content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from itests.utils import get_sleep_time from blacksheep.client.pool import ClientConnectionPools import os import pathlib import asyncio from multiprocessing import Process from time import sleep import pytest from blacksheep.client import ClientSession from .flask_app import app @pytest.fixture(scope="session") def event_loop(): """Create an instance of the default event loop for all test cases.""" loop = asyncio.get_event_loop_policy().new_event_loop() yield loop loop.close() @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture(scope="module", autouse=True)
[ 6738, 340, 3558, 13, 26791, 1330, 651, 62, 42832, 62, 2435, 198, 6738, 2042, 7091, 538, 13, 16366, 13, 7742, 1330, 20985, 32048, 47, 10141, 198, 11748, 28686, 198, 11748, 3108, 8019, 198, 11748, 30351, 952, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 198, 6738, 640, 1330, 3993, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 2042, 7091, 538, 13, 16366, 1330, 20985, 36044, 198, 198, 6738, 764, 2704, 2093, 62, 1324, 1330, 598, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 29891, 4943, 198, 4299, 1785, 62, 26268, 33529, 198, 220, 220, 220, 37227, 16447, 281, 4554, 286, 262, 4277, 1785, 9052, 329, 477, 1332, 2663, 526, 15931, 198, 220, 220, 220, 9052, 796, 30351, 952, 13, 1136, 62, 15596, 62, 26268, 62, 30586, 22446, 3605, 62, 15596, 62, 26268, 3419, 198, 220, 220, 220, 7800, 9052, 198, 220, 220, 220, 9052, 13, 19836, 3419, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 1600, 1960, 1076, 28, 17821, 8, 198 ]
3.09417
223
print("part1:", iterate(80)) print("part2:", iterate(256))
[ 198, 4798, 7203, 3911, 16, 25, 1600, 11629, 378, 7, 1795, 4008, 198, 4798, 7203, 3911, 17, 25, 1600, 11629, 378, 7, 11645, 4008, 198 ]
2.4
25
""" ============================================== Repository of Updaters, Dividers, and Derivers ============================================== You should interpret words and phrases that appear fully capitalized in this document as described in :rfc:`2119`. Here is a brief summary of the RFC: * "MUST" indicates absolute requirements. Vivarium may not work correctly if you don't follow these. * "SHOULD" indicates strong suggestions. You might have a valid reason for deviating from them, but be careful that you understand the ramifications. * "MAY" indicates truly optional features that you can include or exclude as you wish. -------- Updaters -------- Each :term:`updater` is defined as a function whose name begins with ``update_``. Vivarium uses these functions to apply :term:`updates` to :term:`variables`. Updater names are defined in :py:data:`updater_library`, which maps these names to updater functions. Updater API =========== An updater function MUST have a name that begins with ``update_``. The function MUST accept exactly two positional arguments: the first MUST be the current value of the variable (i.e. before applying the update), and the second MUST be the value associated with the variable in the update. The function SHOULD not accept any other parameters. The function MUST return the updated value of the variable only. -------- Dividers -------- Each :term:`divider` is defined by a function that follows the API we describe below. Vivarium uses these dividers to generate daughter cell states from the mother cell's state. Divider names are defined in :py:data:`divider_library`, which maps these names to divider functions. Divider API =========== Each divider function MUST have a name prefixed with ``_divide``. The function MUST accept a single positional argument, the value of the variable in the mother cell. It SHOULD accept no other arguments. The function MUST return a :py:class:`list` with two elements: the values of the variables in each of the daughter cells. .. note:: Dividers MAY not be deterministic and MAY not be symmetric. For example, a divider splitting an odd, integer-valued value may randomly decide which daughter cell receives the remainder. -------- Derivers -------- Each :term:`deriver` is defined as a separate :term:`process`, but here deriver names are mapped to processes by :py:data:`deriver_library`. The available derivers are: * **mmol_to_counts**: :py:class:`vivarium.processes.derive_counts.DeriveCounts` * **counts_to_mmol**: :py:class:`vivarium.processes.derive_concentrations.DeriveConcentrations` * **mass**: :py:class:`vivarium.processes.tree_mass.TreeMass` * **globals**: :py:class:`vivarium.processes.derive_globals.DeriveGlobals` See the documentation for each :term:`process class` for more details on that deriver. """ from __future__ import absolute_import, division, print_function import copy import random import numpy as np from vivarium.library.dict_utils import deep_merge from vivarium.library.units import Quantity # deriver processes from vivarium.processes.derive_concentrations import DeriveConcentrations from vivarium.processes.derive_counts import DeriveCounts from vivarium.processes.derive_globals import DeriveGlobals from vivarium.processes.tree_mass import TreeMass ## updater functions def update_merge(current_value, new_value): """Merge Updater Arguments: current_value (dict): new_value (dict): Returns: dict: The merger of ``current_value`` and ``new_value``. For any shared keys, the value in ``new_value`` is used. """ update = current_value.copy() for k, v in current_value.items(): new = new_value.get(k) if isinstance(new, dict): update[k] = deep_merge(dict(v), new) else: update[k] = new return update def update_set(current_value, new_value): """Set Updater Returns: The value provided in ``new_value``. """ return new_value def update_accumulate(current_value, new_value): """Accumulate Updater Returns: The sum of ``current_value`` and ``new_value``. """ return current_value + new_value #: Maps updater names to updater functions updater_library = { 'accumulate': update_accumulate, 'set': update_set, 'merge': update_merge} ## divider functions def divide_set(state): """Set Divider Returns: A list ``[state, state]``. No copying is performed. """ return [state, state] def divide_split(state): """Split Divider Arguments: state: Must be an :py:class:`int`, a :py:class:`float`, or a :py:class:`str` of value ``Infinity``. Returns: A list, each of whose elements contains half of ``state``. If ``state`` is an :py:class:`int`, the remainder is placed at random in one of the two elements. If ``state`` is infinite, the return value is ``[state, state]`` (no copying is done). Raises: Exception: if ``state`` is of an unrecognized type. """ if isinstance(state, int): remainder = state % 2 half = int(state / 2) if random.choice([True, False]): return [half + remainder, half] else: return [half, half + remainder] elif state == float('inf') or state == 'Infinity': # some concentrations are considered infinite in the environment # an alternative option is to not divide the local environment state return [state, state] elif isinstance(state, (float, Quantity)): half = state/2 return [half, half] else: raise Exception('can not divide state {} of type {}'.format(state, type(state))) def divide_zero(state): """Zero Divider Returns: ``[0, 0]`` regardless of input """ return [0, 0] def divide_split_dict(state): """Split-Dictionary Divider Returns: A list of two dictionaries. The first dictionary stores the first half of the key-value pairs in ``state``, and the second dictionary stores the rest of the key-value pairs. .. note:: Since dictionaries are unordered, you should avoid making any assumptions about which keys will be sent to which daughter cell. """ if state is None: state = {} d1 = dict(list(state.items())[len(state) // 2:]) d2 = dict(list(state.items())[:len(state) // 2]) return [d1, d2] #: Maps divider names to divider functions divider_library = { 'set': divide_set, 'split': divide_split, 'split_dict': divide_split_dict, 'zero': divide_zero} # Derivers #: Maps deriver names to :term:`process classes` deriver_library = { 'mmol_to_counts': DeriveCounts, 'counts_to_mmol': DeriveConcentrations, 'mass': TreeMass, 'globals': DeriveGlobals, } # Serializers serializer_library = { 'numpy': NumpySerializer(), }
[ 37811, 198, 10052, 25609, 855, 198, 6207, 13264, 286, 3205, 67, 8605, 11, 360, 1699, 364, 11, 290, 9626, 1191, 198, 10052, 25609, 855, 198, 198, 1639, 815, 6179, 2456, 290, 20144, 326, 1656, 3938, 3139, 1143, 287, 198, 5661, 3188, 355, 3417, 287, 1058, 81, 16072, 25, 63, 2481, 1129, 44646, 3423, 318, 257, 4506, 10638, 286, 198, 1169, 30978, 25, 198, 198, 9, 366, 44, 7759, 1, 9217, 4112, 5359, 13, 25313, 17756, 743, 407, 670, 198, 220, 9380, 611, 345, 836, 470, 1061, 777, 13, 198, 9, 366, 9693, 24010, 1, 9217, 1913, 11776, 13, 921, 1244, 423, 257, 4938, 1738, 198, 220, 329, 1614, 26336, 422, 606, 11, 475, 307, 8161, 326, 345, 1833, 262, 198, 220, 36093, 13, 198, 9, 366, 44, 4792, 1, 9217, 4988, 11902, 3033, 326, 345, 460, 2291, 393, 198, 220, 19607, 355, 345, 4601, 13, 198, 198, 982, 198, 4933, 67, 8605, 198, 982, 198, 198, 10871, 1058, 4354, 25, 63, 929, 67, 729, 63, 318, 5447, 355, 257, 2163, 3025, 1438, 6140, 351, 198, 15506, 19119, 62, 15506, 13, 25313, 17756, 3544, 777, 5499, 284, 4174, 1058, 4354, 25, 63, 929, 19581, 63, 284, 198, 25, 4354, 25, 63, 25641, 2977, 44646, 3205, 67, 729, 3891, 389, 5447, 287, 198, 25, 9078, 25, 7890, 25, 63, 929, 67, 729, 62, 32016, 47671, 543, 8739, 777, 3891, 284, 2325, 729, 5499, 13, 198, 198, 4933, 67, 729, 7824, 198, 2559, 18604, 198, 198, 2025, 2325, 729, 2163, 17191, 423, 257, 1438, 326, 6140, 351, 7559, 19119, 62, 15506, 13, 383, 198, 8818, 17191, 2453, 3446, 734, 45203, 7159, 25, 262, 717, 17191, 307, 198, 1169, 1459, 1988, 286, 262, 7885, 357, 72, 13, 68, 13, 878, 11524, 262, 4296, 828, 290, 198, 1169, 1218, 17191, 307, 262, 1988, 3917, 351, 262, 7885, 287, 262, 4296, 13, 198, 464, 2163, 40312, 407, 2453, 597, 584, 10007, 13, 383, 2163, 17191, 198, 7783, 262, 6153, 1988, 286, 262, 7885, 691, 13, 198, 198, 982, 198, 35, 1699, 364, 198, 982, 198, 198, 10871, 1058, 4354, 25, 63, 7146, 1304, 63, 318, 5447, 416, 257, 2163, 326, 5679, 262, 7824, 356, 198, 20147, 4892, 2174, 13, 25313, 17756, 3544, 777, 13576, 364, 284, 7716, 4957, 2685, 198, 27219, 422, 262, 2802, 2685, 338, 1181, 13, 4777, 1304, 3891, 389, 5447, 287, 198, 25, 9078, 25, 7890, 25, 63, 7146, 1304, 62, 32016, 47671, 543, 8739, 777, 3891, 284, 2659, 1304, 5499, 13, 198, 198, 24095, 1304, 7824, 198, 2559, 18604, 198, 198, 10871, 2659, 1304, 2163, 17191, 423, 257, 1438, 7694, 2966, 351, 7559, 62, 7146, 485, 15506, 13, 383, 198, 8818, 17191, 2453, 257, 2060, 45203, 4578, 11, 262, 1988, 286, 262, 198, 45286, 287, 262, 2802, 2685, 13, 632, 40312, 2453, 645, 584, 7159, 13, 383, 198, 8818, 17191, 1441, 257, 1058, 9078, 25, 4871, 25, 63, 4868, 63, 351, 734, 4847, 25, 262, 3815, 286, 198, 1169, 9633, 287, 1123, 286, 262, 4957, 4778, 13, 198, 198, 492, 3465, 3712, 360, 1699, 364, 26720, 407, 307, 2206, 49228, 290, 26720, 407, 307, 23606, 19482, 13, 198, 220, 220, 220, 1114, 1672, 11, 257, 2659, 1304, 26021, 281, 5629, 11, 18253, 12, 39728, 1988, 743, 198, 220, 220, 220, 15456, 5409, 543, 4957, 2685, 11583, 262, 17675, 13, 198, 198, 982, 198, 28532, 1191, 198, 982, 198, 198, 10871, 1058, 4354, 25, 63, 1082, 1428, 63, 318, 5447, 355, 257, 4553, 1058, 4354, 25, 63, 14681, 47671, 475, 994, 198, 1082, 1428, 3891, 389, 27661, 284, 7767, 416, 1058, 9078, 25, 7890, 25, 63, 1082, 1428, 62, 32016, 44646, 383, 198, 15182, 4587, 1191, 389, 25, 198, 198, 9, 12429, 3020, 349, 62, 1462, 62, 9127, 82, 1174, 25, 1058, 9078, 25, 4871, 25, 63, 85, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 9127, 82, 13, 28532, 425, 12332, 82, 63, 198, 9, 12429, 9127, 82, 62, 1462, 62, 3020, 349, 1174, 25, 198, 220, 1058, 9078, 25, 4871, 25, 63, 85, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 1102, 1087, 9143, 13, 28532, 425, 3103, 1087, 9143, 63, 198, 9, 12429, 22208, 1174, 25, 1058, 9078, 25, 4871, 25, 63, 85, 452, 17756, 13, 14681, 274, 13, 21048, 62, 22208, 13, 27660, 20273, 63, 198, 9, 12429, 4743, 672, 874, 1174, 25, 198, 220, 1058, 9078, 25, 4871, 25, 63, 85, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 4743, 672, 874, 13, 28532, 425, 9861, 672, 874, 63, 198, 198, 6214, 262, 10314, 329, 1123, 1058, 4354, 25, 63, 14681, 1398, 63, 329, 517, 3307, 319, 198, 5562, 4587, 1428, 13, 198, 37811, 628, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 11748, 4866, 198, 11748, 4738, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 410, 452, 17756, 13, 32016, 13, 11600, 62, 26791, 1330, 2769, 62, 647, 469, 198, 6738, 410, 452, 17756, 13, 32016, 13, 41667, 1330, 39789, 198, 198, 2, 4587, 1428, 7767, 198, 6738, 410, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 1102, 1087, 9143, 1330, 9626, 425, 3103, 1087, 9143, 198, 6738, 410, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 9127, 82, 1330, 9626, 425, 12332, 82, 198, 6738, 410, 452, 17756, 13, 14681, 274, 13, 1082, 425, 62, 4743, 672, 874, 1330, 9626, 425, 9861, 672, 874, 198, 6738, 410, 452, 17756, 13, 14681, 274, 13, 21048, 62, 22208, 1330, 12200, 20273, 628, 198, 2235, 2325, 729, 5499, 198, 198, 4299, 4296, 62, 647, 469, 7, 14421, 62, 8367, 11, 649, 62, 8367, 2599, 198, 220, 220, 220, 37227, 13102, 469, 3205, 67, 729, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 8367, 357, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 8367, 357, 11600, 2599, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 25, 383, 24589, 286, 7559, 14421, 62, 8367, 15506, 290, 7559, 3605, 62, 8367, 15506, 13, 1114, 597, 198, 220, 220, 220, 220, 220, 220, 220, 4888, 8251, 11, 262, 1988, 287, 7559, 3605, 62, 8367, 15506, 318, 973, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4296, 796, 1459, 62, 8367, 13, 30073, 3419, 198, 220, 220, 220, 329, 479, 11, 410, 287, 1459, 62, 8367, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 649, 796, 649, 62, 8367, 13, 1136, 7, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 3605, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 58, 74, 60, 796, 2769, 62, 647, 469, 7, 11600, 7, 85, 828, 649, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 58, 74, 60, 796, 649, 198, 220, 220, 220, 1441, 4296, 198, 198, 4299, 4296, 62, 2617, 7, 14421, 62, 8367, 11, 649, 62, 8367, 2599, 198, 220, 220, 220, 37227, 7248, 3205, 67, 729, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 2810, 287, 7559, 3605, 62, 8367, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 649, 62, 8367, 198, 198, 4299, 4296, 62, 4134, 388, 5039, 7, 14421, 62, 8367, 11, 649, 62, 8367, 2599, 198, 220, 220, 220, 37227, 17320, 388, 5039, 3205, 67, 729, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2160, 286, 7559, 14421, 62, 8367, 15506, 290, 7559, 3605, 62, 8367, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1459, 62, 8367, 1343, 649, 62, 8367, 198, 198, 2, 25, 20347, 2325, 729, 3891, 284, 2325, 729, 5499, 198, 929, 67, 729, 62, 32016, 796, 1391, 198, 220, 220, 220, 705, 4134, 388, 5039, 10354, 4296, 62, 4134, 388, 5039, 11, 198, 220, 220, 220, 705, 2617, 10354, 4296, 62, 2617, 11, 198, 220, 220, 220, 705, 647, 469, 10354, 4296, 62, 647, 469, 92, 198, 198, 2235, 2659, 1304, 5499, 198, 4299, 14083, 62, 2617, 7, 5219, 2599, 198, 220, 220, 220, 37227, 7248, 4777, 1304, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 7559, 58, 5219, 11, 1181, 60, 15506, 13, 1400, 23345, 318, 6157, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 5219, 11, 1181, 60, 198, 198, 4299, 14083, 62, 35312, 7, 5219, 2599, 198, 220, 220, 220, 37227, 41205, 4777, 1304, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 25, 12039, 307, 281, 1058, 9078, 25, 4871, 25, 63, 600, 47671, 257, 1058, 9078, 25, 4871, 25, 63, 22468, 47671, 393, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 9078, 25, 4871, 25, 63, 2536, 63, 286, 1988, 7559, 18943, 6269, 15506, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 11, 1123, 286, 3025, 4847, 4909, 2063, 286, 7559, 5219, 15506, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 5219, 15506, 318, 281, 1058, 9078, 25, 4871, 25, 63, 600, 47671, 262, 17675, 318, 4624, 379, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 287, 530, 286, 262, 734, 4847, 13, 1002, 7559, 5219, 15506, 318, 15541, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 318, 7559, 58, 5219, 11, 1181, 60, 15506, 357, 3919, 23345, 318, 1760, 737, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35528, 25, 611, 7559, 5219, 15506, 318, 286, 281, 43483, 1143, 2099, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 5219, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 17675, 796, 1181, 4064, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2063, 796, 493, 7, 5219, 1220, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4738, 13, 25541, 26933, 17821, 11, 10352, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 13959, 1343, 17675, 11, 2063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 13959, 11, 2063, 1343, 17675, 60, 198, 220, 220, 220, 1288, 361, 1181, 6624, 12178, 10786, 10745, 11537, 393, 1181, 6624, 705, 18943, 6269, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 617, 14587, 389, 3177, 15541, 287, 262, 2858, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 281, 5559, 3038, 318, 284, 407, 14083, 262, 1957, 2858, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 5219, 11, 1181, 60, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 5219, 11, 357, 22468, 11, 39789, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2063, 796, 1181, 14, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 13959, 11, 2063, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 5171, 407, 14083, 1181, 23884, 286, 2099, 23884, 4458, 18982, 7, 5219, 11, 2099, 7, 5219, 22305, 198, 198, 4299, 14083, 62, 22570, 7, 5219, 2599, 198, 220, 220, 220, 37227, 28667, 4777, 1304, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 58, 15, 11, 657, 60, 15506, 7692, 286, 5128, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 15, 11, 657, 60, 198, 198, 4299, 14083, 62, 35312, 62, 11600, 7, 5219, 2599, 198, 220, 220, 220, 37227, 41205, 12, 35, 14188, 4777, 1304, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 734, 48589, 3166, 13, 383, 717, 22155, 7000, 262, 198, 220, 220, 220, 220, 220, 220, 220, 717, 2063, 286, 262, 1994, 12, 8367, 14729, 287, 7559, 5219, 15506, 11, 290, 262, 1218, 198, 220, 220, 220, 220, 220, 220, 220, 22155, 7000, 262, 1334, 286, 262, 1994, 12, 8367, 14729, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 3465, 3712, 4619, 48589, 3166, 389, 555, 24071, 11, 345, 815, 3368, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1642, 597, 14895, 546, 543, 8251, 481, 307, 1908, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 543, 4957, 2685, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1181, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 23884, 198, 220, 220, 220, 288, 16, 796, 8633, 7, 4868, 7, 5219, 13, 23814, 28955, 58, 11925, 7, 5219, 8, 3373, 362, 25, 12962, 198, 220, 220, 220, 288, 17, 796, 8633, 7, 4868, 7, 5219, 13, 23814, 28955, 58, 25, 11925, 7, 5219, 8, 3373, 362, 12962, 198, 220, 220, 220, 1441, 685, 67, 16, 11, 288, 17, 60, 198, 198, 2, 25, 20347, 2659, 1304, 3891, 284, 2659, 1304, 5499, 198, 7146, 1304, 62, 32016, 796, 1391, 198, 220, 220, 220, 705, 2617, 10354, 14083, 62, 2617, 11, 198, 220, 220, 220, 705, 35312, 10354, 14083, 62, 35312, 11, 198, 220, 220, 220, 705, 35312, 62, 11600, 10354, 14083, 62, 35312, 62, 11600, 11, 198, 220, 220, 220, 705, 22570, 10354, 14083, 62, 22570, 92, 198, 198, 2, 9626, 1191, 198, 198, 2, 25, 20347, 4587, 1428, 3891, 284, 1058, 4354, 25, 63, 14681, 6097, 63, 198, 1082, 1428, 62, 32016, 796, 1391, 198, 220, 220, 220, 705, 3020, 349, 62, 1462, 62, 9127, 82, 10354, 9626, 425, 12332, 82, 11, 198, 220, 220, 220, 705, 9127, 82, 62, 1462, 62, 3020, 349, 10354, 9626, 425, 3103, 1087, 9143, 11, 198, 220, 220, 220, 705, 22208, 10354, 12200, 20273, 11, 198, 220, 220, 220, 705, 4743, 672, 874, 10354, 9626, 425, 9861, 672, 874, 11, 198, 92, 628, 198, 2, 23283, 11341, 198, 198, 46911, 7509, 62, 32016, 796, 1391, 198, 220, 220, 220, 705, 77, 32152, 10354, 399, 32152, 32634, 7509, 22784, 198, 92, 198 ]
2.935973
2,374
import torch from torch import Tensor def compute_accuracy(pred: Tensor, gt: Tensor, ignore: int = 0): """ pred (torch.Tensor): predicted words shape of [L, N] gt (torch.Tensor): GT words shape of [L, N] ignore (int): ignored label """ mask = gt != ignore tp = torch.logical_and(pred == gt, mask) return tp.sum() / mask.sum()
[ 11748, 28034, 198, 6738, 28034, 1330, 309, 22854, 628, 198, 4299, 24061, 62, 4134, 23843, 7, 28764, 25, 309, 22854, 11, 308, 83, 25, 309, 22854, 11, 8856, 25, 493, 796, 657, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2747, 357, 13165, 354, 13, 51, 22854, 2599, 11001, 2456, 5485, 286, 685, 43, 11, 399, 60, 198, 220, 220, 220, 308, 83, 357, 13165, 354, 13, 51, 22854, 2599, 7963, 2456, 5485, 286, 685, 43, 11, 399, 60, 198, 220, 220, 220, 8856, 357, 600, 2599, 9514, 6167, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9335, 796, 308, 83, 14512, 8856, 198, 220, 220, 220, 256, 79, 796, 28034, 13, 6404, 605, 62, 392, 7, 28764, 6624, 308, 83, 11, 9335, 8, 628, 220, 220, 220, 1441, 256, 79, 13, 16345, 3419, 1220, 9335, 13, 16345, 3419, 628 ]
2.531469
143
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
# this is a make/python hybrid file # Normal make files are a make/sh hybrid. # This makefile uses python instead of sh (or bash) test_cxx_sources ?= checkcxxsources $(cxxsources):$(out_init) $(origin) if (this == "checkcxxsources") and (not os.path.exists(env.cxxsources)): leave() caption() if (this == env.cxxsources): lib_cxx, main_cxx = [],[] quote = "'" else: quote = "" test_cxx=[] for root, dirs, files in os.walk(env.cxxsrc) : for file in files: if file.endswith(".cxx"): cxx = quote+os.path.join(root, file)+quote if root.endswith("/main"): if (this == env.cxxsources): lib_cxx.append(cxx); main_cxx.append(cxx) test_cxx.append(cxx) elif root.endswith("/test"): test_cxx.append(cxx) test_cxx.sort() if (this == env.cxxsources): lib_cxx.sort() main_cxx.sort() with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) f.write("lib_cxx_sources := %s\n\n" % (",".join(lib_cxx))) f.write("main_cxx_sources := %s\n\n" % (",".join(main_cxx))) f.write("test_cxx_sources := %s\n\n" % (",".join(test_cxx))) leave() before = set([$(test_cxx_sources)]) after = set(test_cxx) removed = str(before-after).replace(root_prefix,"") added = str(after-before).replace(root_prefix,"") removals = removed != "set()" additions = added != "set()" if removals or additions: print ("cxx source files were added or removed\n") if removals: print("removals:", removed) if additions: print("additions:", added) print ("\nForcing dependency and rule regeneration and re-link.\n") run(env.MAKE, "re-dep") cxx_dep0 := $(CXX), "-E", "--trace-includes", $(DEP_CXX_FLAGS) cxx_dep1 := "-I$(cxxinc)", cxx, "-o/dev/null" cxx_dep := $(cxx_dep0), $(cxx_dep1) $(cxxdeps): $(cxxsources);$(caption) queues, process = [],[] fd_a=types.SimpleNamespace() fd_a.gorge = gorge fd_a.root = root_prefix_len prefix = "test_cxx_sources := " prefix_len = len(prefix) with open(first) as f: lines = f.readlines() for line in lines: if line.startswith(prefix): sources = line[prefix_len:].rstrip() test_cxx = sources.split(",") for _cxx in test_cxx: cxx = _cxx.replace("'","") q = multiprocessing.Queue() p = multiprocessing.Process(target=find_dep, args=(cxx, q, fd_a)) process.append(p) queues.append(q) p.start() break with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) n = 1 for q in queues: obj = q.get() deps = q.get() f.write("\n# %d\n%s := " % (n, obj)) f.write(" ".join(deps)) f.write("\n") n+=1 for p in process: p.join() $(objrules): $(cxxdeps); $(caption) suffix = "_obj_deps" prefix = "cxxsrc_" main_prefix = prefix + "main_" test_prefix = prefix + "test_" sep = " := " sep_len = len(sep) prefix_len = len(prefix) main_obj0, test_obj0, lib_obj0 = [],[],[] main_objs, test_objs, lib_objs = {},{},{} cxx_ext = ".cxx" cxx_ext_len = len(cxx_ext) with open(first) as f: lines = f.readlines() for line in lines: if line.startswith(prefix): i = line.find(sep) if i == -1: raise RuntimeError("Source deps line not formatted correctly") deps = line[:i] sources = line [i+sep_len:] j = sources.find(cxx_ext)+cxx_ext_len if j == -1: raise RuntimeError("Source deps line not formatted correctly") cxxfile = sources[root_prefix_len:j] cxxfile_i = "need to work on ctfe wrapper..." deps1 = deps.replace(suffix,".o") deps1 = deps1.replace("cxxsrc","$$(obj)") deps1 = deps1.replace("_","/",2) obj = deps1 if deps.startswith(main_prefix): lib_obj = obj.replace("$$(obj)/main","$$(obj)/lib") test_obj = obj.replace("$$(obj)/main/","$$(obj)/test/main__") main_objs[obj] = (cxxfile,deps,cxxfile_i) lib_objs[lib_obj] = (cxxfile,deps,cxxfile_i) test_objs[test_obj] = (cxxfile,deps,cxxfile_i) main_obj0.append(obj) lib_obj0.append(lib_obj) test_obj0.append(test_obj) continue if deps.startswith(test_prefix): test_objs[obj] = (cxxfile,deps,cxxfile_i) test_obj0.append(obj) with open (this, "w") as f: f.write("# === Generated by %s:%s ===\n\n" % (env.MAKEFILE_LIST, this)) f.write("\nmain_exe_objects := %s\n" % (" ".join(main_obj0))) f.write("\nlib_so_objects := %s\n" % (" ".join(lib_obj0))) f.write("\ntest_exe_objects := %s\n" % (" ".join(test_obj0))) f.write("\n__main_exe_objects__ := %s\n" % (make_quoted_list(main_obj0))) f.write("\n__lib_so_objects__ := %s\n" % (make_quoted_list(lib_obj0))) f.write("\n__test_exe_objects__ := %s\n" % (make_quoted_list(test_obj0))) ipch = "'-include-pch'," rule = "$$(__CXX_FLAGS), '-c', '$$<', '-o$$@'" main = ipch + "'$$(main_sysheaders_pch)'," + rule + ", $$(MAIN_EXTRA)" test = ipch + "'$$(test_sysheaders_pch)'," + rule + ", $$(TEST_EXTRA)" lib = ipch + "'$$(lib_sysheaders_pch)'," + rule + ", $$(LIB_EXTRA)" cxx = "$$(CXX)" main_d = "$$(obj_main_init) $$(main_sysheaders_pch)" lib_d = "$$(obj_lib_init) $$(lib_sysheaders_pch)" test_d = "$$(obj_test_init) $$(test_sysheaders_pch)" target("main", main_objs, main, cxx, main_d, f) target("lib", lib_objs, lib, cxx, lib_d, f) target("test", test_objs, test, cxx, test_d, f)
[ 2, 428, 318, 257, 787, 14, 29412, 14554, 2393, 198, 198, 2, 14435, 787, 3696, 389, 257, 787, 14, 1477, 14554, 13, 198, 2, 770, 787, 7753, 3544, 21015, 2427, 286, 427, 357, 273, 27334, 8, 198, 198, 9288, 62, 66, 5324, 62, 82, 2203, 5633, 28, 198, 198, 9122, 66, 5324, 82, 2203, 29568, 66, 5324, 82, 2203, 2599, 3, 7, 448, 62, 15003, 8, 198, 220, 29568, 47103, 8, 198, 220, 611, 357, 5661, 6624, 366, 9122, 66, 5324, 82, 2203, 4943, 290, 357, 1662, 28686, 13, 6978, 13, 1069, 1023, 7, 24330, 13, 66, 5324, 82, 2203, 8, 2599, 198, 220, 220, 220, 2666, 3419, 198, 220, 8305, 3419, 628, 220, 611, 357, 5661, 6624, 17365, 13, 66, 5324, 82, 2203, 2599, 198, 220, 220, 220, 9195, 62, 66, 5324, 11, 1388, 62, 66, 5324, 796, 685, 4357, 21737, 198, 220, 220, 220, 9577, 796, 24018, 1, 198, 220, 2073, 25, 198, 220, 220, 220, 9577, 796, 13538, 628, 220, 1332, 62, 66, 5324, 28, 21737, 628, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 24330, 13, 66, 5324, 10677, 8, 1058, 198, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 611, 2393, 13, 437, 2032, 342, 7, 1911, 66, 5324, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 269, 5324, 796, 9577, 10, 418, 13, 6978, 13, 22179, 7, 15763, 11, 2393, 47762, 22708, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6808, 13, 437, 2032, 342, 7203, 14, 12417, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 5661, 6624, 17365, 13, 66, 5324, 82, 2203, 2599, 9195, 62, 66, 5324, 13, 33295, 7, 66, 5324, 1776, 1388, 62, 66, 5324, 13, 33295, 7, 66, 5324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 66, 5324, 13, 33295, 7, 66, 5324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6808, 13, 437, 2032, 342, 7203, 14, 9288, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 66, 5324, 13, 33295, 7, 66, 5324, 8, 628, 220, 1332, 62, 66, 5324, 13, 30619, 3419, 628, 220, 611, 357, 5661, 6624, 17365, 13, 66, 5324, 82, 2203, 2599, 198, 220, 220, 220, 9195, 62, 66, 5324, 13, 30619, 3419, 198, 220, 220, 220, 1388, 62, 66, 5324, 13, 30619, 3419, 198, 220, 220, 220, 351, 1280, 357, 5661, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 2, 24844, 2980, 515, 416, 4064, 82, 25, 4, 82, 24844, 59, 77, 59, 77, 1, 4064, 357, 24330, 13, 5673, 7336, 25664, 62, 45849, 11, 428, 4008, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 8019, 62, 66, 5324, 62, 82, 2203, 19039, 4064, 82, 59, 77, 59, 77, 1, 4064, 357, 2430, 13, 22179, 7, 8019, 62, 66, 5324, 22305, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 12417, 62, 66, 5324, 62, 82, 2203, 19039, 4064, 82, 59, 77, 59, 77, 1, 4064, 357, 2430, 13, 22179, 7, 12417, 62, 66, 5324, 22305, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 9288, 62, 66, 5324, 62, 82, 2203, 19039, 4064, 82, 59, 77, 59, 77, 1, 4064, 357, 2430, 13, 22179, 7, 9288, 62, 66, 5324, 22305, 198, 220, 220, 220, 2666, 3419, 628, 220, 878, 796, 900, 26933, 3, 7, 9288, 62, 66, 5324, 62, 82, 2203, 8, 12962, 198, 220, 706, 796, 900, 7, 9288, 62, 66, 5324, 8, 198, 220, 4615, 796, 965, 7, 19052, 12, 8499, 737, 33491, 7, 15763, 62, 40290, 553, 4943, 198, 220, 2087, 796, 965, 7, 8499, 12, 19052, 737, 33491, 7, 15763, 62, 40290, 553, 4943, 198, 220, 816, 709, 874, 796, 4615, 14512, 366, 2617, 3419, 1, 198, 220, 19885, 796, 2087, 14512, 366, 2617, 3419, 1, 198, 220, 611, 816, 709, 874, 393, 19885, 25, 198, 220, 220, 220, 3601, 5855, 66, 5324, 2723, 3696, 547, 2087, 393, 4615, 59, 77, 4943, 198, 220, 220, 220, 611, 816, 709, 874, 25, 3601, 7203, 2787, 709, 874, 25, 1600, 4615, 8, 198, 220, 220, 220, 611, 19885, 25, 3601, 7203, 2860, 1756, 25, 1600, 2087, 8, 198, 220, 220, 220, 3601, 5855, 59, 77, 1890, 2259, 20203, 290, 3896, 27597, 290, 302, 12, 8726, 13, 59, 77, 4943, 198, 220, 220, 220, 1057, 7, 24330, 13, 5673, 7336, 11, 366, 260, 12, 10378, 4943, 198, 198, 66, 5324, 62, 10378, 15, 19039, 29568, 34, 8051, 828, 27444, 36, 1600, 366, 438, 40546, 12, 42813, 1600, 29568, 46162, 62, 34, 8051, 62, 38948, 50, 8, 198, 66, 5324, 62, 10378, 16, 19039, 27444, 40, 3, 7, 66, 5324, 1939, 42501, 269, 5324, 11, 27444, 78, 14, 7959, 14, 8423, 1, 198, 66, 5324, 62, 10378, 19039, 29568, 66, 5324, 62, 10378, 15, 828, 29568, 66, 5324, 62, 10378, 16, 8, 198, 198, 3, 7, 66, 5324, 10378, 82, 2599, 29568, 66, 5324, 82, 2203, 1776, 3, 7, 6888, 1159, 8, 628, 220, 43359, 11, 1429, 796, 685, 4357, 21737, 198, 220, 277, 67, 62, 64, 28, 19199, 13, 26437, 36690, 10223, 3419, 198, 220, 277, 67, 62, 64, 13, 70, 3643, 796, 17177, 198, 220, 277, 67, 62, 64, 13, 15763, 796, 6808, 62, 40290, 62, 11925, 628, 220, 21231, 796, 366, 9288, 62, 66, 