content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
# -*- coding: utf-8 -*-
"""Tests for the key interactiveshell module.
Authors
-------
* Julian Taylor
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2011 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
# stdlib
import sys
import types
import unittest
from IPython.core.inputtransformer import InputTransformer
from IPython.testing.decorators import skipif
from IPython.utils import py3compat
from IPython.testing import tools as tt
# Decorator for interaction loop tests -----------------------------------
class mock_input_helper(object):
"""Machinery for tests of the main interact loop.
Used by the mock_input decorator.
"""
def mock_input(testfunc):
"""Decorator for tests of the main interact loop.
Write the test as a generator, yield-ing the input strings, which IPython
will see as if they were typed in at the prompt.
"""
return test_method
# Test classes -----------------------------------------------------------
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
51,
3558,
329,
262,
1994,
9427,
1083,
12758,
8265,
13,
198,
198,
30515,
669,
198,
26866,
198,
9,
18322,
8121,
198,
37811,
198,
2,
10097,
32501,
198,
2,
220,
15069,
357,
34,
8,
2813,
220,
383,
6101,
7535,
7712,
4816,
198,
2,
198,
2,
220,
4307,
6169,
739,
262,
2846,
286,
262,
347,
10305,
13789,
13,
220,
383,
1336,
5964,
318,
287,
198,
2,
220,
262,
2393,
27975,
45761,
11,
9387,
355,
636,
286,
428,
3788,
13,
198,
2,
10097,
32501,
198,
198,
2,
10097,
32501,
198,
2,
1846,
3742,
198,
2,
10097,
32501,
198,
2,
14367,
8019,
198,
11748,
25064,
198,
11748,
3858,
198,
11748,
555,
715,
395,
198,
198,
6738,
6101,
7535,
13,
7295,
13,
15414,
7645,
16354,
1330,
23412,
8291,
16354,
198,
6738,
6101,
7535,
13,
33407,
13,
12501,
273,
2024,
1330,
14267,
361,
198,
6738,
6101,
7535,
13,
26791,
1330,
12972,
18,
5589,
265,
198,
6738,
6101,
7535,
13,
33407,
1330,
4899,
355,
256,
83,
198,
198,
2,
4280,
273,
1352,
329,
10375,
9052,
5254,
20368,
6329,
628,
198,
4871,
15290,
62,
15414,
62,
2978,
525,
7,
15252,
2599,
628,
220,
220,
220,
37227,
49999,
15451,
329,
5254,
286,
262,
1388,
9427,
9052,
13,
628,
220,
220,
220,
16718,
416,
262,
15290,
62,
15414,
11705,
1352,
13,
198,
220,
220,
220,
37227,
628,
198,
4299,
15290,
62,
15414,
7,
9288,
20786,
2599,
198,
220,
220,
220,
37227,
10707,
273,
1352,
329,
5254,
286,
262,
1388,
9427,
9052,
13,
628,
220,
220,
220,
19430,
262,
1332,
355,
257,
17301,
11,
7800,
12,
278,
262,
5128,
13042,
11,
543,
6101,
7535,
198,
220,
220,
220,
481,
766,
355,
611,
484,
547,
25683,
287,
379,
262,
6152,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1441,
1332,
62,
24396,
198,
198,
2,
6208,
6097,
20368,
22369,
6329,
628,
628
] | 4.388013 | 317 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Definitions for modified MobileNet models used in LSTD."""
import tensorflow as tf
from nets import mobilenet_v1
from nets.mobilenet import conv_blocks as mobilenet_convs
from nets.mobilenet import mobilenet
slim = tf.contrib.slim
def mobilenet_v1_lite_def(depth_multiplier, low_res=False):
"""Conv definitions for a lite MobileNet v1 model.
Args:
depth_multiplier: float depth multiplier for MobileNet.
low_res: An option of low-res conv input for interleave model.
Returns:
Array of convolutions.
Raises:
ValueError: On invalid channels with provided depth multiplier.
"""
conv = mobilenet_v1.Conv
sep_conv = mobilenet_v1.DepthSepConv
return [
conv(kernel=[3, 3], stride=2, depth=32),
sep_conv(kernel=[3, 3], stride=1, depth=64),
sep_conv(kernel=[3, 3], stride=2, depth=128),
sep_conv(kernel=[3, 3], stride=1, depth=128),
sep_conv(kernel=[3, 3], stride=2, depth=256),
sep_conv(kernel=[3, 3], stride=1, depth=256),
sep_conv(kernel=[3, 3], stride=2, depth=512),
sep_conv(kernel=[3, 3], stride=1, depth=512),
sep_conv(kernel=[3, 3], stride=1, depth=512),
sep_conv(kernel=[3, 3], stride=1, depth=512),
sep_conv(kernel=[3, 3], stride=1, depth=512),
sep_conv(kernel=[3, 3], stride=1, depth=512),
sep_conv(kernel=[3, 3], stride=1 if low_res else 2, depth=1024),
sep_conv(
kernel=[3, 3],
stride=1,
depth=int(_find_target_depth(1024, depth_multiplier)))
]
def mobilenet_v2_lite_def(reduced=False, is_quantized=False, low_res=False):
"""Conv definitions for a lite MobileNet v2 model.
Args:
reduced: Determines the scaling factor for expanded conv. If True, a factor
of 6 is used. If False, a factor of 3 is used.
is_quantized: Whether the model is trained in quantized mode.
low_res: Whether the input to the model is of half resolution.
Returns:
Array of convolutions.
"""
expanded_conv = mobilenet_convs.expanded_conv
expand_input = mobilenet_convs.expand_input_by_factor
op = mobilenet.op
return dict(
defaults={
# Note: these parameters of batch norm affect the architecture
# that's why they are here and not in training_scope.
(slim.batch_norm,): {
'center': True,
'scale': True
},
(slim.conv2d, slim.fully_connected, slim.separable_conv2d): {
'normalizer_fn': slim.batch_norm,
'activation_fn': tf.nn.relu6
},
(expanded_conv,): {
'expansion_size': expand_input(6),
'split_expansion': 1,
'normalizer_fn': slim.batch_norm,
'residual': True
},
(slim.conv2d, slim.separable_conv2d): {
'padding': 'SAME'
}
},
spec=[
op(slim.conv2d, stride=2, num_outputs=32, kernel_size=[3, 3]),
op(expanded_conv,
expansion_size=expand_input(1, divisible_by=1),
num_outputs=16),
op(expanded_conv,
expansion_size=(expand_input(3, divisible_by=1)
if reduced else expand_input(6)),
stride=2,
num_outputs=24),
op(expanded_conv,
expansion_size=(expand_input(3, divisible_by=1)
if reduced else expand_input(6)),
stride=1,
num_outputs=24),
op(expanded_conv, stride=2, num_outputs=32),
op(expanded_conv, stride=1, num_outputs=32),
op(expanded_conv, stride=1, num_outputs=32),
op(expanded_conv, stride=2, num_outputs=64),
op(expanded_conv, stride=1, num_outputs=64),
op(expanded_conv, stride=1, num_outputs=64),
op(expanded_conv, stride=1, num_outputs=64),
op(expanded_conv, stride=1, num_outputs=96),
op(expanded_conv, stride=1, num_outputs=96),
op(expanded_conv, stride=1, num_outputs=96),
op(expanded_conv, stride=1 if low_res else 2, num_outputs=160),
op(expanded_conv, stride=1, num_outputs=160),
op(expanded_conv, stride=1, num_outputs=160),
op(expanded_conv,
stride=1,
num_outputs=320,
project_activation_fn=(tf.nn.relu6
if is_quantized else tf.identity))
],
)
| [
2,
15069,
13130,
383,
309,
22854,
37535,
46665,
13,
1439,
6923,
33876,
13,
201,
198,
2,
201,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
201,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
201,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
201,
198,
2,
201,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
201,
198,
2,
201,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
201,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
201,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
201,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
201,
198,
2,
11247,
739,
262,
13789,
13,
201,
198,
2,
38093,
25609,
28,
201,
198,
37811,
7469,
50101,
329,
9518,
12173,
7934,
4981,
973,
287,
406,
32147,
526,
15931,
201,
198,
201,
198,
11748,
11192,
273,
11125,
355,
48700,
201,
198,
201,
198,
6738,
31720,
1330,
17754,
268,
316,
62,
85,
16,
201,
198,
6738,
31720,
13,
76,
25898,
268,
316,
1330,
3063,
62,
27372,
355,
17754,
268,
316,
62,
1102,
14259,
201,
198,
6738,
31720,
13,
76,
25898,
268,
316,
1330,
17754,
268,
316,
201,
198,
201,
198,
82,
2475,
796,
48700,
13,
3642,
822,
13,
82,
2475,
201,
198,
201,
198,
201,
198,
4299,
17754,
268,
316,
62,
85,
16,
62,
36890,
62,
4299,
7,
18053,
62,
47945,
959,
11,
1877,
62,
411,
28,
25101,
2599,
201,
198,
220,
37227,
3103,
85,
17336,
329,
257,
300,
578,
12173,
7934,
410,
16,
2746,
13,
201,
198,
201,
198,
220,
943,
14542,
25,
201,
198,
220,
220,
220,
6795,
62,
47945,
959,
25,
12178,
6795,
33090,
329,
12173,
7934,
13,
201,
198,
220,
220,
220,
1877,
62,
411,
25,
1052,
3038,
286,
1877,
12,
411,
3063,
5128,
329,
987,
47408,
2746,
13,
201,
198,
201,
198,
220,
16409,
25,
201,
198,
220,
220,
220,
15690,
286,
3063,
14191,
13,
201,
198,
201,
198,
220,
7567,
2696,
25,
201,
198,
220,
220,
220,
11052,
12331,
25,
1550,
12515,
9619,
351,
2810,
6795,
33090,
13,
201,
198,
220,
37227,
201,
198,
220,
3063,
796,
17754,
268,
316,
62,
85,
16,
13,
3103,
85,
201,
198,
220,
41767,
62,
42946,
796,
17754,
268,
316,
62,
85,
16,
13,
48791,
19117,
3103,
85,
201,
198,
201,
198,
220,
1441,
685,
201,
198,
220,
220,
220,
220,
220,
3063,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
17,
11,
6795,
28,
2624,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
11,
6795,
28,
2414,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
17,
11,
6795,
28,
12762,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
11,
6795,
28,
12762,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
17,
11,
6795,
28,
11645,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
11,
6795,
28,
11645,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
17,
11,
6795,
28,
25836,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
11,
6795,
28,
25836,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
11,
6795,
28,
25836,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
11,
6795,
28,
25836,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
11,
6795,
28,
25836,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
11,
6795,
28,
25836,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
33885,
41888,
18,
11,
513,
4357,
33769,
28,
16,
611,
1877,
62,
411,
2073,
362,
11,
6795,
28,
35500,
828,
201,
198,
220,
220,
220,
220,
220,
41767,
62,
42946,
7,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9720,
41888,
18,
11,
513,
4357,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6795,
28,
600,
28264,
19796,
62,
16793,
62,
18053,
7,
35500,
11,
6795,
62,
47945,
959,
22305,
201,
198,
220,
2361,
201,
198,
201,
198,
201,
198,
4299,
17754,
268,
316,
62,
85,
17,
62,
36890,
62,
4299,
7,
445,
19513,
28,
25101,
11,
318,
62,
40972,
1143,
28,
25101,
11,
1877,
62,
411,
28,
25101,
2599,
201,
198,
220,
37227,
3103,
85,
17336,
329,
257,
300,
578,
12173,
7934,
410,
17,
2746,
13,
201,
198,
201,
198,
220,
943,
14542,
25,
201,
198,
220,
220,
220,
5322,
25,
360,
13221,
274,
262,
20796,
5766,
329,
9902,
3063,
13,
1002,
6407,
11,
257,
5766,
201,
198,
220,
220,
220,
220,
220,
220,
220,
286,
718,
318,
973,
13,
1002,
10352,
11,
257,
5766,
286,
513,
318,
973,
13,
201,
198,
220,
220,
220,
318,
62,
40972,
1143,
25,
10127,
262,
2746,
318,
8776,
287,
5554,
1143,
4235,
13,
201,
198,
220,
220,
220,
1877,
62,
411,
25,
10127,
262,
5128,
284,
262,
2746,
318,
286,
2063,
6323,
13,
201,
198,
201,
198,
220,
16409,
25,
201,
198,
220,
220,
220,
15690,
286,
3063,
14191,
13,
201,
198,
220,
37227,
201,
198,
220,
9902,
62,
42946,
796,
17754,
268,
316,
62,
1102,
14259,
13,
11201,
12249,
62,
42946,
201,
198,
220,
4292,
62,
15414,
796,
17754,
268,
316,
62,
1102,
14259,
13,
11201,
392,
62,
15414,
62,
1525,
62,
31412,
201,
198,
220,
1034,
796,
17754,
268,
316,
13,
404,
201,
198,
220,
1441,
8633,
7,
201,
198,
220,
220,
220,
220,
220,
26235,
34758,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5740,
25,
777,
10007,
286,
15458,
2593,
2689,
262,
10959,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
326,
338,
1521,
484,
389,
994,
290,
407,
287,
3047,
62,
29982,
13,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
82,
2475,
13,
43501,
62,
27237,
11,
2599,
1391,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16159,
10354,
6407,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9888,
10354,
6407,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
2759,
62,
15236,
11,
18862,
13,
25512,
540,
62,
42946,
17,
67,
2599,
1391,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11265,
7509,
62,
22184,
10354,
18862,
13,
43501,
62,
27237,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48545,
62,
22184,
10354,
48700,
13,
20471,
13,
260,
2290,
21,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
11201,
12249,
62,
42946,
11,
2599,
1391,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11201,
5487,
62,
7857,
10354,
4292,
62,
15414,
7,
21,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35312,
62,
11201,
5487,
10354,
352,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11265,
7509,
62,
22184,
10354,
18862,
13,
43501,
62,
27237,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
411,
312,
723,
10354,
6407,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
25512,
540,
62,
42946,
17,
67,
2599,
1391,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
39231,
10354,
705,
50,
10067,
6,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
201,
198,
220,
220,
220,
220,
220,
8964,
201,
198,
220,
220,
220,
220,
220,
1020,
41888,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
82,
2475,
13,
42946,
17,
67,
11,
33769,
28,
17,
11,
997,
62,
22915,
82,
28,
2624,
11,
9720,
62,
7857,
41888,
18,
11,
513,
46570,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7118,
62,
7857,
28,
11201,
392,
62,
15414,
7,
16,
11,
2659,
12843,
62,
1525,
28,
16,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
22915,
82,
28,
1433,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7118,
62,
7857,
16193,
11201,
392,
62,
15414,
7,
18,
11,
2659,
12843,
62,
1525,
28,
16,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5322,
2073,
4292,
62,
15414,
7,
21,
36911,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
17,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
22915,
82,
28,
1731,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7118,
62,
7857,
16193,
11201,
392,
62,
15414,
7,
18,
11,
2659,
12843,
62,
1525,
28,
16,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5322,
2073,
4292,
62,
15414,
7,
21,
36911,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
22915,
82,
28,
1731,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
17,
11,
997,
62,
22915,
82,
28,
2624,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
2624,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
2624,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
17,
11,
997,
62,
22915,
82,
28,
2414,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
2414,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
2414,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
2414,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
4846,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
4846,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
4846,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
611,
1877,
62,
411,
2073,
362,
11,
997,
62,
22915,
82,
28,
14198,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
14198,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
33769,
28,
16,
11,
997,
62,
22915,
82,
28,
14198,
828,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
7,
11201,
12249,
62,
42946,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
22915,
82,
28,
19504,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1628,
62,
48545,
62,
22184,
16193,
27110,
13,
20471,
13,
260,
2290,
21,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
40972,
1143,
2073,
48700,
13,
738,
414,
4008,
201,
198,
220,
220,
220,
220,
220,
16589,
201,
198,
220,
1267,
201,
198
] | 2.182728 | 2,397 |
import sys
sys.path.append("../pipeline")
import mysql.connector
import pickle
import argparse
import json
import itertools
from collections import defaultdict,Counter
from collections.abc import Iterable
import numpy as np
import time
import os
from scipy import stats
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.decomposition import TruncatedSVD
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Prepare data for active learning')
#parser.add_argument('--db',required=True,type=str,help='JSON with database settings')
parser.add_argument('--inDir',required=True,type=str,help='Output dir to put matrices')
parser.add_argument('--negThreshold',required=False,default=0.3,type=float,help='Threshold below which is a confident negative (default=0.25)')
parser.add_argument('--posThreshold',required=False,default=0.7,type=float,help='Threshold above which is a confident positive (default=0.75)')
#parser.add_argument('--outFile',required=True,type=str,help='Output file')
args = parser.parse_args()
X_annotated = np.load(os.path.join(args.inDir,'X_annotated.npy'))
y_annotated = np.load(os.path.join(args.inDir,'y_annotated.npy'))
X_undecided = np.load(os.path.join(args.inDir,'X_undecided.npy'))
undecided_scores = np.load(os.path.join(args.inDir,'undecided_scores.npy'))
with open(os.path.join(args.inDir,'undecided_docs.pickle'),'rb') as f:
undecided_docs = pickle.load(f)
if False:
with open(args.db) as f:
database = json.load(f)
mydb = mysql.connector.connect(
host=database['host'],
user=database['user'],
passwd=database['passwd'],
database=database['database']
)
mycursor = mydb.cursor()
#loadDocumentIDMapping(mycursor,undecided_docs)
#baselineConfNumber = getConfidenceNumbers(X_annotated,y_annotated[:,args.label_index],X_undecided,args.posThreshold,args.negThreshold)
#print("baselineConfNumber=",baselineConfNumber)
#outcomes = searchForBestDocumentToAnnotate(X_annotated,y_annotated,X_undecided,args.posThreshold)
current_y = np.copy(y_annotated)
current_train_X = np.copy(X_annotated)
current_unknown_X = np.copy(X_undecided)
num_iter = current_unknown_X.shape[0]
prev_done = []
start_time = time.time()
for i in range(num_iter):
multi_scores = getMultiScores(current_train_X, current_y, current_unknown_X)
np.savetxt('multi_scores_%04d.csv' % i, multi_scores, delimiter=',', fmt="%f")
min_scores = multi_scores.min(axis=1)
min_score_percentiles = stats.rankdata(min_scores,"average") / min_scores.shape[0]
#print(min_score_percentiles.shape)
#print(min_score_percentiles[409])
current_outcomes = searchForBestDocumentToAnnotate(current_train_X,current_y,current_unknown_X,args.posThreshold,show_time=False)
for j in prev_done:
current_outcomes[j,:] = -1
np.savetxt('current_outcomes_%04d.csv' % i, current_outcomes, delimiter=',', fmt="%d")
best_doc_change = current_outcomes.min(axis=1).max()
best_doc_index = current_outcomes.min(axis=1).argmax()
best_min_score_percentile = min_score_percentiles[best_doc_index]
print("# best_doc_index=%d, best_doc_change=%d, train_size=%d" % (best_doc_index,best_doc_change,current_train_X.shape[0]))
print("# best_min_score_percentile = %f" % best_min_score_percentile)
which_label_was_min = current_outcomes[best_doc_index,:].argmin()
label_score_percentiles = stats.rankdata(multi_scores[:,which_label_was_min],"average") / multi_scores.shape[0]
label_score_percentile_for_doc = label_score_percentiles[best_doc_index]
num_where_label_was_min = (current_outcomes.min(axis=1) == current_outcomes[:,which_label_was_min]).sum()
print("which_label_was_min = %d" % which_label_was_min)
print("num_where_label_was_min = %d/%d (%.1f%%)" % (num_where_label_was_min,current_outcomes.shape[0],100*num_where_label_was_min/current_outcomes.shape[0]))
print("label_score_percentile_for_doc = %f" % label_score_percentile_for_doc)
prev_done.append(best_doc_index)
current_train_X = np.vstack([current_train_X,current_unknown_X[best_doc_index,:]])
#current_unknown_X = np.delete(current_unknown_X,best_doc_index,0)
current_y = np.vstack([current_y,np.zeros((1,current_y.shape[1]))])
current_y[current_y.shape[0]-1,current_outcomes[best_doc_index,:].argmax()] = 1
outputTimeEstimates(i,num_iter,start_time)
#break
np.savetxt('undecided_scores.csv', undecided_scores, delimiter=',', fmt="%f")
| [
11748,
25064,
198,
17597,
13,
6978,
13,
33295,
7203,
40720,
79,
541,
4470,
4943,
198,
198,
11748,
48761,
13,
8443,
273,
198,
11748,
2298,
293,
198,
11748,
1822,
29572,
198,
11748,
33918,
198,
11748,
340,
861,
10141,
198,
6738,
17268,
1330,
4277,
11600,
11,
31694,
198,
6738,
17268,
13,
39305,
1330,
40806,
540,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
640,
198,
11748,
28686,
198,
6738,
629,
541,
88,
1330,
9756,
198,
198,
6738,
1341,
35720,
13,
16680,
291,
31172,
1330,
1881,
23266,
19452,
9487,
7483,
198,
6738,
1341,
35720,
13,
3866,
36948,
1330,
15237,
33986,
33,
22050,
7509,
198,
6738,
1341,
35720,
13,
29127,
62,
19849,
1330,
5972,
2569,
8081,
2234,
198,
6738,
1341,
35720,
13,
79,
541,
4470,
1330,
37709,
198,
6738,
1341,
35720,
13,
12501,
296,
9150,
1330,
833,
19524,
515,
50,
8898,
198,
197,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
197,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
7,
11213,
11639,
37534,
533,
1366,
329,
4075,
4673,
11537,
198,
197,
2,
48610,
13,
2860,
62,
49140,
10786,
438,
9945,
3256,
35827,
28,
17821,
11,
4906,
28,
2536,
11,
16794,
11639,
40386,
351,
6831,
6460,
11537,
198,
197,
48610,
13,
2860,
62,
49140,
10786,
438,
259,
35277,
3256,
35827,
28,
17821,
11,
4906,
28,
2536,
11,
16794,
11639,
26410,
26672,
284,
1234,
2603,
45977,
11537,
198,
197,
48610,
13,
2860,
62,
49140,
10786,
438,
12480,
817,
10126,
3256,
35827,
28,
25101,
11,
12286,
28,
15,
13,
18,
11,
4906,
28,
22468,
11,
16794,
11639,
817,
10126,
2174,
543,
318,
257,
6563,
4633,
357,
12286,
28,
15,
13,
1495,
8,
11537,
198,
197,
48610,
13,
2860,
62,
49140,
10786,
438,
1930,
817,
10126,
3256,
35827,
28,
25101,
11,
12286,
28,
15,
13,
22,
11,
4906,
28,
22468,
11,
16794,
11639,
817,
10126,
2029,
543,
318,
257,
6563,
3967,
357,
12286,
28,
15,
13,
2425,
8,
11537,
198,
197,
2,
48610,
13,
2860,
62,
49140,
10786,
438,
448,
8979,
3256,
35827,
28,
17821,
11,
4906,
28,
2536,
11,
16794,
11639,
26410,
2393,
11537,
198,
197,
198,
197,
22046,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
197,
198,
197,
55,
62,
34574,
515,
796,
45941,
13,
2220,
7,
418,
13,
6978,
13,
22179,
7,
22046,
13,
259,
35277,
4032,
55,
62,
34574,
515,
13,
77,
9078,
6,
4008,
198,
197,
88,
62,
34574,
515,
796,
45941,
13,
2220,
7,
418,
13,
6978,
13,
22179,
7,
22046,
13,
259,
35277,
4032,
88,
62,
34574,
515,
13,
77,
9078,
6,
4008,
198,
197,
55,
62,
917,
35503,
796,
45941,
13,
2220,
7,
418,
13,
6978,
13,
22179,
7,
22046,
13,
259,
35277,
4032,
55,
62,
917,
35503,
13,
77,
9078,
6,
4008,
198,
197,
917,
35503,
62,
1416,
2850,
796,
45941,
13,
2220,
7,
418,
13,
6978,
13,
22179,
7,
22046,
13,
259,
35277,
4032,
917,
35503,
62,
1416,
2850,
13,
77,
9078,
6,
4008,
198,
197,
198,
197,
4480,
1280,
7,
418,
13,
6978,
13,
22179,
7,
22046,
13,
259,
35277,
4032,
917,
35503,
62,
31628,
13,
27729,
293,
33809,
6,
26145,
11537,
355,
277,
25,
198,
197,
197,
917,
35503,
62,
31628,
796,
2298,
293,
13,
2220,
7,
69,
8,
198,
197,
197,
198,
197,
361,
10352,
25,
198,
197,
197,
4480,
1280,
7,
22046,
13,
9945,
8,
355,
277,
25,
198,
197,
197,
197,
48806,
796,
33918,
13,
2220,
7,
69,
8,
198,
197,
197,
197,
198,
197,
197,
1820,
9945,
796,
48761,
13,
8443,
273,
13,
8443,
7,
198,
197,
197,
197,
4774,
28,
48806,
17816,
4774,
6,
4357,
198,
197,
197,
197,
7220,
28,
48806,
17816,
7220,
6,
4357,
198,
197,
197,
197,
6603,
16993,
28,
48806,
17816,
6603,
16993,
6,
4357,
198,
197,
197,
197,
48806,
28,
48806,
17816,
48806,
20520,
198,
197,
197,
8,
198,
197,
197,
1820,
66,
21471,
796,
616,
9945,
13,
66,
21471,
3419,
198,
197,
198,
197,
197,
2,
2220,
24941,
2389,
44,
5912,
7,
1820,
66,
21471,
11,
917,
35503,
62,
31628,
8,
198,
197,
198,
197,
2,
12093,
4470,
18546,
15057,
796,
651,
18546,
1704,
49601,
7,
55,
62,
34574,
515,
11,
88,
62,
34574,
515,
58,
45299,
22046,
13,
18242,
62,
9630,
4357,
55,
62,
917,
35503,
11,
22046,
13,
1930,
817,
10126,
11,
22046,
13,
12480,
817,
10126,
8,
198,
197,
2,
4798,
7203,
12093,
4470,
18546,
15057,
28,
1600,
12093,
4470,
18546,
15057,
8,
198,
197,
198,
197,
2,
448,
8988,
796,
2989,
1890,
13014,
24941,
2514,
2025,
1662,
378,
7,
55,
62,
34574,
515,
11,
88,
62,
34574,
515,
11,
55,
62,
917,
35503,
11,
22046,
13,
1930,
817,
10126,
8,
198,
197,
198,
197,
14421,
62,
88,
796,
45941,
13,
30073,
7,
88,
62,
34574,
515,
8,
198,
197,
14421,
62,
27432,
62,
55,
796,
45941,
13,
30073,
7,
55,
62,
34574,
515,
8,
198,
197,
14421,
62,
34680,
62,
55,
796,
45941,
13,
30073,
7,
55,
62,
917,
35503,
8,
628,
197,
22510,
62,
2676,
796,
1459,
62,
34680,
62,
55,
13,
43358,
58,
15,
60,
198,
197,
47050,
62,
28060,
796,
17635,
198,
197,
9688,
62,
2435,
796,
640,
13,
2435,
3419,
198,
197,
1640,
1312,
287,
2837,
7,
22510,
62,
2676,
2599,
198,
197,
198,
197,
197,
41684,
62,
1416,
2850,
796,
651,
29800,
3351,
2850,
7,
14421,
62,
27432,
62,
55,
11,
1459,
62,
88,
11,
1459,
62,
34680,
62,
55,
8,
198,
197,
197,
198,
197,
197,
37659,
13,
21928,
14116,
10786,
41684,
62,
1416,
2850,
62,
4,
3023,
67,
13,
40664,
6,
4064,
1312,
11,
5021,
62,
1416,
2850,
11,
46728,
2676,
28,
3256,
3256,
46996,
2625,
4,
69,
4943,
198,
197,
197,
198,
197,
197,
1084,
62,
1416,
2850,
796,
5021,
62,
1416,
2850,
13,
1084,
7,
22704,
28,
16,
8,
198,
197,
197,
1084,
62,
26675,
62,
25067,
2915,
796,
9756,
13,
43027,
7890,
7,
1084,
62,
1416,
2850,
553,
23913,
4943,
1220,
949,
62,
1416,
2850,
13,
43358,
58,
15,
60,
198,
197,
197,
2,
4798,
7,
1084,
62,
26675,
62,
25067,
2915,
13,
43358,
8,
198,
197,
197,
2,
4798,
7,
1084,
62,
26675,
62,
25067,
2915,
58,
29416,
12962,
198,
197,
197,
198,
197,
197,
14421,
62,
448,
8988,
796,
2989,
1890,
13014,
24941,
2514,
2025,
1662,
378,
7,
14421,
62,
27432,
62,
55,
11,
14421,
62,
88,
11,
14421,
62,
34680,
62,
55,
11,
22046,
13,
1930,
817,
10126,
11,
12860,
62,
2435,
28,
25101,
8,
198,
197,
197,
198,
197,
197,
1640,
474,
287,
8654,
62,
28060,
25,
198,
197,
197,
197,
14421,
62,
448,
8988,
58,
73,
11,
47715,
796,
532,
16,
198,
197,
197,
197,
198,
197,
197,
37659,
13,
21928,
14116,
10786,
14421,
62,
448,
8988,
62,
4,
3023,
67,
13,
40664,
6,
4064,
1312,
11,
1459,
62,
448,
8988,
11,
46728,
2676,
28,
3256,
3256,
46996,
2625,
4,
67,
4943,
198,
197,
197,
198,
197,
197,
13466,
62,
15390,
62,
3803,
796,
1459,
62,
448,
8988,
13,
1084,
7,
22704,
28,
16,
737,
9806,
3419,
198,
197,
197,
13466,
62,
15390,
62,
9630,
796,
1459,
62,
448,
8988,
13,
1084,
7,
22704,
28,
16,
737,
853,
9806,
3419,
198,
197,
197,
13466,
62,
1084,
62,
26675,
62,
25067,
576,
796,
949,
62,
26675,
62,
25067,
2915,
58,
13466,
62,
15390,
62,
9630,
60,
198,
197,
197,
4798,
7203,
2,
1266,
62,
15390,
62,
9630,
28,
4,
67,
11,
1266,
62,
15390,
62,
3803,
28,
4,
67,
11,
4512,
62,
7857,
28,
4,
67,
1,
4064,
357,
13466,
62,
15390,
62,
9630,
11,
13466,
62,
15390,
62,
3803,
11,
14421,
62,
27432,
62,
55,
13,
43358,
58,
15,
60,
4008,
198,
197,
197,
4798,
7203,
2,
1266,
62,
1084,
62,
26675,
62,
25067,
576,
796,
4064,
69,
1,
4064,
1266,
62,
1084,
62,
26675,
62,
25067,
576,
8,
198,
197,
197,
198,
197,
197,
4758,
62,
18242,
62,
9776,
62,
1084,
796,
1459,
62,
448,
8988,
58,
13466,
62,
15390,
62,
9630,
11,
25,
4083,
853,
1084,
3419,
198,
197,
197,
18242,
62,
26675,
62,
25067,
2915,
796,
9756,
13,
43027,
7890,
7,
41684,
62,
1416,
2850,
58,
45299,
4758,
62,
18242,
62,
9776,
62,
1084,
17241,
23913,
4943,
1220,
5021,
62,
1416,
2850,
13,
43358,
58,
15,
60,
198,
197,
197,
198,
197,
197,
18242,
62,
26675,
62,
25067,
576,
62,
1640,
62,
15390,
796,
6167,
62,
26675,
62,
25067,
2915,
58,
13466,
62,
15390,
62,
9630,
60,
198,
197,
197,
198,
197,
197,
22510,
62,
3003,
62,
18242,
62,
9776,
62,
1084,
796,
357,
14421,
62,
448,
8988,
13,
1084,
7,
22704,
28,
16,
8,
6624,
1459,
62,
448,
8988,
58,
45299,
4758,
62,
18242,
62,
9776,
62,
1084,
35944,
16345,
3419,
198,
197,
197,
198,
197,
197,
4798,
7203,
4758,
62,
18242,
62,
9776,
62,
1084,
796,
4064,
67,
1,
4064,
543,
62,
18242,
62,
9776,
62,
1084,
8,
198,
197,
197,
4798,
7203,
22510,
62,
3003,
62,
18242,
62,
9776,
62,
1084,
796,
4064,
67,
14,
4,
67,
357,
7225,
16,
69,
4,
4407,
1,
4064,
357,
22510,
62,
3003,
62,
18242,
62,
9776,
62,
1084,
11,
14421,
62,
448,
8988,
13,
43358,
58,
15,
4357,
3064,
9,
22510,
62,
3003,
62,
18242,
62,
9776,
62,
1084,
14,
14421,
62,
448,
8988,
13,
43358,
58,
15,
60,
4008,
198,
197,
197,
4798,
7203,
18242,
62,
26675,
62,
25067,
576,
62,
1640,
62,
15390,
796,
4064,
69,
1,
4064,
6167,
62,
26675,
62,
25067,
576,
62,
1640,
62,
15390,
8,
198,
197,
197,
198,
197,
197,
47050,
62,
28060,
13,
33295,
7,
13466,
62,
15390,
62,
9630,
8,
198,
197,
197,
198,
197,
197,
14421,
62,
27432,
62,
55,
796,
45941,
13,
85,
25558,
26933,
14421,
62,
27432,
62,
55,
11,
14421,
62,
34680,
62,
55,
58,
13466,
62,
15390,
62,
9630,
11,
25,
11907,
8,
198,
197,
197,
2,
14421,
62,
34680,
62,
55,
796,
45941,
13,
33678,
7,
14421,
62,
34680,
62,
55,
11,
13466,
62,
15390,
62,
9630,
11,
15,
8,
198,
197,
197,
198,
197,
197,
14421,
62,
88,
796,
45941,
13,
85,
25558,
26933,
14421,
62,
88,
11,
37659,
13,
9107,
418,
19510,
16,
11,
14421,
62,
88,
13,
43358,
58,
16,
60,
4008,
12962,
198,
197,
197,
14421,
62,
88,
58,
14421,
62,
88,
13,
43358,
58,
15,
45297,
16,
11,
14421,
62,
448,
8988,
58,
13466,
62,
15390,
62,
9630,
11,
25,
4083,
853,
9806,
3419,
60,
796,
352,
198,
197,
197,
198,
197,
197,
22915,
7575,
22362,
26748,
7,
72,
11,
22510,
62,
2676,
11,
9688,
62,
2435,
8,
198,
197,
197,
2,
9032,
628,
197,
197,
198,
197,
37659,
13,
21928,
14116,
10786,
917,
35503,
62,
1416,
2850,
13,
40664,
3256,
39511,
62,
1416,
2850,
11,
46728,
2676,
28,
3256,
3256,
46996,
2625,
4,
69,
4943,
198,
197,
198,
197,
198,
197
] | 2.582307 | 1,786 |
import string
import PIL.Image
from .printable import Printable
class _ImageHandler:
"""Convert PIL images to ZPL
Based on Java example from:
http://www.jcgonzalez.com/java-image-to-zpl-example
"""
@staticmethod
@staticmethod
@property
@property
| [
11748,
4731,
198,
11748,
350,
4146,
13,
5159,
198,
198,
6738,
764,
4798,
540,
1330,
12578,
540,
628,
198,
4871,
4808,
5159,
25060,
25,
198,
220,
220,
220,
37227,
3103,
1851,
350,
4146,
4263,
284,
1168,
6489,
628,
220,
220,
220,
13403,
319,
7349,
1672,
422,
25,
198,
220,
220,
220,
2638,
1378,
2503,
13,
48055,
70,
13569,
22149,
13,
785,
14,
12355,
12,
9060,
12,
1462,
12,
89,
489,
12,
20688,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
2488,
26745,
628
] | 2.759615 | 104 |
from .context import uspto
import unittest
class AdvancedTestSuite(unittest.TestCase):
"""Advanced test cases."""
print "here we go"
if __name__ == '__main__':
unittest.main()
| [
6738,
764,
22866,
1330,
514,
457,
78,
198,
198,
11748,
555,
715,
395,
198,
198,
4871,
13435,
14402,
5606,
578,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
37227,
28809,
1332,
2663,
526,
15931,
198,
220,
220,
220,
3601,
366,
1456,
356,
467,
1,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 2.690141 | 71 |
import discord
from discord.ext import commands
| [
11748,
36446,
198,
6738,
36446,
13,
2302,
1330,
9729,
628
] | 4.9 | 10 |
import logging
from playhouse import migrate
from alcazar_logging import BraceAdapter
logger = BraceAdapter(logging.getLogger(__name__))
| [
11748,
18931,
198,
198,
6738,
711,
4803,
1330,
32492,
198,
198,
6738,
435,
66,
29413,
62,
6404,
2667,
1330,
1709,
558,
47307,
198,
198,
6404,
1362,
796,
1709,
558,
47307,
7,
6404,
2667,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
4008,
628,
628,
198
] | 3.2 | 45 |
from uuid import UUID
from aio_pika import Exchange
from tentacruel import HeosClientProtocol
HEOS_NS = UUID('003df636-ad90-11e9-aca1-9eb6d06a70c5')
attributes = {
"/player_volume_changed": {
"device_id": "pid",
"name": "heos.volume",
"subattributes": ["level", "mute"]
},
"/player_now_playing_progress": {
"device_id": "pid",
"name": "heos.progress",
"subattributes": ["cur_pos", "duration"]
}
}
| [
6738,
334,
27112,
1330,
471,
27586,
198,
198,
6738,
257,
952,
62,
79,
9232,
1330,
12516,
198,
6738,
11105,
330,
622,
417,
1330,
679,
418,
11792,
19703,
4668,
198,
198,
13909,
2640,
62,
8035,
796,
471,
27586,
10786,
11245,
7568,
21,
2623,
12,
324,
3829,
12,
1157,
68,
24,
12,
22260,
16,
12,
24,
1765,
21,
67,
3312,
64,
2154,
66,
20,
11537,
198,
1078,
7657,
796,
1391,
198,
220,
220,
220,
12813,
7829,
62,
29048,
62,
40985,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
25202,
62,
312,
1298,
366,
35317,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
258,
418,
13,
29048,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7266,
1078,
7657,
1298,
14631,
5715,
1600,
366,
76,
1133,
8973,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
12813,
7829,
62,
2197,
62,
17916,
62,
33723,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
25202,
62,
312,
1298,
366,
35317,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
258,
418,
13,
33723,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7266,
1078,
7657,
1298,
14631,
22019,
62,
1930,
1600,
366,
32257,
8973,
198,
220,
220,
220,
1782,
198,
92,
198
] | 2.163551 | 214 |
import sys
import cPickle as pickle
from collections import OrderedDict
argv = sys.argv[1:]
if len(argv) < 1:
print "usage: create_span_concept_dict.py <span_concept_dataset.p> <output_filename>"
sys.exit()
span_concept_dataset = pickle.load(open(argv[0], "rb"))
output_filename = argv[1]
output_file = open(output_filename, 'w')
span_concept_dict = {}
for id, span_concept_data in span_concept_dataset.iteritems():
for [span, pos, concept, name, ner, nx_root, concept_idx] in span_concept_data:
if span_concept_dict.has_key(span):
if span_concept_dict[span].has_key(concept_idx):
span_concept_dict[span][concept_idx] += 1
else:
span_concept_dict[span][concept_idx] = 1
else:
span_concept_dict[span] = {concept_idx:1}
#Sort the concepts for each span by their frequency
for span, concepts in span_concept_dict.iteritems():
span_concept_dict[span] = OrderedDict(sorted(concepts.items(), key=lambda concepts: concepts[1], reverse=True))
for span, concepts in span_concept_dict.iteritems():
line = span.replace(" ", "_") + " "
for (concept_idx, count) in concepts.iteritems():
line += str(concept_idx) + ":" + str(count) + " "
output_file.write(line+"\n")
pickle.dump(span_concept_dict, open(output_filename + ".p", "wb"))
| [
11748,
25064,
198,
11748,
269,
31686,
293,
355,
2298,
293,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
198,
198,
853,
85,
796,
25064,
13,
853,
85,
58,
16,
47715,
198,
361,
18896,
7,
853,
85,
8,
1279,
352,
25,
198,
197,
4798,
366,
26060,
25,
2251,
62,
12626,
62,
43169,
62,
11600,
13,
9078,
1279,
12626,
62,
43169,
62,
19608,
292,
316,
13,
79,
29,
1279,
22915,
62,
34345,
24618,
198,
197,
17597,
13,
37023,
3419,
198,
198,
12626,
62,
43169,
62,
19608,
292,
316,
796,
2298,
293,
13,
2220,
7,
9654,
7,
853,
85,
58,
15,
4357,
366,
26145,
48774,
198,
22915,
62,
34345,
796,
1822,
85,
58,
16,
60,
198,
22915,
62,
7753,
796,
1280,
7,
22915,
62,
34345,
11,
705,
86,
11537,
198,
12626,
62,
43169,
62,
11600,
796,
23884,
198,
198,
1640,
4686,
11,
11506,
62,
43169,
62,
7890,
287,
11506,
62,
43169,
62,
19608,
292,
316,
13,
2676,
23814,
33529,
198,
197,
1640,
685,
12626,
11,
1426,
11,
3721,
11,
1438,
11,
17156,
11,
299,
87,
62,
15763,
11,
3721,
62,
312,
87,
60,
287,
11506,
62,
43169,
62,
7890,
25,
198,
197,
197,
361,
11506,
62,
43169,
62,
11600,
13,
10134,
62,
2539,
7,
12626,
2599,
198,
197,
197,
197,
361,
11506,
62,
43169,
62,
11600,
58,
12626,
4083,
10134,
62,
2539,
7,
43169,
62,
312,
87,
2599,
198,
197,
197,
197,
197,
12626,
62,
43169,
62,
11600,
58,
12626,
7131,
43169,
62,
312,
87,
60,
15853,
352,
198,
197,
197,
197,
17772,
25,
198,
197,
197,
197,
197,
12626,
62,
43169,
62,
11600,
58,
12626,
7131,
43169,
62,
312,
87,
60,
796,
352,
198,
197,
197,
17772,
25,
198,
197,
197,
197,
12626,
62,
43169,
62,
11600,
58,
12626,
60,
796,
1391,
43169,
62,
312,
87,
25,
16,
92,
198,
198,
2,
42758,
262,
10838,
329,
1123,
11506,
416,
511,
8373,
198,
1640,
11506,
11,
10838,
287,
11506,
62,
43169,
62,
11600,
13,
2676,
23814,
33529,
198,
197,
12626,
62,
43169,
62,
11600,
58,
12626,
60,
796,
14230,
1068,
35,
713,
7,
82,
9741,
7,
43169,
82,
13,
23814,
22784,
1994,
28,
50033,
10838,
25,
10838,
58,
16,
4357,
9575,
28,
17821,
4008,
198,
198,
1640,
11506,
11,
10838,
287,
11506,
62,
43169,
62,
11600,
13,
2676,
23814,
33529,
198,
197,
1370,
796,
11506,
13,
33491,
7203,
33172,
45434,
4943,
1343,
366,
366,
198,
197,
1640,
357,
43169,
62,
312,
87,
11,
954,
8,
287,
10838,
13,
2676,
23814,
33529,
198,
197,
197,
1370,
15853,
965,
7,
43169,
62,
312,
87,
8,
1343,
366,
11097,
1343,
965,
7,
9127,
8,
1343,
366,
366,
198,
197,
22915,
62,
7753,
13,
13564,
7,
1370,
10,
1,
59,
77,
4943,
198,
197,
198,
27729,
293,
13,
39455,
7,
12626,
62,
43169,
62,
11600,
11,
1280,
7,
22915,
62,
34345,
1343,
27071,
79,
1600,
366,
39346,
48774,
198
] | 2.663136 | 472 |
# -*- coding: utf-8 -*-
from queue import Queue
import random
import socket
import threading
import unittest
from coapclient import HelperClient
from coapforwardproxy import CoAPForwardProxy
from coapserver import CoAPServer
from coapthon import defines
from coapthon.messages.option import Option
from coapthon.messages.request import Request
from coapthon.messages.response import Response
from coapthon.serializer import Serializer
__author__ = 'Giacomo Tanganelli'
__version__ = "2.0"
if __name__ == '__main__':
unittest.main()
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
6738,
16834,
1330,
4670,
518,
198,
11748,
4738,
198,
11748,
17802,
198,
11748,
4704,
278,
198,
11748,
555,
715,
395,
198,
198,
6738,
763,
499,
16366,
1330,
5053,
525,
11792,
198,
6738,
763,
499,
11813,
36436,
1330,
1766,
2969,
39746,
44148,
198,
6738,
763,
1686,
18497,
1330,
1766,
2969,
10697,
198,
6738,
763,
499,
400,
261,
1330,
15738,
198,
6738,
763,
499,
400,
261,
13,
37348,
1095,
13,
18076,
1330,
16018,
198,
6738,
763,
499,
400,
261,
13,
37348,
1095,
13,
25927,
1330,
19390,
198,
6738,
763,
499,
400,
261,
13,
37348,
1095,
13,
26209,
1330,
18261,
198,
6738,
763,
499,
400,
261,
13,
46911,
7509,
1330,
23283,
7509,
198,
198,
834,
9800,
834,
796,
705,
38,
9607,
17902,
18816,
272,
23225,
6,
198,
834,
9641,
834,
796,
366,
17,
13,
15,
1,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 3.151163 | 172 |
from datetime import datetime
import pandas as pd
import websocket
from tests import tests_path
from crypto_data.shared.utils import exclude_values
from crypto_data.binance.extract import get_candles, get_latest_candle_timestamp
from crypto_data.binance.schema import (
OPEN_TIME,
OPEN_PRICE,
CLOSE_PRICE,
HIGH_PRICE,
LOW_PRICE,
VOLUME,
COLUMNS,
)
from crypto_data.shared.candle_db import CandleDB
# candle_stream(
# symbol="btcusdt",
# interval="1h",
# candles=candles,
# on_open=on_open,
# on_close=on_close,
# on_candle=on_candle,
# on_candle_close=on_candle_close,
# )
| [
6738,
4818,
8079,
1330,
4818,
8079,
198,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
2639,
5459,
198,
198,
6738,
5254,
1330,
5254,
62,
6978,
198,
6738,
21473,
62,
7890,
13,
28710,
13,
26791,
1330,
19607,
62,
27160,
198,
6738,
21473,
62,
7890,
13,
8800,
590,
13,
2302,
974,
1330,
651,
62,
46188,
829,
11,
651,
62,
42861,
62,
46188,
293,
62,
16514,
27823,
198,
6738,
21473,
62,
7890,
13,
8800,
590,
13,
15952,
2611,
1330,
357,
198,
220,
220,
220,
38303,
62,
34694,
11,
198,
220,
220,
220,
38303,
62,
4805,
8476,
11,
198,
220,
220,
220,
7852,
14058,
62,
4805,
8476,
11,
198,
220,
220,
220,
34677,
62,
4805,
8476,
11,
198,
220,
220,
220,
46663,
62,
4805,
8476,
11,
198,
220,
220,
220,
38570,
38340,
11,
198,
220,
220,
220,
20444,
5883,
8035,
11,
198,
8,
198,
6738,
21473,
62,
7890,
13,
28710,
13,
46188,
293,
62,
9945,
1330,
44973,
11012,
628,
628,
628,
198,
198,
2,
220,
220,
220,
26839,
62,
5532,
7,
198,
2,
220,
220,
220,
220,
220,
220,
220,
6194,
2625,
18347,
9042,
28664,
1600,
198,
2,
220,
220,
220,
220,
220,
220,
220,
16654,
2625,
16,
71,
1600,
198,
2,
220,
220,
220,
220,
220,
220,
220,
32268,
28,
46188,
829,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
319,
62,
9654,
28,
261,
62,
9654,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
319,
62,
19836,
28,
261,
62,
19836,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
319,
62,
46188,
293,
28,
261,
62,
46188,
293,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
319,
62,
46188,
293,
62,
19836,
28,
261,
62,
46188,
293,
62,
19836,
11,
198,
2,
220,
220,
220,
1267,
198
] | 2.261905 | 294 |
import numpy as np
from NiLBS.skinning.util import redistribute_weights
| [
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
11556,
43,
4462,
13,
20407,
768,
13,
22602,
1330,
17678,
4163,
62,
43775,
198
] | 3.217391 | 23 |
import cv2
import youtube_dl
import numpy as np
import os
import time
FLASH_MINIMUM = 3
tmp_dir = 'temp/'
ex = {'format': 'worstvideo[vcodec^=avc1][fps=30]/worst[vcodec^=avc1][fps=30]/worstvideo[vcodec=vp9][fps=30]/worst[vcodec=vp9][fps=30]', 'outtmpl': 'temp/temp.%(ext)s', 'recode_video': 'webm'}
ytdl = youtube_dl.YoutubeDL(ex)
if not os.path.isdir(tmp_dir):
os.mkdir(tmp_dir)
# https://www.youtube.com/watch?v=atkD-beZ9oI # baseline test
# https://www.youtube.com/watch?v=Yw_YDvLWKnY # surreal video
# https://www.youtube.com/watch?v=OCpzajWSp6I # mlg video
# https://www.youtube.com/watch?v=FVY5uZ18-x8 #pokemon video
if __name__ == '__main__':
main()
| [
11748,
269,
85,
17,
198,
11748,
35116,
62,
25404,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28686,
198,
11748,
640,
198,
198,
3697,
11211,
62,
23678,
3955,
5883,
796,
513,
198,
198,
22065,
62,
15908,
796,
705,
29510,
14,
6,
198,
198,
1069,
796,
1391,
6,
18982,
10354,
705,
41430,
15588,
58,
85,
19815,
721,
61,
28,
615,
66,
16,
7131,
29647,
28,
1270,
60,
14,
41430,
58,
85,
19815,
721,
61,
28,
615,
66,
16,
7131,
29647,
28,
1270,
60,
14,
41430,
15588,
58,
85,
19815,
721,
28,
36133,
24,
7131,
29647,
28,
1270,
60,
14,
41430,
58,
85,
19815,
721,
28,
36133,
24,
7131,
29647,
28,
1270,
60,
3256,
705,
448,
17209,
489,
10354,
705,
29510,
14,
29510,
13,
4,
7,
2302,
8,
82,
3256,
705,
260,
8189,
62,
15588,
10354,
705,
12384,
76,
6,
92,
198,
88,
8671,
75,
796,
35116,
62,
25404,
13,
56,
9762,
19260,
7,
1069,
8,
198,
198,
361,
407,
28686,
13,
6978,
13,
9409,
343,
7,
22065,
62,
15908,
2599,
198,
220,
220,
220,
28686,
13,
28015,
15908,
7,
22065,
62,
15908,
8,
628,
628,
628,
628,
198,
2,
3740,
1378,
2503,
13,
11604,
13,
785,
14,
8340,
30,
85,
28,
265,
74,
35,
12,
1350,
57,
24,
78,
40,
1303,
14805,
1332,
198,
2,
3740,
1378,
2503,
13,
11604,
13,
785,
14,
8340,
30,
85,
28,
56,
86,
62,
35755,
85,
43,
54,
25095,
56,
1303,
28201,
2008,
198,
2,
3740,
1378,
2503,
13,
11604,
13,
785,
14,
8340,
30,
85,
28,
4503,
79,
89,
1228,
54,
4561,
21,
40,
1303,
25962,
70,
2008,
198,
2,
3740,
1378,
2503,
13,
11604,
13,
785,
14,
8340,
30,
85,
28,
37,
53,
56,
20,
84,
57,
1507,
12,
87,
23,
1303,
79,
12717,
2008,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.179487 | 312 |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition of the Inception V4 architecture.
As described in http://arxiv.org/abs/1602.07261.
Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from nets import inception_utils
slim = tf.contrib.slim
def block_inception_a(inputs, scope=None, reuse=None):
"""Builds Inception-A block for Inception v4 network."""
# By default use stride=1 and SAME padding
with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
stride=1, padding='SAME'):
with tf.variable_scope(scope, 'BlockInceptionA', [inputs], reuse=reuse):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(inputs, 96, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
with tf.variable_scope('Branch_3'):
branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 96, [1, 1], scope='Conv2d_0b_1x1')
return tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
def block_reduction_a(inputs, scope=None, reuse=None):
"""Builds Reduction-A block for Inception v4 network."""
# By default use stride=1 and SAME padding
with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
stride=1, padding='SAME'):
with tf.variable_scope(scope, 'BlockReductionA', [inputs], reuse=reuse):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(inputs, 384, [3, 3], stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3')
branch_1 = slim.conv2d(branch_1, 256, [3, 3], stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
return tf.concat([branch_0, branch_1, branch_2], 3)
def block_inception_b(inputs, scope=None, reuse=None):
"""Builds Inception-B block for Inception v4 network."""
