content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import sklearn.linear_model as skl
[ 11748, 1341, 35720, 13, 29127, 62, 19849, 355, 1341, 75, 198 ]
3.181818
11
import pytest from pmxbot import util @pytest.mark.xfail(reason="Wordnik is unreliable") @pytest.mark.xfail(reason="#97: Google is unreliable")
[ 11748, 12972, 9288, 198, 198, 6738, 9114, 87, 13645, 1330, 7736, 628, 198, 31, 9078, 9288, 13, 4102, 13, 26152, 603, 7, 41181, 2625, 26449, 17187, 318, 29954, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 26152, 603, 7, 41181, 25698, 5607, 25, 3012, 318, 29954, 4943, 628 ]
3.061224
49
#!/usr/bin/env python """ This example a coupe of ways to visualize statistic data. As an example I took the monthly temperature in the region where I live (Twente, The Netherlands) over the period 1983-2010. This data was extracted from publicly available data obtained from the Royal Netherlands Meteorological Institute (KNMI). """ import visvis as vv temp_data = """ 1983: 8.00 2.73 9.00 13.02 14.63 21.10 25.03 23.73 17.72 13.34 9.31 5.35 1984: 4.78 4.06 7.38 12.24 14.14 16.86 19.19 22.24 15.99 14.15 10.44 5.81 1985: -1.87 2.28 6.50 12.06 17.67 17.36 21.03 19.73 17.49 13.55 4.06 6.92 1986: 3.55 -1.30 8.03 10.64 18.54 20.93 20.98 20.06 15.50 15.02 10.55 6.59 1987: -1.62 4.52 4.78 15.06 14.49 17.57 20.66 19.66 18.74 14.17 7.96 5.66 1988: 8.05 6.71 7.18 13.00 19.37 18.68 19.80 21.29 17.60 13.82 8.05 7.34 1989: 6.14 7.77 11.48 10.21 19.58 21.05 23.14 22.44 19.95 15.92 8.97 7.34 1990: 6.83 10.82 11.90 13.47 19.58 19.13 21.06 23.80 16.24 16.02 8.08 5.35 1991: 5.21 2.29 12.43 13.33 14.11 15.99 23.49 22.87 19.74 13.52 7.78 5.55 1992: 4.51 7.43 9.67 12.23 20.38 22.42 23.49 22.80 18.91 10.58 10.04 5.55 1993: 7.36 3.32 9.72 15.79 19.33 20.09 20.57 20.01 16.89 12.36 4.46 6.51 1994: 6.84 4.08 10.51 13.15 17.34 20.39 27.51 23.17 17.45 13.45 11.60 7.52 1995: 5.52 9.00 8.98 13.40 18.29 19.56 25.85 25.53 18.28 17.12 8.99 0.83 1996: 1.00 2.14 6.78 15.10 15.34 20.58 21.24 22.86 16.43 14.54 7.61 1.52 1997: 1.17 8.71 11.46 12.30 17.79 21.28 22.90 25.80 19.04 13.29 8.25 6.25 1998: 6.73 9.04 10.72 12.91 19.81 20.46 20.56 21.63 18.72 11.91 5.95 6.01 1999: 7.07 5.34 10.54 14.59 18.72 20.39 24.65 22.39 22.83 14.03 8.96 6.36 2000: 5.74 8.43 9.52 15.49 20.22 21.51 19.71 22.83 19.35 14.59 10.13 6.67 2001: 5.02 7.23 7.25 12.46 19.85 20.12 23.71 23.79 16.70 17.72 9.14 4.59 2002: 6.23 9.74 11.19 14.14 18.40 21.86 22.44 23.75 19.25 12.91 10.19 3.69 2003: 4.35 5.25 12.38 15.38 18.71 23.96 24.06 25.77 20.04 11.27 10.53 6.45 2004: 4.99 7.15 10.00 15.85 17.26 20.93 21.72 24.33 19.94 14.91 8.67 4.96 2005: 6.95 4.32 9.85 15.66 18.07 21.97 22.92 21.07 21.04 17.72 8.86 5.37 2006: 3.31 4.14 7.05 13.51 19.30 22.37 29.29 20.75 23.03 17.04 11.67 8.46 2007: 8.73 8.41 12.24 19.28 18.81 22.45 21.69 22.05 17.97 13.48 8.96 5.48 2008: 8.07 8.98 9.21 13.43 20.70 22.55 23.44 22.24 18.40 13.50 8.62 4.18 2009: 2.98 5.27 9.47 18.89 19.56 20.85 23.36 24.04 20.04 13.60 11.57 3.95 2010: 0.20 3.60 10.17 15.41 15.21 22.88 27.06 21.16 17.20 13.73 7.35 -0.62 """ # Collect data per month (just put all years on a heap) # Not the most readable code, but this example is about what we do with # the data next. temps_per_month = [[] for i in range(12)] for line in temp_data.splitlines(): if ":" not in line: continue temps = [float(t) for t in line.split(': ')[1].split(' ')] for i in range(12): temps_per_month[i].append(temps[i]) # Calculate means mean = lambda x: sum(x)/len(x) mean_temps_per_month = [mean(tt) for tt in temps_per_month] # Prepare figure vv.figure(1); vv.clf() # Show means in a normal bar chart a1 = vv.subplot(221); b2 = vv.bar(mean_temps_per_month) b2.color = 'r' # Show means in a 3D bar chart a2 = vv.subplot(222); b3 = vv.bar3(mean_temps_per_month) b3.color = 'g' a2.daspect = 1,1,0.3 # Show box plot a3 = vv.subplot(223) bp = vv.boxplot(temps_per_month) bp.lc = 'b' bp.lw = 2 # Show violin plot a4 = vv.subplot(224) vp = vv.boxplot(temps_per_month, whiskers='violin') vp.lc = 'm' vp.lw = 3 # Set legends and ticks for each axes for a in [a1, a2, a3, a4]: a.axis.xTicks = 'Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec'.split() if a is a2: a.axis.zLabel = 'Temperature [C^o]' a.axis.showGridZ = True else: a.axis.yLabel = 'Temperature [C^o]' a.axis.showGridY = True a.axis.xTicksAngle = -30 app = vv.use() app.Run()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 770, 1672, 257, 2284, 431, 286, 2842, 284, 38350, 24696, 1366, 13, 198, 198, 1722, 281, 1672, 314, 1718, 262, 9651, 5951, 287, 262, 3814, 810, 314, 2107, 220, 198, 7, 5080, 21872, 11, 383, 12671, 8, 625, 262, 2278, 13540, 12, 10333, 13, 198, 198, 1212, 1366, 373, 21242, 422, 7271, 1695, 1366, 6492, 422, 262, 198, 41861, 12671, 25582, 2770, 5136, 357, 29132, 8895, 737, 198, 198, 37811, 198, 11748, 1490, 4703, 355, 410, 85, 198, 198, 29510, 62, 7890, 796, 37227, 198, 29279, 25, 807, 13, 405, 362, 13, 4790, 860, 13, 405, 1511, 13, 2999, 1478, 13, 5066, 2310, 13, 940, 1679, 13, 3070, 2242, 13, 4790, 1596, 13, 4761, 1511, 13, 2682, 860, 13, 3132, 642, 13, 2327, 198, 28296, 25, 604, 13, 3695, 604, 13, 3312, 767, 13, 2548, 1105, 13, 1731, 1478, 13, 1415, 1467, 13, 4521, 678, 13, 1129, 2534, 13, 1731, 1315, 13, 2079, 1478, 13, 1314, 838, 13, 2598, 642, 13, 6659, 198, 29110, 25, 532, 16, 13, 5774, 362, 13, 2078, 718, 13, 1120, 1105, 13, 3312, 1596, 13, 3134, 1596, 13, 2623, 2310, 13, 3070, 678, 13, 4790, 1596, 13, 2920, 1511, 13, 2816, 604, 13, 3312, 718, 13, 5892, 198, 28054, 25, 513, 13, 2816, 532, 16, 13, 1270, 807, 13, 3070, 838, 13, 2414, 1248, 13, 4051, 1160, 13, 6052, 1160, 13, 4089, 1160, 13, 3312, 1315, 13, 1120, 1315, 13, 2999, 838, 13, 2816, 718, 13, 3270, 198, 27301, 25, 532, 16, 13, 5237, 604, 13, 4309, 604, 13, 3695, 1315, 13, 3312, 1478, 13, 2920, 1596, 13, 3553, 1160, 13, 2791, 678, 13, 2791, 1248, 13, 4524, 1478, 13, 1558, 767, 13, 4846, 642, 13, 2791, 198, 26709, 25, 807, 13, 2713, 718, 13, 4869, 767, 13, 1507, 1511, 13, 405, 678, 13, 2718, 1248, 13, 3104, 678, 13, 1795, 2310, 13, 1959, 1596, 13, 1899, 1511, 13, 6469, 807, 13, 2713, 767, 13, 2682, 198, 25475, 25, 718, 13, 1415, 767, 13, 3324, 1367, 13, 2780, 838, 13, 2481, 678, 13, 3365, 2310, 13, 2713, 2242, 13, 1415, 2534, 13, 2598, 678, 13, 3865, 1315, 13, 5892, 807, 13, 5607, 767, 13, 2682, 198, 19891, 25, 718, 13, 5999, 838, 13, 6469, 1367, 13, 3829, 1511, 13, 2857, 678, 13, 3365, 678, 13, 1485, 2310, 13, 3312, 2242, 13, 1795, 1467, 13, 1731, 1467, 13, 2999, 807, 13, 2919, 642, 13, 2327, 198, 24529, 25, 642, 13, 2481, 362, 13, 1959, 1105, 13, 3559, 1511, 13, 2091, 1478, 13, 1157, 1315, 13, 2079, 2242, 13, 2920, 2534, 13, 5774, 678, 13, 4524, 1511, 13, 4309, 767, 13, 3695, 642, 13, 2816, 198, 23847, 25, 604, 13, 4349, 767, 13, 3559, 860, 13, 3134, 1105, 13, 1954, 1160, 13, 2548, 2534, 13, 3682, 2242, 13, 2920, 2534, 13, 1795, 1248, 13, 6420, 838, 13, 3365, 838, 13, 3023, 642, 13, 2816, 198, 24465, 25, 767, 13, 2623, 513, 13, 2624, 860, 13, 4761, 1315, 13, 3720, 678, 13, 2091, 1160, 13, 2931, 1160, 13, 3553, 1160, 13, 486, 1467, 13, 4531, 1105, 13, 2623, 604, 13, 3510, 718, 13, 4349, 198, 22666, 25, 718, 13, 5705, 604, 13, 2919, 838, 13, 4349, 1511, 13, 1314, 1596, 13, 2682, 1160, 13, 2670, 2681, 13, 4349, 2242, 13, 1558, 1596, 13, 2231, 1511, 13, 2231, 1367, 13, 1899, 767, 13, 4309, 198, 21908, 25, 642, 13, 4309, 860, 13, 405, 807, 13, 4089, 1511, 13, 1821, 1248, 13, 1959, 678, 13, 3980, 1679, 13, 5332, 1679, 13, 4310, 1248, 13, 2078, 1596, 13, 1065, 807, 13, 2079, 657, 13, 5999, 198, 22288, 25, 352, 13, 405, 362, 13, 1415, 718, 13, 3695, 1315, 13, 940, 1315, 13, 2682, 1160, 13, 3365, 2310, 13, 1731, 2534, 13, 4521, 1467, 13, 3559, 1478, 13, 4051, 767, 13, 5333, 352, 13, 4309, 198, 21498, 25, 352, 13, 1558, 807, 13, 4869, 1367, 13, 3510, 1105, 13, 1270, 1596, 13, 3720, 2310, 13, 2078, 2534, 13, 3829, 1679, 13, 1795, 678, 13, 3023, 1511, 13, 1959, 807, 13, 1495, 718, 13, 1495, 198, 21113, 25, 718, 13, 4790, 860, 13, 3023, 838, 13, 4761, 1105, 13, 6420, 678, 13, 6659, 1160, 13, 3510, 1160, 13, 3980, 2310, 13, 5066, 1248, 13, 4761, 1367, 13, 6420, 642, 13, 3865, 718, 13, 486, 198, 18946, 25, 767, 13, 2998, 642, 13, 2682, 838, 13, 4051, 1478, 13, 3270, 1248, 13, 4761, 1160, 13, 2670, 1987, 13, 2996, 2534, 13, 2670, 2534, 13, 5999, 1478, 13, 3070, 807, 13, 4846, 718, 13, 2623, 198, 11024, 25, 642, 13, 4524, 807, 13, 3559, 860, 13, 4309, 1315, 13, 2920, 1160, 13, 1828, 2310, 13, 4349, 678, 13, 4869, 2534, 13, 5999, 678, 13, 2327, 1478, 13, 3270, 838, 13, 1485, 718, 13, 3134, 198, 14585, 25, 642, 13, 2999, 767, 13, 1954, 767, 13, 1495, 1105, 13, 3510, 678, 13, 5332, 1160, 13, 1065, 2242, 13, 4869, 2242, 13, 3720, 1467, 13, 2154, 1596, 13, 4761, 860, 13, 1415, 604, 13, 3270, 198, 16942, 25, 718, 13, 1954, 860, 13, 4524, 1367, 13, 1129, 1478, 13, 1415, 1248, 13, 1821, 2310, 13, 4521, 2534, 13, 2598, 2242, 13, 2425, 678, 13, 1495, 1105, 13, 6420, 838, 13, 1129, 513, 13, 3388, 198, 16088, 25, 604, 13, 2327, 642, 13, 1495, 1105, 13, 2548, 1315, 13, 2548, 1248, 13, 4869, 2242, 13, 4846, 1987, 13, 3312, 1679, 13, 3324, 1160, 13, 3023, 1367, 13, 1983, 838, 13, 4310, 718, 13, 2231, 198, 15724, 25, 604, 13, 2079, 767, 13, 1314, 838, 13, 405, 1315, 13, 5332, 1596, 13, 2075, 1160, 13, 6052, 2310, 13, 4761, 1987, 13, 2091, 678, 13, 5824, 1478, 13, 6420, 807, 13, 3134, 604, 13, 4846, 198, 14315, 25, 718, 13, 3865, 604, 13, 2624, 860, 13, 5332, 1315, 13, 2791, 1248, 13, 2998, 2310, 13, 5607, 2534, 13, 5892, 2310, 13, 2998, 2310, 13, 3023, 1596, 13, 4761, 807, 13, 4521, 642, 13, 2718, 198, 13330, 25, 513, 13, 3132, 604, 13, 1415, 767, 13, 2713, 1511, 13, 4349, 678, 13, 1270, 2534, 13, 2718, 2808, 13, 1959, 1160, 13, 2425, 2242, 13, 3070, 1596, 13, 3023, 1367, 13, 3134, 807, 13, 3510, 198, 12726, 25, 807, 13, 4790, 807, 13, 3901, 1105, 13, 1731, 678, 13, 2078, 1248, 13, 6659, 2534, 13, 2231, 2310, 13, 3388, 2534, 13, 2713, 1596, 13, 5607, 1511, 13, 2780, 807, 13, 4846, 642, 13, 2780, 198, 11528, 25, 807, 13, 2998, 807, 13, 4089, 860, 13, 2481, 1511, 13, 3559, 1160, 13, 2154, 2534, 13, 2816, 2242, 13, 2598, 2534, 13, 1731, 1248, 13, 1821, 1511, 13, 1120, 807, 13, 5237, 604, 13, 1507, 198, 10531, 25, 362, 13, 4089, 642, 13, 1983, 860, 13, 2857, 1248, 13, 4531, 678, 13, 3980, 1160, 13, 5332, 2242, 13, 2623, 1987, 13, 3023, 1160, 13, 3023, 1511, 13, 1899, 1367, 13, 3553, 513, 13, 3865, 198, 10333, 25, 657, 13, 1238, 513, 13, 1899, 838, 13, 1558, 1315, 13, 3901, 1315, 13, 2481, 2534, 13, 3459, 2681, 13, 3312, 2310, 13, 1433, 1596, 13, 1238, 1511, 13, 4790, 767, 13, 2327, 532, 15, 13, 5237, 198, 37811, 198, 198, 2, 9745, 1366, 583, 1227, 357, 3137, 1234, 477, 812, 319, 257, 24575, 8, 198, 2, 1892, 262, 749, 31744, 2438, 11, 475, 428, 1672, 318, 546, 644, 356, 466, 351, 198, 2, 262, 1366, 1306, 13, 198, 11498, 862, 62, 525, 62, 8424, 796, 16410, 60, 329, 1312, 287, 2837, 7, 1065, 15437, 198, 1640, 1627, 287, 20218, 62, 7890, 13, 35312, 6615, 33529, 198, 220, 220, 220, 611, 366, 11097, 407, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 2169, 862, 796, 685, 22468, 7, 83, 8, 329, 256, 287, 1627, 13, 35312, 7, 10354, 705, 38381, 16, 4083, 35312, 10786, 705, 15437, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 1065, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2169, 862, 62, 525, 62, 8424, 58, 72, 4083, 33295, 7, 11498, 862, 58, 72, 12962, 198, 198, 2, 27131, 378, 1724, 198, 32604, 796, 37456, 2124, 25, 2160, 7, 87, 20679, 11925, 7, 87, 8, 198, 32604, 62, 11498, 862, 62, 525, 62, 8424, 796, 685, 32604, 7, 926, 8, 329, 256, 83, 287, 2169, 862, 62, 525, 62, 8424, 60, 198, 198, 2, 43426, 3785, 198, 25093, 13, 26875, 7, 16, 1776, 410, 85, 13, 565, 69, 3419, 198, 198, 2, 5438, 1724, 287, 257, 3487, 2318, 8262, 198, 64, 16, 796, 410, 85, 13, 7266, 29487, 7, 26115, 1776, 220, 198, 65, 17, 796, 410, 85, 13, 5657, 7, 32604, 62, 11498, 862, 62, 525, 62, 8424, 8, 198, 65, 17, 13, 8043, 796, 705, 81, 6, 198, 198, 2, 5438, 1724, 287, 257, 513, 35, 2318, 8262, 198, 64, 17, 796, 410, 85, 13, 7266, 29487, 7, 23148, 1776, 220, 198, 65, 18, 796, 410, 85, 13, 5657, 18, 7, 32604, 62, 11498, 862, 62, 525, 62, 8424, 8, 198, 65, 18, 13, 8043, 796, 705, 70, 6, 198, 64, 17, 13, 67, 292, 806, 796, 352, 11, 16, 11, 15, 13, 18, 198, 198, 2, 5438, 3091, 7110, 198, 64, 18, 796, 410, 85, 13, 7266, 29487, 7, 22047, 8, 198, 46583, 796, 410, 85, 13, 3524, 29487, 7, 11498, 862, 62, 525, 62, 8424, 8, 198, 46583, 13, 44601, 796, 705, 65, 6, 198, 46583, 13, 75, 86, 796, 362, 198, 198, 2, 5438, 38283, 7110, 198, 64, 19, 796, 410, 85, 13, 7266, 29487, 7, 24137, 8, 198, 36133, 796, 410, 85, 13, 3524, 29487, 7, 11498, 862, 62, 525, 62, 8424, 11, 21060, 364, 11639, 17069, 259, 11537, 198, 36133, 13, 44601, 796, 705, 76, 6, 198, 36133, 13, 75, 86, 796, 513, 198, 198, 2, 5345, 24901, 290, 36066, 329, 1123, 34197, 198, 1640, 257, 287, 685, 64, 16, 11, 257, 17, 11, 257, 18, 11, 257, 19, 5974, 198, 220, 220, 220, 257, 13, 22704, 13, 87, 51, 3378, 796, 705, 12128, 3158, 1526, 2758, 1737, 7653, 5979, 2447, 8621, 2556, 5267, 4280, 4458, 35312, 3419, 198, 220, 220, 220, 611, 257, 318, 257, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 13, 22704, 13, 89, 33986, 796, 705, 42492, 685, 34, 61, 78, 49946, 198, 220, 220, 220, 220, 220, 220, 220, 257, 13, 22704, 13, 12860, 41339, 57, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 13, 22704, 13, 88, 33986, 796, 705, 42492, 685, 34, 61, 78, 49946, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 257, 13, 22704, 13, 12860, 41339, 56, 796, 6407, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 257, 13, 22704, 13, 87, 51, 3378, 13450, 293, 796, 532, 1270, 198, 198, 1324, 796, 410, 85, 13, 1904, 3419, 198, 1324, 13, 10987, 3419, 198 ]
2.106887
1,815
import unittest import hcl2 from checkov.common.models.enums import CheckResult from checkov.terraform.checks.resource.gcp.CloudStorageLogging import check if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 198, 11748, 289, 565, 17, 198, 198, 6738, 2198, 709, 13, 11321, 13, 27530, 13, 268, 5700, 1330, 6822, 23004, 198, 6738, 2198, 709, 13, 353, 430, 687, 13, 42116, 13, 31092, 13, 70, 13155, 13, 18839, 31425, 11187, 2667, 1330, 2198, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.957143
70
from antarest.study.storage.rawstudy.model.filesystem.config.model import ( FileStudyTreeConfig, ) from antarest.study.storage.rawstudy.model.filesystem.context import ( ContextServer, ) from antarest.study.storage.rawstudy.model.filesystem.ini_file_node import ( IniFileNode, )
[ 6738, 1885, 12423, 13, 44517, 13, 35350, 13, 1831, 44517, 13, 19849, 13, 16624, 6781, 13, 11250, 13, 19849, 1330, 357, 198, 220, 220, 220, 9220, 39841, 27660, 16934, 11, 198, 8, 198, 6738, 1885, 12423, 13, 44517, 13, 35350, 13, 1831, 44517, 13, 19849, 13, 16624, 6781, 13, 22866, 1330, 357, 198, 220, 220, 220, 30532, 10697, 11, 198, 8, 198, 6738, 1885, 12423, 13, 44517, 13, 35350, 13, 1831, 44517, 13, 19849, 13, 16624, 6781, 13, 5362, 62, 7753, 62, 17440, 1330, 357, 198, 220, 220, 220, 554, 72, 8979, 19667, 11, 198, 8, 628 ]
3.010309
97
from __future__ import absolute_import '''Resnet for cifar dataset. Ported form https://github.com/facebook/fb.resnet.torch and https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py (c) YANG, Wei ''' import torch.nn as nn import math import torch import numpy as np __all__ = ['resnet','resnet50'] def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def resnet(**kwargs): """ Constructs a ResNet model. """ return ResNet(**kwargs) class Dconv_shuffle(nn.Module): """ Deformable convolution with random shuffling of the feature map. Random shuffling only happened within each page independently. The sampling locations are generated for each forward pass during the training. """ def resnet50(**kwargs): """ Constructs a ResNet model. """ return Resnet50(**kwargs)
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 7061, 6, 4965, 3262, 329, 269, 361, 283, 27039, 13, 198, 47, 9741, 1296, 198, 5450, 1378, 12567, 13, 785, 14, 19024, 14, 21855, 13, 411, 3262, 13, 13165, 354, 198, 392, 198, 5450, 1378, 12567, 13, 785, 14, 9078, 13165, 354, 14, 10178, 14, 2436, 672, 14, 9866, 14, 13165, 354, 10178, 14, 27530, 14, 411, 3262, 13, 9078, 198, 7, 66, 8, 575, 15567, 11, 29341, 198, 7061, 6, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 10688, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 198, 834, 439, 834, 796, 37250, 411, 3262, 41707, 411, 3262, 1120, 20520, 198, 198, 4299, 3063, 18, 87, 18, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 33769, 28, 16, 2599, 198, 220, 220, 220, 366, 18, 87, 18, 3063, 2122, 351, 24511, 1, 198, 220, 220, 220, 1441, 299, 77, 13, 3103, 85, 17, 67, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 9720, 62, 7857, 28, 18, 11, 33769, 28, 2536, 485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 28, 16, 11, 10690, 28, 25101, 8, 628, 628, 198, 198, 4299, 581, 3262, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28407, 82, 257, 1874, 7934, 2746, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1874, 7934, 7, 1174, 46265, 22046, 8, 628, 198, 4871, 360, 42946, 62, 1477, 18137, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1024, 687, 540, 3063, 2122, 351, 4738, 32299, 1359, 286, 262, 3895, 3975, 13, 198, 220, 220, 220, 14534, 32299, 1359, 691, 3022, 1626, 1123, 2443, 14799, 13, 198, 220, 220, 220, 383, 19232, 7064, 389, 7560, 329, 1123, 2651, 1208, 1141, 262, 3047, 13, 198, 220, 220, 220, 37227, 198, 198, 4299, 581, 3262, 1120, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28407, 82, 257, 1874, 7934, 2746, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1874, 3262, 1120, 7, 1174, 46265, 22046, 8 ]
2.679245
371
# Read in serifxml then save it an make sure the files are # essentially identical import sys, os script_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(script_dir, "..")) import serifxml3 if len(sys.argv) != 3: print("Usage: " + sys.argv[0] + " input-serifxml-file output-serifxml-file") sys.exit(1) input_file, output_file = sys.argv[1:] if os.path.exists(output_file): os.remove(output_file) doc = serifxml3.Document(input_file) doc.save(output_file) print("Reading input serifxml") i = open(input_file) print("Writing output serifxml") o = open(output_file) i_contents = i.read() o_contents = o.read() i.close() o.close() print("Checking") if i_contents.strip() != o_contents.strip(): print("Serifxml files differ") sys.exit(1) print("Serifxml files match")
[ 2, 4149, 287, 1055, 361, 19875, 788, 3613, 340, 281, 787, 1654, 262, 3696, 389, 220, 198, 2, 6986, 10411, 198, 198, 11748, 25064, 11, 28686, 198, 12048, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 4008, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 12048, 62, 15908, 11, 366, 492, 48774, 198, 11748, 1055, 361, 19875, 18, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 14512, 513, 25, 198, 220, 220, 220, 3601, 7203, 28350, 25, 366, 1343, 25064, 13, 853, 85, 58, 15, 60, 1343, 366, 5128, 12, 2655, 361, 19875, 12, 7753, 5072, 12, 2655, 361, 19875, 12, 7753, 4943, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 15414, 62, 7753, 11, 5072, 62, 7753, 796, 25064, 13, 853, 85, 58, 16, 47715, 198, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 7, 22915, 62, 7753, 2599, 198, 220, 220, 220, 28686, 13, 28956, 7, 22915, 62, 7753, 8, 198, 198, 15390, 796, 1055, 361, 19875, 18, 13, 24941, 7, 15414, 62, 7753, 8, 198, 15390, 13, 21928, 7, 22915, 62, 7753, 8, 198, 198, 4798, 7203, 36120, 5128, 1055, 361, 19875, 4943, 198, 72, 796, 1280, 7, 15414, 62, 7753, 8, 198, 4798, 7203, 33874, 5072, 1055, 361, 19875, 4943, 198, 78, 796, 1280, 7, 22915, 62, 7753, 8, 198, 198, 72, 62, 3642, 658, 796, 1312, 13, 961, 3419, 198, 78, 62, 3642, 658, 796, 267, 13, 961, 3419, 198, 198, 72, 13, 19836, 3419, 198, 78, 13, 19836, 3419, 198, 198, 4798, 7203, 9787, 278, 4943, 198, 361, 1312, 62, 3642, 658, 13, 36311, 3419, 14512, 267, 62, 3642, 658, 13, 36311, 33529, 198, 220, 220, 220, 3601, 7203, 7089, 361, 19875, 3696, 13238, 4943, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 4798, 7203, 7089, 361, 19875, 3696, 2872, 4943, 198 ]
2.535385
325
import numpy as np import numba as nb @nb.njit
[ 11748, 299, 32152, 355, 45941, 198, 11748, 997, 7012, 355, 299, 65, 628, 198, 31, 46803, 13, 77, 45051 ]
2.526316
19
import os ROOT = '/home/xjw/Downloads/code/mmsegmentation-0.21.0/' def txt2filename(txt_path): """ @param txt_path: @return: 返回数据集中包含的所有图片的名称 """ data = [] with open(txt_path, 'r') as f: for ch in f.readlines(): data.append(ch.strip()) return data if __name__ == '__main__': filename2txt('/home/xjw/Downloads/code/mmsegmentation-0.21.0/data/xiangtan/images/validation', ROOT + 'SeRe/tools/data_pre/val.txt')
[ 11748, 28686, 198, 198, 13252, 2394, 796, 31051, 11195, 14, 87, 73, 86, 14, 10002, 82, 14, 8189, 14, 3020, 325, 5154, 341, 12, 15, 13, 2481, 13, 15, 14, 6, 628, 198, 198, 4299, 256, 742, 17, 34345, 7, 14116, 62, 6978, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 17143, 256, 742, 62, 6978, 25, 198, 220, 220, 220, 2488, 7783, 25, 5525, 123, 242, 32368, 252, 46763, 108, 162, 235, 106, 37239, 228, 40792, 44293, 227, 28938, 104, 21410, 33699, 222, 17312, 231, 32368, 122, 31965, 229, 21410, 28938, 235, 163, 100, 108, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 351, 1280, 7, 14116, 62, 6978, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 442, 287, 277, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 354, 13, 36311, 28955, 198, 220, 220, 220, 1441, 1366, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 29472, 17, 14116, 10786, 14, 11195, 14, 87, 73, 86, 14, 10002, 82, 14, 8189, 14, 3020, 325, 5154, 341, 12, 15, 13, 2481, 13, 15, 14, 7890, 14, 87, 15483, 38006, 14, 17566, 14, 12102, 341, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15107, 2394, 1343, 705, 4653, 3041, 14, 31391, 14, 7890, 62, 3866, 14, 2100, 13, 14116, 11537, 198 ]
1.868726
259
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Example TeraRanger MultiFlex configuration script. For more information about how to use this script, please refer to this document: https://www.terabee.com/wp-content/uploads/2017/09/TR-MF-Python-ReadMe.pdf """ import sys import binascii import serial if __name__ == "__main__": if len(sys.argv) < 2: print '\n \n[ERROR] Correct usage $ python multiflex_binary.py port' sys.exit(1) port_name = sys.argv[1] multiflex = serial.Serial(port_name, 115200, timeout=5, writeTimeout=5) print 'Connected to TeraRanger MultiFlex' multiflex.flushInput() multiflex.flushOutput() multiflex.write(bytearray([0x00, 0x11, 0x02, 0x4C])) response = multiflex.read(16) response = binascii.hexlify(response) if response.find("52451100d4") != -1: print 'ACK' if response.find("524511ff27") != -1: print 'NACK' multiflex.close() sys.exit(0)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 16281, 3813, 64, 49, 2564, 15237, 37, 2588, 8398, 4226, 13, 198, 1890, 517, 1321, 546, 703, 284, 779, 428, 4226, 11, 3387, 3522, 284, 428, 3188, 25, 198, 5450, 1378, 2503, 13, 353, 32580, 13, 785, 14, 24142, 12, 11299, 14, 39920, 14, 5539, 14, 2931, 14, 5446, 12, 49800, 12, 37906, 12, 5569, 5308, 13, 12315, 198, 37811, 198, 11748, 25064, 198, 11748, 9874, 292, 979, 72, 198, 11748, 11389, 220, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 59, 77, 3467, 77, 58, 24908, 60, 22941, 8748, 720, 21015, 43543, 2588, 62, 39491, 13, 9078, 2493, 6, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2493, 62, 3672, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 43543, 2588, 796, 11389, 13, 32634, 7, 634, 62, 3672, 11, 12279, 2167, 11, 26827, 28, 20, 11, 3551, 48031, 28, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 705, 13313, 276, 284, 3813, 64, 49, 2564, 15237, 37, 2588, 6, 198, 220, 220, 220, 43543, 2588, 13, 25925, 20560, 3419, 198, 220, 220, 220, 43543, 2588, 13, 25925, 26410, 3419, 198, 220, 220, 220, 43543, 2588, 13, 13564, 7, 1525, 83, 451, 2433, 26933, 15, 87, 405, 11, 657, 87, 1157, 11, 657, 87, 2999, 11, 657, 87, 19, 34, 60, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2882, 796, 43543, 2588, 13, 961, 7, 1433, 8, 198, 220, 220, 220, 2882, 796, 9874, 292, 979, 72, 13, 33095, 75, 1958, 7, 26209, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2882, 13, 19796, 7203, 20, 22995, 42060, 67, 19, 4943, 14512, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 8120, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2882, 13, 19796, 7203, 20, 22995, 1157, 487, 1983, 4943, 14512, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 45, 8120, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 43543, 2588, 13, 19836, 3419, 198, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198 ]
2.261161
448
# Generated by Django 4.0 on 2021-12-15 07:28 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 604, 13, 15, 319, 33448, 12, 1065, 12, 1314, 8753, 25, 2078, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.904762
42
# coding: utf-8 """ Gate API v4 Welcome to Gate.io API APIv4 provides spot, margin and futures trading operations. There are public APIs to retrieve the real-time market statistics, and private APIs which needs authentication to trade on user's behalf. # noqa: E501 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from gate_api.configuration import Configuration class OptionsUnderlyingTicker(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {'trade_put': 'int', 'trade_call': 'int', 'index_price': 'str'} attribute_map = {'trade_put': 'trade_put', 'trade_call': 'trade_call', 'index_price': 'index_price'} def __init__(self, trade_put=None, trade_call=None, index_price=None, local_vars_configuration=None): # noqa: E501 # type: (int, int, str, Configuration) -> None """OptionsUnderlyingTicker - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._trade_put = None self._trade_call = None self._index_price = None self.discriminator = None if trade_put is not None: self.trade_put = trade_put if trade_call is not None: self.trade_call = trade_call if index_price is not None: self.index_price = index_price @property def trade_put(self): """Gets the trade_put of this OptionsUnderlyingTicker. # noqa: E501 Total put options trades amount in last 24h # noqa: E501 :return: The trade_put of this OptionsUnderlyingTicker. # noqa: E501 :rtype: int """ return self._trade_put @trade_put.setter def trade_put(self, trade_put): """Sets the trade_put of this OptionsUnderlyingTicker. Total put options trades amount in last 24h # noqa: E501 :param trade_put: The trade_put of this OptionsUnderlyingTicker. # noqa: E501 :type: int """ self._trade_put = trade_put @property def trade_call(self): """Gets the trade_call of this OptionsUnderlyingTicker. # noqa: E501 Total call options trades amount in last 24h # noqa: E501 :return: The trade_call of this OptionsUnderlyingTicker. # noqa: E501 :rtype: int """ return self._trade_call @trade_call.setter def trade_call(self, trade_call): """Sets the trade_call of this OptionsUnderlyingTicker. Total call options trades amount in last 24h # noqa: E501 :param trade_call: The trade_call of this OptionsUnderlyingTicker. # noqa: E501 :type: int """ self._trade_call = trade_call @property def index_price(self): """Gets the index_price of this OptionsUnderlyingTicker. # noqa: E501 Index price # noqa: E501 :return: The index_price of this OptionsUnderlyingTicker. # noqa: E501 :rtype: str """ return self._index_price @index_price.setter def index_price(self, index_price): """Sets the index_price of this OptionsUnderlyingTicker. Index price # noqa: E501 :param index_price: The index_price of this OptionsUnderlyingTicker. # noqa: E501 :type: str """ self._index_price = index_price def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value)) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OptionsUnderlyingTicker): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, OptionsUnderlyingTicker): return True return self.to_dict() != other.to_dict()
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 37811, 198, 220, 220, 220, 12816, 7824, 410, 19, 628, 220, 220, 220, 19134, 284, 12816, 13, 952, 7824, 220, 7824, 85, 19, 3769, 4136, 11, 10330, 290, 25650, 7313, 4560, 13, 1318, 389, 1171, 23113, 284, 19818, 262, 1103, 12, 2435, 1910, 7869, 11, 290, 2839, 23113, 543, 2476, 18239, 284, 3292, 319, 2836, 338, 8378, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 14039, 25, 1104, 31, 4529, 13, 10494, 13, 952, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 198, 37811, 628, 198, 11748, 279, 4798, 198, 11748, 302, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 11748, 2237, 198, 198, 6738, 8946, 62, 15042, 13, 11250, 3924, 1330, 28373, 628, 198, 4871, 18634, 9203, 3157, 51, 15799, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 4946, 17614, 35986, 13, 198, 220, 220, 220, 6524, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 1280, 15042, 62, 19199, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 11688, 2099, 13, 198, 220, 220, 220, 220, 220, 11688, 62, 8899, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 33918, 1994, 287, 6770, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1280, 15042, 62, 19199, 796, 1391, 6, 25351, 62, 1996, 10354, 705, 600, 3256, 705, 25351, 62, 13345, 10354, 705, 600, 3256, 705, 9630, 62, 20888, 10354, 705, 2536, 6, 92, 628, 220, 220, 220, 11688, 62, 8899, 796, 1391, 6, 25351, 62, 1996, 10354, 705, 25351, 62, 1996, 3256, 705, 25351, 62, 13345, 10354, 705, 25351, 62, 13345, 3256, 705, 9630, 62, 20888, 10354, 705, 9630, 62, 20888, 6, 92, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3292, 62, 1996, 28, 14202, 11, 3292, 62, 13345, 28, 14202, 11, 6376, 62, 20888, 28, 14202, 11, 1957, 62, 85, 945, 62, 11250, 3924, 28, 14202, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 357, 600, 11, 493, 11, 965, 11, 28373, 8, 4613, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29046, 9203, 3157, 51, 15799, 532, 257, 2746, 5447, 287, 4946, 17614, 37811, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1957, 62, 85, 945, 62, 11250, 3924, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 85, 945, 62, 11250, 3924, 796, 28373, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12001, 62, 85, 945, 62, 11250, 3924, 796, 1957, 62, 85, 945, 62, 11250, 3924, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25351, 62, 1996, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25351, 62, 13345, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9630, 62, 20888, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15410, 3036, 20900, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3292, 62, 1996, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25351, 62, 1996, 796, 3292, 62, 1996, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3292, 62, 13345, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25351, 62, 13345, 796, 3292, 62, 13345, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 62, 20888, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9630, 62, 20888, 796, 6376, 62, 20888, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3292, 62, 1996, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 3292, 62, 1996, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 7472, 1234, 3689, 17674, 2033, 287, 938, 1987, 71, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 3292, 62, 1996, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 25351, 62, 1996, 628, 220, 220, 220, 2488, 25351, 62, 1996, 13, 2617, 353, 198, 220, 220, 220, 825, 3292, 62, 1996, 7, 944, 11, 3292, 62, 1996, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 3292, 62, 1996, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7472, 1234, 3689, 17674, 2033, 287, 938, 1987, 71, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3292, 62, 1996, 25, 383, 3292, 62, 1996, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25351, 62, 1996, 796, 3292, 62, 1996, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3292, 62, 13345, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 3292, 62, 13345, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 7472, 869, 3689, 17674, 2033, 287, 938, 1987, 71, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 3292, 62, 13345, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 25351, 62, 13345, 628, 220, 220, 220, 2488, 25351, 62, 13345, 13, 2617, 353, 198, 220, 220, 220, 825, 3292, 62, 13345, 7, 944, 11, 3292, 62, 13345, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 3292, 62, 13345, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7472, 869, 3689, 17674, 2033, 287, 938, 1987, 71, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3292, 62, 13345, 25, 383, 3292, 62, 13345, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25351, 62, 13345, 796, 3292, 62, 13345, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 6376, 62, 20888, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 6376, 62, 20888, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 12901, 2756, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 6376, 62, 20888, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 9630, 62, 20888, 628, 220, 220, 220, 2488, 9630, 62, 20888, 13, 2617, 353, 198, 220, 220, 220, 825, 6376, 62, 20888, 7, 944, 11, 6376, 62, 20888, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 6376, 62, 20888, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12901, 2756, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6376, 62, 20888, 25, 383, 6376, 62, 20888, 286, 428, 18634, 9203, 3157, 51, 15799, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9630, 62, 20888, 796, 6376, 62, 20888, 628, 220, 220, 220, 825, 284, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 2746, 6608, 355, 257, 8633, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 708, 81, 11, 4808, 287, 2237, 13, 2676, 23814, 7, 944, 13, 9654, 15042, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 651, 35226, 7, 944, 11, 708, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1351, 7, 8899, 7, 50033, 2124, 25, 2124, 13, 1462, 62, 11600, 3419, 611, 468, 35226, 7, 87, 11, 366, 1462, 62, 11600, 4943, 2073, 2124, 11, 1988, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 468, 35226, 7, 8367, 11, 366, 1462, 62, 11600, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1988, 13, 1462, 62, 11600, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 8367, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2378, 25, 357, 9186, 58, 15, 4357, 2378, 58, 16, 4083, 1462, 62, 11600, 28955, 611, 468, 35226, 7, 9186, 58, 16, 4357, 366, 1462, 62, 11600, 4943, 2073, 2378, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 13, 23814, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 284, 62, 2536, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 4731, 10552, 286, 262, 2746, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 4798, 13, 79, 18982, 7, 944, 13, 1462, 62, 11600, 28955, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1890, 4600, 4798, 63, 290, 4600, 381, 22272, 63, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 2536, 3419, 628, 220, 220, 220, 825, 11593, 27363, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2081, 611, 1111, 5563, 389, 4961, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 847, 11, 18634, 9203, 3157, 51, 15799, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 11600, 3419, 6624, 584, 13, 1462, 62, 11600, 3419, 628, 220, 220, 220, 825, 11593, 710, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2081, 611, 1111, 5563, 389, 407, 4961, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 847, 11, 18634, 9203, 3157, 51, 15799, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 11600, 3419, 14512, 584, 13, 1462, 62, 11600, 3419, 198 ]
2.355507
2,270
from django.contrib import admin class UserAdmin(admin.ModelAdmin): """User admin""" exclude = ('renewed',) list_display = ('username', 'email', 'isActive', 'created', 'modified') list_filter = ('isActive',) search_fields = ('firstName', 'lastName', 'username', 'email') class SocialTokenAdmin(admin.ModelAdmin): """Social token admin""" list_display = ('token', 'social', 'user', 'created') search_fields = ('token',) #admin.site.register(User, UserAdmin) #admin.site.register(SocialToken, SocialTokenAdmin)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 628, 628, 198, 4871, 11787, 46787, 7, 28482, 13, 17633, 46787, 2599, 198, 220, 220, 220, 37227, 12982, 13169, 37811, 628, 220, 220, 220, 19607, 796, 19203, 918, 413, 276, 3256, 8, 198, 220, 220, 220, 1351, 62, 13812, 796, 19203, 29460, 3256, 705, 12888, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 271, 13739, 3256, 705, 25598, 3256, 705, 41771, 11537, 198, 220, 220, 220, 1351, 62, 24455, 796, 19203, 271, 13739, 3256, 8, 628, 220, 220, 220, 2989, 62, 25747, 796, 19203, 11085, 5376, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12957, 5376, 3256, 705, 29460, 3256, 705, 12888, 11537, 628, 198, 4871, 5483, 30642, 46787, 7, 28482, 13, 17633, 46787, 2599, 198, 220, 220, 220, 37227, 20636, 11241, 13169, 37811, 628, 220, 220, 220, 1351, 62, 13812, 796, 19203, 30001, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14557, 3256, 705, 7220, 3256, 705, 25598, 11537, 628, 220, 220, 220, 2989, 62, 25747, 796, 19203, 30001, 3256, 8, 628, 198, 2, 28482, 13, 15654, 13, 30238, 7, 12982, 11, 11787, 46787, 8, 198, 2, 28482, 13, 15654, 13, 30238, 7, 20636, 30642, 11, 5483, 30642, 46787, 8, 198 ]
2.800971
206
from enum import Enum, auto class J1939_PDU(Enum): """ J1939 PDU type """ PDU1 = auto() PDU2 = auto() class J1939_PGN: """ J1939 PGN class. """ _id = None def __init__(self, msg_id: int = None, msg_pgn: int = None): """ Takes either a message ID or PGN :param msg_id: CAN-bus message ID :param msg_pgn: CAN-bus message J1939 PGN """ if msg_id is not None: self._id = msg_id elif msg_pgn is not None: self._id = msg_pgn << 8 @property def p(self) -> int: """ Priority :return: J1939 priority value """ return (self._id >> 26) & 0x7 @property def r(self) -> int: """ Reserved bit :return: Reserved bit value """ return (self._id >> 25) & 0x1 @property def dp(self) -> int: """ Data Page :return: Data Page value """ return (self._id >> 24) & 0x1 @property def pf(self) -> int: """ PDU format :return: PDU format value """ return (self._id >> 16) & 0xFF @property def ps(self) -> int: """ PDU Specific :return: PDU specific value """ return (self._id >> 8) & 0xFF @property def sa(self) -> int: """ Source Address :return: Source Address value """ return self._id & 0xFF @property def pdu(self) -> J1939_PDU: """ PDU type :return: PDU type as J1939_PDU """ if self.pf < 240: return J1939_PDU.PDU1 else: return J1939_PDU.PDU2 @property def id(self) -> int: """ Message ID :return: Message ID value """ return self._id @property def pgn(self): """ Message PGN :return: Message PGN value """ if self.pdu is J1939_PDU.PDU1: # Clear target address return (self._id >> 8) & 0x3FF00 else: return (self._id >> 8) & 0x3FFFF
[ 6738, 33829, 1330, 2039, 388, 11, 8295, 628, 198, 4871, 449, 1129, 2670, 62, 5760, 52, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 449, 1129, 2670, 14340, 52, 2099, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14340, 52, 16, 796, 8295, 3419, 198, 220, 220, 220, 14340, 52, 17, 796, 8295, 3419, 628, 198, 4871, 449, 1129, 2670, 62, 6968, 45, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 449, 1129, 2670, 350, 16630, 1398, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 312, 796, 6045, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 31456, 62, 312, 25, 493, 796, 6045, 11, 31456, 62, 79, 4593, 25, 493, 796, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33687, 2035, 257, 3275, 4522, 393, 350, 16630, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 31456, 62, 312, 25, 15628, 12, 10885, 3275, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 31456, 62, 79, 4593, 25, 15628, 12, 10885, 3275, 449, 1129, 2670, 350, 16630, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 31456, 62, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 312, 796, 31456, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 31456, 62, 79, 4593, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 312, 796, 31456, 62, 79, 4593, 9959, 807, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 279, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34416, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 449, 1129, 2670, 8475, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13557, 312, 9609, 2608, 8, 1222, 657, 87, 22, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 374, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33876, 1643, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 33876, 1643, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13557, 312, 9609, 1679, 8, 1222, 657, 87, 16, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 288, 79, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6060, 7873, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6060, 7873, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13557, 312, 9609, 1987, 8, 1222, 657, 87, 16, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 279, 69, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14340, 52, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 14340, 52, 5794, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13557, 312, 9609, 1467, 8, 1222, 657, 87, 5777, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 26692, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14340, 52, 17377, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 14340, 52, 2176, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13557, 312, 9609, 807, 8, 1222, 657, 87, 5777, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 473, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8090, 17917, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 8090, 17917, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 312, 1222, 657, 87, 5777, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 279, 646, 7, 944, 8, 4613, 449, 1129, 2670, 62, 5760, 52, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14340, 52, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 14340, 52, 2099, 355, 449, 1129, 2670, 62, 5760, 52, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 79, 69, 1279, 14956, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 449, 1129, 2670, 62, 5760, 52, 13, 5760, 52, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 449, 1129, 2670, 62, 5760, 52, 13, 5760, 52, 17, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4686, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16000, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16000, 4522, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 312, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 279, 4593, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16000, 350, 16630, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16000, 350, 16630, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 79, 646, 318, 449, 1129, 2670, 62, 5760, 52, 13, 5760, 52, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11459, 2496, 2209, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13557, 312, 9609, 807, 8, 1222, 657, 87, 18, 5777, 405, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13557, 312, 9609, 807, 8, 1222, 657, 87, 18, 29312, 198 ]
1.885389
1,143
birthday_dictionary = { "Albert Einstein" : "1/12/1912", "Jeong Eun Kim" : "21/12/1983", "Djangojeng-e" : "18/12/1986", "Django": "01/01/2005" } name = input("Who's Birthday do you want to look up?") if name in birthday_dictionary: print(f'{name}s birthday is {birthday_dictionary[name]}') else: print("We dont' have {}'s birthday".format(name))
[ 198, 24280, 820, 62, 67, 14188, 796, 1391, 198, 220, 220, 220, 366, 42590, 24572, 1, 1058, 366, 16, 14, 1065, 14, 1129, 1065, 1600, 198, 220, 220, 220, 366, 40932, 506, 412, 403, 6502, 1, 1058, 366, 2481, 14, 1065, 14, 29279, 1600, 198, 220, 220, 220, 366, 35, 73, 648, 13210, 1516, 12, 68, 1, 1058, 366, 1507, 14, 1065, 14, 28054, 1600, 198, 220, 220, 220, 366, 35, 73, 14208, 1298, 366, 486, 14, 486, 14, 14315, 1, 198, 92, 628, 198, 3672, 796, 5128, 7203, 8241, 338, 33511, 466, 345, 765, 284, 804, 510, 1701, 8, 198, 198, 361, 1438, 287, 10955, 62, 67, 14188, 25, 220, 198, 220, 220, 220, 3601, 7, 69, 6, 90, 3672, 92, 82, 10955, 318, 1391, 24280, 820, 62, 67, 14188, 58, 3672, 48999, 11537, 220, 198, 17772, 25, 220, 198, 220, 220, 220, 3601, 7203, 1135, 17666, 6, 423, 23884, 6, 82, 10955, 1911, 18982, 7, 3672, 4008, 628, 198 ]
2.354037
161
import tkinter # for GUI from PIL import Image, ImageTk # operation regarding image import random # toplevel widget which represents the main window of an application root = tkinter.Tk() root.geometry('400x400') root.title('Data Flair Roll the Dice') # Adding label into the frame. Here we skip a line l0 = tkinter.Label(root, text="") l0.pack() # adding label with different font and formatting l1 = tkinter.Label(root, text="Hello from Data Flair!", fg="light green", bg="dark green", font="Helvetica 16 bold italic") l1.pack() # images dice = ['die1.png', 'die2.png', 'die3.png', 'die4.png', 'die5.png', 'die6.png'] # simulating the dice with random numbers between 0 to 6 and generating image image1 = ImageTk.PhotoImage(Image.open(random.choice(dice))) # construct a label widget for image label1 = tkinter.Label(root, image=image1) label1.image = image1 # packing a widget in the parent widget # expand=True enables image to be centered no matter how we resize the window label1.pack(expand=True) # function activated by button # adding button, and command will use rolling_dice function button = tkinter.Button(root, text='Roll the Dice', fg='blue', command=rolling_dice) # pack a widget in the parent widget button.pack(expand=True) # call the mainloop of Tk # keeps window open root.mainloop()