5324, 62, 82, 2203, 19039, 366, 198, 220, 21231, 62, 11925, 796, 18896, 7, 40290, 8, 628, 220, 351, 1280, 7, 11085, 8, 355, 277, 25, 198, 220, 220, 220, 3951, 796, 277, 13, 961, 6615, 3419, 198, 220, 220, 220, 329, 1627, 287, 3951, 25, 198, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4237, 796, 1627, 58, 40290, 62, 11925, 25, 4083, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 66, 5324, 796, 4237, 13, 35312, 7, 2430, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 66, 5324, 287, 1332, 62, 66, 5324, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 5324, 796, 4808, 66, 5324, 13, 33491, 7203, 6, 2430, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 18540, 305, 919, 278, 13, 34991, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 28, 19796, 62, 10378, 11, 26498, 16193, 66, 5324, 11, 10662, 11, 277, 67, 62, 64, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1429, 13, 33295, 7, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 13, 33295, 7, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 351, 1280, 357, 5661, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7203, 2, 24844, 2980, 515, 416, 4064, 82, 25, 4, 82, 24844, 59, 77, 59, 77, 1, 4064, 357, 24330, 13, 5673, 7336, 25664, 62, 45849, 11, 428, 4008, 198, 220, 220, 220, 299, 796, 352, 198, 220, 220, 220, 329, 10662, 287, 43359, 25, 198, 220, 220, 220, 220, 220, 26181, 796, 10662, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 390, 862, 796, 10662, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 2, 4064, 67, 59, 77, 4, 82, 19039, 366, 4064, 357, 77, 11, 26181, 4008, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 27071, 22179, 7, 10378, 82, 4008, 198, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 299, 47932, 16, 628, 220, 329, 279, 287, 1429, 25, 279, 13, 22179, 3419, 198, 198, 3, 7, 26801, 38785, 2599, 29568, 66, 5324, 10378, 82, 1776, 29568, 6888, 1159, 8, 198, 220, 35488, 796, 45434, 26801, 62, 10378, 82, 1, 198, 220, 21231, 796, 366, 66, 5324, 10677, 62, 1, 198, 220, 1388, 62, 40290, 796, 21231, 1343, 366, 12417, 62, 1, 198, 220, 1332, 62, 40290, 796, 21231, 1343, 366, 9288, 62, 1, 198, 220, 41767, 796, 366, 19039, 366, 198, 220, 41767, 62, 11925, 796, 18896, 7, 325, 79, 8, 198, 220, 21231, 62, 11925, 796, 18896, 7, 40290, 8, 628, 220, 1388, 62, 26801, 15, 11, 1332, 62, 26801, 15, 11, 9195, 62, 26801, 15, 796, 685, 38430, 4357, 21737, 198, 220, 1388, 62, 672, 8457, 11, 1332, 62, 672, 8457, 11, 9195, 62, 672, 8457, 796, 1391, 5512, 90, 5512, 90, 92, 628, 220, 269, 5324, 62, 2302, 796, 27071, 66, 5324, 1, 198, 220, 269, 5324, 62, 2302, 62, 11925, 796, 18896, 7, 66, 5324, 62, 2302, 8, 628, 220, 351, 1280, 7, 11085, 8, 355, 277, 25, 198, 220, 220, 220, 3951, 796, 277, 13, 961, 6615, 3419, 198, 220, 220, 220, 329, 1627, 287, 3951, 25, 198, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1627, 13, 19796, 7, 325, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 532, 16, 25, 5298, 43160, 12331, 7203, 7416, 390, 862, 1627, 407, 39559, 9380, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 390, 862, 796, 1627, 58, 25, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4237, 796, 1627, 685, 72, 10, 325, 79, 62, 11925, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 474, 796, 4237, 13, 19796, 7, 66, 5324, 62, 2302, 47762, 66, 5324, 62, 2302, 62, 11925, 198, 220, 220, 220, 220, 220, 220, 220, 611, 474, 6624, 532, 16, 25, 5298, 43160, 12331, 7203, 7416, 390, 862, 1627, 407, 39559, 9380, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 269, 5324, 7753, 796, 4237, 58, 15763, 62, 40290, 62, 11925, 25, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 5324, 7753, 62, 72, 796, 366, 31227, 284, 670, 319, 269, 83, 5036, 29908, 9313, 198, 220, 220, 220, 220, 220, 220, 220, 390, 862, 16, 796, 390, 862, 13, 33491, 7, 37333, 844, 553, 13, 78, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 390, 862, 16, 796, 390, 862, 16, 13, 33491, 7203, 66, 5324, 10677, 2430, 13702, 7, 26801, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 390, 862, 16, 796, 390, 862, 16, 13, 33491, 7203, 62, 2430, 14, 1600, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 390, 862, 16, 198, 220, 220, 220, 220, 220, 220, 220, 611, 390, 862, 13, 9688, 2032, 342, 7, 12417, 62, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9195, 62, 26801, 796, 26181, 13, 33491, 7203, 13702, 7, 26801, 20679, 12417, 2430, 13702, 7, 26801, 20679, 8019, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 796, 26181, 13, 33491, 7203, 13702, 7, 26801, 20679, 12417, 14, 2430, 13702, 7, 26801, 20679, 9288, 14, 12417, 834, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 672, 8457, 58, 26801, 60, 796, 357, 66, 5324, 7753, 11, 10378, 82, 11, 66, 5324, 7753, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9195, 62, 672, 8457, 58, 8019, 62, 26801, 60, 796, 357, 66, 5324, 7753, 11, 10378, 82, 11, 66, 5324, 7753, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 672, 8457, 58, 9288, 62, 26801, 60, 796, 357, 66, 5324, 7753, 11, 10378, 82, 11, 66, 5324, 7753, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 26801, 15, 13, 33295, 7, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9195, 62, 26801, 15, 13, 33295, 7, 8019, 62, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 15, 13, 33295, 7, 9288, 62, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 390, 862, 13, 9688, 2032, 342, 7, 9288, 62, 40290, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 672, 8457, 58, 26801, 60, 796, 357, 66, 5324, 7753, 11, 10378, 82, 11, 66, 5324, 7753, 62, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 26801, 15, 13, 33295, 7, 26801, 8, 628, 220, 351, 1280, 357, 5661, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7203, 2, 24844, 2980, 515, 416, 4064, 82, 25, 4, 82, 24844, 59, 77, 59, 77, 1, 4064, 357, 24330, 13, 5673, 7336, 25664, 62, 45849, 11, 428, 4008, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 12417, 62, 13499, 62, 48205, 19039, 4064, 82, 59, 77, 1, 4064, 5855, 27071, 22179, 7, 12417, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 8019, 62, 568, 62, 48205, 19039, 4064, 82, 59, 77, 1, 4064, 5855, 27071, 22179, 7, 8019, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 429, 395, 62, 13499, 62, 48205, 19039, 4064, 82, 59, 77, 1, 4064, 5855, 27071, 22179, 7, 9288, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 834, 12417, 62, 13499, 62, 48205, 834, 19039, 4064, 82, 59, 77, 1, 4064, 357, 15883, 62, 421, 5191, 62, 4868, 7, 12417, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 834, 8019, 62, 568, 62, 48205, 834, 19039, 4064, 82, 59, 77, 1, 4064, 357, 15883, 62, 421, 5191, 62, 4868, 7, 8019, 62, 26801, 15, 22305, 198, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 834, 9288, 62, 13499, 62, 48205, 834, 19039, 4064, 82, 59, 77, 1, 4064, 357, 15883, 62, 421, 5191, 62, 4868, 7, 9288, 62, 26801, 15, 22305, 628, 220, 220, 220, 20966, 354, 796, 24018, 12, 17256, 12, 79, 354, 40264, 198, 220, 220, 220, 3896, 796, 366, 13702, 7, 834, 34, 8051, 62, 38948, 50, 828, 705, 12, 66, 3256, 705, 13702, 27, 3256, 705, 12, 78, 13702, 31, 29653, 198, 220, 220, 220, 1388, 796, 20966, 354, 1343, 24018, 13702, 7, 12417, 62, 17597, 50145, 62, 79, 354, 33047, 553, 1343, 3896, 1343, 33172, 32382, 7, 5673, 1268, 62, 13918, 3861, 16725, 198, 220, 220, 220, 1332, 796, 20966, 354, 1343, 24018, 13702, 7, 9288, 62, 17597, 50145, 62, 79, 354, 33047, 553, 1343, 3896, 1343, 33172, 32382, 7, 51, 6465, 62, 13918, 3861, 16725, 198, 220, 220, 220, 9195, 796, 20966, 354, 1343, 24018, 13702, 7, 8019, 62, 17597, 50145, 62, 79, 354, 33047, 553, 1343, 3896, 1343, 33172, 32382, 7, 40347, 62, 13918, 3861, 16725, 198, 220, 220, 220, 269, 5324, 796, 366, 13702, 7, 34, 8051, 16725, 628, 220, 220, 220, 1388, 62, 67, 796, 366, 13702, 7, 26801, 62, 12417, 62, 15003, 8, 32382, 7, 12417, 62, 17597, 50145, 62, 79, 354, 16725, 198, 220, 220, 220, 9195, 62, 67, 796, 366, 13702, 7, 26801, 62, 8019, 62, 15003, 8, 32382, 7, 8019, 62, 17597, 50145, 62, 79, 354, 16725, 198, 220, 220, 220, 1332, 62, 67, 796, 366, 13702, 7, 26801, 62, 9288, 62, 15003, 8, 32382, 7, 9288, 62, 17597, 50145, 62, 79, 354, 16725, 628, 220, 220, 220, 2496, 7203, 12417, 1600, 1388, 62, 672, 8457, 11, 1388, 11, 269, 5324, 11, 1388, 62, 67, 11, 277, 8, 198, 220, 220, 220, 2496, 7203, 8019, 1600, 9195, 62, 672, 8457, 11, 9195, 11, 269, 5324, 11, 9195, 62, 67, 11, 277, 8, 198, 220, 220, 220, 2496, 7203, 9288, 1600, 1332, 62, 672, 8457, 11, 1332, 11, 269, 5324, 11, 1332, 62, 67, 11, 277, 8, 198 ]
2.09716
2,676
from binance.lib.utils import ( check_required_parameter, ) from binance.lib.utils import check_required_parameters def ping(self): """ | | **Test Connectivity** | *Test connectivity to the Rest API.* :API endpoint: ``GET /dapi/v1/ping`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#test-connectivity | """ url_path = "/dapi/v1/ping" return self.query(url_path) def time(self): """ | | **Check Server Time** | *Test connectivity to the Rest API and get the current server time.* :API endpoint: ``GET /dapi/v1/time`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#check-server-time | """ url_path = "/dapi/v1/time" return self.query(url_path) def exchange_info(self): """ | | **Exchange Information** | *Current exchange trading rules and symbol information* :API endpoint: ``GET /dapi/v1/exchangeInfo`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#exchange-information | """ url_path = "/dapi/v1/exchangeInfo" return self.query(url_path) def depth(self, symbol: str, **kwargs): """ | | **Get Orderbook** :API endpoint: ``GET /dapi/v1/depth`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#order-book :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, valid limits: [5, 10, 20, 50, 100, 500, 1000]. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/depth", params) def trades(self, symbol: str, **kwargs): """ | | **Get Recent Market Trades** :API endpoint: ``GET /dapi/v1/trades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#recent-trades-list :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/trades", params) def historical_trades(self, symbol: str, **kwargs): """ | | **Old Trade Lookup** | *Get older market historical trades.* :API endpoint: ``GET /dapi/v1/historicalTrades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#old-trades-lookup-market_data :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter formId: optional int; trade ID to fetch from. Default gets most recent trades. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.limit_request("GET", "/dapi/v1/historicalTrades", params) def agg_trades(self, symbol: str, **kwargs): """ | | **Compressed/Aggregate Trades List** | *Get compressed, aggregate market trades. Market trades that fill at the time, from the same order, with the same price will have the quantity aggregated.* :API endpoint: ``GET /dapi/v1/aggTrades`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#compressed-aggregate-trades-list :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter formId: optional int; trade ID to fetch from. Default gets most recent trades. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/aggTrades", params) def klines(self, symbol: str, interval: str, **kwargs): """ | | **Kline/Candlestick Data** | *Kline/candlestick bars for a symbol. Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/klines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#kline-candlestick-data :parameter symbol: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[symbol, "symbol"], [interval, "interval"]]) params = {"symbol": symbol, "interval": interval, **kwargs} return self.query("/dapi/v1/klines", params) def continuous_klines(self, pair: str, contractType: str, interval: str, **kwargs): """ | | **Continuous Kline/Candlestick Data** | *Kline/candlestick bars for a specific contract type. Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/continuousKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#continuous-contract-kline-candlestick-data :parameter pair: string; the trading pair :parameter contractType: string; PERPETUAL, CURRENT_MONTH, NEXT_MONTH, CURRENT_QUARTER, NEXT_QUARTER. :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[pair, "pair"], [contractType,"contractType"], [interval, "interval"]]) params = {"pair": pair, "contractType":contractType, "interval": interval, **kwargs} return self.query("/dapi/v1/continuousKlines", params) def index_price_klines(self, pair: str, interval: str, **kwargs): """ | | **Kline/Candlestick Data for the index price of a pair.** | *Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/indexPriceKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-kline-candlestick-data :parameter pair: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. | """ check_required_parameters([[pair, "pair"], [interval, "interval"]]) params = {"pair": pair, "interval": interval, **kwargs} return self.query("/dapi/v1/indexPriceKlines", params) def mark_price_klines(self, symbol: str, interval: str, **kwargs): """ | | **Kline/candlestick bars for the mark price of a symbol.** | *Klines are uniquely identified by their open time.* :API endpoint: ``GET /dapi/v1/markPriceKlines`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#mark-price-kline-candlestick-data :parameter pair: string; the trading pair :parameter interval: string; the interval of kline, e.g 1m, 5m, 1h, 1d, etc. (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. **Notes** - The difference between startTime and endTime can only be up to 200 days - Between startTime and endTime, the most recent limit data from endTime will be returned: - If startTime and endTime are not sent, current timestamp will be set as endTime, and the most recent data will be returned. - If startTime is sent only, the timestamp of 200 days after startTime will be set as endTime(up to the current time) - If endTime is sent only, the timestamp of 200 days before endTime will be set as startTime | """ check_required_parameters([[symbol, "symbol"], [interval, "interval"]]) params = {"symbol": symbol, "interval": interval, **kwargs} return self.query("/dapi/v1/markPriceKlines", params) def mark_price(self, symbol: str): """ | | **Mark Price and Funding Rate** :API endpoint: ``GET /dapi/v1/premiumIndex`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#index-price-and-mark-price :parameter symbol: string; the trading pair | """ check_required_parameter(symbol, "symbol") params = { "symbol": symbol, } return self.query("/dapi/v1/premiumIndex", params) def funding_rate(self, symbol: str, **kwargs): """ | | **Funding Rate History** :API endpoint: ``GET /dapi/v1/fundingRate`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#get-funding-rate-history-of-perpetual-futures :parameter symbol: string; the trading pair :parameter limit: optional int; limit the results. Default 500, max 1000. :parameter startTime: optional int; Timestamp in ms to get aggregate trades from INCLUSIVE. :parameter endTime: optional int; Timestamp in ms to get aggregate trades until INCLUSIVE. **Notes** - Empty array will be returned for delivery symbols. | """ params = {"symbol": symbol, **kwargs} return self.query("/dapi/v1/fundingRate", params) def ticker_24hr_price_change(self, symbol: str = None, pair: str = None): """ | | **24 hour rolling window price change statistics.** | *Careful when accessing this with no symbol.* | *If the symbol is not sent, tickers for all symbols will be returned in an array.* :API endpoint: ``GET /dapi/v1/ticker/24hr`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#24hr-ticker-price-change-statistics :parameter symbol: optional string; the trading symbol :parameter pair: optional string; the trading pair **Notes** - Symbol and pair cannot be sent together - If a pair is sent, tickers for all symbols of the pair will be returned - If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/24hr") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/24hr", params) def ticker_price(self, symbol: str = None, pair: str = None): """ | | **Latest price for a symbol or symbols** :API endpoint: ``GET /dapi/v1/ticker/price`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-price-ticker :parameter symbol: optional string; the trading symbol :parameter pair: optional string; the trading pair **Notes** - Symbol and pair cannot be sent together - If a pair is sent,tickers for all symbols of the pair will be returned - If either a pair or symbol is sent, tickers for all symbols of all pairs will be returned | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/price") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/price", params) def book_ticker(self, symbol: str = None, pair: str = None): """ | | **Best price/qty on the order book for a symbol or symbols** :API endpoint: ``GET /dapi/v1/ticker/bookTicker`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#symbol-order-book-ticker :parameter symbol: optional string; the trading symbol **Notes** - If the symbol is not sent, bookTickers for all symbols will be returned in an array. | """ if (symbol is None) and (pair is None): return self.query("/dapi/v1/ticker/bookTicker") elif (symbol is None): params = {"pair": pair} else: params = {"symbol": symbol} return self.query("/dapi/v1/ticker/bookTicker", params) def open_interest(self, symbol: str): """ | | **Get present open interest of a specific symbol** :API endpoint: ``GET /dapi/v1/openInterest`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest :parameter symbol: string; the trading symbol | """ check_required_parameter(symbol, "symbol") params = {"symbol": symbol} return self.query("/dapi/v1/ticker/bookTicker", params) def open_interest_hist(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get historical open interest of a specific symbol** :API endpoint: ``GET /futures/data/openInterestHist`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#open-interest-statistics-market-data :parameter pair: string; the trading pair :parameter contractType: string; ALL, CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/openInterestHist", params) def top_long_short_account_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short account ratio** :API endpoint: `GET /futures/data/topLongShortAccountRatio` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/topLongShortAccountRatio", params) def top_long_short_position_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short position ratio** :API endpoint: ``GET /futures/data/topLongShortPositionRatio`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-positions-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/topLongShortPositionRatio", params) def long_short_account_ratio(self, pair: str, period: str, **kwargs): """ | | **Get top long short account ratio** :API endpoint: ``GET /futures/data/globalLongShortAccountRatio`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#top-trader-long-short-ratio-accounts-market-data :parameter pair: string; the trading pair :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [period, "period"]]) params = {"pair": pair, "period": period, **kwargs} return self.query("/futures/data/globalLongShortAccountRatio", params) def taker_long_short_ratio(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get taker long short ratio** :API endpoint: ``GET /futures/data/takerBuySellVol`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#taker-buy-sell-volume-market-data :parameter pair: string; the trading pair :parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/takerBuySellVol", params) def basis(self, pair: str, contractType: str, period: str, **kwargs): """ | | **Get Index Composite** :API endpoint: ``GET /futures/data/basis`` :API doc: xshttps://binance-docs.github.io/apidocs/delivery/en/#basis-market-data :parameter pair: string; the trading pair :parameter contractType: string; CURRENT_QUARTER, NEXT_QUARTER, PERPETUAL. :parameter period: string; the period of open interest, "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d". (see more in https://binance-docs.github.io/apidocs/delivery/en/#public-endpoints-info) :parameter limit: optional int; limit the results. Default 30, max 500. :parameter startTime: optional int :parameter endTime: optional int **Notes** - If startTime and endTime are not sent, the most recent data is returned. - Only the data of the latest 30 days is available. | """ check_required_parameters([[pair, "pair"], [contractType, "contractType"], [period, "period"]]) params = {"pair": pair, "contractType": contractType, "period": period, **kwargs} return self.query("/futures/data/basis", params)
[ 6738, 9874, 590, 13, 8019, 13, 26791, 1330, 357, 198, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 11, 198, 8, 198, 6738, 9874, 590, 13, 8019, 13, 26791, 1330, 2198, 62, 35827, 62, 17143, 7307, 628, 198, 4299, 29400, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 14402, 8113, 3458, 1174, 198, 220, 220, 220, 930, 1635, 14402, 19843, 284, 262, 8324, 7824, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 13886, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9288, 12, 8443, 3458, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19016, 62, 6978, 796, 12813, 67, 15042, 14, 85, 16, 14, 13886, 1, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7, 6371, 62, 6978, 8, 628, 198, 4299, 640, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 9787, 9652, 3862, 1174, 198, 220, 220, 220, 930, 1635, 14402, 19843, 284, 262, 8324, 7824, 290, 651, 262, 1459, 4382, 640, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 2435, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9122, 12, 15388, 12, 2435, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19016, 62, 6978, 796, 12813, 67, 15042, 14, 85, 16, 14, 2435, 1, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7, 6371, 62, 6978, 8, 628, 198, 4299, 5163, 62, 10951, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3109, 3803, 6188, 1174, 198, 220, 220, 220, 930, 1635, 11297, 5163, 7313, 3173, 290, 6194, 1321, 9, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 1069, 3803, 12360, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1069, 3803, 12, 17018, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19016, 62, 6978, 796, 12813, 67, 15042, 14, 85, 16, 14, 1069, 3803, 12360, 1, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7, 6371, 62, 6978, 8, 628, 198, 4299, 6795, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 8284, 2070, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 18053, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 2875, 12, 2070, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 4938, 7095, 25, 685, 20, 11, 838, 11, 1160, 11, 2026, 11, 1802, 11, 5323, 11, 8576, 4083, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 18053, 1600, 42287, 8, 628, 198, 4299, 17674, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 22926, 5991, 833, 2367, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 2213, 2367, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 49921, 12, 2213, 2367, 12, 4868, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 2213, 2367, 1600, 42287, 8, 628, 198, 4299, 6754, 62, 2213, 2367, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 19620, 9601, 6803, 929, 1174, 198, 220, 220, 220, 930, 1635, 3855, 4697, 1910, 6754, 17674, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 10034, 12409, 2898, 2367, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 727, 12, 2213, 2367, 12, 5460, 929, 12, 10728, 62, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 1296, 7390, 25, 11902, 493, 26, 3292, 4522, 284, 21207, 422, 13, 15161, 3011, 749, 2274, 17674, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 32374, 62, 25927, 7203, 18851, 1600, 12813, 67, 15042, 14, 85, 16, 14, 10034, 12409, 2898, 2367, 1600, 42287, 8, 628, 198, 4299, 4194, 62, 2213, 2367, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 7293, 2790, 14, 46384, 49373, 833, 2367, 7343, 1174, 198, 220, 220, 220, 930, 1635, 3855, 25388, 11, 19406, 1910, 17674, 13, 5991, 17674, 326, 6070, 379, 262, 640, 11, 422, 262, 976, 1502, 11, 351, 262, 976, 2756, 481, 423, 262, 12040, 13262, 515, 15885, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 9460, 2898, 2367, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 5589, 2790, 12, 9460, 49373, 12, 2213, 2367, 12, 4868, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 1296, 7390, 25, 11902, 493, 26, 3292, 4522, 284, 21207, 422, 13, 15161, 3011, 749, 2274, 17674, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 9460, 2898, 2367, 1600, 42287, 8, 628, 198, 4299, 479, 6615, 7, 944, 11, 6194, 25, 965, 11, 16654, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 42, 1370, 14, 41572, 32712, 624, 6060, 1174, 198, 220, 220, 220, 930, 1635, 42, 1370, 14, 46188, 32712, 624, 9210, 329, 257, 6194, 13, 509, 6615, 389, 24139, 5174, 416, 511, 1280, 640, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 74, 6615, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 74, 1370, 12, 46188, 32712, 624, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 16654, 25, 4731, 26, 262, 16654, 286, 479, 1370, 11, 304, 13, 70, 352, 76, 11, 642, 76, 11, 352, 71, 11, 352, 67, 11, 3503, 13, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 1837, 23650, 11, 366, 1837, 23650, 33116, 685, 3849, 2100, 11, 366, 3849, 2100, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 366, 3849, 2100, 1298, 16654, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 74, 6615, 1600, 42287, 8, 628, 198, 4299, 12948, 62, 74, 6615, 7, 944, 11, 5166, 25, 965, 11, 2775, 6030, 25, 965, 11, 16654, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 17875, 5623, 509, 1370, 14, 41572, 32712, 624, 6060, 1174, 198, 220, 220, 220, 930, 1635, 42, 1370, 14, 46188, 32712, 624, 9210, 329, 257, 2176, 2775, 2099, 13, 509, 6615, 389, 24139, 5174, 416, 511, 1280, 640, 15885, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 18487, 5623, 42, 6615, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 18487, 5623, 12, 28484, 12, 74, 1370, 12, 46188, 32712, 624, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2775, 6030, 25, 4731, 26, 19878, 47731, 25620, 11, 327, 39237, 62, 27857, 4221, 11, 39726, 62, 27857, 4221, 11, 327, 39237, 62, 10917, 1503, 5781, 11, 39726, 62, 10917, 1503, 5781, 13, 198, 220, 220, 220, 1058, 17143, 2357, 16654, 25, 4731, 26, 262, 16654, 286, 479, 1370, 11, 304, 13, 70, 352, 76, 11, 642, 76, 11, 352, 71, 11, 352, 67, 11, 3503, 13, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 28484, 6030, 553, 28484, 6030, 33116, 685, 3849, 2100, 11, 366, 3849, 2100, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 28484, 6030, 1298, 28484, 6030, 11, 366, 3849, 2100, 1298, 16654, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 18487, 5623, 42, 6615, 1600, 42287, 8, 628, 198, 4299, 6376, 62, 20888, 62, 74, 6615, 7, 944, 11, 5166, 25, 965, 11, 16654, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 42, 1370, 14, 41572, 32712, 624, 6060, 329, 262, 6376, 2756, 286, 257, 5166, 13, 1174, 198, 220, 220, 220, 930, 1635, 42, 6615, 389, 24139, 5174, 416, 511, 1280, 640, 15885, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 9630, 18124, 42, 6615, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9630, 12, 20888, 12, 74, 1370, 12, 46188, 32712, 624, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 16654, 25, 4731, 26, 262, 16654, 286, 479, 1370, 11, 304, 13, 70, 352, 76, 11, 642, 76, 11, 352, 71, 11, 352, 67, 11, 3503, 13, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 3849, 2100, 11, 366, 3849, 2100, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 3849, 2100, 1298, 16654, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 9630, 18124, 42, 6615, 1600, 42287, 8, 628, 198, 4299, 1317, 62, 20888, 62, 74, 6615, 7, 944, 11, 6194, 25, 965, 11, 16654, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 42, 1370, 14, 46188, 32712, 624, 9210, 329, 262, 1317, 2756, 286, 257, 6194, 13, 1174, 198, 220, 220, 220, 930, 1635, 42, 6615, 389, 24139, 5174, 416, 511, 1280, 640, 15885, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 4102, 18124, 42, 6615, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 4102, 12, 20888, 12, 74, 1370, 12, 46188, 32712, 624, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 16654, 25, 4731, 26, 262, 16654, 286, 479, 1370, 11, 304, 13, 70, 352, 76, 11, 642, 76, 11, 352, 71, 11, 352, 67, 11, 3503, 13, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 383, 3580, 1022, 923, 7575, 290, 886, 7575, 460, 691, 307, 510, 284, 939, 1528, 198, 220, 220, 220, 220, 220, 220, 220, 532, 14307, 923, 7575, 290, 886, 7575, 11, 262, 749, 2274, 4179, 1366, 422, 886, 7575, 481, 307, 4504, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 1459, 41033, 481, 307, 900, 355, 886, 7575, 11, 290, 262, 749, 2274, 1366, 481, 307, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 318, 1908, 691, 11, 262, 41033, 286, 939, 1528, 706, 923, 7575, 481, 307, 900, 355, 886, 7575, 7, 929, 284, 262, 1459, 640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 886, 7575, 318, 1908, 691, 11, 262, 41033, 286, 939, 1528, 878, 886, 7575, 481, 307, 900, 355, 923, 7575, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 1837, 23650, 11, 366, 1837, 23650, 33116, 685, 3849, 2100, 11, 366, 3849, 2100, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 366, 3849, 2100, 1298, 16654, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 4102, 18124, 42, 6615, 1600, 42287, 8, 628, 198, 4299, 1317, 62, 20888, 7, 944, 11, 6194, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 9704, 7886, 290, 35249, 14806, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 31605, 1505, 15732, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9630, 12, 20888, 12, 392, 12, 4102, 12, 20888, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1837, 23650, 1298, 6194, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 31605, 1505, 15732, 1600, 42287, 8, 628, 198, 4299, 4918, 62, 4873, 7, 944, 11, 6194, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 24553, 278, 14806, 7443, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 25032, 32184, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1136, 12, 25032, 12, 4873, 12, 23569, 12, 1659, 12, 525, 6449, 723, 12, 69, 315, 942, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 5323, 11, 3509, 8576, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 422, 3268, 28332, 9306, 13, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 26, 5045, 27823, 287, 13845, 284, 651, 19406, 17674, 1566, 3268, 28332, 9306, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 33523, 7177, 481, 307, 4504, 329, 7585, 