content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# Prerequisite: directories for "in_strProtRefsDir" and "sparseData2", should not contain any ".txt" file # Output: under sparseData2 directory: target.csv, metaInfo.csv, *.txt import sys import os sys.path.append('../..') import prepLib in_strFastaFilename = '{!s}/data/protein/plos_HumanEKC/HumanEKC_uniprot-reviewed_up000005640_DECOY.fasta'.format(os.environ.get('HOME')) in_strPeptideFilename = '{!s}/data/protein/plos_HumanEKC/HumanEKC_dataset_peptide_identification_plos.txt'.format(os.environ.get('HOME')) in_strProtRefsDir = './protRefs' out_strOutputBaseDir = './sparseData2' protDic, pepDic = prepLib.loadProtPeptideDic(in_strPeptideFilename) prepLib.breakFasta(in_strFastaFilename, in_strProtRefsDir, protDic) listProtRefFileName = prepLib.getProtRefFileNames(in_strProtRefsDir) # match peptides with proteins prepLib.fuRunAllProt(listProtRefFileName, in_strProtRefsDir, out_strOutputBaseDir, protDic) strMetaInfoFilename = '{!s}/metaInfo.csv'.format(out_strOutputBaseDir) prepLib.fuSaveMetaInfo(out_strOutputBaseDir, strMetaInfoFilename, in_strProtRefsDir) pepProbsList = sorted(list(pepDic.values()),key=lambda x: x[0]) pepProbsList = [pepProbsList[i][1:3] for i in range(0,len(pepProbsList))] prepLib.fuSavePepProbsTargetFromList('{!s}/target.csv'.format(out_strOutputBaseDir), pepProbsList)
[ 2, 3771, 27614, 25, 29196, 329, 366, 259, 62, 2536, 19703, 8134, 82, 35277, 1, 290, 366, 82, 29572, 6601, 17, 1600, 815, 407, 3994, 597, 27071, 14116, 1, 2393, 198, 2, 25235, 25, 739, 29877, 6601, 17, 8619, 25, 2496, 13, 40664, 11, 13634, 12360, 13, 40664, 11, 46866, 14116, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 492, 11537, 198, 11748, 3143, 25835, 198, 259, 62, 2536, 22968, 64, 35063, 796, 705, 90, 0, 82, 92, 14, 7890, 14, 48693, 14, 489, 418, 62, 20490, 36, 36222, 14, 20490, 36, 36222, 62, 403, 541, 10599, 12, 32974, 62, 929, 20483, 3980, 1821, 62, 41374, 21414, 13, 7217, 64, 4458, 18982, 7, 418, 13, 268, 2268, 13, 1136, 10786, 39069, 6, 4008, 198, 259, 62, 2536, 6435, 457, 485, 35063, 796, 705, 90, 0, 82, 92, 14, 7890, 14, 48693, 14, 489, 418, 62, 20490, 36, 36222, 14, 20490, 36, 36222, 62, 19608, 292, 316, 62, 431, 457, 485, 62, 738, 2649, 62, 489, 418, 13, 14116, 4458, 18982, 7, 418, 13, 268, 2268, 13, 1136, 10786, 39069, 6, 4008, 198, 198, 259, 62, 2536, 19703, 8134, 82, 35277, 796, 705, 19571, 11235, 8134, 82, 6, 198, 448, 62, 2536, 26410, 14881, 35277, 796, 705, 19571, 82, 29572, 6601, 17, 6, 198, 198, 11235, 35, 291, 11, 279, 538, 35, 291, 796, 3143, 25835, 13, 2220, 19703, 6435, 457, 485, 35, 291, 7, 259, 62, 2536, 6435, 457, 485, 35063, 8, 198, 46012, 25835, 13, 9032, 22968, 64, 7, 259, 62, 2536, 22968, 64, 35063, 11, 287, 62, 2536, 19703, 8134, 82, 35277, 11, 1237, 35, 291, 8, 198, 4868, 19703, 8134, 8979, 5376, 796, 3143, 25835, 13, 1136, 19703, 8134, 8979, 36690, 7, 259, 62, 2536, 19703, 8134, 82, 35277, 8, 198, 198, 2, 2872, 34337, 1460, 351, 15568, 198, 46012, 25835, 13, 20942, 10987, 3237, 19703, 7, 4868, 19703, 8134, 8979, 5376, 11, 287, 62, 2536, 19703, 8134, 82, 35277, 11, 503, 62, 2536, 26410, 14881, 35277, 11, 1237, 35, 291, 8, 198, 198, 2536, 48526, 12360, 35063, 796, 705, 90, 0, 82, 92, 14, 28961, 12360, 13, 40664, 4458, 18982, 7, 448, 62, 2536, 26410, 14881, 35277, 8, 198, 46012, 25835, 13, 20942, 16928, 48526, 12360, 7, 448, 62, 2536, 26410, 14881, 35277, 11, 965, 48526, 12360, 35063, 11, 287, 62, 2536, 19703, 8134, 82, 35277, 8, 198, 431, 79, 2964, 1443, 8053, 796, 23243, 7, 4868, 7, 431, 79, 35, 291, 13, 27160, 3419, 828, 2539, 28, 50033, 2124, 25, 2124, 58, 15, 12962, 198, 431, 79, 2964, 1443, 8053, 796, 685, 431, 79, 2964, 1443, 8053, 58, 72, 7131, 16, 25, 18, 60, 329, 1312, 287, 2837, 7, 15, 11, 11925, 7, 431, 79, 2964, 1443, 8053, 4008, 60, 198, 46012, 25835, 13, 20942, 16928, 47, 538, 2964, 1443, 21745, 4863, 8053, 10786, 90, 0, 82, 92, 14, 16793, 13, 40664, 4458, 18982, 7, 448, 62, 2536, 26410, 14881, 35277, 828, 279, 538, 2964, 1443, 8053, 8 ]
2.62
500
import numpy as np import unittest import discretize from SimPEG.maps import Wires from SimPEG.utils import ( mkvc, WeightedGaussianMixture, GaussianMixtureWithPrior, ) from scipy.stats import norm, multivariate_normal if __name__ == "__main__": unittest.main()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 555, 715, 395, 198, 11748, 1221, 1186, 1096, 198, 6738, 3184, 47, 7156, 13, 31803, 1330, 370, 2387, 198, 6738, 3184, 47, 7156, 13, 26791, 1330, 357, 198, 220, 220, 220, 33480, 28435, 11, 198, 220, 220, 220, 14331, 276, 35389, 31562, 44, 9602, 11, 198, 220, 220, 220, 12822, 31562, 44, 9602, 3152, 22442, 11, 198, 8, 198, 6738, 629, 541, 88, 13, 34242, 1330, 2593, 11, 1963, 42524, 62, 11265, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.728155
103
from llvmlite import ir, binding from lang.scope import Scope from collections import defaultdict
[ 6738, 32660, 85, 4029, 578, 1330, 4173, 11, 12765, 198, 6738, 42392, 13, 29982, 1330, 41063, 198, 6738, 17268, 1330, 4277, 11600, 628 ]
4.304348
23
from draftjs_exporter.dom import DOM from wagtail.admin.rich_text.converters import editor_html from wagtail.admin.rich_text.converters.contentstate_models import Entity from wagtail.admin.rich_text.converters.html_to_contentstate import AtomicBlockEntityElementHandler from wagtail.embeds import embeds, format from wagtail.embeds.exceptions import EmbedException # Front-end conversion def media_embedtype_handler(attrs): """ Given a dict of attributes from the <embed> tag, return the real HTML representation for use on the front-end. """ return format.embed_to_frontend_html(attrs['url']) # hallo.js / editor-html conversion class MediaEmbedHandler: """ MediaEmbedHandler will be invoked whenever we encounter an element in HTML content with an attribute of data-embedtype="media". The resulting element in the database representation will be: <embed embedtype="media" url="http://vimeo.com/XXXXX"> """ @staticmethod def get_db_attributes(tag): """ Given a tag that we've identified as a media embed (because it has a data-embedtype="media" attribute), return a dict of the attributes we should have on the resulting <embed> element. """ return { 'url': tag['data-url'], } @staticmethod def expand_db_attributes(attrs): """ Given a dict of attributes from the <embed> tag, return the real HTML representation for use within the editor. """ try: return format.embed_to_editor_html(attrs['url']) except EmbedException: # Could be replaced with a nice error message return '' EditorHTMLEmbedConversionRule = [ editor_html.EmbedTypeRule('media', MediaEmbedHandler) ] # draft.js / contentstate conversion def media_embed_entity(props): """ Helper to construct elements of the form <embed embedtype="media" url="https://www.youtube.com/watch?v=y8Kyi0WNg40"/> when converting from contentstate data """ return DOM.create_element('embed', { 'embedtype': 'media', 'url': props.get('url'), }) class MediaEmbedElementHandler(AtomicBlockEntityElementHandler): """ Rule for building an embed entity when converting from database representation to contentstate """ ContentstateMediaConversionRule = { 'from_database_format': { 'embed[embedtype="media"]': MediaEmbedElementHandler(), }, 'to_database_format': { 'entity_decorators': {'EMBED': media_embed_entity} } }
[ 6738, 4538, 8457, 62, 1069, 26634, 13, 3438, 1330, 24121, 198, 198, 6738, 266, 363, 13199, 13, 28482, 13, 7527, 62, 5239, 13, 1102, 332, 1010, 1330, 5464, 62, 6494, 198, 6738, 266, 363, 13199, 13, 28482, 13, 7527, 62, 5239, 13, 1102, 332, 1010, 13, 11299, 5219, 62, 27530, 1330, 20885, 198, 6738, 266, 363, 13199, 13, 28482, 13, 7527, 62, 5239, 13, 1102, 332, 1010, 13, 6494, 62, 1462, 62, 11299, 5219, 1330, 28976, 12235, 32398, 20180, 25060, 198, 6738, 266, 363, 13199, 13, 20521, 82, 1330, 11525, 82, 11, 5794, 198, 6738, 266, 363, 13199, 13, 20521, 82, 13, 1069, 11755, 1330, 13302, 276, 16922, 628, 198, 2, 8880, 12, 437, 11315, 198, 198, 4299, 2056, 62, 20521, 4906, 62, 30281, 7, 1078, 3808, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 257, 8633, 286, 12608, 422, 262, 1279, 20521, 29, 7621, 11, 1441, 262, 1103, 11532, 198, 220, 220, 220, 10552, 329, 779, 319, 262, 2166, 12, 437, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 5794, 13, 20521, 62, 1462, 62, 8534, 437, 62, 6494, 7, 1078, 3808, 17816, 6371, 6, 12962, 628, 198, 2, 6899, 78, 13, 8457, 1220, 5464, 12, 6494, 11315, 198, 198, 4871, 6343, 31567, 276, 25060, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6343, 31567, 276, 25060, 481, 307, 24399, 8797, 356, 8791, 281, 5002, 287, 11532, 2695, 198, 220, 220, 220, 351, 281, 11688, 286, 1366, 12, 20521, 4906, 2625, 11431, 1911, 383, 7186, 5002, 287, 262, 6831, 198, 220, 220, 220, 10552, 481, 307, 25, 198, 220, 220, 220, 1279, 20521, 11525, 4906, 2625, 11431, 1, 19016, 2625, 4023, 1378, 85, 47776, 13, 785, 14, 24376, 55, 5320, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 651, 62, 9945, 62, 1078, 7657, 7, 12985, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 257, 7621, 326, 356, 1053, 5174, 355, 257, 2056, 11525, 357, 13893, 340, 468, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 12, 20521, 4906, 2625, 11431, 1, 11688, 828, 1441, 257, 8633, 286, 262, 12608, 356, 815, 198, 220, 220, 220, 220, 220, 220, 220, 423, 319, 262, 7186, 1279, 20521, 29, 5002, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 7621, 17816, 7890, 12, 6371, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4292, 62, 9945, 62, 1078, 7657, 7, 1078, 3808, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 257, 8633, 286, 12608, 422, 262, 1279, 20521, 29, 7621, 11, 1441, 262, 1103, 11532, 198, 220, 220, 220, 220, 220, 220, 220, 10552, 329, 779, 1626, 262, 5464, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5794, 13, 20521, 62, 1462, 62, 35352, 62, 6494, 7, 1078, 3808, 17816, 6371, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 13302, 276, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10347, 307, 6928, 351, 257, 3621, 4049, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 628, 198, 17171, 6535, 44, 2538, 2022, 276, 3103, 9641, 31929, 796, 685, 198, 220, 220, 220, 5464, 62, 6494, 13, 31567, 276, 6030, 31929, 10786, 11431, 3256, 6343, 31567, 276, 25060, 8, 198, 60, 628, 198, 2, 4538, 13, 8457, 1220, 2695, 5219, 11315, 198, 198, 4299, 2056, 62, 20521, 62, 26858, 7, 1676, 862, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 284, 5678, 4847, 286, 262, 1296, 198, 220, 220, 220, 1279, 20521, 11525, 4906, 2625, 11431, 1, 19016, 2625, 5450, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 88, 23, 30630, 72, 15, 29767, 70, 1821, 26700, 198, 220, 220, 220, 618, 23202, 422, 2695, 5219, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 24121, 13, 17953, 62, 30854, 10786, 20521, 3256, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20521, 4906, 10354, 705, 11431, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 25744, 13, 1136, 10786, 6371, 33809, 198, 220, 220, 220, 32092, 628, 198, 4871, 6343, 31567, 276, 20180, 25060, 7, 2953, 10179, 12235, 32398, 20180, 25060, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14330, 329, 2615, 281, 11525, 9312, 618, 23202, 422, 6831, 10552, 198, 220, 220, 220, 284, 2695, 5219, 198, 220, 220, 220, 37227, 628, 198, 19746, 5219, 13152, 3103, 9641, 31929, 796, 1391, 198, 220, 220, 220, 705, 6738, 62, 48806, 62, 18982, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20521, 58, 20521, 4906, 2625, 11431, 8973, 10354, 6343, 31567, 276, 20180, 25060, 22784, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 1462, 62, 48806, 62, 18982, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26858, 62, 12501, 273, 2024, 10354, 1391, 6, 3620, 33, 1961, 10354, 2056, 62, 20521, 62, 26858, 92, 198, 220, 220, 220, 1782, 198, 92, 198 ]
2.79027
925
# Englishクラスをインポートし、nlpオブジェクトを作成 from ____ import ____ nlp = ____ # テキストを処理 doc = ____("I like tree kangaroos and narwhals.") # 「tree kangaroors」のスライスを選択 tree_kangaroos = ____ print(tree_kangaroos.text) # 「tree kangaroos and narwhals」のスライスを選択(「.」は含まない) tree_kangaroos_and_narwhals = ____ print(tree_kangaroos_and_narwhals.text)
[ 2, 3594, 14099, 9263, 8943, 31758, 11482, 6527, 1209, 251, 12045, 230, 22180, 23513, 21283, 79, 20513, 24001, 21091, 24806, 14099, 13298, 31758, 43291, 22755, 238, 198, 6738, 220, 1427, 1330, 220, 1427, 198, 198, 21283, 79, 796, 220, 1427, 198, 198, 2, 14524, 228, 25084, 43302, 31758, 49035, 99, 49426, 228, 198, 15390, 796, 220, 1427, 7203, 40, 588, 5509, 479, 648, 12022, 418, 290, 30083, 1929, 874, 19570, 198, 198, 2, 40283, 21048, 479, 648, 12022, 669, 13700, 5641, 8943, 9263, 11482, 8943, 31758, 34402, 116, 162, 232, 252, 198, 21048, 62, 74, 648, 12022, 418, 796, 220, 1427, 198, 4798, 7, 21048, 62, 74, 648, 12022, 418, 13, 5239, 8, 198, 198, 2, 40283, 21048, 479, 648, 12022, 418, 290, 30083, 1929, 874, 13700, 5641, 8943, 9263, 11482, 8943, 31758, 34402, 116, 162, 232, 252, 171, 120, 230, 13697, 43735, 31676, 28938, 104, 30159, 26945, 18566, 171, 120, 231, 198, 21048, 62, 74, 648, 12022, 418, 62, 392, 62, 23955, 1929, 874, 796, 220, 1427, 198, 4798, 7, 21048, 62, 74, 648, 12022, 418, 62, 392, 62, 23955, 1929, 874, 13, 5239, 8, 198 ]
1.775401
187
from causal_world.task_generators.base_task import BaseTask import numpy as np
[ 6738, 26558, 62, 6894, 13, 35943, 62, 8612, 2024, 13, 8692, 62, 35943, 1330, 7308, 25714, 198, 11748, 299, 32152, 355, 45941, 628, 220, 220, 220, 220 ]
3.111111
27
from telegram import InputMediaPhoto from ..language import get_text from ..database.query import count_occurrence_of_specified_rating from .buttons import ( get_list_of_buttons, tamplate_for_show_a_list_of_products, tamplate_for_show_a_detailed_product)
[ 6738, 573, 30536, 1330, 23412, 13152, 6191, 198, 198, 6738, 11485, 16129, 1330, 651, 62, 5239, 198, 6738, 11485, 48806, 13, 22766, 1330, 954, 62, 13966, 33928, 62, 1659, 62, 23599, 62, 8821, 198, 6738, 764, 4360, 27288, 1330, 357, 198, 220, 220, 220, 651, 62, 4868, 62, 1659, 62, 4360, 27288, 11, 198, 220, 220, 220, 21885, 6816, 62, 1640, 62, 12860, 62, 64, 62, 4868, 62, 1659, 62, 29498, 11, 198, 220, 220, 220, 21885, 6816, 62, 1640, 62, 12860, 62, 64, 62, 15255, 6255, 62, 11167, 8, 628, 628, 628, 628, 628, 628, 628, 628, 628 ]
2.878788
99
# -*- coding: utf-8 -*- # # This file is part of Sequana software # # Copyright (c) 2016-2017 - Sequana Development Team # # File author(s): # Thomas Cokelaer <[email protected]> # # Distributed under the terms of the 3-clause BSD license. # The full license is in the LICENSE file, distributed with this software. # # website: https://github.com/sequana/sequana # documentation: http://sequana.readthedocs.io # ############################################################################## import re import ruamel.yaml import colorlog logger = colorlog.getLogger(__name__) __all__ = ["YamlDocParser"] class YamlDocParser(object): """A simple parser to extract block content to be found in YAML files So as to create tooltips automatically in :ref:`sequanix`, one can comment YAML configuration file with block comments (see developers guide in :ref:`developers` ) Once read and parsed, all block comments before top-level sections are to be found in the dictionary :attr:`sections`. .. doctest:: from sequana import snaketools from sequana.iotools import YamlDocParser module = snaketools.Module('quality_control') r = YamlDocParser(module.config) r.sections['fastqc'] Those lines are removed from the docstring but available as a dictionary """ def __init__(self, filename): """.. rubric:: constructor :param str filename: the YAML file to parse :: # main documentation # block comment section1: - item # block comment section2: # a comment section3: Here, section1 and section2 have block comments but not section3 """ self.filename = filename self.regex_section = re.compile("^[a-z,A-Z,_,0-9]+:") self._specials = ["choice__"] self.sections = {} self._read_data() self._parse_data() def _get_expected_sections(self): """Get the top level keys in the YAML file :return: list of top level sections' names""" with open(self.filename, "r") as fh: data = ruamel.yaml.load(fh.read(), ruamel.yaml.RoundTripLoader) keys = list(data.keys()) return keys def _parse_data(self): """Parse the YAML file to get the block content (comments) before each top-level sections. See doc in the constructor Removes all # so that the block of comments can be interpreted as a standard docstring in Sequanix """ current_block = [] current_section = "docstring" # if we get a line that starts with #, this is a new comment or # part of a block comment. Otherwise, it means the current block # comment has ended. for this in self.data: # Beginning of a new section at top level if self.regex_section.findall(this): name = self.regex_section.findall(this)[0] current_section = name.strip(":") self.sections[current_section] = "".join(current_block) current_block = [] current_section = None elif this.startswith('#'): # a comment at top level current_block.append(this) elif this.strip() == "": # an empty line #this was the main comment, or an isolated comment current_block = [] else: # a non-empty line to skip current_block = [] for key in self._get_expected_sections(): if key not in self.sections.keys(): logger.warning("section %s not dealt by the parsing function" % key) def _get_specials(self, section): """This method extracts data from the docstring Lines such as :: field_choice__ = ["a", "b"] are extracted. Where _choice is a special keyword to be found. """ if section not in self.sections.keys(): logger.warning("%s not found in the yaml " % section) return comments = self.sections[section] specials = {} for line in comments.split("\n"): if "#############" in line: pass elif sum([this in line for this in self._specials]): for special in self._specials: line = line[2:] key, value = line.split("=", 1) key = key.strip().rstrip("__") value = value.strip() specials[key] = list(eval(value)) return specials
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 220, 770, 2393, 318, 636, 286, 24604, 2271, 3788, 198, 2, 198, 2, 220, 15069, 357, 66, 8, 1584, 12, 5539, 532, 24604, 2271, 7712, 4816, 198, 2, 198, 2, 220, 9220, 1772, 7, 82, 2599, 198, 2, 220, 220, 220, 220, 220, 5658, 34723, 5031, 263, 1279, 400, 16911, 13, 1073, 365, 5031, 263, 31, 34274, 333, 13, 8310, 29, 198, 2, 198, 2, 220, 4307, 6169, 739, 262, 2846, 286, 262, 513, 12, 565, 682, 347, 10305, 5964, 13, 198, 2, 220, 383, 1336, 5964, 318, 287, 262, 38559, 24290, 2393, 11, 9387, 351, 428, 3788, 13, 198, 2, 198, 2, 220, 3052, 25, 3740, 1378, 12567, 13, 785, 14, 3107, 2271, 14, 3107, 2271, 198, 2, 220, 10314, 25, 2638, 1378, 3107, 2271, 13, 961, 83, 704, 420, 82, 13, 952, 198, 2, 198, 29113, 29113, 7804, 4242, 2235, 198, 11748, 302, 198, 11748, 7422, 17983, 13, 88, 43695, 198, 198, 11748, 3124, 6404, 198, 6404, 1362, 796, 3124, 6404, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 834, 439, 834, 796, 14631, 56, 43695, 23579, 46677, 8973, 628, 198, 4871, 14063, 75, 23579, 46677, 7, 15252, 2599, 198, 220, 220, 220, 37227, 32, 2829, 30751, 284, 7925, 2512, 2695, 284, 307, 1043, 287, 575, 2390, 43, 3696, 628, 220, 220, 220, 1406, 355, 284, 2251, 2891, 41315, 6338, 287, 1058, 5420, 25, 63, 3107, 272, 844, 47671, 530, 460, 2912, 198, 220, 220, 220, 575, 2390, 43, 8398, 2393, 351, 2512, 3651, 357, 3826, 6505, 5698, 287, 198, 220, 220, 220, 1058, 5420, 25, 63, 16244, 364, 63, 1267, 628, 220, 220, 220, 4874, 1100, 290, 44267, 11, 477, 2512, 3651, 878, 1353, 12, 5715, 9004, 389, 284, 220, 198, 220, 220, 220, 307, 1043, 287, 262, 22155, 1058, 35226, 25, 63, 23946, 44646, 628, 220, 220, 220, 11485, 10412, 395, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 422, 4726, 2271, 1330, 3013, 461, 316, 10141, 198, 220, 220, 220, 220, 220, 220, 220, 422, 4726, 2271, 13, 5151, 10141, 1330, 14063, 75, 23579, 46677, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 796, 3013, 461, 316, 10141, 13, 26796, 10786, 13237, 62, 13716, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 14063, 75, 23579, 46677, 7, 21412, 13, 11250, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 23946, 17816, 7217, 80, 66, 20520, 628, 220, 220, 220, 5845, 3951, 389, 4615, 422, 262, 2205, 8841, 475, 1695, 355, 257, 22155, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 29472, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 492, 6437, 1173, 3712, 23772, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 29472, 25, 262, 575, 2390, 43, 2393, 284, 21136, 628, 220, 220, 220, 220, 220, 220, 220, 7904, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1388, 10314, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2512, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2378, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2512, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 17, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 2912, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 18, 25, 628, 220, 220, 220, 220, 220, 220, 220, 3423, 11, 2665, 16, 290, 2665, 17, 423, 2512, 3651, 475, 407, 2665, 18, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34345, 796, 29472, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 25636, 62, 5458, 796, 302, 13, 5589, 576, 7203, 61, 58, 64, 12, 89, 11, 32, 12, 57, 11, 62, 11, 15, 12, 24, 48688, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20887, 82, 796, 14631, 25541, 834, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23946, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 961, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 29572, 62, 7890, 3419, 628, 220, 220, 220, 825, 4808, 1136, 62, 40319, 62, 23946, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 1353, 1241, 8251, 287, 262, 575, 2390, 43, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 286, 1353, 1241, 9004, 6, 3891, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 34345, 11, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 7422, 17983, 13, 88, 43695, 13, 2220, 7, 69, 71, 13, 961, 22784, 7422, 17983, 13, 88, 43695, 13, 22685, 51, 5528, 17401, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 1351, 7, 7890, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8251, 628, 220, 220, 220, 825, 4808, 29572, 62, 7890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10044, 325, 262, 575, 2390, 43, 2393, 284, 651, 262, 2512, 2695, 357, 15944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 878, 1123, 1353, 12, 5715, 9004, 13, 4091, 2205, 287, 262, 23772, 628, 220, 220, 220, 220, 220, 220, 220, 3982, 5241, 477, 1303, 523, 326, 262, 2512, 286, 3651, 460, 307, 16173, 355, 198, 220, 220, 220, 220, 220, 220, 220, 257, 3210, 2205, 8841, 287, 24604, 272, 844, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5458, 796, 366, 15390, 8841, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 356, 651, 257, 1627, 326, 4940, 351, 1303, 11, 428, 318, 257, 649, 2912, 393, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 636, 286, 257, 2512, 2912, 13, 15323, 11, 340, 1724, 262, 1459, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2912, 468, 4444, 13, 628, 220, 220, 220, 220, 220, 220, 220, 329, 428, 287, 2116, 13, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25976, 286, 257, 649, 2665, 379, 1353, 1241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 260, 25636, 62, 5458, 13, 19796, 439, 7, 5661, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 2116, 13, 260, 25636, 62, 5458, 13, 19796, 439, 7, 5661, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5458, 796, 1438, 13, 36311, 7, 2404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23946, 58, 14421, 62, 5458, 60, 796, 366, 1911, 22179, 7, 14421, 62, 9967, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5458, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 428, 13, 9688, 2032, 342, 10786, 2, 6, 2599, 220, 220, 220, 1303, 257, 2912, 379, 1353, 1241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 13, 33295, 7, 5661, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 428, 13, 36311, 3419, 6624, 366, 1298, 220, 220, 220, 220, 220, 1303, 281, 6565, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5661, 373, 262, 1388, 2912, 11, 393, 281, 11557, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 1303, 257, 1729, 12, 28920, 1627, 284, 14267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9967, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13557, 1136, 62, 40319, 62, 23946, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 2116, 13, 23946, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 5458, 4064, 82, 407, 11829, 416, 262, 32096, 2163, 1, 4064, 1994, 8, 628, 220, 220, 220, 825, 4808, 1136, 62, 20887, 82, 7, 944, 11, 2665, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 32139, 1366, 422, 262, 2205, 8841, 628, 220, 220, 220, 220, 220, 220, 220, 26299, 884, 355, 7904, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 25541, 834, 796, 14631, 64, 1600, 366, 65, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 389, 21242, 13, 6350, 4808, 25541, 318, 257, 2041, 21179, 284, 307, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2665, 407, 287, 2116, 13, 23946, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 4, 82, 407, 1043, 287, 262, 331, 43695, 366, 4064, 2665, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 796, 2116, 13, 23946, 58, 5458, 60, 198, 220, 220, 220, 220, 220, 220, 220, 38102, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 3651, 13, 35312, 7203, 59, 77, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 7804, 4242, 2, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2160, 26933, 5661, 287, 1627, 329, 428, 287, 2116, 13557, 20887, 82, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2041, 287, 2116, 13557, 20887, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 58, 17, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 11, 1988, 796, 1627, 13, 35312, 7203, 28, 1600, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 1994, 13, 36311, 22446, 81, 36311, 7203, 834, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 1988, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38102, 58, 2539, 60, 796, 1351, 7, 18206, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 38102, 198 ]
2.356749
1,993
'''Tests the websocket middleware in pulsar.apps.ws.''' import unittest import asyncio from pulsar.api import send from pulsar.apps.ws import WebSocket, WS from pulsar.apps.http import HttpClient from pulsar.apps.test import run_test_server from examples.websocket.manage import server
[ 7061, 6, 51, 3558, 262, 2639, 5459, 3504, 1574, 287, 22271, 283, 13, 18211, 13, 18504, 2637, 7061, 198, 11748, 555, 715, 395, 198, 11748, 30351, 952, 198, 198, 6738, 22271, 283, 13, 15042, 1330, 3758, 198, 6738, 22271, 283, 13, 18211, 13, 18504, 1330, 5313, 39105, 11, 25290, 198, 6738, 22271, 283, 13, 18211, 13, 4023, 1330, 367, 29281, 11792, 198, 6738, 22271, 283, 13, 18211, 13, 9288, 1330, 1057, 62, 9288, 62, 15388, 198, 198, 6738, 6096, 13, 732, 1443, 5459, 13, 805, 496, 1330, 4382, 628, 198 ]
3.222222
90
""" """ import app.utils6L.utils6L as utils import logging import os import PySimpleGUI as sg from app.main.views import view_create_link_address from app.model import db_session from app.model.Company import Address, Company from PySimpleGUI.PySimpleGUI import popup_scrolled logger_name = os.getenv("LOGGER_NAME") logger = logging.getLogger(logger_name) NO_COMPANY_ADDRESS = 'No company address' @utils.log_wrap @utils.log_wrap @utils.log_wrap @utils.log_wrap
[ 37811, 198, 37811, 198, 198, 11748, 598, 13, 26791, 21, 43, 13, 26791, 21, 43, 355, 3384, 4487, 198, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 9485, 26437, 40156, 355, 264, 70, 198, 198, 6738, 598, 13, 12417, 13, 33571, 1330, 1570, 62, 17953, 62, 8726, 62, 21975, 198, 6738, 598, 13, 19849, 1330, 20613, 62, 29891, 198, 6738, 598, 13, 19849, 13, 39154, 1330, 17917, 11, 5834, 198, 198, 6738, 9485, 26437, 40156, 13, 20519, 26437, 40156, 1330, 46207, 62, 1416, 8375, 198, 198, 6404, 1362, 62, 3672, 796, 28686, 13, 1136, 24330, 7203, 25294, 30373, 62, 20608, 4943, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 6404, 1362, 62, 3672, 8, 198, 198, 15285, 62, 9858, 47, 31827, 62, 2885, 7707, 7597, 796, 705, 2949, 1664, 2209, 6, 628, 198, 31, 26791, 13, 6404, 62, 37150, 628, 198, 31, 26791, 13, 6404, 62, 37150, 628, 198, 31, 26791, 13, 6404, 62, 37150, 628, 198, 31, 26791, 13, 6404, 62, 37150, 198 ]
2.86747
166
# COUNT CONTAINED PERMUTATIONS # O(M * U + N) time and O(U) space, where M -> length of big string, # U -> number of unique characters in small string, N -> length # of small string. # U is actually a constant since it can't be greater than 26. and # M > N, so M will dissolve N # So, modified complexities: # O(M) time and O(1) space, M -> length of big string
[ 198, 2, 327, 28270, 7102, 30339, 1961, 19878, 44, 3843, 18421, 198, 198, 2, 440, 7, 44, 1635, 471, 1343, 399, 8, 640, 290, 440, 7, 52, 8, 2272, 11, 810, 337, 4613, 4129, 286, 1263, 4731, 11, 198, 2, 471, 4613, 1271, 286, 3748, 3435, 287, 1402, 4731, 11, 399, 4613, 4129, 198, 2, 286, 1402, 4731, 13, 198, 2, 471, 318, 1682, 257, 6937, 1201, 340, 460, 470, 307, 3744, 621, 2608, 13, 290, 220, 198, 2, 337, 1875, 399, 11, 523, 337, 481, 33862, 399, 198, 2, 1406, 11, 9518, 42292, 25, 198, 2, 440, 7, 44, 8, 640, 290, 440, 7, 16, 8, 2272, 11, 337, 4613, 4129, 286, 1263, 4731 ]
3.165217
115
import urllib.request, json print(Users.get_user(Users("INfoUpgradersYT")))
[ 11748, 2956, 297, 571, 13, 25927, 11, 33918, 198, 198, 4798, 7, 14490, 13, 1136, 62, 7220, 7, 14490, 7203, 1268, 6513, 4933, 9744, 364, 56, 51, 1, 22305, 198 ]
2.566667
30
from torch.distributions import constraints from torch.distributions.exponential import Exponential from torch.distributions.transformed_distribution import TransformedDistribution from torch.distributions.transforms import AffineTransform, ExpTransform from torch.distributions.utils import broadcast_all class Pareto(TransformedDistribution): r""" Samples from a Pareto Type 1 distribution. Example:: >>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1 tensor([ 1.5623]) Args: scale (float or Tensor): Scale parameter of the distribution alpha (float or Tensor): Shape parameter of the distribution """ arg_constraints = {'alpha': constraints.positive, 'scale': constraints.positive} @property @property @constraints.dependent_property
[ 6738, 28034, 13, 17080, 2455, 507, 1330, 17778, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 11201, 35470, 1330, 5518, 35470, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 7645, 12214, 62, 17080, 3890, 1330, 3602, 12214, 20344, 3890, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 7645, 23914, 1330, 6708, 500, 41762, 11, 5518, 41762, 198, 6738, 28034, 13, 17080, 2455, 507, 13, 26791, 1330, 7025, 62, 439, 628, 198, 4871, 350, 533, 1462, 7, 8291, 12214, 20344, 3890, 2599, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 3409, 2374, 422, 257, 350, 533, 1462, 5994, 352, 6082, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 285, 796, 350, 533, 1462, 7, 13165, 354, 13, 83, 22854, 26933, 16, 13, 15, 46570, 28034, 13, 83, 22854, 26933, 16, 13, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 285, 13, 39873, 3419, 220, 1303, 6291, 422, 257, 350, 533, 1462, 6082, 351, 5046, 28, 16, 290, 17130, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 26933, 352, 13, 3980, 1954, 12962, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 357, 22468, 393, 309, 22854, 2599, 21589, 11507, 286, 262, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 357, 22468, 393, 309, 22854, 2599, 25959, 11507, 286, 262, 6082, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1822, 62, 1102, 2536, 6003, 796, 1391, 6, 26591, 10354, 17778, 13, 24561, 11, 705, 9888, 10354, 17778, 13, 24561, 92, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 1102, 2536, 6003, 13, 21186, 62, 26745, 198 ]
3.106529
291
from bitmovin.bitmovin_object import BitmovinObject from .s3_output_service import S3 from .gcs_output_service import GCS from .akamai_netstorage_output_service import AkamaiNetStorage from .azure_output_service import Azure from .ftp_output_service import FTP from .sftp_output_service import SFTP from .generic_s3_output_service import GenericS3 from .local_output_service import Local from .s3_role_based_output_service import S3RoleBased
[ 6738, 1643, 76, 709, 259, 13, 2545, 76, 709, 259, 62, 15252, 1330, 4722, 76, 709, 259, 10267, 198, 6738, 764, 82, 18, 62, 22915, 62, 15271, 1330, 311, 18, 198, 6738, 764, 70, 6359, 62, 22915, 62, 15271, 1330, 402, 7902, 198, 6738, 764, 461, 1689, 72, 62, 3262, 35350, 62, 22915, 62, 15271, 1330, 9084, 1689, 72, 7934, 31425, 198, 6738, 764, 1031, 495, 62, 22915, 62, 15271, 1330, 22134, 198, 6738, 764, 701, 79, 62, 22915, 62, 15271, 1330, 45854, 198, 6738, 764, 82, 701, 79, 62, 22915, 62, 15271, 1330, 14362, 7250, 198, 6738, 764, 41357, 62, 82, 18, 62, 22915, 62, 15271, 1330, 42044, 50, 18, 198, 6738, 764, 12001, 62, 22915, 62, 15271, 1330, 10714, 198, 6738, 764, 82, 18, 62, 18090, 62, 3106, 62, 22915, 62, 15271, 1330, 311, 18, 47445, 15001, 628 ]
3.164286
140
#!/usr/bin/env python3 from btcmarkets_api import Market BTC = Market("/market/BTC/AUD/tick", "BTC") LTC = Market("/market/LTC/AUD/tick", "LTC") ETH = Market("/market/ETH/AUD/tick", "ETH") ETC = Market("/market/ETC/AUD/tick", "ETC") XRP = Market("/market/XRP/AUD/tick", "XRP") BCH = Market("/market/BCH/AUD/tick", "BCH") BTC.update_data() LTC.update_data() ETH.update_data() ETC.update_data() XRP.update_data() BCH.update_data()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 6738, 275, 23047, 34162, 62, 15042, 1330, 5991, 198, 198, 35964, 796, 5991, 7203, 14, 10728, 14, 35964, 14, 48877, 14, 42298, 1600, 366, 35964, 4943, 198, 43, 4825, 796, 5991, 7203, 14, 10728, 14, 43, 4825, 14, 48877, 14, 42298, 1600, 366, 43, 4825, 4943, 198, 20702, 796, 5991, 7203, 14, 10728, 14, 20702, 14, 48877, 14, 42298, 1600, 366, 20702, 4943, 198, 2767, 34, 796, 5991, 7203, 14, 10728, 14, 2767, 34, 14, 48877, 14, 42298, 1600, 366, 2767, 34, 4943, 198, 55, 20031, 796, 5991, 7203, 14, 10728, 14, 55, 20031, 14, 48877, 14, 42298, 1600, 366, 55, 20031, 4943, 198, 2749, 39, 796, 5991, 7203, 14, 10728, 14, 2749, 39, 14, 48877, 14, 42298, 1600, 366, 2749, 39, 4943, 198, 198, 35964, 13, 19119, 62, 7890, 3419, 198, 43, 4825, 13, 19119, 62, 7890, 3419, 198, 20702, 13, 19119, 62, 7890, 3419, 198, 2767, 34, 13, 19119, 62, 7890, 3419, 198, 55, 20031, 13, 19119, 62, 7890, 3419, 198, 2749, 39, 13, 19119, 62, 7890, 3419, 198 ]
2.381215
181
from funcs.concordance import concordance def test_concordance_string(): """ concordance can be called with a string (e.g. a single cell containing a string) """ grams = concordance('Hello world. Hello, my great world! Hello Alice and Bob.', 'world') assert grams == [ ('Hello world'), ('Hello, my great world') ] def test_concordance_array_string(): """ concordance can be called with an array of strings (e.g. a column of cells containing strings) """ grams = concordance(['Hello world.', 'Hello, my great world!', 'Hello Alice and Bob.'], 'world') assert grams == [ ('Hello world'), ('Hello, my great world') ]
[ 6738, 1257, 6359, 13, 1102, 66, 585, 590, 1330, 1673, 585, 590, 628, 198, 4299, 1332, 62, 1102, 66, 585, 590, 62, 8841, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1673, 585, 590, 460, 307, 1444, 351, 257, 4731, 357, 68, 13, 70, 13, 257, 2060, 2685, 7268, 257, 4731, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16379, 796, 1673, 585, 590, 10786, 15496, 995, 13, 18435, 11, 616, 1049, 995, 0, 18435, 14862, 290, 5811, 2637, 11, 705, 6894, 11537, 198, 220, 220, 220, 6818, 16379, 6624, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15496, 995, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15496, 11, 616, 1049, 995, 11537, 198, 220, 220, 220, 2361, 198, 198, 4299, 1332, 62, 1102, 66, 585, 590, 62, 18747, 62, 8841, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1673, 585, 590, 460, 307, 1444, 351, 281, 7177, 286, 13042, 357, 68, 13, 70, 13, 257, 5721, 198, 220, 220, 220, 286, 4778, 7268, 13042, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16379, 796, 1673, 585, 590, 7, 17816, 15496, 995, 2637, 11, 705, 15496, 11, 616, 1049, 995, 0, 3256, 705, 15496, 14862, 290, 5811, 2637, 4357, 705, 6894, 11537, 198, 220, 220, 220, 6818, 16379, 6624, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15496, 995, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 15496, 11, 616, 1049, 995, 11537, 198, 220, 220, 220, 2361, 198 ]
2.738281
256
# -*- coding: utf-8 -*- import numpy as np import cv2 as cv from keras.preprocessing import image from keras.models import model_from_json import click import pandas as pd from keras.layers import Input from keras import models from keras.models import load_model import pyautogui import statistics from PyQt5 import QtWidgets, QtGui from configurar import configurarWindow import sys import configuracoes as cfg import camera import mouse import teclado import matplotlib.pyplot as plt pyautogui.FAILSAFE = False #Captura um posicao padrao da cabeca para que possa #fazer o deslocamento do mouse #ponto de referencia #melhorar #trata imagem da face e faz a predicao #Objetivo: Reconhecer expressões faciais e posição da cabeça # em quadro extraído do vídeo recebido de uma chamada de rotina. #----------------------------- #Objetivo: Determinar a partir de informações fornecidas pelo UC 001 se # ocorreu alguma intenção de ação por parte dos usuários a partir do quadro extraído do vídeo capturado pela webcam. #Realiza emulacao de comando que está associada a expressao #----------------------------- #Objetivo: Identificar a ocorrência de expressões faciais e # movimentos realizados com a cabeça utilizando imagens de vídeos capturadas pela webcam. if __name__== '__main__': mouse_expressions().executar()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 355, 269, 85, 198, 6738, 41927, 292, 13, 3866, 36948, 1330, 2939, 198, 6738, 41927, 292, 13, 27530, 1330, 2746, 62, 6738, 62, 17752, 198, 11748, 3904, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 23412, 198, 6738, 41927, 292, 1330, 4981, 198, 6738, 41927, 292, 13, 27530, 1330, 3440, 62, 19849, 198, 11748, 12972, 2306, 519, 9019, 198, 11748, 7869, 198, 6738, 9485, 48, 83, 20, 1330, 33734, 54, 312, 11407, 11, 33734, 8205, 72, 198, 6738, 4566, 333, 283, 1330, 4566, 333, 283, 27703, 198, 11748, 25064, 198, 11748, 4566, 333, 330, 3028, 355, 30218, 70, 220, 198, 11748, 4676, 198, 11748, 10211, 220, 198, 11748, 573, 565, 4533, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 9078, 2306, 519, 9019, 13, 7708, 4146, 4090, 15112, 796, 10352, 198, 197, 197, 628, 197, 2, 19209, 5330, 23781, 1426, 3970, 78, 14841, 430, 78, 12379, 16212, 31047, 31215, 8358, 1184, 64, 220, 198, 197, 2, 69, 19178, 267, 748, 17946, 3263, 78, 466, 10211, 198, 197, 2, 79, 5957, 390, 6773, 10782, 544, 220, 197, 197, 197, 197, 2, 17694, 17899, 283, 198, 197, 198, 197, 2, 2213, 1045, 3590, 368, 12379, 1986, 304, 277, 1031, 257, 2747, 3970, 78, 628, 198, 197, 2, 5944, 31173, 23593, 25, 23419, 258, 2189, 4911, 127, 113, 274, 1777, 544, 271, 304, 1426, 72, 16175, 28749, 12379, 269, 11231, 50041, 220, 198, 197, 2, 795, 15094, 305, 3131, 8836, 4598, 466, 410, 8836, 2934, 78, 1407, 14065, 78, 390, 334, 2611, 442, 321, 4763, 390, 5724, 1437, 13, 198, 197, 197, 197, 198, 197, 197, 197, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 197, 2, 1783, 32501, 197, 197, 198, 197, 2, 5944, 31173, 23593, 25, 360, 13221, 283, 257, 636, 343, 390, 4175, 64, 16175, 127, 113, 274, 329, 32984, 24496, 16176, 78, 14417, 3571, 16, 384, 220, 198, 197, 2, 267, 10215, 260, 84, 435, 70, 7487, 493, 268, 16175, 28749, 390, 257, 16175, 28749, 16964, 636, 68, 23430, 514, 84, 6557, 380, 418, 257, 636, 343, 466, 15094, 305, 3131, 8836, 4598, 466, 410, 8836, 2934, 78, 3144, 333, 4533, 279, 10304, 49823, 13, 220, 198, 197, 2, 15633, 23638, 795, 377, 330, 5488, 390, 401, 25440, 8358, 1556, 6557, 2570, 4763, 257, 4911, 5488, 628, 198, 197, 2, 1783, 32501, 198, 197, 2, 5944, 31173, 23593, 25, 11440, 811, 283, 257, 267, 10215, 81, 25792, 10782, 544, 390, 4911, 127, 113, 274, 1777, 544, 271, 304, 220, 198, 197, 2, 1409, 3681, 418, 1103, 528, 22484, 401, 257, 269, 11231, 50041, 7736, 528, 25440, 3590, 641, 390, 410, 8836, 2934, 418, 3144, 333, 38768, 279, 10304, 49823, 13, 220, 198, 198, 361, 11593, 3672, 834, 855, 705, 834, 12417, 834, 10354, 198, 197, 35888, 62, 42712, 507, 22446, 18558, 315, 283, 3419 ]
2.123537
769
# -*- coding: utf-8 -*- # Copyright: (c) 2018, Ansible Project # Copyright: (c) 2018, Abhijeet Kasurde <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 25, 357, 66, 8, 2864, 11, 28038, 856, 4935, 198, 2, 15069, 25, 357, 66, 8, 2864, 11, 2275, 71, 2926, 68, 316, 15035, 2799, 68, 1279, 461, 292, 2799, 68, 31, 445, 5183, 13, 785, 29, 198, 2, 22961, 3611, 5094, 13789, 410, 18, 13, 15, 10, 357, 3826, 27975, 45761, 393, 3740, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 70, 489, 12, 18, 13, 15, 13, 14116, 8, 628 ]
2.417582
91
import json from .models import URL
[ 11748, 33918, 198, 198, 6738, 764, 27530, 1330, 10289, 628 ]
3.8
10
""" IN PROGRESS:Transliterating Carlo's routine from Fortran Form the B-Matrix and C-Matrix used to convert the coordinates Calcualtes all of the derivaties via finite-difference define starting xyz geometry. convention: atom 1 is is 0 0 0 atom 2 bd 0 0 atom 3 on xy plane """ # import numpy as np # # NATOMS = 10 # maybe need, don't know # INT_COORDS = '' # DELTAX = 0.01 # DELTAY = 0.01 # DELTAZ = 0.01 # # # def compute_bmat(natoms, coords, deltax, deltay, deltaz): # """ compute the bmatrix by central difference # where B_ik = dq_i / dx_k # """ # # b_mat = np.zeros(3*natoms, 3*natoms) # for j in range(3): # for k in range(3): # # # perturb x + dx and x - dx # xpert_xp = 1 # xpert_xn = 1 # _perturb_coordinates(coords, jpert, delta) # # # perturb y + dy and y - dy # xpert_yp = 1 # xpert_yn = 1 # _perturb_coordinates(coords, jpert, delta) # # # perturb z + dz and z - dz # xpert_zp = 1 # xpert_zn = 1 # _perturb_coordinates(coords, jpert, delta) # # # Now calculate the jk component C-Matrix # _calculate_bmat_k_component(b_mat, coords, j, j*k, # x_pert_pp, x_pert_pn, # x_pert_np, x_pert_nn) # # # now update iangsub1 bmat component (whatever this is) # b_mat = _update_bmat(bmat, coords) # # return b_mat # # # def compute_cmat(natoms, coords, deltax, deltay, deltaz): # """ compute the bmatrix by central difference # where C_ijk = d2q_i / (dx_j.dx_k) # """ # # c_mat = np.zeros(3*natoms, 3*natoms, 3*natoms) # for j in range(3): # for k in range(3): # # perturb xj + dxj and xk + dxk # x_pert_pp = _perturb_coordinates(coords, jpert, kpert, d1, d2) # # # perturb xj - dxj and yk + dyk # x_pert_np = _perturb_coordinates(coords, jpert, kpert, d1, d2) # # # perturb xj + dxj and yk - dyk # x_pert_pn = _perturb_coordinates(coords, jpert, kpert, d1, d2) # # # perturb xj - dxj and xk - dxk # x_pert_nn = _perturb_coordinates(coords, jpert, kpert, d1, d2) # # # Now calculate the jk component C-Matrix # _calculate_cmat_k_component(c_mat, coords, j, j*k, # x_pert_pp, x_pert_pn, # x_pert_np, x_pert_nn) # # return c_mat # # # def _perturb_coordinates(coords, jpert, delta1, kpert=None, delta2=None): # """ Generate coordinates that have been perturbed # """ # coords[jpert] += delta1 # coords[kpert] += delta2 # # call update_zmat(natom,natomt,intcoor,bislab,ibconn, # # $ iaconn,idconn,bname,anname,dname,atname,cooxpp,cooypp, # # $ coozpp,xintpp,tauopt,ntau,idummy,ilin_fr,aconnt,bconnt, # # $ dconnt,atomlabel,ifilu) # # return coords # # # def _calculate_bmat_k_component(b_mat, j_idx, coords, delta, # x_pert_p, x_pert_n): # """ Calculate one nine components of B_ij for given __ # """ # # for i, coord in enumerate(coords): # if abs(xpert_p[i] - xpert_np[i]) > 300.0: # if xpert_n[i] < 0.0: # xpert_n[i] += 360.0 # elif xpert_n[i] > 0.0: # xpert_n[i] -= 360.0 # if abs(xpert_p[i] - xpert_n[i]) > 300.0: # raise ValueError( # 'something did not work here: k, j coord', kind, jind, i) # b_mat[i, j_idx] = ( # ((xpert_p[i] - xpert_n[i]) / 2.0) * (1.0 / delta) # ) # # return b_mat # # # def _calculate_cmat_k_component(c_mat, k_idx, coords, delta1, delta2, # x_pert_pp, x_pert_pn, x_pert_np, x_pert_nn): # """ Calculate one nine components of C_ijk for given j # """ # # for i, coord in enumerate(coords): # # if abs(xpert_pp[i] - xpert_np[i]) > 300.0: # if xpert_pp[i] < 0.0: # xpert_pp[i] += 360.0 # elif xpert_pp[i] > 0.0: # xpert_pp[i] -= 360.0 # if abs(xpert_pp[i] - xpert_np[i]) > 300.0: # raise ValueError( # 'something did not work here: k, j coord', # kind, jind, i) # # if abs(xpert_np[i] - xpert_np[i]) > 300.0: # if xpert_pn[i] < 0.0: # xpert_pn[i] += 360.0 # elif xpert_pn[i] > 0.0: # xpert_pn[i] -= 360.0 # if abs(xpert_pp[i] - xpert_pn[i]) > 300.0: # raise ValueError( # 'something did not work here: k, j coord', # kind, jind, i) # # if abs(xpert_np[i] - xpert_nn[i]) > 300.0: # if xpert_nn[i] < 0.0: # xpert_nn[i] += 360.0 # elif xpert_nn[i] > 0.0: # xpert_nn[i] -= 360.0 # if abs(xpert_np[i] - xpert_nn[i]) > 300.0: # raise ValueError( # 'something did not work here: k, j coord', # kind, jind, i) # # c_mat[i, j_idx, k_idx] = ( # xpert_pp[i] - xpert_np[i] - xpert_pn[i] + # (xpert_nn[i] / 4.0) * (1.0 / deltax) * (1.0 / deltaz) # ) # # return c_mat # # # if __name__ == '__main__': # b_mat = compute_bmat(NATOMS, COORDS, DELTAX, DELTAY, DELTAZ) # c_mat = compute_cmat(NATOMS, COORDS, DELTAX, DELTAY, DELTAZ)