[ 11748, 256, 74, 3849, 220, 1303, 329, 25757, 201, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 51, 74, 220, 1303, 4905, 5115, 2939, 201, 198, 11748, 4738, 201, 198, 201, 198, 2, 284, 1154, 626, 26295, 543, 6870, 262, 1388, 4324, 286, 281, 3586, 201, 198, 15763, 796, 256, 74, 3849, 13, 51, 74, 3419, 201, 198, 15763, 13, 469, 15748, 10786, 7029, 87, 7029, 11537, 201, 198, 15763, 13, 7839, 10786, 6601, 1610, 958, 8299, 262, 34381, 11537, 201, 198, 201, 198, 2, 18247, 6167, 656, 262, 5739, 13, 3423, 356, 14267, 257, 1627, 201, 198, 75, 15, 796, 256, 74, 3849, 13, 33986, 7, 15763, 11, 2420, 2625, 4943, 201, 198, 75, 15, 13, 8002, 3419, 201, 198, 201, 198, 2, 4375, 6167, 351, 1180, 10369, 290, 33313, 201, 198, 75, 16, 796, 256, 74, 3849, 13, 33986, 7, 15763, 11, 2420, 2625, 15496, 422, 6060, 1610, 958, 40754, 277, 70, 2625, 2971, 4077, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 70, 2625, 21953, 4077, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 2625, 39, 32667, 3970, 1467, 10758, 46127, 291, 4943, 201, 198, 75, 16, 13, 8002, 3419, 201, 198, 201, 198, 2, 4263, 201, 198, 67, 501, 796, 37250, 11979, 16, 13, 11134, 3256, 705, 11979, 17, 13, 11134, 3256, 705, 11979, 18, 13, 11134, 3256, 705, 11979, 19, 13, 11134, 3256, 705, 11979, 20, 13, 11134, 3256, 705, 11979, 21, 13, 11134, 20520, 201, 198, 2, 985, 8306, 262, 17963, 351, 4738, 3146, 1022, 657, 284, 718, 290, 15453, 2939, 201, 198, 9060, 16, 796, 7412, 51, 74, 13, 6191, 5159, 7, 5159, 13, 9654, 7, 25120, 13, 25541, 7, 67, 501, 22305, 201, 198, 201, 198, 2, 5678, 257, 6167, 26295, 329, 2939, 201, 198, 18242, 16, 796, 256, 74, 3849, 13, 33986, 7, 15763, 11, 2939, 28, 9060, 16, 8, 201, 198, 18242, 16, 13, 9060, 796, 2939, 16, 201, 198, 201, 198, 2, 24157, 257, 26295, 287, 262, 2560, 26295, 201, 198, 2, 4292, 28, 17821, 13536, 2939, 284, 307, 19254, 645, 2300, 703, 356, 47558, 262, 4324, 201, 198, 18242, 16, 13, 8002, 7, 11201, 392, 28, 17821, 8, 201, 198, 201, 198, 2, 2163, 13906, 416, 4936, 201, 198, 201, 198, 201, 198, 201, 198, 2, 4375, 4936, 11, 290, 3141, 481, 779, 10708, 62, 67, 501, 2163, 201, 198, 16539, 796, 256, 74, 3849, 13, 21864, 7, 15763, 11, 2420, 11639, 26869, 262, 34381, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 11639, 17585, 3256, 3141, 28, 18886, 62, 67, 501, 8, 201, 198, 201, 198, 2, 2353, 257, 26295, 287, 262, 2560, 26295, 201, 198, 16539, 13, 8002, 7, 11201, 392, 28, 17821, 8, 201, 198, 201, 198, 2, 869, 262, 1388, 26268, 286, 309, 74, 201, 198, 2, 7622, 4324, 1280, 201, 198, 15763, 13, 12417, 26268, 3419, 201, 198 ]
2.724665
523
#! /usr/bin/env python2.7 ''' __init__ file for fetch_gitignore. ''' __author__ = "Srinidhi Kaushik" __license__ = "MIT" __version__ = "0.0.1" __email__ = "[email protected]"
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 17, 13, 22, 198, 198, 7061, 6, 198, 834, 15003, 834, 2393, 329, 21207, 62, 18300, 46430, 13, 198, 7061, 6, 198, 198, 834, 9800, 834, 796, 366, 50, 12769, 312, 5303, 11611, 1530, 1134, 1, 198, 198, 834, 43085, 834, 796, 366, 36393, 1, 198, 834, 9641, 834, 796, 366, 15, 13, 15, 13, 16, 1, 198, 834, 12888, 834, 796, 366, 12976, 88, 38385, 31, 18417, 13, 77, 382, 2145, 13, 12567, 13, 785, 1, 198 ]
2.264368
87
""" 06. Escreva um método show() para escrever toda a lista. Exemplo: lista = ListaOrdenada(); lista.append(3); lista.append(2); lista.show() imprime: [2,3] """ #Implementação da Classe Noh #Lista não ordenada: if __name__ == '__main__': minha_lista = ListaOrdenada() #exemplo de uso print(minha_lista.isEmpty()) minha_lista.append(8) minha_lista.append(2) minha_lista.append(9) print(minha_lista.isEmpty()) print("Size: ", minha_lista.size()) print(minha_lista.show())
[ 37811, 198, 3312, 13, 198, 47051, 260, 6862, 23781, 285, 25125, 24313, 905, 3419, 31215, 3671, 260, 332, 284, 6814, 257, 1351, 64, 13, 1475, 18856, 78, 25, 1351, 64, 796, 7343, 64, 35422, 268, 4763, 9783, 198, 4868, 64, 13, 33295, 7, 18, 1776, 1351, 64, 13, 33295, 7, 17, 1776, 1351, 64, 13, 12860, 3419, 848, 81, 524, 25, 685, 17, 11, 18, 60, 198, 198, 37811, 198, 2, 3546, 26908, 64, 16175, 28749, 12379, 1012, 21612, 399, 1219, 198, 2, 8053, 64, 299, 28749, 2760, 268, 4763, 25, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 949, 3099, 62, 4868, 64, 796, 7343, 64, 35422, 268, 4763, 3419, 1303, 1069, 18856, 78, 390, 514, 78, 198, 220, 3601, 7, 1084, 3099, 62, 4868, 64, 13, 271, 40613, 28955, 628, 220, 949, 3099, 62, 4868, 64, 13, 33295, 7, 23, 8, 198, 220, 949, 3099, 62, 4868, 64, 13, 33295, 7, 17, 8, 198, 220, 949, 3099, 62, 4868, 64, 13, 33295, 7, 24, 8, 198, 220, 3601, 7, 1084, 3099, 62, 4868, 64, 13, 271, 40613, 28955, 198, 220, 3601, 7203, 10699, 25, 33172, 949, 3099, 62, 4868, 64, 13, 7857, 28955, 198, 220, 3601, 7, 1084, 3099, 62, 4868, 64, 13, 12860, 28955, 628 ]
2.28972
214
# -*- coding: utf-8 -*- # Author : Jin Kim # e-mail : [email protected] # Powered by Seculayer © 2020 Solution Development 2 Team, R&D Center. import os from hps.common.Constants import Constants from hps.utils.Singleton import Singleton from hps.utils.MPLogger import MPLogger from hps.utils.CommonUtils import CommonUtils # class : Common
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 6434, 1058, 17297, 6502, 198, 2, 304, 12, 4529, 1058, 474, 676, 320, 31, 2363, 377, 2794, 13, 785, 198, 2, 45090, 416, 1882, 377, 2794, 10673, 12131, 28186, 7712, 362, 4816, 11, 371, 5, 35, 3337, 13, 220, 198, 198, 11748, 28686, 198, 198, 6738, 289, 862, 13, 11321, 13, 34184, 1187, 1330, 4757, 1187, 198, 6738, 289, 862, 13, 26791, 13, 29974, 10565, 1330, 5573, 10565, 198, 6738, 289, 862, 13, 26791, 13, 44, 6489, 519, 1362, 1330, 4904, 11187, 1362, 198, 6738, 289, 862, 13, 26791, 13, 17227, 18274, 4487, 1330, 8070, 18274, 4487, 198, 198, 2, 1398, 1058, 8070, 198 ]
2.92437
119
import functools import hmac from typing import Any from typing import Callable from typing import Optional from flask import abort from flask import current_app from flask import request from werkzeug.exceptions import ServiceUnavailable def authorize_source() -> Callable: """Detect the source from the headers and authenticate by the config secret.""" return decorator def authorize_gitlab() -> Optional[str]: """ Check gitlab header token is correct and return the source name. The token is raw because gitlab only allows for ssl endpoints. """ source = "gitlab" if get_secret(source) == request.headers["X-Gitlab-Token"]: return source return None def authorize_github() -> Optional[str]: """ Verify github signature matches our secret with the payload and return the source name. Github uses HMAC signature verification, encode the payload with the secret """ source = "github" secret = get_secret(source) signature = request.headers["X-Hub-Signature"] signature_prefix = "sha1=" if not signature.startswith(signature_prefix): return None hmac_ = hmac.new(secret.encode("UTF-8"), msg=request.data, digestmod="sha1") calculated_sig = signature_prefix + hmac_.hexdigest() if not hmac.compare_digest(signature, calculated_sig): return None return source def get_secret(source: str) -> str: """Get the secret key from config by the source or raise an exception.""" secret = current_app.config.get(f"{source.upper()}_SECRET", None) if secret is None: raise ServiceUnavailable(f"Missing {source} secret") return secret __PARSERS__ = { "X-Gitlab-Token": authorize_gitlab, "X-Hub-Signature": authorize_github, }
[ 11748, 1257, 310, 10141, 198, 11748, 289, 20285, 198, 6738, 19720, 1330, 4377, 198, 6738, 19720, 1330, 4889, 540, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 42903, 1330, 15614, 198, 6738, 42903, 1330, 1459, 62, 1324, 198, 6738, 42903, 1330, 2581, 198, 6738, 266, 9587, 2736, 1018, 13, 1069, 11755, 1330, 4809, 3118, 15182, 628, 198, 4299, 29145, 62, 10459, 3419, 4613, 4889, 540, 25, 198, 220, 220, 220, 37227, 47504, 262, 2723, 422, 262, 24697, 290, 8323, 5344, 416, 262, 4566, 198, 220, 220, 220, 3200, 526, 15931, 628, 220, 220, 220, 1441, 11705, 1352, 628, 198, 4299, 29145, 62, 18300, 23912, 3419, 4613, 32233, 58, 2536, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 17606, 23912, 13639, 11241, 318, 3376, 290, 1441, 262, 2723, 1438, 13, 628, 220, 220, 220, 383, 11241, 318, 8246, 780, 17606, 23912, 691, 3578, 329, 264, 6649, 886, 13033, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2723, 796, 366, 18300, 23912, 1, 198, 220, 220, 220, 611, 651, 62, 21078, 7, 10459, 8, 6624, 2581, 13, 50145, 14692, 55, 12, 38, 270, 23912, 12, 30642, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2723, 628, 220, 220, 220, 1441, 6045, 628, 198, 4299, 29145, 62, 12567, 3419, 4613, 32233, 58, 2536, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49899, 33084, 9877, 7466, 674, 3200, 351, 262, 21437, 290, 1441, 262, 198, 220, 220, 220, 2723, 1438, 13, 628, 220, 220, 220, 38994, 3544, 25904, 2246, 9877, 19637, 11, 37773, 262, 21437, 351, 262, 198, 220, 220, 220, 3200, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2723, 796, 366, 12567, 1, 198, 220, 220, 220, 3200, 796, 651, 62, 21078, 7, 10459, 8, 198, 220, 220, 220, 9877, 796, 2581, 13, 50145, 14692, 55, 12, 16066, 12, 11712, 1300, 8973, 628, 220, 220, 220, 9877, 62, 40290, 796, 366, 26270, 16, 2625, 198, 220, 220, 220, 611, 407, 9877, 13, 9688, 2032, 342, 7, 12683, 1300, 62, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 289, 20285, 62, 796, 289, 20285, 13, 3605, 7, 21078, 13, 268, 8189, 7203, 48504, 12, 23, 12340, 31456, 28, 25927, 13, 7890, 11, 16274, 4666, 2625, 26270, 16, 4943, 198, 220, 220, 220, 10488, 62, 82, 328, 796, 9877, 62, 40290, 1343, 289, 20285, 44807, 33095, 12894, 395, 3419, 198, 220, 220, 220, 611, 407, 289, 20285, 13, 5589, 533, 62, 12894, 395, 7, 12683, 1300, 11, 10488, 62, 82, 328, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1441, 2723, 628, 198, 4299, 651, 62, 21078, 7, 10459, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 3855, 262, 3200, 1994, 422, 4566, 416, 262, 2723, 393, 5298, 281, 6631, 526, 15931, 198, 220, 220, 220, 3200, 796, 1459, 62, 1324, 13, 11250, 13, 1136, 7, 69, 1, 90, 10459, 13, 45828, 3419, 92, 62, 23683, 26087, 1600, 6045, 8, 628, 220, 220, 220, 611, 3200, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 4809, 3118, 15182, 7, 69, 1, 43730, 1391, 10459, 92, 3200, 4943, 628, 220, 220, 220, 1441, 3200, 628, 198, 834, 27082, 50, 4877, 834, 796, 1391, 198, 220, 220, 220, 366, 55, 12, 38, 270, 23912, 12, 30642, 1298, 29145, 62, 18300, 23912, 11, 198, 220, 220, 220, 366, 55, 12, 16066, 12, 11712, 1300, 1298, 29145, 62, 12567, 11, 198, 92, 198 ]
3.044293
587
import numpy as np from enum import Enum from pysvso.lib.maths.rotation import Euler, Quaternion, rotation_matrix, dRx, dRy, dRz from scipy.optimize import fmin_bfgs from scipy.optimize import fmin from scipy.optimize import minimize from scipy.optimize import approx_fprime # when point cloud is parse from sklearn.neighbors import NearestNeighbors # see FLANN manual https://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_manual-1.8.4.pdf # remember to run 2to3 upon root of the source when you complete downloading the codes! from pyflann import * import numpy as np # used to build computation graph with import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import tensorflow_graphics as tfg rotation_matrix_3d = tfg.geometry.transformation.rotation_matrix_3d # Lie Algebra ICP solver # The algorithm was first implemented by Lei ([email protected]) in C++ in later of 2019 and reimplemented in python in 2020 # you should not use this algorithm without consent of Lei in any form and purposes. # ALL RIGHTS RESERVED # Points are very sparse, we don't have to do random sampling
[ 11748, 299, 32152, 355, 45941, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 279, 893, 85, 568, 13, 8019, 13, 11018, 82, 13, 10599, 341, 1330, 412, 18173, 11, 2264, 9205, 295, 11, 13179, 62, 6759, 8609, 11, 288, 49, 87, 11, 288, 46987, 11, 288, 49, 89, 198, 198, 6738, 629, 541, 88, 13, 40085, 1096, 1330, 277, 1084, 62, 19881, 14542, 198, 6738, 629, 541, 88, 13, 40085, 1096, 1330, 277, 1084, 198, 6738, 629, 541, 88, 13, 40085, 1096, 1330, 17775, 198, 6738, 629, 541, 88, 13, 40085, 1096, 1330, 5561, 62, 69, 35505, 198, 2, 618, 966, 6279, 318, 21136, 198, 6738, 1341, 35720, 13, 710, 394, 32289, 1330, 3169, 12423, 46445, 32289, 198, 198, 2, 766, 9977, 22846, 10107, 3740, 1378, 2503, 13, 6359, 13, 549, 66, 13, 6888, 14, 34033, 14, 2704, 1236, 14, 39920, 14, 3697, 22846, 14, 2704, 1236, 62, 805, 723, 12, 16, 13, 23, 13, 19, 13, 12315, 198, 2, 3505, 284, 1057, 362, 1462, 18, 2402, 6808, 286, 262, 2723, 618, 345, 1844, 22023, 262, 12416, 0, 198, 6738, 12972, 2704, 1236, 1330, 1635, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 973, 284, 1382, 29964, 4823, 351, 198, 11748, 11192, 273, 11125, 13, 5589, 265, 13, 85, 16, 355, 48700, 198, 27110, 13, 40223, 62, 85, 17, 62, 46571, 3419, 198, 11748, 11192, 273, 11125, 62, 70, 11549, 355, 256, 40616, 198, 198, 10599, 341, 62, 6759, 8609, 62, 18, 67, 796, 256, 40616, 13, 469, 15748, 13, 7645, 1161, 13, 10599, 341, 62, 6759, 8609, 62, 18, 67, 628, 198, 2, 12060, 978, 29230, 314, 8697, 1540, 332, 628, 198, 198, 2, 383, 11862, 373, 717, 9177, 416, 48579, 357, 88, 32994, 13, 21768, 31, 14816, 13, 785, 8, 287, 327, 4880, 287, 1568, 286, 13130, 290, 21123, 1154, 12061, 287, 21015, 287, 12131, 198, 2, 345, 815, 407, 779, 428, 11862, 1231, 8281, 286, 48579, 287, 597, 1296, 290, 4959, 13, 198, 2, 11096, 371, 34874, 15731, 1137, 53, 1961, 198, 198, 2, 220, 11045, 389, 845, 29877, 11, 356, 836, 470, 423, 284, 466, 4738, 19232 ]
3.127841
352
import tensorflow as tf import model import data # 訓練データ作成担当 g = data.Data() # GPUをすべて使わないオプション config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) tf.keras.backend.set_session(sess) # モデルを作成 model = model.make(tflite=False) # 最適化を定義 optimizer = tf.keras.optimizers.Adam(lr=0.001) model.compile(optimizer=optimizer,loss="categorical_crossentropy", metrics=["categorical_accuracy"]) # コールバック cb = Callback() # 途中から学習する場合 initial_epoch = 0 if initial_epoch >= 1: model.load_weights("weight.hdf5") # 学習する model.fit_generator(g.generator(), validation_data=g.generator_test(), validation_steps=g.test_steps(), callbacks = [cb], steps_per_epoch=data.TRAIN_SIZE/data.BATCH_SIZE,epochs=50, initial_epoch=initial_epoch)
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 2746, 198, 11748, 1366, 198, 198, 2, 5525, 101, 241, 45784, 112, 21959, 6312, 23376, 43291, 22755, 238, 162, 233, 227, 37605, 241, 198, 70, 796, 1366, 13, 6601, 3419, 198, 2, 11362, 31758, 33623, 2515, 117, 28134, 45635, 1792, 237, 26945, 18566, 20513, 30965, 15661, 1209, 100, 6527, 198, 11250, 796, 48700, 13, 16934, 2964, 1462, 3419, 198, 11250, 13, 46999, 62, 25811, 13, 12154, 62, 27922, 796, 6407, 198, 82, 408, 796, 48700, 13, 36044, 7, 11250, 28, 11250, 8, 198, 27110, 13, 6122, 292, 13, 1891, 437, 13, 2617, 62, 29891, 7, 82, 408, 8, 198, 2, 14524, 95, 21959, 9202, 31758, 43291, 22755, 238, 198, 19849, 796, 2746, 13, 15883, 7, 83, 2704, 578, 28, 25101, 8, 198, 2, 42164, 222, 34402, 102, 44293, 244, 31758, 22522, 248, 163, 122, 102, 198, 40085, 7509, 796, 48700, 13, 6122, 292, 13, 40085, 11341, 13, 23159, 7, 14050, 28, 15, 13, 8298, 8, 198, 19849, 13, 5589, 576, 7, 40085, 7509, 28, 40085, 7509, 11, 22462, 2625, 66, 2397, 12409, 62, 19692, 298, 28338, 1600, 198, 220, 220, 220, 20731, 28, 14692, 66, 2397, 12409, 62, 4134, 23843, 8973, 8, 198, 2, 17433, 111, 43353, 29659, 35702, 198, 21101, 796, 4889, 1891, 3419, 198, 2, 16268, 222, 242, 40792, 27370, 36853, 27764, 99, 163, 123, 240, 33623, 25748, 161, 254, 112, 28938, 230, 198, 36733, 62, 538, 5374, 796, 657, 198, 361, 4238, 62, 538, 5374, 18189, 352, 25, 198, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7203, 6551, 13, 71, 7568, 20, 4943, 198, 2, 10263, 255, 99, 163, 123, 240, 33623, 25748, 198, 19849, 13, 11147, 62, 8612, 1352, 7, 70, 13, 8612, 1352, 22784, 198, 220, 220, 220, 21201, 62, 7890, 28, 70, 13, 8612, 1352, 62, 9288, 22784, 198, 220, 220, 220, 21201, 62, 20214, 28, 70, 13, 9288, 62, 20214, 22784, 198, 220, 220, 220, 869, 10146, 796, 685, 21101, 4357, 198, 220, 220, 220, 4831, 62, 525, 62, 538, 5374, 28, 7890, 13, 51, 3861, 1268, 62, 33489, 14, 7890, 13, 33, 11417, 62, 33489, 11, 538, 5374, 82, 28, 1120, 11, 198, 220, 220, 220, 4238, 62, 538, 5374, 28, 36733, 62, 538, 5374, 8, 198 ]
2.104278
374
import uuid import hashlib import bcrypt import json from string import Template from datetime import datetime from fastapi import HTTPException from fastapi.encoders import jsonable_encoder from pydantic import IPvAnyAddress from pymongo import MongoClient from bson import json_util from core.models import MongoModel from account.models import JWTModel, UserModel from core import DagMail, DagMailConfig from account.jwt import JWT from core.utils.string import random_string from config.conf import ( MONGO_CS, ACTIVATION_KEY_LENGTH, EMAIL_TEMPLATE_ACTIVATION, EMAIL_TEMPLATE_BASE, MAIL_CONFIG, )
[ 11748, 334, 27112, 198, 11748, 12234, 8019, 198, 11748, 275, 29609, 198, 11748, 33918, 198, 198, 6738, 4731, 1330, 37350, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 3049, 15042, 1330, 14626, 16922, 198, 6738, 3049, 15042, 13, 12685, 375, 364, 1330, 33918, 540, 62, 12685, 12342, 198, 6738, 279, 5173, 5109, 1330, 25961, 7149, 20231, 198, 6738, 279, 4948, 25162, 1330, 42591, 11792, 198, 6738, 275, 1559, 1330, 33918, 62, 22602, 198, 198, 6738, 4755, 13, 27530, 1330, 42591, 17633, 198, 6738, 1848, 13, 27530, 1330, 449, 39386, 17633, 11, 11787, 17633, 198, 6738, 4755, 1330, 32167, 25804, 11, 32167, 25804, 16934, 198, 6738, 1848, 13, 73, 46569, 1330, 449, 39386, 198, 6738, 4755, 13, 26791, 13, 8841, 1330, 4738, 62, 8841, 198, 6738, 4566, 13, 10414, 1330, 357, 198, 220, 220, 220, 25000, 11230, 62, 7902, 11, 198, 220, 220, 220, 11741, 3824, 6234, 62, 20373, 62, 43, 49494, 11, 198, 220, 220, 220, 412, 5673, 4146, 62, 51, 3620, 6489, 6158, 62, 10659, 3824, 6234, 11, 198, 220, 220, 220, 412, 5673, 4146, 62, 51, 3620, 6489, 6158, 62, 33, 11159, 11, 198, 220, 220, 220, 8779, 4146, 62, 10943, 16254, 11, 198, 8, 628 ]
3.135678
199
#! /usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © Autogator Project Contributors # Licensed under the terms of the MIT License # (see autogator/__init__.py for details) """ Tool that converts all .ui and .qrc files in the autogator.resources folder to python files in autogator.compiled. Usage: $ python3 ui2py.py """ import sys import os import subprocess os.chdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)) path = 'autogator' res = os.path.join(path, 'resources') dest = os.path.join(path, 'compiled') for root, directories, filenames in os.walk(res): for filename in filenames: item = os.path.join(root, filename) if item.endswith('.ui'): name, _ = os.path.splitext(filename) rename = name + '_ui' + '.py' path2dest = os.path.join(dest, rename) print(*['pyside2-uic', '--from-imports', item, '-o', path2dest]) subprocess.call(['pyside2-uic', '--from-imports', item, '-o', path2dest]) if item.endswith('.qrc'): name, _ = os.path.splitext(filename) rename = name + '_rc' + '.py' path2dest = os.path.join(dest, rename) args = ['pyside2-rcc', item, '-o', path2dest] print(*args) subprocess.call(args)
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 10673, 5231, 519, 1352, 4935, 25767, 669, 198, 2, 49962, 739, 262, 2846, 286, 262, 17168, 13789, 198, 2, 357, 3826, 1960, 519, 1352, 14, 834, 15003, 834, 13, 9078, 329, 3307, 8, 198, 198, 37811, 198, 25391, 326, 26161, 477, 764, 9019, 290, 764, 80, 6015, 3696, 287, 262, 1960, 519, 1352, 13, 37540, 9483, 284, 198, 29412, 3696, 287, 1960, 519, 1352, 13, 5589, 3902, 13, 198, 198, 28350, 25, 198, 3, 21015, 18, 334, 72, 17, 9078, 13, 9078, 198, 37811, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 198, 418, 13, 354, 15908, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 36911, 28686, 13, 26037, 343, 4008, 198, 198, 6978, 796, 705, 2306, 519, 1352, 6, 198, 411, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 705, 37540, 11537, 198, 16520, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 705, 5589, 3902, 11537, 198, 198, 1640, 6808, 11, 29196, 11, 1226, 268, 1047, 287, 28686, 13, 11152, 7, 411, 2599, 198, 220, 220, 220, 329, 29472, 287, 1226, 268, 1047, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 13, 437, 2032, 342, 7, 4458, 9019, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 4808, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36265, 796, 1438, 1343, 705, 62, 9019, 6, 1343, 45302, 9078, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 17, 16520, 796, 28686, 13, 6978, 13, 22179, 7, 16520, 11, 36265, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 46491, 17816, 79, 893, 485, 17, 12, 84, 291, 3256, 705, 438, 6738, 12, 320, 3742, 3256, 2378, 11, 705, 12, 78, 3256, 3108, 17, 16520, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 14681, 13, 13345, 7, 17816, 79, 893, 485, 17, 12, 84, 291, 3256, 705, 438, 6738, 12, 320, 3742, 3256, 2378, 11, 705, 12, 78, 3256, 3108, 17, 16520, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 13, 437, 2032, 342, 7, 4458, 80, 6015, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 4808, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36265, 796, 1438, 1343, 705, 62, 6015, 6, 1343, 45302, 9078, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 17, 16520, 796, 28686, 13, 6978, 13, 22179, 7, 16520, 11, 36265, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 37250, 79, 893, 485, 17, 12, 81, 535, 3256, 2378, 11, 705, 12, 78, 3256, 3108, 17, 16520, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 46491, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 14681, 13, 13345, 7, 22046, 8, 198 ]
2.21562
589
from django.contrib.auth import get_user_model from django.test import TestCase from annotate import models class TestPages(TestCase): """Test that the proper templates are used to render pages."""
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 24708, 378, 1330, 4981, 628, 198, 4871, 6208, 47798, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 14402, 326, 262, 1774, 24019, 389, 973, 284, 8543, 5468, 526, 15931, 198 ]
3.642857
56
# -*-coding:utf-8-*- import numpy as np from PIL import Image from scipy import misc
[ 2, 532, 9, 12, 66, 7656, 25, 40477, 12, 23, 12, 9, 12, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 629, 541, 88, 1330, 12747, 628, 198 ]
2.558824
34
from datetime import datetime import torch import torchvision def load_stored_resnet_model(categories, file_path): '''Adapted from NVIDIA DLI Course Code: Getting Started with AI on Jetson Nano''' print("Loading stored classification model...") # If we're on the Jetson Nano use cuda, otherwise cpu: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = torchvision.models.resnet18(pretrained=True) model.fc = torch.nn.Linear(512, len(categories)) model = model.to(device) # model.load_state_dict(torch.load(file_path)) model.load_state_dict(torch.load(file_path, map_location=torch.device('cpu'))) model.eval() print("Model ready!") return model
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 28034, 198, 11748, 28034, 10178, 198, 220, 220, 220, 220, 198, 4299, 3440, 62, 301, 1850, 62, 411, 3262, 62, 19849, 7, 66, 26129, 11, 2393, 62, 6978, 2599, 198, 220, 220, 220, 705, 7061, 48003, 276, 422, 15127, 23641, 40, 20537, 6127, 25, 18067, 31026, 351, 9552, 319, 14728, 261, 33504, 7061, 6, 198, 220, 220, 220, 3601, 7203, 19031, 8574, 17923, 2746, 9313, 8, 198, 220, 220, 220, 1303, 1002, 356, 821, 319, 262, 14728, 261, 33504, 779, 269, 15339, 11, 4306, 42804, 25, 198, 220, 220, 220, 3335, 796, 28034, 13, 25202, 7203, 66, 15339, 25, 15, 1, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 366, 36166, 4943, 198, 220, 220, 220, 2746, 796, 28034, 10178, 13, 27530, 13, 411, 3262, 1507, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 2746, 13, 16072, 796, 28034, 13, 20471, 13, 14993, 451, 7, 25836, 11, 18896, 7, 66, 26129, 4008, 198, 220, 220, 220, 2746, 796, 2746, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 1303, 2746, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 7753, 62, 6978, 4008, 198, 220, 220, 220, 2746, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 7753, 62, 6978, 11, 3975, 62, 24886, 28, 13165, 354, 13, 25202, 10786, 36166, 6, 22305, 198, 220, 220, 220, 2746, 13, 18206, 3419, 198, 220, 220, 220, 3601, 7203, 17633, 3492, 2474, 8, 198, 220, 220, 220, 1441, 2746, 198, 220, 220, 220, 220 ]
2.796935
261
# Generated by Django 2.1.1 on 2018-10-03 10:48 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 16, 319, 2864, 12, 940, 12, 3070, 838, 25, 2780, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import zipfile # #压缩 # file=zipfile.ZipFile('text.zip','w')#text.zip创建压缩包文件名 w读 # file.write("class.py")#压缩的文件名 # file.close() #解压缩 # file=zipfile.ZipFile('text.zip','r')#写 # file.extractall(path="../")#写到哪个路径下 创建到卓面 默认是在跟慕入下面 #暴力破解加密的压缩包 fileobj=open("pwd.txt","r")#新建一个txt文件 for item in fileobj.readlines(): print(item.strip())#strip()去空格 newpwd=item.strip() try: file=zipfile.ZipFile("class2.zip","r")#解压缩包 file.extractall(pwd=newpwd.encode("utf-8")) except: print("errot")
[ 11748, 19974, 7753, 201, 198, 2, 1303, 161, 23329, 163, 120, 102, 201, 198, 2, 2393, 28, 13344, 7753, 13, 41729, 8979, 10786, 5239, 13, 13344, 41707, 86, 11537, 2, 5239, 13, 13344, 26344, 249, 161, 119, 118, 161, 23329, 163, 120, 102, 44293, 227, 23877, 229, 20015, 114, 28938, 235, 266, 46237, 119, 201, 198, 2, 2393, 13, 13564, 7203, 4871, 13, 9078, 4943, 2, 161, 23329, 163, 120, 102, 21410, 23877, 229, 20015, 114, 28938, 235, 201, 198, 2, 2393, 13, 19836, 3419, 201, 198, 201, 198, 2, 164, 100, 96, 161, 23329, 163, 120, 102, 201, 198, 2, 2393, 28, 13344, 7753, 13, 41729, 8979, 10786, 5239, 13, 13344, 41707, 81, 11537, 2, 37863, 247, 201, 198, 2, 2393, 13, 2302, 974, 439, 7, 6978, 2625, 40720, 4943, 2, 37863, 247, 26344, 108, 161, 241, 103, 10310, 103, 164, 115, 107, 36181, 226, 10310, 233, 220, 10263, 230, 249, 161, 119, 118, 26344, 108, 39355, 241, 165, 251, 95, 16268, 119, 246, 164, 106, 97, 42468, 28839, 101, 164, 115, 253, 162, 227, 243, 17739, 98, 10310, 233, 165, 251, 95, 201, 198, 201, 198, 2, 162, 248, 112, 27950, 249, 163, 254, 112, 164, 100, 96, 27950, 254, 43380, 228, 21410, 161, 23329, 163, 120, 102, 44293, 227, 201, 198, 7753, 26801, 28, 9654, 7203, 79, 16993, 13, 14116, 2430, 81, 4943, 2, 23877, 108, 161, 119, 118, 31660, 10310, 103, 14116, 23877, 229, 20015, 114, 201, 198, 1640, 2378, 287, 2393, 26801, 13, 961, 6615, 33529, 201, 198, 220, 220, 220, 3601, 7, 9186, 13, 36311, 28955, 2, 36311, 3419, 43889, 119, 163, 102, 118, 43718, 120, 201, 198, 220, 220, 220, 649, 79, 16993, 28, 9186, 13, 36311, 3419, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 28, 13344, 7753, 13, 41729, 8979, 7203, 4871, 17, 13, 13344, 2430, 81, 4943, 2, 164, 100, 96, 161, 23329, 163, 120, 102, 44293, 227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 2302, 974, 439, 7, 79, 16993, 28, 3605, 79, 16993, 13, 268, 8189, 7203, 40477, 12, 23, 48774, 201, 198, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 263, 10599, 4943, 201, 198 ]
1.424802
379
# coding=utf-8 import numpy as np import skimage import skimage.morphology as morph from . import Measurement from ..util.cleanup import cell_aoi_and_clip
[ 2, 19617, 28, 40477, 12, 23, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1341, 9060, 198, 11748, 1341, 9060, 13, 24503, 1435, 355, 17488, 198, 198, 6738, 764, 1330, 24291, 434, 198, 6738, 11485, 22602, 13, 27773, 929, 1330, 2685, 62, 5488, 72, 62, 392, 62, 15036, 198 ]
3.14
50
from PyQt5 import QtCore, QtWidgets, QtGui from Item import Item from Tikzifyables.Arrowable import Arrowable from Tikzifyables.DashPatternable import DashPatternable from Tikzifyables.Colourable.LineColourable import LineColourable from Tikzifyables.Decorationable import Decorationable from Tikzifyables.CurveStrategyable import CurveStrategyable import Constant as c from GeometryMath import point_segment_dist_sqr
[ 6738, 9485, 48, 83, 20, 1330, 33734, 14055, 11, 33734, 54, 312, 11407, 11, 33734, 8205, 72, 198, 198, 6738, 9097, 1330, 9097, 198, 6738, 46338, 89, 1958, 2977, 13, 3163, 808, 540, 1330, 19408, 540, 198, 6738, 46338, 89, 1958, 2977, 13, 43041, 47546, 540, 1330, 16189, 47546, 540, 198, 6738, 46338, 89, 1958, 2977, 13, 5216, 454, 540, 13, 13949, 5216, 454, 540, 1330, 6910, 5216, 454, 540, 198, 6738, 46338, 89, 1958, 2977, 13, 10707, 6944, 540, 1330, 4280, 6944, 540, 198, 6738, 46338, 89, 1958, 2977, 13, 26628, 303, 13290, 4338, 540, 1330, 46300, 13290, 4338, 540, 198, 11748, 20217, 355, 269, 198, 6738, 2269, 15748, 37372, 1330, 966, 62, 325, 5154, 62, 17080, 62, 31166, 81, 628 ]
3.442623
122
""" PROGRAM_NAME: virtnet_creator FILE_NAME: conf.py AUTHOR: Brendan Geoghegan PROGRAM_DESCRIPTION: This program is a GUI application for users to build or load network topologies that have a SDN controller at their center. The original code tied into a Xen loadout used to clone, startup, and operate VMs, but this simplified version is only meant to visually generate network topologies and then generate the requisite YAML files for a Faucet SDN controller. FILE_DESCRIPTION: This file contains functions to read and write a custom config file for saving and loading a specific network configuration. In theory this would allow users to quickly spin up the same network environment over and over again. Right now the file type is saves as .virtnet, you can find this being called from main.py. """ class confIO: '''Initiate a series of read functions going through the .virtnet file and creating instances of devices''' '''Function to read controller information from .virtnet file and to instantiate new controller objects''' '''Function to read switch information from .virtnet file and to instantiate new controller objects''' '''Function to read host information from .virtnet file and to instantiate new controller objects''' '''read in all the in/out of band connections, controller relations, and vlans to create links''' '''Initiate a series of write functions going through the list of devices and pulling out info''' '''Function to write controller information to a .virtnet file''' '''Function to write switch information and any attached hosts information to a .virtnet file''' '''Function to capture all the links (In/Out band) from each switch to write to .virtnet file''' '''Function to capture the VLAN data from a controller and add to the end of the file'''
[ 37811, 198, 4805, 7730, 24115, 62, 20608, 25, 4118, 3262, 62, 45382, 198, 25664, 62, 20608, 25, 1013, 13, 9078, 198, 32, 24318, 1581, 25, 26134, 2269, 519, 258, 1030, 198, 4805, 7730, 24115, 62, 30910, 40165, 25, 220, 220, 220, 770, 1430, 318, 257, 25757, 3586, 329, 2985, 284, 1382, 393, 3440, 3127, 1353, 5823, 326, 198, 14150, 257, 9834, 45, 10444, 379, 511, 3641, 13, 220, 383, 2656, 2438, 8165, 656, 257, 21173, 3440, 448, 973, 284, 17271, 11, 13693, 11, 290, 198, 3575, 378, 569, 10128, 11, 475, 428, 27009, 2196, 318, 691, 4001, 284, 22632, 7716, 3127, 1353, 5823, 290, 788, 7716, 198, 1169, 37088, 575, 2390, 43, 3696, 329, 257, 376, 14272, 316, 9834, 45, 10444, 13, 198, 25664, 62, 30910, 40165, 25, 770, 2393, 4909, 5499, 284, 1100, 290, 3551, 257, 2183, 4566, 2393, 329, 8914, 290, 11046, 198, 64, 2176, 3127, 8398, 13, 220, 554, 4583, 428, 561, 1249, 2985, 284, 2952, 7906, 510, 262, 976, 3127, 2858, 198, 2502, 290, 625, 757, 13, 220, 6498, 783, 262, 2393, 2099, 318, 16031, 355, 764, 48940, 3262, 11, 345, 460, 1064, 428, 852, 1444, 422, 1388, 13, 9078, 13, 198, 37811, 628, 198, 4871, 1013, 9399, 25, 628, 220, 220, 220, 705, 7061, 818, 8846, 378, 257, 2168, 286, 1100, 5499, 1016, 832, 262, 764, 48940, 3262, 2393, 290, 4441, 10245, 286, 4410, 7061, 6, 628, 220, 220, 220, 705, 7061, 22203, 284, 1100, 10444, 1321, 422, 764, 48940, 3262, 2393, 290, 284, 9113, 9386, 649, 10444, 5563, 7061, 6, 628, 220, 220, 220, 705, 7061, 22203, 284, 1100, 5078, 1321, 422, 764, 48940, 3262, 2393, 290, 284, 9113, 9386, 649, 10444, 5563, 7061, 6, 628, 220, 220, 220, 705, 7061, 22203, 284, 1100, 2583, 1321, 422, 764, 48940, 3262, 2393, 290, 284, 9113, 9386, 649, 10444, 5563, 7061, 6, 628, 220, 220, 220, 705, 7061, 961, 287, 477, 262, 287, 14, 448, 286, 4097, 8787, 11, 10444, 2316, 11, 290, 410, 75, 504, 284, 2251, 6117, 7061, 6, 628, 220, 220, 220, 705, 7061, 818, 8846, 378, 257, 2168, 286, 3551, 5499, 1016, 832, 262, 1351, 286, 4410, 290, 10427, 503, 7508, 7061, 6, 628, 220, 220, 220, 705, 7061, 22203, 284, 3551, 10444, 1321, 284, 257, 764, 48940, 3262, 2393, 7061, 6, 628, 220, 220, 220, 705, 7061, 22203, 284, 3551, 5078, 1321, 290, 597, 7223, 11453, 1321, 284, 257, 764, 48940, 3262, 2393, 7061, 6, 628, 220, 220, 220, 705, 7061, 22203, 284, 8006, 477, 262, 6117, 357, 818, 14, 7975, 4097, 8, 422, 1123, 5078, 284, 3551, 284, 764, 48940, 3262, 2393, 7061, 6, 628, 220, 220, 220, 705, 7061, 22203, 284, 8006, 262, 569, 25697, 1366, 422, 257, 10444, 290, 751, 284, 262, 886, 286, 262, 2393, 7061, 6 ]
3.991304
460
from django.contrib import admin from .models import UserProfile # Register your models here. admin.site.register(UserProfile, UserProfileAdmin)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 11787, 37046, 198, 2, 17296, 534, 4981, 994, 13, 628, 198, 198, 28482, 13, 15654, 13, 30238, 7, 12982, 37046, 11, 11787, 37046, 46787, 8, 198 ]
3.794872
39
import cv2 import threading import tensorflow as tf import numpy as np import time import capturer from utils.circularBuffer import CircularBuffer labels = ['Left Turn', 'No Turn', 'Right Turn'] model_path = "./turn_classification/turn_classification_model_final_v1.h5" readings_buffer_size = 20 image_preprocessing_dimens = (100, 100) detection_threshold = 0.5
[ 11748, 269, 85, 17, 198, 11748, 4704, 278, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 8006, 81, 198, 6738, 3384, 4487, 13, 21170, 934, 28632, 1330, 7672, 934, 28632, 198, 198, 23912, 1424, 796, 37250, 18819, 6756, 3256, 705, 2949, 6756, 3256, 705, 11028, 6756, 20520, 198, 19849, 62, 6978, 796, 366, 19571, 15344, 62, 4871, 2649, 14, 15344, 62, 4871, 2649, 62, 19849, 62, 20311, 62, 85, 16, 13, 71, 20, 1, 198, 961, 654, 62, 22252, 62, 7857, 796, 1160, 198, 9060, 62, 3866, 36948, 62, 67, 12117, 796, 357, 3064, 11, 1802, 8, 198, 15255, 3213, 62, 400, 10126, 796, 657, 13, 20, 628 ]
3.084746
118
# (c) Copyright 2017-2019 SUSE LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import abort from flask import Blueprint from flask import jsonify from flask import request from keystoneauth1 import exceptions as exc from keystoneauth1 import session as ks_session from keystoneclient.auth.identity import v3 from keystoneclient.v3 import client as ks_client import logging import os from oslo_config import cfg import pbr.version import pwd import threading import time from .util import ping from . import config from . import policy bp = Blueprint('admin', __name__) CONF = cfg.CONF LOG = logging.getLogger(__name__) USER_AGENT = 'Installer UI' @bp.route("/api/v2/version") def version(): """Returns the version of the service .. :quickref: Admin; Returns the version of the service **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK 0.0.1.dev16 """ version_info = pbr.version.VersionInfo('ardana-service') return version_info.version_string_with_vcs() @bp.route("/api/v2/heartbeat") def heartbeat(): """Returns the epoch time Simple API to verify that the service is up and responding. Returns the number of seconds since 1970-01-01 00:00:00 GMT. .. :quickref: Admin; Returns the epoch time **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK 1502745650 """ return jsonify(int(time.time())) @bp.route("/api/v2/user") @policy.enforce('lifecycle:get_user') def user(): """Returns the username the service is running under .. :quickref: Admin; Returns the username the service is running under **Example valid response**: .. sourcecode:: http HTTP/1.1 200 OK {"username": "myusername"} """ user_dict = {'username': pwd.getpwuid(os.getuid()).pw_name} return jsonify(user_dict) @bp.route("/api/v2/restart", methods=['POST']) @policy.enforce('lifecycle:restart') def restart(): """Requests the service to restart after a specified delay, in seconds .. :quickref: Admin; Requests a service restart after a delay **Example Request**: .. sourcecode:: http POST /api/v2/user HTTP/1.1 Content-Type: application/json { "delay": 60 } """ info = request.get_json() or {} delay_secs = int(info.get('delay', 0)) t = threading.Timer(delay_secs, update_trigger_file) t.start() return jsonify('Success') @bp.route("/api/v2/login", methods=['POST']) def login(): """Authenticates with keystone and returns a token .. :quickref: Admin; Authenticates with keystone **Example Request**: .. sourcecode:: http POST /api/v2/login HTTP/1.1 Content-Type: application/json { "username": "admin", "password": "secret" } **Example Response**: .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "token": "gAAAAABbEaruZDQGIH5KmKWHlDZIw7CLq", "expires": "2018-06-01T21:22:06+00:00" } :status 200: successful authentication :status 401: invalid credentials :status 403: authentication not permitted, or user not authorized for any projects """ if not config.requires_auth(): abort(403, "authentication not permitted since service is in insecure mode") info = request.get_json() or {} username = info.get('username') password = info.get('password') user_domain_name = info.get('user_domain_name', 'Default') token = _authenticate(CONF.keystone_authtoken.auth_url, username, password, user_domain_name) return jsonify(token) def _authenticate(auth_url, username=None, password=None, user_domain_name='Default'): """Authenticate with keystone Creates an unscoped token using the given credentials (which validates them), and then uses that token to get a project-scoped token. """ unscoped_auth = v3.Password(auth_url, username=username, password=password, user_domain_name=user_domain_name, unscoped=True) session = ks_session.Session(user_agent=USER_AGENT, verify=not CONF.keystone_authtoken.insecure) try: # Trigger keystone to verify the credentials unscoped_auth_ref = unscoped_auth.get_access(session) except exc.connection.ConnectFailure as e: abort(503, str(e)) except exc.http.HttpError as e: abort(e.http_status, e.message) except exc.ClientException as e: abort(401, str(e)) except Exception as e: LOG.exception(e) abort(500, "Unable to authenticate") client = ks_client.Client(session=session, auth=unscoped_auth, user_agent=USER_AGENT) auth_url = unscoped_auth.auth_url projects = client.projects.list(user=unscoped_auth_ref.user_id) # Filter out disabled projects projects = [project for project in projects if project.enabled] # Prioritize the admin project by putting it at the beginning of the list for pos, project in enumerate(projects): if project.name == 'admin': projects.pop(pos) projects.insert(0, project) break # Return the first project token that we have the admin role on, otherwise # return the first project token we have any role on. fallback_auth_ref = None for project in projects: auth = v3.Token(auth_url=auth_url, token=unscoped_auth_ref.auth_token, project_id=project.id, reauthenticate=False) try: auth_ref = auth.get_access(session) if 'admin' in auth_ref.role_names: return {'token': auth_ref.auth_token, 'expires': auth_ref.expires.isoformat()} elif not fallback_auth_ref: fallback_auth_ref = auth_ref except Exception as e: pass if fallback_auth_ref: return {'token': fallback_auth_ref.auth_token, 'expires': fallback_auth_ref.expires.isoformat()} # TODO(gary): Consider as a secondary fallback to return a domain-scoped # token abort(403, "Not authorized for any project") @bp.route("/api/v2/is_secured") def get_secured(): """Returns whether authentication is required Returns a json object indicating whether the service is configured to enforce authentication .. :quickref: Model; Returns whether authentication is required **Example Response**: .. sourcecode:: http HTTP/1.1 200 OK Content-Type: application/json { "isSecured": false } :status 200: success """ return jsonify({'isSecured': config.requires_auth()}) @bp.route("/api/v2/connection_test", methods=['POST'])
[ 2, 357, 66, 8, 15069, 2177, 12, 23344, 311, 19108, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 42903, 1330, 15614, 198, 6738, 42903, 1330, 39932, 198, 6738, 42903, 1330, 33918, 1958, 198, 6738, 42903, 1330, 2581, 198, 6738, 1994, 6440, 18439, 16, 1330, 13269, 355, 2859, 198, 6738, 1994, 6440, 18439, 16, 1330, 6246, 355, 479, 82, 62, 29891, 198, 6738, 1994, 6440, 16366, 13, 18439, 13, 738, 414, 1330, 410, 18, 198, 6738, 1994, 6440, 16366, 13, 85, 18, 1330, 5456, 355, 479, 82, 62, 16366, 198, 11748, 18931, 198, 11748, 28686, 198, 6738, 28686, 5439, 62, 11250, 1330, 30218, 70, 198, 11748, 279, 1671, 13, 9641, 198, 11748, 279, 16993, 198, 11748, 4704, 278, 198, 11748, 640, 198, 198, 6738, 764, 22602, 1330, 29400, 198, 198, 6738, 764, 1330, 4566, 198, 6738, 764, 1330, 2450, 198, 198, 46583, 796, 39932, 10786, 28482, 3256, 11593, 3672, 834, 8, 198, 10943, 37, 796, 30218, 70, 13, 10943, 37, 198, 25294, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 29904, 62, 4760, 3525, 796, 705, 15798, 263, 12454, 6, 628, 198, 31, 46583, 13, 38629, 7203, 14, 15042, 14, 85, 17, 14, 9641, 4943, 198, 4299, 2196, 33529, 198, 220, 220, 220, 37227, 35561, 262, 2196, 286, 262, 2139, 628, 220, 220, 220, 11485, 1058, 24209, 5420, 25, 32053, 26, 16409, 262, 2196, 286, 262, 2139, 628, 220, 220, 220, 12429, 16281, 4938, 2882, 1174, 25, 628, 220, 220, 220, 11485, 2723, 8189, 3712, 2638, 628, 220, 220, 220, 220, 220, 220, 14626, 14, 16, 13, 16, 939, 7477, 628, 220, 220, 220, 220, 220, 220, 657, 13, 15, 13, 16, 13, 7959, 1433, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2196, 62, 10951, 796, 279, 1671, 13, 9641, 13, 14815, 12360, 10786, 446, 2271, 12, 15271, 11537, 198, 220, 220, 220, 1441, 2196, 62, 10951, 13, 9641, 62, 8841, 62, 4480, 62, 85, 6359, 3419, 628, 198, 31, 46583, 13, 38629, 7203, 14, 15042, 14, 85, 17, 14, 11499, 12945, 4943, 198, 4299, 36051, 33529, 198, 220, 220, 220, 37227, 35561, 262, 36835, 640, 628, 220, 220, 220, 17427, 7824, 284, 11767, 326, 262, 2139, 318, 510, 290, 14409, 13, 220, 16409, 198, 220, 220, 220, 262, 1271, 286, 4201, 1201, 8069, 12, 486, 12, 486, 3571, 25, 405, 25, 405, 16987, 13, 628, 220, 220, 220, 11485, 1058, 24209, 5420, 25, 32053, 26, 16409, 262, 36835, 640, 628, 220, 220, 220, 12429, 16281, 4938, 2882, 1174, 25, 628, 220, 220, 220, 11485, 2723, 8189, 3712, 2638, 628, 220, 220, 220, 220, 220, 220, 14626, 14, 16, 13, 16, 939, 7477, 628, 220, 220, 220, 220, 220, 220, 6640, 1983, 2231, 17544, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 33918, 1958, 7, 600, 7, 2435, 13, 2435, 3419, 4008, 628, 198, 31, 46583, 13, 38629, 7203, 14, 15042, 14, 85, 17, 14, 7220, 4943, 198, 31, 30586, 13, 268, 3174, 10786, 36195, 47510, 25, 1136, 62, 7220, 11537, 198, 4299, 2836, 33529, 198, 220, 220, 220, 37227, 35561, 262, 20579, 262, 2139, 318, 2491, 739, 628, 220, 220, 220, 11485, 1058, 24209, 5420, 25, 32053, 26, 16409, 262, 20579, 262, 2139, 318, 2491, 739, 628, 220, 220, 220, 12429, 16281, 4938, 2882, 1174, 25, 628, 220, 220, 220, 11485, 2723, 8189, 3712, 2638, 628, 220, 220, 220, 220, 220, 220, 14626, 14, 16, 13, 16, 939, 7477, 628, 220, 220, 220, 220, 220, 220, 19779, 29460, 1298, 366, 1820, 29460, 20662, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2836, 62, 11600, 796, 1391, 6, 29460, 10354, 279, 16993, 13, 1136, 79, 86, 27112, 7, 418, 13, 1136, 27112, 3419, 737, 79, 86, 62, 3672, 92, 198, 220, 220, 220, 1441, 33918, 1958, 7, 7220, 62, 11600, 8, 628, 198, 198, 31, 46583, 13, 38629, 7203, 14, 15042, 14, 85, 17, 14, 2118, 433, 1600, 5050, 28, 17816, 32782, 6, 12962, 198, 31, 30586, 13, 268, 3174, 10786, 36195, 47510, 25, 2118, 433, 11537, 198, 4299, 15765, 33529, 198, 220, 220, 220, 37227, 16844, 3558, 262, 2139, 284, 15765, 706, 257, 7368, 5711, 11, 287, 4201, 628, 220, 220, 220, 11485, 1058, 24209, 5420, 25, 32053, 26, 9394, 3558, 257, 2139, 15765, 706, 257, 5711, 628, 220, 220, 220, 12429, 16281, 19390, 1174, 25, 628, 220, 220, 220, 11485, 2723, 8189, 3712, 2638, 628, 220, 220, 220, 220, 220, 220, 24582, 1220, 15042, 14, 85, 17, 14, 7220, 14626, 14, 16, 13, 16, 628, 220, 220, 220, 220, 220, 220, 14041, 12, 6030, 25, 3586, 14, 17752, 628, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40850, 1298, 3126, 198, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7508, 796, 2581, 13, 1136, 62, 17752, 3419, 393, 23884, 198, 220, 220, 220, 5711, 62, 2363, 82, 796, 493, 7, 10951, 13, 1136, 10786, 40850, 3256, 657, 4008, 628, 220, 220, 220, 256, 796, 4704, 278, 13, 48801, 7, 40850, 62, 2363, 82, 11, 4296, 62, 46284, 62, 7753, 8, 198, 220, 220, 220, 256, 13, 9688, 3419, 628, 220, 220, 220, 1441, 33918, 1958, 10786, 33244, 11537, 628, 198, 31, 46583, 13, 38629, 7203, 14, 15042, 14, 85, 17, 14, 38235, 1600, 5050, 28, 17816, 32782, 6, 12962, 198, 4299, 17594, 33529, 198, 220, 220, 220, 37227, 47649, 16856, 351, 1994, 6440, 290, 5860, 257, 11241, 628, 220, 220, 220, 11485, 1058, 24209, 5420, 25, 32053, 26, 31885, 16856, 351, 1994, 6440, 628, 220, 220, 220, 12429, 16281, 19390, 1174, 25, 628, 220, 220, 220, 11485, 2723, 8189, 3712, 2638, 628, 220, 220, 220, 220, 220, 220, 24582, 1220, 15042, 14, 85, 17, 14, 38235, 14626, 14, 16, 13, 16, 198, 220, 220, 220, 220, 220, 220, 14041, 12, 6030, 25, 3586, 14, 17752, 628, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29460, 1298, 366, 28482, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28712, 1298, 366, 21078, 1, 198, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 12429, 16281, 18261, 1174, 25, 628, 220, 220, 220, 11485, 2723, 8189, 3712, 2638, 628, 220, 220, 220, 220, 220, 220, 14626, 14, 16, 13, 16, 939, 7477, 198, 220, 220, 220, 220, 220, 220, 14041, 12, 6030, 25, 3586, 14, 17752, 628, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30001, 1298, 366, 70, 17922, 6242, 65, 8419, 84, 57, 35, 48, 18878, 39, 20, 42, 76, 42, 12418, 75, 35, 48926, 86, 22, 5097, 80, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11201, 2387, 1298, 366, 7908, 12, 3312, 12, 486, 51, 2481, 25, 1828, 25, 3312, 10, 405, 25, 405, 1, 198, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 1058, 13376, 939, 25, 4388, 18239, 198, 220, 220, 220, 1058, 13376, 22219, 25, 12515, 18031, 198, 220, 220, 220, 1058, 13376, 38210, 25, 18239, 407, 10431, 11, 393, 2836, 407, 10435, 329, 597, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4493, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 4566, 13, 47911, 62, 18439, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 7, 31552, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41299, 3299, 407, 10431, 1201, 2139, 318, 287, 31955, 4235, 4943, 628, 220, 220, 220, 7508, 796, 2581, 13, 1136, 62, 17752, 3419, 393, 23884, 198, 220, 220, 220, 20579, 796, 7508, 13, 1136, 10786, 29460, 11537, 198, 220, 220, 220, 9206, 796, 7508, 13, 1136, 10786, 28712, 11537, 198, 220, 220, 220, 2836, 62, 27830, 62, 3672, 796, 7508, 13, 1136, 10786, 7220, 62, 27830, 62, 3672, 3256, 705, 19463, 11537, 198, 220, 220, 220, 11241, 796, 4808, 41299, 5344, 7, 10943, 37, 13, 2539, 6440, 62, 18439, 30001, 13, 18439, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 27830, 62, 3672, 8, 198, 220, 220, 220, 1441, 33918, 1958, 7, 30001, 8, 628, 198, 4299, 4808, 41299, 5344, 7, 18439, 62, 6371, 11, 20579, 28, 14202, 11, 9206, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 27830, 62, 3672, 11639, 19463, 6, 2599, 198, 220, 220, 220, 37227, 47649, 5344, 351, 1994, 6440, 628, 220, 220, 220, 7921, 274, 281, 28594, 19458, 11241, 1262, 262, 1813, 18031, 357, 4758, 4938, 689, 198, 220, 220, 220, 606, 828, 290, 788, 3544, 326, 11241, 284, 651, 257, 1628, 12, 1416, 19458, 11241, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 28594, 19458, 62, 18439, 796, 410, 18, 13, 35215, 7, 18439, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 28, 29460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 28, 28712, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 27830, 62, 3672, 28, 7220, 62, 27830, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28594, 19458, 28, 17821, 8, 628, 220, 220, 220, 6246, 796, 479, 82, 62, 29891, 13, 36044, 7, 7220, 62, 25781, 28, 29904, 62, 4760, 3525, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11767, 28, 1662, 7102, 37, 13, 2539, 6440, 62, 18439, 30001, 13, 259, 22390, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24593, 1994, 6440, 284, 11767, 262, 18031, 198, 220, 220, 220, 220, 220, 220, 220, 28594, 19458, 62, 18439, 62, 5420, 796, 28594, 19458, 62, 18439, 13, 1136, 62, 15526, 7, 29891, 8, 628, 220, 220, 220, 2845, 2859, 13, 38659, 13, 13313, 50015, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 7, 31938, 11, 965, 7, 68, 4008, 628, 220, 220, 220, 2845, 2859, 13, 4023, 13, 43481, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 7, 68, 13, 4023, 62, 13376, 11, 304, 13, 20500, 8, 628, 220, 220, 220, 2845, 2859, 13, 11792, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 7, 21844, 11, 965, 7, 68, 4008, 628, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 1069, 4516, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 7, 4059, 11, 366, 3118, 540, 284, 8323, 5344, 4943, 628, 220, 220, 220, 5456, 796, 479, 82, 62, 16366, 13, 11792, 7, 29891, 28, 29891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 28, 403, 1416, 19458, 62, 18439, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 25781, 28, 29904, 62, 4760, 3525, 8, 628, 220, 220, 220, 6284, 62, 6371, 796, 28594, 19458, 62, 18439, 13, 18439, 62, 6371, 628, 220, 220, 220, 4493, 796, 5456, 13, 42068, 13, 4868, 7, 7220, 28, 403, 1416, 19458, 62, 18439, 62, 5420, 13, 7220, 62, 312, 8, 628, 220, 220, 220, 1303, 25853, 503, 10058, 4493, 198, 220, 220, 220, 4493, 796, 685, 16302, 329, 1628, 287, 4493, 611, 1628, 13, 25616, 60, 628, 220, 220, 220, 1303, 14481, 270, 1096, 262, 13169, 1628, 416, 5137, 340, 379, 262, 3726, 286, 262, 1351, 198, 220, 220, 220, 329, 1426, 11, 1628, 287, 27056, 378, 7, 42068, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1628, 13, 3672, 6624, 705, 28482, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4493, 13, 12924, 7, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4493, 13, 28463, 7, 15, 11, 1628, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1303, 8229, 262, 717, 1628, 11241, 326, 356, 423, 262, 13169, 2597, 319, 11, 4306, 198, 220, 220, 220, 1303, 1441, 262, 717, 1628, 11241, 356, 423, 597, 2597, 319, 13, 198, 220, 220, 220, 2121, 1891, 62, 18439, 62, 5420, 796, 6045, 198, 220, 220, 220, 329, 1628, 287, 4493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 796, 410, 18, 13, 30642, 7, 18439, 62, 6371, 28, 18439, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 28, 403, 1416, 19458, 62, 18439, 62, 5420, 13, 18439, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1628, 62, 312, 28, 16302, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 41299, 5344, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 5420, 796, 6284, 13, 1136, 62, 15526, 7, 29891, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 28482, 6, 287, 6284, 62, 5420, 13, 18090, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 30001, 10354, 6284, 62, 5420, 13, 18439, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11201, 2387, 10354, 6284, 62, 5420, 13, 11201, 2387, 13, 26786, 18982, 3419, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 2121, 1891, 62, 18439, 62, 5420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2121, 1891, 62, 18439, 62, 5420, 796, 6284, 62, 5420, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 611, 2121, 1891, 62, 18439, 62, 5420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 30001, 10354, 2121, 1891, 62, 18439, 62, 5420, 13, 18439, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11201, 2387, 10354, 2121, 1891, 62, 18439, 62, 5420, 13, 11201, 2387, 13, 26786, 18982, 3419, 92, 628, 220, 220, 220, 1303, 16926, 46, 7, 14849, 2599, 12642, 355, 257, 9233, 2121, 1891, 284, 1441, 257, 7386, 12, 1416, 19458, 198, 220, 220, 220, 1303, 11241, 628, 220, 220, 220, 15614, 7, 31552, 11, 366, 3673, 10435, 329, 597, 1628, 4943, 628, 198, 31, 46583, 13, 38629, 7203, 14, 15042, 14, 85, 17, 14, 271, 62, 2363, 1522, 4943, 198, 4299, 651, 62, 2363, 1522, 33529, 198, 220, 220, 220, 37227, 35561, 1771, 18239, 318, 2672, 628, 220, 220, 220, 16409, 257, 33918, 2134, 12739, 1771, 262, 2139, 318, 17839, 284, 198, 220, 220, 220, 4605, 18239, 628, 220, 220, 220, 11485, 1058, 24209, 5420, 25, 9104, 26, 16409, 1771, 18239, 318, 2672, 628, 220, 220, 220, 12429, 16281, 18261, 1174, 25, 628, 220, 220, 220, 11485, 2723, 8189, 3712, 2638, 628, 220, 220, 220, 220, 220, 220, 14626, 14, 16, 13, 16, 939, 7477, 198, 220, 220, 220, 220, 220, 220, 14041, 12, 6030, 25, 3586, 14, 17752, 628, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 6558, 1522, 1298, 3991, 198, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 1058, 13376, 939, 25, 1943, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 33918, 1958, 15090, 6, 271, 6558, 1522, 10354, 4566, 13, 47911, 62, 18439, 3419, 30072, 628, 198, 31, 46583, 13, 38629, 7203, 14, 15042, 14, 85, 17, 14, 38659, 62, 9288, 1600, 5050, 28, 17816, 32782, 6, 12962, 198 ]