14354, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 25032, 32184, 1600, 42287, 8, 628, 198, 4299, 4378, 263, 62, 1731, 11840, 62, 20888, 62, 3803, 7, 944, 11, 6194, 25, 965, 796, 6045, 11, 5166, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 1731, 1711, 10708, 4324, 2756, 1487, 7869, 13, 1174, 198, 220, 220, 220, 930, 1635, 17784, 913, 618, 22534, 428, 351, 645, 6194, 15885, 198, 220, 220, 220, 930, 1635, 1532, 262, 6194, 318, 407, 1908, 11, 4378, 364, 329, 477, 14354, 481, 307, 4504, 287, 281, 7177, 15885, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 1731, 11840, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1731, 11840, 12, 83, 15799, 12, 20888, 12, 3803, 12, 14269, 3969, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 11902, 4731, 26, 262, 7313, 6194, 198, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 11902, 4731, 26, 262, 7313, 5166, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 38357, 290, 5166, 2314, 307, 1908, 1978, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 257, 5166, 318, 1908, 11, 4378, 364, 329, 477, 14354, 286, 262, 5166, 481, 307, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 2035, 257, 5166, 393, 6194, 318, 1908, 11, 4378, 364, 329, 477, 14354, 286, 477, 14729, 481, 307, 4504, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 357, 1837, 23650, 318, 6045, 8, 290, 357, 24874, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 1731, 11840, 4943, 198, 220, 220, 220, 1288, 361, 357, 1837, 23650, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 92, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 92, 628, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 1731, 11840, 1600, 42287, 8, 628, 198, 4299, 4378, 263, 62, 20888, 7, 944, 11, 6194, 25, 965, 796, 6045, 11, 5166, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 39478, 2756, 329, 257, 6194, 393, 14354, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 20888, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1837, 23650, 12, 20888, 12, 83, 15799, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 11902, 4731, 26, 262, 7313, 6194, 198, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 11902, 4731, 26, 262, 7313, 5166, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 38357, 290, 5166, 2314, 307, 1908, 1978, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 257, 5166, 318, 1908, 11, 83, 21630, 329, 477, 14354, 286, 262, 5166, 481, 307, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 2035, 257, 5166, 393, 6194, 318, 1908, 11, 4378, 364, 329, 477, 14354, 286, 477, 14729, 481, 307, 4504, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 357, 1837, 23650, 318, 6045, 8, 290, 357, 24874, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 20888, 4943, 198, 220, 220, 220, 1288, 361, 357, 1837, 23650, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 92, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 92, 628, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 20888, 1600, 42287, 8, 628, 198, 4299, 1492, 62, 83, 15799, 7, 944, 11, 6194, 25, 965, 796, 6045, 11, 5166, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 13014, 2756, 14, 80, 774, 319, 262, 1502, 1492, 329, 257, 6194, 393, 14354, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 2070, 51, 15799, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 1837, 23650, 12, 2875, 12, 2070, 12, 83, 15799, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 11902, 4731, 26, 262, 7313, 6194, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 262, 6194, 318, 407, 1908, 11, 1492, 51, 21630, 329, 477, 14354, 481, 307, 4504, 287, 281, 7177, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 357, 1837, 23650, 318, 6045, 8, 290, 357, 24874, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 2070, 51, 15799, 4943, 198, 220, 220, 220, 1288, 361, 357, 1837, 23650, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 92, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 92, 628, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 2070, 51, 15799, 1600, 42287, 8, 628, 198, 4299, 1280, 62, 9446, 7, 944, 11, 6194, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 1944, 1280, 1393, 286, 257, 2176, 6194, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 67, 15042, 14, 85, 16, 14, 9654, 19302, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9654, 12, 9446, 628, 220, 220, 220, 1058, 17143, 2357, 6194, 25, 4731, 26, 262, 7313, 6194, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 2357, 7, 1837, 23650, 11, 366, 1837, 23650, 4943, 198, 220, 220, 220, 42287, 796, 19779, 1837, 23650, 1298, 6194, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 67, 15042, 14, 85, 16, 14, 83, 15799, 14, 2070, 51, 15799, 1600, 42287, 8, 628, 198, 4299, 1280, 62, 9446, 62, 10034, 7, 944, 11, 5166, 25, 965, 11, 2775, 6030, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 6754, 1280, 1393, 286, 257, 2176, 6194, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 9654, 19302, 13749, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 9654, 12, 9446, 12, 14269, 3969, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2775, 6030, 25, 4731, 26, 11096, 11, 327, 39237, 62, 10917, 1503, 5781, 11, 39726, 62, 10917, 1503, 5781, 11, 19878, 47731, 25620, 13, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 28484, 6030, 11, 366, 28484, 6030, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 28484, 6030, 1298, 2775, 6030, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 9654, 19302, 13749, 1600, 42287, 8, 628, 198, 4299, 1353, 62, 6511, 62, 19509, 62, 23317, 62, 10366, 952, 7, 944, 11, 5166, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 1353, 890, 1790, 1848, 8064, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 4600, 18851, 1220, 69, 315, 942, 14, 7890, 14, 4852, 14617, 16438, 30116, 29665, 952, 63, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 4852, 12, 2213, 5067, 12, 6511, 12, 19509, 12, 10366, 952, 12, 23317, 82, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 4852, 14617, 16438, 30116, 29665, 952, 1600, 42287, 8, 628, 198, 4299, 1353, 62, 6511, 62, 19509, 62, 9150, 62, 10366, 952, 7, 944, 11, 5166, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 1353, 890, 1790, 2292, 8064, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 4852, 14617, 16438, 26545, 29665, 952, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 4852, 12, 2213, 5067, 12, 6511, 12, 19509, 12, 10366, 952, 12, 1930, 1756, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 4852, 14617, 16438, 26545, 29665, 952, 1600, 42287, 8, 628, 198, 4299, 890, 62, 19509, 62, 23317, 62, 10366, 952, 7, 944, 11, 5166, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 1353, 890, 1790, 1848, 8064, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 20541, 14617, 16438, 30116, 29665, 952, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 4852, 12, 2213, 5067, 12, 6511, 12, 19509, 12, 10366, 952, 12, 23317, 82, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 20541, 14617, 16438, 30116, 29665, 952, 1600, 42287, 8, 628, 198, 4299, 256, 3110, 62, 6511, 62, 19509, 62, 10366, 952, 7, 944, 11, 5166, 25, 965, 11, 2775, 6030, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 256, 3110, 890, 1790, 8064, 1174, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 30157, 14518, 50, 695, 16598, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 30157, 12, 17846, 12, 7255, 12, 29048, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2775, 6030, 25, 4731, 26, 327, 39237, 62, 10917, 1503, 5781, 11, 39726, 62, 10917, 1503, 5781, 11, 19878, 47731, 25620, 13, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 28484, 6030, 11, 366, 28484, 6030, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 28484, 6030, 1298, 2775, 6030, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 30157, 14518, 50, 695, 16598, 1600, 42287, 8, 628, 198, 4299, 4308, 7, 944, 11, 5166, 25, 965, 11, 2775, 6030, 25, 965, 11, 2278, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 930, 198, 220, 220, 220, 930, 12429, 3855, 12901, 49355, 1174, 628, 220, 220, 220, 1058, 17614, 36123, 25, 7559, 18851, 1220, 69, 315, 942, 14, 7890, 14, 12093, 271, 15506, 198, 220, 220, 220, 1058, 17614, 2205, 25, 2124, 1477, 926, 862, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 12093, 271, 12, 10728, 12, 7890, 628, 220, 220, 220, 1058, 17143, 2357, 5166, 25, 4731, 26, 262, 7313, 5166, 198, 220, 220, 220, 1058, 17143, 2357, 2775, 6030, 25, 4731, 26, 327, 39237, 62, 10917, 1503, 5781, 11, 39726, 62, 10917, 1503, 5781, 11, 19878, 47731, 25620, 13, 198, 220, 220, 220, 1058, 17143, 2357, 2278, 25, 4731, 26, 262, 2278, 286, 1280, 1393, 11, 366, 20, 76, 1600, 366, 1314, 76, 1600, 366, 1270, 76, 1600, 366, 16, 71, 1600, 366, 17, 71, 1600, 366, 19, 71, 1600, 366, 21, 71, 1600, 366, 1065, 71, 1600, 366, 16, 67, 1911, 357, 3826, 517, 287, 3740, 1378, 8800, 590, 12, 31628, 13, 12567, 13, 952, 14, 499, 312, 420, 82, 14, 12381, 6315, 14, 268, 31113, 11377, 12, 437, 13033, 12, 10951, 8, 198, 220, 220, 220, 1058, 17143, 2357, 4179, 25, 11902, 493, 26, 4179, 262, 2482, 13, 15161, 1542, 11, 3509, 5323, 13, 198, 220, 220, 220, 1058, 17143, 2357, 923, 7575, 25, 11902, 493, 198, 220, 220, 220, 1058, 17143, 2357, 886, 7575, 25, 11902, 493, 628, 220, 220, 220, 12429, 16130, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1002, 923, 7575, 290, 886, 7575, 389, 407, 1908, 11, 262, 749, 2274, 1366, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5514, 262, 1366, 286, 262, 3452, 1542, 1528, 318, 1695, 13, 198, 220, 220, 220, 930, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 62, 35827, 62, 17143, 7307, 26933, 58, 24874, 11, 366, 24874, 33116, 685, 28484, 6030, 11, 366, 28484, 6030, 33116, 685, 41007, 11, 366, 41007, 8973, 12962, 198, 220, 220, 220, 42287, 796, 19779, 24874, 1298, 5166, 11, 366, 28484, 6030, 1298, 2775, 6030, 11, 366, 41007, 1298, 2278, 11, 12429, 46265, 22046, 92, 198, 220, 220, 220, 1441, 2116, 13, 22766, 7203, 14, 69, 315, 942, 14, 7890, 14, 12093, 271, 1600, 42287, 8, 198 ]
2.74541
7,298
import click from gitkit.util.shell import get_output @click.command() def what(): """ What _is_ the current revision anyway? """ description = get_output("git describe") revision = get_output("git rev-parse HEAD") print(f"{description} ({revision})")
[ 11748, 3904, 198, 198, 6738, 17606, 15813, 13, 22602, 13, 29149, 1330, 651, 62, 22915, 628, 198, 31, 12976, 13, 21812, 3419, 198, 4299, 644, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1867, 4808, 271, 62, 262, 1459, 18440, 6949, 30, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6764, 796, 651, 62, 22915, 7203, 18300, 6901, 4943, 198, 220, 220, 220, 18440, 796, 651, 62, 22915, 7203, 18300, 2710, 12, 29572, 39837, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 11213, 92, 37913, 260, 10178, 30072, 4943, 198 ]
2.936842
95
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Reading file # data = np.genfromtxt(path, delimiter=",", skip_header=1) #Code starts here data = np.genfromtxt(path, delimiter = ",", skip_header = 1) census = np.concatenate((new_record,data),axis = 0) age = census[:,0] max_age = np.max(age) min_age = np.min(age) age_mean = np.mean(age) age_std = np.std(age) race_0 = census[census[:,2]==0] race_1 = census[census[:,2]==1] race_2 = census[census[:,2]==2] race_3 = census[census[:,3]==3] race_4 = census[census[:,4]==4] len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) a = [len_0, len_1, len_2, len_3, len_4] minority_race = min(a) senior_citizens = census[census[:,0]>60] working_hours_sum = senior_citizens.sum(axis=0)[6] senior_citizens_len = len(senior_citizens) avg_working_hours = working_hours_sum/senior_citizens_len print(round(avg_working_hours,2)) high = census[census[:,1]>10] low = census[census[:,1]<=10] avg_pay_high = round(np.mean(high[:,7]),2) avg_pay_low = round(np.mean(low[:,7]),2) print(avg_pay_high) print(avg_pay_low)
[ 2, 220, 26171, 198, 2, 17267, 278, 13639, 3696, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 14601, 201, 198, 201, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 11537, 201, 198, 201, 198, 2, 3791, 1700, 201, 198, 3605, 62, 22105, 28, 30109, 1120, 11, 220, 860, 11, 220, 604, 11, 220, 352, 11, 220, 657, 11, 220, 657, 11, 2319, 11, 220, 657, 11907, 201, 198, 201, 198, 2, 36120, 2393, 201, 198, 2, 1366, 796, 45941, 13, 5235, 6738, 14116, 7, 6978, 11, 46728, 2676, 28, 2430, 11, 14267, 62, 25677, 28, 16, 8, 201, 198, 201, 198, 2, 10669, 4940, 994, 201, 198, 7890, 796, 45941, 13, 5235, 6738, 14116, 7, 6978, 11, 46728, 2676, 796, 366, 553, 11, 14267, 62, 25677, 796, 352, 8, 201, 198, 66, 7314, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 3605, 62, 22105, 11, 7890, 828, 22704, 796, 657, 8, 201, 198, 201, 198, 496, 796, 21649, 58, 45299, 15, 60, 201, 198, 9806, 62, 496, 796, 45941, 13, 9806, 7, 496, 8, 201, 198, 1084, 62, 496, 796, 45941, 13, 1084, 7, 496, 8, 201, 198, 201, 198, 496, 62, 32604, 796, 45941, 13, 32604, 7, 496, 8, 201, 198, 496, 62, 19282, 796, 45941, 13, 19282, 7, 496, 8, 201, 198, 16740, 62, 15, 796, 21649, 58, 66, 7314, 58, 45299, 17, 60, 855, 15, 60, 201, 198, 16740, 62, 16, 796, 21649, 58, 66, 7314, 58, 45299, 17, 60, 855, 16, 60, 201, 198, 16740, 62, 17, 796, 21649, 58, 66, 7314, 58, 45299, 17, 60, 855, 17, 60, 201, 198, 16740, 62, 18, 796, 21649, 58, 66, 7314, 58, 45299, 18, 60, 855, 18, 60, 201, 198, 16740, 62, 19, 796, 21649, 58, 66, 7314, 58, 45299, 19, 60, 855, 19, 60, 201, 198, 201, 198, 11925, 62, 15, 796, 18896, 7, 16740, 62, 15, 8, 201, 198, 11925, 62, 16, 796, 18896, 7, 16740, 62, 16, 8, 201, 198, 11925, 62, 17, 796, 18896, 7, 16740, 62, 17, 8, 201, 198, 11925, 62, 18, 796, 18896, 7, 16740, 62, 18, 8, 201, 198, 11925, 62, 19, 796, 18896, 7, 16740, 62, 19, 8, 201, 198, 201, 198, 64, 796, 685, 11925, 62, 15, 11, 18896, 62, 16, 11, 18896, 62, 17, 11, 18896, 62, 18, 11, 18896, 62, 19, 60, 201, 198, 1084, 29134, 62, 16740, 796, 949, 7, 64, 8, 201, 198, 201, 198, 6248, 1504, 62, 46801, 796, 21649, 58, 66, 7314, 58, 45299, 15, 60, 29, 1899, 60, 201, 198, 16090, 62, 24425, 62, 16345, 796, 4664, 62, 46801, 13, 16345, 7, 22704, 28, 15, 38381, 21, 60, 201, 198, 6248, 1504, 62, 46801, 62, 11925, 796, 18896, 7, 6248, 1504, 62, 46801, 8, 201, 198, 615, 70, 62, 16090, 62, 24425, 796, 1762, 62, 24425, 62, 16345, 14, 6248, 1504, 62, 46801, 62, 11925, 201, 198, 201, 198, 4798, 7, 744, 7, 615, 70, 62, 16090, 62, 24425, 11, 17, 4008, 201, 198, 201, 198, 8929, 796, 21649, 58, 66, 7314, 58, 45299, 16, 60, 29, 940, 60, 201, 198, 9319, 796, 21649, 58, 66, 7314, 58, 45299, 16, 60, 27, 28, 940, 60, 201, 198, 201, 198, 615, 70, 62, 15577, 62, 8929, 796, 2835, 7, 37659, 13, 32604, 7, 8929, 58, 45299, 22, 46570, 17, 8, 220, 201, 198, 615, 70, 62, 15577, 62, 9319, 796, 2835, 7, 37659, 13, 32604, 7, 9319, 58, 45299, 22, 46570, 17, 8, 201, 198, 4798, 7, 615, 70, 62, 15577, 62, 8929, 8, 201, 198, 4798, 7, 615, 70, 62, 15577, 62, 9319, 8, 201, 628, 628 ]
2.138564
599
from stack_class import * def reverse_file(path): """Overwrite given file using its context line-by-line reversed""" s=ArrayStack() with open(path,"r") as original: for line in original: s.push(line.rstrip("\n")) # removing newline characters # overwrite the contents in LIFO order with open(path,"w") as new: while not s.is_empty(): new.write(s.pop()+"\n") # re-insert newline characters. return "Reversed" print(reverse_file("sample.txt"))
[ 6738, 8931, 62, 4871, 1330, 1635, 198, 4299, 9575, 62, 7753, 7, 6978, 2599, 198, 220, 220, 220, 37227, 5886, 13564, 1813, 2393, 1262, 663, 4732, 1627, 12, 1525, 12, 1370, 17687, 37811, 198, 220, 220, 220, 264, 28, 19182, 25896, 3419, 198, 220, 220, 220, 351, 1280, 7, 6978, 553, 81, 4943, 355, 2656, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 2656, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 14689, 7, 1370, 13, 81, 36311, 7203, 59, 77, 48774, 1303, 10829, 649, 1370, 3435, 628, 220, 220, 220, 1303, 49312, 262, 10154, 287, 406, 5064, 46, 1502, 198, 220, 220, 220, 351, 1280, 7, 6978, 553, 86, 4943, 355, 649, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 407, 264, 13, 271, 62, 28920, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 13, 13564, 7, 82, 13, 12924, 3419, 10, 1, 59, 77, 4943, 1303, 302, 12, 28463, 649, 1370, 3435, 13, 628, 220, 220, 220, 1441, 366, 3041, 690, 276, 1, 198, 198, 4798, 7, 50188, 62, 7753, 7203, 39873, 13, 14116, 48774, 198 ]
2.583756
197
import sys import os from simulaqron.toolbox import get_simulaqron_path # Get path to SimulaQron folder simulaqron_path = get_simulaqron_path.main() tot_nr = int(sys.argv[1]) # configure run files for nodes with open("run.sh", "w") as f: f.write("#!/bin/sh\n\n") for i in range(tot_nr - 1): f.write("python3 node.py {} {} &\n".format(i, tot_nr)) f.write("python3 node.py {} {}\n".format(tot_nr - 1, tot_nr)) with open("run_v2.sh", "w") as f: f.write("#!/bin/sh\n\n") for i in range(tot_nr - 1): f.write("python3 node_v2.py {} {} &\n".format(i, tot_nr)) f.write("python3 node_v2.py {} {}\n".format(tot_nr - 1, tot_nr)) # configure network nodes = "".join(["n" + str(i) + " " for i in range(tot_nr)]) os.system("python3 " + simulaqron_path + "configFiles.py " + nodes)
[ 11748, 25064, 198, 11748, 28686, 198, 198, 6738, 985, 4712, 80, 1313, 13, 25981, 3524, 1330, 651, 62, 14323, 4712, 80, 1313, 62, 6978, 198, 198, 2, 3497, 3108, 284, 3184, 4712, 48, 1313, 9483, 198, 14323, 4712, 80, 1313, 62, 6978, 796, 651, 62, 14323, 4712, 80, 1313, 62, 6978, 13, 12417, 3419, 198, 198, 83, 313, 62, 48624, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 198, 2, 17425, 1057, 3696, 329, 13760, 198, 198, 4480, 1280, 7203, 5143, 13, 1477, 1600, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7203, 2, 48443, 8800, 14, 1477, 59, 77, 59, 77, 4943, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 83, 313, 62, 48624, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 29412, 18, 10139, 13, 9078, 23884, 23884, 1222, 59, 77, 1911, 18982, 7, 72, 11, 2006, 62, 48624, 4008, 198, 220, 220, 220, 277, 13, 13564, 7203, 29412, 18, 10139, 13, 9078, 23884, 23884, 59, 77, 1911, 18982, 7, 83, 313, 62, 48624, 532, 352, 11, 2006, 62, 48624, 4008, 198, 198, 4480, 1280, 7203, 5143, 62, 85, 17, 13, 1477, 1600, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 277, 13, 13564, 7203, 2, 48443, 8800, 14, 1477, 59, 77, 59, 77, 4943, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 83, 313, 62, 48624, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 29412, 18, 10139, 62, 85, 17, 13, 9078, 23884, 23884, 1222, 59, 77, 1911, 18982, 7, 72, 11, 2006, 62, 48624, 4008, 198, 220, 220, 220, 277, 13, 13564, 7203, 29412, 18, 10139, 62, 85, 17, 13, 9078, 23884, 23884, 59, 77, 1911, 18982, 7, 83, 313, 62, 48624, 532, 352, 11, 2006, 62, 48624, 4008, 198, 198, 2, 17425, 3127, 198, 198, 77, 4147, 796, 366, 1911, 22179, 7, 14692, 77, 1, 1343, 965, 7, 72, 8, 1343, 366, 366, 329, 1312, 287, 2837, 7, 83, 313, 62, 48624, 8, 12962, 198, 198, 418, 13, 10057, 7203, 29412, 18, 366, 1343, 985, 4712, 80, 1313, 62, 6978, 1343, 366, 11250, 25876, 13, 9078, 366, 1343, 13760, 8, 198 ]
2.193548
372
from .selection import Selection from .logging import logger from .dir import config_dir, cache_dir __all__ = [ 'Selection', 'logger', 'config_dir', 'cache_dir', ]
[ 6738, 764, 49283, 1330, 29538, 198, 6738, 764, 6404, 2667, 1330, 49706, 198, 6738, 764, 15908, 1330, 4566, 62, 15908, 11, 12940, 62, 15908, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 4653, 1564, 3256, 198, 220, 220, 220, 705, 6404, 1362, 3256, 198, 220, 220, 220, 705, 11250, 62, 15908, 3256, 198, 220, 220, 220, 705, 23870, 62, 15908, 3256, 198, 60, 198 ]
2.661765
68
from __future__ import division,print_function #matplotlib inline #load_ext autoreload #autoreload 2 import sys from tqdm import tqdm_notebook as tqdm import random import matplotlib.pyplot as plt import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.nn.init as init from torch.autograd import Variable, grad from torchvision import datasets, transforms from torch.nn.parameter import Parameter import calculate_log as callog import warnings warnings.filterwarnings('ignore') torch.cuda.set_device(0) #Select the GPU torch_model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=10) torch_model.load('/nobackup-slow/dataset/my_xfdu/resnet_cifar10.pth') torch_model.cuda() torch_model.params = list(torch_model.parameters()) torch_model.eval() print("Done") batch_size = 128 mean = np.array([[0.4914, 0.4822, 0.4465]]).T std = np.array([[0.2023, 0.1994, 0.2010]]).T normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.CenterCrop(size=(32, 32)), transforms.ToTensor(), normalize ]) train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True, transform=transform_train), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, transform=transform_test), batch_size=batch_size) data_train = list(torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=True, download=True, transform=transform_test), batch_size=1, shuffle=False)) data = list(torch.utils.data.DataLoader( datasets.CIFAR10('/nobackup-slow/dataset/cifarpy', train=False, download=True, transform=transform_test), batch_size=1, shuffle=False)) torch_model.eval() # correct = 0 # total = 0 # for x,y in test_loader: # x = x.cuda() # y = y.numpy() # correct += (y==np.argmax(torch_model(x).detach().cpu().numpy(),axis=1)).sum() # total += y.shape[0] # print("Accuracy: ",correct/total) cifar100 = list(torch.utils.data.DataLoader( datasets.CIFAR100('/nobackup-slow/dataset/cifarpy', train=False, download=True, transform=transform_test), batch_size=1, shuffle=True)) train_preds = [] train_confs = [] train_logits = [] for idx in range(0, len(data_train), 128): batch = torch.squeeze(torch.stack([x[0] for x in data_train[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) logits = (logits.cpu().detach().numpy()) train_confs.extend(np.max(confs, axis=1)) train_preds.extend(preds) train_logits.extend(logits) print("Done") test_preds = [] test_confs = [] test_logits = [] for idx in range(0, len(data), 128): batch = torch.squeeze(torch.stack([x[0] for x in data[idx:idx + 128]]), dim=1).cuda() logits = torch_model(batch) confs = F.softmax(logits, dim=1).cpu().detach().numpy() preds = np.argmax(confs, axis=1) logits = (logits.cpu().detach().numpy()) test_confs.extend(np.max(confs, axis=1)) test_preds.extend(preds) test_logits.extend(logits) print("Done") import calculate_log as callog detector = Detector() detector.compute_minmaxs(data_train, POWERS=range(1, 11)) detector.compute_test_deviations(POWERS=range(1, 11)) print("CIFAR-100") c100_results = detector.compute_ood_deviations(cifar100,POWERS=range(1,11))
[ 6738, 11593, 37443, 834, 1330, 7297, 11, 4798, 62, 8818, 198, 198, 2, 6759, 29487, 8019, 26098, 198, 2, 2220, 62, 2302, 1960, 382, 2220, 198, 2, 2306, 382, 2220, 362, 198, 198, 11748, 25064, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 62, 11295, 2070, 355, 256, 80, 36020, 198, 198, 11748, 4738, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 10688, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 11748, 28034, 13, 20471, 13, 15003, 355, 2315, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 11, 3915, 198, 6738, 28034, 10178, 1330, 40522, 11, 31408, 198, 6738, 28034, 13, 20471, 13, 17143, 2357, 1330, 25139, 2357, 198, 198, 11748, 15284, 62, 6404, 355, 869, 519, 198, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 11537, 628, 198, 13165, 354, 13, 66, 15339, 13, 2617, 62, 25202, 7, 15, 8, 1303, 17563, 262, 11362, 628, 628, 198, 198, 13165, 354, 62, 19849, 796, 1874, 7934, 7, 26416, 12235, 11, 685, 18, 11, 604, 11, 718, 11, 513, 4357, 997, 62, 37724, 28, 940, 8, 198, 13165, 354, 62, 19849, 13, 2220, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 1820, 62, 26152, 646, 14, 411, 3262, 62, 66, 361, 283, 940, 13, 79, 400, 11537, 198, 13165, 354, 62, 19849, 13, 66, 15339, 3419, 198, 13165, 354, 62, 19849, 13, 37266, 796, 1351, 7, 13165, 354, 62, 19849, 13, 17143, 7307, 28955, 198, 13165, 354, 62, 19849, 13, 18206, 3419, 198, 4798, 7203, 45677, 4943, 198, 198, 43501, 62, 7857, 796, 13108, 198, 32604, 796, 45941, 13, 18747, 26933, 58, 15, 13, 2920, 1415, 11, 657, 13, 2780, 1828, 11, 657, 13, 2598, 2996, 11907, 737, 51, 198, 198, 19282, 796, 45941, 13, 18747, 26933, 58, 15, 13, 1238, 1954, 11, 657, 13, 22666, 11, 657, 13, 10333, 11907, 737, 51, 198, 11265, 1096, 796, 31408, 13, 26447, 1096, 19510, 15, 13, 2920, 1415, 11, 657, 13, 2780, 1828, 11, 657, 13, 2598, 2996, 828, 357, 15, 13, 1238, 1954, 11, 657, 13, 22666, 11, 657, 13, 10333, 4008, 198, 198, 35636, 62, 27432, 796, 31408, 13, 7293, 577, 26933, 198, 220, 220, 220, 31408, 13, 29531, 34, 1773, 7, 2624, 11, 24511, 28, 19, 828, 198, 220, 220, 220, 31408, 13, 29531, 27991, 38342, 7414, 541, 22784, 198, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 3487, 1096, 198, 198, 12962, 198, 35636, 62, 9288, 796, 31408, 13, 7293, 577, 26933, 198, 220, 220, 220, 31408, 13, 23656, 34, 1773, 7, 7857, 16193, 2624, 11, 3933, 36911, 198, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 3487, 1096, 198, 12962, 198, 198, 27432, 62, 29356, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 40522, 13, 34, 5064, 1503, 940, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 17821, 11, 4321, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 62, 27432, 828, 198, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 11, 36273, 28, 17821, 8, 198, 9288, 62, 29356, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 40522, 13, 34, 5064, 1503, 940, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 25101, 11, 6121, 28, 35636, 62, 9288, 828, 198, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 198, 198, 7890, 62, 27432, 796, 1351, 7, 13165, 354, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 220, 220, 220, 220, 40522, 13, 34, 5064, 1503, 940, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 17821, 11, 4321, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 62, 9288, 828, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 16, 11, 36273, 28, 25101, 4008, 198, 198, 7890, 796, 1351, 7, 13165, 354, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 40522, 13, 34, 5064, 1503, 940, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 25101, 11, 4321, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 62, 9288, 828, 198, 220, 220, 220, 15458, 62, 7857, 28, 16, 11, 36273, 28, 25101, 4008, 628, 198, 13165, 354, 62, 19849, 13, 18206, 3419, 198, 2, 3376, 796, 657, 198, 2, 2472, 796, 657, 198, 2, 329, 2124, 11, 88, 287, 1332, 62, 29356, 25, 198, 2, 220, 220, 220, 220, 2124, 796, 2124, 13, 66, 15339, 3419, 198, 2, 220, 220, 220, 220, 331, 796, 331, 13, 77, 32152, 3419, 198, 2, 220, 220, 220, 220, 3376, 15853, 357, 88, 855, 37659, 13, 853, 9806, 7, 13165, 354, 62, 19849, 7, 87, 737, 15255, 620, 22446, 36166, 22446, 77, 32152, 22784, 22704, 28, 16, 29720, 16345, 3419, 198, 2, 220, 220, 220, 220, 2472, 15853, 331, 13, 43358, 58, 15, 60, 198, 2, 3601, 7203, 17320, 23843, 25, 33172, 30283, 14, 23350, 8, 628, 198, 66, 361, 283, 3064, 796, 1351, 7, 13165, 354, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 198, 220, 220, 220, 40522, 13, 34, 5064, 1503, 3064, 10786, 14, 34952, 441, 929, 12, 38246, 14, 19608, 292, 316, 14, 66, 361, 5117, 88, 3256, 4512, 28, 25101, 11, 4321, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 62, 9288, 828, 198, 220, 220, 220, 15458, 62, 7857, 28, 16, 11, 36273, 28, 17821, 4008, 198, 198, 27432, 62, 28764, 82, 796, 17635, 198, 27432, 62, 1102, 9501, 796, 17635, 198, 27432, 62, 6404, 896, 796, 17635, 198, 1640, 4686, 87, 287, 2837, 7, 15, 11, 18896, 7, 7890, 62, 27432, 828, 13108, 2599, 198, 220, 220, 220, 15458, 796, 28034, 13, 16485, 1453, 2736, 7, 13165, 354, 13, 25558, 26933, 87, 58, 15, 60, 329, 2124, 287, 1366, 62, 27432, 58, 312, 87, 25, 312, 87, 1343, 13108, 11907, 828, 5391, 28, 16, 737, 66, 15339, 3419, 628, 220, 220, 220, 2604, 896, 796, 28034, 62, 19849, 7, 43501, 8, 198, 220, 220, 220, 1013, 82, 796, 376, 13, 4215, 9806, 7, 6404, 896, 11, 5391, 28, 16, 737, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 2747, 82, 796, 45941, 13, 853, 9806, 7, 1102, 9501, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 2604, 896, 796, 357, 6404, 896, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 28955, 628, 220, 220, 220, 4512, 62, 1102, 9501, 13, 2302, 437, 7, 37659, 13, 9806, 7, 1102, 9501, 11, 16488, 28, 16, 4008, 198, 220, 220, 220, 4512, 62, 28764, 82, 13, 2302, 437, 7, 28764, 82, 8, 198, 220, 220, 220, 4512, 62, 6404, 896, 13, 2302, 437, 7, 6404, 896, 8, 198, 4798, 7203, 45677, 4943, 198, 198, 9288, 62, 28764, 82, 796, 17635, 198, 9288, 62, 1102, 9501, 796, 17635, 198, 9288, 62, 6404, 896, 796, 17635, 198, 198, 1640, 4686, 87, 287, 2837, 7, 15, 11, 18896, 7, 7890, 828, 13108, 2599, 198, 220, 220, 220, 15458, 796, 28034, 13, 16485, 1453, 2736, 7, 13165, 354, 13, 25558, 26933, 87, 58, 15, 60, 329, 2124, 287, 1366, 58, 312, 87, 25, 312, 87, 1343, 13108, 11907, 828, 5391, 28, 16, 737, 66, 15339, 3419, 628, 220, 220, 220, 2604, 896, 796, 28034, 62, 19849, 7, 43501, 8, 198, 220, 220, 220, 1013, 82, 796, 376, 13, 4215, 9806, 7, 6404, 896, 11, 5391, 28, 16, 737, 36166, 22446, 15255, 620, 22446, 77, 32152, 3419, 198, 220, 220, 220, 2747, 82, 796, 45941, 13, 853, 9806, 7, 1102, 9501, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 2604, 896, 796, 357, 6404, 896, 13, 36166, 22446, 15255, 620, 22446, 77, 32152, 28955, 628, 220, 220, 220, 1332, 62, 1102, 9501, 13, 2302, 437, 7, 37659, 13, 9806, 7, 1102, 9501, 11, 16488, 28, 16, 4008, 198, 220, 220, 220, 1332, 62, 28764, 82, 13, 2302, 437, 7, 28764, 82, 8, 198, 220, 220, 220, 1332, 62, 6404, 896, 13, 2302, 437, 7, 6404, 896, 8, 198, 4798, 7203, 45677, 4943, 198, 198, 11748, 15284, 62, 6404, 355, 869, 519, 628, 628, 628, 198, 198, 15255, 9250, 796, 4614, 9250, 3419, 198, 15255, 9250, 13, 5589, 1133, 62, 1084, 9806, 82, 7, 7890, 62, 27432, 11, 24148, 4877, 28, 9521, 7, 16, 11, 1367, 4008, 198, 198, 15255, 9250, 13, 5589, 1133, 62, 9288, 62, 7959, 40356, 7, 47, 3913, 4877, 28, 9521, 7, 16, 11, 1367, 4008, 198, 198, 4798, 7203, 34, 5064, 1503, 12, 3064, 4943, 198, 66, 3064, 62, 43420, 796, 31029, 13, 5589, 1133, 62, 702, 62, 7959, 40356, 7, 66, 361, 283, 3064, 11, 47, 3913, 4877, 28, 9521, 7, 16, 11, 1157, 4008 ]
2.419497
1,590
import logging import math from misaka import Markdown, HtmlRenderer from lxml.html import fromstring # https://stackoverflow.com/a/3155023 millnames = ['',' thousand',' million',' billion',' trillion']
[ 11748, 18931, 198, 11748, 10688, 198, 198, 6738, 2984, 8130, 1330, 2940, 2902, 11, 367, 20369, 49, 437, 11882, 198, 6738, 300, 19875, 13, 6494, 1330, 422, 8841, 198, 198, 2, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 27936, 1120, 1954, 198, 17805, 14933, 796, 37250, 41707, 7319, 41707, 1510, 41707, 2997, 41707, 12989, 20520 ]
