 62, 411, 312, 723, 62, 11265, 1143, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 411, 312, 723, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 4871, 62, 18242, 11, 2546, 62, 411, 312, 723, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 9089, 17816, 23350, 62, 22462, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9922, 357, 47084, 25, 26157, 3091, 2482, 287, 314, 2606, 796, 657, 3863, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 280, 1350, 85, 11, 1312, 280, 18, 67, 3524, 796, 24061, 62, 3524, 18, 67, 62, 72, 280, 7, 3524, 18, 67, 62, 16159, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 9087, 62, 1416, 2850, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 1416, 2850, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 411, 312, 723, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 18, 67, 62, 16159, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 9087, 62, 4871, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 4871, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 411, 312, 723, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2603, 29487, 8019, 48569, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 3524, 62, 20772, 364, 796, 1577, 62, 28764, 62, 3524, 62, 20772, 364, 7, 3524, 18, 67, 62, 16159, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 9087, 62, 1416, 2850, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 1416, 2850, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 411, 312, 723, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 62, 65, 3524, 62, 16793, 796, 275, 3524, 62, 16793, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 20772, 364, 796, 10559, 62, 1462, 62, 20772, 364, 62, 18, 67, 7, 37659, 62, 65, 3524, 62, 16793, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 290, 36835, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 36624, 287, 2837, 7, 2624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 16243, 11, 20128, 11639, 18, 67, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 62, 13033, 796, 2173, 16, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43344, 796, 45941, 62, 13033, 58, 535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 65, 796, 308, 83, 62, 20772, 364, 58, 535, 60, 220, 1303, 357, 23, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2747, 62, 3524, 62, 20772, 364, 58, 535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 457, 82, 58, 45299, 657, 4357, 43344, 58, 45299, 352, 4357, 43344, 58, 45299, 362, 4357, 264, 28, 20, 11, 269, 11639, 65, 3256, 300, 86, 28, 15, 11, 17130, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 15, 11, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31383, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 88, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 89, 796, 362, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 11, 357, 74, 1343, 352, 8, 4064, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 65, 58, 72, 11, 31383, 4357, 275, 58, 73, 11, 31383, 60, 4357, 685, 65, 58, 72, 11, 331, 88, 4357, 275, 58, 73, 11, 331, 88, 60, 4357, 685, 65, 58, 72, 11, 1976, 89, 4357, 275, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 81, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 1343, 604, 11, 357, 74, 1343, 352, 8, 4064, 604, 1343, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 65, 58, 72, 11, 31383, 4357, 275, 58, 73, 11, 31383, 60, 4357, 685, 65, 58, 72, 11, 331, 88, 4357, 275, 58, 73, 11, 331, 88, 60, 4357, 685, 65, 58, 72, 11, 1976, 89, 4357, 275, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 81, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 11, 479, 1343, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 65, 58, 72, 11, 31383, 4357, 275, 58, 73, 11, 31383, 60, 4357, 685, 65, 58, 72, 11, 331, 88, 4357, 275, 58, 73, 11, 331, 88, 60, 4357, 685, 65, 58, 72, 11, 1976, 89, 4357, 275, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 81, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 11, 357, 74, 1343, 352, 8, 4064, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 13655, 62, 65, 58, 72, 11, 31383, 4357, 308, 83, 62, 65, 58, 73, 11, 31383, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 331, 88, 4357, 308, 83, 62, 65, 58, 73, 11, 331, 88, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 1976, 89, 4357, 308, 83, 62, 65, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 70, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 1343, 604, 11, 357, 74, 1343, 352, 8, 4064, 604, 1343, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 13655, 62, 65, 58, 72, 11, 31383, 4357, 308, 83, 62, 65, 58, 73, 11, 31383, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 331, 88, 4357, 308, 83, 62, 65, 58, 73, 11, 331, 88, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 1976, 89, 4357, 308, 83, 62, 65, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 70, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 11, 479, 1343, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 13655, 62, 65, 58, 72, 11, 31383, 4357, 308, 83, 62, 65, 58, 73, 11, 31383, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 331, 88, 4357, 308, 83, 62, 65, 58, 73, 11, 331, 88, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 1976, 89, 4357, 308, 83, 62, 65, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 70, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41464, 62, 3506, 62, 9888, 7, 20772, 364, 18, 67, 13, 3447, 1758, 32590, 16, 11, 513, 828, 7877, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 7839, 13, 2617, 62, 5239, 10786, 40, 2606, 25, 23884, 4458, 18982, 7, 72, 280, 18, 67, 3524, 58, 535, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1177, 62, 15003, 7, 68, 2768, 28, 1270, 1539, 35560, 320, 10779, 2231, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 3524, 62, 292, 806, 26933, 16, 11, 16, 11, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 897, 13, 2617, 62, 87, 2475, 18, 67, 32590, 18, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 897, 13, 2617, 62, 88, 2475, 18, 67, 32590, 18, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 897, 13, 2617, 62, 89, 2475, 18, 67, 32590, 18, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 87, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 88, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 89, 18242, 10786, 89, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 2, 3954, 3951, 11506, 422, 2173, 657, 284, 352, 11, 352, 284, 362, 11, 362, 284, 513, 11, 3503, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 16410, 15, 11, 352, 4357, 685, 16, 11, 362, 4357, 685, 17, 11, 513, 4357, 685, 15, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 642, 4357, 685, 20, 11, 718, 4357, 685, 21, 11, 767, 4357, 685, 19, 11, 767, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 604, 4357, 685, 16, 11, 642, 4357, 685, 17, 11, 718, 4357, 685, 18, 11, 767, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 262, 976, 3124, 329, 477, 3951, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 796, 16410, 16, 11, 657, 11, 657, 60, 329, 4808, 287, 2837, 7, 11925, 7, 6615, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 16, 796, 16410, 15, 11, 352, 11, 657, 60, 329, 4808, 287, 2837, 7, 11925, 7, 6615, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2617, 796, 267, 18, 67, 13, 469, 15748, 13, 13949, 7248, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2617, 13, 13033, 796, 267, 18, 67, 13, 315, 879, 13, 38469, 18, 67, 38469, 7, 37659, 62, 28764, 62, 3524, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2617, 13, 6615, 796, 267, 18, 67, 13, 315, 879, 13, 38469, 17, 72, 38469, 7, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2617, 13, 4033, 669, 796, 267, 18, 67, 13, 315, 879, 13, 38469, 18, 67, 38469, 7, 4033, 669, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2617, 16, 796, 267, 18, 67, 13, 469, 15748, 13, 13949, 7248, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2617, 16, 13, 13033, 796, 267, 18, 67, 13, 315, 879, 13, 38469, 18, 67, 38469, 7, 37659, 62, 13655, 62, 3524, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2617, 16, 13, 6615, 796, 267, 18, 67, 13, 315, 879, 13, 38469, 17, 72, 38469, 7, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 2617, 16, 13, 4033, 669, 796, 267, 18, 67, 13, 315, 879, 13, 38469, 18, 67, 38469, 7, 4033, 669, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 32704, 2134, 290, 4324, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4703, 796, 267, 18, 67, 13, 41464, 1634, 13, 36259, 7509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4703, 13, 17953, 62, 17497, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16531, 262, 5421, 278, 10559, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4703, 13, 2860, 62, 469, 15748, 7, 1370, 62, 2617, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 78, 18, 67, 13, 41464, 1634, 13, 19334, 62, 469, 908, 1678, 26933, 1370, 62, 2617, 11, 1370, 62, 2617, 16, 11, 79, 10210, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 78, 18, 67, 13, 41464, 1634, 13, 19334, 62, 469, 908, 1678, 26933, 1370, 62, 2617, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 37659, 62, 13033, 796, 2173, 16, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 37659, 62, 13033, 796, 45941, 13, 7645, 3455, 7, 37659, 62, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 79, 10210, 796, 267, 18, 67, 13, 469, 15748, 13, 12727, 18839, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 79, 10210, 13, 13033, 796, 267, 18, 67, 13, 315, 879, 13, 38469, 18, 67, 38469, 7, 37659, 62, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 78, 18, 67, 13, 41464, 1634, 13, 19334, 62, 469, 908, 1678, 26933, 79, 10210, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 18, 67, 13, 41464, 1634, 13, 19334, 62, 469, 908, 1678, 26933, 1370, 62, 2617, 11, 1627, 62, 2617, 16, 12962, 7061, 6, 628, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 4, 67, 25, 4064, 67, 14, 4, 67, 60, 4512, 2994, 25, 4064, 69, 15789, 2606, 25, 4064, 69, 6, 4064, 357, 538, 5374, 11, 1312, 11, 997, 62, 43501, 11, 2994, 13, 9186, 22784, 45941, 13, 32604, 7, 72, 280, 18, 67, 3524, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 58, 4, 67, 25, 4064, 67, 14, 4, 67, 60, 4512, 2994, 25, 4064, 69, 6, 4064, 357, 538, 5374, 11, 1312, 11, 997, 62, 43501, 11, 2994, 13, 9186, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 27432, 796, 2994, 13, 9186, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 4064, 838, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 11, 1366, 796, 1306, 7, 268, 6975, 378, 7, 9288, 3524, 67, 10254, 1170, 263, 11, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 11, 275, 3524, 62, 16793, 11, 2496, 11, 4808, 11, 1233, 11, 13946, 62, 16159, 11, 410, 1140, 417, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 16, 796, 2173, 1343, 13946, 62, 16159, 58, 45299, 6045, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2496, 58, 45299, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 1233, 58, 45299, 6045, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1140, 417, 796, 410, 1140, 417, 58, 45299, 1058, 11, 6045, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6121, 2496, 16578, 283, 284, 513, 87, 530, 3024, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3024, 16, 796, 28034, 13, 9107, 418, 7, 11925, 7, 7890, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3024, 16, 58, 16793, 6624, 657, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3024, 17, 796, 28034, 13, 9107, 418, 7, 11925, 7, 7890, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3024, 17, 58, 16793, 6624, 362, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3024, 18, 796, 28034, 13, 9107, 418, 7, 11925, 7, 7890, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3024, 18, 58, 16793, 6624, 352, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 62, 8940, 796, 28034, 13, 85, 25558, 19510, 8940, 16, 11, 3024, 17, 11, 3024, 18, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 62, 8940, 796, 530, 62, 8940, 13, 7645, 3455, 7, 16, 11, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 796, 2173, 13, 7645, 3455, 7, 17, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 11, 2496, 11, 275, 3524, 62, 16793, 11, 530, 62, 8940, 11, 1233, 11, 13946, 62, 16159, 11, 410, 1140, 417, 796, 2173, 13, 66, 15339, 22784, 2496, 13, 66, 15339, 22784, 275, 3524, 62, 16793, 13, 66, 15339, 22784, 530, 62, 8940, 13, 66, 15339, 22784, 1233, 13, 66, 15339, 22446, 22468, 22784, 13946, 62, 16159, 13, 66, 15339, 22784, 410, 1140, 417, 13, 66, 15339, 22446, 22468, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 7483, 796, 1398, 7483, 13, 18206, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 399, 45, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 62, 28764, 11, 3641, 62, 67, 12514, 796, 1398, 7483, 7, 13033, 11, 530, 62, 8940, 11, 1233, 11, 410, 1140, 417, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3641, 62, 3524, 3262, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 1416, 2850, 11, 9087, 62, 411, 312, 723, 62, 11265, 1143, 11, 9087, 62, 411, 312, 723, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 1416, 2850, 11, 2546, 62, 411, 312, 723, 62, 11265, 1143, 11, 2546, 62, 411, 312, 723, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 22915, 62, 1462, 62, 83, 641, 669, 7, 3524, 62, 28764, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3800, 16, 62, 16159, 796, 13946, 62, 16159, 1343, 3641, 62, 67, 12514, 1303, 2656, 13946, 3641, 287, 262, 995, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 18, 67, 62, 16159, 796, 3641, 62, 3524, 3262, 1343, 3800, 16, 62, 16159, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24061, 7963, 11, 2192, 2642, 9058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 16793, 58, 45299, 25, 18, 60, 796, 275, 3524, 62, 16793, 58, 45299, 25, 18, 60, 1343, 13946, 62, 16159, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 18, 67, 62, 16159, 62, 18242, 796, 275, 3524, 62, 16793, 58, 45299, 25, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 275, 3524, 62, 16793, 58, 45299, 718, 60, 1303, 10, 513, 14, 17, 9, 37659, 13, 14415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 4871, 62, 18242, 11, 9087, 62, 411, 312, 723, 62, 18242, 796, 9848, 17, 4871, 7, 9248, 11, 36871, 62, 37682, 2751, 62, 33, 1268, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 4871, 62, 18242, 11, 2546, 62, 411, 312, 723, 62, 18242, 796, 2546, 17, 4871, 17, 7, 65, 3524, 62, 16793, 58, 45299, 18, 25, 21, 4357, 2496, 8, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9089, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9089, 796, 22014, 7, 3524, 18, 67, 62, 16159, 11, 3091, 18, 67, 62, 16159, 62, 18242, 11, 3800, 16, 62, 16159, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 1416, 2850, 11, 9087, 62, 411, 312, 723, 62, 11265, 1143, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 4871, 62, 18242, 11, 9087, 62, 411, 312, 723, 62, 18242, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 1416, 2850, 11, 2546, 62, 411, 312, 723, 62, 11265, 1143, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 411, 312, 723, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 4871, 62, 18242, 11, 2546, 62, 411, 312, 723, 62, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 9089, 17816, 23350, 62, 22462, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9922, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 280, 1350, 85, 11, 1312, 280, 18, 67, 3524, 796, 24061, 62, 3524, 18, 67, 62, 72, 280, 7, 3524, 18, 67, 62, 16159, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 9087, 62, 1416, 2850, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 1416, 2850, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 411, 312, 723, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 18, 67, 62, 16159, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 9087, 62, 4871, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 4871, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 62, 411, 312, 723, 62, 18242, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2603, 29487, 8019, 48569, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 3524, 62, 20772, 364, 796, 1577, 62, 28764, 62, 3524, 62, 20772, 364, 7, 3524, 18, 67, 62, 16159, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 9087, 62, 1416, 2850, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9087, 62, 411, 312, 723, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 1416, 2850, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 22784, 2546, 62, 411, 312, 723, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 62, 65, 3524, 62, 16793, 796, 275, 3524, 62, 16793, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 20772, 364, 796, 10559, 62, 1462, 62, 20772, 364, 62, 18, 67, 7, 37659, 62, 65, 3524, 62, 16793, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 290, 36835, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 36624, 287, 2837, 7, 2624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 16243, 11, 20128, 11639, 18, 67, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 62, 13033, 796, 2173, 16, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43344, 796, 45941, 62, 13033, 58, 535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 65, 796, 308, 83, 62, 20772, 364, 58, 535, 60, 220, 1303, 357, 23, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2747, 62, 3524, 62, 20772, 364, 58, 535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 457, 82, 58, 45299, 657, 4357, 43344, 58, 45299, 352, 4357, 43344, 58, 45299, 362, 4357, 264, 28, 20, 11, 269, 11639, 65, 3256, 300, 86, 28, 15, 11, 17130, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 15, 11, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31383, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 88, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 89, 796, 362, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 11, 357, 74, 1343, 352, 8, 4064, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 65, 58, 72, 11, 31383, 4357, 275, 58, 73, 11, 31383, 60, 4357, 685, 65, 58, 72, 11, 331, 88, 4357, 275, 58, 73, 11, 331, 88, 60, 4357, 685, 65, 58, 72, 11, 1976, 89, 4357, 275, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 81, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 1343, 604, 11, 357, 74, 1343, 352, 8, 4064, 604, 1343, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 65, 58, 72, 11, 31383, 4357, 275, 58, 73, 11, 31383, 60, 4357, 685, 65, 58, 72, 11, 331, 88, 4357, 275, 58, 73, 11, 331, 88, 60, 4357, 685, 65, 58, 72, 11, 1976, 89, 4357, 275, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 81, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 11, 479, 1343, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 65, 58, 72, 11, 31383, 4357, 275, 58, 73, 11, 31383, 60, 4357, 685, 65, 58, 72, 11, 331, 88, 4357, 275, 58, 73, 11, 331, 88, 60, 4357, 685, 65, 58, 72, 11, 1976, 89, 4357, 275, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 81, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 11, 357, 74, 1343, 352, 8, 4064, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 13655, 62, 65, 58, 72, 11, 31383, 4357, 308, 83, 62, 65, 58, 73, 11, 31383, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 331, 88, 4357, 308, 83, 62, 65, 58, 73, 11, 331, 88, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 1976, 89, 4357, 308, 83, 62, 65, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 70, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 1343, 604, 11, 357, 74, 1343, 352, 8, 4064, 604, 1343, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 13655, 62, 65, 58, 72, 11, 31383, 4357, 308, 83, 62, 65, 58, 73, 11, 31383, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 331, 88, 4357, 308, 83, 62, 65, 58, 73, 11, 331, 88, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 1976, 89, 4357, 308, 83, 62, 65, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 70, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 474, 796, 479, 11, 479, 1343, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 13655, 62, 65, 58, 72, 11, 31383, 4357, 308, 83, 62, 65, 58, 73, 11, 31383, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 331, 88, 4357, 308, 83, 62, 65, 58, 73, 11, 331, 88, 60, 4357, 685, 13655, 62, 65, 58, 72, 11, 1976, 89, 4357, 308, 83, 62, 65, 58, 73, 11, 1976, 89, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 70, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41464, 62, 3506, 62, 9888, 7, 20772, 364, 18, 67, 13, 3447, 1758, 32590, 16, 11, 513, 828, 7877, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 7839, 13, 2617, 62, 5239, 10786, 40, 2606, 25, 23884, 4458, 18982, 7, 72, 280, 18, 67, 3524, 58, 535, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1177, 62, 15003, 7, 68, 2768, 28, 1270, 1539, 35560, 320, 10779, 2231, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 3524, 62, 292, 806, 26933, 16, 11, 16, 11, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 897, 13, 2617, 62, 87, 2475, 18, 67, 32590, 18, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 897, 13, 2617, 62, 88, 2475, 18, 67, 32590, 18, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 897, 13, 2617, 62, 89, 2475, 18, 67, 32590, 18, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 87, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 88, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 89, 18242, 10786, 89, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 4, 67, 25, 4064, 67, 14, 4, 67, 60, 4064, 82, 2994, 25, 4064, 69, 15789, 2606, 25, 4064, 69, 6, 4064, 357, 538, 5374, 11, 1312, 11, 997, 62, 43501, 11, 4171, 10786, 9288, 33809, 2994, 13, 9186, 22784, 45941, 13, 32604, 7, 72, 280, 18, 67, 3524, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 22462, 13, 33295, 7, 22462, 13, 9186, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 22462, 13, 33295, 7, 22462, 62, 27432, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22462, 62, 4868, 58, 538, 5374, 9, 3720, 16, 1343, 1312, 60, 796, 2994, 13, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 13, 33295, 7, 538, 5374, 9, 3720, 16, 1343, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 16, 13, 2617, 62, 87, 7890, 7, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 16, 13, 2617, 62, 5173, 1045, 7, 9288, 62, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 17, 13, 2617, 62, 87, 7890, 7, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 17, 13, 2617, 62, 5173, 1045, 7, 27432, 62, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3785, 13, 5171, 11017, 13, 19334, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3785, 13, 5171, 11017, 13, 25925, 62, 31534, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 486, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 220, 220, 220, 28034, 13, 21928, 7, 4871, 7483, 13, 5219, 62, 11600, 22784, 705, 4, 82, 14, 565, 82, 62, 19849, 62, 4, 67, 13, 79, 400, 6, 4064, 357, 8738, 13, 448, 69, 11, 36835, 4008, 628, 198, 198, 7061, 6, 23350, 62, 30283, 796, 657, 198, 23350, 62, 9288, 2617, 796, 657, 198, 1640, 1312, 11, 7890, 287, 256, 80, 36020, 7, 268, 6975, 378, 7, 9288, 67, 10254, 1170, 263, 11, 657, 8, 2599, 198, 220, 220, 220, 2173, 11, 2496, 796, 1366, 198, 220, 220, 220, 2496, 796, 2496, 58, 45299, 657, 60, 198, 220, 220, 220, 2173, 796, 2173, 13, 7645, 3455, 7, 17, 11, 352, 8, 198, 220, 220, 220, 2173, 11, 2496, 796, 2173, 13, 66, 15339, 22784, 2496, 13, 66, 15339, 3419, 198, 220, 220, 220, 1398, 7483, 796, 1398, 7483, 13, 18206, 3419, 198, 220, 220, 220, 2747, 11, 4808, 11, 4808, 11, 4808, 796, 1398, 7483, 7, 13033, 8, 198, 220, 220, 220, 2747, 62, 25541, 796, 2747, 13, 7890, 13, 9806, 7, 16, 38381, 16, 60, 198, 220, 220, 220, 3376, 796, 2747, 62, 25541, 13, 27363, 7, 16793, 13, 7890, 737, 36166, 22446, 16345, 3419, 198, 220, 220, 220, 2472, 62, 30283, 15853, 3376, 13, 9186, 3419, 198, 220, 220, 220, 2472, 62, 9288, 2617, 15853, 2173, 13, 7857, 3419, 58, 15, 60, 198, 198, 4798, 7203, 20311, 9922, 23884, 1911, 18982, 7, 23350, 62, 30283, 1220, 12178, 7, 23350, 62, 9288, 2617, 22305, 7061, 6 ]