[ 37811, 198, 1268, 38688, 49, 7597, 25, 8291, 17201, 803, 40089, 338, 8027, 422, 6401, 2596, 198, 198, 8479, 262, 347, 12, 46912, 290, 327, 12, 46912, 973, 284, 10385, 262, 22715, 198, 198, 9771, 66, 723, 4879, 477, 286, 262, 16124, 265, 444, 2884, 27454, 12, 26069, 1945, 198, 198, 13086, 3599, 2124, 45579, 22939, 13, 198, 1102, 4018, 25, 22037, 352, 318, 318, 657, 657, 657, 198, 37696, 362, 275, 67, 657, 657, 198, 37696, 513, 319, 2124, 88, 6614, 198, 37811, 198, 198, 2, 1330, 299, 32152, 355, 45941, 198, 2, 198, 2, 10149, 2662, 50, 796, 838, 220, 1303, 3863, 761, 11, 836, 470, 760, 198, 2, 17828, 62, 8220, 1581, 5258, 796, 10148, 198, 2, 28163, 5603, 55, 796, 657, 13, 486, 198, 2, 28163, 51, 4792, 796, 657, 13, 486, 198, 2, 28163, 5603, 57, 796, 657, 13, 486, 198, 2, 198, 2, 198, 2, 825, 24061, 62, 65, 6759, 7, 32353, 3150, 11, 763, 3669, 11, 1619, 19290, 11, 1619, 83, 323, 11, 1619, 83, 1031, 2599, 198, 2, 220, 220, 220, 220, 37227, 24061, 262, 275, 6759, 8609, 416, 4318, 3580, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 810, 347, 62, 1134, 796, 288, 80, 62, 72, 1220, 44332, 62, 74, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 275, 62, 6759, 796, 45941, 13, 9107, 418, 7, 18, 9, 32353, 3150, 11, 513, 9, 32353, 3150, 8, 198, 2, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 18, 2599, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 1343, 44332, 290, 2124, 532, 44332, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 42372, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 87, 77, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 25979, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 331, 1343, 20268, 290, 331, 532, 20268, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 4464, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 2047, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 25979, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 1976, 1343, 288, 89, 290, 1976, 532, 288, 89, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 89, 79, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 47347, 796, 352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 25979, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 15284, 262, 474, 74, 7515, 327, 12, 46912, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9948, 3129, 378, 62, 65, 6759, 62, 74, 62, 42895, 7, 65, 62, 6759, 11, 763, 3669, 11, 474, 11, 474, 9, 74, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 381, 11, 2124, 62, 11766, 62, 21999, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 37659, 11, 2124, 62, 11766, 62, 20471, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 4296, 1312, 648, 7266, 16, 275, 6759, 7515, 357, 39664, 428, 318, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 6759, 796, 4808, 19119, 62, 65, 6759, 7, 65, 6759, 11, 763, 3669, 8, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 275, 62, 6759, 198, 2, 198, 2, 198, 2, 825, 24061, 62, 66, 6759, 7, 32353, 3150, 11, 763, 3669, 11, 1619, 19290, 11, 1619, 83, 323, 11, 1619, 83, 1031, 2599, 198, 2, 220, 220, 220, 220, 37227, 24061, 262, 275, 6759, 8609, 416, 4318, 3580, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 810, 327, 62, 45961, 796, 288, 17, 80, 62, 72, 1220, 357, 34350, 62, 73, 13, 34350, 62, 74, 8, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 269, 62, 6759, 796, 45941, 13, 9107, 418, 7, 18, 9, 32353, 3150, 11, 513, 9, 32353, 3150, 11, 513, 9, 32353, 3150, 8, 198, 2, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 18, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 73, 1343, 44332, 73, 290, 2124, 74, 1343, 44332, 74, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 381, 796, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 479, 11766, 11, 288, 16, 11, 288, 17, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 73, 532, 44332, 73, 290, 331, 74, 1343, 20268, 74, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 37659, 796, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 479, 11766, 11, 288, 16, 11, 288, 17, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 73, 1343, 44332, 73, 290, 331, 74, 532, 20268, 74, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 21999, 796, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 479, 11766, 11, 288, 16, 11, 288, 17, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22146, 5945, 2124, 73, 532, 44332, 73, 290, 2124, 74, 532, 44332, 74, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 20471, 796, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 479, 11766, 11, 288, 16, 11, 288, 17, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 15284, 262, 474, 74, 7515, 327, 12, 46912, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9948, 3129, 378, 62, 66, 6759, 62, 74, 62, 42895, 7, 66, 62, 6759, 11, 763, 3669, 11, 474, 11, 474, 9, 74, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 381, 11, 2124, 62, 11766, 62, 21999, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 37659, 11, 2124, 62, 11766, 62, 20471, 8, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 269, 62, 6759, 198, 2, 198, 2, 198, 2, 825, 4808, 11766, 5945, 62, 37652, 17540, 7, 1073, 3669, 11, 474, 11766, 11, 25979, 16, 11, 479, 11766, 28, 14202, 11, 25979, 17, 28, 14202, 2599, 198, 2, 220, 220, 220, 220, 37227, 2980, 378, 22715, 326, 423, 587, 22146, 37694, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 763, 3669, 58, 73, 11766, 60, 15853, 25979, 16, 198, 2, 220, 220, 220, 220, 763, 3669, 58, 74, 11766, 60, 15853, 25979, 17, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 869, 4296, 62, 89, 6759, 7, 32353, 296, 11, 32353, 296, 83, 11, 600, 1073, 273, 11, 65, 3044, 397, 11, 571, 37043, 11, 198, 2, 220, 220, 220, 220, 1303, 720, 220, 220, 220, 220, 1312, 7807, 77, 11, 312, 37043, 11, 65, 3672, 11, 1236, 480, 11, 67, 3672, 11, 265, 3672, 11, 1073, 1140, 381, 11, 1073, 726, 381, 11, 198, 2, 220, 220, 220, 220, 1303, 720, 220, 220, 220, 220, 763, 8590, 381, 11, 87, 600, 381, 11, 83, 559, 8738, 11, 429, 559, 11, 312, 13513, 11, 346, 259, 62, 8310, 11, 7807, 429, 11, 65, 1102, 429, 11, 198, 2, 220, 220, 220, 220, 1303, 720, 220, 220, 220, 220, 288, 1102, 429, 11, 37696, 18242, 11, 361, 346, 84, 8, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 763, 3669, 198, 2, 198, 2, 198, 2, 825, 4808, 9948, 3129, 378, 62, 65, 6759, 62, 74, 62, 42895, 7, 65, 62, 6759, 11, 474, 62, 312, 87, 11, 763, 3669, 11, 25979, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 79, 11, 2124, 62, 11766, 62, 77, 2599, 198, 2, 220, 220, 220, 220, 37227, 27131, 378, 530, 5193, 6805, 286, 347, 62, 2926, 329, 1813, 11593, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 329, 1312, 11, 6349, 287, 27056, 378, 7, 1073, 3669, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 79, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 11766, 62, 77, 58, 72, 60, 1279, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 77, 58, 72, 60, 15853, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 11766, 62, 77, 58, 72, 60, 1875, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 77, 58, 72, 60, 48185, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 79, 58, 72, 60, 532, 2124, 11766, 62, 77, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18927, 750, 407, 670, 994, 25, 479, 11, 474, 6349, 3256, 1611, 11, 474, 521, 11, 1312, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 6759, 58, 72, 11, 474, 62, 312, 87, 60, 796, 357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14808, 87, 11766, 62, 79, 58, 72, 60, 532, 2124, 11766, 62, 77, 58, 72, 12962, 1220, 362, 13, 15, 8, 1635, 357, 16, 13, 15, 1220, 25979, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 275, 62, 6759, 198, 2, 198, 2, 198, 2, 825, 4808, 9948, 3129, 378, 62, 66, 6759, 62, 74, 62, 42895, 7, 66, 62, 6759, 11, 479, 62, 312, 87, 11, 763, 3669, 11, 25979, 16, 11, 25979, 17, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 11766, 62, 381, 11, 2124, 62, 11766, 62, 21999, 11, 2124, 62, 11766, 62, 37659, 11, 2124, 62, 11766, 62, 20471, 2599, 198, 2, 220, 220, 220, 220, 37227, 27131, 378, 530, 5193, 6805, 286, 327, 62, 45961, 329, 1813, 474, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 329, 1312, 11, 6349, 287, 27056, 378, 7, 1073, 3669, 2599, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 381, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 11766, 62, 381, 58, 72, 60, 1279, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 381, 58, 72, 60, 15853, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 11766, 62, 381, 58, 72, 60, 1875, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 381, 58, 72, 60, 48185, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 381, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18927, 750, 407, 670, 994, 25, 479, 11, 474, 6349, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1611, 11, 474, 521, 11, 1312, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 37659, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 11766, 62, 21999, 58, 72, 60, 1279, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 21999, 58, 72, 60, 15853, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 11766, 62, 21999, 58, 72, 60, 1875, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 21999, 58, 72, 60, 48185, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 381, 58, 72, 60, 532, 2124, 11766, 62, 21999, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18927, 750, 407, 670, 994, 25, 479, 11, 474, 6349, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1611, 11, 474, 521, 11, 1312, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 37659, 58, 72, 60, 532, 2124, 11766, 62, 20471, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 11766, 62, 20471, 58, 72, 60, 1279, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 20471, 58, 72, 60, 15853, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 11766, 62, 20471, 58, 72, 60, 1875, 657, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 20471, 58, 72, 60, 48185, 11470, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 87, 11766, 62, 37659, 58, 72, 60, 532, 2124, 11766, 62, 20471, 58, 72, 12962, 1875, 5867, 13, 15, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18927, 750, 407, 670, 994, 25, 479, 11, 474, 6349, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1611, 11, 474, 521, 11, 1312, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 62, 6759, 58, 72, 11, 474, 62, 312, 87, 11, 479, 62, 312, 87, 60, 796, 357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11766, 62, 381, 58, 72, 60, 532, 2124, 11766, 62, 37659, 58, 72, 60, 532, 2124, 11766, 62, 21999, 58, 72, 60, 1343, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 11766, 62, 20471, 58, 72, 60, 1220, 604, 13, 15, 8, 1635, 357, 16, 13, 15, 1220, 1619, 19290, 8, 1635, 357, 16, 13, 15, 1220, 1619, 83, 1031, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 269, 62, 6759, 198, 2, 198, 2, 198, 2, 611, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 2, 220, 220, 220, 220, 275, 62, 6759, 796, 24061, 62, 65, 6759, 7, 34259, 2662, 50, 11, 7375, 1581, 5258, 11, 28163, 5603, 55, 11, 28163, 51, 4792, 11, 28163, 5603, 57, 8, 198, 2, 220, 220, 220, 220, 269, 62, 6759, 796, 24061, 62, 66, 6759, 7, 34259, 2662, 50, 11, 7375, 1581, 5258, 11, 28163, 5603, 55, 11, 28163, 51, 4792, 11, 28163, 5603, 57, 8, 198 ]
1.706776
3,291
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import json import requests from knack.util import CLIError from azure.cli.command_modules.botservice import adal_authenticator
[ 2, 16529, 1783, 10541, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 2, 16529, 1783, 10541, 198, 198, 11748, 33918, 198, 11748, 7007, 198, 6738, 47868, 13, 22602, 1330, 43749, 12331, 198, 6738, 35560, 495, 13, 44506, 13, 21812, 62, 18170, 13, 42478, 712, 501, 1330, 512, 282, 62, 41299, 26407, 628 ]
6.089744
78
n = int(input()) pieces = {} for _ in range(n): piece, composer, key = input().split("|") pieces[piece] = {'composer': composer, 'key': key} data = input() while not data == "Stop": command = data.split("|") if command[0] == "Add": piece, composer, key = command[1:] if piece in pieces: print(f"{piece} is already in the collection!") else: pieces[piece] = {'composer': composer, 'key': key} print(f"{piece} by {composer} in {key} added to the collection!") elif command[0] == "Remove": piece = command[1] if piece in pieces: del pieces[piece] print(f"Successfully removed {piece}!") else: print(f"Invalid operation! {piece} does not exist in the collection.") elif command[0] == "ChangeKey": piece, new_key = command[1:] if piece in pieces: pieces[piece]['key'] = new_key print(f"Changed the key of {piece} to {new_key}!") else: print(f"Invalid operation! {piece} does not exist in the collection.") data = input() sorted_pieces = sorted(pieces.items(), key=lambda tkvp: (tkvp[0], tkvp[1]['composer'])) for piece, data in sorted_pieces: print(f"{piece} -> Composer: {data['composer']}, Key: {data['key']}")
[ 77, 796, 493, 7, 15414, 28955, 198, 34154, 796, 23884, 628, 198, 1640, 4808, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 3704, 11, 26777, 11, 1994, 796, 5128, 22446, 35312, 7203, 91, 4943, 198, 220, 220, 220, 5207, 58, 12239, 60, 796, 1391, 6, 785, 1930, 263, 10354, 26777, 11, 705, 2539, 10354, 1994, 92, 628, 198, 7890, 796, 5128, 3419, 198, 198, 4514, 407, 1366, 6624, 366, 19485, 1298, 198, 220, 220, 220, 3141, 796, 1366, 13, 35312, 7203, 91, 4943, 198, 220, 220, 220, 611, 3141, 58, 15, 60, 6624, 366, 4550, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3704, 11, 26777, 11, 1994, 796, 3141, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3704, 287, 5207, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 12239, 92, 318, 1541, 287, 262, 4947, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 58, 12239, 60, 796, 1391, 6, 785, 1930, 263, 10354, 26777, 11, 705, 2539, 10354, 1994, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 12239, 92, 416, 1391, 785, 1930, 263, 92, 287, 1391, 2539, 92, 2087, 284, 262, 4947, 2474, 8, 198, 220, 220, 220, 1288, 361, 3141, 58, 15, 60, 6624, 366, 27914, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3704, 796, 3141, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3704, 287, 5207, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 5207, 58, 12239, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 33244, 2759, 4615, 1391, 12239, 92, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 44651, 4905, 0, 1391, 12239, 92, 857, 407, 2152, 287, 262, 4947, 19570, 198, 220, 220, 220, 1288, 361, 3141, 58, 15, 60, 6624, 366, 19400, 9218, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3704, 11, 649, 62, 2539, 796, 3141, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3704, 287, 5207, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5207, 58, 12239, 7131, 6, 2539, 20520, 796, 649, 62, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 31813, 262, 1994, 286, 1391, 12239, 92, 284, 1391, 3605, 62, 2539, 92, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 44651, 4905, 0, 1391, 12239, 92, 857, 407, 2152, 287, 262, 4947, 19570, 198, 220, 220, 220, 1366, 796, 5128, 3419, 198, 198, 82, 9741, 62, 34154, 796, 23243, 7, 34154, 13, 23814, 22784, 1994, 28, 50033, 256, 74, 36133, 25, 357, 30488, 36133, 58, 15, 4357, 256, 74, 36133, 58, 16, 7131, 6, 785, 1930, 263, 20520, 4008, 198, 1640, 3704, 11, 1366, 287, 23243, 62, 34154, 25, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 12239, 92, 4613, 29936, 263, 25, 1391, 7890, 17816, 785, 1930, 263, 20520, 5512, 7383, 25, 1391, 7890, 17816, 2539, 20520, 92, 4943 ]
2.29636
577
import insightconnect_plugin_runtime from .schema import LookupAlertInput, LookupAlertOutput, Input, Output, Component # Custom imports below from insightconnect_plugin_runtime.exceptions import PluginException from komand_recorded_future.util.api import Endpoint
[ 11748, 11281, 8443, 62, 33803, 62, 43282, 198, 6738, 764, 15952, 2611, 1330, 6803, 929, 36420, 20560, 11, 6803, 929, 36420, 26410, 11, 23412, 11, 25235, 11, 35100, 198, 198, 2, 8562, 17944, 2174, 198, 6738, 11281, 8443, 62, 33803, 62, 43282, 13, 1069, 11755, 1330, 42636, 16922, 198, 6738, 479, 296, 392, 62, 47398, 62, 37443, 13, 22602, 13, 15042, 1330, 5268, 4122, 628 ]
4.092308
65
#!/usr/bin/env python3 # Copyright (c) 2020-2021 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test indices in conjunction with prune.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, ) if __name__ == '__main__': FeatureIndexPruneTest().main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 357, 66, 8, 12131, 12, 1238, 2481, 383, 6185, 7231, 6505, 198, 2, 4307, 6169, 739, 262, 17168, 3788, 5964, 11, 766, 262, 19249, 198, 2, 2393, 27975, 45761, 393, 2638, 1378, 2503, 13, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 2781, 12, 43085, 13, 10121, 13, 198, 37811, 14402, 36525, 287, 17856, 351, 778, 1726, 526, 15931, 198, 6738, 1332, 62, 30604, 13, 9288, 62, 30604, 1330, 6185, 14402, 21055, 6433, 198, 6738, 1332, 62, 30604, 13, 22602, 1330, 357, 198, 220, 220, 220, 6818, 62, 40496, 11, 198, 220, 220, 220, 6818, 62, 18223, 263, 62, 14813, 11, 198, 220, 220, 220, 6818, 62, 430, 2696, 62, 81, 14751, 62, 18224, 11, 198, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 27018, 15732, 6836, 1726, 14402, 22446, 12417, 3419, 198 ]
3.2
155
from django.contrib.auth.models import User from django.shortcuts import get_object_or_404 from django.views.generic import TemplateView from ...models import Commit, UTopic from ..utils import paginator
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 37350, 7680, 198, 198, 6738, 2644, 27530, 1330, 35910, 11, 471, 33221, 198, 6738, 11485, 26791, 1330, 42208, 20900, 628 ]
3.678571
56
from abaqusConstants import * from .ContactProperty import ContactProperty class FluidCavityProperty(ContactProperty): """The FluidCavityProperty object is an interaction property that defines the fluid behavior for a surface-based fluid cavity. The FluidCavityProperty object is derived from the InteractionProperty object. Notes ----- This object can be accessed by: .. code-block:: python import interaction mdb.models[name].interactionProperties[name] The corresponding analysis keywords are: - FLUID BEHAVIOR - CAPACITY - FLUID BULK MODULUS - FLUID DENSITY - FLUID EXPANSION - MOLECULAR WEIGHT """ def __init__(self, name: str, definition: SymbolicConstant = HYDRAULIC, fluidDensity: float = None, molecularWeight: float = None, useExpansion: Boolean = OFF, expansionTempDep: Boolean = OFF, expansionDependencies: int = 0, referenceTemperature: float = 0, expansionTable: tuple = (), useBulkModulus: Boolean = OFF, bulkModulusTempDep: Boolean = OFF, bulkModulusDependencies: int = 0, bulkModulusTable: tuple = (), useCapacity: Boolean = OFF, capacityType: SymbolicConstant = POLYNOMIAL, capacityTempDep: Boolean = OFF, capacityDependencies: int = 0, capacityTable: tuple = ()): """This method creates a FluidCavityProperty object. Notes ----- This function can be accessed by: .. code-block:: python mdb.models[name].FluidCavityProperty Parameters ---------- name A String specifying the interaction property repository key. definition A SymbolicConstant specifying the type of fluid cavity property to be defined. Possible values are HYDRAULIC and PNEUMATIC. The default value is HYDRAULIC. fluidDensity None or a Float specifying the reference fluid density. This argument is applicable only when *definition*=HYDRAULIC, and is required in that case. The default value is None. molecularWeight None or a Float specifying the molecular weight of the ideal gas species. This argument is applicable only when *definition*=PNEUMATIC, and is required in that case. The default value is None. useExpansion A Boolean specifying whether thermal expansion coefficients will be defined. This argument is applicable only when *definition*=HYDRAULIC. The default value is OFF. expansionTempDep A Boolean specifying whether the thermal fluid expansion data will have temperature dependency. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. The default value is OFF. expansionDependencies An Int specifying the number of field variable dependencies in the thermal fluid expansion data. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. The default value is 0. referenceTemperature A Float specifying the reference temperature for the coefficient of thermal expansion. This argument is applicable only when *definition*=HYDRAULIC, when *useExpansion*=True, and when either *expansionTempDep*=True or when *expansionDependencies* is greater than 0. The default value is 0.0. expansionTable A sequence of sequences of Floats specifying the thermal expansion coefficients. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. Each sequence contains the following data: - The mean coefficient of thermal expansion. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. useBulkModulus A Boolean specifying whether fluid bulk modulus values will be defined. This argument is applicable only when *definition*=HYDRAULIC. The default value is OFF. bulkModulusTempDep A Boolean specifying whether the fluid bulk modulus data will have temperature dependency. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. The default value is OFF. bulkModulusDependencies An Int specifying the number of field variable dependencies in the fluid bulk modulus data. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. The default value is 0. bulkModulusTable A sequence of sequences of Floats specifying the fluid bulk modulus values. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. Each sequence contains the following data: - The fluid bulk modulus. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. useCapacity A Boolean specifying whether molar heat capacity values will be defined. This argument is applicable only when *definition*=PNEUMATIC. The default value is OFF. capacityType A SymbolicConstant specifying the method to define the molar heat capacity. Possible values are POLYNOMIAL and TABULAR. The default value is POLYNOMIAL. capacityTempDep A Boolean specifying whether the molar heat capacity data will have temperature dependency. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. The default value is OFF. capacityDependencies An Int specifying the number of field variable dependencies in the molar heat capacity data. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. The default value is 0. capacityTable A sequence of sequences of Floats specifying the molar heat capacity values in the form of a polynomial expression. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=POLYNOMIAL. In this form, only one sequence is specified and that sequence contains the following data: - The first molar heat capacity coefficient. - The second molar heat capacity coefficient. - The third molar heat capacity coefficient. - The fourth molar heat capacity coefficient. - The fifth molar heat capacity coefficient. Alternatively, the sequence data may specify the molar heat capacity values at constant pressure for an ideal gas species. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. Each sequence contains the following data: - The molar heat capacity at constant pressure. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. Returns ------- A FluidCavityProperty object. """ super().__init__(name) pass def setValues(self, definition: SymbolicConstant = HYDRAULIC, fluidDensity: float = None, molecularWeight: float = None, useExpansion: Boolean = OFF, expansionTempDep: Boolean = OFF, expansionDependencies: int = 0, referenceTemperature: float = 0, expansionTable: tuple = (), useBulkModulus: Boolean = OFF, bulkModulusTempDep: Boolean = OFF, bulkModulusDependencies: int = 0, bulkModulusTable: tuple = (), useCapacity: Boolean = OFF, capacityType: SymbolicConstant = POLYNOMIAL, capacityTempDep: Boolean = OFF, capacityDependencies: int = 0, capacityTable: tuple = ()): """This method modifies the FluidCavityProperty object. Parameters ---------- definition A SymbolicConstant specifying the type of fluid cavity property to be defined. Possible values are HYDRAULIC and PNEUMATIC. The default value is HYDRAULIC. fluidDensity None or a Float specifying the reference fluid density. This argument is applicable only when *definition*=HYDRAULIC, and is required in that case. The default value is None. molecularWeight None or a Float specifying the molecular weight of the ideal gas species. This argument is applicable only when *definition*=PNEUMATIC, and is required in that case. The default value is None. useExpansion A Boolean specifying whether thermal expansion coefficients will be defined. This argument is applicable only when *definition*=HYDRAULIC. The default value is OFF. expansionTempDep A Boolean specifying whether the thermal fluid expansion data will have temperature dependency. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. The default value is OFF. expansionDependencies An Int specifying the number of field variable dependencies in the thermal fluid expansion data. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. The default value is 0. referenceTemperature A Float specifying the reference temperature for the coefficient of thermal expansion. This argument is applicable only when *definition*=HYDRAULIC, when *useExpansion*=True, and when either *expansionTempDep*=True or when *expansionDependencies* is greater than 0. The default value is 0.0. expansionTable A sequence of sequences of Floats specifying the thermal expansion coefficients. This argument is applicable only when *definition*=HYDRAULIC and when *useExpansion*=True. Each sequence contains the following data: - The mean coefficient of thermal expansion. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. useBulkModulus A Boolean specifying whether fluid bulk modulus values will be defined. This argument is applicable only when *definition*=HYDRAULIC. The default value is OFF. bulkModulusTempDep A Boolean specifying whether the fluid bulk modulus data will have temperature dependency. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. The default value is OFF. bulkModulusDependencies An Int specifying the number of field variable dependencies in the fluid bulk modulus data. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. The default value is 0. bulkModulusTable A sequence of sequences of Floats specifying the fluid bulk modulus values. This argument is applicable only when *definition*=HYDRAULIC and when *useBulkModulus*=True. Each sequence contains the following data: - The fluid bulk modulus. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. useCapacity A Boolean specifying whether molar heat capacity values will be defined. This argument is applicable only when *definition*=PNEUMATIC. The default value is OFF. capacityType A SymbolicConstant specifying the method to define the molar heat capacity. Possible values are POLYNOMIAL and TABULAR. The default value is POLYNOMIAL. capacityTempDep A Boolean specifying whether the molar heat capacity data will have temperature dependency. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. The default value is OFF. capacityDependencies An Int specifying the number of field variable dependencies in the molar heat capacity data. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. The default value is 0. capacityTable A sequence of sequences of Floats specifying the molar heat capacity values in the form of a polynomial expression. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=POLYNOMIAL. In this form, only one sequence is specified and that sequence contains the following data: - The first molar heat capacity coefficient. - The second molar heat capacity coefficient. - The third molar heat capacity coefficient. - The fourth molar heat capacity coefficient. - The fifth molar heat capacity coefficient. Alternatively, the sequence data may specify the molar heat capacity values at constant pressure for an ideal gas species. This argument is applicable only when *definition*=PNEUMATIC, when *useCapacity*=True, and when *capacityType*=TABULAR. Each sequence contains the following data: - The molar heat capacity at constant pressure. - Temperature, if the data depend on temperature. - Value of the first field variable, if the data depend on field variables. - Value of the second field variable. - Etc. """ pass
[ 6738, 450, 30188, 385, 34184, 1187, 1330, 1635, 198, 6738, 764, 17829, 21746, 1330, 14039, 21746, 628, 198, 4871, 1610, 27112, 34, 615, 414, 21746, 7, 17829, 21746, 2599, 198, 220, 220, 220, 37227, 464, 1610, 27112, 34, 615, 414, 21746, 2134, 318, 281, 10375, 3119, 326, 15738, 262, 11711, 198, 220, 220, 220, 4069, 329, 257, 4417, 12, 3106, 11711, 31643, 13, 220, 198, 220, 220, 220, 383, 1610, 27112, 34, 615, 414, 21746, 2134, 318, 10944, 422, 262, 4225, 2673, 21746, 2134, 13, 220, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 770, 2134, 460, 307, 17535, 416, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 10375, 198, 220, 220, 220, 220, 220, 220, 220, 285, 9945, 13, 27530, 58, 3672, 4083, 3849, 2673, 2964, 18200, 58, 3672, 60, 628, 220, 220, 220, 383, 11188, 3781, 26286, 389, 25, 628, 220, 220, 220, 532, 9977, 27586, 9348, 7801, 12861, 1581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 20176, 2246, 9050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 9977, 27586, 347, 6239, 42, 19164, 6239, 2937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 9977, 27586, 360, 16938, 9050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 9977, 27586, 25703, 15037, 2849, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 13070, 2538, 34, 37232, 12887, 9947, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 25, 965, 11, 6770, 25, 41327, 4160, 3103, 18797, 796, 367, 35755, 3861, 6239, 2149, 11, 11711, 35, 6377, 25, 12178, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18955, 25844, 25, 12178, 796, 6045, 11, 779, 16870, 5487, 25, 41146, 796, 18562, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 30782, 12156, 25, 41146, 796, 18562, 11, 7118, 35, 2690, 3976, 25, 493, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4941, 42492, 25, 12178, 796, 657, 11, 7118, 10962, 25, 46545, 796, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 33, 12171, 5841, 23515, 25, 41146, 796, 18562, 11, 11963, 5841, 23515, 30782, 12156, 25, 41146, 796, 18562, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 35, 2690, 3976, 25, 493, 796, 657, 11, 11963, 5841, 23515, 10962, 25, 46545, 796, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 15610, 4355, 25, 41146, 796, 18562, 11, 5339, 6030, 25, 41327, 4160, 3103, 18797, 796, 20634, 40760, 2662, 12576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 30782, 12156, 25, 41146, 796, 18562, 11, 5339, 35, 2690, 3976, 25, 493, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 10962, 25, 46545, 796, 7499, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 8075, 257, 1610, 27112, 34, 615, 414, 21746, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11822, 198, 220, 220, 220, 220, 220, 220, 220, 37404, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 460, 307, 17535, 416, 25, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 9945, 13, 27530, 58, 3672, 4083, 37, 2290, 312, 34, 615, 414, 21746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 10903, 31577, 262, 10375, 3119, 16099, 1994, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41327, 4160, 3103, 18797, 31577, 262, 2099, 286, 11711, 31643, 3119, 284, 307, 5447, 13, 33671, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 367, 35755, 3861, 6239, 2149, 290, 350, 12161, 5883, 1404, 2149, 13, 383, 4277, 1988, 318, 367, 35755, 3861, 6239, 2149, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11711, 35, 6377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 393, 257, 48436, 31577, 262, 4941, 11711, 12109, 13, 770, 4578, 318, 9723, 691, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 11, 290, 318, 2672, 287, 326, 1339, 13, 383, 4277, 1988, 318, 6045, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 18955, 25844, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 393, 257, 48436, 31577, 262, 18955, 3463, 286, 262, 7306, 3623, 4693, 13, 770, 4578, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 290, 318, 2672, 287, 326, 1339, 13, 383, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 1988, 318, 6045, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 16870, 5487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 18411, 7118, 44036, 481, 307, 5447, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 18411, 11711, 7118, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 18411, 11711, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4941, 42492, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 48436, 31577, 262, 4941, 5951, 329, 262, 35381, 286, 18411, 7118, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 11, 618, 1635, 1904, 16870, 5487, 9, 28, 17821, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 618, 2035, 1635, 11201, 5487, 30782, 12156, 9, 28, 17821, 393, 618, 1635, 11201, 5487, 35, 2690, 3976, 9, 318, 3744, 621, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 383, 4277, 1988, 318, 657, 13, 15, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 18411, 7118, 44036, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 1612, 35381, 286, 18411, 7118, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 33, 12171, 5841, 23515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 11711, 11963, 953, 23515, 3815, 481, 307, 5447, 13, 770, 4578, 318, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 11711, 11963, 953, 23515, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 11711, 11963, 953, 23515, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 11711, 11963, 953, 23515, 3815, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 11711, 11963, 953, 23515, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 15610, 4355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 285, 6192, 4894, 5339, 3815, 481, 307, 5447, 13, 770, 4578, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41327, 4160, 3103, 18797, 31577, 262, 2446, 284, 8160, 262, 285, 6192, 4894, 5339, 13, 33671, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 20634, 40760, 2662, 12576, 290, 309, 6242, 37232, 13, 383, 4277, 1988, 318, 20634, 40760, 2662, 12576, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 285, 6192, 4894, 5339, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 285, 6192, 4894, 5339, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 285, 6192, 4894, 5339, 3815, 287, 262, 1296, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 257, 745, 6213, 49070, 5408, 13, 770, 4578, 318, 9723, 691, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 45472, 40760, 2662, 12576, 13, 554, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 1296, 11, 691, 530, 8379, 318, 7368, 290, 326, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 717, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 1218, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 2368, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 5544, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 8150, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25929, 11, 262, 8379, 1366, 743, 11986, 262, 285, 6192, 4894, 5339, 3815, 379, 6937, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3833, 329, 281, 7306, 3623, 4693, 13, 770, 4578, 318, 9723, 691, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 5501, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 285, 6192, 4894, 5339, 379, 6937, 3833, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1610, 27112, 34, 615, 414, 21746, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 900, 40161, 7, 944, 11, 6770, 25, 41327, 4160, 3103, 18797, 796, 367, 35755, 3861, 6239, 2149, 11, 11711, 35, 6377, 25, 12178, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18955, 25844, 25, 12178, 796, 6045, 11, 779, 16870, 5487, 25, 41146, 796, 18562, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 30782, 12156, 25, 41146, 796, 18562, 11, 7118, 35, 2690, 3976, 25, 493, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4941, 42492, 25, 12178, 796, 657, 11, 7118, 10962, 25, 46545, 796, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 33, 12171, 5841, 23515, 25, 41146, 796, 18562, 11, 11963, 5841, 23515, 30782, 12156, 25, 41146, 796, 18562, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 35, 2690, 3976, 25, 493, 796, 657, 11, 11963, 5841, 23515, 10962, 25, 46545, 796, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 15610, 4355, 25, 41146, 796, 18562, 11, 5339, 6030, 25, 41327, 4160, 3103, 18797, 796, 20634, 40760, 2662, 12576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 30782, 12156, 25, 41146, 796, 18562, 11, 5339, 35, 2690, 3976, 25, 493, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 10962, 25, 46545, 796, 7499, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 953, 6945, 262, 1610, 27112, 34, 615, 414, 21746, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41327, 4160, 3103, 18797, 31577, 262, 2099, 286, 11711, 31643, 3119, 284, 307, 5447, 13, 33671, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 367, 35755, 3861, 6239, 2149, 290, 350, 12161, 5883, 1404, 2149, 13, 383, 4277, 1988, 318, 367, 35755, 3861, 6239, 2149, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11711, 35, 6377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 393, 257, 48436, 31577, 262, 4941, 11711, 12109, 13, 770, 4578, 318, 9723, 691, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 11, 290, 318, 2672, 287, 326, 1339, 13, 383, 4277, 1988, 318, 6045, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 18955, 25844, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 393, 257, 48436, 31577, 262, 18955, 3463, 286, 262, 7306, 3623, 4693, 13, 770, 4578, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 290, 318, 2672, 287, 326, 1339, 13, 383, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 1988, 318, 6045, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 16870, 5487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 18411, 7118, 44036, 481, 307, 5447, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 18411, 11711, 7118, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 18411, 11711, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7118, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4941, 42492, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 48436, 31577, 262, 4941, 5951, 329, 262, 35381, 286, 18411, 7118, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 11, 618, 1635, 1904, 16870, 5487, 9, 28, 17821, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 618, 2035, 1635, 11201, 5487, 30782, 12156, 9, 28, 17821, 393, 618, 1635, 11201, 5487, 35, 2690, 3976, 9, 318, 3744, 621, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 383, 4277, 1988, 318, 657, 13, 15, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 18411, 7118, 44036, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 1635, 1904, 16870, 5487, 9, 28, 17821, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 1612, 35381, 286, 18411, 7118, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 33, 12171, 5841, 23515, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 11711, 11963, 953, 23515, 3815, 481, 307, 5447, 13, 770, 4578, 318, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 11711, 11963, 953, 23515, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 11711, 11963, 953, 23515, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11963, 5841, 23515, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 11711, 11963, 953, 23515, 3815, 13, 770, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 39, 35755, 3861, 6239, 2149, 290, 618, 1635, 1904, 33, 12171, 5841, 23515, 9, 28, 17821, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5501, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 11711, 11963, 953, 23515, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 779, 15610, 4355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 285, 6192, 4894, 5339, 3815, 481, 307, 5447, 13, 770, 4578, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41327, 4160, 3103, 18797, 31577, 262, 2446, 284, 8160, 262, 285, 6192, 4894, 5339, 13, 33671, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 20634, 40760, 2662, 12576, 290, 309, 6242, 37232, 13, 383, 4277, 1988, 318, 20634, 40760, 2662, 12576, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 30782, 12156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41146, 31577, 1771, 262, 285, 6192, 4894, 5339, 1366, 481, 423, 5951, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20203, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 383, 4277, 1988, 318, 18562, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 35, 2690, 3976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 2558, 31577, 262, 1271, 286, 2214, 7885, 20086, 287, 262, 285, 6192, 4894, 5339, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 770, 4578, 318, 9723, 691, 618, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 383, 4277, 1988, 318, 657, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5339, 10962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8379, 286, 16311, 286, 29075, 1381, 31577, 262, 285, 6192, 4894, 5339, 3815, 287, 262, 1296, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 257, 745, 6213, 49070, 5408, 13, 770, 4578, 318, 9723, 691, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 45472, 40760, 2662, 12576, 13, 554, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 1296, 11, 691, 530, 8379, 318, 7368, 290, 326, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 717, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 1218, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 2368, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 5544, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 8150, 285, 6192, 4894, 5339, 35381, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25929, 11, 262, 8379, 1366, 743, 11986, 262, 285, 6192, 4894, 5339, 3815, 379, 6937, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3833, 329, 281, 7306, 3623, 4693, 13, 770, 4578, 318, 9723, 691, 618, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 46758, 9, 28, 47, 12161, 5883, 1404, 2149, 11, 618, 1635, 1904, 15610, 4355, 9, 28, 17821, 11, 290, 618, 1635, 42404, 6030, 9, 28, 5603, 33, 37232, 13, 5501, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8379, 4909, 262, 1708, 1366, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 383, 285, 6192, 4894, 5339, 379, 6937, 3833, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 34467, 11, 611, 262, 1366, 4745, 319, 5951, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 717, 2214, 7885, 11, 611, 262, 1366, 4745, 319, 2214, 9633, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 11052, 286, 262, 1218, 2214, 7885, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 17906, 66, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
2.686129
5,515
import re import csv line = [] list2 = [] with open('output2.txt') as f: for i in f: line.append(i) outList = re.findall(r"[-+]?\d*\.\d+|\d+", line[0]) # extracting integers from string list2.append(outList[0]) list2.append(outList[2]) #writing into csv file with open('epoch_loss.csv', 'a') as csvFile: writer = csv.writer(csvFile) writer.writerow(list2) line.clear() list2.clear()
[ 11748, 302, 198, 11748, 269, 21370, 198, 1370, 796, 17635, 198, 4868, 17, 796, 17635, 198, 4480, 1280, 10786, 22915, 17, 13, 14116, 11537, 355, 277, 25, 198, 220, 220, 220, 329, 1312, 287, 277, 25, 198, 220, 220, 220, 220, 197, 1370, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 197, 448, 8053, 796, 302, 13, 19796, 439, 7, 81, 17912, 19529, 60, 30, 59, 67, 9, 17405, 59, 67, 10, 91, 59, 67, 10, 1600, 1627, 58, 15, 12962, 1303, 37895, 37014, 422, 4731, 198, 220, 220, 220, 220, 197, 4868, 17, 13, 33295, 7, 448, 8053, 58, 15, 12962, 198, 220, 220, 220, 220, 197, 4868, 17, 13, 33295, 7, 448, 8053, 58, 17, 12962, 198, 197, 2, 16502, 656, 269, 21370, 2393, 220, 198, 220, 220, 220, 220, 197, 4480, 1280, 10786, 538, 5374, 62, 22462, 13, 40664, 3256, 705, 64, 11537, 355, 269, 21370, 8979, 25, 198, 220, 220, 220, 220, 197, 197, 16002, 796, 269, 21370, 13, 16002, 7, 40664, 8979, 8, 198, 220, 220, 220, 220, 197, 197, 16002, 13, 16002, 322, 7, 4868, 17, 8, 628, 220, 220, 220, 220, 197, 1370, 13, 20063, 3419, 198, 220, 220, 220, 220, 197, 4868, 17, 13, 20063, 3419, 198 ]
2.111111
207
import tornado.web import tornado.gen import json import io import logging import motor from bson.objectid import ObjectId import mickey.userfetcher from mickey.basehandler import BaseHandler
[ 11748, 33718, 13, 12384, 198, 11748, 33718, 13, 5235, 198, 11748, 33918, 198, 11748, 33245, 198, 11748, 18931, 198, 198, 11748, 5584, 198, 198, 6738, 275, 1559, 13, 15252, 312, 1330, 9515, 7390, 198, 11748, 12314, 2539, 13, 7220, 34045, 2044, 198, 6738, 12314, 2539, 13, 8692, 30281, 1330, 7308, 25060, 198 ]
3.730769
52
import os import re # Parses a given input file and returns a list of parameters for all structures.
[ 11748, 28686, 198, 11748, 302, 198, 220, 220, 220, 1303, 23042, 274, 257, 1813, 5128, 2393, 290, 5860, 257, 1351, 286, 10007, 329, 477, 8573, 13, 198 ]
3.888889
27
from eth_account import Account import sha3 import json
[ 6738, 4555, 62, 23317, 1330, 10781, 198, 11748, 427, 64, 18, 198, 11748, 33918, 628, 628, 628, 628, 198 ]
3.368421
19
# This file was automatically generated by SWIG (http://www.swig.org). # Version 2.0.12 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (2,6,0): _rpi_pcm_ws281x = swig_import_helper() del swig_import_helper else: import _rpi_pcm_ws281x del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. try: _object = object _newclass = 1 except AttributeError: _newclass = 0 WS2811_TARGET_FREQ = _rpi_pcm_ws281x.WS2811_TARGET_FREQ WS2811_STRIP_RGB = _rpi_pcm_ws281x.WS2811_STRIP_RGB WS2811_STRIP_RBG = _rpi_pcm_ws281x.WS2811_STRIP_RBG WS2811_STRIP_GRB = _rpi_pcm_ws281x.WS2811_STRIP_GRB WS2811_STRIP_GBR = _rpi_pcm_ws281x.WS2811_STRIP_GBR WS2811_STRIP_BRG = _rpi_pcm_ws281x.WS2811_STRIP_BRG WS2811_STRIP_BGR = _rpi_pcm_ws281x.WS2811_STRIP_BGR ws2811_channel_t_swigregister = _rpi_pcm_ws281x.ws2811_channel_t_swigregister ws2811_channel_t_swigregister(ws2811_channel_t) ws2811_t_swigregister = _rpi_pcm_ws281x.ws2811_t_swigregister ws2811_t_swigregister(ws2811_t) ws2811_init = _rpi_pcm_ws281x.ws2811_init ws2811_fini = _rpi_pcm_ws281x.ws2811_fini ws2811_render = _rpi_pcm_ws281x.ws2811_render ws2811_wait = _rpi_pcm_ws281x.ws2811_wait ws2811_led_get = _rpi_pcm_ws281x.ws2811_led_get ws2811_led_set = _rpi_pcm_ws281x.ws2811_led_set # This file is compatible with both classic and new-style classes.