3.517241
58
from flask import Flask from elasticsearch import Elasticsearch from contact import Contact class Handler(object): """ Handles operations on elasticsearch. """ def list_contacts(self, arguments): """ Returns a list of contacts or False. """ try: self.es.indices.refresh(index = self.index_name) res = self.es.search(index = self.index_name, body = { "from": arguments["page"] * arguments["pageSize"], "size": arguments["pageSize"], "query": arguments["query"] }) return res['hits']['hits'] except: return False def create_contact(self, form): """ Creates contact from form data. Returns True if successful. """ try: if self._get_contact(form['name']): #contact by that name exists return False else: contact = Contact(form) res = self.es.index(index = self.index_name, doc_type = '_doc', body = str(contact)) return res['result'] == 'created' except: return False def list_a_contact(self, name): """ Returns data on a single contact identified by name. """ try: return self._get_contact(name)['_source'] except: return False def update_contact(self, form): """ Update a contact using form data. Returns True if successful. """ try: if self.delete_contact(form['name']): return self.create_contact(form) else: return False except: return False def delete_contact(self, name): """ Delete a contact identified by name. Returns True if successful. """ try: contact_id = self._get_contact(name)['_id'] res = self.es.delete(index = self.index_name, doc_type = '_doc', id = contact_id) return res['result'] == 'deleted' except: return False
[ 6738, 42903, 1330, 46947, 198, 6738, 27468, 12947, 1330, 48567, 12947, 198, 6738, 2800, 1330, 14039, 628, 198, 4871, 32412, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7157, 829, 4560, 319, 27468, 12947, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 1351, 62, 3642, 8656, 7, 944, 11, 7159, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 1351, 286, 13961, 393, 10352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 274, 13, 521, 1063, 13, 5420, 3447, 7, 9630, 796, 2116, 13, 9630, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 274, 13, 12947, 7, 9630, 796, 2116, 13, 9630, 62, 3672, 11, 1767, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6738, 1298, 7159, 14692, 7700, 8973, 1635, 7159, 14692, 7700, 10699, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7857, 1298, 7159, 14692, 7700, 10699, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22766, 1298, 7159, 14692, 22766, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 17816, 71, 896, 6, 7131, 6, 71, 896, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 220, 220, 220, 825, 2251, 62, 32057, 7, 944, 11, 1296, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 2800, 422, 1296, 1366, 13, 16409, 6407, 611, 4388, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 1136, 62, 32057, 7, 687, 17816, 3672, 20520, 2599, 1303, 32057, 416, 326, 1438, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2800, 796, 14039, 7, 687, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 274, 13, 9630, 7, 9630, 796, 2116, 13, 9630, 62, 3672, 11, 2205, 62, 4906, 796, 705, 62, 15390, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 796, 965, 7, 32057, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 17816, 20274, 20520, 6624, 705, 25598, 6, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 220, 220, 220, 825, 1351, 62, 64, 62, 32057, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 1366, 319, 257, 2060, 2800, 5174, 416, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 220, 2116, 13557, 1136, 62, 32057, 7, 3672, 8, 17816, 62, 10459, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 220, 220, 220, 825, 4296, 62, 32057, 7, 944, 11, 1296, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10133, 257, 2800, 1262, 1296, 1366, 13, 16409, 6407, 611, 4388, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 33678, 62, 32057, 7, 687, 17816, 3672, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17953, 62, 32057, 7, 687, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 12233, 62, 32057, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23520, 257, 2800, 5174, 416, 1438, 13, 16409, 6407, 611, 4388, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2800, 62, 312, 796, 2116, 13557, 1136, 62, 32057, 7, 3672, 8, 17816, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 274, 13, 33678, 7, 9630, 796, 2116, 13, 9630, 62, 3672, 11, 2205, 62, 4906, 796, 705, 62, 15390, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 2800, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 17816, 20274, 20520, 6624, 705, 2934, 33342, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198 ]
2.058052
1,068
from django.db import models from django.contrib.auth.models import User # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 198, 2, 13610, 534, 4981, 994, 13, 628, 628, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628 ]
2.829268
41
import arcpy source = "C:\\TxDOT\\Shapefiles\\District_Offices.shp" outputcopy = "T:\\DATAMGT\\MAPPING\\Personal Folders\\Adam\\District_Offices.shp" copyPhone()
[ 11748, 10389, 9078, 198, 10459, 796, 366, 34, 25, 6852, 46047, 35, 2394, 6852, 33383, 16624, 6852, 44857, 62, 9362, 1063, 13, 1477, 79, 1, 198, 22915, 30073, 796, 366, 51, 25, 6852, 35, 1404, 2390, 19555, 6852, 44, 24805, 2751, 6852, 30228, 39957, 364, 6852, 23159, 6852, 44857, 62, 9362, 1063, 13, 1477, 79, 1, 198, 30073, 6132, 3419, 198 ]
2.655738
61
from novmpy.bridge import * from capstone import * from capstone.x86 import * from novmpy.x86_deobf import * from novmpy.match_helper import *
[ 6738, 645, 85, 3149, 88, 13, 9458, 1330, 1635, 198, 6738, 1451, 6440, 1330, 1635, 198, 6738, 1451, 6440, 13, 87, 4521, 1330, 1635, 198, 6738, 645, 85, 3149, 88, 13, 87, 4521, 62, 2934, 672, 69, 1330, 1635, 198, 6738, 645, 85, 3149, 88, 13, 15699, 62, 2978, 525, 1330, 1635, 628, 198 ]
2.685185
54
#!/usr/bin/env python import rospy import smach_ros from smach_tutorial.BasicStateMachine import BasicStateMachine_0,\ BasicStateMachine_1,\ BasicStateMachine_2 ##----------------------------------------------------------------------------------- # Example ##----------------------------------------------------------------------------------- if __name__ == '__main__': rospy.init_node('tutorial_node') main() #Change to main1 to call your function
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 686, 2777, 88, 198, 11748, 895, 620, 62, 4951, 198, 198, 6738, 895, 620, 62, 83, 44917, 13, 26416, 9012, 37573, 1330, 14392, 9012, 37573, 62, 15, 11, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14392, 9012, 37573, 62, 16, 11, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14392, 9012, 37573, 62, 17, 198, 2235, 10097, 1783, 6329, 198, 2, 17934, 198, 198, 2235, 10097, 1783, 6329, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 686, 2777, 88, 13, 15003, 62, 17440, 10786, 83, 44917, 62, 17440, 11537, 198, 220, 220, 220, 1388, 3419, 1303, 19400, 284, 1388, 16, 284, 869, 534, 2163, 198 ]
2.741294
201
#!/usr/bin/env python from translate.convert import xliff2po from translate.misc import wStringIO from translate.storage.test_base import headerless_len, first_translatable class TestBasicXLIFF2PO(TestXLIFF2PO): """This tests a basic XLIFF file without xmlns attribute""" xliffskeleton = '''<?xml version="1.0" ?> <xliff version="1.1"> <file original="filename.po" source-language="en-US" datatype="po"> <body> %s </body> </file> </xliff>'''
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 15772, 13, 1102, 1851, 1330, 2124, 75, 733, 17, 7501, 198, 6738, 15772, 13, 44374, 1330, 266, 10100, 9399, 198, 6738, 15772, 13, 35350, 13, 9288, 62, 8692, 1330, 13639, 1203, 62, 11925, 11, 717, 62, 7645, 49009, 628, 198, 4871, 6208, 26416, 32457, 29267, 17, 16402, 7, 14402, 32457, 29267, 17, 16402, 2599, 198, 220, 220, 220, 37227, 1212, 5254, 257, 4096, 16276, 29267, 2393, 1231, 35555, 5907, 11688, 37811, 628, 220, 220, 220, 2124, 75, 10203, 38800, 796, 705, 7061, 47934, 19875, 2196, 2625, 16, 13, 15, 1, 5633, 29, 198, 27, 87, 75, 733, 2196, 2625, 16, 13, 16, 5320, 198, 220, 1279, 7753, 2656, 2625, 34345, 13, 7501, 1, 2723, 12, 16129, 2625, 268, 12, 2937, 1, 4818, 265, 2981, 2625, 7501, 5320, 198, 220, 220, 220, 1279, 2618, 29, 198, 220, 220, 220, 220, 220, 220, 220, 4064, 82, 198, 220, 220, 220, 7359, 2618, 29, 198, 220, 7359, 7753, 29, 198, 3556, 87, 75, 733, 29, 7061, 6, 198 ]
2.693182
176
""" Your colleagues have been looking over you shoulder. When you should have been doing your boring real job, you've been using the work computers to smash in endless hours of codewars. In a team meeting, a terrible, awful person declares to the group that you aren't working. You're in trouble. You quickly have to gauge the feeling in the room to decide whether or not you should gather your things and leave. Given an object (meet) containing team member names as keys, and their happiness rating out of 10 as the value, you need to assess the overall happiness rating of the group. If <= 5, return 'Get Out Now!'. Else return 'Nice Work Champ!'. Happiness rating will be total score / number of people in the room. Note that your boss is in the room (boss), their score is worth double it's face value (but they are still just one person!). """ """ test.assert_equals(outed({'tim':0, 'jim':2, 'randy':0, 'sandy':7, 'andy':0, 'katie':5, 'laura':1, 'saajid':2, 'alex':3, 'john':2, 'mr':0}, 'laura'), 'Get Out Now!') test.assert_equals(outed({'tim':1, 'jim':3, 'randy':9, 'sandy':6, 'andy':7, 'katie':6, 'laura':9, 'saajid':9, 'alex':9, 'john':9, 'mr':8}, 'katie'), 'Nice Work Champ!') test.assert_equals(outed({'tim':2, 'jim':4, 'randy':0, 'sandy':5, 'andy':8, 'katie':6, 'laura':2, 'saajid':2, 'alex':3, 'john':2, 'mr':8}, 'john'), 'Get Out Now!') """
[ 37811, 3406, 7810, 423, 587, 2045, 625, 345, 8163, 13, 1649, 345, 815, 423, 587, 1804, 534, 14262, 1103, 1693, 11, 345, 1053, 587, 1262, 262, 670, 9061, 284, 24273, 287, 13079, 2250, 286, 14873, 413, 945, 13, 198, 198, 818, 257, 1074, 3249, 11, 257, 7818, 11, 12659, 1048, 24183, 284, 262, 1448, 326, 345, 3588, 470, 1762, 13, 921, 821, 287, 5876, 13, 921, 2952, 423, 284, 18266, 262, 4203, 287, 262, 2119, 284, 5409, 1771, 393, 407, 345, 815, 6431, 534, 1243, 290, 2666, 13, 198, 198, 15056, 281, 2134, 357, 47745, 8, 7268, 1074, 2888, 3891, 355, 8251, 11, 290, 511, 12157, 7955, 503, 286, 838, 355, 262, 1988, 11, 345, 761, 284, 4659, 262, 4045, 12157, 7955, 286, 262, 1448, 13, 1002, 19841, 642, 11, 1441, 705, 3855, 3806, 2735, 0, 4458, 25974, 1441, 705, 35284, 5521, 29260, 0, 4458, 198, 198, 39, 42661, 7955, 481, 307, 2472, 4776, 1220, 1271, 286, 661, 287, 262, 2119, 13, 198, 198, 6425, 326, 534, 6478, 318, 287, 262, 2119, 357, 42820, 828, 511, 4776, 318, 2861, 4274, 340, 338, 1986, 1988, 357, 4360, 484, 389, 991, 655, 530, 1048, 19588, 37227, 198, 198, 37811, 220, 198, 9288, 13, 30493, 62, 4853, 874, 7, 18534, 15090, 6, 16514, 10354, 15, 11, 705, 73, 320, 10354, 17, 11, 705, 81, 10757, 10354, 15, 11, 705, 82, 10757, 10354, 22, 11, 705, 10757, 10354, 15, 11, 705, 41826, 494, 10354, 20, 11, 705, 75, 33830, 10354, 16, 11, 705, 11400, 1228, 312, 10354, 17, 11, 705, 1000, 87, 10354, 18, 11, 705, 30686, 10354, 17, 11, 705, 43395, 10354, 15, 5512, 705, 75, 33830, 33809, 705, 3855, 3806, 2735, 0, 11537, 198, 9288, 13, 30493, 62, 4853, 874, 7, 18534, 15090, 6, 16514, 10354, 16, 11, 705, 73, 320, 10354, 18, 11, 705, 81, 10757, 10354, 24, 11, 705, 82, 10757, 10354, 21, 11, 705, 10757, 10354, 22, 11, 705, 41826, 494, 10354, 21, 11, 705, 75, 33830, 10354, 24, 11, 705, 11400, 1228, 312, 10354, 24, 11, 705, 1000, 87, 10354, 24, 11, 705, 30686, 10354, 24, 11, 705, 43395, 10354, 23, 5512, 705, 41826, 494, 33809, 705, 35284, 5521, 29260, 0, 11537, 198, 9288, 13, 30493, 62, 4853, 874, 7, 18534, 15090, 6, 16514, 10354, 17, 11, 705, 73, 320, 10354, 19, 11, 705, 81, 10757, 10354, 15, 11, 705, 82, 10757, 10354, 20, 11, 705, 10757, 10354, 23, 11, 705, 41826, 494, 10354, 21, 11, 705, 75, 33830, 10354, 17, 11, 705, 11400, 1228, 312, 10354, 17, 11, 705, 1000, 87, 10354, 18, 11, 705, 30686, 10354, 17, 11, 705, 43395, 10354, 23, 5512, 705, 30686, 33809, 705, 3855, 3806, 2735, 0, 11537, 37227, 198 ]
3.040179
448
from app_couriers.serializers import CourierSerializer from .models import Orders
[ 6738, 598, 62, 66, 280, 8910, 13, 46911, 11341, 1330, 34268, 32634, 7509, 198, 6738, 764, 27530, 1330, 30689, 628 ]
4.15
20
''' Implementation of Rapid Automatic Keyword Extraction (RAKE) algorithm for Chinese Original algorithm described in: Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic Keyword Extraction from Individual Documents. In M. W. Berry & J. Kogan (Eds.), Text Mining: Theory and Applications: John Wiley & Sons. ''' __author__ = "Ruoyang Xu" import jieba import jieba.posseg as pseg import operator import json from collections import Counter # Data structure for holding data # Check if contains num # Read Target Case if Json if __name__ == '__main__': with open('data/testCase/文本1.txt','r') as fp: text = fp.read() result = run(text) print(result)
[ 7061, 6, 198, 3546, 32851, 286, 26430, 30199, 7383, 4775, 5683, 7861, 357, 3861, 7336, 8, 11862, 329, 3999, 198, 20556, 11862, 3417, 287, 25, 8049, 11, 311, 1539, 46073, 11, 360, 1539, 327, 29172, 11, 399, 1539, 1222, 10417, 1636, 11, 370, 13, 357, 10333, 737, 198, 16541, 13730, 7383, 4775, 5683, 7861, 422, 18629, 33267, 13, 554, 337, 13, 370, 13, 20165, 1222, 449, 13, 509, 9632, 198, 7, 7407, 82, 12179, 8255, 29269, 25, 17003, 290, 26622, 25, 1757, 43424, 1222, 27989, 13, 220, 198, 7061, 6, 198, 834, 9800, 834, 796, 366, 40464, 726, 648, 33591, 1, 198, 198, 11748, 474, 494, 7012, 198, 11748, 474, 494, 7012, 13, 1930, 325, 70, 355, 15838, 70, 198, 11748, 10088, 198, 11748, 33918, 198, 6738, 17268, 1330, 15034, 628, 198, 2, 6060, 4645, 329, 4769, 1366, 198, 198, 2, 6822, 611, 4909, 997, 198, 198, 2, 4149, 12744, 8913, 611, 449, 1559, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 351, 1280, 10786, 7890, 14, 9288, 20448, 14, 23877, 229, 17312, 105, 16, 13, 14116, 41707, 81, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 277, 79, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1057, 7, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20274, 8, 198 ]
2.965812
234
from pwn import * # type: ignore context.binary = "./SaveTheWorld" p = process() p.sendline(b"A" * 72 + b"Jotaro!!" + b"Star Platinum!!!" + b"HORA" + b"9999") p.recvuntil(b"Congratulation, you won!!!") os.system("grep .*{.*}.* victory_recap.txt")
[ 6738, 279, 675, 1330, 1635, 220, 1303, 2099, 25, 8856, 198, 198, 22866, 13, 39491, 796, 366, 19571, 16928, 464, 10603, 1, 198, 79, 796, 1429, 3419, 198, 79, 13, 21280, 1370, 7, 65, 1, 32, 1, 1635, 7724, 1343, 275, 1, 41, 313, 12022, 37160, 1343, 275, 1, 8248, 23851, 3228, 2474, 1343, 275, 1, 39, 1581, 32, 1, 1343, 275, 1, 24214, 4943, 198, 79, 13, 8344, 85, 28446, 7, 65, 1, 18649, 10366, 1741, 11, 345, 1839, 3228, 2474, 8, 198, 418, 13, 10057, 7203, 70, 7856, 764, 9, 90, 15885, 92, 15885, 5373, 62, 8344, 499, 13, 14116, 4943, 198 ]
2.394231
104
Desc = cellDescClass("CMPR32X1") Desc.properties["cell_leakage_power"] = "3632.359140" Desc.properties["cell_footprint"] = "add32" Desc.properties["area"] = "69.854400" Desc.pinOrder = ['A', 'B', 'C', 'CO', 'S'] Desc.add_arc("A","S","combi") Desc.add_arc("B","S","combi") Desc.add_arc("C","S","combi") Desc.add_arc("A","CO","combi") Desc.add_arc("B","CO","combi") Desc.add_arc("C","CO","combi") Desc.add_param("area",69.854400); Desc.add_pin("A","input") Desc.add_pin("C","input") Desc.add_pin("B","input") Desc.add_pin("CO","output") Desc.add_pin_func("CO","unknown") Desc.add_pin("S","output") Desc.add_pin_func("S","unknown") CellLib["CMPR32X1"]=Desc
[ 24564, 796, 2685, 24564, 9487, 7203, 24187, 4805, 2624, 55, 16, 4943, 198, 24564, 13, 48310, 14692, 3846, 62, 293, 461, 496, 62, 6477, 8973, 796, 366, 2623, 2624, 13, 30743, 15187, 1, 198, 24564, 13, 48310, 14692, 3846, 62, 5898, 4798, 8973, 796, 366, 2860, 2624, 1, 198, 24564, 13, 48310, 14692, 20337, 8973, 796, 366, 3388, 13, 5332, 2598, 405, 1, 198, 24564, 13, 11635, 18743, 796, 37250, 32, 3256, 705, 33, 3256, 705, 34, 3256, 705, 8220, 3256, 705, 50, 20520, 198, 24564, 13, 2860, 62, 5605, 7203, 32, 2430, 50, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 33, 2430, 50, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 34, 2430, 50, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 32, 2430, 8220, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 33, 2430, 8220, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 5605, 7203, 34, 2430, 8220, 2430, 785, 8482, 4943, 198, 24564, 13, 2860, 62, 17143, 7203, 20337, 1600, 3388, 13, 5332, 2598, 405, 1776, 198, 24564, 13, 2860, 62, 11635, 7203, 32, 2430, 15414, 4943, 198, 24564, 13, 2860, 62, 11635, 7203, 34, 2430, 15414, 4943, 198, 24564, 13, 2860, 62, 11635, 7203, 33, 2430, 15414, 4943, 198, 24564, 13, 2860, 62, 11635, 7203, 8220, 2430, 22915, 4943, 198, 24564, 13, 2860, 62, 11635, 62, 20786, 7203, 8220, 2430, 34680, 4943, 198, 24564, 13, 2860, 62, 11635, 7203, 50, 2430, 22915, 4943, 198, 24564, 13, 2860, 62, 11635, 62, 20786, 7203, 50, 2430, 34680, 4943, 198, 28780, 25835, 14692, 24187, 4805, 2624, 55, 16, 8973, 28, 24564, 198 ]
2.361011
277
""" ---> Univalued Binary Tree ---> Easy """ from tree_func import * in_array = [1, 1, 1, 1, 1, None, 1] in_root = to_binary_tree(in_array) pretty_print(in_root) a = Solution() print("Answer -", a.isUnivalTree(in_root)) # print("Answer -", a.isUnivalTree(in_root)) """ Check if node is none or node.value should be equal to root value for that and every other node in its children Reference - https://leetcode.com/problems/univalued-binary-tree/discuss/211397/JavaPython-3-BFS-and-DFS-clean-codes-w-brief-analysis. """
[ 37811, 198, 198, 438, 3784, 791, 2473, 1739, 45755, 12200, 198, 438, 3784, 16789, 198, 198, 37811, 628, 198, 6738, 5509, 62, 20786, 1330, 1635, 628, 198, 198, 259, 62, 18747, 796, 685, 16, 11, 352, 11, 352, 11, 352, 11, 352, 11, 6045, 11, 352, 60, 198, 259, 62, 15763, 796, 284, 62, 39491, 62, 21048, 7, 259, 62, 18747, 8, 198, 37784, 62, 4798, 7, 259, 62, 15763, 8, 198, 64, 796, 28186, 3419, 198, 4798, 7203, 33706, 532, 1600, 257, 13, 271, 3118, 2473, 27660, 7, 259, 62, 15763, 4008, 198, 2, 3601, 7203, 33706, 532, 1600, 257, 13, 271, 3118, 2473, 27660, 7, 259, 62, 15763, 4008, 628, 198, 37811, 198, 9787, 611, 10139, 318, 4844, 393, 10139, 13, 8367, 815, 307, 4961, 284, 6808, 1988, 329, 326, 290, 790, 584, 10139, 287, 663, 1751, 198, 26687, 532, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 403, 2473, 1739, 12, 39491, 12, 21048, 14, 15410, 1046, 14, 21895, 33372, 14, 29584, 37906, 12, 18, 12, 33, 10652, 12, 392, 12, 8068, 50, 12, 27773, 12, 40148, 12, 86, 12, 65, 3796, 12, 20930, 13, 198, 37811, 198 ]
2.721649
194
import os import struct import numpy as np def load_mnist(path, kind='train'): """Load MNIST data from `path`""" labels_path = os.path.join(path, '%s-labels.idx1-ubyte' % kind) images_path = os.path.join(path, '%s-images.idx3-ubyte' % kind) with open(labels_path, 'rb') as lbpath: magic, n = struct.unpack('>II', lbpath.read(8)) labels = np.fromfile(lbpath, dtype=np.uint8) labels = labels.reshape(labels.shape[0], 1) with open(images_path, 'rb') as imgpath: magic, num, rows, cols = struct.unpack('>IIII', imgpath.read(16)) images = np.fromfile(imgpath, dtype=np.uint8).reshape(len(labels), 784) return images, labels
[ 11748, 28686, 198, 11748, 2878, 198, 11748, 299, 32152, 355, 45941, 198, 198, 4299, 3440, 62, 10295, 396, 7, 6978, 11, 1611, 11639, 27432, 6, 2599, 198, 220, 220, 220, 37227, 8912, 29060, 8808, 1366, 422, 4600, 6978, 63, 37811, 198, 220, 220, 220, 14722, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 82, 12, 23912, 1424, 13, 312, 87, 16, 12, 549, 88, 660, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 1611, 8, 198, 220, 220, 220, 4263, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 82, 12, 17566, 13, 312, 87, 18, 12, 549, 88, 660, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 1611, 8, 198, 220, 220, 220, 351, 1280, 7, 23912, 1424, 62, 6978, 11, 705, 26145, 11537, 355, 18360, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5536, 11, 299, 796, 2878, 13, 403, 8002, 10786, 29, 3978, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18360, 6978, 13, 961, 7, 23, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 45941, 13, 6738, 7753, 7, 23160, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 14722, 13, 3447, 1758, 7, 23912, 1424, 13, 43358, 58, 15, 4357, 352, 8, 628, 220, 220, 220, 351, 1280, 7, 17566, 62, 6978, 11, 705, 26145, 11537, 355, 33705, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5536, 11, 997, 11, 15274, 11, 951, 82, 796, 2878, 13, 403, 8002, 10786, 29, 3978, 3978, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 6978, 13, 961, 7, 1433, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 45941, 13, 6738, 7753, 7, 9600, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 37659, 13, 28611, 23, 737, 3447, 1758, 7, 11925, 7, 23912, 1424, 828, 767, 5705, 8, 628, 220, 220, 220, 1441, 4263, 11, 14722 ]
1.688057
561
arr = [1, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9] arr.sort() my_dict = {i:arr.count(i) for i in arr} # sorting the dictionary based on value my_dict = {k: v for k, v in sorted(my_dict.items(), key=lambda item: item[1])} print(len(my_dict)) print(my_dict) list = list(my_dict.keys()) print(list[-1])
[ 3258, 796, 685, 16, 11, 362, 11, 513, 11, 604, 11, 604, 11, 604, 11, 642, 11, 718, 11, 718, 11, 767, 11, 807, 11, 860, 60, 198, 3258, 13, 30619, 3419, 198, 1820, 62, 11600, 796, 1391, 72, 25, 3258, 13, 9127, 7, 72, 8, 329, 1312, 287, 5240, 92, 198, 198, 2, 29407, 262, 22155, 1912, 319, 1988, 198, 1820, 62, 11600, 796, 1391, 74, 25, 410, 329, 479, 11, 410, 287, 23243, 7, 1820, 62, 11600, 13, 23814, 22784, 1994, 28, 50033, 2378, 25, 2378, 58, 16, 12962, 92, 198, 198, 4798, 7, 11925, 7, 1820, 62, 11600, 4008, 198, 4798, 7, 1820, 62, 11600, 8, 198, 4868, 796, 1351, 7, 1820, 62, 11600, 13, 13083, 28955, 198, 4798, 7, 4868, 58, 12, 16, 12962, 628 ]
2.286822
129
#coding=utf-8 ''' Created on 2016-1-18 @author: Devuser ''' from django import template from doraemon.auth_extend.user.templatetags.auth_required_node import LogoutRequiredNode,LoginRequiredNode,UserRequiredNode,ManagerRequiredNode,AdminRequiredNode register = template.Library() @register.tag() @register.tag() @register.tag() @register.tag() @register.tag()
[ 2, 66, 7656, 28, 40477, 12, 23, 198, 7061, 6, 198, 41972, 319, 1584, 12, 16, 12, 1507, 198, 198, 31, 9800, 25, 6245, 7220, 198, 7061, 6, 198, 198, 6738, 42625, 14208, 1330, 11055, 198, 6738, 288, 5799, 7966, 13, 18439, 62, 2302, 437, 13, 7220, 13, 11498, 489, 265, 316, 3775, 13, 18439, 62, 35827, 62, 17440, 1330, 5972, 448, 37374, 19667, 11, 47790, 37374, 19667, 11, 12982, 37374, 19667, 11, 13511, 37374, 19667, 11, 46787, 37374, 19667, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 628, 198, 198, 31, 30238, 13, 12985, 3419, 198, 198, 31, 30238, 13, 12985, 3419, 198, 198, 31, 30238, 13, 12985, 3419, 198, 198, 31, 30238, 13, 12985, 3419, 198, 198, 31, 30238, 13, 12985, 3419 ]
2.975806
124
import yaml import schoolopy import sys def err(msg): """ Prints out error message and exits with error. """ print(f"Error: {msg}") exit(1) def main(limit): """ Likes all the posts & comments in your most recent feed (20 posts). Args: limit: How many posts to like. Returns: A message of the number of posts & comments that were newly liked. """ with open('config.yaml', 'r') as file: config = yaml.load(file, Loader=yaml.FullLoader) sc = schoolopy.Schoology(schoolopy.Auth(config['key'], config['secret'])) post_liked = 0 comments_liked = 0 # Set the number of posts to check try: sc.limit = int(limit) except ValueError: err("The 'limit' argument must be a number") # Get updates try: updates = sc.get_feed() except KeyError: err("The key or secret is incorrect") print("Liking posts...") # Go through all most recent 20 posts for update in updates: # Like post try: sc.like(update.id) post_liked += 1 except schoolopy.NoDifferenceError: pass # Get comments if post is in a group if update.realm == "group": comments = sc.get_group_update_comments(update.id, update.group_id) # Else get comments if post is in a course elif update.realm == "section": comments = sc.get_section_update_comments(update.id, update.section_id) else: continue # Go through the comments inside the group for comment in comments: # Like each comment try: sc.like_comment(update.id, comment.id) comments_liked += 1 except schoolopy.NoDifferenceError: continue return ("---------------\n" f"Liked {post_liked} posts and {comments_liked} comments") if __name__ == "__main__": # Too many arguments are specified if len(sys.argv) > 2: err("Only the 'limit' argument is allowed") # Default limit is 20 limit = 20 if len(sys.argv) == 1 else sys.argv[1] print(main(limit))
[ 11748, 331, 43695, 198, 11748, 1524, 11081, 198, 11748, 25064, 628, 198, 4299, 11454, 7, 19662, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 82, 503, 4049, 3275, 290, 30151, 351, 4049, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7, 69, 1, 12331, 25, 1391, 19662, 92, 4943, 198, 220, 220, 220, 8420, 7, 16, 8, 628, 198, 4299, 1388, 7, 32374, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 46077, 477, 262, 6851, 1222, 3651, 198, 220, 220, 220, 287, 534, 749, 2274, 3745, 357, 1238, 6851, 737, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4179, 25, 1374, 867, 6851, 284, 588, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 3275, 286, 262, 1271, 286, 6851, 1222, 3651, 326, 547, 8308, 8288, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 1280, 10786, 11250, 13, 88, 43695, 3256, 705, 81, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 331, 43695, 13, 2220, 7, 7753, 11, 8778, 263, 28, 88, 43695, 13, 13295, 17401, 8, 198, 220, 220, 220, 629, 796, 1524, 11081, 13, 50, 6679, 1435, 7, 14347, 11081, 13, 30515, 7, 11250, 17816, 2539, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 21078, 20520, 4008, 198, 220, 220, 220, 1281, 62, 75, 17951, 796, 657, 198, 220, 220, 220, 3651, 62, 75, 17951, 796, 657, 628, 220, 220, 220, 1303, 5345, 262, 1271, 286, 6851, 284, 2198, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 629, 13, 32374, 796, 493, 7, 32374, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 7203, 464, 705, 32374, 6, 4578, 1276, 307, 257, 1271, 4943, 628, 220, 220, 220, 1303, 3497, 5992, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5992, 796, 629, 13, 1136, 62, 12363, 3419, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 7203, 464, 1994, 393, 3200, 318, 11491, 4943, 628, 220, 220, 220, 3601, 7203, 43, 14132, 6851, 9313, 8, 628, 220, 220, 220, 1303, 1514, 832, 477, 749, 2274, 1160, 6851, 198, 220, 220, 220, 329, 4296, 287, 5992, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4525, 1281, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 13, 2339, 7, 19119, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 75, 17951, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1524, 11081, 13, 2949, 28813, 1945, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 3651, 611, 1281, 318, 287, 257, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4296, 13, 5305, 76, 6624, 366, 8094, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3651, 796, 629, 13, 1136, 62, 8094, 62, 19119, 62, 15944, 7, 19119, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 13, 8094, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25974, 651, 3651, 611, 1281, 318, 287, 257, 1781, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4296, 13, 5305, 76, 6624, 366, 5458, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3651, 796, 629, 13, 1136, 62, 5458, 62, 19119, 62, 15944, 7, 19119, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 13, 5458, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1514, 832, 262, 3651, 2641, 262, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2912, 287, 3651, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4525, 1123, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 13, 2339, 62, 23893, 7, 19119, 13, 312, 11, 2912, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3651, 62, 75, 17951, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 1524, 11081, 13, 2949, 28813, 1945, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 1441, 5855, 24305, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 43, 17951, 1391, 7353, 62, 75, 17951, 92, 6851, 290, 1391, 15944, 62, 75, 17951, 92, 3651, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 14190, 867, 7159, 389, 7368, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 7203, 10049, 262, 705, 32374, 6, 4578, 318, 3142, 4943, 198, 220, 220, 220, 1303, 15161, 4179, 318, 1160, 198, 220, 220, 220, 4179, 796, 1160, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 352, 2073, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 3601, 7, 12417, 7, 32374, 4008, 198 ]
2.171802
1,071
# Loopit eli silmukat ##### INFO ##### # # Joskus monimutkaisen kuvion piirtäminen vaatii samojen # komentojen toistamista moneen kertaan. Loopilla eli silmukalla # voit toistaa koodipalikoita eli pätkiä koodia import turtle t = turtle.Turtle() # Seuraava on esimerkki silmukasta. # # "for" kertoo tietokoneelle että sen tulee toistaa jotakin # monta kertaa # # "in range(2)" kertoo että komento tulee toistaa 2 kertaa # # "i" on muuttuja jonka arvo kasvaa yhdellä jokaisen toiston # (eli iteraation) jälkeen. Muuttujaa i ei käytetä tässä # tehtäväss, mutta näet myöhemmin esimerkkejä, joissa siitä # on hyötyä. for i in range(2): # Seuraavilla riveillä on komennot jotka toistetaan. # Nämä rivit ollaan sisennetty, eli ne alkavat kahdella välilyönnillä # Sisennyksellä kerrotaan mitkä rivit kuuluvat toistettavaan koodipalikkaan. t.forward(30) t.left(120) t.forward(30) t.right(60) ##### TEHTÄVÄ 1 ##### # # Klikkaa 'run' ja katso mitä tapahtuu. # # Kuinka monta kertaa silmukka tulisi toistaa että tähti olisi valmis? # Laita oikea numero komennon range(...) sulkujen sisään. # Vinkkin: voit kokeilla useita eri numeroita ja katsoa mikä toimii ##### TEHTÄVÄ 2 ##### # # Mieti muita muotoja joissa on toistuva kaava. # Esimerkiksi: neliö, rappuset, aallot # # Muuta silmukkaa niin että se piirtää valitsemasi kuvion. # # Vinkki: Aloita piirtämällä vain yksi toisto kirjoittamalla # "range(1)" ja saa se piirtämään kuten haluat. Voit sitten # toistaa kuvion niin monta kertaa kuin haluat muuttamalla # range arvoa.