2.493325
3,071
#! usr/bin/env python3 """ : : Utility for generating ASCII art given an input image. : : """ from src.ascii import * from src.luminosity import * UPPER = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" LOWER = "abcdefghijklmnopqrstuvwxyz" DIGIT = "0123456789" SYMBOL = "~!@#$%^&*()_+`-=[]{}|\\:;\"'<>?,./" #CHARACTERS = UPPER + LOWER + DIGIT + SYMBOL CHARACTERS = SYMBOL ITER_WIDTH = 4 ITER_HEIGHT = 2 FONT_SIZE = 99 INVERT = True def fn_GetNumValues(d_Dict: dict) -> int: """ : : Gets the total number of unique values from the given mapping. : : : Args: : dict d_Luminosity : : : Returns: : Number of unique values : : """ return len(list(set(d_Dict.values()))) def fn_MapRange(l_List: iter, i_Range: int) -> dict: """ : : Evenly assigns a numerical value within a given range to each element of a list. : : : Args: : iter l_List : List of items that will be mapped as values in the output dictionary : int i_Range : Maximum value for the range of numbers that will be mapped as keys in the output : : Returns: : Dictionary containing the above mapping : : """ # Set up local containers # ... i_LenList = len(l_List) # type: int i_M = 0 # type: int f_Step = i_LenList / i_Range # type: float f_N = 0 # type: float d_Output = {} # type: dict # Step through list and populate output dictionary evenly # ... while f_N < i_LenList: try: i_Index = int(round(f_N)) o_Item = l_List[i_Index] d_Output[i_M] = o_Item f_N += f_Step i_M += 1 except IndexError: break return d_Output def fn_CrossChain(d_Dict1: dict, d_Dict2: dict, b_Default: bool = False) -> dict: """ : : Maps keys in the first dictionary to values in the second dictionary. (In other words, the first dictionary's : keys will be mapped to the second dictionary's values, for each value in the first that's a key in the second). : : In case of hash misses in the second dictionary, supplying a "default" value may be enabled. If enabled, the : default value will be taken as the "last" element of the second dictionary (that is, as though its entries : were sorted in order of its keys). : : : Args: : dict d_Dict1 : Dictionary whose keys are to become keys in the output dictionary : dict d_Dict2 : Dictionary whose values are to become values in the output dictionary : bool b_Default : Whether to use a fallback value in place of "missing" values (default False) : : Returns: : Dictionary containing keys from the first dictionary mapped to values from the second dictionary : : """ d_Output = {} # Supply default value if needed # ... if b_Default: v_Default = fn_SortByKey(d_Dict2)[-1] else: v_Default = None # Remap keys(1) to values(2) # ... for k1, v1 in d_Dict1.items(): if v1 in d_Dict2: d_Output[k1] = d_Dict2[v1] elif b_Default: d_Output[k1] = v_Default return d_Output def fn_ParallelChain(d_Dict1: dict, d_Dict2: dict, b_Default: bool = False) -> dict: """ : : Maps values in the first dictionary to values in the second dictionary. (In other words, the first dictionary's : values will be mapped to the second dictionary's values, for each key in the first that's also a key in the : second). : : In case of hash misses in the second dictionary, supplying a "default" value may be enabled. If enabled, the : default value will be taken as the "last" element of the second dictionary (that is, as though its entries were : sorted in order of its keys). : : : Args: : dict d_Dict1 : Dictionary whose values are to become keys in the output dictionary : dict d_Dict2 : Dictionary whose values are to become values in the output dictionary : bool b_Default : Whether to use a fallback value in place of "missing" values (default False) : : Returns: : Dictionary containing values from the first dictionary mapped to values from the second dictionary : : """ d_Output = {} # Supply default value if needed # ... if b_Default: v_Default = fn_SortByKey(d_Dict2)[-1] else: v_Default = None # Remap values(1) to values(2) # ... for k1, v1 in d_Dict1.items(): if k1 in d_Dict2: d_Output[v1] = d_Dict2[k1] elif b_Default: d_Output[v1] = v_Default return d_Output def fn_SortByKey(d_Dict: dict) -> list: """ : : Returns a list of values in a dictionary in order of their keys. : : : Args: : dict d_Dict : An unsigned integer! : : Returns: : List of values sorted by key : : """ return [y[1] for y in sorted([(k, v) for k, v in d_Dict.items()], key=lambda x: x[0])] def fn_GenerateAscii(d_CoordToChar: dict) -> str: """ : : Generates an ASCII image string given characters mapped to (relative) rendering coordinates. : : : Args: : dict d_CoordToChar : Mapping from 2-tuple coordinates to string characters : : Returns: : ASCII image (or any other encoding really), separated by newlines : : """ d_Ascii = {} # type: dict s_Output = '' # type: str # Map images to x-y coordinates, splitting x- and y- into their own sub-dictionaries # ... for i2_Coord, s_Char in d_CoordToChar.items(): i_X, i_Y = i2_Coord if i_X not in d_Ascii: d_Ascii[i_X] = {} if i_Y not in d_Ascii[i_X]: d_Ascii[i_X][i_Y] = s_Char # Sort the entries for each "row" of ASCII characters in the dictionary, then join them and concatenate the # resulting string # ... for i_X, d_X in d_Ascii.items(): s_Output += ''.join(fn_SortByKey(d_X)) s_Output += '\n' return s_Output def fn_ProcessImage( s_FontFilename: str, s_ImageFilename: str, s_Output: str = '', s_CharacterSet: str = CHARACTERS, b_Invert: bool = INVERT, i_Size: int = FONT_SIZE, i_IterWidth: int = ITER_WIDTH, i_IterHeight: int = ITER_HEIGHT, ): """ : : Loads an image and converts it to ASCII art, then prints it out. : : """ # Load font and sort glyphs in order of luminosity # ... o_FreetypeFace = fn_LoadFont(s_FontFilename, i_Size) # type: freetype.Face s_Characters = fn_SortGlyphs(o_FreetypeFace, s_CharacterSet, b_Invert) # type: str # Load image and profile it for luminosity # ... o_Image = fn_LoadImage(s_ImageFilename) # type: Image d_CoordToImage = fn_Iterate2D(o_Image, i_IterWidth, i_IterHeight) # type: dict d_CoordToLum = fn_MapLuminosity2D(d_CoordToImage) # type: dict i_NumLuminosity = fn_GetNumValues(d_CoordToLum) # type: int l_Luminosity = list(set(d_CoordToLum.values())) # type: list # Relay a series of associative mappings, ending with characters mapped under relative coordinates # ... d_CharRange = fn_MapRange(s_Characters, i_NumLuminosity) # type: dict d_LumRange = fn_MapRange(l_Luminosity, i_NumLuminosity) # type: dict d_LumToChar = fn_ParallelChain(d_LumRange, d_CharRange) # type: dict d_ImageToLum = fn_ParallelChain(d_CoordToImage, d_CoordToLum) # type: dict d_ImageToChar = fn_CrossChain(d_ImageToLum, d_LumToChar, True) # type: dict d_CoordToChar = fn_CrossChain(d_CoordToImage, d_ImageToChar) # type: dict # Generate ASCII image using coordinates -> characters # ... s_Out = fn_GenerateAscii(d_CoordToChar) # If output filename specified, save file there; otherwise, just print it out. # ... if s_Output: with open(s_Output, 'w') as f: f.write(s_Out) print("Wrote to output file: {0}".format(s_Output)) else: print() print(s_Out) if __name__ == "__main__": fn_ProcessImage("../res/arial.ttf", "../res/nagatoro.png")
[ 2, 0, 514, 81, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 25, 198, 25, 220, 34030, 329, 15453, 37101, 1242, 1813, 281, 5128, 2939, 13, 198, 25, 198, 25, 198, 37811, 198, 6738, 12351, 13, 292, 979, 72, 220, 220, 220, 220, 220, 1330, 1635, 198, 6738, 12351, 13, 75, 7230, 16579, 1330, 1635, 628, 198, 198, 8577, 18973, 220, 220, 220, 220, 220, 220, 796, 366, 24694, 32988, 17511, 23852, 42, 31288, 45, 3185, 48, 49, 2257, 52, 30133, 34278, 57, 1, 198, 43, 36048, 220, 220, 220, 220, 220, 220, 796, 366, 39305, 4299, 456, 2926, 41582, 10295, 404, 80, 81, 301, 14795, 86, 5431, 89, 1, 198, 35, 3528, 2043, 220, 220, 220, 220, 220, 220, 796, 366, 486, 1954, 2231, 3134, 4531, 1, 198, 23060, 10744, 3535, 220, 220, 220, 220, 220, 796, 366, 93, 0, 31, 29953, 4, 61, 5, 9, 3419, 62, 10, 63, 12, 28, 21737, 90, 92, 91, 6852, 25, 26, 7879, 6, 27, 29, 21747, 19571, 1, 198, 2, 38019, 10659, 4877, 220, 796, 471, 10246, 1137, 1343, 406, 36048, 1343, 360, 3528, 2043, 1343, 19704, 10744, 3535, 198, 38019, 10659, 4877, 220, 796, 19704, 10744, 3535, 198, 2043, 1137, 62, 54, 2389, 4221, 220, 796, 604, 198, 2043, 1137, 62, 13909, 9947, 796, 362, 198, 37, 35830, 62, 33489, 220, 220, 796, 7388, 198, 1268, 15858, 220, 220, 220, 220, 220, 796, 6407, 628, 198, 198, 4299, 24714, 62, 3855, 33111, 40161, 7, 67, 62, 35, 713, 25, 8633, 8, 4613, 493, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 29620, 262, 2472, 1271, 286, 3748, 3815, 422, 262, 1813, 16855, 13, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 943, 14542, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 8633, 288, 62, 43, 7230, 16579, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 16409, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 7913, 286, 3748, 3815, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 18896, 7, 4868, 7, 2617, 7, 67, 62, 35, 713, 13, 27160, 3419, 22305, 628, 198, 198, 4299, 24714, 62, 13912, 17257, 7, 75, 62, 8053, 25, 11629, 11, 1312, 62, 17257, 25, 493, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 3412, 306, 46974, 257, 29052, 1988, 1626, 257, 1813, 2837, 284, 1123, 5002, 286, 257, 1351, 13, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 943, 14542, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 11629, 300, 62, 8053, 220, 1058, 7343, 286, 3709, 326, 481, 307, 27661, 355, 3815, 287, 262, 5072, 22155, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 493, 220, 1312, 62, 17257, 1058, 22246, 1988, 329, 262, 2837, 286, 3146, 326, 481, 307, 27661, 355, 8251, 287, 262, 5072, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 16409, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 28261, 7268, 262, 2029, 16855, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 5345, 510, 1957, 16472, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 1312, 62, 30659, 8053, 796, 18896, 7, 75, 62, 8053, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 493, 198, 220, 220, 220, 1312, 62, 44, 220, 220, 220, 220, 220, 220, 796, 657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 493, 198, 220, 220, 220, 277, 62, 8600, 220, 220, 220, 796, 1312, 62, 30659, 8053, 1220, 1312, 62, 17257, 220, 1303, 2099, 25, 12178, 198, 220, 220, 220, 277, 62, 45, 220, 220, 220, 220, 220, 220, 796, 657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 12178, 198, 220, 220, 220, 288, 62, 26410, 220, 796, 23884, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 8633, 628, 220, 220, 220, 1303, 5012, 832, 1351, 290, 48040, 5072, 22155, 21894, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 981, 277, 62, 45, 1279, 1312, 62, 30659, 8053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 15732, 796, 493, 7, 744, 7, 69, 62, 45, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 62, 7449, 796, 300, 62, 8053, 58, 72, 62, 15732, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 26410, 58, 72, 62, 44, 60, 796, 267, 62, 7449, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 62, 45, 15853, 277, 62, 8600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 44, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1441, 288, 62, 26410, 628, 198, 198, 4299, 24714, 62, 21544, 35491, 7, 67, 62, 35, 713, 16, 25, 8633, 11, 288, 62, 35, 713, 17, 25, 8633, 11, 275, 62, 19463, 25, 20512, 796, 10352, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 20347, 8251, 287, 262, 717, 22155, 284, 3815, 287, 262, 1218, 22155, 13, 357, 818, 584, 2456, 11, 262, 717, 22155, 338, 198, 220, 220, 220, 1058, 220, 8251, 481, 307, 27661, 284, 262, 1218, 22155, 338, 3815, 11, 329, 1123, 1988, 287, 262, 717, 326, 338, 257, 1994, 287, 262, 1218, 737, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 554, 1339, 286, 12234, 18297, 287, 262, 1218, 22155, 11, 28099, 257, 366, 12286, 1, 1988, 743, 307, 9343, 13, 1002, 9343, 11, 262, 198, 220, 220, 220, 1058, 220, 4277, 1988, 481, 307, 2077, 355, 262, 366, 12957, 1, 5002, 286, 262, 1218, 22155, 357, 5562, 318, 11, 355, 996, 663, 12784, 198, 220, 220, 220, 1058, 220, 547, 23243, 287, 1502, 286, 663, 8251, 737, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 943, 14542, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 8633, 288, 62, 35, 713, 16, 220, 220, 1058, 28261, 3025, 8251, 389, 284, 1716, 8251, 287, 262, 5072, 22155, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 8633, 288, 62, 35, 713, 17, 220, 220, 1058, 28261, 3025, 3815, 389, 284, 1716, 3815, 287, 262, 5072, 22155, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 20512, 275, 62, 19463, 1058, 10127, 284, 779, 257, 2121, 1891, 1988, 287, 1295, 286, 366, 45688, 1, 3815, 357, 12286, 10352, 8, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 16409, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 28261, 7268, 8251, 422, 262, 717, 22155, 27661, 284, 3815, 422, 262, 1218, 22155, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 62, 26410, 796, 23884, 628, 220, 220, 220, 1303, 22663, 4277, 1988, 611, 2622, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 611, 275, 62, 19463, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 19463, 796, 24714, 62, 42758, 3886, 9218, 7, 67, 62, 35, 713, 17, 38381, 12, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 19463, 796, 6045, 628, 220, 220, 220, 1303, 3982, 499, 8251, 7, 16, 8, 284, 3815, 7, 17, 8, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 329, 479, 16, 11, 410, 16, 287, 288, 62, 35, 713, 16, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 410, 16, 287, 288, 62, 35, 713, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 26410, 58, 74, 16, 60, 796, 288, 62, 35, 713, 17, 58, 85, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 275, 62, 19463, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 26410, 58, 74, 16, 60, 796, 410, 62, 19463, 628, 220, 220, 220, 1441, 288, 62, 26410, 628, 198, 198, 4299, 24714, 62, 10044, 29363, 35491, 7, 67, 62, 35, 713, 16, 25, 8633, 11, 288, 62, 35, 713, 17, 25, 8633, 11, 275, 62, 19463, 25, 20512, 796, 10352, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 20347, 3815, 287, 262, 717, 22155, 284, 3815, 287, 262, 1218, 22155, 13, 357, 818, 584, 2456, 11, 262, 717, 22155, 338, 198, 220, 220, 220, 1058, 220, 3815, 481, 307, 27661, 284, 262, 1218, 22155, 338, 3815, 11, 329, 1123, 1994, 287, 262, 717, 326, 338, 635, 257, 1994, 287, 262, 198, 220, 220, 220, 1058, 220, 1218, 737, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 554, 1339, 286, 12234, 18297, 287, 262, 1218, 22155, 11, 28099, 257, 366, 12286, 1, 1988, 743, 307, 9343, 13, 1002, 9343, 11, 262, 198, 220, 220, 220, 1058, 220, 4277, 1988, 481, 307, 2077, 355, 262, 366, 12957, 1, 5002, 286, 262, 1218, 22155, 357, 5562, 318, 11, 355, 996, 663, 12784, 547, 198, 220, 220, 220, 1058, 220, 23243, 287, 1502, 286, 663, 8251, 737, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 943, 14542, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 8633, 288, 62, 35, 713, 16, 220, 220, 1058, 28261, 3025, 3815, 389, 284, 1716, 8251, 287, 262, 5072, 22155, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 8633, 288, 62, 35, 713, 17, 220, 220, 1058, 28261, 3025, 3815, 389, 284, 1716, 3815, 287, 262, 5072, 22155, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 20512, 275, 62, 19463, 1058, 10127, 284, 779, 257, 2121, 1891, 1988, 287, 1295, 286, 366, 45688, 1, 3815, 357, 12286, 10352, 8, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 16409, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 28261, 7268, 3815, 422, 262, 717, 22155, 27661, 284, 3815, 422, 262, 1218, 22155, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 62, 26410, 796, 23884, 628, 220, 220, 220, 1303, 22663, 4277, 1988, 611, 2622, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 611, 275, 62, 19463, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 19463, 796, 24714, 62, 42758, 3886, 9218, 7, 67, 62, 35, 713, 17, 38381, 12, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 19463, 796, 6045, 628, 220, 220, 220, 1303, 3982, 499, 3815, 7, 16, 8, 284, 3815, 7, 17, 8, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 329, 479, 16, 11, 410, 16, 287, 288, 62, 35, 713, 16, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 16, 287, 288, 62, 35, 713, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 26410, 58, 85, 16, 60, 796, 288, 62, 35, 713, 17, 58, 74, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 275, 62, 19463, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 26410, 58, 85, 16, 60, 796, 410, 62, 19463, 628, 220, 220, 220, 1441, 288, 62, 26410, 628, 198, 198, 4299, 24714, 62, 42758, 3886, 9218, 7, 67, 62, 35, 713, 25, 8633, 8, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 16409, 257, 1351, 286, 3815, 287, 257, 22155, 287, 1502, 286, 511, 8251, 13, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 943, 14542, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 8633, 288, 62, 35, 713, 1058, 1052, 22165, 18253, 0, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 16409, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 7343, 286, 3815, 23243, 416, 1994, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 88, 58, 16, 60, 329, 331, 287, 23243, 26933, 7, 74, 11, 410, 8, 329, 479, 11, 410, 287, 288, 62, 35, 713, 13, 23814, 3419, 4357, 1994, 28, 50033, 2124, 25, 2124, 58, 15, 12962, 60, 628, 198, 198, 4299, 24714, 62, 8645, 378, 1722, 979, 72, 7, 67, 62, 7222, 585, 2514, 12441, 25, 8633, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 2980, 689, 281, 37101, 2939, 4731, 1813, 3435, 27661, 284, 357, 43762, 8, 14837, 22715, 13, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 943, 14542, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 8633, 288, 62, 7222, 585, 2514, 12441, 1058, 337, 5912, 422, 362, 12, 83, 29291, 22715, 284, 4731, 3435, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 16409, 25, 198, 220, 220, 220, 1058, 220, 220, 220, 220, 220, 37101, 2939, 357, 273, 597, 584, 21004, 1107, 828, 11266, 416, 649, 6615, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 62, 1722, 979, 72, 220, 796, 23884, 220, 1303, 2099, 25, 8633, 198, 220, 220, 220, 264, 62, 26410, 796, 10148, 220, 1303, 2099, 25, 965, 628, 220, 220, 220, 1303, 9347, 4263, 284, 2124, 12, 88, 22715, 11, 26021, 2124, 12, 290, 331, 12, 656, 511, 898, 850, 12, 67, 2867, 3166, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 329, 1312, 17, 62, 7222, 585, 11, 264, 62, 12441, 287, 288, 62, 7222, 585, 2514, 12441, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 55, 11, 1312, 62, 56, 796, 1312, 17, 62, 7222, 585, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 62, 55, 407, 287, 288, 62, 1722, 979, 72, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 1722, 979, 72, 58, 72, 62, 55, 60, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 62, 56, 407, 287, 288, 62, 1722, 979, 72, 58, 72, 62, 55, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 1722, 979, 72, 58, 72, 62, 55, 7131, 72, 62, 56, 60, 796, 264, 62, 12441, 628, 220, 220, 220, 1303, 33947, 262, 12784, 329, 1123, 366, 808, 1, 286, 37101, 3435, 287, 262, 22155, 11, 788, 4654, 606, 290, 1673, 36686, 378, 262, 198, 220, 220, 220, 1303, 7186, 4731, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 329, 1312, 62, 55, 11, 288, 62, 55, 287, 288, 62, 1722, 979, 72, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 26410, 15853, 705, 4458, 22179, 7, 22184, 62, 42758, 3886, 9218, 7, 67, 62, 55, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 26410, 15853, 705, 59, 77, 6, 628, 220, 220, 220, 1441, 264, 62, 26410, 628, 198, 198, 4299, 24714, 62, 18709, 5159, 7, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 23252, 35063, 25, 220, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 5159, 35063, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 26410, 25, 220, 220, 220, 220, 220, 220, 220, 965, 220, 796, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 27275, 7248, 25, 220, 965, 220, 796, 28521, 10659, 4877, 11, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 818, 1851, 25, 220, 220, 220, 220, 220, 220, 220, 20512, 796, 3268, 15858, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 10699, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 220, 796, 376, 35830, 62, 33489, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 29993, 30916, 25, 220, 220, 220, 220, 493, 220, 796, 314, 5781, 62, 54, 2389, 4221, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 29993, 23106, 25, 220, 220, 220, 493, 220, 796, 314, 5781, 62, 13909, 9947, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 220, 8778, 82, 281, 2939, 290, 26161, 340, 284, 37101, 1242, 11, 788, 20842, 340, 503, 13, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 8778, 10369, 290, 3297, 25874, 82, 287, 1502, 286, 29763, 16579, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 267, 62, 37, 2871, 2981, 32388, 796, 24714, 62, 8912, 23252, 7, 82, 62, 23252, 35063, 11, 1312, 62, 10699, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 2030, 2963, 431, 13, 32388, 198, 220, 220, 220, 264, 62, 48393, 220, 220, 796, 24714, 62, 42758, 38, 306, 746, 82, 7, 78, 62, 37, 2871, 2981, 32388, 11, 264, 62, 27275, 7248, 11, 275, 62, 818, 1851, 8, 220, 1303, 2099, 25, 965, 628, 220, 220, 220, 1303, 8778, 2939, 290, 7034, 340, 329, 29763, 16579, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 267, 62, 5159, 220, 220, 220, 220, 220, 220, 220, 220, 796, 24714, 62, 8912, 5159, 7, 82, 62, 5159, 35063, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 7412, 198, 220, 220, 220, 288, 62, 7222, 585, 2514, 5159, 220, 796, 24714, 62, 29993, 378, 17, 35, 7, 78, 62, 5159, 11, 1312, 62, 29993, 30916, 11, 1312, 62, 29993, 23106, 8, 220, 1303, 2099, 25, 8633, 198, 220, 220, 220, 288, 62, 7222, 585, 2514, 43, 388, 220, 220, 220, 796, 24714, 62, 13912, 43, 7230, 16579, 17, 35, 7, 67, 62, 7222, 585, 2514, 5159, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 8633, 198, 220, 220, 220, 1312, 62, 33111, 43, 7230, 16579, 796, 24714, 62, 3855, 33111, 40161, 7, 67, 62, 7222, 585, 2514, 43, 388, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 493, 198, 220, 220, 220, 300, 62, 43, 7230, 16579, 220, 220, 220, 796, 1351, 7, 2617, 7, 67, 62, 7222, 585, 2514, 43, 388, 13, 27160, 3419, 4008, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 1351, 628, 220, 220, 220, 1303, 4718, 323, 257, 2168, 286, 2570, 876, 285, 39242, 11, 7464, 351, 3435, 27661, 739, 3585, 22715, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 288, 62, 12441, 17257, 220, 220, 796, 24714, 62, 13912, 17257, 7, 82, 62, 48393, 11, 1312, 62, 33111, 43, 7230, 16579, 8, 220, 220, 220, 220, 220, 1303, 2099, 25, 8633, 198, 220, 220, 220, 288, 62, 43, 388, 17257, 220, 220, 220, 796, 24714, 62, 13912, 17257, 7, 75, 62, 43, 7230, 16579, 11, 1312, 62, 33111, 43, 7230, 16579, 8, 220, 220, 220, 220, 220, 1303, 2099, 25, 8633, 198, 220, 220, 220, 288, 62, 43, 388, 2514, 12441, 220, 220, 796, 24714, 62, 10044, 29363, 35491, 7, 67, 62, 43, 388, 17257, 11, 288, 62, 12441, 17257, 8, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 8633, 198, 220, 220, 220, 288, 62, 5159, 2514, 43, 388, 220, 796, 24714, 62, 10044, 29363, 35491, 7, 67, 62, 7222, 585, 2514, 5159, 11, 288, 62, 7222, 585, 2514, 43, 388, 8, 220, 1303, 2099, 25, 8633, 198, 220, 220, 220, 288, 62, 5159, 2514, 12441, 796, 24714, 62, 21544, 35491, 7, 67, 62, 5159, 2514, 43, 388, 11, 288, 62, 43, 388, 2514, 12441, 11, 6407, 8, 220, 1303, 2099, 25, 8633, 198, 220, 220, 220, 288, 62, 7222, 585, 2514, 12441, 796, 24714, 62, 21544, 35491, 7, 67, 62, 7222, 585, 2514, 5159, 11, 288, 62, 5159, 2514, 12441, 8, 220, 220, 220, 1303, 2099, 25, 8633, 628, 220, 220, 220, 1303, 2980, 378, 37101, 2939, 1262, 22715, 4613, 3435, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 264, 62, 7975, 796, 24714, 62, 8645, 378, 1722, 979, 72, 7, 67, 62, 7222, 585, 2514, 12441, 8, 628, 220, 220, 220, 1303, 1002, 5072, 29472, 7368, 11, 3613, 2393, 612, 26, 4306, 11, 655, 3601, 340, 503, 13, 198, 220, 220, 220, 1303, 2644, 198, 220, 220, 220, 611, 264, 62, 26410, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 82, 62, 26410, 11, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 82, 62, 7975, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 54, 2519, 284, 5072, 2393, 25, 1391, 15, 92, 1911, 18982, 7, 82, 62, 26410, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 82, 62, 7975, 8, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 24714, 62, 18709, 5159, 7203, 40720, 411, 14, 36098, 13, 926, 69, 1600, 366, 40720, 411, 14, 77, 363, 1352, 78, 13, 11134, 4943, 198 ]
2.25746
3,787
from import_export.admin import ImportExportModelAdmin, ExportMixin from django.contrib import admin from master_data.models import * from centrelink.models import * from calculator.models import * from imports.models import * from django.utils.safestring import mark_safe from json2html import * from django.contrib.auth.models import Group, User from django import forms from django.contrib.admin.widgets import FilteredSelectMultiple from import_export import resources import nested_admin admin.site.unregister(Group) # Register the new Group ModelAdmin. admin.site.register(Group, GroupAdmin) admin.site.site_header = 'CRA Calculator' admin.site.index_title = 'CRA Calculator' admin.site.site_title = 'CRA Calculator' admin.site.register(Transaction, TransactionAdmin) @ admin.register( FamilySituation, MaintenanceType, Relationship, ) @ admin.register(RentAssessmentRate) @ admin.register(CraRate) @ admin.register(FtbRate) @ admin.register(MaintenanceIncomeTestRate) @ admin.register( FamilySituationRate, FtbAMaximumPayment, MaintenanceTypeRate, ) @ admin.register(Batch) # from django_otp import OTP_HOTP # admin.site.unregister(OTP_HOTP)
[ 6738, 1330, 62, 39344, 13, 28482, 1330, 17267, 43834, 17633, 46787, 11, 36472, 35608, 259, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 4958, 62, 7890, 13, 27530, 1330, 1635, 198, 6738, 1247, 2411, 676, 13, 27530, 1330, 1635, 198, 6738, 28260, 13, 27530, 1330, 1635, 198, 6738, 17944, 13, 27530, 1330, 1635, 198, 6738, 42625, 14208, 13, 26791, 13, 49585, 395, 1806, 1330, 1317, 62, 21230, 198, 6738, 33918, 17, 6494, 1330, 1635, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 4912, 11, 11787, 198, 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 28482, 13, 28029, 11407, 1330, 7066, 4400, 17563, 31217, 198, 6738, 1330, 62, 39344, 1330, 4133, 198, 11748, 28376, 62, 28482, 628, 628, 198, 28482, 13, 15654, 13, 403, 30238, 7, 13247, 8, 628, 198, 198, 2, 17296, 262, 649, 4912, 9104, 46787, 13, 198, 28482, 13, 15654, 13, 30238, 7, 13247, 11, 4912, 46787, 8, 198, 198, 28482, 13, 15654, 13, 15654, 62, 25677, 796, 705, 34, 3861, 43597, 6, 198, 28482, 13, 15654, 13, 9630, 62, 7839, 796, 705, 34, 3861, 43597, 6, 198, 28482, 13, 15654, 13, 15654, 62, 7839, 796, 705, 34, 3861, 43597, 6, 628, 628, 628, 628, 198, 198, 28482, 13, 15654, 13, 30238, 7, 48720, 11, 45389, 46787, 8, 628, 628, 628, 198, 198, 31, 13169, 13, 30238, 7, 198, 220, 220, 220, 7884, 46655, 2288, 11, 198, 220, 220, 220, 34857, 6030, 11, 198, 220, 220, 220, 39771, 11, 198, 8, 628, 198, 31, 13169, 13, 30238, 7, 49, 298, 8021, 21687, 32184, 8, 628, 198, 31, 13169, 13, 30238, 7, 33800, 32184, 8, 628, 198, 31, 13169, 13, 30238, 7, 37, 83, 65, 32184, 8, 628, 198, 31, 13169, 13, 30238, 7, 13383, 8219, 818, 2958, 14402, 32184, 8, 628, 198, 31, 13169, 13, 30238, 7, 628, 220, 220, 220, 7884, 46655, 2288, 32184, 11, 198, 220, 220, 220, 45231, 65, 2390, 897, 2847, 19197, 434, 11, 198, 220, 220, 220, 34857, 6030, 32184, 11, 198, 8, 628, 198, 31, 13169, 13, 30238, 7, 33, 963, 8, 628, 198, 198, 2, 422, 42625, 14208, 62, 313, 79, 1330, 440, 7250, 62, 39, 2394, 47, 198, 2, 13169, 13, 15654, 13, 403, 30238, 7, 2394, 47, 62, 39, 2394, 47, 8, 198 ]
3.142487
386
import json from baselayer.app.access import auth_or_token from ...base import BaseHandler
[ 11748, 33918, 198, 6738, 1615, 417, 2794, 13, 1324, 13, 15526, 1330, 6284, 62, 273, 62, 30001, 198, 6738, 2644, 8692, 1330, 7308, 25060, 628 ]
3.68
25
# Copyright 2020 Ayoub ENNASSIRI # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime as dt import csv import logging from src.data.models import Tick from src.runner import pipeline class ParseTickDataFn(pipeline.DoFn): """ Parse the raw tick data events into a tick object """
[ 2, 15069, 12131, 317, 5832, 65, 412, 6144, 10705, 4663, 40, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 4818, 8079, 355, 288, 83, 198, 11748, 269, 21370, 198, 11748, 18931, 198, 198, 6738, 12351, 13, 7890, 13, 27530, 1330, 46093, 198, 6738, 12351, 13, 16737, 1330, 11523, 628, 198, 4871, 2547, 325, 51, 624, 6601, 37, 77, 7, 79, 541, 4470, 13, 5211, 37, 77, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2547, 325, 262, 8246, 4378, 1366, 2995, 656, 257, 4378, 2134, 198, 220, 220, 220, 37227, 198 ]
3.495652
230
#!/usr/bin/env python import sys from bowler import Query, Filename, Capture, LN PATTERN = """ power < "ipdb" trailer < '.' 'set_trace' > trailer < '(' ')' > > | power < "breakpoint" trailer < "(" ")" > > """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 25064, 198, 198, 6738, 9563, 1754, 1330, 43301, 11, 7066, 12453, 11, 31793, 11, 406, 45, 628, 198, 47, 1404, 31800, 796, 37227, 198, 220, 220, 220, 1176, 1279, 366, 541, 9945, 1, 12268, 1279, 705, 2637, 705, 2617, 62, 40546, 6, 1875, 12268, 1279, 705, 10786, 705, 33047, 1875, 1875, 930, 198, 220, 220, 220, 1176, 1279, 366, 9032, 4122, 1, 12268, 1279, 366, 7203, 366, 16725, 1875, 1875, 220, 198, 37811, 628, 198 ]
2.604651
86
import requests import urllib import json if __name__ == "__main__": y=Yummly() y.setup('d579507d','736c339e12b7a287c72c2de82313657e') ing=["fruit","milk"] print y.getAll(ing,"course^course-Beverages") y.getCourses() #todo
[ 11748, 7007, 198, 11748, 2956, 297, 571, 198, 11748, 33918, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 88, 28, 56, 13929, 306, 3419, 198, 197, 88, 13, 40406, 10786, 67, 3553, 31027, 22, 67, 41707, 49150, 66, 29626, 68, 1065, 65, 22, 64, 27800, 66, 4761, 66, 17, 2934, 23, 1954, 1485, 37680, 68, 11537, 198, 197, 278, 28, 14692, 34711, 2430, 25433, 74, 8973, 198, 197, 4798, 331, 13, 1136, 3237, 7, 278, 553, 17319, 61, 17319, 12, 33, 964, 1095, 4943, 198, 197, 88, 13, 1136, 34, 39975, 3419, 198, 197, 2, 83, 24313 ]
2.235294
102
from utilities.config import database from utilities.common_methods import getDebugInfo from utilities import log from sqlalchemy import Column, ForeignKey from sqlalchemy.types import Integer, Float, Date, String from sqlalchemy.orm import relationship from data_storing.assets.base import Base table_name = database.name_table_moving_average
[ 198, 6738, 20081, 13, 11250, 1330, 6831, 198, 6738, 20081, 13, 11321, 62, 24396, 82, 1330, 651, 27509, 12360, 198, 6738, 20081, 1330, 2604, 198, 198, 6738, 44161, 282, 26599, 1330, 29201, 11, 8708, 9218, 198, 6738, 44161, 282, 26599, 13, 19199, 1330, 34142, 11, 48436, 11, 7536, 11, 10903, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 198, 6738, 1366, 62, 301, 3255, 13, 19668, 13, 8692, 1330, 7308, 198, 198, 11487, 62, 3672, 796, 6831, 13, 3672, 62, 11487, 62, 31462, 62, 23913, 628 ]
4
87
import nltk
[ 11748, 299, 2528, 74, 628 ]
2.6
5
import rospy from std_msgs.msg import String if __name__ == "__main__": data_processing()
[ 11748, 686, 2777, 88, 198, 6738, 14367, 62, 907, 14542, 13, 19662, 1330, 10903, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1366, 62, 36948, 3419, 198 ]
2.675676
37
"""Plot input traces to visualise data""" import os import sys import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator sys.path.append(os.path.join(os.path.dirname(__file__), 'utils')) from utils.data import ModelData def plot_coal_fuel_costs(): """Coal fuel costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.existing_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['COAL']) # Initialise figures fig, ax = plt.subplots() # Generators in order of increasing fuel cost (based on cost in last year) generator_order = data.existing_units.loc[mask, 'FUEL_COST'].T.iloc[-1].sort_values().index # Plot fuel costs for existing units data.existing_units.loc[mask, 'FUEL_COST'].T.loc[:, generator_order].plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=7, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Fuel cost (\$/GJ)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(0.5)) ax.yaxis.set_minor_locator(MultipleLocator(0.1)) # Adjust figure placement and size fig.subplots_adjust(top=0.8, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.8) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', 'fuel_cost_coal.pdf')) plt.show() def plot_gas_fuel_costs(): """Plot fuel costs for candidate gas generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.existing_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['GAS']) # Initialise figures fig, ax = plt.subplots() # Generators in order of increasing fuel cost (based on cost in last year) generator_order = data.existing_units.loc[mask, 'FUEL_COST'].T.iloc[-1].sort_values().index # Plot fuel costs for existing units data.existing_units.loc[mask, 'FUEL_COST'].T.loc[:, generator_order].plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=7, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Fuel cost (\$/GJ)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(0.5)) ax.yaxis.set_minor_locator(MultipleLocator(0.1)) # Adjust figure placement and size fig.subplots_adjust(top=0.7, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.8) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', 'fuel_cost_gas.pdf')) plt.show() def plot_coal_build_costs(): """Plot build costs for candidate coal generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['COAL']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.85, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_coal.pdf')) plt.show() def plot_gas_build_costs(): """Plotting candidate gas generator build costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['GAS']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.73, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_gas.pdf')) plt.show() def plot_solar_build_costs(): """Plot solar build costs""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['SOLAR']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1000)) ax.yaxis.set_minor_locator(MultipleLocator(200)) # Adjust figure placement and size fig.subplots_adjust(top=0.75, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_solar.pdf')) plt.show() def plot_wind_build_cost(): """Plot build costs for candidate wind generators""" # Class containing model data data = ModelData() # Get coal DUIDs mask = data.candidate_units['PARAMETERS']['FUEL_TYPE_PRIMARY'].isin(['WIND']) # Initialise figures fig, ax = plt.subplots() # Plot build costs for candidate units data.candidate_units.loc[mask, 'BUILD_COST'].T.plot(ax=ax, cmap='tab20c', alpha=0.9) # Add legend ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, mode="expand", borderaxespad=0., prop={'size': 6}) # Add axes labels ax.set_ylabel('Build cost (\$/kW)') ax.set_xlabel('Year') # Format axes ticks ax.xaxis.set_major_locator(MultipleLocator(5)) ax.xaxis.set_minor_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(100)) ax.yaxis.set_minor_locator(MultipleLocator(50)) # Adjust figure placement and size fig.subplots_adjust(top=0.85, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291 * 0.6) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'build_costs_wind.pdf')) plt.show() def plot_demand_profiles(nem_zone='ADE'): """Plot demand profiles""" # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('DEMAND', 'ADE')]] # Data for 20202 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('DEMAND', nem_zone)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('DEMAND', nem_zone)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('DEMAND', nem_zone)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel('ADE Demand (MW)') ax2.set_ylabel('ADE Demand (MW)') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(500)) ax1.yaxis.set_minor_locator(MultipleLocator(100)) ax2.yaxis.set_major_locator(MultipleLocator(500)) ax2.yaxis.set_minor_locator(MultipleLocator(100)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'demand_profiles_{nem_zone}.pdf')) plt.show() def plot_wind_capacity_factors(wind_bubble='YPS'): """Plotting wind capacity factors for a given wind bubble""" # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('WIND', wind_bubble)]] # Data for 20202 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('WIND', wind_bubble)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('WIND', wind_bubble)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('WIND', wind_bubble)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel(f'{wind_bubble} capacity factor [-]') ax2.set_ylabel(f'{wind_bubble} capacity factor [-]') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(0.2)) ax1.yaxis.set_minor_locator(MultipleLocator(0.05)) ax2.yaxis.set_major_locator(MultipleLocator(0.2)) ax2.yaxis.set_minor_locator(MultipleLocator(0.05)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f'wind_profiles_{wind_bubble}.pdf')) plt.show() def plot_solar_capacity_factors(nem_zone='ADE', technology='DAT'): """Plot solar capacity factors""" # Construct solar technology ID based on NEM zone and technology type tech_id = f'{nem_zone}|{technology}' # Class containing model data data = ModelData() df = pd.read_hdf(os.path.join(os.path.dirname(__file__), os.path.pardir, '2_input_traces', 'output', 'dataset.h5')) df_d = df.loc[:, [('SOLAR', tech_id)]] # Data for 2020 df_d = df_d.sort_index() df_d = df_d.loc[df_d.index.year == 2020, :] # Day of year df_d['day_of_year'] = df_d.index.dayofyear.values # Hour in a given day df_d['hour'] = df_d.index.hour.values # Adjust last hour in each day - set as 24th hour df_d['hour'] = df_d['hour'].replace(0, 24) plt.clf() fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) df_d.pivot(index='day_of_year', columns='hour', values=('SOLAR', tech_id)).T.plot(ax=ax1, legend=False, alpha=0.4, cmap='viridis') df_d.pivot(index='day_of_year', columns='hour', values=('SOLAR', tech_id)).T.plot(ax=ax2, legend=False, alpha=0.1, cmap='viridis') # Plot traces obtained from k-means clustering data.input_traces.loc[2020, ('SOLAR', tech_id)].T.plot(ax=ax2, color='r', legend=False, alpha=0.8) ax1.set_ylabel(f'{tech_id} capacity factor [-]') ax2.set_ylabel(f'{tech_id} capacity factor [-]') ax2.set_xlabel('Hour') # Format axes ticks ax2.xaxis.set_major_locator(MultipleLocator(5)) ax2.xaxis.set_minor_locator(MultipleLocator(1)) ax1.yaxis.set_major_locator(MultipleLocator(0.2)) ax1.yaxis.set_minor_locator(MultipleLocator(0.05)) ax2.yaxis.set_major_locator(MultipleLocator(0.2)) ax2.yaxis.set_minor_locator(MultipleLocator(0.05)) # Adjust figure placement and size fig.subplots_adjust(top=0.95, bottom=0.08, left=0.1, right=0.95) fig.set_size_inches(6.69291, 6.69291) # Save figure fig.savefig(os.path.join(os.path.dirname(__file__), 'output', 'figures', f"solar_profiles_{tech_id.replace('|', '-')}.pdf")) plt.show() if __name__ == '__main__': # Create plots plot_coal_build_costs() plot_gas_build_costs() plot_solar_build_costs() plot_wind_build_cost() plot_coal_fuel_costs() plot_gas_fuel_costs() plot_demand_profiles(nem_zone='ADE') plot_wind_capacity_factors(wind_bubble='YPS') plot_solar_capacity_factors(nem_zone='ADE', technology='DAT')