# By default use stride=1 and SAME padding
with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
stride=1, padding='SAME'):
with tf.variable_scope(scope, 'BlockInceptionB', [inputs], reuse=reuse):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 224, [1, 7], scope='Conv2d_0b_1x7')
branch_1 = slim.conv2d(branch_1, 256, [7, 1], scope='Conv2d_0c_7x1')
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1')
branch_2 = slim.conv2d(branch_2, 224, [1, 7], scope='Conv2d_0c_1x7')
branch_2 = slim.conv2d(branch_2, 224, [7, 1], scope='Conv2d_0d_7x1')
branch_2 = slim.conv2d(branch_2, 256, [1, 7], scope='Conv2d_0e_1x7')
with tf.variable_scope('Branch_3'):
branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
return tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
def block_reduction_b(inputs, scope=None, reuse=None):
"""Builds Reduction-B block for Inception v4 network."""
# By default use stride=1 and SAME padding
with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
stride=1, padding='SAME'):
with tf.variable_scope(scope, 'BlockReductionB', [inputs], reuse=reuse):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
branch_0 = slim.conv2d(branch_0, 192, [3, 3], stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 256, [1, 7], scope='Conv2d_0b_1x7')
branch_1 = slim.conv2d(branch_1, 320, [7, 1], scope='Conv2d_0c_7x1')
branch_1 = slim.conv2d(branch_1, 320, [3, 3], stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
return tf.concat([branch_0, branch_1, branch_2], 3)
def block_inception_c(inputs, scope=None, reuse=None):
"""Builds Inception-C block for Inception v4 network."""
# By default use stride=1 and SAME padding
with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
stride=1, padding='SAME'):
with tf.variable_scope(scope, 'BlockInceptionC', [inputs], reuse=reuse):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = tf.concat([
slim.conv2d(branch_1, 256, [1, 3], scope='Conv2d_0b_1x3'),
slim.conv2d(branch_1, 256, [3, 1], scope='Conv2d_0c_3x1')], 3)
with tf.variable_scope('Branch_2'):
branch_2 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
branch_2 = slim.conv2d(branch_2, 448, [3, 1], scope='Conv2d_0b_3x1')
branch_2 = slim.conv2d(branch_2, 512, [1, 3], scope='Conv2d_0c_1x3')
branch_2 = tf.concat([
slim.conv2d(branch_2, 256, [1, 3], scope='Conv2d_0d_1x3'),
slim.conv2d(branch_2, 256, [3, 1], scope='Conv2d_0e_3x1')], 3)
with tf.variable_scope('Branch_3'):
branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
branch_3 = slim.conv2d(branch_3, 256, [1, 1], scope='Conv2d_0b_1x1')
return tf.concat([branch_0, branch_1, branch_2, branch_3], 3)
def inception_v4_base(inputs, final_endpoint='Mixed_7d', scope=None):
"""Creates the Inception V4 network up to the given final endpoint.
Args:
inputs: a 4-D tensor of size [batch_size, height, width, 3].
final_endpoint: specifies the endpoint to construct the network up to.
It can be one of [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e',
'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c',
'Mixed_7d']
scope: Optional variable_scope.
Returns:
logits: the logits outputs of the model.
end_points: the set of end_points from the inception model.
Raises:
ValueError: if final_endpoint is not set to one of the predefined values,
"""
end_points = {}
with tf.variable_scope(scope, 'InceptionV4', [inputs]):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
# 299 x 299 x 3
net = slim.conv2d(inputs, 32, [3, 3], stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points
# 149 x 149 x 32
net = slim.conv2d(net, 32, [3, 3], padding='VALID',
scope='Conv2d_2a_3x3')
if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points
# 147 x 147 x 32
net = slim.conv2d(net, 64, [3, 3], scope='Conv2d_2b_3x3')
if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points
# 147 x 147 x 64
with tf.variable_scope('Mixed_3a'):
with tf.variable_scope('Branch_0'):
branch_0 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
scope='MaxPool_0a_3x3')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 96, [3, 3], stride=2, padding='VALID',
scope='Conv2d_0a_3x3')
net = tf.concat([branch_0, branch_1], 3)
if add_and_check_final('Mixed_3a', net): return net, end_points
# 73 x 73 x 160
with tf.variable_scope('Mixed_4a'):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
branch_0 = slim.conv2d(branch_0, 96, [3, 3], padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
branch_1 = slim.conv2d(branch_1, 64, [1, 7], scope='Conv2d_0b_1x7')
branch_1 = slim.conv2d(branch_1, 64, [7, 1], scope='Conv2d_0c_7x1')
branch_1 = slim.conv2d(branch_1, 96, [3, 3], padding='VALID',
scope='Conv2d_1a_3x3')
net = tf.concat([branch_0, branch_1], 3)
if add_and_check_final('Mixed_4a', net): return net, end_points
# 71 x 71 x 192
with tf.variable_scope('Mixed_5a'):
with tf.variable_scope('Branch_0'):
branch_0 = slim.conv2d(net, 192, [3, 3], stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
branch_1 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat([branch_0, branch_1], 3)
if add_and_check_final('Mixed_5a', net): return net, end_points
# 35 x 35 x 384
# 4 x Inception-A blocks
for idx in range(4):
block_scope = 'Mixed_5' + chr(ord('b') + idx)
net = block_inception_a(net, block_scope)
if add_and_check_final(block_scope, net): return net, end_points
# 35 x 35 x 384
# Reduction-A block
net = block_reduction_a(net, 'Mixed_6a')
if add_and_check_final('Mixed_6a', net): return net, end_points
# 17 x 17 x 1024
# 7 x Inception-B blocks
for idx in range(7):
block_scope = 'Mixed_6' + chr(ord('b') + idx)
net = block_inception_b(net, block_scope)
if add_and_check_final(block_scope, net): return net, end_points
# 17 x 17 x 1024
# Reduction-B block
net = block_reduction_b(net, 'Mixed_7a')
if add_and_check_final('Mixed_7a', net): return net, end_points
# 8 x 8 x 1536
# 3 x Inception-C blocks
for idx in range(3):
block_scope = 'Mixed_7' + chr(ord('b') + idx)
net = block_inception_c(net, block_scope)
if add_and_check_final(block_scope, net): return net, end_points
raise ValueError('Unknown final endpoint %s' % final_endpoint)
def inception_v4(inputs, num_classes=1001, is_training=True,
dropout_keep_prob=0.8,
reuse=None,
scope='InceptionV4',
create_aux_logits=True):
"""Creates the Inception V4 model.
Args:
inputs: a 4-D tensor of size [batch_size, height, width, 3].
num_classes: number of predicted classes.
is_training: whether is training or not.
dropout_keep_prob: float, the fraction to keep before final layer.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
create_aux_logits: Whether to include the auxilliary logits.
Returns:
logits: the logits outputs of the model.
end_points: the set of end_points from the inception model.
"""
end_points = {}
with tf.variable_scope(scope, 'InceptionV4', [inputs], reuse=reuse) as scope:
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
net, end_points = inception_v4_base(inputs, scope=scope)
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
# Auxiliary Head logits
if create_aux_logits:
with tf.variable_scope('AuxLogits'):
# 17 x 17 x 1024
aux_logits = end_points['Mixed_6h']
aux_logits = slim.avg_pool2d(aux_logits, [5, 5], stride=3,
padding='VALID',
scope='AvgPool_1a_5x5')
aux_logits = slim.conv2d(aux_logits, 128, [1, 1],
scope='Conv2d_1b_1x1')
aux_logits = slim.conv2d(aux_logits, 768,
aux_logits.get_shape()[1:3],
padding='VALID', scope='Conv2d_2a')
aux_logits = slim.flatten(aux_logits)
aux_logits = slim.fully_connected(aux_logits, num_classes,
activation_fn=None,
scope='Aux_logits')
end_points['AuxLogits'] = aux_logits
# Final pooling and prediction
with tf.variable_scope('Logits'):
# 8 x 8 x 1536
net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
scope='AvgPool_1a')
# 1 x 1 x 1536
net = slim.dropout(net, dropout_keep_prob, scope='Dropout_1b')
net = slim.flatten(net, scope='PreLogitsFlatten')
end_points['PreLogitsFlatten'] = net
# 1536
logits = slim.fully_connected(net, num_classes, activation_fn=None,
scope='Logits')
end_points['Logits'] = logits
end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions')
return logits, end_points
inception_v4.default_image_size = 299
inception_v4_arg_scope = inception_utils.inception_arg_scope
| [
2,
15069,
1584,
383,
309,
22854,
37535,
46665,
13,
1439,
6923,
33876,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
38093,
25609,
28,
198,
37811,
4264,
1299,
262,
6770,
286,
262,
554,
4516,
569,
19,
10959,
13,
198,
198,
1722,
3417,
287,
2638,
1378,
283,
87,
452,
13,
2398,
14,
8937,
14,
1433,
2999,
13,
2998,
30057,
13,
628,
220,
554,
4516,
12,
85,
19,
11,
554,
4516,
12,
4965,
7934,
290,
262,
17677,
286,
1874,
312,
723,
8113,
507,
198,
220,
220,
220,
319,
18252,
198,
220,
4302,
27974,
1533,
4716,
11,
36106,
314,
2364,
68,
11,
18653,
6656,
15710,
66,
365,
11,
4422,
9300,
11632,
198,
37811,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
6738,
11593,
37443,
834,
1330,
7297,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
198,
6738,
31720,
1330,
30839,
62,
26791,
198,
198,
82,
2475,
796,
48700,
13,
3642,
822,
13,
82,
2475,
628,
198,
4299,
2512,
62,
924,
1159,
62,
64,
7,
15414,
82,
11,
8354,
28,
14202,
11,
32349,
28,
14202,
2599,
198,
220,
37227,
15580,
82,
554,
4516,
12,
32,
2512,
329,
554,
4516,
410,
19,
3127,
526,
15931,
198,
220,
1303,
2750,
4277,
779,
33769,
28,
16,
290,
311,
10067,
24511,
198,
220,
351,
18862,
13,
853,
62,
29982,
26933,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
615,
70,
62,
7742,
17,
67,
11,
18862,
13,
9806,
62,
7742,
17,
67,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
24511,
11639,
50,
10067,
6,
2599,
198,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
7,
29982,
11,
705,
12235,
818,
4516,
32,
3256,
685,
15414,
82,
4357,
32349,
28,
260,
1904,
2599,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
15,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
9907,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
16,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
5598,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
9907,
11,
685,
18,
11,
513,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
17,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
5598,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
9907,
11,
685,
18,
11,
513,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
9907,
11,
685,
18,
11,
513,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
66,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
18,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
18,
796,
18862,
13,
615,
70,
62,
7742,
17,
67,
7,
15414,
82,
11,
685,
18,
11,
513,
4357,
8354,
11639,
48997,
27201,
62,
15,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
18,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
18,
11,
9907,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
1441,
48700,
13,
1102,
9246,
26933,
1671,
3702,
62,
15,
11,
8478,
62,
16,
11,
8478,
62,
17,
11,
8478,
62,
18,
4357,
513,
8,
628,
198,
4299,
2512,
62,
445,
8110,
62,
64,
7,
15414,
82,
11,
8354,
28,
14202,
11,
32349,
28,
14202,
2599,
198,
220,
37227,
15580,
82,
33396,
12,
32,
2512,
329,
554,
4516,
410,
19,
3127,
526,
15931,
198,
220,
1303,
2750,
4277,
779,
33769,
28,
16,
290,
311,
10067,
24511,
198,
220,
351,
18862,
13,
853,
62,
29982,
26933,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
615,
70,
62,
7742,
17,
67,
11,
18862,
13,
9806,
62,
7742,
17,
67,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
24511,
11639,
50,
10067,
6,
2599,
198,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
7,
29982,
11,
705,
12235,
7738,
8110,
32,
3256,
685,
15414,
82,
4357,
32349,
28,
260,
1904,
2599,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
15,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
40400,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
16,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
17817,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
26063,
11,
685,
18,
11,
513,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
17759,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
11639,
23428,
2389,
3256,
8354,
11639,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
17,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
9806,
62,
7742,
17,
67,
7,
15414,
82,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
11518,
27201,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
1441,
48700,
13,
1102,
9246,
26933,
1671,
3702,
62,
15,
11,
8478,
62,
16,
11,
8478,
62,
17,
4357,
513,
8,
628,
198,
4299,
2512,
62,
924,
1159,
62,
65,
7,
15414,
82,
11,
8354,
28,
14202,
11,
32349,
28,
14202,
2599,
198,
220,
37227,
15580,
82,
554,
4516,
12,
33,
2512,
329,
554,
4516,
410,
19,
3127,
526,
15931,
198,
220,
1303,
2750,
4277,
779,
33769,
28,
16,
290,
311,
10067,
24511,
198,
220,
351,
18862,
13,
853,
62,
29982,
26933,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
615,
70,
62,
7742,
17,
67,
11,
18862,
13,
9806,
62,
7742,
17,
67,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
24511,
11639,
50,
10067,
6,
2599,
198,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
7,
29982,
11,
705,
12235,
818,
4516,
33,
3256,
685,
15414,
82,
4357,
32349,
28,
260,
1904,
2599,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
15,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
40400,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
16,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
17817,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
26063,
11,
685,
16,
11,
767,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
16,
87,
22,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
17759,
11,
685,
22,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
66,
62,
22,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
17,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
17817,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
17817,
11,
685,
22,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
22,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
26063,
11,
685,
16,
11,
767,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
66,
62,
16,
87,
22,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
26063,
11,
685,
22,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
67,
62,
22,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
17759,
11,
685,
16,
11,
767,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
68,
62,
16,
87,
22,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
18,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
18,
796,
18862,
13,
615,
70,
62,
7742,
17,
67,
7,
15414,
82,
11,
685,
18,
11,
513,
4357,
8354,
11639,
48997,
27201,
62,
15,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
18,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
18,
11,
13108,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
1441,
48700,
13,
1102,
9246,
26933,
1671,
3702,
62,
15,
11,
8478,
62,
16,
11,
8478,
62,
17,
11,
8478,
62,
18,
4357,
513,
8,
628,
198,
4299,
2512,
62,
445,
8110,
62,
65,
7,
15414,
82,
11,
8354,
28,
14202,
11,
32349,
28,
14202,
2599,
198,
220,
37227,
15580,
82,
33396,
12,
33,
2512,
329,
554,
4516,
410,
19,
3127,
526,
15931,
198,
220,
1303,
2750,
4277,
779,
33769,
28,
16,
290,
311,
10067,
24511,
198,
220,
351,
18862,
13,
853,
62,
29982,
26933,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
615,
70,
62,
7742,
17,
67,
11,
18862,
13,
9806,
62,
7742,
17,
67,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
24511,
11639,
50,
10067,
6,
2599,
198,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
7,
29982,
11,
705,
12235,
7738,
8110,
33,
3256,
685,
15414,
82,
4357,
32349,
28,
260,
1904,
2599,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
15,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
17817,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
15,
11,
17817,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
11639,
23428,
2389,
3256,
8354,
11639,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
16,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
17759,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
17759,
11,
685,
16,
11,
767,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
16,
87,
22,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
20959,
11,
685,
22,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
66,
62,
22,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
20959,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
11639,
23428,
2389,
3256,
8354,
11639,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
17,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
9806,
62,
7742,
17,
67,
7,
15414,
82,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
11518,
27201,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
1441,
48700,
13,
1102,
9246,
26933,
1671,
3702,
62,
15,
11,
8478,
62,
16,
11,
8478,
62,
17,
4357,
513,
8,
628,
198,
4299,
2512,
62,
924,
1159,
62,
66,
7,
15414,
82,
11,
8354,
28,
14202,
11,
32349,
28,
14202,
2599,
198,
220,
37227,
15580,
82,
554,
4516,
12,
34,
2512,
329,
554,
4516,
410,
19,
3127,
526,
15931,
198,
220,
1303,
2750,
4277,
779,
33769,
28,
16,
290,
311,
10067,
24511,
198,
220,
351,
18862,
13,
853,
62,
29982,
26933,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
615,
70,
62,
7742,
17,
67,
11,
18862,
13,
9806,
62,
7742,
17,
67,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
24511,
11639,
50,
10067,
6,
2599,
198,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
7,
29982,
11,
705,
12235,
818,
4516,
34,
3256,
685,
15414,
82,
4357,
32349,
28,
260,
1904,
2599,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
15,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
17759,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
16,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
40400,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
48700,
13,
1102,
9246,
26933,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
17759,
11,
685,
16,
11,
513,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
16,
87,
18,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
17759,
11,
685,
18,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
66,
62,
18,
87,
16,
11537,
4357,
513,
8,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
17,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
40400,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
49989,
11,
685,
18,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
18,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
22243,
11,
685,
16,
11,
513,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
66,
62,
16,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
17,
796,
48700,
13,
1102,
9246,
26933,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
17759,
11,
685,
16,
11,
513,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
67,
62,
16,
87,
18,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
17,
11,
17759,
11,
685,
18,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
68,
62,
18,
87,
16,
11537,
4357,
513,
8,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
18,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
18,
796,
18862,
13,
615,
70,
62,
7742,
17,
67,
7,
15414,
82,
11,
685,
18,
11,
513,
4357,
8354,
11639,
48997,
27201,
62,
15,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
18,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
18,
11,
17759,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
1441,
48700,
13,
1102,
9246,
26933,
1671,
3702,
62,
15,
11,
8478,
62,
16,
11,
8478,
62,
17,
11,
8478,
62,
18,
4357,
513,
8,
628,
198,
4299,
30839,
62,
85,
19,
62,
8692,
7,
15414,
82,
11,
2457,
62,
437,
4122,
11639,
44,
2966,
62,
22,
67,
3256,
8354,
28,
14202,
2599,
198,
220,
37227,
16719,
274,
262,
554,
4516,
569,
19,
3127,
510,
284,
262,
1813,
2457,
36123,
13,
628,
220,
943,
14542,
25,
198,
220,
220,
220,
17311,
25,
257,
604,
12,
35,
11192,
273,
286,
2546,
685,
43501,
62,
7857,
11,
6001,
11,
9647,
11,
513,
4083,
198,
220,
220,
220,
2457,
62,
437,
4122,
25,
26052,
262,
36123,
284,
5678,
262,
3127,
510,
284,
13,
198,
220,
220,
220,
220,
220,
632,
460,
307,
530,
286,
685,
705,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
3256,
705,
3103,
85,
17,
67,
62,
17,
64,
62,
18,
87,
18,
3256,
705,
3103,
85,
17,
67,
62,
17,
65,
62,
18,
87,
18,
3256,
198,
220,
220,
220,
220,
220,
705,
44,
2966,
62,
18,
64,
3256,
705,
44,
2966,
62,
19,
64,
3256,
705,
44,
2966,
62,
20,
64,
3256,
705,
44,
2966,
62,
20,
65,
3256,
705,
44,
2966,
62,
20,
66,
3256,
705,
44,
2966,
62,
20,
67,
3256,
198,
220,
220,
220,
220,
220,
705,
44,
2966,
62,
20,
68,
3256,
705,
44,
2966,
62,
21,
64,
3256,
705,
44,
2966,
62,
21,
65,
3256,
705,
44,
2966,
62,
21,
66,
3256,
705,
44,
2966,
62,
21,
67,
3256,
705,
44,
2966,
62,
21,
68,
3256,
198,
220,
220,
220,
220,
220,
705,
44,
2966,
62,
21,
69,
3256,
705,
44,
2966,
62,
21,
70,
3256,
705,
44,
2966,
62,
21,
71,
3256,
705,
44,
2966,
62,
22,
64,
3256,
705,
44,
2966,
62,
22,
65,
3256,
705,
44,
2966,
62,
22,
66,
3256,
198,
220,
220,
220,
220,
220,
705,
44,
2966,
62,
22,
67,
20520,
198,
220,
220,
220,
8354,
25,
32233,
7885,
62,
29982,
13,
628,
220,
16409,
25,
198,
220,
220,
220,
2604,
896,
25,
262,
2604,
896,
23862,
286,
262,
2746,
13,
198,
220,
220,
220,
886,
62,
13033,
25,
262,
900,
286,
886,
62,
13033,
422,
262,
30839,
2746,
13,
628,
220,
7567,
2696,
25,
198,
220,
220,
220,
11052,
12331,
25,
611,
2457,
62,
437,
4122,
318,
407,
900,
284,
530,
286,
262,
2747,
18156,
3815,
11,
198,
220,
37227,
198,
220,
886,
62,
13033,
796,
23884,
628,
220,
351,
48700,
13,
45286,
62,
29982,
7,
29982,
11,
705,
818,
4516,
53,
19,
3256,
685,
15414,
82,
60,
2599,
198,
220,
220,
220,
351,
18862,
13,
853,
62,
29982,
26933,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
9806,
62,
7742,
17,
67,
11,
18862,
13,
615,
70,
62,
7742,
17,
67,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
24511,
11639,
50,
10067,
6,
2599,
198,
220,
220,
220,
220,
220,
1303,
31011,
2124,
31011,
2124,
513,
198,
220,
220,
220,
220,
220,
2010,
796,
18862,
13,
42946,
17,
67,
7,
15414,
82,
11,
3933,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
11639,
23428,
2389,
3256,
8354,
11639,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
10786,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
3256,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
198,
220,
220,
220,
220,
220,
1303,
24041,
2124,
24041,
2124,
3933,
198,
220,
220,
220,
220,
220,
2010,
796,
18862,
13,
42946,
17,
67,
7,
3262,
11,
3933,
11,
685,
18,
11,
513,
4357,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
3103,
85,
17,
67,
62,
17,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
10786,
3103,
85,
17,
67,
62,
17,
64,
62,
18,
87,
18,
3256,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
198,
220,
220,
220,
220,
220,
1303,
22909,
2124,
22909,
2124,
3933,
198,
220,
220,
220,
220,
220,
2010,
796,
18862,
13,
42946,
17,
67,
7,
3262,
11,
5598,
11,
685,
18,
11,
513,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
17,
65,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
10786,
3103,
85,
17,
67,
62,
17,
65,
62,
18,
87,
18,
3256,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
198,
220,
220,
220,
220,
220,
1303,
22909,
2124,
22909,
2124,
5598,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
44,
2966,
62,
18,
64,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
15,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
9806,
62,
7742,
17,
67,
7,
3262,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
11518,
27201,
62,
15,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
16,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
3262,
11,
9907,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
48700,
13,
1102,
9246,
26933,
1671,
3702,
62,
15,
11,
8478,
62,
16,
4357,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
10786,
44,
2966,
62,
18,
64,
3256,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
628,
220,
220,
220,
220,
220,
1303,
8854,
2124,
8854,
2124,
13454,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
44,
2966,
62,
19,
64,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
15,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
3262,
11,
5598,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
15,
11,
9907,
11,
685,
18,
11,
513,
4357,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
16,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
3262,
11,
5598,
11,
685,
16,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
64,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
5598,
11,
685,
16,
11,
767,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
65,
62,
16,
87,
22,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
5598,
11,
685,
22,
11,
352,
4357,
8354,
11639,
3103,
85,
17,
67,
62,
15,
66,
62,
22,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
42946,
17,
67,
7,
1671,
3702,
62,
16,
11,
9907,
11,
685,
18,
11,
513,
4357,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
48700,
13,
1102,
9246,
26933,
1671,
3702,
62,
15,
11,
8478,
62,
16,
4357,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
10786,
44,
2966,
62,
19,
64,
3256,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
628,
220,
220,
220,
220,
220,
1303,
9166,
2124,
9166,
2124,
17817,
198,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
44,
2966,
62,
20,
64,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
15,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
15,
796,
18862,
13,
42946,
17,
67,
7,
3262,
11,
17817,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
3103,
85,
17,
67,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
33,
25642,
62,
16,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8478,
62,
16,
796,
18862,
13,
9806,
62,
7742,
17,
67,
7,
3262,
11,
685,
18,
11,
513,
4357,
33769,
28,
17,
11,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
11518,
27201,
62,
16,
64,
62,
18,
87,
18,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
48700,
13,
1102,
9246,
26933,
1671,
3702,
62,
15,
11,
8478,
62,
16,
4357,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
10786,
44,
2966,
62,
20,
64,
3256,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
628,
220,
220,
220,
220,
220,
1303,
3439,
2124,
3439,
2124,
40400,
198,
220,
220,
220,
220,
220,
1303,
604,
2124,
554,
4516,
12,
32,
7021,
198,
220,
220,
220,
220,
220,
329,
4686,
87,
287,
2837,
7,
19,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2512,
62,
29982,
796,
705,
44,
2966,
62,
20,
6,
1343,
442,
81,
7,
585,
10786,
65,
11537,
1343,
4686,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
2512,
62,
924,
1159,
62,
64,
7,
3262,
11,
2512,
62,
29982,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
7,
9967,
62,
29982,
11,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
628,
220,
220,
220,
220,
220,
1303,
3439,
2124,
3439,
2124,
40400,
198,
220,
220,
220,
220,
220,
1303,
33396,
12,
32,
2512,
198,
220,
220,
220,
220,
220,
2010,
796,
2512,
62,
445,
8110,
62,
64,
7,
3262,
11,
705,
44,
2966,
62,
21,
64,
11537,
198,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
10786,
44,
2966,
62,
21,
64,
3256,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
628,
220,
220,
220,
220,
220,
1303,
1596,
2124,
1596,
2124,
28119,
198,
220,
220,
220,
220,
220,
1303,
767,
2124,
554,
4516,
12,
33,
7021,
198,
220,
220,
220,
220,
220,
329,
4686,
87,
287,
2837,
7,
22,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2512,
62,
29982,
796,
705,
44,
2966,
62,
21,
6,
1343,
442,
81,
7,
585,
10786,
65,
11537,
1343,
4686,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
2512,
62,
924,
1159,
62,
65,
7,
3262,
11,
2512,
62,
29982,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
7,
9967,
62,
29982,
11,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
628,
220,
220,
220,
220,
220,
1303,
1596,
2124,
1596,
2124,
28119,
198,
220,
220,
220,
220,
220,
1303,
33396,
12,
33,
2512,
198,
220,
220,
220,
220,
220,
2010,
796,
2512,
62,
445,
8110,
62,
65,
7,
3262,
11,
705,
44,
2966,
62,
22,
64,
11537,
198,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
10786,
44,
2966,
62,
22,
64,
3256,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
628,
220,
220,
220,
220,
220,
1303,
807,
2124,
807,
2124,
1315,
2623,
198,
220,
220,
220,
220,
220,
1303,
513,
2124,
554,
4516,
12,
34,
7021,
198,
220,
220,
220,
220,
220,
329,
4686,
87,
287,
2837,
7,
18,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2512,
62,
29982,
796,
705,
44,
2966,
62,
22,
6,
1343,
442,
81,
7,
585,
10786,
65,
11537,
1343,
4686,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
2512,
62,
924,
1159,
62,
66,
7,
3262,
11,
2512,
62,
29982,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
751,
62,
392,
62,
9122,
62,
20311,
7,
9967,
62,
29982,
11,
2010,
2599,
1441,
2010,
11,
886,
62,
13033,
198,
220,
5298,
11052,
12331,
10786,
20035,
2457,
36123,
4064,
82,
6,
4064,
2457,
62,
437,
4122,
8,
628,
198,
4299,
30839,
62,
85,
19,
7,
15414,
82,
11,
997,
62,
37724,
28,
47705,
11,
318,
62,
34409,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4268,
448,
62,
14894,
62,
1676,
65,
28,
15,
13,
23,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32349,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
818,
4516,
53,
19,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
14644,
62,
6404,
896,
28,
17821,
2599,
198,
220,
37227,
16719,
274,
262,
554,
4516,
569,
19,
2746,
13,
628,
220,
943,
14542,
25,
198,
220,
220,
220,
17311,
25,
257,
604,
12,
35,
11192,
273,
286,
2546,
685,
43501,
62,
7857,
11,
6001,
11,
9647,
11,
513,
4083,
198,
220,
220,
220,
997,
62,
37724,
25,
1271,
286,
11001,
6097,
13,
198,
220,
220,
220,
318,
62,
34409,
25,
1771,
318,
3047,
393,
407,
13,
198,
220,
220,
220,
4268,
448,
62,
14894,
62,
1676,
65,
25,
12178,
11,
262,
13390,
284,
1394,
878,
2457,
7679,
13,
198,
220,
220,
220,
32349,
25,
1771,
393,
407,
262,
3127,
290,
663,
9633,
815,
307,
46823,
13,
1675,
307,
198,
220,
220,
220,
220,
220,
1498,
284,
32349,
705,
29982,
6,
1276,
307,
1813,
13,
198,
220,
220,
220,
8354,
25,
32233,
7885,
62,
29982,
13,
198,
220,
220,
220,
2251,
62,
14644,
62,
6404,
896,
25,
10127,
284,
2291,
262,
27506,
359,
8042,
2604,
896,
13,
628,
220,
16409,
25,
198,
220,
220,
220,
2604,
896,
25,
262,
2604,
896,
23862,
286,
262,
2746,
13,
198,
220,
220,
220,
886,
62,
13033,
25,
262,
900,
286,
886,
62,
13033,
422,
262,
30839,
2746,
13,
198,
220,
37227,
198,
220,
886,
62,
13033,
796,
23884,
198,
220,
351,
48700,
13,
45286,
62,
29982,
7,
29982,
11,
705,
818,
4516,
53,
19,
3256,
685,
15414,
82,
4357,
32349,
28,
260,
1904,
8,
355,
8354,
25,
198,
220,
220,
220,
351,
18862,
13,
853,
62,
29982,
26933,
82,
2475,
13,
43501,
62,
27237,
11,
18862,
13,
14781,
448,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
62,
34409,
28,
271,
62,
34409,
2599,
198,
220,
220,
220,
220,
220,
2010,
11,
886,
62,
13033,
796,
30839,
62,
85,
19,
62,
8692,
7,
15414,
82,
11,
8354,
28,
29982,
8,
628,
220,
220,
220,
220,
220,
351,
18862,
13,
853,
62,
29982,
26933,
82,
2475,
13,
42946,
17,
67,
11,
18862,
13,
9806,
62,
7742,
17,
67,
11,
18862,
13,
615,
70,
62,
7742,
17,
67,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
16,
11,
24511,
11639,
50,
10067,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
47105,
28129,
7123,
2604,
896,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2251,
62,
14644,
62,
6404,
896,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
32,
2821,
11187,
896,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1596,
2124,
1596,
2124,
28119,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
6404,
896,
796,
886,
62,
13033,
17816,
44,
2966,
62,
21,
71,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
6404,
896,
796,
18862,
13,
615,
70,
62,
7742,
17,
67,
7,
14644,
62,
6404,
896,
11,
685,
20,
11,
642,
4357,
33769,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
48997,
27201,
62,
16,
64,
62,
20,
87,
20,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
6404,
896,
796,
18862,
13,
42946,
17,
67,
7,
14644,
62,
6404,
896,
11,
13108,
11,
685,
16,
11,
352,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
3103,
85,
17,
67,
62,
16,
65,
62,
16,
87,
16,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
6404,
896,
796,
18862,
13,
42946,
17,
67,
7,
14644,
62,
6404,
896,
11,
46720,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
6404,
896,
13,
1136,
62,
43358,
3419,
58,
16,
25,
18,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
11639,
23428,
2389,
3256,
8354,
11639,
3103,
85,
17,
67,
62,
17,
64,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
6404,
896,
796,
18862,
13,
2704,
41769,
7,
14644,
62,
6404,
896,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27506,
62,
6404,
896,
796,
18862,
13,
2759,
62,
15236,
7,
14644,
62,
6404,
896,
11,
997,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14916,
62,
22184,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
32,
2821,
62,
6404,
896,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
62,
13033,
17816,
32,
2821,
11187,
896,
20520,
796,
27506,
62,
6404,
896,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
8125,
5933,
278,
290,
17724,
198,
220,
220,
220,
220,
220,
220,
220,
351,
48700,
13,
45286,
62,
29982,
10786,
11187,
896,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
807,
2124,
807,
2124,
1315,
2623,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
18862,
13,
615,
70,
62,
7742,
17,
67,
7,
3262,
11,
2010,
13,
1136,
62,
43358,
3419,
58,
16,
25,
18,
4357,
24511,
11639,
23428,
2389,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
48997,
27201,
62,
16,
64,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
352,
2124,
352,
2124,
1315,
2623,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
18862,
13,
14781,
448,
7,
3262,
11,
4268,
448,
62,
14894,
62,
1676,
65,
11,
8354,
11639,
26932,
448,
62,
16,
65,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
18862,
13,
2704,
41769,
7,
3262,
11,
8354,
11639,
6719,
11187,
896,
7414,
41769,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
62,
13033,
17816,
6719,
11187,
896,
7414,
41769,
20520,
796,
2010,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1315,
2623,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2604,
896,
796,
18862,
13,
2759,
62,
15236,
7,
3262,
11,
997,
62,
37724,
11,
14916,
62,
22184,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8354,
11639,
11187,
896,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
62,
13033,
17816,
11187,
896,
20520,
796,
2604,
896,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
62,
13033,
17816,
39156,
9278,
20520,
796,
48700,
13,
20471,
13,
4215,
9806,
7,
6404,
896,
11,
1438,
11639,
39156,
9278,
11537,
198,
220,
220,
220,
1441,
2604,
896,
11,
886,
62,
13033,
198,
924,
1159,
62,
85,
19,
13,
12286,
62,
9060,
62,
7857,
796,
31011,
628,
198,
924,
1159,
62,
85,
19,
62,
853,
62,
29982,
796,
30839,
62,
26791,
13,
924,
1159,
62,
853,
62,
29982,
198
] | 2.030542 | 7,596 |
from queue import Queue
from queue import Empty
from threading import Thread
from pyopentsdb import errors
from pyopentsdb.utils import request_post
from pyopentsdb.conf import QueryPointer
class IterableQueue(object):
""" Transform standard python Queue instance to iterable one"""
def __init__(self, source_queue):
"""
:param source_queue: queue.Queue, (mandatory)
"""
self.source_queue = source_queue
def tsdb_query_metrics_validation(**kwargs):
"""
looking for metric and all related and required arguments in kwargs specified in OpenTSDB http api
:param kwargs: dict
:return:
"""
# tsdb query kwargs have to contain 'metrics' argument
if not kwargs.get('metrics'):
raise errors.MissingArgumentError("Missing argument 'metrics' in query")
# metrics can contain more than one metric in list
for metric_object in kwargs['metrics']:
# each metric in metrics has to specify aggregator function
if not metric_object.get('metric') or not metric_object.get('aggregator'):
raise errors.MissingArgumentError("Missing argument 'metric' or 'aggregator' in metrics object")
# each metric can contain filters
if metric_object.get('filters'):
for metric_filter in metric_object['filters']:
# if filter is presented , it has contain 'type', 'tagk' and 'filter' (filter definition)
if not metric_filter.get('type') or not metric_filter.get('tagk') or \
metric_filter.get('filter') is None:
raise errors.MissingArgumentError(
"Missing argument 'type', 'tagk' or 'filter' in filters object")
def query(host, r_session, **kwargs):
"""
:param host: str
:param r_session: requests.Session
:param kwargs: dict
:return: dict
"""
# todo: make sure kwargs of tsdb are not colliding kwargs of requests
try:
start = kwargs.pop('start')
except KeyError:
raise errors.MissingArgumentError("'start' is a required argument")
try:
tsdb_query_metrics_validation(**kwargs)
except errors.MissingArgumentError as e:
raise errors.MissingArgumentError(str(e))
# general driven arguments
end = kwargs.pop('end', None)
ms_resolution = bool(kwargs.pop('ms', False))
show_tsuids = bool(kwargs.pop('show_tsuids', False))
no_annotations = bool(kwargs.pop('no_annotations', False))
global_annotations = bool(kwargs.pop('global_annotations', False))
show_summary = bool(kwargs.pop('show_summary', False))
show_stats = bool(kwargs.pop('show_stats', False))
show_query = bool(kwargs.pop('show_query', False))
delete_match = bool(kwargs.pop('delete', False))
timezone = kwargs.pop('timezone', 'UTC')
use_calendar = bool(kwargs.pop('use_calendar', False))
queries = kwargs.pop('metrics')
params = {
'start': '{}'.format(int(start.timestamp())),
'msResolution': ms_resolution,
'showTSUIDs': show_tsuids,
'noAnnotations': no_annotations,
'globalAnnotations': global_annotations,
'showSummary': show_summary,
'showStats': show_stats,
'showQuery': show_query,
'delete': delete_match,
'timezone': timezone,
'useCalendar': use_calendar,
'queries': list(),
}
if end:
params.update({'end': int(end.timestamp())})
params.update({'queries': queries})
kwargs.update(dict(data=params))
return request_post(api_url(host, pointer=QueryPointer.QUERY), r_session, **kwargs)
def multiquery(host, r_session, query_chunks, max_tsdb_concurrency=40, **kwargs):
"""
OpenTSDB /api/query/ concurrency wrapper
:param host: str (mandatory); OpenTSDB host
:param r_session: requests.Session
:param query_chunks: list (mandatory); list of json serializable dicts representing OpenTSDB query
:param max_tsdb_concurrency: int (optional), default=40; maximum number of concurrency
threads hitting OpenTSDB api
:return: dict; json serializable
"""
__WORKER_RUN__ = True
# todo: optimize, in case one of worker fail, terminate execution
n_threads = min(len(query_chunks), max_tsdb_concurrency)
query_queue = Queue(maxsize=len(query_chunks) + n_threads)
result_queue = Queue(maxsize=len(query_chunks) + n_threads)
error_queue = Queue()
threads = list()
try:
for q in query_chunks:
# valiate all queries in query_chunks
tsdb_query_metrics_validation(**q)
# add query kwargs to queue for future execution in threads
query_queue.put(q)
for _ in range(n_threads):
query_queue.put("TERMINATOR")
for _ in range(n_threads):
t = Thread(target=tsdb_worker)
threads.append(t)
t.daemon = True
t.start()
for t in threads:
t.join()
except KeyboardInterrupt:
raise
finally:
__WORKER_RUN__ = False
if not error_queue.empty():
# if not empty, error_queue has to contain exception from tsdb_worker
raise error_queue.get()
if result_queue.qsize() != len(query_chunks):
# this statement is probably not necessary
raise errors.TsdbError("Number of queries and responses is not the same")
# make sure any other kind of response code won't be propagated to this place and will be catched and processed
# in previous part of code
return sum([val for val in IterableQueue(result_queue)], list())
| [
6738,
16834,
1330,
4670,
518,
198,
6738,
16834,
1330,
33523,
198,
6738,
4704,
278,
1330,
14122,
198,
198,
6738,
12972,
404,
658,
9945,
1330,
8563,
198,
6738,
12972,
404,
658,
9945,
13,
26791,
1330,
2581,
62,
7353,
198,
6738,
12972,
404,
658,
9945,
13,
10414,
1330,
43301,
18833,
3849,
628,
198,
4871,
40806,
540,
34991,
7,
15252,
2599,
198,
220,
220,
220,
37227,
26981,
3210,
21015,
4670,
518,
4554,
284,
11629,
540,
530,
37811,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
2723,
62,
36560,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2723,
62,
36560,
25,
16834,
13,
34991,
11,
357,
22249,
2870,
8,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
10459,
62,
36560,
796,
2723,
62,
36560,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
4299,
40379,
9945,
62,
22766,
62,
4164,
10466,
62,
12102,
341,
7,
1174,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2045,
329,
18663,
290,
477,
3519,
290,
2672,
7159,
287,
479,
86,
22046,
7368,
287,
4946,
4694,
11012,
2638,
40391,
628,
220,
220,
220,
1058,
17143,
479,
86,
22046,
25,
8633,
198,
220,
220,
220,
1058,
7783,
25,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
40379,
9945,
12405,
479,
86,
22046,
423,
284,
3994,
705,
4164,
10466,
6,
4578,
198,
220,
220,
220,
611,
407,
479,
86,
22046,
13,
1136,
10786,
4164,
10466,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
8563,
13,
43730,
28100,
1713,
12331,
7203,
43730,
4578,
705,
4164,
10466,
6,
287,
12405,
4943,
628,
220,
220,
220,
1303,
20731,
460,
3994,
517,
621,
530,
18663,
287,
1351,
198,
220,
220,
220,
329,
18663,
62,
15252,
287,
479,
86,
22046,
17816,
4164,
10466,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1123,
18663,
287,
20731,
468,
284,
11986,
13262,
1352,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
18663,
62,
15252,
13,
1136,
10786,
4164,
1173,
11537,
393,
407,
18663,
62,
15252,
13,
1136,
10786,
9460,
2301,
1352,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
8563,
13,
43730,
28100,
1713,
12331,
7203,
43730,
4578,
705,
4164,
1173,
6,
393,
705,
9460,
2301,
1352,
6,
287,
20731,
2134,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1123,
18663,
460,
3994,
16628,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18663,
62,
15252,
13,
1136,
10786,
10379,
1010,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
18663,
62,
24455,
287,
18663,
62,
15252,
17816,
10379,
1010,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
8106,
318,
5545,
837,
340,
468,
3994,
705,
4906,
3256,
705,
12985,
74,
6,
290,
705,
24455,
6,
357,
24455,
6770,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
18663,
62,
24455,
13,
1136,
10786,
4906,
11537,
393,
407,
18663,
62,
24455,
13,
1136,
10786,
12985,
74,
11537,
393,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18663,
62,
24455,
13,
1136,
10786,
24455,
11537,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
8563,
13,
43730,
28100,
1713,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
43730,
4578,
705,
4906,
3256,
705,
12985,
74,
6,
393,
705,
24455,
6,
287,
16628,
2134,
4943,
628,
198,
4299,
12405,
7,
4774,
11,
374,
62,
29891,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1058,
17143,
2583,
25,
965,
198,
220,
220,
220,
1058,
17143,
374,
62,
29891,
25,
7007,
13,
36044,
198,
220,
220,
220,
1058,
17143,
479,
86,
22046,
25,
8633,
198,
220,
220,
220,
1058,
7783,
25,
8633,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
284,
4598,
25,
787,
1654,
479,
86,
22046,
286,
40379,
9945,
389,
407,
2927,
2530,
479,
86,
22046,
286,
7007,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
923,
796,
479,
86,
22046,
13,
12924,
10786,
9688,
11537,
198,
220,
220,
220,
2845,
7383,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
8563,
13,
43730,
28100,
1713,
12331,
7203,
6,
9688,
6,
318,
257,
2672,
4578,
4943,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
40379,
9945,
62,
22766,
62,
4164,
10466,
62,
12102,
341,
7,
1174,
46265,
22046,
8,
198,
220,
220,
220,
2845,
8563,
13,
43730,
28100,
1713,
12331,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
8563,
13,
43730,
28100,
1713,
12331,
7,
2536,
7,
68,
4008,
628,
220,
220,
220,
1303,
2276,
7986,
7159,
198,
220,
220,
220,
886,
796,
479,
86,
22046,
13,
12924,
10786,
437,
3256,
6045,
8,
198,
220,
220,
220,
13845,
62,
29268,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
907,
3256,
10352,
4008,
198,
220,
220,
220,
905,
62,
912,
84,
2340,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
12860,
62,
912,
84,
2340,
3256,
10352,
4008,
198,
220,
220,
220,
645,
62,
34574,
602,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
3919,
62,
34574,
602,
3256,
10352,
4008,
198,
220,
220,
220,
3298,
62,
34574,
602,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
20541,
62,
34574,
602,
3256,
10352,
4008,
198,
220,
220,
220,
905,
62,
49736,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
12860,
62,
49736,
3256,
10352,
4008,
198,
220,
220,
220,
905,
62,
34242,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
12860,
62,
34242,
3256,
10352,
4008,
198,
220,
220,
220,
905,
62,
22766,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
12860,
62,
22766,
3256,
10352,
4008,
198,
220,
220,
220,
12233,
62,
15699,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
33678,
3256,
10352,
4008,
198,
220,
220,
220,
640,
11340,
796,
479,
86,
22046,
13,
12924,
10786,
2435,
11340,
3256,
705,
17429,
11537,
198,
220,
220,
220,
779,
62,
9948,
9239,
796,
20512,
7,
46265,
22046,
13,
12924,
10786,
1904,
62,
9948,
9239,
3256,
10352,
4008,
628,
220,
220,
220,
20743,
796,
479,
86,
22046,
13,
12924,
10786,
4164,
10466,
11537,
628,
220,
220,
220,
42287,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
9688,
10354,
705,
90,
92,
4458,
18982,
7,
600,
7,
9688,
13,
16514,
27823,
28955,
828,
198,
220,
220,
220,
220,
220,
220,
220,
705,
907,
4965,
2122,
10354,
13845,
62,
29268,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
12860,
4694,
27586,
82,
10354,
905,
62,
912,
84,
2340,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
3919,
2025,
30078,
10354,
645,
62,
34574,
602,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
20541,
2025,
30078,
10354,
3298,
62,
34574,
602,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
12860,
22093,
10354,
905,
62,
49736,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
12860,
29668,
10354,
905,
62,
34242,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
12860,
20746,
10354,
905,
62,
22766,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
33678,
10354,
12233,
62,
15699,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
2435,
11340,
10354,
640,
11340,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
1904,
9771,
9239,
10354,
779,
62,
9948,
9239,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
421,
10640,
10354,
1351,
22784,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
611,
886,
25,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
13,
19119,
15090,
6,
437,
10354,
493,
7,
437,
13,
16514,
27823,
28955,
30072,
198,
220,
220,
220,
42287,
13,
19119,
15090,
6,
421,
10640,
10354,
20743,
30072,
198,
220,
220,
220,
479,
86,
22046,
13,
19119,
7,
11600,
7,
7890,
28,
37266,
4008,
198,
220,
220,
220,
1441,
2581,
62,
7353,
7,
15042,
62,
6371,
7,
4774,
11,
17562,
28,
20746,
18833,
3849,
13,
10917,
19664,
828,
374,
62,
29891,
11,
12429,
46265,
22046,
8,
628,
198,
4299,
1963,
1557,
1924,
7,
4774,
11,
374,
62,
29891,
11,
12405,
62,
354,
14125,
11,
3509,
62,
912,
9945,
62,
1102,
34415,
28,
1821,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4946,
4694,
11012,
1220,
15042,
14,
22766,
14,
1673,
13382,
29908,
628,
220,
220,
220,
1058,
17143,
2583,
25,
965,
357,
22249,
2870,
1776,
4946,
4694,
11012,
2583,
198,
220,
220,
220,
1058,
17143,
374,
62,
29891,
25,
7007,
13,
36044,
198,
220,
220,
220,
1058,
17143,
12405,
62,
354,
14125,
25,
1351,
357,
22249,
2870,
1776,
1351,
286,
33918,
11389,
13821,
8633,
82,
10200,
4946,
4694,
11012,
12405,
198,
220,
220,
220,
1058,
17143,
3509,
62,
912,
9945,
62,
1102,
34415,
25,
493,
357,
25968,
828,
4277,
28,
1821,
26,
5415,
1271,
286,
1673,
13382,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14390,
9008,
4946,
4694,
11012,
40391,
198,
220,
220,
220,
1058,
7783,
25,
8633,
26,
33918,
11389,
13821,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
33249,
1137,
62,
49,
4944,
834,
796,
6407,
628,
220,
220,
220,
1303,
284,
4598,
25,
27183,
11,
287,
1339,
530,
286,
8383,
2038,
11,
23654,
9706,
628,
220,
220,
220,
299,
62,
16663,
82,
796,
949,
7,
11925,
7,
22766,
62,
354,
14125,
828,
3509,
62,
912,
9945,
62,
1102,
34415,
8,
198,
220,
220,
220,
12405,
62,
36560,
796,
4670,
518,
7,
9806,
7857,
28,
11925,
7,
22766,
62,
354,
14125,
8,
1343,
299,
62,
16663,
82,
8,
198,
220,
220,
220,
1255,
62,
36560,
796,
4670,
518,
7,
9806,
7857,
28,
11925,
7,
22766,
62,
354,
14125,
8,
1343,
299,
62,
16663,
82,
8,
198,
220,
220,
220,
4049,
62,
36560,
796,
4670,
518,
3419,
628,
220,
220,
220,
14390,
796,
1351,
3419,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
10662,
287,
12405,
62,
354,
14125,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1188,
9386,
477,
20743,
287,
12405,
62,
354,
14125,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40379,
9945,
62,
22766,
62,
4164,
10466,
62,
12102,
341,
7,
1174,
80,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
12405,
479,
86,
22046,
284,
16834,
329,
2003,
9706,
287,
14390,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12405,
62,
36560,
13,
1996,
7,
80,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
4808,
287,
2837,
7,
77,
62,
16663,
82,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12405,
62,
36560,
13,
1996,
7203,
5781,
23678,
25633,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
329,
4808,
287,
2837,
7,
77,
62,
16663,
82,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
796,
14122,
7,
16793,
28,
912,
9945,
62,
28816,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14390,
13,
33295,
7,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
13,
6814,
7966,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
13,
9688,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
329,
256,
287,
14390,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
13,
22179,
3419,
628,
220,
220,
220,
2845,
31973,
9492,
3622,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
198,
220,
220,
220,
3443,
25,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
33249,
1137,
62,
49,
4944,
834,
796,
10352,
628,
220,
220,
220,
611,
407,
4049,
62,
36560,
13,
28920,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
407,
6565,
11,
4049,
62,
36560,
468,
284,
3994,
6631,
422,
40379,
9945,
62,
28816,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
4049,
62,
36560,
13,
1136,
3419,
628,
220,
220,
220,
611,
1255,
62,
36560,
13,
80,
7857,
3419,
14512,
18896,
7,
22766,
62,
354,
14125,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
428,
2643,
318,
2192,
407,
3306,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
8563,
13,
33758,
9945,
12331,
7203,
15057,
286,
20743,
290,
9109,
318,
407,
262,
976,
4943,
628,
220,
220,
220,
1303,
787,
1654,
597,
584,
1611,
286,
2882,
2438,
1839,
470,
307,
8928,
515,
284,
428,
1295,
290,
481,
307,
3797,
1740,
290,
13686,
198,
220,
220,
220,
1303,
287,
2180,
636,
286,
2438,
198,
220,
220,
220,
1441,
2160,
26933,
2100,
329,
1188,
287,
40806,
540,
34991,
7,
20274,
62,
36560,
8,
4357,
1351,
28955,
628
] | 2.509267 | 2,266 |
import numpy as np
import torch
import torch.nn.functional as F
import sparseconvnet as scn
import data_util
UNK_THRESH = 2
#UNK_THRESH = 3
UNK_ID = -1
# note: weight_missing_geo must be > 1
# hierarchical loss
| [
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
198,
11748,
29877,
42946,
3262,
355,
629,
77,
198,
198,
11748,
1366,
62,
22602,
198,
198,
4944,
42,
62,
4221,
19535,
39,
796,
362,
198,
2,
4944,
42,
62,
4221,
19535,
39,
796,
513,
198,
198,
4944,
42,
62,
2389,
796,
532,
16,
198,
198,
2,
3465,
25,
3463,
62,
45688,
62,
469,
78,
1276,
307,
1875,
352,
628,
198,
198,
2,
38958,
2994,
220,
628
] | 2.611765 | 85 |
r"""Integrator functions used when no closed forms are available.
Lead author: Nicolas Guigui.
These are designed for first order ODE written of a variable x and a time
variable t:
.. math::
\frac{dx}{dt} = force(x, t)
where :math: `x` is called the state variable. It may represent many
variables by stacking arrays, e.g. position and velocity in a geodesic
equation.
"""
from geomstats.errors import check_parameter_accepted_values
STEP_FUNCTIONS = {
"euler": "euler_step",
"symp_euler": "symplectic_euler_step",
"leapfrog": "leapfrog_step",
"rk4": "rk4_step",
"rk2": "rk2_step",
}
def euler_step(force, state, time, dt):
"""Compute one step of the euler approximation.
Parameters
----------
force : callable
Vector field that is being integrated.
state : array-like, shape=[2, dim]
State at time t, corresponds to position and velocity variables at
time t.
time : float
Time variable.
dt : float
Time-step in the integration.
Returns
-------
point_new : array-like, shape=[,,,, {dim, [n, n]}]
First variable at time t + dt.
vector_new : array-like, shape=[,,,, {dim, [n, n]}]
Second variable at time t + dt.
"""
derivatives = force(state, time)
new_state = state + derivatives * dt
return new_state
def symplectic_euler_step(force, state, time, dt):
"""Compute one step of the symplectic euler approximation.
Parameters
----------
state : array-like, shape=[2, dim]
State at time t, corresponds to position and velocity variables at
time t.
force : callable
Vector field that is being integrated.
time : float
Time variable.
dt : float
Time-step in the integration.
Returns
-------
point_new : array-like, shape=[,,,, {dim, [n, n]}]
First variable at time t + dt.
vector_new : array-like, shape=[,,,, {dim, [n, n]}]
Second variable at time t + dt.