[ 2, 770, 2393, 373, 6338, 7560, 416, 12672, 3528, 357, 4023, 1378, 2503, 13, 2032, 328, 13, 2398, 737, 198, 2, 10628, 362, 13, 15, 13, 1065, 198, 2, 198, 2, 2141, 407, 787, 2458, 284, 428, 2393, 4556, 345, 760, 644, 345, 389, 1804, 438, 4666, 1958, 198, 2, 262, 12672, 3528, 7071, 2393, 2427, 13, 628, 628, 198, 198, 6738, 25064, 1330, 2196, 62, 10951, 198, 361, 2196, 62, 10951, 18189, 357, 17, 11, 21, 11, 15, 2599, 198, 220, 220, 220, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 796, 1509, 328, 62, 11748, 62, 2978, 525, 3419, 198, 220, 220, 220, 1619, 1509, 328, 62, 11748, 62, 2978, 525, 198, 17772, 25, 198, 220, 220, 220, 1330, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 198, 12381, 2196, 62, 10951, 198, 28311, 25, 198, 220, 220, 220, 4808, 2032, 328, 62, 26745, 796, 3119, 198, 16341, 6530, 12331, 25, 198, 220, 220, 220, 1208, 1303, 11361, 1279, 362, 13, 17, 1595, 470, 423, 705, 26745, 4458, 198, 198, 28311, 25, 198, 220, 220, 220, 4808, 15252, 796, 2134, 198, 220, 220, 220, 4808, 3605, 4871, 796, 352, 198, 16341, 3460, 4163, 12331, 25, 198, 220, 220, 220, 4808, 3605, 4871, 796, 657, 628, 198, 19416, 2078, 1157, 62, 51, 46095, 62, 37, 2200, 48, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 51, 46095, 62, 37, 2200, 48, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 36982, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 36982, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 27912, 38, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 27912, 38, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 10761, 33, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 10761, 33, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 4579, 49, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 4579, 49, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 11473, 38, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 11473, 38, 198, 19416, 2078, 1157, 62, 18601, 4061, 62, 33, 10761, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 19416, 2078, 1157, 62, 18601, 4061, 62, 33, 10761, 198, 18504, 2078, 1157, 62, 17620, 62, 83, 62, 2032, 328, 30238, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 17620, 62, 83, 62, 2032, 328, 30238, 198, 18504, 2078, 1157, 62, 17620, 62, 83, 62, 2032, 328, 30238, 7, 18504, 2078, 1157, 62, 17620, 62, 83, 8, 198, 18504, 2078, 1157, 62, 83, 62, 2032, 328, 30238, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 83, 62, 2032, 328, 30238, 198, 18504, 2078, 1157, 62, 83, 62, 2032, 328, 30238, 7, 18504, 2078, 1157, 62, 83, 8, 198, 198, 18504, 2078, 1157, 62, 15003, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 15003, 198, 18504, 2078, 1157, 62, 69, 5362, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 69, 5362, 198, 18504, 2078, 1157, 62, 13287, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 13287, 198, 18504, 2078, 1157, 62, 17077, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 17077, 198, 18504, 2078, 1157, 62, 992, 62, 1136, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 992, 62, 1136, 198, 18504, 2078, 1157, 62, 992, 62, 2617, 796, 4808, 81, 14415, 62, 79, 11215, 62, 18504, 30368, 87, 13, 18504, 2078, 1157, 62, 992, 62, 2617, 198, 2, 770, 2393, 318, 11670, 351, 1111, 6833, 290, 649, 12, 7635, 6097, 13, 628, 198 ]
2.15043
698
''' Here we consider a controller trained on nearest neighbor for the pendulum environment in OpenAI Gym. The controller is taken from baselines ppo. ''' import gym import numpy as np from gym import spaces from baselines import deepq from baselines.common import set_global_seeds, tf_util as U import gym, logging from baselines import logger import numpy as np import tensorflow as tf from baselines.ppo1 import mlp_policy, pposgd_simple from baselines.ppo1.pposgd_simple import * U.make_session(num_cpu=1).__enter__() env= gym.make('Pendulum-v1') seed = 9699278477418928551 env.seed(seed) num_timesteps=5e6 gym.logger.setLevel(logging.WARN) pi = learn_return(env, policy_fn, max_timesteps=num_timesteps, timesteps_per_batch=2048, clip_param=0.2, entcoeff=0.0, optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=64, gamma=0.99, lam=0.95, ) from scipy.stats import norm # ------------------------------------------------------------------------------ from active_testing import pred_node, max_node, min_node, test_module from active_testing.utils import sample_from rand_nums = [1161003323, 415998644, 4057120664, 1747557171, 2890879164, 2055758971, 2911473105, 618390143, 691777806, 4168149016, 1809706292, 2771371912, 1956477866, 2141514268, 4025209431] # Requirement 1: Find the initial configuration that minimizes the reward # We need only one node for the reward. The reward is a smooth function # given that the closed loop system is deterministic bounds = [(-np.pi, np.pi)] # Bounds on theta bounds.append((-1., 1.)) # Bounds on theta dot bounds.append((7., 9.)) # Bounds on the speed bounds.append((1.5, 2.5)) # Bounds on the torque magnitude smooth_details_r1 = [] random_details_r1 = [] # This set assumes random sampling and checking for r in rand_nums: np.random.seed(r) node0 = pred_node(f=lambda traj: traj[1]['reward']/200 ) TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node0,init_sample = 60, optimize_restarts=5, exp_weight=10, normalizer=True) TM.initialize() TM.run_BO(140) smooth_details_r1.append([np.sum(TM.f_acqu.GP.Y < -5.), np.sum(TM.f_acqu.GP.Y < -7.5), TM.smooth_min_x,TM.smooth_min_val]) # With cost function np.random.seed(r) node0 = pred_node(f=lambda traj: traj[1]['reward']/200) TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node0, with_random = True, init_sample = 60, optimize_restarts=5, exp_weight=10, normalizer=True) TM.initialize() TM.run_BO(30) TM.k = 5 TM.run_BO(40) TM.k = 2 TM.run_BO(70) smooth_details_r1.append([np.sum(TM.f_acqu.GP.Y < -5.), np.sum(TM.f_acqu.GP.Y < -7.5), TM.smooth_min_x, TM.smooth_min_val]) random_details_r1.append([np.sum(np.array(TM.random_Y) < -5.), np.sum(np.array(TM.random_Y) < -7.5), TM.rand_min_x, TM.rand_min_val]) print(r, smooth_details_r1[-2], smooth_details_r1[-1], random_details_r1[-1]) rand_nums.append(r) # Requirement 2: Find the initial condition such that the pendulum stabilizes to 0 smooth_details_r2 = [] random_details_r2 = [] # This set assumes random sampling and checking for r in rand_nums: np.random.seed(r) node0 = pred_node(f=lambda traj: pred1(traj)) TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node0,init_sample = 60, optimize_restarts=5, exp_weight=2, normalizer=True) TM.initialize() TM.run_BO(140) smooth_vals = np.array(TM.f_acqu.find_GP_func()) smooth_details_r2.append([np.sum(smooth_vals < -1.00), np.sum(smooth_vals < -10.0), TM.smooth_min_x,TM.smooth_min_val, TM.smooth_min_loc]) np.random.seed(r) node0_ns = pred_node(f=lambda traj: pred1(traj)) TM_ns = test_module(bounds=bounds, sut=lambda x0: sut(500, x0, ead=True), f_tree=node0_ns, init_sample=60, with_smooth=False, with_ns=True, optimize_restarts=5, exp_weight=10, normalizer=True) TM_ns.initialize() TM_ns.run_BO(30) TM_ns.k = 5 TM_ns.run_BO(40) TM_ns.k = 2 TM_ns.run_BO(70) smooth_details_r2.append([np.sum(TM_ns.ns_GP.Y < -1.00), np.sum(TM_ns.ns_GP.Y < -10.0), TM_ns.ns_min_x, TM_ns.ns_min_val, TM_ns.ns_min_loc]) # With cost function np.random.seed(r) node0_rand = pred_node(f=lambda traj: pred1(traj)) TM_rand = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node0_rand, with_random = True, with_smooth=False, init_sample = 60, optimize_restarts=5, exp_weight=10, cost_model = cost_func, normalizer=True) TM_rand.initialize() TM_rand.run_BO(140) random_details_r2.append([np.sum(np.array(TM_rand.random_Y) < -1.0), np.sum(np.array(TM_rand.random_Y) < -10.0), TM_rand.rand_min_x, TM_rand.rand_min_val, TM_rand.rand_min_loc]) print(r, smooth_details_r2[-2], smooth_details_r2[-1],random_details_r2[-1]) # Requirement 3: Find the initial configuration such that it stabilizies to either # 0 or to np.pi smooth_details_r3 = [] ns_details_r3 = [] random_details_r3 = [] # This set assumes random sampling and checking for r in rand_nums: np.random.seed(r) node0 = pred_node(f = lambda traj:pred1(traj)) node1 = pred_node(f = lambda traj:pred2(traj)) node2 = max_node(children=[node0, node1]) TM = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node2,init_sample = 60, optimize_restarts=5, exp_weight=2, normalizer=True) TM.initialize() TM.run_BO(140) smooth_vals = np.array(TM.f_acqu.find_GP_func()) smooth_details_r3.append([np.sum(smooth_vals < -1.00), np.sum(smooth_vals < -10.0), TM.smooth_min_x,TM.smooth_min_val, TM.smooth_min_loc]) np.random.seed(r) node0_ns = pred_node(f=lambda traj: pred1(traj)) node1_ns = pred_node(f=lambda traj: pred2(traj)) node2_ns = max_node(children=[node0_ns, node1_ns]) TM_ns = test_module(bounds=bounds, sut=lambda x0: sut(500, x0, ead=True), f_tree=node2_ns, init_sample=60, with_smooth=False, with_ns=True, optimize_restarts=5, exp_weight=2, normalizer=True) TM_ns.initialize() TM_ns.run_BO(140) ns_details_r3.append([np.sum(TM_ns.ns_GP.Y < -1.00), np.sum(TM_ns.ns_GP.Y < -10.0), TM_ns.ns_min_x, TM_ns.ns_min_val, TM_ns.ns_min_loc]) # With cost function np.random.seed(r) node0_rand = pred_node(f=lambda traj: pred1(traj)) node1_rand = pred_node(f=lambda traj: pred2(traj)) node2_rand = max_node(children=[node0_rand, node1_rand]) TM_rand = test_module(bounds=bounds, sut=lambda x0: sut(500,x0, ead=True), f_tree = node2_rand, with_random = True, with_smooth=False, init_sample = 60, optimize_restarts=5, exp_weight=10, cost_model = cost_func, normalizer=True) TM_rand.initialize() TM_rand.run_BO(140) random_details_r3.append([np.sum(np.array(TM_rand.random_Y) < -1.0), np.sum(np.array(TM_rand.random_Y) < -10.0), TM_rand.rand_min_x, TM_rand.rand_min_val, TM_rand.rand_min_loc]) print(r, smooth_details_r3[-1], ns_details_r3[-1],random_details_r3[-1])
[ 7061, 6, 198, 4342, 356, 2074, 257, 10444, 8776, 319, 16936, 4780, 329, 262, 44017, 14452, 198, 38986, 287, 4946, 20185, 31187, 13, 383, 10444, 318, 2077, 422, 1615, 20655, 279, 7501, 13, 198, 7061, 6, 198, 198, 11748, 11550, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11550, 1330, 9029, 198, 6738, 1615, 20655, 1330, 2769, 80, 198, 6738, 1615, 20655, 13, 11321, 1330, 900, 62, 20541, 62, 325, 5379, 11, 48700, 62, 22602, 355, 471, 198, 11748, 11550, 11, 18931, 198, 6738, 1615, 20655, 1330, 49706, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 1615, 20655, 13, 16634, 16, 1330, 25962, 79, 62, 30586, 11, 279, 1930, 21287, 62, 36439, 198, 6738, 1615, 20655, 13, 16634, 16, 13, 381, 418, 21287, 62, 36439, 1330, 1635, 198, 198, 52, 13, 15883, 62, 29891, 7, 22510, 62, 36166, 28, 16, 737, 834, 9255, 834, 3419, 198, 24330, 28, 11550, 13, 15883, 10786, 47, 437, 14452, 12, 85, 16, 11537, 198, 28826, 796, 9907, 2079, 25870, 2857, 4524, 23362, 2078, 43697, 198, 24330, 13, 28826, 7, 28826, 8, 198, 22510, 62, 16514, 395, 25386, 28, 20, 68, 21, 198, 198, 1360, 76, 13, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 37771, 8, 198, 14415, 796, 2193, 62, 7783, 7, 24330, 11, 2450, 62, 22184, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 16514, 395, 25386, 28, 22510, 62, 16514, 395, 25386, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4628, 395, 25386, 62, 525, 62, 43501, 28, 1238, 2780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10651, 62, 17143, 28, 15, 13, 17, 11, 920, 1073, 14822, 28, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 62, 538, 5374, 82, 28, 940, 11, 6436, 62, 9662, 7857, 28, 18, 68, 12, 19, 11, 6436, 62, 43501, 7857, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 28, 15, 13, 2079, 11, 30592, 28, 15, 13, 3865, 11, 198, 220, 220, 220, 1267, 628, 198, 6738, 629, 541, 88, 13, 34242, 1330, 2593, 198, 198, 2, 16529, 26171, 198, 6738, 4075, 62, 33407, 1330, 2747, 62, 17440, 11, 3509, 62, 17440, 11, 949, 62, 17440, 11, 1332, 62, 21412, 198, 6738, 4075, 62, 33407, 13, 26791, 1330, 6291, 62, 6738, 198, 25192, 62, 77, 5700, 796, 685, 18298, 3064, 2091, 1954, 11, 198, 40643, 34808, 29173, 11, 198, 2319, 3553, 1065, 3312, 2414, 11, 198, 27621, 2425, 3553, 27192, 11, 198, 38902, 2919, 3720, 23237, 11, 198, 1160, 2816, 2425, 4531, 4869, 11, 198, 2808, 1157, 37804, 13348, 11, 198, 718, 1507, 2670, 486, 3559, 11, 198, 8644, 1558, 3324, 37988, 11, 198, 604, 14656, 19442, 27037, 11, 198, 1248, 2931, 35402, 32759, 11, 198, 38703, 19708, 1129, 1065, 11, 198, 24793, 2414, 39761, 2791, 11, 198, 28277, 1314, 1415, 25022, 11, 198, 2319, 1495, 1238, 5824, 3132, 60, 198, 198, 2, 9394, 24615, 352, 25, 9938, 262, 4238, 8398, 326, 10356, 4340, 262, 6721, 198, 2, 775, 761, 691, 530, 10139, 329, 262, 6721, 13, 383, 6721, 318, 257, 7209, 2163, 198, 2, 1813, 326, 262, 4838, 9052, 1080, 318, 2206, 49228, 198, 65, 3733, 796, 685, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 15437, 1303, 347, 3733, 319, 262, 8326, 198, 65, 3733, 13, 33295, 19510, 12, 16, 1539, 352, 2014, 8, 1303, 347, 3733, 319, 262, 8326, 16605, 198, 65, 3733, 13, 33295, 19510, 22, 1539, 860, 2014, 8, 1303, 347, 3733, 319, 262, 2866, 198, 65, 3733, 13, 33295, 19510, 16, 13, 20, 11, 362, 13, 20, 4008, 1303, 347, 3733, 319, 262, 26415, 14735, 198, 198, 5796, 5226, 62, 36604, 62, 81, 16, 796, 17635, 198, 25120, 62, 36604, 62, 81, 16, 796, 17635, 198, 198, 2, 770, 900, 18533, 4738, 19232, 290, 10627, 198, 1640, 374, 287, 43720, 62, 77, 5700, 25, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 1291, 73, 58, 16, 7131, 6, 260, 904, 20520, 14, 2167, 1267, 198, 220, 220, 220, 21232, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 15, 11, 15003, 62, 39873, 796, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 16, 13, 33295, 26933, 37659, 13, 16345, 7, 15972, 13, 69, 62, 43561, 13, 16960, 13, 56, 1279, 532, 20, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 15972, 13, 69, 62, 43561, 13, 16960, 13, 56, 1279, 532, 22, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 87, 11, 15972, 13, 5796, 5226, 62, 1084, 62, 2100, 12962, 628, 198, 220, 220, 220, 1303, 2080, 1575, 2163, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 1291, 73, 58, 16, 7131, 6, 260, 904, 20520, 14, 2167, 8, 198, 220, 220, 220, 21232, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 15, 11, 351, 62, 25120, 796, 6407, 11, 2315, 62, 39873, 796, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 1270, 8, 198, 220, 220, 220, 21232, 13, 74, 796, 642, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 1821, 8, 198, 220, 220, 220, 21232, 13, 74, 796, 362, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 2154, 8, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 16, 13, 33295, 26933, 37659, 13, 16345, 7, 15972, 13, 69, 62, 43561, 13, 16960, 13, 56, 1279, 532, 20, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 15972, 13, 69, 62, 43561, 13, 16960, 13, 56, 1279, 532, 22, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 87, 11, 21232, 13, 5796, 5226, 62, 1084, 62, 2100, 12962, 198, 220, 220, 220, 4738, 62, 36604, 62, 81, 16, 13, 33295, 26933, 37659, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 13, 25120, 62, 56, 8, 1279, 532, 20, 12179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 13, 25120, 62, 56, 8, 1279, 532, 22, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 25192, 62, 1084, 62, 87, 11, 21232, 13, 25192, 62, 1084, 62, 2100, 12962, 198, 220, 220, 220, 3601, 7, 81, 11, 7209, 62, 36604, 62, 81, 16, 58, 12, 17, 4357, 7209, 62, 36604, 62, 81, 16, 58, 12, 16, 4357, 4738, 62, 36604, 62, 81, 16, 58, 12, 16, 12962, 198, 220, 220, 220, 43720, 62, 77, 5700, 13, 33295, 7, 81, 8, 198, 198, 2, 9394, 24615, 362, 25, 9938, 262, 4238, 4006, 884, 326, 262, 44017, 14452, 14349, 4340, 284, 657, 198, 198, 5796, 5226, 62, 36604, 62, 81, 17, 796, 17635, 198, 25120, 62, 36604, 62, 81, 17, 796, 17635, 628, 198, 2, 770, 900, 18533, 4738, 19232, 290, 10627, 198, 1640, 374, 287, 43720, 62, 77, 5700, 25, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 21232, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 15, 11, 15003, 62, 39873, 796, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 17, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 7209, 62, 12786, 796, 45941, 13, 18747, 7, 15972, 13, 69, 62, 43561, 13, 19796, 62, 16960, 62, 20786, 28955, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 17, 13, 33295, 26933, 37659, 13, 16345, 7, 5796, 5226, 62, 12786, 1279, 532, 16, 13, 405, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 5796, 5226, 62, 12786, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 87, 11, 15972, 13, 5796, 5226, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 17946, 12962, 628, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 62, 5907, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 21232, 62, 5907, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 2124, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 28, 17440, 15, 62, 5907, 11, 2315, 62, 39873, 28, 1899, 11, 351, 62, 5796, 5226, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 5907, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 62, 5907, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 62, 5907, 13, 5143, 62, 8202, 7, 1270, 8, 198, 220, 220, 220, 21232, 62, 5907, 13, 74, 796, 642, 198, 220, 220, 220, 21232, 62, 5907, 13, 5143, 62, 8202, 7, 1821, 8, 198, 220, 220, 220, 21232, 62, 5907, 13, 74, 796, 362, 198, 220, 220, 220, 21232, 62, 5907, 13, 5143, 62, 8202, 7, 2154, 8, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 17, 13, 33295, 26933, 37659, 13, 16345, 7, 15972, 62, 5907, 13, 5907, 62, 16960, 13, 56, 1279, 532, 16, 13, 405, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 15972, 62, 5907, 13, 5907, 62, 16960, 13, 56, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 87, 11, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 17946, 12962, 628, 198, 220, 220, 220, 1303, 2080, 1575, 2163, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 628, 220, 220, 220, 10139, 15, 62, 25192, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 21232, 62, 25192, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 15, 62, 25192, 11, 351, 62, 25120, 796, 6407, 11, 351, 62, 5796, 5226, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 39873, 796, 3126, 11, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 19849, 796, 1575, 62, 20786, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 62, 25192, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 62, 25192, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 4738, 62, 36604, 62, 81, 17, 13, 33295, 26933, 37659, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 62, 25192, 13, 25120, 62, 56, 8, 1279, 532, 16, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 62, 25192, 13, 25120, 62, 56, 8, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 87, 11, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 17946, 12962, 198, 220, 220, 220, 3601, 7, 81, 11, 7209, 62, 36604, 62, 81, 17, 58, 12, 17, 4357, 7209, 62, 36604, 62, 81, 17, 58, 12, 16, 4357, 25120, 62, 36604, 62, 81, 17, 58, 12, 16, 12962, 628, 198, 2, 9394, 24615, 513, 25, 9938, 262, 4238, 8398, 884, 326, 340, 14349, 528, 444, 284, 2035, 198, 2, 657, 393, 284, 45941, 13, 14415, 198, 198, 5796, 5226, 62, 36604, 62, 81, 18, 796, 17635, 198, 5907, 62, 36604, 62, 81, 18, 796, 17635, 198, 25120, 62, 36604, 62, 81, 18, 796, 17635, 198, 198, 2, 770, 900, 18533, 4738, 19232, 290, 10627, 198, 1640, 374, 287, 43720, 62, 77, 5700, 25, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 796, 2747, 62, 17440, 7, 69, 796, 37456, 1291, 73, 25, 28764, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 16, 796, 2747, 62, 17440, 7, 69, 796, 37456, 1291, 73, 25, 28764, 17, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 17, 796, 3509, 62, 17440, 7, 17197, 41888, 17440, 15, 11, 10139, 16, 12962, 198, 220, 220, 220, 21232, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 17, 11, 15003, 62, 39873, 796, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 17, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 7209, 62, 12786, 796, 45941, 13, 18747, 7, 15972, 13, 69, 62, 43561, 13, 19796, 62, 16960, 62, 20786, 28955, 198, 220, 220, 220, 7209, 62, 36604, 62, 81, 18, 13, 33295, 26933, 37659, 13, 16345, 7, 5796, 5226, 62, 12786, 1279, 532, 16, 13, 405, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 5796, 5226, 62, 12786, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 87, 11, 15972, 13, 5796, 5226, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 13, 5796, 5226, 62, 1084, 62, 17946, 12962, 628, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 198, 220, 220, 220, 10139, 15, 62, 5907, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 16, 62, 5907, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 17, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 17, 62, 5907, 796, 3509, 62, 17440, 7, 17197, 41888, 17440, 15, 62, 5907, 11, 10139, 16, 62, 5907, 12962, 198, 220, 220, 220, 21232, 62, 5907, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 2124, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 28, 17440, 17, 62, 5907, 11, 2315, 62, 39873, 28, 1899, 11, 351, 62, 5796, 5226, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 5907, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 17, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 62, 5907, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 62, 5907, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 36545, 62, 36604, 62, 81, 18, 13, 33295, 26933, 37659, 13, 16345, 7, 15972, 62, 5907, 13, 5907, 62, 16960, 13, 56, 1279, 532, 16, 13, 405, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 15972, 62, 5907, 13, 5907, 62, 16960, 13, 56, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 87, 11, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 5907, 13, 5907, 62, 1084, 62, 17946, 12962, 628, 198, 220, 220, 220, 1303, 2080, 1575, 2163, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 81, 8, 628, 220, 220, 220, 10139, 15, 62, 25192, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 16, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 16, 62, 25192, 796, 2747, 62, 17440, 7, 69, 28, 50033, 1291, 73, 25, 2747, 17, 7, 9535, 73, 4008, 198, 220, 220, 220, 10139, 17, 62, 25192, 796, 3509, 62, 17440, 7, 17197, 41888, 17440, 15, 62, 25192, 11, 10139, 16, 62, 25192, 12962, 198, 220, 220, 220, 21232, 62, 25192, 796, 1332, 62, 21412, 7, 65, 3733, 28, 65, 3733, 11, 264, 315, 28, 50033, 2124, 15, 25, 264, 315, 7, 4059, 11, 87, 15, 11, 304, 324, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 21048, 796, 10139, 17, 62, 25192, 11, 351, 62, 25120, 796, 6407, 11, 351, 62, 5796, 5226, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 39873, 796, 3126, 11, 27183, 62, 2118, 5889, 28, 20, 11, 1033, 62, 6551, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 19849, 796, 1575, 62, 20786, 11, 3487, 7509, 28, 17821, 8, 198, 220, 220, 220, 21232, 62, 25192, 13, 36733, 1096, 3419, 198, 220, 220, 220, 21232, 62, 25192, 13, 5143, 62, 8202, 7, 15187, 8, 198, 220, 220, 220, 4738, 62, 36604, 62, 81, 18, 13, 33295, 26933, 37659, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 62, 25192, 13, 25120, 62, 56, 8, 1279, 532, 16, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 16345, 7, 37659, 13, 18747, 7, 15972, 62, 25192, 13, 25120, 62, 56, 8, 1279, 532, 940, 13, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 87, 11, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21232, 62, 25192, 13, 25192, 62, 1084, 62, 17946, 12962, 198, 220, 220, 220, 3601, 7, 81, 11, 7209, 62, 36604, 62, 81, 18, 58, 12, 16, 4357, 36545, 62, 36604, 62, 81, 18, 58, 12, 16, 4357, 25120, 62, 36604, 62, 81, 18, 58, 12, 16, 12962, 628, 198 ]
1.959115
4,158
import re from setuptools import setup, find_packages with open('README.md', 'r', encoding='utf-8') as f: readme = f.read() with open('gforms/__init__.py', encoding='utf-8') as f: version = re.search(r"__version__ = '(.+)'", f.read()).group(1) setup( name='gforms', description='Google Forms wrapper for Python', long_description=readme, long_description_content_type='text/markdown', author='vvd170501', url='https://github.com/vvd170501/python-gforms', classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], packages=['gforms'], version=version, license_files=('LICENSE',), python_requires='>=3.6', install_requires=[ 'beautifulsoup4', 'requests', "typing-extensions;python_version<'3.8'", ], extras_require={ 'dev': [ 'pytest', ] }, )
[ 11748, 302, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 628, 198, 4480, 1280, 10786, 15675, 11682, 13, 9132, 3256, 705, 81, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 1100, 1326, 796, 277, 13, 961, 3419, 628, 198, 4480, 1280, 10786, 70, 23914, 14, 834, 15003, 834, 13, 9078, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 2196, 796, 302, 13, 12947, 7, 81, 1, 834, 9641, 834, 796, 29513, 13, 28988, 6, 1600, 277, 13, 961, 3419, 737, 8094, 7, 16, 8, 628, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 70, 23914, 3256, 198, 220, 220, 220, 6764, 11639, 11708, 39196, 29908, 329, 11361, 3256, 198, 220, 220, 220, 890, 62, 11213, 28, 961, 1326, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 11639, 5239, 14, 4102, 2902, 3256, 198, 220, 220, 220, 1772, 11639, 85, 20306, 1558, 2713, 486, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 85, 20306, 1558, 2713, 486, 14, 29412, 12, 70, 23914, 3256, 628, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 642, 532, 19174, 14, 1273, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 7904, 5514, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 24, 3256, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 10392, 28, 17816, 70, 23914, 6, 4357, 198, 220, 220, 220, 2196, 28, 9641, 11, 198, 220, 220, 220, 5964, 62, 16624, 28, 10786, 43, 2149, 24290, 3256, 828, 628, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 21, 3256, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40544, 4135, 82, 10486, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8897, 3558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 366, 774, 13886, 12, 2302, 5736, 26, 29412, 62, 9641, 27, 6, 18, 13, 23, 6, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 33849, 62, 46115, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7959, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 8, 198 ]
2.392354
497
import seqcluster.libs.logger as mylog import os from seqcluster.libs.classes import annotation, dbannotation logger = mylog.getLogger("run") def read_gtf_line(cols, field="name"): """parse gtf line to get class/name information""" field = field.lower() try: group = cols[2] attrs = cols[8].split(";") name = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith(field)] if not name: name = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith("gene_id")] if not name: name = ["None"] biotype = [attr.strip().split(" ")[1] for attr in attrs if attr.strip().split(" ")[0].lower().endswith("biotype")] if biotype: group = biotype[0] c = cols[0] s = int(cols[3]) e = int(cols[4]) st = cols[6] return [c, s, e, st, group, name[0]] except(Exception, e): logger.error(cols) logger.error("File is not in correct format") logger.error("Expect chr source feature start end . strand attributes") logger.error("Attributes are 'gene_name SNCA; gene_id ENSG; '") logger.error("The 3rd column is used as type of small RNA (like miRNA)") logger.error("at least should contains '; *name NAME; '") logger.error(e) raise def _position_in_feature(pos_a, pos_b): """return distance to 3' and 5' end of the feature""" strd = "-" if pos_a[2] in pos_b[2]: strd = "+" if pos_a[2] in "+" and pos_b[2] in "+": lento5 = pos_a[0] - pos_b[1] + 1 lento3 = pos_a[1] - pos_b[1] + 1 if pos_a[2] in "+" and pos_b[2] in "-": lento5 = pos_a[1] - pos_b[0] + 1 lento3 = pos_a[0] - pos_b[1] + 1 if pos_a[2] in "-" and pos_b[2] in "+": lento5 = pos_a[0] - pos_b[1] + 1 lento3 = pos_a[1] - pos_b[0] + 1 if pos_a[2] in "-" and pos_b[2] in "-": lento3 = pos_a[0] - pos_b[0] + 1 lento5 = pos_a[1] - pos_b[1] + 1 else: lento5 = pos_a[0] - pos_b[0] + 1 lento3 = pos_a[1] - pos_b[1] + 1 return lento5, lento3, strd def anncluster(c, clus_obj, db, type_ann, feature_id="name"): """intersect transcription position with annotation files""" id_sa, id_ea, id_id, id_idl, id_sta = 1, 2, 3, 4, 5 if type_ann == "bed": id_sb = 7 id_eb = 8 id_stb = 11 id_tag = 9 ida = 0 clus_id = clus_obj.clus loci_id = clus_obj.loci db = os.path.splitext(db)[0] logger.debug("Type:%s\n" % type_ann) for cols in c.features(): if type_ann == "gtf": cb, sb, eb, stb, db, tag = read_gtf_line(cols[6:], feature_id) else: sb = int(cols[id_sb]) eb = int(cols[id_eb]) stb = cols[id_stb] tag = cols[id_tag] id = int(cols[id_id]) idl = int(cols[id_idl]) if (id in clus_id): clus = clus_id[id] sa = int(cols[id_sa]) ea = int(cols[id_ea]) ida += 1 lento5, lento3, strd = _position_in_feature([sa, ea, cols[id_sta]], [sb, eb, stb]) if db in loci_id[idl].db_ann: ann = annotation(db, tag, strd, lento5, lento3) tdb = loci_id[idl].db_ann[db] tdb.add_db_ann(ida, ann) loci_id[idl].add_db(db, tdb) else: ann = annotation(db, tag, strd, lento5, lento3) tdb = dbannotation(1) tdb.add_db_ann(ida, ann) loci_id[idl].add_db(db, tdb) clus_id[id] = clus clus_obj.clus = clus_id clus_obj.loci = loci_id return clus_obj
[ 11748, 33756, 565, 5819, 13, 8019, 82, 13, 6404, 1362, 355, 616, 6404, 198, 11748, 28686, 198, 198, 6738, 33756, 565, 5819, 13, 8019, 82, 13, 37724, 1330, 23025, 11, 20613, 1236, 14221, 198, 198, 6404, 1362, 796, 616, 6404, 13, 1136, 11187, 1362, 7203, 5143, 4943, 628, 198, 4299, 1100, 62, 13655, 69, 62, 1370, 7, 4033, 82, 11, 2214, 2625, 3672, 1, 2599, 198, 220, 220, 220, 37227, 29572, 308, 27110, 1627, 284, 651, 1398, 14, 3672, 1321, 37811, 198, 220, 220, 220, 2214, 796, 2214, 13, 21037, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 951, 82, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 708, 3808, 796, 951, 82, 58, 23, 4083, 35312, 7203, 26, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 685, 35226, 13, 36311, 22446, 35312, 7203, 366, 38381, 16, 60, 329, 708, 81, 287, 708, 3808, 611, 708, 81, 13, 36311, 22446, 35312, 7203, 366, 38381, 15, 4083, 21037, 22446, 437, 2032, 342, 7, 3245, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 685, 35226, 13, 36311, 22446, 35312, 7203, 366, 38381, 16, 60, 329, 708, 81, 287, 708, 3808, 611, 708, 81, 13, 36311, 22446, 35312, 7203, 366, 38381, 15, 4083, 21037, 22446, 437, 2032, 342, 7203, 70, 1734, 62, 312, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 14631, 14202, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 3182, 8690, 796, 685, 35226, 13, 36311, 22446, 35312, 7203, 366, 38381, 16, 60, 329, 708, 81, 287, 708, 3808, 611, 708, 81, 13, 36311, 22446, 35312, 7203, 366, 38381, 15, 4083, 21037, 22446, 437, 2032, 342, 7203, 65, 5151, 2981, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3182, 8690, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 3182, 8690, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 951, 82, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 493, 7, 4033, 82, 58, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 304, 796, 493, 7, 4033, 82, 58, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 336, 796, 951, 82, 58, 21, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 66, 11, 264, 11, 304, 11, 336, 11, 1448, 11, 1438, 58, 15, 11907, 198, 220, 220, 220, 2845, 7, 16922, 11, 304, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 4033, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 8979, 318, 407, 287, 3376, 5794, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 3109, 806, 442, 81, 2723, 3895, 923, 886, 764, 37923, 12608, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 29021, 389, 705, 70, 1734, 62, 3672, 311, 7792, 32, 26, 9779, 62, 312, 412, 8035, 38, 26, 705, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 464, 513, 4372, 5721, 318, 973, 355, 2099, 286, 1402, 25897, 357, 2339, 21504, 27204, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 265, 1551, 815, 4909, 705, 26, 1635, 3672, 36751, 26, 705, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 198, 4299, 4808, 9150, 62, 259, 62, 30053, 7, 1930, 62, 64, 11, 1426, 62, 65, 2599, 198, 220, 220, 220, 37227, 7783, 5253, 284, 513, 6, 290, 642, 6, 886, 286, 262, 3895, 37811, 198, 220, 220, 220, 965, 67, 796, 366, 21215, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 1426, 62, 65, 58, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 965, 67, 796, 43825, 1, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 43825, 1, 290, 1426, 62, 65, 58, 17, 60, 287, 43825, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 43825, 1, 290, 1426, 62, 65, 58, 17, 60, 287, 27444, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 366, 21215, 290, 1426, 62, 65, 58, 17, 60, 287, 43825, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 611, 1426, 62, 64, 58, 17, 60, 287, 366, 21215, 290, 1426, 62, 65, 58, 17, 60, 287, 27444, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 796, 1426, 62, 64, 58, 15, 60, 532, 1426, 62, 65, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 18, 796, 1426, 62, 64, 58, 16, 60, 532, 1426, 62, 65, 58, 16, 60, 1343, 352, 198, 220, 220, 220, 1441, 26269, 78, 20, 11, 26269, 78, 18, 11, 965, 67, 628, 198, 4299, 1529, 565, 5819, 7, 66, 11, 537, 385, 62, 26801, 11, 20613, 11, 2099, 62, 1236, 11, 3895, 62, 312, 2625, 3672, 1, 2599, 198, 220, 220, 220, 37227, 3849, 8831, 26955, 2292, 351, 23025, 3696, 37811, 198, 220, 220, 220, 4686, 62, 11400, 11, 4686, 62, 18213, 11, 4686, 62, 312, 11, 4686, 62, 312, 75, 11, 4686, 62, 38031, 796, 352, 11, 362, 11, 513, 11, 604, 11, 642, 198, 220, 220, 220, 611, 2099, 62, 1236, 6624, 366, 3077, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 36299, 796, 767, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 1765, 796, 807, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 301, 65, 796, 1367, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 12985, 796, 860, 198, 220, 220, 220, 220, 3755, 796, 657, 198, 220, 220, 220, 537, 385, 62, 312, 796, 537, 385, 62, 26801, 13, 2527, 198, 220, 220, 220, 1179, 72, 62, 312, 796, 537, 385, 62, 26801, 13, 75, 1733, 198, 220, 220, 220, 20613, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 9945, 38381, 15, 60, 198, 220, 220, 220, 49706, 13, 24442, 7203, 6030, 25, 4, 82, 59, 77, 1, 4064, 2099, 62, 1236, 8, 198, 220, 220, 220, 329, 951, 82, 287, 269, 13, 40890, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 1236, 6624, 366, 13655, 69, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 11, 264, 65, 11, 36649, 11, 336, 65, 11, 20613, 11, 7621, 796, 1100, 62, 13655, 69, 62, 1370, 7, 4033, 82, 58, 21, 25, 4357, 3895, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 65, 796, 493, 7, 4033, 82, 58, 312, 62, 36299, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36649, 796, 493, 7, 4033, 82, 58, 312, 62, 1765, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 65, 796, 951, 82, 58, 312, 62, 301, 65, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 951, 82, 58, 312, 62, 12985, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 493, 7, 4033, 82, 58, 312, 62, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 75, 796, 493, 7, 4033, 82, 58, 312, 62, 312, 75, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 312, 287, 537, 385, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 385, 796, 537, 385, 62, 312, 58, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 796, 493, 7, 4033, 82, 58, 312, 62, 11400, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 64, 796, 493, 7, 4033, 82, 58, 312, 62, 18213, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3755, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26269, 78, 20, 11, 26269, 78, 18, 11, 965, 67, 796, 4808, 9150, 62, 259, 62, 30053, 26933, 11400, 11, 304, 64, 11, 951, 82, 58, 312, 62, 38031, 60, 4357, 685, 36299, 11, 36649, 11, 336, 65, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20613, 287, 1179, 72, 62, 312, 58, 312, 75, 4083, 9945, 62, 1236, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1529, 796, 23025, 7, 9945, 11, 7621, 11, 965, 67, 11, 26269, 78, 20, 11, 26269, 78, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9945, 796, 1179, 72, 62, 312, 58, 312, 75, 4083, 9945, 62, 1236, 58, 9945, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9945, 13, 2860, 62, 9945, 62, 1236, 7, 3755, 11, 1529, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1179, 72, 62, 312, 58, 312, 75, 4083, 2860, 62, 9945, 7, 9945, 11, 256, 9945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1529, 796, 23025, 7, 9945, 11, 7621, 11, 965, 67, 11, 26269, 78, 20, 11, 26269, 78, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9945, 796, 20613, 1236, 14221, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9945, 13, 2860, 62, 9945, 62, 1236, 7, 3755, 11, 1529, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1179, 72, 62, 312, 58, 312, 75, 4083, 2860, 62, 9945, 7, 9945, 11, 256, 9945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 385, 62, 312, 58, 312, 60, 796, 537, 385, 198, 220, 220, 220, 537, 385, 62, 26801, 13, 2527, 796, 537, 385, 62, 312, 198, 220, 220, 220, 537, 385, 62, 26801, 13, 75, 1733, 796, 1179, 72, 62, 312, 198, 220, 220, 220, 1441, 537, 385, 62, 26801, 628, 198 ]
1.854743
2,024
pattern()
[ 33279, 3419, 198 ]
3.333333
3
from __future__ import absolute_import from __future__ import unicode_literals import collections import inspect import json import os import re from functools import partial import compose
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 17268, 198, 11748, 10104, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 302, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 11748, 36664, 628, 628, 628, 628, 198 ]
3.921569
51
import numpy as np from ase.calculators.lj import LennardJones from ase.units import Bohr, Ha from pytest import approx, raises from pygsm.level_of_theories.ase import ASELoT, geom_to_ase, xyz_to_ase from pygsm.level_of_theories.base_lot import LoTError xyz_4x4 = [ ["H", 1.0, 2.0, 3.0], ["He", 4.0, 5.0, 6.0], ["Li", 7.0, 8.0, 9.0], ["Be", 10.0, 11.0, 12.0], ]
[ 11748, 299, 32152, 355, 45941, 198, 6738, 257, 325, 13, 9948, 3129, 2024, 13, 75, 73, 1330, 28423, 446, 25784, 198, 6738, 257, 325, 13, 41667, 1330, 44366, 81, 11, 9398, 198, 6738, 12972, 9288, 1330, 5561, 11, 12073, 198, 198, 6738, 12972, 70, 5796, 13, 5715, 62, 1659, 62, 1169, 1749, 13, 589, 1330, 7054, 3698, 78, 51, 11, 4903, 296, 62, 1462, 62, 589, 11, 2124, 45579, 62, 1462, 62, 589, 198, 6738, 12972, 70, 5796, 13, 5715, 62, 1659, 62, 1169, 1749, 13, 8692, 62, 26487, 1330, 6706, 51, 12331, 198, 198, 5431, 89, 62, 19, 87, 19, 796, 685, 198, 220, 220, 220, 14631, 39, 1600, 352, 13, 15, 11, 362, 13, 15, 11, 513, 13, 15, 4357, 198, 220, 220, 220, 14631, 1544, 1600, 604, 13, 15, 11, 642, 13, 15, 11, 718, 13, 15, 4357, 198, 220, 220, 220, 14631, 32304, 1600, 767, 13, 15, 11, 807, 13, 15, 11, 860, 13, 15, 4357, 198, 220, 220, 220, 14631, 3856, 1600, 838, 13, 15, 11, 1367, 13, 15, 11, 1105, 13, 15, 4357, 198, 60, 628, 628, 628, 628, 198 ]
2.086022
186
from survey.features.page_objects.base import PageObject __author__ = 'mnandri'
[ 6738, 5526, 13, 40890, 13, 7700, 62, 48205, 13, 8692, 1330, 7873, 10267, 198, 198, 834, 9800, 834, 796, 705, 10295, 392, 380, 6, 628, 198 ]
3.192308
26
"""Debug Toolbar Plugin.""" import asyncio import importlib import ipaddress as ip import os.path as op import re import sys import uuid from muffin import ( Response, StaticRoute, HTTPException, HTTPBadRequest, to_coroutine, HTTPForbidden) from muffin.plugins import BasePlugin, PluginException from muffin.utils import json from . import panels, utils from .tbtools.tbtools import get_traceback RE_BODY = re.compile(b'<\/body>', re.I) U_SSE_PAYLOAD = "id: {0}\nevent: new_request\ndata: {1}\n\n" REDIRECT_CODES = (300, 301, 302, 303, 305, 307, 308) PLUGIN_ROOT = op.dirname(op.abspath(__file__)) @asyncio.coroutine def debugtoolbar_middleware_factory(app, handler): """Setup Debug middleware.""" dbtb = app.ps.debugtoolbar @asyncio.coroutine def debugtoolbar_middleware(request): """Integrate to application.""" # Check for debugtoolbar is enabled for the request if not dbtb.cfg.enabled or any(map(request.path.startswith, dbtb.cfg.exclude)): return (yield from handler(request)) remote_host, remote_port = request.transport.get_extra_info('peername') for host in dbtb.cfg.hosts: if ip.ip_address(remote_host) in ip.ip_network(host): break else: return (yield from handler(request)) # Initialize a debugstate for the request state = DebugState(app, request) dbtb.history[state.id] = state context_switcher = state.wrap_handler(handler) # Make response try: response = yield from context_switcher(handler(request)) state.status = response.status except HTTPException as exc: response = exc state.status = response.status except Exception as exc: # Store traceback for unhandled exception state.status = 500 if not dbtb.cfg.intercept_exc: raise tb = get_traceback( info=sys.exc_info(), skip=1, show_hidden_frames=False, ignore_system_exceptions=True, exc=exc) dbtb.exceptions[tb.id] = request['pdbt_tb'] = tb for frame in tb.frames: dbtb.frames[id(frame)] = frame response = Response(text=tb.render_full(request), content_type='text/html') # Intercept http redirect codes and display an html page with a link to the target. if dbtb.cfg.intercept_redirects and response.status in REDIRECT_CODES \ and 'Location' in response.headers: response = yield from app.ps.jinja2.render( 'debugtoolbar/redirect.html', response=response) response = Response(text=response, content_type='text/html') yield from state.process_response(response) if isinstance(response, Response) and response.content_type == 'text/html' and \ RE_BODY.search(response.body): return (yield from dbtb.inject(state, response)) return response return debugtoolbar_middleware class Plugin(BasePlugin): """The plugin implementation.""" name = 'debugtoolbar' defaults = { 'enabled': True, 'hosts': ['127.0.0.1'], 'prefix': '/_debug', 'intercept_exc': 'debug', # debug/display/False, 'intercept_redirects': True, 'exclude': [], 'panels': [ panels.HeaderDebugPanel, panels.RequestVarsDebugPanel, panels.LoggingDebugPanel, panels.TracebackDebugPanel, ], 'additional_panels': [], 'global_panels': [ panels.RoutesDebugPanel, panels.ConfigurationDebugPanel, panels.MiddlewaresDebugPanel, panels.VersionsDebugPanel, ] } def setup(self, app): """Setup the plugin and prepare application.""" super(Plugin, self).setup(app) if 'jinja2' not in app.plugins: raise PluginException('The plugin requires Muffin-Jinja2 plugin installed.') self.cfg.prefix = self.cfg.prefix.rstrip('/') + '/' self.cfg.exclude.append(self.cfg.prefix) # Setup debugtoolbar templates app.ps.jinja2.cfg.template_folders.append(op.join(PLUGIN_ROOT, 'templates')) self.cfg.panels += list(self.cfg.additional_panels) panels_ = [] for panel in self.cfg.panels: if isinstance(panel, str): mod, _, panel = panel.partition(':') mod = importlib.import_module(mod) panel = eval(panel or 'DebugPanel', mod.__dict__) panels_.append(panel) self.cfg.panels = panels_ # Setup debugtoolbar static files app.router.register_route(StaticRoute( 'debugtoolbar.static', self.cfg.prefix + 'static/', op.join(PLUGIN_ROOT, 'static'))) app.register(self.cfg.prefix + 'sse', name='debugtoolbar.sse')(self.sse) app.register( self.cfg.prefix + 'exception', name='debugtoolbar.exception')(self.exception) app.register( self.cfg.prefix + 'execute', name='debugtoolbar.execute')(self.execute) app.register( self.cfg.prefix + 'source', name='debugtoolbar.source')(self.source) app.register( self.cfg.prefix.rstrip('/'), self.cfg.prefix, self.cfg.prefix + '{request_id}', name='debugtoolbar.request')(self.view) app['debugtoolbar'] = {} app['debugtoolbar']['pdbt_token'] = uuid.uuid4().hex self.history = app['debugtoolbar']['history'] = utils.History(50) self.exceptions = app['debugtoolbar']['exceptions'] = utils.History(50) self.frames = app['debugtoolbar']['frames'] = utils.History(100) @asyncio.coroutine def start(self, app): """ Start application. """ app.middlewares.insert(0, debugtoolbar_middleware_factory) self.global_panels = [Panel(self.app) for Panel in self.cfg.global_panels] @asyncio.coroutine def inject(self, state, response): """ Inject Debug Toolbar code to response body. """ html = yield from self.app.ps.jinja2.render( 'debugtoolbar/inject.html', static_path=self.cfg.prefix + 'static', toolbar_url=self.cfg.prefix + state.id, ) html = html.encode(state.request.charset or 'utf-8') response.body = RE_BODY.sub(html + b'</body>', response.body) return response @asyncio.coroutine def view(self, request): """ Debug Toolbar. """ auth = yield from self.authorize(request) if not auth: raise HTTPForbidden() request_id = request.match_info.get('request_id') state = self.history.get(request_id, None) response = yield from self.app.ps.jinja2.render( 'debugtoolbar/toolbar.html', debugtoolbar=self, state=state, static_path=self.cfg.prefix + 'static', panels=state and state.panels or [], global_panels=self.global_panels, request=state and state.request or None, ) return Response(text=response, content_type='text/html') @asyncio.coroutine def authorize(self, request): # noqa """Default authorization.""" return True def authorization(self, func): """Define a authorization handler. :: debugtoolbar = muffin_debugtoolbar.Plugin() debugtoolbar.setup(app) @debugtoolbar.authorization def current_user_is_logged(request): user = yield from load_session(request) return user """ self.authorize = to_coroutine(func) return func @asyncio.coroutine def sse(self, request): """SSE.""" response = Response(status=200) response.content_type = 'text/event-stream' response.text = '' active_request_id = request.GET.get('request_id') client_last_request_id = str(request.headers.get('Last-Event-Id', 0)) if self.history: last_request_id = next(reversed(self.history)) if not last_request_id == client_last_request_id: data = [] for _id in reversed(self.history): data.append([ _id, self.history[_id].json, 'active' if active_request_id == _id else '']) if data: response.text = U_SSE_PAYLOAD.format(last_request_id, json.dumps(data)) return response @asyncio.coroutine @asyncio.coroutine @asyncio.coroutine class DebugState: """ Store debug state. """ def __init__(self, app, request): """Store the params.""" self.request = request self.status = 200 self.panels = [Panel(app, request) for Panel in app.ps.debugtoolbar.cfg.panels] @property def id(self): """Return state ID.""" return str(id(self)) @property def json(self): """Return JSON.""" return {'method': self.request.method, 'path': self.request.path, 'scheme': 'http', 'status_code': self.status} @asyncio.coroutine def process_response(self, response): """Process response.""" for panel in self.panels: yield from panel.process_response(response)