[ 37811, 43328, 5128, 20675, 284, 5874, 786, 1366, 37811, 201, 198, 201, 198, 11748, 28686, 201, 198, 11748, 25064, 201, 198, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 6738, 2603, 29487, 8019, 13, 83, 15799, 1330, 20401, 33711, 1352, 201, 198, 201, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 26791, 6, 4008, 201, 198, 201, 198, 6738, 3384, 4487, 13, 7890, 1330, 9104, 6601, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 25140, 62, 25802, 62, 15805, 82, 33529, 201, 198, 220, 220, 220, 37227, 7222, 282, 5252, 3484, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 3497, 5655, 360, 27586, 82, 201, 198, 220, 220, 220, 9335, 796, 1366, 13, 25687, 62, 41667, 17816, 27082, 2390, 2767, 4877, 6, 7131, 6, 38989, 3698, 62, 25216, 62, 4805, 3955, 13153, 6, 4083, 45763, 7, 17816, 8220, 1847, 6, 12962, 201, 198, 201, 198, 220, 220, 220, 1303, 20768, 786, 5538, 201, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 2980, 2024, 287, 1502, 286, 3649, 5252, 1575, 357, 3106, 319, 1575, 287, 938, 614, 8, 201, 198, 220, 220, 220, 17301, 62, 2875, 796, 1366, 13, 25687, 62, 41667, 13, 17946, 58, 27932, 11, 705, 38989, 3698, 62, 8220, 2257, 6, 4083, 51, 13, 346, 420, 58, 12, 16, 4083, 30619, 62, 27160, 22446, 9630, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 5252, 3484, 329, 4683, 4991, 201, 198, 220, 220, 220, 1366, 13, 25687, 62, 41667, 13, 17946, 58, 27932, 11, 705, 38989, 3698, 62, 8220, 2257, 6, 4083, 51, 13, 17946, 58, 45299, 17301, 62, 2875, 4083, 29487, 7, 897, 28, 897, 11, 269, 8899, 11639, 8658, 1238, 66, 3256, 17130, 28, 15, 13, 24, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 8177, 201, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 65, 3524, 62, 1462, 62, 3702, 273, 16193, 15, 1539, 352, 13, 2999, 11, 352, 1539, 764, 15377, 828, 1179, 28, 18, 11, 299, 4033, 28, 22, 11, 4235, 2625, 11201, 392, 1600, 4865, 897, 9774, 324, 28, 15, 1539, 2632, 34758, 6, 7857, 10354, 718, 30072, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 34197, 14722, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 42663, 1575, 357, 59, 3, 14, 38, 41, 8, 11537, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 17688, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 20, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 16, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 23, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 1635, 657, 13, 23, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 705, 25802, 62, 15805, 62, 25140, 13, 12315, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 22649, 62, 25802, 62, 15805, 82, 33529, 201, 198, 220, 220, 220, 37227, 43328, 5252, 3484, 329, 4540, 3623, 27298, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 3497, 5655, 360, 27586, 82, 201, 198, 220, 220, 220, 9335, 796, 1366, 13, 25687, 62, 41667, 17816, 27082, 2390, 2767, 4877, 6, 7131, 6, 38989, 3698, 62, 25216, 62, 4805, 3955, 13153, 6, 4083, 45763, 7, 17816, 38, 1921, 6, 12962, 201, 198, 201, 198, 220, 220, 220, 1303, 20768, 786, 5538, 201, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 2980, 2024, 287, 1502, 286, 3649, 5252, 1575, 357, 3106, 319, 1575, 287, 938, 614, 8, 201, 198, 220, 220, 220, 17301, 62, 2875, 796, 1366, 13, 25687, 62, 41667, 13, 17946, 58, 27932, 11, 705, 38989, 3698, 62, 8220, 2257, 6, 4083, 51, 13, 346, 420, 58, 12, 16, 4083, 30619, 62, 27160, 22446, 9630, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 5252, 3484, 329, 4683, 4991, 201, 198, 220, 220, 220, 1366, 13, 25687, 62, 41667, 13, 17946, 58, 27932, 11, 705, 38989, 3698, 62, 8220, 2257, 6, 4083, 51, 13, 17946, 58, 45299, 17301, 62, 2875, 4083, 29487, 7, 897, 28, 897, 11, 269, 8899, 11639, 8658, 1238, 66, 3256, 17130, 28, 15, 13, 24, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 8177, 201, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 65, 3524, 62, 1462, 62, 3702, 273, 16193, 15, 1539, 352, 13, 2999, 11, 352, 1539, 764, 15377, 828, 1179, 28, 18, 11, 299, 4033, 28, 22, 11, 4235, 2625, 11201, 392, 1600, 4865, 897, 9774, 324, 28, 15, 1539, 2632, 34758, 6, 7857, 10354, 718, 30072, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 34197, 14722, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 42663, 1575, 357, 59, 3, 14, 38, 41, 8, 11537, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 17688, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 20, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 16, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 22, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 1635, 657, 13, 23, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 705, 25802, 62, 15805, 62, 22649, 13, 12315, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 25140, 62, 11249, 62, 15805, 82, 33529, 201, 198, 220, 220, 220, 37227, 43328, 1382, 3484, 329, 4540, 5655, 27298, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 3497, 5655, 360, 27586, 82, 201, 198, 220, 220, 220, 9335, 796, 1366, 13, 46188, 20540, 62, 41667, 17816, 27082, 2390, 2767, 4877, 6, 7131, 6, 38989, 3698, 62, 25216, 62, 4805, 3955, 13153, 6, 4083, 45763, 7, 17816, 8220, 1847, 6, 12962, 201, 198, 201, 198, 220, 220, 220, 1303, 20768, 786, 5538, 201, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 1382, 3484, 329, 4540, 4991, 201, 198, 220, 220, 220, 1366, 13, 46188, 20540, 62, 41667, 13, 17946, 58, 27932, 11, 705, 19499, 26761, 62, 8220, 2257, 6, 4083, 51, 13, 29487, 7, 897, 28, 897, 11, 269, 8899, 11639, 8658, 1238, 66, 3256, 17130, 28, 15, 13, 24, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 8177, 201, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 65, 3524, 62, 1462, 62, 3702, 273, 16193, 15, 1539, 352, 13, 2999, 11, 352, 1539, 764, 15377, 828, 1179, 28, 18, 11, 299, 4033, 28, 20, 11, 4235, 2625, 11201, 392, 1600, 4865, 897, 9774, 324, 28, 15, 1539, 2632, 34758, 6, 7857, 10354, 718, 30072, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 34197, 14722, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 15580, 1575, 357, 59, 3, 14, 74, 54, 8, 11537, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 17688, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 12825, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 2167, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 5332, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 1635, 657, 13, 21, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 277, 6, 11249, 62, 15805, 82, 62, 25140, 13, 12315, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 22649, 62, 11249, 62, 15805, 82, 33529, 201, 198, 220, 220, 220, 37227, 43328, 889, 4540, 3623, 17301, 1382, 3484, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 3497, 5655, 360, 27586, 82, 201, 198, 220, 220, 220, 9335, 796, 1366, 13, 46188, 20540, 62, 41667, 17816, 27082, 2390, 2767, 4877, 6, 7131, 6, 38989, 3698, 62, 25216, 62, 4805, 3955, 13153, 6, 4083, 45763, 7, 17816, 38, 1921, 6, 12962, 201, 198, 201, 198, 220, 220, 220, 1303, 20768, 786, 5538, 201, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 1382, 3484, 329, 4540, 4991, 201, 198, 220, 220, 220, 1366, 13, 46188, 20540, 62, 41667, 13, 17946, 58, 27932, 11, 705, 19499, 26761, 62, 8220, 2257, 6, 4083, 51, 13, 29487, 7, 897, 28, 897, 11, 269, 8899, 11639, 8658, 1238, 66, 3256, 17130, 28, 15, 13, 24, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 8177, 201, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 65, 3524, 62, 1462, 62, 3702, 273, 16193, 15, 1539, 352, 13, 2999, 11, 352, 1539, 764, 15377, 828, 1179, 28, 18, 11, 299, 4033, 28, 20, 11, 4235, 2625, 11201, 392, 1600, 4865, 897, 9774, 324, 28, 15, 1539, 2632, 34758, 6, 7857, 10354, 718, 30072, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 34197, 14722, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 15580, 1575, 357, 59, 3, 14, 74, 54, 8, 11537, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 17688, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 12825, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 2167, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 4790, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 1635, 657, 13, 21, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 277, 6, 11249, 62, 15805, 82, 62, 22649, 13, 12315, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 82, 6192, 62, 11249, 62, 15805, 82, 33529, 201, 198, 220, 220, 220, 37227, 43328, 6591, 1382, 3484, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 3497, 5655, 360, 27586, 82, 201, 198, 220, 220, 220, 9335, 796, 1366, 13, 46188, 20540, 62, 41667, 17816, 27082, 2390, 2767, 4877, 6, 7131, 6, 38989, 3698, 62, 25216, 62, 4805, 3955, 13153, 6, 4083, 45763, 7, 17816, 50, 3535, 1503, 6, 12962, 201, 198, 201, 198, 220, 220, 220, 1303, 20768, 786, 5538, 201, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 1382, 3484, 329, 4540, 4991, 201, 198, 220, 220, 220, 1366, 13, 46188, 20540, 62, 41667, 13, 17946, 58, 27932, 11, 705, 19499, 26761, 62, 8220, 2257, 6, 4083, 51, 13, 29487, 7, 897, 28, 897, 11, 269, 8899, 11639, 8658, 1238, 66, 3256, 17130, 28, 15, 13, 24, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 8177, 201, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 65, 3524, 62, 1462, 62, 3702, 273, 16193, 15, 1539, 352, 13, 2999, 11, 352, 1539, 764, 15377, 828, 1179, 28, 18, 11, 299, 4033, 28, 20, 11, 4235, 2625, 11201, 392, 1600, 4865, 897, 9774, 324, 28, 15, 1539, 2632, 34758, 6, 7857, 10354, 718, 30072, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 34197, 14722, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 15580, 1575, 357, 59, 3, 14, 74, 54, 8, 11537, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 17688, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 12825, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 2167, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 2425, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 1635, 657, 13, 21, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 277, 6, 11249, 62, 15805, 82, 62, 82, 6192, 13, 12315, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 7972, 62, 11249, 62, 15805, 33529, 201, 198, 220, 220, 220, 37227, 43328, 1382, 3484, 329, 4540, 2344, 27298, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 3497, 5655, 360, 27586, 82, 201, 198, 220, 220, 220, 9335, 796, 1366, 13, 46188, 20540, 62, 41667, 17816, 27082, 2390, 2767, 4877, 6, 7131, 6, 38989, 3698, 62, 25216, 62, 4805, 3955, 13153, 6, 4083, 45763, 7, 17816, 28929, 6, 12962, 201, 198, 201, 198, 220, 220, 220, 1303, 20768, 786, 5538, 201, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 1382, 3484, 329, 4540, 4991, 201, 198, 220, 220, 220, 1366, 13, 46188, 20540, 62, 41667, 13, 17946, 58, 27932, 11, 705, 19499, 26761, 62, 8220, 2257, 6, 4083, 51, 13, 29487, 7, 897, 28, 897, 11, 269, 8899, 11639, 8658, 1238, 66, 3256, 17130, 28, 15, 13, 24, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 8177, 201, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 65, 3524, 62, 1462, 62, 3702, 273, 16193, 15, 1539, 352, 13, 2999, 11, 352, 1539, 764, 15377, 828, 1179, 28, 18, 11, 299, 4033, 28, 20, 11, 4235, 2625, 11201, 392, 1600, 4865, 897, 9774, 324, 28, 15, 1539, 2632, 34758, 6, 7857, 10354, 718, 30072, 201, 198, 201, 198, 220, 220, 220, 1303, 3060, 34197, 14722, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 15580, 1575, 357, 59, 3, 14, 74, 54, 8, 11537, 201, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 17688, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 3064, 4008, 201, 198, 220, 220, 220, 7877, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 1120, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 5332, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 1635, 657, 13, 21, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 277, 6, 11249, 62, 15805, 82, 62, 7972, 13, 12315, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 28550, 62, 5577, 2915, 7, 77, 368, 62, 11340, 11639, 19266, 6, 2599, 201, 198, 220, 220, 220, 37227, 43328, 3512, 16545, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 71, 7568, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 28686, 13, 6978, 13, 26037, 343, 11, 705, 17, 62, 15414, 62, 2213, 2114, 3256, 705, 22915, 3256, 705, 19608, 292, 316, 13, 71, 20, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 13, 17946, 58, 45299, 685, 10786, 39429, 6981, 3256, 705, 19266, 11537, 11907, 201, 198, 201, 198, 220, 220, 220, 1303, 6060, 329, 12131, 17, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 62, 67, 13, 30619, 62, 9630, 3419, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 62, 67, 13, 17946, 58, 7568, 62, 67, 13, 9630, 13, 1941, 6624, 12131, 11, 1058, 60, 201, 198, 201, 198, 220, 220, 220, 1303, 3596, 286, 614, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 820, 62, 1659, 62, 1941, 20520, 796, 47764, 62, 67, 13, 9630, 13, 820, 1659, 1941, 13, 27160, 201, 198, 201, 198, 220, 220, 220, 1303, 19123, 287, 257, 1813, 1110, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 9769, 20520, 796, 47764, 62, 67, 13, 9630, 13, 9769, 13, 27160, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 938, 1711, 287, 1123, 1110, 532, 900, 355, 1987, 400, 1711, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 9769, 20520, 796, 47764, 62, 67, 17816, 9769, 6, 4083, 33491, 7, 15, 11, 1987, 8, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 565, 69, 3419, 201, 198, 220, 220, 220, 2336, 11, 357, 897, 16, 11, 7877, 17, 8, 796, 458, 83, 13, 7266, 489, 1747, 7, 77, 8516, 28, 17, 11, 2648, 87, 28, 17821, 8, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 13, 79, 45785, 7, 9630, 11639, 820, 62, 1659, 62, 1941, 3256, 15180, 11639, 9769, 3256, 3815, 28, 10786, 39429, 6981, 3256, 36945, 62, 11340, 29720, 51, 13, 29487, 7, 897, 28, 897, 16, 11, 8177, 28, 25101, 11, 17130, 28, 15, 13, 19, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 8899, 11639, 37040, 29207, 11537, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 13, 79, 45785, 7, 9630, 11639, 820, 62, 1659, 62, 1941, 3256, 15180, 11639, 9769, 3256, 3815, 28, 10786, 39429, 6981, 3256, 36945, 62, 11340, 29720, 51, 13, 29487, 7, 897, 28, 897, 17, 11, 8177, 28, 25101, 11, 17130, 28, 15, 13, 16, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 8899, 11639, 37040, 29207, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 20675, 6492, 422, 479, 12, 1326, 504, 32966, 1586, 201, 198, 220, 220, 220, 1366, 13, 15414, 62, 2213, 2114, 13, 17946, 58, 42334, 11, 19203, 39429, 6981, 3256, 36945, 62, 11340, 25295, 51, 13, 29487, 7, 897, 28, 897, 17, 11, 3124, 11639, 81, 3256, 8177, 28, 25101, 11, 17130, 28, 15, 13, 23, 8, 201, 198, 201, 198, 220, 220, 220, 7877, 16, 13, 2617, 62, 2645, 9608, 10786, 19266, 34479, 357, 14326, 8, 11537, 201, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 2645, 9608, 10786, 19266, 34479, 357, 14326, 8, 11537, 201, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 87, 18242, 10786, 43223, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 17, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 201, 198, 220, 220, 220, 7877, 16, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 4059, 4008, 201, 198, 220, 220, 220, 7877, 16, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 3064, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 4059, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 3064, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 3865, 11, 4220, 28, 15, 13, 2919, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 277, 1549, 368, 392, 62, 5577, 2915, 23330, 77, 368, 62, 11340, 27422, 12315, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 7972, 62, 42404, 62, 22584, 669, 7, 7972, 62, 46176, 903, 11639, 56, 3705, 6, 2599, 201, 198, 220, 220, 220, 37227, 43328, 889, 2344, 5339, 5087, 329, 257, 1813, 2344, 14310, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 71, 7568, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 28686, 13, 6978, 13, 26037, 343, 11, 705, 17, 62, 15414, 62, 2213, 2114, 3256, 705, 22915, 3256, 705, 19608, 292, 316, 13, 71, 20, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 13, 17946, 58, 45299, 685, 10786, 28929, 3256, 2344, 62, 46176, 903, 8, 11907, 201, 198, 201, 198, 220, 220, 220, 1303, 6060, 329, 12131, 17, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 62, 67, 13, 30619, 62, 9630, 3419, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 62, 67, 13, 17946, 58, 7568, 62, 67, 13, 9630, 13, 1941, 6624, 12131, 11, 1058, 60, 201, 198, 201, 198, 220, 220, 220, 1303, 3596, 286, 614, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 820, 62, 1659, 62, 1941, 20520, 796, 47764, 62, 67, 13, 9630, 13, 820, 1659, 1941, 13, 27160, 201, 198, 201, 198, 220, 220, 220, 1303, 19123, 287, 257, 1813, 1110, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 9769, 20520, 796, 47764, 62, 67, 13, 9630, 13, 9769, 13, 27160, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 938, 1711, 287, 1123, 1110, 532, 900, 355, 1987, 400, 1711, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 9769, 20520, 796, 47764, 62, 67, 17816, 9769, 6, 4083, 33491, 7, 15, 11, 1987, 8, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 565, 69, 3419, 201, 198, 220, 220, 220, 2336, 11, 357, 897, 16, 11, 7877, 17, 8, 796, 458, 83, 13, 7266, 489, 1747, 7, 77, 8516, 28, 17, 11, 2648, 87, 28, 17821, 8, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 13, 79, 45785, 7, 9630, 11639, 820, 62, 1659, 62, 1941, 3256, 15180, 11639, 9769, 3256, 3815, 28, 10786, 28929, 3256, 2344, 62, 46176, 903, 29720, 51, 13, 29487, 7, 897, 28, 897, 16, 11, 8177, 28, 25101, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 19, 11, 269, 8899, 11639, 37040, 29207, 11537, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 13, 79, 45785, 7, 9630, 11639, 820, 62, 1659, 62, 1941, 3256, 15180, 11639, 9769, 3256, 3815, 28, 10786, 28929, 3256, 2344, 62, 46176, 903, 29720, 51, 13, 29487, 7, 897, 28, 897, 17, 11, 8177, 28, 25101, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 16, 11, 269, 8899, 11639, 37040, 29207, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 20675, 6492, 422, 479, 12, 1326, 504, 32966, 1586, 201, 198, 220, 220, 220, 1366, 13, 15414, 62, 2213, 2114, 13, 17946, 58, 42334, 11, 19203, 28929, 3256, 2344, 62, 46176, 903, 25295, 51, 13, 29487, 7, 897, 28, 897, 17, 11, 3124, 11639, 81, 3256, 8177, 28, 25101, 11, 17130, 28, 15, 13, 23, 8, 201, 198, 201, 198, 220, 220, 220, 7877, 16, 13, 2617, 62, 2645, 9608, 7, 69, 6, 90, 7972, 62, 46176, 903, 92, 5339, 5766, 25915, 60, 11537, 201, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 2645, 9608, 7, 69, 6, 90, 7972, 62, 46176, 903, 92, 220, 5339, 5766, 25915, 60, 11537, 201, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 87, 18242, 10786, 43223, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 17, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 201, 198, 220, 220, 220, 7877, 16, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 17, 4008, 201, 198, 220, 220, 220, 7877, 16, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 2713, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 17, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 2713, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 3865, 11, 4220, 28, 15, 13, 2919, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 277, 6, 7972, 62, 5577, 2915, 23330, 7972, 62, 46176, 903, 27422, 12315, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 4299, 7110, 62, 82, 6192, 62, 42404, 62, 22584, 669, 7, 77, 368, 62, 11340, 11639, 19266, 3256, 3037, 11639, 35, 1404, 6, 2599, 201, 198, 220, 220, 220, 37227, 43328, 6591, 5339, 5087, 37811, 201, 198, 201, 198, 220, 220, 220, 1303, 28407, 6591, 3037, 4522, 1912, 319, 399, 3620, 6516, 290, 3037, 2099, 201, 198, 220, 220, 220, 7261, 62, 312, 796, 277, 6, 90, 77, 368, 62, 11340, 92, 91, 90, 45503, 92, 6, 201, 198, 201, 198, 220, 220, 220, 1303, 5016, 7268, 2746, 1366, 201, 198, 220, 220, 220, 1366, 796, 9104, 6601, 3419, 201, 198, 201, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 71, 7568, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 28686, 13, 6978, 13, 26037, 343, 11, 705, 17, 62, 15414, 62, 2213, 2114, 3256, 705, 22915, 3256, 705, 19608, 292, 316, 13, 71, 20, 6, 4008, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 13, 17946, 58, 45299, 685, 10786, 50, 3535, 1503, 3256, 7261, 62, 312, 8, 11907, 201, 198, 201, 198, 220, 220, 220, 1303, 6060, 329, 12131, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 62, 67, 13, 30619, 62, 9630, 3419, 201, 198, 220, 220, 220, 47764, 62, 67, 796, 47764, 62, 67, 13, 17946, 58, 7568, 62, 67, 13, 9630, 13, 1941, 6624, 12131, 11, 1058, 60, 201, 198, 201, 198, 220, 220, 220, 1303, 3596, 286, 614, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 820, 62, 1659, 62, 1941, 20520, 796, 47764, 62, 67, 13, 9630, 13, 820, 1659, 1941, 13, 27160, 201, 198, 201, 198, 220, 220, 220, 1303, 19123, 287, 257, 1813, 1110, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 9769, 20520, 796, 47764, 62, 67, 13, 9630, 13, 9769, 13, 27160, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 938, 1711, 287, 1123, 1110, 532, 900, 355, 1987, 400, 1711, 201, 198, 220, 220, 220, 47764, 62, 67, 17816, 9769, 20520, 796, 47764, 62, 67, 17816, 9769, 6, 4083, 33491, 7, 15, 11, 1987, 8, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 565, 69, 3419, 201, 198, 220, 220, 220, 2336, 11, 357, 897, 16, 11, 7877, 17, 8, 796, 458, 83, 13, 7266, 489, 1747, 7, 77, 8516, 28, 17, 11, 2648, 87, 28, 17821, 8, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 13, 79, 45785, 7, 9630, 11639, 820, 62, 1659, 62, 1941, 3256, 15180, 11639, 9769, 3256, 3815, 28, 10786, 50, 3535, 1503, 3256, 7261, 62, 312, 29720, 51, 13, 29487, 7, 897, 28, 897, 16, 11, 8177, 28, 25101, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 19, 11, 269, 8899, 11639, 37040, 29207, 11537, 201, 198, 201, 198, 220, 220, 220, 47764, 62, 67, 13, 79, 45785, 7, 9630, 11639, 820, 62, 1659, 62, 1941, 3256, 15180, 11639, 9769, 3256, 3815, 28, 10786, 50, 3535, 1503, 3256, 7261, 62, 312, 29720, 51, 13, 29487, 7, 897, 28, 897, 17, 11, 8177, 28, 25101, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 16, 11, 269, 8899, 11639, 37040, 29207, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 28114, 20675, 6492, 422, 479, 12, 1326, 504, 32966, 1586, 201, 198, 220, 220, 220, 1366, 13, 15414, 62, 2213, 2114, 13, 17946, 58, 42334, 11, 19203, 50, 3535, 1503, 3256, 7261, 62, 312, 25295, 51, 13, 29487, 7, 897, 28, 897, 17, 11, 3124, 11639, 81, 3256, 8177, 28, 25101, 11, 17130, 28, 15, 13, 23, 8, 201, 198, 201, 198, 220, 220, 220, 7877, 16, 13, 2617, 62, 2645, 9608, 7, 69, 6, 90, 13670, 62, 312, 92, 5339, 5766, 25915, 60, 11537, 201, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 2645, 9608, 7, 69, 6, 90, 13670, 62, 312, 92, 220, 5339, 5766, 25915, 60, 11537, 201, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 87, 18242, 10786, 43223, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 18980, 34197, 36066, 201, 198, 220, 220, 220, 7877, 17, 13, 87, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 20, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 87, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 16, 4008, 201, 198, 201, 198, 220, 220, 220, 7877, 16, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 17, 4008, 201, 198, 220, 220, 220, 7877, 16, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 2713, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 88, 22704, 13, 2617, 62, 22478, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 17, 4008, 201, 198, 220, 220, 220, 7877, 17, 13, 88, 22704, 13, 2617, 62, 1084, 273, 62, 17946, 1352, 7, 31217, 33711, 1352, 7, 15, 13, 2713, 4008, 201, 198, 201, 198, 220, 220, 220, 1303, 20292, 3785, 13127, 290, 2546, 201, 198, 220, 220, 220, 2336, 13, 7266, 489, 1747, 62, 23032, 7, 4852, 28, 15, 13, 3865, 11, 4220, 28, 15, 13, 2919, 11, 1364, 28, 15, 13, 16, 11, 826, 28, 15, 13, 3865, 8, 201, 198, 220, 220, 220, 2336, 13, 2617, 62, 7857, 62, 45457, 7, 21, 13, 3388, 33551, 11, 718, 13, 3388, 33551, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 12793, 3785, 201, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 22915, 3256, 705, 5647, 942, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 82, 6192, 62, 5577, 2915, 23330, 13670, 62, 312, 13, 33491, 10786, 91, 3256, 705, 12, 11537, 27422, 12315, 48774, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1303, 13610, 21528, 201, 198, 220, 220, 220, 7110, 62, 25140, 62, 11249, 62, 15805, 82, 3419, 201, 198, 220, 220, 220, 7110, 62, 22649, 62, 11249, 62, 15805, 82, 3419, 201, 198, 220, 220, 220, 7110, 62, 82, 6192, 62, 11249, 62, 15805, 82, 3419, 201, 198, 220, 220, 220, 7110, 62, 7972, 62, 11249, 62, 15805, 3419, 201, 198, 220, 220, 220, 7110, 62, 25140, 62, 25802, 62, 15805, 82, 3419, 201, 198, 220, 220, 220, 7110, 62, 22649, 62, 25802, 62, 15805, 82, 3419, 201, 198, 220, 220, 220, 7110, 62, 28550, 62, 5577, 2915, 7, 77, 368, 62, 11340, 11639, 19266, 11537, 201, 198, 220, 220, 220, 7110, 62, 7972, 62, 42404, 62, 22584, 669, 7, 7972, 62, 46176, 903, 11639, 56, 3705, 11537, 201, 198, 220, 220, 220, 7110, 62, 82, 6192, 62, 42404, 62, 22584, 669, 7, 77, 368, 62, 11340, 11639, 19266, 3256, 3037, 11639, 35, 1404, 11537, 201, 198 ]
2.112475
7,086
from flask import Blueprint, render_template from app import mongo_utils from bson import json_util import json mod_whatis = Blueprint('whatis', __name__, url_prefix='/sta-je-glasomer') @mod_whatis.route('/', methods=['GET'])
[ 6738, 42903, 1330, 39932, 11, 8543, 62, 28243, 198, 198, 6738, 598, 1330, 285, 25162, 62, 26791, 198, 6738, 275, 1559, 1330, 33918, 62, 22602, 198, 11748, 33918, 198, 4666, 62, 10919, 271, 796, 39932, 10786, 10919, 271, 3256, 11593, 3672, 834, 11, 19016, 62, 40290, 11639, 14, 38031, 12, 18015, 12, 14391, 12057, 11537, 198, 31, 4666, 62, 10919, 271, 13, 38629, 10786, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 198 ]
3.109589
73
from django.db import models, migrations
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 11, 15720, 602, 628 ]
3.818182
11
#!/usr/bin/python #-*- coding: utf-8 -*- """Run Score Credit Habitat""" from __future__ import print_function import sys import logging from easydatalab.common.app import AppContext from easydatalab.common.exceptions import ExecutionError def main(): """Main entry point for the script.""" cfgFile = 'easydatalab/tests/resources/config/config_for_unittests.cfg' logCfgFile = 'easydatalab/resources/log_config.yml' with AppContext(log_config_file=logCfgFile) as appContext: appContext.logger.info("default logger for %s" % str( appContext) ) appContext.skip_steps( [ 'skipped step' ] ) with appContext.new_configuration(cfgFile) as appConfiguration: appConfiguration.show() with appContext.new_step ('something') as step: if step.enabled(): print("does something") with appContext.new_step ('skipped step') as step: if step.enabled(): print("does skipped") with appContext.new_step ('failed step') as step: if step.enabled(): raise ExecutionError('step 3', 'failed to complete task') with appContext.new_step ('something else') as step: if step.enabled(): print("does something else") if __name__ == '__main__': sys.exit(main())
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 12, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 10987, 15178, 10504, 41950, 265, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 25064, 198, 11748, 18931, 198, 198, 6738, 2562, 67, 10254, 397, 13, 11321, 13, 1324, 1330, 2034, 21947, 198, 6738, 2562, 67, 10254, 397, 13, 11321, 13, 1069, 11755, 1330, 37497, 12331, 198, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 13383, 5726, 966, 329, 262, 4226, 526, 15931, 628, 220, 220, 220, 30218, 70, 8979, 796, 705, 38171, 67, 10254, 397, 14, 41989, 14, 37540, 14, 11250, 14, 11250, 62, 1640, 62, 403, 715, 3558, 13, 37581, 6, 198, 220, 220, 220, 2604, 34, 40616, 8979, 796, 705, 38171, 67, 10254, 397, 14, 37540, 14, 6404, 62, 11250, 13, 88, 4029, 6, 628, 220, 220, 220, 351, 2034, 21947, 7, 6404, 62, 11250, 62, 7753, 28, 6404, 34, 40616, 8979, 8, 355, 598, 21947, 25, 198, 220, 220, 220, 220, 220, 220, 220, 598, 21947, 13, 6404, 1362, 13, 10951, 7203, 12286, 49706, 329, 4064, 82, 1, 4064, 965, 7, 598, 21947, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 598, 21947, 13, 48267, 62, 20214, 7, 685, 705, 8135, 3949, 2239, 6, 2361, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 351, 598, 21947, 13, 3605, 62, 11250, 3924, 7, 37581, 8979, 8, 355, 598, 38149, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 38149, 13, 12860, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 598, 21947, 13, 3605, 62, 9662, 19203, 18927, 11537, 355, 2239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 13, 25616, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 22437, 1223, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 598, 21947, 13, 3605, 62, 9662, 19203, 8135, 3949, 2239, 11537, 355, 2239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 13, 25616, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 22437, 26684, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 598, 21947, 13, 3605, 62, 9662, 19203, 47904, 2239, 11537, 355, 2239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 13, 25616, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 37497, 12331, 10786, 9662, 513, 3256, 705, 47904, 284, 1844, 4876, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 598, 21947, 13, 3605, 62, 9662, 19203, 18927, 2073, 11537, 355, 2239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 13, 25616, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 22437, 1223, 2073, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 28955, 198 ]
2.388985
581
import socket import zmq from shared.daemon_ports import get_port from shared.messaging.sock import create_sub_sock # Send from replayd -> videod if __name__ == "__main__": """ context = zmq.Context() port = get_port("replayd") socket = create_sub_sock(context, port) """ videosocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print("Connecting...") connected = False while not connected: try: videosocket.connect(("localhost", 4444)) connected = True except ConnectionRefusedError as e: pass print("Connected...") while True: data = videosocket.recv(1024) print(data)
[ 11748, 17802, 198, 11748, 1976, 76, 80, 198, 198, 6738, 4888, 13, 6814, 7966, 62, 3742, 1330, 651, 62, 634, 198, 6738, 4888, 13, 37348, 3039, 13, 82, 735, 1330, 2251, 62, 7266, 62, 82, 735, 198, 198, 2, 16290, 422, 24788, 67, 4613, 18784, 375, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 4732, 796, 1976, 76, 80, 13, 21947, 3419, 198, 220, 220, 220, 2493, 796, 651, 62, 634, 7203, 260, 1759, 67, 4943, 198, 220, 220, 220, 17802, 796, 2251, 62, 7266, 62, 82, 735, 7, 22866, 11, 2493, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 5861, 5459, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 628, 220, 220, 220, 3601, 7203, 13313, 278, 9313, 8, 198, 220, 220, 220, 5884, 796, 10352, 198, 220, 220, 220, 981, 407, 5884, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5861, 5459, 13, 8443, 7, 7203, 36750, 1600, 604, 30272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5884, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 26923, 8134, 1484, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 3601, 7203, 13313, 276, 9313, 8, 628, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 5861, 5459, 13, 8344, 85, 7, 35500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7890, 8, 198 ]
2.428571
287
import os import re import setuptools description = "Standard development tooling for Bocadillo" with open("README.md", "r") as readme: long_description = readme.read() NAME = "bocadillo-cli" PACKAGE = "bocadillo_cli" GITHUB = "https://github.com/bocadilloproject/bocadillo-cli" CHANGELOG = f"{GITHUB}/blob/master/CHANGELOG.md" HERE = os.path.abspath(os.path.dirname(__file__)) setuptools.setup( name=NAME, version=find_version(PACKAGE, "version.py"), author="Florimond Manca", author_email="[email protected]", description=description, long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(exclude=["bocadillo_cli.templates"]), include_package_data=True, # see MANIFEST.in entry_points={"console_scripts": ["bocadillo=bocadillo_cli.main:cli"]}, install_requires=["click>=7.0, <8.0", "jinja2>=2.10.1"], python_requires=">=3.6", url=GITHUB, license="MIT", classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Utilities", "Topic :: Software Development :: Code Generators", ], )
[ 11748, 28686, 198, 11748, 302, 198, 11748, 900, 37623, 10141, 198, 198, 11213, 796, 366, 23615, 2478, 2891, 278, 329, 347, 420, 324, 16111, 1, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 1100, 1326, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 1100, 1326, 13, 961, 3419, 198, 198, 20608, 796, 366, 65, 420, 324, 16111, 12, 44506, 1, 198, 47, 8120, 11879, 796, 366, 65, 420, 324, 16111, 62, 44506, 1, 198, 38, 10554, 10526, 796, 366, 5450, 1378, 12567, 13, 785, 14, 65, 420, 324, 359, 404, 305, 752, 14, 65, 420, 324, 16111, 12, 44506, 1, 198, 3398, 15567, 3698, 7730, 796, 277, 1, 90, 38, 10554, 10526, 92, 14, 2436, 672, 14, 9866, 14, 3398, 15567, 3698, 7730, 13, 9132, 1, 198, 39, 9338, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 628, 198, 198, 2617, 37623, 10141, 13, 40406, 7, 198, 220, 220, 220, 1438, 28, 20608, 11, 198, 220, 220, 220, 2196, 28, 19796, 62, 9641, 7, 47, 8120, 11879, 11, 366, 9641, 13, 9078, 12340, 198, 220, 220, 220, 1772, 2625, 26953, 320, 623, 337, 42124, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 2704, 273, 320, 623, 13, 805, 6888, 31, 14816, 13, 785, 1600, 198, 220, 220, 220, 6764, 28, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 7, 1069, 9152, 28, 14692, 65, 420, 324, 16111, 62, 44506, 13, 11498, 17041, 8973, 828, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 220, 1303, 766, 17254, 5064, 6465, 13, 259, 198, 220, 220, 220, 5726, 62, 13033, 28, 4895, 41947, 62, 46521, 1298, 14631, 65, 420, 324, 16111, 28, 65, 420, 324, 16111, 62, 44506, 13, 12417, 25, 44506, 8973, 5512, 198, 220, 220, 220, 2721, 62, 47911, 28, 14692, 12976, 29, 28, 22, 13, 15, 11, 1279, 23, 13, 15, 1600, 366, 18594, 6592, 17, 29, 28, 17, 13, 940, 13, 16, 33116, 198, 220, 220, 220, 21015, 62, 47911, 2625, 29, 28, 18, 13, 21, 1600, 198, 220, 220, 220, 19016, 28, 38, 10554, 10526, 11, 198, 220, 220, 220, 5964, 2625, 36393, 1600, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41206, 12678, 7904, 513, 532, 12995, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 31441, 7904, 24371, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5317, 1631, 7591, 1240, 7904, 34152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 35364, 15417, 7904, 3594, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 7904, 5514, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33221, 7904, 41086, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33221, 7904, 10442, 7712, 7904, 6127, 2980, 2024, 1600, 198, 220, 220, 220, 16589, 198, 8, 198 ]
2.515755
603
# TODO: imports # REQUIRES: num_items >= 0, capacity >= 0, # size of item_values >= num_items, # size of item_weights >= num_items, # item_values are all >= 0, item_weights are all >= 0 # EFFECTS: Computes the max value that can be obtained by picking # from a set of num_items items without exceeding the given # capacity. Choosing item i produces the value item_values[i] # but uses weight item_weights[i] out of the available # capacity. # Must use dynamic programming! # Build table K[][] in bottom up manner # TODO: loop through items # TODO: second loop through weights upto capacity # TODO: if statement # TODO: set item and weight to 0 # TODO: if item weights[item-1] is less than weight K[cap][weight] = max(item_values[cap-1] + K[cap-1][weight-item_weights[cap-1]], K[cap-1][weight]) # TODO: else # TODO: set k[item][weight] to previously found answer # TODO: return K at num_items and capacity if __name__ == '__main__': unittest.main(argv=['first-arg-is-ignored'], exit=False)
[ 2, 16926, 46, 25, 17944, 198, 198, 2, 4526, 10917, 4663, 1546, 25, 997, 62, 23814, 18189, 657, 11, 5339, 18189, 657, 11, 198, 2, 220, 220, 220, 220, 220, 197, 2546, 286, 2378, 62, 27160, 18189, 997, 62, 23814, 11, 198, 2, 220, 220, 220, 220, 220, 197, 2546, 286, 2378, 62, 43775, 18189, 997, 62, 23814, 11, 198, 2, 220, 220, 220, 220, 220, 197, 2378, 62, 27160, 389, 477, 18189, 657, 11, 2378, 62, 43775, 389, 477, 18189, 657, 198, 2, 33659, 2943, 4694, 25, 3082, 1769, 262, 3509, 1988, 326, 460, 307, 6492, 416, 10868, 198, 2, 197, 220, 197, 422, 257, 900, 286, 997, 62, 23814, 3709, 1231, 23353, 262, 1813, 198, 2, 197, 220, 197, 5339, 13, 10031, 2752, 2378, 1312, 11073, 262, 1988, 2378, 62, 27160, 58, 72, 60, 198, 2, 197, 220, 197, 475, 3544, 3463, 2378, 62, 43775, 58, 72, 60, 503, 286, 262, 1695, 198, 2, 197, 220, 197, 5339, 13, 198, 2, 197, 34320, 779, 8925, 8300, 0, 628, 198, 220, 220, 220, 1303, 10934, 3084, 509, 58, 7131, 60, 287, 4220, 510, 5642, 198, 220, 220, 220, 1303, 16926, 46, 25, 9052, 832, 3709, 198, 220, 220, 220, 1303, 16926, 46, 25, 1218, 9052, 832, 19590, 18529, 78, 5339, 198, 220, 220, 220, 1303, 16926, 46, 25, 611, 2643, 198, 220, 220, 220, 1303, 16926, 46, 25, 900, 2378, 290, 3463, 284, 657, 198, 220, 220, 220, 1303, 16926, 46, 25, 611, 2378, 19590, 58, 9186, 12, 16, 60, 318, 1342, 621, 3463, 198, 220, 220, 220, 509, 58, 11128, 7131, 6551, 60, 796, 3509, 7, 9186, 62, 27160, 58, 11128, 12, 16, 60, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 58, 11128, 12, 16, 7131, 6551, 12, 9186, 62, 43775, 58, 11128, 12, 16, 60, 4357, 220, 509, 58, 11128, 12, 16, 7131, 6551, 12962, 198, 220, 220, 220, 1303, 16926, 46, 25, 2073, 198, 220, 220, 220, 1303, 16926, 46, 25, 900, 479, 58, 9186, 7131, 6551, 60, 284, 4271, 1043, 3280, 628, 220, 220, 220, 1303, 16926, 46, 25, 1441, 509, 379, 997, 62, 23814, 290, 5339, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 7, 853, 85, 28, 17816, 11085, 12, 853, 12, 271, 12, 570, 1850, 6, 4357, 8420, 28, 25101, 8, 198 ]
2.647343
414
# Import a whole load of stuff from System.IO import * from System.Drawing import * from System.Runtime.Remoting import * from System.Threading import * from System.Windows.Forms import * from System.Xml.Serialization import * from System import * from DAQ.Environment import * from EDMConfig import *
[ 2, 17267, 257, 2187, 3440, 286, 3404, 198, 6738, 4482, 13, 9399, 1330, 1635, 198, 6738, 4482, 13, 25302, 278, 1330, 1635, 198, 6738, 4482, 13, 41006, 13, 8413, 10720, 1330, 1635, 198, 6738, 4482, 13, 16818, 278, 1330, 1635, 198, 6738, 4482, 13, 11209, 13, 8479, 82, 1330, 1635, 198, 6738, 4482, 13, 55, 4029, 13, 32634, 1634, 1330, 1635, 198, 6738, 4482, 1330, 1635, 198, 198, 6738, 17051, 48, 13, 31441, 1330, 1635, 198, 6738, 8392, 44, 16934, 1330, 1635, 628, 198 ]
3.630952
84
import tkinter
[ 11748, 256, 74, 3849, 628 ]
3.2
5
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import json from abc import ABCMeta, abstractmethod from requests import post, put, exceptions from speech_recognition import Recognizer from queue import Queue from threading import Thread from mycroft.api import STTApi, HTTPError from mycroft.configuration import Configuration from mycroft.util.log import LOG from mycroft.util.plugins import load_plugin class STT(metaclass=ABCMeta): """STT Base class, all STT backends derive from this one. """ @staticmethod def init_language(config_core): """Helper method to get language code from Mycroft config.""" lang = config_core.get("lang", "en-US") langs = lang.split("-") if len(langs) == 2: return langs[0].lower() + "-" + langs[1].upper() return lang @abstractmethod def execute(self, audio, language=None): """Implementation of STT functionallity. This method needs to be implemented by the derived class to implement the specific STT engine connection. The method gets passed audio and optionally a language code and is expected to return a text string. Args: audio (AudioData): audio recorded by mycroft. language (str): optional language code Returns: str: parsed text """ class IBMSTT(TokenSTT): """ IBM Speech to Text Enables IBM Speech to Text access using API key. To use IBM as a service provider, it must be configured locally in your config file. An IBM Cloud account with Speech to Text enabled is required (limited free tier may be available). STT config should match the following format: "stt": { "module": "ibm", "ibm": { "credential": { "token": "YOUR_API_KEY" }, "url": "URL_FROM_SERVICE" } } """ class YandexSTT(STT): """ Yandex SpeechKit STT To use create service account with role 'editor' in your cloud folder, create API key for account and add it to local mycroft.conf file. The STT config will look like this: "stt": { "module": "yandex", "yandex": { "lang": "en-US", "credential": { "api_key": "YOUR_API_KEY" } } } """ def requires_pairing(func): """Decorator kicking of pairing sequence if client is not allowed access. Checks the http status of the response if an HTTP error is recieved. If a 401 status is detected returns "pair my device" to trigger the pairing skill. """ return wrapper class MycroftSTT(STT): """Default mycroft STT.""" @requires_pairing class MycroftDeepSpeechSTT(STT): """Mycroft Hosted DeepSpeech""" @requires_pairing class DeepSpeechServerSTT(STT): """ STT interface for the deepspeech-server: https://github.com/MainRo/deepspeech-server use this if you want to host DeepSpeech yourself """ class StreamThread(Thread, metaclass=ABCMeta): """ABC class to be used with StreamingSTT class implementations. This class reads audio chunks from a queue and sends it to a parsing STT engine. Args: queue (Queue): Input Queue language (str): language code for the current language. """ def _get_data(self): """Generator reading audio data from queue.""" while True: d = self.queue.get() if d is None: break yield d self.queue.task_done() def run(self): """Thread entry point.""" return self.handle_audio_stream(self._get_data(), self.language) @abstractmethod def handle_audio_stream(self, audio, language): """Handling of audio stream. Needs to be implemented by derived class to process audio data and optionally update `self.text` with the current hypothesis. Argumens: audio (bytes): raw audio data. language (str): language code for the current session. """ class StreamingSTT(STT, metaclass=ABCMeta): """ABC class for threaded streaming STT implemenations.""" def stream_start(self, language=None): """Indicate start of new audio stream. This creates a new thread for handling the incomming audio stream as it's collected by Mycroft. Args: language (str): optional language code for the new stream. """ self.stream_stop() language = language or self.lang self.queue = Queue() self.stream = self.create_streaming_thread() self.stream.start() def stream_data(self, data): """Receiver of audio data. Args: data (bytes): raw audio data. """ self.queue.put(data) def stream_stop(self): """Indicate that the audio stream has ended. This will tear down the processing thread and collect the result Returns: str: parsed text """ if self.stream is not None: self.queue.put(None) self.stream.join() text = self.stream.text self.stream = None self.queue = None return text return None def execute(self, audio, language=None): """End the parsing thread and collect data.""" return self.stream_stop() @abstractmethod def create_streaming_thread(self): """Create thread for parsing audio chunks. This method should be implemented by the derived class to return an instance derived from StreamThread to handle the audio stream and send it to the STT engine. Returns: StreamThread: Thread to handle audio data. """ class DeepSpeechStreamServerSTT(StreamingSTT): """ Streaming STT interface for the deepspeech-server: https://github.com/JPEWdev/deep-dregs use this if you want to host DeepSpeech yourself STT config will look like this: "stt": { "module": "deepspeech_stream_server", "deepspeech_stream_server": { "stream_uri": "http://localhost:8080/stt?format=16K_PCM16" ... """ class GoogleCloudStreamingSTT(StreamingSTT): """ Streaming STT interface for Google Cloud Speech-To-Text To use pip install google-cloud-speech and add the Google API key to local mycroft.conf file. The STT config will look like this: "stt": { "module": "google_cloud_streaming", "google_cloud_streaming": { "credential": { "json": { # Paste Google API JSON here ... """ def load_stt_plugin(module_name): """Wrapper function for loading stt plugin. Args: module_name (str): Mycroft stt module name from config Returns: class: STT plugin class """ return load_plugin('mycroft.plugin.stt', module_name)