1.881277
11,211
''' Given a collection of distinct integers, return all possible permutations. Example: Input: [1,2,3] Output: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ] '''
[ 7061, 6, 198, 15056, 257, 4947, 286, 7310, 37014, 11, 1441, 477, 1744, 9943, 32855, 13, 198, 198, 16281, 25, 198, 198, 20560, 25, 685, 16, 11, 17, 11, 18, 60, 198, 26410, 25, 198, 58, 198, 220, 685, 16, 11, 17, 11, 18, 4357, 198, 220, 685, 16, 11, 18, 11, 17, 4357, 198, 220, 685, 17, 11, 16, 11, 18, 4357, 198, 220, 685, 17, 11, 18, 11, 16, 4357, 198, 220, 685, 18, 11, 16, 11, 17, 4357, 198, 220, 685, 18, 11, 17, 11, 16, 60, 198, 60, 198, 7061, 6, 628 ]
1.947917
96
import os import sys sys.path.append("..") import argparse from pathlib import Path # Import teaching utils import pandas as pd import numpy as np from utils.neuralnetwork import NeuralNetwork # Import sklearn metrics from sklearn import metrics from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer if __name__ == '__main__': parser = argparse.ArgumentParser(description = "train neural network on the full MNIST dataset and view the classifier metrics") parser.add_argument("-d", "--data_path", default = Path('../data/'), type = Path, help = "path to where the MNIST csv-files dataset is saved or where to save it") parser.add_argument("-e", "--epochs", default = 5, type = int, help = "numbers of epochs to train") args = parser.parse_args() main(data_path = args.data_path, epochs = args.epochs)
[ 11748, 28686, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7203, 492, 4943, 198, 11748, 1822, 29572, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 2, 17267, 7743, 3384, 4487, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 3384, 4487, 13, 710, 1523, 27349, 1330, 47986, 26245, 198, 198, 2, 17267, 1341, 35720, 20731, 198, 6738, 1341, 35720, 1330, 20731, 198, 6738, 1341, 35720, 13, 19608, 292, 1039, 1330, 21207, 62, 9654, 4029, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 36052, 33, 22050, 7509, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 796, 366, 27432, 17019, 3127, 319, 262, 1336, 29060, 8808, 27039, 290, 1570, 262, 1398, 7483, 20731, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 67, 1600, 366, 438, 7890, 62, 6978, 1600, 4277, 796, 10644, 10786, 40720, 7890, 14, 33809, 2099, 796, 10644, 11, 1037, 796, 366, 6978, 284, 810, 262, 29060, 8808, 269, 21370, 12, 16624, 27039, 318, 7448, 393, 810, 284, 3613, 340, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 68, 1600, 366, 438, 538, 5374, 82, 1600, 4277, 796, 642, 11, 2099, 796, 493, 11, 1037, 796, 366, 77, 17024, 286, 36835, 82, 284, 4512, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1388, 7, 7890, 62, 6978, 796, 26498, 13, 7890, 62, 6978, 11, 36835, 82, 796, 26498, 13, 538, 5374, 82, 8 ]
3.230769
286
import re from oelint_adv.cls_item import Variable from oelint_adv.cls_rule import Rule
[ 11748, 302, 198, 198, 6738, 267, 417, 600, 62, 32225, 13, 565, 82, 62, 9186, 1330, 35748, 198, 6738, 267, 417, 600, 62, 32225, 13, 565, 82, 62, 25135, 1330, 14330, 628 ]
2.8125
32
from google.oauth2 import service_account from google.cloud import bigquery from datetime import datetime
[ 6738, 23645, 13, 12162, 1071, 17, 1330, 2139, 62, 23317, 201, 198, 6738, 23645, 13, 17721, 1330, 1263, 22766, 201, 198, 6738, 4818, 8079, 1330, 4818, 8079, 201 ]
3.857143
28
# # Copyright 2014+ Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Base class for configurable processing components. Processing components are designed to be pipelined. """
[ 2, 198, 2, 220, 15069, 1946, 10, 33976, 49808, 2059, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 37811, 198, 220, 220, 220, 7308, 1398, 329, 4566, 11970, 7587, 6805, 13, 28403, 6805, 389, 198, 220, 220, 220, 3562, 284, 307, 7347, 417, 1389, 13, 198, 37811, 198 ]
3.774869
191
"""yamlip - A yaml interpolation tool""" __version__ = '0.0.1' __author__ = 'Jan Murre <[email protected]>' __all__ = [] import functools from string import Template from attrdict import AttrDict import yaml import click @click.command() @click.argument("source_yaml_file") @click.option("-o", "--output")
[ 37811, 88, 321, 40712, 532, 317, 331, 43695, 39555, 341, 2891, 37811, 198, 198, 834, 9641, 834, 796, 705, 15, 13, 15, 13, 16, 6, 198, 834, 9800, 834, 796, 705, 12128, 5921, 260, 1279, 13881, 13, 28582, 260, 31, 9246, 3400, 89, 13, 21283, 29, 6, 198, 834, 439, 834, 796, 17635, 198, 198, 11748, 1257, 310, 10141, 198, 6738, 4731, 1330, 37350, 198, 6738, 708, 4372, 713, 1330, 3460, 81, 35, 713, 198, 11748, 331, 43695, 198, 11748, 3904, 628, 628, 198, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 49140, 7203, 10459, 62, 88, 43695, 62, 7753, 4943, 198, 31, 12976, 13, 18076, 7203, 12, 78, 1600, 366, 438, 22915, 4943, 198 ]
2.700855
117
import unittest from datastructure.links.PositionList import PositionList if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 4818, 459, 5620, 13, 28751, 13, 26545, 8053, 1330, 23158, 8053, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3
42
# -*- encoding: utf-8 -*- # # Copyright © 2018 Julien Danjou <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import pyparsing import pytest from mergify_engine.rules import parser
[ 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 10673, 2864, 5979, 2013, 6035, 73, 280, 1279, 73, 67, 31, 647, 70, 1958, 13, 952, 29, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 11748, 279, 4464, 945, 278, 198, 11748, 12972, 9288, 198, 198, 6738, 4017, 70, 1958, 62, 18392, 13, 38785, 1330, 30751, 628, 198 ]
3.455446
202
from melodb.loggers import ILogger, ConsoleLogger, MongoLogger from typing import List
[ 198, 6738, 7758, 375, 65, 13, 6404, 5355, 1330, 314, 11187, 1362, 11, 24371, 11187, 1362, 11, 42591, 11187, 1362, 198, 6738, 19720, 1330, 7343, 628 ]
3.423077
26
import math import itertools import operator import numpy import pylab import scipy.fftpack import overlap def autocorrelation(signal): """ this matches Marsyas exactly. """ N = signal.shape[1] ffts = scipy.fftpack.fft(signal, 2*N, axis=1) / (2*N) ffts_abs = abs(ffts) ffts_abs_scaled = ffts_abs**0.5 scratch = (scipy.fftpack.ifft(ffts_abs_scaled, axis=1 ).real)*(2*N) xcorr = scratch[:,:N] return xcorr GCD_TOLERANCE = 0.1 TOLERANCE = 1.04 MAX_BPM = 1000
[ 11748, 10688, 198, 11748, 340, 861, 10141, 198, 11748, 10088, 198, 198, 11748, 299, 32152, 198, 11748, 279, 2645, 397, 198, 11748, 629, 541, 88, 13, 487, 83, 8002, 198, 198, 11748, 21721, 198, 198, 4299, 1960, 420, 273, 49501, 7, 12683, 282, 2599, 198, 220, 220, 220, 37227, 428, 7466, 8706, 88, 292, 3446, 13, 37227, 198, 220, 220, 220, 399, 796, 6737, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 277, 35594, 796, 629, 541, 88, 13, 487, 83, 8002, 13, 487, 83, 7, 12683, 282, 11, 362, 9, 45, 11, 16488, 28, 16, 8, 1220, 357, 17, 9, 45, 8, 198, 220, 220, 220, 277, 35594, 62, 8937, 796, 2352, 7, 487, 912, 8, 198, 220, 220, 220, 277, 35594, 62, 8937, 62, 1416, 3021, 796, 277, 35594, 62, 8937, 1174, 15, 13, 20, 198, 220, 220, 220, 12692, 796, 357, 1416, 541, 88, 13, 487, 83, 8002, 13, 361, 701, 7, 487, 912, 62, 8937, 62, 1416, 3021, 11, 16488, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 5305, 27493, 7, 17, 9, 45, 8, 198, 220, 220, 220, 2124, 10215, 81, 796, 12692, 58, 45299, 25, 45, 60, 198, 220, 220, 220, 1441, 2124, 10215, 81, 628, 198, 38, 8610, 62, 51, 3535, 1137, 19240, 796, 657, 13, 16, 198, 198, 51, 3535, 1137, 19240, 796, 352, 13, 3023, 198, 198, 22921, 62, 33, 5868, 796, 8576, 628, 198 ]
2.121849
238
import numpy as np from sklearn.decomposition import PCA from scipy.stats import zscore import time import csv import os import nibabel from sklearn.metrics.pairwise import euclidean_distances from scipy.ndimage.filters import gaussian_filter from utils.ridge_tools import cross_val_ridge, corr import time as tm import sys # train/test is the full NLP feature # train/test_pca is the NLP feature reduced to 10 dimensions via PCA that has been fit on the training data # feat_dir is the directory where the NLP features are stored # train_indicator is an array of 0s and 1s indicating whether the word at this index is in the training set
[ 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 12501, 296, 9150, 1330, 4217, 32, 198, 6738, 629, 541, 88, 13, 34242, 1330, 1976, 26675, 198, 11748, 640, 198, 11748, 269, 21370, 198, 11748, 28686, 198, 11748, 33272, 9608, 198, 6738, 1341, 35720, 13, 4164, 10466, 13, 24874, 3083, 1330, 304, 36616, 485, 272, 62, 17080, 1817, 198, 6738, 629, 541, 88, 13, 358, 9060, 13, 10379, 1010, 1330, 31986, 31562, 62, 24455, 198, 198, 6738, 3384, 4487, 13, 12818, 62, 31391, 1330, 3272, 62, 2100, 62, 12818, 11, 1162, 81, 198, 11748, 640, 355, 256, 76, 198, 11748, 25064, 628, 220, 220, 220, 220, 198, 198, 2, 4512, 14, 9288, 318, 262, 1336, 399, 19930, 3895, 198, 2, 4512, 14, 9288, 62, 79, 6888, 318, 262, 399, 19930, 3895, 5322, 284, 838, 15225, 2884, 4217, 32, 326, 468, 587, 4197, 319, 262, 3047, 1366, 198, 2, 2218, 62, 15908, 318, 262, 8619, 810, 262, 399, 19930, 3033, 389, 8574, 198, 2, 4512, 62, 521, 26407, 318, 281, 7177, 286, 657, 82, 290, 352, 82, 12739, 1771, 262, 1573, 379, 428, 6376, 318, 287, 262, 3047, 900, 628, 198, 220, 220, 198 ]
3.378238
193
import pandas as pd import os import numpy as np import datetime import csv from Code.create_collector import vti_init from Code.preprocessing import vector_merge
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4818, 8079, 198, 11748, 269, 21370, 198, 6738, 6127, 13, 17953, 62, 33327, 273, 1330, 410, 20259, 62, 15003, 198, 6738, 6127, 13, 3866, 36948, 1330, 15879, 62, 647, 469, 628, 628, 628, 628, 198 ]
3.288462
52
import time from datetime import datetime as dt """ host files for windows windows c:\windows\system32\drivers\etc host files for linux & Mac /ect/hosts """ # list paths hosts_path_system = r"C:\Windows\System32\drivers\etc\hosts" host_dir = hosts_path_system #host_dir = "hosts" local redir = "127.0.0.1" # list websites to block websites_list =[ "www.facebook.com", "www.youtube.com", "www.google.com.mx" ] # Define working hours from_hour = 7 to_hour = 13 #Main Program while True: if dt(dt.now().year, dt.now().month, dt.now().day, from_hour) < dt.now() < dt(dt.now().year, dt.now().month, dt.now().day, to_hour): print("En hora de trabajar: Bloqueo Activo ") with open(host_dir, 'r+') as file: content = file.read() for website in websites_list: if website in content: pass else: file.write(redir + " " + website + "\n") else: with open(host_dir, 'r+') as file: content = file.readlines() file.seek(0) for line in content: if not any(website in line for website in websites_list): file.write(line) file.truncate() print("Es hora de relajarse: Bloqueo Desactivado") time.sleep(1) #Seconds
[ 11748, 640, 198, 6738, 4818, 8079, 1330, 4818, 8079, 355, 288, 83, 220, 198, 37811, 198, 220, 220, 220, 2583, 3696, 329, 9168, 220, 9168, 269, 7479, 28457, 59, 10057, 2624, 59, 36702, 59, 14784, 198, 220, 220, 220, 2583, 3696, 329, 32639, 1222, 4100, 1220, 478, 14, 4774, 82, 198, 37811, 198, 2, 1351, 13532, 198, 4774, 82, 62, 6978, 62, 10057, 796, 374, 1, 34, 7479, 11209, 59, 11964, 2624, 59, 36702, 59, 14784, 59, 4774, 82, 1, 198, 4774, 62, 15908, 796, 11453, 62, 6978, 62, 10057, 198, 2, 4774, 62, 15908, 796, 366, 4774, 82, 1, 1957, 198, 445, 343, 796, 366, 16799, 13, 15, 13, 15, 13, 16, 1, 220, 198, 198, 2, 1351, 9293, 284, 2512, 220, 198, 732, 1443, 2737, 62, 4868, 796, 58, 198, 220, 220, 220, 366, 2503, 13, 19024, 13, 785, 1600, 198, 220, 220, 220, 366, 2503, 13, 11604, 13, 785, 1600, 198, 220, 220, 220, 366, 2503, 13, 13297, 13, 785, 13, 36802, 1, 198, 60, 198, 2, 2896, 500, 1762, 2250, 220, 198, 6738, 62, 9769, 796, 767, 198, 1462, 62, 9769, 796, 1511, 198, 198, 2, 13383, 6118, 220, 198, 4514, 6407, 25, 198, 220, 220, 220, 611, 288, 83, 7, 28664, 13, 2197, 22446, 1941, 11, 288, 83, 13, 2197, 22446, 8424, 11, 288, 83, 13, 2197, 22446, 820, 11, 422, 62, 9769, 8, 1279, 288, 83, 13, 2197, 3419, 1279, 288, 83, 7, 28664, 13, 2197, 22446, 1941, 11, 288, 83, 13, 2197, 22446, 8424, 11, 288, 83, 13, 2197, 22446, 820, 11, 284, 62, 9769, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4834, 3076, 64, 390, 491, 397, 1228, 283, 25, 1086, 78, 4188, 78, 13144, 78, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 4774, 62, 15908, 11, 705, 81, 10, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 2393, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3052, 287, 9293, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3052, 287, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 445, 343, 1343, 366, 366, 1343, 3052, 1343, 37082, 77, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 4774, 62, 15908, 11, 705, 81, 10, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 2393, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 36163, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 597, 7, 732, 12485, 287, 1627, 329, 3052, 287, 9293, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 2213, 19524, 378, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 23041, 3076, 64, 390, 823, 1228, 17208, 25, 1086, 78, 4188, 78, 2935, 15791, 4533, 4943, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 1303, 12211, 82 ]
2.1
640
import importlib import pkgutil import aurora.drivers
[ 11748, 1330, 8019, 198, 11748, 279, 10025, 22602, 198, 198, 11748, 45714, 5799, 13, 36702, 628, 628, 628 ]
3.333333
18
from functools import partial from typing import Tuple import chika import homura import torch import torch.nn.functional as F from homura import lr_scheduler, reporters, trainers from homura.vision import DATASET_REGISTRY, MODEL_REGISTRY from sam import SAMSGD as _SAMSGD @chika.config @chika.config @chika.main(cfg_cls=Config, strict=True) if __name__ == '__main__': main()
[ 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 19720, 1330, 309, 29291, 198, 198, 11748, 442, 9232, 198, 11748, 3488, 5330, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 3488, 5330, 1330, 300, 81, 62, 1416, 704, 18173, 11, 7638, 11, 28514, 198, 6738, 3488, 5330, 13, 10178, 1330, 360, 1404, 1921, 2767, 62, 31553, 1797, 40405, 11, 19164, 3698, 62, 31553, 1797, 40405, 198, 198, 6738, 6072, 1330, 28844, 38475, 35, 355, 4808, 49302, 38475, 35, 628, 198, 198, 31, 354, 9232, 13, 11250, 628, 198, 31, 354, 9232, 13, 11250, 628, 628, 198, 31, 354, 9232, 13, 12417, 7, 37581, 62, 565, 82, 28, 16934, 11, 7646, 28, 17821, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.868613
137
import csv import io from flask import ( current_app, flash, redirect, render_template, request, Response, url_for, ) from flask_login import current_user from . import admin_bp from .forms import ( CancelCarpoolAdminForm, DeleteDestinationForm, DestinationForm, ProfilePurgeForm, ) from geoalchemy2.shape import to_shape from .. import db from ..email import send_email from ..carpool.views import ( cancel_carpool, email_driver_rider_cancelled_request, ) from ..models import ( Carpool, Destination, Person, Role, PersonRole, RideRequest, ) @admin_bp.route('/admin/') @admin_bp.route('/admin/stats/') @admin_bp.route('/admin/users/<uuid>') @admin_bp.route('/admin/users/<uuid>/purge', methods=['GET', 'POST']) @admin_bp.route('/admin/users/<user_uuid>/togglerole', methods=['POST']) @admin_bp.route('/admin/users') @admin_bp.route('/admin/drivers_and_riders') @admin_bp.route('/admin/users.csv') @admin_bp.route('/admin/carpools') @admin_bp.route('/admin/carpools.csv') @admin_bp.route('/admin/destinations') @admin_bp.route('/admin/destinations/new', methods=['GET', 'POST']) @admin_bp.route('/admin/destinations/<uuid>', methods=['GET', 'POST']) @admin_bp.route('/admin/destinations/<uuid>/delete', methods=['GET', 'POST']) @admin_bp.route('/admin/destinations/<uuid>/togglehidden', methods=['POST']) @admin_bp.route('/admin/emailpreview/<template>') @admin_bp.route('/admin/<uuid>/cancel', methods=['GET', 'POST'])
[ 11748, 269, 21370, 198, 11748, 33245, 198, 6738, 42903, 1330, 357, 198, 220, 220, 220, 1459, 62, 1324, 11, 198, 220, 220, 220, 7644, 11, 198, 220, 220, 220, 18941, 11, 198, 220, 220, 220, 8543, 62, 28243, 11, 198, 220, 220, 220, 2581, 11, 198, 220, 220, 220, 18261, 11, 198, 220, 220, 220, 19016, 62, 1640, 11, 198, 8, 198, 6738, 42903, 62, 38235, 1330, 1459, 62, 7220, 198, 6738, 764, 1330, 13169, 62, 46583, 198, 6738, 764, 23914, 1330, 357, 198, 220, 220, 220, 27910, 34, 5117, 970, 46787, 8479, 11, 198, 220, 220, 220, 23520, 24159, 1883, 8479, 11, 198, 220, 220, 220, 45657, 8479, 11, 198, 220, 220, 220, 13118, 30026, 469, 8479, 11, 198, 8, 198, 6738, 40087, 282, 26599, 17, 13, 43358, 1330, 284, 62, 43358, 198, 6738, 11485, 1330, 20613, 198, 6738, 11485, 12888, 1330, 3758, 62, 12888, 198, 6738, 11485, 66, 5117, 970, 13, 33571, 1330, 357, 198, 220, 220, 220, 14241, 62, 66, 5117, 970, 11, 198, 220, 220, 220, 3053, 62, 26230, 62, 49449, 62, 66, 590, 3353, 62, 25927, 11, 198, 8, 198, 6738, 11485, 27530, 1330, 357, 198, 220, 220, 220, 1879, 7742, 11, 198, 220, 220, 220, 45657, 11, 198, 220, 220, 220, 7755, 11, 198, 220, 220, 220, 20934, 11, 198, 220, 220, 220, 7755, 47445, 11, 198, 220, 220, 220, 21640, 18453, 11, 198, 8, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 11537, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 34242, 14, 11537, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 18417, 14, 27, 12303, 312, 29, 11537, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 18417, 14, 27, 12303, 312, 29, 14, 14225, 469, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 18417, 14, 27, 7220, 62, 12303, 312, 29, 14, 83, 10332, 1754, 2305, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 18417, 11537, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 36702, 62, 392, 62, 81, 4157, 11537, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 18417, 13, 40664, 11537, 198, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 66, 5117, 10141, 11537, 198, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 66, 5117, 10141, 13, 40664, 11537, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 16520, 7352, 11537, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 16520, 7352, 14, 3605, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 16520, 7352, 14, 27, 12303, 312, 29, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 16520, 7352, 14, 27, 12303, 312, 29, 14, 33678, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 16520, 7352, 14, 27, 12303, 312, 29, 14, 44256, 30342, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 12888, 3866, 1177, 14, 27, 28243, 29, 11537, 628, 198, 31, 28482, 62, 46583, 13, 38629, 10786, 14, 28482, 14, 27, 12303, 312, 29, 14, 66, 21130, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198 ]
2.527273
605