[ 37811, 27509, 16984, 5657, 42636, 526, 15931, 198, 11748, 30351, 952, 198, 11748, 1330, 8019, 198, 11748, 20966, 21975, 355, 20966, 198, 11748, 28686, 13, 6978, 355, 1034, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 334, 27112, 198, 198, 6738, 27563, 259, 1330, 357, 198, 220, 220, 220, 18261, 11, 36125, 43401, 11, 14626, 16922, 11, 14626, 22069, 18453, 11, 284, 62, 10215, 28399, 11, 14626, 1890, 37978, 8, 198, 6738, 27563, 259, 13, 37390, 1330, 7308, 37233, 11, 42636, 16922, 198, 6738, 27563, 259, 13, 26791, 1330, 33918, 198, 198, 6738, 764, 1330, 13043, 11, 3384, 4487, 198, 6738, 764, 83, 18347, 10141, 13, 83, 18347, 10141, 1330, 651, 62, 40546, 1891, 628, 198, 2200, 62, 33, 33076, 796, 302, 13, 5589, 576, 7, 65, 6, 27, 11139, 2618, 29, 3256, 302, 13, 40, 8, 198, 52, 62, 50, 5188, 62, 4537, 56, 35613, 796, 366, 312, 25, 1391, 15, 32239, 710, 1151, 25, 649, 62, 25927, 59, 358, 1045, 25, 1391, 16, 32239, 77, 59, 77, 1, 198, 22083, 40, 23988, 62, 34, 3727, 1546, 796, 357, 6200, 11, 25643, 11, 32591, 11, 30727, 11, 32747, 11, 38369, 11, 35617, 8, 628, 198, 6489, 7340, 1268, 62, 13252, 2394, 796, 1034, 13, 15908, 3672, 7, 404, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 628, 198, 31, 292, 13361, 952, 13, 10215, 28399, 198, 4299, 14257, 25981, 5657, 62, 27171, 1574, 62, 69, 9548, 7, 1324, 11, 21360, 2599, 198, 220, 220, 220, 37227, 40786, 31687, 3504, 1574, 526, 15931, 198, 220, 220, 220, 288, 18347, 65, 796, 598, 13, 862, 13, 24442, 25981, 5657, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 14257, 25981, 5657, 62, 27171, 1574, 7, 25927, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34500, 4873, 284, 3586, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 329, 14257, 25981, 5657, 318, 9343, 329, 262, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 288, 18347, 65, 13, 37581, 13, 25616, 393, 597, 7, 8899, 7, 25927, 13, 6978, 13, 9688, 2032, 342, 11, 288, 18347, 65, 13, 37581, 13, 1069, 9152, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 88, 1164, 422, 21360, 7, 25927, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 4774, 11, 6569, 62, 634, 796, 2581, 13, 7645, 634, 13, 1136, 62, 26086, 62, 10951, 10786, 431, 13292, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2583, 287, 288, 18347, 65, 13, 37581, 13, 4774, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20966, 13, 541, 62, 21975, 7, 47960, 62, 4774, 8, 287, 20966, 13, 541, 62, 27349, 7, 4774, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 88, 1164, 422, 21360, 7, 25927, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 257, 14257, 5219, 329, 262, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 31687, 9012, 7, 1324, 11, 2581, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 18347, 65, 13, 23569, 58, 5219, 13, 312, 60, 796, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 2032, 23640, 796, 1181, 13, 37150, 62, 30281, 7, 30281, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7800, 422, 4732, 62, 2032, 23640, 7, 30281, 7, 25927, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 13, 13376, 796, 2882, 13, 13376, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 14626, 16922, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2859, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 13, 13376, 796, 2882, 13, 13376, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9363, 12854, 1891, 329, 555, 38788, 6631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 13, 13376, 796, 5323, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 288, 18347, 65, 13, 37581, 13, 3849, 984, 62, 41194, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 65, 796, 651, 62, 40546, 1891, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 28, 17597, 13, 41194, 62, 10951, 22784, 14267, 28, 16, 11, 905, 62, 30342, 62, 37805, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 10057, 62, 1069, 11755, 28, 17821, 11, 2859, 28, 41194, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 18347, 65, 13, 1069, 11755, 58, 83, 65, 13, 312, 60, 796, 2581, 17816, 79, 9945, 83, 62, 83, 65, 20520, 796, 256, 65, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 287, 256, 65, 13, 37805, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 18347, 65, 13, 37805, 58, 312, 7, 14535, 15437, 796, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 18261, 7, 5239, 28, 83, 65, 13, 13287, 62, 12853, 7, 25927, 828, 2695, 62, 4906, 11639, 5239, 14, 6494, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37127, 2638, 18941, 12416, 290, 3359, 281, 27711, 2443, 351, 257, 2792, 284, 262, 2496, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 18347, 65, 13, 37581, 13, 3849, 984, 62, 445, 1060, 82, 290, 2882, 13, 13376, 287, 23848, 40, 23988, 62, 34, 3727, 1546, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 705, 14749, 6, 287, 2882, 13, 50145, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7800, 422, 598, 13, 862, 13, 18594, 6592, 17, 13, 13287, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24442, 25981, 5657, 14, 445, 1060, 13, 6494, 3256, 2882, 28, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 18261, 7, 5239, 28, 26209, 11, 2695, 62, 4906, 11639, 5239, 14, 6494, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 7800, 422, 1181, 13, 14681, 62, 26209, 7, 26209, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 26209, 11, 18261, 8, 290, 2882, 13, 11299, 62, 4906, 6624, 705, 5239, 14, 6494, 6, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4526, 62, 33, 33076, 13, 12947, 7, 26209, 13, 2618, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 88, 1164, 422, 288, 18347, 65, 13, 259, 752, 7, 5219, 11, 2882, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 1441, 14257, 25981, 5657, 62, 27171, 1574, 628, 198, 4871, 42636, 7, 14881, 37233, 2599, 628, 220, 220, 220, 37227, 464, 13877, 7822, 526, 15931, 628, 220, 220, 220, 1438, 796, 705, 24442, 25981, 5657, 6, 198, 220, 220, 220, 26235, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25616, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4774, 82, 10354, 37250, 16799, 13, 15, 13, 15, 13, 16, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 10354, 31051, 62, 24442, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3849, 984, 62, 41194, 10354, 705, 24442, 3256, 220, 1303, 14257, 14, 13812, 14, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3849, 984, 62, 445, 1060, 82, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1069, 9152, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6839, 1424, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 39681, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 18453, 53, 945, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 11187, 2667, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 2898, 558, 1891, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2860, 1859, 62, 6839, 1424, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20541, 62, 6839, 1424, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 49, 448, 274, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 38149, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 34621, 86, 3565, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 13, 45150, 27509, 26639, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 9058, 7, 944, 11, 598, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 262, 13877, 290, 8335, 3586, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 37233, 11, 2116, 737, 40406, 7, 1324, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 18594, 6592, 17, 6, 407, 287, 598, 13, 37390, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 42636, 16922, 10786, 464, 13877, 4433, 337, 1648, 259, 12, 41, 259, 6592, 17, 13877, 6589, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 796, 2116, 13, 37581, 13, 40290, 13, 81, 36311, 10786, 14, 11537, 1343, 31051, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 1069, 9152, 13, 33295, 7, 944, 13, 37581, 13, 40290, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31122, 14257, 25981, 5657, 24019, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 862, 13, 18594, 6592, 17, 13, 37581, 13, 28243, 62, 11379, 364, 13, 33295, 7, 404, 13, 22179, 7, 6489, 7340, 1268, 62, 13252, 2394, 11, 705, 11498, 17041, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 6839, 1424, 15853, 1351, 7, 944, 13, 37581, 13, 2860, 1859, 62, 6839, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13043, 62, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6103, 287, 2116, 13, 37581, 13, 6839, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 35330, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 11, 4808, 11, 6103, 796, 6103, 13, 3911, 653, 7, 10354, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 796, 1330, 8019, 13, 11748, 62, 21412, 7, 4666, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6103, 796, 5418, 7, 35330, 393, 705, 27509, 26639, 3256, 953, 13, 834, 11600, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 44807, 33295, 7, 35330, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 6839, 1424, 796, 13043, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 31122, 14257, 25981, 5657, 9037, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 472, 353, 13, 30238, 62, 38629, 7, 45442, 43401, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24442, 25981, 5657, 13, 12708, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 12708, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 13, 22179, 7, 6489, 7340, 1268, 62, 13252, 2394, 11, 705, 12708, 6, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 944, 13, 37581, 13, 40290, 1343, 705, 82, 325, 3256, 1438, 11639, 24442, 25981, 5657, 13, 82, 325, 6, 5769, 944, 13, 82, 325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 1069, 4516, 3256, 1438, 11639, 24442, 25981, 5657, 13, 1069, 4516, 6, 5769, 944, 13, 1069, 4516, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 41049, 3256, 1438, 11639, 24442, 25981, 5657, 13, 41049, 6, 5769, 944, 13, 41049, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 10459, 3256, 1438, 11639, 24442, 25981, 5657, 13, 10459, 6, 5769, 944, 13, 10459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 30238, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 13, 81, 36311, 10786, 14, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37581, 13, 40290, 1343, 705, 90, 25927, 62, 312, 92, 3256, 1438, 11639, 24442, 25981, 5657, 13, 25927, 6, 5769, 944, 13, 1177, 8, 628, 220, 220, 220, 220, 220, 220, 220, 598, 17816, 24442, 25981, 5657, 20520, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 598, 17816, 24442, 25981, 5657, 6, 7131, 6, 79, 9945, 83, 62, 30001, 20520, 796, 334, 27112, 13, 12303, 312, 19, 22446, 33095, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23569, 796, 598, 17816, 24442, 25981, 5657, 6, 7131, 6, 23569, 20520, 796, 3384, 4487, 13, 18122, 7, 1120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1069, 11755, 796, 598, 17816, 24442, 25981, 5657, 6, 7131, 6, 1069, 11755, 20520, 796, 3384, 4487, 13, 18122, 7, 1120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37805, 796, 598, 17816, 24442, 25981, 5657, 6, 7131, 6, 37805, 20520, 796, 3384, 4487, 13, 18122, 7, 3064, 8, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 923, 7, 944, 11, 598, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7253, 3586, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 27171, 86, 3565, 13, 28463, 7, 15, 11, 14257, 25981, 5657, 62, 27171, 1574, 62, 69, 9548, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20541, 62, 6839, 1424, 796, 685, 26639, 7, 944, 13, 1324, 8, 329, 18810, 287, 2116, 13, 37581, 13, 20541, 62, 6839, 1424, 60, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 8677, 7, 944, 11, 1181, 11, 2882, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 554, 752, 31687, 16984, 5657, 2438, 284, 2882, 1767, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 7800, 422, 2116, 13, 1324, 13, 862, 13, 18594, 6592, 17, 13, 13287, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24442, 25981, 5657, 14, 259, 752, 13, 6494, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9037, 62, 6978, 28, 944, 13, 37581, 13, 40290, 1343, 705, 12708, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50149, 62, 6371, 28, 944, 13, 37581, 13, 40290, 1343, 1181, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 27711, 13, 268, 8189, 7, 5219, 13, 25927, 13, 354, 945, 316, 393, 705, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 2618, 796, 4526, 62, 33, 33076, 13, 7266, 7, 6494, 1343, 275, 6, 3556, 2618, 29, 3256, 2882, 13, 2618, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 1570, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31687, 16984, 5657, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 796, 7800, 422, 2116, 13, 9800, 1096, 7, 25927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6284, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 14626, 1890, 37978, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 312, 796, 2581, 13, 15699, 62, 10951, 13, 1136, 10786, 25927, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 2116, 13, 23569, 13, 1136, 7, 25927, 62, 312, 11, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7800, 422, 2116, 13, 1324, 13, 862, 13, 18594, 6592, 17, 13, 13287, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24442, 25981, 5657, 14, 25981, 5657, 13, 6494, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 25981, 5657, 28, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 28, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9037, 62, 6978, 28, 944, 13, 37581, 13, 40290, 1343, 705, 12708, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13043, 28, 5219, 290, 1181, 13, 6839, 1424, 393, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 6839, 1424, 28, 944, 13, 20541, 62, 6839, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 28, 5219, 290, 1181, 13, 25927, 393, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18261, 7, 5239, 28, 26209, 11, 2695, 62, 4906, 11639, 5239, 14, 6494, 11537, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 29145, 7, 944, 11, 2581, 2599, 220, 1303, 645, 20402, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19463, 19601, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 19601, 7, 944, 11, 25439, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7469, 500, 257, 19601, 21360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7904, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 25981, 5657, 796, 27563, 259, 62, 24442, 25981, 5657, 13, 37233, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 25981, 5657, 13, 40406, 7, 1324, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 24442, 25981, 5657, 13, 9800, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 1459, 62, 7220, 62, 271, 62, 6404, 2004, 7, 25927, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 7800, 422, 3440, 62, 29891, 7, 25927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2836, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9800, 1096, 796, 284, 62, 10215, 28399, 7, 20786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 25439, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 264, 325, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 5188, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 18261, 7, 13376, 28, 2167, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 11299, 62, 4906, 796, 705, 5239, 14, 15596, 12, 5532, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 5239, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 4075, 62, 25927, 62, 312, 796, 2581, 13, 18851, 13, 1136, 10786, 25927, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 12957, 62, 25927, 62, 312, 796, 965, 7, 25927, 13, 50145, 13, 1136, 10786, 5956, 12, 9237, 12, 7390, 3256, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 23569, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 25927, 62, 312, 796, 1306, 7, 260, 690, 276, 7, 944, 13, 23569, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 938, 62, 25927, 62, 312, 6624, 5456, 62, 12957, 62, 25927, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 312, 287, 17687, 7, 944, 13, 23569, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 312, 11, 2116, 13, 23569, 29795, 312, 4083, 17752, 11, 705, 5275, 6, 611, 4075, 62, 25927, 62, 312, 6624, 4808, 312, 2073, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 5239, 796, 471, 62, 50, 5188, 62, 4537, 56, 35613, 13, 18982, 7, 12957, 62, 25927, 62, 312, 11, 33918, 13, 67, 8142, 7, 7890, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 628, 198, 4871, 31687, 9012, 25, 628, 220, 220, 220, 37227, 9363, 14257, 1181, 13, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 598, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22658, 262, 42287, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25927, 796, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 796, 939, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6839, 1424, 796, 685, 26639, 7, 1324, 11, 2581, 8, 329, 18810, 287, 598, 13, 862, 13, 24442, 25981, 5657, 13, 37581, 13, 6839, 1424, 60, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4686, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1181, 4522, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 7, 312, 7, 944, 4008, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 33918, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 19449, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 24396, 10354, 2116, 13, 25927, 13, 24396, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 2116, 13, 25927, 13, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 1326, 10354, 705, 4023, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13376, 62, 8189, 10354, 2116, 13, 13376, 92, 628, 220, 220, 220, 2488, 292, 13361, 952, 13, 10215, 28399, 198, 220, 220, 220, 825, 1429, 62, 26209, 7, 944, 11, 2882, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18709, 2882, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6103, 287, 2116, 13, 6839, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 422, 6103, 13, 14681, 62, 26209, 7, 26209, 8, 198 ]
2.222821
4,268
import numpy as np from scipy import stats import statsmodels.sandbox.stats.runs as runs # 18/21 output statistics fully implemented from MATLAB, the other three are either from complex helper functions or MATLAB functions that don't transfer well def PH_Walker(y, walkerRule='prop', walkerParams=np.array([])): """ PH_Walker simulates a hypothetical walker moving through the time domain the hypothetical particle (or 'walker') moves in response to values of the time series at each point Outputs from this operation are summaries of the walkers motion, and comparisons of it to the original time series :param y: the input time series :param walkerRule: the kinematic rule by which the walker moves in response to the time series over time (i) 'prop': the walker narrows the gap between its value and that of the time series by a given proportion p (ii) 'biasprop': the walker is biased to move more in one direction; when it is being pushed up by the time series, it narrows the gap by a proportion p_{up}, and when it is being pushed down by the time series it narrows the gap by a (potentially different) proportion p_{down}. walkerParams = [pup,pdown] (iii) 'momentum': the walker moves as if it has mass m and inertia from the previous time step and the time series acts as a force altering its motion in a classical Newtonian dynamics framework. [walkerParams = m], the mass. (iv) 'runningvar': the walker moves with inertia as above, but its values are also adjusted so as to match the local variance of time series by a multiplicative factor. walkerParams = [m,wl], where m is the inertial mass and wl is the window length. :param walkerParams: the parameters for the specified walker, explained above :return: include the mean, spread, maximum, minimum, and autocorrelation of the walker's trajectory, the number of crossings between the walker and the original time series, the ratio or difference of some basic summary statistics between the original time series and the walker, an Ansari-Bradley test comparing the distributions of the walker and original time series, and various statistics summarizing properties of the residuals between the walker's trajectory and the original time series. """ # ---------------------------------------------------------------------------------------------------------------------------------- # PRELIMINARIES #---------------------------------------------------------------------------------------------------------------------------------- N = len(y) #---------------------------------------------------------------------------------------------------------------------------------- # CHECK INPUTS #---------------------------------------------------------------------------------------------------------------------------------- if walkerRule == 'runningvar': walkerParams = [1.5, 50] if (len(walkerParams) == 0): if walkerRule == 'prop': walkerParams = np.array([0.5]) if walkerRule == 'biasprop': walkerParams = np.array([0.1, 0.2]) if walkerRule == 'momentum': walkerParams = np.array([2]) if walkerRule == 'runningvar': walkerParams = [1.5, 50] #---------------------------------------------------------------------------------------------------------------------------------- # (1) WALK #---------------------------------------------------------------------------------------------------------------------------------- w = np.zeros(N) if walkerRule == 'prop': # walker starts at zero and narrows the gap between its position # and the time series value at that point by the proportion given # in walkerParams, to give the value at the subsequent time step if isinstance(walkerParams,list): walkerParams = walkerParams[0] p = walkerParams w[0] = 0 for i in range(1, N): w[i] = w[i-1] + p*(y[i-1]-w[i-1]) elif walkerRule == 'biasprop': # walker is biased in one or the other direction (i.e., prefers to # go up, or down). Requires a vector of inputs: [p_up, p_down] pup = walkerParams[0] pdown = walkerParams[0] w[0] = 0 for i in range (1, N): if y[i] > y[i-1]: w[i] = w[i-1] + pup*(y[i-1]-w[i-1]) else : w[i] = w[i-1] + pdown*(y[i-1]-w[i-1]) elif walkerRule == 'momentum': # walker moves as if it had inertia from the previous time step, # i.e., it 'wants' to move the same amount; the time series acts as # a force changing its motion m = walkerParams[0] # inertial mass w[0] = y[0] w[1] = y[1] for i in range(2, N): w_inert = w[i-1] + (w[i-1]-w[i-2]) w[i] = w_inert + (y[i] - w_inert)/m # dissipative term #equation of motion (s-s_0 = ut + F/m*t^2) #where the 'force' is F is the change in the original time series at the point elif walkerRule == 'runningvar': m = walkerParams[0] wl = walkerParams[1] w[0] = y[0] w[1] = y[1] for i in range(2, N): w_inert = w[i-1] + (w[i-1]-w[i-2]) w_mom = w_inert + (y[i] - w_inert)/m #dissipative term from time series if i > wl: w[i] = w_mom * (np.std(y[(i-wl):i]))/np.std(w[(i-wl):i]) else: w[i] = w_mom else : print("Error: Unknown method: " + walkerRule + " for simulating walker on the time series") #---------------------------------------------------------------------------------------------------------------------------------- # (2) STATISITICS ON THE WALK #---------------------------------------------------------------------------------------------------------------------------------- out = {} # dictionary for storing variables # (i) The walk itself ------------------------------------------------------------------------------------------- out['w_mean'] = np.mean(w) out['w_median'] = np.median(w) out['w_std'] = np.std(w) out['w_ac1'] = CO_AutoCorr(w, 1, method='timedomainstat') # this function call in MATLAB uses method='Fourier', but we don't have that case implemented yet in autoCorr, however this seems to output the same thing out['w_ac2'] = CO_AutoCorr(w, 2, method='timedomainstat') out['w_tau'] = CO_FirstZero(w, 'ac') out['w_min'] = np.min(w) out['w_max'] = np.max(w) out['propzcross'] = sum( np.multiply( w[0:(len(w)-2)], w[1:(len(w)-1)] ) < 0) / (N-1) # np.multiply performs elementwise multiplication like matlab .* # differences between the walk at signal # (ii) Differences between the walk at signal ------------------------------------------------------------------- out['sw_meanabsdiff'] = np.mean(np.abs(y-w)) out['sw_taudiff'] = CO_FirstZero(y, 'ac') - CO_FirstZero(w, 'ac') out['sw_stdrat'] = np.std(w)/np.std(y) # will be thse same as w_std for z-scored signal out['sw_ac1rat'] = out['w_ac1']/CO_AutoCorr(y, 1) out['sw_minrat'] = min(w)/min(y) out['sw_maxrat'] = max(w)/max(y) out['sw_propcross'] = sum(np.multiply( w[0:(len(w)-1)] - y[0:(len(y)-1)] , w[1:(len(w))]-y[1:(len(y))]) < 0 )/(N-1) #np.multiply performs elementwise multiplication like matlab .* ansari = stats.ansari(w, y) out['sw_ansarib_pval'] = ansari[1] # r = np.linspace( np.min(np.min(y), np.min(w)), np.max(np.max(y), np.max(w)), 200 ) # dy = stats.gaussian_kde(y, r) # (iii) looking at residuals between time series and walker res = w-y # CLOSEST FUNCTION TO MATLAB RUNSTEST, found in statsmodels.sandbox.stats.runs # runstest = runs.runstest_2samp(res, groups=2) # out['res_runstest'] = runstest out['res_acl'] = CO_AutoCorr(res, lag=1) return out
[ 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 9756, 198, 11748, 9756, 27530, 13, 38142, 3524, 13, 34242, 13, 48381, 355, 4539, 198, 198, 2, 1248, 14, 2481, 5072, 7869, 3938, 9177, 422, 36775, 48780, 11, 262, 584, 1115, 389, 2035, 422, 3716, 31904, 5499, 393, 36775, 48780, 5499, 326, 836, 470, 4351, 880, 198, 198, 4299, 9370, 62, 39950, 7, 88, 11, 2513, 263, 31929, 11639, 22930, 3256, 2513, 263, 10044, 4105, 28, 37659, 13, 18747, 26933, 12962, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 9370, 62, 39950, 985, 15968, 257, 25345, 2513, 263, 3867, 832, 262, 640, 7386, 628, 220, 220, 220, 262, 25345, 18758, 357, 273, 705, 20783, 11537, 6100, 287, 2882, 284, 3815, 286, 262, 640, 2168, 379, 1123, 966, 628, 220, 220, 220, 25235, 82, 422, 428, 4905, 389, 30114, 3166, 286, 262, 2513, 364, 6268, 11, 290, 17909, 286, 340, 284, 262, 2656, 640, 2168, 628, 220, 220, 220, 1058, 17143, 331, 25, 262, 5128, 640, 2168, 198, 220, 220, 220, 1058, 17143, 2513, 263, 31929, 25, 262, 479, 7749, 1512, 3896, 416, 543, 262, 2513, 263, 6100, 287, 2882, 284, 262, 640, 2168, 625, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 8, 705, 22930, 10354, 262, 2513, 263, 7135, 82, 262, 7625, 1022, 663, 1988, 290, 326, 286, 262, 640, 2168, 416, 257, 1813, 9823, 279, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4178, 8, 705, 65, 4448, 22930, 10354, 262, 2513, 263, 318, 21925, 284, 1445, 517, 287, 530, 4571, 26, 618, 340, 318, 852, 7121, 510, 416, 262, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2168, 11, 340, 7135, 82, 262, 7625, 416, 257, 9823, 279, 23330, 929, 5512, 290, 618, 340, 318, 852, 7121, 866, 416, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 2168, 340, 7135, 82, 262, 7625, 416, 257, 357, 13059, 3746, 1180, 8, 9823, 279, 23330, 2902, 27422, 2513, 263, 10044, 4105, 796, 685, 79, 929, 11, 79, 2902, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15479, 8, 705, 32542, 298, 388, 10354, 262, 2513, 263, 6100, 355, 611, 340, 468, 2347, 285, 290, 48482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 262, 2180, 640, 2239, 290, 262, 640, 2168, 6529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 257, 2700, 29057, 663, 6268, 287, 257, 15993, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17321, 666, 17262, 9355, 13, 685, 20783, 10044, 4105, 796, 285, 4357, 262, 2347, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 452, 8, 705, 20270, 7785, 10354, 262, 2513, 263, 6100, 351, 48482, 355, 2029, 11, 475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 663, 3815, 389, 635, 12328, 523, 355, 284, 2872, 262, 1957, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24198, 286, 640, 2168, 416, 257, 15082, 43058, 5766, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 685, 76, 11, 40989, 4357, 810, 285, 318, 262, 29824, 498, 2347, 290, 266, 75, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 262, 4324, 4129, 13, 628, 220, 220, 220, 1058, 17143, 2513, 263, 10044, 4105, 25, 262, 10007, 329, 262, 7368, 2513, 263, 11, 4893, 2029, 628, 220, 220, 220, 1058, 7783, 25, 2291, 262, 1612, 11, 4104, 11, 5415, 11, 5288, 11, 290, 1960, 420, 273, 49501, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2513, 263, 338, 22942, 11, 262, 1271, 286, 41930, 1022, 262, 2513, 263, 290, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 640, 2168, 11, 262, 8064, 393, 3580, 286, 617, 4096, 10638, 7869, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1022, 262, 2656, 640, 2168, 290, 262, 2513, 263, 11, 281, 28038, 2743, 12, 30805, 1636, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14176, 262, 24570, 286, 262, 2513, 263, 290, 2656, 640, 2168, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2972, 7869, 15676, 2890, 6608, 286, 262, 29598, 82, 1022, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 338, 22942, 290, 262, 2656, 640, 2168, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16529, 10097, 438, 198, 220, 220, 220, 1303, 350, 16448, 3955, 1268, 1503, 11015, 198, 220, 220, 220, 1303, 10097, 10097, 438, 628, 220, 220, 220, 399, 796, 18896, 7, 88, 8, 628, 220, 220, 220, 1303, 10097, 10097, 438, 198, 220, 220, 220, 1303, 5870, 25171, 3268, 30076, 50, 198, 220, 220, 220, 1303, 10097, 10097, 438, 198, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 20270, 7785, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 685, 16, 13, 20, 11, 2026, 60, 198, 220, 220, 220, 611, 357, 11925, 7, 20783, 10044, 4105, 8, 6624, 657, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 22930, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 45941, 13, 18747, 26933, 15, 13, 20, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 65, 4448, 22930, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 45941, 13, 18747, 26933, 15, 13, 16, 11, 657, 13, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 32542, 298, 388, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 45941, 13, 18747, 26933, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 20270, 7785, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 685, 16, 13, 20, 11, 2026, 60, 628, 220, 220, 220, 1303, 10097, 10097, 438, 198, 220, 220, 220, 1303, 357, 16, 8, 370, 28082, 198, 220, 220, 220, 1303, 10097, 10097, 438, 628, 198, 220, 220, 220, 266, 796, 45941, 13, 9107, 418, 7, 45, 8, 628, 220, 220, 220, 611, 2513, 263, 31929, 6624, 705, 22930, 10354, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2513, 263, 4940, 379, 6632, 290, 7135, 82, 262, 7625, 1022, 663, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 262, 640, 2168, 1988, 379, 326, 966, 416, 262, 9823, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 2513, 263, 10044, 4105, 11, 284, 1577, 262, 1988, 379, 262, 8840, 640, 2239, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 20783, 10044, 4105, 11, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2513, 263, 10044, 4105, 796, 2513, 263, 10044, 4105, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 2513, 263, 10044, 4105, 198, 220, 220, 220, 220, 220, 220, 220, 266, 58, 15, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 399, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 58, 72, 12, 16, 60, 1343, 279, 9, 7, 88, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 16, 12962, 628, 198, 220, 220, 220, 1288, 361, 2513, 263, 31929, 6624, 705, 65, 4448, 22930, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2513, 263, 318, 21925, 287, 530, 393, 262, 584, 4571, 357, 72, 13, 68, 1539, 26237, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 467, 510, 11, 393, 866, 737, 26848, 257, 15879, 286, 17311, 25, 685, 79, 62, 929, 11, 279, 62, 2902, 60, 628, 220, 220, 220, 220, 220, 220, 220, 15552, 796, 2513, 263, 10044, 4105, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 2902, 796, 2513, 263, 10044, 4105, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 266, 58, 15, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 357, 16, 11, 399, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 58, 72, 60, 1875, 331, 58, 72, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 58, 72, 12, 16, 60, 1343, 15552, 9, 7, 88, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 58, 72, 12, 16, 60, 1343, 279, 2902, 9, 7, 88, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 16, 12962, 628, 220, 220, 220, 1288, 361, 2513, 263, 31929, 6624, 705, 32542, 298, 388, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2513, 263, 6100, 355, 611, 340, 550, 48482, 422, 262, 2180, 640, 2239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1312, 13, 68, 1539, 340, 705, 86, 1187, 6, 284, 1445, 262, 976, 2033, 26, 262, 640, 2168, 6529, 355, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 2700, 5609, 663, 6268, 628, 220, 220, 220, 220, 220, 220, 220, 285, 796, 2513, 263, 10044, 4105, 58, 15, 60, 1303, 29824, 498, 2347, 628, 220, 220, 220, 220, 220, 220, 220, 266, 58, 15, 60, 796, 331, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 58, 16, 60, 796, 331, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 11, 399, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 259, 861, 796, 266, 58, 72, 12, 16, 60, 1343, 357, 86, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 62, 259, 861, 1343, 357, 88, 58, 72, 60, 532, 266, 62, 259, 861, 20679, 76, 1303, 32008, 876, 3381, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4853, 341, 286, 6268, 357, 82, 12, 82, 62, 15, 796, 3384, 1343, 376, 14, 76, 9, 83, 61, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3003, 262, 705, 3174, 6, 318, 376, 318, 262, 1487, 287, 262, 2656, 640, 2168, 379, 262, 966, 628, 220, 220, 220, 1288, 361, 2513, 263, 31929, 6624, 705, 20270, 7785, 10354, 628, 220, 220, 220, 220, 220, 220, 220, 285, 796, 2513, 263, 10044, 4105, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 75, 796, 2513, 263, 10044, 4105, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 266, 58, 15, 60, 796, 331, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 58, 16, 60, 796, 331, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 11, 399, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 259, 861, 796, 266, 58, 72, 12, 16, 60, 1343, 357, 86, 58, 72, 12, 16, 45297, 86, 58, 72, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 32542, 796, 266, 62, 259, 861, 1343, 357, 88, 58, 72, 60, 532, 266, 62, 259, 861, 20679, 76, 1303, 67, 747, 541, 876, 3381, 422, 640, 2168, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 266, 75, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 62, 32542, 1635, 357, 37659, 13, 19282, 7, 88, 58, 7, 72, 12, 40989, 2599, 72, 60, 4008, 14, 37659, 13, 19282, 7, 86, 58, 7, 72, 12, 40989, 2599, 72, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 60, 796, 266, 62, 32542, 628, 198, 220, 220, 220, 2073, 1058, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 25, 16185, 2446, 25, 366, 1343, 2513, 263, 31929, 1343, 366, 329, 985, 8306, 2513, 263, 319, 262, 640, 2168, 4943, 628, 198, 220, 220, 220, 1303, 10097, 10097, 438, 198, 220, 220, 220, 1303, 357, 17, 8, 15486, 1797, 2043, 19505, 6177, 3336, 370, 28082, 198, 220, 220, 220, 1303, 10097, 10097, 438, 628, 220, 220, 220, 503, 796, 23884, 1303, 22155, 329, 23069, 9633, 628, 220, 220, 220, 1303, 357, 72, 8, 383, 2513, 2346, 16529, 22369, 6329, 628, 220, 220, 220, 503, 17816, 86, 62, 32604, 20520, 796, 45941, 13, 32604, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 86, 62, 1150, 666, 20520, 796, 45941, 13, 1150, 666, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 86, 62, 19282, 20520, 796, 45941, 13, 19282, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 86, 62, 330, 16, 20520, 796, 7375, 62, 27722, 10606, 81, 7, 86, 11, 352, 11, 2446, 11639, 16514, 3836, 391, 14269, 11537, 1303, 428, 2163, 869, 287, 36775, 48780, 3544, 2446, 11639, 37, 280, 5277, 3256, 475, 356, 836, 470, 423, 326, 1339, 9177, 1865, 287, 8295, 10606, 81, 11, 2158, 428, 2331, 284, 5072, 262, 976, 1517, 198, 220, 220, 220, 503, 17816, 86, 62, 330, 17, 20520, 796, 7375, 62, 27722, 10606, 81, 7, 86, 11, 362, 11, 2446, 11639, 16514, 3836, 391, 14269, 11537, 198, 220, 220, 220, 503, 17816, 86, 62, 83, 559, 20520, 796, 7375, 62, 5962, 28667, 7, 86, 11, 705, 330, 11537, 198, 220, 220, 220, 503, 17816, 86, 62, 1084, 20520, 796, 45941, 13, 1084, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 86, 62, 9806, 20520, 796, 45941, 13, 9806, 7, 86, 8, 198, 220, 220, 220, 503, 17816, 22930, 89, 19692, 20520, 796, 2160, 7, 45941, 13, 16680, 541, 306, 7, 266, 58, 15, 37498, 11925, 7, 86, 13219, 17, 8, 4357, 266, 58, 16, 37498, 11925, 7, 86, 13219, 16, 15437, 1267, 1279, 657, 8, 1220, 357, 45, 12, 16, 8, 1303, 45941, 13, 16680, 541, 306, 17706, 5002, 3083, 48473, 588, 2603, 23912, 764, 9, 198, 220, 220, 220, 1303, 5400, 1022, 262, 2513, 379, 6737, 628, 220, 220, 220, 1303, 357, 4178, 8, 41937, 1022, 262, 2513, 379, 6737, 16529, 6329, 628, 220, 220, 220, 503, 17816, 2032, 62, 32604, 8937, 26069, 20520, 796, 45941, 13, 32604, 7, 37659, 13, 8937, 7, 88, 12, 86, 4008, 198, 220, 220, 220, 503, 17816, 2032, 62, 83, 3885, 733, 20520, 796, 7375, 62, 5962, 28667, 7, 88, 11, 705, 330, 11537, 532, 7375, 62, 5962, 28667, 7, 86, 11, 705, 330, 11537, 198, 220, 220, 220, 503, 17816, 2032, 62, 301, 7109, 265, 20520, 796, 45941, 13, 19282, 7, 86, 20679, 37659, 13, 19282, 7, 88, 8, 1303, 481, 307, 294, 325, 976, 355, 266, 62, 19282, 329, 1976, 12, 1416, 1850, 6737, 198, 220, 220, 220, 503, 17816, 2032, 62, 330, 16, 10366, 20520, 796, 503, 17816, 86, 62, 330, 16, 20520, 14, 8220, 62, 27722, 10606, 81, 7, 88, 11, 352, 8, 198, 220, 220, 220, 503, 17816, 2032, 62, 1084, 10366, 20520, 796, 949, 7, 86, 20679, 1084, 7, 88, 8, 198, 220, 220, 220, 503, 17816, 2032, 62, 9806, 10366, 20520, 796, 3509, 7, 86, 20679, 9806, 7, 88, 8, 198, 220, 220, 220, 503, 17816, 2032, 62, 1676, 14751, 1214, 20520, 796, 2160, 7, 37659, 13, 16680, 541, 306, 7, 266, 58, 15, 37498, 11925, 7, 86, 13219, 16, 15437, 532, 331, 58, 15, 37498, 11925, 7, 88, 13219, 16, 15437, 837, 266, 58, 16, 37498, 11925, 7, 86, 4008, 45297, 88, 58, 16, 37498, 11925, 7, 88, 4008, 12962, 1279, 657, 1267, 29006, 45, 12, 16, 8, 1303, 37659, 13, 16680, 541, 306, 17706, 5002, 3083, 48473, 588, 2603, 23912, 764, 9, 628, 220, 220, 220, 9093, 2743, 796, 9756, 13, 504, 2743, 7, 86, 11, 331, 8, 198, 220, 220, 220, 503, 17816, 2032, 62, 504, 283, 571, 62, 79, 2100, 20520, 796, 9093, 2743, 58, 16, 60, 628, 198, 220, 220, 220, 1303, 374, 796, 45941, 13, 21602, 10223, 7, 45941, 13, 1084, 7, 37659, 13, 1084, 7, 88, 828, 45941, 13, 1084, 7, 86, 36911, 45941, 13, 9806, 7, 37659, 13, 9806, 7, 88, 828, 45941, 13, 9806, 7, 86, 36911, 939, 1267, 198, 220, 220, 220, 1303, 20268, 796, 9756, 13, 4908, 31562, 62, 74, 2934, 7, 88, 11, 374, 8, 628, 198, 220, 220, 220, 1303, 357, 15479, 8, 2045, 379, 29598, 82, 1022, 640, 2168, 290, 2513, 263, 628, 220, 220, 220, 581, 796, 266, 12, 88, 628, 220, 220, 220, 1303, 7852, 2640, 6465, 29397, 4177, 2849, 5390, 36775, 48780, 32494, 2257, 6465, 11, 1043, 287, 9756, 27530, 13, 38142, 3524, 13, 34242, 13, 48381, 198, 220, 220, 220, 1303, 1057, 301, 395, 796, 4539, 13, 5143, 301, 395, 62, 17, 82, 696, 7, 411, 11, 2628, 28, 17, 8, 198, 220, 220, 220, 1303, 503, 17816, 411, 62, 5143, 301, 395, 20520, 796, 1057, 301, 395, 628, 220, 220, 220, 503, 17816, 411, 62, 37779, 20520, 796, 7375, 62, 27722, 10606, 81, 7, 411, 11, 19470, 28, 16, 8, 628, 198, 220, 220, 220, 1441, 503, 198 ]
2.694709
3,043
from typing import Dict SKIP = "SKIP" UNKNOWN = "UNKNOWN!" def detect_change(first: Dict[str, str], second: Dict[str, str], compareKeys: [str]) -> bool: """Detects change between two dictonaries Args: first (Dict[str, str]): First dictionary second (Dict[str, str]): Second dictionary compareKeys ([type]): Keys to handle comparison Returns: bool: Is there a change ? """ for key in compareKeys: if key not in second or key not in first: return True if first[key] != second[key]: return True return False
[ 6738, 19720, 1330, 360, 713, 198, 198, 18831, 4061, 796, 366, 18831, 4061, 1, 198, 4944, 44706, 796, 366, 4944, 44706, 2474, 628, 198, 198, 4299, 4886, 62, 3803, 7, 11085, 25, 360, 713, 58, 2536, 11, 965, 4357, 1218, 25, 360, 713, 58, 2536, 11, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8996, 40729, 25, 685, 2536, 12962, 4613, 20512, 25, 198, 220, 220, 220, 37227, 47504, 82, 1487, 1022, 734, 8633, 261, 3166, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 717, 357, 35, 713, 58, 2536, 11, 965, 60, 2599, 3274, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 357, 35, 713, 58, 2536, 11, 965, 60, 2599, 5498, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 8996, 40729, 29565, 4906, 60, 2599, 26363, 284, 5412, 7208, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20512, 25, 1148, 612, 257, 1487, 5633, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 1994, 287, 8996, 40729, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 1218, 393, 1994, 407, 287, 717, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 717, 58, 2539, 60, 14512, 1218, 58, 2539, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 1441, 10352, 198 ]
2.394636
261
from . helpers import get_timestamp
[ 6738, 764, 49385, 1330, 651, 62, 16514, 27823, 198 ]
4
9
from discord.ext import commands
[ 6738, 36446, 13, 2302, 1330, 9729, 628, 198 ]
4.375
8
import gym import numpy as np from PIL import Image import sys env = gym.make('Pong-v0') env.reset() done = False i = 0 start = 0 if len(sys.argv) < 3: print("Usage: collect_pong <games> <start_point>") exit() try: games = int(sys.argv[1]) start = int(sys.argv[2]) i = start except: print("Please provide a valid number for games and start point.") exit() for _ in range(games): count = 0 while not done: o, r, done, info = env.step(env.action_space.sample()) count += 1 # Ignore first 25 frames of the game, since the games starts after this amount. if count < 25: continue img = Image.fromarray(o) img.save("images/pong_" + str(i) + ".png") i += 1 done = False env.reset() print("Saved {} images.".format(i-start)) print("Total images: {}".format(i)) env.close()
[ 11748, 11550, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 25064, 198, 198, 24330, 796, 11550, 13, 15883, 10786, 47, 506, 12, 85, 15, 11537, 198, 24330, 13, 42503, 3419, 198, 198, 28060, 796, 10352, 198, 72, 796, 657, 198, 9688, 796, 657, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 1279, 513, 25, 198, 220, 220, 220, 3601, 7203, 28350, 25, 2824, 62, 79, 506, 1279, 19966, 29, 1279, 9688, 62, 4122, 29, 4943, 198, 220, 220, 220, 8420, 3419, 198, 198, 28311, 25, 198, 220, 220, 220, 1830, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 923, 796, 493, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 220, 220, 220, 1312, 796, 923, 198, 16341, 25, 198, 220, 220, 220, 3601, 7203, 5492, 2148, 257, 4938, 1271, 329, 1830, 290, 923, 966, 19570, 198, 220, 220, 220, 8420, 3419, 198, 198, 1640, 4808, 287, 2837, 7, 19966, 2599, 198, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 981, 407, 1760, 25, 198, 220, 220, 220, 220, 220, 220, 220, 267, 11, 374, 11, 1760, 11, 7508, 796, 17365, 13, 9662, 7, 24330, 13, 2673, 62, 13200, 13, 39873, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 717, 1679, 13431, 286, 262, 983, 11, 1201, 262, 1830, 4940, 706, 428, 2033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 1279, 1679, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 7412, 13, 6738, 18747, 7, 78, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 13, 21928, 7203, 17566, 14, 79, 506, 62, 1, 1343, 965, 7, 72, 8, 1343, 27071, 11134, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 1760, 796, 10352, 198, 220, 220, 220, 17365, 13, 42503, 3419, 198, 198, 4798, 7203, 50, 9586, 23884, 4263, 526, 13, 18982, 7, 72, 12, 9688, 4008, 198, 4798, 7203, 14957, 4263, 25, 23884, 1911, 18982, 7, 72, 4008, 198, 24330, 13, 19836, 3419, 198 ]
2.360963
374
import random mylist = [] for somethin in range(1,10): x = random.randrange(0,9) mylist.append(x) print(mylist) last_index=len(mylist) print ("length of mylist is:",len(mylist)) print ("first element is:",mylist[0]) print ("last element is:",mylist[len(mylist)-1]) #is mylist sorted? is_mylist_sorted = False x=0 y=1 intermediate=None #how many switches? number_of_switches = 0 #bubble sort while not is_mylist_sorted: if mylist[x] > mylist[y]: intermediate=mylist[x] mylist[x]=mylist[y] mylist[y]=intermediate number_of_switches+=1 x+=1 y+=1 if y==last_index: x=0 y=1 if number_of_switches==0: is_mylist_sorted = True else: number_of_switches = 0 print("finished") print("is my list sorted?",is_mylist_sorted) print("my list",mylist)
[ 11748, 4738, 198, 198, 1820, 4868, 796, 17635, 198, 198, 1640, 1054, 20079, 287, 2837, 7, 16, 11, 940, 2599, 198, 220, 220, 220, 2124, 796, 4738, 13, 25192, 9521, 7, 15, 11, 24, 8, 198, 220, 220, 220, 616, 4868, 13, 33295, 7, 87, 8, 198, 198, 4798, 7, 1820, 4868, 8, 628, 198, 12957, 62, 9630, 28, 11925, 7, 1820, 4868, 8, 198, 4798, 5855, 13664, 286, 616, 4868, 318, 25, 1600, 11925, 7, 1820, 4868, 4008, 198, 4798, 5855, 11085, 5002, 318, 25, 1600, 1820, 4868, 58, 15, 12962, 198, 4798, 5855, 12957, 5002, 318, 25, 1600, 1820, 4868, 58, 11925, 7, 1820, 4868, 13219, 16, 12962, 628, 220, 220, 220, 220, 198, 2, 271, 616, 4868, 23243, 30, 198, 271, 62, 1820, 4868, 62, 82, 9741, 796, 10352, 198, 198, 87, 28, 15, 198, 88, 28, 16, 198, 3849, 13857, 28, 14202, 198, 198, 2, 4919, 867, 18225, 30, 198, 17618, 62, 1659, 62, 2032, 9249, 796, 657, 198, 198, 2, 46176, 903, 3297, 198, 4514, 407, 318, 62, 1820, 4868, 62, 82, 9741, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 616, 4868, 58, 87, 60, 1875, 616, 4868, 58, 88, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 19898, 28, 1820, 4868, 58, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 616, 4868, 58, 87, 22241, 1820, 4868, 58, 88, 60, 198, 220, 220, 220, 220, 220, 220, 220, 616, 4868, 58, 88, 22241, 3849, 13857, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 2032, 9249, 47932, 16, 198, 220, 220, 220, 2124, 47932, 16, 198, 220, 220, 220, 331, 47932, 16, 198, 220, 220, 220, 198, 220, 220, 220, 611, 331, 855, 12957, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 331, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1271, 62, 1659, 62, 2032, 9249, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1820, 4868, 62, 82, 9741, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 2032, 9249, 796, 657, 628, 198, 4798, 7203, 43952, 4943, 198, 4798, 7203, 271, 616, 1351, 23243, 35379, 271, 62, 1820, 4868, 62, 82, 9741, 8, 198, 4798, 7203, 1820, 1351, 1600, 1820, 4868, 8, 628, 220, 220, 220, 220, 198 ]
2.062791
430
import os import setuptools try: # for pip >= 10 from pip._internal.req import parse_requirements except ImportError: # for pip <= 9.0.3 from pip.req import parse_requirements requirements_path = os.path.join(os.path.dirname(__file__), 'requirements.txt') install_requires = parse_requirements(requirements_path, session='hack') install_requires = [str(ir.req) for ir in install_requires] with open(os.path.join(os.path.dirname(__file__), 'VERSION'), 'r') as f: version = f.read() with open(os.path.join(os.path.dirname(__file__), 'README.md'), 'r') as f: long_description = f.read() setuptools.setup( name='afs2-datasource', version=version, description='For AFS developer to access Datasource', long_description=long_description, long_description_content_type='text/markdown', author='WISE-PaaS/AFS', author_email='[email protected]', packages=setuptools.find_packages(), install_requires=install_requires, keywords=['AFS'], license='Apache License 2.0', url='https://github.com/stacy0416/afs2-datasource' ) # python setup.py bdist_wheel
[ 11748, 28686, 201, 198, 11748, 900, 37623, 10141, 201, 198, 28311, 25, 1303, 329, 7347, 18189, 838, 201, 198, 220, 422, 7347, 13557, 32538, 13, 42180, 1330, 21136, 62, 8897, 18883, 201, 198, 16341, 17267, 12331, 25, 1303, 329, 7347, 19841, 860, 13, 15, 13, 18, 201, 198, 220, 422, 7347, 13, 42180, 1330, 21136, 62, 8897, 18883, 201, 198, 201, 198, 8897, 18883, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 8897, 18883, 13, 14116, 11537, 201, 198, 17350, 62, 47911, 796, 21136, 62, 8897, 18883, 7, 8897, 18883, 62, 6978, 11, 6246, 11639, 31153, 11537, 201, 198, 17350, 62, 47911, 796, 685, 2536, 7, 343, 13, 42180, 8, 329, 4173, 287, 2721, 62, 47911, 60, 201, 198, 201, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 43717, 33809, 705, 81, 11537, 355, 277, 25, 201, 198, 220, 2196, 796, 277, 13, 961, 3419, 201, 198, 201, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 15675, 11682, 13, 9132, 33809, 705, 81, 11537, 355, 277, 25, 201, 198, 220, 890, 62, 11213, 796, 277, 13, 961, 3419, 201, 198, 201, 198, 2617, 37623, 10141, 13, 40406, 7, 201, 198, 220, 1438, 11639, 1878, 82, 17, 12, 19608, 292, 1668, 3256, 201, 198, 220, 2196, 28, 9641, 11, 201, 198, 220, 6764, 11639, 1890, 317, 10652, 8517, 284, 1895, 16092, 292, 1668, 3256, 201, 198, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 201, 198, 220, 890, 62, 11213, 62, 11299, 62, 4906, 11639, 5239, 14, 4102, 2902, 3256, 201, 198, 220, 1772, 11639, 54, 24352, 12, 47, 7252, 50, 14, 8579, 50, 3256, 201, 198, 220, 1772, 62, 12888, 11639, 301, 1590, 13, 5948, 71, 31, 13461, 3055, 13, 785, 13, 4246, 3256, 201, 198, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 22784, 201, 198, 220, 2721, 62, 47911, 28, 17350, 62, 47911, 11, 201, 198, 220, 26286, 28, 17816, 8579, 50, 6, 4357, 201, 198, 220, 5964, 11639, 25189, 4891, 13789, 362, 13, 15, 3256, 201, 198, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 301, 1590, 3023, 1433, 14, 1878, 82, 17, 12, 19608, 292, 1668, 6, 201, 198, 8, 201, 198, 201, 198, 2, 21015, 9058, 13, 9078, 275, 17080, 62, 22001 ]
2.711165
412
import pandas as pd #============== First Round ===================# #===============================================# #============== Other Rounds ===================# #===============================================#
[ 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 25609, 855, 3274, 10485, 36658, 855, 2, 198, 2, 10052, 25609, 18604, 2, 198, 220, 220, 220, 220, 198, 198, 2, 25609, 855, 3819, 49049, 36658, 855, 2, 198, 2, 10052, 25609, 18604, 2, 198 ]
5.136364
44
""" Exercício 03 Peça ao usuário para digitar 3 valores inteiros e imprima a soma deles. """ print('Digite três números inteiros para somá-los:\n') num1 = int(float(input('Primeiro número: ').replace(',', '.'))) num2 = int(float(input('Segundo número: ').replace(',', '.'))) num3 = int(float(input('Terceiro número: ').replace(',', '.'))) sum = num1 + num2 + num3 print(f'_____\nA soma dos valores é: {sum}')
[ 37811, 198, 3109, 2798, 8836, 66, 952, 7643, 198, 6435, 50041, 257, 78, 514, 84, 6557, 27250, 31215, 3100, 7940, 513, 1188, 2850, 493, 20295, 4951, 304, 848, 3036, 64, 257, 3870, 64, 390, 829, 13, 198, 37811, 198, 198, 4798, 10786, 19511, 578, 491, 25792, 82, 299, 21356, 647, 418, 493, 20295, 4951, 31215, 3870, 6557, 12, 33280, 7479, 77, 11537, 198, 22510, 16, 796, 493, 7, 22468, 7, 15414, 10786, 26405, 7058, 299, 21356, 647, 78, 25, 705, 737, 33491, 7, 3256, 3256, 705, 2637, 22305, 198, 22510, 17, 796, 493, 7, 22468, 7, 15414, 10786, 41030, 41204, 299, 21356, 647, 78, 25, 705, 737, 33491, 7, 3256, 3256, 705, 2637, 22305, 198, 22510, 18, 796, 493, 7, 22468, 7, 15414, 10786, 15156, 344, 7058, 299, 21356, 647, 78, 25, 705, 737, 33491, 7, 3256, 3256, 705, 2637, 22305, 198, 16345, 796, 997, 16, 1343, 997, 17, 1343, 997, 18, 198, 4798, 7, 69, 6, 29343, 59, 77, 32, 3870, 64, 23430, 1188, 2850, 38251, 25, 1391, 16345, 92, 11537, 198 ]
2.369942
173