[ 2, 26304, 270, 1288, 72, 3313, 76, 2724, 265, 198, 198, 4242, 2, 24890, 46424, 198, 2, 198, 2, 22568, 45614, 937, 320, 315, 4914, 13254, 479, 14795, 295, 31028, 2265, 11033, 1084, 268, 46935, 265, 4178, 6072, 13210, 268, 198, 2, 479, 296, 298, 13210, 268, 284, 396, 321, 12523, 285, 505, 268, 479, 861, 28340, 13, 26304, 5049, 1288, 72, 3313, 76, 2724, 30315, 198, 2, 7608, 270, 284, 396, 7252, 479, 702, 8521, 12125, 5350, 1288, 72, 279, 11033, 83, 4106, 11033, 479, 702, 544, 198, 198, 11748, 28699, 198, 83, 796, 28699, 13, 51, 17964, 3419, 198, 198, 2, 1001, 5330, 4170, 319, 1658, 320, 9587, 4106, 3313, 76, 2724, 40197, 13, 198, 2, 198, 2, 366, 1640, 1, 479, 861, 2238, 256, 1155, 482, 505, 13485, 304, 926, 11033, 3308, 256, 2261, 68, 284, 396, 7252, 474, 313, 27048, 198, 2, 40689, 64, 479, 861, 7252, 198, 2, 198, 2, 366, 259, 2837, 7, 17, 16725, 479, 861, 2238, 304, 926, 11033, 479, 296, 50217, 256, 2261, 68, 284, 396, 7252, 362, 479, 861, 7252, 198, 2, 198, 2, 366, 72, 1, 319, 38779, 15318, 84, 6592, 474, 261, 4914, 610, 13038, 479, 292, 6862, 64, 331, 31298, 695, 11033, 474, 17411, 13254, 284, 36363, 198, 2, 357, 43733, 340, 8607, 341, 8, 474, 11033, 75, 365, 268, 13, 8252, 15318, 84, 6592, 64, 1312, 304, 72, 479, 11033, 20760, 316, 11033, 256, 11033, 824, 11033, 198, 2, 573, 4352, 11033, 85, 11033, 824, 11, 4517, 8326, 299, 11033, 316, 616, 9101, 4411, 1084, 1658, 320, 9587, 365, 73, 11033, 11, 2525, 13808, 33721, 270, 11033, 198, 2, 319, 2537, 9101, 774, 11033, 13, 198, 198, 1640, 1312, 287, 2837, 7, 17, 2599, 198, 220, 1303, 1001, 5330, 615, 5049, 40112, 359, 11033, 319, 479, 3674, 1662, 474, 313, 4914, 284, 396, 17167, 272, 13, 198, 220, 1303, 399, 11033, 76, 11033, 374, 452, 270, 267, 8466, 272, 264, 271, 1697, 316, 774, 11, 1288, 72, 497, 32915, 615, 265, 479, 993, 67, 12627, 410, 11033, 75, 813, 9101, 20471, 359, 11033, 198, 220, 1303, 311, 271, 11870, 74, 7255, 11033, 41927, 305, 8326, 272, 10255, 74, 11033, 374, 452, 270, 479, 84, 377, 14795, 265, 284, 396, 3087, 4170, 272, 479, 702, 8521, 1134, 4914, 272, 13, 198, 220, 256, 13, 11813, 7, 1270, 8, 198, 220, 256, 13, 9464, 7, 10232, 8, 198, 220, 256, 13, 11813, 7, 1270, 8, 198, 220, 256, 13, 3506, 7, 1899, 8, 198, 198, 4242, 2, 13368, 6535, 127, 226, 53, 127, 226, 352, 46424, 198, 2, 198, 2, 14770, 1134, 4914, 64, 705, 5143, 6, 45091, 479, 265, 568, 10255, 11033, 9814, 993, 83, 12303, 13, 198, 2, 198, 2, 12554, 48955, 40689, 64, 479, 861, 7252, 3313, 76, 2724, 4914, 48373, 23267, 284, 396, 7252, 304, 926, 11033, 256, 11033, 4352, 72, 25776, 23267, 1188, 25413, 30, 198, 2, 406, 4548, 64, 267, 522, 64, 997, 3529, 479, 296, 1697, 261, 2837, 7, 23029, 264, 12171, 23577, 268, 264, 271, 11033, 11033, 77, 13, 198, 2, 569, 676, 5116, 25, 7608, 270, 479, 2088, 5049, 779, 5350, 1931, 72, 997, 3529, 5350, 45091, 479, 265, 568, 64, 285, 1134, 11033, 284, 320, 4178, 198, 198, 4242, 2, 13368, 6535, 127, 226, 53, 127, 226, 362, 46424, 198, 2, 198, 2, 337, 1155, 72, 285, 5013, 64, 38779, 2069, 6592, 2525, 13808, 319, 284, 396, 84, 6862, 38387, 4170, 13, 198, 2, 8678, 22723, 4106, 591, 72, 25, 299, 43733, 9101, 11, 29106, 385, 316, 11, 257, 439, 313, 198, 2, 198, 2, 8252, 29822, 3313, 76, 2724, 4914, 64, 37628, 259, 304, 926, 11033, 384, 31028, 2265, 11033, 11033, 1188, 270, 325, 5356, 72, 479, 14795, 295, 13, 198, 2, 198, 2, 569, 676, 4106, 25, 978, 78, 5350, 31028, 2265, 11033, 76, 11033, 297, 11033, 23469, 331, 591, 72, 284, 396, 78, 479, 343, 7639, 715, 321, 30315, 198, 2, 366, 9521, 7, 16, 16725, 45091, 473, 64, 384, 31028, 2265, 11033, 76, 11033, 11033, 77, 479, 7809, 10284, 84, 265, 13, 20687, 270, 264, 2621, 198, 2, 284, 396, 7252, 479, 14795, 295, 37628, 259, 40689, 64, 479, 861, 7252, 479, 48441, 10284, 84, 265, 38779, 15318, 321, 30315, 198, 2, 2837, 610, 85, 12162, 13, 198 ]
2.14986
714
from queue import Queue, Empty from time import sleep from threading import Timer if __name__ == '__main__': main()
[ 6738, 16834, 1330, 4670, 518, 11, 33523, 201, 198, 6738, 640, 1330, 3993, 201, 198, 6738, 4704, 278, 1330, 5045, 263, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
2.66
50
# -*- coding: utf-8 -*- import hashlib import subprocess import sys import os G_ZIP_SPLIT_LINE = 500 G_ZIP_SPLIT_UNIT = 100
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 12234, 8019, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 28686, 198, 198, 38, 62, 57, 4061, 62, 4303, 43, 2043, 62, 24027, 796, 5323, 198, 38, 62, 57, 4061, 62, 4303, 43, 2043, 62, 4944, 2043, 796, 1802, 628, 628, 628, 628, 198 ]
2.216667
60
# Copyright 2019 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Parallel linear module.""" import math from typing import Optional from sonnet.src import base from sonnet.src import initializers from sonnet.src import once from sonnet.src import utils import tensorflow as tf class ParallelLinears(base.Module): """Parallel linear. This is equivalent to n separate linears applied in parallel to n inputs. It takes an input of shape [num_linears, batch_size, input_size] and returns an output of shape [num_linears, batch_size, output_size]. It uses a single batched matmul which is more efficient than stacking separate snt.Linear layers. This is implemented using `num_linear`s first to avoid the need for transposes in order to make it efficient when stacking these. """ def __init__(self, output_size: int, with_bias: bool = True, w_init: Optional[initializers.Initializer] = None, b_init: Optional[initializers.Initializer] = None, name: Optional[str] = None): """Constructs a `ParallelLinear` module. Args: output_size: Output dimensionality. with_bias: Whether to include bias parameters. Default `True`. w_init: Optional initializer for the weights. By default the weights are initialized truncated random normal values with a standard deviation of `1 / sqrt(input_feature_size)`, which is commonly used when the inputs are zero centered (see https://arxiv.org/abs/1502.03167v3). b_init: Optional initializer for the bias. By default the bias is initialized to zero. name: Name of the module. """ super().__init__(name=name) self.output_size = output_size self.with_bias = with_bias self.w_init = w_init if with_bias: self.b_init = b_init if b_init is not None else initializers.Zeros() elif b_init is not None: raise ValueError("When not using a bias the b_init must be None.") @once.once def _initialize(self, inputs: tf.Tensor): """Constructs parameters used by this module.""" utils.assert_rank(inputs, 3) self.input_size = inputs.shape[2] if self.input_size is None: # Can happen inside an @tf.function. raise ValueError("Input size must be specified at module build time.") num_linears = inputs.shape[0] if num_linears is None: # Can happen inside an @tf.function. raise ValueError( "The number of linears must be specified at module build time.") if self.w_init is None: # See https://arxiv.org/abs/1502.03167v3. stddev = 1. / math.sqrt(self.input_size) self.w_init = initializers.TruncatedNormal(stddev=stddev) self.w = tf.Variable( self.w_init([num_linears, self.input_size, self.output_size], inputs.dtype), name="w") if self.with_bias: self.b = tf.Variable( self.b_init([num_linears, 1, self.output_size], inputs.dtype), name="b")
[ 2, 15069, 13130, 383, 6295, 3262, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 220, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 37811, 10044, 29363, 14174, 8265, 526, 15931, 198, 198, 11748, 10688, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 3367, 3262, 13, 10677, 1330, 2779, 198, 6738, 3367, 3262, 13, 10677, 1330, 4238, 11341, 198, 6738, 3367, 3262, 13, 10677, 1330, 1752, 198, 6738, 3367, 3262, 13, 10677, 1330, 3384, 4487, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 4871, 42945, 14993, 4127, 7, 8692, 13, 26796, 2599, 198, 220, 37227, 10044, 29363, 14174, 13, 628, 220, 770, 318, 7548, 284, 299, 4553, 9493, 4127, 5625, 287, 10730, 284, 299, 17311, 13, 632, 198, 220, 2753, 281, 5128, 286, 5485, 685, 22510, 62, 2815, 4127, 11, 15458, 62, 7857, 11, 5128, 62, 7857, 60, 290, 5860, 281, 198, 220, 5072, 286, 5485, 685, 22510, 62, 2815, 4127, 11, 15458, 62, 7857, 11, 5072, 62, 7857, 4083, 628, 220, 632, 3544, 257, 2060, 7365, 1740, 2603, 76, 377, 543, 318, 517, 6942, 621, 41228, 4553, 198, 220, 264, 429, 13, 14993, 451, 11685, 13, 770, 318, 9177, 1262, 4600, 22510, 62, 29127, 63, 82, 717, 284, 3368, 262, 198, 220, 761, 329, 1007, 4832, 287, 1502, 284, 787, 340, 6942, 618, 41228, 777, 13, 198, 220, 37227, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7857, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 65, 4448, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 62, 15003, 25, 32233, 58, 36733, 11341, 13, 24243, 7509, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 15003, 25, 32233, 58, 36733, 11341, 13, 24243, 7509, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 32233, 58, 2536, 60, 796, 6045, 2599, 198, 220, 220, 220, 37227, 42316, 82, 257, 4600, 10044, 29363, 14993, 451, 63, 8265, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 5072, 62, 7857, 25, 25235, 15793, 1483, 13, 198, 220, 220, 220, 220, 220, 351, 62, 65, 4448, 25, 10127, 284, 2291, 10690, 10007, 13, 15161, 4600, 17821, 44646, 198, 220, 220, 220, 220, 220, 266, 62, 15003, 25, 32233, 4238, 7509, 329, 262, 19590, 13, 2750, 4277, 262, 19590, 389, 198, 220, 220, 220, 220, 220, 220, 220, 23224, 40122, 515, 4738, 3487, 3815, 351, 257, 3210, 28833, 286, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 16, 1220, 19862, 17034, 7, 15414, 62, 30053, 62, 7857, 8, 47671, 543, 318, 8811, 973, 618, 262, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 389, 6632, 19254, 357, 3826, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 8628, 17, 13, 3070, 21940, 85, 18, 737, 198, 220, 220, 220, 220, 220, 275, 62, 15003, 25, 32233, 4238, 7509, 329, 262, 10690, 13, 2750, 4277, 262, 10690, 318, 198, 220, 220, 220, 220, 220, 220, 220, 23224, 284, 6632, 13, 198, 220, 220, 220, 220, 220, 1438, 25, 6530, 286, 262, 8265, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 3672, 28, 3672, 8, 198, 220, 220, 220, 2116, 13, 22915, 62, 7857, 796, 5072, 62, 7857, 198, 220, 220, 220, 2116, 13, 4480, 62, 65, 4448, 796, 351, 62, 65, 4448, 198, 220, 220, 220, 2116, 13, 86, 62, 15003, 796, 266, 62, 15003, 198, 220, 220, 220, 611, 351, 62, 65, 4448, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 65, 62, 15003, 796, 275, 62, 15003, 611, 275, 62, 15003, 318, 407, 6045, 2073, 4238, 11341, 13, 57, 27498, 3419, 198, 220, 220, 220, 1288, 361, 275, 62, 15003, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 2215, 407, 1262, 257, 10690, 262, 275, 62, 15003, 1276, 307, 6045, 19570, 628, 220, 2488, 27078, 13, 27078, 198, 220, 825, 4808, 36733, 1096, 7, 944, 11, 17311, 25, 48700, 13, 51, 22854, 2599, 198, 220, 220, 220, 37227, 42316, 82, 10007, 973, 416, 428, 8265, 526, 15931, 198, 220, 220, 220, 3384, 4487, 13, 30493, 62, 43027, 7, 15414, 82, 11, 513, 8, 628, 220, 220, 220, 2116, 13, 15414, 62, 7857, 796, 17311, 13, 43358, 58, 17, 60, 198, 220, 220, 220, 611, 2116, 13, 15414, 62, 7857, 318, 6045, 25, 220, 1303, 1680, 1645, 2641, 281, 2488, 27110, 13, 8818, 13, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 20560, 2546, 1276, 307, 7368, 379, 8265, 1382, 640, 19570, 198, 220, 220, 220, 997, 62, 2815, 4127, 796, 17311, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 611, 997, 62, 2815, 4127, 318, 6045, 25, 220, 1303, 1680, 1645, 2641, 281, 2488, 27110, 13, 8818, 13, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 464, 1271, 286, 9493, 4127, 1276, 307, 7368, 379, 8265, 1382, 640, 19570, 628, 220, 220, 220, 611, 2116, 13, 86, 62, 15003, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 1303, 4091, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 8628, 17, 13, 3070, 21940, 85, 18, 13, 198, 220, 220, 220, 220, 220, 336, 1860, 1990, 796, 352, 13, 1220, 10688, 13, 31166, 17034, 7, 944, 13, 15414, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 86, 62, 15003, 796, 4238, 11341, 13, 2898, 19524, 515, 26447, 7, 301, 1860, 1990, 28, 301, 1860, 1990, 8, 628, 220, 220, 220, 2116, 13, 86, 796, 48700, 13, 43015, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 86, 62, 15003, 26933, 22510, 62, 2815, 4127, 11, 2116, 13, 15414, 62, 7857, 11, 2116, 13, 22915, 62, 7857, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 13, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 86, 4943, 628, 220, 220, 220, 611, 2116, 13, 4480, 62, 65, 4448, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 65, 796, 48700, 13, 43015, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 62, 15003, 26933, 22510, 62, 2815, 4127, 11, 352, 11, 2116, 13, 22915, 62, 7857, 4357, 17311, 13, 67, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 65, 4943, 198 ]
2.871146
1,265
import responses from urllib.parse import urlencode from tests.util import random_str from tests.util import mock_http_response from binance.spot import Spot as Client from binance.error import ParameterRequiredError, ClientError mock_item = {"key_1": "value_1", "key_2": "value_2"} mock_exception = {"code": -1105, "msg": "error message."} key = random_str() secret = random_str() params = {"coin": "USDT", "collateralCoin": "BTC", "amount": "1"} def test_futures_loan_borrow_without_coin(): """Tests the API endpoint to borrow cross funds without coin""" params = {"coin": "", "collateralCoin": "BTC"} client = Client(key, secret) client.futures_loan_borrow.when.called_with(**params).should.throw( ParameterRequiredError ) def test_futures_loan_borrow_without_collateralCoin(): """Tests the API endpoint to borrow cross funds without collateralCoin""" params = {"coin": "USDT", "collateralCoin": ""} client = Client(key, secret) client.futures_loan_borrow.when.called_with(**params).should.throw( ParameterRequiredError ) @mock_http_response( responses.POST, "/sapi/v1/futures/loan/borrow\\?" + urlencode(params), mock_item, 200, ) def test_futures_loan_borrow(): """Tests the API endpoint to borrow cross funds""" client = Client(key, secret) response = client.futures_loan_borrow(**params) response.should.equal(mock_item)
[ 11748, 9109, 198, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 2956, 11925, 8189, 198, 6738, 5254, 13, 22602, 1330, 4738, 62, 2536, 198, 6738, 5254, 13, 22602, 1330, 15290, 62, 4023, 62, 26209, 198, 6738, 9874, 590, 13, 20485, 1330, 15899, 355, 20985, 198, 6738, 9874, 590, 13, 18224, 1330, 25139, 2357, 37374, 12331, 11, 20985, 12331, 198, 198, 76, 735, 62, 9186, 796, 19779, 2539, 62, 16, 1298, 366, 8367, 62, 16, 1600, 366, 2539, 62, 17, 1298, 366, 8367, 62, 17, 20662, 198, 76, 735, 62, 1069, 4516, 796, 19779, 8189, 1298, 532, 11442, 20, 11, 366, 19662, 1298, 366, 18224, 3275, 526, 92, 198, 198, 2539, 796, 4738, 62, 2536, 3419, 198, 21078, 796, 4738, 62, 2536, 3419, 198, 198, 37266, 796, 19779, 3630, 1298, 366, 2937, 24544, 1600, 366, 26000, 10534, 24387, 1298, 366, 35964, 1600, 366, 17287, 1298, 366, 16, 20662, 628, 198, 4299, 1332, 62, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 62, 19419, 62, 3630, 33529, 198, 220, 220, 220, 37227, 51, 3558, 262, 7824, 36123, 284, 8804, 3272, 5153, 1231, 10752, 37811, 628, 220, 220, 220, 42287, 796, 19779, 3630, 1298, 366, 1600, 366, 26000, 10534, 24387, 1298, 366, 35964, 20662, 628, 220, 220, 220, 5456, 796, 20985, 7, 2539, 11, 3200, 8, 198, 220, 220, 220, 5456, 13, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 13, 12518, 13, 7174, 62, 4480, 7, 1174, 37266, 737, 21754, 13, 16939, 7, 198, 220, 220, 220, 220, 220, 220, 220, 25139, 2357, 37374, 12331, 198, 220, 220, 220, 1267, 628, 198, 4299, 1332, 62, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 62, 19419, 62, 26000, 10534, 24387, 33529, 198, 220, 220, 220, 37227, 51, 3558, 262, 7824, 36123, 284, 8804, 3272, 5153, 1231, 27907, 24387, 37811, 628, 220, 220, 220, 42287, 796, 19779, 3630, 1298, 366, 2937, 24544, 1600, 366, 26000, 10534, 24387, 1298, 13538, 92, 628, 220, 220, 220, 5456, 796, 20985, 7, 2539, 11, 3200, 8, 198, 220, 220, 220, 5456, 13, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 13, 12518, 13, 7174, 62, 4480, 7, 1174, 37266, 737, 21754, 13, 16939, 7, 198, 220, 220, 220, 220, 220, 220, 220, 25139, 2357, 37374, 12331, 198, 220, 220, 220, 1267, 628, 198, 31, 76, 735, 62, 4023, 62, 26209, 7, 198, 220, 220, 220, 9109, 13, 32782, 11, 198, 220, 220, 220, 12813, 82, 15042, 14, 85, 16, 14, 69, 315, 942, 14, 5439, 272, 14, 2865, 808, 6852, 1701, 1343, 2956, 11925, 8189, 7, 37266, 828, 198, 220, 220, 220, 15290, 62, 9186, 11, 198, 220, 220, 220, 939, 11, 198, 8, 198, 4299, 1332, 62, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 33529, 198, 220, 220, 220, 37227, 51, 3558, 262, 7824, 36123, 284, 8804, 3272, 5153, 37811, 628, 220, 220, 220, 5456, 796, 20985, 7, 2539, 11, 3200, 8, 198, 220, 220, 220, 2882, 796, 5456, 13, 69, 315, 942, 62, 5439, 272, 62, 2865, 808, 7, 1174, 37266, 8, 198, 220, 220, 220, 2882, 13, 21754, 13, 40496, 7, 76, 735, 62, 9186, 8, 198 ]
2.762548
518
# # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from testrunner import testhelp from conary_test import rephelp import os from conary_test.cvctest.buildtest import policytest from conary import versions from conary.build import action, trovefilter from conary.conaryclient import cmdline from conary.deps import deps from conary.lib import util
[ 2, 198, 2, 15069, 357, 66, 8, 35516, 5136, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 628, 198, 6738, 1332, 16737, 1330, 1332, 16794, 628, 198, 6738, 369, 560, 62, 9288, 1330, 1128, 16794, 198, 198, 11748, 28686, 198, 198, 6738, 369, 560, 62, 9288, 13, 33967, 310, 395, 13, 11249, 9288, 1330, 2450, 9288, 198, 198, 6738, 369, 560, 1330, 6300, 198, 6738, 369, 560, 13, 11249, 1330, 2223, 11, 42377, 24455, 198, 6738, 369, 560, 13, 1102, 560, 16366, 1330, 23991, 1370, 198, 6738, 369, 560, 13, 10378, 82, 1330, 390, 862, 198, 6738, 369, 560, 13, 8019, 1330, 7736, 628 ]
3.677686
242
''' #Students Name's: Ciaran Carroll # Student Id Number's: 13113259 # # Project 1: # Implement image reconstruction from parallel-projection sinograms using Python. # # CAT Scanners (or CT scan) - Computer Axial Tomography # CT scan: is a special X-ray tests that produce cross-sectional images of the body using X-rays and # a computer # FFTs - Fast Fourieris Transform # FFT: is an algorithm that samples a signal over a period of time (or space) and divides it # into its frequency components # Laminogram: Reconstruct the sum of the backprojections (i.e. sum of the f(x,y)) # Coplanar rotational laminography (CRL) is a special case of laminography which is a # tomographic technique used to image cross-sectional views through solid objects. # # Aim: # (1) Reconstruct an image from the sinogram image (sinogram.png) # (2) Investigate the behaviour of backprojection reconstruction with ramp-filtering # (3) Investigate the behaviour of backprojection reconstruction without ramp-filtering # (4) Investigate the behaviour of backprojection reconstruction with Hamming-windowed ramp-filtering # # A display of all the projections for all X-ray angles is called a Sinogram # # Rebuild the image from a sum of the 'Backprojections' of the 1-d projection data Step 1 - Backprojection reconstruction of the sinogram without filtering: When all the projection angles are combined the projection, the resulting image will be blurred. This is due to the fact that the resulting image is concentrated towards the center. (concentrated samples of the image towards the center, and more sparse samples near the edges). To compensate for this we will need to apply a filter to the output image of the backprojection such as the ramp filter or the Hamming-windowed ramp-filter New Steps (1) - Form the image projections and translate into the frequency domain using the FFT ''' import numpy as np import matplotlib.pylab as plt from PIL import Image from scipy.ndimage.filters import gaussian_filter from skimage.transform import rotate import scipy.fftpack as fft #from skimage.transform import iradon def imread(filename,greyscale=True): """Load an image, return as a Numpy array.""" if greyscale: pil_im = Image.open(filename).convert('L') else: pil_im = Image.open(filename) return np.array(pil_im) def imshow(im, autoscale=False,colourmap='gray', newfig=True, title=None): """Display an image, turning off autoscaling (unless explicitly required) and interpolation. (1) 8-bit greyscale images and 24-bit RGB are scaled in 0..255. (2) 0-1 binary images are scaled in 0..1. (3) Float images are scaled in 0.0..1.0 if their min values are >= 0 and their max values <= 1.0 (4) Float images are scaled in 0.0..255.0 if their min values are >= 0 and their max values are > 1 and <= 255.0 (5) Any image not covered by the above cases is autoscaled. If autoscaling is explicitly requested, it is always turned on. A new figure is created by default. "newfig=False" turns off this behaviour. Interpolation is always off (unless the backend stops this). """ if newfig: if title != None: fig = plt.figure(title) else: fig = plt.figure() if autoscale: plt.imshow(im,interpolation='nearest',cmap=colourmap) else: maxval = im.max() if im.dtype == 'uint8': ## 8-bit greyscale or 24-bit RGB if maxval > 1: maxval = 255 plt.imshow(im,interpolation='nearest',vmin=0,vmax=maxval,cmap=colourmap) elif im.dtype == 'float32' or im.dtype == 'float64': minval = im.min() if minval >= 0.0: if maxval <= 1.0: ## Looks like 0..1 float greyscale minval, maxval = 0.0, 1.0 elif maxval <= 255.0: ## Looks like a float 0 .. 255 image. minval, maxval = 0.0, 255.0 plt.imshow(im,interpolation='nearest',vmin=minval,vmax=maxval,cmap=colourmap) else: plt.imshow(im,interpolation='nearest',cmap=colourmap) plt.axis('image') ## plt.axis('off') plt.show() ##return fig def build_proj_ffts(projs): "Build 1-d FFTs of an array of projections, each projection 1 row fo the array." return fft.rfft(projs, axis=1) def build_proj_iffts(projs): "Build 1-d iFFTs of an array of projections, each projection 1 row fo the array." return fft.irfft(projs, axis=1) def build_laminogram(radonT): "Generate a laminogram by simple backprojection using the Radon Transform of an image, 'radonT'." laminogram = np.zeros((radonT.shape[1],radonT.shape[1])) dTheta = 180.0 / radonT.shape[0] for i in range(radonT.shape[0]): temp = np.tile(radonT[i],(radonT.shape[1],1)) temp = rotate(temp, dTheta*i) laminogram += temp return laminogram def ramp_filter_ffts(ffts): "Ramp filter a 2-d array of 1-d FFTs (1-d FFTs along the rows)." ramp = np.floor(np.arange(0.5, ffts.shape[1]//2 + 0.1, 0.5)) return ffts * ramp def radon(image, steps): "Build the Radon Transform using 'steps' projections of 'image’." projections = [] # Accumulate projections in a list. dTheta = -180.0 / steps # Angle increment for rotations. for i in range(steps): projections.append(rotate(image, i*dTheta).sum(axis=0)) return np.vstack(projections) # Original Sinogram Image sinogram = imread('sinogram.png') imshow(sinogram, title="Original Sinogram Image") # Backprojection reconstruction without ramp filtering sinogram_laminogram = build_laminogram(sinogram) imshow(sinogram_laminogram, title="Sinogram reconstruction by backprojection") # Backprojection reconstruction with ramp filtering # Apply an infinite ramp filter to the reconstruction # Maybe apply a ramp filter with a cutoff at half the max frwquency # But most likely no point # Get the FFT of the image (Frequency Domain) fourier = build_proj_ffts(sinogram) # Filter the fourier transform by the ramp filter ramp_filtered = ramp_filter_ffts(fourier) # Take the inverse FFT of the image to convert it back to Special Domain inverse_fourier_ramp_filtered = build_proj_iffts(ramp_filtered) #imshow(iffts_projection_sinogram, title="Test ramp filter") #test1 = radon(iffts_projection_sinogram, 180) #imshow(test1, title="Test ramp filter") # Build the filtered image by pbackprojecting the filtered projections filtered_reconstrution = build_laminogram(inverse_fourier_ramp_filtered) imshow(filtered_reconstrution, title="Test ramp filter")
[ 7061, 6, 198, 2, 28239, 6530, 338, 25, 220, 220, 197, 34, 12571, 272, 21298, 198, 2, 13613, 5121, 7913, 338, 25, 197, 1485, 16616, 25191, 198, 2, 198, 2, 4935, 352, 25, 198, 2, 48282, 2939, 25056, 422, 10730, 12, 16302, 295, 7813, 26836, 1262, 11361, 13, 198, 2, 198, 2, 38348, 1446, 15672, 357, 273, 16356, 9367, 8, 532, 13851, 12176, 498, 4186, 4867, 198, 2, 16356, 9367, 25, 318, 257, 2041, 1395, 12, 2433, 5254, 326, 4439, 3272, 12, 44330, 4263, 286, 262, 1767, 1262, 1395, 12, 20477, 290, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 3644, 198, 2, 376, 9792, 82, 532, 12549, 34296, 5277, 271, 26981, 198, 2, 376, 9792, 25, 318, 281, 11862, 326, 8405, 257, 6737, 625, 257, 2278, 286, 640, 357, 273, 2272, 8, 290, 36319, 340, 198, 2, 220, 220, 220, 220, 220, 656, 663, 8373, 6805, 198, 2, 406, 5669, 21857, 25, 23419, 7249, 262, 2160, 286, 262, 736, 16302, 507, 357, 72, 13, 68, 13, 2160, 286, 262, 277, 7, 87, 11, 88, 4008, 198, 2, 6955, 9620, 283, 5724, 864, 300, 5669, 4867, 357, 34, 7836, 8, 318, 257, 2041, 1339, 286, 300, 5669, 4867, 543, 318, 257, 198, 2, 220, 16667, 6826, 8173, 973, 284, 2939, 3272, 12, 44330, 5009, 832, 4735, 5563, 13, 198, 2, 198, 2, 36223, 25, 198, 2, 357, 16, 8, 23419, 7249, 281, 2939, 422, 262, 7813, 21857, 2939, 357, 31369, 21857, 13, 11134, 8, 198, 2, 357, 17, 8, 7488, 10055, 262, 9172, 286, 736, 16302, 295, 25056, 351, 10454, 12, 10379, 20212, 198, 2, 357, 18, 8, 7488, 10055, 262, 9172, 286, 736, 16302, 295, 25056, 1231, 10454, 12, 10379, 20212, 198, 2, 357, 19, 8, 7488, 10055, 262, 9172, 286, 736, 16302, 295, 25056, 351, 4345, 2229, 12, 7972, 6972, 10454, 12, 10379, 20212, 198, 2, 198, 2, 317, 3359, 286, 477, 262, 19887, 329, 477, 1395, 12, 2433, 18333, 318, 1444, 257, 10884, 21857, 198, 2, 198, 2, 797, 11249, 262, 2939, 422, 257, 2160, 286, 262, 705, 7282, 16302, 507, 6, 286, 262, 352, 12, 67, 20128, 1366, 198, 198, 8600, 352, 532, 5157, 16302, 295, 25056, 286, 262, 7813, 21857, 1231, 25431, 25, 198, 2215, 477, 262, 20128, 18333, 389, 5929, 262, 20128, 11, 262, 7186, 2939, 481, 198, 1350, 38258, 13, 770, 318, 2233, 284, 262, 1109, 326, 262, 7186, 2939, 318, 17298, 3371, 262, 198, 16159, 13, 357, 1102, 1087, 4111, 8405, 286, 262, 2939, 3371, 262, 3641, 11, 290, 517, 29877, 8405, 1474, 198, 1169, 13015, 737, 1675, 21392, 329, 428, 356, 481, 761, 284, 4174, 257, 8106, 284, 262, 5072, 2939, 286, 262, 198, 1891, 16302, 295, 884, 355, 262, 10454, 8106, 393, 262, 4345, 2229, 12, 7972, 6972, 10454, 12, 24455, 628, 628, 628, 628, 198, 3791, 32144, 198, 7, 16, 8, 532, 5178, 262, 2939, 19887, 290, 15772, 656, 262, 8373, 7386, 1262, 262, 376, 9792, 628, 198, 7061, 6, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 79, 2645, 397, 355, 458, 83, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 629, 541, 88, 13, 358, 9060, 13, 10379, 1010, 1330, 31986, 31562, 62, 24455, 198, 6738, 1341, 9060, 13, 35636, 1330, 23064, 198, 11748, 629, 541, 88, 13, 487, 83, 8002, 355, 277, 701, 198, 2, 6738, 1341, 9060, 13, 35636, 1330, 4173, 324, 261, 198, 198, 4299, 545, 961, 7, 34345, 11, 16694, 28349, 1000, 28, 17821, 2599, 198, 220, 220, 220, 37227, 8912, 281, 2939, 11, 1441, 355, 257, 399, 32152, 7177, 526, 15931, 198, 220, 220, 220, 611, 10536, 28349, 1000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5560, 62, 320, 796, 7412, 13, 9654, 7, 34345, 737, 1102, 1851, 10786, 43, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5560, 62, 320, 796, 7412, 13, 9654, 7, 34345, 8, 198, 220, 220, 220, 1441, 45941, 13, 18747, 7, 79, 346, 62, 320, 8, 628, 198, 4299, 545, 12860, 7, 320, 11, 1960, 17500, 1000, 28, 25101, 11, 49903, 8899, 11639, 44605, 3256, 649, 5647, 28, 17821, 11, 3670, 28, 14202, 2599, 198, 220, 220, 220, 37227, 23114, 281, 2939, 11, 6225, 572, 1960, 17500, 4272, 357, 25252, 11777, 2672, 8, 198, 220, 220, 220, 220, 220, 220, 290, 39555, 341, 13, 628, 220, 220, 220, 220, 220, 220, 357, 16, 8, 807, 12, 2545, 10536, 28349, 1000, 4263, 290, 1987, 12, 2545, 25228, 389, 27464, 287, 657, 492, 13381, 13, 198, 220, 220, 220, 220, 220, 220, 357, 17, 8, 657, 12, 16, 13934, 4263, 389, 27464, 287, 657, 492, 16, 13, 198, 220, 220, 220, 220, 220, 220, 357, 18, 8, 48436, 4263, 389, 27464, 287, 657, 13, 15, 492, 16, 13, 15, 611, 511, 949, 3815, 389, 18189, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 511, 3509, 3815, 