import sys import os import json import glob import pandas as pd import plotly import plotly.graph_objs as go if len(sys.argv) != 2: print("Usage: python tune_plot.py <result_dir>") print("Example: python tune_pot.py ~/ray_results/objective_mean_2021-04-08_00-07-44/") result_dir = sys.argv[1] tune_run = os.path.basename(os.path.normpath(result_dir)) results = glob.glob(os.path.join(result_dir, "*", "result.json")) score = [] kp = [] ki = [] kd = [] alpha = [] fullPID = False for results_file in results: print(results_file) with open(results_file) as f: try: d = json.load(f) except: continue score.append(d['score']) kp.append(d['config']['kp']) ki.append(d['config']['ki']) if 'kd' in d['config']: kd.append(d['config']['kd']) fullPID = True alpha.append(d['config']['alpha']) # 5D plot if fullPID: #Set marker properties markersize = [x * 20 for x in alpha] markercolor = score #Make Plotly figure fig1 = go.Scatter3d(x=kp, y=ki, z=kd, marker=dict(size=markersize, color=markercolor, opacity=0.5, line=dict(width=2, color='DarkSlateGrey'), reversescale=False, colorscale='blues'), line=dict (width=0.02), mode='markers') #Make Plot.ly Layout kp_range = [min(kp), max(kp)] ki_range = [min(ki), max(kd)] kd_range = [min(ki), max(kd)] #ki_range = [0, 6e-6] #kd_range = [0, 6e-6] mylayout = go.Layout(scene=dict(xaxis=dict(title="kp", range=kp_range, showexponent = 'all', exponentformat = 'e'), yaxis=dict(title="ki", range=ki_range, showexponent = 'all', exponentformat = 'e'), zaxis=dict(title="kd", range=kd_range, showexponent = 'all', exponentformat = 'e'))) #Plot and save html plotly.offline.plot({"data": [fig1], "layout": mylayout}, image = 'png', image_filename = 'tune_analyze_PID.png', auto_open=True, filename=("PID Scores Plot " + tune_run + ".html")) else: #Set marker properties #markersize = [x * 20 for x in alpha] markersize = [10 for x in alpha] markercolor = score #Make Plotly figure fig1 = go.Scatter3d(x=kp, y=ki, z=alpha, marker=dict(size=markersize, color=markercolor, opacity=0.5, line=dict(width=2, color='DarkSlateGrey'), reversescale=False, colorscale='blues'), line=dict (width=0.02), mode='markers') #Make Plot.ly Layout mylayout = go.Layout(scene=dict(xaxis=dict(title="kp", showexponent = 'all', exponentformat = 'e'), yaxis=dict(title="ki",showexponent = 'all', exponentformat = 'e'), zaxis=dict(title="alpha", showexponent = 'all', exponentformat = 'e'))) #Plot and save html plotly.offline.plot({"data": [fig1], "layout": mylayout}, image = 'png', image_filename = 'tune_analyze_PI.png', auto_open=True, filename=("PI Scores Plot " + tune_run + ".html"))
[ 11748, 25064, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 15095, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 7110, 306, 198, 11748, 7110, 306, 13, 34960, 62, 672, 8457, 355, 467, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 14512, 362, 25, 198, 220, 220, 220, 3601, 7203, 28350, 25, 21015, 14009, 62, 29487, 13, 9078, 1279, 20274, 62, 15908, 29, 4943, 198, 220, 220, 220, 3601, 7203, 16281, 25, 21015, 14009, 62, 13059, 13, 9078, 47795, 2433, 62, 43420, 14, 15252, 425, 62, 32604, 62, 1238, 2481, 12, 3023, 12, 2919, 62, 405, 12, 2998, 12, 2598, 14, 4943, 220, 198, 198, 20274, 62, 15908, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 83, 1726, 62, 5143, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 418, 13, 6978, 13, 27237, 6978, 7, 20274, 62, 15908, 4008, 198, 43420, 796, 15095, 13, 4743, 672, 7, 418, 13, 6978, 13, 22179, 7, 20274, 62, 15908, 11, 366, 9, 1600, 366, 20274, 13, 17752, 48774, 198, 198, 26675, 796, 17635, 198, 74, 79, 796, 17635, 198, 4106, 796, 17635, 198, 74, 67, 796, 17635, 198, 26591, 796, 17635, 198, 12853, 47, 2389, 796, 10352, 198, 1640, 2482, 62, 7753, 287, 2482, 25, 198, 220, 220, 220, 3601, 7, 43420, 62, 7753, 8, 198, 220, 220, 220, 351, 1280, 7, 43420, 62, 7753, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 33918, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 13, 33295, 7, 67, 17816, 26675, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 479, 79, 13, 33295, 7, 67, 17816, 11250, 6, 7131, 6, 74, 79, 6, 12962, 220, 198, 220, 220, 220, 220, 220, 220, 220, 47748, 13, 33295, 7, 67, 17816, 11250, 6, 7131, 6, 4106, 6, 12962, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 74, 67, 6, 287, 288, 17816, 11250, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 67, 13, 33295, 7, 67, 17816, 11250, 6, 7131, 6, 74, 67, 6, 12962, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 47, 2389, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 13, 33295, 7, 67, 17816, 11250, 6, 7131, 6, 26591, 6, 12962, 220, 198, 198, 2, 642, 35, 7110, 198, 361, 1336, 47, 2389, 25, 198, 220, 220, 220, 1303, 7248, 18364, 6608, 198, 220, 220, 220, 19736, 1096, 796, 685, 87, 1635, 1160, 329, 2124, 287, 17130, 60, 198, 220, 220, 220, 1317, 2798, 45621, 796, 4776, 628, 220, 220, 220, 1303, 12050, 28114, 306, 3785, 198, 220, 220, 220, 2336, 16, 796, 467, 13, 3351, 1436, 18, 67, 7, 87, 28, 74, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 4106, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 28, 74, 67, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 7857, 28, 4102, 364, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 4102, 2798, 45621, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45912, 28, 15, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 10394, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 17367, 11122, 378, 49141, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10372, 3798, 1000, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 38765, 11639, 2436, 947, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 357, 10394, 28, 15, 13, 2999, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 4102, 364, 11537, 628, 220, 220, 220, 1303, 12050, 28114, 13, 306, 47639, 198, 220, 220, 220, 479, 79, 62, 9521, 796, 685, 1084, 7, 74, 79, 828, 3509, 7, 74, 79, 15437, 198, 220, 220, 220, 47748, 62, 9521, 796, 685, 1084, 7, 4106, 828, 3509, 7, 74, 67, 15437, 198, 220, 220, 220, 479, 67, 62, 9521, 796, 685, 1084, 7, 4106, 828, 3509, 7, 74, 67, 15437, 198, 220, 220, 220, 1303, 4106, 62, 9521, 796, 685, 15, 11, 718, 68, 12, 21, 60, 220, 198, 220, 220, 220, 1303, 74, 67, 62, 9521, 796, 685, 15, 11, 718, 68, 12, 21, 60, 220, 628, 220, 220, 220, 616, 39786, 796, 467, 13, 32517, 7, 29734, 28, 11600, 7, 87, 22704, 28, 11600, 7, 7839, 2625, 74, 79, 1600, 2837, 28, 74, 79, 62, 9521, 11, 905, 11201, 3471, 796, 705, 439, 3256, 28622, 18982, 796, 705, 68, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 22704, 28, 11600, 7, 7839, 2625, 4106, 1600, 2837, 28, 4106, 62, 9521, 11, 905, 11201, 3471, 796, 705, 439, 3256, 28622, 18982, 796, 705, 68, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 22704, 28, 11600, 7, 7839, 2625, 74, 67, 1600, 2837, 28, 74, 67, 62, 9521, 11, 905, 11201, 3471, 796, 705, 439, 3256, 28622, 18982, 796, 705, 68, 6, 22305, 628, 220, 220, 220, 1303, 43328, 290, 3613, 27711, 198, 220, 220, 220, 7110, 306, 13, 2364, 1370, 13, 29487, 7, 4895, 7890, 1298, 685, 5647, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39786, 1298, 616, 39786, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 705, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 34345, 796, 705, 83, 1726, 62, 38200, 2736, 62, 47, 2389, 13, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 9654, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 28, 7203, 47, 2389, 44654, 28114, 366, 1343, 14009, 62, 5143, 1343, 27071, 6494, 48774, 198, 17772, 25, 198, 220, 220, 220, 1303, 7248, 18364, 6608, 198, 220, 220, 220, 1303, 4102, 364, 1096, 796, 685, 87, 1635, 1160, 329, 2124, 287, 17130, 60, 198, 220, 220, 220, 19736, 1096, 796, 685, 940, 329, 2124, 287, 17130, 60, 198, 220, 220, 220, 1317, 2798, 45621, 796, 4776, 628, 220, 220, 220, 1303, 12050, 28114, 306, 3785, 198, 220, 220, 220, 2336, 16, 796, 467, 13, 3351, 1436, 18, 67, 7, 87, 28, 74, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 4106, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 11600, 7, 7857, 28, 4102, 364, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 4102, 2798, 45621, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45912, 28, 15, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 7, 10394, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 11639, 17367, 11122, 378, 49141, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10372, 3798, 1000, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 38765, 11639, 2436, 947, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 11600, 357, 10394, 28, 15, 13, 2999, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 4102, 364, 11537, 628, 220, 220, 220, 1303, 12050, 28114, 13, 306, 47639, 198, 220, 220, 220, 616, 39786, 796, 467, 13, 32517, 7, 29734, 28, 11600, 7, 87, 22704, 28, 11600, 7, 7839, 2625, 74, 79, 1600, 905, 11201, 3471, 796, 705, 439, 3256, 28622, 18982, 796, 705, 68, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 22704, 28, 11600, 7, 7839, 2625, 4106, 1600, 12860, 11201, 3471, 796, 705, 439, 3256, 28622, 18982, 796, 705, 68, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 22704, 28, 11600, 7, 7839, 2625, 26591, 1600, 905, 11201, 3471, 796, 705, 439, 3256, 28622, 18982, 796, 705, 68, 6, 22305, 628, 220, 220, 220, 1303, 43328, 290, 3613, 27711, 198, 220, 220, 220, 7110, 306, 13, 2364, 1370, 13, 29487, 7, 4895, 7890, 1298, 685, 5647, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39786, 1298, 616, 39786, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 705, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 34345, 796, 705, 83, 1726, 62, 38200, 2736, 62, 11901, 13, 11134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 9654, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 28, 7203, 11901, 44654, 28114, 366, 220, 1343, 14009, 62, 5143, 1343, 27071, 6494, 48774, 198 ]
1.727273
2,266
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ------------------------------------------------- File Name:softmaxMnist Description : mnist data sets, softmax model pytorch 不需要进行 one-hot 编码, 使用类别即可 Email : [email protected] Date:18-1-16 """ import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torch.nn import Module, functional as F from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import MNIST # 网络模型定义 if __name__ == '__main__': # some config config = {'batch_size': 64, 'epoch_num': 100, 'lr': 0.001, 'in_feature': 28 * 28, 'out_feature': 10} train_loader, test_loader = get_data(), get_data(flag=False) # 模型实例与损失函数, 优化函数 model = Network() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=config['lr'], momentum=0.9) # 训练与测试 for epoch in range(config['epoch_num']): train_m(model, train_loader) test_m(model, test_loader)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 47232, 12, 198, 220, 220, 9220, 6530, 171, 120, 248, 4215, 9806, 44, 77, 396, 198, 220, 220, 12489, 1058, 285, 77, 396, 1366, 5621, 11, 2705, 9806, 2746, 198, 220, 220, 12972, 13165, 354, 220, 38834, 165, 250, 222, 17358, 223, 32573, 249, 26193, 234, 530, 12, 8940, 13328, 120, 244, 163, 254, 223, 11, 220, 45635, 18796, 101, 163, 109, 119, 26344, 104, 39355, 111, 20998, 107, 198, 220, 220, 9570, 1058, 1960, 7258, 4528, 84, 31, 24136, 13, 785, 198, 220, 220, 7536, 171, 120, 248, 1507, 12, 16, 12, 1433, 198, 37811, 198, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 6738, 28034, 13, 20471, 1330, 19937, 11, 10345, 355, 376, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 6738, 28034, 10178, 1330, 31408, 198, 6738, 28034, 10178, 13, 19608, 292, 1039, 1330, 29060, 8808, 628, 198, 198, 2, 13328, 121, 239, 163, 119, 250, 162, 101, 94, 161, 252, 233, 22522, 248, 20046, 231, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 617, 4566, 198, 220, 220, 220, 4566, 796, 1391, 6, 43501, 62, 7857, 10354, 5598, 11, 705, 538, 5374, 62, 22510, 10354, 1802, 11, 705, 14050, 10354, 657, 13, 8298, 11, 705, 259, 62, 30053, 10354, 2579, 1635, 2579, 11, 705, 448, 62, 30053, 10354, 838, 92, 198, 220, 220, 220, 4512, 62, 29356, 11, 1332, 62, 29356, 796, 651, 62, 7890, 22784, 651, 62, 7890, 7, 32109, 28, 25101, 8, 198, 220, 220, 220, 1303, 10545, 101, 94, 161, 252, 233, 22522, 252, 160, 122, 233, 10310, 236, 162, 235, 253, 13783, 109, 49035, 121, 46763, 108, 11, 220, 27670, 246, 44293, 244, 49035, 121, 46763, 108, 198, 220, 220, 220, 2746, 796, 7311, 3419, 198, 220, 220, 220, 34054, 796, 299, 77, 13, 21544, 14539, 28338, 43, 793, 3419, 198, 220, 220, 220, 6436, 7509, 796, 6436, 13, 38475, 35, 7, 19849, 13, 17143, 7307, 22784, 300, 81, 28, 11250, 17816, 14050, 6, 4357, 12858, 28, 15, 13, 24, 8, 198, 220, 220, 220, 1303, 5525, 106, 255, 163, 119, 225, 10310, 236, 38184, 233, 46237, 243, 198, 220, 220, 220, 329, 36835, 287, 2837, 7, 11250, 17816, 538, 5374, 62, 22510, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 76, 7, 19849, 11, 4512, 62, 29356, 8, 198, 220, 220, 220, 1332, 62, 76, 7, 19849, 11, 1332, 62, 29356, 8, 198 ]
2.261641
451
from sys import path; path += [".", ".."] # hacky... from utils import * if __name__ == "__main__": ciphertexts = map(dehex, load_data("4.txt").split("\n")) keyspace = list(range(0x100)) plaintexts = reduce(op.add, [ [xor(ct, [key]) for key in keyspace] for ct in ciphertexts ]) best_plaintext = min(plaintexts, key=englishness) # I like this code message = best_plaintext.decode() assert(message == "Now that the party is jumping\n") print(message.strip())
[ 6738, 25064, 1330, 3108, 26, 3108, 15853, 14631, 33283, 366, 492, 8973, 1303, 8156, 88, 986, 198, 6738, 3384, 4487, 1330, 1635, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 66, 10803, 5239, 82, 796, 3975, 7, 2934, 33095, 11, 3440, 62, 7890, 7203, 19, 13, 14116, 11074, 35312, 7203, 59, 77, 48774, 198, 197, 13083, 10223, 796, 1351, 7, 9521, 7, 15, 87, 3064, 4008, 198, 197, 198, 197, 25638, 5239, 82, 796, 4646, 7, 404, 13, 2860, 11, 685, 198, 197, 197, 58, 87, 273, 7, 310, 11, 685, 2539, 12962, 329, 1994, 287, 8251, 10223, 60, 198, 197, 197, 1640, 269, 83, 287, 38012, 5239, 82, 198, 197, 12962, 198, 197, 198, 197, 13466, 62, 25638, 5239, 796, 949, 7, 25638, 5239, 82, 11, 1994, 28, 39126, 1108, 8, 1303, 314, 588, 428, 2438, 198, 197, 198, 197, 20500, 796, 1266, 62, 25638, 5239, 13, 12501, 1098, 3419, 198, 197, 30493, 7, 20500, 6624, 366, 3844, 326, 262, 2151, 318, 14284, 59, 77, 4943, 198, 197, 4798, 7, 20500, 13, 36311, 28955, 198 ]
2.620879
182
# Copyright 2020 EPAM Systems # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import docker import pytest from pytest_mock import MockFixture from odahuflow.sdk.local import packaging from odahuflow.sdk.local.packaging import start_package from odahuflow.sdk.models import K8sPackager, ModelPackaging, ModelPackagingSpec, PackagingIntegration, \ PackagingIntegrationSpec # Format: ['artifact_name', 'artifact_path', # 'expected_artifact_name', expected_artifact_path] test_data = [ ( 'wine-1.0', '/odahu/training', 'wine-1.0', '/odahu/training' ), ( 'wine-1.0.zip', '/odahu/training', 'wine-1.0', '/odahu/training' ), ( 'wine-1.0.zip.zip', None, 'wine-1.0.zip', '/odahu/default_output' ) ] DEFAULT_OUTPUT_DIR = '/odahu/default_output' @pytest.mark.parametrize(['artifact_name', 'artifact_path', 'expected_artifact_name', 'expected_artifact_path'], test_data)
[ 2, 220, 15069, 12131, 14724, 2390, 11998, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 36253, 198, 198, 11748, 12972, 9288, 198, 6738, 12972, 9288, 62, 76, 735, 1330, 44123, 37, 9602, 198, 198, 6738, 16298, 12196, 11125, 13, 21282, 74, 13, 12001, 1330, 16846, 198, 6738, 16298, 12196, 11125, 13, 21282, 74, 13, 12001, 13, 8002, 3039, 1330, 923, 62, 26495, 198, 6738, 16298, 12196, 11125, 13, 21282, 74, 13, 27530, 1330, 509, 23, 82, 11869, 3536, 11, 9104, 11869, 3039, 11, 9104, 11869, 3039, 22882, 11, 6400, 3039, 34500, 1358, 11, 3467, 198, 220, 220, 220, 6400, 3039, 34500, 1358, 22882, 198, 198, 2, 18980, 25, 37250, 433, 29660, 62, 3672, 3256, 705, 433, 29660, 62, 6978, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 62, 433, 29660, 62, 3672, 3256, 2938, 62, 433, 29660, 62, 6978, 60, 198, 9288, 62, 7890, 796, 685, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39002, 12, 16, 13, 15, 3256, 31051, 375, 12196, 14, 34409, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39002, 12, 16, 13, 15, 3256, 31051, 375, 12196, 14, 34409, 6, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39002, 12, 16, 13, 15, 13, 13344, 3256, 31051, 375, 12196, 14, 34409, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39002, 12, 16, 13, 15, 3256, 31051, 375, 12196, 14, 34409, 6, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39002, 12, 16, 13, 15, 13, 13344, 13, 13344, 3256, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39002, 12, 16, 13, 15, 13, 13344, 3256, 31051, 375, 12196, 14, 12286, 62, 22915, 6, 198, 220, 220, 220, 1267, 198, 60, 198, 198, 7206, 38865, 62, 2606, 7250, 3843, 62, 34720, 796, 31051, 375, 12196, 14, 12286, 62, 22915, 6, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 17816, 433, 29660, 62, 3672, 3256, 705, 433, 29660, 62, 6978, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 62, 433, 29660, 62, 3672, 3256, 705, 40319, 62, 433, 29660, 62, 6978, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 8, 198 ]
2.624357
583
# Generated by Django 3.0.7 on 2020-06-29 22:25 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 22, 319, 12131, 12, 3312, 12, 1959, 2534, 25, 1495, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import rospy from yaw_controller import YawController from lowpass import LowPassFilter from pid import PID GAS_DENSITY = 2.858 ONE_MPH = 0.44704
[ 11748, 686, 2777, 88, 198, 6738, 331, 707, 62, 36500, 1330, 575, 707, 22130, 198, 6738, 1877, 6603, 1330, 7754, 14478, 22417, 198, 6738, 46514, 1330, 37022, 628, 198, 38, 1921, 62, 35, 16938, 9050, 796, 362, 13, 23, 3365, 198, 11651, 62, 7378, 39, 796, 657, 13, 2598, 32869, 628, 628, 198 ]
2.867925
53
"""Unit tests for github4.api.""" import unittest.mock import github4 class TestAPI(unittest.TestCase): """All tests for the github4.api module.""" def test_enterprise_login(self): """Show that github4.enterprise_login returns GitHubEnterprise.""" args = ("login", "password", None, "https://url.com/", None) with unittest.mock.patch.object(github4.GitHubEnterprise, "login") as login: g = github4.enterprise_login(*args) assert isinstance(g, github4.GitHubEnterprise) login.assert_called_once_with("login", "password", None, None) def test_login(self): """Show that github4.login proxies to GitHub.""" args = ("login", "password", None, None) with unittest.mock.patch.object(github4.GitHub, "login") as login: g = github4.login(*args) assert isinstance(g, github4.GitHub) assert not isinstance(g, github4.GitHubEnterprise) login.assert_called_once_with(*args)
[ 37811, 26453, 5254, 329, 33084, 19, 13, 15042, 526, 15931, 198, 11748, 555, 715, 395, 13, 76, 735, 198, 198, 11748, 33084, 19, 628, 198, 4871, 6208, 17614, 7, 403, 715, 395, 13, 14402, 20448, 2599, 628, 220, 220, 220, 37227, 3237, 5254, 329, 262, 33084, 19, 13, 15042, 8265, 526, 15931, 628, 220, 220, 220, 825, 1332, 62, 9255, 7919, 62, 38235, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15307, 326, 33084, 19, 13, 9255, 7919, 62, 38235, 5860, 21722, 17469, 7919, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 5855, 38235, 1600, 366, 28712, 1600, 6045, 11, 366, 5450, 1378, 6371, 13, 785, 14, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 555, 715, 395, 13, 76, 735, 13, 17147, 13, 15252, 7, 12567, 19, 13, 38, 270, 16066, 17469, 7919, 11, 366, 38235, 4943, 355, 17594, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 796, 33084, 19, 13, 9255, 7919, 62, 38235, 46491, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 70, 11, 33084, 19, 13, 38, 270, 16066, 17469, 7919, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17594, 13, 30493, 62, 7174, 62, 27078, 62, 4480, 7203, 38235, 1600, 366, 28712, 1600, 6045, 11, 6045, 8, 628, 220, 220, 220, 825, 1332, 62, 38235, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15307, 326, 33084, 19, 13, 38235, 41775, 284, 21722, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 5855, 38235, 1600, 366, 28712, 1600, 6045, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 555, 715, 395, 13, 76, 735, 13, 17147, 13, 15252, 7, 12567, 19, 13, 38, 270, 16066, 11, 366, 38235, 4943, 355, 17594, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 796, 33084, 19, 13, 38235, 46491, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 70, 11, 33084, 19, 13, 38, 270, 16066, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 407, 318, 39098, 7, 70, 11, 33084, 19, 13, 38, 270, 16066, 17469, 7919, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17594, 13, 30493, 62, 7174, 62, 27078, 62, 4480, 46491, 22046, 8, 198 ]
2.41866
418
import json import pytest import responses from filepreviews import API_URL, FilePreviews, exceptions file_previews = FilePreviews(api_key="DUMMY_API_KEY", api_secret="DUMMY_SECRET_KEY") @responses.activate @responses.activate @responses.activate @responses.activate @responses.activate
[ 11748, 33918, 198, 198, 11748, 12972, 9288, 198, 11748, 9109, 198, 198, 6738, 2393, 3866, 33571, 1330, 7824, 62, 21886, 11, 9220, 6719, 33571, 11, 13269, 198, 198, 7753, 62, 3866, 33571, 796, 9220, 6719, 33571, 7, 15042, 62, 2539, 2625, 35, 5883, 26708, 62, 17614, 62, 20373, 1600, 40391, 62, 21078, 2625, 35, 5883, 26708, 62, 23683, 26087, 62, 20373, 4943, 628, 198, 31, 16733, 274, 13, 39022, 628, 198, 31, 16733, 274, 13, 39022, 628, 198, 31, 16733, 274, 13, 39022, 628, 198, 31, 16733, 274, 13, 39022, 628, 198, 31, 16733, 274, 13, 39022, 198 ]