"""
raise NotImplementedError
def leapfrog_step(force, state, time, dt):
"""Compute one step of the leapfrog approximation.
Parameters
----------
state : array-like, shape=[2, dim]
State at time t, corresponds to position and velocity variables at
time t.
force : callable
Vector field that is being integrated.
time : float
Time variable.
dt : float
Time-step in the integration.
Returns
-------
point_new : array-like, shape=[,,,, {dim, [n, n]}]
First variable at time t + dt.
vector_new : array-like, shape=[,,,, {dim, [n, n]}]
Second variable at time t + dt.
"""
raise NotImplementedError
def rk2_step(force, state, time, dt):
"""Compute one step of the rk2 approximation.
Parameters
----------
force : callable
Vector field that is being integrated.
state : array-like, shape=[2, dim]
State at time t, corresponds to position and velocity variables at
time t.
time : float
Time variable.
dt : float
Time-step in the integration.
Returns
-------
point_new : array-like, shape=[,,,, {dim, [n, n]}]
First variable at time t + dt.
vector_new : array-like, shape=[,,,, {dim, [n, n]}]
Second variable at time t + dt.
See Also
--------
https://en.wikipedia.org/wiki/Runge–Kutta_methods
"""
k1 = force(state, time)
k2 = force(state + dt / 2 * k1, time + dt / 2)
new_state = state + dt * k2
return new_state
def rk4_step(force, state, time, dt):
"""Compute one step of the rk4 approximation.
Parameters
----------
force : callable
Vector field that is being integrated.
state : array-like, shape=[2, dim]
State at time t, corresponds to position and velocity variables at
time t.
time : float
Time variable.
dt : float
Time-step in the integration.
Returns
-------
point_new : array-like, shape=[,,,, {dim, [n, n]}]
First variable at time t + dt.
vector_new : array-like, shape=[,,,, {dim, [n, n]}]
Second variable at time t + dt.
See Also
--------
https://en.wikipedia.org/wiki/Runge–Kutta_methods
"""
k1 = force(state, time)
k2 = force(state + dt / 2 * k1, time + dt / 2)
k3 = force(state + dt / 2 * k2, time + dt / 2)
k4 = force(state + dt * k3, time + dt)
new_state = state + dt / 6 * (k1 + 2 * k2 + 2 * k3 + k4)
return new_state
def integrate(function, initial_state, end_time=1.0, n_steps=10, step="euler"):
"""Compute the flow under the vector field using symplectic euler.
Integration function to compute flows of vector fields
on a regular grid between 0 and a finite time from an initial state.
Parameters
----------
function : callable
Vector field to integrate.
initial_state : tuple of arrays
Initial position and speed.
end_time : float
Final integration time.
Optional, default : 1.
n_steps : int
Number of integration steps to use.
Optional, default : 10.
step : str, {'euler', 'rk4', 'group_rk2', 'group_rk4'}
Numerical scheme to use for elementary integration steps.
Optional, default : 'euler'.
Returns
-------
final_state : tuple
sequences of solutions every end_time / n_steps. The shape of each
element of the sequence is the same as the vectors passed in
initial_state.
"""
check_parameter_accepted_values(step, "step", STEP_FUNCTIONS)
dt = end_time / n_steps
states = [initial_state]
current_state = initial_state
step_function = globals()[STEP_FUNCTIONS[step]]
for i in range(n_steps):
current_state = step_function(
state=current_state, force=function, time=i * dt, dt=dt
)
states.append(current_state)
return states
| [
81,
37811,
34500,
12392,
5499,
973,
618,
645,
4838,
5107,
389,
1695,
13,
198,
198,
20451,
1772,
25,
29737,
1962,
328,
9019,
13,
198,
198,
4711,
389,
3562,
329,
717,
1502,
440,
7206,
3194,
286,
257,
7885,
2124,
290,
257,
640,
198,
45286,
256,
25,
198,
492,
10688,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
31944,
90,
34350,
18477,
28664,
92,
796,
2700,
7,
87,
11,
256,
8,
198,
198,
3003,
1058,
11018,
25,
4600,
87,
63,
318,
1444,
262,
1181,
7885,
13,
632,
743,
2380,
867,
198,
25641,
2977,
416,
41228,
26515,
11,
304,
13,
70,
13,
2292,
290,
15432,
287,
257,
4903,
4147,
291,
198,
4853,
341,
13,
198,
37811,
198,
198,
6738,
4903,
296,
34242,
13,
48277,
1330,
2198,
62,
17143,
2357,
62,
13635,
276,
62,
27160,
198,
198,
42135,
62,
42296,
4177,
11053,
796,
1391,
198,
220,
220,
220,
366,
68,
18173,
1298,
366,
68,
18173,
62,
9662,
1600,
198,
220,
220,
220,
366,
1837,
3149,
62,
68,
18173,
1298,
366,
1837,
3149,
42009,
62,
68,
18173,
62,
9662,
1600,
198,
220,
220,
220,
366,
293,
499,
49956,
1298,
366,
293,
499,
49956,
62,
9662,
1600,
198,
220,
220,
220,
366,
81,
74,
19,
1298,
366,
81,
74,
19,
62,
9662,
1600,
198,
220,
220,
220,
366,
81,
74,
17,
1298,
366,
81,
74,
17,
62,
9662,
1600,
198,
92,
628,
198,
4299,
304,
18173,
62,
9662,
7,
3174,
11,
1181,
11,
640,
11,
288,
83,
2599,
198,
220,
220,
220,
37227,
7293,
1133,
530,
2239,
286,
262,
304,
18173,
40874,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2700,
1058,
869,
540,
198,
220,
220,
220,
220,
220,
220,
220,
20650,
2214,
326,
318,
852,
11521,
13,
198,
220,
220,
220,
1181,
1058,
7177,
12,
2339,
11,
5485,
41888,
17,
11,
5391,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1812,
379,
640,
256,
11,
24866,
284,
2292,
290,
15432,
9633,
379,
198,
220,
220,
220,
220,
220,
220,
220,
640,
256,
13,
198,
220,
220,
220,
640,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
7885,
13,
198,
220,
220,
220,
288,
83,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
12,
9662,
287,
262,
11812,
13,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
966,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3274,
7885,
379,
640,
256,
1343,
288,
83,
13,
198,
220,
220,
220,
15879,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
5498,
7885,
379,
640,
256,
1343,
288,
83,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
28486,
796,
2700,
7,
5219,
11,
640,
8,
198,
220,
220,
220,
649,
62,
5219,
796,
1181,
1343,
28486,
1635,
288,
83,
198,
220,
220,
220,
1441,
649,
62,
5219,
628,
198,
4299,
10558,
42009,
62,
68,
18173,
62,
9662,
7,
3174,
11,
1181,
11,
640,
11,
288,
83,
2599,
198,
220,
220,
220,
37227,
7293,
1133,
530,
2239,
286,
262,
10558,
42009,
304,
18173,
40874,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
1181,
1058,
7177,
12,
2339,
11,
5485,
41888,
17,
11,
5391,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1812,
379,
640,
256,
11,
24866,
284,
2292,
290,
15432,
9633,
379,
198,
220,
220,
220,
220,
220,
220,
220,
640,
256,
13,
198,
220,
220,
220,
2700,
1058,
869,
540,
198,
220,
220,
220,
220,
220,
220,
220,
20650,
2214,
326,
318,
852,
11521,
13,
198,
220,
220,
220,
640,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
7885,
13,
198,
220,
220,
220,
288,
83,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
12,
9662,
287,
262,
11812,
13,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
966,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3274,
7885,
379,
640,
256,
1343,
288,
83,
13,
198,
220,
220,
220,
15879,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
5498,
7885,
379,
640,
256,
1343,
288,
83,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
628,
198,
4299,
16470,
49956,
62,
9662,
7,
3174,
11,
1181,
11,
640,
11,
288,
83,
2599,
198,
220,
220,
220,
37227,
7293,
1133,
530,
2239,
286,
262,
16470,
49956,
40874,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
1181,
1058,
7177,
12,
2339,
11,
5485,
41888,
17,
11,
5391,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1812,
379,
640,
256,
11,
24866,
284,
2292,
290,
15432,
9633,
379,
198,
220,
220,
220,
220,
220,
220,
220,
640,
256,
13,
198,
220,
220,
220,
2700,
1058,
869,
540,
198,
220,
220,
220,
220,
220,
220,
220,
20650,
2214,
326,
318,
852,
11521,
13,
198,
220,
220,
220,
640,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
7885,
13,
198,
220,
220,
220,
288,
83,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
12,
9662,
287,
262,
11812,
13,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
966,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3274,
7885,
379,
640,
256,
1343,
288,
83,
13,
198,
220,
220,
220,
15879,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
5498,
7885,
379,
640,
256,
1343,
288,
83,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
628,
198,
4299,
374,
74,
17,
62,
9662,
7,
3174,
11,
1181,
11,
640,
11,
288,
83,
2599,
198,
220,
220,
220,
37227,
7293,
1133,
530,
2239,
286,
262,
374,
74,
17,
40874,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2700,
1058,
869,
540,
198,
220,
220,
220,
220,
220,
220,
220,
20650,
2214,
326,
318,
852,
11521,
13,
198,
220,
220,
220,
1181,
1058,
7177,
12,
2339,
11,
5485,
41888,
17,
11,
5391,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1812,
379,
640,
256,
11,
24866,
284,
2292,
290,
15432,
9633,
379,
198,
220,
220,
220,
220,
220,
220,
220,
640,
256,
13,
198,
220,
220,
220,
640,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
7885,
13,
198,
220,
220,
220,
288,
83,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
12,
9662,
287,
262,
11812,
13,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
966,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3274,
7885,
379,
640,
256,
1343,
288,
83,
13,
198,
220,
220,
220,
15879,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
5498,
7885,
379,
640,
256,
1343,
288,
83,
13,
628,
220,
220,
220,
4091,
4418,
198,
220,
220,
220,
24200,
198,
220,
220,
220,
3740,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
10987,
469,
1906,
42,
315,
8326,
62,
24396,
82,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
479,
16,
796,
2700,
7,
5219,
11,
640,
8,
198,
220,
220,
220,
479,
17,
796,
2700,
7,
5219,
1343,
288,
83,
1220,
362,
1635,
479,
16,
11,
640,
1343,
288,
83,
1220,
362,
8,
198,
220,
220,
220,
649,
62,
5219,
796,
1181,
1343,
288,
83,
1635,
479,
17,
198,
220,
220,
220,
1441,
649,
62,
5219,
628,
198,
4299,
374,
74,
19,
62,
9662,
7,
3174,
11,
1181,
11,
640,
11,
288,
83,
2599,
198,
220,
220,
220,
37227,
7293,
1133,
530,
2239,
286,
262,
374,
74,
19,
40874,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2700,
1058,
869,
540,
198,
220,
220,
220,
220,
220,
220,
220,
20650,
2214,
326,
318,
852,
11521,
13,
198,
220,
220,
220,
1181,
1058,
7177,
12,
2339,
11,
5485,
41888,
17,
11,
5391,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1812,
379,
640,
256,
11,
24866,
284,
2292,
290,
15432,
9633,
379,
198,
220,
220,
220,
220,
220,
220,
220,
640,
256,
13,
198,
220,
220,
220,
640,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
7885,
13,
198,
220,
220,
220,
288,
83,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
3862,
12,
9662,
287,
262,
11812,
13,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
966,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3274,
7885,
379,
640,
256,
1343,
288,
83,
13,
198,
220,
220,
220,
15879,
62,
3605,
1058,
7177,
12,
2339,
11,
5485,
41888,
23846,
1391,
27740,
11,
685,
77,
11,
299,
48999,
60,
198,
220,
220,
220,
220,
220,
220,
220,
5498,
7885,
379,
640,
256,
1343,
288,
83,
13,
628,
220,
220,
220,
4091,
4418,
198,
220,
220,
220,
24200,
198,
220,
220,
220,
3740,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
10987,
469,
1906,
42,
315,
8326,
62,
24396,
82,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
479,
16,
796,
2700,
7,
5219,
11,
640,
8,
198,
220,
220,
220,
479,
17,
796,
2700,
7,
5219,
1343,
288,
83,
1220,
362,
1635,
479,
16,
11,
640,
1343,
288,
83,
1220,
362,
8,
198,
220,
220,
220,
479,
18,
796,
2700,
7,
5219,
1343,
288,
83,
1220,
362,
1635,
479,
17,
11,
640,
1343,
288,
83,
1220,
362,
8,
198,
220,
220,
220,
479,
19,
796,
2700,
7,
5219,
1343,
288,
83,
1635,
479,
18,
11,
640,
1343,
288,
83,
8,
198,
220,
220,
220,
649,
62,
5219,
796,
1181,
1343,
288,
83,
1220,
718,
1635,
357,
74,
16,
1343,
362,
1635,
479,
17,
1343,
362,
1635,
479,
18,
1343,
479,
19,
8,
198,
220,
220,
220,
1441,
649,
62,
5219,
628,
198,
4299,
19386,
7,
8818,
11,
4238,
62,
5219,
11,
886,
62,
2435,
28,
16,
13,
15,
11,
299,
62,
20214,
28,
940,
11,
2239,
2625,
68,
18173,
1,
2599,
198,
220,
220,
220,
37227,
7293,
1133,
262,
5202,
739,
262,
15879,
2214,
1262,
10558,
42009,
304,
18173,
13,
628,
220,
220,
220,
38410,
2163,
284,
24061,
15623,
286,
15879,
7032,
198,
220,
220,
220,
319,
257,
3218,
10706,
1022,
657,
290,
257,
27454,
640,
422,
281,
4238,
1181,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2163,
1058,
869,
540,
198,
220,
220,
220,
220,
220,
220,
220,
20650,
2214,
284,
19386,
13,
198,
220,
220,
220,
4238,
62,
5219,
1058,
46545,
286,
26515,
198,
220,
220,
220,
220,
220,
220,
220,
20768,
2292,
290,
2866,
13,
198,
220,
220,
220,
886,
62,
2435,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
8125,
11812,
640,
13,
198,
220,
220,
220,
220,
220,
220,
220,
32233,
11,
4277,
1058,
352,
13,
198,
220,
220,
220,
299,
62,
20214,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
7913,
286,
11812,
4831,
284,
779,
13,
198,
220,
220,
220,
220,
220,
220,
220,
32233,
11,
4277,
1058,
838,
13,
198,
220,
220,
220,
2239,
1058,
965,
11,
1391,
6,
68,
18173,
3256,
705,
81,
74,
19,
3256,
705,
8094,
62,
81,
74,
17,
3256,
705,
8094,
62,
81,
74,
19,
6,
92,
198,
220,
220,
220,
220,
220,
220,
220,
399,
6975,
605,
7791,
284,
779,
329,
19823,
11812,
4831,
13,
198,
220,
220,
220,
220,
220,
220,
220,
32233,
11,
4277,
1058,
705,
68,
18173,
4458,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
2457,
62,
5219,
1058,
46545,
198,
220,
220,
220,
220,
220,
220,
220,
16311,
286,
8136,
790,
886,
62,
2435,
1220,
299,
62,
20214,
13,
383,
5485,
286,
1123,
198,
220,
220,
220,
220,
220,
220,
220,
5002,
286,
262,
8379,
318,
262,
976,
355,
262,
30104,
3804,
287,
198,
220,
220,
220,
220,
220,
220,
220,
4238,
62,
5219,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2198,
62,
17143,
2357,
62,
13635,
276,
62,
27160,
7,
9662,
11,
366,
9662,
1600,
49154,
62,
42296,
4177,
11053,
8,
628,
220,
220,
220,
288,
83,
796,
886,
62,
2435,
1220,
299,
62,
20214,
198,
220,
220,
220,
2585,
796,
685,
36733,
62,
5219,
60,
198,
220,
220,
220,
1459,
62,
5219,
796,
4238,
62,
5219,
628,
220,
220,
220,
2239,
62,
8818,
796,
15095,
874,
3419,
58,
42135,
62,
42296,
4177,
11053,
58,
9662,
11907,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
77,
62,
20214,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
5219,
796,
2239,
62,
8818,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
28,
14421,
62,
5219,
11,
2700,
28,
8818,
11,
640,
28,
72,
1635,
288,
83,
11,
288,
83,
28,
28664,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
2585,
13,
33295,
7,
14421,
62,
5219,
8,
198,
220,
220,
220,
1441,
2585,
198
] | 2.547081 | 2,347 |
"""
This module schedules all the tasks according to config.rules.
"""
import click
import logging
import multiprocessing
import schedule
import time
from scrapy.crawler import CrawlerRunner
from scrapy.utils.project import get_project_settings
from twisted.internet import reactor
from haipproxy.client import SquidClient
from haipproxy.config.rules import CRAWLER_TASKS, CRAWLER_QUEUE_MAPS
from haipproxy.crawler.spiders import SPIDER_MAP
from haipproxy.settings import (
SPIDER_AJAX_Q,
SPIDER_GFW_Q,
SPIDER_AJAX_GFW_Q,
TIMER_RECORDER,
)
from haipproxy.utils import get_redis_conn, acquire_lock, release_lock
DEFAULT_CRAWLER_QS = [SPIDER_AJAX_Q, SPIDER_GFW_Q, SPIDER_AJAX_GFW_Q]
logger = logging.getLogger(__name__)
def scheduler_start(tasks):
"""Start specified scheduler."""
default_tasks = CRAWLER_TASKS
SchedulerCls = CrawlerScheduler
scheduler = SchedulerCls(default_tasks)
scheduler.schedule_all_right_now()
scheduler.schedule_with_delay()
| [
37811,
198,
1212,
8265,
24025,
477,
262,
8861,
1864,
284,
4566,
13,
38785,
13,
198,
37811,
198,
11748,
3904,
198,
11748,
18931,
198,
11748,
18540,
305,
919,
278,
198,
11748,
7269,
198,
11748,
640,
198,
198,
6738,
15881,
88,
13,
66,
39464,
1330,
20177,
1754,
49493,
198,
6738,
15881,
88,
13,
26791,
13,
16302,
1330,
651,
62,
16302,
62,
33692,
198,
6738,
19074,
13,
37675,
1330,
21905,
198,
198,
6738,
387,
3974,
42059,
13,
16366,
1330,
48799,
11792,
198,
6738,
387,
3974,
42059,
13,
11250,
13,
38785,
1330,
327,
20530,
39878,
62,
51,
1921,
27015,
11,
327,
20530,
39878,
62,
48,
8924,
8924,
62,
33767,
50,
198,
6738,
387,
3974,
42059,
13,
66,
39464,
13,
2777,
4157,
1330,
6226,
41237,
62,
33767,
198,
6738,
387,
3974,
42059,
13,
33692,
1330,
357,
198,
220,
220,
220,
6226,
41237,
62,
32,
41,
25922,
62,
48,
11,
198,
220,
220,
220,
6226,
41237,
62,
21713,
54,
62,
48,
11,
198,
220,
220,
220,
6226,
41237,
62,
32,
41,
25922,
62,
21713,
54,
62,
48,
11,
198,
220,
220,
220,
31742,
1137,
62,
38827,
12532,
1137,
11,
198,
8,
198,
6738,
387,
3974,
42059,
13,
26791,
1330,
651,
62,
445,
271,
62,
37043,
11,
12831,
62,
5354,
11,
2650,
62,
5354,
198,
198,
7206,
38865,
62,
34,
20530,
39878,
62,
48,
50,
796,
685,
4303,
41237,
62,
32,
41,
25922,
62,
48,
11,
6226,
41237,
62,
21713,
54,
62,
48,
11,
6226,
41237,
62,
32,
41,
25922,
62,
21713,
54,
62,
48,
60,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
628,
198,
4299,
6038,
18173,
62,
9688,
7,
83,
6791,
2599,
198,
220,
220,
220,
37227,
10434,
7368,
6038,
18173,
526,
15931,
198,
220,
220,
220,
4277,
62,
83,
6791,
796,
327,
20530,
39878,
62,
51,
1921,
27015,
198,
220,
220,
220,
27774,
18173,
2601,
82,
796,
20177,
1754,
50,
1740,
18173,
628,
220,
220,
220,
6038,
18173,
796,
27774,
18173,
2601,
82,
7,
12286,
62,
83,
6791,
8,
198,
220,
220,
220,
6038,
18173,
13,
15952,
5950,
62,
439,
62,
3506,
62,
2197,
3419,
198,
220,
220,
220,
6038,
18173,
13,
15952,
5950,
62,
4480,
62,
40850,
3419,
628
] | 2.734247 | 365 |
import os
import subprocess as sp
from .srbColour import Colour
| [
11748,
28686,
198,
11748,
850,
14681,
355,
599,
198,
198,
6738,
764,
82,
26145,
5216,
454,
1330,
38773,
628
] | 3.473684 | 19 |
#!/usr/bin/env python
# coding: utf8
from __future__ import unicode_literals
import random
import operator
from typing import Dict
categories = {'FAULT': 0, 'INFO': 0, 'TOXIC': 0, 'REPAIR': 0}
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
19617,
25,
3384,
69,
23,
198,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
11748,
4738,
198,
11748,
10088,
198,
6738,
19720,
1330,
360,
713,
198,
198,
66,
26129,
796,
1391,
6,
38865,
10354,
657,
11,
705,
10778,
10354,
657,
11,
705,
10468,
55,
2149,
10354,
657,
11,
705,
2200,
4537,
4663,
10354,
657,
92,
628
] | 2.8 | 70 |
input_num = '22235253534090'
reverse(input_num)
| [
198,
15414,
62,
22510,
796,
705,
1828,
22370,
1495,
2327,
23601,
3829,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
50188,
7,
15414,
62,
22510,
8,
628,
198
] | 1.90625 | 32 |
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""cct model"""
import mindspore.common.initializer as weight_init
import mindspore.nn as nn
from src.models.cct.tokenizer import Tokenizer
from src.models.cct.transformers import TransformerClassifier
from src.models.cct.var_init import KaimingNormal
class CCT(nn.Cell):
"""CCT Model"""
def init_weights(self):
"""init_weights"""
for _, cell in self.cells_and_names():
if isinstance(cell, nn.Conv2d):
cell.weight.set_data(
weight_init.initializer(
KaimingNormal(
mode='fan_in'),
cell.weight.shape,
cell.weight.dtype))
elif isinstance(cell, nn.Dense):
cell.weight.set_data(
weight_init.initializer(
weight_init.TruncatedNormal(
sigma=0.02),
cell.weight.shape,
cell.weight.dtype))
if cell.bias is not None:
cell.bias.set_data(
weight_init.initializer(
weight_init.Zero(),
cell.bias.shape,
cell.bias.dtype))
def _cct(arch,
num_layers,
num_heads,
mlp_ratio,
embedding_dim,
kernel_size=3,
stride=None,
padding=None,
**kwargs):
"""get cct model with parameters"""
print(f'=> using arch: {arch}')
stride = stride if stride is not None else max(1, (kernel_size // 2) - 1)
padding = padding if padding is not None else max(1, (kernel_size // 2))
model = CCT(num_layers=num_layers,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
embedding_dim=embedding_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
**kwargs)
return model
def cct_2(arch, **kwargs):
"""cct_2"""
return _cct(
arch,
num_layers=2,
num_heads=2,
mlp_ratio=1,
embedding_dim=128,
**kwargs)
def cct_4(arch, **kwargs):
"""cct_4"""
return _cct(
arch,
num_layers=4,
num_heads=2,
mlp_ratio=1,
embedding_dim=128,
**kwargs)
def cct_6(arch, **kwargs):
"""cct_6"""
return _cct(
arch,
num_layers=6,
num_heads=4,
mlp_ratio=2,
embedding_dim=256,
**kwargs)
def cct_7(arch, **kwargs):
"""cct_7"""
return _cct(
arch,
num_layers=7,
num_heads=4,
mlp_ratio=2,
embedding_dim=256,
**kwargs)
def cct_14(arch, **kwargs):
"""cct_14"""
return _cct(
arch,
num_layers=14,
num_heads=6,
mlp_ratio=3,
embedding_dim=384,
**kwargs)
def cct_2_3x2_32(
img_size=32,
positional_embedding='learnable',
num_classes=10,
**kwargs):
"""cct_2_3x2_32"""
return cct_2(
'cct_2_3x2_32',
kernel_size=3,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_2_3x2_32_sine(
img_size=32,
positional_embedding='sine',
num_classes=10,
**kwargs):
"""cct_2_3x2_32_sine"""
return cct_2(
'cct_2_3x2_32_sine',
kernel_size=3,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_4_3x2_32(
img_size=32,
positional_embedding='learnable',
num_classes=10,
**kwargs):
"""cct_2_3x2_32_sine"""
return cct_4(
'cct_4_3x2_32',
kernel_size=3,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_4_3x2_32_sine(
img_size=32,
positional_embedding='sine',
num_classes=10,
**kwargs):
"""cct_2_3x2_32_sine"""
return cct_4(
'cct_4_3x2_32_sine',
kernel_size=3,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_6_3x1_32(img_size=32, positional_embedding='learnable', num_classes=10,
**kwargs):
"""cct_2_3x2_32_sine"""
return cct_6(
'cct_6_3x1_32',
kernel_size=3,
n_conv_layers=1,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_6_3x1_32_sine(
img_size=32,
positional_embedding='sine',
num_classes=10,
**kwargs):
"""cct_2_3x2_32_sine"""
return cct_6(
'cct_6_3x1_32_sine',
kernel_size=3,
n_conv_layers=1,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_6_3x2_32(
img_size=32,
positional_embedding='learnable',
num_classes=10,
**kwargs):
"""cct_2_3x2_32_sine"""
return cct_6(
'cct_6_3x2_32',
kernel_size=3,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_6_3x2_32_sine(
img_size=32,
positional_embedding='sine',
num_classes=10,
**kwargs):
"""cct_6_3x2_32_sine"""
return cct_6(
'cct_6_3x2_32_sine',
kernel_size=3,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_7_3x1_32(
img_size=32,
positional_embedding='learnable',
num_classes=10,
**kwargs):
"""cct_7_3x1_32"""
return cct_7(
'cct_7_3x1_32',
kernel_size=3,
n_conv_layers=1,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_7_3x1_32_sine(
img_size=32,
positional_embedding='sine',
num_classes=10,
**kwargs):
"""cct_7_3x1_32_sine"""
return cct_7(
'cct_7_3x1_32_sine',
kernel_size=3,
n_conv_layers=1,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_7_3x1_32_c100(
img_size=32,
positional_embedding='learnable',
num_classes=100,
**kwargs):
"""cct_7_3x1_32_c100"""
return cct_7(
'cct_7_3x1_32_c100',
kernel_size=3,
n_conv_layers=1,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_7_3x1_32_sine_c100(
img_size=32,
positional_embedding='sine',
num_classes=100,
**kwargs):
"""cct_7_3x1_32_sine_c100"""
return cct_7(
'cct_7_3x1_32_sine_c100',
kernel_size=3,
n_conv_layers=1,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_7_3x2_32(
img_size=32,
positional_embedding='learnable',
num_classes=10,
**kwargs):
"""cct_7_3x2_32"""
return cct_7(
'cct_7_3x2_32',
kernel_size=3,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_7_3x2_32_sine(
img_size=32,
positional_embedding='sine',
num_classes=10,
**kwargs):
"""cct_7_3x2_32_sine"""
return cct_7(
'cct_7_3x2_32_sine',
kernel_size=3,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_7_7x2_224(
img_size=224,
positional_embedding='learnable',
num_classes=102):
"""cct_7_7x2_224"""
return cct_7(
'cct_7_7x2_224',
kernel_size=7,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes)
def cct_7_7x2_224_sine(
img_size=224,
positional_embedding='sine',
num_classes=102,
**kwargs):
"""cct_7_7x2_224_sine"""
return cct_7(
'cct_7_7x2_224_sine',
kernel_size=7,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_14_7x2_224(
img_size=224,
positional_embedding='learnable',
num_classes=1000,
**kwargs):
"""cct_14_7x2_224"""
return cct_14(
'cct_14_7x2_224',
kernel_size=7,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_14_7x2_384(
img_size=384,
positional_embedding='learnable',
num_classes=1000,
**kwargs):
"""cct_14_7x2_384"""
return cct_14(
'cct_14_7x2_384',
kernel_size=7,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
def cct_14_7x2_384_fl(
img_size=384,
positional_embedding='learnable',
num_classes=102,
**kwargs):
"""cct_14_7x2_384_fl"""
return cct_14(
'cct_14_7x2_384_fl',
kernel_size=7,
n_conv_layers=2,
img_size=img_size,
positional_embedding=positional_embedding,
num_classes=num_classes,
**kwargs)
| [
2,
15069,
33448,
43208,
21852,
1766,
1539,
12052,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
38093,
2559,
18604,
198,
37811,
66,
310,
2746,
37811,
198,
11748,
2000,
2777,
382,
13,
11321,
13,
36733,
7509,
355,
3463,
62,
15003,
198,
11748,
2000,
2777,
382,
13,
20471,
355,
299,
77,
198,
198,
6738,
12351,
13,
27530,
13,
66,
310,
13,
30001,
7509,
1330,
29130,
7509,
198,
6738,
12351,
13,
27530,
13,
66,
310,
13,
35636,
364,
1330,
3602,
16354,
9487,
7483,
198,
6738,
12351,
13,
27530,
13,
66,
310,
13,
7785,
62,
15003,
1330,
509,
1385,
278,
26447,
628,
198,
4871,
327,
4177,
7,
20471,
13,
28780,
2599,
198,
220,
220,
220,
37227,
4093,
51,
9104,
37811,
628,
220,
220,
220,
825,
2315,
62,
43775,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15003,
62,
43775,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4808,
11,
2685,
287,
2116,
13,
46342,
62,
392,
62,
14933,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
3846,
11,
299,
77,
13,
3103,
85,
17,
67,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
6551,
13,
2617,
62,
7890,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3463,
62,
15003,
13,
36733,
7509,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
509,
1385,
278,
26447,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4235,
11639,
24408,
62,
259,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
6551,
13,
43358,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
6551,
13,
67,
4906,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
318,
39098,
7,
3846,
11,
299,
77,
13,
35,
1072,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
6551,
13,
2617,
62,
7890,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3463,
62,
15003,
13,
36733,
7509,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3463,
62,
15003,
13,
2898,
19524,
515,
26447,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
264,
13495,
28,
15,
13,
2999,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
6551,
13,
43358,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
6551,
13,
67,
4906,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2685,
13,
65,
4448,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
65,
4448,
13,
2617,
62,
7890,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3463,
62,
15003,
13,
36733,
7509,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3463,
62,
15003,
13,
28667,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
65,
4448,
13,
43358,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2685,
13,
65,
4448,
13,
67,
4906,
4008,
628,
198,
4299,
4808,
66,
310,
7,
998,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
75,
6962,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
16600,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
25962,
79,
62,
10366,
952,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
11525,
12083,
62,
27740,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
1136,
269,
310,
2746,
351,
10007,
37811,
198,
220,
220,
220,
3601,
7,
69,
6,
14804,
1262,
3934,
25,
1391,
998,
92,
11537,
198,
220,
220,
220,
33769,
796,
33769,
611,
33769,
318,
407,
6045,
2073,
3509,
7,
16,
11,
357,
33885,
62,
7857,
3373,
362,
8,
532,
352,
8,
198,
220,
220,
220,
24511,
796,
24511,
611,
24511,
318,
407,
6045,
2073,
3509,
7,
16,
11,
357,
33885,
62,
7857,
3373,
362,
4008,
198,
220,
220,
220,
2746,
796,
327,
4177,
7,
22510,
62,
75,
6962,
28,
22510,
62,
75,
6962,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
16600,
28,
22510,
62,
16600,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25962,
79,
62,
10366,
952,
28,
4029,
79,
62,
10366,
952,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11525,
12083,
62,
27740,
28,
20521,
12083,
62,
27740,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
33885,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33769,
28,
2536,
485,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
28,
39231,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
198,
220,
220,
220,
1441,
2746,
628,
198,
4299,
269,
310,
62,
17,
7,
998,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
17,
37811,
198,
220,
220,
220,
1441,
4808,
66,
310,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3934,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
16600,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
25962,
79,
62,
10366,
952,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11525,
12083,
62,
27740,
28,
12762,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
19,
7,
998,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
19,
37811,
198,
220,
220,
220,
1441,
4808,
66,
310,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3934,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
75,
6962,
28,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
16600,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
25962,
79,
62,
10366,
952,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11525,
12083,
62,
27740,
28,
12762,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
21,
7,
998,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
21,
37811,
198,
220,
220,
220,
1441,
4808,
66,
310,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3934,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
75,
6962,
28,
21,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
16600,
28,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
25962,
79,
62,
10366,
952,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11525,
12083,
62,
27740,
28,
11645,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
22,
7,
998,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
37811,
198,
220,
220,
220,
1441,
4808,
66,
310,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3934,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
75,
6962,
28,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
16600,
28,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
25962,
79,
62,
10366,
952,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11525,
12083,
62,
27740,
28,
11645,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
1415,
7,
998,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
1415,
37811,
198,
220,
220,
220,
1441,
4808,
66,
310,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3934,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
75,
6962,
28,
1415,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
16600,
28,
21,
11,
198,
220,
220,
220,
220,
220,
220,
220,
25962,
79,
62,
10366,
952,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11525,
12083,
62,
27740,
28,
22842,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
17,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
17,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
19,
62,
18,
87,
17,
62,
2624,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
19,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
19,
62,
18,
87,
17,
62,
2624,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
19,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
19,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
19,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
21,
62,
18,
87,
16,
62,
2624,
7,
9600,
62,
7857,
28,
2624,
11,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
21,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
21,
62,
18,
87,
16,
62,
2624,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
21,
62,
18,
87,
16,
62,
2624,
62,
82,
500,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
21,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
21,
62,
18,
87,
16,
62,
2624,
62,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
21,
62,
18,
87,
17,
62,
2624,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
17,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
21,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
21,
62,
18,
87,
17,
62,
2624,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
21,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
21,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
21,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
21,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
22,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
82,
500,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
22,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
66,
3064,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
3064,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
66,
3064,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
22,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
66,
3064,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
82,
500,
62,
66,
3064,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
3064,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
82,
500,
62,
66,
3064,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
22,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
22,
62,
18,
87,
16,
62,
2624,
62,
82,
500,
62,
66,
3064,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
22,
62,
18,
87,
17,
62,
2624,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
62,
18,
87,
17,
62,
2624,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
22,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
22,
62,
18,
87,
17,
62,
2624,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
22,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
22,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
22,
62,
18,
87,
17,
62,
2624,
62,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
22,
62,
22,
87,
17,
62,
24137,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
24137,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
15377,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
62,
22,
87,
17,
62,
24137,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
22,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
22,
62,
22,
87,
17,
62,
24137,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
8,
628,
198,
4299,
269,
310,
62,
22,
62,
22,
87,
17,
62,
24137,
62,
82,
500,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
24137,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
15377,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
22,
62,
22,
87,
17,
62,
24137,
62,
82,
500,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
22,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
22,
62,
22,
87,
17,
62,
24137,
62,
82,
500,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
1415,
62,
22,
87,
17,
62,
24137,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
24137,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
12825,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
1415,
62,
22,
87,
17,
62,
24137,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
1415,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
1415,
62,
22,
87,
17,
62,
24137,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
1415,
62,
22,
87,
17,
62,
22842,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
22842,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
12825,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
1415,
62,
22,
87,
17,
62,
22842,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
1415,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
1415,
62,
22,
87,
17,
62,
22842,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
269,
310,
62,
1415,
62,
22,
87,
17,
62,
22842,
62,
2704,
7,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
22842,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
11639,
35720,
540,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
15377,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
66,
310,
62,
1415,
62,
22,
87,
17,
62,
22842,
62,
2704,
37811,
198,
220,
220,
220,
1441,
269,
310,
62,
1415,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
66,
310,
62,
1415,
62,
22,
87,
17,
62,
22842,
62,
2704,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
7857,
28,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
42946,
62,
75,
6962,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
33705,
62,
7857,
28,
9600,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
45203,
62,
20521,
12083,
28,
1930,
1859,
62,
20521,
12083,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
22510,
62,
37724,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
198
] | 1.813442 | 5,907 |
from array import array
def _copytobuffer(x):
"""
return a copy of x as an object that supports the python Buffer
API (python array if input is float, list or tuple, numpy array
if input is a numpy array). returns copyofx, isfloat, islist,
istuple (islist is True if input is a list, istuple is true if
input is a tuple, isfloat is true if input is a float).
"""
# make sure x supports Buffer API and contains doubles.
isfloat = False
islist = False
istuple = False
# first, if it's a numpy array scalar convert to float
# (array scalars don't support buffer API)
if hasattr(x, "shape"):
if x.shape == ():
return _copytobuffer_return_scalar(x)
else:
try:
# typecast numpy arrays to double.
# (this makes a copy - which is crucial
# since buffer is modified in place)
x.dtype.char
# Basemap issue
# https://github.com/matplotlib/basemap/pull/223/files
# (deal with input array in fortran order)
inx = x.copy(order="C").astype("d")
# inx,isfloat,islist,istuple
return inx, False, False, False
except:
try: # perhaps they are Numeric/numarrays?
# sorry, not tested yet.
# i don't know Numeric/numarrays has `shape'.
x.typecode()
inx = x.astype("d")
# inx,isfloat,islist,istuple
return inx, False, False, False
except:
raise TypeError("input must be an array, list, tuple or scalar")
else:
# perhaps they are regular python arrays?
if hasattr(x, "typecode"):
# x.typecode
inx = array("d", x)
# try to convert to python array
# a list.
elif type(x) == list:
inx = array("d", x)
islist = True
# a tuple.
elif type(x) == tuple:
inx = array("d", x)
istuple = True
# a scalar?
else:
return _copytobuffer_return_scalar(x)
return inx, isfloat, islist, istuple
| [
6738,
7177,
1330,
7177,
628,
198,
198,
4299,
4808,
30073,
83,
672,
13712,
7,
87,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
257,
4866,
286,
2124,
355,
281,
2134,
326,
6971,
262,
21015,
47017,
198,
220,
220,
220,
7824,
357,
29412,
7177,
611,
5128,
318,
12178,
11,
1351,
393,
46545,
11,
299,
32152,
7177,
198,
220,
220,
220,
611,
5128,
318,
257,
299,
32152,
7177,
737,
5860,
4866,
1659,
87,
11,
318,
22468,
11,
318,
4868,
11,
198,
220,
220,
220,
318,
83,
29291,
357,
3044,
396,
318,
6407,
611,
5128,
318,
257,
1351,
11,
318,
83,
29291,
318,
2081,
611,
198,
220,
220,
220,
5128,
318,
257,
46545,
11,
318,
22468,
318,
2081,
611,
5128,
318,
257,
12178,
737,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
787,
1654,
2124,
6971,
47017,
7824,
290,
4909,
21938,
13,
198,
220,
220,
220,
318,
22468,
796,
10352,
198,
220,
220,
220,
318,
4868,
796,
10352,
198,
220,
220,
220,
318,
83,
29291,
796,
10352,
198,
220,
220,
220,
1303,
717,
11,
611,
340,
338,
257,
299,
32152,
7177,
16578,
283,
10385,
284,
12178,
198,
220,
220,
220,
1303,
357,
18747,
16578,
945,
836,
470,
1104,
11876,
7824,
8,
198,
220,
220,
220,
611,
468,
35226,
7,
87,
11,
366,
43358,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
13,
43358,
6624,
357,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
4808,
30073,
83,
672,
13712,
62,
7783,
62,
1416,
282,
283,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2099,
2701,
299,
32152,
26515,
284,
4274,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
357,
5661,
1838,
257,
4866,
532,
543,
318,
8780,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
1201,
11876,
318,
9518,
287,
1295,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
13,
67,
4906,
13,
10641,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6455,
368,
499,
2071,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3740,
1378,
12567,
13,
785,
14,
6759,
29487,
8019,
14,
12093,
368,
499,
14,
31216,
14,
22047,
14,
16624,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
357,
31769,
351,
5128,
7177,
287,
329,
2213,
272,
1502,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
87,
796,
2124,
13,
30073,
7,
2875,
2625,
34,
11074,
459,
2981,
7203,
67,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
287,
87,
11,
271,
22468,
11,
3044,
396,
11,
396,
29291,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
287,
87,
11,
10352,
11,
10352,
11,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
220,
1303,
3737,
484,
389,
399,
39223,
14,
22510,
3258,
592,
30,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
7926,
11,
407,
6789,
1865,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1312,
836,
470,
760,
399,
39223,
14,
22510,
3258,
592,
468,
4600,
43358,
4458,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
13,
4906,
8189,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
87,
796,
2124,
13,
459,
2981,
7203,
67,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
287,
87,
11,
271,
22468,
11,
3044,
396,
11,
396,
29291,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
287,
87,
11,
10352,
11,
10352,
11,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
7203,
15414,
1276,
307,
281,
7177,
11,
1351,
11,
46545,
393,
16578,
283,
4943,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3737,
484,
389,
3218,
21015,
26515,
30,
198,
220,
220,
220,
220,
220,
220,
220,
611,
468,
35226,
7,
87,
11,
366,
4906,
8189,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2124,
13,
4906,
8189,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
87,
796,
7177,
7203,
67,
1600,
2124,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1949,
284,
10385,
284,
21015,
7177,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
257,
1351,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2099,
7,
87,
8,
6624,
1351,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
87,
796,
7177,
7203,
67,
1600,
2124,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
4868,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
257,
46545,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2099,
7,
87,
8,
6624,
46545,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
87,
796,
7177,
7203,
67,
1600,
2124,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
83,
29291,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
257,
16578,
283,
30,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
4808,
30073,
83,
672,
13712,
62,
7783,
62,
1416,
282,
283,
7,
87,
8,
198,
220,
220,
220,
1441,
287,
87,
11,
318,
22468,
11,
318,
4868,
11,
318,
83,
29291,
628
] | 2.011576 | 1,123 |
import importlib
package = 'aao.spiders.bookmakers'
SpiderBet365 = importlib.import_module(
'.bet365', package).SpiderBet365
SpiderBwin = importlib.import_module(
'.bwin', package).SpiderBwin
Spider888sport = importlib.import_module(
'.888sport', package).Spider888sport
SpiderWilliamhill = importlib.import_module(
'.williamhill', package).SpiderWilliamhill
spiders = {
'bet365': SpiderBet365,
'bwin': SpiderBwin,
'888sport': Spider888sport,
'williamhill': SpiderWilliamhill,
}
| [
11748,
1330,
8019,
198,
198,
26495,
796,
705,
64,
5488,
13,
2777,
4157,
13,
2070,
6620,
6,
198,
198,
41294,
13056,
24760,
796,
1330,
8019,
13,
11748,
62,
21412,
7,
198,
220,
220,
220,
45302,
11181,
24760,
3256,
5301,
737,
41294,
13056,
24760,
198,
41294,
33,
5404,
796,
1330,
8019,
13,
11748,
62,
21412,
7,
198,
220,
220,
220,
45302,
65,
5404,
3256,
5301,
737,
41294,
33,
5404,
198,
41294,
28011,
82,
634,
796,
1330,
8019,
13,
11748,
62,
21412,
7,
198,
220,
220,
220,
45302,
28011,
82,
634,
3256,
5301,
737,
41294,
28011,
82,
634,
198,
41294,
17121,
12639,
796,
1330,
8019,
13,
11748,
62,
21412,
7,
198,
220,
220,
220,
45302,
10594,
1789,
12639,
3256,
5301,
737,
41294,
17121,
12639,
198,
198,
2777,
4157,
796,
1391,
198,
220,
220,
220,
705,
11181,
24760,
10354,
12648,
13056,
24760,
11,
198,
220,
220,
220,
705,
65,
5404,
10354,
12648,
33,
5404,
11,
198,
220,
220,
220,
705,
28011,
82,
634,
10354,
12648,
28011,
82,
634,
11,
198,
220,
220,
220,
705,
10594,
1789,
12639,
10354,
12648,
17121,
12639,
11,
198,
92,
198
] | 2.824176 | 182 |
#!/usr/bin/env python3
from reporting.category import Category
from statsSend.jenkins.jenkinsBuild import JenkinsBuild | [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
6738,
6447,
13,
22872,
1330,
21743,
198,
6738,
9756,
25206,
13,
48796,
5331,
13,
48796,
5331,
15580,
1330,
21835,
15580
] | 3.83871 | 31 |
#! /usr/bin/env python3
# SPDX-FileCopyrightText: 2022 geisserml <[email protected]>
# SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause
# Download the PDFium binaries and generate ctypes bindings
import os
import sys
import shutil
import tarfile
import argparse
import traceback
from urllib import request
from os.path import join, abspath, dirname
from concurrent.futures import ThreadPoolExecutor
sys.path.insert(0, dirname(dirname(abspath(__file__))))
from pl_setup.packaging_base import (
DataTree,
VerNamespace,
PlatformNames,
run_cmd,
call_ctypesgen,
set_version,
)
ReleaseRepo = "https://github.com/bblanchon/pdfium-binaries"
ReleaseURL = ReleaseRepo + "/releases/download/chromium%2F"
ReleaseExtension = "tgz"
ReleaseNames = {
PlatformNames.darwin_x64 : "pdfium-mac-x64",
PlatformNames.darwin_arm64 : "pdfium-mac-arm64",
PlatformNames.linux_x64 : "pdfium-linux-x64",
PlatformNames.linux_x86 : "pdfium-linux-x86",
PlatformNames.linux_arm64 : "pdfium-linux-arm64",
PlatformNames.linux_arm32 : "pdfium-linux-arm",
PlatformNames.musllinux_x64 : "pdfium-linux-musl-x64",
PlatformNames.musllinux_x86 : "pdfium-linux-musl-x86",
PlatformNames.windows_x64 : "pdfium-win-x64",
PlatformNames.windows_x86 : "pdfium-win-x86",
PlatformNames.windows_arm64 : "pdfium-win-arm64",
}
if __name__ == "__main__":
run_cli()
| [
2,
0,
1220,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
30628,
55,
12,
8979,
15269,
8206,
25,
33160,
4903,
747,
263,
4029,
1279,
469,
747,
263,
4029,
31,
14816,
13,
785,
29,
198,
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
24843,
12,
17,
13,
15,
6375,
347,
10305,
12,
18,
12,
2601,
682,
198,
198,
2,
10472,
262,
12960,
1505,
38640,
290,
7716,
269,
19199,
34111,
198,
198,
11748,
28686,
198,
11748,
25064,
198,
11748,
4423,
346,
198,
11748,
13422,
7753,
198,
11748,
1822,
29572,
198,
11748,
12854,
1891,
198,
6738,
2956,
297,
571,
1330,
2581,
198,
6738,
28686,
13,
6978,
1330,
4654,
11,
2352,
6978,
11,
26672,
3672,
198,
6738,
24580,
13,
69,
315,
942,
1330,
14122,
27201,
23002,
38409,
198,
198,
17597,
13,
6978,
13,
28463,
7,
15,
11,
26672,
3672,
7,
15908,
3672,
7,
397,
2777,
776,
7,
834,
7753,
834,
35514,
198,
6738,
458,
62,
40406,
13,
8002,
3039,
62,
8692,
1330,
357,
198,
220,
220,
220,
6060,
27660,
11,
198,
220,
220,
220,
4643,
36690,
10223,
11,
198,
220,
220,
220,
19193,
36690,
11,
198,
220,
220,
220,
1057,
62,
28758,
11,
198,
220,
220,
220,
869,
62,
310,
9497,
5235,
11,
198,
220,
220,
220,
900,
62,
9641,
11,
198,
8,
628,
198,
26362,
6207,
78,
796,
366,
5450,
1378,
12567,
13,
785,
14,
65,
2436,
3702,
261,
14,
12315,
1505,
12,
8800,
3166,
1,
198,
26362,
21886,
796,
13868,
6207,
78,
1343,
12813,
260,
29329,
14,
15002,
14,
28663,
1505,
4,
17,
37,
1,
198,
26362,
11627,
3004,
796,
366,
25297,
89,
1,
198,
26362,
36690,
796,
1391,
198,
220,
220,
220,
19193,
36690,
13,
27455,
5404,
62,
87,
2414,
220,
220,
220,
1058,
366,
12315,
1505,
12,
20285,
12,
87,
2414,
1600,
198,
220,
220,
220,
19193,
36690,
13,
27455,
5404,
62,
1670,
2414,
220,
1058,
366,
12315,
1505,
12,
20285,
12,
1670,
2414,
1600,
198,
220,
220,
220,
19193,
36690,
13,
23289,
62,
87,
2414,
220,
220,
220,
220,
1058,
366,
12315,
1505,
12,
23289,
12,
87,
2414,
1600,
198,
220,
220,
220,
19193,
36690,
13,
23289,
62,
87,
4521,
220,
220,
220,
220,
1058,
366,
12315,
1505,
12,
23289,
12,
87,
4521,
1600,
198,
220,
220,
220,
19193,
36690,
13,
23289,
62,
1670,
2414,
220,
220,
1058,
366,
12315,
1505,
12,
23289,
12,
1670,
2414,
1600,
198,
220,
220,
220,
19193,
36690,
13,
23289,
62,
1670,
2624,
220,
220,
1058,
366,
12315,
1505,
12,
23289,
12,
1670,
1600,
198,
220,
220,
220,
19193,
36690,
13,
14664,
297,
259,
2821,
62,
87,
2414,
1058,
366,
12315,
1505,
12,
23289,
12,
14664,
75,
12,
87,
2414,
1600,
198,
220,
220,
220,
19193,
36690,
13,
14664,
297,
259,
2821,
62,
87,
4521,
1058,
366,
12315,
1505,
12,
23289,
12,
14664,
75,
12,
87,
4521,
1600,
198,
220,
220,
220,
19193,
36690,
13,
28457,
62,
87,
2414,
220,
220,
1058,
366,
12315,
1505,
12,
5404,
12,
87,
2414,
1600,
198,
220,
220,
220,
19193,
36690,
13,
28457,
62,
87,
4521,
220,
220,
1058,
366,
12315,
1505,
12,
5404,
12,
87,
4521,
1600,
198,
220,
220,
220,
19193,
36690,
13,
28457,
62,
1670,
2414,
1058,
366,
12315,
1505,
12,
5404,
12,
1670,
2414,
1600,
198,
92,
628,
628,
628,
628,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1057,
62,
44506,
3419,
198
] | 2.535587 | 562 |
from gin.i_o.from_smiles import to_mols
import pandas as pd
df = pd.read_csv('data/delaney-processed.csv')
smiles_array = df[['smiles']].values.flatten()
mols = to_mols(smiles_array)
for mol in mols:
print(mol)
| [
6738,
39733,
13,
72,
62,
78,
13,
6738,
62,
5796,
2915,
1330,
284,
62,
76,
10220,
198,
11748,
19798,
292,
355,
279,
67,
198,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
10786,
7890,
14,
12381,
22297,
12,
14681,
276,
13,
40664,
11537,
198,
5796,
2915,
62,
18747,
796,
47764,
58,
17816,
5796,
2915,
20520,
4083,
27160,
13,
2704,
41769,
3419,
198,
76,
10220,
796,
284,
62,
76,
10220,
7,
5796,
2915,
62,
18747,
8,
198,
198,
1640,
18605,
287,
285,
10220,
25,
198,
220,
220,
220,
3601,
7,
43132,
8,
198
] | 2.333333 | 93 |
# -*- coding: utf-8 -*-
# Generated by Django 1.9.9 on 2017-01-16 17:12
from __future__ import unicode_literals
from django.db import migrations, models
import django.db.models.deletion
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
2980,
515,
416,
37770,
352,
13,
24,
13,
24,
319,
2177,
12,
486,
12,
1433,
1596,
25,
1065,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
198,
11748,
42625,
14208,
13,
9945,
13,
27530,
13,
2934,
1616,
295,
628
] | 2.724638 | 69 |
PhoneDirectory = ['John:009878788677' , 'Jefrey:67654654645' , 'Maria:8787677766']
for entry in PhoneDirectory:
if '7' in entry:
print('yeah')
| [
6132,
43055,
796,
37250,
7554,
25,
405,
4089,
41019,
3459,
40179,
6,
837,
705,
41,
891,
4364,
25,
3134,
39111,
2996,
3510,
2231,
6,
837,
705,
46827,
25,
23,
3695,
32059,
3324,
2791,
20520,
628,
198,
1640,
5726,
287,
14484,
43055,
25,
198,
220,
220,
220,
611,
705,
22,
6,
287,
5726,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
43669,
11537,
198
] | 2.378788 | 66 |
FILENAME = './puzzle15/data/input'
small_cave = []
with open(FILENAME) as file:
for line in file:
small_cave.append([int(x) for x in list(line.strip())])
small_n = len(small_cave)
large_n = small_n * 5
cave = [[ 0 for _ in range(large_n)] for _ in range(large_n)]
for i in range(large_n):
for j in range(large_n):
change_i, i_l = divmod(i, small_n)
change_j, j_l = divmod(j, small_n)
if small_cave[i_l][j_l] + change_i + change_j > 9:
cave[i][j] = small_cave[i_l][j_l] - 9 + change_i + change_j
else:
cave[i][j] = small_cave[i_l][j_l] + change_i + change_j
scores = [[ 0 for _ in range(len(cave))] for _ in range(len(cave))]
for i in range(len(cave) - 1, -1 , -1):
for j in range(len(cave) - 1, -1 , -1):
if i < len(cave) - 1 and j < len(cave) - 1:
scores[i][j] = cave[i][j] + min([scores[i + 1][j], scores[i][j + 1]])
elif i < len(cave) - 1 and j == len(cave) - 1:
scores[i][j] = cave[i][j] + scores[i + 1][j]
elif i == len(cave) - 1 and j < len(cave) - 1:
scores[i][j] = cave[i][j] + scores[i][j + 1]
elif i == len(cave) - 1 and j == len(cave) - 1:
scores[i][j] = cave[i][j]
# b
# a c
# d
prev_value = 1000000000
current_value = 100000000
while current_value != prev_value:
prev_value = current_value
for i in range(0, len(cave)):
for j in range(0, len(cave)):
a, b, c, d = 100000, 100000, 100000, 100000
if i > 0:
a = scores[i - 1][j]
if j > 0:
b = scores[i][j - 1]
if i < len(cave) - 1:
d = scores[i + 1][j]
if j < len(cave) - 1:
c = scores[i][j + 1]
if i < len(cave) - 1 and j < len(cave) - 1:
scores[i][j] = cave[i][j] + min([a, b, c, d])
current_value = sum([sum(x) for x in scores])
print(current_value)
print(scores[0][0] - cave[0][0]) | [
46700,
1677,
10067,
796,
705,
19571,
79,
9625,
1314,
14,
7890,
14,
15414,
6,
201,
198,
201,
198,
17470,
62,
66,
1015,
796,
17635,
201,
198,
4480,
1280,
7,
46700,
1677,
10067,
8,
355,
2393,
25,
201,
198,
220,
220,
220,
329,
1627,
287,
2393,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1402,
62,
66,
1015,
13,
33295,
26933,
600,
7,
87,
8,
329,
2124,
287,
1351,
7,
1370,
13,
36311,
28955,
12962,
201,
198,
201,
198,
17470,
62,
77,
796,
18896,
7,
17470,
62,
66,
1015,
8,
201,
198,
11664,
62,
77,
796,
1402,
62,
77,
1635,
642,
201,
198,
201,
198,
66,
1015,
796,
16410,
657,
329,
4808,
287,
2837,
7,
11664,
62,
77,
15437,
329,
4808,
287,
2837,
7,
11664,
62,
77,
15437,
201,
198,
201,
198,
1640,
1312,
287,
2837,
7,
11664,
62,
77,
2599,
201,
198,
220,
220,
220,
329,
474,
287,
2837,
7,
11664,
62,
77,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1487,
62,
72,
11,
1312,
62,
75,
796,
2659,
4666,
7,
72,
11,
1402,
62,
77,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1487,
62,
73,
11,
474,
62,
75,
796,
2659,
4666,
7,
73,
11,
1402,
62,
77,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1402,
62,
66,
1015,
58,
72,
62,
75,
7131,
73,
62,
75,
60,
1343,
1487,
62,
72,
1343,
1487,
62,
73,
1875,
860,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11527,
58,
72,
7131,
73,
60,
796,
1402,
62,
66,
1015,
58,
72,
62,
75,
7131,
73,
62,
75,
60,
532,
860,
1343,
1487,
62,
72,
1343,
1487,
62,
73,
201,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11527,
58,
72,
7131,
73,
60,
796,
1402,
62,
66,
1015,
58,
72,
62,
75,
7131,
73,
62,
75,
60,
1343,
1487,
62,
72,
1343,
1487,
62,
73,
201,
198,
201,
198,
1416,
2850,
796,
16410,
657,
329,
4808,
287,
2837,
7,
11925,
7,
66,
1015,
4008,
60,
329,
4808,
287,
2837,
7,
11925,
7,
66,
1015,
4008,
60,
201,
198,
201,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
66,
1015,
8,
532,
352,
11,
532,
16,
837,
532,
16,
2599,
201,
198,
220,
220,
220,
329,
474,
287,
2837,
7,
11925,
7,
66,
1015,
8,
532,
352,
11,
532,
16,
837,
532,
16,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1279,
18896,
7,
66,
1015,
8,
532,
352,
290,
474,
1279,
18896,
7,
66,
1015,
8,
532,
352,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
58,
72,
7131,
73,
60,
796,
11527,
58,
72,
7131,
73,
60,
1343,
949,
26933,
1416,
2850,
58,
72,
1343,
352,
7131,
73,
4357,
8198,
58,
72,
7131,
73,
1343,
352,
11907,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1312,
1279,
18896,
7,
66,
1015,
8,
532,
352,
290,
474,
6624,
18896,
7,
66,
1015,
8,
532,
352,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
58,
72,
7131,
73,
60,
796,
11527,
58,
72,
7131,
73,
60,
1343,
8198,
58,
72,
1343,
352,
7131,
73,
60,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1312,
6624,
18896,
7,
66,
1015,
8,
532,
352,
290,
474,
1279,
18896,
7,
66,
1015,
8,
532,
352,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
58,
72,
7131,
73,
60,
796,
11527,
58,
72,
7131,
73,
60,
1343,
8198,
58,
72,
7131,
73,
1343,
352,
60,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1312,
6624,
18896,
7,
66,
1015,
8,
532,
352,
290,
474,
6624,
18896,
7,
66,
1015,
8,
532,
352,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
58,
72,
7131,
73,
60,
796,
11527,
58,
72,
7131,
73,
60,
201,
198,
201,
198,
2,
220,
220,
275,
201,
198,
2,
257,
220,
220,
269,
201,
198,
2,
220,
220,
288,
201,
198,
201,
198,
201,
198,
47050,
62,
8367,
796,
1802,
24598,
201,
198,
14421,
62,
8367,
796,
1802,
10535,
201,
198,
201,
198,
4514,
1459,
62,
8367,
14512,
8654,
62,
8367,
25,
201,
198,
220,
220,
220,
8654,
62,
8367,
796,
1459,
62,
8367,
201,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
15,
11,
18896,
7,
66,
1015,
8,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
2837,
7,
15,
11,
18896,
7,
66,
1015,
8,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
11,
275,
11,
269,
11,
288,
796,
1802,
830,
11,
1802,
830,
11,
1802,
830,
11,
1802,
830,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1875,
657,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
796,
8198,
58,
72,
532,
352,
7131,
73,
60,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
474,
1875,
657,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
796,
8198,
58,
72,
7131,
73,
532,
352,
60,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1279,
18896,
7,
66,
1015,
8,
532,
352,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
796,
8198,
58,
72,
1343,
352,
7131,
73,
60,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
474,
1279,
18896,
7,
66,
1015,
8,
532,
352,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
796,
8198,
58,
72,
7131,
73,
1343,
352,
60,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1279,
18896,
7,
66,
1015,
8,
532,
352,
290,
474,
1279,
18896,
7,
66,
1015,
8,
532,
352,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
58,
72,
7131,
73,
60,
796,
11527,
58,
72,
7131,
73,
60,
1343,
949,
26933,
64,
11,
275,
11,
269,
11,
288,
12962,
201,
198,
220,
220,
220,
1459,
62,
8367,
796,
2160,
26933,
16345,
7,
87,
8,
329,
2124,
287,
8198,
12962,
201,
198,
220,
220,
220,
3601,
7,
14421,
62,
8367,
8,
201,
198,
201,
198,
201,
198,
4798,
7,
1416,
2850,
58,
15,
7131,
15,
60,
532,
11527,
58,
15,
7131,
15,
12962
] | 1.804214 | 1,139 |
#!/bin/python3
print("Hello, World!") | [
2,
48443,
8800,
14,
29412,
18,
198,
198,
4798,
7203,
15496,
11,
2159,
2474,
8
] | 2.533333 | 15 |
#! /usr/bin/env python
# -*- coding: UTF-8 -*-
#------------------------------------------------------------------------------
# https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/Procedures/Procedures.html
#------------------------------------------------------------------------------
import sys, os, subprocess
#------------------------------------------------------------------------------
# FOR PRINTING IN COLOR
#------------------------------------------------------------------------------
BLACK = '\033[90m'
RED = '\033[91m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
BLUE = '\033[94m'
MAGENTA = '\033[95m'
CYAN = '\033[96m'
WHITE = '\033[97m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
BLINK = '\033[5m'
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
# MAIN
#------------------------------------------------------------------------------
#--- Get script absolute path
scriptDir = os.path.dirname (os.path.abspath (sys.argv [0]))
#--- Free routing dir
FREEROUTING_DIR = scriptDir + "/freerouting"
APP_VERSION = "1.4.4-pm"
#--- Goto Freerouting dir
os.chdir (FREEROUTING_DIR)
#--- Compile for distribution
runCommand (["bash", "gradlew", "dist"])
print (BLUE + BOLD + "DONE" + ENDC)
#--- Download and install JDK
# https://jdk.java.net/14/
JPACKAGE_JVM="https://download.java.net/java/GA/jdk14/076bab302c7b4508975440c56f6cc26a/36/GPL/openjdk-14_osx-x64_bin.tar.gz"
JPKG_DIR = scriptDir + "/jdk14"
JPKG_HOME = JPKG_DIR + "/jdk-14.jdk/Contents/Home"
JPKG_ARCHIVE = "jdk14.tar.gz"
if os.path.exists (JPKG_HOME) :
print (BLUE + BOLD + "JDK already installed" + ENDC)
else:
if not os.path.exists (JPKG_DIR) :
runCommand (["mkdir", "-p", JPKG_DIR])
os.chdir (JPKG_DIR)
#--- Download ?