from __future__ import (absolute_import, division, print_function) __metaclass__ = type import json module_definition = json.loads( """{ "family": "discovery", "name": "discovery_network_device", "operations": { "get": [ "get_discovered_network_devices_by_discovery_id", "get_discovered_devices_by_range", "get_devices_discovered_by_id", "get_network_devices_from_discovery" ] }, "parameters": { "get_devices_discovered_by_id": [ { "name": "id", "required": true, "type": "string" }, { "name": "task_id", "required": false, "type": "string" }, { "artificial": true, "name": "count", "required": true, "type": "boolean" } ], "get_discovered_devices_by_range": [ { "name": "id", "required": true, "type": "string" }, { "name": "records_to_return", "required": true, "type": "integer" }, { "name": "start_index", "required": true, "type": "integer" }, { "name": "task_id", "required": false, "type": "string" } ], "get_discovered_network_devices_by_discovery_id": [ { "name": "id", "required": true, "type": "string" }, { "name": "task_id", "required": false, "type": "string" } ], "get_network_devices_from_discovery": [ { "name": "id", "required": true, "type": "string" }, { "name": "cli_status", "required": false, "type": "string" }, { "name": "http_status", "required": false, "type": "string" }, { "name": "ip_address", "required": false, "type": "string" }, { "name": "netconf_status", "required": false, "type": "string" }, { "name": "ping_status", "required": false, "type": "string" }, { "name": "snmp_status", "required": false, "type": "string" }, { "name": "sort_by", "required": false, "type": "string" }, { "name": "sort_order", "required": false, "type": "string" }, { "name": "task_id", "required": false, "type": "string" }, { "artificial": true, "name": "summary", "required": true, "type": "boolean" } ] }, "responses": { "get_devices_discovered_by_id": { "properties": [ "response", "version" ], "type": "object" }, "get_discovered_devices_by_range": { "properties": [ "response", "version" ], "type": "object" }, "get_discovered_network_devices_by_discovery_id": { "properties": [ "response", "version" ], "type": "object" }, "get_network_devices_from_discovery": { "properties": [ "response", "version" ], "type": "object" } } }""" )
[ 6738, 11593, 37443, 834, 1330, 357, 48546, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 8, 198, 834, 4164, 330, 31172, 834, 796, 2099, 198, 11748, 33918, 198, 198, 21412, 62, 46758, 796, 33918, 13, 46030, 7, 198, 220, 220, 220, 37227, 90, 198, 220, 220, 220, 366, 17989, 1298, 366, 67, 40821, 1600, 198, 220, 220, 220, 366, 3672, 1298, 366, 67, 40821, 62, 27349, 62, 25202, 1600, 198, 220, 220, 220, 366, 3575, 602, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 27349, 62, 42034, 62, 1525, 62, 67, 40821, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 42034, 62, 1525, 62, 9521, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 42034, 62, 15410, 2557, 62, 1525, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 27349, 62, 42034, 62, 6738, 62, 67, 40821, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 366, 17143, 7307, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 42034, 62, 15410, 2557, 62, 1525, 62, 312, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 35943, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 433, 9542, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 9127, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 2127, 21052, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 42034, 62, 1525, 62, 9521, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 8344, 3669, 62, 1462, 62, 7783, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 41433, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 9688, 62, 9630, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 41433, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 35943, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 27349, 62, 42034, 62, 1525, 62, 67, 40821, 62, 312, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 35943, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 27349, 62, 42034, 62, 6738, 62, 67, 40821, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 44506, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 4023, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 541, 62, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 3262, 10414, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 13886, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 16184, 3149, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 30619, 62, 1525, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 30619, 62, 2875, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 35943, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 8841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 433, 9542, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 49736, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35827, 1298, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 2127, 21052, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 366, 16733, 274, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 42034, 62, 15410, 2557, 62, 1525, 62, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 42034, 62, 1525, 62, 9521, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 15410, 2557, 62, 27349, 62, 42034, 62, 1525, 62, 67, 40821, 62, 312, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 27349, 62, 42034, 62, 6738, 62, 67, 40821, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 15252, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 92, 37811, 198, 8, 198 ]
1.549853
2,728
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys from lib.bucket import BUCKET_ID from lib.subcommand import SubCommand
[ 2, 15069, 2211, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 11748, 25064, 198, 198, 6738, 9195, 13, 27041, 316, 1330, 347, 16696, 2767, 62, 2389, 198, 6738, 9195, 13, 7266, 21812, 1330, 3834, 21575, 628 ]
3.686567
67
burst_time=[] print("Enter the number of process: ") n=int(input()) print("Enter the burst time of the processes: \n") burst_time=list(map(int, input().split())) waiting_time=[] avg_waiting_time=0 turnaround_time=[] avg_turnaround_time=0 waiting_time.insert(0,0) turnaround_time.insert(0,burst_time[0]) for i in range(1,len(burst_time)): waiting_time.insert(i,waiting_time[i-1]+burst_time[i-1]) turnaround_time.insert(i,waiting_time[i]+burst_time[i]) avg_waiting_time+=waiting_time[i] avg_turnaround_time+=turnaround_time[i] avg_waiting_time=float(avg_waiting_time)/n avg_turnaround_time=float(avg_turnaround_time)/n print("\n") print("Process\t Burst Time\t Waiting Time\t Turn Around Time") for i in range(0,n): print(str(i)+"\t\t"+str(burst_time[i])+"\t\t"+str(waiting_time[i])+"\t\t"+str(turnaround_time[i])) print("\n") print("Average Waiting time is: "+str(avg_waiting_time)) print("Average Turn Arount Time is: "+str(avg_turnaround_time))
[ 31961, 62, 2435, 28, 21737, 201, 198, 4798, 7203, 17469, 262, 1271, 286, 1429, 25, 366, 8, 201, 198, 77, 28, 600, 7, 15414, 28955, 201, 198, 4798, 7203, 17469, 262, 11173, 640, 286, 262, 7767, 25, 3467, 77, 4943, 201, 198, 31961, 62, 2435, 28, 4868, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008, 201, 198, 10247, 1780, 62, 2435, 28, 21737, 201, 198, 615, 70, 62, 10247, 1780, 62, 2435, 28, 15, 201, 198, 15344, 14145, 62, 2435, 28, 21737, 201, 198, 615, 70, 62, 15344, 14145, 62, 2435, 28, 15, 201, 198, 10247, 1780, 62, 2435, 13, 28463, 7, 15, 11, 15, 8, 201, 198, 15344, 14145, 62, 2435, 13, 28463, 7, 15, 11, 31961, 62, 2435, 58, 15, 12962, 201, 198, 1640, 1312, 287, 2837, 7, 16, 11, 11925, 7, 31961, 62, 2435, 8, 2599, 201, 198, 4953, 62, 2435, 13, 28463, 7, 72, 11, 10247, 1780, 62, 2435, 58, 72, 12, 16, 48688, 31961, 62, 2435, 58, 72, 12, 16, 12962, 201, 198, 34217, 62, 2435, 13, 28463, 7, 72, 11, 10247, 1780, 62, 2435, 58, 72, 48688, 31961, 62, 2435, 58, 72, 12962, 201, 198, 42781, 62, 10247, 1780, 62, 2435, 47932, 10247, 1780, 62, 2435, 58, 72, 60, 201, 198, 42781, 62, 15344, 14145, 62, 2435, 47932, 15344, 14145, 62, 2435, 58, 72, 60, 201, 198, 615, 70, 62, 10247, 1780, 62, 2435, 28, 22468, 7, 615, 70, 62, 10247, 1780, 62, 2435, 20679, 77, 201, 198, 615, 70, 62, 15344, 14145, 62, 2435, 28, 22468, 7, 615, 70, 62, 15344, 14145, 62, 2435, 20679, 77, 201, 198, 4798, 7203, 59, 77, 4943, 201, 198, 4798, 7203, 18709, 59, 83, 220, 30635, 3862, 59, 83, 220, 39669, 3862, 59, 83, 220, 6756, 16824, 3862, 4943, 201, 198, 1640, 1312, 287, 2837, 7, 15, 11, 77, 2599, 201, 198, 3601, 7, 2536, 7, 72, 47762, 1, 59, 83, 59, 83, 1, 10, 2536, 7, 31961, 62, 2435, 58, 72, 12962, 10, 1, 59, 83, 59, 83, 1, 10, 2536, 7, 10247, 1780, 62, 2435, 58, 72, 12962, 10, 1, 59, 83, 59, 83, 1, 10, 2536, 7, 15344, 14145, 62, 2435, 58, 72, 60, 4008, 201, 198, 3601, 7203, 59, 77, 4943, 201, 198, 4798, 7203, 26287, 39669, 640, 318, 25, 43825, 2536, 7, 615, 70, 62, 10247, 1780, 62, 2435, 4008, 201, 198, 4798, 7203, 26287, 6756, 317, 472, 429, 3862, 318, 25, 43825, 2536, 7, 615, 70, 62, 15344, 14145, 62, 2435, 4008 ]
2.368039
413
import os from airflow.hooks.base_hook import BaseHook from airflow.operators.bash_operator import BashOperator from airflow.utils.decorators import apply_defaults
[ 11748, 28686, 198, 198, 6738, 45771, 13, 25480, 82, 13, 8692, 62, 25480, 1330, 7308, 39, 566, 198, 6738, 45771, 13, 3575, 2024, 13, 41757, 62, 46616, 1330, 15743, 18843, 1352, 198, 6738, 45771, 13, 26791, 13, 12501, 273, 2024, 1330, 4174, 62, 12286, 82, 628 ]
3.608696
46
""" Author: Haoyin Xu """ import time import psutil import argparse import numpy as np import torchvision.datasets as datasets from numpy.random import permutation from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from river import tree from skgarden import MondrianForestClassifier from sdtf import StreamDecisionForest def write_result(filename, acc_ls): """Writes results to specified text file""" output = open(filename, "w") for acc in acc_ls: output.write(str(acc) + "\n") def prediction(classifier): """Generates predictions from model""" predictions = classifier.predict(X_test) p_t = 0 for i in range(X_test.shape[0]): if predictions[i] == y_test[i]: p_t += 1 return p_t / X_test.shape[0] def experiment_dt(): """Runs experiments for Batch Decision Tree""" dt_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] dt = DecisionTreeClassifier() for i in range(500): X_t = X_r[: (i + 1) * 100] y_t = y_r[: (i + 1) * 100] # Train the model start_time = time.perf_counter() dt.fit(X_t, y_t) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() dt_l.append(prediction(dt)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) return dt_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_rf(): """Runs experiments for Random Forest""" rf_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] rf = RandomForestClassifier() for i in range(500): X_t = X_r[: (i + 1) * 100] y_t = y_r[: (i + 1) * 100] # Train the model start_time = time.perf_counter() rf.fit(X_t, y_t) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() rf_l.append(prediction(rf)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) return rf_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_ht(): """Runs experiments for Hoeffding Tree""" ht_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] ht = tree.HoeffdingTreeClassifier(max_size=1000, grace_period=2) for i in range(X_train.shape[0]): X_t = X_r[i] y_t = y_r[i] idx = range(1024) X_t = dict(zip(idx, X_t)) start_time = time.perf_counter() ht.learn_one(X_t, y_t) end_time = time.perf_counter() train_time_l.append(end_time - start_time) if i > 0 and (i + 1) % 100 == 0: p_t = 0.0 start_time = time.perf_counter() for j in range(X_test.shape[0]): y_pred = ht.predict_one(X_test[j]) if y_pred == y_test[j]: p_t += 1 ht_l.append(p_t / X_test.shape[0]) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) # Reformat the train times new_train_time_l = [] for i in range(1, X_train.shape[0]): train_time_l[i] += train_time_l[i - 1] if i > 0 and (i + 1) % 100 == 0: new_train_time_l.append(train_time_l[i]) train_time_l = new_train_time_l return ht_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_mf(): """Runs experiments for Mondrian Forest""" mf_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] mf = MondrianForestClassifier(n_estimators=10) for i in range(500): X_t = X_r[i * 100 : (i + 1) * 100] y_t = y_r[i * 100 : (i + 1) * 100] # Train the model start_time = time.perf_counter() mf.partial_fit(X_t, y_t) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() mf_l.append(prediction(mf)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) # Reformat the train times for i in range(1, 500): train_time_l[i] += train_time_l[i - 1] return mf_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_sdt(): """Runs experiments for Stream Decision Tree""" sdt_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] sdt = DecisionTreeClassifier() for i in range(500): X_t = X_r[i * 100 : (i + 1) * 100] y_t = y_r[i * 100 : (i + 1) * 100] # Train the model start_time = time.perf_counter() sdt.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() sdt_l.append(prediction(sdt)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) # Reformat the train times for i in range(1, 500): train_time_l[i] += train_time_l[i - 1] return sdt_l, train_time_l, test_time_l, v_m_l, s_m_l def experiment_sdf(): """Runs experiments for Stream Decision Forest""" sdf_l = [] train_time_l = [] test_time_l = [] v_m_l = [] s_m_l = [] sdf = StreamDecisionForest() for i in range(500): X_t = X_r[i * 100 : (i + 1) * 100] y_t = y_r[i * 100 : (i + 1) * 100] # Train the model start_time = time.perf_counter() sdf.partial_fit(X_t, y_t, classes=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) end_time = time.perf_counter() train_time_l.append(end_time - start_time) # Test the model start_time = time.perf_counter() sdf_l.append(prediction(sdf)) end_time = time.perf_counter() test_time_l.append(end_time - start_time) # Check memory v_m = psutil.virtual_memory()[2] v_m_l.append(v_m) s_m = psutil.swap_memory()[3] s_m_l.append(s_m) # Reformat the train times for i in range(1, 500): train_time_l[i] += train_time_l[i - 1] return sdf_l, train_time_l, test_time_l, v_m_l, s_m_l # Prepare CIFAR data # Normalize scale = np.mean(np.arange(0, 256)) normalize = lambda x: (x - scale) / scale # Train data cifar_trainset = datasets.CIFAR10(root="../", train=True, download=True, transform=None) X_train = normalize(cifar_trainset.data) y_train = np.array(cifar_trainset.targets) # Test data cifar_testset = datasets.CIFAR10(root="../", train=False, download=True, transform=None) X_test = normalize(cifar_testset.data) y_test = np.array(cifar_testset.targets) X_train = X_train.reshape(-1, 32 * 32 * 3) X_test = X_test.reshape(-1, 32 * 32 * 3) # Parse classifier choices parser = argparse.ArgumentParser() parser.add_argument("-all", help="all classifiers", required=False, action="store_true") parser.add_argument("-dt", help="decision forests", required=False, action="store_true") parser.add_argument("-rf", help="random forests", required=False, action="store_true") parser.add_argument("-ht", help="hoeffding trees", required=False, action="store_true") parser.add_argument("-mf", help="mondrian forests", required=False, action="store_true") parser.add_argument( "-sdt", help="stream decision trees", required=False, action="store_true" ) parser.add_argument( "-sdf", help="stream decision forests", required=False, action="store_true" ) args = parser.parse_args() # Perform experiments if args.all or args.dt: dt_acc_l = [] dt_train_t_l = [] dt_test_t_l = [] dt_v_m_l = [] dt_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] dt_acc, dt_train_t, dt_test_t, dt_v_m, dt_s_m = experiment_dt() dt_acc_l.append(dt_acc) dt_train_t_l.append(dt_train_t) dt_test_t_l.append(dt_test_t) dt_v_m_l.append(dt_v_m) dt_s_m_l.append(dt_s_m) write_result("../results/dt/cifar10_acc.txt", dt_acc_l) write_result("../results/dt/cifar10_train_t.txt", dt_train_t_l) write_result("../results/dt/cifar10_test_t.txt", dt_test_t_l) write_result("../results/dt/cifar10_v_m.txt", dt_v_m_l) write_result("../results/dt/cifar10_s_m.txt", dt_s_m_l) if args.all or args.rf: rf_acc_l = [] rf_train_t_l = [] rf_test_t_l = [] rf_v_m_l = [] rf_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] rf_acc, rf_train_t, rf_test_t, rf_v_m, rf_s_m = experiment_rf() rf_acc_l.append(rf_acc) rf_train_t_l.append(rf_train_t) rf_test_t_l.append(rf_test_t) rf_v_m_l.append(rf_v_m) rf_s_m_l.append(rf_s_m) write_result("../results/rf/cifar10_acc.txt", rf_acc_l) write_result("../results/rf/cifar10_train_t.txt", rf_train_t_l) write_result("../results/rf/cifar10_test_t.txt", rf_test_t_l) write_result("../results/rf/cifar10_v_m.txt", rf_v_m_l) write_result("../results/rf/cifar10_s_m.txt", rf_s_m_l) if args.all or args.ht: ht_acc_l = [] ht_train_t_l = [] ht_test_t_l = [] ht_v_m_l = [] ht_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] ht_acc, ht_train_t, ht_test_t, ht_v_m, ht_s_m = experiment_ht() ht_acc_l.append(ht_acc) ht_train_t_l.append(ht_train_t) ht_test_t_l.append(ht_test_t) ht_v_m_l.append(ht_v_m) ht_s_m_l.append(ht_s_m) write_result("../results/ht/cifar10_acc.txt", ht_acc_l) write_result("../results/ht/cifar10_train_t.txt", ht_train_t_l) write_result("../results/ht/cifar10_test_t.txt", ht_test_t_l) write_result("../results/ht/cifar10_v_m.txt", ht_v_m_l) write_result("../results/ht/cifar10_s_m.txt", ht_s_m_l) if args.all or args.mf: mf_acc_l = [] mf_train_t_l = [] mf_test_t_l = [] mf_v_m_l = [] mf_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] mf_acc, mf_train_t, mf_test_t, mf_v_m, mf_s_m = experiment_mf() mf_acc_l.append(mf_acc) mf_train_t_l.append(mf_train_t) mf_test_t_l.append(mf_test_t) mf_v_m_l.append(mf_v_m) mf_s_m_l.append(mf_s_m) write_result("../results/mf/cifar10_acc.txt", mf_acc_l) write_result("../results/mf/cifar10_train_t.txt", mf_train_t_l) write_result("../results/mf/cifar10_test_t.txt", mf_test_t_l) write_result("../results/mf/cifar10_v_m.txt", mf_v_m_l) write_result("../results/mf/cifar10_s_m.txt", mf_s_m_l) if args.all or args.sdt: sdt_acc_l = [] sdt_train_t_l = [] sdt_test_t_l = [] sdt_v_m_l = [] sdt_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] sdt_acc, sdt_train_t, sdt_test_t, sdt_v_m, sdt_s_m = experiment_sdt() sdt_acc_l.append(sdt_acc) sdt_train_t_l.append(sdt_train_t) sdt_test_t_l.append(sdt_test_t) sdt_v_m_l.append(sdt_v_m) sdt_s_m_l.append(sdt_s_m) write_result("../results/sdt/cifar10_acc.txt", sdt_acc_l) write_result("../results/sdt/cifar10_train_t.txt", sdt_train_t_l) write_result("../results/sdt/cifar10_test_t.txt", sdt_test_t_l) write_result("../results/sdt/cifar10_v_m.txt", sdt_v_m_l) write_result("../results/sdt/cifar10_s_m.txt", sdt_s_m_l) if args.all or args.sdf: sdf_acc_l = [] sdf_train_t_l = [] sdf_test_t_l = [] sdf_v_m_l = [] sdf_s_m_l = [] for i in range(10): p = permutation(X_train.shape[0]) X_r = X_train[p] y_r = y_train[p] sdf_acc, sdf_train_t, sdf_test_t, sdf_v_m, sdf_s_m = experiment_sdf() sdf_acc_l.append(sdf_acc) sdf_train_t_l.append(sdf_train_t) sdf_test_t_l.append(sdf_test_t) sdf_v_m_l.append(sdf_v_m) sdf_s_m_l.append(sdf_s_m) write_result("../results/sdf/cifar10_acc.txt", sdf_acc_l) write_result("../results/sdf/cifar10_train_t.txt", sdf_train_t_l) write_result("../results/sdf/cifar10_test_t.txt", sdf_test_t_l) write_result("../results/sdf/cifar10_v_m.txt", sdf_v_m_l) write_result("../results/sdf/cifar10_s_m.txt", sdf_s_m_l)
[ 37811, 198, 13838, 25, 9398, 726, 259, 33591, 198, 37811, 198, 11748, 640, 198, 11748, 26692, 22602, 198, 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 10178, 13, 19608, 292, 1039, 355, 40522, 198, 6738, 299, 32152, 13, 25120, 1330, 9943, 7094, 198, 6738, 1341, 35720, 13, 21048, 1330, 26423, 27660, 9487, 7483, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 198, 6738, 7850, 1330, 5509, 198, 6738, 1341, 70, 5872, 1330, 27328, 4484, 34605, 9487, 7483, 198, 6738, 45647, 27110, 1330, 13860, 10707, 1166, 34605, 628, 198, 4299, 3551, 62, 20274, 7, 34345, 11, 697, 62, 7278, 2599, 198, 220, 220, 220, 37227, 20257, 274, 2482, 284, 7368, 2420, 2393, 37811, 198, 220, 220, 220, 5072, 796, 1280, 7, 34345, 11, 366, 86, 4943, 198, 220, 220, 220, 329, 697, 287, 697, 62, 7278, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 13564, 7, 2536, 7, 4134, 8, 1343, 37082, 77, 4943, 628, 198, 4299, 17724, 7, 4871, 7483, 2599, 198, 220, 220, 220, 37227, 8645, 689, 16277, 422, 2746, 37811, 198, 220, 220, 220, 16277, 796, 1398, 7483, 13, 79, 17407, 7, 55, 62, 9288, 8, 628, 220, 220, 220, 279, 62, 83, 796, 657, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 55, 62, 9288, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16277, 58, 72, 60, 6624, 331, 62, 9288, 58, 72, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 83, 15853, 352, 628, 220, 220, 220, 1441, 279, 62, 83, 1220, 1395, 62, 9288, 13, 43358, 58, 15, 60, 628, 198, 4299, 6306, 62, 28664, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 347, 963, 26423, 12200, 37811, 198, 220, 220, 220, 288, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 288, 83, 796, 26423, 27660, 9487, 7483, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 25, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 25, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 13, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 75, 13, 33295, 7, 28764, 2867, 7, 28664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1441, 288, 83, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 41871, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 14534, 9115, 37811, 198, 220, 220, 220, 374, 69, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 374, 69, 796, 14534, 34605, 9487, 7483, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 25, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 25, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 13, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 75, 13, 33295, 7, 28764, 2867, 7, 41871, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1441, 374, 69, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 4352, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 367, 2577, 487, 12083, 12200, 37811, 198, 220, 220, 220, 289, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 289, 83, 796, 5509, 13, 39, 2577, 487, 12083, 27660, 9487, 7483, 7, 9806, 62, 7857, 28, 12825, 11, 11542, 62, 41007, 28, 17, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 55, 62, 27432, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 2837, 7, 35500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 8633, 7, 13344, 7, 312, 87, 11, 1395, 62, 83, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 13, 35720, 62, 505, 7, 55, 62, 83, 11, 331, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 290, 357, 72, 1343, 352, 8, 4064, 1802, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 83, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 55, 62, 9288, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 796, 289, 83, 13, 79, 17407, 62, 505, 7, 55, 62, 9288, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 62, 28764, 6624, 331, 62, 9288, 58, 73, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 83, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 75, 13, 33295, 7, 79, 62, 83, 1220, 1395, 62, 9288, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1303, 17893, 265, 262, 4512, 1661, 198, 220, 220, 220, 649, 62, 27432, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 1395, 62, 27432, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 58, 72, 60, 15853, 4512, 62, 2435, 62, 75, 58, 72, 532, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 290, 357, 72, 1343, 352, 8, 4064, 1802, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27432, 62, 2435, 62, 75, 13, 33295, 7, 27432, 62, 2435, 62, 75, 58, 72, 12962, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 649, 62, 27432, 62, 2435, 62, 75, 628, 220, 220, 220, 1441, 289, 83, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 76, 69, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 27328, 4484, 9115, 37811, 198, 220, 220, 220, 285, 69, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 285, 69, 796, 27328, 4484, 34605, 9487, 7483, 7, 77, 62, 395, 320, 2024, 28, 940, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 13, 47172, 62, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 75, 13, 33295, 7, 28764, 2867, 7, 76, 69, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1303, 17893, 265, 262, 4512, 1661, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 5323, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 58, 72, 60, 15853, 4512, 62, 2435, 62, 75, 58, 72, 532, 352, 60, 628, 220, 220, 220, 1441, 285, 69, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 21282, 83, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 13860, 26423, 12200, 37811, 198, 220, 220, 220, 264, 28664, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 264, 28664, 796, 26423, 27660, 9487, 7483, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 13, 47172, 62, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 11, 6097, 41888, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 75, 13, 33295, 7, 28764, 2867, 7, 21282, 83, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1303, 17893, 265, 262, 4512, 1661, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 5323, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 58, 72, 60, 15853, 4512, 62, 2435, 62, 75, 58, 72, 532, 352, 60, 628, 220, 220, 220, 1441, 264, 28664, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 4299, 6306, 62, 82, 7568, 33529, 198, 220, 220, 220, 37227, 10987, 82, 10256, 329, 13860, 26423, 9115, 37811, 198, 220, 220, 220, 264, 7568, 62, 75, 796, 17635, 198, 220, 220, 220, 4512, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 1332, 62, 2435, 62, 75, 796, 17635, 198, 220, 220, 220, 410, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 62, 76, 62, 75, 796, 17635, 628, 220, 220, 220, 264, 7568, 796, 13860, 10707, 1166, 34605, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 4059, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 83, 796, 1395, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 83, 796, 331, 62, 81, 58, 72, 1635, 1802, 1058, 357, 72, 1343, 352, 8, 1635, 1802, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 13, 47172, 62, 11147, 7, 55, 62, 83, 11, 331, 62, 83, 11, 6097, 41888, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 75, 13, 33295, 7, 28764, 2867, 7, 82, 7568, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2435, 62, 75, 13, 33295, 7, 437, 62, 2435, 532, 923, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 796, 26692, 22602, 13, 32844, 62, 31673, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 76, 62, 75, 13, 33295, 7, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 796, 26692, 22602, 13, 2032, 499, 62, 31673, 3419, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 76, 62, 75, 13, 33295, 7, 82, 62, 76, 8, 628, 220, 220, 220, 1303, 17893, 265, 262, 4512, 1661, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 5323, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2435, 62, 75, 58, 72, 60, 15853, 4512, 62, 2435, 62, 75, 58, 72, 532, 352, 60, 628, 220, 220, 220, 1441, 264, 7568, 62, 75, 11, 4512, 62, 2435, 62, 75, 11, 1332, 62, 2435, 62, 75, 11, 410, 62, 76, 62, 75, 11, 264, 62, 76, 62, 75, 628, 198, 2, 43426, 327, 5064, 1503, 1366, 198, 2, 14435, 1096, 198, 9888, 796, 45941, 13, 32604, 7, 37659, 13, 283, 858, 7, 15, 11, 17759, 4008, 198, 11265, 1096, 796, 37456, 2124, 25, 357, 87, 532, 5046, 8, 1220, 5046, 198, 198, 2, 16835, 1366, 198, 66, 361, 283, 62, 2213, 1299, 316, 796, 40522, 13, 34, 5064, 1503, 940, 7, 15763, 2625, 40720, 1600, 4512, 28, 17821, 11, 4321, 28, 17821, 11, 6121, 28, 14202, 8, 198, 55, 62, 27432, 796, 3487, 1096, 7, 66, 361, 283, 62, 2213, 1299, 316, 13, 7890, 8, 198, 88, 62, 27432, 796, 45941, 13, 18747, 7, 66, 361, 283, 62, 2213, 1299, 316, 13, 83, 853, 1039, 8, 198, 198, 2, 6208, 1366, 198, 66, 361, 283, 62, 9288, 2617, 796, 40522, 13, 34, 5064, 1503, 940, 7, 15763, 2625, 40720, 1600, 4512, 28, 25101, 11, 4321, 28, 17821, 11, 6121, 28, 14202, 8, 198, 55, 62, 9288, 796, 3487, 1096, 7, 66, 361, 283, 62, 9288, 2617, 13, 7890, 8, 198, 88, 62, 9288, 796, 45941, 13, 18747, 7, 66, 361, 283, 62, 9288, 2617, 13, 83, 853, 1039, 8, 198, 198, 55, 62, 27432, 796, 1395, 62, 27432, 13, 3447, 1758, 32590, 16, 11, 3933, 1635, 3933, 1635, 513, 8, 198, 55, 62, 9288, 796, 1395, 62, 9288, 13, 3447, 1758, 32590, 16, 11, 3933, 1635, 3933, 1635, 513, 8, 198, 198, 2, 2547, 325, 1398, 7483, 7747, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 439, 1600, 1037, 2625, 439, 1398, 13350, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 28664, 1600, 1037, 2625, 12501, 1166, 17039, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 41871, 1600, 1037, 2625, 25120, 17039, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 4352, 1600, 1037, 2625, 38979, 487, 12083, 7150, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 76, 69, 1600, 1037, 2625, 6327, 4484, 17039, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 21282, 83, 1600, 1037, 2625, 5532, 2551, 7150, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 1, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 82, 7568, 1600, 1037, 2625, 5532, 2551, 17039, 1600, 2672, 28, 25101, 11, 2223, 2625, 8095, 62, 7942, 1, 198, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 2, 35006, 10256, 198, 361, 26498, 13, 439, 393, 26498, 13, 28664, 25, 198, 220, 220, 220, 288, 83, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 288, 83, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 288, 83, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 288, 83, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 288, 83, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 4134, 11, 288, 83, 62, 27432, 62, 83, 11, 288, 83, 62, 9288, 62, 83, 11, 288, 83, 62, 85, 62, 76, 11, 288, 83, 62, 82, 62, 76, 796, 6306, 62, 28664, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 4134, 62, 75, 13, 33295, 7, 28664, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 28664, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 28664, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 28664, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 28664, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 288, 83, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 288, 83, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 288, 83, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 288, 83, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 28664, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 288, 83, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 41871, 25, 198, 220, 220, 220, 374, 69, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 374, 69, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 374, 69, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 374, 69, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 374, 69, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 4134, 11, 374, 69, 62, 27432, 62, 83, 11, 374, 69, 62, 9288, 62, 83, 11, 374, 69, 62, 85, 62, 76, 11, 374, 69, 62, 82, 62, 76, 796, 6306, 62, 41871, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 4134, 62, 75, 13, 33295, 7, 41871, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 41871, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 41871, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 41871, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 41871, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 374, 69, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 374, 69, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 374, 69, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 374, 69, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 41871, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 374, 69, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 4352, 25, 198, 220, 220, 220, 289, 83, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 289, 83, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 289, 83, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 289, 83, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 289, 83, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 4134, 11, 289, 83, 62, 27432, 62, 83, 11, 289, 83, 62, 9288, 62, 83, 11, 289, 83, 62, 85, 62, 76, 11, 289, 83, 62, 82, 62, 76, 796, 6306, 62, 4352, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 4134, 62, 75, 13, 33295, 7, 4352, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 4352, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 4352, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 4352, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 4352, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 289, 83, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 289, 83, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 289, 83, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 289, 83, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 4352, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 289, 83, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 76, 69, 25, 198, 220, 220, 220, 285, 69, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 285, 69, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 285, 69, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 285, 69, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 285, 69, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 4134, 11, 285, 69, 62, 27432, 62, 83, 11, 285, 69, 62, 9288, 62, 83, 11, 285, 69, 62, 85, 62, 76, 11, 285, 69, 62, 82, 62, 76, 796, 6306, 62, 76, 69, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 4134, 62, 75, 13, 33295, 7, 76, 69, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 76, 69, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 76, 69, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 76, 69, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 76, 69, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 285, 69, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 285, 69, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 285, 69, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 285, 69, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 76, 69, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 285, 69, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 21282, 83, 25, 198, 220, 220, 220, 264, 28664, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 28664, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 28664, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 28664, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 28664, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 4134, 11, 264, 28664, 62, 27432, 62, 83, 11, 264, 28664, 62, 9288, 62, 83, 11, 264, 28664, 62, 85, 62, 76, 11, 264, 28664, 62, 82, 62, 76, 796, 6306, 62, 21282, 83, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 4134, 62, 75, 13, 33295, 7, 21282, 83, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 21282, 83, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 21282, 83, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 21282, 83, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 28664, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 21282, 83, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 264, 28664, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 264, 28664, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 264, 28664, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 264, 28664, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 21282, 83, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 264, 28664, 62, 82, 62, 76, 62, 75, 8, 198, 198, 361, 26498, 13, 439, 393, 26498, 13, 82, 7568, 25, 198, 220, 220, 220, 264, 7568, 62, 4134, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 7568, 62, 27432, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 7568, 62, 9288, 62, 83, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 7568, 62, 85, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 264, 7568, 62, 82, 62, 76, 62, 75, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 9943, 7094, 7, 55, 62, 27432, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 81, 796, 1395, 62, 27432, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 81, 796, 331, 62, 27432, 58, 79, 60, 628, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 4134, 11, 264, 7568, 62, 27432, 62, 83, 11, 264, 7568, 62, 9288, 62, 83, 11, 264, 7568, 62, 85, 62, 76, 11, 264, 7568, 62, 82, 62, 76, 796, 6306, 62, 82, 7568, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 4134, 62, 75, 13, 33295, 7, 82, 7568, 62, 4134, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 27432, 62, 83, 62, 75, 13, 33295, 7, 82, 7568, 62, 27432, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 9288, 62, 83, 62, 75, 13, 33295, 7, 82, 7568, 62, 9288, 62, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 85, 62, 76, 62, 75, 13, 33295, 7, 82, 7568, 62, 85, 62, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 7568, 62, 82, 62, 76, 62, 75, 13, 33295, 7, 82, 7568, 62, 82, 62, 76, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 4134, 13, 14116, 1600, 264, 7568, 62, 4134, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 27432, 62, 83, 13, 14116, 1600, 264, 7568, 62, 27432, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 9288, 62, 83, 13, 14116, 1600, 264, 7568, 62, 9288, 62, 83, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 85, 62, 76, 13, 14116, 1600, 264, 7568, 62, 85, 62, 76, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 20274, 7203, 40720, 43420, 14, 82, 7568, 14, 66, 361, 283, 940, 62, 82, 62, 76, 13, 14116, 1600, 264, 7568, 62, 82, 62, 76, 62, 75, 8, 198 ]
1.891149
7,129
"""Text wrapping and filling. """ # Copyright (C) 1999-2001 Gregory P. Ward. # Copyright (C) 2002, 2003 Python Software Foundation. # Written by Greg Ward <[email protected]> # Modified by Sophie Kirschner # https://github.com/python/cpython/blob/master/Lib/textwrap.py # https://github.com/python/cpython/blob/master/LICENSE __revision__ = "$Id$" import string, re # Do the right thing with boolean values for all known Python versions # (so this module can be copied to projects that don't depend on Python # 2.3, e.g. Optik and Docutils) by uncommenting the block of code below. #try: # True, False #except NameError: # (True, False) = (1, 0) __all__ = ['TextWrapper'] # Hardcode the recognized whitespace characters to the US-ASCII # whitespace characters. The main reason for doing this is that in # ISO-8859-1, 0xa0 is non-breaking whitespace, so in certain locales # that character winds up in string.whitespace. Respecting # string.whitespace in those cases would 1) make textwrap treat 0xa0 the # same as any other whitespace char, which is clearly wrong (it's a # *non-breaking* space), 2) possibly cause problems with Unicode, # since 0xa0 is not in range(128). _whitespace = '\t\n\x0b\x0c\r ' class TextWrapper: """ Object for wrapping/filling text. The public interface consists of the wrap() and fill() methods; the other methods are just there for subclasses to override in order to tweak the default behaviour. If you want to completely replace the main wrapping algorithm, you'll probably have to override _wrap_chunks(). Several instance attributes control various aspects of wrapping: width (default: 70) the maximum width of wrapped lines (unless break_long_words is false) initial_indent (default: "") string that will be prepended to the first line of wrapped output. Counts towards the line's width. subsequent_indent (default: "") string that will be prepended to all lines save the first of wrapped output; also counts towards each line's width. expand_tabs (default: true) Expand tabs in input text to spaces before further processing. Each tab will become 1 .. 8 spaces, depending on its position in its line. If false, each tab is treated as a single character. replace_whitespace (default: true) Replace all whitespace characters in the input text by spaces after tab expansion. Note that if expand_tabs is false and replace_whitespace is true, every tab will be converted to a single space! break_long_words (default: true) Break words longer than 'width'. If false, those words will not be broken, and some lines might be longer than 'width'. break_on_hyphens (default: true) Allow breaking hyphenated words. If true, wrapping will occur preferably on whitespaces and right after hyphens part of compound words. drop_whitespace (default: true) Drop leading and trailing whitespace from lines. """ # This funky little regex is just the trick for splitting # text up into word-wrappable chunks. E.g. # "Hello there -- you goof-ball, use the -b option!" # splits into # Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option! # (after stripping out empty strings). wordsep_re = re.compile( r'(\s+|' # any whitespace r'[^\s\w]*\w+[^0-9\W]-(?=\w+[^0-9\W])|' # hyphenated words r'(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w))') # em-dash # This less funky little regex just split on recognized spaces. E.g. # "Hello there -- you goof-ball, use the -b option!" # splits into # Hello/ /there/ /--/ /you/ /goof-ball,/ /use/ /the/ /-b/ /option!/ wordsep_simple_re = re.compile(r'(\s+)') # -- Private methods ----------------------------------------------- # (possibly useful for subclasses to override) def _split(self, text): """_split(text : string) -> [string] Split the text to wrap into indivisible chunks. Chunks are not quite the same as words; see _wrap_chunks() for full details. As an example, the text Look, goof-ball -- use the -b option! breaks into the following chunks: 'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ', 'use', ' ', 'the', ' ', '-b', ' ', 'option!' if break_on_hyphens is True, or in: 'Look,', ' ', 'goof-ball', ' ', '--', ' ', 'use', ' ', 'the', ' ', '-b', ' ', option!' otherwise. """ if self.break_on_hyphens: pat = self.wordsep_re else: pat = self.wordsep_simple_re chunks = pat.split(text.decode("latin-1")) chunks = list(filter(None, chunks)) # remove empty chunks return chunks def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width): """_handle_long_word(chunks : [string], cur_line : [string], cur_len : int, width : int) Handle a chunk of text (most likely a word, not whitespace) that is too long to fit in any line. """ # Figure out when indent is larger than the specified width, and make # sure at least one character is stripped off on every pass if width < 1: space_left = 1 else: space_left = width - cur_len # If we're allowed to break long words, then do so: put as much # of the next chunk onto the current line as will fit. if self.break_long_words: cur_line.append(reversed_chunks[-1][:space_left]) reversed_chunks[-1] = reversed_chunks[-1][space_left:] # Otherwise, we have to preserve the long word intact. Only add # it to the current line if there's nothing already there -- # that minimizes how much we violate the width constraint. elif not cur_line: cur_line.append(reversed_chunks.pop()) # If we're not allowed to break long words, and there's already # text on the current line, do nothing. Next time through the # main loop of _wrap_chunks(), we'll wind up here again, but # cur_len will be zero, so the next line will be entirely # devoted to the long word that we can't handle right now. # Added to consider basic ANSI escape sequences as zero-width def _wrap_chunks(self, chunks): """_wrap_chunks(chunks : [string]) -> [string] Wrap a sequence of text chunks and return a list of lines of length 'self.width' or less. (If 'break_long_words' is false, some lines may be longer than this.) Chunks correspond roughly to words and the whitespace between them: each chunk is indivisible (modulo 'break_long_words'), but a line break can come between any two chunks. Chunks should not have internal whitespace; ie. a chunk is either all whitespace or a "word". Whitespace chunks will be removed from the beginning and end of lines, but apart from that whitespace is preserved. """ lines = [] if self.width <= 0: raise ValueError("invalid width %r (must be > 0)" % self.width) # Arrange in reverse order so items can be efficiently popped # from a stack of chucks. chunks.reverse() while chunks: # Start the list of chunks that will make up the current line. # cur_len is just the length of all the chunks in cur_line. cur_line = [] cur_len = 0 # Figure out which static string will prefix this line. if lines: indent = self.subsequent_indent else: indent = self.initial_indent # Maximum width for this line. width = self.width - len(indent) # First chunk on line is whitespace -- drop it, unless this # is the very beginning of the text (ie. no lines started yet). if self.drop_whitespace and chunks[-1].strip() == '' and lines: del chunks[-1] while chunks: l = self._get_chunk_length(chunks[-1]) # Can at least squeeze this chunk onto the current line. if cur_len + l <= width: cur_line.append(chunks.pop()) cur_len += l # Nope, this line is full. else: break # The current line is full, and the next chunk is too big to # fit on *any* line (not just this one). if chunks and self._get_chunk_length(chunks[-1]) > width: self._handle_long_word(chunks, cur_line, cur_len, width) # If the last chunk on this line is all whitespace, drop it. if self.drop_whitespace and cur_line and cur_line[-1].strip() == '': del cur_line[-1] # Convert current line back to a string and store it in list # of all lines (return value). if cur_line: lines.append(indent + ''.join(cur_line)) return lines # -- Public interface ---------------------------------------------- def wrap(self, text): """wrap(text : string) -> [string] Reformat the single paragraph in 'text' so it fits in lines of no more than 'self.width' columns, and return a list of wrapped lines. Tabs in 'text' are expanded with string.expandtabs(), and all other whitespace characters (including newline) are converted to space. """ chunks = self._split(text) return self._wrap_chunks(chunks) def fill(self, text): """fill(text : string) -> string Reformat the single paragraph in 'text' to fit in lines of no more than 'self.width' columns, and return a new string containing the entire wrapped paragraph. """ return "\n".join(self.wrap(text))