3.061224
98
from ursina import * from ursina import curve from particles import ParticleSystem sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0)
[ 6738, 220, 1834, 1437, 1330, 1635, 198, 6738, 220, 1834, 1437, 1330, 12133, 198, 6738, 13166, 1330, 2142, 1548, 11964, 198, 198, 12683, 796, 37456, 2124, 25, 532, 16, 611, 2124, 1279, 657, 2073, 357, 16, 611, 2124, 1875, 657, 2073, 657, 8 ]
3.186047
43
import numpy as np DISTRIBUTION_SIZE = 10 NEGATIVE_THRESHOLD = -2.5
[ 11748, 299, 32152, 355, 45941, 198, 198, 26288, 5446, 9865, 35354, 62, 33489, 796, 838, 198, 45, 7156, 37045, 62, 4221, 19535, 39, 15173, 796, 532, 17, 13, 20, 198 ]
2.3
30
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from rlkit.torch.core import PyTorchModule from rlkit.torch.networks import Mlp, identity from rlkit.torch import pytorch_util as ptu from copy import deepcopy # self.V_part = V_net # # this is a hack so it's not added as a submodule # self.target_V_part = [deepcopy(V_net)] # self.soft_target_V_tau = soft_target_V_tau # def cuda(self, *args, **kwargs): # super().cuda(*args, **kwargs) # self.target_V_part[0].cuda() # def forward(self, obs_batch, act_batch, z_batch=None, pol_log_prob=None, next_obs_batch=None): # obs_batch = self.obs_processor(obs_batch, False, z_batch) # next_obs_batch = self.obs_processor(next_obs_batch, False, z_batch) # r = self.r_part(obs_batch) # V_s = self.V_part(obs_batch) # V_s_prime = self.target_V_part[0](next_obs_batch).detach() # shaping = self.gamma*V_s_prime - V_s # f = r + shaping # disc_logits = f - pol_log_prob # clamped_disc_logits = torch.clamp(disc_logits, min=-1.0*self.clamp_magnitude, max=self.clamp_magnitude) # return clamped_disc_logits, r, shaping # def _update_target_V_part(self): # ptu.soft_update_from_to(self.V_part, self.target_V_part[0], self.soft_target_V_tau)
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 198, 6738, 374, 75, 15813, 13, 13165, 354, 13, 7295, 1330, 9485, 15884, 354, 26796, 198, 6738, 374, 75, 15813, 13, 13165, 354, 13, 3262, 5225, 1330, 337, 34431, 11, 5369, 198, 6738, 374, 75, 15813, 13, 13165, 354, 1330, 12972, 13165, 354, 62, 22602, 355, 279, 28047, 198, 198, 6738, 4866, 1330, 2769, 30073, 628, 628, 198, 220, 220, 220, 220, 628, 198, 220, 220, 220, 220, 628, 220, 220, 220, 220, 628, 220, 220, 220, 220, 628, 220, 220, 220, 220, 628, 220, 220, 220, 220, 628, 220, 220, 220, 220, 628, 628, 628, 628, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 53, 62, 3911, 796, 569, 62, 3262, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 428, 318, 257, 8156, 523, 340, 338, 407, 2087, 355, 257, 850, 21412, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 16793, 62, 53, 62, 3911, 796, 685, 22089, 30073, 7, 53, 62, 3262, 15437, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 4215, 62, 16793, 62, 53, 62, 83, 559, 796, 2705, 62, 16793, 62, 53, 62, 83, 559, 198, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 825, 269, 15339, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2208, 22446, 66, 15339, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 16793, 62, 53, 62, 3911, 58, 15, 4083, 66, 15339, 3419, 198, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 825, 2651, 7, 944, 11, 10201, 62, 43501, 11, 719, 62, 43501, 11, 1976, 62, 43501, 28, 14202, 11, 755, 62, 6404, 62, 1676, 65, 28, 14202, 11, 1306, 62, 8158, 62, 43501, 28, 14202, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 10201, 62, 43501, 796, 2116, 13, 8158, 62, 41341, 7, 8158, 62, 43501, 11, 10352, 11, 1976, 62, 43501, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1306, 62, 8158, 62, 43501, 796, 2116, 13, 8158, 62, 41341, 7, 19545, 62, 8158, 62, 43501, 11, 10352, 11, 1976, 62, 43501, 8, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 374, 796, 2116, 13, 81, 62, 3911, 7, 8158, 62, 43501, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 569, 62, 82, 796, 2116, 13, 53, 62, 3911, 7, 8158, 62, 43501, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 569, 62, 82, 62, 35505, 796, 2116, 13, 16793, 62, 53, 62, 3911, 58, 15, 16151, 19545, 62, 8158, 62, 43501, 737, 15255, 620, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 23610, 796, 2116, 13, 28483, 2611, 9, 53, 62, 82, 62, 35505, 532, 569, 62, 82, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 796, 374, 1343, 23610, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 1221, 62, 6404, 896, 796, 277, 532, 755, 62, 6404, 62, 1676, 65, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 537, 13322, 62, 15410, 62, 6404, 896, 796, 28034, 13, 565, 696, 7, 15410, 62, 6404, 896, 11, 949, 10779, 16, 13, 15, 9, 944, 13, 565, 696, 62, 76, 4660, 3984, 11, 3509, 28, 944, 13, 565, 696, 62, 76, 4660, 3984, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 537, 13322, 62, 15410, 62, 6404, 896, 11, 374, 11, 23610, 628, 198, 220, 220, 220, 1303, 825, 4808, 19119, 62, 16793, 62, 53, 62, 3911, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 279, 28047, 13, 4215, 62, 19119, 62, 6738, 62, 1462, 7, 944, 13, 53, 62, 3911, 11, 2116, 13, 16793, 62, 53, 62, 3911, 58, 15, 4357, 2116, 13, 4215, 62, 16793, 62, 53, 62, 83, 559, 8, 198 ]
2.153274
672
import argparse import sys import json if __name__ == "__main__": main()
[ 198, 11748, 1822, 29572, 198, 11748, 25064, 198, 11748, 33918, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 220, 220, 1388, 3419, 198 ]
2.612903
31
from distutils.core import setup from Cython.Build import cythonize from distutils.extension import Extension import numpy as np sourcefiles = ['array_tools.pyx', '_sum.cpp'] extra_compile_args = [] libraries = [] ext = [Extension('*', sourcefiles, extra_compile_args=extra_compile_args, libraries=[], language='c++') ] setup(ext_modules=cythonize(ext), include_dirs=[np.get_include()])
[ 6738, 1233, 26791, 13, 7295, 1330, 9058, 198, 6738, 327, 7535, 13, 15580, 1330, 3075, 400, 261, 1096, 198, 6738, 1233, 26791, 13, 2302, 3004, 1330, 27995, 198, 11748, 299, 32152, 355, 45941, 198, 198, 10459, 16624, 796, 37250, 18747, 62, 31391, 13, 9078, 87, 3256, 705, 62, 16345, 13, 20322, 20520, 198, 26086, 62, 5589, 576, 62, 22046, 796, 17635, 198, 75, 11127, 796, 17635, 198, 198, 2302, 796, 685, 11627, 3004, 10786, 9, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 16624, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 5589, 576, 62, 22046, 28, 26086, 62, 5589, 576, 62, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12782, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 11639, 66, 4880, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 198, 40406, 7, 2302, 62, 18170, 28, 948, 400, 261, 1096, 7, 2302, 828, 2291, 62, 15908, 82, 41888, 37659, 13, 1136, 62, 17256, 3419, 12962, 628 ]
2.517442
172
import textwrap from typing import Iterator, Any from primehub import Helpful, cmd, Module from primehub.utils.display import display_tree_like_format
[ 11748, 2420, 37150, 198, 6738, 19720, 1330, 40806, 1352, 11, 4377, 198, 198, 6738, 6994, 40140, 1330, 21656, 11, 23991, 11, 19937, 198, 6738, 6994, 40140, 13, 26791, 13, 13812, 1330, 3359, 62, 21048, 62, 2339, 62, 18982, 628, 198 ]
3.85
40
from django.shortcuts import render from django.views.generic import TemplateView from django.http import HttpResponse, JsonResponse, HttpResponseForbidden, HttpResponseBadRequest import ccxt # Create your views here. exchangeIns = {}
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 37350, 7680, 198, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 11, 449, 1559, 31077, 11, 367, 29281, 31077, 1890, 37978, 11, 367, 29281, 31077, 22069, 18453, 198, 11748, 36624, 742, 628, 198, 2, 13610, 534, 5009, 994, 13, 198, 198, 1069, 3803, 20376, 796, 23884, 198 ]
3.621212
66
/usr/lib/python3.4/tokenize.py
[ 14, 14629, 14, 8019, 14, 29412, 18, 13, 19, 14, 30001, 1096, 13, 9078 ]
2.142857
14
#!/usr/bin/python # # Copyright 2018-2020 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime from typing import Dict, Optional from polyaxon.exceptions import PolyaxonCompilerError from polyaxon.polyflow import V1CompiledOperation from polyaxon.polypod.compiler.resolver.base import BaseResolver
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 198, 2, 15069, 2864, 12, 42334, 12280, 897, 261, 11, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 360, 713, 11, 32233, 198, 198, 6738, 7514, 897, 261, 13, 1069, 11755, 1330, 12280, 897, 261, 7293, 5329, 12331, 198, 6738, 7514, 897, 261, 13, 35428, 11125, 1330, 569, 16, 7293, 3902, 32180, 198, 6738, 7514, 897, 261, 13, 35428, 33320, 13, 5589, 5329, 13, 411, 14375, 13, 8692, 1330, 7308, 4965, 14375, 628 ]
3.647826
230
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2017-2020 The Project X-Ray Authors. # # Use of this source code is governed by a ISC-style # license that can be found in the LICENSE file or at # https://opensource.org/licenses/ISC # # SPDX-License-Identifier: ISC """ IOB bits are more complicated than can be easily expressed to segmaker. There are couple cases that need to be handled here: - There are some bits that are always set for IN-only ports, but are cleared selectively for OUT and INOUT ports. - There are bits per each IOSTANDARD, in addition to drive patterns. These can be merged to provide unique "(IOSTANDARD, DRIVE)" bit sets. """ import argparse def filter_bits(site, bits): """ Seperate top and bottom bits. Some IOSTANDARD bits are tile wide, but really only apply to a half. It is hard to write a fuzzer for this, but it is easy to filter by site, and all bits appear to have a nice hard halve seperatation in the bitidx. """ if site == 'IOB_Y0': min_bitidx = 64 max_bitidx = 127 elif site == 'IOB_Y1': min_bitidx = 0 max_bitidx = 63 else: assert False, site return frozenset(inner()) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 2177, 12, 42334, 220, 383, 4935, 1395, 12, 19591, 46665, 13, 198, 2, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 3180, 34, 12, 7635, 198, 2, 5964, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 393, 379, 198, 2, 3740, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 37719, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 3180, 34, 198, 37811, 314, 9864, 10340, 389, 517, 8253, 621, 460, 307, 3538, 6241, 284, 384, 70, 10297, 13, 198, 1858, 389, 3155, 2663, 326, 761, 284, 307, 12118, 994, 25, 198, 198, 12, 1318, 389, 617, 10340, 326, 389, 1464, 900, 329, 3268, 12, 8807, 14090, 11, 475, 389, 12539, 198, 220, 39119, 329, 16289, 290, 3268, 12425, 14090, 13, 198, 12, 1318, 389, 10340, 583, 1123, 314, 10892, 6981, 9795, 11, 287, 3090, 284, 3708, 7572, 13, 220, 2312, 198, 220, 460, 307, 23791, 284, 2148, 3748, 30629, 9399, 2257, 6981, 9795, 11, 10560, 9306, 16725, 1643, 5621, 13, 198, 37811, 198, 11748, 1822, 29572, 628, 628, 198, 198, 4299, 8106, 62, 9895, 7, 15654, 11, 10340, 2599, 198, 220, 220, 220, 37227, 1001, 30052, 1353, 290, 4220, 10340, 13, 628, 220, 220, 220, 2773, 314, 10892, 6981, 9795, 10340, 389, 17763, 3094, 11, 475, 1107, 691, 4174, 284, 257, 2063, 13, 198, 220, 220, 220, 632, 318, 1327, 284, 3551, 257, 26080, 263, 329, 428, 11, 475, 340, 318, 2562, 284, 8106, 416, 2524, 11, 198, 220, 220, 220, 290, 477, 10340, 1656, 284, 423, 257, 3621, 1327, 10284, 303, 384, 525, 265, 341, 287, 262, 1643, 312, 87, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2524, 6624, 705, 9399, 33, 62, 56, 15, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2545, 312, 87, 796, 5598, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2545, 312, 87, 796, 18112, 198, 220, 220, 220, 1288, 361, 2524, 6624, 705, 9399, 33, 62, 56, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2545, 312, 87, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2545, 312, 87, 796, 8093, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10352, 11, 2524, 628, 220, 220, 220, 1441, 8400, 8247, 316, 7, 5083, 28955, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.824719
445
import feedparser import urllib.parse from random import shuffle, seed UKR_NEWS = ["https://news.yandex.ua/index.rss", "http://www.ukr-portal.com/php/rss_1.xml", "http://news.finance.ua/ru/rss", "http://www.ua.rian.ru/export/rss2/index.xml", "http://feeds.feedburner.com/zaxid/rss_ua", "http://www.dt.ua/export.rss", "https://malina-mix.com/anekdots.xml"] def lookup(geo, lang="us"): """Looks up articles for geo.""" # check cache for geo if geo in lookup.cache: if lookup.query_counter[geo] < 10: lookup.query_counter[geo] += 1 return lookup.cache[geo] else: del lookup.cache[geo] del lookup.query_counter[geo] if geo == "H++": lookup.cache[geo] = {"link": "http://programming.kr.ua/ru", "title": "Главная"}, {"link": "http://programming.kr.ua/ru/news", "title": "News"}, {"link": "http://programming.kr.ua/ru/potential", "title": "Возможности"}, {"link": "http://programming.kr.ua/ru/about#contacts", "title": "Контакты"} lookup.query_counter[geo] = 1 return lookup.cache[geo] url = "http://news.google.com/news?ned=" + lang+ "&geo={}&output=rss" # get feed from Google feed = feedparser.parse(url.format(urllib.parse.quote(geo, safe=""))) # if no items in feed, get feed from other if not feed["items"]: if lang == "ru_ua": # get random UKR_NEWS seed() shuffle(UKR_NEWS) feed = feedparser.parse(UKR_NEWS[0]) if not feed["items"]: # there is always news feed = feedparser.parse("http://feeds.feedburner.com/zaxid/rss_ua") else: # get from Onion feed = feedparser.parse("http://www.theonion.com/feeds/rss") # cache results lookup.cache[geo] = [{"link": item["link"], "title": item["title"]} for item in feed["items"]] # add counter lookup.query_counter[geo] = 1 # return results return lookup.cache[geo] # initialize cache lookup.cache = {} # initialize query counter lookup.query_counter = {}
[ 11748, 3745, 48610, 198, 11748, 2956, 297, 571, 13, 29572, 198, 6738, 4738, 1330, 36273, 11, 9403, 198, 198, 15039, 49, 62, 49597, 796, 14631, 5450, 1378, 10827, 13, 88, 392, 1069, 13, 6413, 14, 9630, 13, 42216, 1600, 366, 4023, 1378, 2503, 13, 2724, 81, 12, 634, 282, 13, 785, 14, 10121, 14, 42216, 62, 16, 13, 19875, 1600, 366, 4023, 1378, 10827, 13, 69, 14149, 13, 6413, 14, 622, 14, 42216, 1600, 366, 4023, 1378, 2503, 13, 6413, 13, 4484, 13, 622, 14, 39344, 14, 42216, 17, 14, 9630, 13, 19875, 1600, 366, 4023, 1378, 12363, 82, 13, 12363, 10899, 263, 13, 785, 14, 89, 897, 312, 14, 42216, 62, 6413, 1600, 366, 4023, 1378, 2503, 13, 28664, 13, 6413, 14, 39344, 13, 42216, 1600, 366, 5450, 1378, 7617, 1437, 12, 19816, 13, 785, 14, 272, 988, 67, 1747, 13, 19875, 8973, 198, 198, 4299, 35847, 7, 469, 78, 11, 42392, 2625, 385, 1, 2599, 198, 220, 220, 220, 37227, 41102, 510, 6685, 329, 40087, 526, 15931, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2198, 12940, 329, 40087, 198, 220, 220, 220, 611, 40087, 287, 35847, 13, 23870, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 35847, 13, 22766, 62, 24588, 58, 469, 78, 60, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35847, 13, 22766, 62, 24588, 58, 469, 78, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 35847, 13, 23870, 58, 469, 78, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 35847, 13, 23870, 58, 469, 78, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 35847, 13, 22766, 62, 24588, 58, 469, 78, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 40087, 6624, 366, 39, 4880, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 35847, 13, 23870, 58, 469, 78, 60, 796, 19779, 8726, 1298, 366, 4023, 1378, 23065, 2229, 13, 38584, 13, 6413, 14, 622, 1600, 366, 7839, 1298, 366, 140, 241, 30143, 16142, 38857, 22177, 16142, 40623, 25719, 19779, 8726, 1298, 366, 4023, 1378, 23065, 2229, 13, 38584, 13, 6413, 14, 622, 14, 10827, 1600, 366, 7839, 1298, 366, 9980, 25719, 19779, 8726, 1298, 366, 4023, 1378, 23065, 2229, 13, 38584, 13, 6413, 14, 622, 14, 13059, 1843, 1600, 366, 7839, 1298, 366, 140, 240, 25443, 115, 43108, 25443, 114, 22177, 15166, 21727, 20375, 18849, 25719, 19779, 8726, 1298, 366, 4023, 1378, 23065, 2229, 13, 38584, 13, 6413, 14, 622, 14, 10755, 2, 3642, 8656, 1600, 366, 7839, 1298, 366, 140, 248, 15166, 22177, 20375, 16142, 31583, 20375, 45035, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 35847, 13, 22766, 62, 24588, 58, 469, 78, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 35847, 13, 23870, 58, 469, 78, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 19016, 796, 366, 4023, 1378, 10827, 13, 13297, 13, 785, 14, 10827, 30, 2817, 2625, 1343, 42392, 10, 366, 5, 469, 78, 34758, 92, 5, 22915, 28, 42216, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 651, 3745, 422, 3012, 198, 220, 220, 220, 3745, 796, 3745, 48610, 13, 29572, 7, 6371, 13, 18982, 7, 333, 297, 571, 13, 29572, 13, 22708, 7, 469, 78, 11, 3338, 33151, 22305, 628, 220, 220, 220, 1303, 611, 645, 3709, 287, 3745, 11, 651, 3745, 422, 584, 198, 220, 220, 220, 611, 407, 3745, 14692, 23814, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 42392, 6624, 366, 622, 62, 6413, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 4738, 3482, 49, 62, 49597, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 7, 15039, 49, 62, 49597, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 796, 3745, 48610, 13, 29572, 7, 15039, 49, 62, 49597, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3745, 14692, 23814, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 612, 318, 1464, 1705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 796, 3745, 48610, 13, 29572, 7203, 4023, 1378, 12363, 82, 13, 12363, 10899, 263, 13, 785, 14, 89, 897, 312, 14, 42216, 62, 6413, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 422, 34733, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 796, 3745, 48610, 13, 29572, 7203, 4023, 1378, 2503, 13, 1169, 261, 295, 13, 785, 14, 12363, 82, 14, 42216, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 12940, 2482, 198, 220, 220, 220, 35847, 13, 23870, 58, 469, 78, 60, 796, 685, 4895, 8726, 1298, 2378, 14692, 8726, 33116, 366, 7839, 1298, 2378, 14692, 7839, 8973, 92, 329, 2378, 287, 3745, 14692, 23814, 8973, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 751, 3753, 198, 220, 220, 220, 35847, 13, 22766, 62, 24588, 58, 469, 78, 60, 796, 352, 628, 220, 220, 220, 1303, 1441, 2482, 198, 220, 220, 220, 1441, 35847, 13, 23870, 58, 469, 78, 60, 198, 198, 2, 41216, 12940, 198, 5460, 929, 13, 23870, 796, 23884, 198, 198, 2, 41216, 12405, 3753, 198, 5460, 929, 13, 22766, 62, 24588, 796, 23884, 628 ]
2.121951
1,025