if not os.path.exists (JPKG_ARCHIVE) :
print (BLUE + "Download JDK" + ENDC)
runCommand (["curl", "-o", JPKG_ARCHIVE, JPACKAGE_JVM])
#--- Install ?
if not os.path.exists (JPKG_DIR + "/runtime") :
print (BLUE + "Unpack JDK" + ENDC)
runCommand (["tar", "xvzf", JPKG_ARCHIVE])
print (BLUE + "Create runtime image" + ENDC)
runCommand ([
JPKG_HOME + "/bin/jlink",
"--module-path", JPKG_HOME + "/jmods",
"--add-modules", "java.desktop",
"--strip-debug",
"--no-header-files",
"--no-man-pages",
"--strip-native-commands",
"--vm=server",
"--compress=2",
"--output", "runtime"
])
#--- Build executable
os.chdir (scriptDir)
FREE_ROUTING_NAME = "Freerouting-" + APP_VERSION
runCommand (["rm", "-fr", FREE_ROUTING_NAME + ".app"])
runCommand ([
JPKG_HOME + "/bin/jpackage",
"--input", FREEROUTING_DIR + "/build/dist/",
"--name", FREE_ROUTING_NAME,
"--main-jar", "freerouting-executable.jar",
"--type", "app-image",
"--runtime-image", "jdk14/runtime",
# "--mac-sign",
# "--mac-signing-key-user-name", "[email protected]",
"--app-version", APP_VERSION
])
runCommand ([
"/usr/bin/codesign",
"--force",
"--sign", "Apple Development: [email protected]",
"--deep",
FREE_ROUTING_NAME + ".app"
])
runCommand ([
"/usr/bin/codesign",
"-dv",
"--verbose=4",
FREE_ROUTING_NAME + ".app"
])
runCommand ([
"/usr/bin/codesign",
"--verify",
"--deep",
"--strict",
"--verbose=2",
FREE_ROUTING_NAME + ".app"
])
# runCommand ([
# "spctl",
# "-a",
# FREE_ROUTING_NAME + ".app"
# ])
# runCommand ([
# "spctl",
# "--assess",
# "--verbose=4",
# "--type", "execute",
# FREE_ROUTING_NAME + ".app"
# ])
#--- Build DMG
PACKAGE_FILE = FREE_ROUTING_NAME + ".pkg"
runCommand (["/usr/bin/productbuild", "--component-compression", "auto", "--component", FREE_ROUTING_NAME + ".app", "/Applications", PACKAGE_FILE])
DISTRIBUTION_DIR = "Freerouting-" + APP_VERSION
runCommand (["/bin/rm", "-rf", DISTRIBUTION_DIR])
runCommand (["/bin/rm", "-f", FREE_ROUTING_NAME + ".dmg"])
runCommand (["/bin/mkdir", DISTRIBUTION_DIR])
runCommand (["/bin/cp", PACKAGE_FILE, DISTRIBUTION_DIR])
runCommand (["/usr/bin/hdiutil", "create", "-srcfolder", FREE_ROUTING_NAME, FREE_ROUTING_NAME + ".dmg", "-fs", "HFS+"])
runCommand (["/bin/rm", PACKAGE_FILE])
runCommand (["/bin/rm", "-rf", DISTRIBUTION_DIR])
#------------------------------------------------------------------------------
| [
2,
0,
1220,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
41002,
12,
23,
532,
9,
12,
198,
198,
2,
10097,
26171,
198,
2,
3740,
1378,
16244,
263,
13,
18040,
13,
785,
14,
32016,
14,
17474,
14,
22897,
341,
14,
24074,
14,
3103,
984,
723,
14,
10669,
11712,
278,
47889,
14,
2964,
771,
942,
14,
2964,
771,
942,
13,
6494,
198,
2,
10097,
26171,
198,
198,
11748,
25064,
11,
28686,
11,
850,
14681,
198,
198,
2,
10097,
26171,
198,
2,
220,
220,
7473,
4810,
12394,
2751,
3268,
20444,
1581,
198,
2,
10097,
26171,
198,
198,
9148,
8120,
796,
705,
59,
44427,
58,
3829,
76,
6,
198,
22083,
796,
705,
59,
44427,
58,
6420,
76,
6,
198,
43016,
796,
705,
59,
44427,
58,
5892,
76,
6,
198,
56,
23304,
3913,
796,
705,
59,
44427,
58,
6052,
76,
6,
198,
9148,
8924,
796,
705,
59,
44427,
58,
5824,
76,
6,
198,
45820,
3525,
32,
796,
705,
59,
44427,
58,
3865,
76,
6,
198,
34,
56,
1565,
796,
705,
59,
44427,
58,
4846,
76,
6,
198,
12418,
12709,
796,
705,
59,
44427,
58,
5607,
76,
6,
198,
1677,
9697,
796,
705,
59,
44427,
58,
15,
76,
6,
198,
33,
15173,
796,
705,
59,
44427,
58,
16,
76,
6,
198,
4944,
14418,
24027,
796,
705,
59,
44427,
58,
19,
76,
6,
198,
9148,
17248,
796,
705,
59,
44427,
58,
20,
76,
6,
198,
198,
2,
10097,
26171,
628,
198,
2,
10097,
26171,
198,
2,
220,
220,
8779,
1268,
198,
2,
10097,
26171,
198,
198,
2,
6329,
3497,
4226,
4112,
3108,
198,
12048,
35277,
796,
28686,
13,
6978,
13,
15908,
3672,
357,
418,
13,
6978,
13,
397,
2777,
776,
357,
17597,
13,
853,
85,
685,
15,
60,
4008,
198,
2,
6329,
3232,
28166,
26672,
198,
37,
2200,
1137,
12425,
2751,
62,
34720,
796,
4226,
35277,
1343,
12813,
19503,
263,
13660,
1,
198,
24805,
62,
43717,
796,
366,
16,
13,
19,
13,
19,
12,
4426,
1,
198,
2,
6329,
402,
2069,
4848,
263,
13660,
26672,
198,
418,
13,
354,
15908,
357,
37,
2200,
1137,
12425,
2751,
62,
34720,
8,
198,
2,
6329,
3082,
576,
329,
6082,
198,
5143,
21575,
357,
14692,
41757,
1600,
366,
9744,
293,
86,
1600,
366,
17080,
8973,
8,
198,
4798,
357,
9148,
8924,
1343,
347,
15173,
1343,
366,
35,
11651,
1,
1343,
23578,
34,
8,
198,
2,
6329,
10472,
290,
2721,
28591,
42,
198,
2,
3740,
1378,
73,
34388,
13,
12355,
13,
3262,
14,
1415,
14,
198,
12889,
8120,
11879,
62,
41,
15996,
2625,
5450,
1378,
15002,
13,
12355,
13,
3262,
14,
12355,
14,
9273,
14,
73,
34388,
1415,
14,
2998,
21,
65,
397,
22709,
66,
22,
65,
17885,
4531,
2425,
25644,
66,
3980,
69,
21,
535,
2075,
64,
14,
2623,
14,
38,
6489,
14,
9654,
73,
34388,
12,
1415,
62,
418,
87,
12,
87,
2414,
62,
8800,
13,
18870,
13,
34586,
1,
198,
12889,
42,
38,
62,
34720,
796,
4226,
35277,
1343,
12813,
73,
34388,
1415,
1,
198,
12889,
42,
38,
62,
39069,
796,
21331,
42,
38,
62,
34720,
1343,
12813,
73,
34388,
12,
1415,
13,
73,
34388,
14,
15842,
14,
16060,
1,
198,
12889,
42,
38,
62,
31315,
9306,
796,
366,
73,
34388,
1415,
13,
18870,
13,
34586,
1,
198,
361,
28686,
13,
6978,
13,
1069,
1023,
357,
12889,
42,
38,
62,
39069,
8,
1058,
198,
220,
3601,
357,
9148,
8924,
1343,
347,
15173,
1343,
366,
37882,
42,
1541,
6589,
1,
1343,
23578,
34,
8,
198,
17772,
25,
198,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
357,
12889,
42,
38,
62,
34720,
8,
1058,
198,
220,
220,
220,
1057,
21575,
357,
14692,
28015,
15908,
1600,
27444,
79,
1600,
21331,
42,
38,
62,
34720,
12962,
198,
220,
28686,
13,
354,
15908,
357,
12889,
42,
38,
62,
34720,
8,
198,
220,
1303,
6329,
10472,
5633,
198,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
357,
12889,
42,
38,
62,
31315,
9306,
8,
1058,
198,
220,
220,
220,
3601,
357,
9148,
8924,
1343,
366,
10002,
28591,
42,
1,
1343,
23578,
34,
8,
198,
220,
220,
220,
1057,
21575,
357,
14692,
66,
6371,
1600,
27444,
78,
1600,
21331,
42,
38,
62,
31315,
9306,
11,
21331,
8120,
11879,
62,
41,
15996,
12962,
198,
220,
1303,
6329,
15545,
5633,
198,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
357,
12889,
42,
38,
62,
34720,
1343,
12813,
43282,
4943,
1058,
198,
220,
220,
220,
3601,
357,
9148,
8924,
1343,
366,
3118,
8002,
28591,
42,
1,
1343,
23578,
34,
8,
198,
220,
220,
220,
1057,
21575,
357,
14692,
18870,
1600,
366,
87,
85,
89,
69,
1600,
21331,
42,
38,
62,
31315,
9306,
12962,
198,
220,
220,
220,
3601,
357,
9148,
8924,
1343,
366,
16447,
19124,
2939,
1,
1343,
23578,
34,
8,
198,
220,
220,
220,
1057,
21575,
29565,
198,
220,
220,
220,
220,
220,
21331,
42,
38,
62,
39069,
1343,
12813,
8800,
14,
73,
8726,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
21412,
12,
6978,
1600,
21331,
42,
38,
62,
39069,
1343,
12813,
73,
24122,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
2860,
12,
18170,
1600,
366,
12355,
13,
41375,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
36311,
12,
24442,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
3919,
12,
25677,
12,
16624,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
3919,
12,
805,
12,
31126,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
36311,
12,
30191,
12,
9503,
1746,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
14761,
28,
15388,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
5589,
601,
28,
17,
1600,
198,
220,
220,
220,
220,
220,
366,
438,
22915,
1600,
366,
43282,
1,
198,
220,
220,
220,
33761,
198,
2,
6329,
10934,
28883,
198,
418,
13,
354,
15908,
357,
12048,
35277,
8,
198,
39274,
62,
49,
12425,
2751,
62,
20608,
796,
366,
20366,
263,
13660,
21215,
1343,
43504,
62,
43717,
198,
5143,
21575,
357,
14692,
26224,
1600,
27444,
8310,
1600,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
1324,
8973,
8,
198,
5143,
21575,
29565,
198,
220,
21331,
42,
38,
62,
39069,
1343,
12813,
8800,
14,
73,
26495,
1600,
198,
220,
366,
438,
15414,
1600,
44253,
1137,
12425,
2751,
62,
34720,
1343,
12813,
11249,
14,
17080,
14,
1600,
198,
220,
366,
438,
3672,
1600,
17189,
62,
49,
12425,
2751,
62,
20608,
11,
198,
220,
366,
438,
12417,
12,
9491,
1600,
366,
19503,
263,
13660,
12,
18558,
18187,
13,
9491,
1600,
198,
220,
366,
438,
4906,
1600,
366,
1324,
12,
9060,
1600,
198,
220,
366,
438,
43282,
12,
9060,
1600,
366,
73,
34388,
1415,
14,
43282,
1600,
198,
2,
220,
366,
438,
20285,
12,
12683,
1600,
198,
2,
220,
220,
366,
438,
20285,
12,
12683,
278,
12,
2539,
12,
7220,
12,
3672,
1600,
366,
79,
31058,
31,
79,
11215,
24910,
12022,
13,
3672,
1600,
198,
220,
366,
438,
1324,
12,
9641,
1600,
43504,
62,
43717,
198,
12962,
198,
5143,
21575,
29565,
198,
220,
12813,
14629,
14,
8800,
14,
40148,
570,
1600,
198,
220,
366,
438,
3174,
1600,
198,
220,
366,
438,
12683,
1600,
366,
16108,
7712,
25,
17748,
260,
31,
79,
11215,
24910,
12022,
13,
3672,
1600,
198,
220,
366,
438,
22089,
1600,
198,
220,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
1324,
1,
198,
12962,
198,
5143,
21575,
29565,
198,
220,
12813,
14629,
14,
8800,
14,
40148,
570,
1600,
198,
220,
27444,
67,
85,
1600,
198,
220,
366,
438,
19011,
577,
28,
19,
1600,
198,
220,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
1324,
1,
198,
12962,
198,
5143,
21575,
29565,
198,
220,
12813,
14629,
14,
8800,
14,
40148,
570,
1600,
198,
220,
366,
438,
332,
1958,
1600,
198,
220,
366,
438,
22089,
1600,
198,
220,
366,
438,
301,
2012,
1600,
198,
220,
366,
438,
19011,
577,
28,
17,
1600,
198,
220,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
1324,
1,
198,
12962,
198,
2,
1057,
21575,
29565,
198,
2,
220,
220,
366,
2777,
34168,
1600,
198,
2,
220,
220,
27444,
64,
1600,
198,
2,
220,
220,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
1324,
1,
198,
2,
33761,
198,
2,
1057,
21575,
29565,
198,
2,
220,
220,
366,
2777,
34168,
1600,
198,
2,
220,
220,
366,
438,
562,
408,
1600,
198,
2,
220,
220,
366,
438,
19011,
577,
28,
19,
1600,
198,
2,
220,
220,
366,
438,
4906,
1600,
366,
41049,
1600,
198,
2,
220,
220,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
1324,
1,
198,
2,
33761,
198,
2,
6329,
10934,
14848,
38,
198,
47,
8120,
11879,
62,
25664,
796,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
35339,
1,
198,
5143,
21575,
357,
14692,
14,
14629,
14,
8800,
14,
11167,
11249,
1600,
366,
438,
42895,
12,
5589,
2234,
1600,
366,
23736,
1600,
366,
438,
42895,
1600,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
1324,
1600,
12813,
41995,
1600,
47035,
11879,
62,
25664,
12962,
198,
26288,
5446,
9865,
35354,
62,
34720,
796,
366,
20366,
263,
13660,
21215,
1343,
43504,
62,
43717,
198,
5143,
21575,
357,
14692,
14,
8800,
14,
26224,
1600,
27444,
41871,
1600,
34957,
9865,
35354,
62,
34720,
12962,
198,
5143,
21575,
357,
14692,
14,
8800,
14,
26224,
1600,
27444,
69,
1600,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
67,
11296,
8973,
8,
198,
5143,
21575,
357,
14692,
14,
8800,
14,
28015,
15908,
1600,
34957,
9865,
35354,
62,
34720,
12962,
198,
5143,
21575,
357,
14692,
14,
8800,
14,
13155,
1600,
47035,
11879,
62,
25664,
11,
34957,
9865,
35354,
62,
34720,
12962,
198,
5143,
21575,
357,
14692,
14,
14629,
14,
8800,
14,
71,
10989,
22602,
1600,
366,
17953,
1600,
27444,
10677,
43551,
1600,
17189,
62,
49,
12425,
2751,
62,
20608,
11,
17189,
62,
49,
12425,
2751,
62,
20608,
1343,
27071,
67,
11296,
1600,
27444,
9501,
1600,
366,
39,
10652,
10,
8973,
8,
198,
5143,
21575,
357,
14692,
14,
8800,
14,
26224,
1600,
47035,
11879,
62,
25664,
12962,
198,
5143,
21575,
357,
14692,
14,
8800,
14,
26224,
1600,
27444,
41871,
1600,
34957,
9865,
35354,
62,
34720,
12962,
628,
198,
2,
10097,
26171,
198
] | 2.616447 | 1,666 |
from __future__ import print_function
import argparse
from cProfile import label
from dis import dis
import os
import random
from socket import MSG_DONTROUTE
from sklearn import cluster
import torch
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
from pointnet.dataset import LidarDataset, BoxDataset
from pointnet.box_model import BoxNet
import torch.nn.functional as F
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import time
from model_utils import BoxNetLoss, parse_output_to_tensors, get_box3d_corners_helper, get_box3d_corners
import open3d as o3d
from provider import angle2class, size2class, class2angle, class2size, compute_box3d_iou, size2class2, give_pred_box_corners, get_3d_box
#from viz_util import draw_lidar, draw_lidar_simple
Loss = BoxNetLoss()
NUM_HEADING_BIN = 12
NUM_SIZE_CLUSTER = 3 # one cluster for each type
NUM_OBJECT_POINT = 512
def boxes_to_corners_3d(boxes3d):
"""
7 -------- 4
/| /|
6 -------- 5 .
| | | |
. 3 -------- 0
|/ |/
2 -------- 1
Args:
boxes3d: (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center
Returns:
corners3d: (N, 8, 3)
"""
template = np.array([
[1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1],
[1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1],
]) / 2
corners3d = boxes3d[:, None, 3:6] * template[None, :, :]
corners3d = rotate_points_along_z(corners3d, boxes3d[:, 6]).reshape(-1, 8, 3)
corners3d += boxes3d[:, None, 0:3]
return corners3d
def rotate_points_along_z(points, angle):
"""
Args:
points: (B, N, 3)
angle: (B), angle along z-axis, angle increases x ==> y
Returns:
"""
cosa = np.cos(angle)
sina = np.sin(angle)
ones = np.ones_like(angle, dtype=np.float32)
zeros = np.zeros_like(angle, dtype=np.float32)
rot_matrix = np.stack((
cosa, sina, zeros,
-sina, cosa, zeros,
zeros, zeros, ones
), axis=1).reshape(-1, 3, 3)
points_rot = np.matmul(points, rot_matrix)
return points_rot
parser = argparse.ArgumentParser()
parser.add_argument('--batchSize', type=int, default=32, help='input batch size')
parser.add_argument('--num_points', type=int, default=128, help='input size')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--nepoch', type=int, default=250, help='number of epochs to train for')
parser.add_argument('--outf', type=str, default='cls', help='output folder')
parser.add_argument('--model', type=str, default='', help='model path')
parser.add_argument('--dataset', type=str, required=False, help="dataset path")
parser.add_argument('--dataset_type', type=str, default='bbox', help="dataset type bbox|lidar")
opt = parser.parse_args()
print(opt)
blue = lambda x: '\033[94m' + x + '\033[0m'
opt.manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.dataset_type == 'bbox':
box_dataset = BoxDataset(
#root=opt.dataset,
root='train_unbbox_dataset',
classification=True,
npoints=opt.num_points,
data_augmentation=False)
test_box_dataset = BoxDataset(
#root=opt.dataset,
root='test_unbbox_dataset',
classification=True,
split='test',
npoints=opt.num_points,
data_augmentation=False)
else:
exit('wrong dataset type')
box_dataloader = torch.utils.data.DataLoader(
box_dataset,
batch_size=opt.batchSize,
shuffle=True,
num_workers=int(opt.workers))
testboxdataloader = torch.utils.data.DataLoader(
test_box_dataset,
batch_size=opt.batchSize,
shuffle=True,
num_workers=int(opt.workers))
print(len(box_dataset), len(test_box_dataset))
num_classes = len(box_dataset.classes)
print('classes', num_classes)
try:
os.makedirs(opt.outf)
except OSError:
pass
classifier = BoxNet(n_classes=num_classes, n_channel=3)
if opt.model != '':
classifier.load_state_dict(torch.load(opt.model))
optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999),eps=1e-08, weight_decay=0.0)
#scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=20, gamma=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
#optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999))
#scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
classifier.cuda()
num_batch = len(box_dataset) / opt.batchSize
plt.ion()
figure = plt.figure()
ax = figure.add_subplot(111)
idx = []
test_loss = []
train_loss = []
plot1, = ax.plot(idx, test_loss, label='test')
plot2, = ax.plot(idx, train_loss, label='train')
plt.ylim(0, 10)
plt.xlim(0, 158200)
plt.xlabel("i")
plt.ylabel("loss")
plt.legend(loc="lower left")
plt.title("loss-iteration")
for epoch in range(opt.nepoch):
scheduler.step()
for i, data in enumerate(box_dataloader, 0):
points, bbox_target, target, _, dist, cluster_center, voxel = data
points1 = points + cluster_center[:, None]
target = target[:, 0]
dist = dist[:, None]
voxel = voxel[:, :, None]
# transform target scalar to 3x one hot vector
hot1 = torch.zeros(len(data[0]))
hot1[target == 0] = 1
hot2 = torch.zeros(len(data[0]))
hot2[target == 2] = 1
hot3 = torch.zeros(len(data[0]))
hot3[target == 1] = 1
one_hot = torch.vstack((hot1, hot2, hot3))
one_hot = one_hot.transpose(1, 0)
points = points.transpose(2, 1)
points, target, bbox_target, one_hot, dist, cluster_center, voxel = points.cuda(), target.cuda(), bbox_target.cuda(), one_hot.cuda(), dist.cuda().float(), cluster_center.cuda(), voxel.cuda().float()
optimizer.zero_grad()
classifier = classifier.train()
# NN
box_pred, center_delta = classifier(points, one_hot, dist, voxel)
center_boxnet, \
heading_scores, heading_residual_normalized, heading_residual, \
size_scores, size_residual_normalized, size_residual = \
parse_output_to_tensors(box_pred)
#box3d_center = center_boxnet + center_delta
stage1_center = cluster_center + center_delta # original cluster center in the world
box3d_center = center_boxnet + stage1_center
# heading_scores (32, 12) which bin is the heading
# heading_residual (32, 12) residual angle
# size_scores (32, 3) which bin is the size
# size_residual (32, 3, 3) residual size
'''
2.Center
center: torch.Size([32, 3]) torch.float32
stage1_center: torch.Size([32, 3]) torch.float32
center_label:[32,3]
3.Heading
heading_scores: torch.Size([32, 12]) torch.float32
heading_residual_normalized: torch.Size([32, 12]) torch.float32
heading_residual: torch.Size([32, 12]) torch.float32
heading_class_label:(32)
heading_residual_label:(32)
4.Size
size_scores: torch.Size([32, 8]) torch.float32
size_residual_normalized: torch.Size([32, 8, 3]) torch.float32
size_residual: torch.Size([32, 8, 3]) torch.float32
size_class_label:(32)
size_residual_label:(32,3)'''
# compute GT
bbox_target[:,:3] = bbox_target[:,:3] + cluster_center
box3d_center_label = bbox_target[:,:3]
angle = bbox_target[:, 6]
heading_class_label, heading_residual_label = angle2class(angle, NUM_HEADING_BIN)
size_class_label, size_residual_label = size2class2(bbox_target[:,3:6], target)
#print(' ')
#print(heading_class_label)
#print(heading_scores.data.max(1)[1])
#print(heading_residual_label)
#print(heading_residual)
#print(size_class_label)
#print(size_scores.data.max(1)[1])
#print(size_residual_label)
#scls_onehot = torch.eye(NUM_SIZE_CLUSTER)[size_class_label.long()].cuda() # 32,8
#scls_onehot_repeat = scls_onehot.view(-1, NUM_SIZE_CLUSTER, 1).repeat(1, 1, 3) # 32,8,3
#predicted_size_residual = torch.sum( \
# size_residual * scls_onehot_repeat.cuda(), dim=1)#32,3
#print(size_residual_label-predicted_size_residual)
#print(size_residual_label-size_residual)
#print(box3d_center_label)
#print(box3d_center)
#print(' ')
# losses
losses = Loss(box3d_center, box3d_center_label, stage1_center, \
heading_scores, heading_residual_normalized, \
heading_residual, \
heading_class_label, heading_residual_label, \
size_scores, size_residual_normalized, \
size_residual, \
size_class_label, size_residual_label)
loss = losses['total_loss']
# accuracy (FIX: flipped box results in IOU = 0 maybe)
ioubev, iou3dbox = compute_box3d_iou(box3d_center.cpu().detach().numpy(), heading_scores.cpu().detach().numpy(), \
heading_residual.cpu().detach().numpy(), size_scores.cpu().detach().numpy(), size_residual.cpu().detach().numpy(), \
box3d_center_label.cpu().detach().numpy(), heading_class_label.cpu().detach().numpy(), \
heading_residual_label.cpu().detach().numpy(), size_class_label.cpu().detach().numpy(), \
size_residual_label.cpu().detach().numpy())
# matplotlib viz
pred_box_corners = give_pred_box_corners(box3d_center.cpu().detach().numpy(), heading_scores.cpu().detach().numpy(), \
heading_residual.cpu().detach().numpy(), size_scores.cpu().detach().numpy(), size_residual.cpu().detach().numpy())
np_bbox_target = bbox_target.cpu().detach().numpy()
gt_corners = boxes_to_corners_3d(np_bbox_target)
if i > 0 and epoch == -1:
for cc in range(32):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
np_points = points1.cpu().detach().numpy()
pts = np_points[cc]
gt_b = gt_corners[cc] # (8, 3)
b = pred_box_corners[cc]
ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2], s=5, c='b', lw=0, alpha=1)
for k in range(0, 4):
xx = 0
yy = 1
zz = 2
# pred
i, j = k, (k + 1) % 4
ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]],
color='r')
i, j = k + 4, (k + 1) % 4 + 4
ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]],
color='r')
i, j = k, k + 4
ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]],
color='r')
# gt
i, j = k, (k + 1) % 4
ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]],
color='g')
i, j = k + 4, (k + 1) % 4 + 4
ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]],
color='g')
i, j = k, k + 4
ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]],
color='g')
#visual_right_scale(corners3d.reshape(-1, 3), ax)
ax.title.set_text('IOU: {}'.format(iou3dbox[cc]))
ax.view_init(elev=30., azim=-45)
ax.set_box_aspect([1,1,1])
#ax.set_xlim3d(-3, 3)
#ax.set_ylim3d(-3, 3)
#ax.set_zlim3d(-3, 3)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
'''# Our lines span from points 0 to 1, 1 to 2, 2 to 3, etc...
lines = [[0, 1], [1, 2], [2, 3], [0, 3],
[4, 5], [5, 6], [6, 7], [4, 7],
[0, 4], [1, 5], [2, 6], [3, 7]]
# Use the same color for all lines
colors = [[1, 0, 0] for _ in range(len(lines))]
colors1 = [[0, 1, 0] for _ in range(len(lines))]
line_set = o3d.geometry.LineSet()
line_set.points = o3d.utility.Vector3dVector(np_pred_box[0])
line_set.lines = o3d.utility.Vector2iVector(lines)
line_set.colors = o3d.utility.Vector3dVector(colors)
line_set1 = o3d.geometry.LineSet()
line_set1.points = o3d.utility.Vector3dVector(np_gt_box[0])
line_set1.lines = o3d.utility.Vector2iVector(lines)
line_set1.colors = o3d.utility.Vector3dVector(colors1)
# Create a visualization object and window
#vis = o3d.visualization.Visualizer()
#vis.create_window()
# Display the bounding boxes:
#vis.add_geometry(line_set)
#o3d.visualization.draw_geometries([line_set,line_set1,pcd])
#o3d.visualization.draw_geometries([line_set1])
#np_points = points1.cpu().detach().numpy()
#np_points = np.transpose(np_points)
#pcd = o3d.geometry.PointCloud()
#pcd.points = o3d.utility.Vector3dVector(np_points)
#o3d.visualization.draw_geometries([pcd])
o3d.visualization.draw_geometries([line_set, line_set1])'''
loss.backward()
optimizer.step()
print('[%d: %d/%d] train loss: %f MIOU: %f' % (epoch, i, num_batch, loss.item(), np.mean(iou3dbox)))
#print('[%d: %d/%d] train loss: %f' % (epoch, i, num_batch, loss.item()))
loss_train = loss.item()
if i % 10 == 0:
j, data = next(enumerate(testboxdataloader, 0))
points, bbox_target, target, _, dist, cluster_center, voxel = data
points1 = points + cluster_center[:, None]
target = target[:, 0]
dist = dist[:, None]
voxel = voxel[:, :, None]
# transform target scalar to 3x one hot vector
hot1 = torch.zeros(len(data[0]))
hot1[target == 0] = 1
hot2 = torch.zeros(len(data[0]))
hot2[target == 2] = 1
hot3 = torch.zeros(len(data[0]))
hot3[target == 1] = 1
one_hot = torch.vstack((hot1, hot2, hot3))
one_hot = one_hot.transpose(1, 0)
points = points.transpose(2, 1)
points, target, bbox_target, one_hot, dist, cluster_center, voxel = points.cuda(), target.cuda(), bbox_target.cuda(), one_hot.cuda(), dist.cuda().float(), cluster_center.cuda(), voxel.cuda().float()
classifier = classifier.eval()
# NN
box_pred, center_delta = classifier(points, one_hot, dist, voxel)
center_boxnet, \
heading_scores, heading_residual_normalized, heading_residual, \
size_scores, size_residual_normalized, size_residual = \
parse_output_to_tensors(box_pred)
stage1_center = cluster_center + center_delta # original cluster center in the world
box3d_center = center_boxnet + stage1_center
# compute GT, probably wrong setup
bbox_target[:,:3] = bbox_target[:,:3] + cluster_center
box3d_center_label = bbox_target[:,:3]
angle = bbox_target[:, 6] #+ 3/2*np.pi
heading_class_label, heading_residual_label = angle2class(angle, NUM_HEADING_BIN)
size_class_label, size_residual_label = size2class2(bbox_target[:,3:6], target)
# losses
losses = Loss(box3d_center, box3d_center_label, stage1_center, \
heading_scores, heading_residual_normalized, \
heading_residual, \
heading_class_label, heading_residual_label, \
size_scores, size_residual_normalized, \
size_residual, \
size_class_label, size_residual_label)
loss = losses['total_loss']
# accuracy
ioubev, iou3dbox = compute_box3d_iou(box3d_center.cpu().detach().numpy(), heading_scores.cpu().detach().numpy(), \
heading_residual.cpu().detach().numpy(), size_scores.cpu().detach().numpy(), size_residual.cpu().detach().numpy(), \
box3d_center_label.cpu().detach().numpy(), heading_class_label.cpu().detach().numpy(), \
heading_residual_label.cpu().detach().numpy(), size_class_label.cpu().detach().numpy(), \
size_residual_label.cpu().detach().numpy())
# matplotlib viz
pred_box_corners = give_pred_box_corners(box3d_center.cpu().detach().numpy(), heading_scores.cpu().detach().numpy(), \
heading_residual.cpu().detach().numpy(), size_scores.cpu().detach().numpy(), size_residual.cpu().detach().numpy())
np_bbox_target = bbox_target.cpu().detach().numpy()
gt_corners = boxes_to_corners_3d(np_bbox_target)
if i > 0 and epoch == -1:
for cc in range(32):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
np_points = points1.cpu().detach().numpy()
pts = np_points[cc]
gt_b = gt_corners[cc] # (8, 3)
b = pred_box_corners[cc]
ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2], s=5, c='b', lw=0, alpha=1)
for k in range(0, 4):
xx = 0
yy = 1
zz = 2
# pred
i, j = k, (k + 1) % 4
ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]],
color='r')
i, j = k + 4, (k + 1) % 4 + 4
ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]],
color='r')
i, j = k, k + 4
ax.plot([b[i, xx], b[j, xx]], [b[i, yy], b[j, yy]], [b[i, zz], b[j, zz]],
color='r')
# gt
i, j = k, (k + 1) % 4
ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]],
color='g')
i, j = k + 4, (k + 1) % 4 + 4
ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]],
color='g')
i, j = k, k + 4
ax.plot([gt_b[i, xx], gt_b[j, xx]], [gt_b[i, yy], gt_b[j, yy]], [gt_b[i, zz], gt_b[j, zz]],
color='g')
#visual_right_scale(corners3d.reshape(-1, 3), ax)
ax.title.set_text('IOU: {}'.format(iou3dbox[cc]))
ax.view_init(elev=30., azim=-45)
ax.set_box_aspect([1,1,1])
#ax.set_xlim3d(-3, 3)
#ax.set_ylim3d(-3, 3)
#ax.set_zlim3d(-3, 3)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
print('[%d: %d/%d] %s loss: %f MIOU: %f' % (epoch, i, num_batch, blue('test'), loss.item(), np.mean(iou3dbox)))
test_loss.append(loss.item())
train_loss.append(loss_train)
#loss_list[epoch*791 + i] = loss.item()
idx.append(epoch*791 + i)
plot1.set_xdata(idx)
plot1.set_ydata(test_loss)
plot2.set_xdata(idx)
plot2.set_ydata(train_loss)
figure.canvas.draw()
figure.canvas.flush_events()
time.sleep(0.01)
torch.save(classifier.state_dict(), '%s/cls_model_%d.pth' % (opt.outf, epoch))
'''total_correct = 0
total_testset = 0
for i,data in tqdm(enumerate(testdataloader, 0)):
points, target = data
target = target[:, 0]
points = points.transpose(2, 1)
points, target = points.cuda(), target.cuda()
classifier = classifier.eval()
pred, _, _, _ = classifier(points)
pred_choice = pred.data.max(1)[1]
correct = pred_choice.eq(target.data).cpu().sum()
total_correct += correct.item()
total_testset += points.size()[0]
print("final accuracy {}".format(total_correct / float(total_testset)))''' | [
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
1822,
29572,
198,
6738,
269,
37046,
1330,
6167,
198,
6738,
595,
1330,
595,
198,
11748,
28686,
198,
11748,
4738,
198,
6738,
17802,
1330,
49064,
62,
41173,
5446,
2606,
9328,
198,
6738,
1341,
35720,
1330,
13946,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
13,
1845,
29363,
198,
11748,
28034,
13,
40085,
355,
6436,
198,
11748,
28034,
13,
26791,
13,
7890,
198,
6738,
966,
3262,
13,
19608,
292,
316,
1330,
406,
312,
283,
27354,
292,
316,
11,
8315,
27354,
292,
316,
198,
6738,
966,
3262,
13,
3524,
62,
19849,
1330,
8315,
7934,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
6738,
256,
80,
36020,
1330,
256,
80,
36020,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
640,
198,
6738,
2746,
62,
26791,
1330,
8315,
7934,
43,
793,
11,
21136,
62,
22915,
62,
1462,
62,
83,
641,
669,
11,
651,
62,
3524,
18,
67,
62,
20772,
364,
62,
2978,
525,
11,
651,
62,
3524,
18,
67,
62,
20772,
364,
198,
11748,
1280,
18,
67,
355,
267,
18,
67,
198,
6738,
10131,
1330,
9848,
17,
4871,
11,
2546,
17,
4871,
11,
1398,
17,
9248,
11,
1398,
17,
7857,
11,
24061,
62,
3524,
18,
67,
62,
72,
280,
11,
2546,
17,
4871,
17,
11,
1577,
62,
28764,
62,
3524,
62,
20772,
364,
11,
651,
62,
18,
67,
62,
3524,
198,
2,
6738,
48569,
62,
22602,
1330,
3197,
62,
75,
312,
283,
11,
3197,
62,
75,
312,
283,
62,
36439,
198,
198,
43,
793,
796,
8315,
7934,
43,
793,
3419,
198,
41359,
62,
37682,
2751,
62,
33,
1268,
796,
1105,
198,
41359,
62,
33489,
62,
5097,
7759,
1137,
796,
513,
1303,
530,
13946,
329,
1123,
2099,
198,
41359,
62,
9864,
23680,
62,
16402,
12394,
796,
22243,
198,
198,
4299,
10559,
62,
1462,
62,
20772,
364,
62,
18,
67,
7,
29305,
18,
67,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
767,
24200,
604,
198,
220,
220,
220,
220,
220,
220,
1220,
91,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
91,
198,
220,
220,
220,
220,
220,
718,
24200,
642,
764,
198,
220,
220,
220,
220,
220,
930,
930,
220,
220,
220,
220,
220,
220,
220,
930,
930,
198,
220,
220,
220,
220,
220,
764,
513,
24200,
657,
198,
220,
220,
220,
220,
220,
930,
14,
220,
220,
220,
220,
220,
220,
220,
220,
930,
14,
198,
220,
220,
220,
220,
220,
362,
24200,
352,
198,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
10559,
18,
67,
25,
220,
357,
45,
11,
767,
8,
685,
87,
11,
331,
11,
1976,
11,
44332,
11,
20268,
11,
288,
89,
11,
9087,
4357,
357,
87,
11,
331,
11,
1976,
8,
318,
262,
3091,
3641,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
14371,
18,
67,
25,
357,
45,
11,
807,
11,
513,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
11055,
796,
45941,
13,
18747,
26933,
198,
220,
220,
220,
220,
220,
220,
220,
685,
16,
11,
352,
11,
532,
16,
4357,
685,
16,
11,
532,
16,
11,
532,
16,
4357,
25915,
16,
11,
532,
16,
11,
532,
16,
4357,
25915,
16,
11,
352,
11,
532,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
685,
16,
11,
352,
11,
352,
4357,
685,
16,
11,
532,
16,
11,
352,
4357,
25915,
16,
11,
532,
16,
11,
352,
4357,
25915,
16,
11,
352,
11,
352,
4357,
198,
220,
220,
220,
33761,
1220,
362,
628,
220,
220,
220,
14371,
18,
67,
796,
10559,
18,
67,
58,
45299,
6045,
11,
513,
25,
21,
60,
1635,
11055,
58,
14202,
11,
1058,
11,
1058,
60,
198,
220,
220,
220,
14371,
18,
67,
796,
23064,
62,
13033,
62,
24176,
62,
89,
7,
20772,
364,
18,
67,
11,
10559,
18,
67,
58,
45299,
718,
35944,
3447,
1758,
32590,
16,
11,
807,
11,
513,
8,
198,
220,
220,
220,
14371,
18,
67,
15853,
10559,
18,
67,
58,
45299,
6045,
11,
657,
25,
18,
60,
198,
220,
220,
220,
1441,
14371,
18,
67,
198,
198,
4299,
23064,
62,
13033,
62,
24176,
62,
89,
7,
13033,
11,
9848,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2173,
25,
357,
33,
11,
399,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9848,
25,
357,
33,
828,
9848,
1863,
1976,
12,
22704,
11,
9848,
5732,
2124,
6624,
29,
331,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
269,
8546,
796,
45941,
13,
6966,
7,
9248,
8,
198,
220,
220,
220,
264,
1437,
796,
45941,
13,
31369,
7,
9248,
8,
198,
220,
220,
220,
3392,
796,
45941,
13,
1952,
62,
2339,
7,
9248,
11,
288,
4906,
28,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
1976,
27498,
796,
45941,
13,
9107,
418,
62,
2339,
7,
9248,
11,
288,
4906,
28,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
5724,
62,
6759,
8609,
796,
45941,
13,
25558,
19510,
198,
220,
220,
220,
220,
220,
220,
220,
269,
8546,
11,
220,
264,
1437,
11,
1976,
27498,
11,
198,
220,
220,
220,
220,
220,
220,
220,
532,
82,
1437,
11,
269,
8546,
11,
1976,
27498,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1976,
27498,
11,
1976,
27498,
11,
3392,
198,
220,
220,
220,
10612,
16488,
28,
16,
737,
3447,
1758,
32590,
16,
11,
513,
11,
513,
8,
198,
220,
220,
220,
2173,
62,
10599,
796,
45941,
13,
6759,
76,
377,
7,
13033,
11,
5724,
62,
6759,
8609,
8,
198,
220,
220,
220,
1441,
2173,
62,
10599,
198,
198,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
43501,
10699,
3256,
2099,
28,
600,
11,
4277,
28,
2624,
11,
1037,
11639,
15414,
15458,
2546,
11537,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
22510,
62,
13033,
3256,
2099,
28,
600,
11,
4277,
28,
12762,
11,
1037,
11639,
15414,
2546,
11537,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
22896,
3256,
2099,
28,
600,
11,
1037,
11639,
17618,
286,
1366,
11046,
3259,
3256,
4277,
28,
19,
8,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
77,
538,
5374,
3256,
2099,
28,
600,
11,
4277,
28,
9031,
11,
1037,
11639,
17618,
286,
36835,
82,
284,
4512,
329,
11537,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
448,
69,
3256,
2099,
28,
2536,
11,
4277,
11639,
565,
82,
3256,
1037,
11639,
22915,
9483,
11537,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
19849,
3256,
2099,
28,
2536,
11,
4277,
11639,
3256,
1037,
11639,
19849,
3108,
11537,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
19608,
292,
316,
3256,
2099,
28,
2536,
11,
2672,
28,
25101,
11,
1037,
2625,
19608,
292,
316,
3108,
4943,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
19608,
292,
316,
62,
4906,
3256,
2099,
28,
2536,
11,
4277,
11639,
65,
3524,
3256,
1037,
2625,
19608,
292,
316,
2099,
275,
3524,
91,
75,
312,
283,
4943,
198,
198,
8738,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
4798,
7,
8738,
8,
198,
198,
17585,
796,
37456,
2124,
25,
705,
59,
44427,
58,
5824,
76,
6,
1343,
2124,
1343,
705,
59,
44427,
58,
15,
76,
6,
198,
198,
8738,
13,
805,
723,
50,
2308,
796,
4738,
13,
25192,
600,
7,
16,
11,
33028,
8,
220,
1303,
4259,
9403,
198,
4798,
7203,
29531,
23262,
25,
33172,
2172,
13,
805,
723,
50,
2308,
8,
198,
25120,
13,
28826,
7,
8738,
13,
805,
723,
50,
2308,
8,
198,
13165,
354,
13,
805,
723,
62,
28826,
7,
8738,
13,
805,
723,
50,
2308,
8,
198,
198,
361,
2172,
13,
19608,
292,
316,
62,
4906,
6624,
705,
65,
3524,
10354,
198,
220,
220,
220,
3091,
62,
19608,
292,
316,
796,
8315,
27354,
292,
316,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
15763,
28,
8738,
13,
19608,
292,
316,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6808,
11639,
27432,
62,
403,
65,
3524,
62,
19608,
292,
316,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
17923,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
13033,
28,
8738,
13,
22510,
62,
13033,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
559,
5154,
341,
28,
25101,
8,
628,
220,
220,
220,
1332,
62,
3524,
62,
19608,
292,
316,
796,
8315,
27354,
292,
316,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
15763,
28,
8738,
13,
19608,
292,
316,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6808,
11639,
9288,
62,
403,
65,
3524,
62,
19608,
292,
316,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
17923,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6626,
11639,
9288,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
299,
13033,
28,
8738,
13,
22510,
62,
13033,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
559,
5154,
341,
28,
25101,
8,
198,
17772,
25,
198,
220,
220,
220,
8420,
10786,
36460,
27039,
2099,
11537,
198,
198,
3524,
62,
67,
10254,
1170,
263,
796,
28034,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
198,
220,
220,
220,
3091,
62,
19608,
292,
316,
11,
198,
220,
220,
220,
15458,
62,
7857,
28,
8738,
13,
43501,
10699,
11,
198,
220,
220,
220,
36273,
28,
17821,
11,
198,
220,
220,
220,
997,
62,
22896,
28,
600,
7,
8738,
13,
22896,
4008,
198,
198,
9288,
3524,
67,
10254,
1170,
263,
796,
28034,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
198,
220,
220,
220,
1332,
62,
3524,
62,
19608,
292,
316,
11,
198,
220,
220,
220,
15458,
62,
7857,
28,
8738,
13,
43501,
10699,
11,
198,
220,
220,
220,
36273,
28,
17821,
11,
198,
220,
220,
220,
997,
62,
22896,
28,
600,
7,
8738,
13,
22896,
4008,
198,
198,
4798,
7,
11925,
7,
3524,
62,
19608,
292,
316,
828,
18896,
7,
9288,
62,
3524,
62,
19608,
292,
316,
4008,
198,
22510,
62,
37724,
796,
18896,
7,
3524,
62,
19608,
292,
316,
13,
37724,
8,
198,
4798,
10786,
37724,
3256,
997,
62,
37724,
8,
198,
198,
28311,
25,
198,
220,
220,
220,
28686,
13,
76,
4335,
17062,
7,
8738,
13,
448,
69,
8,
198,
16341,
440,
5188,
81,
1472,
25,
198,
220,
220,
220,
1208,
198,
198,
4871,
7483,
796,
8315,
7934,
7,
77,
62,
37724,
28,
22510,
62,
37724,
11,
299,
62,
17620,
28,
18,
8,
198,
198,
361,
2172,
13,
19849,
14512,
10148,
25,
198,
220,
220,
220,
1398,
7483,
13,
2220,
62,
5219,
62,
11600,
7,
13165,
354,
13,
2220,
7,
8738,
13,
19849,
4008,
628,
628,
198,
40085,
7509,
796,
6436,
13,
23159,
7,
4871,
7483,
13,
17143,
7307,
22784,
300,
81,
28,
15,
13,
8298,
11,
731,
292,
16193,
15,
13,
24,
11,
657,
13,
17032,
828,
25386,
28,
16,
68,
12,
2919,
11,
3463,
62,
12501,
323,
28,
15,
13,
15,
8,
198,
198,
2,
1416,
704,
18173,
796,
28034,
13,
40085,
13,
14050,
62,
1416,
704,
18173,
13,
29800,
8600,
35972,
7,
40085,
7509,
11,
41926,
28,
1238,
11,
34236,
28,
15,
13,
16,
8,
198,
1416,
704,
18173,
796,
28034,
13,
40085,
13,
14050,
62,
1416,
704,
18173,
13,
8600,
35972,
7,
40085,
7509,
11,
2239,
62,
7857,
28,
1238,
11,
34236,
28,
15,
13,
16,
8,
628,
198,
198,
2,
40085,
7509,
796,
6436,
13,
23159,
7,
4871,
7483,
13,
17143,
7307,
22784,
300,
81,
28,
15,
13,
8298,
11,
731,
292,
16193,
15,
13,
24,
11,
657,
13,
17032,
4008,
198,
2,
1416,
704,
18173,
796,
6436,
13,
14050,
62,
1416,
704,
18173,
13,
8600,
35972,
7,
40085,
7509,
11,
2239,
62,
7857,
28,
1238,
11,
34236,
28,
15,
13,
20,
8,
220,
198,
4871,
7483,
13,
66,
15339,
3419,
198,
198,
22510,
62,
43501,
796,
18896,
7,
3524,
62,
19608,
292,
316,
8,
1220,
2172,
13,
43501,
10699,
198,
198,
489,
83,
13,
295,
3419,
198,
26875,
796,
458,
83,
13,
26875,
3419,
198,
897,
796,
3785,
13,
2860,
62,
7266,
29487,
7,
16243,
8,
198,
312,
87,
796,
17635,
198,
9288,
62,
22462,
796,
17635,
198,
27432,
62,
22462,
796,
17635,
198,
29487,
16,
11,
796,
7877,
13,
29487,
7,
312,
87,
11,
1332,
62,
22462,
11,
6167,
11639,
9288,
11537,
198,
29487,
17,
11,
796,
7877,
13,
29487,
7,
312,
87,
11,
4512,
62,
22462,
11,
6167,
11639,
27432,
11537,
198,
489,
83,
13,
88,
2475,
7,
15,
11,
838,
8,
198,
489,
83,
13,
87,
2475,
7,
15,
11,
24063,
2167,
8,
198,
489,
83,
13,
87,
18242,
7203,
72,
4943,
198,
489,
83,
13,
2645,
9608,
7203,
22462,
4943,
198,
489,
83,
13,
1455,
437,
7,
17946,
2625,
21037,
1364,
4943,
198,
489,
83,
13,
7839,
7203,
22462,
12,
2676,
341,
4943,