[ 37811, 8206, 27074, 290, 12591, 13, 198, 37811, 198, 198, 2, 15069, 357, 34, 8, 7358, 12, 14585, 20653, 350, 13, 12150, 13, 198, 2, 15069, 357, 34, 8, 6244, 11, 5816, 11361, 10442, 5693, 13, 198, 2, 22503, 416, 8547, 12150, 1279, 70, 904, 31, 29412, 13, 3262, 29, 198, 198, 2, 40499, 416, 35331, 7385, 20601, 1008, 198, 2, 3740, 1378, 12567, 13, 785, 14, 29412, 14, 13155, 7535, 14, 2436, 672, 14, 9866, 14, 25835, 14, 5239, 37150, 13, 9078, 198, 2, 3740, 1378, 12567, 13, 785, 14, 29412, 14, 13155, 7535, 14, 2436, 672, 14, 9866, 14, 43, 2149, 24290, 198, 198, 834, 260, 10178, 834, 796, 17971, 7390, 3, 1, 198, 198, 11748, 4731, 11, 302, 198, 198, 2, 2141, 262, 826, 1517, 351, 25131, 3815, 329, 477, 1900, 11361, 6300, 198, 2, 357, 568, 428, 8265, 460, 307, 18984, 284, 4493, 326, 836, 470, 4745, 319, 11361, 198, 2, 362, 13, 18, 11, 304, 13, 70, 13, 13123, 1134, 290, 14432, 26791, 8, 416, 8820, 434, 278, 262, 2512, 286, 2438, 2174, 13, 198, 2, 28311, 25, 198, 2, 220, 220, 220, 6407, 11, 10352, 198, 2, 16341, 6530, 12331, 25, 198, 2, 220, 220, 220, 357, 17821, 11, 10352, 8, 796, 357, 16, 11, 657, 8, 198, 198, 834, 439, 834, 796, 37250, 8206, 36918, 2848, 20520, 198, 198, 2, 6912, 8189, 262, 8018, 13216, 10223, 3435, 284, 262, 1294, 12, 42643, 3978, 198, 2, 13216, 10223, 3435, 13, 220, 383, 1388, 1738, 329, 1804, 428, 318, 326, 287, 198, 2, 19694, 12, 3459, 3270, 12, 16, 11, 657, 27865, 15, 318, 1729, 12, 13395, 13216, 10223, 11, 523, 287, 1728, 1957, 274, 198, 2, 326, 2095, 13520, 510, 287, 4731, 13, 1929, 2737, 10223, 13, 220, 1874, 35570, 198, 2, 4731, 13, 1929, 2737, 10223, 287, 883, 2663, 561, 352, 8, 787, 2420, 37150, 2190, 657, 27865, 15, 262, 198, 2, 976, 355, 597, 584, 13216, 10223, 1149, 11, 543, 318, 4084, 2642, 357, 270, 338, 257, 198, 2, 1635, 13159, 12, 13395, 9, 2272, 828, 362, 8, 5457, 2728, 2761, 351, 34371, 11, 198, 2, 1201, 657, 27865, 15, 318, 407, 287, 2837, 7, 12762, 737, 198, 62, 1929, 2737, 10223, 796, 705, 59, 83, 59, 77, 59, 87, 15, 65, 59, 87, 15, 66, 59, 81, 705, 198, 198, 4871, 8255, 36918, 2848, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9515, 329, 27074, 14, 69, 4509, 2420, 13, 220, 383, 1171, 7071, 10874, 286, 198, 220, 220, 220, 262, 14441, 3419, 290, 6070, 3419, 5050, 26, 262, 584, 5050, 389, 655, 612, 329, 198, 220, 220, 220, 850, 37724, 284, 20957, 287, 1502, 284, 25393, 262, 4277, 9172, 13, 198, 220, 220, 220, 1002, 345, 765, 284, 3190, 6330, 262, 1388, 27074, 11862, 11, 198, 220, 220, 220, 345, 1183, 2192, 423, 284, 20957, 4808, 37150, 62, 354, 14125, 22446, 628, 220, 220, 220, 12168, 4554, 12608, 1630, 2972, 7612, 286, 27074, 25, 198, 220, 220, 220, 220, 220, 9647, 357, 12286, 25, 4317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 262, 5415, 9647, 286, 12908, 3951, 357, 25252, 2270, 62, 6511, 62, 10879, 198, 220, 220, 220, 220, 220, 220, 220, 318, 3991, 8, 198, 220, 220, 220, 220, 220, 4238, 62, 521, 298, 357, 12286, 25, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 326, 481, 307, 3143, 1631, 284, 262, 717, 1627, 286, 12908, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 220, 2764, 82, 3371, 262, 1627, 338, 9647, 13, 198, 220, 220, 220, 220, 220, 8840, 62, 521, 298, 357, 12286, 25, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 326, 481, 307, 3143, 1631, 284, 477, 3951, 3613, 262, 717, 198, 220, 220, 220, 220, 220, 220, 220, 286, 12908, 5072, 26, 635, 9853, 3371, 1123, 1627, 338, 9647, 13, 198, 220, 220, 220, 220, 220, 4292, 62, 8658, 82, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49368, 22524, 287, 5128, 2420, 284, 9029, 878, 2252, 7587, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5501, 7400, 481, 1716, 352, 11485, 807, 9029, 11, 6906, 319, 663, 2292, 287, 198, 220, 220, 220, 220, 220, 220, 220, 663, 1627, 13, 220, 1002, 3991, 11, 1123, 7400, 318, 5716, 355, 257, 2060, 2095, 13, 198, 220, 220, 220, 220, 220, 6330, 62, 1929, 2737, 10223, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 40177, 477, 13216, 10223, 3435, 287, 262, 5128, 2420, 416, 9029, 198, 220, 220, 220, 220, 220, 220, 220, 706, 7400, 7118, 13, 220, 5740, 326, 611, 4292, 62, 8658, 82, 318, 3991, 290, 198, 220, 220, 220, 220, 220, 220, 220, 6330, 62, 1929, 2737, 10223, 318, 2081, 11, 790, 7400, 481, 307, 11513, 284, 257, 198, 220, 220, 220, 220, 220, 220, 220, 2060, 2272, 0, 198, 220, 220, 220, 220, 220, 2270, 62, 6511, 62, 10879, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12243, 2456, 2392, 621, 705, 10394, 4458, 220, 1002, 3991, 11, 883, 2456, 481, 407, 198, 220, 220, 220, 220, 220, 220, 220, 307, 5445, 11, 290, 617, 3951, 1244, 307, 2392, 621, 705, 10394, 4458, 198, 220, 220, 220, 220, 220, 2270, 62, 261, 62, 36362, 5135, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22507, 7163, 5328, 831, 515, 2456, 13, 1002, 2081, 11, 27074, 481, 3051, 198, 220, 220, 220, 220, 220, 220, 220, 29203, 319, 13216, 43076, 290, 826, 706, 5328, 5135, 636, 286, 198, 220, 220, 220, 220, 220, 220, 220, 13061, 2456, 13, 198, 220, 220, 220, 220, 220, 4268, 62, 1929, 2737, 10223, 357, 12286, 25, 2081, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14258, 3756, 290, 25462, 13216, 10223, 422, 3951, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 770, 42958, 1310, 40364, 318, 655, 262, 6908, 329, 26021, 198, 220, 220, 220, 1303, 2420, 510, 656, 1573, 12, 29988, 381, 540, 22716, 13, 220, 412, 13, 70, 13, 198, 220, 220, 220, 1303, 220, 220, 366, 15496, 612, 1377, 345, 31644, 12, 1894, 11, 779, 262, 532, 65, 3038, 2474, 198, 220, 220, 220, 1303, 30778, 656, 198, 220, 220, 220, 1303, 220, 220, 18435, 14, 1220, 8117, 14, 1220, 438, 14, 1220, 5832, 14, 1220, 2188, 1659, 12, 14, 1894, 11, 14, 1220, 1904, 14, 1220, 1169, 14, 1220, 12, 65, 14, 1220, 18076, 0, 198, 220, 220, 220, 1303, 357, 8499, 37727, 503, 6565, 13042, 737, 198, 220, 220, 220, 1573, 325, 79, 62, 260, 796, 302, 13, 5589, 576, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 38016, 82, 10, 91, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 597, 13216, 10223, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 58, 61, 59, 82, 59, 86, 60, 9, 59, 86, 10, 58, 61, 15, 12, 24, 59, 54, 60, 30420, 30, 28, 59, 86, 10, 58, 61, 15, 12, 24, 59, 54, 12962, 91, 6, 220, 220, 1303, 5328, 831, 515, 2456, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 7, 30, 27, 41888, 59, 86, 59, 0, 7879, 43054, 59, 5, 17405, 59, 11, 59, 30, 12962, 12, 90, 17, 11, 92, 7, 30, 28, 59, 86, 4008, 11537, 220, 220, 1303, 795, 12, 42460, 628, 220, 220, 220, 1303, 770, 1342, 42958, 1310, 40364, 655, 6626, 319, 8018, 9029, 13, 412, 13, 70, 13, 198, 220, 220, 220, 1303, 220, 220, 366, 15496, 612, 1377, 345, 31644, 12, 1894, 11, 779, 262, 532, 65, 3038, 2474, 198, 220, 220, 220, 1303, 30778, 656, 198, 220, 220, 220, 1303, 220, 220, 18435, 14, 1220, 8117, 14, 1220, 438, 14, 1220, 5832, 14, 1220, 2188, 1659, 12, 1894, 11, 14, 1220, 1904, 14, 1220, 1169, 14, 1220, 12, 65, 14, 1220, 18076, 48443, 198, 220, 220, 220, 1573, 325, 79, 62, 36439, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 82, 28988, 11537, 628, 198, 220, 220, 220, 1303, 1377, 15348, 5050, 20368, 24305, 198, 220, 220, 220, 1303, 357, 39363, 4465, 329, 850, 37724, 284, 20957, 8, 628, 220, 220, 220, 825, 4808, 35312, 7, 944, 11, 2420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 62, 35312, 7, 5239, 1058, 4731, 8, 4613, 685, 8841, 60, 628, 220, 220, 220, 220, 220, 220, 220, 27758, 262, 2420, 284, 14441, 656, 773, 452, 12843, 22716, 13, 220, 609, 14125, 389, 198, 220, 220, 220, 220, 220, 220, 220, 407, 2407, 262, 976, 355, 2456, 26, 766, 4808, 37150, 62, 354, 14125, 3419, 329, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 3307, 13, 220, 1081, 281, 1672, 11, 262, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6803, 11, 31644, 12, 1894, 1377, 779, 262, 532, 65, 3038, 0, 198, 220, 220, 220, 220, 220, 220, 220, 9457, 656, 262, 1708, 22716, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8567, 11, 3256, 705, 46083, 705, 2188, 1659, 12, 3256, 705, 1894, 3256, 705, 46083, 705, 438, 3256, 705, 46083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1904, 3256, 705, 46083, 705, 1169, 3256, 705, 46083, 705, 12, 65, 3256, 705, 46083, 705, 18076, 13679, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2270, 62, 261, 62, 36362, 5135, 318, 6407, 11, 393, 287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8567, 11, 3256, 705, 46083, 705, 2188, 1659, 12, 1894, 3256, 705, 46083, 705, 438, 3256, 705, 46083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1904, 3256, 705, 46083, 705, 1169, 3256, 705, 46083, 705, 12, 65, 3256, 705, 46083, 3038, 13679, 198, 220, 220, 220, 220, 220, 220, 220, 4306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9032, 62, 261, 62, 36362, 5135, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 796, 2116, 13, 4775, 325, 79, 62, 260, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 796, 2116, 13, 4775, 325, 79, 62, 36439, 62, 260, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 796, 1458, 13, 35312, 7, 5239, 13, 12501, 1098, 7203, 75, 10680, 12, 16, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 796, 1351, 7, 24455, 7, 14202, 11, 22716, 4008, 220, 1303, 4781, 6565, 22716, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 22716, 628, 220, 220, 220, 825, 4808, 28144, 62, 6511, 62, 4775, 7, 944, 11, 17687, 62, 354, 14125, 11, 1090, 62, 1370, 11, 1090, 62, 11925, 11, 9647, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 62, 28144, 62, 6511, 62, 4775, 7, 354, 14125, 1058, 685, 8841, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 1058, 685, 8841, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 11925, 1058, 493, 11, 9647, 1058, 493, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33141, 257, 16058, 286, 2420, 357, 1712, 1884, 257, 1573, 11, 407, 13216, 10223, 8, 326, 198, 220, 220, 220, 220, 220, 220, 220, 318, 1165, 890, 284, 4197, 287, 597, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 618, 33793, 318, 4025, 621, 262, 7368, 9647, 11, 290, 787, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1654, 379, 1551, 530, 2095, 318, 18818, 572, 319, 790, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9647, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2272, 62, 9464, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2272, 62, 9464, 796, 9647, 532, 1090, 62, 11925, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 821, 3142, 284, 2270, 890, 2456, 11, 788, 466, 523, 25, 1234, 355, 881, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 262, 1306, 16058, 4291, 262, 1459, 1627, 355, 481, 4197, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9032, 62, 6511, 62, 10879, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 13, 33295, 7, 260, 690, 276, 62, 354, 14125, 58, 12, 16, 7131, 25, 13200, 62, 9464, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17687, 62, 354, 14125, 58, 12, 16, 60, 796, 17687, 62, 354, 14125, 58, 12, 16, 7131, 13200, 62, 9464, 47715, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15323, 11, 356, 423, 284, 12201, 262, 890, 1573, 16572, 13, 220, 5514, 751, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 284, 262, 1459, 1627, 611, 612, 338, 2147, 1541, 612, 1377, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 326, 10356, 4340, 703, 881, 356, 16967, 262, 9647, 32315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 1090, 62, 1370, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 13, 33295, 7, 260, 690, 276, 62, 354, 14125, 13, 12924, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 821, 407, 3142, 284, 2270, 890, 2456, 11, 290, 612, 338, 1541, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2420, 319, 262, 1459, 1627, 11, 466, 2147, 13, 220, 7406, 640, 832, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1388, 9052, 286, 4808, 37150, 62, 354, 14125, 22784, 356, 1183, 2344, 510, 994, 757, 11, 475, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1090, 62, 11925, 481, 307, 6632, 11, 523, 262, 1306, 1627, 481, 307, 5000, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13378, 284, 262, 890, 1573, 326, 356, 460, 470, 5412, 826, 783, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 10687, 284, 2074, 4096, 3537, 11584, 6654, 16311, 355, 6632, 12, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 4808, 37150, 62, 354, 14125, 7, 944, 11, 22716, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 62, 37150, 62, 354, 14125, 7, 354, 14125, 1058, 685, 8841, 12962, 4613, 685, 8841, 60, 628, 220, 220, 220, 220, 220, 220, 220, 41028, 257, 8379, 286, 2420, 22716, 290, 1441, 257, 1351, 286, 3951, 286, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 705, 944, 13, 10394, 6, 393, 1342, 13, 220, 357, 1532, 705, 9032, 62, 6511, 62, 10879, 6, 318, 3991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 617, 3951, 743, 307, 2392, 621, 428, 2014, 220, 609, 14125, 6053, 7323, 198, 220, 220, 220, 220, 220, 220, 220, 284, 2456, 290, 262, 13216, 10223, 1022, 606, 25, 1123, 16058, 318, 198, 220, 220, 220, 220, 220, 220, 220, 773, 452, 12843, 357, 4666, 43348, 705, 9032, 62, 6511, 62, 10879, 33809, 475, 257, 1627, 2270, 460, 198, 220, 220, 220, 220, 220, 220, 220, 1282, 1022, 597, 734, 22716, 13, 220, 609, 14125, 815, 407, 423, 5387, 198, 220, 220, 220, 220, 220, 220, 220, 13216, 10223, 26, 37941, 13, 257, 16058, 318, 2035, 477, 13216, 10223, 393, 257, 366, 4775, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 29290, 10223, 22716, 481, 307, 4615, 422, 262, 3726, 290, 886, 286, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 11, 475, 5475, 422, 326, 13216, 10223, 318, 17232, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10394, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 259, 12102, 9647, 4064, 81, 357, 27238, 307, 1875, 657, 16725, 4064, 2116, 13, 10394, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 943, 9521, 287, 9575, 1502, 523, 3709, 460, 307, 18306, 22928, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 422, 257, 8931, 286, 442, 6238, 13, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 13, 50188, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 981, 22716, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7253, 262, 1351, 286, 22716, 326, 481, 787, 510, 262, 1459, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1090, 62, 11925, 318, 655, 262, 4129, 286, 477, 262, 22716, 287, 1090, 62, 1370, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 11925, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 543, 9037, 4731, 481, 21231, 428, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33793, 796, 2116, 13, 7266, 44399, 62, 521, 298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33793, 796, 2116, 13, 36733, 62, 521, 298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22246, 9647, 329, 428, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 796, 2116, 13, 10394, 532, 18896, 7, 521, 298, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3274, 16058, 319, 1627, 318, 13216, 10223, 1377, 4268, 340, 11, 4556, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 262, 845, 3726, 286, 262, 2420, 357, 494, 13, 645, 3951, 2067, 1865, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14781, 62, 1929, 2737, 10223, 290, 22716, 58, 12, 16, 4083, 36311, 3419, 6624, 10148, 290, 3951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 22716, 58, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 22716, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 796, 2116, 13557, 1136, 62, 354, 2954, 62, 13664, 7, 354, 14125, 58, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1680, 379, 1551, 21229, 428, 16058, 4291, 262, 1459, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 11925, 1343, 300, 19841, 9647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 1370, 13, 33295, 7, 354, 14125, 13, 12924, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 11925, 15853, 300, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 39544, 11, 428, 1627, 318, 1336, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 1459, 1627, 318, 1336, 11, 290, 262, 1306, 16058, 318, 1165, 1263, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4197, 319, 1635, 1092, 9, 1627, 357, 1662, 655, 428, 530, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 22716, 290, 2116, 13557, 1136, 62, 354, 2954, 62, 13664, 7, 354, 14125, 58, 12, 16, 12962, 1875, 9647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 28144, 62, 6511, 62, 4775, 7, 354, 14125, 11, 1090, 62, 1370, 11, 1090, 62, 11925, 11, 9647, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 938, 16058, 319, 428, 1627, 318, 477, 13216, 10223, 11, 4268, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14781, 62, 1929, 2737, 10223, 290, 1090, 62, 1370, 290, 1090, 62, 1370, 58, 12, 16, 4083, 36311, 3419, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 1090, 62, 1370, 58, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 1459, 1627, 736, 284, 257, 4731, 290, 3650, 340, 287, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 477, 3951, 357, 7783, 1988, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 1370, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 521, 298, 1343, 705, 4458, 22179, 7, 22019, 62, 1370, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3951, 628, 198, 220, 220, 220, 1303, 1377, 5094, 7071, 20368, 26171, 628, 220, 220, 220, 825, 14441, 7, 944, 11, 2420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37150, 7, 5239, 1058, 4731, 8, 4613, 685, 8841, 60, 628, 220, 220, 220, 220, 220, 220, 220, 17893, 265, 262, 2060, 7322, 287, 705, 5239, 6, 523, 340, 11414, 287, 3951, 286, 198, 220, 220, 220, 220, 220, 220, 220, 645, 517, 621, 705, 944, 13, 10394, 6, 15180, 11, 290, 1441, 257, 1351, 286, 12908, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 220, 309, 8937, 287, 705, 5239, 6, 389, 9902, 351, 4731, 13, 11201, 392, 8658, 82, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 290, 477, 584, 13216, 10223, 3435, 357, 8201, 649, 1370, 8, 389, 198, 220, 220, 220, 220, 220, 220, 220, 11513, 284, 2272, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 796, 2116, 13557, 35312, 7, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 37150, 62, 354, 14125, 7, 354, 14125, 8, 628, 220, 220, 220, 825, 6070, 7, 944, 11, 2420, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20797, 7, 5239, 1058, 4731, 8, 4613, 4731, 628, 220, 220, 220, 220, 220, 220, 220, 17893, 265, 262, 2060, 7322, 287, 705, 5239, 6, 284, 4197, 287, 3951, 286, 645, 198, 220, 220, 220, 220, 220, 220, 220, 517, 621, 705, 944, 13, 10394, 6, 15180, 11, 290, 1441, 257, 649, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 7268, 262, 2104, 12908, 7322, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37082, 77, 1911, 22179, 7, 944, 13, 37150, 7, 5239, 4008, 198 ]
2.520575
4,034
# Copyright 2014 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from oslo_utils import versionutils import nova.conf from nova import db from nova import exception from nova.i18n import _ from nova import objects from nova.objects import base as obj_base from nova.objects import fields CONF = nova.conf.CONF # TODO(berrange): Remove NovaObjectDictCompat @obj_base.NovaObjectRegistry.register @obj_base.NovaObjectRegistry.register
[ 2, 220, 220, 220, 15069, 1946, 2297, 10983, 11, 3457, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 2010, 29851, 198, 6738, 28686, 5439, 62, 26791, 1330, 2196, 26791, 198, 198, 11748, 645, 6862, 13, 10414, 198, 6738, 645, 6862, 1330, 20613, 198, 6738, 645, 6862, 1330, 6631, 198, 6738, 645, 6862, 13, 72, 1507, 77, 1330, 4808, 198, 6738, 645, 6862, 1330, 5563, 198, 6738, 645, 6862, 13, 48205, 1330, 2779, 355, 26181, 62, 8692, 198, 6738, 645, 6862, 13, 48205, 1330, 7032, 198, 198, 10943, 37, 796, 645, 6862, 13, 10414, 13, 10943, 37, 628, 198, 2, 16926, 46, 7, 527, 9521, 2599, 17220, 17711, 10267, 35, 713, 40073, 198, 31, 26801, 62, 8692, 13, 45, 10071, 10267, 8081, 4592, 13, 30238, 628, 198, 31, 26801, 62, 8692, 13, 45, 10071, 10267, 8081, 4592, 13, 30238, 198 ]
3.268852
305
from PIL import Image from PIL.ExifTags import TAGS import exifread import re import json def get_exif_data(fname): """Get embedded EXIF data from image file.""" ret = {} try: img = Image.open(fname) if hasattr( img, '_getexif' ): exifinfo = img._getexif() if exifinfo != None: for tag, value in exifinfo.items(): decoded = TAGS.get(tag, tag) ret[decoded] = value except IOError: print('IOERROR ' + fname) return ret if __name__ == '__main__': fileName = "1 (36).jpg" # exif = get_exif_data(fileName) # print(exif) read()
[ 6738, 350, 4146, 1330, 7412, 198, 6738, 350, 4146, 13, 3109, 361, 36142, 1330, 37801, 50, 198, 11748, 409, 361, 961, 198, 11748, 302, 198, 198, 11748, 33918, 198, 198, 4299, 651, 62, 1069, 361, 62, 7890, 7, 69, 3672, 2599, 198, 220, 220, 220, 37227, 3855, 14553, 7788, 5064, 1366, 422, 2939, 2393, 526, 15931, 198, 220, 220, 220, 1005, 796, 23884, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 7412, 13, 9654, 7, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 33705, 11, 705, 62, 1136, 1069, 361, 6, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 361, 10951, 796, 33705, 13557, 1136, 1069, 361, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 409, 361, 10951, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7621, 11, 1988, 287, 409, 361, 10951, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 875, 9043, 796, 37801, 50, 13, 1136, 7, 12985, 11, 7621, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 12501, 9043, 60, 796, 1988, 198, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9399, 24908, 705, 1343, 277, 3672, 8, 198, 220, 220, 220, 1441, 1005, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2393, 5376, 796, 366, 16, 357, 2623, 737, 9479, 1, 198, 220, 220, 220, 1303, 409, 361, 796, 651, 62, 1069, 361, 62, 7890, 7, 7753, 5376, 8, 198, 220, 220, 220, 1303, 3601, 7, 1069, 361, 8, 628, 220, 220, 220, 1100, 3419 ]
2.049383
324
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_bootstrap import Bootstrap from flask_login import LoginManager from flask_moment import Moment from flask_mail import Mail # from flask_mail_sendgrid import MailSendGrid from config import Config from logging.handlers import RotatingFileHandler import logging import os db = SQLAlchemy() migrate = Migrate() bootstrap = Bootstrap() login = LoginManager() moment = Moment() mail = Mail() from app import models
[ 6738, 42903, 1330, 46947, 198, 6738, 42903, 62, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 6738, 42903, 62, 76, 42175, 1330, 337, 42175, 198, 6738, 42903, 62, 18769, 26418, 1330, 18892, 26418, 198, 6738, 42903, 62, 38235, 1330, 23093, 13511, 198, 6738, 42903, 62, 32542, 298, 1330, 29278, 198, 6738, 42903, 62, 4529, 1330, 11099, 198, 2, 422, 42903, 62, 4529, 62, 21280, 25928, 1330, 11099, 25206, 41339, 198, 6738, 4566, 1330, 17056, 198, 6738, 18931, 13, 4993, 8116, 1330, 18481, 803, 8979, 25060, 198, 11748, 18931, 198, 11748, 28686, 628, 198, 9945, 796, 16363, 2348, 26599, 3419, 198, 76, 42175, 796, 337, 42175, 3419, 198, 18769, 26418, 796, 18892, 26418, 3419, 198, 38235, 796, 23093, 13511, 3419, 198, 32542, 298, 796, 29278, 3419, 198, 4529, 796, 11099, 3419, 628, 198, 6738, 598, 1330, 4981, 198 ]
3.824818
137
''' File: test_conversions.py Author: Adam Pah Description: py.test test ensemble ''' import pytest import conversions as conv class TestConvertTimeseries: ''' Covers the convert_timeseries_to_intervalseries function ''' timeseries = [[0, 2], [2, 3], [5, 3]] def test_basic(self): ''' Timeseries conversion test. ''' #Set up the answer intervalseries = [[0, 2], [1, 3]] #Get the intervalseries test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries) #Just make sure that these things aren't the same assert intervalseries == test_intervals def test_yaxis_only(self): ''' Timeseries conversion test with the yaxis only ''' #Set up the answer intervalseries = [2, 3] #Get the intervalseries test_intervals = conv.convert_timeseries_to_intervalseries(self.timeseries, yaxis_only=True) #Just make sure that these things aren't the same assert intervalseries == test_intervals def test_negative_bounds(self): ''' Test to make sure that system exit happens ''' #Load up the data timeseries = [[0, 2], [-2, 3], [4, 3]] #Check for the system exit with pytest.raises(SystemExit): conv.convert_timeseries_to_intervalseries(timeseries, yaxis_only=True)
[ 7061, 6, 198, 8979, 25, 1332, 62, 1102, 47178, 13, 9078, 198, 13838, 25, 7244, 350, 993, 198, 11828, 25, 220, 198, 9078, 13, 9288, 1332, 34549, 198, 7061, 6, 198, 11748, 12972, 9288, 198, 11748, 32626, 355, 3063, 198, 198, 4871, 6208, 3103, 1851, 28595, 10640, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1766, 690, 262, 10385, 62, 22355, 10640, 62, 1462, 62, 3849, 12786, 10640, 2163, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1661, 10640, 796, 16410, 15, 11, 362, 4357, 685, 17, 11, 513, 4357, 685, 20, 11, 513, 11907, 628, 220, 220, 220, 825, 1332, 62, 35487, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3782, 10640, 11315, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7248, 510, 262, 3280, 198, 220, 220, 220, 220, 220, 220, 220, 20016, 10640, 796, 16410, 15, 11, 362, 4357, 685, 16, 11, 513, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 262, 20016, 10640, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 3849, 12786, 796, 3063, 13, 1102, 1851, 62, 22355, 10640, 62, 1462, 62, 3849, 12786, 10640, 7, 944, 13, 22355, 10640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5703, 787, 1654, 326, 777, 1243, 3588, 470, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 20016, 10640, 6624, 1332, 62, 3849, 12786, 628, 220, 220, 220, 825, 1332, 62, 88, 22704, 62, 8807, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3782, 10640, 11315, 1332, 351, 262, 331, 22704, 691, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7248, 510, 262, 3280, 198, 220, 220, 220, 220, 220, 220, 220, 20016, 10640, 796, 685, 17, 11, 513, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 262, 20016, 10640, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 3849, 12786, 796, 3063, 13, 1102, 1851, 62, 22355, 10640, 62, 1462, 62, 3849, 12786, 10640, 7, 944, 13, 22355, 10640, 11, 331, 22704, 62, 8807, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5703, 787, 1654, 326, 777, 1243, 3588, 470, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 20016, 10640, 6624, 1332, 62, 3849, 12786, 628, 220, 220, 220, 825, 1332, 62, 31591, 62, 65, 3733, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 284, 787, 1654, 326, 1080, 8420, 4325, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8912, 510, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 10640, 796, 16410, 15, 11, 362, 4357, 25915, 17, 11, 513, 4357, 685, 19, 11, 513, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9787, 329, 262, 1080, 8420, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11964, 30337, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 13, 1102, 1851, 62, 22355, 10640, 62, 1462, 62, 3849, 12786, 10640, 7, 22355, 10640, 11, 331, 22704, 62, 8807, 28, 17821, 8, 198 ]
2.413379
583
from django.urls import reverse from extforms.deprecated_forms import SWCEventRequestForm, DCEventRequestForm from extrequests.models import ( EventRequest, ) from workshops.models import Event, Organization from workshops.tests.base import TestBase
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 198, 6738, 1070, 23914, 13, 10378, 31023, 62, 23914, 1330, 12672, 5222, 1151, 18453, 8479, 11, 360, 5222, 1151, 18453, 8479, 198, 6738, 1070, 8897, 3558, 13, 27530, 1330, 357, 198, 220, 220, 220, 8558, 18453, 11, 198, 8, 198, 6738, 25982, 13, 27530, 1330, 8558, 11, 12275, 198, 6738, 25982, 13, 41989, 13, 8692, 1330, 6208, 14881, 628, 628 ]
3.73913
69
""" Our HADS database gets loaded up with duplicates, this cleans it up. called from RUN_MIDNIGHT.sh """ from __future__ import print_function import datetime import sys import pytz from pyiem.util import get_dbconn, utc def query(sql, args=None): """ Do a query and make it atomic """ pgconn = get_dbconn('hads') hcursor = pgconn.cursor() sts = datetime.datetime.now() hcursor.execute("set work_mem='16GB'") hcursor.execute(sql, args if args is not None else []) ets = datetime.datetime.now() print("%7s [%8.4fs] %s" % (hcursor.rowcount, (ets - sts).total_seconds(), sql)) hcursor.close() pgconn.commit() def workflow(valid): ''' Do the work for this date, which is set to 00 UTC ''' # Delete schoolnet data, since we created it in the first place! tbl = "raw%s" % (valid.strftime("%Y_%m"),) sql = """DELETE from """ + tbl + """ WHERE station IN (SELECT id from stations WHERE network in ('KCCI','KELO','KIMT') )""" query(sql) # make sure our tmp table does not exist query("DROP TABLE IF EXISTS tmp") # Extract unique obs to special table sql = """CREATE table tmp as select distinct * from """+tbl+""" WHERE valid BETWEEN %s and %s""" args = (valid, valid + datetime.timedelta(hours=24)) query(sql, args) # Delete them all! sql = """delete from """+tbl+""" WHERE valid BETWEEN %s and %s""" query(sql, args) sql = "DROP index IF EXISTS "+tbl+"_idx" query(sql) sql = "DROP index IF EXISTS "+tbl+"_valid_idx" query(sql) # Insert from special table sql = "INSERT into "+tbl+" SELECT * from tmp" query(sql) sql = "CREATE index %s_idx on %s(station,valid)" % (tbl, tbl) query(sql) sql = "CREATE index %s_valid_idx on %s(valid)" % (tbl, tbl) query(sql) sql = "DROP TABLE IF EXISTS tmp" query(sql) def main(argv): """Go Main Go""" if len(argv) == 4: utcnow = utc(int(argv[1]), int(argv[2]), int(argv[3])) workflow(utcnow) return utcnow = datetime.datetime.utcnow() utcnow = utcnow.replace(hour=0, minute=0, second=0, microsecond=0, tzinfo=pytz.utc) # Run for 'yesterday' and 35 days ago for day in [1, 35]: workflow(utcnow - datetime.timedelta(days=day)) if __name__ == '__main__': # See how we are called main(sys.argv)
[ 37811, 198, 3954, 367, 47149, 6831, 3011, 9639, 510, 351, 14184, 16856, 11, 428, 20658, 340, 510, 13, 628, 1444, 422, 32494, 62, 44, 2389, 45, 9947, 13, 1477, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 4818, 8079, 198, 11748, 25064, 198, 198, 11748, 12972, 22877, 198, 6738, 12972, 26597, 13, 22602, 1330, 651, 62, 9945, 37043, 11, 3384, 66, 628, 198, 4299, 12405, 7, 25410, 11, 26498, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2141, 257, 12405, 290, 787, 340, 17226, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23241, 37043, 796, 651, 62, 9945, 37043, 10786, 71, 5643, 11537, 198, 220, 220, 220, 289, 66, 21471, 796, 23241, 37043, 13, 66, 21471, 3419, 198, 220, 220, 220, 39747, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 289, 66, 21471, 13, 41049, 7203, 2617, 670, 62, 11883, 11639, 1433, 4579, 6, 4943, 198, 220, 220, 220, 289, 66, 21471, 13, 41049, 7, 25410, 11, 26498, 611, 26498, 318, 407, 6045, 2073, 685, 12962, 198, 220, 220, 220, 304, 912, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 3601, 7203, 4, 22, 82, 685, 4, 23, 13, 19, 9501, 60, 4064, 82, 1, 4064, 357, 71, 66, 21471, 13, 808, 9127, 11, 357, 1039, 532, 39747, 737, 23350, 62, 43012, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44161, 4008, 198, 220, 220, 220, 289, 66, 21471, 13, 19836, 3419, 198, 220, 220, 220, 23241, 37043, 13, 41509, 3419, 628, 198, 4299, 30798, 7, 12102, 2599, 198, 220, 220, 220, 705, 7061, 2141, 262, 670, 329, 428, 3128, 11, 543, 318, 900, 284, 3571, 18119, 705, 7061, 198, 220, 220, 220, 1303, 23520, 1524, 3262, 1366, 11, 1201, 356, 2727, 340, 287, 262, 717, 1295, 0, 198, 220, 220, 220, 256, 2436, 796, 366, 1831, 4, 82, 1, 4064, 357, 12102, 13, 2536, 31387, 7203, 4, 56, 62, 4, 76, 12340, 8, 198, 220, 220, 220, 44161, 796, 37227, 7206, 2538, 9328, 422, 37227, 1343, 256, 2436, 1343, 37227, 33411, 4429, 3268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 46506, 4686, 422, 8985, 33411, 3127, 287, 19203, 42, 4093, 40, 41707, 42, 3698, 46, 41707, 42, 3955, 51, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 37811, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 220, 220, 220, 1303, 787, 1654, 674, 45218, 3084, 857, 407, 2152, 198, 220, 220, 220, 12405, 7203, 7707, 3185, 43679, 16876, 7788, 1797, 4694, 45218, 4943, 198, 220, 220, 220, 1303, 29677, 3748, 10201, 284, 2041, 3084, 198, 220, 220, 220, 44161, 796, 37227, 43387, 6158, 3084, 45218, 355, 2922, 7310, 1635, 422, 37227, 10, 83, 2436, 10, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 33411, 4938, 38651, 8845, 1677, 4064, 82, 290, 4064, 82, 37811, 198, 220, 220, 220, 26498, 796, 357, 12102, 11, 4938, 1343, 4818, 8079, 13, 16514, 276, 12514, 7, 24425, 28, 1731, 4008, 198, 220, 220, 220, 12405, 7, 25410, 11, 26498, 8, 628, 220, 220, 220, 1303, 23520, 606, 477, 0, 198, 220, 220, 220, 44161, 796, 37227, 33678, 422, 37227, 10, 83, 2436, 10, 37811, 33411, 4938, 38651, 8845, 1677, 4064, 82, 290, 4064, 82, 37811, 198, 220, 220, 220, 12405, 7, 25410, 11, 26498, 8, 628, 220, 220, 220, 44161, 796, 366, 7707, 3185, 6376, 16876, 7788, 1797, 4694, 43825, 83, 2436, 10, 1, 62, 312, 87, 1, 198, 220, 220, 220, 12405, 7, 25410, 8, 198, 220, 220, 220, 44161, 796, 366, 7707, 3185, 6376, 16876, 7788, 1797, 4694, 43825, 83, 2436, 10, 1, 62, 12102, 62, 312, 87, 1, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 220, 220, 220, 1303, 35835, 422, 2041, 3084, 198, 220, 220, 220, 44161, 796, 366, 20913, 17395, 656, 43825, 83, 2436, 10, 1, 33493, 1635, 422, 45218, 1, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 220, 220, 220, 44161, 796, 366, 43387, 6158, 6376, 4064, 82, 62, 312, 87, 319, 4064, 82, 7, 17529, 11, 12102, 16725, 4064, 357, 83, 2436, 11, 256, 2436, 8, 198, 220, 220, 220, 12405, 7, 25410, 8, 198, 220, 220, 220, 44161, 796, 366, 43387, 6158, 6376, 4064, 82, 62, 12102, 62, 312, 87, 319, 4064, 82, 7, 12102, 16725, 4064, 357, 83, 2436, 11, 256, 2436, 8, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 220, 220, 220, 44161, 796, 366, 7707, 3185, 43679, 16876, 7788, 1797, 4694, 45218, 1, 198, 220, 220, 220, 12405, 7, 25410, 8, 628, 198, 4299, 1388, 7, 853, 85, 2599, 198, 220, 220, 220, 37227, 5247, 8774, 1514, 37811, 198, 220, 220, 220, 611, 18896, 7, 853, 85, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3384, 66, 2197, 796, 3384, 66, 7, 600, 7, 853, 85, 58, 16, 46570, 493, 7, 853, 85, 58, 17, 46570, 493, 7, 853, 85, 58, 18, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 7, 315, 66, 2197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 3384, 66, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 315, 66, 2197, 3419, 198, 220, 220, 220, 3384, 66, 2197, 796, 3384, 66, 2197, 13, 33491, 7, 9769, 28, 15, 11, 5664, 28, 15, 11, 1218, 28, 15, 11, 4580, 12227, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 89, 10951, 28, 9078, 22877, 13, 315, 66, 8, 198, 220, 220, 220, 1303, 5660, 329, 705, 8505, 6432, 6, 290, 3439, 1528, 2084, 198, 220, 220, 220, 329, 1110, 287, 685, 16, 11, 3439, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 7, 315, 66, 2197, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 820, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 4091, 703, 356, 389, 1444, 198, 220, 220, 220, 1388, 7, 17597, 13, 853, 85, 8, 198 ]
2.310377
1,060
from django.db import models
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 220, 198 ]
3.1
10
import numpy as np import os import pickle #128x128 #################################################### ''' Inputs 128x128 pixel array Returns label where: label 0 = 1 label 1 = 2 etc ''' ''' returns an array of arrays, each one is the data from one image ''' ########################################### # training Code for class (comment it before running flask app) #train() # for filename in os.listdir('[more here]/images'): # data = readTrainingData(path + filename) # character = data[6] # character = np.array(character, dtype='int') # for i in range(128): # print() # for j in range(128): # if (character[i][j] == 255): # print('*', end ="") # else: # print('7', end ="") # print() # print('------------------------------------------------------------') # print() # print()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 2, 12762, 87, 12762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 29113, 14468, 4242, 198, 7061, 6, 198, 20560, 82, 13108, 87, 12762, 17465, 7177, 198, 35561, 6167, 810, 25, 198, 18242, 657, 796, 352, 198, 18242, 352, 796, 362, 198, 14784, 198, 7061, 6, 198, 7061, 6, 198, 7783, 82, 281, 7177, 286, 220, 26515, 11, 1123, 530, 318, 262, 1366, 422, 530, 2939, 198, 7061, 6, 198, 198, 29113, 7804, 21017, 628, 198, 2, 3047, 6127, 329, 1398, 357, 23893, 340, 878, 2491, 42903, 598, 8, 198, 198, 2, 27432, 3419, 198, 198, 2, 329, 29472, 287, 28686, 13, 4868, 15908, 10786, 58, 3549, 994, 60, 14, 17566, 6, 2599, 198, 2, 220, 220, 220, 220, 1366, 796, 1100, 44357, 6601, 7, 6978, 1343, 29472, 8, 198, 2, 220, 220, 220, 220, 2095, 796, 1366, 58, 21, 60, 198, 2, 220, 220, 220, 220, 2095, 796, 45941, 13, 18747, 7, 22769, 11, 288, 4906, 11639, 600, 11537, 198, 2, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 12762, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 12762, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 22769, 58, 72, 7131, 73, 60, 6624, 14280, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9, 3256, 886, 796, 1, 4943, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 22, 3256, 886, 796, 1, 4943, 198, 2, 220, 220, 220, 220, 3601, 3419, 198, 2, 220, 220, 220, 220, 3601, 10786, 47232, 10541, 11537, 198, 2, 220, 220, 220, 220, 3601, 3419, 198, 2, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.482667
375
# -*- coding: utf-8 -*- """Python implementation of the StalinSort algorithm. References ---------- - :cite:`mathew` : @[email protected] (2018/10/26 04:20:16) ''I came up with a single pass O(n) sort algorithm I call StalinSort. You iterate down the list of elements checking if they're in order. Any element which is out of order is eliminated. At the end you have a sorted list.'' """ def stalinsort(iterable, key=None, ascending=False): """Sorts iterable according to the single pass O(n) StalinSort algorithm. Parameters ---------- iterable: iterable object key: function A function of one argument that is used to extract a comparison key from each element. Default is None. Returns ------- survivors: list List of surviving elements of iterable. Example ------- >>>from stalinsort import stalinsort >>>a = [3, 2, 5, 7, 1, 3] >>>stalinsort(a) [3, 2, 1] """ ascending = False # There is only descent under communism. if key is not None: keys = iterable.apply(key) else: keys = list(iterable) survivors = iterable[:1] # I prefer to think in terms of survivors. for index, victim in enumerate(iterable[1:]): if survivors[-1] >= keys[index + 1]: survivors.append(victim) return survivors
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 37906, 7822, 286, 262, 17482, 42758, 11862, 13, 198, 198, 19927, 198, 35937, 198, 12, 220, 220, 1058, 66, 578, 25, 63, 6759, 6391, 63, 1058, 2488, 6759, 6391, 31, 47616, 46457, 13, 14557, 357, 7908, 14, 940, 14, 2075, 8702, 25, 1238, 25, 1433, 8, 198, 220, 220, 220, 10148, 40, 1625, 510, 351, 257, 2060, 1208, 440, 7, 77, 8, 3297, 11862, 314, 869, 17482, 42758, 13, 921, 198, 220, 220, 220, 11629, 378, 866, 262, 1351, 286, 4847, 10627, 611, 484, 821, 287, 1502, 13, 4377, 5002, 198, 220, 220, 220, 543, 318, 503, 286, 1502, 318, 15254, 13, 1629, 262, 886, 345, 423, 257, 23243, 1351, 13531, 198, 37811, 198, 198, 4299, 29049, 1040, 419, 7, 2676, 540, 11, 1994, 28, 14202, 11, 41988, 28, 25101, 2599, 198, 220, 220, 220, 37227, 50, 2096, 11629, 540, 1864, 284, 262, 2060, 1208, 440, 7, 77, 8, 17482, 42758, 11862, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11629, 540, 25, 11629, 540, 2134, 628, 220, 220, 220, 1994, 25, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 317, 2163, 286, 530, 4578, 326, 318, 973, 284, 7925, 257, 7208, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1123, 5002, 13, 15161, 318, 6045, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13644, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 16997, 4847, 286, 11629, 540, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17934, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13163, 6738, 29049, 1040, 419, 1330, 29049, 1040, 419, 198, 220, 220, 220, 13163, 64, 796, 685, 18, 11, 362, 11, 642, 11, 767, 11, 352, 11, 513, 60, 198, 220, 220, 220, 13163, 7757, 1040, 419, 7, 64, 8, 198, 220, 220, 220, 685, 18, 11, 362, 11, 352, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 41988, 796, 10352, 1303, 1318, 318, 691, 18598, 739, 27770, 13, 628, 220, 220, 220, 611, 1994, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 11629, 540, 13, 39014, 7, 2539, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 1351, 7, 2676, 540, 8, 628, 220, 220, 220, 13644, 796, 11629, 540, 58, 25, 16, 60, 1303, 314, 4702, 284, 892, 287, 2846, 286, 13644, 13, 198, 220, 220, 220, 329, 6376, 11, 3117, 287, 27056, 378, 7, 2676, 540, 58, 16, 47715, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 220, 13644, 58, 12, 16, 60, 18189, 8251, 58, 9630, 1343, 352, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13644, 13, 33295, 7, 32433, 320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 13644, 198 ]
2.729249
506
import matplotlib.pyplot as plt import numpy as np from pyfmi import load_fmu model = load_fmu('./PadeSlave.fmu') inputs = ('inputVariable', lambda t: 5. * np.cos(t)) simulation = model.simulate(final_time=30, input=inputs) plt.plot(simulation['time'], simulation['inputVariable']) plt.plot(simulation['time'], simulation['outputVariable']) plt.legend(['inputVariable', 'outputVariable']) plt.xlabel('time') plt.show()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 12972, 69, 11632, 1330, 3440, 62, 69, 30300, 198, 198, 19849, 796, 3440, 62, 69, 30300, 7, 4458, 14, 47, 671, 11122, 1015, 13, 69, 30300, 11537, 198, 198, 15414, 82, 796, 19203, 15414, 43015, 3256, 37456, 256, 25, 642, 13, 1635, 45941, 13, 6966, 7, 83, 4008, 198, 14323, 1741, 796, 2746, 13, 14323, 5039, 7, 20311, 62, 2435, 28, 1270, 11, 5128, 28, 15414, 82, 8, 198, 198, 489, 83, 13, 29487, 7, 14323, 1741, 17816, 2435, 6, 4357, 18640, 17816, 15414, 43015, 6, 12962, 198, 489, 83, 13, 29487, 7, 14323, 1741, 17816, 2435, 6, 4357, 18640, 17816, 22915, 43015, 6, 12962, 198, 198, 489, 83, 13, 1455, 437, 7, 17816, 15414, 43015, 3256, 705, 22915, 43015, 6, 12962, 198, 489, 83, 13, 87, 18242, 10786, 2435, 11537, 198, 489, 83, 13, 12860, 3419, 198 ]
2.711538
156
# Requirements: # - fmtc # - nnedi3 # From: # - https://github.com/mawen1250/VapourSynth-script # - https://github.com/HomeOfVapourSynthEvolution/mvsfunc import vapoursynth as vs import math ## Gamma conversion functions from HAvsFunc-r18 # Convert the luma channel to linear light # Convert back a clip to gamma-corrected luma # Apply the inverse sigmoid curve to a clip in linear luminance # Convert back a clip to linear luminance ## Gamma conversion functions from HAvsFunc-r18
[ 2, 24422, 25, 198, 2, 220, 220, 532, 46996, 66, 198, 2, 220, 220, 532, 299, 2817, 72, 18, 198, 2, 3574, 25, 198, 2, 220, 220, 532, 3740, 1378, 12567, 13, 785, 14, 76, 707, 268, 1065, 1120, 14, 53, 499, 454, 29934, 400, 12, 12048, 198, 2, 220, 220, 532, 3740, 1378, 12567, 13, 785, 14, 16060, 5189, 53, 499, 454, 29934, 400, 15200, 2122, 14, 76, 14259, 20786, 198, 11748, 38187, 454, 28869, 400, 355, 3691, 198, 11748, 10688, 628, 628, 628, 198, 2235, 43595, 11315, 5499, 422, 367, 7355, 82, 37, 19524, 12, 81, 1507, 198, 2, 38240, 262, 300, 7487, 6518, 284, 14174, 1657, 198, 198, 2, 38240, 736, 257, 10651, 284, 34236, 12, 30283, 276, 300, 7487, 198, 198, 2, 27967, 262, 34062, 264, 17225, 1868, 12133, 284, 257, 10651, 287, 14174, 29763, 590, 198, 198, 2, 38240, 736, 257, 10651, 284, 14174, 29763, 590, 198, 2235, 43595, 11315, 5499, 422, 367, 7355, 82, 37, 19524, 12, 81, 1507 ]
3.018182
165
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-03-17 17:29 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 24, 13, 22, 319, 2177, 12, 3070, 12, 1558, 1596, 25, 1959, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.719298
57
import numpy as np import EZ.stderr as stderr
[ 11748, 299, 32152, 355, 45941, 198, 11748, 412, 57, 13, 301, 1082, 81, 355, 336, 1082, 81, 628, 628, 628, 628, 628 ]
2.5
22
from PyQt5 import QtGui, QtCore, QtWidgets from collections import namedtuple import time import random import torch import torch.nn as nn import torch.nn.functional as F from utils import utils HumanFeedback = namedtuple('HumanFeedback', ['feedback_value']) SavedAction = namedtuple('SavedAction', ['state', 'action', 'logprob']) SavedActionsWithFeedback = namedtuple('SavedActionsWithFeedback', ['saved_actions', 'final_feedback'])
[ 6738, 9485, 48, 83, 20, 1330, 33734, 8205, 72, 11, 33734, 14055, 11, 33734, 54, 312, 11407, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 11748, 640, 198, 11748, 4738, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 3384, 4487, 1330, 3384, 4487, 198, 198, 20490, 18332, 1891, 796, 3706, 83, 29291, 10786, 20490, 18332, 1891, 3256, 37250, 12363, 1891, 62, 8367, 6, 12962, 198, 50, 9586, 12502, 796, 3706, 83, 29291, 10786, 50, 9586, 12502, 3256, 37250, 5219, 3256, 705, 2673, 3256, 705, 6404, 1676, 65, 6, 12962, 198, 50, 9586, 32, 2733, 3152, 18332, 1891, 796, 3706, 83, 29291, 10786, 50, 9586, 32, 2733, 3152, 18332, 1891, 3256, 37250, 82, 9586, 62, 4658, 3256, 705, 20311, 62, 12363, 1891, 6, 12962, 628, 628, 628 ]
3.142857
140
import sys, random, string, time rawBoard = '' moves = 0 # size -> int # generate board of size size x size filled with random chars # @returns none # textFile -> string # loads a board from a text file # @returns board in 2D list form # board -> 2D array # prints out the bogal board # coordinate -> list, board -> 2D list # @returns list of all possible next positions # possibleMoves -> 2D list, usedPath -> 2D list # @returns the list of all legal moves # Function used for setting up all prefix dictionaries. # This is not run with my program but was created because I'm lazy and # didn't want to create the prefix dictionaries by hand. # board -> 2D list, currPos -> list, path -> 2D list # boggle board, xy pair current position, path that got to that position # @returns tuple of the word created and whether it is a real word. if __name__ == "__main__": main()
[ 11748, 25064, 11, 4738, 11, 4731, 11, 640, 201, 198, 201, 198, 1831, 29828, 796, 10148, 201, 198, 76, 5241, 796, 657, 201, 198, 2, 2546, 4613, 493, 201, 198, 2, 7716, 3096, 286, 2546, 2546, 2124, 2546, 5901, 351, 4738, 34534, 201, 198, 2, 2488, 7783, 82, 4844, 201, 198, 201, 198, 2, 2420, 8979, 4613, 4731, 201, 198, 2, 15989, 257, 3096, 422, 257, 2420, 2393, 201, 198, 2, 2488, 7783, 82, 3096, 287, 362, 35, 1351, 1296, 201, 198, 201, 198, 2, 3096, 4613, 362, 35, 7177, 201, 198, 2, 20842, 503, 262, 22922, 282, 3096, 201, 198, 201, 198, 2, 20435, 4613, 1351, 11, 3096, 4613, 362, 35, 1351, 201, 198, 2, 2488, 7783, 82, 1351, 286, 477, 1744, 1306, 6116, 201, 198, 201, 198, 2, 1744, 44, 5241, 4613, 362, 35, 1351, 11, 973, 15235, 4613, 362, 35, 1351, 201, 198, 2, 2488, 7783, 82, 262, 1351, 286, 477, 2742, 6100, 201, 198, 201, 198, 2, 15553, 973, 329, 4634, 510, 477, 21231, 48589, 3166, 13, 201, 198, 2, 770, 318, 407, 1057, 351, 616, 1430, 475, 373, 2727, 780, 314, 1101, 16931, 290, 201, 198, 2, 1422, 470, 765, 284, 2251, 262, 21231, 48589, 3166, 416, 1021, 13, 201, 198, 201, 198, 2, 3096, 4613, 362, 35, 1351, 11, 1090, 81, 21604, 4613, 1351, 11, 3108, 4613, 362, 35, 1351, 201, 198, 2, 275, 20258, 3096, 11, 2124, 88, 5166, 1459, 2292, 11, 3108, 326, 1392, 284, 326, 2292, 201, 198, 2, 2488, 7783, 82, 46545, 286, 262, 1573, 2727, 290, 1771, 340, 318, 257, 1103, 1573, 13, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1388, 3419 ]
3.196491
285
myFunc("That's neat")
[ 198, 1820, 37, 19524, 7203, 2504, 338, 15049, 4943, 198 ]
2.3
10
import logging import os from netmiko import ConnectHandler from paramiko import AutoAddPolicy, SSHClient from routeros_diff.parser import RouterOSConfig from scp import SCPClient
[ 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 2010, 76, 12125, 1330, 8113, 25060, 198, 6738, 5772, 12125, 1330, 11160, 4550, 36727, 11, 33825, 11792, 198, 6738, 20264, 418, 62, 26069, 13, 48610, 1330, 48538, 2640, 16934, 198, 6738, 629, 79, 1330, 17527, 11792, 628, 628, 628, 198 ]
3.895833
48
import pytest_pydocstyle # https://docs.pytest.org/en/5.2.2/writing_plugins.html#testing-plugins pytest_plugins = ["pytester"]
[ 11748, 12972, 9288, 62, 79, 5173, 420, 7635, 198, 198, 2, 3740, 1378, 31628, 13, 9078, 9288, 13, 2398, 14, 268, 14, 20, 13, 17, 13, 17, 14, 16502, 62, 37390, 13, 6494, 2, 33407, 12, 37390, 198, 9078, 9288, 62, 37390, 796, 14631, 9078, 4879, 353, 8973, 628, 628, 628, 628, 628, 198 ]
2.555556
54
from peewee import * import peeweedbevolve from models_data import Tweet, Branch, calldb db = calldb() create_tables()
[ 6738, 613, 413, 1453, 1330, 1635, 198, 11748, 613, 413, 2308, 1350, 85, 6442, 198, 198, 6738, 4981, 62, 7890, 1330, 18752, 11, 20551, 11, 2386, 335, 65, 198, 198, 9945, 796, 2386, 335, 65, 3419, 628, 198, 17953, 62, 83, 2977, 3419, 198 ]
2.795455
44
import json import base64 from rest_framework import status from rest_framework.test import APITestCase from rest_framework.authtoken.models import Token from .models import User # Create your tests here. ACCEPT_STATUS = "A" REJECT_STATUS = "R" UNFRIEND_STATUS = "R"
[ 11748, 33918, 198, 11748, 2779, 2414, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2043, 395, 20448, 198, 6738, 1334, 62, 30604, 13, 18439, 30001, 13, 27530, 1330, 29130, 198, 6738, 764, 27530, 1330, 11787, 198, 198, 2, 13610, 534, 5254, 994, 13, 198, 2246, 42006, 62, 35744, 2937, 796, 366, 32, 1, 198, 2200, 23680, 62, 35744, 2937, 796, 366, 49, 1, 198, 4944, 37, 7112, 10619, 62, 35744, 2937, 796, 366, 49, 1, 628, 198 ]
3.176471
85
# -*- coding: utf-8 -*- ################################################################################ # Copyright (C) 2009 Travis Shirk <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # ################################################################################ from __future__ import print_function import os from eyed3 import LOCAL_ENCODING as ENCODING from eyed3.utils import formatSize, formatTime from eyed3.utils.console import (printMsg, printError, printWarning, boldText, Fore, HEADER_COLOR) from eyed3.plugins import LoaderPlugin
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 29113, 29113, 14468, 198, 2, 220, 15069, 357, 34, 8, 3717, 220, 19804, 911, 14232, 1279, 83, 16956, 31, 79, 672, 1140, 13, 785, 29, 198, 2, 198, 2, 220, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 220, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 220, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 286, 262, 13789, 11, 393, 198, 2, 220, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 220, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 220, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 220, 1863, 351, 428, 1430, 26, 611, 407, 11, 3551, 284, 262, 3232, 10442, 198, 2, 220, 5693, 11, 3457, 1539, 7863, 10857, 8474, 11, 26264, 25508, 11, 6182, 11, 8779, 220, 7816, 16243, 12, 12952, 22, 220, 4916, 198, 2, 198, 29113, 29113, 14468, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 28686, 198, 6738, 45320, 18, 1330, 37347, 1847, 62, 24181, 3727, 2751, 355, 412, 7792, 3727, 2751, 198, 6738, 45320, 18, 13, 26791, 1330, 5794, 10699, 11, 5794, 7575, 198, 6738, 45320, 18, 13, 26791, 13, 41947, 1330, 357, 4798, 50108, 11, 3601, 12331, 11, 3601, 20361, 11, 10758, 8206, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4558, 11, 39837, 1137, 62, 46786, 8, 198, 6738, 45320, 18, 13, 37390, 1330, 8778, 263, 37233, 628 ]
3.66474
346