# -*- coding: utf-8 -*- """ Single Molecule Molecular Dynamics Code Created 2018 by David of Theoretically Speaking Please Modify! """ from __future__ import print_function import os import sys import numpy as np # Global variables for unit conversions hartree = 4.35974465e-18 # J, atomic unit of energy emass = 5.486e-4 # kg dalton = 1.660539040e-27 # kg avo = 6.02214086e23 # mol^-1 emass = 9.109534e-28 # g, atomic unit of mass boltz = 1.38064852e-23 / hartree # E_h K^-1 bohr = 0.52917721067 # Angstroms hbar = 6.626070040e-34 # Js atomic_time = hbar / hartree # Global files to prevent constant opening/closing xyz_file = open("coordinates.xyz", "w") energy_file = open("energies.dat", "w") def display_header(): """Write opening message to screen""" print_dashed_line() print("Welcome to the Theoretically Speaking molecular dynamics code") print_dashed_line() def print_dashed_line(length = 65): """Write --- line of given length to screen""" line = "-" * length print(line) def string_to_boolean(string): """Converts input string of True or False to a boolean True or False""" string = string.lower().strip() true_strings = ["true", "t"] false_strings = ["false", "f"] if string in true_strings: return True elif string in false_strings: return False raise ValueError("Bad Boolean Value: " + string) def get_input_parameters(): """Ask user for input file name, read input parameters and store in dictionary""" # Get list of available input files input_files = get_recursive_file_list("inpt") # Ask user to select input file from list if len(input_files) == 0: # If cannot find any input files close program print("No available input files. Exiting.") sys.exit() else: while True: print("Select an input file from the list:") for i, file in enumerate(input_files): print("[{0}] {1}".format(i, file)) try: user_selection = int(input()) input_file = input_files[user_selection] print("Input file selected: {0}".format(input_file)) print_dashed_line() break except: pass # Open input file and read parameters into dictionary parameters = {} with open(input_file, "r") as file: print("Reading input file") # Skip header for i in range(2): file.readline() # Simulation parameters try: for i in range(2): file.readline() parameters["time_total"] = float(file.readline().split()[0]) / (atomic_time * 1e12) parameters["time_step"] = float(file.readline().split()[0]) / (atomic_time * 1e12) parameters["box_size"] = float(file.readline().split()[0]) / bohr parameters["write_freq"] = float(file.readline().split()[0]) / (atomic_time * 1e12) print(" - Simulation parameters read") except: print("Error in simulation parameters") sys.exit() # Atom data try: for i in range(2): file.readline() num_atoms = parameters["num_atoms"] = int(file.readline().split()[0]) parameters["random_displacement"] = string_to_boolean(file.readline().split()[0]) parameters["random_displacement_limit"] = float(file.readline().split()[0]) / bohr file.readline() # skip comment name_to_index = {} # dictionary to convert atom name to array index parameters["atom_names"] = [] # empty list for names parameters["atom_masses"] = np.empty(num_atoms) # empty array for masses parameters["atom_crds"] = np.empty([num_atoms, 3]) # empty array for coordinates for i in range(num_atoms): line = file.readline().split() name_to_index[line[0]] = i parameters["atom_names"].append(line[0]) parameters["atom_masses"][i] = float(line[1]) / (avo * emass) parameters["atom_crds"][i] = np.array(line[2:5], dtype = float) / bohr print(" - Atom data read") except: print("Error in atom data") sys.exit() # Bond Data try: for i in range(2): file.readline() num_bonds = parameters["num_bonds"] = int(file.readline().split()[0]) file.readline() # skip comment parameters["bond_pairs"] = np.empty([num_bonds, 2], dtype=int) # empty array for indices of bonded atom pairs parameters["bond_params"] = np.empty([num_bonds, 2]) # empty array for harmonic bond r0 and k for i in range(num_bonds): line = file.readline().split() parameters["bond_pairs"][i, 0] = name_to_index[line[0]] parameters["bond_pairs"][i, 1] = name_to_index[line[1]] parameters["bond_params"][i, 0] = float(line[2]) / bohr parameters["bond_params"][i, 1] = float(line[3]) * (bohr * 1e-10)**2 / hartree print(" - Bond data read") except: print("Error in bond data") sys.exit() print("Read successful") print_dashed_line() return parameters def get_recursive_file_list(ext): """Get list of files with specifed extension in current directory and all subdirectories""" # Search over all files in all subdirectories, add to list if have required extension files = [] for dirpath, dirname, filenames in os.walk("./"): for filename in filenames: if filename.endswith(ext): filepath = os.path.join(dirpath,filename) files.append(filepath) return files def apply_periodic_boundary_condition(crds, box_size): """Apply periodicity to keep atoms within simulation box""" crds[crds < 0] += box_size crds[crds > box_size] -= box_size return crds def minimum_image_displacement(crd_0, crd_1, box_size): """Find displacement between nearest periodic images of atom pair""" displacement = crd_0 - crd_1 displacement[displacement < -box_size / 2] += box_size displacement[displacement > box_size / 2] -= box_size return displacement def initialise_coordinates(crds, box_size, displace, limit): """Recentre atoms in simulation box, apply periodic boundary, apply random displacement""" crds += box_size / 2 crds = apply_periodic_boundary_condition(crds, box_size) if displace: displacements = np.random.uniform(low = -limit, high = limit, size = crds.shape) crds += displacements return crds def calculate_energy(masses, crds, velocities, bond_pairs, bond_params, box_size): """Calculate kinetic, potential and total energy of system""" kinetic_energy = 0.5 * (masses * np.sum(velocities ** 2, axis=1)).sum() # U=0.5*m*v^2 # Calculate harmonic potential energy using: U=0.5*k(r-r0)^2 for i, bond in enumerate(bond_pairs): atom_0, atom_1 = bond[0], bond[1] displacement = minimum_image_displacement(crds[atom_0, :], crds[atom_1, :], box_size) distance = np.linalg.norm(displacement) potential_energy = 0.5 * bond_params[i, 1] * (distance - bond_params[i, 0]) ** 2 total_energy = kinetic_energy + potential_energy # Total energy as sum of ke and pe return np.array([kinetic_energy, potential_energy, total_energy]) def update_accelerations(masses, crds, bond_pairs, bond_params, box_size): """Calculate the acceleration on each atom using potential model and Newton's laws of motion""" # Calculate forces using Hooke's law: F=-k(r-r0) # Convert to acceleration using Newton's laws: F=ma, action has opposite reaction accelerations = np.zeros_like(crds) # x,y,z accelerations for each atom for i, bond in enumerate(bond_pairs): atom_0, atom_1 = bond[0], bond[1] displacement = minimum_image_displacement(crds[atom_0, :], crds[atom_1, :], box_size) distance = np.linalg.norm(displacement) force_direction = displacement / distance force_magnitude = - bond_params[i, 1] * (distance - bond_params[i, 0]) force = force_magnitude * force_direction accelerations[atom_0] += force / masses[atom_0] accelerations[atom_1] -= force / masses[atom_1] return accelerations def update_coordinates(crds, accelerations, velocities, time_step, box_size): """Update coordinates using: x(t+dt)=x(t)+v(t)*dt+0.5*a(t)*dt**2""" crds += velocities * time_step + 0.5 * accelerations * time_step ** 2 crds = apply_periodic_boundary_condition(crds, box_size) return crds def update_velocities(velocities, accelerations_start, accelerations_end, time_step): """Update velocities using: v(t+dt)=v(t)+0.5*dt*(a(t)+a(t+dt))""" velocities += 0.5 * time_step * (accelerations_start + accelerations_end) return velocities def write_output_files(time_step, num_atoms, names, crds, energies): """Writes coordinates in XYZ file type to 'coordinates.xyz' Write kinetic, potential and total energies to 'energies.dat'""" # Write XYZ file xyz_file.write("{0} \n\n".format(num_atoms)) for i, crd in enumerate(crds): xyz = crd * bohr xyz_file.write("{0} {1:.6f} {2:.6f} {3:.6f} \n".format(names[i], xyz[0], xyz[1], xyz[2])) # Write energies energy = energies * hartree * avo * 1e-3 energy_file.write("{0} {1} {2} {3} \n".format(time_step, energy[0], energy[1], energy[2])) def main(): """Handle input/output and molecular dynamics velocity-verlet algorithm""" # Display opening message display_header() # Read user parameters from input file input_parameters = get_input_parameters() # Unpack parameters time_total = input_parameters["time_total"] time_step = input_parameters["time_step"] box_size = input_parameters["box_size"] write_freq = input_parameters["write_freq"] num_atoms = input_parameters["num_atoms"] displace_atoms = input_parameters["random_displacement"] displacement_limit = input_parameters["random_displacement_limit"] atom_names = input_parameters["atom_names"] atom_masses = input_parameters["atom_masses"] atom_crds = input_parameters["atom_crds"] bond_pairs = input_parameters["bond_pairs"] bond_params = input_parameters["bond_params"] # Recentre coordinates and apply displacements atom_crds = initialise_coordinates(atom_crds, box_size, displace_atoms, displacement_limit) # Initialise Molecular Dynamics Variables num_steps = int(time_total / time_step) # total number of steps of md write_steps = int(write_freq / time_step) # number of steps to write out results atom_vels = np.zeros_like(atom_crds) # velocities in x,y,z directions for all atoms atom_acc_start = atom_acc_end = np.zeros_like(atom_crds) # accelerations at start and end of time step atom_acc_start = update_accelerations(atom_masses, atom_crds, bond_pairs, bond_params, box_size) # calculate initial accelerations system_energy = calculate_energy(atom_masses, atom_crds, atom_vels, bond_pairs, bond_params, box_size) # calculate initial energies write_output_files(0, num_atoms, atom_names, atom_crds, system_energy) # Molecular dynamics print("Performing molecular dynamics simulation") for step in range(1, num_steps+1): # Velocity - Verlet algorithm atom_crds = update_coordinates(atom_crds, atom_acc_start, atom_vels, time_step, box_size) atom_acc_end = update_accelerations(atom_masses, atom_crds, bond_pairs, bond_params, box_size) atom_vels = update_velocities(atom_vels, atom_acc_start, atom_acc_end, time_step) atom_acc_start = atom_acc_end # Write coordinates and energies if step % write_steps == 0: system_energy = calculate_energy(atom_masses, atom_crds, atom_vels, bond_pairs, bond_params, box_size) write_output_files(step, num_atoms, atom_names, atom_crds, system_energy) print("Completion: {:.3f}%".format(100 * float(step) / num_steps)) print_dashed_line() print("Simulation complete \nCoordinates written to coordinates.xyz \nEnergies written to energies.dat") print_dashed_line() # Execute code if main file if __name__ == "__main__": main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 28008, 25726, 23172, 38275, 33806, 6127, 220, 198, 41972, 2864, 416, 3271, 286, 383, 9997, 1146, 21393, 198, 5492, 3401, 1958, 0, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 299, 32152, 355, 45941, 628, 198, 2, 8060, 9633, 329, 4326, 32626, 198, 18647, 631, 796, 604, 13, 2327, 5607, 2598, 2996, 68, 12, 1507, 220, 220, 1303, 449, 11, 17226, 4326, 286, 2568, 198, 368, 562, 796, 642, 13, 34251, 68, 12, 19, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14211, 198, 31748, 1122, 796, 352, 13, 21, 32417, 25964, 1821, 68, 12, 1983, 220, 220, 1303, 14211, 198, 615, 78, 796, 718, 13, 44087, 1415, 2919, 21, 68, 1954, 220, 220, 220, 220, 220, 220, 220, 1303, 18605, 61, 12, 16, 198, 368, 562, 796, 860, 13, 940, 3865, 2682, 68, 12, 2078, 220, 220, 220, 220, 220, 220, 1303, 308, 11, 17226, 4326, 286, 2347, 198, 25593, 89, 796, 352, 13, 23734, 34287, 4309, 68, 12, 1954, 1220, 289, 433, 631, 220, 220, 220, 1303, 412, 62, 71, 509, 61, 12, 16, 198, 65, 1219, 81, 796, 657, 13, 49721, 1558, 4761, 940, 3134, 220, 220, 220, 220, 220, 220, 1303, 2895, 20282, 82, 198, 71, 5657, 796, 718, 13, 5237, 1899, 9879, 1821, 68, 12, 2682, 220, 220, 220, 220, 1303, 449, 82, 198, 47116, 62, 2435, 796, 289, 5657, 1220, 289, 433, 631, 628, 198, 2, 8060, 3696, 284, 2948, 6937, 4756, 14, 565, 2752, 198, 5431, 89, 62, 7753, 796, 1280, 7203, 37652, 17540, 13, 5431, 89, 1600, 366, 86, 4943, 198, 22554, 62, 7753, 796, 1280, 7203, 877, 70, 444, 13, 19608, 1600, 366, 86, 4943, 628, 198, 4299, 3359, 62, 25677, 33529, 198, 220, 220, 220, 37227, 16594, 4756, 3275, 284, 3159, 37811, 628, 220, 220, 220, 3601, 62, 67, 5263, 62, 1370, 3419, 198, 220, 220, 220, 3601, 7203, 14618, 284, 262, 383, 9997, 1146, 21393, 18955, 17262, 2438, 4943, 198, 220, 220, 220, 3601, 62, 67, 5263, 62, 1370, 3419, 628, 198, 4299, 3601, 62, 67, 5263, 62, 1370, 7, 13664, 796, 6135, 2599, 198, 220, 220, 220, 37227, 16594, 11420, 1627, 286, 1813, 4129, 284, 3159, 37811, 628, 220, 220, 220, 1627, 796, 366, 21215, 1635, 4129, 198, 220, 220, 220, 3601, 7, 1370, 8, 628, 198, 4299, 4731, 62, 1462, 62, 2127, 21052, 7, 8841, 2599, 198, 220, 220, 220, 37227, 3103, 24040, 5128, 4731, 286, 6407, 393, 10352, 284, 257, 25131, 6407, 393, 10352, 37811, 628, 220, 220, 220, 4731, 796, 4731, 13, 21037, 22446, 36311, 3419, 198, 220, 220, 220, 2081, 62, 37336, 796, 14631, 7942, 1600, 366, 83, 8973, 198, 220, 220, 220, 3991, 62, 37336, 796, 14631, 9562, 1600, 366, 69, 8973, 198, 220, 220, 220, 611, 4731, 287, 2081, 62, 37336, 25, 1441, 6407, 198, 220, 220, 220, 1288, 361, 4731, 287, 3991, 62, 37336, 25, 1441, 10352, 198, 220, 220, 220, 5298, 11052, 12331, 7203, 22069, 41146, 11052, 25, 366, 1343, 4731, 8, 628, 198, 4299, 651, 62, 15414, 62, 17143, 7307, 33529, 198, 220, 220, 220, 37227, 25214, 2836, 329, 5128, 2393, 1438, 11, 1100, 5128, 10007, 290, 3650, 287, 22155, 37811, 628, 220, 220, 220, 1303, 3497, 1351, 286, 1695, 5128, 3696, 198, 220, 220, 220, 5128, 62, 16624, 796, 651, 62, 8344, 30753, 62, 7753, 62, 4868, 7203, 259, 457, 4943, 628, 220, 220, 220, 1303, 16981, 2836, 284, 2922, 5128, 2393, 422, 1351, 198, 220, 220, 220, 611, 18896, 7, 15414, 62, 16624, 8, 6624, 657, 25, 1303, 1002, 2314, 1064, 597, 5128, 3696, 1969, 1430, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2949, 1695, 5128, 3696, 13, 1475, 1780, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 17563, 281, 5128, 2393, 422, 262, 1351, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 2393, 287, 27056, 378, 7, 15414, 62, 16624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 58, 90, 15, 92, 60, 220, 1391, 16, 92, 1911, 18982, 7, 72, 11, 2393, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 49283, 796, 493, 7, 15414, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7753, 796, 5128, 62, 16624, 58, 7220, 62, 49283, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 20560, 2393, 6163, 25, 1391, 15, 92, 1911, 18982, 7, 15414, 62, 7753, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 67, 5263, 62, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 1208, 628, 220, 220, 220, 1303, 4946, 5128, 2393, 290, 1100, 10007, 656, 22155, 198, 220, 220, 220, 10007, 796, 23884, 198, 220, 220, 220, 351, 1280, 7, 15414, 62, 7753, 11, 366, 81, 4943, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 36120, 5128, 2393, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 32214, 13639, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 2599, 2393, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41798, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 2599, 2393, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 2435, 62, 23350, 8973, 796, 12178, 7, 7753, 13, 961, 1370, 22446, 35312, 3419, 58, 15, 12962, 1220, 357, 47116, 62, 2435, 1635, 352, 68, 1065, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 2435, 62, 9662, 8973, 796, 12178, 7, 7753, 13, 961, 1370, 22446, 35312, 3419, 58, 15, 12962, 1220, 357, 47116, 62, 2435, 1635, 352, 68, 1065, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 3524, 62, 7857, 8973, 796, 12178, 7, 7753, 13, 961, 1370, 22446, 35312, 3419, 58, 15, 12962, 1220, 275, 1219, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 13564, 62, 19503, 80, 8973, 796, 12178, 7, 7753, 13, 961, 1370, 22446, 35312, 3419, 58, 15, 12962, 1220, 357, 47116, 62, 2435, 1635, 352, 68, 1065, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 220, 532, 41798, 10007, 1100, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 287, 18640, 10007, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33102, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 2599, 2393, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 265, 3150, 796, 10007, 14692, 22510, 62, 265, 3150, 8973, 796, 493, 7, 7753, 13, 961, 1370, 22446, 35312, 3419, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 25120, 62, 6381, 489, 5592, 8973, 796, 4731, 62, 1462, 62, 2127, 21052, 7, 7753, 13, 961, 1370, 22446, 35312, 3419, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 25120, 62, 6381, 489, 5592, 62, 32374, 8973, 796, 12178, 7, 7753, 13, 961, 1370, 22446, 35312, 3419, 58, 15, 12962, 1220, 275, 1219, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 961, 1370, 3419, 1303, 14267, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 1462, 62, 9630, 796, 23884, 220, 1303, 22155, 284, 10385, 22037, 1438, 284, 7177, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 37696, 62, 14933, 8973, 796, 17635, 220, 1303, 6565, 1351, 329, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 37696, 62, 76, 13978, 8973, 796, 45941, 13, 28920, 7, 22510, 62, 265, 3150, 8, 220, 1303, 6565, 7177, 329, 14568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 37696, 62, 66, 4372, 82, 8973, 796, 45941, 13, 28920, 26933, 22510, 62, 265, 3150, 11, 513, 12962, 220, 1303, 6565, 7177, 329, 22715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 265, 3150, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 2393, 13, 961, 1370, 22446, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 1462, 62, 9630, 58, 1370, 58, 15, 11907, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 37696, 62, 14933, 1, 4083, 33295, 7, 1370, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 37696, 62, 76, 13978, 1, 7131, 72, 60, 796, 12178, 7, 1370, 58, 16, 12962, 1220, 357, 615, 78, 1635, 795, 562, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 37696, 62, 66, 4372, 82, 1, 7131, 72, 60, 796, 45941, 13, 18747, 7, 1370, 58, 17, 25, 20, 4357, 288, 4906, 796, 12178, 8, 1220, 275, 1219, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 220, 532, 33102, 1366, 1100, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 287, 22037, 1366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12812, 6060, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 2599, 2393, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 65, 24764, 796, 10007, 14692, 22510, 62, 65, 24764, 8973, 796, 493, 7, 7753, 13, 961, 1370, 22446, 35312, 3419, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 961, 1370, 3419, 1303, 14267, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 65, 623, 62, 79, 3468, 8973, 796, 45941, 13, 28920, 26933, 22510, 62, 65, 24764, 11, 362, 4357, 288, 4906, 28, 600, 8, 1303, 6565, 7177, 329, 36525, 286, 40270, 22037, 14729, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 65, 623, 62, 37266, 8973, 796, 45941, 13, 28920, 26933, 22510, 62, 65, 24764, 11, 362, 12962, 1303, 6565, 7177, 329, 49239, 6314, 374, 15, 290, 479, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 65, 24764, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 2393, 13, 961, 1370, 22446, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 65, 623, 62, 79, 3468, 1, 7131, 72, 11, 657, 60, 796, 1438, 62, 1462, 62, 9630, 58, 1370, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 65, 623, 62, 79, 3468, 1, 7131, 72, 11, 352, 60, 796, 1438, 62, 1462, 62, 9630, 58, 1370, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 65, 623, 62, 37266, 1, 7131, 72, 11, 657, 60, 796, 12178, 7, 1370, 58, 17, 12962, 1220, 275, 1219, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 14692, 65, 623, 62, 37266, 1, 7131, 72, 11, 352, 60, 796, 12178, 7, 1370, 58, 18, 12962, 1635, 357, 65, 1219, 81, 1635, 352, 68, 12, 940, 8, 1174, 17, 1220, 289, 433, 631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 220, 532, 12812, 1366, 1100, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 287, 6314, 1366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5569, 4388, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 67, 5263, 62, 1370, 3419, 198, 220, 220, 220, 1441, 10007, 628, 198, 4299, 651, 62, 8344, 30753, 62, 7753, 62, 4868, 7, 2302, 2599, 198, 220, 220, 220, 37227, 3855, 1351, 286, 3696, 351, 1020, 361, 276, 7552, 287, 1459, 8619, 290, 477, 850, 12942, 1749, 37811, 628, 220, 220, 220, 1303, 11140, 625, 477, 3696, 287, 477, 850, 12942, 1749, 11, 751, 284, 1351, 611, 423, 2672, 7552, 198, 220, 220, 220, 3696, 796, 17635, 198, 220, 220, 220, 329, 26672, 6978, 11, 26672, 3672, 11, 1226, 268, 1047, 287, 28686, 13, 11152, 7, 1911, 30487, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 1226, 268, 1047, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29472, 13, 437, 2032, 342, 7, 2302, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 6978, 11, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 13, 33295, 7, 7753, 6978, 8, 198, 220, 220, 220, 1441, 3696, 628, 198, 4299, 4174, 62, 41007, 291, 62, 7784, 560, 62, 31448, 7, 66, 4372, 82, 11, 3091, 62, 7857, 2599, 198, 220, 220, 220, 37227, 44836, 2278, 8467, 284, 1394, 23235, 1626, 18640, 3091, 37811, 628, 220, 220, 220, 1067, 9310, 58, 66, 4372, 82, 1279, 657, 60, 15853, 3091, 62, 7857, 198, 220, 220, 220, 1067, 9310, 58, 66, 4372, 82, 1875, 3091, 62, 7857, 60, 48185, 3091, 62, 7857, 198, 220, 220, 220, 1441, 1067, 9310, 628, 198, 4299, 5288, 62, 9060, 62, 6381, 489, 5592, 7, 66, 4372, 62, 15, 11, 1067, 67, 62, 16, 11, 3091, 62, 7857, 2599, 198, 220, 220, 220, 37227, 16742, 29358, 1022, 16936, 27458, 4263, 286, 22037, 5166, 37811, 628, 220, 220, 220, 29358, 796, 1067, 67, 62, 15, 532, 1067, 67, 62, 16, 198, 220, 220, 220, 29358, 58, 6381, 489, 5592, 1279, 532, 3524, 62, 7857, 1220, 362, 60, 15853, 3091, 62, 7857, 198, 220, 220, 220, 29358, 58, 6381, 489, 5592, 1875, 3091, 62, 7857, 1220, 362, 60, 48185, 3091, 62, 7857, 198, 220, 220, 220, 1441, 29358, 628, 198, 4299, 4238, 786, 62, 37652, 17540, 7, 66, 4372, 82, 11, 3091, 62, 7857, 11, 595, 5372, 11, 4179, 2599, 198, 220, 220, 220, 37227, 26446, 260, 23235, 287, 18640, 3091, 11, 4174, 27458, 18645, 11, 4174, 4738, 29358, 37811, 628, 220, 220, 220, 1067, 9310, 15853, 3091, 62, 7857, 1220, 362, 198, 220, 220, 220, 1067, 9310, 796, 4174, 62, 41007, 291, 62, 7784, 560, 62, 31448, 7, 66, 4372, 82, 11, 3091, 62, 7857, 8, 198, 220, 220, 220, 611, 595, 5372, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7845, 28613, 796, 45941, 13, 25120, 13, 403, 6933, 7, 9319, 796, 532, 32374, 11, 1029, 796, 4179, 11, 2546, 796, 1067, 9310, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1067, 9310, 15853, 7845, 28613, 198, 220, 220, 220, 1441, 1067, 9310, 628, 198, 4299, 15284, 62, 22554, 7, 76, 13978, 11, 1067, 9310, 11, 11555, 420, 871, 11, 6314, 62, 79, 3468, 11, 6314, 62, 37266, 11, 3091, 62, 7857, 2599, 198, 220, 220, 220, 37227, 9771, 3129, 378, 37892, 11, 2785, 290, 2472, 2568, 286, 1080, 37811, 628, 220, 220, 220, 37892, 62, 22554, 796, 657, 13, 20, 1635, 357, 76, 13978, 1635, 45941, 13, 16345, 7, 626, 420, 871, 12429, 362, 11, 16488, 28, 16, 29720, 16345, 3419, 220, 1303, 471, 28, 15, 13, 20, 9, 76, 9, 85, 61, 17, 628, 220, 220, 220, 1303, 27131, 378, 49239, 2785, 2568, 1262, 25, 471, 28, 15, 13, 20, 9, 74, 7, 81, 12, 81, 15, 8, 61, 17, 198, 220, 220, 220, 329, 1312, 11, 6314, 287, 27056, 378, 7, 65, 623, 62, 79, 3468, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 15, 11, 22037, 62, 16, 796, 6314, 58, 15, 4357, 6314, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 29358, 796, 5288, 62, 9060, 62, 6381, 489, 5592, 7, 66, 4372, 82, 58, 37696, 62, 15, 11, 1058, 4357, 1067, 9310, 58, 37696, 62, 16, 11, 1058, 4357, 3091, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5253, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 6381, 489, 5592, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2785, 62, 22554, 796, 657, 13, 20, 1635, 6314, 62, 37266, 58, 72, 11, 352, 60, 1635, 357, 30246, 532, 6314, 62, 37266, 58, 72, 11, 657, 12962, 12429, 362, 628, 220, 220, 220, 2472, 62, 22554, 796, 37892, 62, 22554, 