198,
198,
1640,
36835,
287,
2837,
7,
8738,
13,
77,
538,
5374,
2599,
198,
220,
220,
220,
6038,
18173,
13,
9662,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
11,
1366,
287,
27056,
378,
7,
3524,
62,
67,
10254,
1170,
263,
11,
657,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2173,
11,
275,
3524,
62,
16793,
11,
2496,
11,
4808,
11,
1233,
11,
13946,
62,
16159,
11,
410,
1140,
417,
796,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
2173,
16,
796,
2173,
1343,
13946,
62,
16159,
58,
45299,
6045,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2496,
796,
2496,
58,
45299,
657,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1233,
796,
1233,
58,
45299,
6045,
60,
198,
220,
220,
220,
220,
220,
220,
220,
410,
1140,
417,
796,
410,
1140,
417,
58,
45299,
1058,
11,
6045,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6121,
2496,
16578,
283,
284,
513,
87,
530,
3024,
15879,
198,
220,
220,
220,
220,
220,
220,
220,
3024,
16,
796,
28034,
13,
9107,
418,
7,
11925,
7,
7890,
58,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3024,
16,
58,
16793,
6624,
657,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
3024,
17,
796,
28034,
13,
9107,
418,
7,
11925,
7,
7890,
58,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3024,
17,
58,
16793,
6624,
362,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
3024,
18,
796,
28034,
13,
9107,
418,
7,
11925,
7,
7890,
58,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3024,
18,
58,
16793,
6624,
352,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
530,
62,
8940,
796,
28034,
13,
85,
25558,
19510,
8940,
16,
11,
3024,
17,
11,
3024,
18,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
530,
62,
8940,
796,
530,
62,
8940,
13,
7645,
3455,
7,
16,
11,
657,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2173,
796,
2173,
13,
7645,
3455,
7,
17,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2173,
11,
2496,
11,
275,
3524,
62,
16793,
11,
530,
62,
8940,
11,
1233,
11,
13946,
62,
16159,
11,
410,
1140,
417,
796,
2173,
13,
66,
15339,
22784,
2496,
13,
66,
15339,
22784,
275,
3524,
62,
16793,
13,
66,
15339,
22784,
530,
62,
8940,
13,
66,
15339,
22784,
1233,
13,
66,
15339,
22446,
22468,
22784,
13946,
62,
16159,
13,
66,
15339,
22784,
410,
1140,
417,
13,
66,
15339,
22446,
22468,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
6436,
7509,
13,
22570,
62,
9744,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1398,
7483,
796,
1398,
7483,
13,
27432,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
399,
45,
198,
220,
220,
220,
220,
220,
220,
220,
3091,
62,
28764,
11,
3641,
62,
67,
12514,
796,
1398,
7483,
7,
13033,
11,
530,
62,
8940,
11,
1233,
11,
410,
1140,
417,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
3641,
62,
3524,
3262,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
1416,
2850,
11,
9087,
62,
411,
312,
723,
62,
11265,
1143,
11,
9087,
62,
411,
312,
723,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
1416,
2850,
11,
2546,
62,
411,
312,
723,
62,
11265,
1143,
11,
2546,
62,
411,
312,
723,
796,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21136,
62,
22915,
62,
1462,
62,
83,
641,
669,
7,
3524,
62,
28764,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
3524,
18,
67,
62,
16159,
796,
3641,
62,
3524,
3262,
1343,
3641,
62,
67,
12514,
198,
220,
220,
220,
220,
220,
220,
220,
3800,
16,
62,
16159,
796,
13946,
62,
16159,
1343,
3641,
62,
67,
12514,
1303,
2656,
13946,
3641,
287,
262,
995,
198,
220,
220,
220,
220,
220,
220,
220,
3091,
18,
67,
62,
16159,
796,
3641,
62,
3524,
3262,
1343,
3800,
16,
62,
16159,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
9087,
62,
1416,
2850,
357,
2624,
11,
1105,
8,
543,
9874,
318,
262,
9087,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
9087,
62,
411,
312,
723,
357,
2624,
11,
1105,
8,
29598,
9848,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2546,
62,
1416,
2850,
357,
2624,
11,
513,
8,
543,
9874,
318,
262,
2546,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2546,
62,
411,
312,
723,
357,
2624,
11,
513,
11,
513,
8,
29598,
2546,
628,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
362,
13,
23656,
198,
220,
220,
220,
220,
220,
220,
220,
3641,
25,
28034,
13,
10699,
26933,
2624,
11,
513,
12962,
28034,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
3800,
16,
62,
16159,
25,
28034,
13,
10699,
26933,
2624,
11,
513,
12962,
28034,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
3641,
62,
18242,
33250,
2624,
11,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
513,
13,
13847,
278,
198,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
1416,
2850,
25,
28034,
13,
10699,
26933,
2624,
11,
1105,
12962,
28034,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
62,
11265,
1143,
25,
28034,
13,
10699,
26933,
2624,
11,
1105,
12962,
28034,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
25,
28034,
13,
10699,
26933,
2624,
11,
1105,
12962,
28034,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
4871,
62,
18242,
37498,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
62,
18242,
37498,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
604,
13,
10699,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
1416,
2850,
25,
28034,
13,
10699,
26933,
2624,
11,
807,
12962,
28034,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
411,
312,
723,
62,
11265,
1143,
25,
28034,
13,
10699,
26933,
2624,
11,
807,
11,
513,
12962,
28034,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
411,
312,
723,
25,
28034,
13,
10699,
26933,
2624,
11,
807,
11,
513,
12962,
28034,
13,
22468,
2624,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
4871,
62,
18242,
37498,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
411,
312,
723,
62,
18242,
37498,
2624,
11,
18,
8,
7061,
6,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
24061,
7963,
198,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
16793,
58,
45299,
25,
18,
60,
796,
275,
3524,
62,
16793,
58,
45299,
25,
18,
60,
1343,
13946,
62,
16159,
198,
220,
220,
220,
220,
220,
220,
220,
3091,
18,
67,
62,
16159,
62,
18242,
796,
275,
3524,
62,
16793,
58,
45299,
25,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
9848,
796,
275,
3524,
62,
16793,
58,
45299,
718,
60,
198,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
4871,
62,
18242,
11,
9087,
62,
411,
312,
723,
62,
18242,
796,
9848,
17,
4871,
7,
9248,
11,
36871,
62,
37682,
2751,
62,
33,
1268,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
4871,
62,
18242,
11,
2546,
62,
411,
312,
723,
62,
18242,
796,
2546,
17,
4871,
17,
7,
65,
3524,
62,
16793,
58,
45299,
18,
25,
21,
4357,
2496,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
10786,
705,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
33878,
62,
4871,
62,
18242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
33878,
62,
1416,
2850,
13,
7890,
13,
9806,
7,
16,
38381,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
33878,
62,
411,
312,
723,
62,
18242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
33878,
62,
411,
312,
723,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
7857,
62,
4871,
62,
18242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
7857,
62,
1416,
2850,
13,
7890,
13,
9806,
7,
16,
38381,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
7857,
62,
411,
312,
723,
62,
18242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
38528,
82,
62,
505,
8940,
796,
28034,
13,
25379,
7,
41359,
62,
33489,
62,
5097,
7759,
1137,
38381,
7857,
62,
4871,
62,
18242,
13,
6511,
3419,
4083,
66,
15339,
3419,
220,
1303,
3933,
11,
23,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
38528,
82,
62,
505,
8940,
62,
44754,
796,
264,
565,
82,
62,
505,
8940,
13,
1177,
32590,
16,
11,
36871,
62,
33489,
62,
5097,
7759,
1137,
11,
352,
737,
44754,
7,
16,
11,
352,
11,
513,
8,
220,
1303,
3933,
11,
23,
11,
18,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
28764,
5722,
62,
7857,
62,
411,
312,
723,
796,
28034,
13,
16345,
7,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
2546,
62,
411,
312,
723,
1635,
264,
565,
82,
62,
505,
8940,
62,
44754,
13,
66,
15339,
22784,
5391,
28,
16,
8,
2,
2624,
11,
18,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
7857,
62,
411,
312,
723,
62,
18242,
12,
28764,
5722,
62,
7857,
62,
411,
312,
723,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
7857,
62,
411,
312,
723,
62,
18242,
12,
7857,
62,
411,
312,
723,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
3524,
18,
67,
62,
16159,
62,
18242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
3524,
18,
67,
62,
16159,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
10786,
705,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
9089,
198,
220,
220,
220,
220,
220,
220,
220,
9089,
796,
22014,
7,
3524,
18,
67,
62,
16159,
11,
3091,
18,
67,
62,
16159,
62,
18242,
11,
3800,
16,
62,
16159,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
1416,
2850,
11,
9087,
62,
411,
312,
723,
62,
11265,
1143,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
4871,
62,
18242,
11,
9087,
62,
411,
312,
723,
62,
18242,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
1416,
2850,
11,
2546,
62,
411,
312,
723,
62,
11265,
1143,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
411,
312,
723,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
4871,
62,
18242,
11,
2546,
62,
411,
312,
723,
62,
18242,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2994,
796,
9089,
17816,
23350,
62,
22462,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
9922,
357,
47084,
25,
26157,
3091,
2482,
287,
314,
2606,
796,
657,
3863,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
280,
1350,
85,
11,
1312,
280,
18,
67,
3524,
796,
24061,
62,
3524,
18,
67,
62,
72,
280,
7,
3524,
18,
67,
62,
16159,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
9087,
62,
1416,
2850,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
1416,
2850,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
411,
312,
723,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3091,
18,
67,
62,
16159,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
9087,
62,
4871,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
4871,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
411,
312,
723,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
28955,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2603,
29487,
8019,
48569,
198,
220,
220,
220,
220,
220,
220,
220,
2747,
62,
3524,
62,
20772,
364,
796,
1577,
62,
28764,
62,
3524,
62,
20772,
364,
7,
3524,
18,
67,
62,
16159,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
9087,
62,
1416,
2850,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
1416,
2850,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
411,
312,
723,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
45941,
62,
65,
3524,
62,
16793,
796,
275,
3524,
62,
16793,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
20772,
364,
796,
10559,
62,
1462,
62,
20772,
364,
62,
18,
67,
7,
37659,
62,
65,
3524,
62,
16793,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1875,
657,
290,
36835,
6624,
532,
16,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
36624,
287,
2837,
7,
2624,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
796,
458,
83,
13,
26875,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
796,
2336,
13,
2860,
62,
7266,
29487,
7,
16243,
11,
20128,
11639,
18,
67,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
62,
13033,
796,
2173,
16,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43344,
796,
45941,
62,
13033,
58,
535,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
65,
796,
308,
83,
62,
20772,
364,
58,
535,
60,
220,
1303,
357,
23,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
796,
2747,
62,
3524,
62,
20772,
364,
58,
535,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
1416,
1436,
7,
457,
82,
58,
45299,
657,
4357,
43344,
58,
45299,
352,
4357,
43344,
58,
45299,
362,
4357,
264,
28,
20,
11,
269,
11639,
65,
3256,
300,
86,
28,
15,
11,
17130,
28,
16,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
287,
2837,
7,
15,
11,
604,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31383,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
88,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1976,
89,
796,
362,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2747,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
11,
357,
74,
1343,
352,
8,
4064,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
65,
58,
72,
11,
31383,
4357,
275,
58,
73,
11,
31383,
60,
4357,
685,
65,
58,
72,
11,
331,
88,
4357,
275,
58,
73,
11,
331,
88,
60,
4357,
685,
65,
58,
72,
11,
1976,
89,
4357,
275,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
81,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
1343,
604,
11,
357,
74,
1343,
352,
8,
4064,
604,
1343,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
65,
58,
72,
11,
31383,
4357,
275,
58,
73,
11,
31383,
60,
4357,
685,
65,
58,
72,
11,
331,
88,
4357,
275,
58,
73,
11,
331,
88,
60,
4357,
685,
65,
58,
72,
11,
1976,
89,
4357,
275,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
81,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
11,
479,
1343,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
65,
58,
72,
11,
31383,
4357,
275,
58,
73,
11,
31383,
60,
4357,
685,
65,
58,
72,
11,
331,
88,
4357,
275,
58,
73,
11,
331,
88,
60,
4357,
685,
65,
58,
72,
11,
1976,
89,
4357,
275,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
81,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
308,
83,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
11,
357,
74,
1343,
352,
8,
4064,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
13655,
62,
65,
58,
72,
11,
31383,
4357,
308,
83,
62,
65,
58,
73,
11,
31383,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
331,
88,
4357,
308,
83,
62,
65,
58,
73,
11,
331,
88,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
1976,
89,
4357,
308,
83,
62,
65,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
70,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
1343,
604,
11,
357,
74,
1343,
352,
8,
4064,
604,
1343,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
13655,
62,
65,
58,
72,
11,
31383,
4357,
308,
83,
62,
65,
58,
73,
11,
31383,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
331,
88,
4357,
308,
83,
62,
65,
58,
73,
11,
331,
88,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
1976,
89,
4357,
308,
83,
62,
65,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
70,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
11,
479,
1343,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
13655,
62,
65,
58,
72,
11,
31383,
4357,
308,
83,
62,
65,
58,
73,
11,
31383,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
331,
88,
4357,
308,
83,
62,
65,
58,
73,
11,
331,
88,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
1976,
89,
4357,
308,
83,
62,
65,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
70,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
41464,
62,
3506,
62,
9888,
7,
20772,
364,
18,
67,
13,
3447,
1758,
32590,
16,
11,
513,
828,
7877,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
7839,
13,
2617,
62,
5239,
10786,
40,
2606,
25,
23884,
4458,
18982,
7,
72,
280,
18,
67,
3524,
58,
535,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
1177,
62,
15003,
7,
68,
2768,
28,
1270,
1539,
35560,
320,
10779,
2231,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
2617,
62,
3524,
62,
292,
806,
26933,
16,
11,
16,
11,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
897,
13,
2617,
62,
87,
2475,
18,
67,
32590,
18,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
897,
13,
2617,
62,
88,
2475,
18,
67,
32590,
18,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
897,
13,
2617,
62,
89,
2475,
18,
67,
32590,
18,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
2617,
62,
87,
18242,
10786,
87,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
2617,
62,
2645,
9608,
10786,
88,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
2617,
62,
89,
18242,
10786,
89,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
12860,
3419,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
2,
3954,
3951,
11506,
422,
2173,
657,
284,
352,
11,
352,
284,
362,
11,
362,
284,
513,
11,
3503,
986,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3951,
796,
16410,
15,
11,
352,
4357,
685,
16,
11,
362,
4357,
685,
17,
11,
513,
4357,
685,
15,
11,
513,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
19,
11,
642,
4357,
685,
20,
11,
718,
4357,
685,
21,
11,
767,
4357,
685,
19,
11,
767,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
11,
604,
4357,
685,
16,
11,
642,
4357,
685,
17,
11,
718,
4357,
685,
18,
11,
767,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5765,
262,
976,
3124,
329,
477,
3951,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7577,
796,
16410,
16,
11,
657,
11,
657,
60,
329,
4808,
287,
2837,
7,
11925,
7,
6615,
4008,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7577,
16,
796,
16410,
15,
11,
352,
11,
657,
60,
329,
4808,
287,
2837,
7,
11925,
7,
6615,
4008,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
2617,
796,
267,
18,
67,
13,
469,
15748,
13,
13949,
7248,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
2617,
13,
13033,
796,
267,
18,
67,
13,
315,
879,
13,
38469,
18,
67,
38469,
7,
37659,
62,
28764,
62,
3524,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
2617,
13,
6615,
796,
267,
18,
67,
13,
315,
879,
13,
38469,
17,
72,
38469,
7,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
2617,
13,
4033,
669,
796,
267,
18,
67,
13,
315,
879,
13,
38469,
18,
67,
38469,
7,
4033,
669,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
2617,
16,
796,
267,
18,
67,
13,
469,
15748,
13,
13949,
7248,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
2617,
16,
13,
13033,
796,
267,
18,
67,
13,
315,
879,
13,
38469,
18,
67,
38469,
7,
37659,
62,
13655,
62,
3524,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
2617,
16,
13,
6615,
796,
267,
18,
67,
13,
315,
879,
13,
38469,
17,
72,
38469,
7,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
2617,
16,
13,
4033,
669,
796,
267,
18,
67,
13,
315,
879,
13,
38469,
18,
67,
38469,
7,
4033,
669,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
13610,
257,
32704,
2134,
290,
4324,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4703,
796,
267,
18,
67,
13,
41464,
1634,
13,
36259,
7509,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4703,
13,
17953,
62,
17497,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
16531,
262,
5421,
278,
10559,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4703,
13,
2860,
62,
469,
15748,
7,
1370,
62,
2617,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
78,
18,
67,
13,
41464,
1634,
13,
19334,
62,
469,
908,
1678,
26933,
1370,
62,
2617,
11,
1370,
62,
2617,
16,
11,
79,
10210,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
78,
18,
67,
13,
41464,
1634,
13,
19334,
62,
469,
908,
1678,
26933,
1370,
62,
2617,
16,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
37659,
62,
13033,
796,
2173,
16,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
37659,
62,
13033,
796,
45941,
13,
7645,
3455,
7,
37659,
62,
13033,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
79,
10210,
796,
267,
18,
67,
13,
469,
15748,
13,
12727,
18839,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
79,
10210,
13,
13033,
796,
267,
18,
67,
13,
315,
879,
13,
38469,
18,
67,
38469,
7,
37659,
62,
13033,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
78,
18,
67,
13,
41464,
1634,
13,
19334,
62,
469,
908,
1678,
26933,
79,
10210,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
267,
18,
67,
13,
41464,
1634,
13,
19334,
62,
469,
908,
1678,
26933,
1370,
62,
2617,
11,
1627,
62,
2617,
16,
12962,
7061,
6,
628,
220,
220,
220,
220,
220,
220,
220,
2994,
13,
1891,
904,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
6436,
7509,
13,
9662,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
58,
4,
67,
25,
4064,
67,
14,
4,
67,
60,
4512,
2994,
25,
4064,
69,
15789,
2606,
25,
4064,
69,
6,
4064,
357,
538,
5374,
11,
1312,
11,
997,
62,
43501,
11,
2994,
13,
9186,
22784,
45941,
13,
32604,
7,
72,
280,
18,
67,
3524,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
10786,
58,
4,
67,
25,
4064,
67,
14,
4,
67,
60,
4512,
2994,
25,
4064,
69,
6,
4064,
357,
538,
5374,
11,
1312,
11,
997,
62,
43501,
11,
2994,
13,
9186,
3419,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2994,
62,
27432,
796,
2994,
13,
9186,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
4064,
838,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
474,
11,
1366,
796,
1306,
7,
268,
6975,
378,
7,
9288,
3524,
67,
10254,
1170,
263,
11,
657,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
11,
275,
3524,
62,
16793,
11,
2496,
11,
4808,
11,
1233,
11,
13946,
62,
16159,
11,
410,
1140,
417,
796,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
16,
796,
2173,
1343,
13946,
62,
16159,
58,
45299,
6045,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2496,
796,
2496,
58,
45299,
657,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1233,
796,
1233,
58,
45299,
6045,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
1140,
417,
796,
410,
1140,
417,
58,
45299,
1058,
11,
6045,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6121,
2496,
16578,
283,
284,
513,
87,
530,
3024,
15879,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3024,
16,
796,
28034,
13,
9107,
418,
7,
11925,
7,
7890,
58,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3024,
16,
58,
16793,
6624,
657,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3024,
17,
796,
28034,
13,
9107,
418,
7,
11925,
7,
7890,
58,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3024,
17,
58,
16793,
6624,
362,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3024,
18,
796,
28034,
13,
9107,
418,
7,
11925,
7,
7890,
58,
15,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3024,
18,
58,
16793,
6624,
352,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
530,
62,
8940,
796,
28034,
13,
85,
25558,
19510,
8940,
16,
11,
3024,
17,
11,
3024,
18,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
530,
62,
8940,
796,
530,
62,
8940,
13,
7645,
3455,
7,
16,
11,
657,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
796,
2173,
13,
7645,
3455,
7,
17,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2173,
11,
2496,
11,
275,
3524,
62,
16793,
11,
530,
62,
8940,
11,
1233,
11,
13946,
62,
16159,
11,
410,
1140,
417,
796,
2173,
13,
66,
15339,
22784,
2496,
13,
66,
15339,
22784,
275,
3524,
62,
16793,
13,
66,
15339,
22784,
530,
62,
8940,
13,
66,
15339,
22784,
1233,
13,
66,
15339,
22446,
22468,
22784,
13946,
62,
16159,
13,
66,
15339,
22784,
410,
1140,
417,
13,
66,
15339,
22446,
22468,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1398,
7483,
796,
1398,
7483,
13,
18206,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
399,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3091,
62,
28764,
11,
3641,
62,
67,
12514,
796,
1398,
7483,
7,
13033,
11,
530,
62,
8940,
11,
1233,
11,
410,
1140,
417,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3641,
62,
3524,
3262,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
1416,
2850,
11,
9087,
62,
411,
312,
723,
62,
11265,
1143,
11,
9087,
62,
411,
312,
723,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
1416,
2850,
11,
2546,
62,
411,
312,
723,
62,
11265,
1143,
11,
2546,
62,
411,
312,
723,
796,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21136,
62,
22915,
62,
1462,
62,
83,
641,
669,
7,
3524,
62,
28764,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3800,
16,
62,
16159,
796,
13946,
62,
16159,
1343,
3641,
62,
67,
12514,
1303,
2656,
13946,
3641,
287,
262,
995,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3091,
18,
67,
62,
16159,
796,
3641,
62,
3524,
3262,
1343,
3800,
16,
62,
16159,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
24061,
7963,
11,
2192,
2642,
9058,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
16793,
58,
45299,
25,
18,
60,
796,
275,
3524,
62,
16793,
58,
45299,
25,
18,
60,
1343,
13946,
62,
16159,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3091,
18,
67,
62,
16159,
62,
18242,
796,
275,
3524,
62,
16793,
58,
45299,
25,
18,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9848,
796,
275,
3524,
62,
16793,
58,
45299,
718,
60,
1303,
10,
513,
14,
17,
9,
37659,
13,
14415,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
4871,
62,
18242,
11,
9087,
62,
411,
312,
723,
62,
18242,
796,
9848,
17,
4871,
7,
9248,
11,
36871,
62,
37682,
2751,
62,
33,
1268,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
4871,
62,
18242,
11,
2546,
62,
411,
312,
723,
62,
18242,
796,
2546,
17,
4871,
17,
7,
65,
3524,
62,
16793,
58,
45299,
18,
25,
21,
4357,
2496,
8,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9089,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9089,
796,
22014,
7,
3524,
18,
67,
62,
16159,
11,
3091,
18,
67,
62,
16159,
62,
18242,
11,
3800,
16,
62,
16159,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
1416,
2850,
11,
9087,
62,
411,
312,
723,
62,
11265,
1143,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
4871,
62,
18242,
11,
9087,
62,
411,
312,
723,
62,
18242,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
1416,
2850,
11,
2546,
62,
411,
312,
723,
62,
11265,
1143,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
411,
312,
723,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
4871,
62,
18242,
11,
2546,
62,
411,
312,
723,
62,
18242,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2994,
796,
9089,
17816,
23350,
62,
22462,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9922,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
280,
1350,
85,
11,
1312,
280,
18,
67,
3524,
796,
24061,
62,
3524,
18,
67,
62,
72,
280,
7,
3524,
18,
67,
62,
16159,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
9087,
62,
1416,
2850,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
1416,
2850,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
411,
312,
723,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3091,
18,
67,
62,
16159,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
9087,
62,
4871,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
4871,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2546,
62,
411,
312,
723,
62,
18242,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
28955,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2603,
29487,
8019,
48569,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2747,
62,
3524,
62,
20772,
364,
796,
1577,
62,
28764,
62,
3524,
62,
20772,
364,
7,
3524,
18,
67,
62,
16159,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
9087,
62,
1416,
2850,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9087,
62,
411,
312,
723,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
1416,
2850,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
22784,
2546,
62,
411,
312,
723,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
62,
65,
3524,
62,
16793,
796,
275,
3524,
62,
16793,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
20772,
364,
796,
10559,
62,
1462,
62,
20772,
364,
62,
18,
67,
7,
37659,
62,
65,
3524,
62,
16793,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1875,
657,
290,
36835,
6624,
532,
16,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
36624,
287,
2837,
7,
2624,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
796,
458,
83,
13,
26875,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
796,
2336,
13,
2860,
62,
7266,
29487,
7,
16243,
11,
20128,
11639,
18,
67,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45941,
62,
13033,
796,
2173,
16,
13,
36166,
22446,
15255,
620,
22446,
77,
32152,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43344,
796,
45941,
62,
13033,
58,
535,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
65,
796,
308,
83,
62,
20772,
364,
58,
535,
60,
220,
1303,
357,
23,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
796,
2747,
62,
3524,
62,
20772,
364,
58,
535,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
1416,
1436,
7,
457,
82,
58,
45299,
657,
4357,
43344,
58,
45299,
352,
4357,
43344,
58,
45299,
362,
4357,
264,
28,
20,
11,
269,
11639,
65,
3256,
300,
86,
28,
15,
11,
17130,
28,
16,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
287,
2837,
7,
15,
11,
604,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31383,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
88,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1976,
89,
796,
362,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2747,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
11,
357,
74,
1343,
352,
8,
4064,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
65,
58,
72,
11,
31383,
4357,
275,
58,
73,
11,
31383,
60,
4357,
685,
65,
58,
72,
11,
331,
88,
4357,
275,
58,
73,
11,
331,
88,
60,
4357,
685,
65,
58,
72,
11,
1976,
89,
4357,
275,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
81,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
1343,
604,
11,
357,
74,
1343,
352,
8,
4064,
604,
1343,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
65,
58,
72,
11,
31383,
4357,
275,
58,
73,
11,
31383,
60,
4357,
685,
65,
58,
72,
11,
331,
88,
4357,
275,
58,
73,
11,
331,
88,
60,
4357,
685,
65,
58,
72,
11,
1976,
89,
4357,
275,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
81,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
11,
479,
1343,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
65,
58,
72,
11,
31383,
4357,
275,
58,
73,
11,
31383,
60,
4357,
685,
65,
58,
72,
11,
331,
88,
4357,
275,
58,
73,
11,
331,
88,
60,
4357,
685,
65,
58,
72,
11,
1976,
89,
4357,
275,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
81,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
308,
83,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
11,
357,
74,
1343,
352,
8,
4064,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
13655,
62,
65,
58,
72,
11,
31383,
4357,
308,
83,
62,
65,
58,
73,
11,
31383,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
331,
88,
4357,
308,
83,
62,
65,
58,
73,
11,
331,
88,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
1976,
89,
4357,
308,
83,
62,
65,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
70,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
1343,
604,
11,
357,
74,
1343,
352,
8,
4064,
604,
1343,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
13655,
62,
65,
58,
72,
11,
31383,
4357,
308,
83,
62,
65,
58,
73,
11,
31383,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
331,
88,
4357,
308,
83,
62,
65,
58,
73,
11,
331,
88,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
1976,
89,
4357,
308,
83,
62,
65,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
70,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
11,
474,
796,
479,
11,
479,
1343,
604,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
29487,
26933,
13655,
62,
65,
58,
72,
11,
31383,
4357,
308,
83,
62,
65,
58,
73,
11,
31383,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
331,
88,
4357,
308,
83,
62,
65,
58,
73,
11,
331,
88,
60,
4357,
685,
13655,
62,
65,
58,
72,
11,
1976,
89,
4357,
308,
83,
62,
65,
58,
73,
11,
1976,
89,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
70,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
41464,
62,
3506,
62,
9888,
7,
20772,
364,
18,
67,
13,
3447,
1758,
32590,
16,
11,
513,
828,
7877,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
7839,
13,
2617,
62,
5239,
10786,
40,
2606,
25,
23884,
4458,
18982,
7,
72,
280,
18,
67,
3524,
58,
535,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
1177,
62,
15003,
7,
68,
2768,
28,
1270,
1539,
35560,
320,
10779,
2231,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
2617,
62,
3524,
62,
292,
806,
26933,
16,
11,
16,
11,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
897,
13,
2617,
62,
87,
2475,
18,
67,
32590,
18,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
897,
13,
2617,
62,
88,
2475,
18,
67,
32590,
18,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
897,
13,
2617,
62,
89,
2475,
18,
67,
32590,
18,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
2617,
62,
87,
18242,
10786,
87,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
2617,
62,
2645,
9608,
10786,
88,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13,
2617,
62,
89,
18242,
10786,
89,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
12860,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
58,
4,
67,
25,
4064,
67,
14,
4,
67,
60,
4064,
82,
2994,
25,
4064,
69,
15789,
2606,
25,
4064,
69,
6,
4064,
357,
538,
5374,
11,
1312,
11,
997,
62,
43501,
11,
4171,
10786,
9288,
33809,
2994,
13,
9186,
22784,
45941,
13,
32604,
7,
72,
280,
18,
67,
3524,
22305,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
22462,
13,
33295,
7,
22462,
13,
9186,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
22462,
13,
33295,
7,
22462,
62,
27432,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22462,
62,
4868,
58,
538,
5374,
9,
3720,
16,
1343,
1312,
60,
796,
2994,
13,
9186,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
13,
33295,
7,
538,
5374,
9,
3720,
16,
1343,
1312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7110,
16,
13,
2617,
62,
87,
7890,
7,
312,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7110,
16,
13,
2617,
62,
5173,
1045,
7,
9288,
62,
22462,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7110,
17,
13,
2617,
62,
87,
7890,
7,
312,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7110,
17,
13,
2617,
62,
5173,
1045,
7,
27432,
62,
22462,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3785,
13,
5171,
11017,
13,
19334,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3785,
13,
5171,
11017,
13,
25925,
62,
31534,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
640,
13,
42832,
7,
15,
13,
486,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
628,
220,
220,
220,
28034,
13,
21928,
7,
4871,
7483,
13,
5219,
62,
11600,
22784,
705,
4,
82,
14,
565,
82,
62,
19849,
62,
4,
67,
13,
79,
400,
6,
4064,
357,
8738,
13,
448,
69,
11,
36835,
4008,
628,
198,
198,
7061,
6,
23350,
62,
30283,
796,
657,
198,
23350,
62,
9288,
2617,
796,
657,
198,
1640,
1312,
11,
7890,
287,
256,
80,
36020,
7,
268,
6975,
378,
7,
9288,
67,
10254,
1170,
263,
11,
657,
8,
2599,
198,
220,
220,
220,
2173,
11,
2496,
796,
1366,
198,
220,
220,
220,
2496,
796,
2496,
58,
45299,
657,
60,
198,
220,
220,
220,
2173,
796,
2173,
13,
7645,
3455,
7,
17,
11,
352,
8,
198,
220,
220,
220,
2173,
11,
2496,
796,
2173,
13,
66,
15339,
22784,
2496,
13,
66,
15339,
3419,
198,
220,
220,
220,
1398,
7483,
796,
1398,
7483,
13,
18206,
3419,
198,
220,
220,
220,
2747,
11,
4808,
11,
4808,
11,
4808,
796,
1398,
7483,
7,
13033,
8,
198,
220,
220,
220,
2747,
62,
25541,
796,
2747,
13,
7890,
13,
9806,
7,
16,
38381,
16,
60,
198,
220,
220,
220,
3376,
796,
2747,
62,
25541,
13,
27363,
7,
16793,
13,
7890,
737,
36166,
22446,
16345,
3419,
198,
220,
220,
220,
2472,
62,
30283,
15853,
3376,
13,
9186,
3419,
198,
220,
220,
220,
2472,
62,
9288,
2617,
15853,
2173,
13,
7857,
3419,
58,
15,
60,
198,
198,
4798,
7203,
20311,
9922,
23884,
1911,
18982,
7,
23350,
62,
30283,
1220,
12178,
7,
23350,
62,
9288,
2617,
22305,
7061,
6
] | 1.881277 | 11,211 |
'''
Given a collection of distinct integers, return all possible permutations.
Example:
Input: [1,2,3]
Output:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
'''
| [
7061,
6,
198,
15056,
257,
4947,
286,
7310,
37014,
11,
1441,
477,
1744,
9943,
32855,
13,
198,
198,
16281,
25,
198,
198,
20560,
25,
685,
16,
11,
17,
11,
18,
60,
198,
26410,
25,
198,
58,
198,
220,
685,
16,
11,
17,
11,
18,
4357,
198,
220,
685,
16,
11,
18,
11,
17,
4357,
198,
220,
685,
17,
11,
16,
11,
18,
4357,
198,
220,
685,
17,
11,
18,
11,
16,
4357,
198,
220,
685,
18,
11,
16,
11,
17,
4357,
198,
220,
685,
18,
11,
17,
11,
16,
60,
198,
60,
198,
7061,
6,
628
] | 1.947917 | 96 |
import os
import sys
sys.path.append("..")
import argparse
from pathlib import Path
# Import teaching utils
import pandas as pd
import numpy as np
from utils.neuralnetwork import NeuralNetwork
# Import sklearn metrics
from sklearn import metrics
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = "train neural network on the full MNIST dataset and view the classifier metrics")
parser.add_argument("-d", "--data_path", default = Path('../data/'), type = Path, help = "path to where the MNIST csv-files dataset is saved or where to save it")
parser.add_argument("-e", "--epochs", default = 5, type = int, help = "numbers of epochs to train")
args = parser.parse_args()
main(data_path = args.data_path, epochs = args.epochs) | [
11748,
28686,
198,
11748,
25064,
198,
17597,
13,
6978,
13,
33295,
7203,
492,
4943,
198,
11748,
1822,
29572,
198,
6738,
3108,
8019,
1330,
10644,
198,
198,
2,
17267,
7743,
3384,
4487,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
3384,
4487,
13,
710,
1523,
27349,
1330,
47986,
26245,
198,
198,
2,
17267,
1341,
35720,
20731,
198,
6738,
1341,
35720,
1330,
20731,
198,
6738,
1341,
35720,
13,
19608,
292,
1039,
1330,
21207,
62,
9654,
4029,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
4512,
62,
9288,
62,
35312,
198,
6738,
1341,
35720,
13,
3866,
36948,
1330,
36052,
33,
22050,
7509,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
7,
11213,
796,
366,
27432,
17019,
3127,
319,
262,
1336,
29060,
8808,
27039,
290,
1570,
262,
1398,
7483,
20731,
4943,
628,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
12,
67,
1600,
366,
438,
7890,
62,
6978,
1600,
4277,
796,
10644,
10786,
40720,
7890,
14,
33809,
2099,
796,
10644,
11,
1037,
796,
366,
6978,
284,
810,
262,
29060,
8808,
269,
21370,
12,
16624,
27039,
318,
7448,
393,
810,
284,
3613,
340,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
12,
68,
1600,
366,
438,
538,
5374,
82,
1600,
4277,
796,
642,
11,
2099,
796,
493,
11,
1037,
796,
366,
77,
17024,
286,
36835,
82,
284,
4512,
4943,
628,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1388,
7,
7890,
62,
6978,
796,
26498,
13,
7890,
62,
6978,
11,
36835,
82,
796,
26498,
13,
538,
5374,
82,
8
] | 3.230769 | 286 |
import re
from oelint_adv.cls_item import Variable
from oelint_adv.cls_rule import Rule
| [
11748,
302,
198,
198,
6738,
267,
417,
600,
62,
32225,
13,
565,
82,
62,
9186,
1330,
35748,
198,
6738,
267,
417,
600,
62,
32225,
13,
565,
82,
62,
25135,
1330,
14330,
628
] | 2.8125 | 32 |
from google.oauth2 import service_account
from google.cloud import bigquery
from datetime import datetime
| [
6738,
23645,
13,
12162,
1071,
17,
1330,
2139,
62,
23317,
201,
198,
6738,
23645,
13,
17721,
1330,
1263,
22766,
201,
198,
6738,
4818,
8079,
1330,
4818,
8079,
201
] | 3.857143 | 28 |
#
# Copyright 2014+ Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Base class for configurable processing components. Processing components are
designed to be pipelined.