[ 2, 15069, 2177, 2011, 36714, 9552, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 11748, 302, 198, 11748, 33918, 198, 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 198, 6738, 7007, 1330, 1281, 11, 1234, 11, 13269, 198, 6738, 4046, 62, 26243, 653, 1330, 31517, 7509, 198, 6738, 16834, 1330, 4670, 518, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 6738, 616, 36714, 13, 15042, 1330, 3563, 5603, 14415, 11, 14626, 12331, 198, 6738, 616, 36714, 13, 11250, 3924, 1330, 28373, 198, 6738, 616, 36714, 13, 22602, 13, 6404, 1330, 41605, 198, 6738, 616, 36714, 13, 22602, 13, 37390, 1330, 3440, 62, 33803, 628, 198, 4871, 3563, 51, 7, 4164, 330, 31172, 28, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 2257, 51, 7308, 1398, 11, 477, 3563, 51, 736, 2412, 27099, 422, 428, 530, 13, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 2315, 62, 16129, 7, 11250, 62, 7295, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47429, 2446, 284, 651, 3303, 2438, 422, 2011, 36714, 4566, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 42392, 796, 4566, 62, 7295, 13, 1136, 7203, 17204, 1600, 366, 268, 12, 2937, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 300, 27725, 796, 42392, 13, 35312, 7203, 12, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 17204, 82, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 300, 27725, 58, 15, 4083, 21037, 3419, 1343, 366, 21215, 1343, 300, 27725, 58, 16, 4083, 45828, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 42392, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 12260, 7, 944, 11, 6597, 11, 3303, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3546, 32851, 286, 3563, 51, 2163, 439, 414, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 2476, 284, 307, 9177, 416, 262, 10944, 1398, 284, 3494, 198, 220, 220, 220, 220, 220, 220, 220, 262, 2176, 3563, 51, 3113, 4637, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2446, 3011, 3804, 6597, 290, 42976, 257, 3303, 2438, 290, 318, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 284, 1441, 257, 2420, 4731, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6597, 357, 21206, 6601, 2599, 6597, 6264, 416, 616, 36714, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3303, 357, 2536, 2599, 11902, 3303, 2438, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 25, 44267, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 628, 628, 628, 198, 198, 4871, 19764, 2257, 51, 7, 30642, 2257, 51, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19764, 24709, 284, 8255, 198, 220, 220, 220, 220, 220, 220, 220, 2039, 2977, 19764, 24709, 284, 8255, 1895, 1262, 7824, 1994, 13, 1675, 779, 19764, 355, 257, 198, 220, 220, 220, 220, 220, 220, 220, 2139, 10131, 11, 340, 1276, 307, 17839, 15726, 287, 534, 4566, 2393, 13, 1052, 198, 220, 220, 220, 220, 220, 220, 220, 19764, 10130, 1848, 351, 24709, 284, 8255, 9343, 318, 2672, 357, 10698, 1479, 198, 220, 220, 220, 220, 220, 220, 220, 14249, 743, 307, 1695, 737, 3563, 51, 4566, 815, 2872, 262, 1708, 5794, 25, 628, 220, 220, 220, 220, 220, 220, 220, 366, 301, 83, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21412, 1298, 366, 571, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 571, 76, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 445, 1843, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30001, 1298, 366, 56, 11698, 62, 17614, 62, 20373, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 366, 21886, 62, 10913, 2662, 62, 35009, 27389, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 628, 198, 4871, 575, 392, 1069, 2257, 51, 7, 2257, 51, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 575, 392, 1069, 24709, 20827, 3563, 51, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 779, 2251, 2139, 1848, 351, 2597, 705, 35352, 6, 287, 534, 6279, 9483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 7824, 1994, 329, 1848, 290, 751, 340, 284, 1957, 616, 36714, 13, 10414, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3563, 51, 4566, 481, 804, 588, 428, 25, 628, 220, 220, 220, 220, 220, 220, 220, 366, 301, 83, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21412, 1298, 366, 88, 392, 1069, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 88, 392, 1069, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17204, 1298, 366, 268, 12, 2937, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 445, 1843, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15042, 62, 2539, 1298, 366, 56, 11698, 62, 17614, 62, 20373, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 628, 198, 4299, 4433, 62, 24874, 278, 7, 20786, 2599, 198, 220, 220, 220, 37227, 10707, 273, 1352, 17997, 286, 27356, 8379, 611, 5456, 318, 407, 3142, 1895, 13, 628, 220, 220, 220, 47719, 262, 2638, 3722, 286, 262, 2882, 611, 281, 14626, 4049, 318, 664, 39591, 13, 1002, 198, 220, 220, 220, 257, 22219, 3722, 318, 12326, 5860, 366, 24874, 616, 3335, 1, 284, 7616, 262, 27356, 198, 220, 220, 220, 5032, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 29908, 628, 198, 4871, 2011, 36714, 2257, 51, 7, 2257, 51, 2599, 198, 220, 220, 220, 37227, 19463, 616, 36714, 3563, 51, 526, 15931, 628, 220, 220, 220, 2488, 47911, 62, 24874, 278, 628, 198, 4871, 2011, 36714, 29744, 5248, 3055, 2257, 51, 7, 2257, 51, 2599, 198, 220, 220, 220, 37227, 3666, 36714, 14504, 276, 10766, 5248, 3055, 37811, 628, 220, 220, 220, 2488, 47911, 62, 24874, 278, 628, 198, 4871, 10766, 5248, 3055, 10697, 2257, 51, 7, 2257, 51, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3563, 51, 7071, 329, 262, 2769, 45862, 12, 15388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 13383, 15450, 14, 22089, 45862, 12, 15388, 198, 220, 220, 220, 220, 220, 220, 220, 779, 428, 611, 345, 765, 284, 2583, 10766, 5248, 3055, 3511, 198, 220, 220, 220, 37227, 628, 198, 4871, 13860, 16818, 7, 16818, 11, 1138, 330, 31172, 28, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 24694, 1398, 284, 307, 973, 351, 43124, 2257, 51, 1398, 25504, 13, 628, 220, 220, 220, 770, 1398, 9743, 6597, 22716, 422, 257, 16834, 290, 12800, 340, 284, 257, 32096, 198, 220, 220, 220, 3563, 51, 3113, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16834, 357, 34991, 2599, 23412, 4670, 518, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 357, 2536, 2599, 3303, 2438, 329, 262, 1459, 3303, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 1136, 62, 7890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 1352, 3555, 6597, 1366, 422, 16834, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 2116, 13, 36560, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 288, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36560, 13, 35943, 62, 28060, 3419, 628, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16818, 5726, 966, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 28144, 62, 24051, 62, 5532, 7, 944, 13557, 1136, 62, 7890, 22784, 2116, 13, 16129, 8, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 5412, 62, 24051, 62, 5532, 7, 944, 11, 6597, 11, 3303, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12885, 1359, 286, 6597, 4269, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36557, 284, 307, 9177, 416, 10944, 1398, 284, 1429, 6597, 1366, 290, 198, 220, 220, 220, 220, 220, 220, 220, 42976, 4296, 4600, 944, 13, 5239, 63, 351, 262, 1459, 14078, 13, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 388, 641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6597, 357, 33661, 2599, 8246, 6597, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3303, 357, 2536, 2599, 3303, 2438, 329, 262, 1459, 6246, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 4871, 43124, 2257, 51, 7, 2257, 51, 11, 1138, 330, 31172, 28, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 24694, 1398, 329, 40945, 11305, 3563, 51, 848, 293, 3653, 602, 526, 15931, 628, 220, 220, 220, 825, 4269, 62, 9688, 7, 944, 11, 3303, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5497, 5344, 923, 286, 649, 6597, 4269, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 8075, 257, 649, 4704, 329, 9041, 262, 753, 2002, 278, 6597, 4269, 355, 198, 220, 220, 220, 220, 220, 220, 220, 340, 338, 7723, 416, 2011, 36714, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3303, 357, 2536, 2599, 11902, 3303, 2438, 329, 262, 649, 4269, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5532, 62, 11338, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3303, 796, 3303, 393, 2116, 13, 17204, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36560, 796, 4670, 518, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5532, 796, 2116, 13, 17953, 62, 5532, 278, 62, 16663, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5532, 13, 9688, 3419, 628, 220, 220, 220, 825, 4269, 62, 7890, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3041, 39729, 286, 6597, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 357, 33661, 2599, 8246, 6597, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36560, 13, 1996, 7, 7890, 8, 628, 220, 220, 220, 825, 4269, 62, 11338, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5497, 5344, 326, 262, 6597, 4269, 468, 4444, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 481, 11626, 866, 262, 7587, 4704, 290, 2824, 262, 1255, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 25, 44267, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 5532, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36560, 13, 1996, 7, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5532, 13, 22179, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 2116, 13, 5532, 13, 5239, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5532, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36560, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 825, 12260, 7, 944, 11, 6597, 11, 3303, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12915, 262, 32096, 4704, 290, 2824, 1366, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 5532, 62, 11338, 3419, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 2251, 62, 5532, 278, 62, 16663, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 4704, 329, 32096, 6597, 22716, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 815, 307, 9177, 416, 262, 10944, 1398, 284, 1441, 281, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 10944, 422, 13860, 16818, 284, 5412, 262, 6597, 4269, 290, 198, 220, 220, 220, 220, 220, 220, 220, 3758, 340, 284, 262, 3563, 51, 3113, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13860, 16818, 25, 14122, 284, 5412, 6597, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 198, 4871, 10766, 5248, 3055, 12124, 10697, 2257, 51, 7, 12124, 278, 2257, 51, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43124, 3563, 51, 7071, 329, 262, 2769, 45862, 12, 15388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 12889, 6217, 7959, 14, 22089, 12, 67, 2301, 82, 198, 220, 220, 220, 220, 220, 220, 220, 779, 428, 611, 345, 765, 284, 2583, 10766, 5248, 3055, 3511, 198, 220, 220, 220, 220, 220, 220, 220, 3563, 51, 4566, 481, 804, 588, 428, 25, 628, 220, 220, 220, 220, 220, 220, 220, 366, 301, 83, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21412, 1298, 366, 22089, 45862, 62, 5532, 62, 15388, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22089, 45862, 62, 5532, 62, 15388, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5532, 62, 9900, 1298, 366, 4023, 1378, 36750, 25, 1795, 1795, 14, 301, 83, 30, 18982, 28, 1433, 42, 62, 5662, 44, 1433, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 37227, 628, 198, 198, 4871, 3012, 18839, 12124, 278, 2257, 51, 7, 12124, 278, 2257, 51, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43124, 3563, 51, 7071, 329, 3012, 10130, 24709, 12, 2514, 12, 8206, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 779, 7347, 2721, 23645, 12, 17721, 12, 45862, 290, 751, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3012, 7824, 1994, 284, 1957, 616, 36714, 13, 10414, 2393, 13, 383, 3563, 51, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 481, 804, 588, 428, 25, 628, 220, 220, 220, 220, 220, 220, 220, 366, 301, 83, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21412, 1298, 366, 13297, 62, 17721, 62, 5532, 278, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13297, 62, 17721, 62, 5532, 278, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 445, 1843, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17752, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23517, 3012, 7824, 19449, 994, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 628, 220, 220, 220, 37227, 628, 628, 628, 198, 4299, 3440, 62, 301, 83, 62, 33803, 7, 21412, 62, 3672, 2599, 198, 220, 220, 220, 37227, 36918, 2848, 2163, 329, 11046, 336, 83, 13877, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 62, 3672, 357, 2536, 2599, 2011, 36714, 336, 83, 8265, 1438, 422, 4566, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 25, 3563, 51, 13877, 1398, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 3440, 62, 33803, 10786, 1820, 36714, 13, 33803, 13, 301, 83, 3256, 8265, 62, 3672, 8, 628 ]
2.497264
3,107
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class TransformationTryoutResponse(Model): """A response representing the status of a transformation config tryout requset. :param status: The status of the transformation config tryout. :type status: str :param error_message: Any error messages that happened while transforming, if any. :type error_message: str :param results: A list of records that the transformation config outputed. :type results: list[str] :param console_output: The console output of the transformation config, if any. Can be useful for debugging. :type console_output: list[str] """ _attribute_map = { 'status': {'key': 'status', 'type': 'str'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, 'results': {'key': 'results', 'type': '[str]'}, 'console_output': {'key': 'consoleOutput', 'type': '[str]'}, }
[ 2, 15069, 357, 66, 8, 5413, 10501, 13, 201, 198, 2, 49962, 739, 262, 17168, 5964, 13, 201, 198, 201, 198, 2, 19617, 28, 40477, 12, 23, 201, 198, 2, 16529, 35937, 201, 198, 2, 6127, 7560, 416, 5413, 357, 49, 8, 11160, 19452, 6127, 35986, 13, 201, 198, 2, 19179, 743, 2728, 11491, 4069, 290, 481, 307, 2626, 611, 262, 2438, 318, 201, 198, 2, 16935, 515, 13, 201, 198, 2, 16529, 35937, 201, 198, 201, 198, 6738, 13845, 2118, 13, 46911, 1634, 1330, 9104, 201, 198, 201, 198, 201, 198, 4871, 49127, 23433, 448, 31077, 7, 17633, 2599, 201, 198, 220, 220, 220, 37227, 32, 2882, 10200, 262, 3722, 286, 257, 13389, 4566, 1949, 448, 201, 198, 220, 220, 220, 43089, 385, 316, 13, 201, 198, 201, 198, 220, 220, 220, 1058, 17143, 3722, 25, 383, 3722, 286, 262, 13389, 4566, 1949, 448, 13, 201, 198, 220, 220, 220, 1058, 4906, 3722, 25, 965, 201, 198, 220, 220, 220, 1058, 17143, 4049, 62, 20500, 25, 4377, 4049, 6218, 326, 3022, 981, 25449, 11, 201, 198, 220, 220, 220, 220, 611, 597, 13, 201, 198, 220, 220, 220, 1058, 4906, 4049, 62, 20500, 25, 965, 201, 198, 220, 220, 220, 1058, 17143, 2482, 25, 317, 1351, 286, 4406, 326, 262, 13389, 4566, 5072, 276, 13, 201, 198, 220, 220, 220, 1058, 4906, 2482, 25, 1351, 58, 2536, 60, 201, 198, 220, 220, 220, 1058, 17143, 8624, 62, 22915, 25, 383, 8624, 5072, 286, 262, 13389, 4566, 11, 611, 201, 198, 220, 220, 220, 220, 597, 13, 1680, 307, 4465, 329, 28769, 13, 201, 198, 220, 220, 220, 1058, 4906, 8624, 62, 22915, 25, 1351, 58, 2536, 60, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 4808, 42348, 62, 8899, 796, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13376, 10354, 1391, 6, 2539, 10354, 705, 13376, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18224, 62, 20500, 10354, 1391, 6, 2539, 10354, 705, 18224, 12837, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 43420, 10354, 1391, 6, 2539, 10354, 705, 43420, 3256, 705, 4906, 10354, 44438, 2536, 49946, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41947, 62, 22915, 10354, 1391, 6, 2539, 10354, 705, 41947, 26410, 3256, 705, 4906, 10354, 44438, 2536, 49946, 5512, 201, 198, 220, 220, 220, 1782, 201, 198 ]
3.253012
415
from __future__ import unicode_literals from dynamic_rest.serializers import ( DynamicModelSerializer, DynamicRelationField ) from ..models import TodoProject from .ShortUserSerializer import ShortUserSerializer from .ShortTodoStatusSerializer import ShortTodoStatusSerializer
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 8925, 62, 2118, 13, 46911, 11341, 1330, 357, 198, 220, 220, 220, 26977, 17633, 32634, 7509, 11, 198, 220, 220, 220, 26977, 6892, 341, 15878, 198, 8, 198, 198, 6738, 11485, 27530, 1330, 309, 24313, 16775, 198, 6738, 764, 16438, 12982, 32634, 7509, 1330, 10073, 12982, 32634, 7509, 198, 6738, 764, 16438, 51, 24313, 19580, 32634, 7509, 1330, 10073, 51, 24313, 19580, 32634, 7509, 628 ]
3.692308
78
from typing import Union import cv2 import numpy as np import torch from matplotlib import pyplot as plt, patches
[ 6738, 19720, 1330, 4479, 198, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 11, 16082, 628 ]
3.515152
33
"""Module for scraping""" from bs4 import BeautifulSoup import dateparser import datetime class Scraper: """Scraper class""" def get_urls(self): """Scrapes posts on a page""" all_urls = [] # infinite scroll urls = self.soup.find_all("a", class_="SQnoC3ObvgnGjWt90zD9Z _2INHSNB8V5eaWp4P0rY_mE") for url in urls: all_urls.append(url['href']) return all_urls
[ 37811, 26796, 329, 46743, 37811, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 11748, 3128, 48610, 198, 11748, 4818, 8079, 628, 198, 4871, 1446, 38545, 25, 198, 220, 220, 220, 37227, 3351, 38545, 1398, 37811, 628, 220, 220, 220, 825, 651, 62, 6371, 82, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3351, 2416, 274, 6851, 319, 257, 2443, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 6371, 82, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15541, 10743, 198, 220, 220, 220, 220, 220, 220, 220, 2956, 7278, 796, 2116, 13, 82, 10486, 13, 19796, 62, 439, 7203, 64, 1600, 1398, 62, 2625, 50, 48, 3919, 34, 18, 5944, 85, 4593, 38, 73, 54, 83, 3829, 89, 35, 24, 57, 4808, 17, 1268, 7998, 32819, 23, 53, 20, 18213, 54, 79, 19, 47, 15, 81, 56, 62, 76, 36, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 329, 19016, 287, 2956, 7278, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 6371, 82, 13, 33295, 7, 6371, 17816, 33257, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 477, 62, 6371, 82, 198 ]
2.087805
205
import unittest import os from easycrypto.key import Key
[ 11748, 555, 715, 395, 198, 11748, 28686, 198, 198, 6738, 2562, 29609, 78, 13, 2539, 1330, 7383, 198 ]
3.222222
18
#!/usr/bin/env python import os import argparse import datetime from readinglistlib import ReadingListReader # Configure CLI fields = ['title', 'url', 'preview', 'date', 'added', 'viewed', 'uuid', 'synckey', 'syncserverid'] ap = argparse.ArgumentParser(description='This script outputs the contents of your Safari Reading List, a queue of temporary bookmarks representing articles you intend to read. By default, it prints the title and url of unread articles in chronological order, beginning with the oldest bookmark. Default output is compliant with CSV conventions.') ap.add_argument('--separator', action='store', default=',', metavar='SEP', help='Separates field values. Specify \'tab\' to use an actual tab character. Defaults to \',\'.') ap.add_argument('--quote', action='store', default='"', help='Specify \'\' to suppress quoting. Defaults to \'"\'.') ap.add_argument('--forcequotes', action='store_true', default=False, help="Quote all field values. By default, only quote empty fields or values containing SEP, QUOTE, or newlines.") ap.add_argument('--fields', action='store', nargs='+', default=['title', 'url'], choices=fields, metavar='FIELD', help='Controls format of output record. Acceptable fields are title, url, preview, date, added, viewed, uuid, synckey, and syncserverid. Defaults to title and url. (Date is date article was originally bookmarked. If defined, added is date bookmark was synced via iCloud. If defined, viewed is date article was read.)') ap.add_argument('--header', action='store_true', default=False, help='Output a header record containing field labels.') ap.add_argument('--timestamp', action='store', default='%a %b %d %H:%M:%S %Y', metavar='FORMAT', help='Controls format of date, added, and viewed fields. Understands strftime directives. Defaults to \'%%a %%b %%d %%H:%%M:%%S %%Y\' (eg, \'' + datetime.datetime.now().strftime('%a %b %d %H:%M:%S %Y') + '\').') ap.add_argument('--bookmarks', action='store_true', default=False, help='Output items in Netscape bookmarks file format. Overrides preceding tabular output options.') ap.add_argument('--show', action='store', default='unread', choices=['unread', 'read', 'all'], metavar='FILTER', help='Control which items to output. Acceptable FILTER values are unread, read, or all. Defaults to unread.') ap.add_argument('--sortfield', action='store', default='date', choices=fields, metavar='FIELD', help="Controls how output is sorted. Defaults to date.") ap.add_argument('--sortorder', action='store', default='ascending', choices=['ascending', 'descending'], metavar='ORDER', help='May be ascending or descending. Defaults to ascending.') ap.add_argument('--output', action='store', type=argparse.FileType('w'), default='-', help='Output file path. Defaults to stdout.') ap.add_argument('--input', action='store', default=os.path.expanduser('~/Library/Safari/Bookmarks.plist'), help='Input file path. Assumed to be a Safari bookmarks file formatted as a binary property list. Defaults to ~/Library/Safari/Bookmarks.plist') args = ap.parse_args() # Reinterpretation of fiddly options if 'tab' == args.separator: args.separator = '\t' # Input if not os.path.exists(args.input): raise SystemExit, "The input file does not exist: %s" % args.input rlr = ReadingListReader(args.input) bookmarks = rlr.read( show = None if 'all' == args.show else args.show, sortfield = args.sortfield, ascending = True if 'ascending' == args.sortorder else False, dateformat = args.timestamp) if args.bookmarks: # Netscape Bookmarks File formatted output # eg http://msdn.microsoft.com/en-us/library/ie/aa753582(v=vs.85).aspx print >> args.output, '<!DOCTYPE NETSCAPE-Bookmark-file-1>\n<HTML>\n<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=UTF-8">\n<Title>Bookmarks</Title>\n<H1>Bookmarks</H1>\n<DT><H3 FOLDED>Reading List Bookmarks</H3>\n<DL>' for bookmark in bookmarks: print >> args.output, ' <DT><A HREF="%s">%s</A>' % (bookmark['url'].encode('utf-8'), bookmark['title'].encode('utf-8')) print >> args.output, '</DL>\n</HTML>' else: # CSV or custom tabular formatted output # Accepts a value. Tests if it should be quoted and, if so, returns quoted # value with any quote characters escaped via duplication. # Quoting rules derived from: # https://tools.ietf.org/html/rfc4180 # http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm # Accepts a list of values. Prints record with separators and, if required, quotes. # Header record if True == args.header: output_record(args.fields) for bookmark in bookmarks: field_values = [] for field in args.fields: field_value = bookmark[field] field_values.append(field_value.encode('utf-8')) output_record(field_values)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 4818, 8079, 198, 198, 6738, 3555, 4868, 8019, 1330, 11725, 8053, 33634, 198, 198, 2, 17056, 495, 43749, 198, 25747, 796, 37250, 7839, 3256, 705, 6371, 3256, 705, 3866, 1177, 3256, 705, 4475, 3256, 705, 29373, 3256, 705, 1177, 276, 3256, 705, 12303, 312, 3256, 705, 27261, 2539, 3256, 705, 27261, 15388, 312, 20520, 198, 499, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 1212, 4226, 23862, 262, 10154, 286, 534, 23298, 11725, 7343, 11, 257, 16834, 286, 8584, 1492, 14306, 10200, 6685, 345, 14765, 284, 1100, 13, 2750, 4277, 11, 340, 20842, 262, 3670, 290, 19016, 286, 555, 961, 6685, 287, 45946, 1502, 11, 3726, 351, 262, 13325, 44007, 13, 15161, 5072, 318, 31332, 351, 44189, 21396, 2637, 8, 198, 499, 13, 2860, 62, 49140, 10786, 438, 25512, 1352, 3256, 2223, 11639, 8095, 3256, 4277, 28, 3256, 3256, 1138, 615, 283, 11639, 5188, 47, 3256, 1037, 11639, 19117, 283, 689, 2214, 3815, 13, 18291, 1958, 34373, 8658, 43054, 284, 779, 281, 4036, 7400, 2095, 13, 2896, 13185, 284, 3467, 3256, 43054, 2637, 8, 198, 499, 13, 2860, 62, 49140, 10786, 438, 22708, 3256, 2223, 11639, 8095, 3256, 4277, 11639, 1, 3256, 1037, 11639, 22882, 1958, 34373, 43054, 284, 18175, 28411, 13, 2896, 13185, 284, 3467, 29653, 43054, 2637, 8, 198, 499, 13, 2860, 62, 49140, 10786, 438, 3174, 421, 6421, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 1037, 2625, 25178, 477, 2214, 3815, 13, 2750, 4277, 11, 691, 9577, 6565, 7032, 393, 3815, 7268, 7946, 47, 11, 19604, 23051, 11, 393, 649, 6615, 19570, 198, 499, 13, 2860, 62, 49140, 10786, 438, 25747, 3256, 2223, 11639, 8095, 3256, 299, 22046, 11639, 10, 3256, 4277, 28, 17816, 7839, 3256, 705, 6371, 6, 4357, 7747, 28, 25747, 11, 1138, 615, 283, 11639, 44603, 3256, 1037, 11639, 15988, 82, 5794, 286, 5072, 1700, 13, 21699, 540, 7032, 389, 3670, 11, 19016, 11, 12714, 11, 3128, 11, 2087, 11, 9569, 11, 334, 27112, 11, 17510, 2539, 11, 290, 17510, 15388, 312, 13, 2896, 13185, 284, 3670, 290, 19016, 13, 357, 10430, 318, 3128, 2708, 373, 6198, 1492, 23505, 13, 1002, 5447, 11, 2087, 318, 3128, 220, 44007, 373, 6171, 771, 2884, 42076, 13, 1002, 5447, 11, 9569, 318, 3128, 2708, 373, 1100, 2014, 11537, 198, 499, 13, 2860, 62, 49140, 10786, 438, 25677, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 1037, 11639, 26410, 257, 13639, 1700, 7268, 2214, 14722, 2637, 8, 198, 499, 13, 2860, 62, 49140, 10786, 438, 16514, 27823, 3256, 2223, 11639, 8095, 3256, 4277, 11639, 4, 64, 4064, 65, 4064, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4064, 56, 3256, 1138, 615, 283, 11639, 21389, 1404, 3256, 1037, 11639, 15988, 82, 5794, 286, 3128, 11, 2087, 11, 290, 9569, 7032, 13, 45010, 82, 965, 31387, 34819, 13, 2896, 13185, 284, 34373, 16626, 64, 43313, 65, 43313, 67, 43313, 39, 25, 16626, 44, 25, 16626, 50, 43313, 56, 43054, 357, 1533, 11, 3467, 7061, 1343, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 64, 4064, 65, 4064, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4064, 56, 11537, 1343, 705, 59, 27691, 11537, 198, 499, 13, 2860, 62, 49140, 10786, 438, 2070, 14306, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 1037, 11639, 26410, 3709, 287, 27811, 36435, 1492, 14306, 2393, 5794, 13, 3827, 81, 1460, 18148, 7400, 934, 5072, 3689, 2637, 8, 198, 499, 13, 2860, 62, 49140, 10786, 438, 12860, 3256, 2223, 11639, 8095, 3256, 4277, 11639, 403, 961, 3256, 7747, 28, 17816, 403, 961, 3256, 705, 961, 3256, 705, 439, 6, 4357, 1138, 615, 283, 11639, 46700, 5781, 3256, 1037, 11639, 15988, 543, 3709, 284, 5072, 13, 21699, 540, 34020, 5781, 3815, 389, 555, 961, 11, 1100, 11, 393, 477, 13, 2896, 13185, 284, 555, 961, 2637, 8, 198, 499, 13, 2860, 62, 49140, 10786, 438, 30619, 3245, 3256, 2223, 11639, 8095, 3256, 4277, 11639, 4475, 3256, 7747, 28, 25747, 11, 1138, 615, 283, 11639, 44603, 3256, 1037, 2625, 15988, 82, 703, 5072, 318, 23243, 13, 2896, 13185, 284, 3128, 19570, 198, 499, 13, 2860, 62, 49140, 10786, 438, 30619, 2875, 3256, 2223, 11639, 8095, 3256, 4277, 11639, 3372, 1571, 3256, 7747, 28, 17816, 3372, 1571, 3256, 705, 20147, 1571, 6, 4357, 1138, 615, 283, 11639, 12532, 1137, 3256, 1037, 11639, 6747, 307, 41988, 393, 31491, 13, 2896, 13185, 284, 41988, 2637, 8, 198, 499, 13, 2860, 62, 49140, 10786, 438, 22915, 3256, 2223, 11639, 8095, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 86, 33809, 4277, 11639, 12, 3256, 1037, 11639, 26410, 2393, 3108, 13, 2896, 13185, 284, 14367, 448, 2637, 8, 198, 499, 13, 2860, 62, 49140, 10786, 438, 15414, 3256, 2223, 11639, 8095, 3256, 4277, 28, 418, 13, 6978, 13, 11201, 392, 7220, 10786, 93, 14, 23377, 14, 50, 1878, 2743, 14, 10482, 14306, 13, 489, 396, 33809, 1037, 11639, 20560, 2393, 3108, 13, 2195, 18940, 284, 307, 257, 23298, 1492, 14306, 2393, 39559, 355, 257, 13934, 3119, 1351, 13, 2896, 13185, 284, 47795, 23377, 14, 50, 1878, 2743, 14, 10482, 14306, 13, 489, 396, 11537, 198, 22046, 796, 2471, 13, 29572, 62, 22046, 3419, 198, 198, 2, 797, 27381, 341, 286, 277, 1638, 306, 3689, 198, 361, 705, 8658, 6, 6624, 26498, 13, 25512, 1352, 25, 198, 197, 22046, 13, 25512, 1352, 796, 705, 59, 83, 6, 198, 198, 2, 23412, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 22046, 13, 15414, 2599, 198, 197, 40225, 4482, 30337, 11, 366, 464, 5128, 2393, 857, 407, 2152, 25, 4064, 82, 1, 4064, 26498, 13, 15414, 198, 81, 14050, 796, 11725, 8053, 33634, 7, 22046, 13, 15414, 8, 198, 198, 2070, 14306, 796, 374, 14050, 13, 961, 7, 198, 197, 197, 12860, 796, 6045, 611, 705, 439, 6, 6624, 26498, 13, 12860, 2073, 26498, 13, 12860, 11, 198, 197, 197, 30619, 3245, 796, 26498, 13, 30619, 3245, 11, 198, 197, 197, 3372, 1571, 796, 6407, 611, 705, 3372, 1571, 6, 6624, 26498, 13, 30619, 2875, 2073, 10352, 11, 198, 197, 197, 4475, 18982, 796, 26498, 13, 16514, 27823, 8, 198, 198, 361, 26498, 13, 2070, 14306, 25, 628, 197, 2, 27811, 36435, 4897, 14306, 9220, 39559, 5072, 198, 197, 2, 29206, 2638, 1378, 907, 32656, 13, 40485, 13, 785, 14, 268, 12, 385, 14, 32016, 14, 494, 14, 7252, 2425, 2327, 6469, 7, 85, 28, 14259, 13, 5332, 737, 31740, 198, 197, 198, 197, 4798, 9609, 26498, 13, 22915, 11, 705, 27, 0, 18227, 4177, 56, 11401, 30502, 6173, 45721, 12, 10482, 4102, 12, 7753, 12, 16, 29, 59, 77, 27, 28656, 29, 59, 77, 27, 44, 20892, 14626, 12, 36, 10917, 3824, 2625, 37815, 3525, 12, 25216, 1, 22904, 3525, 2625, 5239, 14, 6494, 26, 34534, 316, 28, 48504, 12, 23, 5320, 59, 77, 27, 19160, 29, 10482, 14306, 3556, 19160, 29, 59, 77, 27, 39, 16, 29, 10482, 14306, 3556, 39, 16, 29, 59, 77, 27, 24544, 6927, 39, 18, 376, 15173, 1961, 29, 36120, 7343, 4897, 14306, 3556, 39, 18, 29, 59, 77, 27, 19260, 29, 6, 198, 197, 1640, 44007, 287, 1492, 14306, 25, 198, 197, 197, 4798, 9609, 26498, 13, 22915, 11, 705, 197, 27, 24544, 6927, 32, 367, 31688, 2625, 4, 82, 5320, 4, 82, 3556, 32, 29, 6, 4064, 357, 2070, 4102, 17816, 6371, 6, 4083, 268, 8189, 10786, 40477, 12, 23, 33809, 44007, 17816, 7839, 6, 4083, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 198, 197, 4798, 9609, 26498, 13, 22915, 11, 705, 3556, 19260, 29, 59, 77, 3556, 28656, 29, 6, 198, 198, 17772, 25, 198, 197, 198, 197, 2, 44189, 393, 2183, 7400, 934, 39559, 5072, 198, 197, 198, 197, 2, 21699, 82, 257, 1988, 13, 30307, 611, 340, 815, 307, 10947, 290, 11, 611, 523, 11, 5860, 10947, 198, 197, 2, 1988, 351, 597, 9577, 3435, 13537, 2884, 50124, 13, 198, 197, 2, 2264, 10720, 3173, 10944, 422, 25, 198, 197, 2, 3740, 1378, 31391, 13, 1155, 69, 13, 2398, 14, 6494, 14, 81, 16072, 19, 15259, 198, 197, 2, 2638, 1378, 2503, 13, 20123, 452, 88, 301, 13, 785, 14, 23579, 14, 8001, 2983, 14, 7902, 53, 14, 7902, 53, 486, 13, 19211, 198, 197, 198, 197, 2, 21699, 82, 257, 1351, 286, 3815, 13, 12578, 82, 1700, 351, 2880, 2024, 290, 11, 611, 2672, 11, 13386, 13, 198, 197, 198, 197, 2, 48900, 1700, 198, 197, 361, 6407, 6624, 26498, 13, 25677, 25, 198, 197, 197, 22915, 62, 22105, 7, 22046, 13, 25747, 8, 198, 197, 198, 197, 1640, 44007, 287, 1492, 14306, 25, 198, 197, 197, 3245, 62, 27160, 796, 17635, 198, 197, 197, 198, 197, 197, 1640, 2214, 287, 26498, 13, 25747, 25, 198, 197, 197, 197, 3245, 62, 8367, 796, 44007, 58, 3245, 60, 197, 197, 197, 198, 197, 197, 197, 3245, 62, 27160, 13, 33295, 7, 3245, 62, 8367, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 198, 197, 197, 198, 197, 197, 22915, 62, 22105, 7, 3245, 62, 27160, 8, 198, 197, 198 ]
3.113307
1,518
######## # autora: [email protected] # repositório: https://github.com/danielle8farias # Descrição: Usuário informa nome e sobrenome. # O programa retorna quantas letras o nome completo possui (excluindo espaços) # e quantas letras o primeiro nome possui. ######## nome_completo = input('Digite seu nome completo: ') #count(' ') conta os espaços em branco #len() retorna o tamanho da string # retirando espaço entre os nomes tamanho_completo = len(nome_completo) - nome_completo.count(' ') print(f'Seu nome completo possui: {tamanho_completo} letras.') #find() retorna a posição de um caractere # nesse caso queremos encontrar o primeiro espaço num = nome_completo.find(' ') print(f'Seu primeiro nome possui: {num} letras.\n')
[ 7804, 198, 2, 1960, 5799, 25, 288, 6321, 293, 23, 69, 2743, 292, 31, 14816, 13, 785, 220, 198, 2, 1128, 7434, 10205, 27250, 25, 3740, 1378, 12567, 13, 785, 14, 67, 6321, 293, 23, 69, 2743, 292, 198, 2, 39373, 380, 16175, 28749, 25, 471, 2385, 6557, 27250, 4175, 64, 299, 462, 304, 27355, 918, 462, 13, 220, 198, 2, 440, 1430, 64, 1005, 1211, 64, 5554, 292, 1309, 8847, 267, 299, 462, 1224, 1462, 1184, 9019, 357, 1069, 565, 84, 521, 78, 1658, 8957, 16175, 418, 8, 220, 198, 2, 304, 5554, 292, 1309, 8847, 267, 6994, 7058, 299, 462, 1184, 9019, 13, 220, 198, 7804, 198, 198, 77, 462, 62, 785, 1154, 1462, 796, 5128, 10786, 19511, 578, 384, 84, 299, 462, 1224, 1462, 25, 705, 8, 198, 198, 2, 9127, 10786, 705, 8, 542, 64, 28686, 1658, 8957, 16175, 418, 795, 865, 47699, 198, 2, 11925, 3419, 1005, 1211, 64, 267, 256, 10546, 8873, 12379, 4731, 198, 2, 220, 220, 1005, 343, 25440, 1658, 8957, 16175, 78, 920, 260, 28686, 299, 2586, 198, 83, 10546, 8873, 62, 785, 1154, 1462, 796, 18896, 7, 77, 462, 62, 785, 1154, 1462, 8, 532, 299, 462, 62, 785, 1154, 1462, 13, 9127, 10786, 705, 8, 198, 4798, 7, 69, 6, 4653, 84, 299, 462, 1224, 1462, 1184, 9019, 25, 1391, 83, 10546, 8873, 62, 785, 1154, 1462, 92, 1309, 8847, 2637, 8, 198, 2, 19796, 3419, 1005, 1211, 64, 257, 1426, 72, 16175, 28749, 390, 23781, 1097, 529, 567, 198, 2, 220, 220, 299, 35270, 6124, 78, 627, 567, 16785, 2207, 756, 20040, 267, 6994, 7058, 1658, 8957, 16175, 78, 198, 22510, 796, 299, 462, 62, 785, 1154, 1462, 13, 19796, 10786, 705, 8, 198, 4798, 7, 69, 6, 4653, 84, 6994, 7058, 299, 462, 1184, 9019, 25, 1391, 22510, 92, 1309, 8847, 13, 59, 77, 11537, 198 ]
2.411003
309
print ("tech rachit are here")
[ 4798, 5855, 13670, 374, 620, 270, 389, 994, 4943, 198 ]
3.1
10
from django.conf.urls import url from . import views app_name = 'feedback' urlpatterns = [ url(r'^article/(?P<slug>[-\w]+)/comment$', views.comment, name='comment'), url(r'^reviewcomment/(?P<comment_id>[0-9]+)/$', views.reviewcomment, name='review-comment'), url(r'^article/(?P<slug>[-\w]+)/like$', views.like, name='like'), ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 198, 6738, 764, 1330, 5009, 628, 198, 1324, 62, 3672, 796, 705, 12363, 1891, 6, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 20205, 29006, 30, 47, 27, 6649, 1018, 36937, 12, 59, 86, 48688, 20679, 23893, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 5009, 13, 23893, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 23893, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 19023, 23893, 29006, 30, 47, 27, 23893, 62, 312, 36937, 15, 12, 24, 48688, 20679, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 5009, 13, 19023, 23893, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 19023, 12, 23893, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 20205, 29006, 30, 47, 27, 6649, 1018, 36937, 12, 59, 86, 48688, 20679, 2339, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 5009, 13, 2339, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 2339, 33809, 198, 60, 198 ]
2.096774
186
import logging, sys from django.conf import settings from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.core.mail import send_mail from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.http import HttpResponse, Http404 from django.shortcuts import render_to_response, redirect from django.template import RequestContext from webapp.tools.misc_tools import create_movie_property, person_is_relevant, genre_is_relevant, generate_header_dict, set_msg, check_and_get_session_info, get_type_dict from webapp.models import Profiles, People, Genres, Movies, Properties, Associations property_logger = logging.getLogger('log.property') associate_logger = logging.getLogger('log.associate') # Display people list # Person tools including view, delete, edit, suggestion, and movie association tools (add, remove) # Display genre list # Genre tools including view, delete, edit, suggestion, and movie association tools (add, remove)
[ 11748, 18931, 11, 25064, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 13, 1069, 11755, 1330, 9515, 13921, 3673, 3109, 396, 11, 3254, 24765, 12331, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 3758, 62, 4529, 198, 6738, 42625, 14208, 13, 7295, 13, 79, 363, 20900, 1330, 31525, 20900, 11, 33523, 9876, 11, 7873, 3673, 2025, 46541, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 11, 367, 29281, 26429, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 62, 1462, 62, 26209, 11, 18941, 198, 6738, 42625, 14208, 13, 28243, 1330, 19390, 21947, 198, 6738, 3992, 1324, 13, 31391, 13, 44374, 62, 31391, 1330, 2251, 62, 41364, 62, 26745, 11, 1048, 62, 271, 62, 49659, 11, 12121, 62, 271, 62, 49659, 11, 7716, 62, 25677, 62, 11600, 11, 900, 62, 19662, 11, 2198, 62, 392, 62, 1136, 62, 29891, 62, 10951, 11, 651, 62, 4906, 62, 11600, 198, 6738, 3992, 1324, 13, 27530, 1330, 4415, 2915, 11, 4380, 11, 5215, 411, 11, 27151, 11, 24946, 11, 3928, 602, 198, 198, 26745, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 6404, 13, 26745, 11537, 198, 562, 47615, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 6404, 13, 562, 47615, 11537, 198, 198, 2, 16531, 661, 1351, 198, 198, 2, 7755, 4899, 1390, 1570, 11, 12233, 11, 4370, 11, 13052, 11, 290, 3807, 8112, 4899, 357, 2860, 11, 4781, 8, 198, 198, 2, 16531, 12121, 1351, 198, 198, 2, 5215, 260, 4899, 1390, 1570, 11, 12233, 11, 4370, 11, 13052, 11, 290, 3807, 8112, 4899, 357, 2860, 11, 4781, 8, 628 ]
3.643382
272
from waflib import Task from waflib.TaskGen import feature, before_method, taskgen_method, extension from waflib.Tools import c_preproc try: import cPickle as pickle except ImportError: import pickle template_kernel = """ _MOTOR_PLUGIN_EXPORT void _%(kernel)s(const u32 index, const u32 total, const minitl::array< minitl::weak<const Motor::KernelScheduler::IMemoryBuffer> >& /*argv*/) { motor_forceuse(index); motor_forceuse(total); } _MOTOR_REGISTER_METHOD_NAMED(MOTOR_KERNEL_ID, _%(kernel)s, _%(kernel)s); """ template_cpp = """ %(pch)s #include <motor/config/config.hh> #include <motor/kernel/simd.hh> #include <motor/kernel/input/input.hh> #include <motor/plugin/dynobjectlist.hh> #include <motor/minitl/array.hh> #include <motor/plugin.compute.cuda/memorybuffer.hh> #include <motor/scheduler/kernel/parameters/parameters.hh> using namespace Kernel; _MOTOR_REGISTER_PLUGIN(MOTOR_KERNEL_ID, MOTOR_KERNEL_NAME); %(kernels)s """ class nvcc(Task.Task): "nvcc" run_str = '${NVCC_CXX} ${NVCC_CXXFLAGS} --fatbin ${NVCC_FRAMEWORKPATH_ST:FRAMEWORKPATH} ${NVCC_CPPPATH_ST:INCPATHS} -DMOTOR_COMPUTE=1 ${NVCC_DEFINES_ST:DEFINES} -D_NVCC=1 ${NVCC_CXX_SRC_F}${SRC[0].abspath()} ${NVCC_CXX_TGT_F} ${TGT}' ext_out = ['.fatbin'] color = 'GREEN' class cudac(Task.Task): "Generates a CUDA binder to call the C++ kernel" color = 'CYAN' @feature('motor:cuda:kernel_create') @before_method('process_source') @feature('motor:preprocess')
[ 6738, 266, 1878, 8019, 1330, 15941, 198, 6738, 266, 1878, 8019, 13, 25714, 13746, 1330, 3895, 11, 878, 62, 24396, 11, 4876, 5235, 62, 24396, 11, 7552, 198, 6738, 266, 1878, 8019, 13, 33637, 1330, 269, 62, 3866, 36942, 198, 28311, 25, 198, 220, 220, 220, 1330, 269, 31686, 293, 355, 2298, 293, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 2298, 293, 198, 198, 28243, 62, 33885, 796, 37227, 198, 62, 44, 2394, 1581, 62, 6489, 7340, 1268, 62, 6369, 15490, 7951, 4808, 4, 7, 33885, 8, 82, 7, 9979, 334, 2624, 6376, 11, 1500, 334, 2624, 2472, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 949, 270, 75, 3712, 18747, 27, 949, 270, 75, 3712, 38695, 27, 9979, 12533, 3712, 42, 7948, 50, 1740, 18173, 3712, 3955, 368, 652, 28632, 29, 1875, 5, 11900, 853, 85, 16208, 8, 198, 90, 198, 220, 220, 220, 5584, 62, 3174, 1904, 7, 9630, 1776, 198, 220, 220, 220, 5584, 62, 3174, 1904, 7, 23350, 1776, 198, 92, 198, 62, 44, 2394, 1581, 62, 31553, 41517, 62, 49273, 62, 45, 2390, 1961, 7, 44, 2394, 1581, 62, 42, 28778, 3698, 62, 2389, 11, 4808, 4, 7, 33885, 8, 82, 11, 4808, 4, 7, 33885, 8, 82, 1776, 198, 37811, 198, 198, 28243, 62, 20322, 796, 37227, 198, 4, 7, 79, 354, 8, 82, 198, 2, 17256, 220, 220, 220, 1279, 76, 20965, 14, 11250, 14, 11250, 13, 12337, 29, 198, 2, 17256, 220, 220, 220, 1279, 76, 20965, 14, 33885, 14, 14323, 67, 13, 12337, 29, 198, 2, 17256, 220, 220, 220, 1279, 76, 20965, 14, 33885, 14, 15414, 14, 15414, 13, 12337, 29, 198, 2, 17256, 220, 220, 220, 1279, 76, 20965, 14, 33803, 14, 67, 2047, 15252, 4868, 13, 12337, 29, 198, 2, 17256, 220, 220, 220, 1279, 76, 20965, 14, 1084, 270, 75, 14, 18747, 13, 12337, 29, 198, 2, 17256, 220, 220, 220, 1279, 76, 20965, 14, 33803, 13, 5589, 1133, 13, 66, 15339, 14, 31673, 22252, 13, 12337, 29, 198, 2, 17256, 220, 220, 220, 1279, 76, 20965, 14, 1416, 704, 18173, 14, 33885, 14, 17143, 7307, 14, 17143, 7307, 13, 12337, 29, 198, 198, 3500, 25745, 32169, 26, 198, 198, 62, 44, 2394, 1581, 62, 31553, 41517, 62, 6489, 7340, 1268, 7, 44, 2394, 1581, 62, 42, 28778, 3698, 62, 2389, 11, 42982, 1581, 62, 42, 28778, 3698, 62, 20608, 1776, 198, 198, 4, 7, 74, 44930, 8, 82, 198, 198, 37811, 628, 198, 4871, 299, 85, 535, 7, 25714, 13, 25714, 2599, 198, 220, 220, 220, 366, 48005, 535, 1, 198, 220, 220, 220, 1057, 62, 2536, 796, 705, 38892, 27159, 4093, 62, 34, 8051, 92, 25597, 27159, 4093, 62, 34, 8051, 38948, 50, 92, 1377, 17359, 8800, 25597, 27159, 4093, 62, 10913, 2390, 6217, 14670, 34219, 62, 2257, 25, 10913, 2390, 6217, 14670, 34219, 92, 25597, 27159, 4093, 62, 8697, 10246, 12599, 62, 2257, 25, 1268, 8697, 1404, 7998, 92, 532, 23127, 2394, 1581, 62, 9858, 30076, 36, 28, 16, 25597, 27159, 4093, 62, 7206, 20032, 1546, 62, 2257, 25, 7206, 20032, 1546, 92, 532, 35, 62, 27159, 4093, 28, 16, 25597, 27159, 4093, 62, 34, 8051, 62, 50, 7397, 62, 37, 92, 38892, 50, 7397, 58, 15, 4083, 397, 2777, 776, 3419, 92, 25597, 27159, 4093, 62, 34, 8051, 62, 51, 19555, 62, 37, 92, 25597, 51, 19555, 92, 6, 198, 220, 220, 220, 1070, 62, 448, 796, 685, 4458, 17359, 8800, 20520, 628, 220, 220, 220, 3124, 796, 705, 43016, 6, 628, 198, 4871, 269, 463, 330, 7, 25714, 13, 25714, 2599, 198, 220, 220, 220, 366, 8645, 689, 257, 29369, 5631, 275, 5540, 284, 869, 262, 327, 4880, 9720, 1, 198, 220, 220, 220, 3124, 796, 705, 34, 56, 1565, 6, 628, 198, 31, 30053, 10786, 76, 20965, 25, 66, 15339, 25, 33885, 62, 17953, 11537, 198, 31, 19052, 62, 24396, 10786, 14681, 62, 10459, 11537, 628, 198, 31, 30053, 10786, 76, 20965, 25, 3866, 14681, 11537, 628 ]
2.235725
683
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right # DFS and convert binary (Accepted), O(n) time and space # Recursion (Top Voted), O(n) time and space
[ 2, 30396, 329, 257, 13934, 5509, 10139, 13, 198, 2, 1398, 12200, 19667, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1188, 28, 15, 11, 1364, 28, 14202, 11, 826, 28, 14202, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 796, 1188, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9464, 796, 1364, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3506, 796, 826, 198, 220, 220, 220, 1303, 360, 10652, 290, 10385, 13934, 357, 38855, 276, 828, 440, 7, 77, 8, 640, 290, 2272, 628, 220, 220, 220, 1303, 3311, 24197, 357, 9126, 569, 5191, 828, 440, 7, 77, 8, 640, 290, 2272, 198 ]
2.424
125
import sys from os import path ZENMAKE_DIR = path.dirname(path.abspath(__file__)) ZENMAKE_DIR = path.normpath(path.join(ZENMAKE_DIR, path.pardir, 'src', 'zenmake')) if ZENMAKE_DIR not in sys.path: sys.path.insert(1, ZENMAKE_DIR) # for test 'testLoadPyModule()' something = 'qaz'
[ 198, 11748, 25064, 198, 6738, 28686, 1330, 3108, 198, 198, 57, 1677, 5673, 7336, 62, 34720, 796, 3108, 13, 15908, 3672, 7, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 57, 1677, 5673, 7336, 62, 34720, 796, 3108, 13, 27237, 6978, 7, 6978, 13, 22179, 7, 57, 1677, 5673, 7336, 62, 34720, 11, 3108, 13, 26037, 343, 11, 705, 10677, 3256, 705, 4801, 15883, 6, 4008, 198, 198, 361, 1168, 1677, 5673, 7336, 62, 34720, 407, 287, 25064, 13, 6978, 25, 198, 220, 220, 220, 25064, 13, 6978, 13, 28463, 7, 16, 11, 1168, 1677, 5673, 7336, 62, 34720, 8, 198, 198, 2, 329, 1332, 705, 9288, 8912, 20519, 26796, 3419, 6, 198, 18927, 796, 705, 80, 1031, 6 ]
2.344262
122
# Author: Barrett Baumgartner # # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import requests import logging THINGSPEAK_URL = 'https://api.thingspeak.com/'
[ 2, 6434, 25, 220, 26971, 8999, 388, 41651, 1008, 198, 2, 220, 198, 2, 220, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 2, 3336, 47466, 13, 198, 198, 11748, 7007, 198, 11748, 18931, 198, 198, 39356, 4303, 36, 10206, 62, 21886, 197, 197, 28, 705, 5450, 1378, 15042, 13, 27971, 36729, 13, 785, 14, 6, 198 ]
3.72381
315
from .BaseEngine import BaseEngine from .Bing import Bing from .Baidu import Baidu
[ 6738, 764, 14881, 13798, 1330, 7308, 13798, 198, 6738, 764, 33, 278, 1330, 21631, 198, 6738, 764, 33, 1698, 84, 1330, 347, 1698, 84, 198 ]
3.32
25
from .aggr_events import devices_event_aggr_data __all__ = ['REPORTS_TYPE_FUNC'] REPORTS_TYPE_FUNC = { 'devicesEventAggr': devices_event_aggr_data }
[ 6738, 764, 363, 2164, 62, 31534, 1330, 4410, 62, 15596, 62, 363, 2164, 62, 7890, 628, 198, 834, 439, 834, 796, 37250, 35316, 33002, 62, 25216, 62, 42296, 34, 20520, 628, 198, 35316, 33002, 62, 25216, 62, 42296, 34, 796, 1391, 198, 220, 220, 220, 705, 42034, 9237, 46384, 81, 10354, 4410, 62, 15596, 62, 363, 2164, 62, 7890, 198, 92, 198 ]
2.532258
62
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-09-18 23:26 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 319, 1584, 12, 2931, 12, 1507, 2242, 25, 2075, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.791045
67
#!flask/bin/python from fantasticsearch import fantasticsearch fantasticsearch.run(debug=True, port=5001)
[ 2, 0, 2704, 2093, 14, 8800, 14, 29412, 198, 6738, 9623, 12947, 1330, 9623, 12947, 198, 198, 69, 415, 3477, 12947, 13, 5143, 7, 24442, 28, 17821, 11, 2493, 28, 4059, 16, 8, 628 ]
3.176471
34
p = float(input("Enter the principle amount : ")) r = float(input("Enter the rate : ")) t = int(input("Enter the time: ")) a = p * (pow((1 + r / 100), t)) ci = a-p print("compound interest is : ", ci)
[ 79, 796, 12178, 7, 15414, 7203, 17469, 262, 7989, 2033, 1058, 366, 4008, 198, 81, 796, 12178, 7, 15414, 7203, 17469, 262, 2494, 1058, 366, 4008, 198, 83, 796, 493, 7, 15414, 7203, 17469, 262, 640, 25, 366, 4008, 198, 64, 796, 279, 1635, 357, 79, 322, 19510, 16, 1343, 374, 1220, 1802, 828, 256, 4008, 198, 979, 796, 257, 12, 79, 198, 4798, 7203, 5589, 633, 1393, 318, 1058, 33172, 269, 72, 8, 198 ]
2.68
75
from selenium.webdriver.common.by import By from ...constant import timeout from ...model.type.xpath import XPath from ..wait.for_element import wait_for_element
[ 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 198, 198, 6738, 2644, 9979, 415, 1330, 26827, 198, 6738, 2644, 19849, 13, 4906, 13, 87, 6978, 1330, 11961, 776, 198, 6738, 11485, 17077, 13, 1640, 62, 30854, 1330, 4043, 62, 1640, 62, 30854, 628 ]
3.416667
48
import pyworld as pyworld import pysptk as sptk import pyreaper as reaper