1343, 2785, 62, 22554, 220, 1303, 7472, 2568, 355, 2160, 286, 885, 290, 613, 198, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 5116, 5139, 62, 22554, 11, 2785, 62, 22554, 11, 2472, 62, 22554, 12962, 628, 198, 4299, 4296, 62, 330, 7015, 602, 7, 76, 13978, 11, 1067, 9310, 11, 6314, 62, 79, 3468, 11, 6314, 62, 37266, 11, 3091, 62, 7857, 2599, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 20309, 319, 1123, 22037, 1262, 2785, 2746, 290, 17321, 338, 3657, 286, 6268, 37811, 628, 220, 220, 220, 1303, 27131, 378, 3386, 1262, 9544, 2088, 338, 1099, 25, 376, 10779, 74, 7, 81, 12, 81, 15, 8, 198, 220, 220, 220, 1303, 38240, 284, 20309, 1262, 17321, 338, 3657, 25, 376, 28, 2611, 11, 2223, 468, 6697, 6317, 198, 220, 220, 220, 8320, 602, 796, 45941, 13, 9107, 418, 62, 2339, 7, 66, 4372, 82, 8, 220, 1303, 2124, 11, 88, 11, 89, 8320, 602, 329, 1123, 22037, 198, 220, 220, 220, 329, 1312, 11, 6314, 287, 27056, 378, 7, 65, 623, 62, 79, 3468, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 15, 11, 22037, 62, 16, 796, 6314, 58, 15, 4357, 6314, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 29358, 796, 5288, 62, 9060, 62, 6381, 489, 5592, 7, 66, 4372, 82, 58, 37696, 62, 15, 11, 1058, 4357, 1067, 9310, 58, 37696, 62, 16, 11, 1058, 4357, 3091, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5253, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 6381, 489, 5592, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 37295, 796, 29358, 1220, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 76, 4660, 3984, 796, 532, 6314, 62, 37266, 58, 72, 11, 352, 60, 1635, 357, 30246, 532, 6314, 62, 37266, 58, 72, 11, 657, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2700, 796, 2700, 62, 76, 4660, 3984, 1635, 2700, 62, 37295, 198, 220, 220, 220, 220, 220, 220, 220, 8320, 602, 58, 37696, 62, 15, 60, 15853, 2700, 1220, 14568, 58, 37696, 62, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 8320, 602, 58, 37696, 62, 16, 60, 48185, 2700, 1220, 14568, 58, 37696, 62, 16, 60, 198, 220, 220, 220, 1441, 8320, 602, 628, 198, 4299, 4296, 62, 37652, 17540, 7, 66, 4372, 82, 11, 8320, 602, 11, 11555, 420, 871, 11, 640, 62, 9662, 11, 3091, 62, 7857, 2599, 198, 220, 220, 220, 37227, 10260, 22715, 1262, 25, 2124, 7, 83, 10, 28664, 47505, 87, 7, 83, 47762, 85, 7, 83, 27493, 28664, 10, 15, 13, 20, 9, 64, 7, 83, 27493, 28664, 1174, 17, 37811, 628, 220, 220, 220, 1067, 9310, 15853, 11555, 420, 871, 1635, 640, 62, 9662, 1343, 657, 13, 20, 1635, 8320, 602, 1635, 640, 62, 9662, 12429, 362, 198, 220, 220, 220, 1067, 9310, 796, 4174, 62, 41007, 291, 62, 7784, 560, 62, 31448, 7, 66, 4372, 82, 11, 3091, 62, 7857, 8, 198, 220, 220, 220, 1441, 1067, 9310, 628, 198, 4299, 4296, 62, 626, 420, 871, 7, 626, 420, 871, 11, 8320, 602, 62, 9688, 11, 8320, 602, 62, 437, 11, 640, 62, 9662, 2599, 198, 220, 220, 220, 37227, 10260, 11555, 420, 871, 1262, 25, 410, 7, 83, 10, 28664, 47505, 85, 7, 83, 47762, 15, 13, 20, 9, 28664, 9, 7, 64, 7, 83, 47762, 64, 7, 83, 10, 28664, 4008, 37811, 628, 220, 220, 220, 11555, 420, 871, 15853, 657, 13, 20, 1635, 640, 62, 9662, 1635, 357, 330, 7015, 602, 62, 9688, 1343, 8320, 602, 62, 437, 8, 198, 220, 220, 220, 1441, 11555, 420, 871, 628, 198, 4299, 3551, 62, 22915, 62, 16624, 7, 2435, 62, 9662, 11, 997, 62, 265, 3150, 11, 3891, 11, 1067, 9310, 11, 27598, 2599, 198, 220, 220, 220, 37227, 20257, 274, 22715, 287, 41420, 57, 2393, 2099, 284, 705, 37652, 17540, 13, 5431, 89, 6, 198, 220, 220, 220, 19430, 37892, 11, 2785, 290, 2472, 27598, 284, 705, 877, 70, 444, 13, 19608, 6, 37811, 628, 220, 220, 220, 1303, 19430, 41420, 57, 2393, 198, 220, 220, 220, 2124, 45579, 62, 7753, 13, 13564, 7203, 90, 15, 92, 220, 3467, 77, 59, 77, 1911, 18982, 7, 22510, 62, 265, 3150, 4008, 198, 220, 220, 220, 329, 1312, 11, 1067, 67, 287, 27056, 378, 7, 66, 4372, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 45579, 796, 1067, 67, 1635, 275, 1219, 81, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 45579, 62, 7753, 13, 13564, 7203, 90, 15, 92, 220, 1391, 16, 25, 13, 21, 69, 92, 220, 1391, 17, 25, 13, 21, 69, 92, 220, 1391, 18, 25, 13, 21, 69, 92, 220, 3467, 77, 1911, 18982, 7, 14933, 58, 72, 4357, 2124, 45579, 58, 15, 4357, 2124, 45579, 58, 16, 4357, 2124, 45579, 58, 17, 60, 4008, 628, 220, 220, 220, 1303, 19430, 27598, 198, 220, 220, 220, 2568, 796, 27598, 1635, 289, 433, 631, 1635, 1196, 78, 1635, 352, 68, 12, 18, 198, 220, 220, 220, 2568, 62, 7753, 13, 13564, 7203, 90, 15, 92, 220, 1391, 16, 92, 220, 1391, 17, 92, 220, 1391, 18, 92, 220, 3467, 77, 1911, 18982, 7, 2435, 62, 9662, 11, 2568, 58, 15, 4357, 2568, 58, 16, 4357, 2568, 58, 17, 60, 4008, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 37508, 5128, 14, 22915, 290, 18955, 17262, 15432, 12, 332, 1616, 11862, 37811, 628, 220, 220, 220, 1303, 16531, 4756, 3275, 198, 220, 220, 220, 3359, 62, 25677, 3419, 628, 220, 220, 220, 1303, 4149, 2836, 10007, 422, 5128, 2393, 198, 220, 220, 220, 5128, 62, 17143, 7307, 796, 651, 62, 15414, 62, 17143, 7307, 3419, 628, 220, 220, 220, 1303, 791, 8002, 10007, 198, 220, 220, 220, 640, 62, 23350, 796, 5128, 62, 17143, 7307, 14692, 2435, 62, 23350, 8973, 198, 220, 220, 220, 640, 62, 9662, 796, 5128, 62, 17143, 7307, 14692, 2435, 62, 9662, 8973, 198, 220, 220, 220, 3091, 62, 7857, 796, 5128, 62, 17143, 7307, 14692, 3524, 62, 7857, 8973, 198, 220, 220, 220, 3551, 62, 19503, 80, 796, 5128, 62, 17143, 7307, 14692, 13564, 62, 19503, 80, 8973, 198, 220, 220, 220, 997, 62, 265, 3150, 796, 5128, 62, 17143, 7307, 14692, 22510, 62, 265, 3150, 8973, 198, 220, 220, 220, 595, 5372, 62, 265, 3150, 796, 5128, 62, 17143, 7307, 14692, 25120, 62, 6381, 489, 5592, 8973, 198, 220, 220, 220, 29358, 62, 32374, 796, 5128, 62, 17143, 7307, 14692, 25120, 62, 6381, 489, 5592, 62, 32374, 8973, 198, 220, 220, 220, 22037, 62, 14933, 796, 5128, 62, 17143, 7307, 14692, 37696, 62, 14933, 8973, 198, 220, 220, 220, 22037, 62, 76, 13978, 796, 5128, 62, 17143, 7307, 14692, 37696, 62, 76, 13978, 8973, 198, 220, 220, 220, 22037, 62, 66, 4372, 82, 796, 5128, 62, 17143, 7307, 14692, 37696, 62, 66, 4372, 82, 8973, 198, 220, 220, 220, 6314, 62, 79, 3468, 796, 5128, 62, 17143, 7307, 14692, 65, 623, 62, 79, 3468, 8973, 198, 220, 220, 220, 6314, 62, 37266, 796, 5128, 62, 17143, 7307, 14692, 65, 623, 62, 37266, 8973, 628, 220, 220, 220, 1303, 22926, 260, 22715, 290, 4174, 7845, 28613, 198, 220, 220, 220, 22037, 62, 66, 4372, 82, 796, 4238, 786, 62, 37652, 17540, 7, 37696, 62, 66, 4372, 82, 11, 3091, 62, 7857, 11, 595, 5372, 62, 265, 3150, 11, 29358, 62, 32374, 8, 628, 220, 220, 220, 1303, 20768, 786, 38275, 33806, 15965, 2977, 198, 220, 220, 220, 997, 62, 20214, 796, 493, 7, 2435, 62, 23350, 1220, 640, 62, 9662, 8, 220, 1303, 2472, 1271, 286, 4831, 286, 45243, 198, 220, 220, 220, 3551, 62, 20214, 796, 493, 7, 13564, 62, 19503, 80, 1220, 640, 62, 9662, 8, 220, 1303, 1271, 286, 4831, 284, 3551, 503, 2482, 198, 220, 220, 220, 22037, 62, 626, 82, 796, 45941, 13, 9107, 418, 62, 2339, 7, 37696, 62, 66, 4372, 82, 8, 220, 1303, 11555, 420, 871, 287, 2124, 11, 88, 11, 89, 11678, 329, 477, 23235, 198, 220, 220, 220, 22037, 62, 4134, 62, 9688, 796, 22037, 62, 4134, 62, 437, 796, 45941, 13, 9107, 418, 62, 2339, 7, 37696, 62, 66, 4372, 82, 8, 220, 1303, 8320, 602, 379, 923, 290, 886, 286, 640, 2239, 198, 220, 220, 220, 22037, 62, 4134, 62, 9688, 796, 4296, 62, 330, 7015, 602, 7, 37696, 62, 76, 13978, 11, 22037, 62, 66, 4372, 82, 11, 6314, 62, 79, 3468, 11, 6314, 62, 37266, 11, 3091, 62, 7857, 8, 220, 1303, 15284, 4238, 8320, 602, 198, 220, 220, 220, 1080, 62, 22554, 796, 15284, 62, 22554, 7, 37696, 62, 76, 13978, 11, 22037, 62, 66, 4372, 82, 11, 22037, 62, 626, 82, 11, 6314, 62, 79, 3468, 11, 6314, 62, 37266, 11, 3091, 62, 7857, 8, 220, 1303, 15284, 4238, 27598, 198, 220, 220, 220, 3551, 62, 22915, 62, 16624, 7, 15, 11, 997, 62, 265, 3150, 11, 22037, 62, 14933, 11, 22037, 62, 66, 4372, 82, 11, 1080, 62, 22554, 8, 628, 220, 220, 220, 1303, 38275, 17262, 198, 220, 220, 220, 3601, 7203, 5990, 15464, 18955, 17262, 18640, 4943, 198, 220, 220, 220, 329, 2239, 287, 2837, 7, 16, 11, 997, 62, 20214, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 43137, 532, 4643, 1616, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 66, 4372, 82, 796, 4296, 62, 37652, 17540, 7, 37696, 62, 66, 4372, 82, 11, 22037, 62, 4134, 62, 9688, 11, 22037, 62, 626, 82, 11, 640, 62, 9662, 11, 3091, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 4134, 62, 437, 796, 4296, 62, 330, 7015, 602, 7, 37696, 62, 76, 13978, 11, 22037, 62, 66, 4372, 82, 11, 6314, 62, 79, 3468, 11, 6314, 62, 37266, 11, 3091, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 626, 82, 796, 4296, 62, 626, 420, 871, 7, 37696, 62, 626, 82, 11, 22037, 62, 4134, 62, 9688, 11, 22037, 62, 4134, 62, 437, 11, 640, 62, 9662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 4134, 62, 9688, 796, 22037, 62, 4134, 62, 437, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 22715, 290, 27598, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 4064, 3551, 62, 20214, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1080, 62, 22554, 796, 15284, 62, 22554, 7, 37696, 62, 76, 13978, 11, 22037, 62, 66, 4372, 82, 11, 22037, 62, 626, 82, 11, 6314, 62, 79, 3468, 11, 6314, 62, 37266, 11, 3091, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 22915, 62, 16624, 7, 9662, 11, 997, 62, 265, 3150, 11, 22037, 62, 14933, 11, 22037, 62, 66, 4372, 82, 11, 1080, 62, 22554, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5377, 24547, 25, 46110, 13, 18, 69, 92, 4, 1911, 18982, 7, 3064, 1635, 12178, 7, 9662, 8, 1220, 997, 62, 20214, 4008, 198, 220, 220, 220, 3601, 62, 67, 5263, 62, 1370, 3419, 198, 220, 220, 220, 3601, 7203, 8890, 1741, 1844, 3467, 77, 7222, 585, 17540, 3194, 284, 22715, 13, 5431, 89, 3467, 77, 36, 25649, 444, 3194, 284, 27598, 13, 19608, 4943, 198, 220, 220, 220, 3601, 62, 67, 5263, 62, 1370, 3419, 628, 198, 2, 8393, 1133, 2438, 611, 1388, 2393, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.469327
5,037
if __name__ == '__main__': coins = [1, 2, 10] price = 28 print(minimal_number_of_coins(coins, price))
[ 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 10796, 796, 685, 16, 11, 362, 11, 838, 60, 198, 220, 220, 220, 2756, 796, 2579, 198, 220, 220, 220, 3601, 7, 1084, 4402, 62, 17618, 62, 1659, 62, 14624, 7, 14624, 11, 2756, 4008, 198 ]
2.25
52
from __clrclasses__.System.Security.Principal import GenericIdentity from __clrclasses__.System.Security.Principal import GenericPrincipal from __clrclasses__.System.Security.Principal import IdentityNotMappedException from __clrclasses__.System.Security.Principal import IdentityReference from __clrclasses__.System.Security.Principal import IdentityReferenceCollection from __clrclasses__.System.Security.Principal import IIdentity from __clrclasses__.System.Security.Principal import IPrincipal from __clrclasses__.System.Security.Principal import NTAccount from __clrclasses__.System.Security.Principal import PrincipalPolicy from __clrclasses__.System.Security.Principal import SecurityIdentifier from __clrclasses__.System.Security.Principal import TokenAccessLevels from __clrclasses__.System.Security.Principal import TokenImpersonationLevel from __clrclasses__.System.Security.Principal import WellKnownSidType from __clrclasses__.System.Security.Principal import WindowsAccountType from __clrclasses__.System.Security.Principal import WindowsBuiltInRole from __clrclasses__.System.Security.Principal import WindowsIdentity from __clrclasses__.System.Security.Principal import WindowsImpersonationContext from __clrclasses__.System.Security.Principal import WindowsPrincipal
[ 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 42044, 7390, 26858, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 42044, 42904, 8521, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 27207, 3673, 44, 6320, 16922, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 27207, 26687, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 27207, 26687, 36307, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 2873, 67, 26858, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 6101, 81, 1939, 8521, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 399, 5603, 535, 608, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 32641, 36727, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 4765, 33234, 7483, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 29130, 15457, 4971, 82, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 29130, 26950, 882, 341, 4971, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 3894, 29870, 50, 312, 6030, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 3964, 30116, 6030, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 3964, 39582, 818, 47445, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 3964, 7390, 26858, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 3964, 26950, 882, 341, 21947, 198, 6738, 11593, 565, 81, 37724, 834, 13, 11964, 13, 24074, 13, 42904, 8521, 1330, 3964, 42904, 8521, 198 ]
3.844311
334
import math import numpy as np from nltk.metrics.association import TOTAL from sklearn import metrics from matplotlib.mlab import entropy
[ 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 299, 2528, 74, 13, 4164, 10466, 13, 562, 41003, 1330, 36247, 198, 6738, 1341, 35720, 1330, 20731, 198, 6738, 2603, 29487, 8019, 13, 4029, 397, 1330, 40709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198 ]
2.333333
75
from django import forms from ..models import User from django.contrib.auth.forms import UserCreationForm
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 11485, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 23914, 1330, 11787, 12443, 341, 8479, 628 ]
3.821429
28
'''Bulbasaur, Ivysaur and Venusaur''' from __init__ import Pokemon Bulbasaur = Pokemon('generation_1/001.txt') print(Bulbasaur)
[ 7061, 6, 33481, 12093, 2899, 11, 16975, 893, 2899, 290, 21094, 2899, 7061, 6, 198, 6738, 11593, 15003, 834, 1330, 14878, 198, 198, 33481, 12093, 2899, 796, 14878, 10786, 20158, 62, 16, 14, 8298, 13, 14116, 11537, 198, 4798, 7, 33481, 12093, 2899, 8, 198 ]
2.866667
45
import django from django.conf import settings
[ 11748, 42625, 14208, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 628 ]
4
12
# # @lc app=leetcode id=207 lang=python3 # # [207] Course Schedule # # @lc code=start # @lc code=end
[ 2, 198, 2, 2488, 44601, 598, 28, 293, 316, 8189, 4686, 28, 22745, 42392, 28, 29412, 18, 198, 2, 198, 2, 685, 22745, 60, 20537, 19281, 198, 2, 198, 198, 2, 2488, 44601, 2438, 28, 9688, 628, 198, 2, 2488, 44601, 2438, 28, 437, 198 ]
2.311111
45
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for nipyapi security module.""" from __future__ import absolute_import import pytest from tests import conftest import nipyapi # Tells pytest to skip this module of security testing is not enabled. pytestmark = pytest.mark.skipif(not conftest.test_security, reason='test_security disabled in Conftest') # Useful for manual testing # if conftest.test_security: # test_host = nipyapi.config.default_host # nipyapi.utils.set_endpoint('https://' + test_host + ':18443/nifi-registry-api', True, True) # nipyapi.utils.set_endpoint('https://' + test_host + ':9443/nifi-api', True, True) # TODO: Test adding users to existing set of users and ensuring no clobber
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 51, 3558, 329, 299, 541, 88, 15042, 2324, 8265, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 11748, 12972, 9288, 198, 6738, 5254, 1330, 369, 701, 395, 198, 11748, 299, 541, 88, 15042, 198, 198, 2, 14026, 82, 12972, 9288, 284, 14267, 428, 8265, 286, 2324, 4856, 318, 407, 9343, 13, 198, 9078, 9288, 4102, 796, 12972, 9288, 13, 4102, 13, 48267, 361, 7, 1662, 369, 701, 395, 13, 9288, 62, 12961, 11, 1738, 11639, 9288, 62, 12961, 10058, 287, 1482, 701, 395, 11537, 198, 198, 2, 49511, 329, 10107, 4856, 198, 2, 611, 369, 701, 395, 13, 9288, 62, 12961, 25, 198, 2, 220, 220, 220, 220, 1332, 62, 4774, 796, 299, 541, 88, 15042, 13, 11250, 13, 12286, 62, 4774, 198, 2, 220, 220, 220, 220, 299, 541, 88, 15042, 13, 26791, 13, 2617, 62, 437, 4122, 10786, 5450, 1378, 6, 1343, 1332, 62, 4774, 1343, 705, 25, 1507, 34938, 14, 77, 22238, 12, 2301, 4592, 12, 15042, 3256, 6407, 11, 6407, 8, 198, 2, 220, 220, 220, 220, 299, 541, 88, 15042, 13, 26791, 13, 2617, 62, 437, 4122, 10786, 5450, 1378, 6, 1343, 1332, 62, 4774, 1343, 705, 25, 24, 34938, 14, 77, 22238, 12, 15042, 3256, 6407, 11, 6407, 8, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 2, 16926, 46, 25, 6208, 4375, 2985, 284, 4683, 900, 286, 2985, 290, 13359, 645, 537, 672, 527, 198 ]
2.815094
265
from django.conf.urls import include, url from django.contrib import admin from django.contrib.auth.forms import UserCreationForm from django.views.generic import CreateView from django.views.generic import RedirectView admin.autodiscover() from django.conf import settings from django.conf.urls.static import static import django.contrib.auth.views from mentoring.views import views from mentoring.views import honors_admin # Examples: # url(r'^$', 'gettingstarted.views.home', name='home'), # url(r'^blog/', include('blog.urls')), urlpatterns = [ url(r'^$', views.home), url(r'^admin/', admin.site.urls), url(r'^(?i)honorsAdmin/$', honors_admin.home), url(r'^(?i)honorsAdmin/mentors/$', honors_admin.mentors), url(r'^(?i)honorsAdmin/mentor/([0-9]+)/view', honors_admin.mentor_detail), url(r'^(?i)honorsAdmin/mentor/([0-9]+)/details', honors_admin.mentor_detail_page), url(r'^(?i)honorsAdmin/mentor/([0-9]+)/approve', honors_admin.mentor_approve), url(r'^(?i)honorsAdmin/mentor/([0-9]+)/deny', honors_admin.mentor_deny), url(r'^(?i)honorsAdmin/mentees/$', honors_admin.mentees), url(r'^(?i)honorsAdmin/mentee/([0-9]+)/view', honors_admin.mentee_detail), url(r'^(?i)honorsAdmin/mentee/([0-9]+)/details', honors_admin.mentee_detail_page), url(r'^(?i)honorsAdmin/mentee/([0-9]+)/approve', honors_admin.mentee_approve), url(r'^(?i)honorsAdmin/mentee/([0-9]+)/deny', honors_admin.mentee_deny), url(r'^(?i)honorsAdmin/mentee/([0-9]+)/getmatches', honors_admin.mentee_get_matches), url(r'^(?i)honorsAdmin/mentee/([0-9]+)/getallmatches$', honors_admin.mentee_get_all_matches), url(r'^(?i)honorsAdmin/mentee/([0-9]+)/getallmatcheslist', honors_admin.mentee_get_all_matches_list), url(r'^(?i)honorsAdmin/createPairing', honors_admin.create_pairing), url(r'^(?i)honorsAdmin/resendPairing', honors_admin.resend_pairing_email), url(r'^(?i)honorsAdmin/endPairing', honors_admin.end_pairing), url(r'^(?i)honorsAdmin/feedbacks/([0-9]+)/view/', honors_admin.pairing_feedback), url(r'^(?i)honorsAdmin/pairs/$', honors_admin.pairings), url(r'^(?i)honorsAdmin/export/$', honors_admin.export), url(r'^(?i)honorsAdmin/invite/$', honors_admin.invitations), url(r'^(?i)honorsAdmin/send_invite/$', honors_admin.send_invite), url(r'^(?i)honorsAdmin/preview_invite/$', honors_admin.preview_invite), # Default django stuff url(r'^(?i)accounts/logout/$', django.contrib.auth.views.logout), url(r'^(?i)accounts/login/$', django.contrib.auth.views.login, {'template_name': 'admin/login.html'}), url(r'^(?i)accounts/$', RedirectView.as_view(url='/')), url(r'^(?i)thankyoumentor/', views.thank_you_mentor), url(r'^(?i)thankyoumentee/', views.thank_you_mentee), url(r'^(?i)newmentor/', views.new_mentor), url(r'^(?i)newmentee/', views.new_mentee), url(r'^(?i)confirmation/', views.confirm_account), url(r'^(?i)feedback/', views.pairing_feedback), ] # + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 2291, 11, 19016, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 23914, 1330, 11787, 12443, 341, 8479, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 13610, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 2297, 1060, 7680, 198, 198, 28482, 13, 2306, 375, 29392, 3419, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 13, 12708, 1330, 9037, 198, 11748, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 33571, 198, 198, 6738, 6229, 3255, 13, 33571, 1330, 5009, 198, 6738, 6229, 3255, 13, 33571, 1330, 25279, 62, 28482, 198, 198, 2, 21066, 25, 198, 2, 19016, 7, 81, 6, 61, 3, 3256, 705, 37210, 46981, 13, 33571, 13, 11195, 3256, 1438, 11639, 11195, 33809, 198, 2, 19016, 7, 81, 6, 61, 14036, 14, 3256, 2291, 10786, 14036, 13, 6371, 82, 11537, 828, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 5009, 13, 11195, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28482, 14, 3256, 13169, 13, 15654, 13, 6371, 82, 828, 628, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 32624, 3256, 25279, 62, 28482, 13, 11195, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 669, 32624, 3256, 25279, 62, 28482, 13, 434, 669, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 273, 14, 26933, 15, 12, 24, 48688, 20679, 1177, 3256, 25279, 62, 28482, 13, 434, 273, 62, 49170, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 273, 14, 26933, 15, 12, 24, 48688, 20679, 36604, 3256, 25279, 62, 28482, 13, 434, 273, 62, 49170, 62, 7700, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 273, 14, 26933, 15, 12, 24, 48688, 20679, 21064, 303, 3256, 25279, 62, 28482, 13, 434, 273, 62, 21064, 303, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 273, 14, 26933, 15, 12, 24, 48688, 20679, 6559, 88, 3256, 25279, 62, 28482, 13, 434, 273, 62, 6559, 88, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 2841, 32624, 3256, 25279, 62, 28482, 13, 434, 2841, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 