"""
| [
2,
198,
2,
220,
15069,
1946,
10,
33976,
49808,
2059,
198,
2,
198,
2,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
220,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
220,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
220,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
220,
11247,
739,
262,
13789,
13,
198,
2,
198,
198,
37811,
198,
220,
220,
220,
7308,
1398,
329,
4566,
11970,
7587,
6805,
13,
28403,
6805,
389,
198,
220,
220,
220,
3562,
284,
307,
7347,
417,
1389,
13,
198,
37811,
198
] | 3.774869 | 191 |
"""yamlip - A yaml interpolation tool"""
__version__ = '0.0.1'
__author__ = 'Jan Murre <[email protected]>'
__all__ = []
import functools
from string import Template
from attrdict import AttrDict
import yaml
import click
@click.command()
@click.argument("source_yaml_file")
@click.option("-o", "--output")
| [
37811,
88,
321,
40712,
532,
317,
331,
43695,
39555,
341,
2891,
37811,
198,
198,
834,
9641,
834,
796,
705,
15,
13,
15,
13,
16,
6,
198,
834,
9800,
834,
796,
705,
12128,
5921,
260,
1279,
13881,
13,
28582,
260,
31,
9246,
3400,
89,
13,
21283,
29,
6,
198,
834,
439,
834,
796,
17635,
198,
198,
11748,
1257,
310,
10141,
198,
6738,
4731,
1330,
37350,
198,
6738,
708,
4372,
713,
1330,
3460,
81,
35,
713,
198,
11748,
331,
43695,
198,
11748,
3904,
628,
628,
198,
198,
31,
12976,
13,
21812,
3419,
198,
31,
12976,
13,
49140,
7203,
10459,
62,
88,
43695,
62,
7753,
4943,
198,
31,
12976,
13,
18076,
7203,
12,
78,
1600,
366,
438,
22915,
4943,
198
] | 2.700855 | 117 |
import unittest
from datastructure.links.PositionList import PositionList
if __name__ == '__main__':
unittest.main()
| [
11748,
555,
715,
395,
198,
6738,
4818,
459,
5620,
13,
28751,
13,
26545,
8053,
1330,
23158,
8053,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 3 | 42 |
# -*- encoding: utf-8 -*-
#
# Copyright © 2018 Julien Danjou <[email protected]>
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import pyparsing
import pytest
from mergify_engine.rules import parser
| [
2,
532,
9,
12,
21004,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
198,
2,
15069,
10673,
2864,
5979,
2013,
6035,
73,
280,
1279,
73,
67,
31,
647,
70,
1958,
13,
952,
29,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
739,
262,
13789,
13,
198,
11748,
279,
4464,
945,
278,
198,
11748,
12972,
9288,
198,
198,
6738,
4017,
70,
1958,
62,
18392,
13,
38785,
1330,
30751,
628,
198
] | 3.455446 | 202 |
from melodb.loggers import ILogger, ConsoleLogger, MongoLogger
from typing import List
| [
198,
6738,
7758,
375,
65,
13,
6404,
5355,
1330,
314,
11187,
1362,
11,
24371,
11187,
1362,
11,
42591,
11187,
1362,
198,
6738,
19720,
1330,
7343,
628
] | 3.423077 | 26 |
import math
import itertools
import operator
import numpy
import pylab
import scipy.fftpack
import overlap
def autocorrelation(signal):
""" this matches Marsyas exactly. """
N = signal.shape[1]
ffts = scipy.fftpack.fft(signal, 2*N, axis=1) / (2*N)
ffts_abs = abs(ffts)
ffts_abs_scaled = ffts_abs**0.5
scratch = (scipy.fftpack.ifft(ffts_abs_scaled, axis=1
).real)*(2*N)
xcorr = scratch[:,:N]
return xcorr
GCD_TOLERANCE = 0.1
TOLERANCE = 1.04
MAX_BPM = 1000
| [
11748,
10688,
198,
11748,
340,
861,
10141,
198,
11748,
10088,
198,
198,
11748,
299,
32152,
198,
11748,
279,
2645,
397,
198,
11748,
629,
541,
88,
13,
487,
83,
8002,
198,
198,
11748,
21721,
198,
198,
4299,
1960,
420,
273,
49501,
7,
12683,
282,
2599,
198,
220,
220,
220,
37227,
428,
7466,
8706,
88,
292,
3446,
13,
37227,
198,
220,
220,
220,
399,
796,
6737,
13,
43358,
58,
16,
60,
198,
220,
220,
220,
277,
35594,
796,
629,
541,
88,
13,
487,
83,
8002,
13,
487,
83,
7,
12683,
282,
11,
362,
9,
45,
11,
16488,
28,
16,
8,
1220,
357,
17,
9,
45,
8,
198,
220,
220,
220,
277,
35594,
62,
8937,
796,
2352,
7,
487,
912,
8,
198,
220,
220,
220,
277,
35594,
62,
8937,
62,
1416,
3021,
796,
277,
35594,
62,
8937,
1174,
15,
13,
20,
198,
220,
220,
220,
12692,
796,
357,
1416,
541,
88,
13,
487,
83,
8002,
13,
361,
701,
7,
487,
912,
62,
8937,
62,
1416,
3021,
11,
16488,
28,
16,
198,
220,
220,
220,
220,
220,
220,
220,
6739,
5305,
27493,
7,
17,
9,
45,
8,
198,
220,
220,
220,
2124,
10215,
81,
796,
12692,
58,
45299,
25,
45,
60,
198,
220,
220,
220,
1441,
2124,
10215,
81,
628,
198,
38,
8610,
62,
51,
3535,
1137,
19240,
796,
657,
13,
16,
198,
198,
51,
3535,
1137,
19240,
796,
352,
13,
3023,
198,
198,
22921,
62,
33,
5868,
796,
8576,
628,
198
] | 2.121849 | 238 |
import numpy as np
from sklearn.decomposition import PCA
from scipy.stats import zscore
import time
import csv
import os
import nibabel
from sklearn.metrics.pairwise import euclidean_distances
from scipy.ndimage.filters import gaussian_filter
from utils.ridge_tools import cross_val_ridge, corr
import time as tm
import sys
# train/test is the full NLP feature
# train/test_pca is the NLP feature reduced to 10 dimensions via PCA that has been fit on the training data
# feat_dir is the directory where the NLP features are stored
# train_indicator is an array of 0s and 1s indicating whether the word at this index is in the training set
| [
11748,
299,
32152,
355,
45941,
198,
6738,
1341,
35720,
13,
12501,
296,
9150,
1330,
4217,
32,
198,
6738,
629,
541,
88,
13,
34242,
1330,
1976,
26675,
198,
11748,
640,
198,
11748,
269,
21370,
198,
11748,
28686,
198,
11748,
33272,
9608,
198,
6738,
1341,
35720,
13,
4164,
10466,
13,
24874,
3083,
1330,
304,
36616,
485,
272,
62,
17080,
1817,
198,
6738,
629,
541,
88,
13,
358,
9060,
13,
10379,
1010,
1330,
31986,
31562,
62,
24455,
198,
198,
6738,
3384,
4487,
13,
12818,
62,
31391,
1330,
3272,
62,
2100,
62,
12818,
11,
1162,
81,
198,
11748,
640,
355,
256,
76,
198,
11748,
25064,
628,
220,
220,
220,
220,
198,
198,
2,
4512,
14,
9288,
318,
262,
1336,
399,
19930,
3895,
198,
2,
4512,
14,
9288,
62,
79,
6888,
318,
262,
399,
19930,
3895,
5322,
284,
838,
15225,
2884,
4217,
32,
326,
468,
587,
4197,
319,
262,
3047,
1366,
198,
2,
2218,
62,
15908,
318,
262,
8619,
810,
262,
399,
19930,
3033,
389,
8574,
198,
2,
4512,
62,
521,
26407,
318,
281,
7177,
286,
657,
82,
290,
352,
82,
12739,
1771,
262,
1573,
379,
428,
6376,
318,
287,
262,
3047,
900,
628,
198,
220,
220,
198
] | 3.378238 | 193 |
import pandas as pd
import os
import numpy as np
import datetime
import csv
from Code.create_collector import vti_init
from Code.preprocessing import vector_merge
| [
11748,
19798,
292,
355,
279,
67,
198,
11748,
28686,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
4818,
8079,
198,
11748,
269,
21370,
198,
6738,
6127,
13,
17953,
62,
33327,
273,
1330,
410,
20259,
62,
15003,
198,
6738,
6127,
13,
3866,
36948,
1330,
15879,
62,
647,
469,
628,
628,
628,
628,
198
] | 3.288462 | 52 |
import time
from datetime import datetime as dt
"""
host files for windows windows c:\windows\system32\drivers\etc
host files for linux & Mac /ect/hosts
"""
# list paths
hosts_path_system = r"C:\Windows\System32\drivers\etc\hosts"
host_dir = hosts_path_system
#host_dir = "hosts" local
redir = "127.0.0.1"
# list websites to block
websites_list =[
"www.facebook.com",
"www.youtube.com",
"www.google.com.mx"
]
# Define working hours
from_hour = 7
to_hour = 13
#Main Program
while True:
if dt(dt.now().year, dt.now().month, dt.now().day, from_hour) < dt.now() < dt(dt.now().year, dt.now().month, dt.now().day, to_hour):
print("En hora de trabajar: Bloqueo Activo ")
with open(host_dir, 'r+') as file:
content = file.read()
for website in websites_list:
if website in content:
pass
else:
file.write(redir + " " + website + "\n")
else:
with open(host_dir, 'r+') as file:
content = file.readlines()
file.seek(0)
for line in content:
if not any(website in line for website in websites_list):
file.write(line)
file.truncate()
print("Es hora de relajarse: Bloqueo Desactivado")
time.sleep(1) #Seconds | [
11748,
640,
198,
6738,
4818,
8079,
1330,
4818,
8079,
355,
288,
83,
220,
198,
37811,
198,
220,
220,
220,
2583,
3696,
329,
9168,
220,
9168,
269,
7479,
28457,
59,
10057,
2624,
59,
36702,
59,
14784,
198,
220,
220,
220,
2583,
3696,
329,
32639,
1222,
4100,
1220,
478,
14,
4774,
82,
198,
37811,
198,
2,
1351,
13532,
198,
4774,
82,
62,
6978,
62,
10057,
796,
374,
1,
34,
7479,
11209,
59,
11964,
2624,
59,
36702,
59,
14784,
59,
4774,
82,
1,
198,
4774,
62,
15908,
796,
11453,
62,
6978,
62,
10057,
198,
2,
4774,
62,
15908,
796,
366,
4774,
82,
1,
1957,
198,
445,
343,
796,
366,
16799,
13,
15,
13,
15,
13,
16,
1,
220,
198,
198,
2,
1351,
9293,
284,
2512,
220,
198,
732,
1443,
2737,
62,
4868,
796,
58,
198,
220,
220,
220,
366,
2503,
13,
19024,
13,
785,
1600,
198,
220,
220,
220,
366,
2503,
13,
11604,
13,
785,
1600,
198,
220,
220,
220,
366,
2503,
13,
13297,
13,
785,
13,
36802,
1,
198,
60,
198,
2,
2896,
500,
1762,
2250,
220,
198,
6738,
62,
9769,
796,
767,
198,
1462,
62,
9769,
796,
1511,
198,
198,
2,
13383,
6118,
220,
198,
4514,
6407,
25,
198,
220,
220,
220,
611,
288,
83,
7,
28664,
13,
2197,
22446,
1941,
11,
288,
83,
13,
2197,
22446,
8424,
11,
288,
83,
13,
2197,
22446,
820,
11,
422,
62,
9769,
8,
1279,
288,
83,
13,
2197,
3419,
1279,
288,
83,
7,
28664,
13,
2197,
22446,
1941,
11,
288,
83,
13,
2197,
22446,
8424,
11,
288,
83,
13,
2197,
22446,
820,
11,
284,
62,
9769,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
4834,
3076,
64,
390,
491,
397,
1228,
283,
25,
1086,
78,
4188,
78,
13144,
78,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
4774,
62,
15908,
11,
705,
81,
10,
11537,
355,
2393,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2695,
796,
2393,
13,
961,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
3052,
287,
9293,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3052,
287,
2695,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
13,
13564,
7,
445,
343,
1343,
366,
366,
1343,
3052,
1343,
37082,
77,
4943,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
4774,
62,
15908,
11,
705,
81,
10,
11537,
355,
2393,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2695,
796,
2393,
13,
961,
6615,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
13,
36163,
7,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1627,
287,
2695,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
597,
7,
732,
12485,
287,
1627,
329,
3052,
287,
9293,
62,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
13,
13564,
7,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
13,
2213,
19524,
378,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
23041,
3076,
64,
390,
823,
1228,
17208,
25,
1086,
78,
4188,
78,
2935,
15791,
4533,
4943,
198,
220,
220,
220,
640,
13,
42832,
7,
16,
8,
1303,
12211,
82
] | 2.1 | 640 |
import importlib
import pkgutil
import aurora.drivers
| [
11748,
1330,
8019,
198,
11748,
279,
10025,
22602,
198,
198,
11748,
45714,
5799,
13,
36702,
628,
628,
628
] | 3.333333 | 18 |
from functools import partial
from typing import Tuple
import chika
import homura
import torch
import torch.nn.functional as F
from homura import lr_scheduler, reporters, trainers
from homura.vision import DATASET_REGISTRY, MODEL_REGISTRY
from sam import SAMSGD as _SAMSGD
@chika.config
@chika.config
@chika.main(cfg_cls=Config, strict=True)
if __name__ == '__main__':
main()
| [
6738,
1257,
310,
10141,
1330,
13027,
198,
6738,
19720,
1330,
309,
29291,
198,
198,
11748,
442,
9232,
198,
11748,
3488,
5330,
198,
11748,
28034,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
6738,
3488,
5330,
1330,
300,
81,
62,
1416,
704,
18173,
11,
7638,
11,
28514,
198,
6738,
3488,
5330,
13,
10178,
1330,
360,
1404,
1921,
2767,
62,
31553,
1797,
40405,
11,
19164,
3698,
62,
31553,
1797,
40405,
198,
198,
6738,
6072,
1330,
28844,
38475,
35,
355,
4808,
49302,
38475,
35,
628,
198,
198,
31,
354,
9232,
13,
11250,
628,
198,
31,
354,
9232,
13,
11250,
628,
628,
198,
31,
354,
9232,
13,
12417,
7,
37581,
62,
565,
82,
28,
16934,
11,
7646,
28,
17821,
8,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.868613 | 137 |
import csv
import io
from flask import (
current_app,
flash,
redirect,
render_template,
request,
Response,
url_for,
)
from flask_login import current_user
from . import admin_bp
from .forms import (
CancelCarpoolAdminForm,
DeleteDestinationForm,
DestinationForm,
ProfilePurgeForm,
)
from geoalchemy2.shape import to_shape
from .. import db
from ..email import send_email
from ..carpool.views import (
cancel_carpool,
email_driver_rider_cancelled_request,
)
from ..models import (
Carpool,
Destination,
Person,
Role,
PersonRole,
RideRequest,
)
@admin_bp.route('/admin/')
@admin_bp.route('/admin/stats/')
@admin_bp.route('/admin/users/<uuid>')
@admin_bp.route('/admin/users/<uuid>/purge', methods=['GET', 'POST'])
@admin_bp.route('/admin/users/<user_uuid>/togglerole', methods=['POST'])
@admin_bp.route('/admin/users')
@admin_bp.route('/admin/drivers_and_riders')
@admin_bp.route('/admin/users.csv')
@admin_bp.route('/admin/carpools')
@admin_bp.route('/admin/carpools.csv')
@admin_bp.route('/admin/destinations')
@admin_bp.route('/admin/destinations/new', methods=['GET', 'POST'])
@admin_bp.route('/admin/destinations/<uuid>', methods=['GET', 'POST'])
@admin_bp.route('/admin/destinations/<uuid>/delete', methods=['GET', 'POST'])
@admin_bp.route('/admin/destinations/<uuid>/togglehidden', methods=['POST'])
@admin_bp.route('/admin/emailpreview/<template>')
@admin_bp.route('/admin/<uuid>/cancel', methods=['GET', 'POST'])
| [
11748,
269,
21370,
198,
11748,
33245,
198,
6738,
42903,
1330,
357,
198,
220,
220,
220,
1459,
62,
1324,
11,
198,
220,
220,
220,
7644,
11,
198,
220,
220,
220,
18941,
11,
198,
220,
220,
220,
8543,
62,
28243,
11,
198,
220,
220,
220,
2581,
11,
198,
220,
220,
220,
18261,
11,
198,
220,
220,
220,
19016,
62,
1640,
11,
198,
8,
198,
6738,
42903,
62,
38235,
1330,
1459,
62,
7220,
198,
6738,
764,
1330,
13169,
62,
46583,
198,
6738,
764,
23914,
1330,
357,
198,
220,
220,
220,
27910,
34,
5117,
970,
46787,
8479,
11,
198,
220,
220,
220,
23520,
24159,
1883,
8479,
11,
198,
220,
220,
220,
45657,
8479,
11,
198,
220,
220,
220,
13118,
30026,
469,
8479,
11,
198,
8,
198,
6738,
40087,
282,
26599,
17,
13,
43358,
1330,
284,
62,
43358,
198,
6738,
11485,
1330,
20613,
198,
6738,
11485,
12888,
1330,
3758,
62,
12888,
198,
6738,
11485,
66,
5117,
970,
13,
33571,
1330,
357,
198,
220,
220,
220,
14241,
62,
66,
5117,
970,
11,
198,
220,
220,
220,
3053,
62,
26230,
62,
49449,
62,
66,
590,
3353,
62,
25927,
11,
198,
8,
198,
6738,
11485,
27530,
1330,
357,
198,
220,
220,
220,
1879,
7742,
11,
198,
220,
220,
220,
45657,
11,
198,
220,
220,
220,
7755,
11,
198,
220,
220,
220,
20934,
11,
198,
220,
220,
220,
7755,
47445,
11,
198,
220,
220,
220,
21640,
18453,
11,
198,
8,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
11537,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
34242,
14,
11537,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
18417,
14,
27,
12303,
312,
29,
11537,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
18417,
14,
27,
12303,
312,
29,
14,
14225,
469,
3256,
5050,
28,
17816,
18851,
3256,
705,
32782,
6,
12962,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
18417,
14,
27,
7220,
62,
12303,
312,
29,
14,
83,
10332,
1754,
2305,
3256,
5050,
28,
17816,
32782,
6,
12962,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
18417,
11537,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
36702,
62,
392,
62,
81,
4157,
11537,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
18417,
13,
40664,
11537,
198,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
66,
5117,
10141,
11537,
198,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
66,
5117,
10141,
13,
40664,
11537,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
16520,
7352,
11537,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
16520,
7352,
14,
3605,
3256,
5050,
28,
17816,
18851,
3256,
705,
32782,
6,
12962,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
16520,
7352,
14,
27,
12303,
312,
29,
3256,
5050,
28,
17816,
18851,
3256,
705,
32782,
6,
12962,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
16520,
7352,
14,
27,
12303,
312,
29,
14,
33678,
3256,
5050,
28,
17816,
18851,
3256,
705,
32782,
6,
12962,
628,
198,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
16520,
7352,
14,
27,
12303,
312,
29,
14,
44256,
30342,
3256,
5050,
28,
17816,
32782,
6,
12962,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
12888,
3866,
1177,
14,
27,
28243,
29,
11537,
628,
198,
31,
28482,
62,
46583,
13,
38629,
10786,
14,
28482,
14,
27,
12303,
312,
29,
14,
66,
21130,
3256,
5050,
28,
17816,
18851,
3256,
705,
32782,
6,
12962,
198
] | 2.527273 | 605 |
import sys
import os
import json
import glob
import pandas as pd
import plotly
import plotly.graph_objs as go
if len(sys.argv) != 2:
print("Usage: python tune_plot.py <result_dir>")
print("Example: python tune_pot.py ~/ray_results/objective_mean_2021-04-08_00-07-44/")
result_dir = sys.argv[1]
tune_run = os.path.basename(os.path.normpath(result_dir))
results = glob.glob(os.path.join(result_dir, "*", "result.json"))
score = []
kp = []
ki = []
kd = []
alpha = []
fullPID = False
for results_file in results:
print(results_file)
with open(results_file) as f:
try:
d = json.load(f)
except:
continue
score.append(d['score'])
kp.append(d['config']['kp'])
ki.append(d['config']['ki'])
if 'kd' in d['config']:
kd.append(d['config']['kd'])
fullPID = True
alpha.append(d['config']['alpha'])
# 5D plot
if fullPID:
#Set marker properties
markersize = [x * 20 for x in alpha]
markercolor = score
#Make Plotly figure
fig1 = go.Scatter3d(x=kp,
y=ki,
z=kd,
marker=dict(size=markersize,
color=markercolor,
opacity=0.5,
line=dict(width=2,
color='DarkSlateGrey'),
reversescale=False,
colorscale='blues'),
line=dict (width=0.02),
mode='markers')
#Make Plot.ly Layout
kp_range = [min(kp), max(kp)]
ki_range = [min(ki), max(kd)]
kd_range = [min(ki), max(kd)]
#ki_range = [0, 6e-6]
#kd_range = [0, 6e-6]
mylayout = go.Layout(scene=dict(xaxis=dict(title="kp", range=kp_range, showexponent = 'all', exponentformat = 'e'),
yaxis=dict(title="ki", range=ki_range, showexponent = 'all', exponentformat = 'e'),
zaxis=dict(title="kd", range=kd_range, showexponent = 'all', exponentformat = 'e')))
#Plot and save html
plotly.offline.plot({"data": [fig1],
"layout": mylayout},
image = 'png',
image_filename = 'tune_analyze_PID.png',
auto_open=True,
filename=("PID Scores Plot " + tune_run + ".html"))
else:
#Set marker properties
#markersize = [x * 20 for x in alpha]
markersize = [10 for x in alpha]
markercolor = score
#Make Plotly figure
fig1 = go.Scatter3d(x=kp,
y=ki,
z=alpha,
marker=dict(size=markersize,
color=markercolor,
opacity=0.5,
line=dict(width=2,
color='DarkSlateGrey'),
reversescale=False,
colorscale='blues'),
line=dict (width=0.02),
mode='markers')
#Make Plot.ly Layout
mylayout = go.Layout(scene=dict(xaxis=dict(title="kp", showexponent = 'all', exponentformat = 'e'),
yaxis=dict(title="ki",showexponent = 'all', exponentformat = 'e'),
zaxis=dict(title="alpha", showexponent = 'all', exponentformat = 'e')))
#Plot and save html
plotly.offline.plot({"data": [fig1],
"layout": mylayout},
image = 'png',
image_filename = 'tune_analyze_PI.png',
auto_open=True,
filename=("PI Scores Plot " + tune_run + ".html"))
| [
11748,
25064,
198,
11748,
28686,
198,
11748,
33918,
198,
11748,
15095,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
7110,
306,
198,
11748,
7110,
306,
13,
34960,
62,
672,
8457,
355,
467,
198,
198,
361,
18896,
7,
17597,
13,
853,
85,
8,
14512,
362,
25,
198,
220,
220,
220,
3601,
7203,
28350,
25,
21015,
14009,
62,
29487,
13,
9078,
1279,
20274,
62,
15908,
29,
4943,
198,
220,
220,
220,
3601,
7203,
16281,
25,
21015,
14009,
62,
13059,
13,
9078,
47795,
2433,
62,
43420,
14,
15252,
425,
62,
32604,
62,
1238,
2481,
12,
3023,
12,
2919,
62,
405,
12,
2998,
12,
2598,
14,
4943,
220,
198,
198,
20274,
62,
15908,
796,
25064,
13,
853,
85,
58,
16,
60,
198,
83,
1726,
62,
5143,
796,
28686,
13,
6978,
13,
12093,
12453,
7,
418,
13,
6978,
13,
27237,
6978,
7,
20274,
62,
15908,
4008,
198,
43420,
796,
15095,
13,
4743,
672,
7,
418,
13,
6978,
13,
22179,
7,
20274,
62,
15908,
11,
366,
9,
1600,
366,
20274,
13,
17752,
48774,
198,
198,
26675,
796,
17635,
198,
74,
79,
796,
17635,
198,
4106,
796,
17635,
198,
74,
67,
796,
17635,
198,
26591,
796,
17635,
198,
12853,
47,
2389,
796,
10352,
198,
1640,
2482,
62,
7753,
287,
2482,
25,
198,
220,
220,
220,
3601,
7,
43420,
62,
7753,
8,
198,
220,
220,
220,
351,
1280,
7,
43420,
62,
7753,
8,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
796,
33918,
13,
2220,
7,
69,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
4776,
13,
33295,
7,
67,
17816,
26675,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
479,
79,
13,
33295,
7,
67,
17816,
11250,
6,
7131,
6,
74,
79,
6,
12962,
220,
198,
220,
220,
220,
220,
220,
220,
220,
47748,
13,
33295,
7,
67,
17816,
11250,
6,
7131,
6,
4106,
6,
12962,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
705,
74,
67,
6,
287,
288,
17816,
11250,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
479,
67,
13,
33295,
7,
67,
17816,
11250,
6,
7131,
6,
74,
67,
6,
12962,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1336,
47,
2389,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
13,
33295,
7,
67,
17816,
11250,
6,
7131,
6,
26591,
6,
12962,
220,
198,
198,
2,
642,
35,
7110,
198,
361,
1336,
47,
2389,
25,
198,
220,
220,
220,
1303,
7248,
18364,
6608,
198,
220,
220,
220,
19736,
1096,
796,
685,
87,
1635,
1160,
329,
2124,
287,
17130,
60,
198,
220,
220,
220,
1317,
2798,
45621,
796,
4776,
628,
220,
220,
220,
1303,
12050,
28114,
306,
3785,
198,
220,
220,
220,
2336,
16,
796,
467,
13,
3351,
1436,
18,
67,
7,
87,
28,
74,
79,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
28,
4106,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1976,
28,
74,
67,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18364,
28,
11600,
7,
7857,
28,
4102,
364,
1096,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
28,
4102,
2798,
45621,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45912,
28,
15,
13,
20,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
11600,
7,
10394,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
17367,
11122,
378,
49141,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10372,
3798,
1000,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7577,
38765,
11639,
2436,
947,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
11600,
357,
10394,
28,
15,
13,
2999,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4235,
11639,
4102,
364,
11537,
628,
220,
220,
220,
1303,
12050,
28114,
13,
306,
47639,
198,
220,
220,
220,
479,
79,
62,
9521,
796,
685,
1084,
7,
74,
79,
828,
3509,
7,
74,
79,
15437,
198,
220,
220,
220,
47748,
62,
9521,
796,
685,
1084,
7,
4106,
828,
3509,
7,
74,
67,
15437,
198,
220,
220,
220,
479,
67,
62,
9521,
796,
685,
1084,
7,
4106,
828,
3509,
7,
74,
67,
15437,
198,
220,
220,
220,
1303,
4106,
62,
9521,
796,
685,
15,
11,
718,
68,
12,
21,
60,
220,
198,
220,
220,
220,
1303,
74,
67,
62,
9521,
796,
685,
15,
11,
718,
68,
12,
21,
60,
220,
628,
220,
220,
220,
616,
39786,
796,
467,
13,
32517,
7,
29734,
28,
11600,
7,
87,
22704,
28,
11600,
7,
7839,
2625,
74,
79,
1600,
2837,
28,
74,
79,
62,
9521,
11,
905,
11201,
3471,
796,
705,
439,
3256,
28622,
18982,
796,
705,
68,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
22704,
28,
11600,
7,
7839,
2625,
4106,
1600,
2837,
28,
4106,
62,
9521,
11,
905,
11201,
3471,
796,
705,
439,
3256,
28622,
18982,
796,
705,
68,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1976,
22704,
28,
11600,
7,
7839,
2625,
74,
67,
1600,
2837,
28,
74,
67,
62,
9521,
11,
905,
11201,
3471,
796,
705,
439,
3256,
28622,
18982,
796,
705,
68,
6,
22305,
628,
220,
220,
220,
1303,
43328,
290,
3613,
27711,
198,
220,
220,
220,
7110,
306,
13,
2364,
1370,
13,
29487,
7,
4895,
7890,
1298,
685,
5647,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
39786,
1298,
616,
39786,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2939,
796,
705,
11134,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2939,
62,
34345,
796,
705,
83,
1726,
62,
38200,
2736,
62,
47,
2389,
13,
11134,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8295,
62,
9654,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29472,
28,
7203,
47,
2389,
44654,
28114,
366,
1343,
14009,
62,
5143,
1343,
27071,
6494,
48774,
198,
17772,
25,
198,
220,
220,
220,
1303,
7248,
18364,
6608,
198,
220,
220,
220,
1303,
4102,
364,
1096,
796,
685,
87,
1635,
1160,
329,
2124,
287,
17130,
60,
198,
220,
220,
220,
19736,
1096,
796,
685,
940,
329,
2124,
287,
17130,
60,
198,
220,
220,
220,
1317,
2798,
45621,
796,
4776,
628,
220,
220,
220,
1303,
12050,
28114,
306,
3785,
198,
220,
220,
220,
2336,
16,
796,
467,
13,
3351,
1436,
18,
67,
7,
87,
28,
74,
79,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
28,
4106,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1976,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18364,
28,
11600,
7,
7857,
28,
4102,
364,
1096,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
28,
4102,
2798,
45621,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45912,
28,
15,
13,
20,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
11600,
7,
10394,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
11639,
17367,
11122,
378,
49141,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10372,
3798,
1000,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7577,
38765,
11639,
2436,
947,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
11600,
357,
10394,
28,
15,
13,
2999,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4235,
11639,
4102,
364,
11537,
628,
220,
220,
220,
1303,
12050,
28114,
13,
306,
47639,
198,
220,
220,
220,
616,
39786,
796,
467,
13,
32517,
7,
29734,
28,
11600,
7,
87,
22704,
28,
11600,
7,
7839,
2625,
74,
79,
1600,
905,
11201,
3471,
796,
705,
439,
3256,
28622,
18982,
796,
705,
68,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
22704,
28,
11600,
7,
7839,
2625,
4106,
1600,
12860,
11201,
3471,
796,
705,
439,
3256,
28622,
18982,
796,
705,
68,
33809,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1976,
22704,
28,
11600,
7,
7839,
2625,
26591,
1600,
905,
11201,
3471,
796,
705,
439,
3256,
28622,
18982,
796,
705,
68,
6,
22305,
628,
220,
220,
220,
1303,
43328,
290,
3613,
27711,
198,
220,
220,
220,
7110,
306,
13,
2364,
1370,
13,
29487,
7,
4895,
7890,
1298,
685,
5647,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
39786,
1298,
616,
39786,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2939,
796,
705,
11134,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2939,
62,
34345,
796,
705,
83,
1726,
62,
38200,
2736,
62,
11901,
13,
11134,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8295,
62,
9654,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29472,
28,
7203,
11901,
44654,
28114,
366,
220,
1343,
14009,
62,
5143,
1343,
27071,
6494,
48774,
198
] | 1.727273 | 2,266 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
File Name:softmaxMnist
Description : mnist data sets, softmax model
pytorch 不需要进行 one-hot 编码, 使用类别即可
Email : [email protected]
Date:18-1-16
"""
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.nn import Module, functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
# 网络模型定义
if __name__ == '__main__':
# some config
config = {'batch_size': 64, 'epoch_num': 100, 'lr': 0.001, 'in_feature': 28 * 28, 'out_feature': 10}
train_loader, test_loader = get_data(), get_data(flag=False)
# 模型实例与损失函数, 优化函数
model = Network()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=config['lr'], momentum=0.9)
# 训练与测试
for epoch in range(config['epoch_num']):
train_m(model, train_loader)
test_m(model, test_loader)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
47232,
12,
198,
220,
220,
9220,
6530,
171,
120,
248,
4215,
9806,
44,
77,
396,
198,
220,
220,
12489,
1058,
285,
77,
396,
1366,
5621,
11,
2705,
9806,
2746,
198,
220,
220,
12972,
13165,
354,
220,
38834,
165,
250,
222,
17358,
223,
32573,
249,
26193,
234,
530,
12,
8940,
13328,
120,
244,
163,
254,
223,
11,
220,
45635,
18796,
101,
163,
109,
119,
26344,
104,
39355,
111,
20998,
107,
198,
220,
220,
9570,
1058,
1960,
7258,
4528,
84,
31,
24136,
13,
785,
198,
220,
220,
7536,
171,
120,
248,
1507,
12,
16,
12,
1433,
198,
37811,
198,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
28034,
13,
40085,
355,
6436,
198,
6738,
28034,
13,
2306,
519,
6335,
1330,
35748,
198,
6738,
28034,
13,
20471,
1330,
19937,
11,
10345,
355,
376,
198,
6738,
28034,
13,
26791,
13,
7890,
1330,
6060,
17401,
198,
6738,
28034,
10178,
1330,
31408,
198,
6738,
28034,
10178,
13,
19608,
292,
1039,
1330,
29060,
8808,
628,
198,
198,
2,
13328,
121,
239,
163,
119,
250,
162,
101,
94,
161,
252,
233,
22522,
248,
20046,
231,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1303,
617,
4566,
198,
220,
220,
220,
4566,
796,
1391,
6,
43501,
62,
7857,
10354,
5598,
11,
705,
538,
5374,
62,
22510,
10354,
1802,
11,
705,
14050,
10354,
657,
13,
8298,
11,
705,
259,
62,
30053,
10354,
2579,
1635,
2579,
11,
705,
448,
62,
30053,
10354,
838,
92,
198,
220,
220,
220,
4512,
62,
29356,
11,
1332,
62,
29356,
796,
651,
62,
7890,
22784,
651,
62,
7890,
7,
32109,
28,
25101,
8,
198,
220,
220,
220,
1303,
10545,
101,
94,
161,
252,
233,
22522,
252,
160,
122,
233,
10310,
236,
162,
235,
253,
13783,
109,
49035,
121,
46763,
108,
11,
220,
27670,
246,
44293,
244,
49035,
121,
46763,
108,
198,
220,
220,
220,
2746,
796,
7311,
3419,
198,
220,
220,
220,
34054,
796,
299,
77,
13,
21544,
14539,
28338,
43,
793,
3419,
198,
220,
220,
220,
6436,
7509,
796,
6436,
13,
38475,
35,
7,
19849,
13,
17143,
7307,
22784,
300,
81,
28,
11250,
17816,
14050,
6,
4357,
12858,
28,
15,
13,
24,
8,
198,
220,
220,
220,
1303,
5525,
106,
255,
163,
119,
225,
10310,
236,
38184,
233,
46237,
243,
198,
220,
220,
220,
329,
36835,
287,
2837,
7,
11250,
17816,
538,
5374,
62,
22510,
20520,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
76,
7,
19849,
11,
4512,
62,
29356,
8,
198,
220,
220,
220,
1332,
62,
76,
7,
19849,
11,
1332,
62,
29356,
8,
198
] | 2.261641 | 451 |
from sys import path; path += [".", ".."] # hacky...
from utils import *
if __name__ == "__main__":
ciphertexts = map(dehex, load_data("4.txt").split("\n"))
keyspace = list(range(0x100))
plaintexts = reduce(op.add, [
[xor(ct, [key]) for key in keyspace]
for ct in ciphertexts
])
best_plaintext = min(plaintexts, key=englishness) # I like this code
message = best_plaintext.decode()
assert(message == "Now that the party is jumping\n")
print(message.strip())
| [
6738,
25064,
1330,
3108,
26,
3108,
15853,
14631,
33283,
366,
492,
8973,
1303,
8156,
88,
986,
198,
6738,
3384,
4487,
1330,
1635,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
197,
66,
10803,
5239,
82,
796,
3975,
7,
2934,
33095,
11,
3440,
62,
7890,
7203,
19,
13,
14116,
11074,
35312,
7203,
59,
77,
48774,
198,
197,
13083,
10223,
796,
1351,
7,
9521,
7,
15,
87,
3064,
4008,
198,
197,
198,
197,
25638,
5239,
82,
796,
4646,
7,
404,
13,
2860,
11,
685,
198,
197,
197,
58,
87,
273,
7,
310,
11,
685,
2539,
12962,
329,
1994,
287,
8251,
10223,
60,
198,
197,
197,
1640,
269,
83,
287,
38012,
5239,
82,
198,
197,
12962,
198,
197,
198,
197,
13466,
62,
25638,
5239,
796,
949,
7,
25638,
5239,
82,
11,
1994,
28,
39126,
1108,
8,
1303,
314,
588,
428,
2438,
198,
197,
198,
197,
20500,
796,
1266,
62,
25638,
5239,
13,
12501,
1098,
3419,
198,
197,
30493,
7,
20500,
6624,
366,
3844,
326,
262,
2151,
318,
14284,
59,
77,
4943,
198,
197,
4798,
7,
20500,
13,
36311,
28955,
198
] | 2.620879 | 182 |
# Copyright 2020 EPAM Systems
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import docker
import pytest
from pytest_mock import MockFixture
from odahuflow.sdk.local import packaging
from odahuflow.sdk.local.packaging import start_package
from odahuflow.sdk.models import K8sPackager, ModelPackaging, ModelPackagingSpec, PackagingIntegration, \
PackagingIntegrationSpec
# Format: ['artifact_name', 'artifact_path',
# 'expected_artifact_name', expected_artifact_path]
test_data = [
(
'wine-1.0', '/odahu/training',
'wine-1.0', '/odahu/training'
),
(
'wine-1.0.zip', '/odahu/training',
'wine-1.0', '/odahu/training'
),
(
'wine-1.0.zip.zip', None,
'wine-1.0.zip', '/odahu/default_output'
)
]
DEFAULT_OUTPUT_DIR = '/odahu/default_output'
@pytest.mark.parametrize(['artifact_name', 'artifact_path',
'expected_artifact_name', 'expected_artifact_path'],
test_data)
| [
2,
220,
15069,
12131,
14724,
2390,
11998,
198,
2,
198,
2,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
220,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
220,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
220,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
220,
11247,
739,
262,
13789,
13,
198,
11748,
28686,
198,
11748,
33918,
198,
11748,
36253,
198,
198,
11748,
12972,
9288,
198,
6738,
12972,
9288,
62,
76,
735,
1330,
44123,
37,
9602,
198,
198,
6738,
16298,
12196,
11125,
13,
21282,
74,
13,
12001,
1330,
16846,
198,
6738,
16298,
12196,
11125,
13,
21282,
74,
13,
12001,
13,
8002,
3039,
1330,
923,
62,
26495,
198,
6738,
16298,
12196,
11125,
13,
21282,
74,
13,
27530,
1330,
509,
23,
82,
11869,
3536,
11,
9104,
11869,
3039,
11,
9104,
11869,
3039,
22882,
11,
6400,
3039,
34500,
1358,
11,
3467,
198,
220,
220,
220,
6400,
3039,
34500,
1358,
22882,
198,
198,
2,
18980,
25,
37250,
433,
29660,
62,
3672,
3256,
705,
433,
29660,
62,
6978,
3256,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
40319,
62,
433,
29660,
62,
3672,
3256,
2938,
62,
433,
29660,
62,
6978,
60,
198,
9288,
62,
7890,
796,
685,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
39002,
12,
16,
13,
15,
3256,
31051,
375,
12196,
14,
34409,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
39002,
12,
16,
13,
15,
3256,
31051,
375,
12196,
14,
34409,
6,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
39002,
12,
16,
13,
15,
13,
13344,
3256,
31051,
375,
12196,
14,
34409,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
39002,
12,
16,
13,
15,
3256,
31051,
375,
12196,
14,
34409,
6,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
39002,
12,
16,
13,
15,
13,
13344,
13,
13344,
3256,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
39002,
12,
16,
13,
15,
13,
13344,
3256,
31051,
375,
12196,
14,
12286,
62,
22915,
6,
198,
220,
220,
220,
1267,
198,
60,
198,
198,
7206,
38865,
62,
2606,
7250,
3843,
62,
34720,
796,
31051,
375,
12196,
14,
12286,
62,
22915,
6,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
17816,
433,
29660,
62,
3672,
3256,
705,
433,
29660,
62,
6978,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
40319,
62,
433,
29660,
62,
3672,
3256,
705,
40319,
62,
433,
29660,
62,
6978,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
7890,
8,
198
] | 2.624357 | 583 |
# Generated by Django 3.0.7 on 2020-06-29 22:25
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
513,
13,
15,
13,
22,
319,
12131,
12,
3312,
12,
1959,
2534,
25,
1495,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
] | 2.84375 | 32 |
import rospy
from yaw_controller import YawController
from lowpass import LowPassFilter
from pid import PID
GAS_DENSITY = 2.858
ONE_MPH = 0.44704
| [
11748,
686,
2777,
88,
198,
6738,
331,
707,
62,
36500,
1330,
575,
707,
22130,
198,
6738,
1877,
6603,
1330,
7754,
14478,
22417,
198,
6738,
46514,
1330,
37022,
628,
198,
38,
1921,
62,
35,
16938,
9050,
796,
362,
13,
23,
3365,
198,
11651,
62,
7378,
39,
796,
657,
13,
2598,
32869,
628,
628,
198
] | 2.867925 | 53 |
"""Unit tests for github4.api."""
import unittest.mock
import github4
class TestAPI(unittest.TestCase):
"""All tests for the github4.api module."""
def test_enterprise_login(self):
"""Show that github4.enterprise_login returns GitHubEnterprise."""
args = ("login", "password", None, "https://url.com/", None)
with unittest.mock.patch.object(github4.GitHubEnterprise, "login") as login:
g = github4.enterprise_login(*args)
assert isinstance(g, github4.GitHubEnterprise)
login.assert_called_once_with("login", "password", None, None)
def test_login(self):
"""Show that github4.login proxies to GitHub."""
args = ("login", "password", None, None)
with unittest.mock.patch.object(github4.GitHub, "login") as login:
g = github4.login(*args)
assert isinstance(g, github4.GitHub)
assert not isinstance(g, github4.GitHubEnterprise)
login.assert_called_once_with(*args)
| [
37811,
26453,
5254,
329,
33084,
19,
13,
15042,
526,
15931,
198,
11748,
555,
715,
395,
13,
76,
735,
198,
198,
11748,
33084,
19,
628,
198,
4871,
6208,
17614,
7,
403,
715,
395,
13,
14402,
20448,
2599,
628,
220,
220,
220,
37227,
3237,
5254,
329,
262,
33084,
19,
13,
15042,
8265,
526,
15931,
628,
220,
220,
220,
825,
1332,
62,
9255,
7919,
62,
38235,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15307,
326,
33084,
19,
13,
9255,
7919,
62,
38235,
5860,
21722,
17469,
7919,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
26498,
796,
5855,
38235,
1600,
366,
28712,
1600,
6045,
11,
366,
5450,
1378,
6371,
13,
785,
14,
1600,
6045,
8,
198,
220,
220,
220,
220,
220,
220,
220,
351,
555,
715,
395,
13,
76,
735,
13,
17147,
13,
15252,
7,
12567,
19,
13,
38,
270,
16066,
17469,
7919,
11,
366,
38235,
4943,
355,
17594,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
796,
33084,
19,
13,
9255,
7919,
62,
38235,
46491,
22046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
318,
39098,
7,
70,
11,
33084,
19,
13,
38,
270,
16066,
17469,
7919,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17594,
13,
30493,
62,
7174,
62,
27078,
62,
4480,
7203,
38235,
1600,
366,
28712,
1600,
6045,
11,
6045,
8,
628,
220,
220,
220,
825,
1332,
62,
38235,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15307,
326,
33084,
19,
13,
38235,
41775,
284,
21722,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
26498,
796,
5855,
38235,
1600,
366,
28712,
1600,
6045,
11,
6045,
8,
198,
220,
220,
220,
220,
220,
220,
220,
351,
555,
715,
395,
13,
76,
735,
13,
17147,
13,
15252,
7,
12567,
19,
13,
38,
270,
16066,
11,
366,
38235,
4943,
355,
17594,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
796,
33084,
19,
13,
38235,
46491,
22046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
318,
39098,
7,
70,
11,
33084,
19,
13,
38,
270,
16066,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
407,
318,
39098,
7,
70,
11,
33084,
19,
13,
38,
270,
16066,
17469,
7919,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17594,
13,
30493,
62,
7174,
62,
27078,
62,
4480,
46491,
22046,
8,
198
] | 2.41866 | 418 |
import json
import pytest
import responses
from filepreviews import API_URL, FilePreviews, exceptions
file_previews = FilePreviews(api_key="DUMMY_API_KEY", api_secret="DUMMY_SECRET_KEY")
@responses.activate
@responses.activate
@responses.activate
@responses.activate
@responses.activate
| [
11748,
33918,
198,
198,
11748,
12972,
9288,
198,
11748,
9109,
198,
198,
6738,
2393,
3866,
33571,
1330,
7824,
62,
21886,
11,
9220,
6719,
33571,
11,
13269,
198,
198,
7753,
62,
3866,
33571,
796,
9220,
6719,
33571,
7,
15042,
62,
2539,
2625,
35,
5883,
26708,
62,
17614,
62,
20373,
1600,
40391,
62,
21078,
2625,
35,
5883,
26708,
62,
23683,
26087,
62,
20373,
4943,
628,
198,
31,
16733,
274,
13,
39022,
628,
198,
31,
16733,
274,
13,
39022,
628,
198,
31,
16733,
274,
13,
39022,
628,
198,
31,
16733,
274,
13,
39022,
628,
198,
31,
16733,
274,
13,
39022,
198
] | 3.061224 | 98 |
from ursina import *
from ursina import curve
from particles import ParticleSystem
sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0) | [
6738,
220,
1834,
1437,
1330,
1635,
198,
6738,
220,
1834,
1437,
1330,
12133,
198,
6738,
13166,
1330,
2142,
1548,
11964,
198,
198,
12683,
796,
37456,
2124,
25,
532,
16,
611,
2124,
1279,
657,
2073,
357,
16,
611,
2124,
1875,
657,
2073,
657,
8
] | 3.186047 | 43 |
import numpy as np
DISTRIBUTION_SIZE = 10
NEGATIVE_THRESHOLD = -2.5
| [
11748,
299,
32152,
355,
45941,
198,
198,
26288,
5446,
9865,
35354,
62,
33489,
796,
838,
198,
45,
7156,
37045,
62,
4221,
19535,
39,
15173,
796,
532,
17,
13,
20,
198
] | 2.3 | 30 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from rlkit.torch.core import PyTorchModule
from rlkit.torch.networks import Mlp, identity
from rlkit.torch import pytorch_util as ptu
from copy import deepcopy
# self.V_part = V_net
# # this is a hack so it's not added as a submodule
# self.target_V_part = [deepcopy(V_net)]
# self.soft_target_V_tau = soft_target_V_tau
# def cuda(self, *args, **kwargs):
# super().cuda(*args, **kwargs)
# self.target_V_part[0].cuda()
# def forward(self, obs_batch, act_batch, z_batch=None, pol_log_prob=None, next_obs_batch=None):
# obs_batch = self.obs_processor(obs_batch, False, z_batch)
# next_obs_batch = self.obs_processor(next_obs_batch, False, z_batch)
# r = self.r_part(obs_batch)
# V_s = self.V_part(obs_batch)
# V_s_prime = self.target_V_part[0](next_obs_batch).detach()
# shaping = self.gamma*V_s_prime - V_s
# f = r + shaping
# disc_logits = f - pol_log_prob
# clamped_disc_logits = torch.clamp(disc_logits, min=-1.0*self.clamp_magnitude, max=self.clamp_magnitude)
# return clamped_disc_logits, r, shaping
# def _update_target_V_part(self):
# ptu.soft_update_from_to(self.V_part, self.target_V_part[0], self.soft_target_V_tau)
| [
11748,
28034,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
6738,
28034,
13,
2306,
519,
6335,
1330,
35748,
198,
198,
6738,
374,
75,
15813,
13,
13165,
354,
13,
7295,
1330,
9485,
15884,
354,
26796,
198,
6738,
374,
75,
15813,
13,
13165,
354,
13,
3262,
5225,
1330,
337,
34431,
11,
5369,
198,
6738,
374,
75,
15813,
13,
13165,
354,
1330,
12972,
13165,
354,
62,
22602,
355,
279,
28047,
198,
198,
6738,
4866,
1330,
2769,
30073,
628,
628,
198,
220,
220,
220,
220,
628,
198,
220,
220,
220,
220,
628,
220,
220,
220,
220,
628,
220,
220,
220,
220,
628,
220,
220,
220,
220,
628,
220,
220,
220,
220,
628,
220,
220,
220,
220,
628,
628,
628,
628,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2116,
13,
53,
62,
3911,
796,
569,
62,
3262,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1303,
428,
318,
257,
8156,
523,
340,
338,
407,
2087,
355,
257,
850,
21412,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2116,
13,
16793,
62,
53,
62,
3911,
796,
685,
22089,
30073,
7,
53,
62,
3262,
15437,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2116,
13,
4215,
62,
16793,
62,
53,
62,
83,
559,
796,
2705,
62,
16793,
62,
53,
62,
83,
559,
198,
220,
220,
220,
220,
628,
220,
220,
220,
1303,
825,
269,
15339,
7,
944,
11,
1635,
22046,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2208,
22446,
66,
15339,
46491,
22046,
11,
12429,
46265,
22046,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2116,
13,
16793,
62,
53,
62,
3911,
58,
15,
4083,
66,
15339,
3419,
198,
220,
220,
220,
220,
628,
220,
220,
220,
1303,
825,
2651,
7,
944,
11,
10201,
62,
43501,
11,
719,
62,
43501,
11,
1976,
62,
43501,
28,
14202,
11,
755,
62,
6404,
62,
1676,
65,
28,
14202,
11,
1306,
62,
8158,
62,
43501,
28,
14202,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
10201,
62,
43501,
796,
2116,
13,
8158,
62,
41341,
7,
8158,
62,
43501,
11,
10352,
11,
1976,
62,
43501,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1306,
62,
8158,
62,
43501,
796,
2116,
13,
8158,
62,
41341,
7,
19545,
62,
8158,
62,
43501,
11,
10352,
11,
1976,
62,
43501,
8,
628,
220,
220,
220,
1303,
220,
220,
220,
220,
374,
796,
2116,
13,
81,
62,
3911,
7,
8158,
62,
43501,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
569,
62,
82,
796,
2116,
13,
53,
62,
3911,
7,
8158,
62,
43501,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
569,
62,
82,
62,
35505,
796,
2116,
13,
16793,
62,
53,
62,
3911,
58,
15,
16151,
19545,
62,
8158,
62,
43501,
737,
15255,
620,
3419,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
23610,
796,
2116,
13,
28483,
2611,
9,
53,
62,
82,
62,
35505,
532,
569,
62,
82,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
277,
796,
374,
1343,
23610,
628,
220,
220,
220,
1303,
220,
220,
220,
220,
1221,
62,
6404,
896,
796,
277,
532,
755,
62,
6404,
62,
1676,
65,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
537,
13322,
62,
15410,
62,
6404,
896,
796,
28034,
13,
565,
696,
7,
15410,
62,
6404,
896,
11,
949,
10779,
16,
13,
15,
9,
944,
13,
565,
696,
62,
76,
4660,
3984,
11,
3509,
28,
944,
13,
565,
696,
62,
76,
4660,
3984,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1441,
537,
13322,
62,
15410,
62,
6404,
896,
11,
374,
11,
23610,
628,
198,
220,
220,
220,
1303,
825,
4808,
19119,
62,
16793,
62,
53,
62,
3911,
7,
944,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
279,
28047,
13,
4215,
62,
19119,
62,
6738,
62,
1462,
7,
944,
13,
53,
62,
3911,
11,
2116,
13,
16793,
62,
53,
62,
3911,
58,
15,
4357,
2116,
13,
4215,
62,
16793,
62,
53,
62,
83,
559,
8,
198
] | 2.153274 | 672 |
import argparse
import sys
import json
if __name__ == "__main__":
main()
| [
198,
11748,
1822,
29572,
198,
11748,
25064,
198,
11748,
33918,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
220,
220,
1388,
3419,
198
] | 2.612903 | 31 |
from distutils.core import setup
from Cython.Build import cythonize
from distutils.extension import Extension
import numpy as np
sourcefiles = ['array_tools.pyx', '_sum.cpp']
extra_compile_args = []
libraries = []
ext = [Extension('*',
sourcefiles,
extra_compile_args=extra_compile_args,
libraries=[],
language='c++')
]
setup(ext_modules=cythonize(ext), include_dirs=[np.get_include()])
| [
6738,
1233,
26791,
13,
7295,
1330,
9058,
198,
6738,
327,
7535,
13,
15580,
1330,
3075,
400,
261,
1096,
198,
6738,
1233,
26791,
13,
2302,
3004,
1330,
27995,
198,
11748,
299,
32152,
355,
45941,
198,
198,
10459,
16624,
796,
37250,
18747,
62,
31391,
13,
9078,
87,
3256,
705,
62,
16345,
13,
20322,
20520,
198,
26086,
62,
5589,
576,
62,
22046,
796,
17635,
198,
75,
11127,
796,
17635,
198,
198,
2302,
796,
685,
11627,
3004,
10786,
9,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2723,
16624,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
3131,
62,
5589,
576,
62,
22046,
28,
26086,
62,
5589,
576,
62,
22046,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12782,
41888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
3303,
11639,
66,
4880,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
198,
40406,
7,
2302,
62,
18170,
28,
948,
400,
261,
1096,
7,
2302,
828,
2291,
62,
15908,
82,
41888,
37659,
13,
1136,
62,
17256,
3419,
12962,
628
] | 2.517442 | 172 |
import textwrap
from typing import Iterator, Any
from primehub import Helpful, cmd, Module
from primehub.utils.display import display_tree_like_format
| [
11748,
2420,
37150,
198,
6738,
19720,
1330,
40806,
1352,
11,
4377,
198,
198,
6738,
6994,
40140,
1330,
21656,
11,
23991,
11,
19937,
198,
6738,
6994,
40140,
13,
26791,
13,
13812,
1330,
3359,
62,
21048,
62,
2339,
62,
18982,
628,
198
] | 3.85 | 40 |
from django.shortcuts import render
from django.views.generic import TemplateView
from django.http import HttpResponse, JsonResponse, HttpResponseForbidden, HttpResponseBadRequest
import ccxt
# Create your views here.
exchangeIns = {}
| [
6738,
42625,
14208,
13,
19509,
23779,
1330,
8543,
198,
6738,
42625,
14208,
13,
33571,
13,
41357,
1330,
37350,
7680,
198,
198,
6738,
42625,
14208,
13,
4023,
1330,
367,
29281,
31077,
11,
449,
1559,
31077,
11,
367,
29281,
31077,
1890,
37978,
11,
367,
29281,
31077,
22069,
18453,
198,
11748,
36624,
742,
628,
198,
2,
13610,
534,
5009,
994,
13,
198,
198,
1069,
3803,
20376,
796,
23884,
198
] | 3.621212 | 66 |
/usr/lib/python3.4/tokenize.py | [
14,
14629,
14,
8019,
14,
29412,
18,
13,
19,
14,
30001,
1096,
13,
9078
] | 2.142857 | 14 |
#!/usr/bin/python
#
# Copyright 2018-2020 Polyaxon, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from datetime import datetime
from typing import Dict, Optional
from polyaxon.exceptions import PolyaxonCompilerError
from polyaxon.polyflow import V1CompiledOperation
from polyaxon.polypod.compiler.resolver.base import BaseResolver
| [
2,
48443,
14629,
14,
8800,
14,
29412,
198,
2,
198,
2,
15069,
2864,
12,
42334,
12280,
897,
261,
11,
3457,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
6738,
19720,
1330,
360,
713,
11,
32233,
198,
198,
6738,
7514,
897,
261,
13,
1069,
11755,
1330,
12280,
897,
261,
7293,
5329,
12331,
198,
6738,
7514,
897,
261,
13,
35428,
11125,
1330,
569,
16,
7293,
3902,
32180,
198,
6738,
7514,
897,
261,
13,
35428,
33320,
13,
5589,
5329,
13,
411,
14375,
13,
8692,
1330,
7308,
4965,
14375,
628
] | 3.647826 | 230 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright (C) 2017-2020 The Project X-Ray Authors.
#
# Use of this source code is governed by a ISC-style
# license that can be found in the LICENSE file or at
# https://opensource.org/licenses/ISC
#
# SPDX-License-Identifier: ISC
""" IOB bits are more complicated than can be easily expressed to segmaker.
There are couple cases that need to be handled here:
- There are some bits that are always set for IN-only ports, but are cleared
selectively for OUT and INOUT ports.
- There are bits per each IOSTANDARD, in addition to drive patterns. These
can be merged to provide unique "(IOSTANDARD, DRIVE)" bit sets.
"""
import argparse
def filter_bits(site, bits):
""" Seperate top and bottom bits.
Some IOSTANDARD bits are tile wide, but really only apply to a half.
It is hard to write a fuzzer for this, but it is easy to filter by site,
and all bits appear to have a nice hard halve seperatation in the bitidx.
"""
if site == 'IOB_Y0':
min_bitidx = 64
max_bitidx = 127
elif site == 'IOB_Y1':
min_bitidx = 0
max_bitidx = 63
else:
assert False, site
return frozenset(inner())
if __name__ == "__main__":
main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
198,
2,
15069,
357,
34,
8,
2177,
12,
42334,
220,
383,
4935,
1395,
12,
19591,
46665,
13,
198,
2,
198,
2,
5765,
286,
428,
2723,
2438,
318,
21825,
416,
257,
3180,
34,
12,
7635,
198,
2,
5964,
326,
460,
307,
1043,
287,
262,
38559,
24290,
2393,
393,
379,
198,
2,
3740,
1378,
44813,
1668,
13,
2398,
14,
677,
4541,
14,
37719,
198,
2,
198,
2,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
3180,
34,
198,
37811,
314,
9864,
10340,
389,
517,
8253,
621,
460,
307,
3538,
6241,
284,
384,
70,
10297,
13,
198,
1858,
389,
3155,
2663,
326,
761,
284,
307,
12118,
994,
25,
198,
198,
12,
1318,
389,
617,
10340,
326,
389,
1464,
900,
329,
3268,
12,
8807,
14090,
11,
475,
389,
12539,
198,
220,
39119,
329,
16289,
290,
3268,
12425,
14090,
13,
198,
12,
1318,
389,
10340,
583,
1123,
314,
10892,
6981,
9795,
11,
287,
3090,
284,
3708,
7572,
13,
220,
2312,
198,
220,
460,
307,
23791,
284,
2148,
3748,
30629,
9399,
2257,
6981,
9795,
11,
10560,
9306,
16725,
1643,
5621,
13,
198,
37811,
198,
11748,
1822,
29572,
628,
628,
198,
198,
4299,
8106,
62,
9895,
7,
15654,
11,
10340,
2599,
198,
220,
220,
220,
37227,
1001,
30052,
1353,
290,
4220,
10340,
13,
628,
220,
220,
220,
2773,
314,
10892,
6981,
9795,
10340,
389,
17763,
3094,
11,
475,
1107,
691,
4174,
284,
257,
2063,
13,
198,
220,
220,
220,
632,
318,
1327,
284,
3551,
257,
26080,
263,
329,
428,
11,
475,
340,
318,
2562,
284,
8106,
416,
2524,
11,
198,
220,
220,
220,
290,
477,
10340,
1656,
284,
423,
257,
3621,
1327,
10284,
303,
384,
525,
265,
341,
287,
262,
1643,
312,
87,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
2524,
6624,
705,
9399,
33,
62,
56,
15,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
949,
62,
2545,
312,
87,
796,
5598,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
2545,
312,
87,
796,
18112,
198,
220,
220,
220,
1288,
361,
2524,
6624,
705,
9399,
33,
62,
56,
16,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
949,
62,
2545,
312,
87,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
2545,
312,
87,
796,
8093,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
10352,
11,
2524,
628,
220,
220,
220,
1441,
8400,
8247,
316,
7,
5083,
28955,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.824719 | 445 |
import feedparser
import urllib.parse
from random import shuffle, seed
UKR_NEWS = ["https://news.yandex.ua/index.rss", "http://www.ukr-portal.com/php/rss_1.xml", "http://news.finance.ua/ru/rss", "http://www.ua.rian.ru/export/rss2/index.xml", "http://feeds.feedburner.com/zaxid/rss_ua", "http://www.dt.ua/export.rss", "https://malina-mix.com/anekdots.xml"]
def lookup(geo, lang="us"):
"""Looks up articles for geo."""
# check cache for geo
if geo in lookup.cache:
if lookup.query_counter[geo] < 10:
lookup.query_counter[geo] += 1
return lookup.cache[geo]
else:
del lookup.cache[geo]
del lookup.query_counter[geo]
if geo == "H++":
lookup.cache[geo] = {"link": "http://programming.kr.ua/ru", "title": "Главная"}, {"link": "http://programming.kr.ua/ru/news", "title": "News"}, {"link": "http://programming.kr.ua/ru/potential", "title": "Возможности"}, {"link": "http://programming.kr.ua/ru/about#contacts", "title": "Контакты"}
lookup.query_counter[geo] = 1
return lookup.cache[geo]
url = "http://news.google.com/news?ned=" + lang+ "&geo={}&output=rss"
# get feed from Google
feed = feedparser.parse(url.format(urllib.parse.quote(geo, safe="")))
# if no items in feed, get feed from other
if not feed["items"]:
if lang == "ru_ua":
# get random UKR_NEWS
seed()
shuffle(UKR_NEWS)
feed = feedparser.parse(UKR_NEWS[0])
if not feed["items"]:
# there is always news
feed = feedparser.parse("http://feeds.feedburner.com/zaxid/rss_ua")
else:
# get from Onion
feed = feedparser.parse("http://www.theonion.com/feeds/rss")
# cache results
lookup.cache[geo] = [{"link": item["link"], "title": item["title"]} for item in feed["items"]]
# add counter
lookup.query_counter[geo] = 1
# return results
return lookup.cache[geo]
# initialize cache
lookup.cache = {}
# initialize query counter
lookup.query_counter = {}
| [
11748,
3745,
48610,
198,
11748,
2956,
297,
571,
13,
29572,
198,
6738,
4738,
1330,
36273,
11,
9403,
198,
198,
15039,
49,
62,
49597,
796,
14631,
5450,
1378,
10827,
13,
88,
392,
1069,
13,
6413,
14,
9630,
13,
42216,
1600,
366,
4023,
1378,
2503,
13,
2724,
81,
12,
634,
282,
13,
785,
14,
10121,
14,
42216,
62,
16,
13,
19875,
1600,
366,
4023,
1378,
10827,
13,
69,
14149,
13,
6413,
14,
622,
14,
42216,
1600,
366,
4023,
1378,
2503,
13,
6413,
13,
4484,
13,
622,
14,
39344,
14,
42216,
17,
14,
9630,
13,
19875,
1600,
366,
4023,
1378,
12363,
82,
13,
12363,
10899,
263,
13,
785,
14,
89,
897,
312,
14,
42216,
62,
6413,
1600,
366,
4023,
1378,
2503,
13,
28664,
13,
6413,
14,
39344,
13,
42216,
1600,
366,
5450,
1378,
7617,
1437,
12,
19816,
13,
785,
14,
272,
988,
67,
1747,
13,
19875,
8973,
198,
198,
4299,
35847,
7,
469,
78,
11,
42392,
2625,
385,
1,
2599,
198,
220,
220,
220,
37227,
41102,
510,
6685,
329,
40087,
526,
15931,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
2198,
12940,
329,
40087,
198,
220,
220,
220,
611,
40087,
287,
35847,
13,
23870,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
35847,
13,
22766,
62,
24588,
58,
469,
78,
60,
1279,
838,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35847,
13,
22766,
62,
24588,
58,
469,
78,
60,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
35847,
13,
23870,
58,
469,
78,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
35847,
13,
23870,
58,
469,
78,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
35847,
13,
22766,
62,
24588,
58,
469,
78,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
611,
40087,
6624,
366,
39,
4880,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
35847,
13,
23870,
58,
469,
78,
60,
796,
19779,
8726,
1298,
366,
4023,
1378,
23065,
2229,
13,
38584,
13,
6413,
14,
622,
1600,
366,
7839,
1298,
366,
140,
241,
30143,
16142,
38857,
22177,
16142,
40623,
25719,
19779,
8726,
1298,
366,
4023,
1378,
23065,
2229,
13,
38584,
13,
6413,
14,
622,
14,
10827,
1600,
366,
7839,
1298,
366,
9980,
25719,
19779,
8726,
1298,
366,
4023,
1378,
23065,
2229,
13,
38584,
13,
6413,
14,
622,
14,
13059,
1843,
1600,
366,
7839,
1298,
366,
140,
240,
25443,
115,
43108,
25443,
114,
22177,
15166,
21727,
20375,
18849,
25719,
19779,
8726,
1298,
366,
4023,
1378,
23065,
2229,
13,
38584,
13,
6413,
14,
622,
14,
10755,
2,
3642,
8656,
1600,
366,
7839,
1298,
366,
140,
248,
15166,
22177,
20375,
16142,
31583,
20375,
45035,
20662,
198,
220,
220,
220,
220,
220,
220,
220,
35847,
13,
22766,
62,
24588,
58,
469,
78,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
35847,
13,
23870,
58,
469,
78,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
19016,
796,
366,
4023,
1378,
10827,
13,
13297,
13,
785,
14,
10827,
30,
2817,
2625,
1343,
42392,
10,
366,
5,
469,
78,
34758,
92,
5,
22915,
28,
42216,
1,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
651,
3745,
422,
3012,
198,
220,
220,
220,
3745,
796,
3745,
48610,
13,
29572,
7,
6371,
13,
18982,
7,
333,
297,
571,
13,
29572,
13,
22708,
7,
469,
78,
11,
3338,
33151,
22305,
628,
220,
220,
220,
1303,
611,
645,
3709,
287,
3745,
11,
651,
3745,
422,
584,
198,
220,
220,
220,
611,
407,
3745,
14692,
23814,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
611,
42392,
6624,
366,
622,
62,
6413,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
651,
4738,
3482,
49,
62,
49597,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9403,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36273,
7,
15039,
49,
62,
49597,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3745,
796,
3745,
48610,
13,
29572,
7,
15039,
49,
62,
49597,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
3745,
14692,
23814,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
612,
318,
1464,
1705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3745,
796,
3745,
48610,
13,
29572,
7203,
4023,
1378,
12363,
82,
13,
12363,
10899,
263,
13,
785,
14,
89,
897,
312,
14,
42216,
62,
6413,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
651,
422,
34733,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3745,
796,
3745,
48610,
13,
29572,
7203,
4023,
1378,
2503,
13,
1169,
261,
295,
13,
785,
14,
12363,
82,
14,
42216,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
12940,
2482,
198,
220,
220,
220,
35847,
13,
23870,
58,
469,
78,
60,
796,
685,
4895,
8726,
1298,
2378,
14692,
8726,
33116,
366,
7839,
1298,
2378,
14692,
7839,
8973,
92,
329,
2378,
287,
3745,
14692,
23814,
8973,
60,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
751,
3753,
198,
220,
220,
220,
35847,
13,
22766,
62,
24588,
58,
469,
78,
60,
796,
352,
628,
220,
220,
220,
1303,
1441,
2482,
198,
220,
220,
220,
1441,
35847,
13,
23870,
58,
469,
78,
60,
198,
198,
2,
41216,
12940,
198,
5460,
929,
13,
23870,
796,
23884,
198,
198,
2,
41216,
12405,
3753,
198,
5460,
929,
13,
22766,
62,
24588,
796,
23884,
628
] | 2.121951 | 1,025 |
# -*- coding: utf-8 -*-
"""
Single Molecule Molecular Dynamics Code
Created 2018 by David of Theoretically Speaking
Please Modify!