[ 11748, 12972, 6894, 355, 12972, 6894, 198, 11748, 279, 893, 457, 74, 355, 264, 457, 74, 198, 11748, 12972, 260, 2136, 355, 302, 2136 ]
3.041667
24
import pymongo # ------------------------- Connect to MongoDB Server ------------------------ # # connect to MongoDB server: client = pymongo.MongoClient("mongodb://localhost:27017") # ----------------------- Switch context to a database ----------------------- # # get "python_course" database: db = client.python_course # ------------------- Show all Collections in the database: ------------------ # # get all collections in the database: collections = db.list_collection_names() # print(collections) # ---------------------------------- Create ---------------------------------- # # insert a new document into "todos" collection: res = db.todos.insert_one({"title": "Learn MongoDB", "done": False}) # get the id of the inserted document: # print(res.inserted_id) # insert multiple documents into "todos" collection: res = db.todos.insert_many([ {"title": "Learn Python", "done": True}, {"title": "Learn Flask", "done": False}, {"title": "Learn Flask-MongoDB", "done": False} ]) # print(res.inserted_ids) # insert multiple documents with different shape into "todos" collection: res = db.todos.insert_many([ {"title": "Learn Python", "done": True}, {"title": "Learn Flask", "description":"Learn Flask to develop quick and easy web applications with the ability to scale up."}, {"title": "Learn MongoDB", "due": "2021-12-31"} ]) # print(list(db.todos.find())[-3:-1]) # ----------------------------------- Read ----------------------------------- # # find first document in "todos" collection: print(db.todos.find_one()) # find all documents in "todos" collection: for todo in db.todos.find(): print(todo)
[ 11748, 279, 4948, 25162, 198, 198, 2, 220, 22369, 12, 8113, 284, 42591, 11012, 9652, 220, 22369, 1303, 198, 2, 2018, 284, 42591, 11012, 4382, 25, 198, 16366, 796, 279, 4948, 25162, 13, 44, 25162, 11792, 7203, 31059, 375, 65, 1378, 36750, 25, 1983, 29326, 4943, 198, 198, 2, 41436, 6329, 14645, 4732, 284, 257, 6831, 41436, 6329, 1303, 198, 2, 651, 366, 29412, 62, 17319, 1, 6831, 25, 198, 9945, 796, 5456, 13, 29412, 62, 17319, 198, 198, 2, 34400, 6329, 5438, 477, 50004, 287, 262, 6831, 25, 34400, 438, 1303, 198, 2, 651, 477, 17268, 287, 262, 6831, 25, 198, 4033, 26448, 796, 20613, 13, 4868, 62, 43681, 62, 14933, 3419, 198, 2, 3601, 7, 4033, 26448, 8, 198, 198, 2, 20368, 438, 13610, 20368, 438, 1303, 198, 2, 7550, 257, 649, 3188, 656, 366, 83, 375, 418, 1, 4947, 25, 198, 411, 796, 20613, 13, 83, 375, 418, 13, 28463, 62, 505, 7, 4895, 7839, 1298, 366, 20238, 42591, 11012, 1600, 366, 28060, 1298, 10352, 30072, 198, 2, 651, 262, 4686, 286, 262, 18846, 3188, 25, 198, 2, 3601, 7, 411, 13, 28463, 276, 62, 312, 8, 198, 198, 2, 7550, 3294, 4963, 656, 366, 83, 375, 418, 1, 4947, 25, 198, 411, 796, 20613, 13, 83, 375, 418, 13, 28463, 62, 21834, 26933, 198, 197, 4895, 7839, 1298, 366, 20238, 11361, 1600, 366, 28060, 1298, 6407, 5512, 198, 197, 4895, 7839, 1298, 366, 20238, 46947, 1600, 366, 28060, 1298, 10352, 5512, 198, 197, 4895, 7839, 1298, 366, 20238, 46947, 12, 44, 25162, 11012, 1600, 366, 28060, 1298, 10352, 92, 198, 12962, 198, 2, 3601, 7, 411, 13, 28463, 276, 62, 2340, 8, 198, 198, 2, 7550, 3294, 4963, 351, 1180, 5485, 656, 366, 83, 375, 418, 1, 4947, 25, 198, 411, 796, 20613, 13, 83, 375, 418, 13, 28463, 62, 21834, 26933, 198, 197, 4895, 7839, 1298, 366, 20238, 11361, 1600, 366, 28060, 1298, 6407, 5512, 198, 197, 4895, 7839, 1298, 366, 20238, 46947, 1600, 366, 11213, 2404, 20238, 46947, 284, 1205, 2068, 290, 2562, 3992, 5479, 351, 262, 2694, 284, 5046, 510, 526, 5512, 198, 197, 4895, 7839, 1298, 366, 20238, 42591, 11012, 1600, 366, 23301, 1298, 366, 1238, 2481, 12, 1065, 12, 3132, 20662, 198, 12962, 198, 2, 3601, 7, 4868, 7, 9945, 13, 83, 375, 418, 13, 19796, 28955, 58, 12, 18, 21912, 16, 12962, 628, 198, 2, 20368, 6329, 4149, 20368, 6329, 1303, 198, 2, 1064, 717, 3188, 287, 366, 83, 375, 418, 1, 4947, 25, 198, 4798, 7, 9945, 13, 83, 375, 418, 13, 19796, 62, 505, 28955, 198, 198, 2, 1064, 477, 4963, 287, 366, 83, 375, 418, 1, 4947, 25, 198, 1640, 284, 4598, 287, 20613, 13, 83, 375, 418, 13, 19796, 33529, 198, 197, 4798, 7, 83, 24313, 8 ]
3.518438
461
from unittest import TestCase from ..parliamentarians import SenatorClient
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 11485, 1845, 5130, 13517, 1330, 8962, 11792, 628 ]
4.470588
17
import os import pytest import testinfra.utils.ansible_runner from ansible.template import Templar from ansible.parsing.dataloader import DataLoader testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') @pytest.mark.chain("firo") @pytest.mark.chain("firo") @pytest.mark.chain("firo")
[ 11748, 28686, 198, 11748, 12972, 9288, 198, 11748, 1332, 10745, 430, 13, 26791, 13, 504, 856, 62, 16737, 198, 198, 6738, 9093, 856, 13, 28243, 1330, 41741, 198, 6738, 9093, 856, 13, 79, 945, 278, 13, 67, 10254, 1170, 263, 1330, 6060, 17401, 198, 198, 9288, 10745, 430, 62, 4774, 82, 796, 1332, 10745, 430, 13, 26791, 13, 504, 856, 62, 16737, 13, 2025, 82, 856, 49493, 7, 198, 220, 220, 220, 28686, 13, 268, 2268, 17816, 11770, 2538, 34, 24212, 62, 1268, 53, 3525, 15513, 62, 25664, 20520, 737, 1136, 62, 4774, 82, 10786, 439, 11537, 198, 198, 31, 9078, 9288, 13, 4102, 13, 7983, 7203, 69, 7058, 4943, 198, 198, 31, 9078, 9288, 13, 4102, 13, 7983, 7203, 69, 7058, 4943, 198, 198, 31, 9078, 9288, 13, 4102, 13, 7983, 7203, 69, 7058, 4943, 198 ]
2.620438
137
import torch import torch.nn as nn class SPM(nn.Module): """ Structure Perception Module """ def forward(self,x): """ inputs : x : input feature maps(B X C X H X W) returns : out : attention value + input feature attention: B X C X C """ m_batchsize, C, height, width = x.size() proj_query = x.view(m_batchsize, C, -1) proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy attention = self.softmax(energy_new) proj_value = x.view(m_batchsize, C, -1) out = torch.bmm(attention, proj_value) out = out.view(m_batchsize, C, height, width) out = out + x return out
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 198, 4871, 311, 5868, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 32522, 35802, 19937, 37227, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1058, 5128, 3895, 8739, 7, 33, 1395, 327, 1395, 367, 1395, 370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 1058, 3241, 1988, 1343, 5128, 3895, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3241, 25, 347, 1395, 327, 1395, 327, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 43501, 7857, 11, 327, 11, 6001, 11, 9647, 796, 2124, 13, 7857, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 386, 73, 62, 22766, 796, 2124, 13, 1177, 7, 76, 62, 43501, 7857, 11, 327, 11, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 386, 73, 62, 2539, 796, 2124, 13, 1177, 7, 76, 62, 43501, 7857, 11, 327, 11, 532, 16, 737, 16321, 1133, 7, 15, 11, 362, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 796, 28034, 13, 65, 3020, 7, 1676, 73, 62, 22766, 11, 386, 73, 62, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 62, 3605, 796, 28034, 13, 9806, 7, 22554, 11, 532, 16, 11, 1394, 27740, 28, 17821, 38381, 15, 4083, 11201, 392, 62, 292, 7, 22554, 13219, 22554, 198, 220, 220, 220, 220, 220, 220, 220, 3241, 796, 2116, 13, 4215, 9806, 7, 22554, 62, 3605, 8, 198, 220, 220, 220, 220, 220, 220, 220, 386, 73, 62, 8367, 796, 2124, 13, 1177, 7, 76, 62, 43501, 7857, 11, 327, 11, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 28034, 13, 65, 3020, 7, 1078, 1463, 11, 386, 73, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 503, 13, 1177, 7, 76, 62, 43501, 7857, 11, 327, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 503, 1343, 2124, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 503, 198 ]
2.028103
427
#!/usr/bin/env python import sys sys.path.append("..") import logging FORMAT_CONS = '%(asctime)s %(name)-12s %(levelname)8s\t%(message)s' logging.basicConfig(level=logging.DEBUG, format=FORMAT_CONS) import puka client = puka.Client("amqp://localhost/") promise = client.connect() client.wait(promise) for i in range(1000): promise = client.queue_declare(queue='a%04i' % i) client.wait(promise) for i in range(1000): promise = client.queue_delete(queue='a%04i' % i) client.wait(promise) promise = client.close() client.wait(promise)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7203, 492, 4943, 198, 198, 11748, 18931, 198, 21389, 1404, 62, 10943, 50, 796, 705, 4, 7, 292, 310, 524, 8, 82, 4064, 7, 3672, 13219, 1065, 82, 4064, 7, 5715, 3672, 8, 23, 82, 59, 83, 4, 7, 20500, 8, 82, 6, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 30531, 11, 5794, 28, 21389, 1404, 62, 10943, 50, 8, 628, 198, 198, 11748, 279, 14852, 198, 198, 16366, 796, 279, 14852, 13, 11792, 7203, 321, 80, 79, 1378, 36750, 14, 4943, 198, 198, 16963, 786, 796, 5456, 13, 8443, 3419, 198, 16366, 13, 17077, 7, 16963, 786, 8, 198, 198, 1640, 1312, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 6991, 796, 5456, 13, 36560, 62, 32446, 533, 7, 36560, 11639, 64, 4, 3023, 72, 6, 4064, 1312, 8, 198, 220, 220, 220, 5456, 13, 17077, 7, 16963, 786, 8, 198, 198, 1640, 1312, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 6991, 796, 5456, 13, 36560, 62, 33678, 7, 36560, 11639, 64, 4, 3023, 72, 6, 4064, 1312, 8, 198, 220, 220, 220, 5456, 13, 17077, 7, 16963, 786, 8, 198, 198, 16963, 786, 796, 5456, 13, 19836, 3419, 198, 16366, 13, 17077, 7, 16963, 786, 8, 198 ]
2.48
225
''' Simulate ARIMA(p, 0, q) model ''' import argparse import numpy as np from scipy import stats def simulate_eps(sigma, size, dist='normal', df=None): ''' Simulate innovation ''' n_samples, length_sample = size if dist.startswith('n'): eps = np.random.standard_normal(size) * sigma elif dist.startswith('t'): eps = np.random.standard_t(df, size) / np.sqrt(df / (df - 2)) * sigma elif dist.startswith('exp'): eps = np.random.exponential(sigma, size) - sigma else: raise ValueError(f'Unrecognised distribution "{dist}"') return eps def simulate_arima_given_innov(ar, ma, eps): ''' Simulate ARIMA ''' n_samples, length_sample = eps.shape order_p = len(ar) order_q = len(ma) assert order_p >= order_q samples = np.zeros_like(eps) samples_pre_innov = np.zeros_like(eps) for i in range(order_p, length_sample): samples[:, i] = (samples[:, (i - order_p):i].dot(ar[::-1]) + eps[:, i] + eps[:, (i - order_q):i].dot(ma[::-1])) samples_pre_innov[:, order_p:] = samples[:, order_p:] - eps[:, order_p:] return np.concatenate([samples[:, None, :], samples_pre_innov[:, None, :], eps[:, None, :]], axis=1) def simulate_arima(ar, ma, sigma, size, dist='normal', df=None): ''' Simulate ARIMA ''' eps = simulate_eps(sigma, size, dist, df) ts = simulate_arima_given_innov(ar, ma, eps) return ts def simulate_sv(beta, sigma, intercept, size): ''' Simulate log-variance with AR1 ''' n_samples, length_sample = size # Generate first the variational part with zero intercept # Finally add intercept to the entire array logvar = np.zeros(size) eps = np.random.standard_normal(size) * sigma logvar[:, 0] = 3 * eps[:, 0] for i in range(1, length_sample): logvar[:, i] = beta * logvar[:, i - 1] + eps[:, i] var = np.exp(intercept + logvar) sv = np.random.normal(0, np.sqrt(var / 255), size) return sv, np.sqrt(var) def simulate_rs(p0, p00, p10, mu, sigma, size): ''' Simulate regime-switching model ''' n_samples, length_sample = size eps = [np.random.normal(m, s / np.sqrt(255), size) for m, s in zip(mu, sigma)] eps = np.stack(eps, axis=2) # Simulate regimes prob0 = np.zeros(size) regime = np.zeros(size) prob0[:, 0] = p0 regime[:, 0] = 1 - np.random.binomial(1, p0, n_samples) for i in range(1, length_sample): prob0[:, i] = np.where(regime[:, i - 1] == 0, p00, p10) regime[:, i] = 1 - np.random.binomial(1, prob0[:, i], n_samples) ts = np.where(regime == 0, eps[:, :, 0], eps[:, :, 1]) return ts, prob0, regime if __name__ == '__main__': ar = [0.0868, 0.3667] ma = [-0.1150, -0.4068] sigma = .0112 simulation = simulate_arima(5000, 1000, ar, ma, sigma) simulation_test = simulate_arima(500, 1000, ar, ma, sigma) np.savez_compressed('simulation', data=simulation) np.savez_compressed('simulation_test', data=simulation_test)
[ 7061, 6, 3184, 5039, 5923, 3955, 32, 7, 79, 11, 657, 11, 10662, 8, 2746, 705, 7061, 198, 198, 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 9756, 198, 198, 4299, 29308, 62, 25386, 7, 82, 13495, 11, 2546, 11, 1233, 11639, 11265, 3256, 47764, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 3184, 5039, 11044, 705, 7061, 198, 220, 220, 220, 299, 62, 82, 12629, 11, 4129, 62, 39873, 796, 2546, 628, 220, 220, 220, 611, 1233, 13, 9688, 2032, 342, 10786, 77, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 304, 862, 796, 45941, 13, 25120, 13, 20307, 62, 11265, 7, 7857, 8, 1635, 264, 13495, 198, 220, 220, 220, 1288, 361, 1233, 13, 9688, 2032, 342, 10786, 83, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 304, 862, 796, 45941, 13, 25120, 13, 20307, 62, 83, 7, 7568, 11, 2546, 8, 1220, 45941, 13, 31166, 17034, 7, 7568, 1220, 357, 7568, 532, 362, 4008, 1635, 264, 13495, 198, 220, 220, 220, 1288, 361, 1233, 13, 9688, 2032, 342, 10786, 11201, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 304, 862, 796, 45941, 13, 25120, 13, 11201, 35470, 7, 82, 13495, 11, 2546, 8, 532, 264, 13495, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 3118, 26243, 1417, 6082, 45144, 17080, 36786, 11537, 628, 220, 220, 220, 1441, 304, 862, 198, 198, 4299, 29308, 62, 283, 8083, 62, 35569, 62, 3732, 709, 7, 283, 11, 17266, 11, 304, 862, 2599, 198, 220, 220, 220, 705, 7061, 3184, 5039, 5923, 3955, 32, 705, 7061, 198, 220, 220, 220, 299, 62, 82, 12629, 11, 4129, 62, 39873, 796, 304, 862, 13, 43358, 220, 628, 220, 220, 220, 1502, 62, 79, 796, 18896, 7, 283, 8, 198, 220, 220, 220, 1502, 62, 80, 796, 18896, 7, 2611, 8, 198, 220, 220, 220, 6818, 1502, 62, 79, 18189, 1502, 62, 80, 628, 220, 220, 220, 8405, 796, 45941, 13, 9107, 418, 62, 2339, 7, 25386, 8, 198, 220, 220, 220, 8405, 62, 3866, 62, 3732, 709, 796, 45941, 13, 9107, 418, 62, 2339, 7, 25386, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 2875, 62, 79, 11, 4129, 62, 39873, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8405, 58, 45299, 1312, 60, 796, 357, 82, 12629, 58, 45299, 357, 72, 532, 1502, 62, 79, 2599, 72, 4083, 26518, 7, 283, 58, 3712, 12, 16, 12962, 1343, 304, 862, 58, 45299, 1312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 304, 862, 58, 45299, 357, 72, 532, 1502, 62, 80, 2599, 72, 4083, 26518, 7, 2611, 58, 3712, 12, 16, 60, 4008, 198, 220, 220, 220, 8405, 62, 3866, 62, 3732, 709, 58, 45299, 1502, 62, 79, 47715, 796, 8405, 58, 45299, 1502, 62, 79, 47715, 532, 304, 862, 58, 45299, 1502, 62, 79, 47715, 628, 220, 220, 220, 1441, 45941, 13, 1102, 9246, 268, 378, 26933, 82, 12629, 58, 45299, 6045, 11, 1058, 4357, 8405, 62, 3866, 62, 3732, 709, 58, 45299, 6045, 11, 1058, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 862, 58, 45299, 6045, 11, 1058, 60, 4357, 16488, 28, 16, 8, 198, 198, 4299, 29308, 62, 283, 8083, 7, 283, 11, 17266, 11, 264, 13495, 11, 2546, 11, 1233, 11639, 11265, 3256, 47764, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 3184, 5039, 5923, 3955, 32, 705, 7061, 198, 220, 220, 220, 304, 862, 796, 29308, 62, 25386, 7, 82, 13495, 11, 2546, 11, 1233, 11, 47764, 8, 198, 220, 220, 220, 40379, 796, 29308, 62, 283, 8083, 62, 35569, 62, 3732, 709, 7, 283, 11, 17266, 11, 304, 862, 8, 198, 220, 220, 220, 1441, 40379, 198, 198, 4299, 29308, 62, 21370, 7, 31361, 11, 264, 13495, 11, 15788, 11, 2546, 2599, 198, 220, 220, 220, 705, 7061, 3184, 5039, 2604, 12, 25641, 590, 351, 5923, 16, 705, 7061, 198, 220, 220, 220, 299, 62, 82, 12629, 11, 4129, 62, 39873, 796, 2546, 628, 220, 220, 220, 1303, 2980, 378, 717, 262, 5553, 864, 636, 351, 6632, 15788, 198, 220, 220, 220, 1303, 9461, 751, 15788, 284, 262, 2104, 7177, 198, 220, 220, 220, 2604, 7785, 796, 45941, 13, 9107, 418, 7, 7857, 8, 198, 220, 220, 220, 304, 862, 796, 45941, 13, 25120, 13, 20307, 62, 11265, 7, 7857, 8, 1635, 264, 13495, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2604, 7785, 58, 45299, 657, 60, 796, 513, 1635, 304, 862, 58, 45299, 657, 60, 220, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 4129, 62, 39873, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 7785, 58, 45299, 1312, 60, 796, 12159, 1635, 2604, 7785, 58, 45299, 1312, 532, 352, 60, 1343, 304, 862, 58, 45299, 1312, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1401, 796, 45941, 13, 11201, 7, 3849, 984, 1343, 2604, 7785, 8, 198, 220, 220, 220, 38487, 796, 45941, 13, 25120, 13, 11265, 7, 15, 11, 45941, 13, 31166, 17034, 7, 7785, 1220, 14280, 828, 2546, 8, 198, 220, 220, 220, 1441, 38487, 11, 45941, 13, 31166, 17034, 7, 7785, 8, 198, 198, 4299, 29308, 62, 3808, 7, 79, 15, 11, 279, 405, 11, 279, 940, 11, 38779, 11, 264, 13495, 11, 2546, 2599, 198, 220, 220, 220, 705, 7061, 3184, 5039, 7142, 12, 2032, 19811, 2746, 705, 7061, 198, 220, 220, 220, 299, 62, 82, 12629, 11, 4129, 62, 39873, 796, 2546, 628, 220, 220, 220, 304, 862, 796, 685, 37659, 13, 25120, 13, 11265, 7, 76, 11, 264, 1220, 45941, 13, 31166, 17034, 7, 13381, 828, 2546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 285, 11, 264, 287, 19974, 7, 30300, 11, 264, 13495, 15437, 198, 220, 220, 220, 304, 862, 796, 45941, 13, 25558, 7, 25386, 11, 16488, 28, 17, 8, 628, 220, 220, 220, 1303, 3184, 5039, 25879, 198, 220, 220, 220, 1861, 15, 796, 45941, 13, 9107, 418, 7, 7857, 8, 198, 220, 220, 220, 7142, 796, 45941, 13, 9107, 418, 7, 7857, 8, 198, 220, 220, 220, 1861, 15, 58, 45299, 657, 60, 796, 279, 15, 198, 220, 220, 220, 7142, 58, 45299, 657, 60, 796, 352, 532, 45941, 13, 25120, 13, 8800, 49070, 7, 16, 11, 279, 15, 11, 299, 62, 82, 12629, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 4129, 62, 39873, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1861, 15, 58, 45299, 1312, 60, 796, 45941, 13, 3003, 7, 2301, 524, 58, 45299, 1312, 532, 352, 60, 6624, 657, 11, 279, 405, 11, 279, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7142, 58, 45299, 1312, 60, 796, 352, 532, 45941, 13, 25120, 13, 8800, 49070, 7, 16, 11, 1861, 15, 58, 45299, 1312, 4357, 299, 62, 82, 12629, 8, 628, 220, 220, 220, 40379, 796, 45941, 13, 3003, 7, 2301, 524, 6624, 657, 11, 304, 862, 58, 45299, 1058, 11, 657, 4357, 304, 862, 58, 45299, 1058, 11, 352, 12962, 198, 220, 220, 220, 1441, 40379, 11, 1861, 15, 11, 7142, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 610, 796, 685, 15, 13, 2919, 3104, 11, 657, 13, 2623, 3134, 60, 198, 220, 220, 220, 17266, 796, 25915, 15, 13, 1157, 1120, 11, 532, 15, 13, 1821, 3104, 60, 198, 220, 220, 220, 264, 13495, 796, 764, 486, 1065, 628, 220, 220, 220, 18640, 796, 29308, 62, 283, 8083, 7, 27641, 11, 8576, 11, 610, 11, 17266, 11, 264, 13495, 8, 198, 220, 220, 220, 18640, 62, 9288, 796, 29308, 62, 283, 8083, 7, 4059, 11, 8576, 11, 610, 11, 17266, 11, 264, 13495, 8, 628, 220, 220, 220, 45941, 13, 21928, 89, 62, 5589, 2790, 10786, 14323, 1741, 3256, 1366, 28, 14323, 1741, 8, 198, 220, 220, 220, 45941, 13, 21928, 89, 62, 5589, 2790, 10786, 14323, 1741, 62, 9288, 3256, 1366, 28, 14323, 1741, 62, 9288, 8, 198 ]
2.216197
1,383
# Lint as python3 # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Code to convert between unity types and python types.""" import copy import itertools from typing import Any, Dict, Sequence, Tuple from dm_alchemy.protos import alchemy_pb2 from dm_alchemy.protos import hypercube_pb2 from dm_alchemy.types import graphs from dm_alchemy.types import stones_and_potions from dm_alchemy.types import utils import frozendict import numpy as np from dm_alchemy.protos import color_info_pb2 from dm_alchemy.protos import unity_types_pb2 PotionMap = stones_and_potions.PotionMap StoneMap = stones_and_potions.StoneMap AlignedStone = stones_and_potions.AlignedStone PerceivedStone = stones_and_potions.PerceivedStone PerceivedPotion = stones_and_potions.PerceivedPotion LatentStone = stones_and_potions.LatentStone LatentPotion = stones_and_potions.LatentPotion MapsAndGraph = Tuple[PotionMap, StoneMap, graphs.Graph] COLOR_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.COLOR SIZE_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.SIZE ROUNDNESS_TYPE = alchemy_pb2.PerceptualMappingApplicator.Type.ROUNDNESS # Colours are defined in AlchemyColors.asset _STONE_COLOURS = frozendict.frozendict({ 'purple': unity_types_pb2.Color( r=0.52156866, g=0.22745098, b=0.6313726, a=1.0), 'blurple': unity_types_pb2.Color( r=0.2608, g=0.2667, b=0.5941, a=1.0), 'blue': unity_types_pb2.Color( r=0.0, g=0.30588236, b=0.5568628, a=1.0) }) _POTION_COLOURS = frozendict.frozendict({ 'green': unity_types_pb2.Color( r=0.24394463, g=0.6911765, b=0.35806578, a=1.0), 'red': unity_types_pb2.Color( r=0.9647059, g=0.015686275, b=0.06666667, a=1.0), 'yellow': unity_types_pb2.Color( r=0.9411765, g=0.84705883, b=0.078431375, a=1.0), 'orange': unity_types_pb2.Color( r=0.9764706, g=0.4, b=0.10980392, a=1.0), 'turquoise': unity_types_pb2.Color( r=0.21176471, g=0.72156864, b=0.7411765, a=1.0), 'pink': unity_types_pb2.Color( r=0.9843137, g=0.43529412, b=0.43529412, a=1.0) }) # This is the order of perceived axes in unity. PERCEIVED_AXIS = (COLOR_TYPE, SIZE_TYPE, ROUNDNESS_TYPE) AXIS_NUMBER = frozendict.frozendict({ a: i for i, a in enumerate(PERCEIVED_AXIS)}) SIZE_NAME_AT_COORD = frozendict.frozendict( {-1: 'small', 0: 'medium', 1: 'large'}) _STONE_SIZES = frozendict.frozendict( {'small': 1.0, 'medium': 1.4, 'large': 1.8}) SIZE_AT_COORD = frozendict.frozendict( {coord: _STONE_SIZES[name] for coord, name in SIZE_NAME_AT_COORD.items()}) _COORD_AT_SIZE = frozendict.frozendict({v: k for k, v in SIZE_AT_COORD.items()}) ROUNDNESS_NAME_AT_COORD = frozendict.frozendict( {-1: 'pointy', 0: 'somewhat pointy', 1: 'round'}) _STONE_ROUNDNESSES = frozendict.frozendict( {'pointy': 0.0, 'somewhat pointy': 0.5, 'round': 1.0}) ROUNDNESS_AT_COORD = frozendict.frozendict( {coord: _STONE_ROUNDNESSES[name] for coord, name in ROUNDNESS_NAME_AT_COORD.items()}) _COORD_AT_ROUNDNESS = frozendict.frozendict({ v: k for k, v in ROUNDNESS_AT_COORD.items()}) # The colour proto is not hashable so convert to a type which is. COLOUR_NAME_AT_COORD = frozendict.frozendict( {-1: 'purple', 0: 'blurple', 1: 'blue'}) COLOUR_AT_COORD = frozendict.frozendict({ coord: _STONE_COLOURS[name] for coord, name in COLOUR_NAME_AT_COORD.items()}) _COORD_AT_COLOUR = frozendict.frozendict( {colour_proto_to_hashable(v): k for k, v in COLOUR_AT_COORD.items()}) POTION_COLOUR_AT_PERCEIVED_POTION = frozendict.frozendict({ PerceivedPotion(0, 1): 'green', PerceivedPotion(0, -1): 'red', PerceivedPotion(1, 1): 'yellow', PerceivedPotion(1, -1): 'orange', PerceivedPotion(2, 1): 'turquoise', PerceivedPotion(2, -1): 'pink', }) _PERCEIVED_POTION_AT_POTION_COLOUR = frozendict.frozendict({ colour_proto_to_hashable(_POTION_COLOURS[v]): k for k, v in POTION_COLOUR_AT_PERCEIVED_POTION.items()}) def to_stone_unity_properties( perceived_stone: PerceivedStone, latent_stone: LatentStone ) -> alchemy_pb2.StoneProperties: """Convert a perceived and latent stone to StoneProperties.""" return alchemy_pb2.StoneProperties( reward=15 if perceived_stone.reward > 2 else perceived_stone.reward, latent=latent_stone_to_unity(latent_stone), **perceptual_features(perceived_stone)) def unity_to_perceived_stone( stone_properties: alchemy_pb2.StoneProperties ) -> PerceivedStone: """Convert StoneProperties to a perceived stone.""" size = _COORD_AT_SIZE[round(stone_properties.size, 1)] roundness = _COORD_AT_ROUNDNESS[round(stone_properties.roundness, 1)] colour = _COORD_AT_COLOUR[colour_proto_to_hashable(stone_properties.color)] # Use numpy object type to store python ints rather than numpy ints. perceived_coords = np.array([0, 0, 0], dtype=np.float) perceived_coords[AXIS_NUMBER[SIZE_TYPE]] = size perceived_coords[AXIS_NUMBER[ROUNDNESS_TYPE]] = roundness perceived_coords[AXIS_NUMBER[COLOR_TYPE]] = colour latent_stone = _unity_to_latent_stone(stone_properties.latent) return PerceivedStone(latent_stone.reward(), perceived_coords) def _from_stone_unity_properties( stone_properties: alchemy_pb2.StoneProperties, rotation: np.ndarray ) -> Tuple[PerceivedStone, AlignedStone, LatentStone]: """Convert StoneProperties to a perceived and latent stone.""" latent_stone = _unity_to_latent_stone(stone_properties.latent) perceived_stone = unity_to_perceived_stone(stone_properties) aligned_stone = stones_and_potions.align(perceived_stone, rotation) return perceived_stone, aligned_stone, latent_stone def to_potion_unity_properties( perceived_potion: PerceivedPotion, latent_potion: LatentPotion, graph: graphs.Graph ) -> alchemy_pb2.PotionProperties: """Convert a perceived and latent potion and graph to PotionProperties.""" colour_name = POTION_COLOUR_AT_PERCEIVED_POTION[perceived_potion] colour = get_colour_info((colour_name, _POTION_COLOURS[colour_name])) reactions = set() for startnode, endnodes in graph.edge_list.edges.items(): expected_end_coords = copy.deepcopy(startnode.coords) expected_end_coords[latent_potion.latent_dim] = ( startnode.coords[latent_potion.latent_dim] + 2 * latent_potion.latent_dir) expected_end_node = graph.node_list.get_node_by_coords( expected_end_coords) if not expected_end_node: continue if expected_end_node in endnodes: reactions.add((startnode.idx, expected_end_node.idx)) reactions = [alchemy_pb2.PotionReaction(from_stone_index=from_stone, to_stone_index=to_stone) for from_stone, to_stone in reactions] sorted_reactions = sorted( reactions, key=lambda reaction: reaction.from_stone_index) return alchemy_pb2.PotionProperties( label=latent_potion_to_unity(latent_potion), reward=0, color=colour, glow_color=colour, reactions=sorted_reactions) def _potions_from_potion_unity_properties( potion: alchemy_pb2.PotionProperties ) -> Tuple[PerceivedPotion, LatentPotion]: """Convert the unity representation to a perceived and latent potion.""" return (unity_to_perceived_potion(potion), _unity_to_latent_potion(potion.label)) def graphs_from_potion_unity_properties( potions: Sequence[alchemy_pb2.PotionProperties]) -> graphs.Graph: """Convert a sequence of PotionProperties to a Graph.""" node_list = graphs.all_nodes_in_graph() edge_list = graphs.EdgeList() for i, potion in enumerate(potions): _, latent = _potions_from_potion_unity_properties(potion) utils_potion = stones_and_potions.Potion( i, latent.latent_dim, latent.latent_dir) for reaction in potion.reactions: edge_list.add_edge( node_list.get_node_by_idx(reaction.from_stone_index), node_list.get_node_by_idx(reaction.to_stone_index), utils_potion) return graphs.Graph(node_list, edge_list) def to_unity_chemistry( chemistry: utils.Chemistry ) -> Tuple[alchemy_pb2.Chemistry, alchemy_pb2.RotationMapping]: """Convert from python types to unity Chemistry object.""" # Latent stones and potions are always in the same places. latent_stones = stones_and_potions.possible_latent_stones() latent_potions = stones_and_potions.possible_latent_potions() # Apply the dimension swapping map between latent stones in unity and latent # stones in python (see from_unity_chemistry for more explanation). python_to_unity = PythonToUnityDimMap(chemistry) python_latent_stones = [python_to_unity.apply_to_stone(latent_stone) for latent_stone in latent_stones] python_latent_potions = [python_to_unity.apply_to_potion(latent_potion) for latent_potion in latent_potions] # Apply the stone map to them to get perceptual stones. aligned_stones = [chemistry.stone_map.apply_inverse(stone) for stone in python_latent_stones] perceived_stones = [ stones_and_potions.unalign(stone, chemistry.rotation) for stone in aligned_stones] unity_stones = [to_stone_unity_properties(perceived, latent) for perceived, latent in zip(perceived_stones, latent_stones)] # Apply the potion map to them to get perceptual potions. perceived_potions = [chemistry.potion_map.apply_inverse(potion) for potion in python_latent_potions] unity_potions = [ to_potion_unity_properties(perceived, latent, python_to_unity.graph) for perceived, latent in zip(perceived_potions, latent_potions)] unity_chemistry = alchemy_pb2.Chemistry( stones=unity_stones, potions=unity_potions) rotation_mapping = rotation_to_unity(python_to_unity.rotation) return unity_chemistry, rotation_mapping def rotation_from_unity( rotation_mapping: alchemy_pb2.RotationMapping ) -> np.ndarray: """Get the transformation to undo rotation from unity.""" # Rotate back angles = [-int(rotation_mapping.rotation_angles.x), -int(rotation_mapping.rotation_angles.y), -int(rotation_mapping.rotation_angles.z)] return stones_and_potions.rotation_from_angles(angles) def rotation_to_unity(rotation: np.ndarray) -> alchemy_pb2.RotationMapping: """Convert the transformation to undo rotation to unity.""" angles = stones_and_potions.rotation_to_angles(rotation) return alchemy_pb2.RotationMapping(rotation_angles=unity_types_pb2.Vector3( **{axis: -round(a) for axis, a in zip('xyz', angles)})) def potion_map_from_potions( latent_potions: Sequence[LatentPotion], perceived_potions: Sequence[PerceivedPotion] ) -> PotionMap: """Calculate potion map relating latent and perceived potions.""" dimension_map = [-1, -1, -1] direction_map = [0, 0, 0] for perceived_potion, latent_potion in zip(perceived_potions, latent_potions): dimension_map[perceived_potion.perceived_dim] = latent_potion.latent_dim if latent_potion.latent_dir == perceived_potion.perceived_dir: direction_map[latent_potion.latent_dim] = 1 else: direction_map[latent_potion.latent_dim] = -1 return PotionMap(dim_map=dimension_map, dir_map=direction_map) def find_dim_map_and_stone_map( chemistry: utils.Chemistry ) -> Tuple[np.ndarray, StoneMap, np.ndarray]: """Find a dimension map and stone map which map latent stones to perceived.""" latent_stones = stones_and_potions.possible_latent_stones() aligned_stones = [chemistry.stone_map.apply_inverse(stone) for stone in latent_stones] perceived_stones = [stones_and_potions.unalign(stone, chemistry.rotation) for stone in aligned_stones] for dim_map in [np.eye(3, dtype=np.int)[p, :] for p in itertools.permutations( [0, 1, 2])]: for stone_map in stones_and_potions.possible_stone_maps(): sm = np.diag(stone_map.latent_pos_dir.astype(np.int)) # Since we do rotation before reflection in this case we must allow # rotation forwards and backwards to get all cases. # Because of the scaling this is not just the inverse matrix. inverse_rotation = stones_and_potions.rotation_from_angles( [-a for a in stones_and_potions.rotation_to_angles( chemistry.rotation)]) for rotation in [chemistry.rotation, inverse_rotation]: all_match = True for ls, ps in zip(latent_stones, perceived_stones): new_ls = np.matmul(dim_map, ls.latent_coords.astype(np.int)) ps_prime = np.matmul(sm, np.matmul(np.linalg.inv(rotation), new_ls)) if not all(abs(a - b) < 0.0001 for a, b in zip( ps_prime, ps.perceived_coords.astype(np.int))): all_match = False break if all_match: return np.linalg.inv(dim_map), stone_map, rotation assert False, ( 'No dimension map and stone map takes latent stones to the passed ' 'perceived stones with the passed rotation.') def _apply_dim_map_to_graph( dim_map: np.ndarray, graph: graphs.Graph ) -> graphs.Graph: """Swap latent dimensions in graph.""" edge_list = graphs.EdgeList() for start_node, end_nodes in graph.edge_list.edges.items(): start_coords = np.matmul(dim_map, np.array(start_node.coords)).tolist() new_start_node = graph.node_list.get_node_by_coords(start_coords) for end_node, edge in end_nodes.items(): end_coords = np.matmul(dim_map, np.array(end_node.coords)).tolist() new_end_node = graph.node_list.get_node_by_coords(end_coords) new_potion = stones_and_potions.Potion( edge[1].idx, np.where(dim_map[edge[1].dimension, :])[0][0], edge[1].direction) edge_list.add_edge(new_start_node, new_end_node, new_potion) return graphs.Graph(graph.node_list, edge_list) class PythonToUnityDimMap: """Convert from python method of mapping to unity method.""" def from_unity_chemistry( chemistry: alchemy_pb2.Chemistry, rotation_mapping: alchemy_pb2.RotationMapping ) -> utils.Chemistry: """Convert from unity Chemistry object to corresponding python types. Args: chemistry: A chemistry object received from the alchemy unity environment. rotation_mapping: A rotation mapping object received from the alchemy unity environment. Returns: A PotionMap describing the transformation from potion perceptual space to latent space. A StoneMap describing the transformation from stone aligned perceptual space to latent space. A Graph describing the available edges in latent space. A np.ndarray describing the rotation from stone aligned perceptual space to stone perceptual space. """ # In unity the latent stones are (possibly) rotated and then "perceptual # mapping applicators" are applied to say how this is represented on screen, # e.g. -1 in the first latent dimension is purple and +1 is blue. # By only considering 7 possible rotations (0 rotation and 45 degrees # clockise or anticlockwise about each axis) and just considering in what # direction perceptual attributes change, when this is combined with the # mapping of potion pairs to latent space dimensions and assigning a direction # to that potion pair, we get all mappings which are 45 degrees offset on one # axis (note that latent variables have the same effect on the reward so # swapping latent space dimensions has no effect). We get duplicates because # after rotating, one dimension of the max reward stone will have value 0 so # reflecting about this does not change the value. However, the configuration # is such that the task distribution is as it would be if we avoided # duplicates. # An alternative way to generate all these mappings without the duplicates # would be to take the stones latent coordinates and first apply a mapping # which changes the positive direction and then rotate these positions by 45 # degrees clockwise (excluding anticlockwise rotations). # It is easier to run algorithms like the ideal observer assuming the second # breakdown of the mapping because the rotation does not effect the best # action to take so we can take the perceived coordinates and undo the # rotation using any plausible rotation (even if it is not the correct one) # and then maintain a belief state over the remaining aspects of the # chemistry and update the belief state if we find the rotation was wrong. # We can switch between these equivalent breakdowns by possibly rotating in # the opposite direction. # From unity we get # perceived_stone = sm * r * latent_stone # where r rotates plus or minus 45 degrees and sm changes directions, we want # perceived_stone = r_prime * sm * latent_stone # where r_prime is rotating clockwise about the axis that r rotates around. rotation = rotation_from_unity(rotation_mapping) abs_rotation = stones_and_potions.rotation_from_angles( [-abs(a) for a in stones_and_potions.rotation_to_angles(rotation)]) python_stones = [_from_stone_unity_properties(stone, abs_rotation) for stone in chemistry.stones] python_potions = [_potions_from_potion_unity_properties(potion) for potion in chemistry.potions] graph = graphs_from_potion_unity_properties(chemistry.potions) # So sm_prime is diagonal with elements in {-1, 1} and dim_map is such that # the sum of each row and each column is 1 with non zero elements 1. # Let a := sm_prime * dim_map # a := [a11 a12 a13] # [a21 a22 a23] # [a31 a32 a33] # a * [1, 1, 1] = [a11 + a12 + a13, a21 + a22 + a23, a31 + a32 + a33] sum_of_each_row = _get_aligned_coords_matching_latent( python_stones, [1, 1, 1]) stone_map = StoneMap(pos_dir=sum_of_each_row) sm_prime = np.diag(sum_of_each_row) # a * [1, 1, 1] - a * [-1, 1, 1] = 2 * [a11, a21, a31] first_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [-1, 1, 1]))/2).astype(np.int) second_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [1, -1, 1]))/2).astype(np.int) third_column = ((sum_of_each_row - _get_aligned_coords_matching_latent( python_stones, [1, 1, -1]))/2).astype(np.int) a = np.hstack((first_column.reshape((3, 1)), second_column.reshape((3, 1)), third_column.reshape((3, 1)))) dim_map = np.rint(np.matmul(np.linalg.inv(sm_prime), a)).astype(np.int) latent_stones = [latent_stone for _, _, latent_stone in python_stones] aligned_stones = [aligned_stone for _, aligned_stone, _ in python_stones] latent_stones = [_apply_dim_map_to_stone(dim_map, latent_stone) for latent_stone in latent_stones] latent_potions = [latent_potion for _, latent_potion in python_potions] latent_potions = [_apply_dim_map_to_potion(dim_map, latent_potion) for latent_potion in latent_potions] perceived_potions = [perceived_potion for perceived_potion, _ in python_potions] graph = _apply_dim_map_to_graph(dim_map, graph) for aligned_stone, latent_stone in zip(aligned_stones, latent_stones): assert stone_map.apply(aligned_stone) == latent_stone, ( 'Applying the stone map to the aligned stone did not give the ' 'expected latent stone.\n{aligned_stone}\n{latent_stone}\n' '{stone_map}\n{chemistry}'.format( aligned_stone=aligned_stone, latent_stone=latent_stone, stone_map=stone_map, chemistry=chemistry)) potion_map = potion_map_from_potions(latent_potions, perceived_potions) for perceived_potion, latent_potion in zip(perceived_potions, latent_potions): assert potion_map.apply(perceived_potion) == latent_potion, ( 'Applying the potion map to the perceived potion did not give the ' 'expected latent potion.{perceived_potion}\n{latent_potion}\n' '{potion_map}\n{chemistry}'.format( perceived_potion=perceived_potion, latent_potion=latent_potion, potion_map=potion_map, chemistry=chemistry)) return utils.Chemistry(potion_map, stone_map, graph, abs_rotation)
[ 2, 406, 600, 355, 21015, 18, 198, 2, 15069, 12131, 10766, 28478, 21852, 15302, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 220, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 37811, 10669, 284, 10385, 1022, 14111, 3858, 290, 21015, 3858, 526, 15931, 198, 198, 11748, 4866, 198, 11748, 340, 861, 10141, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 45835, 11, 309, 29291, 198, 198, 6738, 288, 76, 62, 282, 26599, 13, 11235, 418, 1330, 435, 26599, 62, 40842, 17, 198, 6738, 288, 76, 62, 282, 26599, 13, 11235, 418, 1330, 8718, 40296, 62, 40842, 17, 198, 6738, 288, 76, 62, 282, 26599, 13, 19199, 1330, 28770, 198, 6738, 288, 76, 62, 282, 26599, 13, 19199, 1330, 14966, 62, 392, 62, 13059, 507, 198, 6738, 288, 76, 62, 282, 26599, 13, 19199, 1330, 3384, 4487, 198, 11748, 8400, 89, 437, 713, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 288, 76, 62, 282, 26599, 13, 11235, 418, 1330, 3124, 62, 10951, 62, 40842, 17, 198, 6738, 288, 76, 62, 282, 26599, 13, 11235, 418, 1330, 14111, 62, 19199, 62, 40842, 17, 198, 198, 47, 9650, 13912, 796, 14966, 62, 392, 62, 13059, 507, 13, 47, 9650, 13912, 198, 34346, 13912, 796, 14966, 62, 392, 62, 13059, 507, 13, 34346, 13912, 198, 2348, 3916, 34346, 796, 14966, 62, 392, 62, 13059, 507, 13, 2348, 3916, 34346, 198, 5990, 6471, 34346, 796, 14966, 62, 392, 62, 13059, 507, 13, 5990, 6471, 34346, 198, 5990, 6471, 47, 9650, 796, 14966, 62, 392, 62, 13059, 507, 13, 5990, 6471, 47, 9650, 198, 24220, 298, 34346, 796, 14966, 62, 392, 62, 13059, 507, 13, 24220, 298, 34346, 198, 24220, 298, 47, 9650, 796, 14966, 62, 392, 62, 13059, 507, 13, 24220, 298, 47, 9650, 198, 198, 47010, 1870, 37065, 796, 309, 29291, 58, 47, 9650, 13912, 11, 8026, 13912, 11, 28770, 13, 37065, 60, 198, 198, 46786, 62, 25216, 796, 435, 26599, 62, 40842, 17, 13, 5990, 984, 723, 44, 5912, 33583, 1352, 13, 6030, 13, 46786, 198, 33489, 62, 25216, 796, 435, 26599, 62, 40842, 17, 13, 5990, 984, 723, 44, 5912, 33583, 1352, 13, 6030, 13, 33489, 198, 49, 15919, 31097, 62, 25216, 796, 435, 26599, 62, 40842, 17, 13, 5990, 984, 723, 44, 5912, 33583, 1352, 13, 6030, 13, 49, 15919, 31097, 198, 198, 2, 1623, 4662, 389, 5447, 287, 43987, 5216, 669, 13, 562, 316, 198, 62, 2257, 11651, 62, 25154, 2606, 6998, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 15090, 198, 220, 220, 220, 705, 14225, 1154, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 4309, 1314, 3104, 2791, 11, 308, 28, 15, 13, 1828, 4524, 1120, 4089, 11, 275, 28, 15, 13, 5066, 19708, 2075, 11, 257, 28, 16, 13, 15, 828, 198, 220, 220, 220, 705, 2436, 333, 1154, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 21719, 23, 11, 308, 28, 15, 13, 2075, 3134, 11, 275, 28, 15, 13, 3270, 3901, 11, 257, 28, 16, 13, 15, 828, 198, 220, 220, 220, 705, 17585, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 15, 11, 308, 28, 15, 13, 1270, 39118, 24940, 11, 275, 28, 15, 13, 2816, 33808, 2078, 11, 257, 28, 16, 13, 15, 8, 198, 30072, 198, 198, 62, 47, 2394, 2849, 62, 25154, 2606, 6998, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 15090, 198, 220, 220, 220, 705, 14809, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 1731, 2670, 2598, 5066, 11, 308, 28, 15, 13, 3388, 17657, 2996, 11, 275, 28, 15, 13, 2327, 1795, 2996, 3695, 11, 257, 28, 16, 13, 15, 828, 198, 220, 220, 220, 705, 445, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 24, 2414, 2154, 3270, 11, 308, 28, 15, 13, 25150, 33808, 23195, 11, 275, 28, 15, 13, 15, 19060, 28933, 11, 257, 28, 16, 13, 15, 828, 198, 220, 220, 220, 705, 36022, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 5824, 17657, 2996, 11, 308, 28, 15, 13, 5705, 2154, 3365, 5999, 11, 275, 28, 15, 13, 2998, 23, 3559, 1485, 2425, 11, 257, 28, 16, 13, 15, 828, 198, 220, 220, 220, 705, 43745, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 5607, 2414, 35402, 11, 308, 28, 15, 13, 19, 11, 275, 28, 15, 13, 14454, 1795, 32321, 11, 257, 28, 16, 13, 15, 828, 198, 220, 220, 220, 705, 36590, 421, 25678, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 17, 17657, 2414, 4869, 11, 308, 28, 15, 13, 4761, 1314, 3104, 2414, 11, 275, 28, 15, 13, 4524, 17657, 2996, 11, 257, 28, 16, 13, 15, 828, 198, 220, 220, 220, 705, 79, 676, 10354, 14111, 62, 19199, 62, 40842, 17, 13, 10258, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 4089, 3559, 19708, 11, 308, 28, 15, 13, 40064, 27696, 1065, 11, 275, 28, 15, 13, 40064, 27696, 1065, 11, 257, 28, 16, 13, 15, 8, 198, 30072, 198, 198, 2, 770, 318, 262, 1502, 286, 11067, 34197, 287, 14111, 13, 198, 18973, 5222, 3824, 1961, 62, 25922, 1797, 796, 357, 46786, 62, 25216, 11, 311, 35400, 62, 25216, 11, 371, 15919, 31097, 62, 25216, 8, 198, 25922, 1797, 62, 41359, 13246, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 15090, 198, 220, 220, 220, 257, 25, 1312, 329, 1312, 11, 257, 287, 27056, 378, 7, 18973, 5222, 3824, 1961, 62, 25922, 1797, 8, 30072, 198, 198, 33489, 62, 20608, 62, 1404, 62, 8220, 12532, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 7, 198, 220, 220, 220, 1391, 12, 16, 25, 705, 17470, 3256, 657, 25, 705, 24132, 3256, 352, 25, 705, 11664, 6, 30072, 198, 62, 2257, 11651, 62, 11584, 57, 1546, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 7, 198, 220, 220, 220, 1391, 6, 17470, 10354, 352, 13, 15, 11, 705, 24132, 10354, 352, 13, 19, 11, 705, 11664, 10354, 352, 13, 23, 30072, 198, 33489, 62, 1404, 62, 8220, 12532, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 7, 198, 220, 220, 220, 1391, 37652, 25, 4808, 2257, 11651, 62, 11584, 57, 1546, 58, 3672, 60, 329, 6349, 11, 1438, 287, 311, 35400, 62, 20608, 62, 1404, 62, 8220, 12532, 13, 23814, 3419, 30072, 198, 62, 8220, 12532, 62, 1404, 62, 33489, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 15090, 85, 25, 479, 329, 479, 11, 410, 287, 311, 35400, 62, 1404, 62, 8220, 12532, 13, 23814, 3419, 30072, 628, 198, 49, 15919, 31097, 62, 20608, 62, 1404, 62, 8220, 12532, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 7, 198, 220, 220, 220, 1391, 12, 16, 25, 705, 4122, 88, 3256, 657, 25, 705, 82, 28030, 5183, 966, 88, 3256, 352, 25, 705, 744, 6, 30072, 198, 62, 2257, 11651, 62, 49, 15919, 31097, 1546, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 7, 198, 220, 220, 220, 1391, 6, 4122, 88, 10354, 657, 13, 15, 11, 705, 82, 28030, 5183, 966, 88, 10354, 657, 13, 20, 11, 705, 744, 10354, 352, 13, 15, 30072, 198, 49, 15919, 31097, 62, 1404, 62, 8220, 12532, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 7, 198, 220, 220, 220, 1391, 37652, 25, 4808, 2257, 11651, 62, 49, 15919, 31097, 1546, 58, 3672, 60, 198, 220, 220, 220, 220, 329, 6349, 11, 1438, 287, 371, 15919, 31097, 62, 20608, 62, 1404, 62, 8220, 12532, 13, 23814, 3419, 30072, 198, 62, 8220, 12532, 62, 1404, 62, 49, 15919, 31097, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 15090, 198, 220, 220, 220, 410, 25, 479, 329, 479, 11, 410, 287, 371, 15919, 31097, 62, 1404, 62, 8220, 12532, 13, 23814, 3419, 30072, 628, 198, 2, 383, 9568, 44876, 318, 407, 12234, 540, 523, 10385, 284, 257, 2099, 543, 318, 13, 198, 198, 25154, 11698, 62, 20608, 62, 1404, 62, 8220, 12532, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 7, 198, 220, 220, 220, 1391, 12, 16, 25, 705, 14225, 1154, 3256, 657, 25, 705, 2436, 333, 1154, 3256, 352, 25, 705, 17585, 6, 30072, 198, 25154, 11698, 62, 1404, 62, 8220, 12532, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 15090, 198, 220, 220, 220, 6349, 25, 4808, 2257, 11651, 62, 25154, 2606, 6998, 58, 3672, 60, 198, 220, 220, 220, 329, 6349, 11, 1438, 287, 20444, 11698, 62, 20608, 62, 1404, 62, 8220, 12532, 13, 23814, 3419, 30072, 198, 62, 8220, 12532, 62, 1404, 62, 25154, 11698, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 7, 198, 220, 220, 220, 1391, 49903, 62, 1676, 1462, 62, 1462, 62, 17831, 540, 7, 85, 2599, 479, 329, 479, 11, 410, 287, 20444, 11698, 62, 1404, 62, 8220, 12532, 13, 23814, 3419, 30072, 198, 198, 47, 2394, 2849, 62, 25154, 11698, 62, 1404, 62, 18973, 5222, 3824, 1961, 62, 47, 2394, 2849, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 15090, 198, 220, 220, 220, 2448, 6471, 47, 9650, 7, 15, 11, 352, 2599, 705, 14809, 3256, 198, 220, 220, 220, 2448, 6471, 47, 9650, 7, 15, 11, 532, 16, 2599, 705, 445, 3256, 198, 220, 220, 220, 2448, 6471, 47, 9650, 7, 16, 11, 352, 2599, 705, 36022, 3256, 198, 220, 220, 220, 2448, 6471, 47, 9650, 7, 16, 11, 532, 16, 2599, 705, 43745, 3256, 198, 220, 220, 220, 2448, 6471, 47, 9650, 7, 17, 11, 352, 2599, 705, 36590, 421, 25678, 3256, 