1453, 14, 26933, 15, 12, 24, 48688, 20679, 1177, 3256, 25279, 62, 28482, 13, 434, 1453, 62, 49170, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 1453, 14, 26933, 15, 12, 24, 48688, 20679, 36604, 3256, 25279, 62, 28482, 13, 434, 1453, 62, 49170, 62, 7700, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 1453, 14, 26933, 15, 12, 24, 48688, 20679, 21064, 303, 3256, 25279, 62, 28482, 13, 434, 1453, 62, 21064, 303, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 1453, 14, 26933, 15, 12, 24, 48688, 20679, 6559, 88, 3256, 25279, 62, 28482, 13, 434, 1453, 62, 6559, 88, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 1453, 14, 26933, 15, 12, 24, 48688, 20679, 1136, 6759, 2052, 3256, 25279, 62, 28482, 13, 434, 1453, 62, 1136, 62, 6759, 2052, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 1453, 14, 26933, 15, 12, 24, 48688, 20679, 1136, 439, 6759, 2052, 3, 3256, 25279, 62, 28482, 13, 434, 1453, 62, 1136, 62, 439, 62, 6759, 2052, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 434, 1453, 14, 26933, 15, 12, 24, 48688, 20679, 1136, 439, 6759, 2052, 4868, 3256, 25279, 62, 28482, 13, 434, 1453, 62, 1136, 62, 439, 62, 6759, 2052, 62, 4868, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 17953, 47, 958, 278, 3256, 25279, 62, 28482, 13, 17953, 62, 24874, 278, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 411, 437, 47, 958, 278, 3256, 25279, 62, 28482, 13, 411, 437, 62, 24874, 278, 62, 12888, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 437, 47, 958, 278, 3256, 25279, 62, 28482, 13, 437, 62, 24874, 278, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 12363, 10146, 14, 26933, 15, 12, 24, 48688, 20679, 1177, 14, 3256, 25279, 62, 28482, 13, 24874, 278, 62, 12363, 1891, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 79, 3468, 32624, 3256, 25279, 62, 28482, 13, 24874, 654, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 39344, 32624, 3256, 25279, 62, 28482, 13, 39344, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 16340, 578, 32624, 3256, 25279, 62, 28482, 13, 16340, 20597, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 21280, 62, 16340, 578, 32624, 3256, 25279, 62, 28482, 13, 21280, 62, 16340, 578, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 24130, 669, 46787, 14, 3866, 1177, 62, 16340, 578, 32624, 3256, 25279, 62, 28482, 13, 3866, 1177, 62, 16340, 578, 828, 628, 198, 220, 220, 220, 1303, 15161, 42625, 14208, 3404, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 23317, 82, 14, 6404, 448, 32624, 3256, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 33571, 13, 6404, 448, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 23317, 82, 14, 38235, 32624, 3256, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 33571, 13, 38235, 11, 1391, 6, 28243, 62, 3672, 10354, 705, 28482, 14, 38235, 13, 6494, 6, 92, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 23317, 82, 32624, 3256, 2297, 1060, 7680, 13, 292, 62, 1177, 7, 6371, 11639, 14, 11537, 828, 628, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 40716, 5832, 434, 273, 14, 3256, 5009, 13, 40716, 62, 5832, 62, 434, 273, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 40716, 5832, 434, 1453, 14, 3256, 5009, 13, 40716, 62, 5832, 62, 434, 1453, 828, 628, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 3605, 434, 273, 14, 3256, 5009, 13, 3605, 62, 434, 273, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 3605, 434, 1453, 14, 3256, 5009, 13, 3605, 62, 434, 1453, 828, 628, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 10414, 36241, 14, 3256, 5009, 13, 10414, 2533, 62, 23317, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 72, 8, 12363, 1891, 14, 3256, 5009, 13, 24874, 278, 62, 12363, 1891, 828, 198, 60, 220, 1303, 1343, 9037, 7, 33692, 13, 35744, 2149, 62, 21886, 11, 3188, 62, 15763, 28, 33692, 13, 35744, 2149, 62, 13252, 2394, 8, 198 ]
2.308511
1,316
import pytest import potemkin import boto3 from potemkin.configservice import evaluate_config_rule_and_wait_for_resource, config_rule_wait_for_resource, config_rule_wait_for_absent_resources, config_rule_wait_for_compliance_results @potemkin.CloudFormationStack('test/integration/test_templates/eip.yml', stack_name_stem='EipTestStack') @pytest.mark.xfail(reason="deliberate fail") @potemkin.CloudFormationStack('test/integration/test_templates/eip.yml', stack_name_stem='EipTestStack') @potemkin.CloudFormationStack( 'test/integration/test_templates/eip.yml', stack_name_stem='EipTestStack' ) @potemkin.CloudFormationStack( 'test/integration/test_templates/eip.yml', stack_name_stem='EipTestStack' )
[ 11748, 12972, 9288, 198, 11748, 1787, 368, 5116, 198, 11748, 275, 2069, 18, 198, 6738, 1787, 368, 5116, 13, 11250, 15271, 1330, 13446, 62, 11250, 62, 25135, 62, 392, 62, 17077, 62, 1640, 62, 31092, 11, 4566, 62, 25135, 62, 17077, 62, 1640, 62, 31092, 11, 4566, 62, 25135, 62, 17077, 62, 1640, 62, 8937, 298, 62, 37540, 11, 4566, 62, 25135, 62, 17077, 62, 1640, 62, 47587, 62, 43420, 628, 198, 31, 13059, 368, 5116, 13, 18839, 8479, 341, 25896, 10786, 9288, 14, 18908, 1358, 14, 9288, 62, 11498, 17041, 14, 68, 541, 13, 88, 4029, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8931, 62, 3672, 62, 927, 11639, 36, 541, 14402, 25896, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 26152, 603, 7, 41181, 2625, 12381, 1856, 378, 2038, 4943, 198, 31, 13059, 368, 5116, 13, 18839, 8479, 341, 25896, 10786, 9288, 14, 18908, 1358, 14, 9288, 62, 11498, 17041, 14, 68, 541, 13, 88, 4029, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8931, 62, 3672, 62, 927, 11639, 36, 541, 14402, 25896, 11537, 628, 628, 198, 31, 13059, 368, 5116, 13, 18839, 8479, 341, 25896, 7, 198, 220, 220, 220, 705, 9288, 14, 18908, 1358, 14, 9288, 62, 11498, 17041, 14, 68, 541, 13, 88, 4029, 3256, 198, 220, 220, 220, 8931, 62, 3672, 62, 927, 11639, 36, 541, 14402, 25896, 6, 198, 8, 198, 198, 31, 13059, 368, 5116, 13, 18839, 8479, 341, 25896, 7, 198, 220, 220, 220, 705, 9288, 14, 18908, 1358, 14, 9288, 62, 11498, 17041, 14, 68, 541, 13, 88, 4029, 3256, 198, 220, 220, 220, 8931, 62, 3672, 62, 927, 11639, 36, 541, 14402, 25896, 6, 198, 8, 198 ]
2.40367
327
# -*- coding: utf-8 -*- # Copyright (c) 2020, Akram Mutaher and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 66, 8, 12131, 11, 9084, 859, 13859, 64, 372, 290, 20420, 198, 2, 1114, 5964, 1321, 11, 3387, 766, 5964, 13, 14116, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 2, 1330, 5306, 27768, 198, 6738, 5306, 27768, 13, 19849, 13, 22897, 1330, 16854, 198 ]
3.38806
67
''' Context Processors do some pretty great work, like default arguments supplied to templates when they're rendered. kind of like Macros in Flask, but even more powerful. ''' import string from django.utils.datastructures import MultiValueDictKeyError from .forms import SearchForm from .static_vars import COLORS, GROUPS def search_form(request): '''renders the search form still uses a <form> wrapper to control action Now pulls the query from the request data and presents it as the initial field value ''' try: query = request.POST['search'] except MultiValueDictKeyError: query = "" return { 'SearchForm': SearchForm(initial={'search': query}), } def alphabet(request): '''renders the capitol alphabet from A-Z''' return { 'alphabet': string.ascii_uppercase, } def groups(request): '''renders the mineral groups''' return {'groups': GROUPS, } def colors(request): '''renders the available colors''' return {'colors': COLORS, }
[ 7061, 6, 198, 21947, 10854, 669, 466, 617, 2495, 1049, 670, 11, 588, 4277, 7159, 14275, 198, 1462, 24019, 618, 484, 821, 15111, 13, 1611, 286, 588, 4100, 4951, 287, 46947, 11, 475, 772, 517, 198, 44548, 13, 198, 7061, 6, 198, 11748, 4731, 198, 198, 6738, 42625, 14208, 13, 26791, 13, 19608, 459, 1356, 942, 1330, 15237, 11395, 35, 713, 9218, 12331, 198, 198, 6738, 764, 23914, 1330, 11140, 8479, 198, 6738, 764, 12708, 62, 85, 945, 1330, 20444, 20673, 11, 10863, 2606, 3705, 628, 198, 4299, 2989, 62, 687, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 10920, 364, 262, 2989, 1296, 991, 3544, 257, 1279, 687, 29, 29908, 284, 1630, 2223, 198, 220, 220, 220, 2735, 16194, 262, 12405, 422, 262, 2581, 1366, 290, 10969, 340, 355, 262, 198, 220, 220, 220, 4238, 2214, 1988, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 2581, 13, 32782, 17816, 12947, 20520, 198, 220, 220, 220, 2845, 15237, 11395, 35, 713, 9218, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 13538, 198, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18243, 8479, 10354, 11140, 8479, 7, 36733, 34758, 6, 12947, 10354, 12405, 92, 828, 198, 220, 220, 220, 1782, 628, 198, 4299, 24830, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 10920, 364, 262, 1451, 11650, 24830, 422, 317, 12, 57, 7061, 6, 198, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17307, 8380, 10354, 4731, 13, 292, 979, 72, 62, 7211, 2798, 589, 11, 198, 220, 220, 220, 1782, 628, 198, 4299, 2628, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 10920, 364, 262, 18352, 2628, 7061, 6, 198, 220, 220, 220, 1441, 1391, 6, 24432, 10354, 10863, 2606, 3705, 11, 1782, 628, 198, 4299, 7577, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 10920, 364, 262, 1695, 7577, 7061, 6, 198, 220, 220, 220, 1441, 1391, 6, 4033, 669, 10354, 20444, 20673, 11, 1782, 198 ]
2.948718
351
""" pushover simple api ~~~~~~~~~~~~~~~~~~~ """ __author__ = "toloy" from .pushover import Pushover, PushoverException
[ 37811, 201, 198, 220, 220, 220, 220, 4574, 2502, 2829, 40391, 201, 198, 220, 220, 220, 220, 220, 27156, 4907, 93, 201, 198, 37811, 201, 198, 201, 198, 834, 9800, 834, 796, 366, 83, 349, 726, 1, 201, 198, 201, 198, 6738, 764, 14689, 2502, 1330, 23691, 2502, 11, 23691, 2502, 16922, 201, 198, 201, 198, 201, 198 ]
2.465517
58
# Code generated by `typeddictgen`. DO NOT EDIT. """V1beta1CertificateSigningRequestConditionDict generated type.""" import datetime from typing import TypedDict V1beta1CertificateSigningRequestConditionDict = TypedDict( "V1beta1CertificateSigningRequestConditionDict", { "lastUpdateTime": datetime.datetime, "message": str, "reason": str, "type": str, }, total=False, )
[ 2, 6127, 7560, 416, 4600, 28004, 6048, 713, 5235, 44646, 8410, 5626, 48483, 13, 198, 37811, 53, 16, 31361, 16, 37608, 22460, 11712, 278, 18453, 48362, 35, 713, 7560, 2099, 526, 15931, 198, 11748, 4818, 8079, 198, 6738, 19720, 1330, 17134, 276, 35, 713, 198, 198, 53, 16, 31361, 16, 37608, 22460, 11712, 278, 18453, 48362, 35, 713, 796, 17134, 276, 35, 713, 7, 198, 220, 220, 220, 366, 53, 16, 31361, 16, 37608, 22460, 11712, 278, 18453, 48362, 35, 713, 1600, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12957, 10260, 7575, 1298, 4818, 8079, 13, 19608, 8079, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20500, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41181, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 965, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 2472, 28, 25101, 11, 198, 8, 198 ]
2.608696
161
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import uuid from azure_devtools.perfstress_tests import PerfStressTest, get_random_bytes from azure.servicebus import ServiceBusClient, ServiceBusReceiveMode, ServiceBusMessage from azure.servicebus.aio import ServiceBusClient as AsyncServiceBusClient from azure.servicebus.aio.management import ServiceBusAdministrationClient MAX_QUEUE_SIZE = 40960
[ 2, 16529, 1783, 10541, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 2, 16529, 1783, 10541, 198, 198, 11748, 334, 27112, 198, 198, 6738, 35560, 495, 62, 7959, 31391, 13, 525, 69, 41494, 62, 41989, 1330, 2448, 69, 1273, 601, 14402, 11, 651, 62, 25120, 62, 33661, 198, 198, 6738, 35560, 495, 13, 15271, 10885, 1330, 4809, 16286, 11792, 11, 4809, 16286, 3041, 15164, 19076, 11, 4809, 16286, 12837, 198, 6738, 35560, 495, 13, 15271, 10885, 13, 64, 952, 1330, 4809, 16286, 11792, 355, 1081, 13361, 16177, 16286, 11792, 198, 6738, 35560, 495, 13, 15271, 10885, 13, 64, 952, 13, 27604, 1330, 4809, 16286, 41862, 1358, 11792, 198, 198, 22921, 62, 48, 8924, 8924, 62, 33489, 796, 2319, 39277, 628, 628, 198 ]
4.75
148
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm nx, ny = (1000,1000) x = np.linspace(-2,1,nx) y = np.linspace(-1.5,1.5,ny) X, Y = np.meshgrid(x,y) cgrid = X + 1j*Y # For some numbers c doing z^2 + c again and again from 0 will diverge, not for others, plot it to get the mandelbrot set Z = 0*cgrid ZC = Z for i in range(1,50): Z = np.power(Z,2) + cgrid ZC[Z>1000] = i ZC = np.abs(ZC) #fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) #surf = ax.plot_surface(X, Y, Z, linewidth=0, antialiased=False, cmap=cm.coolwarm) mycount = [1] # Get the mouse click print(ZC) fig,ax = plt.subplots() plt.pcolormesh(X,Y,ZC) fig.canvas.mpl_connect('button_press_event', onclick) #fig.canvas.mpl_connect('button_press_event', lambda event: onclick(event, mycount)) ''' ax.set_xlim(-4.01, 4.01) ax.set_ylim(-4.01, 4.01) ''' plt.show() ''' value = np.abs(grid)**(-1) print(value) value.flatten() colour = np.stack((value,value,value)) print(colour) fig = plt.figure() ax = plt.axes(xlim=(-1,1),ylim=(-1,1)) ax.scatter(xv,yv,c=colour) '''
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 220, 198, 6738, 2603, 29487, 8019, 1330, 12067, 198, 198, 77, 87, 11, 299, 88, 796, 357, 12825, 11, 12825, 8, 198, 87, 796, 45941, 13, 21602, 10223, 32590, 17, 11, 16, 11, 77, 87, 8, 198, 88, 796, 45941, 13, 21602, 10223, 32590, 16, 13, 20, 11, 16, 13, 20, 11, 3281, 8, 198, 55, 11, 575, 796, 45941, 13, 76, 5069, 25928, 7, 87, 11, 88, 8, 198, 66, 25928, 796, 1395, 1343, 352, 73, 9, 56, 198, 198, 2, 1114, 617, 3146, 269, 1804, 1976, 61, 17, 1343, 269, 757, 290, 757, 422, 657, 481, 12312, 469, 11, 407, 329, 1854, 11, 7110, 340, 284, 651, 262, 6855, 417, 7957, 83, 900, 198, 198, 57, 796, 657, 9, 66, 25928, 198, 57, 34, 796, 1168, 198, 1640, 1312, 287, 2837, 7, 16, 11, 1120, 2599, 220, 220, 220, 220, 198, 220, 220, 220, 1168, 796, 45941, 13, 6477, 7, 57, 11, 17, 8, 1343, 269, 25928, 198, 220, 220, 220, 1168, 34, 58, 57, 29, 12825, 60, 796, 1312, 198, 198, 57, 34, 796, 45941, 13, 8937, 7, 57, 34, 8, 220, 198, 198, 2, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 7266, 29487, 62, 46265, 28, 4895, 16302, 295, 1298, 366, 18, 67, 20662, 8, 198, 2, 11793, 69, 796, 7877, 13, 29487, 62, 42029, 7, 55, 11, 575, 11, 1168, 11, 9493, 413, 5649, 28, 15, 11, 1885, 498, 72, 839, 28, 25101, 11, 269, 8899, 28, 11215, 13, 24494, 31975, 8, 198, 198, 1820, 9127, 796, 685, 16, 60, 198, 198, 2, 3497, 262, 10211, 3904, 198, 220, 220, 220, 220, 198, 4798, 7, 57, 34, 8, 198, 198, 5647, 11, 897, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 489, 83, 13, 79, 4033, 579, 5069, 7, 55, 11, 56, 11, 57, 34, 8, 198, 198, 5647, 13, 5171, 11017, 13, 76, 489, 62, 8443, 10786, 16539, 62, 8439, 62, 15596, 3256, 319, 12976, 8, 198, 2, 5647, 13, 5171, 11017, 13, 76, 489, 62, 8443, 10786, 16539, 62, 8439, 62, 15596, 3256, 37456, 1785, 25, 319, 12976, 7, 15596, 11, 616, 9127, 4008, 198, 198, 7061, 6, 198, 897, 13, 2617, 62, 87, 2475, 32590, 19, 13, 486, 11, 604, 13, 486, 8, 198, 897, 13, 2617, 62, 88, 2475, 32590, 19, 13, 486, 11, 604, 13, 486, 8, 198, 7061, 6, 198, 198, 489, 83, 13, 12860, 3419, 628, 198, 198, 7061, 6, 198, 8367, 796, 45941, 13, 8937, 7, 25928, 8, 1174, 32590, 16, 8, 198, 4798, 7, 8367, 8, 198, 8367, 13, 2704, 41769, 3419, 198, 49903, 796, 45941, 13, 25558, 19510, 8367, 11, 8367, 11, 8367, 4008, 198, 4798, 7, 49903, 8, 198, 198, 5647, 796, 458, 83, 13, 26875, 3419, 198, 897, 796, 458, 83, 13, 897, 274, 7, 87, 2475, 16193, 12, 16, 11, 16, 828, 88, 2475, 16193, 12, 16, 11, 16, 4008, 198, 198, 897, 13, 1416, 1436, 7, 87, 85, 11, 88, 85, 11, 66, 28, 49903, 8, 198, 198, 7061, 6 ]
2.098077
520
'''initialize''' from .moocdl import MOOCDL
[ 7061, 6, 36733, 1096, 7061, 6, 198, 6738, 764, 5908, 420, 25404, 1330, 13070, 4503, 19260 ]
2.6875
16
from chainerchem.links import embed_atom_id # NOQA from chainerchem.links import graph_linear # NOQA from chainerchem.links.embed_atom_id import EmbedAtomID # NOQA from chainerchem.links.graph_linear import GraphLinear # NOQA
[ 6738, 6333, 263, 15245, 13, 28751, 1330, 11525, 62, 37696, 62, 312, 220, 1303, 8005, 48, 32, 198, 6738, 6333, 263, 15245, 13, 28751, 1330, 4823, 62, 29127, 220, 1303, 8005, 48, 32, 198, 198, 6738, 6333, 263, 15245, 13, 28751, 13, 20521, 62, 37696, 62, 312, 1330, 13302, 276, 2953, 296, 2389, 220, 1303, 8005, 48, 32, 198, 6738, 6333, 263, 15245, 13, 28751, 13, 34960, 62, 29127, 1330, 29681, 14993, 451, 220, 1303, 8005, 48, 32, 198 ]
2.924051
79
from celery import Task from kombu.serialization import ( dumps as kombu_dumps, loads as kombu_loads, ) from ichnaea.cache import redis_pipeline from ichnaea.db import db_worker_session
[ 6738, 18725, 1924, 1330, 15941, 198, 6738, 479, 2381, 84, 13, 46911, 1634, 1330, 357, 198, 220, 220, 220, 45514, 355, 479, 2381, 84, 62, 67, 8142, 11, 198, 220, 220, 220, 15989, 355, 479, 2381, 84, 62, 46030, 11, 198, 8, 198, 198, 6738, 220, 488, 2616, 18213, 13, 23870, 1330, 2266, 271, 62, 79, 541, 4470, 198, 6738, 220, 488, 2616, 18213, 13, 9945, 1330, 20613, 62, 28816, 62, 29891, 628 ]
2.684932
73
from discord.ext import commands from discord.ext.commands import Context from diceBot import roller class Utilities(commands.Cog): """ General Utilities """ @commands.command() async def ping(self, ctx: Context): """ Status check """ import time start_time = time.time() message = await ctx.send('pong. `DWSP latency: ' + str(round(ctx.bot.latency * 1000)) + 'ms`') end_time = time.time() await message.edit(content='pong. `DWSP latency: ' + str(round(ctx.bot.latency * 1000)) + 'ms` ' + '`Response time: ' + str(int((end_time - start_time) * 1000)) + 'ms`') @commands.command() async def source(self, ctx: Context): """ Print a link to the source code """ await ctx.send(content='Created by Philip Mottershead' 'https://github.com/PhilipMottershead/Dicebot') @commands.command() async def feedback(self, ctx: Context): """ Report feedback or issues with the bot """ await ctx.send('If the bot is broken or you have any feedback you\'d like to submit please create a issue on ' 'GitHub: https://github.com/PhilipMottershead/Dicebot') @commands.command() async def r(self, ctx: Context): """ Report feedback or issues with the bot """ await ctx.send(roller.rollDices(ctx.message.content))
[ 6738, 36446, 13, 2302, 1330, 9729, 198, 6738, 36446, 13, 2302, 13, 9503, 1746, 1330, 30532, 198, 6738, 17963, 20630, 1330, 24471, 198, 198, 4871, 41086, 7, 9503, 1746, 13, 34, 519, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3611, 41086, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 3419, 198, 220, 220, 220, 30351, 825, 29400, 7, 944, 11, 269, 17602, 25, 30532, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12678, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 640, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 25507, 269, 17602, 13, 21280, 10786, 79, 506, 13, 4600, 42955, 4303, 24812, 25, 705, 1343, 965, 7, 744, 7, 49464, 13, 13645, 13, 15460, 1387, 1635, 8576, 4008, 1343, 705, 907, 63, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 3275, 13, 19312, 7, 11299, 11639, 79, 506, 13, 4600, 42955, 4303, 24812, 25, 705, 1343, 965, 7, 744, 7, 49464, 13, 13645, 13, 15460, 1387, 1635, 8576, 4008, 1343, 705, 907, 63, 705, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 63, 31077, 640, 25, 705, 1343, 965, 7, 600, 19510, 437, 62, 2435, 532, 923, 62, 2435, 8, 1635, 8576, 4008, 1343, 705, 907, 63, 11537, 628, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 3419, 198, 220, 220, 220, 30351, 825, 2723, 7, 944, 11, 269, 17602, 25, 30532, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12578, 257, 2792, 284, 262, 2723, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 269, 17602, 13, 21280, 7, 11299, 11639, 41972, 416, 14576, 6543, 1010, 2256, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5450, 1378, 12567, 13, 785, 14, 18673, 541, 47733, 1010, 2256, 14, 35, 501, 13645, 11537, 628, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 3419, 198, 220, 220, 220, 30351, 825, 7538, 7, 944, 11, 269, 17602, 25, 30532, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6358, 7538, 393, 2428, 351, 262, 10214, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 269, 17602, 13, 21280, 10786, 1532, 262, 10214, 318, 5445, 393, 345, 423, 597, 7538, 345, 43054, 67, 588, 284, 9199, 3387, 2251, 257, 2071, 319, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 270, 16066, 25, 3740, 1378, 12567, 13, 785, 14, 18673, 541, 47733, 1010, 2256, 14, 35, 501, 13645, 11537, 628, 220, 220, 220, 2488, 9503, 1746, 13, 21812, 3419, 198, 220, 220, 220, 30351, 825, 374, 7, 944, 11, 269, 17602, 25, 30532, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6358, 7538, 393, 2428, 351, 262, 10214, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 269, 17602, 13, 21280, 7, 10646, 13, 2487, 35, 1063, 7, 49464, 13, 20500, 13, 11299, 4008, 198 ]
2.284404
654
import feedparser import time class RSSReader: """Class built upon feedparser to get new items from an rss feed""" DATA_FILE = 'RSSData.txt' DATA_FILE = 'RSSData.txt'
[ 11748, 3745, 48610, 198, 11748, 640, 198, 198, 4871, 25012, 33634, 25, 198, 220, 220, 220, 37227, 9487, 3170, 2402, 3745, 48610, 284, 651, 649, 3709, 422, 281, 374, 824, 3745, 37811, 198, 220, 220, 220, 42865, 62, 25664, 796, 705, 49, 5432, 6601, 13, 14116, 6, 628, 220, 220, 220, 42865, 62, 25664, 796, 705, 49, 5432, 6601, 13, 14116, 6, 628, 198 ]