"""
from __future__ import print_function
import os
import sys
import numpy as np
# Global variables for unit conversions
hartree = 4.35974465e-18 # J, atomic unit of energy
emass = 5.486e-4 # kg
dalton = 1.660539040e-27 # kg
avo = 6.02214086e23 # mol^-1
emass = 9.109534e-28 # g, atomic unit of mass
boltz = 1.38064852e-23 / hartree # E_h K^-1
bohr = 0.52917721067 # Angstroms
hbar = 6.626070040e-34 # Js
atomic_time = hbar / hartree
# Global files to prevent constant opening/closing
xyz_file = open("coordinates.xyz", "w")
energy_file = open("energies.dat", "w")
def display_header():
"""Write opening message to screen"""
print_dashed_line()
print("Welcome to the Theoretically Speaking molecular dynamics code")
print_dashed_line()
def print_dashed_line(length = 65):
"""Write --- line of given length to screen"""
line = "-" * length
print(line)
def string_to_boolean(string):
"""Converts input string of True or False to a boolean True or False"""
string = string.lower().strip()
true_strings = ["true", "t"]
false_strings = ["false", "f"]
if string in true_strings: return True
elif string in false_strings: return False
raise ValueError("Bad Boolean Value: " + string)
def get_input_parameters():
"""Ask user for input file name, read input parameters and store in dictionary"""
# Get list of available input files
input_files = get_recursive_file_list("inpt")
# Ask user to select input file from list
if len(input_files) == 0: # If cannot find any input files close program
print("No available input files. Exiting.")
sys.exit()
else:
while True:
print("Select an input file from the list:")
for i, file in enumerate(input_files):
print("[{0}] {1}".format(i, file))
try:
user_selection = int(input())
input_file = input_files[user_selection]
print("Input file selected: {0}".format(input_file))
print_dashed_line()
break
except: pass
# Open input file and read parameters into dictionary
parameters = {}
with open(input_file, "r") as file:
print("Reading input file")
# Skip header
for i in range(2): file.readline()
# Simulation parameters
try:
for i in range(2): file.readline()
parameters["time_total"] = float(file.readline().split()[0]) / (atomic_time * 1e12)
parameters["time_step"] = float(file.readline().split()[0]) / (atomic_time * 1e12)
parameters["box_size"] = float(file.readline().split()[0]) / bohr
parameters["write_freq"] = float(file.readline().split()[0]) / (atomic_time * 1e12)
print(" - Simulation parameters read")
except:
print("Error in simulation parameters")
sys.exit()
# Atom data
try:
for i in range(2): file.readline()
num_atoms = parameters["num_atoms"] = int(file.readline().split()[0])
parameters["random_displacement"] = string_to_boolean(file.readline().split()[0])
parameters["random_displacement_limit"] = float(file.readline().split()[0]) / bohr
file.readline() # skip comment
name_to_index = {} # dictionary to convert atom name to array index
parameters["atom_names"] = [] # empty list for names
parameters["atom_masses"] = np.empty(num_atoms) # empty array for masses
parameters["atom_crds"] = np.empty([num_atoms, 3]) # empty array for coordinates
for i in range(num_atoms):
line = file.readline().split()
name_to_index[line[0]] = i
parameters["atom_names"].append(line[0])
parameters["atom_masses"][i] = float(line[1]) / (avo * emass)
parameters["atom_crds"][i] = np.array(line[2:5], dtype = float) / bohr
print(" - Atom data read")
except:
print("Error in atom data")
sys.exit()
# Bond Data
try:
for i in range(2): file.readline()
num_bonds = parameters["num_bonds"] = int(file.readline().split()[0])
file.readline() # skip comment
parameters["bond_pairs"] = np.empty([num_bonds, 2], dtype=int) # empty array for indices of bonded atom pairs
parameters["bond_params"] = np.empty([num_bonds, 2]) # empty array for harmonic bond r0 and k
for i in range(num_bonds):
line = file.readline().split()
parameters["bond_pairs"][i, 0] = name_to_index[line[0]]
parameters["bond_pairs"][i, 1] = name_to_index[line[1]]
parameters["bond_params"][i, 0] = float(line[2]) / bohr
parameters["bond_params"][i, 1] = float(line[3]) * (bohr * 1e-10)**2 / hartree
print(" - Bond data read")
except:
print("Error in bond data")
sys.exit()
print("Read successful")
print_dashed_line()
return parameters
def get_recursive_file_list(ext):
"""Get list of files with specifed extension in current directory and all subdirectories"""
# Search over all files in all subdirectories, add to list if have required extension
files = []
for dirpath, dirname, filenames in os.walk("./"):
for filename in filenames:
if filename.endswith(ext):
filepath = os.path.join(dirpath,filename)
files.append(filepath)
return files
def apply_periodic_boundary_condition(crds, box_size):
"""Apply periodicity to keep atoms within simulation box"""
crds[crds < 0] += box_size
crds[crds > box_size] -= box_size
return crds
def minimum_image_displacement(crd_0, crd_1, box_size):
"""Find displacement between nearest periodic images of atom pair"""
displacement = crd_0 - crd_1
displacement[displacement < -box_size / 2] += box_size
displacement[displacement > box_size / 2] -= box_size
return displacement
def initialise_coordinates(crds, box_size, displace, limit):
"""Recentre atoms in simulation box, apply periodic boundary, apply random displacement"""
crds += box_size / 2
crds = apply_periodic_boundary_condition(crds, box_size)
if displace:
displacements = np.random.uniform(low = -limit, high = limit, size = crds.shape)
crds += displacements
return crds
def calculate_energy(masses, crds, velocities, bond_pairs, bond_params, box_size):
"""Calculate kinetic, potential and total energy of system"""
kinetic_energy = 0.5 * (masses * np.sum(velocities ** 2, axis=1)).sum() # U=0.5*m*v^2
# Calculate harmonic potential energy using: U=0.5*k(r-r0)^2
for i, bond in enumerate(bond_pairs):
atom_0, atom_1 = bond[0], bond[1]
displacement = minimum_image_displacement(crds[atom_0, :], crds[atom_1, :], box_size)
distance = np.linalg.norm(displacement)
potential_energy = 0.5 * bond_params[i, 1] * (distance - bond_params[i, 0]) ** 2
total_energy = kinetic_energy + potential_energy # Total energy as sum of ke and pe
return np.array([kinetic_energy, potential_energy, total_energy])
def update_accelerations(masses, crds, bond_pairs, bond_params, box_size):
"""Calculate the acceleration on each atom using potential model and Newton's laws of motion"""
# Calculate forces using Hooke's law: F=-k(r-r0)
# Convert to acceleration using Newton's laws: F=ma, action has opposite reaction
accelerations = np.zeros_like(crds) # x,y,z accelerations for each atom
for i, bond in enumerate(bond_pairs):
atom_0, atom_1 = bond[0], bond[1]
displacement = minimum_image_displacement(crds[atom_0, :], crds[atom_1, :], box_size)
distance = np.linalg.norm(displacement)
force_direction = displacement / distance
force_magnitude = - bond_params[i, 1] * (distance - bond_params[i, 0])
force = force_magnitude * force_direction
accelerations[atom_0] += force / masses[atom_0]
accelerations[atom_1] -= force / masses[atom_1]
return accelerations
def update_coordinates(crds, accelerations, velocities, time_step, box_size):
"""Update coordinates using: x(t+dt)=x(t)+v(t)*dt+0.5*a(t)*dt**2"""
crds += velocities * time_step + 0.5 * accelerations * time_step ** 2
crds = apply_periodic_boundary_condition(crds, box_size)
return crds
def update_velocities(velocities, accelerations_start, accelerations_end, time_step):
"""Update velocities using: v(t+dt)=v(t)+0.5*dt*(a(t)+a(t+dt))"""
velocities += 0.5 * time_step * (accelerations_start + accelerations_end)
return velocities
def write_output_files(time_step, num_atoms, names, crds, energies):
"""Writes coordinates in XYZ file type to 'coordinates.xyz'
Write kinetic, potential and total energies to 'energies.dat'"""
# Write XYZ file
xyz_file.write("{0} \n\n".format(num_atoms))
for i, crd in enumerate(crds):
xyz = crd * bohr
xyz_file.write("{0} {1:.6f} {2:.6f} {3:.6f} \n".format(names[i], xyz[0], xyz[1], xyz[2]))
# Write energies
energy = energies * hartree * avo * 1e-3
energy_file.write("{0} {1} {2} {3} \n".format(time_step, energy[0], energy[1], energy[2]))
def main():
"""Handle input/output and molecular dynamics velocity-verlet algorithm"""
# Display opening message
display_header()
# Read user parameters from input file
input_parameters = get_input_parameters()
# Unpack parameters
time_total = input_parameters["time_total"]
time_step = input_parameters["time_step"]
box_size = input_parameters["box_size"]
write_freq = input_parameters["write_freq"]
num_atoms = input_parameters["num_atoms"]
displace_atoms = input_parameters["random_displacement"]
displacement_limit = input_parameters["random_displacement_limit"]
atom_names = input_parameters["atom_names"]
atom_masses = input_parameters["atom_masses"]
atom_crds = input_parameters["atom_crds"]
bond_pairs = input_parameters["bond_pairs"]
bond_params = input_parameters["bond_params"]
# Recentre coordinates and apply displacements
atom_crds = initialise_coordinates(atom_crds, box_size, displace_atoms, displacement_limit)
# Initialise Molecular Dynamics Variables
num_steps = int(time_total / time_step) # total number of steps of md
write_steps = int(write_freq / time_step) # number of steps to write out results
atom_vels = np.zeros_like(atom_crds) # velocities in x,y,z directions for all atoms
atom_acc_start = atom_acc_end = np.zeros_like(atom_crds) # accelerations at start and end of time step
atom_acc_start = update_accelerations(atom_masses, atom_crds, bond_pairs, bond_params, box_size) # calculate initial accelerations
system_energy = calculate_energy(atom_masses, atom_crds, atom_vels, bond_pairs, bond_params, box_size) # calculate initial energies
write_output_files(0, num_atoms, atom_names, atom_crds, system_energy)
# Molecular dynamics
print("Performing molecular dynamics simulation")
for step in range(1, num_steps+1):
# Velocity - Verlet algorithm
atom_crds = update_coordinates(atom_crds, atom_acc_start, atom_vels, time_step, box_size)
atom_acc_end = update_accelerations(atom_masses, atom_crds, bond_pairs, bond_params, box_size)
atom_vels = update_velocities(atom_vels, atom_acc_start, atom_acc_end, time_step)
atom_acc_start = atom_acc_end
# Write coordinates and energies
if step % write_steps == 0:
system_energy = calculate_energy(atom_masses, atom_crds, atom_vels, bond_pairs, bond_params, box_size)
write_output_files(step, num_atoms, atom_names, atom_crds, system_energy)
print("Completion: {:.3f}%".format(100 * float(step) / num_steps))
print_dashed_line()
print("Simulation complete \nCoordinates written to coordinates.xyz \nEnergies written to energies.dat")
print_dashed_line()
# Execute code if main file
if __name__ == "__main__":
main()
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
28008,
25726,
23172,
38275,
33806,
6127,
220,
198,
41972,
2864,
416,
3271,
286,
383,
9997,
1146,
21393,
198,
5492,
3401,
1958,
0,
198,
37811,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
28686,
198,
11748,
25064,
198,
11748,
299,
32152,
355,
45941,
628,
198,
2,
8060,
9633,
329,
4326,
32626,
198,
18647,
631,
796,
604,
13,
2327,
5607,
2598,
2996,
68,
12,
1507,
220,
220,
1303,
449,
11,
17226,
4326,
286,
2568,
198,
368,
562,
796,
642,
13,
34251,
68,
12,
19,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
14211,
198,
31748,
1122,
796,
352,
13,
21,
32417,
25964,
1821,
68,
12,
1983,
220,
220,
1303,
14211,
198,
615,
78,
796,
718,
13,
44087,
1415,
2919,
21,
68,
1954,
220,
220,
220,
220,
220,
220,
220,
1303,
18605,
61,
12,
16,
198,
368,
562,
796,
860,
13,
940,
3865,
2682,
68,
12,
2078,
220,
220,
220,
220,
220,
220,
1303,
308,
11,
17226,
4326,
286,
2347,
198,
25593,
89,
796,
352,
13,
23734,
34287,
4309,
68,
12,
1954,
1220,
289,
433,
631,
220,
220,
220,
1303,
412,
62,
71,
509,
61,
12,
16,
198,
65,
1219,
81,
796,
657,
13,
49721,
1558,
4761,
940,
3134,
220,
220,
220,
220,
220,
220,
1303,
2895,
20282,
82,
198,
71,
5657,
796,
718,
13,
5237,
1899,
9879,
1821,
68,
12,
2682,
220,
220,
220,
220,
1303,
449,
82,
198,
47116,
62,
2435,
796,
289,
5657,
1220,
289,
433,
631,
628,
198,
2,
8060,
3696,
284,
2948,
6937,
4756,
14,
565,
2752,
198,
5431,
89,
62,
7753,
796,
1280,
7203,
37652,
17540,
13,
5431,
89,
1600,
366,
86,
4943,
198,
22554,
62,
7753,
796,
1280,
7203,
877,
70,
444,
13,
19608,
1600,
366,
86,
4943,
628,
198,
4299,
3359,
62,
25677,
33529,
198,
220,
220,
220,
37227,
16594,
4756,
3275,
284,
3159,
37811,
628,
220,
220,
220,
3601,
62,
67,
5263,
62,
1370,
3419,
198,
220,
220,
220,
3601,
7203,
14618,
284,
262,
383,
9997,
1146,
21393,
18955,
17262,
2438,
4943,
198,
220,
220,
220,
3601,
62,
67,
5263,
62,
1370,
3419,
628,
198,
4299,
3601,
62,
67,
5263,
62,
1370,
7,
13664,
796,
6135,
2599,
198,
220,
220,
220,
37227,
16594,
11420,
1627,
286,
1813,
4129,
284,
3159,
37811,
628,
220,
220,
220,
1627,
796,
366,
21215,
1635,
4129,
198,
220,
220,
220,
3601,
7,
1370,
8,
628,
198,
4299,
4731,
62,
1462,
62,
2127,
21052,
7,
8841,
2599,
198,
220,
220,
220,
37227,
3103,
24040,
5128,
4731,
286,
6407,
393,
10352,
284,
257,
25131,
6407,
393,
10352,
37811,
628,
220,
220,
220,
4731,
796,
4731,
13,
21037,
22446,
36311,
3419,
198,
220,
220,
220,
2081,
62,
37336,
796,
14631,
7942,
1600,
366,
83,
8973,
198,
220,
220,
220,
3991,
62,
37336,
796,
14631,
9562,
1600,
366,
69,
8973,
198,
220,
220,
220,
611,
4731,
287,
2081,
62,
37336,
25,
1441,
6407,
198,
220,
220,
220,
1288,
361,
4731,
287,
3991,
62,
37336,
25,
1441,
10352,
198,
220,
220,
220,
5298,
11052,
12331,
7203,
22069,
41146,
11052,
25,
366,
1343,
4731,
8,
628,
198,
4299,
651,
62,
15414,
62,
17143,
7307,
33529,
198,
220,
220,
220,
37227,
25214,
2836,
329,
5128,
2393,
1438,
11,
1100,
5128,
10007,
290,
3650,
287,
22155,
37811,
628,
220,
220,
220,
1303,
3497,
1351,
286,
1695,
5128,
3696,
198,
220,
220,
220,
5128,
62,
16624,
796,
651,
62,
8344,
30753,
62,
7753,
62,
4868,
7203,
259,
457,
4943,
628,
220,
220,
220,
1303,
16981,
2836,
284,
2922,
5128,
2393,
422,
1351,
198,
220,
220,
220,
611,
18896,
7,
15414,
62,
16624,
8,
6624,
657,
25,
1303,
1002,
2314,
1064,
597,
5128,
3696,
1969,
1430,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
2949,
1695,
5128,
3696,
13,
1475,
1780,
19570,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
3419,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
17563,
281,
5128,
2393,
422,
262,
1351,
25,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
2393,
287,
27056,
378,
7,
15414,
62,
16624,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
58,
90,
15,
92,
60,
220,
1391,
16,
92,
1911,
18982,
7,
72,
11,
2393,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2836,
62,
49283,
796,
493,
7,
15414,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
7753,
796,
5128,
62,
16624,
58,
7220,
62,
49283,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
20560,
2393,
6163,
25,
1391,
15,
92,
1911,
18982,
7,
15414,
62,
7753,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
62,
67,
5263,
62,
1370,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
1208,
628,
220,
220,
220,
1303,
4946,
5128,
2393,
290,
1100,
10007,
656,
22155,
198,
220,
220,
220,
10007,
796,
23884,
198,
220,
220,
220,
351,
1280,
7,
15414,
62,
7753,
11,
366,
81,
4943,
355,
2393,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
36120,
5128,
2393,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
32214,
13639,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
17,
2599,
2393,
13,
961,
1370,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
41798,
10007,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
17,
2599,
2393,
13,
961,
1370,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
2435,
62,
23350,
8973,
796,
12178,
7,
7753,
13,
961,
1370,
22446,
35312,
3419,
58,
15,
12962,
1220,
357,
47116,
62,
2435,
1635,
352,
68,
1065,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
2435,
62,
9662,
8973,
796,
12178,
7,
7753,
13,
961,
1370,
22446,
35312,
3419,
58,
15,
12962,
1220,
357,
47116,
62,
2435,
1635,
352,
68,
1065,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
3524,
62,
7857,
8973,
796,
12178,
7,
7753,
13,
961,
1370,
22446,
35312,
3419,
58,
15,
12962,
1220,
275,
1219,
81,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
13564,
62,
19503,
80,
8973,
796,
12178,
7,
7753,
13,
961,
1370,
22446,
35312,
3419,
58,
15,
12962,
1220,
357,
47116,
62,
2435,
1635,
352,
68,
1065,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
220,
532,
41798,
10007,
1100,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
12331,
287,
18640,
10007,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
33102,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
17,
2599,
2393,
13,
961,
1370,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
265,
3150,
796,
10007,
14692,
22510,
62,
265,
3150,
8973,
796,
493,
7,
7753,
13,
961,
1370,
22446,
35312,
3419,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
25120,
62,
6381,
489,
5592,
8973,
796,
4731,
62,
1462,
62,
2127,
21052,
7,
7753,
13,
961,
1370,
22446,
35312,
3419,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
25120,
62,
6381,
489,
5592,
62,
32374,
8973,
796,
12178,
7,
7753,
13,
961,
1370,
22446,
35312,
3419,
58,
15,
12962,
1220,
275,
1219,
81,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
13,
961,
1370,
3419,
1303,
14267,
2912,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
62,
1462,
62,
9630,
796,
23884,
220,
1303,
22155,
284,
10385,
22037,
1438,
284,
7177,
6376,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
37696,
62,
14933,
8973,
796,
17635,
220,
1303,
6565,
1351,
329,
3891,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
37696,
62,
76,
13978,
8973,
796,
45941,
13,
28920,
7,
22510,
62,
265,
3150,
8,
220,
1303,
6565,
7177,
329,
14568,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
37696,
62,
66,
4372,
82,
8973,
796,
45941,
13,
28920,
26933,
22510,
62,
265,
3150,
11,
513,
12962,
220,
1303,
6565,
7177,
329,
22715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
22510,
62,
265,
3150,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
796,
2393,
13,
961,
1370,
22446,
35312,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
62,
1462,
62,
9630,
58,
1370,
58,
15,
11907,
796,
1312,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
37696,
62,
14933,
1,
4083,
33295,
7,
1370,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
37696,
62,
76,
13978,
1,
7131,
72,
60,
796,
12178,
7,
1370,
58,
16,
12962,
1220,
357,
615,
78,
1635,
795,
562,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
37696,
62,
66,
4372,
82,
1,
7131,
72,
60,
796,
45941,
13,
18747,
7,
1370,
58,
17,
25,
20,
4357,
288,
4906,
796,
12178,
8,
1220,
275,
1219,
81,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
220,
532,
33102,
1366,
1100,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
12331,
287,
22037,
1366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
12812,
6060,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
17,
2599,
2393,
13,
961,
1370,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
65,
24764,
796,
10007,
14692,
22510,
62,
65,
24764,
8973,
796,
493,
7,
7753,
13,
961,
1370,
22446,
35312,
3419,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
13,
961,
1370,
3419,
1303,
14267,
2912,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
65,
623,
62,
79,
3468,
8973,
796,
45941,
13,
28920,
26933,
22510,
62,
65,
24764,
11,
362,
4357,
288,
4906,
28,
600,
8,
1303,
6565,
7177,
329,
36525,
286,
40270,
22037,
14729,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
65,
623,
62,
37266,
8973,
796,
45941,
13,
28920,
26933,
22510,
62,
65,
24764,
11,
362,
12962,
1303,
6565,
7177,
329,
49239,
6314,
374,
15,
290,
479,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
22510,
62,
65,
24764,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
796,
2393,
13,
961,
1370,
22446,
35312,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
65,
623,
62,
79,
3468,
1,
7131,
72,
11,
657,
60,
796,
1438,
62,
1462,
62,
9630,
58,
1370,
58,
15,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
65,
623,
62,
79,
3468,
1,
7131,
72,
11,
352,
60,
796,
1438,
62,
1462,
62,
9630,
58,
1370,
58,
16,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
65,
623,
62,
37266,
1,
7131,
72,
11,
657,
60,
796,
12178,
7,
1370,
58,
17,
12962,
1220,
275,
1219,
81,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10007,
14692,
65,
623,
62,
37266,
1,
7131,
72,
11,
352,
60,
796,
12178,
7,
1370,
58,
18,
12962,
1635,
357,
65,
1219,
81,
1635,
352,
68,
12,
940,
8,
1174,
17,
1220,
289,
433,
631,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
220,
532,
12812,
1366,
1100,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
12331,
287,
6314,
1366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
5569,
4388,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
62,
67,
5263,
62,
1370,
3419,
198,
220,
220,
220,
1441,
10007,
628,
198,
4299,
651,
62,
8344,
30753,
62,
7753,
62,
4868,
7,
2302,
2599,
198,
220,
220,
220,
37227,
3855,
1351,
286,
3696,
351,
1020,
361,
276,
7552,
287,
1459,
8619,
290,
477,
850,
12942,
1749,
37811,
628,
220,
220,
220,
1303,
11140,
625,
477,
3696,
287,
477,
850,
12942,
1749,
11,
751,
284,
1351,
611,
423,
2672,
7552,
198,
220,
220,
220,
3696,
796,
17635,
198,
220,
220,
220,
329,
26672,
6978,
11,
26672,
3672,
11,
1226,
268,
1047,
287,
28686,
13,
11152,
7,
1911,
30487,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
329,
29472,
287,
1226,
268,
1047,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
29472,
13,
437,
2032,
342,
7,
2302,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
796,
28686,
13,
6978,
13,
22179,
7,
15908,
6978,
11,
34345,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3696,
13,
33295,
7,
7753,
6978,
8,
198,
220,
220,
220,
1441,
3696,
628,
198,
4299,
4174,
62,
41007,
291,
62,
7784,
560,
62,
31448,
7,
66,
4372,
82,
11,
3091,
62,
7857,
2599,
198,
220,
220,
220,
37227,
44836,
2278,
8467,
284,
1394,
23235,
1626,
18640,
3091,
37811,
628,
220,
220,
220,
1067,
9310,
58,
66,
4372,
82,
1279,
657,
60,
15853,
3091,
62,
7857,
198,
220,
220,
220,
1067,
9310,
58,
66,
4372,
82,
1875,
3091,
62,
7857,
60,
48185,
3091,
62,
7857,
198,
220,
220,
220,
1441,
1067,
9310,
628,
198,
4299,
5288,
62,
9060,
62,
6381,
489,
5592,
7,
66,
4372,
62,
15,
11,
1067,
67,
62,
16,
11,
3091,
62,
7857,
2599,
198,
220,
220,
220,
37227,
16742,
29358,
1022,
16936,
27458,
4263,
286,
22037,
5166,
37811,
628,
220,
220,
220,
29358,
796,
1067,
67,
62,
15,
532,
1067,
67,
62,
16,
198,
220,
220,
220,
29358,
58,
6381,
489,
5592,
1279,
532,
3524,
62,
7857,
1220,
362,
60,
15853,
3091,
62,
7857,
198,
220,
220,
220,
29358,
58,
6381,
489,
5592,
1875,
3091,
62,
7857,
1220,
362,
60,
48185,
3091,
62,
7857,
198,
220,
220,
220,
1441,
29358,
628,
198,
4299,
4238,
786,
62,
37652,
17540,
7,
66,
4372,
82,
11,
3091,
62,
7857,
11,
595,
5372,
11,
4179,
2599,
198,
220,
220,
220,
37227,
26446,
260,
23235,
287,
18640,
3091,
11,
4174,
27458,
18645,
11,
4174,
4738,
29358,
37811,
628,
220,
220,
220,
1067,
9310,
15853,
3091,
62,
7857,
1220,
362,
198,
220,
220,
220,
1067,
9310,
796,
4174,
62,
41007,
291,
62,
7784,
560,
62,
31448,
7,
66,
4372,
82,
11,
3091,
62,
7857,
8,
198,
220,
220,
220,
611,
595,
5372,
25,
198,
220,
220,
220,
220,
220,
220,
220,
7845,
28613,
796,
45941,
13,
25120,
13,
403,
6933,
7,
9319,
796,
532,
32374,
11,
1029,
796,
4179,
11,
2546,
796,
1067,
9310,
13,
43358,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1067,
9310,
15853,
7845,
28613,
198,
220,
220,
220,
1441,
1067,
9310,
628,
198,
4299,
15284,
62,
22554,
7,
76,
13978,
11,
1067,
9310,
11,
11555,
420,
871,
11,
6314,
62,
79,
3468,
11,
6314,
62,
37266,
11,
3091,
62,
7857,
2599,
198,
220,
220,
220,
37227,
9771,
3129,
378,
37892,
11,
2785,
290,
2472,
2568,
286,
1080,
37811,
628,
220,
220,
220,
37892,
62,
22554,
796,
657,
13,
20,
1635,
357,
76,
13978,
1635,
45941,
13,
16345,
7,
626,
420,
871,
12429,
362,
11,
16488,
28,
16,
29720,
16345,
3419,
220,
1303,
471,
28,
15,
13,
20,
9,
76,
9,
85,
61,
17,
628,
220,
220,
220,
1303,
27131,
378,
49239,
2785,
2568,
1262,
25,
471,
28,
15,
13,
20,
9,
74,
7,
81,
12,
81,
15,
8,
61,
17,
198,
220,
220,
220,
329,
1312,
11,
6314,
287,
27056,
378,
7,
65,
623,
62,
79,
3468,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
22037,
62,
15,
11,
22037,
62,
16,
796,
6314,
58,
15,
4357,
6314,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
29358,
796,
5288,
62,
9060,
62,
6381,
489,
5592,
7,
66,
4372,
82,
58,
37696,
62,
15,
11,
1058,
4357,
1067,
9310,
58,
37696,
62,
16,
11,
1058,
4357,
3091,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5253,
796,
45941,
13,
75,
1292,
70,
13,
27237,
7,
6381,
489,
5592,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2785,
62,
22554,
796,
657,
13,
20,
1635,
6314,
62,
37266,
58,
72,
11,
352,
60,
1635,
357,
30246,
532,
6314,
62,
37266,
58,
72,
11,
657,
12962,
12429,
362,
628,
220,
220,
220,
2472,
62,
22554,
796,
37892,
62,
22554,
1343,
2785,
62,
22554,
220,
1303,
7472,
2568,
355,
2160,
286,
885,
290,
613,
198,
220,
220,
220,
1441,
45941,
13,
18747,
26933,
5116,
5139,
62,
22554,
11,
2785,
62,
22554,
11,
2472,
62,
22554,
12962,
628,
198,
4299,
4296,
62,
330,
7015,
602,
7,
76,
13978,
11,
1067,
9310,
11,
6314,
62,
79,
3468,
11,
6314,
62,
37266,
11,
3091,
62,
7857,
2599,
198,
220,
220,
220,
37227,
9771,
3129,
378,
262,
20309,
319,
1123,
22037,
1262,
2785,
2746,
290,
17321,
338,
3657,
286,
6268,
37811,
628,
220,
220,
220,
1303,
27131,
378,
3386,
1262,
9544,
2088,
338,
1099,
25,
376,
10779,
74,
7,
81,
12,
81,
15,
8,
198,
220,
220,
220,
1303,
38240,
284,
20309,
1262,
17321,
338,
3657,
25,
376,
28,
2611,
11,
2223,
468,
6697,
6317,
198,
220,
220,
220,
8320,
602,
796,
45941,
13,
9107,
418,
62,
2339,
7,
66,
4372,
82,
8,
220,
1303,
2124,
11,
88,
11,
89,
8320,
602,
329,
1123,
22037,
198,
220,
220,
220,
329,
1312,
11,
6314,
287,
27056,
378,
7,
65,
623,
62,
79,
3468,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
22037,
62,
15,
11,
22037,
62,
16,
796,
6314,
58,
15,
4357,
6314,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
29358,
796,
5288,
62,
9060,
62,
6381,
489,
5592,
7,
66,
4372,
82,
58,
37696,
62,
15,
11,
1058,
4357,
1067,
9310,
58,
37696,
62,
16,
11,
1058,
4357,
3091,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5253,
796,
45941,
13,
75,
1292,
70,
13,
27237,
7,
6381,
489,
5592,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2700,
62,
37295,
796,
29358,
1220,
5253,
198,
220,
220,
220,
220,
220,
220,
220,
2700,
62,
76,
4660,
3984,
796,
532,
6314,
62,
37266,
58,
72,
11,
352,
60,
1635,
357,
30246,
532,
6314,
62,
37266,
58,
72,
11,
657,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2700,
796,
2700,
62,
76,
4660,
3984,
1635,
2700,
62,
37295,
198,
220,
220,
220,
220,
220,
220,
220,
8320,
602,
58,
37696,
62,
15,
60,
15853,
2700,
1220,
14568,
58,
37696,
62,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
8320,
602,
58,
37696,
62,
16,
60,
48185,
2700,
1220,
14568,
58,
37696,
62,
16,
60,
198,
220,
220,
220,
1441,
8320,
602,
628,
198,
4299,
4296,
62,
37652,
17540,
7,
66,
4372,
82,
11,
8320,
602,
11,
11555,
420,
871,
11,
640,
62,
9662,
11,
3091,
62,
7857,
2599,
198,
220,
220,
220,
37227,
10260,
22715,
1262,
25,
2124,
7,
83,
10,
28664,
47505,
87,
7,
83,
47762,
85,
7,
83,
27493,
28664,
10,
15,
13,
20,
9,
64,
7,
83,
27493,
28664,
1174,
17,
37811,
628,
220,
220,
220,
1067,
9310,
15853,
11555,
420,
871,
1635,
640,
62,
9662,
1343,
657,
13,
20,
1635,
8320,
602,
1635,
640,
62,
9662,
12429,
362,
198,
220,
220,
220,
1067,
9310,
796,
4174,
62,
41007,
291,
62,
7784,
560,
62,
31448,
7,
66,
4372,
82,
11,
3091,
62,
7857,
8,
198,
220,
220,
220,
1441,
1067,
9310,
628,
198,
4299,
4296,
62,
626,
420,
871,
7,
626,
420,
871,
11,
8320,
602,
62,
9688,
11,
8320,
602,
62,
437,
11,
640,
62,
9662,
2599,
198,
220,
220,
220,
37227,
10260,
11555,
420,
871,
1262,
25,
410,
7,
83,
10,
28664,
47505,
85,
7,
83,
47762,
15,
13,
20,
9,
28664,
9,
7,
64,
7,
83,
47762,
64,
7,
83,
10,
28664,
4008,
37811,
628,
220,
220,
220,
11555,
420,
871,
15853,
657,
13,
20,
1635,
640,
62,
9662,
1635,
357,
330,
7015,
602,
62,
9688,
1343,
8320,
602,
62,
437,
8,
198,
220,
220,
220,
1441,
11555,
420,
871,
628,
198,
4299,
3551,
62,
22915,
62,
16624,
7,
2435,
62,
9662,
11,
997,
62,
265,
3150,
11,
3891,
11,
1067,
9310,
11,
27598,
2599,
198,
220,
220,
220,
37227,
20257,
274,
22715,
287,
41420,
57,
2393,
2099,
284,
705,
37652,
17540,
13,
5431,
89,
6,
198,
220,
220,
220,
19430,
37892,
11,
2785,
290,
2472,
27598,
284,
705,
877,
70,
444,
13,
19608,
6,
37811,
628,
220,
220,
220,
1303,
19430,
41420,
57,
2393,
198,
220,
220,
220,
2124,
45579,
62,
7753,
13,
13564,
7203,
90,
15,
92,
220,
3467,
77,
59,
77,
1911,
18982,
7,
22510,
62,
265,
3150,
4008,
198,
220,
220,
220,
329,
1312,
11,
1067,
67,
287,
27056,
378,
7,
66,
4372,
82,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
45579,
796,
1067,
67,
1635,
275,
1219,
81,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
45579,
62,
7753,
13,
13564,
7203,
90,
15,
92,
220,
1391,
16,
25,
13,
21,
69,
92,
220,
1391,
17,
25,
13,
21,
69,
92,
220,
1391,
18,
25,
13,
21,
69,
92,
220,
3467,
77,
1911,
18982,
7,
14933,
58,
72,
4357,
2124,
45579,
58,
15,
4357,
2124,
45579,
58,
16,
4357,
2124,
45579,
58,
17,
60,
4008,
628,
220,
220,
220,
1303,
19430,
27598,
198,
220,
220,
220,
2568,
796,
27598,
1635,
289,
433,
631,
1635,
1196,
78,
1635,
352,
68,
12,
18,
198,
220,
220,
220,
2568,
62,
7753,
13,
13564,
7203,
90,
15,
92,
220,
1391,
16,
92,
220,
1391,
17,
92,
220,
1391,
18,
92,
220,
3467,
77,
1911,
18982,
7,
2435,
62,
9662,
11,
2568,
58,
15,
4357,
2568,
58,
16,
4357,
2568,
58,
17,
60,
4008,
628,
198,
4299,
1388,
33529,
198,
220,
220,
220,
37227,
37508,
5128,
14,
22915,
290,
18955,
17262,
15432,
12,
332,
1616,
11862,
37811,
628,
220,
220,
220,
1303,
16531,
4756,
3275,
198,
220,
220,
220,
3359,
62,
25677,
3419,
628,
220,
220,
220,
1303,
4149,
2836,
10007,
422,
5128,
2393,
198,
220,
220,
220,
5128,
62,
17143,
7307,
796,
651,
62,
15414,
62,
17143,
7307,
3419,
628,
220,
220,
220,
1303,
791,
8002,
10007,
198,
220,
220,
220,
640,
62,
23350,
796,
5128,
62,
17143,
7307,
14692,
2435,
62,
23350,
8973,
198,
220,
220,
220,
640,
62,
9662,
796,
5128,
62,
17143,
7307,
14692,
2435,
62,
9662,
8973,
198,
220,
220,
220,
3091,
62,
7857,
796,
5128,
62,
17143,
7307,
14692,
3524,
62,
7857,
8973,
198,
220,
220,
220,
3551,
62,
19503,
80,
796,
5128,
62,
17143,
7307,
14692,
13564,
62,
19503,
80,
8973,
198,
220,
220,
220,
997,
62,
265,
3150,
796,
5128,
62,
17143,
7307,
14692,
22510,
62,
265,
3150,
8973,
198,
220,
220,
220,
595,
5372,
62,
265,
3150,
796,
5128,
62,
17143,
7307,
14692,
25120,
62,
6381,
489,
5592,
8973,
198,
220,
220,
220,
29358,
62,
32374,
796,
5128,
62,
17143,
7307,
14692,
25120,
62,
6381,
489,
5592,
62,
32374,
8973,
198,
220,
220,
220,
22037,
62,
14933,
796,
5128,
62,
17143,
7307,
14692,
37696,
62,
14933,
8973,
198,
220,
220,
220,
22037,
62,
76,
13978,
796,
5128,
62,
17143,
7307,
14692,
37696,
62,
76,
13978,
8973,
198,
220,
220,
220,
22037,
62,
66,
4372,
82,
796,
5128,
62,
17143,
7307,
14692,
37696,
62,
66,
4372,
82,
8973,
198,
220,
220,
220,
6314,
62,
79,
3468,
796,
5128,
62,
17143,
7307,
14692,
65,
623,
62,
79,
3468,
8973,
198,
220,
220,
220,
6314,
62,
37266,
796,
5128,
62,
17143,
7307,
14692,
65,
623,
62,
37266,
8973,
628,
220,
220,
220,
1303,
22926,
260,
22715,
290,
4174,
7845,
28613,
198,
220,
220,
220,
22037,
62,
66,
4372,
82,
796,
4238,
786,
62,
37652,
17540,
7,
37696,
62,
66,
4372,
82,
11,
3091,
62,
7857,
11,
595,
5372,
62,
265,
3150,
11,
29358,
62,
32374,
8,
628,
220,
220,
220,
1303,
20768,
786,
38275,
33806,
15965,
2977,
198,
220,
220,
220,
997,
62,
20214,
796,
493,
7,
2435,
62,
23350,
1220,
640,
62,
9662,
8,
220,
1303,
2472,
1271,
286,
4831,
286,
45243,
198,
220,
220,
220,
3551,
62,
20214,
796,
493,
7,
13564,
62,
19503,
80,
1220,
640,
62,
9662,
8,
220,
1303,
1271,
286,
4831,
284,
3551,
503,
2482,
198,
220,
220,
220,
22037,
62,
626,
82,
796,
45941,
13,
9107,
418,
62,
2339,
7,
37696,
62,
66,
4372,
82,
8,
220,
1303,
11555,
420,
871,
287,
2124,
11,
88,
11,
89,
11678,
329,
477,
23235,
198,
220,
220,
220,
22037,
62,
4134,
62,
9688,
796,
22037,
62,
4134,
62,
437,
796,
45941,
13,
9107,
418,
62,
2339,
7,
37696,
62,
66,
4372,
82,
8,
220,
1303,
8320,
602,
379,
923,
290,
886,
286,
640,
2239,
198,
220,
220,
220,
22037,
62,
4134,
62,
9688,
796,
4296,
62,
330,
7015,
602,
7,
37696,
62,
76,
13978,
11,
22037,
62,
66,
4372,
82,
11,
6314,
62,
79,
3468,
11,
6314,
62,
37266,
11,
3091,
62,
7857,
8,
220,
1303,
15284,
4238,
8320,
602,
198,
220,
220,
220,
1080,
62,
22554,
796,
15284,
62,
22554,
7,
37696,
62,
76,
13978,
11,
22037,
62,
66,
4372,
82,
11,
22037,
62,
626,
82,
11,
6314,
62,
79,
3468,
11,
6314,
62,
37266,
11,
3091,
62,
7857,
8,
220,
1303,
15284,
4238,
27598,
198,
220,
220,
220,
3551,
62,
22915,
62,
16624,
7,
15,
11,
997,
62,
265,
3150,
11,
22037,
62,
14933,
11,
22037,
62,
66,
4372,
82,
11,
1080,
62,
22554,
8,
628,
220,
220,
220,
1303,
38275,
17262,
198,
220,
220,
220,
3601,
7203,
5990,
15464,
18955,
17262,
18640,
4943,
198,
220,
220,
220,
329,
2239,
287,
2837,
7,
16,
11,
997,
62,
20214,
10,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
43137,
532,
4643,
1616,
11862,
198,
220,
220,
220,
220,
220,
220,
220,
22037,
62,
66,
4372,
82,
796,
4296,
62,
37652,
17540,
7,
37696,
62,
66,
4372,
82,
11,
22037,
62,
4134,
62,
9688,
11,
22037,
62,
626,
82,
11,
640,
62,
9662,
11,
3091,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
22037,
62,
4134,
62,
437,
796,
4296,
62,
330,
7015,
602,
7,
37696,
62,
76,
13978,
11,
22037,
62,
66,
4372,
82,
11,
6314,
62,
79,
3468,
11,
6314,
62,
37266,
11,
3091,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
22037,
62,
626,
82,
796,
4296,
62,
626,
420,
871,
7,
37696,
62,
626,
82,
11,
22037,
62,
4134,
62,
9688,
11,
22037,
62,
4134,
62,
437,
11,
640,
62,
9662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
22037,
62,
4134,
62,
9688,
796,
22037,
62,
4134,
62,
437,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
19430,
22715,
290,
27598,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2239,
4064,
3551,
62,
20214,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1080,
62,
22554,
796,
15284,
62,
22554,
7,
37696,
62,
76,
13978,
11,
22037,
62,
66,
4372,
82,
11,
22037,
62,
626,
82,
11,
6314,
62,
79,
3468,
11,
6314,
62,
37266,
11,
3091,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
22915,
62,
16624,
7,
9662,
11,
997,
62,
265,
3150,
11,
22037,
62,
14933,
11,
22037,
62,
66,
4372,
82,
11,
1080,
62,
22554,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
5377,
24547,
25,
46110,
13,
18,
69,
92,
4,
1911,
18982,
7,
3064,
1635,
12178,
7,
9662,
8,
1220,
997,
62,
20214,
4008,
198,
220,
220,
220,
3601,
62,
67,
5263,
62,
1370,
3419,
198,
220,
220,
220,
3601,
7203,
8890,
1741,
1844,
3467,
77,
7222,
585,
17540,
3194,
284,
22715,
13,
5431,
89,
3467,
77,
36,
25649,
444,
3194,
284,
27598,
13,
19608,
4943,
198,
220,
220,
220,
3601,
62,
67,
5263,
62,
1370,
3419,
628,
198,
2,
8393,
1133,
2438,
611,
1388,
2393,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.469327 | 5,037 |
if __name__ == '__main__':
coins = [1, 2, 10]
price = 28
print(minimal_number_of_coins(coins, price))
| [
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
10796,
796,
685,
16,
11,
362,
11,
838,
60,
198,
220,
220,
220,
2756,
796,
2579,
198,
220,
220,
220,
3601,
7,
1084,
4402,
62,
17618,
62,
1659,
62,
14624,
7,
14624,
11,
2756,
4008,
198
] | 2.25 | 52 |
from __clrclasses__.System.Security.Principal import GenericIdentity
from __clrclasses__.System.Security.Principal import GenericPrincipal
from __clrclasses__.System.Security.Principal import IdentityNotMappedException
from __clrclasses__.System.Security.Principal import IdentityReference
from __clrclasses__.System.Security.Principal import IdentityReferenceCollection
from __clrclasses__.System.Security.Principal import IIdentity
from __clrclasses__.System.Security.Principal import IPrincipal
from __clrclasses__.System.Security.Principal import NTAccount
from __clrclasses__.System.Security.Principal import PrincipalPolicy
from __clrclasses__.System.Security.Principal import SecurityIdentifier
from __clrclasses__.System.Security.Principal import TokenAccessLevels
from __clrclasses__.System.Security.Principal import TokenImpersonationLevel
from __clrclasses__.System.Security.Principal import WellKnownSidType
from __clrclasses__.System.Security.Principal import WindowsAccountType
from __clrclasses__.System.Security.Principal import WindowsBuiltInRole
from __clrclasses__.System.Security.Principal import WindowsIdentity
from __clrclasses__.System.Security.Principal import WindowsImpersonationContext
from __clrclasses__.System.Security.Principal import WindowsPrincipal
| [
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
42044,
7390,
26858,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
42044,
42904,
8521,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
27207,
3673,
44,
6320,
16922,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
27207,
26687,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
27207,
26687,
36307,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
2873,
67,
26858,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
6101,
81,
1939,
8521,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
399,
5603,
535,
608,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
32641,
36727,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
4765,
33234,
7483,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
29130,
15457,
4971,
82,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
29130,
26950,
882,
341,
4971,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
3894,
29870,
50,
312,
6030,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
3964,
30116,
6030,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
3964,
39582,
818,
47445,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
3964,
7390,
26858,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
3964,
26950,
882,
341,
21947,
198,
6738,
11593,
565,
81,
37724,
834,
13,
11964,
13,
24074,
13,
42904,
8521,
1330,
3964,
42904,
8521,
198
] | 3.844311 | 334 |
import math
import numpy as np
from nltk.metrics.association import TOTAL
from sklearn import metrics
from matplotlib.mlab import entropy
| [
11748,
10688,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
299,
2528,
74,
13,
4164,
10466,
13,
562,
41003,
1330,
36247,
198,
6738,
1341,
35720,
1330,
20731,
198,
6738,
2603,
29487,
8019,
13,
4029,
397,
1330,
40709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198
] | 2.333333 | 75 |
from django import forms
from ..models import User
from django.contrib.auth.forms import UserCreationForm
| [
6738,
42625,
14208,
1330,
5107,
198,
6738,
11485,
27530,
1330,
11787,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
23914,
1330,
11787,
12443,
341,
8479,
628
] | 3.821429 | 28 |
'''Bulbasaur, Ivysaur and Venusaur'''
from __init__ import Pokemon
Bulbasaur = Pokemon('generation_1/001.txt')
print(Bulbasaur)
| [
7061,
6,
33481,
12093,
2899,
11,
16975,
893,
2899,
290,
21094,
2899,
7061,
6,
198,
6738,
11593,
15003,
834,
1330,
14878,
198,
198,
33481,
12093,
2899,
796,
14878,
10786,
20158,
62,
16,
14,
8298,
13,
14116,
11537,
198,
4798,
7,
33481,
12093,
2899,
8,
198
] | 2.866667 | 45 |
import django
from django.conf import settings
| [
11748,
42625,
14208,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
628
] | 4 | 12 |
#
# @lc app=leetcode id=207 lang=python3
#
# [207] Course Schedule
#
# @lc code=start
# @lc code=end
| [
2,
198,
2,
2488,
44601,
598,
28,
293,
316,
8189,
4686,
28,
22745,
42392,
28,
29412,
18,
198,
2,
198,
2,
685,
22745,
60,
20537,
19281,
198,
2,
198,
198,
2,
2488,
44601,
2438,
28,
9688,
628,
198,
2,
2488,
44601,
2438,
28,
437,
198
] | 2.311111 | 45 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Tests for nipyapi security module."""