19841, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 357, 19, 8, 48436, 4263, 389, 27464, 287, 657, 13, 15, 492, 13381, 13, 15, 611, 511, 949, 3815, 389, 18189, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 511, 3509, 3815, 389, 1875, 352, 290, 19841, 14280, 13, 15, 198, 220, 220, 220, 220, 220, 220, 357, 20, 8, 4377, 2939, 407, 5017, 416, 262, 2029, 2663, 318, 1960, 17500, 3021, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1960, 17500, 4272, 318, 11777, 9167, 11, 340, 318, 1464, 2900, 319, 13, 628, 220, 220, 220, 220, 220, 220, 317, 649, 3785, 318, 2727, 416, 4277, 13, 220, 366, 3605, 5647, 28, 25101, 1, 4962, 572, 428, 198, 220, 220, 220, 220, 220, 220, 9172, 13, 628, 220, 220, 220, 220, 220, 220, 4225, 16104, 341, 318, 1464, 572, 357, 25252, 262, 30203, 9911, 428, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 649, 5647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3670, 14512, 6045, 25, 2336, 796, 458, 83, 13, 26875, 7, 7839, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 611, 1960, 17500, 1000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 320, 11, 3849, 16104, 341, 11639, 710, 12423, 3256, 66, 8899, 28, 49903, 8899, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 2100, 796, 545, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 545, 13, 67, 4906, 6624, 705, 28611, 23, 10354, 220, 220, 220, 220, 220, 220, 220, 22492, 807, 12, 2545, 10536, 28349, 1000, 393, 1987, 12, 2545, 25228, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 2100, 1875, 352, 25, 3509, 2100, 796, 14280, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 320, 11, 3849, 16104, 341, 11639, 710, 12423, 3256, 85, 1084, 28, 15, 11, 85, 9806, 28, 9806, 2100, 11, 66, 8899, 28, 49903, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 545, 13, 67, 4906, 6624, 705, 22468, 2624, 6, 393, 545, 13, 67, 4906, 6624, 705, 22468, 2414, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 2100, 796, 545, 13, 1084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 949, 2100, 18189, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 2100, 19841, 352, 13, 15, 25, 220, 22492, 29403, 588, 657, 492, 16, 12178, 10536, 28349, 1000, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 2100, 11, 3509, 2100, 796, 657, 13, 15, 11, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3509, 2100, 19841, 14280, 13, 15, 25, 22492, 29403, 588, 257, 12178, 657, 11485, 14280, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 2100, 11, 3509, 2100, 796, 657, 13, 15, 11, 14280, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 320, 11, 3849, 16104, 341, 11639, 710, 12423, 3256, 85, 1084, 28, 1084, 2100, 11, 85, 9806, 28, 9806, 2100, 11, 66, 8899, 28, 49903, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 320, 11, 3849, 16104, 341, 11639, 710, 12423, 3256, 66, 8899, 28, 49903, 8899, 8, 198, 220, 220, 220, 458, 83, 13, 22704, 10786, 9060, 11537, 198, 220, 220, 220, 22492, 458, 83, 13, 22704, 10786, 2364, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 22492, 7783, 2336, 198, 198, 4299, 1382, 62, 1676, 73, 62, 487, 912, 7, 1676, 8457, 2599, 198, 220, 220, 220, 366, 15580, 352, 12, 67, 376, 9792, 82, 286, 281, 7177, 286, 19887, 11, 1123, 20128, 352, 5752, 11511, 262, 7177, 526, 628, 220, 220, 220, 1441, 277, 701, 13, 81, 487, 83, 7, 1676, 8457, 11, 16488, 28, 16, 8, 198, 198, 4299, 1382, 62, 1676, 73, 62, 361, 35594, 7, 1676, 8457, 2599, 198, 220, 220, 220, 366, 15580, 352, 12, 67, 1312, 5777, 33758, 286, 281, 7177, 286, 19887, 11, 1123, 20128, 352, 5752, 11511, 262, 7177, 526, 628, 220, 220, 220, 1441, 277, 701, 13, 343, 487, 83, 7, 1676, 8457, 11, 16488, 28, 16, 8, 198, 198, 4299, 1382, 62, 2543, 259, 21857, 7, 6335, 261, 51, 2599, 198, 220, 220, 220, 366, 8645, 378, 257, 300, 5669, 21857, 416, 2829, 736, 16302, 295, 1262, 262, 5325, 261, 26981, 286, 281, 2939, 11, 705, 6335, 261, 51, 30827, 198, 220, 220, 220, 300, 5669, 21857, 796, 45941, 13, 9107, 418, 19510, 6335, 261, 51, 13, 43358, 58, 16, 4357, 6335, 261, 51, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 288, 464, 8326, 796, 11546, 13, 15, 1220, 2511, 261, 51, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 6335, 261, 51, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 45941, 13, 40927, 7, 6335, 261, 51, 58, 72, 4357, 7, 6335, 261, 51, 13, 43358, 58, 16, 4357, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 23064, 7, 29510, 11, 288, 464, 8326, 9, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 5669, 21857, 15853, 20218, 198, 220, 220, 220, 1441, 300, 5669, 21857, 198, 198, 4299, 10454, 62, 24455, 62, 487, 912, 7, 487, 912, 2599, 198, 220, 220, 220, 366, 49, 696, 8106, 257, 362, 12, 67, 7177, 286, 352, 12, 67, 376, 9792, 82, 357, 16, 12, 67, 376, 9792, 82, 1863, 262, 15274, 21387, 198, 220, 220, 220, 10454, 796, 45941, 13, 28300, 7, 37659, 13, 283, 858, 7, 15, 13, 20, 11, 277, 35594, 13, 43358, 58, 16, 60, 1003, 17, 1343, 657, 13, 16, 11, 657, 13, 20, 4008, 198, 220, 220, 220, 1441, 277, 35594, 1635, 10454, 198, 198, 4299, 2511, 261, 7, 9060, 11, 4831, 2599, 198, 220, 220, 220, 366, 15580, 262, 5325, 261, 26981, 1262, 705, 20214, 6, 19887, 286, 705, 9060, 447, 247, 526, 198, 220, 220, 220, 19887, 796, 17635, 220, 220, 220, 220, 220, 220, 220, 1303, 6366, 388, 5039, 19887, 287, 257, 1351, 13, 198, 220, 220, 220, 288, 464, 8326, 796, 532, 15259, 13, 15, 1220, 4831, 1303, 42375, 18703, 329, 5724, 602, 13, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 20214, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 19887, 13, 33295, 7, 10599, 378, 7, 9060, 11, 1312, 9, 67, 464, 8326, 737, 16345, 7, 22704, 28, 15, 4008, 198, 220, 220, 220, 1441, 45941, 13, 85, 25558, 7, 16302, 507, 8, 198, 198, 2, 13745, 10884, 21857, 7412, 198, 31369, 21857, 796, 545, 961, 10786, 31369, 21857, 13, 11134, 11537, 198, 320, 12860, 7, 31369, 21857, 11, 3670, 2625, 20556, 10884, 21857, 7412, 4943, 198, 198, 2, 5157, 16302, 295, 25056, 1231, 10454, 25431, 198, 31369, 21857, 62, 2543, 259, 21857, 796, 1382, 62, 2543, 259, 21857, 7, 31369, 21857, 8, 198, 320, 12860, 7, 31369, 21857, 62, 2543, 259, 21857, 11, 3670, 2625, 46200, 21857, 25056, 416, 736, 16302, 295, 4943, 198, 198, 2, 5157, 16302, 295, 25056, 351, 10454, 25431, 198, 198, 2, 27967, 281, 15541, 10454, 8106, 284, 262, 25056, 198, 198, 2, 220, 6674, 4174, 257, 10454, 8106, 351, 257, 45616, 379, 2063, 262, 3509, 1216, 86, 421, 1387, 198, 2, 887, 749, 1884, 645, 966, 198, 198, 2, 3497, 262, 376, 9792, 286, 262, 2939, 357, 37, 28707, 20021, 8, 198, 69, 280, 5277, 796, 1382, 62, 1676, 73, 62, 487, 912, 7, 31369, 21857, 8, 198, 198, 2, 25853, 262, 46287, 5277, 6121, 416, 262, 10454, 8106, 198, 81, 696, 62, 10379, 4400, 796, 10454, 62, 24455, 62, 487, 912, 7, 69, 280, 5277, 8, 198, 198, 2, 7214, 262, 34062, 376, 9792, 286, 262, 2939, 284, 10385, 340, 736, 284, 6093, 20021, 198, 259, 4399, 62, 69, 280, 5277, 62, 81, 696, 62, 10379, 4400, 796, 1382, 62, 1676, 73, 62, 361, 35594, 7, 81, 696, 62, 10379, 4400, 8, 198, 2, 320, 12860, 7, 361, 35594, 62, 16302, 295, 62, 31369, 21857, 11, 3670, 2625, 14402, 10454, 8106, 4943, 198, 2, 9288, 16, 796, 2511, 261, 7, 361, 35594, 62, 16302, 295, 62, 31369, 21857, 11, 11546, 8, 198, 2, 320, 12860, 7, 9288, 16, 11, 3670, 2625, 14402, 10454, 8106, 4943, 198, 198, 2, 10934, 262, 29083, 2939, 416, 279, 1891, 16302, 278, 262, 29083, 19887, 198, 10379, 4400, 62, 260, 1102, 2536, 1009, 796, 1382, 62, 2543, 259, 21857, 7, 259, 4399, 62, 69, 280, 5277, 62, 81, 696, 62, 10379, 4400, 8, 198, 320, 12860, 7, 10379, 4400, 62, 260, 1102, 2536, 1009, 11, 3670, 2625, 14402, 10454, 8106, 4943, 198 ]
2.775365
2,395
import argparse import collections import datetime import json import random import re import esprima import requests ## Get the email and password parser = argparse.ArgumentParser("messyger") parser.add_argument("-u", "--email", required=True) parser.add_argument("-p", "--password", required=True) parser.add_argument("-m", "--message") parser.add_argument("-r", "--recipient", type=int) args = parser.parse_args() ## Parse the HTML response html_resp = requests.get("https://www.messenger.com") html_resp.raise_for_status() html_page = html_resp.text initial_request_id = re.search( r'name="initial_request_id" value="([^"]+)"', html_page ).group(1) lsd = re.search(r'name="lsd" value="([^"]+)"', html_page).group(1) datr = re.search(r'"_js_datr","([^"]+)"', html_page).group(1) ## Make the login request login = requests.post( "https://www.messenger.com/login/password/", cookies={"datr": datr}, data={ "lsd": lsd, "initial_request_id": initial_request_id, "email": args.email, "pass": args.password, }, allow_redirects=False, ) assert login.status_code == 302 ## Extract the inbox query parameters inbox_html_resp = requests.get("https://www.messenger.com", cookies=login.cookies) inbox_html_resp.raise_for_status() inbox_html_page = inbox_html_resp.text dtsg = re.search(r'"DTSGInitialData",\[\],\{"token":"([^"]+)"', inbox_html_page).group( 1 ) device_id = re.search(r'"deviceId":"([^"]+)"', inbox_html_page).group(1) schema_version = re.search(r'"schemaVersion":"([0-9]+)"', inbox_html_page).group(1) script_urls = re.findall(r'"([^"]+rsrc\.php/[^"]+\.js[^"]+)"', inbox_html_page) scripts = [] for url in script_urls: resp = requests.get(url) resp.raise_for_status() scripts.append(resp.text) for script in scripts: if "LSPlatformGraphQLLightspeedRequestQuery" not in script: continue doc_id = re.search( r'id:"([0-9]+)",metadata:\{\},name:"LSPlatformGraphQLLightspeedRequestQuery"', script, ).group(1) break if not args.message: inbox_resp = requests.post( "https://www.messenger.com/api/graphql/", cookies=login.cookies, data={ "fb_dtsg": dtsg, "doc_id": doc_id, "variables": json.dumps( { "deviceId": device_id, "requestId": 0, "requestPayload": json.dumps( { "database": 1, "version": schema_version, "sync_params": json.dumps({}), } ), "requestType": 1, } ), }, ) inbox_resp.raise_for_status() ## Parse the inbox data response inbox_json = inbox_resp.json() inbox_js = inbox_json["data"]["viewer"]["lightspeed_web_request"]["payload"] ast = esprima.parseScript(inbox_js) fn_calls = collections.defaultdict(list) esprima.parseScript(inbox_js, delegate=handle_node) conversations = collections.defaultdict(dict) for args in fn_calls["deleteThenInsertThread"]: last_sent_ts, last_read_ts, last_msg, *rest = args user_id, last_msg_author = [ arg for arg in rest if isinstance(arg, int) and arg > 1e14 ] conversations[user_id]["unread"] = last_sent_ts != last_read_ts conversations[user_id]["last_message"] = last_msg conversations[user_id]["last_message_author"] = last_msg_author for args in fn_calls["verifyContactRowExists"]: user_id, _, _, name, *rest = args conversations[user_id]["name"] = name print(json.dumps(conversations, indent=2)) else: ## Replicate the send-message request timestamp = int(datetime.datetime.now().timestamp() * 1000) epoch = timestamp << 22 otid = epoch + random.randrange(2 ** 22) send_message_resp = requests.post( "https://www.messenger.com/api/graphql/", cookies=login.cookies, data={ "fb_dtsg": dtsg, "doc_id": doc_id, "variables": json.dumps( { "deviceId": device_id, "requestId": 0, "requestPayload": json.dumps( { "version_id": str(schema_version), "tasks": [ { "label": "46", "payload": json.dumps( { "thread_id": args.recipient, "otid": "6870463702739115830", "source": 0, "send_type": 1, "text": args.message, "initiating_source": 1, } ), "queue_name": str(args.recipient), "task_id": 0, "failure_count": None, }, { "label": "21", "payload": json.dumps( { "thread_id": args.recipient, "last_read_watermark_ts": timestamp, "sync_group": 1, } ), "queue_name": str(args.recipient), "task_id": 1, "failure_count": None, }, ], "epoch_id": 6870463702858032000, } ), "requestType": 3, } ), }, ) print(send_message_resp.text)
[ 11748, 1822, 29572, 198, 11748, 17268, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 4738, 198, 11748, 302, 198, 198, 11748, 1658, 1050, 8083, 198, 11748, 7007, 198, 198, 2235, 3497, 262, 3053, 290, 9206, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7203, 37348, 88, 1362, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 84, 1600, 366, 438, 12888, 1600, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 79, 1600, 366, 438, 28712, 1600, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 76, 1600, 366, 438, 20500, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 81, 1600, 366, 438, 8344, 48137, 1600, 2099, 28, 600, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 2235, 2547, 325, 262, 11532, 2882, 198, 198, 6494, 62, 4363, 796, 7007, 13, 1136, 7203, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 4943, 198, 6494, 62, 4363, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 6494, 62, 7700, 796, 27711, 62, 4363, 13, 5239, 198, 198, 36733, 62, 25927, 62, 312, 796, 302, 13, 12947, 7, 198, 220, 220, 220, 374, 6, 3672, 2625, 36733, 62, 25927, 62, 312, 1, 1988, 2625, 26933, 61, 8973, 10, 16725, 3256, 27711, 62, 7700, 198, 737, 8094, 7, 16, 8, 198, 198, 7278, 67, 796, 302, 13, 12947, 7, 81, 6, 3672, 2625, 7278, 67, 1, 1988, 2625, 26933, 61, 8973, 10, 16725, 3256, 27711, 62, 7700, 737, 8094, 7, 16, 8, 198, 198, 19608, 81, 796, 302, 13, 12947, 7, 81, 29653, 62, 8457, 62, 19608, 81, 2430, 26933, 61, 8973, 10, 16725, 3256, 27711, 62, 7700, 737, 8094, 7, 16, 8, 198, 198, 2235, 6889, 262, 17594, 2581, 198, 198, 38235, 796, 7007, 13, 7353, 7, 198, 220, 220, 220, 366, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 14, 38235, 14, 28712, 14, 1600, 198, 220, 220, 220, 14746, 28, 4895, 19608, 81, 1298, 4818, 81, 5512, 198, 220, 220, 220, 1366, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7278, 67, 1298, 300, 21282, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 36733, 62, 25927, 62, 312, 1298, 4238, 62, 25927, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12888, 1298, 26498, 13, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6603, 1298, 26498, 13, 28712, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1249, 62, 445, 1060, 82, 28, 25101, 11, 198, 8, 198, 30493, 17594, 13, 13376, 62, 8189, 6624, 32591, 198, 198, 2235, 29677, 262, 13734, 12405, 10007, 198, 198, 259, 3524, 62, 6494, 62, 4363, 796, 7007, 13, 1136, 7203, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 1600, 14746, 28, 38235, 13, 27916, 444, 8, 198, 259, 3524, 62, 6494, 62, 4363, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 259, 3524, 62, 6494, 62, 7700, 796, 13734, 62, 6494, 62, 4363, 13, 5239, 198, 198, 67, 912, 70, 796, 302, 13, 12947, 7, 81, 29653, 35, 4694, 38, 24243, 6601, 1600, 59, 58, 59, 4357, 59, 4895, 30001, 2404, 26933, 61, 8973, 10, 16725, 3256, 13734, 62, 6494, 62, 7700, 737, 8094, 7, 198, 220, 220, 220, 352, 198, 8, 198, 198, 25202, 62, 312, 796, 302, 13, 12947, 7, 81, 29653, 25202, 7390, 2404, 26933, 61, 8973, 10, 16725, 3256, 13734, 62, 6494, 62, 7700, 737, 8094, 7, 16, 8, 198, 198, 15952, 2611, 62, 9641, 796, 302, 13, 12947, 7, 81, 29653, 15952, 2611, 14815, 2404, 26933, 15, 12, 24, 48688, 16725, 3256, 13734, 62, 6494, 62, 7700, 737, 8094, 7, 16, 8, 198, 198, 12048, 62, 6371, 82, 796, 302, 13, 19796, 439, 7, 81, 6, 18109, 58, 61, 8973, 10, 3808, 6015, 17405, 10121, 14, 58, 61, 8973, 10, 17405, 8457, 58, 61, 8973, 10, 16725, 3256, 13734, 62, 6494, 62, 7700, 8, 198, 198, 46521, 796, 17635, 198, 1640, 19016, 287, 4226, 62, 6371, 82, 25, 198, 220, 220, 220, 1217, 796, 7007, 13, 1136, 7, 6371, 8, 198, 220, 220, 220, 1217, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 220, 220, 220, 14750, 13, 33295, 7, 4363, 13, 5239, 8, 198, 198, 1640, 4226, 287, 14750, 25, 198, 220, 220, 220, 611, 366, 6561, 37148, 37065, 48, 3069, 2337, 39492, 18453, 20746, 1, 407, 287, 4226, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 2205, 62, 312, 796, 302, 13, 12947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 312, 11097, 26933, 15, 12, 24, 60, 28988, 1600, 38993, 7479, 31478, 5512, 3672, 11097, 6561, 37148, 37065, 48, 3069, 2337, 39492, 18453, 20746, 1, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4226, 11, 198, 220, 220, 220, 6739, 8094, 7, 16, 8, 198, 220, 220, 220, 2270, 198, 198, 361, 407, 26498, 13, 20500, 25, 628, 220, 220, 220, 13734, 62, 4363, 796, 7007, 13, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 14, 15042, 14, 34960, 13976, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 14746, 28, 38235, 13, 27916, 444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21855, 62, 67, 912, 70, 1298, 288, 912, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15390, 62, 312, 1298, 2205, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25641, 2977, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25202, 7390, 1298, 3335, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 7390, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 19197, 2220, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48806, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1298, 32815, 62, 9641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27261, 62, 37266, 1298, 33918, 13, 67, 8142, 15090, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 6030, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 13734, 62, 4363, 13, 40225, 62, 1640, 62, 13376, 3419, 628, 220, 220, 220, 22492, 2547, 325, 262, 13734, 1366, 2882, 628, 220, 220, 220, 13734, 62, 17752, 796, 13734, 62, 4363, 13, 17752, 3419, 198, 220, 220, 220, 13734, 62, 8457, 796, 13734, 62, 17752, 14692, 7890, 1, 7131, 1, 1177, 263, 1, 7131, 1, 8091, 39492, 62, 12384, 62, 25927, 1, 7131, 1, 15577, 2220, 8973, 628, 220, 220, 220, 6468, 796, 1658, 1050, 8083, 13, 29572, 7391, 7, 259, 3524, 62, 8457, 8, 628, 220, 220, 220, 24714, 62, 66, 5691, 796, 17268, 13, 12286, 11600, 7, 4868, 8, 628, 220, 220, 220, 1658, 1050, 8083, 13, 29572, 7391, 7, 259, 3524, 62, 8457, 11, 23191, 28, 28144, 62, 17440, 8, 628, 220, 220, 220, 10275, 796, 17268, 13, 12286, 11600, 7, 11600, 8, 628, 220, 220, 220, 329, 26498, 287, 24714, 62, 66, 5691, 14692, 33678, 6423, 44402, 16818, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 34086, 62, 912, 11, 938, 62, 961, 62, 912, 11, 938, 62, 19662, 11, 1635, 2118, 796, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 312, 11, 938, 62, 19662, 62, 9800, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 329, 1822, 287, 1334, 611, 318, 39098, 7, 853, 11, 493, 8, 290, 1822, 1875, 352, 68, 1415, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 10275, 58, 7220, 62, 312, 7131, 1, 403, 961, 8973, 796, 938, 62, 34086, 62, 912, 14512, 938, 62, 961, 62, 912, 198, 220, 220, 220, 220, 220, 220, 220, 10275, 58, 7220, 62, 312, 7131, 1, 12957, 62, 20500, 8973, 796, 938, 62, 19662, 198, 220, 220, 220, 220, 220, 220, 220, 10275, 58, 7220, 62, 312, 7131, 1, 12957, 62, 20500, 62, 9800, 8973, 796, 938, 62, 19662, 62, 9800, 628, 220, 220, 220, 329, 26498, 287, 24714, 62, 66, 5691, 14692, 332, 1958, 17829, 25166, 3109, 1023, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 312, 11, 4808, 11, 4808, 11, 1438, 11, 1635, 2118, 796, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 10275, 58, 7220, 62, 312, 7131, 1, 3672, 8973, 796, 1438, 628, 220, 220, 220, 3601, 7, 17752, 13, 67, 8142, 7, 1102, 690, 602, 11, 33793, 28, 17, 4008, 198, 198, 17772, 25, 628, 220, 220, 220, 22492, 18407, 5344, 262, 3758, 12, 20500, 2581, 628, 220, 220, 220, 41033, 796, 493, 7, 19608, 8079, 13, 19608, 8079, 13, 2197, 22446, 16514, 27823, 3419, 1635, 8576, 8, 198, 220, 220, 220, 36835, 796, 41033, 9959, 2534, 198, 220, 220, 220, 30972, 312, 796, 36835, 1343, 4738, 13, 25192, 9521, 7, 17, 12429, 2534, 8, 628, 220, 220, 220, 3758, 62, 20500, 62, 4363, 796, 7007, 13, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 2503, 13, 37348, 6540, 13, 785, 14, 15042, 14, 34960, 13976, 14, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 14746, 28, 38235, 13, 27916, 444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21855, 62, 67, 912, 70, 1298, 288, 912, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15390, 62, 312, 1298, 2205, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25641, 2977, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25202, 7390, 1298, 3335, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 7390, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 19197, 2220, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 62, 312, 1298, 965, 7, 15952, 2611, 62, 9641, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 83, 6791, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 366, 3510, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15577, 2220, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16663, 62, 312, 1298, 26498, 13, 8344, 48137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 313, 312, 1298, 366, 3104, 2154, 3510, 20167, 1983, 2670, 1157, 3365, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10459, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21280, 62, 4906, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 26498, 13, 20500, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 259, 8846, 803, 62, 10459, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36560, 62, 3672, 1298, 965, 7, 22046, 13, 8344, 48137, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35943, 62, 312, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32165, 495, 62, 9127, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 366, 2481, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15577, 2220, 1298, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16663, 62, 312, 1298, 26498, 13, 8344, 48137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12957, 62, 961, 62, 7050, 4102, 62, 912, 1298, 41033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27261, 62, 8094, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36560, 62, 3672, 1298, 965, 7, 22046, 13, 8344, 48137, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35943, 62, 312, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32165, 495, 62, 9127, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 538, 5374, 62, 312, 1298, 8257, 2154, 3510, 20167, 26279, 1795, 2624, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25927, 6030, 1298, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3601, 7, 21280, 62, 20500, 62, 4363, 13, 5239, 8, 198 ]
1.758159
3,585
import os import re with open('PKGBUILD') as fp: for line in fp.readlines(): line = line.strip() current_build_number = re.search(r"^_pkgbuildnumber=(.+)$", line) if current_build_number is None: continue current_build_number = current_build_number.group(1) break else: raise ValueError("_pkgbuildnumber not found") latest_version = os.environ['INPUT_VERSION'] latest_build_number = os.environ['INPUT_BUILD_NUMBER'] latest_hash_x86_64 = os.environ['INPUT_SHA256_x86_64'] print(f'Current build number: {current_build_number}') print(f'Latest build number: {latest_build_number}') print(f'Latest version: {latest_version}') print(f'{latest_version}+{latest_build_number} x86_64 SHA256: {latest_hash_x86_64}') if latest_build_number.isdigit() is False: print('Latest build number is invalid') exit(1) if ' ' in latest_version or '-' in latest_version: print('Latest version is invalid') exit(1) with open('PKGBUILD') as fp: contents = fp.read() if current_build_number != latest_build_number: contents = re.sub(r"^pkgrel=.+$", 'pkgrel=1', contents, flags=re.MULTILINE) contents = re.sub(r"^_pkgbuildnumber=.+$", f'_pkgbuildnumber={latest_build_number}', contents, flags=re.MULTILINE) contents = re.sub(r"^_pkgversion=.+$", f'_pkgversion={latest_version}', contents, flags=re.MULTILINE) contents = re.sub(r"(sha256sums_x86_64=\(\n ').+'\n", f"\g<1>{latest_hash_x86_64}'\n", contents) with open('PKGBUILD', 'w') as fp: fp.write(contents)
[ 11748, 28686, 198, 11748, 302, 628, 198, 4480, 1280, 10786, 40492, 4579, 52, 26761, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 329, 1627, 287, 277, 79, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 11249, 62, 17618, 796, 302, 13, 12947, 7, 81, 1, 61, 62, 35339, 11249, 17618, 16193, 13, 28988, 3, 1600, 1627, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 11249, 62, 17618, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 11249, 62, 17618, 796, 1459, 62, 11249, 62, 17618, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 62, 35339, 11249, 17618, 407, 1043, 4943, 198, 198, 42861, 62, 9641, 796, 28686, 13, 268, 2268, 17816, 1268, 30076, 62, 43717, 20520, 198, 42861, 62, 11249, 62, 17618, 796, 28686, 13, 268, 2268, 17816, 1268, 30076, 62, 19499, 26761, 62, 41359, 13246, 20520, 198, 42861, 62, 17831, 62, 87, 4521, 62, 2414, 796, 28686, 13, 268, 2268, 17816, 1268, 30076, 62, 37596, 11645, 62, 87, 4521, 62, 2414, 20520, 198, 198, 4798, 7, 69, 6, 11297, 1382, 1271, 25, 1391, 14421, 62, 11249, 62, 17618, 92, 11537, 198, 4798, 7, 69, 6, 39478, 1382, 1271, 25, 1391, 42861, 62, 11249, 62, 17618, 92, 11537, 198, 4798, 7, 69, 6, 39478, 2196, 25, 1391, 42861, 62, 9641, 92, 11537, 198, 4798, 7, 69, 6, 90, 42861, 62, 9641, 92, 10, 90, 42861, 62, 11249, 62, 17618, 92, 2124, 4521, 62, 2414, 25630, 11645, 25, 1391, 42861, 62, 17831, 62, 87, 4521, 62, 2414, 92, 11537, 198, 198, 361, 3452, 62, 11249, 62, 17618, 13, 9409, 328, 270, 3419, 318, 10352, 25, 198, 220, 220, 220, 3601, 10786, 39478, 1382, 1271, 318, 12515, 11537, 198, 220, 220, 220, 8420, 7, 16, 8, 198, 198, 361, 705, 705, 287, 3452, 62, 9641, 393, 705, 19355, 287, 3452, 62, 9641, 25, 198, 220, 220, 220, 3601, 10786, 39478, 2196, 318, 12515, 11537, 198, 220, 220, 220, 8420, 7, 16, 8, 198, 198, 4480, 1280, 10786, 40492, 4579, 52, 26761, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 10154, 796, 277, 79, 13, 961, 3419, 198, 198, 361, 1459, 62, 11249, 62, 17618, 14512, 3452, 62, 11249, 62, 17618, 25, 198, 220, 220, 220, 10154, 796, 302, 13, 7266, 7, 81, 1, 61, 35339, 2411, 28, 13, 10, 3, 1600, 705, 35339, 2411, 28, 16, 3256, 10154, 11, 9701, 28, 260, 13, 44, 16724, 4146, 8881, 8, 198, 198, 3642, 658, 796, 302, 13, 7266, 7, 81, 1, 61, 62, 35339, 11249, 17618, 28, 13, 10, 3, 1600, 277, 6, 62, 35339, 11249, 17618, 34758, 42861, 62, 11249, 62, 17618, 92, 3256, 10154, 11, 9701, 28, 260, 13, 44, 16724, 4146, 8881, 8, 198, 3642, 658, 796, 302, 13, 7266, 7, 81, 1, 61, 62, 35339, 9641, 28, 13, 10, 3, 1600, 277, 6, 62, 35339, 9641, 34758, 42861, 62, 9641, 92, 3256, 10154, 11, 9701, 28, 260, 13, 44, 16724, 4146, 8881, 8, 198, 3642, 658, 796, 302, 13, 7266, 7, 81, 18109, 26270, 11645, 82, 5700, 62, 87, 4521, 62, 2414, 28, 59, 38016, 77, 220, 705, 737, 10, 6, 59, 77, 1600, 277, 1, 59, 70, 27, 16, 29, 90, 42861, 62, 17831, 62, 87, 4521, 62, 2414, 92, 6, 59, 77, 1600, 10154, 8, 198, 198, 4480, 1280, 10786, 40492, 4579, 52, 26761, 3256, 705, 86, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 277, 79, 13, 13564, 7, 3642, 658, 8, 198 ]
2.429022
634