# -*- coding: utf-8 -*- """Clothing_Recommender Project .ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1nw0ewNdkx8o3WULAp2ynhHpbq1kVq7YZ Clean the data and use input """ ## Import and Organize Data ## import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split #read clean file (downloaded from Task 1) df=pd.read_csv('CleanedData.csv', sep=',') #Pivot table (clothingID, age, rating) - Nan is replaced with 0 train = df.pivot_table(index='Age', columns='ClothingID', values='Rating') #sort train data train = train.sort_values('Age', ascending=True) ###Create a greeting print("Welcome, let us recommend a product for you") #Take user input Name =input('Please enter your name: ') Age = int(input('Please enter your age: ')) CID_user = int(input("Enter Clothing ID: ")) #90 while CID_user not in train.columns: print('Invalid: No data for ID') CID_user = int(input("Enter valid Clothing ID: ")) rating_user = float(input("Enter Rating for Clothing ID: ")) #4 ##use this later (if user has more than one rating to enter) #entries = int(input("How many ratings will you enter? ")) #for x in range(entries): #create array with user data userArray = pd.DataFrame().reindex_like(train) userArray.dropna(thresh=1,inplace=True) userArray.loc[Age,CID_user] = rating_user #enter user data from sklearn.metrics.pairwise import nan_euclidean_distances #find euclidean distance between all rows of train and first row of test *ignores nan distance = np.zeros((0,2)) #create empty array for index, row in train.iterrows(): #iterate through each row of train result = float(nan_euclidean_distances([userArray.loc[Age]], [train.loc[index]])) #compute the euclidean distance between two rows, *confirmed it works thru excel result_array = [index, result] #place age and distance into an array distance = np.append(distance,[result_array],axis= 0) #convert array to a dataframe dfDistance = pd.DataFrame({'Age': distance[:, 0], 'E-Distance': distance[:, 1]}) dfDistance.head() k= 5 #sort by distance, reset the index dfDistance = dfDistance.sort_values('E-Distance', ascending=True).head(20) dfDistance = dfDistance.reset_index(drop=True) dfDistance.drop(dfDistance[dfDistance.index > k-1].index, inplace=True) dfDistance.head() #NOTE: for calculating the predicted rating, could use an IDW Interpolation function shown here https://stackoverflow.com/questions/3104781/inverse-distance-weighted-idw-interpolation-with-python #just using mean of each to test a solution, will come back and try more complex/accurate functions later #assume k of 5#### k_array = pd.DataFrame().reindex_like(train) meanArray = pd.DataFrame() for x in dfDistance['Age']: k_array = k_array.append([train.loc[x]]) #make array of the k closest ages meanArray = meanArray.append(k_array.mean(),ignore_index = True).transpose() meanArray.dropna(axis=0,inplace=True) meanArray.columns = ["Mean"] meanArray = meanArray[meanArray.Mean == 5] recommend = list(meanArray.index.values) print("recommended ClothingID's are: ") print(recommend) #feedback, clothingID (choose top 5), department #reverse lookup clothingID for department # feedback (choose first 3)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 2601, 24834, 62, 24898, 2194, 4935, 764, 541, 2047, 65, 198, 198, 38062, 4142, 7560, 416, 1623, 4820, 2870, 13, 198, 198, 20556, 2393, 318, 5140, 379, 198, 220, 220, 220, 3740, 1378, 4033, 397, 13, 34033, 13, 13297, 13, 785, 14, 19472, 14, 16, 47516, 15, 413, 45, 34388, 87, 23, 78, 18, 54, 6239, 25189, 17, 2047, 71, 39, 40842, 80, 16, 74, 53, 80, 22, 56, 57, 198, 198, 32657, 262, 1366, 290, 779, 5128, 198, 37811, 198, 198, 2235, 17267, 290, 7221, 1096, 6060, 22492, 198, 198, 11748, 19798, 292, 355, 279, 67, 220, 198, 11748, 299, 32152, 355, 45941, 220, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 220, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 198, 2, 961, 3424, 2393, 357, 2902, 14578, 422, 15941, 352, 8, 198, 7568, 28, 30094, 13, 961, 62, 40664, 10786, 32657, 276, 6601, 13, 40664, 3256, 41767, 28, 3256, 11537, 220, 198, 198, 2, 47, 45785, 3084, 357, 565, 24834, 2389, 11, 2479, 11, 7955, 8, 532, 18008, 318, 6928, 351, 657, 220, 198, 27432, 796, 47764, 13, 79, 45785, 62, 11487, 7, 9630, 11639, 23396, 3256, 15180, 11639, 2601, 24834, 2389, 3256, 3815, 11639, 29321, 11537, 198, 198, 2, 30619, 4512, 1366, 198, 27432, 796, 4512, 13, 30619, 62, 27160, 10786, 23396, 3256, 41988, 28, 17821, 8, 198, 198, 21017, 16447, 257, 31933, 220, 198, 198, 4798, 7203, 14618, 11, 1309, 514, 4313, 257, 1720, 329, 345, 4943, 198, 198, 2, 12322, 2836, 5128, 220, 198, 198, 5376, 796, 15414, 10786, 5492, 3802, 534, 1438, 25, 705, 8, 198, 23396, 796, 493, 7, 15414, 10786, 5492, 3802, 534, 2479, 25, 705, 4008, 198, 34, 2389, 62, 7220, 796, 493, 7, 15414, 7203, 17469, 48921, 4522, 25, 366, 4008, 1303, 3829, 198, 4514, 327, 2389, 62, 7220, 407, 287, 4512, 13, 28665, 82, 25, 198, 220, 3601, 10786, 44651, 25, 1400, 1366, 329, 4522, 11537, 198, 220, 327, 2389, 62, 7220, 796, 493, 7, 15414, 7203, 17469, 4938, 48921, 4522, 25, 366, 4008, 198, 8821, 62, 7220, 796, 12178, 7, 15414, 7203, 17469, 12028, 329, 48921, 4522, 25, 366, 4008, 1303, 19, 198, 198, 2235, 1904, 428, 1568, 357, 361, 2836, 468, 517, 621, 530, 7955, 284, 3802, 8, 198, 2, 298, 1678, 796, 493, 7, 15414, 7203, 2437, 867, 10109, 481, 345, 3802, 30, 366, 4008, 198, 2, 1640, 2124, 287, 2837, 7, 298, 1678, 2599, 198, 198, 2, 17953, 7177, 351, 2836, 1366, 220, 198, 7220, 19182, 796, 279, 67, 13, 6601, 19778, 22446, 260, 9630, 62, 2339, 7, 27432, 8, 198, 7220, 19182, 13, 14781, 2616, 7, 400, 3447, 28, 16, 11, 259, 5372, 28, 17821, 8, 198, 7220, 19182, 13, 17946, 58, 23396, 11, 34, 2389, 62, 7220, 60, 796, 7955, 62, 7220, 1303, 9255, 2836, 1366, 220, 198, 198, 6738, 1341, 35720, 13, 4164, 10466, 13, 24874, 3083, 1330, 15709, 62, 12496, 565, 485, 272, 62, 17080, 1817, 198, 198, 2, 19796, 304, 36616, 485, 272, 5253, 1022, 477, 15274, 286, 4512, 290, 717, 5752, 286, 1332, 220, 1635, 570, 2850, 15709, 198, 30246, 796, 45941, 13, 9107, 418, 19510, 15, 11, 17, 4008, 1303, 17953, 6565, 7177, 220, 198, 1640, 6376, 11, 5752, 287, 4512, 13, 2676, 8516, 33529, 220, 1303, 2676, 378, 832, 1123, 5752, 286, 4512, 220, 198, 220, 1255, 796, 12178, 7, 12647, 62, 12496, 565, 485, 272, 62, 17080, 1817, 26933, 7220, 19182, 13, 17946, 58, 23396, 60, 4357, 685, 27432, 13, 17946, 58, 9630, 11907, 4008, 1303, 5589, 1133, 262, 304, 36616, 485, 272, 5253, 1022, 734, 15274, 11, 1635, 36349, 340, 2499, 33834, 27336, 198, 220, 1255, 62, 18747, 796, 685, 9630, 11, 1255, 60, 1303, 5372, 2479, 290, 5253, 656, 281, 7177, 220, 198, 220, 5253, 796, 45941, 13, 33295, 7, 30246, 17414, 20274, 62, 18747, 4357, 22704, 28, 657, 8, 220, 198, 198, 2, 1102, 1851, 7177, 284, 257, 1366, 14535, 198, 7568, 45767, 796, 279, 67, 13, 6601, 19778, 15090, 6, 23396, 10354, 5253, 58, 45299, 657, 4357, 705, 36, 12, 45767, 10354, 5253, 58, 45299, 352, 60, 30072, 198, 7568, 45767, 13, 2256, 3419, 198, 198, 74, 28, 642, 198, 2, 30619, 416, 5253, 11, 13259, 262, 6376, 220, 198, 7568, 45767, 796, 47764, 45767, 13, 30619, 62, 27160, 10786, 36, 12, 45767, 3256, 41988, 28, 17821, 737, 2256, 7, 1238, 8, 198, 7568, 45767, 796, 47764, 45767, 13, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 220, 198, 7568, 45767, 13, 14781, 7, 7568, 45767, 58, 7568, 45767, 13, 9630, 1875, 479, 12, 16, 4083, 9630, 11, 287, 5372, 28, 17821, 8, 198, 7568, 45767, 13, 2256, 3419, 198, 198, 2, 16580, 25, 329, 26019, 262, 11001, 7955, 11, 714, 779, 281, 4522, 54, 4225, 16104, 341, 2163, 3402, 994, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 26717, 2857, 6659, 14, 259, 4399, 12, 30246, 12, 6551, 276, 12, 312, 86, 12, 3849, 16104, 341, 12, 4480, 12, 29412, 198, 2, 3137, 1262, 1612, 286, 1123, 284, 1332, 257, 4610, 11, 481, 1282, 736, 290, 1949, 517, 3716, 14, 4134, 15537, 5499, 1568, 220, 198, 198, 2, 562, 2454, 479, 286, 642, 4242, 198, 74, 62, 18747, 796, 279, 67, 13, 6601, 19778, 22446, 260, 9630, 62, 2339, 7, 27432, 8, 198, 32604, 19182, 796, 279, 67, 13, 6601, 19778, 3419, 198, 198, 1640, 2124, 287, 47764, 45767, 17816, 23396, 6, 5974, 198, 220, 479, 62, 18747, 796, 479, 62, 18747, 13, 33295, 26933, 27432, 13, 17946, 58, 87, 11907, 8, 1303, 15883, 7177, 286, 262, 479, 11706, 9337, 198, 198, 32604, 19182, 796, 1612, 19182, 13, 33295, 7, 74, 62, 18747, 13, 32604, 22784, 46430, 62, 9630, 796, 6407, 737, 7645, 3455, 3419, 198, 32604, 19182, 13, 14781, 2616, 7, 22704, 28, 15, 11, 259, 5372, 28, 17821, 8, 198, 32604, 19182, 13, 28665, 82, 796, 14631, 5308, 272, 8973, 198, 32604, 19182, 796, 1612, 19182, 58, 32604, 19182, 13, 5308, 272, 6624, 642, 60, 198, 198, 47335, 437, 796, 1351, 7, 32604, 19182, 13, 9630, 13, 27160, 8, 198, 4798, 7203, 47335, 1631, 48921, 2389, 338, 389, 25, 366, 8, 198, 4798, 7, 47335, 437, 8, 198, 198, 2, 12363, 1891, 11, 9528, 2389, 357, 6679, 577, 1353, 642, 828, 5011, 220, 198, 2, 50188, 35847, 9528, 2389, 329, 5011, 220, 198, 2, 7538, 357, 6679, 577, 717, 513, 8, 628 ]
3.056377
1,082
from rtree.index import Rtree from src.features.helper import * import sys import logging import time if __name__ == '__main__': train_data = sys.argv[1] q_size = int(sys.argv[2]) main(train_data, q_size)
[ 6738, 374, 21048, 13, 9630, 1330, 371, 21048, 198, 6738, 12351, 13, 40890, 13, 2978, 525, 1330, 1635, 198, 11748, 25064, 198, 11748, 18931, 198, 11748, 640, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4512, 62, 7890, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 10662, 62, 7857, 796, 493, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 220, 220, 220, 1388, 7, 27432, 62, 7890, 11, 10662, 62, 7857, 8, 198 ]
2.528736
87
from app import app import logging logging.basicConfig(level=logging.WARNING) if __name__ == "__main__": app.debug = True app.run()
[ 6738, 598, 1330, 598, 198, 11748, 18931, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 31502, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 24442, 796, 6407, 198, 220, 220, 220, 598, 13, 5143, 3419 ]
2.764706
51
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RAffypdnn(RPackage): """The package contains functions to perform the PDNN method described by Li Zhang et al.""" homepage = "https://www.bioconductor.org/packages/affypdnn/" git = "https://git.bioconductor.org/packages/affypdnn.git" version('1.50.0', commit='97ff68e9f51f31333c0330435ea23b212b3ed18a') depends_on('[email protected]:3.4.9', when='@1.50.0') depends_on('r-affy', type=('build', 'run'))
[ 2, 15069, 2211, 12, 7908, 13914, 45036, 3549, 2351, 4765, 11, 11419, 290, 584, 198, 2, 1338, 441, 4935, 34152, 13, 4091, 262, 1353, 12, 5715, 27975, 38162, 9947, 2393, 329, 3307, 13, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 357, 25189, 4891, 12, 17, 13, 15, 6375, 17168, 8, 198, 198, 6738, 599, 441, 1330, 1635, 628, 198, 4871, 17926, 487, 4464, 67, 20471, 7, 49, 27813, 2599, 198, 220, 220, 220, 37227, 464, 5301, 4909, 5499, 284, 1620, 262, 14340, 6144, 2446, 198, 220, 220, 220, 3417, 416, 7455, 19439, 2123, 435, 526, 15931, 628, 220, 220, 220, 34940, 796, 366, 5450, 1378, 2503, 13, 8482, 420, 40990, 13, 2398, 14, 43789, 14, 2001, 4464, 67, 20471, 30487, 198, 220, 220, 220, 17606, 220, 220, 220, 220, 220, 796, 366, 5450, 1378, 18300, 13, 8482, 420, 40990, 13, 2398, 14, 43789, 14, 2001, 4464, 67, 20471, 13, 18300, 1, 628, 220, 220, 220, 2196, 10786, 16, 13, 1120, 13, 15, 3256, 4589, 11639, 5607, 487, 3104, 68, 24, 69, 4349, 69, 25838, 2091, 66, 3070, 21288, 2327, 18213, 1954, 65, 21777, 65, 18, 276, 1507, 64, 11537, 628, 220, 220, 220, 8338, 62, 261, 10786, 81, 31, 18, 13, 19, 13, 15, 25, 18, 13, 19, 13, 24, 3256, 618, 11639, 31, 16, 13, 1120, 13, 15, 11537, 198, 220, 220, 220, 8338, 62, 261, 10786, 81, 12, 2001, 88, 3256, 2099, 28, 10786, 11249, 3256, 705, 5143, 6, 4008, 198 ]
2.633065
248
####################################################################### """ @author: Emanuele Musumeci (https://github.com/EmanueleMusumeci) PopulationInitializer abstract class and basic initializer that generates a population of random binary strings of a given length """ ####################################################################### import abc import numpy as np from numpy import random #Base abstract class for population initialization methods, that generate a population for the genetic optimization process #Generate population of random binary strings of a given length #Generates a single binary individual #Generates a population of random binary individuals
[ 29113, 29113, 4242, 21017, 198, 37811, 198, 2488, 9800, 25, 412, 805, 518, 293, 2629, 388, 721, 72, 357, 5450, 1378, 12567, 13, 785, 14, 36, 805, 518, 293, 10694, 388, 721, 72, 8, 220, 198, 220, 198, 20133, 24243, 7509, 12531, 1398, 290, 4096, 4238, 7509, 326, 18616, 198, 257, 3265, 286, 4738, 13934, 13042, 286, 257, 1813, 4129, 198, 198, 37811, 198, 29113, 29113, 4242, 21017, 198, 11748, 450, 66, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 299, 32152, 1330, 4738, 198, 198, 2, 14881, 12531, 1398, 329, 3265, 37588, 5050, 11, 326, 7716, 257, 3265, 329, 262, 8513, 23989, 1429, 198, 198, 2, 8645, 378, 3265, 286, 4738, 13934, 13042, 286, 257, 1813, 4129, 628, 220, 220, 220, 1303, 8645, 689, 257, 2060, 13934, 1981, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 8645, 689, 257, 3265, 286, 4738, 13934, 3925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198 ]
4.417178
163
import os import subprocess from .utils import checkdir, get_condor_version, requires_command from .basenode import BaseNode from .job import Job def _iter_job_args(job): """ Iterates over Job args list. Yields the name (and JobArg) for each node to be used when adding job to a Dagman (i.e. the name in the 'JOB name job_submit_file' line). Parameters ---------- job : Job Job to iterate over. Note that the submit file for job must be built prior to using _iter_job_args. Yields ------ node_name : str Node name to use in Dagman object. job_arg : JobArg namedtuple Job argument object (``arg``, ``name``, ``retry`` attributes). """ if not isinstance(job, Job): raise TypeError('Expecting a Job object, got {}'.format(type(job))) if not getattr(job, '_built', False): raise ValueError('Job {} must be built before adding it ' 'to a Dagman'.format(job.name)) if len(job.args) == 0: raise StopIteration else: for idx, job_arg in enumerate(job): arg, name, retry = job_arg if name is not None: node_name = '{}_{}'.format(job.submit_name, name) else: node_name = '{}_arg_{}'.format(job.submit_name, idx) yield node_name, job_arg def _get_parent_child_string(node): """Constructs the parent/child line for node to be added to a Dagman """ if not isinstance(node, BaseNode): raise ValueError('Expecting a Job or Dagman object, ' 'got {}'.format(type(node))) parent_string = 'Parent' for parent_node in node.parents: if isinstance(parent_node, Job) and len(parent_node) > 0: for node_name, job_arg in _iter_job_args(parent_node): parent_string += ' {}'.format(node_name) else: parent_string += ' {}'.format(parent_node.submit_name) child_string = 'Child' if isinstance(node, Job) and len(node) > 0: for node_name, job_arg in _iter_job_args(node): child_string += ' {}'.format(node_name) else: child_string += ' {}'.format(node.submit_name) parent_child_string = parent_string + ' ' + child_string return parent_child_string class Dagman(BaseNode): """ Dagman object consisting of a series of Jobs and sub-Dagmans to manage. Note that the ``submit`` parameter can be explicitly given or configured by setting the ``PYCONDOR_SUBMIT_DIR`` environment variable. An explicitly given value for ``submit`` will be used over the environment variable, while the environment variable will be used over a default value. Parameters ---------- name : str Name of the Dagman instance. This will also be the name of the corresponding error, log, output, and submit files associated with this Dagman. submit : str Path to directory where condor dagman submit files will be written (defaults to the directory was the Dagman was submitted from). extra_lines : list or None, optional List of additional lines to be added to submit file. .. versionadded:: 0.1.1 dag : Dagman, optional If specified, Dagman will be added to dag as a subdag (default is None). verbose : int, optional Level of logging verbosity option are 0-warning, 1-info, 2-debugging (default is 0). Attributes ---------- jobs : list The list of jobs for this Dagman instance to manage. parents : list List of parent Jobs and Dagmans. Ensures that Jobs and Dagmans in the parents list will complete before this Dagman is submitted to HTCondor. children : list List of child Jobs and Dagmans. Ensures that Jobs and Dagmans in the children list will be submitted only after this Dagman has completed. """ def add_job(self, job): """Add job to Dagman Parameters ---------- job : Job Job to append to Dagman jobs list. Returns ------- self : object Returns self. """ self._add_node(job) return self def add_subdag(self, dag): """Add dag to Dagman Parameters ---------- dag : Dagman Subdag to append to Dagman jobs list. Returns ------- self : object Returns self. """ self._add_node(dag) return self def _get_job_arg_lines(self, job, fancyname): """Constructs the lines to be added to a Dagman related to job """ if not isinstance(job, Job): raise TypeError('Expecting a Job object, got {}'.format(type(job))) if not getattr(job, '_built', False): raise ValueError('Job {} must be built before adding it ' 'to a Dagman'.format(job.name)) job_arg_lines = [] if len(job.args) == 0: job_line = 'JOB {} {}'.format(job.submit_name, job.submit_file) job_arg_lines.append(job_line) else: for node_name, job_arg in _iter_job_args(job): # Check that '.' or '+' are not in node_name if '.' in node_name or '+' in node_name: self._has_bad_node_names = True arg, name, retry = job_arg # Add JOB line with Job submit file job_line = 'JOB {} {}'.format(node_name, job.submit_file) job_arg_lines.append(job_line) # Add job ARGS line for command line arguments arg_line = 'VARS {} ARGS="{}"'.format(node_name, arg) job_arg_lines.append(arg_line) # Define job_name variable if there are arg_names for job if job._has_arg_names: if name is not None: job_name = node_name else: job_name = job.submit_name job_name_line = 'VARS {} job_name="{}"'.format(node_name, job_name) job_arg_lines.append(job_name_line) # Add retry line for Job if retry is not None: retry_line = 'Retry {} {}'.format(node_name, retry) job_arg_lines.append(retry_line) return job_arg_lines def build(self, makedirs=True, fancyname=True): """Build and saves the submit file for Dagman Parameters ---------- makedirs : bool, optional If Job directories (e.g. error, output, log, submit) don't exist, create them (default is ``True``). fancyname : bool, optional Appends the date and unique id number to error, log, output, and submit files. For example, instead of ``dagname.submit`` the submit file becomes ``dagname_YYYYMMD_id``. This is useful when running several Dags/Jobs of the same name (default is ``True``). Returns ------- self : object Returns self. """ if getattr(self, '_built', False): self.logger.warning( '{} submit file has already been built. ' 'Skipping the build process...'.format(self.name)) return self name = self._get_fancyname() if fancyname else self.name submit_file = os.path.join(self.submit, '{}.submit'.format(name)) self.submit_file = submit_file self.submit_name = name checkdir(self.submit_file, makedirs) # Build submit files for all nodes in self.nodes # Note: nodes must be built before the submit file for self is built for node_index, node in enumerate(self.nodes, start=1): if isinstance(node, Job): node._build_from_dag(makedirs, fancyname) elif isinstance(node, Dagman): node.build(makedirs, fancyname) else: raise TypeError('Nodes must be either a Job or Dagman object') # Write dag submit file self.logger.info('Building DAG submission file {}...'.format( self.submit_file)) lines = [] parent_child_lines = [] for node_index, node in enumerate(self.nodes, start=1): self.logger.info('Working on {} [{} of {}]'.format(node.name, node_index, len(self.nodes))) # Build the BaseNode submit file if isinstance(node, Job): # Add Job variables to Dagman submit file job_arg_lines = self._get_job_arg_lines(node, fancyname) lines.extend(job_arg_lines) elif isinstance(node, Dagman): subdag_string = _get_subdag_string(node) lines.append(subdag_string) else: raise TypeError('Nodes must be either a Job or Dagman object') # Add parent/child information, if necessary if node.hasparents(): parent_child_string = _get_parent_child_string(node) parent_child_lines.append(parent_child_string) # Add any extra lines to submit file, if specified if self.extra_lines: lines.extend(self.extra_lines) # Write lines to dag submit file with open(submit_file, 'w') as dag: dag.writelines('\n'.join(lines + ['\n#Inter-job dependencies'] + parent_child_lines)) self._built = True self.logger.info('Dagman submission file for {} successfully ' 'built!'.format(self.name)) return self @requires_command('condor_submit_dag') def submit_dag(self, submit_options=None): """Submits Dagman to condor Parameters ---------- submit_options : str, optional Options to be passed to ``condor_submit_dag`` for this Dagman (see the `condor_submit_dag documentation <http://research.cs.wisc.edu/htcondor/manual/current/condor_submit_dag.html>`_ for possible options). Returns ------- self : object Returns self. """ # Construct condor_submit_dag command command = 'condor_submit_dag' if submit_options is not None: command += ' {}'.format(submit_options) command += ' {}'.format(self.submit_file) submit_dag_proc = subprocess.Popen([command], stdout=subprocess.PIPE, shell=True) # Check that there are no illegal node names for newer condor versions condor_version = get_condor_version() if condor_version >= (8, 7, 2) and self._has_bad_node_names: err = ("Found an illegal character (either '+' or '.') in the " "name for a node in Dagman {}. As of HTCondor version " "8.7.2, '+' and '.' are prohibited in Dagman node names. " "This means a '+' or '.' character is in a Job name, " "Dagman name, or the name for a Job argument.".format( self.name)) raise RuntimeError(err) # Execute condor_submit_dag command out, err = submit_dag_proc.communicate() print(out) return self @requires_command('condor_submit_dag') def build_submit(self, makedirs=True, fancyname=True, submit_options=None): """Calls build and submit sequentially Parameters ---------- makedirs : bool, optional If Job directories (e.g. error, output, log, submit) don't exist, create them (default is ``True``). fancyname : bool, optional Appends the date and unique id number to error, log, output, and submit files. For example, instead of ``dagname.submit`` the submit file becomes ``dagname_YYYYMMD_id``. This is useful when running several Dags/Jobs of the same name (default is ``True``). submit_options : str, optional Options to be passed to ``condor_submit_dag`` for this Dagman (see the `condor_submit_dag documentation <http://research.cs.wisc.edu/htcondor/manual/current/condor_submit_dag.html>`_ for possible options). Returns ------- self : object Returns self. """ self.build(makedirs, fancyname) self.submit_dag(submit_options=submit_options) return self
[ 198, 11748, 28686, 198, 11748, 850, 14681, 198, 198, 6738, 764, 26791, 1330, 2198, 15908, 11, 651, 62, 17561, 273, 62, 9641, 11, 4433, 62, 21812, 198, 6738, 764, 12093, 268, 1098, 1330, 7308, 19667, 198, 6738, 764, 21858, 1330, 15768, 628, 198, 198, 4299, 4808, 2676, 62, 21858, 62, 22046, 7, 21858, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40806, 689, 625, 15768, 26498, 1351, 13, 575, 1164, 82, 262, 1438, 357, 392, 15768, 28100, 8, 329, 1123, 10139, 198, 220, 220, 220, 284, 307, 973, 618, 4375, 1693, 284, 257, 32167, 805, 357, 72, 13, 68, 13, 262, 1438, 287, 262, 198, 220, 220, 220, 705, 41, 9864, 1438, 1693, 62, 46002, 62, 7753, 6, 1627, 737, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1693, 1058, 15768, 198, 220, 220, 220, 220, 220, 220, 220, 15768, 284, 11629, 378, 625, 13, 5740, 326, 262, 9199, 2393, 329, 1693, 1276, 307, 3170, 198, 220, 220, 220, 220, 220, 220, 220, 3161, 284, 1262, 4808, 2676, 62, 21858, 62, 22046, 13, 628, 220, 220, 220, 575, 1164, 82, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 10139, 62, 3672, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 19081, 1438, 284, 779, 287, 32167, 805, 2134, 13, 198, 220, 220, 220, 1693, 62, 853, 1058, 15768, 28100, 3706, 83, 29291, 198, 220, 220, 220, 220, 220, 220, 220, 15768, 4578, 2134, 357, 15506, 853, 15506, 11, 7559, 3672, 15506, 11, 7559, 1186, 563, 15506, 12608, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 21858, 11, 15768, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 3109, 35570, 257, 15768, 2134, 11, 1392, 23884, 4458, 18982, 7, 4906, 7, 21858, 22305, 198, 220, 220, 220, 611, 407, 651, 35226, 7, 21858, 11, 705, 62, 18780, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 33308, 23884, 1276, 307, 3170, 878, 4375, 340, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1462, 257, 32167, 805, 4458, 18982, 7, 21858, 13, 3672, 4008, 628, 220, 220, 220, 611, 18896, 7, 21858, 13, 22046, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 13707, 29993, 341, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 1693, 62, 853, 287, 27056, 378, 7, 21858, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 11, 1438, 11, 1005, 563, 796, 1693, 62, 853, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 3672, 796, 705, 90, 92, 23330, 92, 4458, 18982, 7, 21858, 13, 46002, 62, 3672, 11, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 3672, 796, 705, 90, 92, 62, 853, 23330, 92, 4458, 18982, 7, 21858, 13, 46002, 62, 3672, 11, 4686, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 10139, 62, 3672, 11, 1693, 62, 853, 628, 198, 4299, 4808, 1136, 62, 8000, 62, 9410, 62, 8841, 7, 17440, 2599, 198, 220, 220, 220, 37227, 42316, 82, 262, 2560, 14, 9410, 1627, 329, 10139, 284, 307, 2087, 284, 257, 32167, 805, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 318, 39098, 7, 17440, 11, 7308, 19667, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 3109, 35570, 257, 15768, 393, 32167, 805, 2134, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23442, 23884, 4458, 18982, 7, 4906, 7, 17440, 22305, 628, 220, 220, 220, 2560, 62, 8841, 796, 705, 24546, 6, 198, 220, 220, 220, 329, 2560, 62, 17440, 287, 10139, 13, 23743, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8000, 62, 17440, 11, 15768, 8, 290, 18896, 7, 8000, 62, 17440, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 3672, 11, 1693, 62, 853, 287, 4808, 2676, 62, 21858, 62, 22046, 7, 8000, 62, 17440, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 8841, 15853, 705, 23884, 4458, 18982, 7, 17440, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 8841, 15853, 705, 23884, 4458, 18982, 7, 8000, 62, 17440, 13, 46002, 62, 3672, 8, 628, 220, 220, 220, 1200, 62, 8841, 796, 705, 16424, 6, 198, 220, 220, 220, 611, 318, 39098, 7, 17440, 11, 15768, 8, 290, 18896, 7, 17440, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 3672, 11, 1693, 62, 853, 287, 4808, 2676, 62, 21858, 62, 22046, 7, 17440, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 8841, 15853, 705, 23884, 4458, 18982, 7, 17440, 62, 3672, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 8841, 15853, 705, 23884, 4458, 18982, 7, 17440, 13, 46002, 62, 3672, 8, 628, 220, 220, 220, 2560, 62, 9410, 62, 8841, 796, 2560, 62, 8841, 1343, 705, 705, 1343, 1200, 62, 8841, 628, 220, 220, 220, 1441, 2560, 62, 9410, 62, 8841, 628, 198, 4871, 32167, 805, 7, 14881, 19667, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 32167, 805, 2134, 17747, 286, 257, 2168, 286, 19161, 290, 850, 12, 35, 363, 16221, 284, 6687, 13, 628, 220, 220, 220, 5740, 326, 262, 7559, 46002, 15506, 11507, 460, 307, 11777, 1813, 393, 17839, 198, 220, 220, 220, 416, 4634, 262, 7559, 47, 56, 10943, 35, 1581, 62, 50, 10526, 36393, 62, 34720, 15506, 2858, 7885, 13, 1052, 11777, 198, 220, 220, 220, 1813, 1988, 329, 7559, 46002, 15506, 481, 307, 973, 625, 262, 2858, 7885, 11, 198, 220, 220, 220, 981, 262, 2858, 7885, 481, 307, 973, 625, 257, 4277, 1988, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1438, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 32167, 805, 4554, 13, 770, 481, 635, 307, 262, 1438, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 11188, 4049, 11, 2604, 11, 5072, 11, 290, 9199, 3696, 3917, 351, 198, 220, 220, 220, 220, 220, 220, 220, 428, 32167, 805, 13, 628, 220, 220, 220, 9199, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 8619, 810, 1779, 273, 48924, 805, 9199, 3696, 481, 307, 3194, 198, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 82, 284, 262, 8619, 373, 262, 32167, 805, 373, 8948, 422, 737, 628, 220, 220, 220, 3131, 62, 6615, 1058, 1351, 393, 6045, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 3224, 3951, 284, 307, 2087, 284, 9199, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 16, 13, 16, 628, 220, 220, 220, 48924, 1058, 32167, 805, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 7368, 11, 32167, 805, 481, 307, 2087, 284, 48924, 355, 257, 850, 67, 363, 198, 220, 220, 220, 220, 220, 220, 220, 357, 12286, 318, 6045, 737, 628, 220, 220, 220, 15942, 577, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 5684, 286, 18931, 15942, 16579, 3038, 389, 657, 12, 43917, 11, 352, 12, 10951, 11, 198, 220, 220, 220, 220, 220, 220, 220, 362, 12, 24442, 2667, 357, 12286, 318, 657, 737, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3946, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 286, 3946, 329, 428, 32167, 805, 4554, 284, 6687, 13, 628, 220, 220, 220, 3397, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 2560, 19161, 290, 32167, 16221, 13, 48221, 942, 326, 19161, 290, 32167, 16221, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3397, 1351, 481, 1844, 878, 428, 32167, 805, 318, 8948, 284, 22063, 623, 273, 13, 628, 220, 220, 220, 1751, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 1200, 19161, 290, 32167, 16221, 13, 48221, 942, 326, 19161, 290, 32167, 16221, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1751, 1351, 481, 307, 8948, 691, 706, 428, 32167, 805, 468, 5668, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 751, 62, 21858, 7, 944, 11, 1693, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 1693, 284, 32167, 805, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1693, 1058, 15768, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15768, 284, 24443, 284, 32167, 805, 3946, 1351, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 17440, 7, 21858, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 751, 62, 7266, 67, 363, 7, 944, 11, 48924, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 48924, 284, 32167, 805, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 48924, 1058, 32167, 805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3834, 67, 363, 284, 24443, 284, 32167, 805, 3946, 1351, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 17440, 7, 67, 363, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 4808, 1136, 62, 21858, 62, 853, 62, 6615, 7, 944, 11, 1693, 11, 14996, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 82, 262, 3951, 284, 307, 2087, 284, 257, 32167, 805, 3519, 284, 1693, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 21858, 11, 15768, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 3109, 35570, 257, 15768, 2134, 11, 1392, 23884, 4458, 18982, 7, 4906, 7, 21858, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 651, 35226, 7, 21858, 11, 705, 62, 18780, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 33308, 23884, 1276, 307, 3170, 878, 4375, 340, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1462, 257, 32167, 805, 4458, 18982, 7, 21858, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 21858, 13, 22046, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 1370, 796, 705, 41, 9864, 23884, 23884, 4458, 18982, 7, 21858, 13, 46002, 62, 3672, 11, 1693, 13, 46002, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 21858, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 3672, 11, 1693, 62, 853, 287, 4808, 2676, 62, 21858, 62, 22046, 7, 21858, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 705, 2637, 393, 705, 10, 6, 389, 407, 287, 10139, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2637, 287, 10139, 62, 3672, 393, 705, 10, 6, 287, 10139, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10134, 62, 14774, 62, 17440, 62, 14933, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 11, 1438, 11, 1005, 563, 796, 1693, 62, 853, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 449, 9864, 1627, 351, 15768, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 1370, 796, 705, 41, 9864, 23884, 23884, 4458, 18982, 7, 17440, 62, 3672, 11, 1693, 13, 46002, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 21858, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1693, 5923, 14313, 1627, 329, 3141, 1627, 7159, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 1370, 796, 705, 53, 27415, 23884, 5923, 14313, 2625, 90, 36786, 4458, 18982, 7, 17440, 62, 3672, 11, 1822, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 853, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 1693, 62, 3672, 7885, 611, 612, 389, 1822, 62, 14933, 329, 1693, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1693, 13557, 10134, 62, 853, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 3672, 796, 10139, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 3672, 796, 1693, 13, 46002, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 3672, 62, 1370, 796, 705, 53, 27415, 23884, 1693, 62, 3672, 2625, 90, 36786, 4458, 18982, 7, 17440, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 21858, 62, 3672, 62, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1005, 563, 1627, 329, 15768, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 563, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 563, 62, 1370, 796, 705, 9781, 563, 23884, 23884, 4458, 18982, 7, 17440, 62, 3672, 11, 1005, 563, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 13, 33295, 7, 1186, 563, 62, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1693, 62, 853, 62, 6615, 628, 220, 220, 220, 825, 1382, 7, 944, 11, 285, 4335, 17062, 28, 17821, 11, 14996, 3672, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 290, 16031, 262, 9199, 2393, 329, 32167, 805, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 285, 4335, 17062, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 15768, 29196, 357, 68, 13, 70, 13, 4049, 11, 5072, 11, 2604, 11, 9199, 8, 836, 470, 2152, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 606, 357, 12286, 318, 7559, 17821, 15506, 737, 628, 220, 220, 220, 220, 220, 220, 220, 14996, 3672, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2034, 2412, 262, 3128, 290, 3748, 4686, 1271, 284, 4049, 11, 2604, 11, 5072, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9199, 3696, 13, 1114, 1672, 11, 2427, 286, 7559, 67, 363, 3672, 13, 46002, 15506, 262, 9199, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 4329, 7559, 67, 363, 3672, 62, 26314, 26314, 12038, 35, 62, 312, 15506, 13, 770, 318, 4465, 618, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1811, 360, 3775, 14, 41, 8158, 286, 262, 976, 1438, 357, 12286, 318, 7559, 17821, 15506, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 651, 35226, 7, 944, 11, 705, 62, 18780, 3256, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 92, 9199, 2393, 468, 1541, 587, 3170, 13, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 4106, 2105, 262, 1382, 1429, 986, 4458, 18982, 7, 944, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 2116, 13557, 1136, 62, 69, 3883, 3672, 3419, 611, 14996, 3672, 2073, 2116, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 9199, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 46002, 11, 705, 90, 27422, 46002, 4458, 18982, 7, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 7753, 796, 9199, 62, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 15908, 7, 944, 13, 46002, 62, 7753, 11, 285, 4335, 17062, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 9199, 3696, 329, 477, 13760, 287, 2116, 13, 77, 4147, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 25, 13760, 1276, 307, 3170, 878, 262, 9199, 2393, 329, 2116, 318, 3170, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 9630, 11, 10139, 287, 27056, 378, 7, 944, 13, 77, 4147, 11, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 17440, 11, 15768, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13557, 11249, 62, 6738, 62, 67, 363, 7, 76, 4335, 17062, 11, 14996, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 17440, 11, 32167, 805, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 11249, 7, 76, 4335, 17062, 11, 14996, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 45, 4147, 1276, 307, 2035, 257, 15768, 393, 32167, 805, 2134, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 48924, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 10786, 25954, 360, 4760, 14498, 2393, 23884, 986, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 7753, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 9410, 62, 6615, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 62, 9630, 11, 10139, 287, 27056, 378, 7, 944, 13, 77, 4147, 11, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 10786, 28516, 319, 23884, 685, 90, 92, 286, 23884, 60, 4458, 18982, 7, 17440, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 9630, 11, 18896, 7, 944, 13, 77, 4147, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 262, 7308, 19667, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 17440, 11, 15768, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 15768, 9633, 284, 32167, 805, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 853, 62, 6615, 796, 2116, 13557, 1136, 62, 21858, 62, 853, 62, 6615, 7, 17440, 11, 14996, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 2302, 437, 7, 21858, 62, 853, 62, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 17440, 11, 32167, 805, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 67, 363, 62, 8841, 796, 4808, 1136, 62, 7266, 67, 363, 62, 8841, 7, 17440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 7266, 67, 363, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 45, 4147, 1276, 307, 2035, 257, 15768, 393, 32167, 805, 2134, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 2560, 14, 9410, 1321, 11, 611, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 13, 71, 5126, 1580, 82, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 9410, 62, 8841, 796, 4808, 1136, 62, 8000, 62, 9410, 62, 8841, 7, 17440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 9410, 62, 6615, 13, 33295, 7, 8000, 62, 9410, 62, 8841, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 597, 3131, 3951, 284, 9199, 2393, 11, 611, 7368, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 26086, 62, 6615, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 2302, 437, 7, 944, 13, 26086, 62, 6615, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 3951, 284, 48924, 9199, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 46002, 62, 7753, 11, 705, 86, 11537, 355, 48924, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48924, 13, 8933, 20655, 10786, 59, 77, 4458, 22179, 7, 6615, 1343, 37250, 59, 77, 2, 9492, 12, 21858, 20086, 20520, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 9410, 62, 6615, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18780, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 10786, 35, 363, 805, 14498, 2393, 329, 23884, 7675, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18780, 0, 4458, 18982, 7, 944, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 2488, 47911, 62, 21812, 10786, 17561, 273, 62, 46002, 62, 67, 363, 11537, 198, 220, 220, 220, 825, 9199, 62, 67, 363, 7, 944, 11, 9199, 62, 25811, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7004, 24883, 32167, 805, 284, 1779, 273, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 9199, 62, 25811, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18634, 284, 307, 3804, 284, 7559, 17561, 273, 62, 46002, 62, 67, 363, 15506, 329, 428, 32167, 805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3826, 262, 4600, 17561, 273, 62, 46002, 62, 67, 363, 10314, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 4023, 1378, 34033, 13, 6359, 13, 86, 2304, 13, 15532, 14, 4352, 17561, 273, 14, 805, 723, 14, 14421, 14, 17561, 273, 62, 46002, 62, 67, 363, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1744, 3689, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28407, 1779, 273, 62, 46002, 62, 67, 363, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 3141, 796, 705, 17561, 273, 62, 46002, 62, 67, 363, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9199, 62, 25811, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3141, 15853, 705, 23884, 4458, 18982, 7, 46002, 62, 25811, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3141, 15853, 705, 23884, 4458, 18982, 7, 944, 13, 46002, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9199, 62, 67, 363, 62, 36942, 796, 850, 14681, 13, 47, 9654, 26933, 21812, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 612, 389, 645, 5293, 10139, 3891, 329, 15064, 1779, 273, 6300, 198, 220, 220, 220, 220, 220, 220, 220, 1779, 273, 62, 9641, 796, 651, 62, 17561, 273, 62, 9641, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1779, 273, 62, 9641, 18189, 357, 23, 11, 767, 11, 362, 8, 290, 2116, 13557, 10134, 62, 14774, 62, 17440, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 796, 5855, 21077, 281, 5293, 2095, 357, 31336, 705, 10, 6, 393, 705, 2637, 8, 287, 262, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 329, 257, 10139, 287, 32167, 805, 23884, 13, 1081, 286, 22063, 623, 273, 2196, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23, 13, 22, 13, 17, 11, 705, 10, 6, 290, 220, 705, 2637, 389, 12244, 287, 32167, 805, 10139, 3891, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 1724, 257, 705, 10, 6, 393, 705, 2637, 2095, 318, 287, 257, 15768, 1438, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35, 363, 805, 1438, 11, 393, 262, 1438, 329, 257, 15768, 4578, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7, 8056, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8393, 1133, 1779, 273, 62, 46002, 62, 67, 363, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 503, 11, 11454, 796, 9199, 62, 67, 363, 62, 36942, 13, 10709, 5344, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 448, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 2488, 47911, 62, 21812, 10786, 17561, 273, 62, 46002, 62, 67, 363, 11537, 198, 220, 220, 220, 825, 1382, 62, 46002, 7, 944, 11, 285, 4335, 17062, 28, 17821, 11, 14996, 3672, 28, 17821, 11, 9199, 62, 25811, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34, 5691, 1382, 290, 9199, 4726, 3746, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 285, 4335, 17062, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 15768, 29196, 357, 68, 13, 70, 13, 4049, 11, 5072, 11, 2604, 11, 9199, 8, 836, 470, 2152, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 606, 357, 12286, 318, 7559, 17821, 15506, 737, 628, 220, 220, 220, 220, 220, 220, 220, 14996, 3672, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2034, 2412, 262, 3128, 290, 3748, 4686, 1271, 284, 4049, 11, 2604, 11, 5072, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9199, 3696, 13, 1114, 1672, 11, 2427, 286, 7559, 67, 363, 3672, 13, 46002, 15506, 262, 9199, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 4329, 7559, 67, 363, 3672, 62, 26314, 26314, 12038, 35, 62, 312, 15506, 13, 770, 318, 4465, 618, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1811, 360, 3775, 14, 41, 8158, 286, 262, 976, 1438, 357, 12286, 318, 7559, 17821, 15506, 737, 628, 220, 220, 220, 220, 220, 220, 220, 9199, 62, 25811, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18634, 284, 307, 3804, 284, 7559, 17561, 273, 62, 46002, 62, 67, 363, 15506, 329, 428, 32167, 805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3826, 262, 4600, 17561, 273, 62, 46002, 62, 67, 363, 10314, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 4023, 1378, 34033, 13, 6359, 13, 86, 2304, 13, 15532, 14, 4352, 17561, 273, 14, 805, 723, 14, 14421, 14, 17561, 273, 62, 46002, 62, 67, 363, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1744, 3689, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2116, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11249, 7, 76, 4335, 17062, 11, 14996, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 67, 363, 7, 46002, 62, 25811, 28, 46002, 62, 25811, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198 ]
2.207223
5,815
""" Module containing a numpy-like array which supports lazy reading of tiled 2D-image data. """ import abc import dask.array as da import numpy as np class LazyArray: """ An abstract class of a numpy-like array which supports lazy reading of tiled 2D-image data. The class represents a custom array container which is compatible with the numpy API. For more details please refer to https://numpy.org/doc/stable/user/basics.dispatch.html#writing-custom-array-containers. The class is compatible with napari's image layer which expects a "numpy-like array" as input which supports indexing and can be converted to a numpy array via np.asarray. (ref: https://napari.org/tutorials/fundamentals/image.html#image-data-and-numpy-like-arrays) """ __metaclass__ = abc.ABCMeta def __init__(self, shape, dtype, tile_size): """ Initialization method. :param shape: The shape of the underlying array. :param dtype: The type of the underlying array. :param tile_size: The size of a single tile by which the image is divided. """ assert len(shape) == 2 self.shape = shape self.dtype = dtype self.tile_size = tile_size self.ndim = 2 @property def size(self): """ The number of elements in the array. """ return self.shape[0] * self.shape[1] def __array__(self, dtype=None, **kwargs): # pylint: disable=W0613 """ Method used e.g. by numpy to obtain a standard numpy.ndarray. """ return np.asarray(self[0:self.shape[0], 0:self.shape[1]]) def __getitem__(self, idx): """ Method which implements the support for basic slicing. It does not support field access nor advanced indexing. Moreover, the start and stop of a slice must be positive integers. This method is optimized for the napari viewer. napari calls self[:] for obtaining the shape, dtype and ndim attributes - not the data. To delay reading the underlying data this method does not return a numpy array but self when calling self[:]. To access the underlying data napari calls np.asarray(self). """ if not ( isinstance(idx, slice) or (isinstance(idx, tuple) and all(isinstance(i, slice) for i in idx)) ): raise ValueError("LazyArray only supports indexing by slices!") if ( idx == slice(None, None, None) or idx == (slice(None, None, None), slice(None, None, None)) ): return self if len(idx) != 2: raise Exception("Unsupported index!") (y_min, y_max), (x_min, x_max) = [(i.start, i.stop) for i in idx] y_off = y_min - (y_min % self.tile_size) x_off = x_min - (x_min % self.tile_size) assert (y_min >= 0) and (y_max >= 0) and (x_min >= 0) & (x_max >= 0) if y_max % self.tile_size == 0: max_y_tiles = (y_max // self.tile_size) else: max_y_tiles = (y_max // self.tile_size) + 1 if x_max % self.tile_size == 0: max_x_tiles = (x_max // self.tile_size) else: max_x_tiles = (x_max // self.tile_size) + 1 dask_arrays = [] for y_tile in range(y_min // self.tile_size, max_y_tiles): row_tiles = [] for x_tile in range(x_min // self.tile_size, max_x_tiles): row_tiles.append( da.from_delayed( self.read_tile(y_tile, x_tile), shape=(self.tile_size, self.tile_size), dtype=np.uint8 ) ) dask_arrays.append(row_tiles) y_max = min(y_max, self.shape[0]) x_max = min(x_max, self.shape[1]) return da.block(dask_arrays)[y_min-y_off:y_max-y_off, x_min-x_off:x_max-x_off] @abc.abstractmethod def read_tile(self, y_tile, x_tile): """ Abstract method which reads a tile at the position (y_tile, x_tile). """ return