198, 220, 220, 220, 2448, 6471, 47, 9650, 7, 17, 11, 532, 16, 2599, 705, 79, 676, 3256, 198, 30072, 198, 62, 18973, 5222, 3824, 1961, 62, 47, 2394, 2849, 62, 1404, 62, 47, 2394, 2849, 62, 25154, 11698, 796, 8400, 89, 437, 713, 13, 69, 305, 89, 437, 713, 15090, 198, 220, 220, 220, 9568, 62, 1676, 1462, 62, 1462, 62, 17831, 540, 28264, 47, 2394, 2849, 62, 25154, 2606, 6998, 58, 85, 60, 2599, 479, 198, 220, 220, 220, 329, 479, 11, 410, 287, 350, 2394, 2849, 62, 25154, 11698, 62, 1404, 62, 18973, 5222, 3824, 1961, 62, 47, 2394, 2849, 13, 23814, 3419, 30072, 628, 628, 628, 198, 4299, 284, 62, 6440, 62, 9531, 62, 48310, 7, 198, 220, 220, 220, 11067, 62, 6440, 25, 2448, 6471, 34346, 11, 41270, 62, 6440, 25, 5476, 298, 34346, 198, 8, 4613, 435, 26599, 62, 40842, 17, 13, 34346, 2964, 18200, 25, 198, 220, 37227, 3103, 1851, 257, 11067, 290, 41270, 7815, 284, 8026, 2964, 18200, 526, 15931, 628, 220, 1441, 435, 26599, 62, 40842, 17, 13, 34346, 2964, 18200, 7, 198, 220, 220, 220, 220, 220, 6721, 28, 1314, 611, 11067, 62, 6440, 13, 260, 904, 1875, 362, 2073, 11067, 62, 6440, 13, 260, 904, 11, 198, 220, 220, 220, 220, 220, 41270, 28, 15460, 298, 62, 6440, 62, 1462, 62, 9531, 7, 15460, 298, 62, 6440, 828, 198, 220, 220, 220, 220, 220, 12429, 525, 984, 723, 62, 40890, 7, 525, 6471, 62, 6440, 4008, 628, 198, 4299, 14111, 62, 1462, 62, 525, 6471, 62, 6440, 7, 198, 220, 220, 220, 7815, 62, 48310, 25, 435, 26599, 62, 40842, 17, 13, 34346, 2964, 18200, 198, 8, 4613, 2448, 6471, 34346, 25, 198, 220, 37227, 3103, 1851, 8026, 2964, 18200, 284, 257, 11067, 7815, 526, 15931, 198, 220, 2546, 796, 4808, 8220, 12532, 62, 1404, 62, 33489, 58, 744, 7, 6440, 62, 48310, 13, 7857, 11, 352, 15437, 198, 220, 2835, 1108, 796, 4808, 8220, 12532, 62, 1404, 62, 49, 15919, 31097, 58, 744, 7, 6440, 62, 48310, 13, 744, 1108, 11, 352, 15437, 198, 220, 9568, 796, 4808, 8220, 12532, 62, 1404, 62, 25154, 11698, 58, 49903, 62, 1676, 1462, 62, 1462, 62, 17831, 540, 7, 6440, 62, 48310, 13, 8043, 15437, 198, 220, 1303, 5765, 299, 32152, 2134, 2099, 284, 3650, 21015, 493, 82, 2138, 621, 299, 32152, 493, 82, 13, 198, 220, 11067, 62, 1073, 3669, 796, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 4357, 288, 4906, 28, 37659, 13, 22468, 8, 198, 220, 11067, 62, 1073, 3669, 58, 25922, 1797, 62, 41359, 13246, 58, 33489, 62, 25216, 11907, 796, 2546, 198, 220, 11067, 62, 1073, 3669, 58, 25922, 1797, 62, 41359, 13246, 58, 49, 15919, 31097, 62, 25216, 11907, 796, 2835, 1108, 198, 220, 11067, 62, 1073, 3669, 58, 25922, 1797, 62, 41359, 13246, 58, 46786, 62, 25216, 11907, 796, 9568, 198, 220, 41270, 62, 6440, 796, 4808, 9531, 62, 1462, 62, 15460, 298, 62, 6440, 7, 6440, 62, 48310, 13, 15460, 298, 8, 198, 220, 1441, 2448, 6471, 34346, 7, 15460, 298, 62, 6440, 13, 260, 904, 22784, 11067, 62, 1073, 3669, 8, 628, 198, 4299, 4808, 6738, 62, 6440, 62, 9531, 62, 48310, 7, 198, 220, 220, 220, 7815, 62, 48310, 25, 435, 26599, 62, 40842, 17, 13, 34346, 2964, 18200, 11, 198, 220, 220, 220, 13179, 25, 45941, 13, 358, 18747, 198, 8, 4613, 309, 29291, 58, 5990, 6471, 34346, 11, 978, 3916, 34346, 11, 5476, 298, 34346, 5974, 198, 220, 37227, 3103, 1851, 8026, 2964, 18200, 284, 257, 11067, 290, 41270, 7815, 526, 15931, 198, 220, 41270, 62, 6440, 796, 4808, 9531, 62, 1462, 62, 15460, 298, 62, 6440, 7, 6440, 62, 48310, 13, 15460, 298, 8, 198, 220, 11067, 62, 6440, 796, 14111, 62, 1462, 62, 525, 6471, 62, 6440, 7, 6440, 62, 48310, 8, 198, 220, 19874, 62, 6440, 796, 14966, 62, 392, 62, 13059, 507, 13, 31494, 7, 525, 6471, 62, 6440, 11, 13179, 8, 198, 220, 1441, 11067, 62, 6440, 11, 19874, 62, 6440, 11, 41270, 62, 6440, 628, 628, 198, 4299, 284, 62, 49324, 62, 9531, 62, 48310, 7, 198, 220, 220, 220, 11067, 62, 49324, 25, 2448, 6471, 47, 9650, 11, 41270, 62, 49324, 25, 5476, 298, 47, 9650, 11, 198, 220, 220, 220, 4823, 25, 28770, 13, 37065, 198, 8, 4613, 435, 26599, 62, 40842, 17, 13, 47, 9650, 2964, 18200, 25, 198, 220, 37227, 3103, 1851, 257, 11067, 290, 41270, 26572, 290, 4823, 284, 34018, 2964, 18200, 526, 15931, 198, 220, 9568, 62, 3672, 796, 350, 2394, 2849, 62, 25154, 11698, 62, 1404, 62, 18973, 5222, 3824, 1961, 62, 47, 2394, 2849, 58, 525, 6471, 62, 49324, 60, 198, 220, 9568, 796, 651, 62, 49903, 62, 10951, 19510, 49903, 62, 3672, 11, 4808, 47, 2394, 2849, 62, 25154, 2606, 6998, 58, 49903, 62, 3672, 60, 4008, 198, 220, 12737, 796, 900, 3419, 198, 220, 329, 923, 17440, 11, 886, 77, 4147, 287, 4823, 13, 14907, 62, 4868, 13, 276, 3212, 13, 23814, 33529, 198, 220, 220, 220, 2938, 62, 437, 62, 1073, 3669, 796, 4866, 13, 22089, 30073, 7, 9688, 17440, 13, 1073, 3669, 8, 198, 220, 220, 220, 2938, 62, 437, 62, 1073, 3669, 58, 15460, 298, 62, 49324, 13, 15460, 298, 62, 27740, 60, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 923, 17440, 13, 1073, 3669, 58, 15460, 298, 62, 49324, 13, 15460, 298, 62, 27740, 60, 1343, 362, 1635, 198, 220, 220, 220, 220, 220, 220, 220, 41270, 62, 49324, 13, 15460, 298, 62, 15908, 8, 198, 220, 220, 220, 2938, 62, 437, 62, 17440, 796, 4823, 13, 17440, 62, 4868, 13, 1136, 62, 17440, 62, 1525, 62, 1073, 3669, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 437, 62, 1073, 3669, 8, 198, 220, 220, 220, 611, 407, 2938, 62, 437, 62, 17440, 25, 198, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 611, 2938, 62, 437, 62, 17440, 287, 886, 77, 4147, 25, 198, 220, 220, 220, 220, 220, 12737, 13, 2860, 19510, 9688, 17440, 13, 312, 87, 11, 2938, 62, 437, 62, 17440, 13, 312, 87, 4008, 198, 220, 12737, 796, 685, 282, 26599, 62, 40842, 17, 13, 47, 9650, 3041, 2673, 7, 6738, 62, 6440, 62, 9630, 28, 6738, 62, 6440, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 62, 6440, 62, 9630, 28, 1462, 62, 6440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 422, 62, 6440, 11, 284, 62, 6440, 287, 12737, 60, 628, 220, 23243, 62, 260, 4658, 796, 23243, 7, 198, 220, 220, 220, 220, 220, 12737, 11, 1994, 28, 50033, 6317, 25, 6317, 13, 6738, 62, 6440, 62, 9630, 8, 198, 220, 1441, 435, 26599, 62, 40842, 17, 13, 47, 9650, 2964, 18200, 7, 198, 220, 220, 220, 220, 220, 6167, 28, 15460, 298, 62, 49324, 62, 1462, 62, 9531, 7, 15460, 298, 62, 49324, 828, 6721, 28, 15, 11, 3124, 28, 49903, 11, 198, 220, 220, 220, 220, 220, 19634, 62, 8043, 28, 49903, 11, 12737, 28, 82, 9741, 62, 260, 4658, 8, 628, 198, 198, 4299, 4808, 13059, 507, 62, 6738, 62, 49324, 62, 9531, 62, 48310, 7, 198, 220, 220, 220, 26572, 25, 435, 26599, 62, 40842, 17, 13, 47, 9650, 2964, 18200, 198, 8, 4613, 309, 29291, 58, 5990, 6471, 47, 9650, 11, 5476, 298, 47, 9650, 5974, 198, 220, 37227, 3103, 1851, 262, 14111, 10552, 284, 257, 11067, 290, 41270, 26572, 526, 15931, 198, 220, 1441, 357, 9531, 62, 1462, 62, 525, 6471, 62, 49324, 7, 49324, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9531, 62, 1462, 62, 15460, 298, 62, 49324, 7, 49324, 13, 18242, 4008, 628, 198, 4299, 28770, 62, 6738, 62, 49324, 62, 9531, 62, 48310, 7, 198, 220, 220, 220, 28074, 25, 45835, 58, 282, 26599, 62, 40842, 17, 13, 47, 9650, 2964, 18200, 12962, 4613, 28770, 13, 37065, 25, 198, 220, 37227, 3103, 1851, 257, 8379, 286, 34018, 2964, 18200, 284, 257, 29681, 526, 15931, 198, 220, 10139, 62, 4868, 796, 28770, 13, 439, 62, 77, 4147, 62, 259, 62, 34960, 3419, 198, 220, 5743, 62, 4868, 796, 28770, 13, 37021, 8053, 3419, 198, 220, 329, 1312, 11, 26572, 287, 27056, 378, 7, 13059, 507, 2599, 198, 220, 220, 220, 4808, 11, 41270, 796, 4808, 13059, 507, 62, 6738, 62, 49324, 62, 9531, 62, 48310, 7, 49324, 8, 198, 220, 220, 220, 3384, 4487, 62, 49324, 796, 14966, 62, 392, 62, 13059, 507, 13, 47, 9650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 41270, 13, 15460, 298, 62, 27740, 11, 41270, 13, 15460, 298, 62, 15908, 8, 198, 220, 220, 220, 329, 6317, 287, 26572, 13, 260, 4658, 25, 198, 220, 220, 220, 220, 220, 5743, 62, 4868, 13, 2860, 62, 14907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 4868, 13, 1136, 62, 17440, 62, 1525, 62, 312, 87, 7, 260, 2673, 13, 6738, 62, 6440, 62, 9630, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 4868, 13, 1136, 62, 17440, 62, 1525, 62, 312, 87, 7, 260, 2673, 13, 1462, 62, 6440, 62, 9630, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 62, 49324, 8, 198, 220, 1441, 28770, 13, 37065, 7, 17440, 62, 4868, 11, 5743, 62, 4868, 8, 628, 198, 4299, 284, 62, 9531, 62, 15245, 4592, 7, 198, 220, 220, 220, 16585, 25, 3384, 4487, 13, 41829, 4592, 198, 8, 4613, 309, 29291, 58, 282, 26599, 62, 40842, 17, 13, 41829, 4592, 11, 435, 26599, 62, 40842, 17, 13, 49, 14221, 44, 5912, 5974, 198, 220, 37227, 3103, 1851, 422, 21015, 3858, 284, 14111, 27867, 2134, 526, 15931, 198, 220, 1303, 5476, 298, 14966, 290, 28074, 389, 1464, 287, 262, 976, 4113, 13, 198, 220, 41270, 62, 28750, 796, 14966, 62, 392, 62, 13059, 507, 13, 79, 4733, 62, 15460, 298, 62, 28750, 3419, 198, 220, 41270, 62, 13059, 507, 796, 14966, 62, 392, 62, 13059, 507, 13, 79, 4733, 62, 15460, 298, 62, 13059, 507, 3419, 628, 220, 1303, 27967, 262, 15793, 38869, 3975, 1022, 41270, 14966, 287, 14111, 290, 41270, 198, 220, 1303, 14966, 287, 21015, 357, 3826, 422, 62, 9531, 62, 15245, 4592, 329, 517, 7468, 737, 198, 220, 21015, 62, 1462, 62, 9531, 796, 11361, 2514, 35955, 29271, 13912, 7, 15245, 4592, 8, 198, 220, 21015, 62, 15460, 298, 62, 28750, 796, 685, 29412, 62, 1462, 62, 9531, 13, 39014, 62, 1462, 62, 6440, 7, 15460, 298, 62, 6440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 41270, 62, 6440, 287, 41270, 62, 28750, 60, 198, 220, 21015, 62, 15460, 298, 62, 13059, 507, 796, 685, 29412, 62, 1462, 62, 9531, 13, 39014, 62, 1462, 62, 49324, 7, 15460, 298, 62, 49324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 41270, 62, 49324, 287, 41270, 62, 13059, 507, 60, 628, 220, 1303, 27967, 262, 7815, 3975, 284, 606, 284, 651, 49615, 14966, 13, 198, 220, 19874, 62, 28750, 796, 685, 15245, 4592, 13, 6440, 62, 8899, 13, 39014, 62, 259, 4399, 7, 6440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7815, 287, 21015, 62, 15460, 298, 62, 28750, 60, 198, 220, 11067, 62, 28750, 796, 685, 198, 220, 220, 220, 220, 220, 14966, 62, 392, 62, 13059, 507, 13, 18835, 570, 7, 6440, 11, 16585, 13, 10599, 341, 8, 198, 220, 220, 220, 220, 220, 329, 7815, 287, 19874, 62, 28750, 60, 198, 220, 14111, 62, 28750, 796, 685, 1462, 62, 6440, 62, 9531, 62, 48310, 7, 525, 6471, 11, 41270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11067, 11, 41270, 287, 19974, 7, 525, 6471, 62, 28750, 11, 41270, 62, 28750, 15437, 628, 220, 1303, 27967, 262, 26572, 3975, 284, 606, 284, 651, 49615, 28074, 13, 198, 220, 11067, 62, 13059, 507, 796, 685, 15245, 4592, 13, 49324, 62, 8899, 13, 39014, 62, 259, 4399, 7, 49324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26572, 287, 21015, 62, 15460, 298, 62, 13059, 507, 60, 628, 220, 14111, 62, 13059, 507, 796, 685, 198, 220, 220, 220, 220, 220, 284, 62, 49324, 62, 9531, 62, 48310, 7, 525, 6471, 11, 41270, 11, 21015, 62, 1462, 62, 9531, 13, 34960, 8, 198, 220, 220, 220, 220, 220, 329, 11067, 11, 41270, 287, 19974, 7, 525, 6471, 62, 13059, 507, 11, 41270, 62, 13059, 507, 15437, 628, 220, 14111, 62, 15245, 4592, 796, 435, 26599, 62, 40842, 17, 13, 41829, 4592, 7, 198, 220, 220, 220, 220, 220, 14966, 28, 9531, 62, 28750, 11, 28074, 28, 9531, 62, 13059, 507, 8, 198, 220, 13179, 62, 76, 5912, 796, 13179, 62, 1462, 62, 9531, 7, 29412, 62, 1462, 62, 9531, 13, 10599, 341, 8, 628, 220, 1441, 14111, 62, 15245, 4592, 11, 13179, 62, 76, 5912, 628, 198, 4299, 13179, 62, 6738, 62, 9531, 7, 198, 220, 220, 220, 13179, 62, 76, 5912, 25, 435, 26599, 62, 40842, 17, 13, 49, 14221, 44, 5912, 198, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 37227, 3855, 262, 13389, 284, 23981, 13179, 422, 14111, 526, 15931, 198, 220, 1303, 18481, 378, 736, 198, 220, 18333, 796, 25915, 600, 7, 10599, 341, 62, 76, 5912, 13, 10599, 341, 62, 27787, 13, 87, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 600, 7, 10599, 341, 62, 76, 5912, 13, 10599, 341, 62, 27787, 13, 88, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 600, 7, 10599, 341, 62, 76, 5912, 13, 10599, 341, 62, 27787, 13, 89, 15437, 198, 220, 1441, 14966, 62, 392, 62, 13059, 507, 13, 10599, 341, 62, 6738, 62, 27787, 7, 27787, 8, 628, 198, 4299, 13179, 62, 1462, 62, 9531, 7, 10599, 341, 25, 45941, 13, 358, 18747, 8, 4613, 435, 26599, 62, 40842, 17, 13, 49, 14221, 44, 5912, 25, 198, 220, 37227, 3103, 1851, 262, 13389, 284, 23981, 13179, 284, 14111, 526, 15931, 198, 220, 18333, 796, 14966, 62, 392, 62, 13059, 507, 13, 10599, 341, 62, 1462, 62, 27787, 7, 10599, 341, 8, 198, 220, 1441, 435, 26599, 62, 40842, 17, 13, 49, 14221, 44, 5912, 7, 10599, 341, 62, 27787, 28, 9531, 62, 19199, 62, 40842, 17, 13, 38469, 18, 7, 198, 220, 220, 220, 220, 220, 12429, 90, 22704, 25, 532, 744, 7, 64, 8, 329, 16488, 11, 257, 287, 19974, 10786, 5431, 89, 3256, 18333, 38165, 4008, 628, 198, 4299, 26572, 62, 8899, 62, 6738, 62, 13059, 507, 7, 198, 220, 220, 220, 41270, 62, 13059, 507, 25, 45835, 58, 24220, 298, 47, 9650, 4357, 198, 220, 220, 220, 11067, 62, 13059, 507, 25, 45835, 58, 5990, 6471, 47, 9650, 60, 198, 8, 4613, 34018, 13912, 25, 198, 220, 37227, 9771, 3129, 378, 26572, 3975, 11270, 41270, 290, 11067, 28074, 526, 15931, 198, 220, 15793, 62, 8899, 796, 25915, 16, 11, 532, 16, 11, 532, 16, 60, 198, 220, 4571, 62, 8899, 796, 685, 15, 11, 657, 11, 657, 60, 198, 220, 329, 11067, 62, 49324, 11, 41270, 62, 49324, 287, 19974, 7, 525, 6471, 62, 13059, 507, 11, 41270, 62, 13059, 507, 2599, 198, 220, 220, 220, 15793, 62, 8899, 58, 525, 6471, 62, 49324, 13, 525, 6471, 62, 27740, 60, 796, 41270, 62, 49324, 13, 15460, 298, 62, 27740, 198, 220, 220, 220, 611, 41270, 62, 49324, 13, 15460, 298, 62, 15908, 6624, 11067, 62, 49324, 13, 525, 6471, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 4571, 62, 8899, 58, 15460, 298, 62, 49324, 13, 15460, 298, 62, 27740, 60, 796, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 4571, 62, 8899, 58, 15460, 298, 62, 49324, 13, 15460, 298, 62, 27740, 60, 796, 532, 16, 198, 220, 1441, 34018, 13912, 7, 27740, 62, 8899, 28, 46156, 62, 8899, 11, 26672, 62, 8899, 28, 37295, 62, 8899, 8, 628, 198, 198, 4299, 1064, 62, 27740, 62, 8899, 62, 392, 62, 6440, 62, 8899, 7, 198, 220, 220, 220, 16585, 25, 3384, 4487, 13, 41829, 4592, 198, 8, 4613, 309, 29291, 58, 37659, 13, 358, 18747, 11, 8026, 13912, 11, 45941, 13, 358, 18747, 5974, 198, 220, 37227, 16742, 257, 15793, 3975, 290, 7815, 3975, 543, 3975, 41270, 14966, 284, 11067, 526, 15931, 628, 220, 41270, 62, 28750, 796, 14966, 62, 392, 62, 13059, 507, 13, 79, 4733, 62, 15460, 298, 62, 28750, 3419, 198, 220, 19874, 62, 28750, 796, 685, 15245, 4592, 13, 6440, 62, 8899, 13, 39014, 62, 259, 4399, 7, 6440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7815, 287, 41270, 62, 28750, 60, 198, 220, 11067, 62, 28750, 796, 685, 28750, 62, 392, 62, 13059, 507, 13, 18835, 570, 7, 6440, 11, 16585, 13, 10599, 341, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7815, 287, 19874, 62, 28750, 60, 628, 220, 329, 5391, 62, 8899, 287, 685, 37659, 13, 25379, 7, 18, 11, 288, 4906, 28, 37659, 13, 600, 38381, 79, 11, 1058, 60, 329, 279, 287, 340, 861, 10141, 13, 16321, 32855, 7, 198, 220, 220, 220, 220, 220, 685, 15, 11, 352, 11, 362, 12962, 5974, 198, 220, 220, 220, 329, 7815, 62, 8899, 287, 14966, 62, 392, 62, 13059, 507, 13, 79, 4733, 62, 6440, 62, 31803, 33529, 198, 220, 220, 220, 220, 220, 895, 796, 45941, 13, 10989, 363, 7, 6440, 62, 8899, 13, 15460, 298, 62, 1930, 62, 15908, 13, 459, 2981, 7, 37659, 13, 600, 4008, 198, 220, 220, 220, 220, 220, 1303, 4619, 356, 466, 13179, 878, 14580, 287, 428, 1339, 356, 1276, 1249, 198, 220, 220, 220, 220, 220, 1303, 13179, 22052, 290, 16196, 284, 651, 477, 2663, 13, 198, 220, 220, 220, 220, 220, 1303, 4362, 286, 262, 20796, 428, 318, 407, 655, 262, 34062, 17593, 13, 198, 220, 220, 220, 220, 220, 34062, 62, 10599, 341, 796, 14966, 62, 392, 62, 13059, 507, 13, 10599, 341, 62, 6738, 62, 27787, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 64, 329, 257, 287, 14966, 62, 392, 62, 13059, 507, 13, 10599, 341, 62, 1462, 62, 27787, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16585, 13, 10599, 341, 8, 12962, 198, 220, 220, 220, 220, 220, 329, 13179, 287, 685, 15245, 4592, 13, 10599, 341, 11, 34062, 62, 10599, 341, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 15699, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 43979, 11, 26692, 287, 19974, 7, 15460, 298, 62, 28750, 11, 11067, 62, 28750, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7278, 796, 45941, 13, 6759, 76, 377, 7, 27740, 62, 8899, 11, 43979, 13, 15460, 298, 62, 1073, 3669, 13, 459, 2981, 7, 37659, 13, 600, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26692, 62, 35505, 796, 45941, 13, 6759, 76, 377, 7, 5796, 11, 45941, 13, 6759, 76, 377, 7, 37659, 13, 75, 1292, 70, 13, 16340, 7, 10599, 341, 828, 649, 62, 7278, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 477, 7, 8937, 7, 64, 532, 275, 8, 1279, 657, 13, 18005, 329, 257, 11, 275, 287, 19974, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26692, 62, 35505, 11, 26692, 13, 525, 6471, 62, 1073, 3669, 13, 459, 2981, 7, 37659, 13, 600, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 15699, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 62, 15699, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 75, 1292, 70, 13, 16340, 7, 27740, 62, 8899, 828, 7815, 62, 8899, 11, 13179, 198, 220, 6818, 10352, 11, 357, 198, 220, 220, 220, 220, 220, 705, 2949, 15793, 3975, 290, 7815, 3975, 2753, 41270, 14966, 284, 262, 3804, 705, 198, 220, 220, 220, 220, 220, 705, 525, 6471, 14966, 351, 262, 3804, 13179, 2637, 8, 628, 628, 198, 4299, 4808, 39014, 62, 27740, 62, 8899, 62, 1462, 62, 34960, 7, 198, 220, 220, 220, 5391, 62, 8899, 25, 45941, 13, 358, 18747, 11, 4823, 25, 28770, 13, 37065, 198, 8, 4613, 28770, 13, 37065, 25, 198, 220, 37227, 10462, 499, 41270, 15225, 287, 4823, 526, 15931, 198, 220, 5743, 62, 4868, 796, 28770, 13, 37021, 8053, 3419, 198, 220, 329, 923, 62, 17440, 11, 886, 62, 77, 4147, 287, 4823, 13, 14907, 62, 4868, 13, 276, 3212, 13, 23814, 33529, 198, 220, 220, 220, 923, 62, 1073, 3669, 796, 45941, 13, 6759, 76, 377, 7, 27740, 62, 8899, 11, 45941, 13, 18747, 7, 9688, 62, 17440, 13, 1073, 3669, 29720, 83, 349, 396, 3419, 198, 220, 220, 220, 649, 62, 9688, 62, 17440, 796, 4823, 13, 17440, 62, 4868, 13, 1136, 62, 17440, 62, 1525, 62, 1073, 3669, 7, 9688, 62, 1073, 3669, 8, 198, 220, 220, 220, 329, 886, 62, 17440, 11, 5743, 287, 886, 62, 77, 4147, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 886, 62, 1073, 3669, 796, 45941, 13, 6759, 76, 377, 7, 27740, 62, 8899, 11, 45941, 13, 18747, 7, 437, 62, 17440, 13, 1073, 3669, 29720, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 649, 62, 437, 62, 17440, 796, 4823, 13, 17440, 62, 4868, 13, 1136, 62, 17440, 62, 1525, 62, 1073, 3669, 7, 437, 62, 1073, 3669, 8, 198, 220, 220, 220, 220, 220, 649, 62, 49324, 796, 14966, 62, 392, 62, 13059, 507, 13, 47, 9650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 58, 16, 4083, 312, 87, 11, 45941, 13, 3003, 7, 27740, 62, 8899, 58, 14907, 58, 16, 4083, 46156, 11, 1058, 12962, 58, 15, 7131, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 58, 16, 4083, 37295, 8, 198, 220, 220, 220, 220, 220, 5743, 62, 4868, 13, 2860, 62, 14907, 7, 3605, 62, 9688, 62, 17440, 11, 649, 62, 437, 62, 17440, 11, 649, 62, 49324, 8, 198, 220, 1441, 28770, 13, 37065, 7, 34960, 13, 17440, 62, 4868, 11, 5743, 62, 4868, 8, 628, 198, 4871, 11361, 2514, 35955, 29271, 13912, 25, 198, 220, 37227, 3103, 1851, 422, 21015, 2446, 286, 16855, 284, 14111, 2446, 526, 15931, 628, 198, 4299, 422, 62, 9531, 62, 15245, 4592, 7, 198, 220, 220, 220, 16585, 25, 435, 26599, 62, 40842, 17, 13, 41829, 4592, 11, 198, 220, 220, 220, 13179, 62, 76, 5912, 25, 435, 26599, 62, 40842, 17, 13, 49, 14221, 44, 5912, 198, 8, 4613, 3384, 4487, 13, 41829, 4592, 25, 198, 220, 37227, 3103, 1851, 422, 14111, 27867, 2134, 284, 11188, 21015, 3858, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 16585, 25, 317, 16585, 2134, 2722, 422, 262, 435, 26599, 14111, 2858, 13, 198, 220, 220, 220, 13179, 62, 76, 5912, 25, 317, 13179, 16855, 2134, 2722, 422, 262, 435, 26599, 14111, 198, 220, 220, 220, 220, 220, 2858, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 317, 34018, 13912, 12059, 262, 13389, 422, 26572, 49615, 2272, 284, 198, 220, 220, 220, 220, 220, 41270, 2272, 13, 198, 220, 220, 220, 317, 8026, 13912, 12059, 262, 13389, 422, 7815, 19874, 49615, 2272, 198, 220, 220, 220, 220, 220, 284, 41270, 2272, 13, 198, 220, 220, 220, 317, 29681, 12059, 262, 1695, 13015, 287, 41270, 2272, 13, 198, 220, 220, 220, 317, 45941, 13, 358, 18747, 12059, 262, 13179, 422, 7815, 19874, 49615, 2272, 284, 198, 220, 220, 220, 220, 220, 7815, 49615, 2272, 13, 198, 220, 37227, 628, 220, 1303, 554, 14111, 262, 41270, 14966, 389, 357, 39363, 8, 38375, 290, 788, 366, 525, 984, 723, 198, 220, 1303, 16855, 2161, 2024, 1, 389, 5625, 284, 910, 703, 428, 318, 7997, 319, 3159, 11, 198, 220, 1303, 304, 13, 70, 13, 532, 16, 287, 262, 717, 41270, 15793, 318, 14032, 290, 1343, 16, 318, 4171, 13, 198, 220, 1303, 2750, 691, 6402, 767, 1744, 5724, 602, 357, 15, 13179, 290, 4153, 7370, 198, 220, 1303, 8801, 786, 393, 47792, 5354, 3083, 546, 1123, 16488, 8, 290, 655, 6402, 287, 644, 198, 220, 1303, 4571, 49615, 12608, 1487, 11, 618, 428, 318, 5929, 351, 262, 198, 220, 1303, 16855, 286, 26572, 14729, 284, 41270, 2272, 15225, 290, 38875, 257, 4571, 198, 220, 1303, 284, 326, 26572, 5166, 11, 356, 651, 477, 285, 39242, 543, 389, 4153, 7370, 11677, 319, 530, 198, 220, 1303, 16488, 357, 11295, 326, 41270, 9633, 423, 262, 976, 1245, 319, 262, 6721, 523, 198, 220, 1303, 38869, 41270, 2272, 15225, 468, 645, 1245, 737, 775, 651, 14184, 16856, 780, 198, 220, 1303, 706, 24012, 11, 530, 15793, 286, 262, 3509, 6721, 7815, 481, 423, 1988, 657, 523, 198, 220, 1303, 20252, 546, 428, 857, 407, 1487, 262, 1988, 13, 2102, 11, 262, 8398, 198, 220, 1303, 318, 884, 326, 262, 4876, 6082, 318, 355, 340, 561, 307, 611, 356, 13941, 198, 220, 1303, 14184, 16856, 13, 198, 220, 1303, 1052, 5559, 835, 284, 7716, 477, 777, 285, 39242, 1231, 262, 14184, 16856, 198, 220, 1303, 561, 307, 284, 1011, 262, 14966, 41270, 22715, 290, 717, 4174, 257, 16855, 198, 220, 1303, 543, 2458, 262, 3967, 4571, 290, 788, 23064, 777, 6116, 416, 4153, 198, 220, 1303, 7370, 8801, 3083, 357, 42218, 47792, 5354, 3083, 5724, 602, 737, 198, 220, 1303, 632, 318, 4577, 284, 1057, 16113, 588, 262, 7306, 22890, 13148, 262, 1218, 198, 220, 1303, 14608, 286, 262, 16855, 780, 262, 13179, 857, 407, 1245, 262, 1266, 198, 220, 1303, 2223, 284, 1011, 523, 356, 460, 1011, 262, 11067, 22715, 290, 23981, 262, 198, 220, 1303, 13179, 1262, 597, 19756, 13179, 357, 10197, 611, 340, 318, 407, 262, 3376, 530, 8, 198, 220, 1303, 290, 788, 5529, 257, 4901, 1181, 625, 262, 5637, 7612, 286, 262, 198, 220, 1303, 16585, 290, 4296, 262, 4901, 1181, 611, 356, 1064, 262, 13179, 373, 2642, 13, 198, 220, 1303, 775, 460, 5078, 1022, 777, 7548, 14608, 82, 416, 5457, 24012, 287, 198, 220, 1303, 262, 6697, 4571, 13, 628, 220, 1303, 3574, 14111, 356, 651, 198, 220, 1303, 11067, 62, 6440, 796, 895, 1635, 374, 1635, 41270, 62, 6440, 198, 220, 1303, 810, 374, 5724, 689, 5556, 393, 20208, 4153, 7370, 290, 895, 2458, 11678, 11, 356, 765, 198, 220, 1303, 11067, 62, 6440, 796, 374, 62, 35505, 1635, 895, 1635, 41270, 62, 6440, 198, 220, 1303, 810, 374, 62, 35505, 318, 24012, 8801, 3083, 546, 262, 16488, 326, 374, 5724, 689, 1088, 13, 198, 220, 13179, 796, 13179, 62, 6738, 62, 9531, 7, 10599, 341, 62, 76, 5912, 8, 198, 220, 2352, 62, 10599, 341, 796, 14966, 62, 392, 62, 13059, 507, 13, 10599, 341, 62, 6738, 62, 27787, 7, 198, 220, 220, 220, 220, 220, 25915, 8937, 7, 64, 8, 329, 257, 287, 14966, 62, 392, 62, 13059, 507, 13, 10599, 341, 62, 1462, 62, 27787, 7, 10599, 341, 8, 12962, 198, 220, 21015, 62, 28750, 796, 685, 62, 6738, 62, 6440, 62, 9531, 62, 48310, 7, 6440, 11, 2352, 62, 10599, 341, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7815, 287, 16585, 13, 28750, 60, 198, 220, 21015, 62, 13059, 507, 796, 685, 62, 13059, 507, 62, 6738, 62, 49324, 62, 9531, 62, 48310, 7, 49324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26572, 287, 16585, 13, 13059, 507, 60, 198, 220, 4823, 796, 28770, 62, 6738, 62, 49324, 62, 9531, 62, 48310, 7, 15245, 4592, 13, 13059, 507, 8, 628, 220, 1303, 1406, 895, 62, 35505, 318, 40039, 351, 4847, 287, 1391, 12, 16, 11, 352, 92, 290, 5391, 62, 8899, 318, 884, 326, 198, 220, 1303, 262, 2160, 286, 1123, 5752, 290, 1123, 5721, 318, 352, 351, 1729, 6632, 4847, 352, 13, 198, 220, 1303, 3914, 257, 19039, 895, 62, 35505, 1635, 5391, 62, 8899, 198, 220, 1303, 257, 19039, 685, 64, 1157, 257, 1065, 257, 1485, 60, 198, 220, 1303, 220, 220, 220, 220, 220, 685, 64, 2481, 257, 1828, 257, 1954, 60, 198, 220, 1303, 220, 220, 220, 220, 220, 685, 64, 3132, 257, 2624, 257, 2091, 60, 198, 220, 1303, 257, 1635, 685, 16, 11, 352, 11, 352, 60, 796, 685, 64, 1157, 1343, 257, 1065, 1343, 257, 1485, 11, 257, 2481, 1343, 257, 1828, 1343, 257, 1954, 11, 257, 3132, 1343, 257, 2624, 1343, 257, 2091, 60, 198, 220, 2160, 62, 1659, 62, 27379, 62, 808, 796, 4808, 1136, 62, 41634, 62, 1073, 3669, 62, 15699, 278, 62, 15460, 298, 7, 198, 220, 220, 220, 220, 220, 21015, 62, 28750, 11, 685, 16, 11, 352, 11, 352, 12962, 198, 220, 7815, 62, 8899, 796, 8026, 13912, 7, 1930, 62, 15908, 28, 16345, 62, 1659, 62, 27379, 62, 808, 8, 198, 220, 895, 62, 35505, 796, 45941, 13, 10989, 363, 7, 16345, 62, 1659, 62, 27379, 62, 808, 8, 198, 220, 1303, 257, 1635, 685, 16, 11, 352, 11, 352, 60, 532, 257, 1635, 25915, 16, 11, 352, 11, 352, 60, 796, 362, 1635, 685, 64, 1157, 11, 257, 2481, 11, 257, 3132, 60, 198, 220, 717, 62, 28665, 796, 14808, 16345, 62, 1659, 62, 27379, 62, 808, 532, 4808, 1136, 62, 41634, 62, 1073, 3669, 62, 15699, 278, 62, 15460, 298, 7, 198, 220, 220, 220, 220, 220, 21015, 62, 28750, 11, 25915, 16, 11, 352, 11, 352, 60, 4008, 14, 17, 737, 459, 2981, 7, 37659, 13, 600, 8, 198, 220, 1218, 62, 28665, 796, 14808, 16345, 62, 1659, 62, 27379, 62, 808, 532, 4808, 1136, 62, 41634, 62, 1073, 3669, 62, 15699, 278, 62, 15460, 298, 7, 198, 220, 220, 220, 220, 220, 21015, 62, 28750, 11, 685, 16, 11, 532, 16, 11, 352, 60, 4008, 14, 17, 737, 459, 2981, 7, 37659, 13, 600, 8, 198, 220, 2368, 62, 28665, 796, 14808, 16345, 62, 1659, 62, 27379, 62, 808, 532, 4808, 1136, 62, 41634, 62, 1073, 3669, 62, 15699, 278, 62, 15460, 298, 7, 198, 220, 220, 220, 220, 220, 21015, 62, 28750, 11, 685, 16, 11, 352, 11, 532, 16, 60, 4008, 14, 17, 737, 459, 2981, 7, 37659, 13, 600, 8, 198, 220, 257, 796, 45941, 13, 71, 25558, 19510, 11085, 62, 28665, 13, 3447, 1758, 19510, 18, 11, 352, 36911, 1218, 62, 28665, 13, 3447, 1758, 19510, 18, 11, 352, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2368, 62, 28665, 13, 3447, 1758, 19510, 18, 11, 352, 35514, 198, 220, 5391, 62, 8899, 796, 45941, 13, 22272, 7, 37659, 13, 6759, 76, 377, 7, 37659, 13, 75, 1292, 70, 13, 16340, 7, 5796, 62, 35505, 828, 257, 29720, 459, 2981, 7, 37659, 13, 600, 8, 628, 220, 41270, 62, 28750, 796, 685, 15460, 298, 62, 6440, 329, 4808, 11, 4808, 11, 41270, 62, 6440, 287, 21015, 62, 28750, 60, 198, 220, 19874, 62, 28750, 796, 685, 41634, 62, 6440, 329, 4808, 11, 19874, 62, 6440, 11, 4808, 287, 21015, 62, 28750, 60, 198, 220, 41270, 62, 28750, 796, 685, 62, 39014, 62, 27740, 62, 8899, 62, 1462, 62, 6440, 7, 27740, 62, 8899, 11, 41270, 62, 6440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 41270, 62, 6440, 287, 41270, 62, 28750, 60, 198, 220, 41270, 62, 13059, 507, 796, 685, 15460, 298, 62, 49324, 329, 4808, 11, 41270, 62, 49324, 287, 21015, 62, 13059, 507, 60, 198, 220, 41270, 62, 13059, 507, 796, 685, 62, 39014, 62, 27740, 62, 8899, 62, 1462, 62, 49324, 7, 27740, 62, 8899, 11, 41270, 62, 49324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 41270, 62, 49324, 287, 41270, 62, 13059, 507, 60, 198, 220, 11067, 62, 13059, 507, 796, 685, 525, 6471, 62, 49324, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11067, 62, 49324, 11, 4808, 287, 21015, 62, 13059, 507, 60, 198, 220, 4823, 796, 4808, 39014, 62, 27740, 62, 8899, 62, 1462, 62, 34960, 7, 27740, 62, 8899, 11, 4823, 8, 628, 220, 329, 19874, 62, 6440, 11, 41270, 62, 6440, 287, 19974, 7, 41634, 62, 28750, 11, 41270, 62, 28750, 2599, 198, 220, 220, 220, 6818, 7815, 62, 8899, 13, 39014, 7, 41634, 62, 6440, 8, 6624, 41270, 62, 6440, 11, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4677, 3157, 262, 7815, 3975, 284, 262, 19874, 7815, 750, 407, 1577, 262, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 41270, 7815, 13, 59, 77, 90, 41634, 62, 6440, 32239, 77, 90, 15460, 298, 62, 6440, 32239, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 90, 6440, 62, 8899, 32239, 77, 90, 15245, 4592, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19874, 62, 6440, 28, 41634, 62, 6440, 11, 41270, 62, 6440, 28, 15460, 298, 62, 6440, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7815, 62, 8899, 28, 6440, 62, 8899, 11, 16585, 28, 15245, 4592, 4008, 628, 220, 26572, 62, 8899, 796, 26572, 62, 8899, 62, 6738, 62, 13059, 507, 7, 15460, 298, 62, 13059, 507, 11, 11067, 62, 13059, 507, 8, 198, 220, 329, 11067, 62, 49324, 11, 41270, 62, 49324, 287, 19974, 7, 525, 6471, 62, 13059, 507, 11, 41270, 62, 13059, 507, 2599, 198, 220, 220, 220, 6818, 26572, 62, 8899, 13, 39014, 7, 525, 6471, 62, 49324, 8, 6624, 41270, 62, 49324, 11, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4677, 3157, 262, 26572, 3975, 284, 262, 11067, 26572, 750, 407, 1577, 262, 705, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40319, 41270, 26572, 13, 90, 525, 6471, 62, 49324, 32239, 77, 90, 15460, 298, 62, 49324, 32239, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 90, 49324, 62, 8899, 32239, 77, 90, 15245, 4592, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11067, 62, 49324, 28, 525, 6471, 62, 49324, 11, 41270, 62, 49324, 28, 15460, 298, 62, 49324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26572, 62, 8899, 28, 49324, 62, 8899, 11, 16585, 28, 15245, 4592, 4008, 628, 220, 1441, 3384, 4487, 13, 41829, 4592, 7, 49324, 62, 8899, 11, 7815, 62, 8899, 11, 4823, 11, 2352, 62, 10599, 341, 8, 198 ]
2.665297
7,789
# Copyright 2014-2017 The ODL contributors # # This file is part of ODL. # # This Source Code Form is subject to the terms of the Mozilla Public License, # v. 2.0. If a copy of the MPL was not distributed with this file, You can # obtain one at https://mozilla.org/MPL/2.0/. """Backend for ASTRA using CPU.""" from __future__ import print_function, division, absolute_import import numpy as np try: import astra except ImportError: pass from odl.discr import DiscreteLp, DiscreteLpElement from odl.tomo.backends.astra_setup import ( astra_projection_geometry, astra_volume_geometry, astra_data, astra_projector, astra_algorithm) from odl.tomo.geometry import Geometry from odl.util import writable_array __all__ = ('astra_cpu_forward_projector', 'astra_cpu_back_projector') # TODO: use context manager when creating data structures # TODO: is magnification scaling at the right place? def astra_cpu_forward_projector(vol_data, geometry, proj_space, out=None): """Run an ASTRA forward projection on the given data using the CPU. Parameters ---------- vol_data : `DiscreteLpElement` Volume data to which the forward projector is applied geometry : `Geometry` Geometry defining the tomographic setup proj_space : `DiscreteLp` Space to which the calling operator maps out : ``proj_space`` element, optional Element of the projection space to which the result is written. If ``None``, an element in ``proj_space`` is created. Returns ------- out : ``proj_space`` element Projection data resulting from the application of the projector. If ``out`` was provided, the returned object is a reference to it. """ if not isinstance(vol_data, DiscreteLpElement): raise TypeError('volume data {!r} is not a `DiscreteLpElement` ' 'instance.'.format(vol_data)) if vol_data.space.impl != 'numpy': raise TypeError("`vol_data.space.impl` must be 'numpy', got {!r}" "".format(vol_data.space.impl)) if not isinstance(geometry, Geometry): raise TypeError('geometry {!r} is not a Geometry instance' ''.format(geometry)) if not isinstance(proj_space, DiscreteLp): raise TypeError('`proj_space` {!r} is not a DiscreteLp ' 'instance.'.format(proj_space)) if proj_space.impl != 'numpy': raise TypeError("`proj_space.impl` must be 'numpy', got {!r}" "".format(proj_space.impl)) if vol_data.ndim != geometry.ndim: raise ValueError('dimensions {} of volume data and {} of geometry ' 'do not match' ''.format(vol_data.ndim, geometry.ndim)) if out is None: out = proj_space.element() else: if out not in proj_space: raise TypeError('`out` {} is neither None nor a ' 'DiscreteLpElement instance'.format(out)) ndim = vol_data.ndim # Create astra geometries vol_geom = astra_volume_geometry(vol_data.space) proj_geom = astra_projection_geometry(geometry) # Create projector if not all(s == vol_data.space.interp_byaxis[0] for s in vol_data.space.interp_byaxis): raise ValueError('volume interpolation must be the same in each ' 'dimension, got {}'.format(vol_data.space.interp)) vol_interp = vol_data.space.interp proj_id = astra_projector(vol_interp, vol_geom, proj_geom, ndim, impl='cpu') # Create ASTRA data structures vol_data_arr = np.asarray(vol_data) vol_id = astra_data(vol_geom, datatype='volume', data=vol_data_arr, allow_copy=True) with writable_array(out, dtype='float32', order='C') as out_arr: sino_id = astra_data(proj_geom, datatype='projection', data=out_arr, ndim=proj_space.ndim) # Create algorithm algo_id = astra_algorithm('forward', ndim, vol_id, sino_id, proj_id, impl='cpu') # Run algorithm astra.algorithm.run(algo_id) # Delete ASTRA objects astra.algorithm.delete(algo_id) astra.data2d.delete((vol_id, sino_id)) astra.projector.delete(proj_id) return out def astra_cpu_back_projector(proj_data, geometry, reco_space, out=None): """Run an ASTRA back-projection on the given data using the CPU. Parameters ---------- proj_data : `DiscreteLpElement` Projection data to which the back-projector is applied geometry : `Geometry` Geometry defining the tomographic setup reco_space : `DiscreteLp` Space to which the calling operator maps out : ``reco_space`` element, optional Element of the reconstruction space to which the result is written. If ``None``, an element in ``reco_space`` is created. Returns ------- out : ``reco_space`` element Reconstruction data resulting from the application of the backward projector. If ``out`` was provided, the returned object is a reference to it. """ if not isinstance(proj_data, DiscreteLpElement): raise TypeError('projection data {!r} is not a DiscreteLpElement ' 'instance'.format(proj_data)) if proj_data.space.impl != 'numpy': raise TypeError('`proj_data` must be a `numpy.ndarray` based, ' "container got `impl` {!r}" "".format(proj_data.space.impl)) if not isinstance(geometry, Geometry): raise TypeError('geometry {!r} is not a Geometry instance' ''.format(geometry)) if not isinstance(reco_space, DiscreteLp): raise TypeError('reconstruction space {!r} is not a DiscreteLp ' 'instance'.format(reco_space)) if reco_space.impl != 'numpy': raise TypeError("`reco_space.impl` must be 'numpy', got {!r}" "".format(reco_space.impl)) if reco_space.ndim != geometry.ndim: raise ValueError('dimensions {} of reconstruction space and {} of ' 'geometry do not match'.format( reco_space.ndim, geometry.ndim)) if out is None: out = reco_space.element() else: if out not in reco_space: raise TypeError('`out` {} is neither None nor a ' 'DiscreteLpElement instance'.format(out)) ndim = proj_data.ndim # Create astra geometries vol_geom = astra_volume_geometry(reco_space) proj_geom = astra_projection_geometry(geometry) # Create ASTRA data structure sino_id = astra_data(proj_geom, datatype='projection', data=proj_data, allow_copy=True) # Create projector # TODO: implement with different schemes for angles and detector if not all(s == proj_data.space.interp_byaxis[0] for s in proj_data.space.interp_byaxis): raise ValueError('data interpolation must be the same in each ' 'dimension, got {}' ''.format(proj_data.space.interp_byaxis)) proj_interp = proj_data.space.interp proj_id = astra_projector(proj_interp, vol_geom, proj_geom, ndim, impl='cpu') # Convert out to correct dtype and order if needed. with writable_array(out, dtype='float32', order='C') as out_arr: vol_id = astra_data(vol_geom, datatype='volume', data=out_arr, ndim=reco_space.ndim) # Create algorithm algo_id = astra_algorithm('backward', ndim, vol_id, sino_id, proj_id, impl='cpu') # Run algorithm astra.algorithm.run(algo_id) # Weight the adjoint by appropriate weights scaling_factor = float(proj_data.space.weighting.const) scaling_factor /= float(reco_space.weighting.const) out *= scaling_factor # Delete ASTRA objects astra.algorithm.delete(algo_id) astra.data2d.delete((vol_id, sino_id)) astra.projector.delete(proj_id) return out if __name__ == '__main__': from odl.util.testutils import run_doctests run_doctests()
[ 2, 15069, 1946, 12, 5539, 383, 440, 19260, 20420, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 440, 19260, 13, 198, 2, 198, 2, 770, 8090, 6127, 5178, 318, 2426, 284, 262, 2846, 286, 262, 29258, 5094, 13789, 11, 198, 2, 410, 13, 362, 13, 15, 13, 1002, 257, 4866, 286, 262, 4904, 43, 373, 407, 9387, 351, 428, 2393, 11, 921, 460, 198, 2, 7330, 530, 379, 3740, 1378, 5908, 16496, 13, 2398, 14, 44, 6489, 14, 17, 13, 15, 11757, 198, 198, 37811, 7282, 437, 329, 29273, 3861, 1262, 9135, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 7297, 11, 4112, 62, 11748, 198, 11748, 299, 32152, 355, 45941, 198, 28311, 25, 198, 220, 220, 220, 1330, 6468, 430, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 6738, 16298, 75, 13, 15410, 81, 1330, 8444, 8374, 43, 79, 11, 8444, 8374, 43, 79, 20180, 198, 6738, 16298, 75, 13, 83, 17902, 13, 1891, 2412, 13, 459, 430, 62, 40406, 1330, 357, 198, 220, 220, 220, 6468, 430, 62, 16302, 295, 62, 469, 15748, 11, 6468, 430, 62, 29048, 62, 469, 15748, 11, 6468, 430, 62, 7890, 11, 198, 220, 220, 220, 6468, 430, 62, 16302, 273, 11, 6468, 430, 62, 282, 42289, 8, 198, 6738, 16298, 75, 13, 83, 17902, 13, 469, 15748, 1330, 2269, 15748, 198, 6738, 16298, 75, 13, 22602, 1330, 1991, 540, 62, 18747, 628, 198, 834, 439, 834, 796, 19203, 459, 430, 62, 36166, 62, 11813, 62, 16302, 273, 3256, 705, 459, 430, 62, 36166, 62, 1891, 62, 16302, 273, 11537, 628, 198, 2, 16926, 46, 25, 779, 4732, 4706, 618, 4441, 1366, 8573, 198, 2, 16926, 46, 25, 318, 44120, 20796, 379, 262, 826, 1295, 30, 198, 198, 4299, 6468, 430, 62, 36166, 62, 11813, 62, 16302, 273, 7, 10396, 62, 7890, 11, 22939, 11, 386, 73, 62, 13200, 11, 503, 28, 14202, 2599, 198, 220, 220, 220, 37227, 10987, 281, 29273, 3861, 2651, 20128, 319, 262, 1813, 1366, 1262, 262, 9135, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2322, 62, 7890, 1058, 4600, 15642, 8374, 43, 79, 20180, 63, 198, 220, 220, 220, 220, 220, 220, 220, 14701, 1366, 284, 543, 262, 2651, 43396, 318, 5625, 198, 220, 220, 220, 22939, 1058, 4600, 10082, 15748, 63, 198, 220, 220, 220, 220, 220, 220, 220, 2269, 15748, 16215, 262, 16667, 6826, 9058, 198, 220, 220, 220, 386, 73, 62, 13200, 1058, 4600, 15642, 8374, 43, 79, 63, 198, 220, 220, 220, 220, 220, 220, 220, 4687, 284, 543, 262, 4585, 10088, 8739, 198, 220, 220, 220, 503, 1058, 7559, 1676, 73, 62, 13200, 15506, 5002, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 11703, 286, 262, 20128, 2272, 284, 543, 262, 1255, 318, 3194, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 14202, 15506, 11, 281, 5002, 287, 7559, 1676, 73, 62, 13200, 15506, 318, 2727, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 7559, 1676, 73, 62, 13200, 15506, 5002, 198, 220, 220, 220, 220, 220, 220, 220, 4935, 295, 1366, 7186, 422, 262, 3586, 286, 262, 43396, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 7559, 448, 15506, 373, 2810, 11, 262, 4504, 2134, 318, 257, 4941, 284, 340, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 10396, 62, 7890, 11, 8444, 8374, 43, 79, 20180, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 29048, 1366, 1391, 0, 81, 92, 318, 407, 257, 4600, 15642, 8374, 43, 79, 20180, 63, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39098, 2637, 13, 18982, 7, 10396, 62, 7890, 4008, 198, 220, 220, 220, 611, 2322, 62, 7890, 13, 13200, 13, 23928, 14512, 705, 77, 32152, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 63, 10396, 62, 7890, 13, 13200, 13, 23928, 63, 1276, 307, 705, 77, 32152, 3256, 1392, 1391, 0, 81, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 10396, 62, 7890, 13, 13200, 13, 23928, 4008, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 469, 15748, 11, 2269, 15748, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 469, 15748, 220, 1391, 0, 81, 92, 318, 407, 257, 2269, 15748, 4554, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 469, 15748, 4008, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 1676, 73, 62, 13200, 11, 8444, 8374, 43, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 63, 1676, 73, 62, 13200, 63, 1391, 0, 81, 92, 318, 407, 257, 8444, 8374, 43, 79, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39098, 2637, 13, 18982, 7, 1676, 73, 62, 13200, 4008, 198, 220, 220, 220, 611, 386, 73, 62, 13200, 13, 23928, 14512, 705, 77, 32152, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 63, 1676, 73, 62, 13200, 13, 23928, 63, 1276, 307, 705, 77, 32152, 3256, 1392, 1391, 0, 81, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 1676, 73, 62, 13200, 13, 23928, 4008, 198, 220, 220, 220, 611, 2322, 62, 7890, 13, 358, 320, 14512, 22939, 13, 358, 320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 27740, 5736, 23884, 286, 6115, 1366, 290, 23884, 286, 22939, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4598, 407, 2872, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 10396, 62, 7890, 13, 358, 320, 11, 22939, 13, 358, 320, 4008, 198, 220, 220, 220, 611, 503, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 386, 73, 62, 13200, 13, 30854, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 503, 407, 287, 386, 73, 62, 13200, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 63, 448, 63, 23884, 318, 6159, 6045, 4249, 257, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15642, 8374, 43, 79, 20180, 4554, 4458, 18982, 7, 448, 4008, 628, 220, 220, 220, 299, 27740, 796, 2322, 62, 7890, 13, 358, 320, 628, 220, 220, 220, 1303, 13610, 6468, 430, 4903, 908, 1678, 198, 220, 220, 220, 2322, 62, 469, 296, 796, 6468, 430, 62, 29048, 62, 469, 15748, 7, 10396, 62, 7890, 13, 13200, 8, 198, 220, 220, 220, 386, 73, 62, 469, 296, 796, 6468, 430, 62, 16302, 295, 62, 469, 15748, 7, 469, 15748, 8, 628, 220, 220, 220, 1303, 13610, 43396, 198, 220, 220, 220, 611, 407, 477, 7, 82, 6624, 2322, 62, 7890, 13, 13200, 13, 3849, 79, 62, 1525, 22704, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2322, 62, 7890, 13, 13200, 13, 3849, 79, 62, 1525, 22704, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 29048, 39555, 341, 1276, 307, 262, 976, 287, 1123, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46156, 11, 1392, 23884, 4458, 18982, 7, 10396, 62, 7890, 13, 13200, 13, 3849, 79, 4008, 198, 220, 220, 220, 2322, 62, 3849, 79, 796, 2322, 62, 7890, 13, 13200, 13, 3849, 79, 198, 220, 220, 220, 386, 73, 62, 312, 796, 6468, 430, 62, 16302, 273, 7, 10396, 62, 3849, 79, 11, 2322, 62, 469, 296, 11, 386, 73, 62, 469, 296, 11, 299, 27740, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4114, 11639, 36166, 11537, 628, 220, 220, 220, 1303, 13610, 29273, 3861, 1366, 8573, 198, 220, 220, 220, 2322, 62, 7890, 62, 3258, 796, 45941, 13, 292, 18747, 7, 10396, 62, 7890, 8, 198, 220, 220, 220, 2322, 62, 312, 796, 6468, 430, 62, 7890, 7, 10396, 62, 469, 296, 11, 4818, 265, 2981, 11639, 29048, 3256, 1366, 28, 10396, 62, 7890, 62, 3258, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1249, 62, 30073, 28, 17821, 8, 628, 220, 220, 220, 351, 1991, 540, 62, 18747, 7, 448, 11, 288, 4906, 11639, 22468, 2624, 3256, 1502, 11639, 34, 11537, 355, 503, 62, 3258, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 2879, 62, 312, 796, 6468, 430, 62, 7890, 7, 1676, 73, 62, 469, 296, 11, 4818, 265, 2981, 11639, 16302, 295, 3256, 1366, 28, 448, 62, 3258, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 27740, 28, 1676, 73, 62, 13200, 13, 358, 320, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 62, 312, 796, 6468, 430, 62, 282, 42289, 10786, 11813, 3256, 299, 27740, 11, 2322, 62, 312, 11, 264, 2879, 62, 312, 11, 386, 73, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4114, 11639, 36166, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5660, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 6468, 430, 13, 282, 42289, 13, 5143, 7, 282, 2188, 62, 312, 8, 628, 220, 220, 220, 1303, 23520, 29273, 3861, 5563, 198, 220, 220, 220, 6468, 430, 13, 282, 42289, 13, 33678, 7, 282, 2188, 62, 312, 8, 198, 220, 220, 220, 6468, 430, 13, 7890, 17, 67, 13, 33678, 19510, 10396, 62, 312, 11, 264, 2879, 62, 312, 4008, 198, 220, 220, 220, 6468, 430, 13, 16302, 273, 13, 33678, 7, 1676, 73, 62, 312, 8, 628, 220, 220, 220, 1441, 503, 628, 198, 4299, 6468, 430, 62, 36166, 62, 1891, 62, 16302, 273, 7, 1676, 73, 62, 7890, 11, 22939, 11, 664, 78, 62, 13200, 11, 503, 28, 14202, 2599, 198, 220, 220, 220, 37227, 10987, 281, 29273, 3861, 736, 12, 16302, 295, 319, 262, 1813, 1366, 1262, 262, 9135, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 386, 73, 62, 7890, 1058, 4600, 15642, 8374, 43, 79, 20180, 63, 198, 220, 220, 220, 220, 220, 220, 220, 4935, 295, 1366, 284, 543, 262, 736, 12, 16302, 273, 318, 5625, 198, 220, 220, 220, 22939, 1058, 4600, 10082, 15748, 63, 198, 220, 220, 220, 220, 220, 220, 220, 2269, 15748, 16215, 262, 16667, 6826, 9058, 198, 220, 220, 220, 664, 78, 62, 13200, 1058, 4600, 15642, 8374, 43, 79, 63, 198, 220, 220, 220, 220, 220, 220, 220, 4687, 284, 543, 262, 4585, 10088, 8739, 198, 220, 220, 220, 503, 1058, 7559, 260, 1073, 62, 13200, 15506, 5002, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 11703, 286, 262, 25056, 2272, 284, 543, 262, 1255, 318, 3194, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 7559, 14202, 15506, 11, 281, 5002, 287, 7559, 260, 1073, 62, 13200, 15506, 318, 2727, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 7559, 260, 1073, 62, 13200, 15506, 5002, 198, 220, 220, 220, 220, 220, 220, 220, 45060, 1366, 7186, 422, 262, 3586, 286, 262, 19528, 198, 220, 220, 220, 220, 220, 220, 220, 43396, 13, 1002, 7559, 448, 15506, 373, 2810, 11, 262, 4504, 2134, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 4941, 284, 340, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 1676, 73, 62, 7890, 11, 8444, 8374, 43, 79, 20180, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 16302, 295, 1366, 1391, 0, 81, 92, 318, 407, 257, 8444, 8374, 43, 79, 20180, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39098, 4458, 18982, 7, 1676, 73, 62, 7890, 4008, 198, 220, 220, 220, 611, 386, 73, 62, 7890, 13, 13200, 13, 23928, 14512, 705, 77, 32152, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 63, 1676, 73, 62, 7890, 63, 1276, 307, 257, 4600, 77, 32152, 13, 358, 18747, 63, 1912, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34924, 1392, 4600, 23928, 63, 1391, 0, 81, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 1676, 73, 62, 7890, 13, 13200, 13, 23928, 4008, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 469, 15748, 11, 2269, 15748, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 469, 15748, 220, 1391, 0, 81, 92, 318, 407, 257, 2269, 15748, 4554, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 469, 15748, 4008, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 260, 1073, 62, 13200, 11, 8444, 8374, 43, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 260, 9979, 2762, 2272, 1391, 0, 81, 92, 318, 407, 257, 8444, 8374, 43, 79, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39098, 4458, 18982, 7, 260, 1073, 62, 13200, 4008, 198, 220, 220, 220, 611, 664, 78, 62, 13200, 13, 23928, 14512, 705, 77, 32152, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 63, 260, 1073, 62, 13200, 13, 23928, 63, 1276, 307, 705, 77, 32152, 3256, 1392, 1391, 0, 81, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 260, 1073, 62, 13200, 13, 23928, 4008, 198, 220, 220, 220, 611, 664, 78, 62, 13200, 13, 358, 320, 14512, 22939, 13, 358, 320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 27740, 5736, 23884, 286, 25056, 2272, 290, 23884, 286, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 469, 15748, 466, 407, 2872, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 78, 62, 13200, 13, 358, 320, 11, 22939, 13, 358, 320, 4008, 198, 220, 220, 220, 611, 503, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 664, 78, 62, 13200, 13, 30854, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 503, 407, 287, 664, 78, 62, 13200, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 63, 448, 63, 23884, 318, 6159, 6045, 4249, 257, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15642, 8374, 43, 79, 20180, 4554, 4458, 18982, 7, 448, 4008, 628, 220, 220, 220, 299, 27740, 796, 386, 73, 62, 7890, 13, 358, 320, 628, 220, 220, 220, 1303, 13610, 6468, 430, 4903, 908, 1678, 198, 220, 220, 220, 2322, 62, 469, 296, 796, 6468, 430, 62, 29048, 62, 469, 15748, 7, 260, 1073, 62, 13200, 8, 198, 220, 220, 220, 386, 73, 62, 469, 296, 796, 6468, 430, 62, 16302, 295, 62, 469, 15748, 7, 469, 15748, 8, 628, 220, 220, 220, 1303, 13610, 29273, 3861, 1366, 4645, 198, 220, 220, 220, 264, 2879, 62, 312, 796, 6468, 430, 62, 7890, 7, 1676, 73, 62, 469, 296, 11, 4818, 265, 2981, 11639, 16302, 295, 3256, 1366, 28, 1676, 73, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1249, 62, 30073, 28, 17821, 8, 628, 220, 220, 220, 1303, 13610, 43396, 198, 220, 220, 220, 1303, 16926, 46, 25, 3494, 351, 1180, 16546, 329, 18333, 290, 31029, 198, 220, 220, 220, 611, 407, 477, 7, 82, 6624, 386, 73, 62, 7890, 13, 13200, 13, 3849, 79, 62, 1525, 22704, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 386, 73, 62, 7890, 13, 13200, 13, 3849, 79, 62, 1525, 22704, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 7890, 39555, 341, 1276, 307, 262, 976, 287, 1123, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46156, 11, 1392, 23884, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4458, 18982, 7, 1676, 73, 62, 7890, 13, 13200, 13, 3849, 79, 62, 1525, 22704, 4008, 198, 220, 220, 220, 386, 73, 62, 3849, 79, 796, 386, 73, 62, 7890, 13, 13200, 13, 3849, 79, 198, 220, 220, 220, 386, 73, 62, 312, 796, 6468, 430, 62, 16302, 273, 7, 1676, 73, 62, 3849, 79, 11, 2322, 62, 469, 296, 11, 386, 73, 62, 469, 296, 11, 299, 27740, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4114, 11639, 36166, 11537, 628, 220, 220, 220, 1303, 38240, 503, 284, 3376, 288, 4906, 290, 1502, 611, 2622, 13, 198, 220, 220, 220, 351, 1991, 540, 62, 18747, 7, 448, 11, 288, 4906, 11639, 22468, 2624, 3256, 1502, 11639, 34, 11537, 355, 503, 62, 3258, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2322, 62, 312, 796, 6468, 430, 62, 7890, 7, 10396, 62, 469, 296, 11, 4818, 265, 2981, 11639, 29048, 3256, 1366, 28, 448, 62, 3258, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 27740, 28, 260, 1073, 62, 13200, 13, 358, 320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 62, 312, 796, 6468, 430, 62, 282, 42289, 10786, 1891, 904, 3256, 299, 27740, 11, 2322, 62, 312, 11, 264, 2879, 62, 312, 11, 386, 73, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4114, 11639, 36166, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5660, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 6468, 430, 13, 282, 42289, 13, 5143, 7, 282, 2188, 62, 312, 8, 628, 220, 220, 220, 1303, 14331, 262, 9224, 1563, 416, 5035, 19590, 198, 220, 220, 220, 20796, 62, 31412, 796, 12178, 7, 1676, 73, 62, 7890, 13, 13200, 13, 6551, 278, 13, 9979, 8, 198, 220, 220, 220, 20796, 62, 31412, 1220, 28, 12178, 7, 260, 1073, 62, 13200, 13, 6551, 278, 13, 9979, 8, 628, 220, 220, 220, 503, 1635, 28, 20796, 62, 31412, 628, 220, 220, 220, 1303, 23520, 29273, 3861, 5563, 198, 220, 220, 220, 6468, 430, 13, 282, 42289, 13, 33678, 7, 282, 2188, 62, 312, 8, 198, 220, 220, 220, 6468, 430, 13, 7890, 17, 67, 13, 33678, 19510, 10396, 62, 312, 11, 264, 2879, 62, 312, 4008, 198, 220, 220, 220, 6468, 430, 13, 16302, 273, 13, 33678, 7, 1676, 73, 62, 312, 8, 628, 220, 220, 220, 1441, 503, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 422, 16298, 75, 13, 22602, 13, 9288, 26791, 1330, 1057, 62, 4598, 310, 3558, 198, 220, 220, 220, 1057, 62, 4598, 310, 3558, 3419, 198 ]