import pytest import numpy as np from functools import reduce from hottbox.core.structures import Tensor,TensorCPD, TensorTKD, TensorTT from hottbox.utils.validation.checks import is_super_symmetric from ..basic import dense_tensor, sparse_tensor, super_diagonal_tensor, \ super_diag_tensor, super_symmetric_tensor, residual_tensor def test_super_diag_tensor(): """ Tests for creating super-diagonal tensor""" order = 3 rank = 2 correct_shape = (rank, ) * order true_default_data = np.array([[[1., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]) true_default_mode_names = ['mode-0', 'mode-1', 'mode-2'] correct_values = np.arange(rank) true_data = np.array([[[0., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]) # ------ tests for default super diagonal tensor tensor = super_diag_tensor(correct_shape) assert isinstance(tensor, Tensor) np.testing.assert_array_equal(tensor.data, true_default_data) assert (tensor.mode_names == true_default_mode_names) # ------ tests for super diagonal tensor with custom values on the main diagonal tensor = super_diag_tensor(correct_shape, values=correct_values) assert isinstance(tensor, Tensor) np.testing.assert_array_equal(tensor.data, true_data) assert (tensor.mode_names == true_default_mode_names) # ------ tests that should Fail with pytest.raises(TypeError): # shape should be passed as tuple super_diag_tensor(shape=list(correct_shape)) with pytest.raises(ValueError): # all values in shape should be the same incorrect_shape = [rank] * order incorrect_shape[1] = order+1 super_diag_tensor(shape=tuple(incorrect_shape)) with pytest.raises(ValueError): # values should be an one dimensional numpy array incorrect_values = np.ones([rank, rank]) super_diag_tensor(shape=correct_shape, values=incorrect_values) with pytest.raises(ValueError): # too many values for the specified shape incorrect_values = np.ones(correct_shape[0]+1) super_diag_tensor(shape=correct_shape, values=incorrect_values) with pytest.raises(TypeError): # values should be a numpy array incorrect_values = [1] * correct_shape[0] super_diag_tensor(shape=correct_shape, values=incorrect_values) def test_residual_tensor(): """ Tests for computing/creating a residual tensor """ true_default_mode_names = ['mode-0', 'mode-1', 'mode-2'] # ------ tests for residual tensor with the Tensor array_3d = np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) true_residual_data = np.zeros(array_3d.shape) tensor_1 = Tensor(array=array_3d) tensor_2 = Tensor(array=array_3d) residual = residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorCPD array_3d = np.array([[[100., 250., 400., 550.], [250., 650., 1050., 1450.], [400., 1050., 1700., 2350.]], [[250., 650., 1050., 1450.], [650., 1925., 3200., 4475.], [1050., 3200., 5350., 7500.]]] ) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) ft_shape = (2, 3, 4) # define shape of the tensor in full form R = 5 # define Kryskal rank of a tensor in CP form core_values = np.ones(R) fmat = [np.arange(orig_dim * R).reshape(orig_dim, R) for orig_dim in ft_shape] tensor_cpd = TensorCPD(fmat=fmat, core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_cpd) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorTKD array_3d = np.array([[[378, 1346, 2314, 3282, 4250], [1368, 4856, 8344, 11832, 15320], [2358, 8366, 14374, 20382, 26390], [3348, 11876, 20404, 28932, 37460]], [[1458, 5146, 8834, 12522, 16210], [5112, 17944, 30776, 43608, 56440], [8766, 30742, 52718, 74694, 96670], [12420, 43540, 74660, 105780, 136900]], [[2538, 8946, 15354, 21762, 28170], [8856, 31032, 53208, 75384, 97560], [15174, 53118, 91062, 129006, 166950], [21492, 75204, 128916, 182628, 236340]]]) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) ft_shape = (3, 4, 5) # define shape of the tensor in full form ml_rank = (2, 3, 4) # define multi-linear rank of a tensor in Tucker form core_size = reduce(lambda x, y: x * y, ml_rank) core_values = np.arange(core_size).reshape(ml_rank) fmat = [np.arange(ft_shape[mode] * ml_rank[mode]).reshape(ft_shape[mode], ml_rank[mode]) for mode in range(len(ft_shape))] tensor_tkd = TensorTKD(fmat=fmat, core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tkd) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests for residual tensor with the TensorTT array_3d = np.array([[[300, 348, 396, 444, 492, 540], [354, 411, 468, 525, 582, 639], [408, 474, 540, 606, 672, 738], [462, 537, 612, 687, 762, 837], [516, 600, 684, 768, 852, 936]], [[960, 1110, 1260, 1410, 1560, 1710], [1230, 1425, 1620, 1815, 2010, 2205], [1500, 1740, 1980, 2220, 2460, 2700], [1770, 2055, 2340, 2625, 2910, 3195], [2040, 2370, 2700, 3030, 3360, 3690]], [[1620, 1872, 2124, 2376, 2628, 2880], [2106, 2439, 2772, 3105, 3438, 3771], [2592, 3006, 3420, 3834, 4248, 4662], [3078, 3573, 4068, 4563, 5058, 5553], [3564, 4140, 4716, 5292, 5868, 6444]], [[2280, 2634, 2988, 3342, 3696, 4050], [2982, 3453, 3924, 4395, 4866, 5337], [3684, 4272, 4860, 5448, 6036, 6624], [4386, 5091, 5796, 6501, 7206, 7911], [5088, 5910, 6732, 7554, 8376, 9198]]]) true_residual_data = np.zeros(array_3d.shape) tensor = Tensor(array=array_3d) r1, r2 = 2, 3 I, J, K = 4, 5, 6 core_1 = np.arange(I * r1).reshape(I, r1) core_2 = np.arange(r1 * J * r2).reshape(r1, J, r2) core_3 = np.arange(r2 * K).reshape(r2, K) core_values = [core_1, core_2, core_3] ft_shape = (I, J, K) tensor_tt = TensorTT(core_values=core_values) residual = residual_tensor(tensor_orig=tensor, tensor_approx=tensor_tt) assert isinstance(residual, Tensor) assert (residual.mode_names == true_default_mode_names) np.testing.assert_array_equal(residual.data, true_residual_data) # ------ tests that should FAIL for residual tensor due to wrong input type array_3d = np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) tensor_1 = Tensor(array=array_3d) tensor_2 = array_3d with pytest.raises(TypeError): residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2) tensor_1 = array_3d tensor_2 = Tensor(array=array_3d) with pytest.raises(TypeError): residual_tensor(tensor_orig=tensor_1, tensor_approx=tensor_2)
[ 11748, 12972, 9288, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 6738, 289, 1252, 3524, 13, 7295, 13, 7249, 942, 1330, 309, 22854, 11, 51, 22854, 34, 5760, 11, 309, 22854, 51, 42, 35, 11, 309, 22854, 15751, 198, 6738, 289, 1252, 3524, 13, 26791, 13, 12102, 341, 13, 42116, 1330, 318, 62, 16668, 62, 1837, 3020, 19482, 198, 6738, 11485, 35487, 1330, 15715, 62, 83, 22854, 11, 29877, 62, 83, 22854, 11, 2208, 62, 10989, 27923, 62, 83, 22854, 11, 3467, 198, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 11, 2208, 62, 1837, 3020, 19482, 62, 83, 22854, 11, 29598, 62, 83, 22854, 628, 628, 198, 198, 4299, 1332, 62, 16668, 62, 10989, 363, 62, 83, 22854, 33529, 198, 220, 220, 220, 37227, 30307, 329, 4441, 2208, 12, 10989, 27923, 11192, 273, 37811, 198, 220, 220, 220, 1502, 796, 513, 198, 220, 220, 220, 4279, 796, 362, 198, 220, 220, 220, 3376, 62, 43358, 796, 357, 43027, 11, 1267, 1635, 1502, 198, 220, 220, 220, 2081, 62, 12286, 62, 7890, 796, 45941, 13, 18747, 26933, 30109, 16, 1539, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 1539, 657, 8183, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 1539, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 1539, 352, 8183, 11907, 8, 198, 220, 220, 220, 2081, 62, 12286, 62, 14171, 62, 14933, 796, 37250, 14171, 12, 15, 3256, 705, 14171, 12, 16, 3256, 705, 14171, 12, 17, 20520, 198, 220, 220, 220, 3376, 62, 27160, 796, 45941, 13, 283, 858, 7, 43027, 8, 198, 220, 220, 220, 2081, 62, 7890, 796, 45941, 13, 18747, 26933, 30109, 15, 1539, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 1539, 657, 8183, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 15, 1539, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 1539, 352, 8183, 11907, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 4277, 2208, 40039, 11192, 273, 198, 220, 220, 220, 11192, 273, 796, 2208, 62, 10989, 363, 62, 83, 22854, 7, 30283, 62, 43358, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 83, 22854, 11, 309, 22854, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 83, 22854, 13, 7890, 11, 2081, 62, 12286, 62, 7890, 8, 198, 220, 220, 220, 6818, 357, 83, 22854, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 2208, 40039, 11192, 273, 351, 2183, 3815, 319, 262, 1388, 40039, 198, 220, 220, 220, 11192, 273, 796, 2208, 62, 10989, 363, 62, 83, 22854, 7, 30283, 62, 43358, 11, 3815, 28, 30283, 62, 27160, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 83, 22854, 11, 309, 22854, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 83, 22854, 13, 7890, 11, 2081, 62, 7890, 8, 198, 220, 220, 220, 6818, 357, 83, 22854, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 628, 220, 220, 220, 1303, 40103, 5254, 326, 815, 18448, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5485, 815, 307, 3804, 355, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 4868, 7, 30283, 62, 43358, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 477, 3815, 287, 5485, 815, 307, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 43358, 796, 685, 43027, 60, 1635, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 43358, 58, 16, 60, 796, 1502, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 83, 29291, 7, 1939, 47315, 62, 43358, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3815, 815, 307, 281, 530, 38517, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 27160, 796, 45941, 13, 1952, 26933, 43027, 11, 4279, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 30283, 62, 43358, 11, 3815, 28, 1939, 47315, 62, 27160, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1165, 867, 3815, 329, 262, 7368, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 27160, 796, 45941, 13, 1952, 7, 30283, 62, 43358, 58, 15, 48688, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 30283, 62, 43358, 11, 3815, 28, 1939, 47315, 62, 27160, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3815, 815, 307, 257, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 11491, 62, 27160, 796, 685, 16, 60, 1635, 3376, 62, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 62, 10989, 363, 62, 83, 22854, 7, 43358, 28, 30283, 62, 43358, 11, 3815, 28, 1939, 47315, 62, 27160, 8, 628, 198, 198, 4299, 1332, 62, 411, 312, 723, 62, 83, 22854, 33529, 198, 220, 220, 220, 37227, 30307, 329, 14492, 14, 20123, 278, 257, 29598, 11192, 273, 37227, 198, 220, 220, 220, 2081, 62, 12286, 62, 14171, 62, 14933, 796, 37250, 14171, 12, 15, 3256, 705, 14171, 12, 16, 3256, 705, 14171, 12, 17, 20520, 628, 220, 220, 220, 1303, 40103, 5254, 329, 29598, 11192, 273, 351, 262, 309, 22854, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 15, 11, 220, 352, 11, 220, 362, 11, 220, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 220, 642, 11, 220, 718, 11, 220, 767, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 23, 11, 220, 860, 11, 838, 11, 1367, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1065, 11, 1511, 11, 1478, 11, 1315, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1433, 11, 1596, 11, 1248, 11, 678, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1238, 11, 2310, 11, 2534, 11, 2242, 11907, 12962, 198, 220, 220, 220, 2081, 62, 411, 312, 723, 62, 7890, 796, 45941, 13, 9107, 418, 7, 18747, 62, 18, 67, 13, 43358, 8, 198, 220, 220, 220, 11192, 273, 62, 16, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 11192, 273, 62, 17, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 29598, 796, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 62, 16, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 17, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 411, 312, 723, 11, 309, 22854, 8, 198, 220, 220, 220, 6818, 357, 411, 312, 723, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 411, 312, 723, 13, 7890, 11, 2081, 62, 411, 312, 723, 62, 7890, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 29598, 11192, 273, 351, 262, 309, 22854, 34, 5760, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 3064, 1539, 8646, 1539, 7337, 1539, 25240, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 9031, 1539, 22626, 1539, 47235, 1539, 1478, 1120, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7029, 1539, 47235, 1539, 35665, 1539, 2242, 1120, 8183, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9031, 1539, 22626, 1539, 47235, 1539, 1478, 1120, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 17544, 1539, 36864, 1539, 513, 2167, 1539, 5846, 2425, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 940, 1120, 1539, 513, 2167, 1539, 7192, 1120, 1539, 767, 4059, 8183, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2081, 62, 411, 312, 723, 62, 7890, 796, 45941, 13, 9107, 418, 7, 18747, 62, 18, 67, 13, 43358, 8, 198, 220, 220, 220, 11192, 273, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 10117, 62, 43358, 796, 357, 17, 11, 513, 11, 604, 8, 220, 220, 220, 1303, 8160, 5485, 286, 262, 11192, 273, 287, 1336, 1296, 198, 220, 220, 220, 371, 796, 642, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8160, 41662, 8135, 282, 4279, 286, 257, 11192, 273, 287, 16932, 1296, 198, 220, 220, 220, 4755, 62, 27160, 796, 45941, 13, 1952, 7, 49, 8, 198, 220, 220, 220, 277, 6759, 796, 685, 37659, 13, 283, 858, 7, 11612, 62, 27740, 1635, 371, 737, 3447, 1758, 7, 11612, 62, 27740, 11, 371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1796, 62, 27740, 287, 10117, 62, 43358, 60, 198, 220, 220, 220, 11192, 273, 62, 13155, 67, 796, 309, 22854, 34, 5760, 7, 69, 6759, 28, 69, 6759, 11, 4755, 62, 27160, 28, 7295, 62, 27160, 8, 198, 220, 220, 220, 29598, 796, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 13155, 67, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 411, 312, 723, 11, 309, 22854, 8, 198, 220, 220, 220, 6818, 357, 411, 312, 723, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 411, 312, 723, 13, 7890, 11, 2081, 62, 411, 312, 723, 62, 7890, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 29598, 11192, 273, 351, 262, 309, 22854, 51, 42, 35, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 30695, 11, 220, 220, 1511, 3510, 11, 220, 220, 2242, 1415, 11, 220, 220, 513, 32568, 11, 220, 220, 5433, 1120, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1485, 3104, 11, 220, 220, 4764, 3980, 11, 220, 220, 9698, 2598, 11, 220, 19035, 2624, 11, 220, 1315, 19504, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1954, 3365, 11, 220, 220, 807, 32459, 11, 220, 1478, 31020, 11, 220, 1160, 36243, 11, 220, 2608, 25964, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2091, 2780, 11, 220, 19035, 4304, 11, 220, 1160, 26429, 11, 220, 38902, 2624, 11, 220, 49020, 1899, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1415, 3365, 11, 220, 220, 642, 20964, 11, 220, 220, 9193, 2682, 11, 220, 13151, 1828, 11, 220, 1467, 21536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 4349, 1065, 11, 220, 27228, 2598, 11, 220, 1542, 39509, 11, 220, 5946, 28688, 11, 220, 642, 2414, 1821, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 5774, 2791, 11, 220, 38369, 3682, 11, 220, 642, 1983, 1507, 11, 220, 8915, 45214, 11, 220, 860, 2791, 2154, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 17464, 1238, 11, 220, 42671, 1821, 11, 220, 767, 3510, 1899, 11, 838, 3553, 1795, 11, 1511, 3388, 405, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1495, 2548, 11, 220, 220, 9919, 3510, 11, 220, 1315, 32182, 11, 220, 24894, 5237, 11, 220, 2579, 17279, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 3459, 3980, 11, 220, 28947, 2624, 11, 220, 7192, 21315, 11, 220, 5441, 22842, 11, 220, 860, 2425, 1899, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1314, 22985, 11, 220, 7192, 16817, 11, 220, 860, 940, 5237, 11, 1105, 12865, 21, 11, 1467, 3388, 1120, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 22291, 5892, 11, 220, 5441, 18638, 11, 1105, 4531, 1433, 11, 1248, 2075, 2078, 11, 2242, 5066, 1821, 11907, 12962, 198, 220, 220, 220, 2081, 62, 411, 312, 723, 62, 7890, 796, 45941, 13, 9107, 418, 7, 18747, 62, 18, 67, 13, 43358, 8, 198, 220, 220, 220, 11192, 273, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 10117, 62, 43358, 796, 357, 18, 11, 604, 11, 642, 8, 220, 220, 220, 1303, 8160, 5485, 286, 262, 11192, 273, 287, 1336, 1296, 198, 220, 220, 220, 25962, 62, 43027, 796, 357, 17, 11, 513, 11, 604, 8, 220, 220, 220, 220, 1303, 8160, 5021, 12, 29127, 4279, 286, 257, 11192, 273, 287, 25951, 1296, 198, 220, 220, 220, 4755, 62, 7857, 796, 4646, 7, 50033, 2124, 11, 331, 25, 2124, 1635, 331, 11, 25962, 62, 43027, 8, 198, 220, 220, 220, 4755, 62, 27160, 796, 45941, 13, 283, 858, 7, 7295, 62, 7857, 737, 3447, 1758, 7, 4029, 62, 43027, 8, 198, 220, 220, 220, 277, 6759, 796, 685, 37659, 13, 283, 858, 7, 701, 62, 43358, 58, 14171, 60, 1635, 25962, 62, 43027, 58, 14171, 35944, 3447, 1758, 7, 701, 62, 43358, 58, 14171, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25962, 62, 43027, 58, 14171, 12962, 329, 4235, 287, 2837, 7, 11925, 7, 701, 62, 43358, 4008, 60, 198, 220, 220, 220, 11192, 273, 62, 30488, 67, 796, 309, 22854, 51, 42, 35, 7, 69, 6759, 28, 69, 6759, 11, 4755, 62, 27160, 28, 7295, 62, 27160, 8, 198, 220, 220, 220, 29598, 796, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 30488, 67, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 411, 312, 723, 11, 309, 22854, 8, 198, 220, 220, 220, 6818, 357, 411, 312, 723, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 411, 312, 723, 13, 7890, 11, 2081, 62, 411, 312, 723, 62, 7890, 8, 628, 220, 220, 220, 1303, 40103, 5254, 329, 29598, 11192, 273, 351, 262, 309, 22854, 15751, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 6200, 11, 44084, 11, 48758, 11, 45095, 11, 5125, 17, 11, 38190, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 32182, 11, 43184, 11, 604, 3104, 11, 45719, 11, 642, 6469, 11, 718, 2670, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 26200, 11, 604, 4524, 11, 38190, 11, 3126, 21, 11, 718, 4761, 11, 767, 2548, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 39997, 11, 642, 2718, 11, 718, 1065, 11, 718, 5774, 11, 767, 5237, 11, 807, 2718, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 47493, 11, 10053, 11, 718, 5705, 11, 46720, 11, 807, 4309, 11, 860, 2623, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 39277, 11, 1367, 940, 11, 1105, 1899, 11, 1478, 940, 11, 1315, 1899, 11, 1596, 940, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1065, 1270, 11, 1478, 1495, 11, 1467, 1238, 11, 1248, 1314, 11, 3050, 11, 15629, 20, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 33698, 11, 1596, 1821, 11, 7169, 11, 2534, 1238, 11, 1987, 1899, 11, 2681, 405, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1558, 2154, 11, 1160, 2816, 11, 2242, 1821, 11, 2608, 1495, 11, 2808, 940, 11, 513, 22186, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1238, 1821, 11, 2242, 2154, 11, 2681, 405, 11, 1542, 1270, 11, 4747, 1899, 11, 513, 35844, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1433, 1238, 11, 1248, 4761, 11, 362, 17464, 11, 2242, 4304, 11, 2608, 2078, 11, 2579, 1795, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 17, 15801, 11, 1987, 2670, 11, 2681, 4761, 11, 513, 13348, 11, 4974, 2548, 11, 42163, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1495, 5892, 11, 5867, 21, 11, 4974, 1238, 11, 4353, 2682, 11, 604, 23045, 11, 604, 39380, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1270, 3695, 11, 3439, 4790, 11, 2319, 3104, 11, 604, 46572, 11, 2026, 3365, 11, 44717, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2327, 2414, 11, 604, 15187, 11, 6298, 1433, 11, 642, 32759, 11, 7618, 3104, 11, 718, 30272, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1828, 1795, 11, 2608, 2682, 11, 2808, 3459, 11, 513, 31575, 11, 513, 38205, 11, 2319, 1120, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1959, 6469, 11, 513, 36625, 11, 5014, 1731, 11, 604, 31010, 11, 4764, 2791, 11, 642, 31496, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2623, 5705, 11, 604, 29807, 11, 4764, 1899, 11, 642, 31115, 11, 3126, 2623, 11, 7930, 1731, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 21734, 11, 2026, 6420, 11, 642, 41060, 11, 6135, 486, 11, 767, 22136, 11, 9225, 1157, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1120, 3459, 11, 7863, 940, 11, 8275, 2624, 11, 767, 44218, 11, 807, 32128, 11, 860, 22337, 11907, 12962, 198, 220, 220, 220, 2081, 62, 411, 312, 723, 62, 7890, 796, 45941, 13, 9107, 418, 7, 18747, 62, 18, 67, 13, 43358, 8, 198, 220, 220, 220, 11192, 273, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 374, 16, 11, 374, 17, 796, 362, 11, 513, 198, 220, 220, 220, 314, 11, 449, 11, 509, 796, 604, 11, 642, 11, 718, 198, 220, 220, 220, 4755, 62, 16, 796, 45941, 13, 283, 858, 7, 40, 1635, 374, 16, 737, 3447, 1758, 7, 40, 11, 374, 16, 8, 198, 220, 220, 220, 4755, 62, 17, 796, 45941, 13, 283, 858, 7, 81, 16, 1635, 449, 1635, 374, 17, 737, 3447, 1758, 7, 81, 16, 11, 449, 11, 374, 17, 8, 198, 220, 220, 220, 4755, 62, 18, 796, 45941, 13, 283, 858, 7, 81, 17, 1635, 509, 737, 3447, 1758, 7, 81, 17, 11, 509, 8, 198, 220, 220, 220, 4755, 62, 27160, 796, 685, 7295, 62, 16, 11, 4755, 62, 17, 11, 4755, 62, 18, 60, 198, 220, 220, 220, 10117, 62, 43358, 796, 357, 40, 11, 449, 11, 509, 8, 198, 220, 220, 220, 11192, 273, 62, 926, 796, 309, 22854, 15751, 7, 7295, 62, 27160, 28, 7295, 62, 27160, 8, 198, 220, 220, 220, 29598, 796, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 926, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 411, 312, 723, 11, 309, 22854, 8, 198, 220, 220, 220, 6818, 357, 411, 312, 723, 13, 14171, 62, 14933, 6624, 2081, 62, 12286, 62, 14171, 62, 14933, 8, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 411, 312, 723, 13, 7890, 11, 2081, 62, 411, 312, 723, 62, 7890, 8, 628, 220, 220, 220, 1303, 40103, 5254, 326, 815, 9677, 4146, 329, 29598, 11192, 273, 2233, 284, 2642, 5128, 2099, 198, 220, 220, 220, 7177, 62, 18, 67, 796, 45941, 13, 18747, 26933, 30109, 15, 11, 352, 11, 362, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 642, 11, 718, 11, 767, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 23, 11, 860, 11, 838, 11, 1367, 60, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 1065, 11, 1511, 11, 1478, 11, 1315, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1433, 11, 1596, 11, 1248, 11, 678, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1238, 11, 2310, 11, 2534, 11, 2242, 11907, 12962, 198, 220, 220, 220, 11192, 273, 62, 16, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 11192, 273, 62, 17, 796, 7177, 62, 18, 67, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 62, 16, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 17, 8, 628, 220, 220, 220, 11192, 273, 62, 16, 796, 7177, 62, 18, 67, 198, 220, 220, 220, 11192, 273, 62, 17, 796, 309, 22854, 7, 18747, 28, 18747, 62, 18, 67, 8, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 6030, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29598, 62, 83, 22854, 7, 83, 22854, 62, 11612, 28, 83, 22854, 62, 16, 11, 11192, 273, 62, 1324, 13907, 28, 83, 22854, 62, 17, 8, 198 ]
1.911174
4,582
"""Base classes for my data model.""" import decimal from google.appengine.ext import ndb from google.appengine.ext.ndb import polymodel from appengine import history, rest, user # From http://stackoverflow.com/questions/10035133/ndb-decimal-property class DecimalProperty(ndb.IntegerProperty): """Decimal property ideal to store currency values, such as $20.34.""" # See https://developers.google.com/appengine/docs/python/ndb/subclassprop class Base(polymodel.PolyModel): """Base for all objects.""" def to_dict(self): """Convert this object to a python dict.""" result = super(Base, self).to_dict() result['id'] = self.key.id() result['class'] = result['class_'][-1] del result['class_'] # Should move this into detector mixin when I figure out how if 'detector' in result: del result['detector'] return result @classmethod def _put_async(self, **ctx_options): """Overrides _put_async and sends event to UI.""" classname = self._event_classname() if classname is not None: values = self.to_dict() user.send_event(cls=classname, id=self.key.string_id(), event='update', obj=values) history.store_version(values) return super(Base, self)._put_async(**ctx_options) put_async = _put_async @rest.command def sync(self): """Called when fields on the object are updated through the API.""" pass
[ 37811, 14881, 6097, 329, 616, 1366, 2746, 526, 15931, 198, 11748, 32465, 198, 198, 6738, 23645, 13, 1324, 18392, 13, 2302, 1330, 299, 9945, 198, 6738, 23645, 13, 1324, 18392, 13, 2302, 13, 358, 65, 1330, 7514, 19849, 198, 198, 6738, 598, 18392, 1330, 2106, 11, 1334, 11, 2836, 628, 198, 2, 3574, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 3064, 2327, 16945, 14, 358, 65, 12, 12501, 4402, 12, 26745, 198, 4871, 4280, 4402, 21746, 7, 358, 65, 13, 46541, 21746, 2599, 198, 220, 37227, 10707, 4402, 3119, 7306, 284, 3650, 7395, 3815, 11, 884, 355, 720, 1238, 13, 2682, 526, 15931, 198, 220, 1303, 4091, 3740, 1378, 16244, 364, 13, 13297, 13, 785, 14, 1324, 18392, 14, 31628, 14, 29412, 14, 358, 65, 14, 7266, 4871, 22930, 628, 198, 4871, 7308, 7, 35428, 19849, 13, 34220, 17633, 2599, 198, 220, 37227, 14881, 329, 477, 5563, 526, 15931, 628, 220, 825, 284, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 428, 2134, 284, 257, 21015, 8633, 526, 15931, 198, 220, 220, 220, 1255, 796, 2208, 7, 14881, 11, 2116, 737, 1462, 62, 11600, 3419, 198, 220, 220, 220, 1255, 17816, 312, 20520, 796, 2116, 13, 2539, 13, 312, 3419, 198, 220, 220, 220, 1255, 17816, 4871, 20520, 796, 1255, 17816, 4871, 62, 6, 7131, 12, 16, 60, 198, 220, 220, 220, 1619, 1255, 17816, 4871, 62, 20520, 628, 220, 220, 220, 1303, 10358, 1445, 428, 656, 31029, 5022, 259, 618, 314, 3785, 503, 703, 198, 220, 220, 220, 611, 705, 15255, 9250, 6, 287, 1255, 25, 198, 220, 220, 220, 220, 220, 1619, 1255, 17816, 15255, 9250, 20520, 198, 220, 220, 220, 1441, 1255, 628, 220, 2488, 4871, 24396, 628, 220, 825, 4808, 1996, 62, 292, 13361, 7, 944, 11, 12429, 49464, 62, 25811, 2599, 198, 220, 220, 220, 37227, 5886, 81, 1460, 4808, 1996, 62, 292, 13361, 290, 12800, 1785, 284, 12454, 526, 15931, 198, 220, 220, 220, 1398, 3672, 796, 2116, 13557, 15596, 62, 4871, 3672, 3419, 198, 220, 220, 220, 611, 1398, 3672, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 3815, 796, 2116, 13, 1462, 62, 11600, 3419, 198, 220, 220, 220, 220, 220, 2836, 13, 21280, 62, 15596, 7, 565, 82, 28, 4871, 3672, 11, 4686, 28, 944, 13, 2539, 13, 8841, 62, 312, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 11639, 19119, 3256, 26181, 28, 27160, 8, 198, 220, 220, 220, 220, 220, 2106, 13, 8095, 62, 9641, 7, 27160, 8, 198, 220, 220, 220, 1441, 2208, 7, 14881, 11, 2116, 737, 62, 1996, 62, 292, 13361, 7, 1174, 49464, 62, 25811, 8, 198, 220, 1234, 62, 292, 13361, 796, 4808, 1996, 62, 292, 13361, 628, 220, 2488, 2118, 13, 21812, 628, 220, 825, 17510, 7, 944, 2599, 198, 220, 220, 220, 37227, 34, 4262, 618, 7032, 319, 262, 2134, 389, 6153, 198, 220, 220, 220, 220, 220, 220, 832, 262, 7824, 526, 15931, 198, 220, 220, 220, 1208, 198 ]
2.782101
514
# # Copyright (C) 2016-2020 by Nathan Lovato, Daniel Oakey, Razvan Radulescu, and contributors # # This file is part of Power Sequencer. # # Power Sequencer is free software: you can redistribute it and/or modify it under the terms of the # GNU General Public License as published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Power Sequencer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with Power Sequencer. If # not, see <https://www.gnu.org/licenses/>. # import bpy from .utils.doc import doc_name, doc_idname, doc_brief, doc_description class POWER_SEQUENCER_OT_scene_cycle(bpy.types.Operator): """ Cycle through scenes """ doc = { "name": doc_name(__qualname__), "demo": "https://i.imgur.com/7zhq8Tg.gif", "description": doc_description(__doc__), "shortcuts": [({"type": "TAB", "value": "PRESS", "shift": True}, {}, "Cycle Scenes")], "keymap": "Sequencer", } bl_idname = doc_idname(__qualname__) bl_label = doc["name"] bl_description = doc_brief(doc["description"]) bl_options = {"REGISTER", "UNDO"} @classmethod
[ 2, 198, 2, 15069, 357, 34, 8, 1584, 12, 42334, 416, 18106, 39911, 5549, 11, 7806, 440, 539, 88, 11, 38058, 10438, 5325, 377, 3798, 84, 11, 290, 20420, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 4333, 24604, 12137, 13, 198, 2, 198, 2, 4333, 24604, 12137, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 739, 262, 2846, 286, 262, 198, 2, 22961, 3611, 5094, 13789, 355, 3199, 416, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 198, 2, 13789, 11, 393, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 4333, 24604, 12137, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 475, 42881, 15529, 34764, 56, 26, 198, 2, 1231, 772, 262, 17142, 18215, 286, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 1863, 351, 4333, 24604, 12137, 13, 1002, 198, 2, 407, 11, 766, 1279, 5450, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 2, 198, 11748, 275, 9078, 198, 198, 6738, 764, 26791, 13, 15390, 1330, 2205, 62, 3672, 11, 2205, 62, 312, 3672, 11, 2205, 62, 65, 3796, 11, 2205, 62, 11213, 628, 198, 4871, 40295, 62, 5188, 10917, 24181, 1137, 62, 2394, 62, 29734, 62, 13696, 7, 65, 9078, 13, 19199, 13, 18843, 1352, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26993, 832, 8188, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2205, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 2205, 62, 3672, 7, 834, 13255, 3672, 834, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9536, 78, 1298, 366, 5450, 1378, 72, 13, 19791, 13, 785, 14, 22, 23548, 80, 23, 51, 70, 13, 27908, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 2205, 62, 11213, 7, 834, 15390, 834, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19509, 23779, 1298, 47527, 4895, 4906, 1298, 366, 5603, 33, 1600, 366, 8367, 1298, 366, 32761, 1600, 366, 30846, 1298, 6407, 5512, 1391, 5512, 366, 20418, 2375, 49525, 4943, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2539, 8899, 1298, 366, 44015, 12137, 1600, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 698, 62, 312, 3672, 796, 2205, 62, 312, 3672, 7, 834, 13255, 3672, 834, 8, 198, 220, 220, 220, 698, 62, 18242, 796, 2205, 14692, 3672, 8973, 198, 220, 220, 220, 698, 62, 11213, 796, 2205, 62, 65, 3796, 7, 15390, 14692, 11213, 8973, 8, 198, 220, 220, 220, 698, 62, 25811, 796, 19779, 31553, 41517, 1600, 366, 4944, 18227, 20662, 628, 220, 220, 220, 2488, 4871, 24396, 198 ]