from __future__ import absolute_import
import pytest
from tests import conftest
import nipyapi
# Tells pytest to skip this module of security testing is not enabled.
pytestmark = pytest.mark.skipif(not conftest.test_security, reason='test_security disabled in Conftest')
# Useful for manual testing
# if conftest.test_security:
# test_host = nipyapi.config.default_host
# nipyapi.utils.set_endpoint('https://' + test_host + ':18443/nifi-registry-api', True, True)
# nipyapi.utils.set_endpoint('https://' + test_host + ':9443/nifi-api', True, True)
# TODO: Test adding users to existing set of users and ensuring no clobber
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
37811,
51,
3558,
329,
299,
541,
88,
15042,
2324,
8265,
526,
15931,
198,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
11748,
12972,
9288,
198,
6738,
5254,
1330,
369,
701,
395,
198,
11748,
299,
541,
88,
15042,
198,
198,
2,
14026,
82,
12972,
9288,
284,
14267,
428,
8265,
286,
2324,
4856,
318,
407,
9343,
13,
198,
9078,
9288,
4102,
796,
12972,
9288,
13,
4102,
13,
48267,
361,
7,
1662,
369,
701,
395,
13,
9288,
62,
12961,
11,
1738,
11639,
9288,
62,
12961,
10058,
287,
1482,
701,
395,
11537,
198,
198,
2,
49511,
329,
10107,
4856,
198,
2,
611,
369,
701,
395,
13,
9288,
62,
12961,
25,
198,
2,
220,
220,
220,
220,
1332,
62,
4774,
796,
299,
541,
88,
15042,
13,
11250,
13,
12286,
62,
4774,
198,
2,
220,
220,
220,
220,
299,
541,
88,
15042,
13,
26791,
13,
2617,
62,
437,
4122,
10786,
5450,
1378,
6,
1343,
1332,
62,
4774,
1343,
705,
25,
1507,
34938,
14,
77,
22238,
12,
2301,
4592,
12,
15042,
3256,
6407,
11,
6407,
8,
198,
2,
220,
220,
220,
220,
299,
541,
88,
15042,
13,
26791,
13,
2617,
62,
437,
4122,
10786,
5450,
1378,
6,
1343,
1332,
62,
4774,
1343,
705,
25,
24,
34938,
14,
77,
22238,
12,
15042,
3256,
6407,
11,
6407,
8,
628,
628,
628,
628,
628,
628,
628,
628,
628,
628,
198,
2,
16926,
46,
25,
6208,
4375,
2985,
284,
4683,
900,
286,
2985,
290,
13359,
645,
537,
672,
527,
198
] | 2.815094 | 265 |
from django.conf.urls import include, url
from django.contrib import admin
from django.contrib.auth.forms import UserCreationForm
from django.views.generic import CreateView
from django.views.generic import RedirectView
admin.autodiscover()
from django.conf import settings
from django.conf.urls.static import static
import django.contrib.auth.views
from mentoring.views import views
from mentoring.views import honors_admin
# Examples:
# url(r'^$', 'gettingstarted.views.home', name='home'),
# url(r'^blog/', include('blog.urls')),
urlpatterns = [
url(r'^$', views.home),
url(r'^admin/', admin.site.urls),
url(r'^(?i)honorsAdmin/$', honors_admin.home),
url(r'^(?i)honorsAdmin/mentors/$', honors_admin.mentors),
url(r'^(?i)honorsAdmin/mentor/([0-9]+)/view', honors_admin.mentor_detail),
url(r'^(?i)honorsAdmin/mentor/([0-9]+)/details', honors_admin.mentor_detail_page),
url(r'^(?i)honorsAdmin/mentor/([0-9]+)/approve', honors_admin.mentor_approve),
url(r'^(?i)honorsAdmin/mentor/([0-9]+)/deny', honors_admin.mentor_deny),
url(r'^(?i)honorsAdmin/mentees/$', honors_admin.mentees),
url(r'^(?i)honorsAdmin/mentee/([0-9]+)/view', honors_admin.mentee_detail),
url(r'^(?i)honorsAdmin/mentee/([0-9]+)/details', honors_admin.mentee_detail_page),
url(r'^(?i)honorsAdmin/mentee/([0-9]+)/approve', honors_admin.mentee_approve),
url(r'^(?i)honorsAdmin/mentee/([0-9]+)/deny', honors_admin.mentee_deny),
url(r'^(?i)honorsAdmin/mentee/([0-9]+)/getmatches', honors_admin.mentee_get_matches),
url(r'^(?i)honorsAdmin/mentee/([0-9]+)/getallmatches$', honors_admin.mentee_get_all_matches),
url(r'^(?i)honorsAdmin/mentee/([0-9]+)/getallmatcheslist', honors_admin.mentee_get_all_matches_list),
url(r'^(?i)honorsAdmin/createPairing', honors_admin.create_pairing),
url(r'^(?i)honorsAdmin/resendPairing', honors_admin.resend_pairing_email),
url(r'^(?i)honorsAdmin/endPairing', honors_admin.end_pairing),
url(r'^(?i)honorsAdmin/feedbacks/([0-9]+)/view/', honors_admin.pairing_feedback),
url(r'^(?i)honorsAdmin/pairs/$', honors_admin.pairings),
url(r'^(?i)honorsAdmin/export/$', honors_admin.export),
url(r'^(?i)honorsAdmin/invite/$', honors_admin.invitations),
url(r'^(?i)honorsAdmin/send_invite/$', honors_admin.send_invite),
url(r'^(?i)honorsAdmin/preview_invite/$', honors_admin.preview_invite),
# Default django stuff
url(r'^(?i)accounts/logout/$', django.contrib.auth.views.logout),
url(r'^(?i)accounts/login/$', django.contrib.auth.views.login, {'template_name': 'admin/login.html'}),
url(r'^(?i)accounts/$', RedirectView.as_view(url='/')),
url(r'^(?i)thankyoumentor/', views.thank_you_mentor),
url(r'^(?i)thankyoumentee/', views.thank_you_mentee),
url(r'^(?i)newmentor/', views.new_mentor),
url(r'^(?i)newmentee/', views.new_mentee),
url(r'^(?i)confirmation/', views.confirm_account),
url(r'^(?i)feedback/', views.pairing_feedback),
] # + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
| [
6738,
42625,
14208,
13,
10414,
13,
6371,
82,
1330,
2291,
11,
19016,
198,
198,
6738,
42625,
14208,
13,
3642,
822,
1330,
13169,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
23914,
1330,
11787,
12443,
341,
8479,
198,
6738,
42625,
14208,
13,
33571,
13,
41357,
1330,
13610,
7680,
198,
6738,
42625,
14208,
13,
33571,
13,
41357,
1330,
2297,
1060,
7680,
198,
198,
28482,
13,
2306,
375,
29392,
3419,
198,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
10414,
13,
6371,
82,
13,
12708,
1330,
9037,
198,
11748,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
33571,
198,
198,
6738,
6229,
3255,
13,
33571,
1330,
5009,
198,
6738,
6229,
3255,
13,
33571,
1330,
25279,
62,
28482,
198,
198,
2,
21066,
25,
198,
2,
19016,
7,
81,
6,
61,
3,
3256,
705,
37210,
46981,
13,
33571,
13,
11195,
3256,
1438,
11639,
11195,
33809,
198,
2,
19016,
7,
81,
6,
61,
14036,
14,
3256,
2291,
10786,
14036,
13,
6371,
82,
11537,
828,
198,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
3,
3256,
5009,
13,
11195,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
28482,
14,
3256,
13169,
13,
15654,
13,
6371,
82,
828,
628,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
32624,
3256,
25279,
62,
28482,
13,
11195,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
669,
32624,
3256,
25279,
62,
28482,
13,
434,
669,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
273,
14,
26933,
15,
12,
24,
48688,
20679,
1177,
3256,
25279,
62,
28482,
13,
434,
273,
62,
49170,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
273,
14,
26933,
15,
12,
24,
48688,
20679,
36604,
3256,
25279,
62,
28482,
13,
434,
273,
62,
49170,
62,
7700,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
273,
14,
26933,
15,
12,
24,
48688,
20679,
21064,
303,
3256,
25279,
62,
28482,
13,
434,
273,
62,
21064,
303,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
273,
14,
26933,
15,
12,
24,
48688,
20679,
6559,
88,
3256,
25279,
62,
28482,
13,
434,
273,
62,
6559,
88,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
2841,
32624,
3256,
25279,
62,
28482,
13,
434,
2841,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
1453,
14,
26933,
15,
12,
24,
48688,
20679,
1177,
3256,
25279,
62,
28482,
13,
434,
1453,
62,
49170,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
1453,
14,
26933,
15,
12,
24,
48688,
20679,
36604,
3256,
25279,
62,
28482,
13,
434,
1453,
62,
49170,
62,
7700,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
1453,
14,
26933,
15,
12,
24,
48688,
20679,
21064,
303,
3256,
25279,
62,
28482,
13,
434,
1453,
62,
21064,
303,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
1453,
14,
26933,
15,
12,
24,
48688,
20679,
6559,
88,
3256,
25279,
62,
28482,
13,
434,
1453,
62,
6559,
88,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
1453,
14,
26933,
15,
12,
24,
48688,
20679,
1136,
6759,
2052,
3256,
25279,
62,
28482,
13,
434,
1453,
62,
1136,
62,
6759,
2052,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
1453,
14,
26933,
15,
12,
24,
48688,
20679,
1136,
439,
6759,
2052,
3,
3256,
25279,
62,
28482,
13,
434,
1453,
62,
1136,
62,
439,
62,
6759,
2052,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
434,
1453,
14,
26933,
15,
12,
24,
48688,
20679,
1136,
439,
6759,
2052,
4868,
3256,
25279,
62,
28482,
13,
434,
1453,
62,
1136,
62,
439,
62,
6759,
2052,
62,
4868,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
17953,
47,
958,
278,
3256,
25279,
62,
28482,
13,
17953,
62,
24874,
278,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
411,
437,
47,
958,
278,
3256,
25279,
62,
28482,
13,
411,
437,
62,
24874,
278,
62,
12888,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
437,
47,
958,
278,
3256,
25279,
62,
28482,
13,
437,
62,
24874,
278,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
12363,
10146,
14,
26933,
15,
12,
24,
48688,
20679,
1177,
14,
3256,
25279,
62,
28482,
13,
24874,
278,
62,
12363,
1891,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
79,
3468,
32624,
3256,
25279,
62,
28482,
13,
24874,
654,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
39344,
32624,
3256,
25279,
62,
28482,
13,
39344,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
16340,
578,
32624,
3256,
25279,
62,
28482,
13,
16340,
20597,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
21280,
62,
16340,
578,
32624,
3256,
25279,
62,
28482,
13,
21280,
62,
16340,
578,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
24130,
669,
46787,
14,
3866,
1177,
62,
16340,
578,
32624,
3256,
25279,
62,
28482,
13,
3866,
1177,
62,
16340,
578,
828,
628,
198,
220,
220,
220,
1303,
15161,
42625,
14208,
3404,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
23317,
82,
14,
6404,
448,
32624,
3256,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
33571,
13,
6404,
448,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
23317,
82,
14,
38235,
32624,
3256,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
33571,
13,
38235,
11,
1391,
6,
28243,
62,
3672,
10354,
705,
28482,
14,
38235,
13,
6494,
6,
92,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
23317,
82,
32624,
3256,
2297,
1060,
7680,
13,
292,
62,
1177,
7,
6371,
11639,
14,
11537,
828,
628,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
40716,
5832,
434,
273,
14,
3256,
5009,
13,
40716,
62,
5832,
62,
434,
273,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
40716,
5832,
434,
1453,
14,
3256,
5009,
13,
40716,
62,
5832,
62,
434,
1453,
828,
628,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
3605,
434,
273,
14,
3256,
5009,
13,
3605,
62,
434,
273,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
3605,
434,
1453,
14,
3256,
5009,
13,
3605,
62,
434,
1453,
828,
628,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
10414,
36241,
14,
3256,
5009,
13,
10414,
2533,
62,
23317,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7,
30,
72,
8,
12363,
1891,
14,
3256,
5009,
13,
24874,
278,
62,
12363,
1891,
828,
198,
60,
220,
1303,
1343,
9037,
7,
33692,
13,
35744,
2149,
62,
21886,
11,
3188,
62,
15763,
28,
33692,
13,
35744,
2149,
62,
13252,
2394,
8,
198
] | 2.308511 | 1,316 |
import pytest
import potemkin
import boto3
from potemkin.configservice import evaluate_config_rule_and_wait_for_resource, config_rule_wait_for_resource, config_rule_wait_for_absent_resources, config_rule_wait_for_compliance_results
@potemkin.CloudFormationStack('test/integration/test_templates/eip.yml',
stack_name_stem='EipTestStack')
@pytest.mark.xfail(reason="deliberate fail")
@potemkin.CloudFormationStack('test/integration/test_templates/eip.yml',
stack_name_stem='EipTestStack')
@potemkin.CloudFormationStack(
'test/integration/test_templates/eip.yml',
stack_name_stem='EipTestStack'
)
@potemkin.CloudFormationStack(
'test/integration/test_templates/eip.yml',
stack_name_stem='EipTestStack'
)
| [
11748,
12972,
9288,
198,
11748,
1787,
368,
5116,
198,
11748,
275,
2069,
18,
198,
6738,
1787,
368,
5116,
13,
11250,
15271,
1330,
13446,
62,
11250,
62,
25135,
62,
392,
62,
17077,
62,
1640,
62,
31092,
11,
4566,
62,
25135,
62,
17077,
62,
1640,
62,
31092,
11,
4566,
62,
25135,
62,
17077,
62,
1640,
62,
8937,
298,
62,
37540,
11,
4566,
62,
25135,
62,
17077,
62,
1640,
62,
47587,
62,
43420,
628,
198,
31,
13059,
368,
5116,
13,
18839,
8479,
341,
25896,
10786,
9288,
14,
18908,
1358,
14,
9288,
62,
11498,
17041,
14,
68,
541,
13,
88,
4029,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8931,
62,
3672,
62,
927,
11639,
36,
541,
14402,
25896,
11537,
628,
198,
31,
9078,
9288,
13,
4102,
13,
26152,
603,
7,
41181,
2625,
12381,
1856,
378,
2038,
4943,
198,
31,
13059,
368,
5116,
13,
18839,
8479,
341,
25896,
10786,
9288,
14,
18908,
1358,
14,
9288,
62,
11498,
17041,
14,
68,
541,
13,
88,
4029,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8931,
62,
3672,
62,
927,
11639,
36,
541,
14402,
25896,
11537,
628,
628,
198,
31,
13059,
368,
5116,
13,
18839,
8479,
341,
25896,
7,
198,
220,
220,
220,
705,
9288,
14,
18908,
1358,
14,
9288,
62,
11498,
17041,
14,
68,
541,
13,
88,
4029,
3256,
198,
220,
220,
220,
8931,
62,
3672,
62,
927,
11639,
36,
541,
14402,
25896,
6,
198,
8,
198,
198,
31,
13059,
368,
5116,
13,
18839,
8479,
341,
25896,
7,
198,
220,
220,
220,
705,
9288,
14,
18908,
1358,
14,
9288,
62,
11498,
17041,
14,
68,
541,
13,
88,
4029,
3256,
198,
220,
220,
220,
8931,
62,
3672,
62,
927,
11639,
36,
541,
14402,
25896,
6,
198,
8,
198
] | 2.40367 | 327 |
# -*- coding: utf-8 -*-
# Copyright (c) 2020, Akram Mutaher and contributors
# For license information, please see license.txt
from __future__ import unicode_literals
# import frappe
from frappe.model.document import Document
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
15069,
357,
66,
8,
12131,
11,
9084,
859,
13859,
64,
372,
290,
20420,
198,
2,
1114,
5964,
1321,
11,
3387,
766,
5964,
13,
14116,
198,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
2,
1330,
5306,
27768,
198,
6738,
5306,
27768,
13,
19849,
13,
22897,
1330,
16854,
198
] | 3.38806 | 67 |
'''
Context Processors do some pretty great work, like default arguments supplied
to templates when they're rendered. kind of like Macros in Flask, but even more
powerful.
'''
import string
from django.utils.datastructures import MultiValueDictKeyError
from .forms import SearchForm
from .static_vars import COLORS, GROUPS
def search_form(request):
'''renders the search form still uses a <form> wrapper to control action
Now pulls the query from the request data and presents it as the
initial field value
'''
try:
query = request.POST['search']
except MultiValueDictKeyError:
query = ""
return {
'SearchForm': SearchForm(initial={'search': query}),
}
def alphabet(request):
'''renders the capitol alphabet from A-Z'''
return {
'alphabet': string.ascii_uppercase,
}
def groups(request):
'''renders the mineral groups'''
return {'groups': GROUPS, }
def colors(request):
'''renders the available colors'''
return {'colors': COLORS, }
| [
7061,
6,
198,
21947,
10854,
669,
466,
617,
2495,
1049,
670,
11,
588,
4277,
7159,
14275,
198,
1462,
24019,
618,
484,
821,
15111,
13,
1611,
286,
588,
4100,
4951,
287,
46947,
11,
475,
772,
517,
198,
44548,
13,
198,
7061,
6,
198,
11748,
4731,
198,
198,
6738,
42625,
14208,
13,
26791,
13,
19608,
459,
1356,
942,
1330,
15237,
11395,
35,
713,
9218,
12331,
198,
198,
6738,
764,
23914,
1330,
11140,
8479,
198,
6738,
764,
12708,
62,
85,
945,
1330,
20444,
20673,
11,
10863,
2606,
3705,
628,
198,
4299,
2989,
62,
687,
7,
25927,
2599,
198,
220,
220,
220,
705,
7061,
10920,
364,
262,
2989,
1296,
991,
3544,
257,
1279,
687,
29,
29908,
284,
1630,
2223,
198,
220,
220,
220,
2735,
16194,
262,
12405,
422,
262,
2581,
1366,
290,
10969,
340,
355,
262,
198,
220,
220,
220,
4238,
2214,
1988,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12405,
796,
2581,
13,
32782,
17816,
12947,
20520,
198,
220,
220,
220,
2845,
15237,
11395,
35,
713,
9218,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12405,
796,
13538,
198,
220,
220,
220,
1441,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
18243,
8479,
10354,
11140,
8479,
7,
36733,
34758,
6,
12947,
10354,
12405,
92,
828,
198,
220,
220,
220,
1782,
628,
198,
4299,
24830,
7,
25927,
2599,
198,
220,
220,
220,
705,
7061,
10920,
364,
262,
1451,
11650,
24830,
422,
317,
12,
57,
7061,
6,
198,
220,
220,
220,
1441,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
17307,
8380,
10354,
4731,
13,
292,
979,
72,
62,
7211,
2798,
589,
11,
198,
220,
220,
220,
1782,
628,
198,
4299,
2628,
7,
25927,
2599,
198,
220,
220,
220,
705,
7061,
10920,
364,
262,
18352,
2628,
7061,
6,
198,
220,
220,
220,
1441,
1391,
6,
24432,
10354,
10863,
2606,
3705,
11,
1782,
628,
198,
4299,
7577,
7,
25927,
2599,
198,
220,
220,
220,
705,
7061,
10920,
364,
262,
1695,
7577,
7061,
6,
198,
220,
220,
220,
1441,
1391,
6,
4033,
669,
10354,
20444,
20673,
11,
1782,
198
] | 2.948718 | 351 |
"""
pushover simple api
~~~~~~~~~~~~~~~~~~~
"""
__author__ = "toloy"
from .pushover import Pushover, PushoverException
| [
37811,
201,
198,
220,
220,
220,
220,
4574,
2502,
2829,
40391,
201,
198,
220,
220,
220,
220,
220,
27156,
4907,
93,
201,
198,
37811,
201,
198,
201,
198,
834,
9800,
834,
796,
366,
83,
349,
726,
1,
201,
198,
201,
198,
6738,
764,
14689,
2502,
1330,
23691,
2502,
11,
23691,
2502,
16922,
201,
198,
201,
198,
201,
198
] | 2.465517 | 58 |
# Code generated by `typeddictgen`. DO NOT EDIT.
"""V1beta1CertificateSigningRequestConditionDict generated type."""
import datetime
from typing import TypedDict
V1beta1CertificateSigningRequestConditionDict = TypedDict(
"V1beta1CertificateSigningRequestConditionDict",
{
"lastUpdateTime": datetime.datetime,
"message": str,
"reason": str,
"type": str,
},
total=False,
)
| [
2,
6127,
7560,
416,
4600,
28004,
6048,
713,
5235,
44646,
8410,
5626,
48483,
13,
198,
37811,
53,
16,
31361,
16,
37608,
22460,
11712,
278,
18453,
48362,
35,
713,
7560,
2099,
526,
15931,
198,
11748,
4818,
8079,
198,
6738,
19720,
1330,
17134,
276,
35,
713,
198,
198,
53,
16,
31361,
16,
37608,
22460,
11712,
278,
18453,
48362,
35,
713,
796,
17134,
276,
35,
713,
7,
198,
220,
220,
220,
366,
53,
16,
31361,
16,
37608,
22460,
11712,
278,
18453,
48362,
35,
713,
1600,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12957,
10260,
7575,
1298,
4818,
8079,
13,
19608,
8079,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20500,
1298,
965,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
41181,
1298,
965,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
4906,
1298,
965,
11,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
2472,
28,
25101,
11,
198,
8,
198
] | 2.608696 | 161 |
# --------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# --------------------------------------------------------------------------------------------
import uuid
from azure_devtools.perfstress_tests import PerfStressTest, get_random_bytes
from azure.servicebus import ServiceBusClient, ServiceBusReceiveMode, ServiceBusMessage
from azure.servicebus.aio import ServiceBusClient as AsyncServiceBusClient
from azure.servicebus.aio.management import ServiceBusAdministrationClient
MAX_QUEUE_SIZE = 40960
| [
2,
16529,
1783,
10541,
198,
2,
15069,
357,
66,
8,
5413,
10501,
13,
1439,
2489,
10395,
13,
198,
2,
49962,
739,
262,
17168,
13789,
13,
4091,
13789,
13,
14116,
287,
262,
1628,
6808,
329,
5964,
1321,
13,
198,
2,
16529,
1783,
10541,
198,
198,
11748,
334,
27112,
198,
198,
6738,
35560,
495,
62,
7959,
31391,
13,
525,
69,
41494,
62,
41989,
1330,
2448,
69,
1273,
601,
14402,
11,
651,
62,
25120,
62,
33661,
198,
198,
6738,
35560,
495,
13,
15271,
10885,
1330,
4809,
16286,
11792,
11,
4809,
16286,
3041,
15164,
19076,
11,
4809,
16286,
12837,
198,
6738,
35560,
495,
13,
15271,
10885,
13,
64,
952,
1330,
4809,
16286,
11792,
355,
1081,
13361,
16177,
16286,
11792,
198,
6738,
35560,
495,
13,
15271,
10885,
13,
64,
952,
13,
27604,
1330,
4809,
16286,
41862,
1358,
11792,
198,
198,
22921,
62,
48,
8924,
8924,
62,
33489,
796,
2319,
39277,
628,
628,
198
] | 4.75 | 148 |
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
nx, ny = (1000,1000)
x = np.linspace(-2,1,nx)
y = np.linspace(-1.5,1.5,ny)
X, Y = np.meshgrid(x,y)
cgrid = X + 1j*Y
# For some numbers c doing z^2 + c again and again from 0 will diverge, not for others, plot it to get the mandelbrot set
Z = 0*cgrid
ZC = Z
for i in range(1,50):
Z = np.power(Z,2) + cgrid
ZC[Z>1000] = i
ZC = np.abs(ZC)
#fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
#surf = ax.plot_surface(X, Y, Z, linewidth=0, antialiased=False, cmap=cm.coolwarm)
mycount = [1]
# Get the mouse click
print(ZC)
fig,ax = plt.subplots()
plt.pcolormesh(X,Y,ZC)
fig.canvas.mpl_connect('button_press_event', onclick)
#fig.canvas.mpl_connect('button_press_event', lambda event: onclick(event, mycount))
'''
ax.set_xlim(-4.01, 4.01)
ax.set_ylim(-4.01, 4.01)
'''
plt.show()
'''
value = np.abs(grid)**(-1)
print(value)
value.flatten()
colour = np.stack((value,value,value))
print(colour)
fig = plt.figure()
ax = plt.axes(xlim=(-1,1),ylim=(-1,1))
ax.scatter(xv,yv,c=colour)
''' | [
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
220,
198,
6738,
2603,
29487,
8019,
1330,
12067,
198,
198,
77,
87,
11,
299,
88,
796,
357,
12825,
11,
12825,
8,
198,
87,
796,
45941,
13,
21602,
10223,
32590,
17,
11,
16,
11,
77,
87,
8,
198,
88,
796,
45941,
13,
21602,
10223,
32590,
16,
13,
20,
11,
16,
13,
20,
11,
3281,
8,
198,
55,
11,
575,
796,
45941,
13,
76,
5069,
25928,
7,
87,
11,
88,
8,
198,
66,
25928,
796,
1395,
1343,
352,
73,
9,
56,
198,
198,
2,
1114,
617,
3146,
269,
1804,
1976,
61,
17,
1343,
269,
757,
290,
757,
422,
657,
481,
12312,
469,
11,
407,
329,
1854,
11,
7110,
340,
284,
651,
262,
6855,
417,
7957,
83,
900,
198,
198,
57,
796,
657,
9,
66,
25928,
198,
57,
34,
796,
1168,
198,
1640,
1312,
287,
2837,
7,
16,
11,
1120,
2599,
220,
220,
220,
220,
198,
220,
220,
220,
1168,
796,
45941,
13,
6477,
7,
57,
11,
17,
8,
1343,
269,
25928,
198,
220,
220,
220,
1168,
34,
58,
57,
29,
12825,
60,
796,
1312,
198,
198,
57,
34,
796,
45941,
13,
8937,
7,
57,
34,
8,
220,
198,
198,
2,
5647,
11,
7877,
796,
458,
83,
13,
7266,
489,
1747,
7,
7266,
29487,
62,
46265,
28,
4895,
16302,
295,
1298,
366,
18,
67,
20662,
8,
198,
2,
11793,
69,
796,
7877,
13,
29487,
62,
42029,
7,
55,
11,
575,
11,
1168,
11,
9493,
413,
5649,
28,
15,
11,
1885,
498,
72,
839,
28,
25101,
11,
269,
8899,
28,
11215,
13,
24494,
31975,
8,
198,
198,
1820,
9127,
796,
685,
16,
60,
198,
198,
2,
3497,
262,
10211,
3904,
198,
220,
220,
220,
220,
198,
4798,
7,
57,
34,
8,
198,
198,
5647,
11,
897,
796,
458,
83,
13,
7266,
489,
1747,
3419,
198,
489,
83,
13,
79,
4033,
579,
5069,
7,
55,
11,
56,
11,
57,
34,
8,
198,
198,
5647,
13,
5171,
11017,
13,
76,
489,
62,
8443,
10786,
16539,
62,
8439,
62,
15596,
3256,
319,
12976,
8,
198,
2,
5647,
13,
5171,
11017,
13,
76,
489,
62,
8443,
10786,
16539,
62,
8439,
62,
15596,
3256,
37456,
1785,
25,
319,
12976,
7,
15596,
11,
616,
9127,
4008,
198,
198,
7061,
6,
198,
897,
13,
2617,
62,
87,
2475,
32590,
19,
13,
486,
11,
604,
13,
486,
8,
198,
897,
13,
2617,
62,
88,
2475,
32590,
19,
13,
486,
11,
604,
13,
486,
8,
198,
7061,
6,
198,
198,
489,
83,
13,
12860,
3419,
628,
198,
198,
7061,
6,
198,
8367,
796,
45941,
13,
8937,
7,
25928,
8,
1174,
32590,
16,
8,
198,
4798,
7,
8367,
8,
198,
8367,
13,
2704,
41769,
3419,
198,
49903,
796,
45941,
13,
25558,
19510,
8367,
11,
8367,
11,
8367,
4008,
198,
4798,
7,
49903,
8,
198,
198,
5647,
796,
458,
83,
13,
26875,
3419,
198,
897,
796,
458,
83,
13,
897,
274,
7,
87,
2475,
16193,
12,
16,
11,
16,
828,
88,
2475,
16193,
12,
16,
11,
16,
4008,
198,
198,
897,
13,
1416,
1436,
7,
87,
85,
11,
88,
85,
11,
66,
28,
49903,
8,
198,
198,
7061,
6
] | 2.098077 | 520 |
'''initialize'''
from .moocdl import MOOCDL | [
7061,
6,
36733,
1096,
7061,
6,
198,
6738,
764,
5908,
420,
25404,
1330,
13070,
4503,
19260
] | 2.6875 | 16 |
from chainerchem.links import embed_atom_id # NOQA
from chainerchem.links import graph_linear # NOQA
from chainerchem.links.embed_atom_id import EmbedAtomID # NOQA
from chainerchem.links.graph_linear import GraphLinear # NOQA
| [
6738,
6333,
263,
15245,
13,
28751,
1330,
11525,
62,
37696,
62,
312,
220,
1303,
8005,
48,
32,
198,
6738,
6333,
263,
15245,
13,
28751,
1330,
4823,
62,
29127,
220,
1303,
8005,
48,
32,
198,
198,
6738,
6333,
263,
15245,
13,
28751,
13,
20521,
62,
37696,
62,
312,
1330,
13302,
276,
2953,
296,
2389,
220,
1303,
8005,
48,
32,
198,
6738,
6333,
263,
15245,
13,
28751,
13,
34960,
62,
29127,
1330,
29681,
14993,
451,
220,
1303,
8005,
48,
32,
198
] | 2.924051 | 79 |
from celery import Task
from kombu.serialization import (
dumps as kombu_dumps,
loads as kombu_loads,
)
from ichnaea.cache import redis_pipeline
from ichnaea.db import db_worker_session
| [
6738,
18725,
1924,
1330,
15941,
198,
6738,
479,
2381,
84,
13,
46911,
1634,
1330,
357,
198,
220,
220,
220,
45514,
355,
479,
2381,
84,
62,
67,
8142,
11,
198,
220,
220,
220,
15989,
355,
479,
2381,
84,
62,
46030,
11,
198,
8,
198,
198,
6738,
220,
488,
2616,
18213,
13,
23870,
1330,
2266,
271,
62,
79,
541,
4470,
198,
6738,
220,
488,
2616,
18213,
13,
9945,
1330,
20613,
62,
28816,
62,
29891,
628
] | 2.684932 | 73 |
from discord.ext import commands
from discord.ext.commands import Context
from diceBot import roller
class Utilities(commands.Cog):
"""
General Utilities
"""
@commands.command()
async def ping(self, ctx: Context):
"""
Status check
"""
import time
start_time = time.time()
message = await ctx.send('pong. `DWSP latency: ' + str(round(ctx.bot.latency * 1000)) + 'ms`')
end_time = time.time()
await message.edit(content='pong. `DWSP latency: ' + str(round(ctx.bot.latency * 1000)) + 'ms` ' +
'`Response time: ' + str(int((end_time - start_time) * 1000)) + 'ms`')
@commands.command()
async def source(self, ctx: Context):
"""
Print a link to the source code
"""
await ctx.send(content='Created by Philip Mottershead'
'https://github.com/PhilipMottershead/Dicebot')
@commands.command()
async def feedback(self, ctx: Context):
"""
Report feedback or issues with the bot
"""
await ctx.send('If the bot is broken or you have any feedback you\'d like to submit please create a issue on '
'GitHub: https://github.com/PhilipMottershead/Dicebot')
@commands.command()
async def r(self, ctx: Context):
"""
Report feedback or issues with the bot
"""
await ctx.send(roller.rollDices(ctx.message.content))
| [
6738,
36446,
13,
2302,
1330,
9729,
198,
6738,
36446,
13,
2302,
13,
9503,
1746,
1330,
30532,
198,
6738,
17963,
20630,
1330,
24471,
198,
198,
4871,
41086,
7,
9503,
1746,
13,
34,
519,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3611,
41086,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
9503,
1746,
13,
21812,
3419,
198,
220,
220,
220,
30351,
825,
29400,
7,
944,
11,
269,
17602,
25,
30532,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
12678,
2198,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
640,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
2435,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3275,
796,
25507,
269,
17602,
13,
21280,
10786,
79,
506,
13,
4600,
42955,
4303,
24812,
25,
705,
1343,
965,
7,
744,
7,
49464,
13,
13645,
13,
15460,
1387,
1635,
8576,
4008,
1343,
705,
907,
63,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
640,
13,
2435,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
3275,
13,
19312,
7,
11299,
11639,
79,
506,
13,
4600,
42955,
4303,
24812,
25,
705,
1343,
965,
7,
744,
7,
49464,
13,
13645,
13,
15460,
1387,
1635,
8576,
4008,
1343,
705,
907,
63,
705,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
63,
31077,
640,
25,
705,
1343,
965,
7,
600,
19510,
437,
62,
2435,
532,
923,
62,
2435,
8,
1635,
8576,
4008,
1343,
705,
907,
63,
11537,
628,
220,
220,
220,
2488,
9503,
1746,
13,
21812,
3419,
198,
220,
220,
220,
30351,
825,
2723,
7,
944,
11,
269,
17602,
25,
30532,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
12578,
257,
2792,
284,
262,
2723,
2438,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
269,
17602,
13,
21280,
7,
11299,
11639,
41972,
416,
14576,
6543,
1010,
2256,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5450,
1378,
12567,
13,
785,
14,
18673,
541,
47733,
1010,
2256,
14,
35,
501,
13645,
11537,
628,
220,
220,
220,
2488,
9503,
1746,
13,
21812,
3419,
198,
220,
220,
220,
30351,
825,
7538,
7,
944,
11,
269,
17602,
25,
30532,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
6358,
7538,
393,
2428,
351,
262,
10214,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
269,
17602,
13,
21280,
10786,
1532,
262,
10214,
318,
5445,
393,
345,
423,
597,
7538,
345,
43054,
67,
588,
284,
9199,
3387,
2251,
257,
2071,
319,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
38,
270,
16066,
25,
3740,
1378,
12567,
13,
785,
14,
18673,
541,
47733,
1010,
2256,
14,
35,
501,
13645,
11537,
628,
220,
220,
220,
2488,
9503,
1746,
13,
21812,
3419,
198,
220,
220,
220,
30351,
825,
374,
7,
944,
11,
269,
17602,
25,
30532,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
6358,
7538,
393,
2428,
351,
262,
10214,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
25507,
269,
17602,
13,
21280,
7,
10646,
13,
2487,
35,
1063,
7,
49464,
13,
20500,
13,
11299,
4008,
198
] | 2.284404 | 654 |
import feedparser
import time
class RSSReader:
"""Class built upon feedparser to get new items from an rss feed"""
DATA_FILE = 'RSSData.txt'
DATA_FILE = 'RSSData.txt'
| [
11748,
3745,
48610,
198,
11748,
640,
198,
198,
4871,
25012,
33634,
25,
198,
220,
220,
220,
37227,
9487,
3170,
2402,
3745,
48610,
284,
651,
649,
3709,
422,
281,
374,
824,
3745,
37811,
198,
220,
220,
220,
42865,
62,
25664,
796,
705,
49,
5432,
6601,
13,
14116,
6,
628,
220,
220,
220,
42865,
62,
25664,
796,
705,
49,
5432,
6601,
13,
14116,
6,
628,
198
] | 2.859375 | 64 |
__author__ = 'Kalyan'
# this is a sample module for the understanding_modules assignment.
| [
834,
9800,
834,
796,
705,
42,
3400,
272,
6,
628,
198,
2,
428,
318,
257,
6291,
8265,
329,
262,
4547,
62,
18170,
16237,
13,
198
] | 3.68 | 25 |
from blendvis.primitives.primitives import FontPrimitive, LinePrimitive, CubePrimitive, \
CameraPrimitive, SpherePrimitive, CurvePrimitive, GreasePencilPrimitive, Primitive | [
6738,
13516,
4703,
13,
19795,
20288,
13,
19795,
20288,
1330,
24060,
23828,
1800,
11,
6910,
23828,
1800,
11,
23315,
23828,
1800,
11,
3467,
198,
220,
220,
220,
20432,
23828,
1800,
11,
31798,
23828,
1800,
11,
46300,
23828,
1800,
11,
11955,
589,
25553,
2856,
23828,
1800,
11,
11460,
1800
] | 3.666667 | 48 |
import json
import requests
import pandas as pd
import websocket
# Get Alpaca API Credential
endpoint = "https://data.alpaca.markets/v2"
headers = json.loads(open("key.txt", 'r').read())
def hist_data(symbols, start="2021-01-01", timeframe="1Hour", limit=50, end=""):
"""
returns historical bar data for a string of symbols separated by comma
symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG"
"""
df_data_tickers = {}
for symbol in symbols:
bar_url = endpoint + "/stocks/{}/bars".format(symbol)
params = {"start":start, "limit" :limit, "timeframe":timeframe}
data = {"bars": [], "next_page_token":'', "symbol":symbol}
while True:
r = requests.get(bar_url, headers = headers, params = params)
r = r.json()
if r["next_page_token"] == None:
data["bars"]+=r["bars"]
break
else:
params["page_token"] = r["next_page_token"]
data["bars"]+=r["bars"]
data["next_page_token"] = r["next_page_token"]
df_data = pd.DataFrame(data["bars"])
df_data.rename({"t":"time","o":"open","h":"high","l":"low","c":"close","v":"volume"},axis=1, inplace=True)
df_data["time"] = pd.to_datetime(df_data["time"])
df_data.set_index("time",inplace=True)
df_data.index = df_data.index.tz_convert("America/Indiana/Petersburg")
df_data_tickers[symbol] = df_data
return df_data_tickers
def get_historical_data(ticker_list, start_date, end_date=None, limit=10000, timeframe="1Day"):
"""
returns historical bar data for a string of symbols separated by comma
symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG"
* timeframe - Timeframe for the aggregation. Available values are: `1Min`, `1Hour`, `1Day`
https://alpaca.markets/docs/api-documentation/api-v2/market-data/alpaca-data-api-v2/historical/#bars
"""
df_data_tickers = {}
for symbol in ticker_list:
bar_url = endpoint + "/stocks/{}/bars".format(symbol)
params = {"start":start_date, "end": end_date, "limit": limit, "timeframe":timeframe}
data = {"bars": [], "next_page_token": '', "symbol": symbol}
# r = requests.get(bar_url, headers=headers, params=params)
# r = r.json()
# data["bars"] += r["bars"]
while True:
r = requests.get(bar_url, headers=headers, params=params)
r = r.json()
try:
if r["next_page_token"] == None:
data["bars"] += r["bars"]
break
else:
params["page_token"] = r["next_page_token"]
data["bars"] += r["bars"]
data["next_page_token"] = r["next_page_token"]
except:
break
# Create a DataFrame for the data["bars"] of each stock
df_data = pd.DataFrame(data["bars"])
df_data.rename({"t":"time","o":"open","h":"high","l":"low","c":"close","v":"volume"},axis=1, inplace=True)
try:
df_data["time"] = pd.to_datetime(df_data["time"])
df_data.set_index("time",inplace=True)
df_data.index = df_data.index.tz_convert("America/New_York")
df_data_tickers[symbol] = df_data
except:
pass
print("---- Created for [{}]".format(symbol))
return df_data_tickers
| [
11748,
33918,
201,
198,
11748,
7007,
201,
198,
11748,
19798,
292,
355,
279,
67,
220,
201,
198,
11748,
2639,
5459,
201,
198,
201,
198,
201,
198,
2,
3497,
978,
79,
22260,
7824,
327,
445,
1843,
201,
198,
437,
4122,
796,
366,
5450,
1378,
7890,
13,
282,
79,
22260,
13,
34162,
14,
85,
17,
1,
201,
198,
50145,
796,
33918,
13,
46030,
7,
9654,
7203,
2539,
13,
14116,
1600,
705,
81,
27691,
961,
28955,
201,
198,
201,
198,
201,
198,
201,
198,
4299,
1554,
62,
7890,
7,
1837,
2022,
10220,
11,
923,
2625,
1238,
2481,
12,
486,
12,
486,
1600,
41352,
2625,
16,
43223,
1600,
4179,
28,
1120,
11,
886,
33151,
2599,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
5860,
6754,
2318,
1366,
329,
257,
4731,
286,
14354,
11266,
416,
39650,
201,
198,
220,
220,
220,
14354,
815,
307,
287,
257,
4731,
5794,
11266,
416,
39650,
304,
13,
70,
13,
14354,
796,
366,
5653,
9792,
11,
2390,
57,
45,
11,
38,
6684,
38,
1,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
47764,
62,
7890,
62,
83,
21630,
796,
23884,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
329,
6194,
287,
14354,
25,
220,
220,
220,
201,
198,
220,
220,
220,
220,
220,
220,
220,
2318,
62,
6371,
796,
36123,
1343,
12813,
29522,
14,
90,
92,
14,
34046,
1911,
18982,
7,
1837,
23650,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
19779,
9688,
1298,
9688,
11,
366,
32374,
1,
1058,
32374,
11,
366,
2435,
14535,
1298,
2435,
14535,
92,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
19779,
34046,
1298,
685,
4357,
366,
19545,
62,
7700,
62,
30001,
1298,
6,
3256,
366,
1837,
23650,
1298,
1837,
23650,
92,
201,
198,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
796,
7007,
13,
1136,
7,
5657,
62,
6371,
11,
24697,
796,
24697,
11,
42287,
796,
42287,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
796,
374,
13,
17752,
3419,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
374,
14692,
19545,
62,
7700,
62,
30001,
8973,
6624,
6045,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
14692,
34046,
8973,
47932,
81,
14692,
34046,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
14692,
7700,
62,
30001,
8973,
796,
374,
14692,
19545,
62,
7700,
62,
30001,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
14692,
34046,
8973,
47932,
81,
14692,
34046,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
14692,
19545,
62,
7700,
62,
30001,
8973,
796,
374,
14692,
19545,
62,
7700,
62,
30001,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
201,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
796,
279,
67,
13,
6601,
19778,
7,
7890,
14692,
34046,
8973,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
13,
918,
480,
7,
4895,
83,
2404,
2435,
2430,
78,
2404,
9654,
2430,
71,
2404,
8929,
2430,
75,
2404,
9319,
2430,
66,
2404,
19836,
2430,
85,
2404,
29048,
25719,
22704,
28,
16,
11,
287,
5372,
28,
17821,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
14692,
2435,
8973,
796,
279,
67,
13,
1462,
62,
19608,
8079,
7,
7568,
62,
7890,
14692,
2435,
8973,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
13,
2617,
62,
9630,
7203,
2435,
1600,
259,
5372,
28,
17821,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
13,
9630,
796,
47764,
62,
7890,
13,
9630,
13,
22877,
62,
1102,
1851,
7203,
18165,
14,
49153,
14,
47,
7307,
7423,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
201,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
62,
83,
21630,
58,
1837,
23650,
60,
796,
47764,
62,
7890,
201,
198,
220,
220,
220,
1441,
47764,
62,
7890,
62,
83,
21630,
201,
198,
220,
220,
220,
220,
201,
198,
201,
198,
4299,
651,
62,
10034,
12409,
62,
7890,
7,
83,
15799,
62,
4868,
11,
923,
62,
4475,
11,
886,
62,
4475,
28,
14202,
11,
4179,
28,
49388,
11,
41352,
2625,
16,
12393,
1,
2599,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
5860,
6754,
2318,
1366,
329,
257,
4731,
286,
14354,
11266,
416,
39650,
201,
198,
220,
220,
220,
14354,
815,
307,
287,
257,
4731,
5794,
11266,
416,
39650,
304,
13,
70,
13,
14354,
796,
366,
5653,
9792,
11,
2390,
57,
45,
11,
38,
6684,
38,
1,
201,
198,
220,
220,
220,
1635,
41352,
532,
3862,
14535,
329,
262,
46500,
13,
14898,
3815,
389,
25,
4600,
16,
9452,
47671,
4600,
16,
43223,
47671,
4600,
16,
12393,
63,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
3740,
1378,
282,
79,
22260,
13,
34162,
14,
31628,
14,
15042,
12,
22897,
341,
14,
15042,
12,
85,
17,
14,
10728,
12,
7890,
14,
282,
79,
22260,
12,
7890,
12,
15042,
12,
85,
17,
14,
10034,
12409,
31113,
34046,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
47764,
62,
7890,
62,
83,
21630,
796,
23884,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
329,
6194,
287,
4378,
263,
62,
4868,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
2318,
62,
6371,
796,
36123,
1343,
12813,
29522,
14,
90,
92,
14,
34046,
1911,
18982,
7,
1837,
23650,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
19779,
9688,
1298,
9688,
62,
4475,
11,
366,
437,
1298,
886,
62,
4475,
11,
366,
32374,
1298,
4179,
11,
366,
2435,
14535,
1298,
2435,
14535,
92,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
19779,
34046,
1298,
685,
4357,
366,
19545,
62,
7700,
62,
30001,
1298,
705,
3256,
366,
1837,
23650,
1298,
6194,
92,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
374,
796,
7007,
13,
1136,
7,
5657,
62,
6371,
11,
24697,
28,
50145,
11,
42287,
28,
37266,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
374,
796,
374,
13,
17752,
3419,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1366,
14692,
34046,
8973,
15853,
374,
14692,
34046,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
796,
7007,
13,
1136,
7,
5657,
62,
6371,
11,
24697,
28,
50145,
11,
42287,
28,
37266,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
796,
374,
13,
17752,
3419,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
374,
14692,
19545,
62,
7700,
62,
30001,
8973,
6624,
6045,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
14692,
34046,
8973,
15853,
374,
14692,
34046,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
14692,
7700,
62,
30001,
8973,
796,
374,
14692,
19545,
62,
7700,
62,
30001,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
14692,
34046,
8973,
15853,
374,
14692,
34046,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
14692,
19545,
62,
7700,
62,
30001,
8973,
796,
374,
14692,
19545,
62,
7700,
62,
30001,
8973,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
13610,
257,
6060,
19778,
329,
262,
1366,
14692,
34046,
8973,
286,
1123,
4283,
220,
201,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
796,
279,
67,
13,
6601,
19778,
7,
7890,
14692,
34046,
8973,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
13,
918,
480,
7,
4895,
83,
2404,
2435,
2430,
78,
2404,
9654,
2430,
71,
2404,
8929,
2430,
75,
2404,
9319,
2430,
66,
2404,
19836,
2430,
85,
2404,
29048,
25719,
22704,
28,
16,
11,
287,
5372,
28,
17821,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
14692,
2435,
8973,
796,
279,
67,
13,
1462,
62,
19608,
8079,
7,
7568,
62,
7890,
14692,
2435,
8973,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
13,
2617,
62,
9630,
7203,
2435,
1600,
259,
5372,
28,
17821,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
13,
9630,
796,
47764,
62,
7890,
13,
9630,
13,
22877,
62,
1102,
1851,
7203,
18165,
14,
3791,
62,
49278,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
47764,
62,
7890,
62,
83,
21630,
58,
1837,
23650,
60,
796,
47764,
62,
7890,
201,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
650,
15622,
329,
685,
90,
92,
60,
1911,
18982,
7,
1837,
23650,
4008,
201,
198,
201,
198,
220,
220,
220,
1441,
47764,
62,
7890,
62,
83,
21630,
201,
198,
201,
198,
201,
198
] | 2.049555 | 1,796 |
import sys, os
from dotenv import dotenv_values
config = dotenv_values(".env")
cur_dir = os.path.dirname(__file__)
trex_path = f"{config['TREX_LOCATION']}/{config['TREX_VERSION']}"
interactive = os.path.abspath(f"{trex_path}/automation/trex_control_plane/interactive")
sys.path.insert(0, os.path.abspath(interactive))
STL_PROFILES_PATH = os.path.join(f"{trex_path}/stl")
EXT_LIBS_PATH = os.path.abspath(f"{trex_path}/external_libs")
assert os.path.isdir(STL_PROFILES_PATH), "Could not determine STL profiles path"
assert os.path.isdir(EXT_LIBS_PATH), "Could not determine external_libs path"
| [
11748,
25064,
11,
28686,
198,
6738,
16605,
24330,
1330,
16605,
24330,
62,
27160,
198,
198,
11250,
796,
16605,
24330,
62,
27160,
7,
1911,
24330,
4943,
198,
198,
22019,
62,
15908,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
8,
198,
198,
83,
21510,
62,
6978,
796,
277,
1,
90,
11250,
17816,
51,
2200,
55,
62,
29701,
6234,
20520,
92,
14,
90,
11250,
17816,
51,
2200,
55,
62,
43717,
20520,
36786,
198,
3849,
5275,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
69,
1,
90,
83,
21510,
62,
6978,
92,
14,
2306,
296,
341,
14,
83,
21510,
62,
13716,
62,
14382,
14,
3849,
5275,
4943,
198,
198,
17597,
13,
6978,
13,
28463,
7,
15,
11,
28686,
13,
6978,
13,
397,
2777,
776,
7,
3849,
5275,
4008,
198,
198,
2257,
43,
62,
4805,
19238,
4146,
1546,
62,
34219,
796,
28686,
13,
6978,
13,
22179,
7,
69,
1,
90,
83,
21510,
62,
6978,
92,
14,
301,
75,
4943,
198,
13918,
62,
31271,
4462,
62,
34219,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
69,
1,
90,
83,
21510,
62,
6978,
92,
14,
22615,
62,
8019,
82,
4943,
198,
30493,
28686,
13,
6978,
13,
9409,
343,
7,
2257,
43,
62,
4805,
19238,
4146,
1546,
62,
34219,
828,
366,
23722,
407,
5004,
37269,
16545,
3108,
1,
198,
30493,
28686,
13,
6978,
13,
9409,
343,
7,
13918,
62,
31271,
4462,
62,
34219,
828,
366,
23722,
407,
5004,
7097,
62,
8019,
82,
3108,
1,
198
] | 2.45679 | 243 |
#coding=utf-8
import sys
import os
from os.path import abspath, dirname
sys.path.append(abspath(dirname(__file__)))
import tkinter
import tkinter.filedialog
from tkinter import *
import Fun
ElementBGArray={}
ElementBGArray_Resize={}
ElementBGArray_IM={}
from PyPDF2 import PdfFileReader, PdfFileWriter
| [
2,
66,
7656,
28,
40477,
12,
23,
198,
11748,
25064,
198,
11748,
28686,
198,
6738,
220,
220,
28686,
13,
6978,
1330,
2352,
6978,
11,
26672,
3672,
198,
17597,
13,
6978,
13,
33295,
7,
397,
2777,
776,
7,
15908,
3672,
7,
834,
7753,
834,
22305,
198,
11748,
256,
74,
3849,
198,
11748,
256,
74,
3849,
13,
69,
3902,
498,
519,
198,
6738,
220,
220,
256,
74,
3849,
1330,
1635,
198,
11748,
11138,
198,
20180,
40469,
19182,
34758,
92,
220,
220,
198,
20180,
40469,
19182,
62,
4965,
1096,
34758,
92,
220,
198,
20180,
40469,
19182,
62,
3955,
34758,
92,
220,
198,
6738,
9485,
20456,
17,
1330,
350,
7568,
8979,
33634,
11,
350,
7568,
8979,
34379,
628
] | 2.72807 | 114 |
from django.test import Client
from django.test import RequestFactory, TestCase
from django.contrib.auth import get_user_model
from cart import views
| [
6738,
42625,
14208,
13,
9288,
1330,
20985,
198,
6738,
42625,
14208,
13,
9288,
1330,
19390,
22810,
11,
6208,
20448,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
1330,
651,
62,
7220,
62,
19849,
198,
6738,
6383,
1330,
5009,
198,
220,
220,
220,
220,
198
] | 3.444444 | 45 |
import enum
import typing as ta
from omnibus import collections as col
from omnibus import dataclasses as dc
from .base import Expr
from .base import Identifier
from .base import Node
from .base import QualifiedNameNode
from .base import SetQuantifier
from .base import SortItem
| [
11748,
33829,
198,
11748,
19720,
355,
20486,
198,
198,
6738,
22284,
26333,
1330,
17268,
355,
951,
198,
6738,
22284,
26333,
1330,
4818,
330,
28958,
355,
30736,
198,
198,
6738,
764,
8692,
1330,
1475,
1050,
198,
6738,
764,
8692,
1330,
11440,
7483,
198,
6738,
764,
8692,
1330,
19081,
198,
6738,
764,
8692,
1330,
9537,
1431,
5376,
19667,
198,
6738,
764,
8692,
1330,
5345,
24915,
7483,
198,
6738,
764,
8692,
1330,
33947,
7449,
628,
628,
628,
628,
628,
628,
628,
198
] | 3.734177 | 79 |
# -*- coding: utf8 -*-
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
23,
532,
9,
12,
628,
628,
628,
628,
198
] | 1.823529 | 17 |
balance = 999999
annualInterestRate = 0.18
monthlyInterestRate = annualInterestRate/12.0
monthlyLower = balance/12
monthlyUpper = (balance * (1+monthlyInterestRate)**12)/12.0
while True:
updatedBalance = balance
for i in range(12):
payment = (monthlyUpper + monthlyLower)/2.0
monthlyUnpaidBalance = updatedBalance - payment
updatedBalance = monthlyUnpaidBalance + monthlyInterestRate * monthlyUnpaidBalance
if updatedBalance < -0.01:
monthlyUpper = payment
elif updatedBalance > 0.01:
monthlyLower = payment
else:
break
print("Lowest payment: {:0.2f}".format(payment)) | [
20427,
796,
36006,
17032,
198,
1236,
723,
19302,
32184,
796,
657,
13,
1507,
198,
198,
8424,
306,
19302,
32184,
796,
5079,
19302,
32184,
14,
1065,
13,
15,
198,
8424,
306,
31426,
796,
5236,
14,
1065,
198,
8424,
306,
52,
2848,
796,
357,
20427,
1635,
357,
16,
10,
8424,
306,
19302,
32184,
8,
1174,
1065,
20679,
1065,
13,
15,
198,
198,
4514,
6407,
25,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
6153,
45866,
796,
5236,
198,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
1065,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
6074,
796,
357,
8424,
306,
52,
2848,
1343,
9651,
31426,
20679,
17,
13,
15,
220,
198,
220,
220,
220,
220,
220,
220,
220,
9651,
3118,
20333,
45866,
796,
6153,
45866,
532,
6074,
198,
220,
220,
220,
220,
220,
220,
220,
6153,
45866,
796,
9651,
3118,
20333,
45866,
1343,
9651,
19302,
32184,
1635,
9651,
3118,
20333,
45866,
198,
220,
220,
220,
220,
611,
6153,
45866,
1279,
532,
15,
13,
486,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9651,
52,
2848,
796,
6074,
198,
220,
220,
220,
220,
1288,
361,
6153,
45866,
1875,
657,
13,
486,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9651,
31426,
796,
6074,
198,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
198,
4798,
7203,
20535,
395,
6074,
25,
46110,
15,
13,
17,
69,
92,
1911,
18982,
7,
37301,
4008
] | 2.690083 | 242 |
# -*- coding: utf-8 -*-
import time
from pytest import mark
@mark.parametrize('with_message', [True, False])
@mark.parametrize('hard_deployment', [True, False])
@mark.parametrize('final_release_state', [
'DEPLOYED', 'FAILED', 'UNKNOWN', 'TEMP_DEPLOYMENT_FAILURE'
])
@mark.parametrize('maintenance', [True, False])
@mark.parametrize('payload', [
None, {'stories': {'foo'}, 'services': ['bar', 'baz']}
])
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
11748,
640,
198,
198,
6738,
12972,
9288,
1330,
1317,
628,
198,
31,
4102,
13,
17143,
316,
380,
2736,
10786,
4480,
62,
20500,
3256,
685,
17821,
11,
10352,
12962,
198,
31,
4102,
13,
17143,
316,
380,
2736,
10786,
10424,
62,
2934,
1420,
434,
3256,
685,
17821,
11,
10352,
12962,
198,
31,
4102,
13,
17143,
316,
380,
2736,
10786,
20311,
62,
20979,
62,
5219,
3256,
685,
198,
220,
220,
220,
705,
7206,
6489,
21414,
1961,
3256,
705,
7708,
4146,
1961,
3256,
705,
4944,
44706,
3256,
705,
51,
39494,
62,
7206,
6489,
21414,
10979,
62,
7708,
4146,
11335,
6,
198,
12962,
198,
31,
4102,
13,
17143,
316,
380,
2736,
10786,
12417,
8219,
3256,
685,
17821,
11,
10352,
12962,
198,
31,
4102,
13,
17143,
316,
380,
2736,
10786,
15577,
2220,
3256,
685,
198,
220,
220,
220,
6045,
11,
1391,
6,
50164,
10354,
1391,
6,
21943,
6,
5512,
705,
30416,
10354,
37250,
5657,
3256,
705,
65,
1031,
20520,
92,
198,
12962,
628
] | 2.426901 | 171 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.