2.284185
3,642
from typing import Any, Dict, Optional from pypika.terms import Function, ValueWrapper from pypika.utils import format_alias_sql
[ 6738, 19720, 1330, 4377, 11, 360, 713, 11, 32233, 198, 198, 6738, 279, 4464, 9232, 13, 38707, 1330, 15553, 11, 11052, 36918, 2848, 198, 6738, 279, 4464, 9232, 13, 26791, 1330, 5794, 62, 26011, 62, 25410, 628, 628 ]
3.5
38
""" Utilities for the :mod:`qsiprep_analyses` package. """
[ 37811, 198, 18274, 2410, 329, 262, 1058, 4666, 25, 63, 48382, 541, 7856, 62, 272, 43710, 63, 5301, 13, 198, 37811, 198 ]
2.681818
22
# Generated by Django 3.0.3 on 2020-04-22 21:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 18, 319, 12131, 12, 3023, 12, 1828, 2310, 25, 1954, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
3.019231
52
#!/usr/bin/env python3 import nets import db import contracts from web3 import Web3 import prices import logging import logging.handlers import jsonpickle # Iterate through all transactions for account and run refresh actions # Update the gas transaction fee amount and value assuming tx is on Harmony if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 31720, 198, 11748, 20613, 198, 11748, 8592, 198, 6738, 3992, 18, 1330, 5313, 18, 198, 11748, 4536, 198, 11748, 18931, 198, 11748, 18931, 13, 4993, 8116, 198, 11748, 33918, 27729, 293, 198, 198, 2, 40806, 378, 832, 477, 8945, 329, 1848, 290, 1057, 14976, 4028, 198, 198, 2, 10133, 262, 3623, 8611, 6838, 2033, 290, 1988, 13148, 27765, 318, 319, 35088, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 12417, 3419, 198 ]
3.831461
89
#pylint: disable-all """ Script for patch SubCandidateNet/CNNGenotypeModel.forward """ from contextlib import contextmanager import six import numpy as np import torch from torch import nn from nics_fix_pt.quant import quantitize from aw_nas.weights_manager.super_net import SubCandidateNet from aw_nas.final.cnn_model import CNNGenotypeModel BITWIDTH = 8 FIX_METHOD = 1 # auto_fix # ---- patch ---- ## Here do not patch forward, as activation is not quantized in calls to `forward`, ## it's not meaningful to quantize the weights during the calls to `forward` too ## It must be patched, or ``backward through a graph second time'' error will occur. ## Let's reset all the module attributes to the original parameters in `_parameters`. SubCandidateNet.old_forward = SubCandidateNet.forward CNNGenotypeModel.old_forward = CNNGenotypeModel.forward SubCandidateNet.forward = fix_forward CNNGenotypeModel.forward = fix_forward # only patch `forward_one_step_callback`, not forward SubCandidateNet.old_forward_one_step_callback = SubCandidateNet.forward_one_step_callback CNNGenotypeModel.old_forward_one_step_callback = CNNGenotypeModel.forward_one_step_callback SubCandidateNet.forward_one_step_callback = fix_forward_one_step_callback CNNGenotypeModel.forward_one_step_callback = fix_forward_one_step_callback # ---- end patch ---- @contextmanager """ Note there are a lot randomness in the search process. so all the number are just a ref. | | quantize | 30 eva | time quantize weight / | #quantize | ratio | | | patch method | step time | time feature inject 1e-4 | calls | | |---+--------------------------------------------------+-----------+--------------------------+-----------+-------| | 1 | old | ~65 | 31.01/12.82 | ~68088 | 2.4 | | 2 | new patch forward&fonestepcallback | ~75 | 28.68/13.05 | ~63954 | 2.2 | | 3 | new patch fonestepcallback | ~60 | 14.19/12.90 | ~31997 | 1.1 | | x | new patch forward(set original)&fonestepcallback | ~60 | - | ~31997 | - | from 1->2, the quantization call reduction comes from avoiding quantizing unused params in one forward pass (`check_visited=True`) and avoiding duplicated quantization calls when there are double connection in the rollout. """
[ 2, 79, 2645, 600, 25, 15560, 12, 439, 198, 37811, 198, 7391, 329, 8529, 3834, 41572, 20540, 7934, 14, 18474, 13746, 8690, 17633, 13, 11813, 198, 37811, 198, 6738, 4732, 8019, 1330, 4732, 37153, 198, 11748, 2237, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 198, 6738, 299, 873, 62, 13049, 62, 457, 13, 40972, 1330, 5554, 270, 1096, 198, 6738, 3253, 62, 24716, 13, 43775, 62, 37153, 13, 16668, 62, 3262, 1330, 3834, 41572, 20540, 7934, 198, 6738, 3253, 62, 24716, 13, 20311, 13, 66, 20471, 62, 19849, 1330, 8100, 13746, 8690, 17633, 198, 198, 26094, 54, 2389, 4221, 796, 807, 198, 47084, 62, 49273, 796, 352, 1303, 8295, 62, 13049, 198, 198, 2, 13498, 8529, 13498, 198, 2235, 3423, 466, 407, 8529, 2651, 11, 355, 14916, 318, 407, 5554, 1143, 287, 3848, 284, 4600, 11813, 47671, 198, 2235, 340, 338, 407, 11570, 284, 5554, 1096, 262, 19590, 1141, 262, 3848, 284, 4600, 11813, 63, 1165, 198, 2235, 632, 1276, 307, 39378, 11, 393, 7559, 1891, 904, 832, 257, 4823, 1218, 640, 7061, 4049, 481, 3051, 13, 198, 2235, 3914, 338, 13259, 477, 262, 8265, 12608, 284, 262, 2656, 10007, 287, 4600, 62, 17143, 7307, 44646, 198, 7004, 41572, 20540, 7934, 13, 727, 62, 11813, 796, 3834, 41572, 20540, 7934, 13, 11813, 198, 18474, 13746, 8690, 17633, 13, 727, 62, 11813, 796, 8100, 13746, 8690, 17633, 13, 11813, 198, 7004, 41572, 20540, 7934, 13, 11813, 796, 4259, 62, 11813, 198, 18474, 13746, 8690, 17633, 13, 11813, 796, 4259, 62, 11813, 198, 198, 2, 691, 8529, 4600, 11813, 62, 505, 62, 9662, 62, 47423, 47671, 407, 2651, 198, 7004, 41572, 20540, 7934, 13, 727, 62, 11813, 62, 505, 62, 9662, 62, 47423, 796, 3834, 41572, 20540, 7934, 13, 11813, 62, 505, 62, 9662, 62, 47423, 198, 18474, 13746, 8690, 17633, 13, 727, 62, 11813, 62, 505, 62, 9662, 62, 47423, 796, 8100, 13746, 8690, 17633, 13, 11813, 62, 505, 62, 9662, 62, 47423, 198, 7004, 41572, 20540, 7934, 13, 11813, 62, 505, 62, 9662, 62, 47423, 796, 4259, 62, 11813, 62, 505, 62, 9662, 62, 47423, 198, 18474, 13746, 8690, 17633, 13, 11813, 62, 505, 62, 9662, 62, 47423, 796, 4259, 62, 11813, 62, 505, 62, 9662, 62, 47423, 198, 2, 13498, 886, 8529, 13498, 198, 198, 31, 22866, 37153, 198, 198, 37811, 198, 6425, 612, 389, 257, 1256, 4738, 1108, 287, 262, 2989, 1429, 13, 523, 477, 262, 1271, 389, 655, 257, 1006, 13, 198, 91, 220, 220, 930, 5554, 1096, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 1542, 819, 64, 220, 220, 220, 930, 640, 5554, 1096, 3463, 1220, 220, 220, 930, 1303, 40972, 1096, 930, 8064, 930, 198, 91, 220, 220, 930, 8529, 2446, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 2239, 640, 930, 640, 3895, 8677, 352, 68, 12, 19, 930, 3848, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 930, 198, 91, 6329, 10, 47232, 44785, 32284, 10, 22369, 44785, 32284, 10, 26866, 91, 198, 91, 352, 930, 1468, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5299, 2996, 220, 220, 220, 220, 220, 220, 930, 3261, 13, 486, 14, 1065, 13, 6469, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5299, 37397, 3459, 220, 220, 220, 930, 220, 220, 362, 13, 19, 930, 198, 91, 362, 930, 649, 8529, 2651, 5, 69, 19129, 538, 47423, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5299, 2425, 220, 220, 220, 220, 220, 220, 930, 2579, 13, 3104, 14, 1485, 13, 2713, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5299, 21, 2670, 4051, 220, 220, 220, 930, 220, 220, 362, 13, 17, 930, 198, 91, 513, 930, 649, 8529, 277, 19129, 538, 47423, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5299, 1899, 220, 220, 220, 220, 220, 220, 930, 1478, 13, 1129, 14, 1065, 13, 3829, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5299, 18, 21498, 220, 220, 220, 930, 220, 220, 352, 13, 16, 930, 198, 91, 2124, 930, 649, 8529, 2651, 7, 2617, 2656, 8, 5, 69, 19129, 538, 47423, 930, 5299, 1899, 220, 220, 220, 220, 220, 220, 930, 532, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5299, 18, 21498, 220, 220, 220, 930, 220, 220, 220, 220, 532, 930, 198, 198, 6738, 352, 3784, 17, 11, 262, 5554, 1634, 869, 7741, 2058, 422, 14928, 5554, 2890, 21958, 42287, 287, 530, 2651, 1208, 357, 63, 9122, 62, 4703, 863, 28, 17821, 63, 8, 198, 392, 14928, 14184, 3474, 5554, 1634, 3848, 618, 612, 389, 4274, 4637, 287, 262, 38180, 13, 198, 37811, 198 ]
2.693391
923
import torchvision import torch.nn as nn
[ 11748, 28034, 10178, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.2
25
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: sym/messages/authz.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from sym.models import schema_pb2 as sym_dot_models_dot_schema__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='sym/messages/authz.proto', package='sym.messages', syntax='proto3', serialized_options=b'Z%github.com/symopsio/types/go/messages', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x18sym/messages/authz.proto\x12\x0csym.messages\x1a\x17sym/models/schema.proto\"G\n\x05\x41uthz\x12\"\n\x06schema\x18\x01 \x01(\x0b\x32\x12.sym.models.Schema\x12\x0c\n\x04user\x18\x02 \x01(\t\x12\x0c\n\x04role\x18\x03 \x01(\t\"1\n\rAuthzResponse\x12\n\n\x02ok\x18\x01 \x01(\x08\x12\x14\n\x0c\x65rrorMessage\x18\x02 \x01(\tB\'Z%github.com/symopsio/types/go/messagesb\x06proto3' , dependencies=[sym_dot_models_dot_schema__pb2.DESCRIPTOR,]) _AUTHZ = _descriptor.Descriptor( name='Authz', full_name='sym.messages.Authz', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='schema', full_name='sym.messages.Authz.schema', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='user', full_name='sym.messages.Authz.user', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='role', full_name='sym.messages.Authz.role', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=67, serialized_end=138, ) _AUTHZRESPONSE = _descriptor.Descriptor( name='AuthzResponse', full_name='sym.messages.AuthzResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='ok', full_name='sym.messages.AuthzResponse.ok', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='errorMessage', full_name='sym.messages.AuthzResponse.errorMessage', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=140, serialized_end=189, ) _AUTHZ.fields_by_name['schema'].message_type = sym_dot_models_dot_schema__pb2._SCHEMA DESCRIPTOR.message_types_by_name['Authz'] = _AUTHZ DESCRIPTOR.message_types_by_name['AuthzResponse'] = _AUTHZRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Authz = _reflection.GeneratedProtocolMessageType('Authz', (_message.Message,), { 'DESCRIPTOR' : _AUTHZ, '__module__' : 'sym.messages.authz_pb2' # @@protoc_insertion_point(class_scope:sym.messages.Authz) }) _sym_db.RegisterMessage(Authz) AuthzResponse = _reflection.GeneratedProtocolMessageType('AuthzResponse', (_message.Message,), { 'DESCRIPTOR' : _AUTHZRESPONSE, '__module__' : 'sym.messages.authz_pb2' # @@protoc_insertion_point(class_scope:sym.messages.AuthzResponse) }) _sym_db.RegisterMessage(AuthzResponse) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 262, 8435, 11876, 17050, 13, 220, 8410, 5626, 48483, 0, 198, 2, 2723, 25, 5659, 14, 37348, 1095, 14, 18439, 89, 13, 1676, 1462, 198, 37811, 8645, 515, 8435, 11876, 2438, 526, 15931, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 355, 4808, 20147, 1968, 273, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 3275, 355, 4808, 20500, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 14580, 355, 4808, 5420, 1564, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 6194, 62, 48806, 355, 4808, 1837, 23650, 62, 48806, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 320, 3742, 8, 198, 198, 62, 37047, 62, 9945, 796, 4808, 1837, 23650, 62, 48806, 13, 19463, 3419, 628, 198, 6738, 5659, 13, 27530, 1330, 32815, 62, 40842, 17, 355, 5659, 62, 26518, 62, 27530, 62, 26518, 62, 15952, 2611, 834, 40842, 17, 628, 198, 30910, 36584, 32961, 796, 4808, 20147, 1968, 273, 13, 8979, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 37047, 14, 37348, 1095, 14, 18439, 89, 13, 1676, 1462, 3256, 198, 220, 5301, 11639, 37047, 13, 37348, 1095, 3256, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 11389, 1143, 62, 25811, 28, 65, 6, 57, 4, 12567, 13, 785, 14, 37047, 2840, 952, 14, 19199, 14, 2188, 14, 37348, 1095, 3256, 198, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 11, 198, 220, 11389, 1143, 62, 40842, 28, 65, 6, 59, 77, 59, 87, 1507, 37047, 14, 37348, 1095, 14, 18439, 89, 13, 1676, 1462, 59, 87, 1065, 59, 87, 15, 66, 37047, 13, 37348, 1095, 59, 87, 16, 64, 59, 87, 1558, 37047, 14, 27530, 14, 15952, 2611, 13, 1676, 1462, 7879, 38, 59, 77, 59, 87, 2713, 59, 87, 3901, 1071, 89, 59, 87, 1065, 7879, 59, 77, 59, 87, 3312, 15952, 2611, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 1065, 13, 37047, 13, 27530, 13, 27054, 2611, 59, 87, 1065, 59, 87, 15, 66, 59, 77, 59, 87, 3023, 7220, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 15, 66, 59, 77, 59, 87, 3023, 18090, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 83, 7879, 16, 59, 77, 59, 81, 30515, 89, 31077, 59, 87, 1065, 59, 77, 59, 77, 59, 87, 2999, 482, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 2919, 59, 87, 1065, 59, 87, 1415, 59, 77, 59, 87, 15, 66, 59, 87, 2996, 81, 1472, 12837, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 83, 33, 43054, 57, 4, 12567, 13, 785, 14, 37047, 2840, 952, 14, 19199, 14, 2188, 14, 37348, 1095, 65, 59, 87, 3312, 1676, 1462, 18, 6, 198, 220, 837, 198, 220, 20086, 41888, 37047, 62, 26518, 62, 27530, 62, 26518, 62, 15952, 2611, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 12962, 628, 628, 198, 62, 32, 24318, 57, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 30515, 89, 3256, 198, 220, 1336, 62, 3672, 11639, 37047, 13, 37348, 1095, 13, 30515, 89, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 15952, 2611, 3256, 1336, 62, 3672, 11639, 37047, 13, 37348, 1095, 13, 30515, 89, 13, 15952, 2611, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 11389, 1143, 62, 25811, 28, 14202, 11, 2393, 28, 30910, 36584, 32961, 11, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 7220, 3256, 1336, 62, 3672, 11639, 37047, 13, 37348, 1095, 13, 30515, 89, 13, 7220, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 65, 1, 1911, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 11389, 1143, 62, 25811, 28, 14202, 11, 2393, 28, 30910, 36584, 32961, 11, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 18090, 3256, 1336, 62, 3672, 11639, 37047, 13, 37348, 1095, 13, 30515, 89, 13, 18090, 3256, 6376, 28, 17, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 18, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 65, 1, 1911, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 11389, 1143, 62, 25811, 28, 14202, 11, 2393, 28, 30910, 36584, 32961, 11, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 25811, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 3134, 11, 198, 220, 11389, 1143, 62, 437, 28, 20107, 11, 198, 8, 628, 198, 62, 32, 24318, 57, 19535, 47, 1340, 5188, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 30515, 89, 31077, 3256, 198, 220, 1336, 62, 3672, 11639, 37047, 13, 37348, 1095, 13, 30515, 89, 31077, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 482, 3256, 1336, 62, 3672, 11639, 37047, 13, 37348, 1095, 13, 30515, 89, 31077, 13, 482, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 23, 11, 269, 381, 62, 4906, 28, 22, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 11389, 1143, 62, 25811, 28, 14202, 11, 2393, 28, 30910, 36584, 32961, 11, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 18224, 12837, 3256, 1336, 62, 3672, 11639, 37047, 13, 37348, 1095, 13, 30515, 89, 31077, 13, 18224, 12837, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 65, 1, 1911, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 11389, 1143, 62, 25811, 28, 14202, 11, 2393, 28, 30910, 36584, 32961, 11, 220, 2251, 62, 2539, 28, 62, 20147, 1968, 273, 13557, 32538, 62, 17953, 62, 2539, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 25811, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 15187, 11, 198, 220, 11389, 1143, 62, 437, 28, 23362, 11, 198, 8, 198, 198, 62, 32, 24318, 57, 13, 25747, 62, 1525, 62, 3672, 17816, 15952, 2611, 6, 4083, 20500, 62, 4906, 796, 5659, 62, 26518, 62, 27530, 62, 26518, 62, 15952, 2611, 834, 40842, 17, 13557, 50, 3398, 27630, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 30515, 89, 20520, 796, 4808, 32, 24318, 57, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 30515, 89, 31077, 20520, 796, 4808, 32, 24318, 57, 19535, 47, 1340, 5188, 198, 62, 37047, 62, 9945, 13, 38804, 8979, 24564, 1968, 273, 7, 30910, 36584, 32961, 8, 198, 198, 30515, 89, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 30515, 89, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 32, 24318, 57, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 37047, 13, 37348, 1095, 13, 18439, 89, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 37047, 13, 37348, 1095, 13, 30515, 89, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 30515, 89, 8, 198, 198, 30515, 89, 31077, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 30515, 89, 31077, 3256, 44104, 20500, 13, 12837, 11, 828, 1391, 198, 220, 705, 30910, 36584, 32961, 6, 1058, 4808, 32, 24318, 57, 19535, 47, 1340, 5188, 11, 198, 220, 705, 834, 21412, 834, 6, 1058, 705, 37047, 13, 37348, 1095, 13, 18439, 89, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 37047, 13, 37348, 1095, 13, 30515, 89, 31077, 8, 198, 220, 32092, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 30515, 89, 31077, 8, 628, 198, 30910, 36584, 32961, 13557, 25811, 796, 6045, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 21412, 62, 29982, 8, 198 ]
2.454279
2,045
import os import os.path as path import itertools import pandas as pd import glob import config import random FANNET_IMG_DIR='/mnt/Data/GoogleFontsSTEFANN/fannet' COLORNET_IMG_DIR='/mnt/Data/GoogleFontsSTEFANN/colornet' if __name__=='__main__': process_fannet(path.join(FANNET_IMG_DIR,'train'), './Data/STEFANN/fannet_train.csv') process_fannet(path.join(FANNET_IMG_DIR,'valid'), './Data/STEFANN/fannet_val.csv') process_colornet(path.join(COLORNET_IMG_DIR,'train'), './Data/STEFANN/colornet_train.csv') process_colornet(path.join(COLORNET_IMG_DIR,'valid'), './Data/STEFANN/colornet_val.csv')
[ 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 3108, 198, 11748, 340, 861, 10141, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 15095, 198, 11748, 4566, 198, 11748, 4738, 628, 198, 198, 37, 1565, 12884, 62, 3955, 38, 62, 34720, 11639, 14, 76, 429, 14, 6601, 14, 11708, 23252, 82, 2257, 25425, 22846, 14, 69, 1236, 316, 6, 198, 46786, 12884, 62, 3955, 38, 62, 34720, 11639, 14, 76, 429, 14, 6601, 14, 11708, 23252, 82, 2257, 25425, 22846, 14, 4033, 1211, 316, 6, 628, 628, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 1429, 62, 69, 1236, 316, 7, 6978, 13, 22179, 7, 37, 1565, 12884, 62, 3955, 38, 62, 34720, 4032, 27432, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19571, 6601, 14, 2257, 25425, 22846, 14, 69, 1236, 316, 62, 27432, 13, 40664, 11537, 198, 220, 220, 220, 1429, 62, 69, 1236, 316, 7, 6978, 13, 22179, 7, 37, 1565, 12884, 62, 3955, 38, 62, 34720, 4032, 12102, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19571, 6601, 14, 2257, 25425, 22846, 14, 69, 1236, 316, 62, 2100, 13, 40664, 11537, 198, 220, 220, 220, 1429, 62, 4033, 1211, 316, 7, 6978, 13, 22179, 7, 46786, 12884, 62, 3955, 38, 62, 34720, 4032, 27432, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19571, 6601, 14, 2257, 25425, 22846, 14, 4033, 1211, 316, 62, 27432, 13, 40664, 11537, 198, 220, 220, 220, 1429, 62, 4033, 1211, 316, 7, 6978, 13, 22179, 7, 46786, 12884, 62, 3955, 38, 62, 34720, 4032, 12102, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19571, 6601, 14, 2257, 25425, 22846, 14, 4033, 1211, 316, 62, 2100, 13, 40664, 11537, 628 ]
2.040936
342
''' @ project: LibrarySeats @ file: test @ user: 罗申申 @ email: [email protected] @ tool: PyCharm @ time: 2021/5/24 14:27 ''' import re import function import execjs import browser_tools def verify_code_get(jsname,cookie,time): '''代码不麻烦,主要是分析js花了些时间''' url = "https://static.wechat.laixuanzuo.com/template/theme2/cache/layout/" + jsname + ".js" pattern_js_bg = 'void 0\=\=\=.\&\&\(.\=""\);' pattern_js_end = '.\.ajax_get' pattern_js = pattern_js_bg + '.*' + pattern_js_end pattern_js_res = '\+"\&".*\+"\&yzm\="' exjs = network(url,cookie,time) funjs = re.search(pattern_js, exjs).group(0) funjs = funjs[19:-10] resjs = re.search(pattern_js_res, exjs).group(0) resultcommond = resjs[5:-14] exjs8 = exjs docjs = execjs.compile(exjs8 + funjs) return docjs.eval(resultcommond)
[ 7061, 6, 198, 31, 1628, 25, 10074, 4653, 1381, 198, 31, 2393, 25, 1332, 198, 31, 2836, 25, 13328, 121, 245, 18796, 111, 18796, 111, 198, 31, 3053, 25, 300, 84, 418, 5135, 831, 31, 65, 6413, 64, 13, 15532, 13, 31522, 198, 31, 2891, 25, 9485, 1925, 1670, 198, 31, 640, 25, 33448, 14, 20, 14, 1731, 1478, 25, 1983, 198, 7061, 6, 198, 11748, 302, 198, 11748, 2163, 198, 11748, 2452, 8457, 198, 11748, 6444, 62, 31391, 628, 198, 4299, 11767, 62, 8189, 62, 1136, 7, 8457, 3672, 11, 44453, 11, 2435, 2599, 198, 220, 220, 220, 705, 7061, 47987, 163, 254, 223, 38834, 165, 118, 119, 163, 225, 99, 171, 120, 234, 10310, 119, 17358, 223, 42468, 26344, 228, 162, 252, 238, 8457, 164, 46788, 12859, 228, 12859, 249, 33768, 114, 29785, 112, 7061, 6, 198, 220, 220, 220, 19016, 796, 366, 5450, 1378, 12708, 13, 732, 17006, 13, 5031, 844, 7258, 89, 20895, 13, 785, 14, 28243, 14, 43810, 17, 14, 23870, 14, 39786, 30487, 1343, 44804, 3672, 1343, 27071, 8457, 1, 628, 220, 220, 220, 3912, 62, 8457, 62, 35904, 796, 705, 19382, 657, 59, 28, 59, 28, 59, 28, 13, 59, 5, 59, 5, 59, 7, 13, 59, 33151, 59, 1776, 6, 198, 220, 220, 220, 3912, 62, 8457, 62, 437, 796, 45302, 17405, 1228, 897, 62, 1136, 6, 198, 220, 220, 220, 3912, 62, 8457, 796, 3912, 62, 8457, 62, 35904, 1343, 705, 15885, 6, 1343, 3912, 62, 8457, 62, 437, 628, 220, 220, 220, 3912, 62, 8457, 62, 411, 796, 705, 59, 10, 1, 59, 5, 1911, 9, 59, 10, 1, 59, 5, 45579, 76, 59, 2625, 6, 628, 220, 220, 220, 409, 8457, 796, 3127, 7, 6371, 11, 44453, 11, 2435, 8, 628, 220, 220, 220, 1257, 8457, 796, 302, 13, 12947, 7, 33279, 62, 8457, 11, 409, 8457, 737, 8094, 7, 15, 8, 198, 220, 220, 220, 1257, 8457, 796, 1257, 8457, 58, 1129, 21912, 940, 60, 628, 220, 220, 220, 581, 8457, 796, 302, 13, 12947, 7, 33279, 62, 8457, 62, 411, 11, 409, 8457, 737, 8094, 7, 15, 8, 198, 220, 220, 220, 1255, 785, 6327, 796, 581, 8457, 58, 20, 21912, 1415, 60, 628, 220, 220, 220, 409, 8457, 23, 796, 409, 8457, 628, 220, 220, 220, 2205, 8457, 796, 2452, 8457, 13, 5589, 576, 7, 1069, 8457, 23, 1343, 1257, 8457, 8, 628, 220, 220, 220, 1441, 2205, 8457, 13, 18206, 7, 20274, 785, 6327, 8, 198 ]
2.051095
411
import pytest from en16931.invoice_line import InvoiceLine
[ 11748, 12972, 9288, 198, 198, 6738, 551, 22172, 3132, 13, 16340, 2942, 62, 1370, 1330, 10001, 2942, 13949, 628 ]
3.210526
19
#!/usr/bin/env python3 from multiprocessing import Pool, TimeoutError from glob import glob import gzip import pysam from Bio import SeqIO from collections import Counter, defaultdict import scipy.stats as stats import operator import pandas as pd import argparse import cProfile import sys def chunk_ref(args, chroms): ''' Split ref into chunks for threading ''' #make server mode where just takes one chrom and scatters with WDL chunks = [] size = 100000 #just for testing, put back to 1mb total_len = 0 for record in SeqIO.parse(args.ref, 'fasta'): if record.id in chroms: for i in range(0, len(record.seq), size): if len(record.seq) > i + size: end = i + size else:#end of chrom end = len(record.seq) chunks.append((record.id, i, i+size)) return chunks if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 11, 3862, 448, 12331, 198, 6738, 15095, 1330, 15095, 198, 11748, 308, 13344, 198, 11748, 279, 893, 321, 198, 6738, 16024, 1330, 1001, 80, 9399, 198, 6738, 17268, 1330, 15034, 11, 4277, 11600, 198, 11748, 629, 541, 88, 13, 34242, 355, 9756, 198, 11748, 10088, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 1822, 29572, 198, 11748, 269, 37046, 198, 11748, 25064, 628, 198, 198, 4299, 16058, 62, 5420, 7, 22046, 11, 15358, 82, 2599, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 27758, 1006, 656, 22716, 329, 4704, 278, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 15883, 4382, 4235, 810, 655, 2753, 530, 15358, 290, 629, 34387, 351, 370, 19260, 628, 220, 220, 220, 22716, 796, 17635, 198, 220, 220, 220, 2546, 796, 1802, 830, 1303, 3137, 329, 4856, 11, 1234, 736, 284, 352, 2022, 198, 220, 220, 220, 2472, 62, 11925, 796, 657, 198, 220, 220, 220, 329, 1700, 287, 1001, 80, 9399, 13, 29572, 7, 22046, 13, 5420, 11, 705, 7217, 64, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1700, 13, 312, 287, 15358, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 22105, 13, 41068, 828, 2546, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 22105, 13, 41068, 8, 1875, 1312, 1343, 2546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 1312, 1343, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 43922, 437, 286, 15358, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 18896, 7, 22105, 13, 41068, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22716, 13, 33295, 19510, 22105, 13, 312, 11, 1312, 11, 1312, 10, 7857, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 22716, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.357843
408
# coding=utf-8 """ 백준 16928번 : 뱀과 사다리 게임 """ import sys from collections import deque input = sys.stdin.readline N, M = map(int, input().split()) graph = [*range(101)] visited = [-1] * 101 for _ in range(N + M): x, y = map(int, input().split()) graph[x] = y bfs(graph, 1, visited) print(visited[-1])
[ 2, 19617, 28, 40477, 12, 23, 198, 37811, 198, 167, 108, 109, 168, 97, 222, 27191, 2078, 167, 110, 230, 1058, 31619, 109, 222, 166, 111, 120, 23821, 8955, 46695, 97, 167, 99, 105, 220, 166, 110, 234, 168, 252, 226, 198, 37811, 198, 11748, 25064, 198, 6738, 17268, 1330, 390, 4188, 198, 15414, 796, 25064, 13, 19282, 259, 13, 961, 1370, 628, 198, 45, 11, 337, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 28955, 198, 198, 34960, 796, 30138, 9521, 7, 8784, 15437, 198, 4703, 863, 796, 25915, 16, 60, 1635, 8949, 198, 198, 1640, 4808, 287, 2837, 7, 45, 1343, 337, 2599, 198, 220, 220, 220, 2124, 11, 331, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 28955, 198, 220, 220, 220, 4823, 58, 87, 60, 796, 331, 198, 198, 65, 9501, 7, 34960, 11, 352, 11, 8672, 8, 198, 4798, 7, 4703, 863, 58, 12, 16, 12962, 628 ]
2.065789
152
import glob import os import sys import csv csv.field_size_limit(1000000000) # -*- coding: utf-8 -*- import codecs files = [] cvfv = codecs.open("./birth_cvfv.xml","w",'utf-8') fmc = codecs.open("./birth_fmc.xml","w",'utf-8') fuc = codecs.open("./birth_fuc.xml","w",'utf-8') _2gram = codecs.open("./birth_2gram.xml","w",'utf-8') _3gram = codecs.open("./birth_3gram.xml","w",'utf-8') _4gram = codecs.open("./birth_4gram.xml","w",'utf-8') _5gram = codecs.open("./birth_5gram.xml","w",'utf-8') _6gram = codecs.open("./birth_6gram.xml","w",'utf-8') smc = codecs.open("./birth_smc.xml","w",'utf-8') uc = codecs.open("./birth_uc.xml","w",'utf-8') wsp = codecs.open("./birth_wsp.xml","w",'utf-8') files = [cvfv, fmc, fuc, _2gram, _3gram, _4gram, _5gram, _6gram, smc, uc, wsp] for j in files: init(j) tmp = glob.glob("./*.csv") count = 0 for i in tmp: reader = open(i).read().split('\n') if '\0' not in open(i).read(): if reader is not None: for row in reader: row = row.split(',',3) if len(row) >= 4: row[0] = row[0].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[1] = row[1].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[2] = row[2].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') row[3] = row[3].replace('\n',"").replace('<','&lt;').replace(">",'&gt;').replace("&",'&amp;').replace("\"",'&quot;').replace("\'",'&apos;') if "cvfv" in row[2]: writer(cvfv, row) elif "fmc" in row[2]: writer(fmc, row) elif "fuc" in row[2]: writer(fuc, row) elif "2-gram" in str(i): writer(_2gram, row) elif "3-gram" in str(i): writer(_3gram, row) elif "4-gram" in str(i): writer(_4gram, row) elif "5-gram" in str(i): writer(_5gram, row) elif "6-gram" in str(i): writer(_6gram, row) elif "smc" in row[2]: writer(smc, row) elif "uc" in row[2]: writer(uc, row) elif "wsp" in row[2]: writer(wsp, row) for j in files: finish_writer(j)
[ 11748, 15095, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 269, 21370, 198, 198, 40664, 13, 3245, 62, 7857, 62, 32374, 7, 16, 10535, 830, 8, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 40481, 82, 198, 16624, 796, 17635, 198, 33967, 69, 85, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 33967, 69, 85, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 69, 23209, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 69, 23209, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 69, 1229, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 69, 1229, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 62, 17, 4546, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 17, 4546, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 62, 18, 4546, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 18, 4546, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 62, 19, 4546, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 19, 4546, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 62, 20, 4546, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 20, 4546, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 62, 21, 4546, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 21, 4546, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 5796, 66, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 5796, 66, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 1229, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 1229, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 86, 2777, 796, 40481, 82, 13, 9654, 7, 1911, 14, 24280, 62, 86, 2777, 13, 19875, 2430, 86, 1600, 6, 40477, 12, 23, 11537, 198, 198, 16624, 796, 685, 33967, 69, 85, 11, 277, 23209, 11, 277, 1229, 11, 4808, 17, 4546, 11, 4808, 18, 4546, 11, 4808, 19, 4546, 11, 4808, 20, 4546, 11, 4808, 21, 4546, 11, 895, 66, 11, 334, 66, 11, 266, 2777, 60, 628, 198, 1640, 474, 287, 3696, 25, 198, 220, 220, 220, 2315, 7, 73, 8, 628, 198, 22065, 796, 15095, 13, 4743, 672, 7, 1911, 15211, 13, 40664, 4943, 198, 9127, 796, 657, 198, 1640, 1312, 287, 45218, 25, 198, 220, 220, 220, 9173, 796, 1280, 7, 72, 737, 961, 22446, 35312, 10786, 59, 77, 11537, 198, 220, 220, 220, 611, 705, 59, 15, 6, 407, 287, 1280, 7, 72, 737, 961, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9173, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 5752, 13, 35312, 7, 3256, 3256, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 808, 8, 18189, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 58, 15, 60, 796, 5752, 58, 15, 4083, 33491, 10786, 59, 77, 40264, 11074, 33491, 10786, 27, 41707, 5, 2528, 26, 27691, 33491, 7, 5320, 1600, 6, 5, 13655, 26, 27691, 33491, 7203, 5, 1600, 6, 5, 696, 26, 27691, 33491, 7203, 7879, 1600, 6, 5, 421, 313, 26, 27691, 33491, 7203, 43054, 1600, 6, 5, 499, 418, 26, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 58, 16, 60, 796, 5752, 58, 16, 4083, 33491, 10786, 59, 77, 40264, 11074, 33491, 10786, 27, 41707, 5, 2528, 26, 27691, 33491, 7, 5320, 1600, 6, 5, 13655, 26, 27691, 33491, 7203, 5, 1600, 6, 5, 696, 26, 27691, 33491, 7203, 7879, 1600, 6, 5, 421, 313, 26, 27691, 33491, 7203, 43054, 1600, 6, 5, 499, 418, 26, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 58, 17, 60, 796, 5752, 58, 17, 4083, 33491, 10786, 59, 77, 40264, 11074, 33491, 10786, 27, 41707, 5, 2528, 26, 27691, 33491, 7, 5320, 1600, 6, 5, 13655, 26, 27691, 33491, 7203, 5, 1600, 6, 5, 696, 26, 27691, 33491, 7203, 7879, 1600, 6, 5, 421, 313, 26, 27691, 33491, 7203, 43054, 1600, 6, 5, 499, 418, 26, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 58, 18, 60, 796, 5752, 58, 18, 4083, 33491, 10786, 59, 77, 40264, 11074, 33491, 10786, 27, 41707, 5, 2528, 26, 27691, 33491, 7, 5320, 1600, 6, 5, 13655, 26, 27691, 33491, 7203, 5, 1600, 6, 5, 696, 26, 27691, 33491, 7203, 7879, 1600, 6, 5, 421, 313, 26, 27691, 33491, 7203, 43054, 1600, 6, 5, 499, 418, 26, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 33967, 69, 85, 1, 287, 5752, 58, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 7, 33967, 69, 85, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 69, 23209, 1, 287, 5752, 58, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 7, 69, 23209, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 69, 1229, 1, 287, 5752, 58, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 7, 69, 1229, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 17, 12, 4546, 1, 287, 965, 7, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28264, 17, 4546, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 18, 12, 4546, 1, 287, 965, 7, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28264, 18, 4546, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 19, 12, 4546, 1, 287, 965, 7, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28264, 19, 4546, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 20, 12, 4546, 1, 287, 965, 7, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28264, 20, 4546, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 21, 12, 4546, 1, 287, 965, 7, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 28264, 21, 4546, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 5796, 66, 1, 287, 5752, 58, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 7, 5796, 66, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 1229, 1, 287, 5752, 58, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 7, 1229, 11, 5752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 86, 2777, 1, 287, 5752, 58, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 7, 86, 2777, 11, 5752, 8, 198, 198, 1640, 474, 287, 3696, 25, 198, 220, 220, 220, 5461, 62, 16002, 7, 73, 8, 198 ]
1.726512
1,554
import setuptools from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name="robotarm", # Replace with your username version="0.0.4", author="<Aaron Ahmid Balogun>", author_email="<[email protected]>", description="<Template Setup.py package>", long_description=long_description, long_description_content_type="text/markdown", url="<https://github.com/AmidBidee/RobotArm>", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=['gunicorn', 'flask', 'pyyaml', 'python-decouple', 'requests', 'psutil', 'tabulate'], package_dir={"": "robotarm"}, packages=find_packages( where='.', include=['robotarm*'], # ["*"] by default exclude=['robotarm.tests'], # empty by default ), python_requires=">=3.6", py_modules=['arm', 'robotarm', 'controllers', 'handlers', 'armservice'], entry_points={ 'console_scripts': [ 'arm=Robot-Arm.robotarm.arm:main', ], }, )
[ 11748, 900, 37623, 10141, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 198, 198, 40406, 7, 628, 220, 220, 220, 1438, 2625, 305, 13645, 1670, 1600, 1303, 40177, 351, 534, 20579, 628, 220, 220, 220, 2196, 2625, 15, 13, 15, 13, 19, 1600, 628, 220, 220, 220, 1772, 2625, 27, 34451, 7900, 13602, 8528, 39918, 29, 1600, 628, 220, 220, 220, 1772, 62, 12888, 2625, 27, 321, 312, 65, 485, 68, 31, 14816, 13, 785, 29, 1600, 628, 220, 220, 220, 6764, 2625, 27, 30800, 31122, 13, 9078, 5301, 29, 1600, 628, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 628, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 628, 220, 220, 220, 19016, 2625, 27, 5450, 1378, 12567, 13, 785, 14, 43541, 33, 485, 68, 14, 14350, 313, 26560, 29, 1600, 628, 220, 220, 220, 1398, 13350, 41888, 628, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 628, 220, 220, 220, 16589, 628, 220, 220, 220, 2721, 62, 47911, 28, 17816, 7145, 291, 1211, 3256, 705, 2704, 2093, 3256, 705, 9078, 88, 43695, 3256, 705, 29412, 12, 12501, 43846, 3256, 705, 8897, 3558, 3256, 705, 862, 22602, 3256, 705, 8658, 5039, 6, 4357, 198, 220, 220, 220, 5301, 62, 15908, 28, 4895, 1298, 366, 305, 13645, 1670, 25719, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 198, 220, 220, 220, 220, 220, 220, 220, 810, 11639, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2291, 28, 17816, 305, 13645, 1670, 9, 6, 4357, 220, 1303, 14631, 9, 8973, 416, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 19607, 28, 17816, 305, 13645, 1670, 13, 41989, 6, 4357, 220, 1303, 6565, 416, 4277, 198, 220, 220, 220, 10612, 628, 220, 220, 220, 21015, 62, 47911, 2625, 29, 28, 18, 13, 21, 1600, 628, 220, 220, 220, 12972, 62, 18170, 28, 17816, 1670, 3256, 705, 305, 13645, 1670, 3256, 705, 3642, 36667, 3256, 705, 4993, 8116, 3256, 705, 8357, 712, 501, 6, 4357, 628, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 705, 41947, 62, 46521, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1670, 28, 14350, 313, 12, 26560, 13, 305, 13645, 1670, 13, 1670, 25, 12417, 3256, 198, 220, 220, 220, 16589, 198, 5512, 198, 198, 8, 628 ]
2.505353
467
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import uuid import backoff from google.api_core.exceptions import NotFound from google.cloud import pubsub_v1 import mock import pytest import publisher UUID = uuid.uuid4().hex PROJECT_ID = os.environ["GOOGLE_CLOUD_PROJECT"] TOPIC_ID = "publisher-test-topic-" + UUID SUBSCRIPTION_ID = "publisher-test-subscription-" + UUID # Allow 60s for tests to finish. MAX_TIME = 60 @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module")
[ 2, 15069, 1584, 3012, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 334, 27112, 198, 198, 11748, 736, 2364, 198, 6738, 23645, 13, 15042, 62, 7295, 13, 1069, 11755, 1330, 1892, 21077, 198, 6738, 23645, 13, 17721, 1330, 2240, 7266, 62, 85, 16, 198, 11748, 15290, 198, 11748, 12972, 9288, 198, 198, 11748, 9991, 198, 198, 52, 27586, 796, 334, 27112, 13, 12303, 312, 19, 22446, 33095, 198, 31190, 23680, 62, 2389, 796, 28686, 13, 268, 2268, 14692, 38, 6684, 38, 2538, 62, 5097, 2606, 35, 62, 31190, 23680, 8973, 198, 35222, 2149, 62, 2389, 796, 366, 12984, 8191, 12, 9288, 12, 26652, 21215, 1343, 471, 27586, 198, 12564, 4462, 40165, 62, 2389, 796, 366, 12984, 8191, 12, 9288, 12, 7266, 33584, 21215, 1343, 471, 27586, 198, 2, 22507, 3126, 82, 329, 5254, 284, 5461, 13, 198, 22921, 62, 34694, 796, 3126, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 628, 628, 628, 628, 628, 628 ]
3.26
350
from django.db import models from django.contrib.auth.models import User from cloudinary.models import CloudinaryField # CloudinaryImage("turtles.jpg").image(width=70, height=53, crop="scale") """ Models """
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 6279, 3219, 13, 27530, 1330, 10130, 3219, 15878, 198, 198, 2, 10130, 3219, 5159, 7203, 83, 25195, 13, 9479, 11074, 9060, 7, 10394, 28, 2154, 11, 6001, 28, 4310, 11, 13833, 2625, 9888, 4943, 198, 37811, 198, 5841, 1424, 220, 198, 37811, 628, 628 ]
3.227273
66
# -*- coding: utf-8 -*- ''' Created on 2014-07-16 @summary: Trellis TEA use pure python @author: fiefdx ''' from distutils.core import setup setup(name='pytea', version='1.0.2', author = 'fiefdx', author_email = '[email protected]', package_dir={'pytea': 'src'}, packages=['pytea'], )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 7061, 6, 198, 41972, 319, 1946, 12, 2998, 12, 1433, 198, 31, 49736, 25, 4700, 297, 271, 13368, 32, 779, 5899, 21015, 198, 31, 9800, 25, 277, 2086, 34350, 198, 7061, 6, 198, 198, 6738, 1233, 26791, 13, 7295, 1330, 9058, 198, 198, 40406, 7, 3672, 11639, 9078, 660, 64, 3256, 198, 220, 220, 220, 220, 220, 2196, 11639, 16, 13, 15, 13, 17, 3256, 198, 220, 220, 220, 220, 220, 1772, 796, 705, 69, 2086, 34350, 3256, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 796, 705, 69, 2086, 34350, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 5301, 62, 15908, 34758, 6, 9078, 660, 64, 10354, 705, 10677, 6, 5512, 198, 220, 220, 220, 220, 220, 10392, 28, 17816, 9078, 660, 64, 6, 4357, 198, 220, 220, 220, 220, 220, 1267 ]
2.125828
151