2.859375
64
__author__ = 'Kalyan' # this is a sample module for the understanding_modules assignment.
[ 834, 9800, 834, 796, 705, 42, 3400, 272, 6, 628, 198, 2, 428, 318, 257, 6291, 8265, 329, 262, 4547, 62, 18170, 16237, 13, 198 ]
3.68
25
from blendvis.primitives.primitives import FontPrimitive, LinePrimitive, CubePrimitive, \ CameraPrimitive, SpherePrimitive, CurvePrimitive, GreasePencilPrimitive, Primitive
[ 6738, 13516, 4703, 13, 19795, 20288, 13, 19795, 20288, 1330, 24060, 23828, 1800, 11, 6910, 23828, 1800, 11, 23315, 23828, 1800, 11, 3467, 198, 220, 220, 220, 20432, 23828, 1800, 11, 31798, 23828, 1800, 11, 46300, 23828, 1800, 11, 11955, 589, 25553, 2856, 23828, 1800, 11, 11460, 1800 ]
3.666667
48
import json import requests import pandas as pd import websocket # Get Alpaca API Credential endpoint = "https://data.alpaca.markets/v2" headers = json.loads(open("key.txt", 'r').read()) def hist_data(symbols, start="2021-01-01", timeframe="1Hour", limit=50, end=""): """ returns historical bar data for a string of symbols separated by comma symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG" """ df_data_tickers = {} for symbol in symbols: bar_url = endpoint + "/stocks/{}/bars".format(symbol) params = {"start":start, "limit" :limit, "timeframe":timeframe} data = {"bars": [], "next_page_token":'', "symbol":symbol} while True: r = requests.get(bar_url, headers = headers, params = params) r = r.json() if r["next_page_token"] == None: data["bars"]+=r["bars"] break else: params["page_token"] = r["next_page_token"] data["bars"]+=r["bars"] data["next_page_token"] = r["next_page_token"] df_data = pd.DataFrame(data["bars"]) df_data.rename({"t":"time","o":"open","h":"high","l":"low","c":"close","v":"volume"},axis=1, inplace=True) df_data["time"] = pd.to_datetime(df_data["time"]) df_data.set_index("time",inplace=True) df_data.index = df_data.index.tz_convert("America/Indiana/Petersburg") df_data_tickers[symbol] = df_data return df_data_tickers def get_historical_data(ticker_list, start_date, end_date=None, limit=10000, timeframe="1Day"): """ returns historical bar data for a string of symbols separated by comma symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG" * timeframe - Timeframe for the aggregation. Available values are: `1Min`, `1Hour`, `1Day` https://alpaca.markets/docs/api-documentation/api-v2/market-data/alpaca-data-api-v2/historical/#bars """ df_data_tickers = {} for symbol in ticker_list: bar_url = endpoint + "/stocks/{}/bars".format(symbol) params = {"start":start_date, "end": end_date, "limit": limit, "timeframe":timeframe} data = {"bars": [], "next_page_token": '', "symbol": symbol} # r = requests.get(bar_url, headers=headers, params=params) # r = r.json() # data["bars"] += r["bars"] while True: r = requests.get(bar_url, headers=headers, params=params) r = r.json() try: if r["next_page_token"] == None: data["bars"] += r["bars"] break else: params["page_token"] = r["next_page_token"] data["bars"] += r["bars"] data["next_page_token"] = r["next_page_token"] except: break # Create a DataFrame for the data["bars"] of each stock df_data = pd.DataFrame(data["bars"]) df_data.rename({"t":"time","o":"open","h":"high","l":"low","c":"close","v":"volume"},axis=1, inplace=True) try: df_data["time"] = pd.to_datetime(df_data["time"]) df_data.set_index("time",inplace=True) df_data.index = df_data.index.tz_convert("America/New_York") df_data_tickers[symbol] = df_data except: pass print("---- Created for [{}]".format(symbol)) return df_data_tickers
[ 11748, 33918, 201, 198, 11748, 7007, 201, 198, 11748, 19798, 292, 355, 279, 67, 220, 201, 198, 11748, 2639, 5459, 201, 198, 201, 198, 201, 198, 2, 3497, 978, 79, 22260, 7824, 327, 445, 1843, 201, 198, 437, 4122, 796, 366, 5450, 1378, 7890, 13, 282, 79, 22260, 13, 34162, 14, 85, 17, 1, 201, 198, 50145, 796, 33918, 13, 46030, 7, 9654, 7203, 2539, 13, 14116, 1600, 705, 81, 27691, 961, 28955, 201, 198, 201, 198, 201, 198, 201, 198, 4299, 1554, 62, 7890, 7, 1837, 2022, 10220, 11, 923, 2625, 1238, 2481, 12, 486, 12, 486, 1600, 41352, 2625, 16, 43223, 1600, 4179, 28, 1120, 11, 886, 33151, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 5860, 6754, 2318, 1366, 329, 257, 4731, 286, 14354, 11266, 416, 39650, 201, 198, 220, 220, 220, 14354, 815, 307, 287, 257, 4731, 5794, 11266, 416, 39650, 304, 13, 70, 13, 14354, 796, 366, 5653, 9792, 11, 2390, 57, 45, 11, 38, 6684, 38, 1, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 47764, 62, 7890, 62, 83, 21630, 796, 23884, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 329, 6194, 287, 14354, 25, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 6371, 796, 36123, 1343, 12813, 29522, 14, 90, 92, 14, 34046, 1911, 18982, 7, 1837, 23650, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 9688, 1298, 9688, 11, 366, 32374, 1, 1058, 32374, 11, 366, 2435, 14535, 1298, 2435, 14535, 92, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 19779, 34046, 1298, 685, 4357, 366, 19545, 62, 7700, 62, 30001, 1298, 6, 3256, 366, 1837, 23650, 1298, 1837, 23650, 92, 201, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 7007, 13, 1136, 7, 5657, 62, 6371, 11, 24697, 796, 24697, 11, 42287, 796, 42287, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 374, 13, 17752, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 14692, 19545, 62, 7700, 62, 30001, 8973, 6624, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 34046, 8973, 47932, 81, 14692, 34046, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 14692, 7700, 62, 30001, 8973, 796, 374, 14692, 19545, 62, 7700, 62, 30001, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 34046, 8973, 47932, 81, 14692, 34046, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 19545, 62, 7700, 62, 30001, 8973, 796, 374, 14692, 19545, 62, 7700, 62, 30001, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 796, 279, 67, 13, 6601, 19778, 7, 7890, 14692, 34046, 8973, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 13, 918, 480, 7, 4895, 83, 2404, 2435, 2430, 78, 2404, 9654, 2430, 71, 2404, 8929, 2430, 75, 2404, 9319, 2430, 66, 2404, 19836, 2430, 85, 2404, 29048, 25719, 22704, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 14692, 2435, 8973, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 7568, 62, 7890, 14692, 2435, 8973, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 13, 2617, 62, 9630, 7203, 2435, 1600, 259, 5372, 28, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 13, 9630, 796, 47764, 62, 7890, 13, 9630, 13, 22877, 62, 1102, 1851, 7203, 18165, 14, 49153, 14, 47, 7307, 7423, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 62, 83, 21630, 58, 1837, 23650, 60, 796, 47764, 62, 7890, 201, 198, 220, 220, 220, 1441, 47764, 62, 7890, 62, 83, 21630, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 4299, 651, 62, 10034, 12409, 62, 7890, 7, 83, 15799, 62, 4868, 11, 923, 62, 4475, 11, 886, 62, 4475, 28, 14202, 11, 4179, 28, 49388, 11, 41352, 2625, 16, 12393, 1, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 5860, 6754, 2318, 1366, 329, 257, 4731, 286, 14354, 11266, 416, 39650, 201, 198, 220, 220, 220, 14354, 815, 307, 287, 257, 4731, 5794, 11266, 416, 39650, 304, 13, 70, 13, 14354, 796, 366, 5653, 9792, 11, 2390, 57, 45, 11, 38, 6684, 38, 1, 201, 198, 220, 220, 220, 1635, 41352, 532, 3862, 14535, 329, 262, 46500, 13, 14898, 3815, 389, 25, 4600, 16, 9452, 47671, 4600, 16, 43223, 47671, 4600, 16, 12393, 63, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 3740, 1378, 282, 79, 22260, 13, 34162, 14, 31628, 14, 15042, 12, 22897, 341, 14, 15042, 12, 85, 17, 14, 10728, 12, 7890, 14, 282, 79, 22260, 12, 7890, 12, 15042, 12, 85, 17, 14, 10034, 12409, 31113, 34046, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 47764, 62, 7890, 62, 83, 21630, 796, 23884, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 329, 6194, 287, 4378, 263, 62, 4868, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 6371, 796, 36123, 1343, 12813, 29522, 14, 90, 92, 14, 34046, 1911, 18982, 7, 1837, 23650, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 9688, 1298, 9688, 62, 4475, 11, 366, 437, 1298, 886, 62, 4475, 11, 366, 32374, 1298, 4179, 11, 366, 2435, 14535, 1298, 2435, 14535, 92, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 19779, 34046, 1298, 685, 4357, 366, 19545, 62, 7700, 62, 30001, 1298, 705, 3256, 366, 1837, 23650, 1298, 6194, 92, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 374, 796, 7007, 13, 1136, 7, 5657, 62, 6371, 11, 24697, 28, 50145, 11, 42287, 28, 37266, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 374, 796, 374, 13, 17752, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1366, 14692, 34046, 8973, 15853, 374, 14692, 34046, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 7007, 13, 1136, 7, 5657, 62, 6371, 11, 24697, 28, 50145, 11, 42287, 28, 37266, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 374, 13, 17752, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 14692, 19545, 62, 7700, 62, 30001, 8973, 6624, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 34046, 8973, 15853, 374, 14692, 34046, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 14692, 7700, 62, 30001, 8973, 796, 374, 14692, 19545, 62, 7700, 62, 30001, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 34046, 8973, 15853, 374, 14692, 34046, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 19545, 62, 7700, 62, 30001, 8973, 796, 374, 14692, 19545, 62, 7700, 62, 30001, 8973, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 6060, 19778, 329, 262, 1366, 14692, 34046, 8973, 286, 1123, 4283, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 796, 279, 67, 13, 6601, 19778, 7, 7890, 14692, 34046, 8973, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 13, 918, 480, 7, 4895, 83, 2404, 2435, 2430, 78, 2404, 9654, 2430, 71, 2404, 8929, 2430, 75, 2404, 9319, 2430, 66, 2404, 19836, 2430, 85, 2404, 29048, 25719, 22704, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 14692, 2435, 8973, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 7568, 62, 7890, 14692, 2435, 8973, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 13, 2617, 62, 9630, 7203, 2435, 1600, 259, 5372, 28, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 13, 9630, 796, 47764, 62, 7890, 13, 9630, 13, 22877, 62, 1102, 1851, 7203, 18165, 14, 3791, 62, 49278, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 7890, 62, 83, 21630, 58, 1837, 23650, 60, 796, 47764, 62, 7890, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 650, 15622, 329, 685, 90, 92, 60, 1911, 18982, 7, 1837, 23650, 4008, 201, 198, 201, 198, 220, 220, 220, 1441, 47764, 62, 7890, 62, 83, 21630, 201, 198, 201, 198, 201, 198 ]
2.049555
1,796
import sys, os from dotenv import dotenv_values config = dotenv_values(".env") cur_dir = os.path.dirname(__file__) trex_path = f"{config['TREX_LOCATION']}/{config['TREX_VERSION']}" interactive = os.path.abspath(f"{trex_path}/automation/trex_control_plane/interactive") sys.path.insert(0, os.path.abspath(interactive)) STL_PROFILES_PATH = os.path.join(f"{trex_path}/stl") EXT_LIBS_PATH = os.path.abspath(f"{trex_path}/external_libs") assert os.path.isdir(STL_PROFILES_PATH), "Could not determine STL profiles path" assert os.path.isdir(EXT_LIBS_PATH), "Could not determine external_libs path"
[ 11748, 25064, 11, 28686, 198, 6738, 16605, 24330, 1330, 16605, 24330, 62, 27160, 198, 198, 11250, 796, 16605, 24330, 62, 27160, 7, 1911, 24330, 4943, 198, 198, 22019, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 198, 83, 21510, 62, 6978, 796, 277, 1, 90, 11250, 17816, 51, 2200, 55, 62, 29701, 6234, 20520, 92, 14, 90, 11250, 17816, 51, 2200, 55, 62, 43717, 20520, 36786, 198, 3849, 5275, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 69, 1, 90, 83, 21510, 62, 6978, 92, 14, 2306, 296, 341, 14, 83, 21510, 62, 13716, 62, 14382, 14, 3849, 5275, 4943, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 397, 2777, 776, 7, 3849, 5275, 4008, 198, 198, 2257, 43, 62, 4805, 19238, 4146, 1546, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 7, 69, 1, 90, 83, 21510, 62, 6978, 92, 14, 301, 75, 4943, 198, 13918, 62, 31271, 4462, 62, 34219, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 69, 1, 90, 83, 21510, 62, 6978, 92, 14, 22615, 62, 8019, 82, 4943, 198, 30493, 28686, 13, 6978, 13, 9409, 343, 7, 2257, 43, 62, 4805, 19238, 4146, 1546, 62, 34219, 828, 366, 23722, 407, 5004, 37269, 16545, 3108, 1, 198, 30493, 28686, 13, 6978, 13, 9409, 343, 7, 13918, 62, 31271, 4462, 62, 34219, 828, 366, 23722, 407, 5004, 7097, 62, 8019, 82, 3108, 1, 198 ]
2.45679
243
#coding=utf-8 import sys import os from os.path import abspath, dirname sys.path.append(abspath(dirname(__file__))) import tkinter import tkinter.filedialog from tkinter import * import Fun ElementBGArray={} ElementBGArray_Resize={} ElementBGArray_IM={} from PyPDF2 import PdfFileReader, PdfFileWriter
[ 2, 66, 7656, 28, 40477, 12, 23, 198, 11748, 25064, 198, 11748, 28686, 198, 6738, 220, 220, 28686, 13, 6978, 1330, 2352, 6978, 11, 26672, 3672, 198, 17597, 13, 6978, 13, 33295, 7, 397, 2777, 776, 7, 15908, 3672, 7, 834, 7753, 834, 22305, 198, 11748, 256, 74, 3849, 198, 11748, 256, 74, 3849, 13, 69, 3902, 498, 519, 198, 6738, 220, 220, 256, 74, 3849, 1330, 1635, 198, 11748, 11138, 198, 20180, 40469, 19182, 34758, 92, 220, 220, 198, 20180, 40469, 19182, 62, 4965, 1096, 34758, 92, 220, 198, 20180, 40469, 19182, 62, 3955, 34758, 92, 220, 198, 6738, 9485, 20456, 17, 1330, 350, 7568, 8979, 33634, 11, 350, 7568, 8979, 34379, 628 ]
2.72807
114
from django.test import Client from django.test import RequestFactory, TestCase from django.contrib.auth import get_user_model from cart import views
[ 6738, 42625, 14208, 13, 9288, 1330, 20985, 198, 6738, 42625, 14208, 13, 9288, 1330, 19390, 22810, 11, 6208, 20448, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 6383, 1330, 5009, 198, 220, 220, 220, 220, 198 ]
3.444444
45
import enum import typing as ta from omnibus import collections as col from omnibus import dataclasses as dc from .base import Expr from .base import Identifier from .base import Node from .base import QualifiedNameNode from .base import SetQuantifier from .base import SortItem
[ 11748, 33829, 198, 11748, 19720, 355, 20486, 198, 198, 6738, 22284, 26333, 1330, 17268, 355, 951, 198, 6738, 22284, 26333, 1330, 4818, 330, 28958, 355, 30736, 198, 198, 6738, 764, 8692, 1330, 1475, 1050, 198, 6738, 764, 8692, 1330, 11440, 7483, 198, 6738, 764, 8692, 1330, 19081, 198, 6738, 764, 8692, 1330, 9537, 1431, 5376, 19667, 198, 6738, 764, 8692, 1330, 5345, 24915, 7483, 198, 6738, 764, 8692, 1330, 33947, 7449, 628, 628, 628, 628, 628, 628, 628, 198 ]
3.734177
79
# -*- coding: utf8 -*-
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 23, 532, 9, 12, 628, 628, 628, 628, 198 ]
1.823529
17
balance = 999999 annualInterestRate = 0.18 monthlyInterestRate = annualInterestRate/12.0 monthlyLower = balance/12 monthlyUpper = (balance * (1+monthlyInterestRate)**12)/12.0 while True: updatedBalance = balance for i in range(12): payment = (monthlyUpper + monthlyLower)/2.0 monthlyUnpaidBalance = updatedBalance - payment updatedBalance = monthlyUnpaidBalance + monthlyInterestRate * monthlyUnpaidBalance if updatedBalance < -0.01: monthlyUpper = payment elif updatedBalance > 0.01: monthlyLower = payment else: break print("Lowest payment: {:0.2f}".format(payment))
[ 20427, 796, 36006, 17032, 198, 1236, 723, 19302, 32184, 796, 657, 13, 1507, 198, 198, 8424, 306, 19302, 32184, 796, 5079, 19302, 32184, 14, 1065, 13, 15, 198, 8424, 306, 31426, 796, 5236, 14, 1065, 198, 8424, 306, 52, 2848, 796, 357, 20427, 1635, 357, 16, 10, 8424, 306, 19302, 32184, 8, 1174, 1065, 20679, 1065, 13, 15, 198, 198, 4514, 6407, 25, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 6153, 45866, 796, 5236, 198, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 1065, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6074, 796, 357, 8424, 306, 52, 2848, 1343, 9651, 31426, 20679, 17, 13, 15, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 3118, 20333, 45866, 796, 6153, 45866, 532, 6074, 198, 220, 220, 220, 220, 220, 220, 220, 6153, 45866, 796, 9651, 3118, 20333, 45866, 1343, 9651, 19302, 32184, 1635, 9651, 3118, 20333, 45866, 198, 220, 220, 220, 220, 611, 6153, 45866, 1279, 532, 15, 13, 486, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 52, 2848, 796, 6074, 198, 220, 220, 220, 220, 1288, 361, 6153, 45866, 1875, 657, 13, 486, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 31426, 796, 6074, 198, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 4798, 7203, 20535, 395, 6074, 25, 46110, 15, 13, 17, 69, 92, 1911, 18982, 7, 37301, 4008 ]
2.690083
242
# -*- coding: utf-8 -*- import time from pytest import mark @mark.parametrize('with_message', [True, False]) @mark.parametrize('hard_deployment', [True, False]) @mark.parametrize('final_release_state', [ 'DEPLOYED', 'FAILED', 'UNKNOWN', 'TEMP_DEPLOYMENT_FAILURE' ]) @mark.parametrize('maintenance', [True, False]) @mark.parametrize('payload', [ None, {'stories': {'foo'}, 'services': ['bar', 'baz']} ])
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 640, 198, 198, 6738, 12972, 9288, 1330, 1317, 628, 198, 31, 4102, 13, 17143, 316, 380, 2736, 10786, 4480, 62, 20500, 3256, 685, 17821, 11, 10352, 12962, 198, 31, 4102, 13, 17143, 316, 380, 2736, 10786, 10424, 62, 2934, 1420, 434, 3256, 685, 17821, 11, 10352, 12962, 198, 31, 4102, 13, 17143, 316, 380, 2736, 10786, 20311, 62, 20979, 62, 5219, 3256, 685, 198, 220, 220, 220, 705, 7206, 6489, 21414, 1961, 3256, 705, 7708, 4146, 1961, 3256, 705, 4944, 44706, 3256, 705, 51, 39494, 62, 7206, 6489, 21414, 10979, 62, 7708, 4146, 11335, 6, 198, 12962, 198, 31, 4102, 13, 17143, 316, 380, 2736, 10786, 12417, 8219, 3256, 685, 17821, 11, 10352, 12962, 198, 31, 4102, 13, 17143, 316, 380, 2736, 10786, 15577, 2220, 3256, 685, 198, 220, 220, 220, 6045, 11, 1391, 6, 50164, 10354, 1391, 6, 21943, 6, 5512, 705, 30416, 10354, 37250, 5657, 3256, 705, 65, 1031, 20520, 92, 198, 12962, 628 ]
2.426901
171