[ 37811, 198, 26796, 7268, 257, 299, 32152, 12, 2339, 7177, 543, 6971, 16931, 3555, 286, 256, 3902, 362, 35, 12, 9060, 1366, 13, 198, 37811, 198, 11748, 450, 66, 198, 11748, 288, 2093, 13, 18747, 355, 12379, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4871, 406, 12582, 19182, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 12531, 1398, 286, 257, 299, 32152, 12, 2339, 7177, 543, 6971, 16931, 3555, 286, 256, 3902, 362, 35, 12, 9060, 1366, 13, 198, 220, 220, 220, 383, 1398, 6870, 257, 2183, 7177, 9290, 543, 318, 11670, 351, 262, 299, 32152, 7824, 13, 198, 220, 220, 220, 1114, 517, 3307, 3387, 3522, 284, 198, 220, 220, 220, 3740, 1378, 77, 32152, 13, 2398, 14, 15390, 14, 31284, 14, 7220, 14, 12093, 873, 13, 6381, 17147, 13, 6494, 2, 16502, 12, 23144, 12, 18747, 12, 3642, 50221, 13, 628, 220, 220, 220, 383, 1398, 318, 11670, 351, 25422, 2743, 338, 2939, 7679, 543, 13423, 257, 366, 77, 32152, 12, 2339, 7177, 1, 355, 198, 220, 220, 220, 5128, 543, 6971, 6376, 278, 290, 460, 307, 11513, 284, 257, 299, 32152, 7177, 2884, 45941, 13, 292, 18747, 13, 198, 220, 220, 220, 357, 5420, 25, 3740, 1378, 77, 499, 2743, 13, 2398, 14, 83, 44917, 82, 14, 10990, 3263, 874, 14, 9060, 13, 6494, 2, 9060, 12, 7890, 12, 392, 12, 77, 32152, 12, 2339, 12, 3258, 592, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 4164, 330, 31172, 834, 796, 450, 66, 13, 24694, 48526, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5485, 11, 288, 4906, 11, 17763, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1634, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5485, 25, 383, 5485, 286, 262, 10238, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 288, 4906, 25, 383, 2099, 286, 262, 10238, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 17763, 62, 7857, 25, 383, 2546, 286, 257, 2060, 17763, 416, 543, 262, 2939, 318, 9086, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 43358, 8, 6624, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43358, 796, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 4906, 796, 288, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40927, 62, 7857, 796, 17763, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 358, 320, 796, 362, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2546, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 4847, 287, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 43358, 58, 15, 60, 1635, 2116, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 825, 11593, 18747, 834, 7, 944, 11, 288, 4906, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 54, 3312, 1485, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 973, 304, 13, 70, 13, 416, 299, 32152, 284, 7330, 257, 3210, 299, 32152, 13, 358, 18747, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 292, 18747, 7, 944, 58, 15, 25, 944, 13, 43358, 58, 15, 4357, 657, 25, 944, 13, 43358, 58, 16, 11907, 8, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 4686, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 543, 23986, 262, 1104, 329, 4096, 49289, 13, 198, 220, 220, 220, 220, 220, 220, 220, 632, 857, 407, 1104, 2214, 1895, 4249, 6190, 6376, 278, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10968, 11, 262, 923, 290, 2245, 286, 257, 16416, 1276, 307, 3967, 37014, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 318, 23392, 329, 262, 25422, 2743, 19091, 13, 198, 220, 220, 220, 220, 220, 220, 220, 25422, 2743, 3848, 2116, 58, 47715, 329, 16727, 262, 5485, 11, 288, 4906, 290, 299, 27740, 12608, 532, 407, 262, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 5711, 3555, 262, 10238, 1366, 428, 2446, 857, 407, 1441, 257, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 475, 2116, 618, 4585, 2116, 58, 25, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 1895, 262, 10238, 1366, 25422, 2743, 3848, 45941, 13, 292, 18747, 7, 944, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 39098, 7, 312, 87, 11, 16416, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 271, 39098, 7, 312, 87, 11, 46545, 8, 290, 477, 7, 271, 39098, 7, 72, 11, 16416, 8, 329, 1312, 287, 4686, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43, 12582, 19182, 691, 6971, 6376, 278, 416, 24314, 2474, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 6624, 16416, 7, 14202, 11, 6045, 11, 6045, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 6624, 357, 48369, 7, 14202, 11, 6045, 11, 6045, 828, 16416, 7, 14202, 11, 6045, 11, 6045, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 312, 87, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 3118, 15999, 6376, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 357, 88, 62, 1084, 11, 331, 62, 9806, 828, 357, 87, 62, 1084, 11, 2124, 62, 9806, 8, 796, 47527, 72, 13, 9688, 11, 1312, 13, 11338, 8, 329, 1312, 287, 4686, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 2364, 796, 331, 62, 1084, 532, 357, 88, 62, 1084, 4064, 2116, 13, 40927, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2364, 796, 2124, 62, 1084, 532, 357, 87, 62, 1084, 4064, 2116, 13, 40927, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 88, 62, 1084, 18189, 657, 8, 290, 357, 88, 62, 9806, 18189, 657, 8, 290, 357, 87, 62, 1084, 18189, 657, 8, 1222, 357, 87, 62, 9806, 18189, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 331, 62, 9806, 4064, 2116, 13, 40927, 62, 7857, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 88, 62, 83, 2915, 796, 357, 88, 62, 9806, 3373, 2116, 13, 40927, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 88, 62, 83, 2915, 796, 357, 88, 62, 9806, 3373, 2116, 13, 40927, 62, 7857, 8, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 62, 9806, 4064, 2116, 13, 40927, 62, 7857, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 87, 62, 83, 2915, 796, 357, 87, 62, 9806, 3373, 2116, 13, 40927, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 87, 62, 83, 2915, 796, 357, 87, 62, 9806, 3373, 2116, 13, 40927, 62, 7857, 8, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 288, 2093, 62, 3258, 592, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 62, 40927, 287, 2837, 7, 88, 62, 1084, 3373, 2116, 13, 40927, 62, 7857, 11, 3509, 62, 88, 62, 83, 2915, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 83, 2915, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 62, 40927, 287, 2837, 7, 87, 62, 1084, 3373, 2116, 13, 40927, 62, 7857, 11, 3509, 62, 87, 62, 83, 2915, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 83, 2915, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12379, 13, 6738, 62, 12381, 16548, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 961, 62, 40927, 7, 88, 62, 40927, 11, 2124, 62, 40927, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 944, 13, 40927, 62, 7857, 11, 2116, 13, 40927, 62, 7857, 828, 288, 4906, 28, 37659, 13, 28611, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 2093, 62, 3258, 592, 13, 33295, 7, 808, 62, 83, 2915, 8, 628, 220, 220, 220, 220, 220, 220, 220, 331, 62, 9806, 796, 949, 7, 88, 62, 9806, 11, 2116, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9806, 796, 949, 7, 87, 62, 9806, 11, 2116, 13, 43358, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12379, 13, 9967, 7, 67, 2093, 62, 3258, 592, 38381, 88, 62, 1084, 12, 88, 62, 2364, 25, 88, 62, 9806, 12, 88, 62, 2364, 11, 2124, 62, 1084, 12, 87, 62, 2364, 25, 87, 62, 9806, 12, 87, 62, 2364, 60, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 1100, 62, 40927, 7, 944, 11, 331, 62, 40927, 11, 2124, 62, 40927, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27741, 2446, 543, 9743, 257, 17763, 379, 262, 2292, 357, 88, 62, 40927, 11, 2124, 62, 40927, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198 ]
2.209539
1,866
from django.core.management.base import BaseCommand from core.datatools.fail_repeat import FailRepeater
[ 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 198, 6738, 4755, 13, 19608, 265, 10141, 13, 32165, 62, 44754, 1330, 18448, 47541, 729, 628 ]
3.655172
29
from typing import Dict import requests from config.env import starhubtvplus_app_key, starhubtvplus_client_uuid
[ 6738, 19720, 1330, 360, 713, 198, 11748, 7007, 198, 6738, 4566, 13, 24330, 1330, 3491, 40140, 14981, 9541, 62, 1324, 62, 2539, 11, 3491, 40140, 14981, 9541, 62, 16366, 62, 12303, 312, 628 ]
3.424242
33
# # Import section # import numpy from syned.beamline.beamline_element import BeamlineElement from syned.beamline.element_coordinates import ElementCoordinates from wofry.propagator.propagator import PropagationManager, PropagationElements, PropagationParameters from wofry.propagator.wavefront1D.generic_wavefront import GenericWavefront1D from wofryimpl.propagator.propagators1D.fresnel import Fresnel1D from wofryimpl.propagator.propagators1D.fresnel_convolution import FresnelConvolution1D from wofryimpl.propagator.propagators1D.fraunhofer import Fraunhofer1D from wofryimpl.propagator.propagators1D.integral import Integral1D from wofryimpl.propagator.propagators1D.fresnel_zoom import FresnelZoom1D from wofryimpl.propagator.propagators1D.fresnel_zoom_scaling_theorem import FresnelZoomScaling1D # # SOURCE======================== # # # BEAMLINE======================== # # # MAIN FUNCTION======================== # # # MAIN======================== # # main() if __name__ == "__main__": from orangecontrib.esrf.wofry.util.tally import TallyCoherentModes, Tally from oasys.util.oasys_util import get_fwhm from srxraylib.plot.gol import plot # # # # size_at_aperture = 565e-6 APERTURE = [40.3e-6, 85.1e-6, 145e-6, 1000e-6, -40.3e-6, -85.1e-6, -145e-6, -1000e-6] # [ 5000e-6] # [-40.3e-6, -85.1e-6, -145e-6, -1000e-6] # DISTANCE = numpy.linspace(10, 50, 50) # numpy.array([18.4]) # # # 31.19 28.4 number_of_points = 800 # 800 for aperture in APERTURE: # src1, wf = main(aperture=aperture, distance=18.4168, number_of_points=number_of_points) filename = "aperture_h_%g.dat" % (1e6 * aperture) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< f = open(filename, 'w') f.write("# S 1 scored data\n") f.write("# N 5\n") f.write("# L distance fwhm total_intensity on_axis_intensity peak_intensity") if aperture < 0: aperture *= -1 nmodes = 1 else: nmodes = 10 for i,distance in enumerate(DISTANCE): tally = main(aperture=aperture, distance=distance, nmodes=nmodes) spectral_density = tally.get_spectral_density() # numpy.zeros_like(abscissas) abscissas = tally.get_abscissas() fwhm, quote, coordinates = get_fwhm(spectral_density, 1e6 * abscissas) I = spectral_density x = abscissas fwhm, quote, coordinates = get_fwhm(I, x) intensity_at_center = I[I.size // 2] intensity_total = I.sum() * (x[1] - x[0]) intensity_peak = I.max() #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # plot(1e6 * abscissas, spectral_density, # legend=["From Cross Spectral Density"], # xtitle="x [um]", ytitle="Spectral Density", title="D=%g m,FWHM = %g um, a=%g um" % (distance, fwhm, aperture*1e6)) f.write("\n %g %g %g %g %g " % (distance, fwhm, intensity_total, intensity_at_center, intensity_peak)) f.close() print("File %s written to disk" % filename) # tally.save("aperture_h_%g.dat" % (aperture)) # main()
[ 2, 198, 2, 17267, 2665, 198, 2, 198, 11748, 299, 32152, 198, 198, 6738, 827, 2817, 13, 40045, 1370, 13, 40045, 1370, 62, 30854, 1330, 25855, 1370, 20180, 198, 6738, 827, 2817, 13, 40045, 1370, 13, 30854, 62, 37652, 17540, 1330, 11703, 7222, 585, 17540, 198, 6738, 266, 1659, 563, 13, 22930, 363, 1352, 13, 22930, 363, 1352, 1330, 8772, 363, 341, 13511, 11, 8772, 363, 341, 36, 3639, 11, 8772, 363, 341, 48944, 198, 198, 6738, 266, 1659, 563, 13, 22930, 363, 1352, 13, 19204, 8534, 16, 35, 13, 41357, 62, 19204, 8534, 1330, 42044, 39709, 8534, 16, 35, 198, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 411, 4954, 1330, 32732, 4954, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 411, 4954, 62, 42946, 2122, 1330, 32732, 4954, 3103, 85, 2122, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 430, 403, 71, 30288, 1330, 39313, 403, 71, 30288, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 18908, 1373, 1330, 15995, 1373, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 411, 4954, 62, 89, 4207, 1330, 32732, 4954, 57, 4207, 16, 35, 198, 6738, 266, 1659, 563, 23928, 13, 22930, 363, 1352, 13, 22930, 363, 2024, 16, 35, 13, 69, 411, 4954, 62, 89, 4207, 62, 1416, 4272, 62, 1169, 29625, 1330, 32732, 4954, 57, 4207, 3351, 4272, 16, 35, 628, 198, 2, 198, 2, 311, 31033, 4770, 2559, 198, 2, 628, 198, 198, 2, 198, 2, 9348, 2390, 24027, 4770, 2559, 198, 2, 628, 198, 198, 2, 198, 2, 8779, 1268, 29397, 4177, 2849, 4770, 2559, 198, 2, 628, 198, 198, 2, 198, 2, 8779, 1268, 4770, 2559, 198, 2, 628, 198, 2, 1388, 3419, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 422, 10912, 3642, 822, 13, 274, 41871, 13, 86, 1659, 563, 13, 22602, 13, 83, 453, 1330, 309, 453, 7222, 8334, 44, 4147, 11, 309, 453, 198, 220, 220, 220, 422, 267, 292, 893, 13, 22602, 13, 78, 292, 893, 62, 22602, 1330, 651, 62, 69, 1929, 76, 198, 220, 220, 220, 422, 19677, 87, 2433, 8019, 13, 29487, 13, 70, 349, 1330, 7110, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2546, 62, 265, 62, 499, 861, 495, 796, 642, 2996, 68, 12, 21, 198, 220, 220, 220, 3486, 17395, 11335, 796, 685, 1821, 13, 18, 68, 12, 21, 11, 7600, 13, 16, 68, 12, 21, 11, 20299, 68, 12, 21, 11, 8576, 68, 12, 21, 11, 532, 1821, 13, 18, 68, 12, 21, 11, 532, 5332, 13, 16, 68, 12, 21, 11, 532, 18781, 68, 12, 21, 11, 532, 12825, 68, 12, 21, 60, 1303, 685, 23336, 68, 12, 21, 60, 1303, 25915, 1821, 13, 18, 68, 12, 21, 11, 532, 5332, 13, 16, 68, 12, 21, 11, 532, 18781, 68, 12, 21, 11, 532, 12825, 68, 12, 21, 60, 1303, 198, 220, 220, 220, 360, 8808, 19240, 796, 299, 32152, 13, 21602, 10223, 7, 940, 11, 2026, 11, 2026, 8, 1303, 299, 32152, 13, 18747, 26933, 1507, 13, 19, 12962, 1303, 220, 220, 1303, 1303, 3261, 13, 1129, 2579, 13, 19, 198, 220, 220, 220, 1271, 62, 1659, 62, 13033, 796, 10460, 1303, 10460, 628, 198, 220, 220, 220, 329, 32729, 287, 3486, 17395, 11335, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12351, 16, 11, 266, 69, 796, 1388, 7, 499, 861, 495, 28, 499, 861, 495, 11, 5253, 28, 1507, 13, 19, 14656, 11, 1271, 62, 1659, 62, 13033, 28, 17618, 62, 1659, 62, 13033, 8, 628, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 366, 499, 861, 495, 62, 71, 62, 4, 70, 13, 19608, 1, 4064, 357, 16, 68, 21, 1635, 32729, 8, 1303, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 27, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 34345, 11, 705, 86, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 2, 311, 352, 7781, 1366, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 2, 399, 642, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 2, 406, 220, 5253, 220, 277, 1929, 76, 220, 2472, 62, 47799, 220, 319, 62, 22704, 62, 47799, 220, 9103, 62, 47799, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 32729, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32729, 1635, 28, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 4147, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 4147, 796, 838, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 30246, 287, 27056, 378, 7, 35, 8808, 19240, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26767, 796, 1388, 7, 499, 861, 495, 28, 499, 861, 495, 11, 5253, 28, 30246, 11, 28642, 4147, 28, 21533, 4147, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37410, 62, 43337, 796, 26767, 13, 1136, 62, 4443, 1373, 62, 43337, 3419, 1303, 299, 32152, 13, 9107, 418, 62, 2339, 7, 397, 1416, 747, 292, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 450, 1416, 747, 292, 796, 26767, 13, 1136, 62, 397, 1416, 747, 292, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1929, 76, 11, 9577, 11, 22715, 796, 651, 62, 69, 1929, 76, 7, 4443, 1373, 62, 43337, 11, 352, 68, 21, 1635, 450, 1416, 747, 292, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 796, 37410, 62, 43337, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 450, 1416, 747, 292, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1929, 76, 11, 9577, 11, 22715, 796, 651, 62, 69, 1929, 76, 7, 40, 11, 2124, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12245, 62, 265, 62, 16159, 796, 314, 58, 40, 13, 7857, 3373, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12245, 62, 23350, 796, 314, 13, 16345, 3419, 1635, 357, 87, 58, 16, 60, 532, 2124, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12245, 62, 36729, 796, 314, 13, 9806, 3419, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 16791, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 7, 16, 68, 21, 1635, 450, 1416, 747, 292, 11, 37410, 62, 43337, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 8177, 28, 14692, 4863, 6372, 13058, 1373, 360, 6377, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 742, 2578, 2625, 87, 685, 388, 60, 1600, 331, 7839, 2625, 49738, 1373, 360, 6377, 1600, 3670, 2625, 35, 28, 4, 70, 285, 11, 37, 12418, 44, 796, 4064, 70, 23781, 11, 257, 28, 4, 70, 23781, 1, 4064, 357, 30246, 11, 277, 1929, 76, 11, 32729, 9, 16, 68, 21, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 4064, 70, 220, 4064, 70, 220, 4064, 70, 220, 4064, 70, 220, 4064, 70, 220, 366, 4064, 357, 30246, 11, 220, 277, 1929, 76, 11, 220, 12245, 62, 23350, 11, 220, 12245, 62, 265, 62, 16159, 11, 220, 12245, 62, 36729, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 8979, 4064, 82, 3194, 284, 11898, 1, 4064, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26767, 13, 21928, 7203, 499, 861, 495, 62, 71, 62, 4, 70, 13, 19608, 1, 4064, 357, 499, 861, 495, 4008, 628, 198, 220, 220, 220, 1303, 1388, 3419, 198 ]
2.184335
1,481
import unittest from models import Marker # for Marker.bounding_box_query import datetime # This tests year 2014 accidents as this is the current example git data for testing # Once this changes to another year or to the current year's accidents (as should be) un-comment lines 11,13,15 # and change both 2014 and 2015 to: %s class TestQueryFilters(unittest.TestCase): """ # cyear = str(datetime.datetime.now().strftime("%Y")) global start_date start_date = "01/01/2014" # % cyear global end_date end_date = "01/01/2015" # % str(int(cyear)-1) """ if __name__ == '__main__': unittest.main() suite = unittest.TestLoader().loadTestsFromTestCase(TestQueryFilters) unittest.TextTestRunner(verbosity=2).run(suite)
[ 11748, 555, 715, 395, 198, 6738, 4981, 1330, 2940, 263, 220, 1303, 329, 2940, 263, 13, 7784, 278, 62, 3524, 62, 22766, 198, 11748, 4818, 8079, 198, 198, 2, 770, 5254, 614, 1946, 17390, 355, 428, 318, 262, 1459, 1672, 17606, 1366, 329, 4856, 198, 2, 4874, 428, 2458, 284, 1194, 614, 393, 284, 262, 1459, 614, 338, 17390, 357, 292, 815, 307, 8, 555, 12, 23893, 3951, 1367, 11, 1485, 11, 1314, 198, 2, 290, 1487, 1111, 1946, 290, 1853, 284, 25, 4064, 82, 628, 198, 4871, 6208, 20746, 11928, 1010, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 269, 1941, 796, 965, 7, 19608, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 56, 48774, 198, 220, 220, 220, 3298, 923, 62, 4475, 198, 220, 220, 220, 923, 62, 4475, 796, 366, 486, 14, 486, 14, 4967, 1, 220, 220, 220, 220, 1303, 4064, 269, 1941, 198, 220, 220, 220, 3298, 886, 62, 4475, 198, 220, 220, 220, 886, 62, 4475, 796, 366, 486, 14, 486, 14, 4626, 1, 220, 220, 220, 220, 220, 220, 1303, 4064, 965, 7, 600, 7, 948, 451, 13219, 16, 8, 198, 220, 220, 220, 37227, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198, 220, 220, 220, 18389, 796, 555, 715, 395, 13, 14402, 17401, 22446, 2220, 51, 3558, 4863, 14402, 20448, 7, 14402, 20746, 11928, 1010, 8, 198, 220, 220, 220, 555, 715, 395, 13, 8206, 14402, 49493, 7, 19011, 16579, 28, 17, 737, 5143, 7, 2385, 578, 8, 198 ]
2.778182
275
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest from learner.brains import tensor_nest import tensorflow as tf class TensorNestTest(absltest.TestCase): """Tests for the tensor_nest module.""" def test_batch_size_valid_nest(self): """Get the batch size of a nest of tensors with the same batch size.""" nest = { 'a': { 'b': tf.constant([[1, 2, 3], [4, 5, 6]]), 'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]]) }, } self.assertEqual(2, tensor_nest.batch_size(nest)) def test_batch_size_invalid_nest(self): """Get the batch size of a nest of tensors with different batch sizes.""" nest = { 'a': { 'b': tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), 'c': tf.constant([[7, 8, 9, 10], [11, 12, 13, 14]]) }, } self.assertRaisesRegex( tensor_nest.MismatchedBatchSizeError, 'Tensors found in nest with mismatched batch sizes: {\'a\'.*}', tensor_nest.batch_size, nest) def test_batch_size_empty_nest(self): """Get the batch size of an empty tensor nest.""" self.assertIsNone(tensor_nest.batch_size({})) def test_concatenate_batched(self): """Test the concatenation of a set of batched tensor nests.""" nests = [ { 'a': { 'b': tf.constant([[1, 2], [3, 4]]), 'c': tf.constant([[9, 8, 7], [6, 5, 4]]), }, }, { 'a': { 'b': tf.constant([[5, 6]]), 'c': tf.constant([[3, 2, 1]]), }, }, ] expected = { 'a': { 'b': tf.constant([[1, 2], [3, 4], [5, 6]]), 'c': tf.constant([[9, 8, 7], [6, 5, 4], [3, 2, 1]]), }, } tf.nest.assert_same_structure(tensor_nest.concatenate_batched(nests), expected, expand_composites=True) if __name__ == '__main__': absltest.main()
[ 2, 15069, 33448, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 2352, 75, 13, 33407, 1330, 2352, 2528, 395, 198, 6738, 22454, 1008, 13, 1671, 1299, 1330, 11192, 273, 62, 77, 395, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 4871, 309, 22854, 45, 395, 14402, 7, 8937, 2528, 395, 13, 14402, 20448, 2599, 198, 220, 37227, 51, 3558, 329, 262, 11192, 273, 62, 77, 395, 8265, 526, 15931, 628, 220, 825, 1332, 62, 43501, 62, 7857, 62, 12102, 62, 77, 395, 7, 944, 2599, 198, 220, 220, 220, 37227, 3855, 262, 15458, 2546, 286, 257, 16343, 286, 11192, 669, 351, 262, 976, 15458, 2546, 526, 15931, 198, 220, 220, 220, 16343, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 16, 11, 362, 11, 513, 4357, 685, 19, 11, 642, 11, 718, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 22, 11, 807, 11, 860, 11, 838, 4357, 685, 1157, 11, 1105, 11, 1511, 11, 1478, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17, 11, 11192, 273, 62, 77, 395, 13, 43501, 62, 7857, 7, 77, 395, 4008, 628, 220, 825, 1332, 62, 43501, 62, 7857, 62, 259, 12102, 62, 77, 395, 7, 944, 2599, 198, 220, 220, 220, 37227, 3855, 262, 15458, 2546, 286, 257, 16343, 286, 11192, 669, 351, 1180, 15458, 10620, 526, 15931, 198, 220, 220, 220, 16343, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 16, 11, 362, 11, 513, 4357, 685, 19, 11, 642, 11, 718, 4357, 685, 22, 11, 807, 11, 860, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 22, 11, 807, 11, 860, 11, 838, 4357, 685, 1157, 11, 1105, 11, 1511, 11, 1478, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 3041, 25636, 7, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 62, 77, 395, 13, 44, 1042, 14265, 33, 963, 10699, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 51, 641, 669, 1043, 287, 16343, 351, 32691, 14265, 15458, 10620, 25, 1391, 43054, 64, 59, 4458, 9, 92, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 62, 77, 395, 13, 43501, 62, 7857, 11, 16343, 8, 628, 220, 825, 1332, 62, 43501, 62, 7857, 62, 28920, 62, 77, 395, 7, 944, 2599, 198, 220, 220, 220, 37227, 3855, 262, 15458, 2546, 286, 281, 6565, 11192, 273, 16343, 526, 15931, 198, 220, 220, 220, 2116, 13, 30493, 3792, 14202, 7, 83, 22854, 62, 77, 395, 13, 43501, 62, 7857, 15090, 92, 4008, 628, 220, 825, 1332, 62, 1102, 9246, 268, 378, 62, 8664, 1740, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 262, 1673, 36686, 341, 286, 257, 900, 286, 7365, 1740, 11192, 273, 44382, 526, 15931, 198, 220, 220, 220, 44382, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 16, 11, 362, 4357, 685, 18, 11, 604, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 24, 11, 807, 11, 767, 4357, 685, 21, 11, 642, 11, 604, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 20, 11, 718, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 18, 11, 362, 11, 352, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 2938, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 48700, 13, 9979, 415, 26933, 58, 16, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 48700, 13, 9979, 415, 26933, 58, 24, 11, 807, 11, 767, 4357, 685, 21, 11, 642, 11, 604, 4357, 685, 18, 11, 362, 11, 352, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 48700, 13, 77, 395, 13, 30493, 62, 31642, 62, 301, 5620, 7, 83, 22854, 62, 77, 395, 13, 1102, 9246, 268, 378, 62, 8664, 1740, 7, 77, 3558, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 11, 4292, 62, 785, 1930, 2737, 28, 17821, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 2352, 2528, 395, 13, 12417, 3419, 198 ]
2.170121
1,158
""" Longest Palindromic Subsequence Given a string s, find the longest palindromic subsequence's length in s. A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements. - Example 1: - Input: s = "bbbab" - Output: 4 - Explanation: One possible longest palindromic subsequence is "bbbb". - Example 2: - Input: s = "cbbd" - Output: 2 - Explanation: One possible longest palindromic subsequence is "bb". - Constraints: - 1 <= s.length <= 1000 - s consists only of lowercase English letters. """ # A Dynamic Programming based Python # program for LPS problem Returns the length # of the longest palindromic subsequence in seq # Driver program to test above functions seq = "GEEKS FOR GEEKS" n = len(seq) print("The length of the LPS is " + str(lps(seq))) # This code is contributed by Bhavya Jain
[ 37811, 5882, 395, 3175, 521, 398, 291, 3834, 43167, 198, 198, 15056, 257, 4731, 264, 11, 1064, 262, 14069, 6340, 521, 398, 291, 6399, 594, 338, 4129, 287, 264, 13, 198, 198, 32, 6399, 594, 318, 257, 8379, 326, 460, 307, 10944, 422, 1194, 8379, 416, 198, 2934, 293, 889, 617, 393, 645, 4847, 1231, 5609, 262, 1502, 286, 262, 5637, 4847, 13, 198, 198, 12, 17934, 352, 25, 198, 220, 220, 220, 532, 23412, 25, 264, 796, 366, 11848, 65, 397, 1, 198, 220, 220, 220, 532, 25235, 25, 604, 198, 220, 220, 220, 532, 50125, 341, 25, 1881, 1744, 14069, 6340, 521, 398, 291, 6399, 594, 318, 366, 11848, 11848, 1911, 198, 12, 17934, 362, 25, 198, 220, 220, 220, 532, 23412, 25, 264, 796, 366, 66, 11848, 67, 1, 198, 220, 220, 220, 532, 25235, 25, 362, 198, 220, 220, 220, 532, 50125, 341, 25, 1881, 1744, 14069, 6340, 521, 398, 291, 6399, 594, 318, 366, 11848, 1911, 198, 12, 1482, 2536, 6003, 25, 198, 220, 220, 220, 532, 352, 19841, 264, 13, 13664, 19841, 8576, 198, 220, 220, 220, 532, 264, 10874, 691, 286, 2793, 7442, 3594, 7475, 13, 198, 37811, 628, 198, 2, 317, 26977, 30297, 1912, 11361, 198, 2, 1430, 329, 406, 3705, 1917, 16409, 262, 4129, 198, 2, 286, 262, 14069, 6340, 521, 398, 291, 6399, 594, 287, 33756, 628, 198, 2, 12434, 1430, 284, 1332, 2029, 5499, 198, 41068, 796, 366, 38, 6500, 27015, 7473, 402, 6500, 27015, 1, 198, 77, 796, 18896, 7, 41068, 8, 198, 4798, 7203, 464, 4129, 286, 262, 406, 3705, 318, 366, 1343, 965, 7, 75, 862, 7, 41068, 22305, 198, 198, 2, 770, 2438, 318, 8639, 416, 16581, 2830, 64, 449, 391 ]
3.244755
286
import statistics data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] print(statistics.mean(data)) # 平均 print(statistics.median(data)) # 中央値 print(statistics.variance(data)) # 標本標準分散
[ 11748, 7869, 198, 7890, 796, 685, 17, 13, 2425, 11, 352, 13, 2425, 11, 352, 13, 1495, 11, 657, 13, 1495, 11, 657, 13, 20, 11, 352, 13, 1495, 11, 513, 13, 20, 60, 198, 4798, 7, 14269, 3969, 13, 32604, 7, 7890, 4008, 1303, 10263, 117, 111, 161, 251, 229, 198, 4798, 7, 14269, 3969, 13, 1150, 666, 7, 7890, 4008, 1303, 220, 40792, 13783, 106, 161, 222, 97, 198, 4798, 7, 14269, 3969, 13, 25641, 590, 7, 7890, 4008, 1303, 10545, 101, 247, 17312, 105, 162, 101, 247, 162, 118, 244, 26344, 228, 46763, 96, 198 ]
1.826531
98
# Copyright 2021 Joshua Watt <[email protected]> # # SPDX-License-Identifier: MIT
[ 2, 15069, 33448, 20700, 30263, 1279, 41, 11401, 1199, 10735, 31, 14816, 13, 785, 29, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 17168, 628 ]
2.965517
29
from django.db import models from django.contrib.auth.models import User from ckeditor_uploader.fields import RichTextUploadingField # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 269, 9091, 2072, 62, 25850, 263, 13, 25747, 1330, 3998, 8206, 41592, 278, 15878, 198, 198, 2, 13610, 534, 4981, 994, 13, 198, 220, 220, 220, 220 ]
3.367347
49
import os from django import forms from django.utils.translation import gettext_lazy as _ from wagtail.admin.widgets import AdminPageChooser from wagtail.contrib.redirects.models import Redirect from wagtail.models import Site
[ 11748, 28686, 198, 198, 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 651, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 266, 363, 13199, 13, 28482, 13, 28029, 11407, 1330, 32053, 9876, 22164, 13416, 198, 6738, 266, 363, 13199, 13, 3642, 822, 13, 445, 1060, 82, 13, 27530, 1330, 2297, 1060, 198, 6738, 266, 363, 13199, 13, 27530, 1330, 14413, 628, 628 ]
3.362319
69
import numpy as np import cv2 import copy from Tkinter import * from PIL import Image from PIL import ImageTk import tkFileDialog root = Tk() panelA = None panelB = None img = None img2 = None img3 = None ConvolutionLabel = Label(root, text="Convolute").grid(row=0,column=0) Conv00Entry = Entry(root, bd =5) Conv01Entry = Entry(root, bd =5) Conv02Entry = Entry(root, bd =5) Conv10Entry = Entry(root, bd =5) Conv11Entry = Entry(root, bd =5) Conv12Entry = Entry(root, bd =5) Conv20Entry = Entry(root, bd =5) Conv21Entry = Entry(root, bd =5) Conv22Entry = Entry(root, bd =5) Conv00Entry.grid(row=1,column=0) Conv01Entry.grid(row=1,column=1) Conv02Entry.grid(row=1,column=2) Conv10Entry.grid(row=2,column=0) Conv11Entry.grid(row=2,column=1) Conv12Entry.grid(row=2,column=2) Conv20Entry.grid(row=3,column=0) Conv21Entry.grid(row=3,column=1) Conv22Entry.grid(row=3,column=2) brightnessLabel = Label(root, text="Brightness").grid(row=4,column=0) brightnessEntry = Entry(root, bd =5) brightnessEntry.grid(row=4,column=1) contrastLabel = Label(root, text="Contrast").grid(row=5,column=0) contrastEntry = Entry(root, bd =5) contrastEntry.grid(row=5,column=1) zoomOutLabel = Label(root, text="ZoomOut").grid(row=6,column=0) zoomOutXEntry = Entry(root, bd =5) zoomOutXEntry.grid(row=6,column=1) zoomOutYEntry = Entry(root, bd =5) zoomOutYEntry.grid(row=6,column=2) selectImageBtn = Button(root, text="Select an image", command=selectImage).grid(row=0,column=3) horizontalBtn = Button(root, text ="Flip Horizontally", command = flipHorizontal).grid(row=1,column=3) grayscaleBtn = Button(root, text ="Grayscale", command = grayscale).grid(row=2,column=3) histogramBtn = Button(root, text ="Generate Histogram", command = generateHistogram).grid(row=3,column=3) brightnessBtn = Button(root, text ="Change Brightness", command = changeBrightness).grid(row=4,column=3) contrastBtn = Button(root, text ="Change Contrast", command = changeContrast).grid(row=5,column=3) negativeBtn = Button(root, text ="Negative", command = negative).grid(row=6,column=3) equalizeBtn = Button(root, text ="Equalize", command = equalize).grid(row=7,column=3) zoomOutBtn = Button(root, text ="ZoomOut", command = zoomOut).grid(row=8,column=3) zoomInBtn = Button(root, text ="ZoomIn", command = zoomIn).grid(row=9,column=3) rotateClockWiseBtn = Button(root, text ="rotateClockWise", command = rotateClockWise).grid(row=10,column=3) rotateAntiClockWiseBtn = Button(root, text ="rotateAntiClockWise", command = rotateAntiClockWise).grid(row=11,column=3) convoluteBtn = Button(root, text ="Convolute", command = convolute).grid(row=12,column=3) root.mainloop()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 4866, 198, 6738, 309, 74, 3849, 1330, 1635, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 350, 4146, 1330, 7412, 51, 74, 198, 11748, 256, 74, 8979, 44204, 628, 198, 15763, 796, 309, 74, 3419, 198, 35330, 32, 796, 6045, 198, 35330, 33, 796, 6045, 198, 9600, 796, 6045, 198, 9600, 17, 796, 6045, 198, 9600, 18, 796, 6045, 198, 198, 3103, 85, 2122, 33986, 796, 36052, 7, 15763, 11, 2420, 2625, 3103, 85, 3552, 11074, 25928, 7, 808, 28, 15, 11, 28665, 28, 15, 8, 198, 3103, 85, 405, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 486, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 2999, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 940, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 1157, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 1065, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 1238, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 2481, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 1828, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3103, 85, 405, 30150, 13, 25928, 7, 808, 28, 16, 11, 28665, 28, 15, 8, 198, 3103, 85, 486, 30150, 13, 25928, 7, 808, 28, 16, 11, 28665, 28, 16, 8, 198, 3103, 85, 2999, 30150, 13, 25928, 7, 808, 28, 16, 11, 28665, 28, 17, 8, 198, 3103, 85, 940, 30150, 13, 25928, 7, 808, 28, 17, 11, 28665, 28, 15, 8, 198, 3103, 85, 1157, 30150, 13, 25928, 7, 808, 28, 17, 11, 28665, 28, 16, 8, 198, 3103, 85, 1065, 30150, 13, 25928, 7, 808, 28, 17, 11, 28665, 28, 17, 8, 198, 3103, 85, 1238, 30150, 13, 25928, 7, 808, 28, 18, 11, 28665, 28, 15, 8, 198, 3103, 85, 2481, 30150, 13, 25928, 7, 808, 28, 18, 11, 28665, 28, 16, 8, 198, 3103, 85, 1828, 30150, 13, 25928, 7, 808, 28, 18, 11, 28665, 28, 17, 8, 198, 198, 29199, 1108, 33986, 796, 36052, 7, 15763, 11, 2420, 2625, 41267, 1108, 11074, 25928, 7, 808, 28, 19, 11, 28665, 28, 15, 8, 198, 29199, 1108, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 29199, 1108, 30150, 13, 25928, 7, 808, 28, 19, 11, 28665, 28, 16, 8, 198, 3642, 5685, 33986, 796, 36052, 7, 15763, 11, 2420, 2625, 4264, 5685, 11074, 25928, 7, 808, 28, 20, 11, 28665, 28, 15, 8, 198, 3642, 5685, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 3642, 5685, 30150, 13, 25928, 7, 808, 28, 20, 11, 28665, 28, 16, 8, 198, 198, 89, 4207, 7975, 33986, 796, 36052, 7, 15763, 11, 2420, 2625, 57, 4207, 7975, 11074, 25928, 7, 808, 28, 21, 11, 28665, 28, 15, 8, 198, 89, 4207, 7975, 55, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 89, 4207, 7975, 55, 30150, 13, 25928, 7, 808, 28, 21, 11, 28665, 28, 16, 8, 198, 89, 4207, 7975, 56, 30150, 796, 21617, 7, 15763, 11, 275, 67, 796, 20, 8, 198, 89, 4207, 7975, 56, 30150, 13, 25928, 7, 808, 28, 21, 11, 28665, 28, 17, 8, 198, 198, 19738, 5159, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 2625, 17563, 281, 2939, 1600, 3141, 28, 19738, 5159, 737, 25928, 7, 808, 28, 15, 11, 28665, 28, 18, 8, 198, 17899, 38342, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 7414, 541, 6075, 12071, 453, 1600, 3141, 796, 14283, 27991, 38342, 737, 25928, 7, 808, 28, 16, 11, 28665, 28, 18, 8, 198, 2164, 592, 38765, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 8642, 592, 38765, 1600, 3141, 796, 1036, 592, 38765, 737, 25928, 7, 808, 28, 17, 11, 28665, 28, 18, 8, 198, 10034, 21857, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 8645, 378, 5590, 21857, 1600, 3141, 796, 7716, 13749, 21857, 737, 25928, 7, 808, 28, 18, 11, 28665, 28, 18, 8, 198, 29199, 1108, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 19400, 17558, 1108, 1600, 3141, 796, 1487, 41267, 1108, 737, 25928, 7, 808, 28, 19, 11, 28665, 28, 18, 8, 198, 3642, 5685, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 19400, 47011, 1600, 3141, 796, 1487, 4264, 5685, 737, 25928, 7, 808, 28, 20, 11, 28665, 28, 18, 8, 198, 31591, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 32863, 876, 1600, 3141, 796, 4633, 737, 25928, 7, 808, 28, 21, 11, 28665, 28, 18, 8, 198, 40496, 1096, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 36, 13255, 1096, 1600, 3141, 796, 4961, 1096, 737, 25928, 7, 808, 28, 22, 11, 28665, 28, 18, 8, 198, 89, 4207, 7975, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 57, 4207, 7975, 1600, 3141, 796, 19792, 7975, 737, 25928, 7, 808, 28, 23, 11, 28665, 28, 18, 8, 198, 89, 4207, 818, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 57, 4207, 818, 1600, 3141, 796, 19792, 818, 737, 25928, 7, 808, 28, 24, 11, 28665, 28, 18, 8, 198, 10599, 378, 44758, 54, 786, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 10599, 378, 44758, 54, 786, 1600, 3141, 796, 23064, 44758, 54, 786, 737, 25928, 7, 808, 28, 940, 11, 28665, 28, 18, 8, 198, 10599, 378, 28795, 44758, 54, 786, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 10599, 378, 28795, 44758, 54, 786, 1600, 3141, 796, 23064, 28795, 44758, 54, 786, 737, 25928, 7, 808, 28, 1157, 11, 28665, 28, 18, 8, 198, 42946, 3552, 33, 34106, 796, 20969, 7, 15763, 11, 2420, 796, 1, 3103, 85, 3552, 1600, 3141, 796, 3063, 3552, 737, 25928, 7, 808, 28, 1065, 11, 28665, 28, 18, 8, 198, 198, 15763, 13, 12417, 26268, 3419 ]
2.564453
1,024
#------------------------------------------------------------------------------- # Post processing (color management) related Mari scripts # coding: utf-8 # Copyright (c) 2011 The Foundry Visionmongers Ltd. All Rights Reserved. #------------------------------------------------------------------------------- import mari, time, PythonQt, os, math QtGui = PythonQt.QtGui QtCore = PythonQt.QtCore ocio = mari.utils.ocio ############################################################################################## GAIN_GROUP_MAX_WIDTH = 312 FSTOP_MAX_WIDTH = 50 EXPOSURE_MAX_WIDTH = 102 GAIN_MAX_WIDTH = 80 GAMMA_MAX_WIDTH = 200 TOOLBAR_SPACING = 3 toolbar = None #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # Widgets: #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # Metadata: #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # External Connections: #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # Filter: #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- #----------------------------------------------------------------------------------------- # Debugging: #----------------------------------------------------------------------------------------- ############################################################################################## # The following functions CAN'T be part of the toolbar class as a potential bug in PythonQt # causes the disconnect function to fail #----------------------------------------------------------------------------------------- ############################################################################################## if mari.app.isRunning(): if not hasattr(mari.gl_render, 'createPostFilterCollection'): ocio.printMessage(ocio.MessageType.ERROR, 'This version of Mari does not support the mari.gl_render.createPostFilterCollection API') else: if ocio.config_default is not None: toolbar = OcioToolBar() else: # Destroy the OCIO post filter collection if present to prevent the user trying to use it. filter_collection = mari.gl_render.findPostFilterCollection('Color Space') if filter_collection is not None: mari.gl_render.deletePostFilterCollection(filter_collection) # Destroy the toolbar to prevent the user trying to use it. mari.app.deleteToolBar('Color Space')
[ 2, 10097, 24305, 198, 2, 2947, 7587, 357, 8043, 4542, 8, 3519, 29423, 14750, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 15069, 357, 66, 8, 2813, 383, 4062, 563, 19009, 31059, 364, 12052, 13, 220, 1439, 6923, 33876, 13, 198, 2, 10097, 24305, 198, 198, 11748, 1667, 72, 11, 640, 11, 11361, 48, 83, 11, 28686, 11, 10688, 198, 48, 83, 8205, 72, 220, 796, 11361, 48, 83, 13, 48, 83, 8205, 72, 198, 48, 83, 14055, 796, 11361, 48, 83, 13, 48, 83, 14055, 198, 420, 952, 220, 220, 796, 1667, 72, 13, 26791, 13, 420, 952, 198, 198, 29113, 29113, 14468, 7804, 4242, 2235, 198, 198, 9273, 1268, 62, 46846, 62, 22921, 62, 54, 2389, 4221, 796, 34465, 198, 37, 2257, 3185, 62, 22921, 62, 54, 2389, 4221, 220, 220, 220, 220, 220, 796, 2026, 198, 6369, 37997, 11335, 62, 22921, 62, 54, 2389, 4221, 220, 220, 796, 15143, 198, 9273, 1268, 62, 22921, 62, 54, 2389, 4221, 220, 220, 220, 220, 220, 220, 796, 4019, 198, 38, 2390, 5673, 62, 22921, 62, 54, 2389, 4221, 220, 220, 220, 220, 220, 796, 939, 198, 10468, 3535, 33, 1503, 62, 4303, 2246, 2751, 220, 220, 220, 220, 220, 796, 513, 198, 198, 25981, 5657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 6045, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 24801, 11407, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 3395, 14706, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 198, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 34579, 8113, 507, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 25853, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 628, 220, 220, 220, 1303, 10097, 22369, 12, 198, 220, 220, 220, 1303, 31687, 2667, 25, 198, 220, 220, 220, 1303, 10097, 22369, 12, 198, 198, 29113, 29113, 14468, 7804, 4242, 2235, 198, 2, 383, 1708, 5499, 15628, 6, 51, 307, 636, 286, 262, 50149, 1398, 355, 257, 2785, 5434, 287, 11361, 48, 83, 198, 2, 5640, 262, 22837, 2163, 284, 2038, 198, 198, 2, 10097, 22369, 12, 198, 198, 29113, 29113, 14468, 7804, 4242, 2235, 198, 198, 361, 1667, 72, 13, 1324, 13, 271, 28768, 33529, 198, 220, 220, 220, 611, 407, 468, 35226, 7, 76, 2743, 13, 4743, 62, 13287, 11, 705, 17953, 6307, 22417, 36307, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 267, 66, 952, 13, 4798, 12837, 7, 420, 952, 13, 12837, 6030, 13, 24908, 11, 705, 1212, 2196, 286, 29423, 857, 407, 1104, 262, 1667, 72, 13, 4743, 62, 13287, 13, 17953, 6307, 22417, 36307, 7824, 11537, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 267, 66, 952, 13, 11250, 62, 12286, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50149, 796, 440, 66, 952, 25391, 10374, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19448, 262, 24775, 9399, 1281, 8106, 4947, 611, 1944, 284, 2948, 262, 2836, 2111, 284, 779, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 43681, 796, 1667, 72, 13, 4743, 62, 13287, 13, 19796, 6307, 22417, 36307, 10786, 10258, 4687, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8106, 62, 43681, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1667, 72, 13, 4743, 62, 13287, 13, 33678, 6307, 22417, 36307, 7, 24455, 62, 43681, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19448, 262, 50149, 284, 2948, 262, 2836, 2111, 284, 779, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1667, 72, 13, 1324, 13, 33678, 25391, 10374, 10786, 10258, 4687, 11537, 198 ]
6.726295
1,023
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import shutil from pathlib import Path from libcst.testing.utils import UnitTest from fixit.common.config import ( CACHE as CONFIG_CACHE, get_lint_config, get_rules_for_path, ) from fixit.common.utils import ( dedent_with_lstrip, DuplicateLintRuleNameError, find_and_import_rule, import_rule_from_package, LintRuleNotFoundError, ) DUMMY_PACKAGE: str = "fixit.common.tests.test_imports_dummy_package" DUMMY_PACKAGE_PATH: Path = Path(__file__).parent / "test_imports_dummy_package" DUPLICATE_DUMMY_PATH: Path = ( Path(__file__).parent / "test_imports_dummy_package_with_duplicate_rule" ) # Using dummy config file, test whether the rule import helpers work as expected.
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 17168, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 9195, 66, 301, 13, 33407, 13, 26791, 1330, 11801, 14402, 198, 198, 6738, 4259, 270, 13, 11321, 13, 11250, 1330, 357, 198, 220, 220, 220, 327, 2246, 13909, 355, 25626, 62, 34, 2246, 13909, 11, 198, 220, 220, 220, 651, 62, 75, 600, 62, 11250, 11, 198, 220, 220, 220, 651, 62, 38785, 62, 1640, 62, 6978, 11, 198, 8, 198, 6738, 4259, 270, 13, 11321, 13, 26791, 1330, 357, 198, 220, 220, 220, 4648, 298, 62, 4480, 62, 75, 36311, 11, 198, 220, 220, 220, 49821, 5344, 43, 600, 31929, 5376, 12331, 11, 198, 220, 220, 220, 1064, 62, 392, 62, 11748, 62, 25135, 11, 198, 220, 220, 220, 1330, 62, 25135, 62, 6738, 62, 26495, 11, 198, 220, 220, 220, 406, 600, 31929, 3673, 21077, 12331, 11, 198, 8, 628, 198, 35, 5883, 26708, 62, 47, 8120, 11879, 25, 965, 796, 366, 13049, 270, 13, 11321, 13, 41989, 13, 9288, 62, 320, 3742, 62, 67, 13513, 62, 26495, 1, 198, 35, 5883, 26708, 62, 47, 8120, 11879, 62, 34219, 25, 10644, 796, 10644, 7, 834, 7753, 834, 737, 8000, 1220, 366, 9288, 62, 320, 3742, 62, 67, 13513, 62, 26495, 1, 198, 198, 35, 52, 31484, 6158, 62, 35, 5883, 26708, 62, 34219, 25, 10644, 796, 357, 198, 220, 220, 220, 10644, 7, 834, 7753, 834, 737, 8000, 1220, 366, 9288, 62, 320, 3742, 62, 67, 13513, 62, 26495, 62, 4480, 62, 646, 489, 5344, 62, 25135, 1, 198, 8, 198, 198, 2, 8554, 31548, 4566, 2393, 11, 1332, 1771, 262, 3896, 1330, 49385, 670, 355, 2938, 13, 628 ]
2.800623
321
""" Announce addresses as they are received from other hosts """ import Queue import state from helper_random import randomshuffle from network.assemble import assemble_addr from network.connectionpool import BMConnectionPool from queues import addrQueue from threads import StoppableThread class AddrThread(StoppableThread): """(Node) address broadcasting thread""" name = "AddrBroadcaster"
[ 37811, 198, 18858, 8652, 9405, 355, 484, 389, 2722, 422, 584, 11453, 198, 37811, 198, 11748, 4670, 518, 198, 198, 11748, 1181, 198, 6738, 31904, 62, 25120, 1330, 4738, 1477, 18137, 198, 6738, 3127, 13, 292, 15140, 1330, 25432, 62, 29851, 198, 6738, 3127, 13, 38659, 7742, 1330, 29944, 32048, 27201, 198, 6738, 43359, 1330, 37817, 34991, 198, 6738, 14390, 1330, 520, 35628, 16818, 628, 198, 4871, 3060, 81, 16818, 7, 1273, 35628, 16818, 2599, 198, 220, 220, 220, 13538, 18109, 19667, 8, 2209, 22978, 4704, 37811, 198, 220, 220, 220, 1438, 796, 366, 4550, 81, 30507, 17970, 1, 198 ]
4.03
100
print("branches are fun")
[ 4798, 7203, 1671, 12140, 389, 1257, 4943 ]
3.571429
7
from django import template register = template.Library() @register.filter(name='addcss')
[ 6738, 42625, 14208, 1330, 11055, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 198, 198, 31, 30238, 13, 24455, 7, 3672, 11639, 2860, 25471, 11537, 628, 628 ]
3.518519
27
# -*- coding: utf-8 -*- vars2d = [ '2m_temperature', '10m_u_component_of_wind', '10m_v_component_of_wind', 'total_cloud_cover', 'total_precipitation', 'toa_incident_solar_radiation', 'temperature_850hPa', ] vars3d = [ 'geopotential', 'temperature', 'specific_humidity', 'relative_humidity', 'u_component_of_wind', 'v_component_of_wind', 'vorticity', 'potential_vorticity', ] codes = { 'geopotential': 'z', 'temperature': 't', 'temperature_850hPa': 't', 'specific_humidity': 'q', 'relative_humidity': 'r', 'u_component_of_wind': 'u', 'v_component_of_wind': 'v', 'vorticity': 'vo', 'potential_vorticity': 'pv', '2m_temperature': 't2m', '10m_u_component_of_wind': 'u10', '10m_v_component_of_wind': 'v10', 'total_cloud_cover': 'tcc', 'total_precipitation': 'tp', 'toa_incident_solar_radiation': 'tisr', } code2var = { 'z': 'geopotential', 't': 'temperature', 'q': 'specific_humidity', 'r': 'relative_humidity', 'u': 'u_component_of_wind', 'v': 'v_component_of_wind', 'vo': 'vorticity', 'pv': 'potential_vorticity', 't2m': '2m_temperature', 'u10': '10m_u_component_of_wind', 'v10': '10m_v_component_of_wind', 'tcc': 'total_cloud_cover', 'tp': 'total_precipitation', 'tisr': 'toa_incident_solar_radiation', }
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 85, 945, 17, 67, 796, 685, 198, 220, 220, 220, 705, 17, 76, 62, 11498, 21069, 3256, 198, 220, 220, 220, 705, 940, 76, 62, 84, 62, 42895, 62, 1659, 62, 7972, 3256, 705, 940, 76, 62, 85, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 23350, 62, 17721, 62, 9631, 3256, 705, 23350, 62, 3866, 66, 541, 3780, 3256, 198, 220, 220, 220, 705, 1462, 64, 62, 1939, 738, 62, 82, 6192, 62, 6335, 3920, 3256, 198, 220, 220, 220, 705, 11498, 21069, 62, 25764, 71, 28875, 3256, 198, 60, 198, 198, 85, 945, 18, 67, 796, 685, 198, 220, 220, 220, 705, 469, 43372, 1843, 3256, 705, 11498, 21069, 3256, 198, 220, 220, 220, 705, 11423, 62, 17047, 17995, 3256, 705, 43762, 62, 17047, 17995, 3256, 198, 220, 220, 220, 705, 84, 62, 42895, 62, 1659, 62, 7972, 3256, 705, 85, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 85, 419, 8467, 3256, 705, 13059, 1843, 62, 85, 419, 8467, 3256, 198, 60, 198, 198, 40148, 796, 1391, 198, 220, 220, 220, 705, 469, 43372, 1843, 10354, 705, 89, 3256, 198, 220, 220, 220, 705, 11498, 21069, 10354, 705, 83, 3256, 198, 220, 220, 220, 705, 11498, 21069, 62, 25764, 71, 28875, 10354, 705, 83, 3256, 198, 220, 220, 220, 705, 11423, 62, 17047, 17995, 10354, 705, 80, 3256, 198, 220, 220, 220, 705, 43762, 62, 17047, 17995, 10354, 705, 81, 3256, 198, 220, 220, 220, 705, 84, 62, 42895, 62, 1659, 62, 7972, 10354, 705, 84, 3256, 198, 220, 220, 220, 705, 85, 62, 42895, 62, 1659, 62, 7972, 10354, 705, 85, 3256, 198, 220, 220, 220, 705, 85, 419, 8467, 10354, 705, 13038, 3256, 198, 220, 220, 220, 705, 13059, 1843, 62, 85, 419, 8467, 10354, 705, 79, 85, 3256, 198, 220, 220, 220, 705, 17, 76, 62, 11498, 21069, 10354, 705, 83, 17, 76, 3256, 198, 220, 220, 220, 705, 940, 76, 62, 84, 62, 42895, 62, 1659, 62, 7972, 10354, 705, 84, 940, 3256, 198, 220, 220, 220, 705, 940, 76, 62, 85, 62, 42895, 62, 1659, 62, 7972, 10354, 705, 85, 940, 3256, 198, 220, 220, 220, 705, 23350, 62, 17721, 62, 9631, 10354, 705, 83, 535, 3256, 198, 220, 220, 220, 705, 23350, 62, 3866, 66, 541, 3780, 10354, 705, 34788, 3256, 198, 220, 220, 220, 705, 1462, 64, 62, 1939, 738, 62, 82, 6192, 62, 6335, 3920, 10354, 705, 48010, 81, 3256, 198, 92, 198, 198, 8189, 17, 7785, 796, 1391, 198, 220, 220, 220, 705, 89, 10354, 705, 469, 43372, 1843, 3256, 198, 220, 220, 220, 705, 83, 10354, 705, 11498, 21069, 3256, 198, 220, 220, 220, 705, 80, 10354, 705, 11423, 62, 17047, 17995, 3256, 198, 220, 220, 220, 705, 81, 10354, 705, 43762, 62, 17047, 17995, 3256, 198, 220, 220, 220, 705, 84, 10354, 705, 84, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 85, 10354, 705, 85, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 13038, 10354, 705, 85, 419, 8467, 3256, 198, 220, 220, 220, 705, 79, 85, 10354, 705, 13059, 1843, 62, 85, 419, 8467, 3256, 198, 220, 220, 220, 705, 83, 17, 76, 10354, 705, 17, 76, 62, 11498, 21069, 3256, 198, 220, 220, 220, 705, 84, 940, 10354, 705, 940, 76, 62, 84, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 85, 940, 10354, 705, 940, 76, 62, 85, 62, 42895, 62, 1659, 62, 7972, 3256, 198, 220, 220, 220, 705, 83, 535, 10354, 705, 23350, 62, 17721, 62, 9631, 3256, 198, 220, 220, 220, 705, 34788, 10354, 705, 23350, 62, 3866, 66, 541, 3780, 3256, 198, 220, 220, 220, 705, 48010, 81, 10354, 705, 1462, 64, 62, 1939, 738, 62, 82, 6192, 62, 6335, 3920, 3256, 198, 92, 628 ]
2.08589
652
# -*- coding: utf-8 -*- """ StepPy :copyright: (c) 2016-2017 by Yann Gravrand. :license: BSD, see LICENSE for more details. """ from collections import OrderedDict
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 220, 220, 220, 5012, 20519, 198, 220, 220, 220, 1058, 22163, 4766, 25, 357, 66, 8, 1584, 12, 5539, 416, 575, 1236, 32599, 25192, 13, 198, 220, 220, 220, 1058, 43085, 25, 347, 10305, 11, 766, 38559, 24290, 329, 517, 3307, 13, 198, 37811, 198, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 628 ]
2.542857
70