2.94824
483
from sys import path as sys_path from os import path as os_path from subprocess import Popen, PIPE import time import logging import warnings import numpy as np sys_path.append(os_path.abspath('../src')) from config import RUNTIME_CONFIG from config import john_nick_names, hc_nick_names from common import PasswordPolicyConf, FilePath from argparsing import setup_args, parse_args from guess_count import GuessCount from tokenstr import TokenString from utility import read_passwords,read_wordlist,read_rulelist,get_look_cmd,build_trie_from_wordlist from utility import filter_passwords_with_password_policy from preprocess import precomputation from invert_rule import invert_one_rule from demo_common import match_inversion_result, search_exist_data, search_trie, estimate_guess_number def start_processing(): """ Take in a wordlist, rulelist and test set, outputs the guessability and guess number of each pwd in the test set. Steps: 1. read rulelist and do precomputation (detect invertibility) 2. read wordlist/pwlist, and get count for each rule 3. Rule Inversion (for each rule, invert all pwds) """ stime = time.perf_counter() ##################### Precomputation and Other Preparation ##################### # initialize a bash exe for communication external_bash_process = Popen(['/bin/bash'], stdin=PIPE, stdout=PIPE) # Logging Basic Info logging.basicConfig(filename=RUNTIME_CONFIG.get_log_addr(),level=logging.DEBUG) logging.info("Starting Time: {}\n\nConfigurations: {}\n".format(time.strftime("%Y-%m-%d %H:%M"), RUNTIME_CONFIG.short_config_string())) logging.info("PasswordPolicy: {}\n".format(RUNTIME_CONFIG['password_policy'].to_debug_string())) print("Reading Rulelist\n") rulelist = read_rulelist(RUNTIME_CONFIG['rulelist_path']['name'], RUNTIME_CONFIG['rulelist_path']['prefix']) print("Start Precomputation\n") rulelist = precomputation(rulelist) print("Reading Wordlist and Password Set\n") wordlist = read_wordlist(RUNTIME_CONFIG['wordlist_path']['name'], RUNTIME_CONFIG['wordlist_path']['prefix']) # Computing Guess Count counts, cumsum = GuessCount.get_counts(wordlist, rulelist, RUNTIME_CONFIG['preprocess_path']) # read other things pwlist = read_passwords(RUNTIME_CONFIG['pwlist_path']['addr']) # filter out pwds not consistent with the policy not_filtered_pwds, filtered_pwds = filter_passwords_with_password_policy(pwlist) trie = build_trie_from_wordlist(wordlist) ##################### Start Inversion ##################### print("Start Inverting Rules\n") i_time = time.perf_counter() # guessability of pwds is_guessable = [False] * len(pwlist) is_enable_regex = RUNTIME_CONFIG['enable_regex'] is_debug = RUNTIME_CONFIG['debug'] lookup_threshold = RUNTIME_CONFIG['lookup_threshold'] # tokenize pwds once. tokenized_pwds = [TokenString(pwd) for pw_idx, pwd in not_filtered_pwds] # invert rules (with special memory handling and other staff) for r_idx, r in enumerate(rulelist): if is_debug == True: print(r.raw) if r.feasibility.is_invertible(): # invertible, if blow up, use trie for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): result = invert_one_rule(token_pwd,r,is_enable_regex,r.feasibility.special_idx) if result.is_normal(): if result.get_number_of_strings() <= lookup_threshold: ret_vals = match_inversion_result(result, wordlist) else: ret_vals = search_trie(result, trie) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) elif result.is_out_of_scope(): ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, "out_of_scope")) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, "out_of_scope")) else: ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg)) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg)) elif r.feasibility.is_optimizable(): # uninvertible, if cannot handle, binary # where the binary file is stored enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx) for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): result = invert_one_rule(token_pwd,r,is_enable_regex) if result.is_normal(): if result.get_number_of_strings() <= lookup_threshold: ret_vals = match_inversion_result(result, wordlist) else: ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) elif result.is_out_of_scope(): ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) else: ret_vals = [] logging.info("Inversion error for {}(RL) {}(pw), error msg: {}\n".format(r.raw, pwd, result.error_msg)) print("Inversion error for {}(RL) {}(pw), error msg: {}".format(r.raw, pwd, result.error_msg)) else: # binary # where the binary file is stored enumerated_data_addr = "{}/enumerated/rule{}.txt".format(RUNTIME_CONFIG['preprocess_path'],r_idx) for token_pwd, (pw_idx, pwd) in zip(tokenized_pwds,not_filtered_pwds): ret_vals = search_exist_data(pwd,enumerated_data_addr,external_bash_process) if len(ret_vals) != 0: is_guessable[pw_idx] = True for v in ret_vals: logging.info("\nPasswordIdx:{}\nPassword:{}\nRule:{}\nWord:{}\nGuess:{} ( {} - {} )\n".format(pw_idx, pwd, r.raw, v, *estimate_guess_number(counts, cumsum, v, r_idx, wordlist))) ##################### End of Inversion ##################### # Write Not Guessable Data for pw_idx, pwd in filtered_pwds: logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd)) for is_guessed, (pw_idx, pwd) in zip(is_guessable, not_filtered_pwds): if is_guessed == False: logging.info("\nPasswordIdx:{}\nPassword:{}\nNot Guessable\n".format(pw_idx, pwd)) logging.info("Total guesses made by this configuration: {}\n".format(np.sum(counts))) print("Finished Inverting Rules, Total Time: {}".format(time.perf_counter()-i_time)) if __name__ == "__main__": main()
[ 6738, 25064, 1330, 3108, 355, 25064, 62, 6978, 198, 6738, 28686, 1330, 3108, 355, 28686, 62, 6978, 198, 6738, 850, 14681, 1330, 8099, 268, 11, 350, 4061, 36, 198, 11748, 640, 198, 11748, 18931, 198, 11748, 14601, 198, 11748, 299, 32152, 355, 45941, 198, 198, 17597, 62, 6978, 13, 33295, 7, 418, 62, 6978, 13, 397, 2777, 776, 10786, 40720, 10677, 6, 4008, 198, 198, 6738, 4566, 1330, 32494, 34694, 62, 10943, 16254, 198, 6738, 4566, 1330, 45610, 62, 17172, 62, 14933, 11, 289, 66, 62, 17172, 62, 14933, 198, 6738, 2219, 1330, 30275, 36727, 18546, 11, 9220, 15235, 198, 6738, 1822, 79, 945, 278, 1330, 9058, 62, 22046, 11, 21136, 62, 22046, 198, 6738, 4724, 62, 9127, 1330, 37571, 12332, 198, 6738, 11241, 2536, 1330, 29130, 10100, 198, 6738, 10361, 1330, 1100, 62, 6603, 10879, 11, 961, 62, 4775, 4868, 11, 961, 62, 25135, 4868, 11, 1136, 62, 5460, 62, 28758, 11, 11249, 62, 83, 5034, 62, 6738, 62, 4775, 4868, 198, 6738, 10361, 1330, 8106, 62, 6603, 10879, 62, 4480, 62, 28712, 62, 30586, 198, 6738, 662, 14681, 1330, 662, 785, 1996, 341, 198, 6738, 287, 1851, 62, 25135, 1330, 287, 1851, 62, 505, 62, 25135, 198, 6738, 13605, 62, 11321, 1330, 2872, 62, 259, 9641, 62, 20274, 11, 2989, 62, 38476, 62, 7890, 11, 2989, 62, 83, 5034, 11, 8636, 62, 5162, 408, 62, 17618, 628, 198, 4299, 923, 62, 36948, 33529, 198, 220, 220, 220, 37227, 7214, 287, 257, 1573, 4868, 11, 3896, 4868, 290, 1332, 900, 11, 23862, 262, 4724, 1799, 290, 4724, 1271, 286, 1123, 279, 16993, 287, 262, 1332, 900, 13, 628, 220, 220, 220, 32144, 25, 198, 220, 220, 220, 220, 220, 220, 220, 352, 13, 1100, 3896, 4868, 290, 466, 662, 785, 1996, 341, 357, 15255, 478, 287, 1851, 2247, 8, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 1100, 1573, 4868, 14, 79, 86, 4868, 11, 290, 651, 954, 329, 1123, 3896, 198, 220, 220, 220, 220, 220, 220, 220, 513, 13, 14330, 554, 9641, 357, 1640, 1123, 3896, 11, 287, 1851, 477, 279, 86, 9310, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 336, 524, 796, 640, 13, 525, 69, 62, 24588, 3419, 628, 220, 220, 220, 1303, 14468, 4242, 3771, 785, 1996, 341, 290, 3819, 38397, 341, 1303, 14468, 4242, 198, 220, 220, 220, 1303, 41216, 257, 27334, 409, 68, 329, 6946, 198, 220, 220, 220, 7097, 62, 41757, 62, 14681, 796, 8099, 268, 7, 17816, 14, 8800, 14, 41757, 6, 4357, 14367, 259, 28, 47, 4061, 36, 11, 14367, 448, 28, 47, 4061, 36, 8, 628, 220, 220, 220, 1303, 5972, 2667, 14392, 14151, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 34345, 28, 49, 4944, 34694, 62, 10943, 16254, 13, 1136, 62, 6404, 62, 29851, 22784, 5715, 28, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 18931, 13, 10951, 7203, 22851, 3862, 25, 23884, 59, 77, 59, 77, 16934, 20074, 25, 23884, 59, 77, 1911, 18982, 7, 2435, 13, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 12340, 32494, 34694, 62, 10943, 16254, 13, 19509, 62, 11250, 62, 8841, 3419, 4008, 198, 220, 220, 220, 18931, 13, 10951, 7203, 35215, 36727, 25, 23884, 59, 77, 1911, 18982, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 28712, 62, 30586, 6, 4083, 1462, 62, 24442, 62, 8841, 3419, 4008, 628, 220, 220, 220, 3601, 7203, 36120, 14330, 4868, 59, 77, 4943, 198, 220, 220, 220, 3896, 4868, 796, 1100, 62, 25135, 4868, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 25135, 4868, 62, 6978, 6, 7131, 6, 3672, 6, 4357, 32494, 34694, 62, 10943, 16254, 17816, 25135, 4868, 62, 6978, 6, 7131, 6, 40290, 6, 12962, 628, 220, 220, 220, 3601, 7203, 10434, 3771, 785, 1996, 341, 59, 77, 4943, 198, 220, 220, 220, 3896, 4868, 796, 662, 785, 1996, 341, 7, 25135, 4868, 8, 628, 220, 220, 220, 3601, 7203, 36120, 9678, 4868, 290, 30275, 5345, 59, 77, 4943, 198, 220, 220, 220, 1573, 4868, 796, 1100, 62, 4775, 4868, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 4775, 4868, 62, 6978, 6, 7131, 6, 3672, 6, 4357, 32494, 34694, 62, 10943, 16254, 17816, 4775, 4868, 62, 6978, 6, 7131, 6, 40290, 6, 12962, 628, 220, 220, 220, 1303, 38589, 37571, 2764, 198, 220, 220, 220, 9853, 11, 269, 5700, 388, 796, 37571, 12332, 13, 1136, 62, 9127, 82, 7, 4775, 4868, 11, 3896, 4868, 11, 32494, 34694, 62, 10943, 16254, 17816, 3866, 14681, 62, 6978, 6, 12962, 628, 220, 220, 220, 1303, 1100, 584, 1243, 198, 220, 220, 220, 279, 86, 4868, 796, 1100, 62, 6603, 10879, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 79, 86, 4868, 62, 6978, 6, 7131, 6, 29851, 6, 12962, 198, 220, 220, 220, 1303, 8106, 503, 279, 86, 9310, 407, 6414, 351, 262, 2450, 198, 220, 220, 220, 407, 62, 10379, 4400, 62, 79, 86, 9310, 11, 29083, 62, 79, 86, 9310, 796, 8106, 62, 6603, 10879, 62, 4480, 62, 28712, 62, 30586, 7, 79, 86, 4868, 8, 198, 220, 220, 220, 1333, 68, 796, 1382, 62, 83, 5034, 62, 6738, 62, 4775, 4868, 7, 4775, 4868, 8, 628, 220, 220, 220, 1303, 14468, 4242, 7253, 554, 9641, 1303, 14468, 4242, 198, 220, 220, 220, 3601, 7203, 10434, 554, 48820, 14252, 59, 77, 4943, 198, 220, 220, 220, 1312, 62, 2435, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 220, 220, 220, 1303, 4724, 1799, 286, 279, 86, 9310, 198, 220, 220, 220, 318, 62, 5162, 408, 540, 796, 685, 25101, 60, 1635, 18896, 7, 79, 86, 4868, 8, 198, 220, 220, 220, 318, 62, 21633, 62, 260, 25636, 796, 32494, 34694, 62, 10943, 16254, 17816, 21633, 62, 260, 25636, 20520, 198, 220, 220, 220, 318, 62, 24442, 796, 32494, 34694, 62, 10943, 16254, 17816, 24442, 20520, 198, 220, 220, 220, 35847, 62, 400, 10126, 796, 32494, 34694, 62, 10943, 16254, 17816, 5460, 929, 62, 400, 10126, 20520, 198, 220, 220, 220, 1303, 11241, 1096, 279, 86, 9310, 1752, 13, 198, 220, 220, 220, 11241, 1143, 62, 79, 86, 9310, 796, 685, 30642, 10100, 7, 79, 16993, 8, 329, 279, 86, 62, 312, 87, 11, 279, 16993, 287, 407, 62, 10379, 4400, 62, 79, 86, 9310, 60, 628, 220, 220, 220, 1303, 287, 1851, 3173, 357, 4480, 2041, 4088, 9041, 290, 584, 3085, 8, 198, 220, 220, 220, 329, 374, 62, 312, 87, 11, 374, 287, 27056, 378, 7, 25135, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 24442, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 81, 13, 1831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 5036, 292, 2247, 13, 271, 62, 259, 1851, 856, 33529, 1303, 287, 1851, 856, 11, 611, 6611, 510, 11, 779, 1333, 68, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 62, 79, 16993, 11, 357, 79, 86, 62, 312, 87, 11, 279, 16993, 8, 287, 19974, 7, 30001, 1143, 62, 79, 86, 9310, 11, 1662, 62, 10379, 4400, 62, 79, 86, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 287, 1851, 62, 505, 62, 25135, 7, 30001, 62, 79, 16993, 11, 81, 11, 271, 62, 21633, 62, 260, 25636, 11, 81, 13, 5036, 292, 2247, 13, 20887, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 13, 271, 62, 11265, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 13, 1136, 62, 17618, 62, 1659, 62, 37336, 3419, 19841, 35847, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2872, 62, 259, 9641, 62, 20274, 7, 20274, 11, 1573, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2989, 62, 83, 5034, 7, 20274, 11, 1333, 68, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1186, 62, 12786, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5162, 408, 540, 58, 79, 86, 62, 312, 87, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1005, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 31929, 29164, 32239, 77, 26449, 29164, 32239, 77, 8205, 408, 29164, 92, 357, 23884, 532, 23884, 1267, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 11, 374, 13, 1831, 11, 410, 11, 1635, 395, 1920, 62, 5162, 408, 62, 17618, 7, 9127, 82, 11, 269, 5700, 388, 11, 410, 11, 374, 62, 312, 87, 11, 1573, 4868, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1255, 13, 271, 62, 448, 62, 1659, 62, 29982, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 59, 77, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 366, 448, 62, 1659, 62, 29982, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 366, 448, 62, 1659, 62, 29982, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 59, 77, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 1255, 13, 18224, 62, 19662, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 1255, 13, 18224, 62, 19662, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 374, 13, 5036, 292, 2247, 13, 271, 62, 40085, 13821, 33529, 1303, 26329, 1851, 856, 11, 611, 2314, 5412, 11, 13934, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 810, 262, 13934, 2393, 318, 8574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27056, 515, 62, 7890, 62, 29851, 796, 45144, 92, 14, 268, 6975, 515, 14, 25135, 90, 27422, 14116, 1911, 18982, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 3866, 14681, 62, 6978, 6, 4357, 81, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 62, 79, 16993, 11, 357, 79, 86, 62, 312, 87, 11, 279, 16993, 8, 287, 19974, 7, 30001, 1143, 62, 79, 86, 9310, 11, 1662, 62, 10379, 4400, 62, 79, 86, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 287, 1851, 62, 505, 62, 25135, 7, 30001, 62, 79, 16993, 11, 81, 11, 271, 62, 21633, 62, 260, 25636, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 13, 271, 62, 11265, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 13, 1136, 62, 17618, 62, 1659, 62, 37336, 3419, 19841, 35847, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2872, 62, 259, 9641, 62, 20274, 7, 20274, 11, 1573, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2989, 62, 38476, 62, 7890, 7, 79, 16993, 11, 268, 6975, 515, 62, 7890, 62, 29851, 11, 22615, 62, 41757, 62, 14681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1186, 62, 12786, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5162, 408, 540, 58, 79, 86, 62, 312, 87, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1005, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 31929, 29164, 32239, 77, 26449, 29164, 32239, 77, 8205, 408, 29164, 92, 357, 23884, 532, 23884, 1267, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 11, 374, 13, 1831, 11, 410, 11, 1635, 395, 1920, 62, 5162, 408, 62, 17618, 7, 9127, 82, 11, 269, 5700, 388, 11, 410, 11, 374, 62, 312, 87, 11, 1573, 4868, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1255, 13, 271, 62, 448, 62, 1659, 62, 29982, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2989, 62, 38476, 62, 7890, 7, 79, 16993, 11, 268, 6975, 515, 62, 7890, 62, 29851, 11, 22615, 62, 41757, 62, 14681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1186, 62, 12786, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5162, 408, 540, 58, 79, 86, 62, 312, 87, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1005, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 31929, 29164, 32239, 77, 26449, 29164, 32239, 77, 8205, 408, 29164, 92, 357, 23884, 532, 23884, 1267, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 11, 374, 13, 1831, 11, 410, 11, 1635, 395, 1920, 62, 5162, 408, 62, 17618, 7, 9127, 82, 11, 269, 5700, 388, 11, 410, 11, 374, 62, 312, 87, 11, 1573, 4868, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 59, 77, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 1255, 13, 18224, 62, 19662, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 818, 9641, 4049, 329, 23884, 7, 7836, 8, 23884, 7, 79, 86, 828, 4049, 31456, 25, 23884, 1911, 18982, 7, 81, 13, 1831, 11, 279, 16993, 11, 1255, 13, 18224, 62, 19662, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 13934, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 810, 262, 13934, 2393, 318, 8574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27056, 515, 62, 7890, 62, 29851, 796, 45144, 92, 14, 268, 6975, 515, 14, 25135, 90, 27422, 14116, 1911, 18982, 7, 49, 4944, 34694, 62, 10943, 16254, 17816, 3866, 14681, 62, 6978, 6, 4357, 81, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 62, 79, 16993, 11, 357, 79, 86, 62, 312, 87, 11, 279, 16993, 8, 287, 19974, 7, 30001, 1143, 62, 79, 86, 9310, 11, 1662, 62, 10379, 4400, 62, 79, 86, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 12786, 796, 2989, 62, 38476, 62, 7890, 7, 79, 16993, 11, 268, 6975, 515, 62, 7890, 62, 29851, 11, 22615, 62, 41757, 62, 14681, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1186, 62, 12786, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5162, 408, 540, 58, 79, 86, 62, 312, 87, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1005, 62, 12786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 31929, 29164, 32239, 77, 26449, 29164, 32239, 77, 8205, 408, 29164, 92, 357, 23884, 532, 23884, 1267, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 11, 374, 13, 1831, 11, 410, 11, 1635, 395, 1920, 62, 5162, 408, 62, 17618, 7, 9127, 82, 11, 269, 5700, 388, 11, 410, 11, 374, 62, 312, 87, 11, 1573, 4868, 22305, 198, 220, 220, 220, 1303, 14468, 4242, 5268, 286, 554, 9641, 1303, 14468, 4242, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 19430, 1892, 37571, 540, 6060, 198, 220, 220, 220, 329, 279, 86, 62, 312, 87, 11, 279, 16993, 287, 29083, 62, 79, 86, 9310, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 3673, 37571, 540, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 4008, 628, 220, 220, 220, 329, 318, 62, 5162, 6676, 11, 357, 79, 86, 62, 312, 87, 11, 279, 16993, 8, 287, 19974, 7, 271, 62, 5162, 408, 540, 11, 407, 62, 10379, 4400, 62, 79, 86, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 5162, 6676, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 59, 77, 35215, 7390, 87, 29164, 32239, 77, 35215, 29164, 32239, 77, 3673, 37571, 540, 59, 77, 1911, 18982, 7, 79, 86, 62, 312, 87, 11, 279, 16993, 4008, 628, 220, 220, 220, 18931, 13, 10951, 7203, 14957, 44774, 925, 416, 428, 8398, 25, 23884, 59, 77, 1911, 18982, 7, 37659, 13, 16345, 7, 9127, 82, 22305, 628, 220, 220, 220, 3601, 7203, 18467, 1348, 554, 48820, 14252, 11, 7472, 3862, 25, 23884, 1911, 18982, 7, 2435, 13, 525, 69, 62, 24588, 3419, 12, 72, 62, 2435, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.181439
3,599
''' This file is for retrieving system environment variables and helper variables directly derived from them. In decreasing order of precedence, environment variables can be set by: 1. adding them to .env file at root of this project 2. exporting and then running bumblebee in then same terminal. E.g. export BUMBLEBEE_ENV=local; bumblebee 3. prefixing 'bumblebee' command with the environment variable when running. E.g. BUMBLEBEE_ENV=local bumblebee ''' from dotenv import load_dotenv import os load_dotenv() bumblebee_environment = os.environ.get('BUMBLEBEE_ENV', 'production').lower() is_local = bumblebee_environment == 'local'
[ 7061, 6, 198, 1212, 2393, 318, 329, 50122, 1080, 2858, 9633, 290, 31904, 198, 25641, 2977, 3264, 10944, 422, 606, 13, 198, 198, 818, 24030, 1502, 286, 38177, 11, 2858, 9633, 460, 307, 900, 416, 25, 198, 16, 13, 4375, 606, 284, 764, 24330, 2393, 379, 6808, 286, 428, 1628, 198, 17, 13, 39133, 290, 788, 2491, 275, 10344, 20963, 287, 788, 976, 12094, 13, 198, 220, 220, 412, 13, 70, 13, 10784, 347, 5883, 19146, 33, 6500, 62, 1677, 53, 28, 12001, 26, 275, 10344, 20963, 198, 18, 13, 21231, 278, 705, 4435, 903, 20963, 6, 3141, 351, 262, 2858, 7885, 618, 2491, 13, 198, 220, 220, 412, 13, 70, 13, 347, 5883, 19146, 33, 6500, 62, 1677, 53, 28, 12001, 275, 10344, 20963, 198, 7061, 6, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 198, 11748, 28686, 198, 198, 2220, 62, 26518, 24330, 3419, 198, 198, 4435, 903, 20963, 62, 38986, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 33, 5883, 19146, 33, 6500, 62, 1677, 53, 3256, 705, 25493, 27691, 21037, 3419, 198, 271, 62, 12001, 796, 275, 10344, 20963, 62, 38986, 6624, 705, 12001, 6, 198 ]
3.361257
191
"""Pagination sample for Microsoft Graph.""" # Copyright (c) Microsoft. All rights reserved. Licensed under the MIT license. # See LICENSE in the project root for license information. import os import bottle import graphrest import config MSGRAPH = graphrest.GraphSession(client_id=config.CLIENT_ID, client_secret=config.CLIENT_SECRET, redirect_uri=config.REDIRECT_URI, scopes=['User.Read', 'Mail.Read']) bottle.TEMPLATE_PATH = ['./static/templates'] @bottle.route('/') @bottle.view('homepage.html') def homepage(): """Render the home page.""" return {'title': 'Pagination Basics'} @bottle.route('/login') def login(): """Prompt user to authenticate.""" endpoint = MSGRAPH.api_endpoint('me/messages') MSGRAPH.login(login_redirect=f'/pagination?endpoint={endpoint}') @bottle.route('/login/authorized') def authorized(): """Handler for the application's Redirect URI.""" MSGRAPH.redirect_uri_handler() @bottle.route('/pagination') @bottle.view('pagination.html') def pagination(): """Example of paginated response from Microsoft Graph.""" endpoint = bottle.request.query.endpoint graphdata = MSGRAPH.get(endpoint).json() return {'graphdata': graphdata} @bottle.route('/static/<filepath:path>') def server_static(filepath): """Handler for static files, used with the development server.""" root_folder = os.path.abspath(os.path.dirname(__file__)) return bottle.static_file(filepath, root=os.path.join(root_folder, 'static')) if __name__ == '__main__': bottle.run(app=bottle.app(), server='wsgiref', host='localhost', port=5000)
[ 37811, 47, 363, 1883, 6291, 329, 5413, 29681, 526, 15931, 198, 2, 15069, 357, 66, 8, 5413, 13, 1439, 2489, 10395, 13, 49962, 739, 262, 17168, 5964, 13, 198, 2, 4091, 38559, 24290, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 11748, 28686, 198, 198, 11748, 9294, 198, 11748, 4823, 2118, 198, 198, 11748, 4566, 628, 198, 5653, 10761, 31300, 796, 4823, 2118, 13, 37065, 36044, 7, 16366, 62, 312, 28, 11250, 13, 5097, 28495, 62, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 21078, 28, 11250, 13, 5097, 28495, 62, 23683, 26087, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18941, 62, 9900, 28, 11250, 13, 22083, 40, 23988, 62, 47269, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 13920, 28, 17816, 12982, 13, 5569, 3256, 705, 25804, 13, 5569, 6, 12962, 198, 198, 10985, 293, 13, 51, 3620, 6489, 6158, 62, 34219, 796, 685, 4458, 14, 12708, 14, 11498, 17041, 20520, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 11537, 198, 31, 10985, 293, 13, 1177, 10786, 11195, 7700, 13, 6494, 11537, 198, 4299, 34940, 33529, 198, 220, 220, 220, 37227, 45819, 262, 1363, 2443, 526, 15931, 198, 220, 220, 220, 1441, 1391, 6, 7839, 10354, 705, 47, 363, 1883, 45884, 6, 92, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 38235, 11537, 198, 4299, 17594, 33529, 198, 220, 220, 220, 37227, 24129, 457, 2836, 284, 8323, 5344, 526, 15931, 198, 220, 220, 220, 36123, 796, 6579, 10761, 31300, 13, 15042, 62, 437, 4122, 10786, 1326, 14, 37348, 1095, 11537, 198, 220, 220, 220, 6579, 10761, 31300, 13, 38235, 7, 38235, 62, 445, 1060, 28, 69, 26488, 79, 363, 1883, 30, 437, 4122, 34758, 437, 4122, 92, 11537, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 38235, 14, 19721, 11537, 198, 4299, 10435, 33529, 198, 220, 220, 220, 37227, 25060, 329, 262, 3586, 338, 2297, 1060, 43975, 526, 15931, 198, 220, 220, 220, 6579, 10761, 31300, 13, 445, 1060, 62, 9900, 62, 30281, 3419, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 79, 363, 1883, 11537, 198, 31, 10985, 293, 13, 1177, 10786, 79, 363, 1883, 13, 6494, 11537, 198, 4299, 42208, 1883, 33529, 198, 220, 220, 220, 37227, 16281, 286, 42208, 3898, 2882, 422, 5413, 29681, 526, 15931, 198, 220, 220, 220, 36123, 796, 9294, 13, 25927, 13, 22766, 13, 437, 4122, 198, 220, 220, 220, 4823, 7890, 796, 6579, 10761, 31300, 13, 1136, 7, 437, 4122, 737, 17752, 3419, 198, 220, 220, 220, 1441, 1391, 6, 34960, 7890, 10354, 4823, 7890, 92, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 12708, 14, 27, 7753, 6978, 25, 6978, 29, 11537, 198, 4299, 4382, 62, 12708, 7, 7753, 6978, 2599, 198, 220, 220, 220, 37227, 25060, 329, 9037, 3696, 11, 973, 351, 262, 2478, 4382, 526, 15931, 198, 220, 220, 220, 6808, 62, 43551, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 1441, 9294, 13, 12708, 62, 7753, 7, 7753, 6978, 11, 6808, 28, 418, 13, 6978, 13, 22179, 7, 15763, 62, 43551, 11, 705, 12708, 6, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 9294, 13, 5143, 7, 1324, 28, 10985, 293, 13, 1324, 22784, 4382, 11639, 18504, 70, 557, 69, 3256, 2583, 11639, 36750, 3256, 2493, 28, 27641, 8, 198 ]
2.629057
647
from django.conf import settings from django.db import models from django.dispatch import receiver from django.contrib.auth.models import User import requests from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _, ugettext from django.core import validators from channels import Group, Channel from django.utils import timezone from datetime import timedelta,datetime from django_auth_lti.patch_reverse import reverse from .groups import group_for_attempt from .report_outcome import report_outcome_for_attempt, ReportOutcomeFailure, ReportOutcomeConnectionError import os import shutil from zipfile import ZipFile from lxml import etree import re import json from collections import defaultdict @receiver(models.signals.post_save) # Create your models here. @receiver(models.signals.pre_save, sender=Exam) GRADING_METHODS = [ ('highest',_('Highest score')), ('last',_('Last attempt')), ] REPORT_TIMES = [ ('immediately',_('Immediately')), ('oncompletion',_('On completion')), ('manually',_('Manually, by instructor')), ] REPORTING_STATUSES = [ ('reporting',_('Reporting scores')), ('error',_('Error encountered')), ('complete',_('All scores reported')), ] SHOW_SCORES_MODES = [ ('always',_('Always')), ('complete',_('When attempt is complete')), ('never',_('Never')), ] COMPLETION_STATUSES = [ ('not attempted',_('Not attempted')), ('incomplete',_('Incomplete')), ('completed',_('Complete')), ] models.signals.post_save.connect(remark_update_scaled_score,sender=RemarkPart) models.signals.post_delete.connect(remark_update_scaled_score,sender=RemarkPart) DISCOUNT_BEHAVIOURS = [ ('remove','Remove from total'), ('fullmarks','Award everyone full credit'), ] models.signals.post_save.connect(discount_update_scaled_score,sender=DiscountPart) models.signals.post_delete.connect(discount_update_scaled_score,sender=DiscountPart) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) @receiver(models.signals.post_save,sender=ScormElement) def scorm_set_num_questions(sender,instance,created,**kwargs): """ Set the number of questions for this resource - can only work this out once the exam has been run! """ if not re.match(r'^cmi.objectives.([0-9]+).id$',instance.key) or not created: return number = int(re.match(r'q(\d+)',instance.value).group(1))+1 resource = instance.attempt.resource if number>resource.num_questions: resource.num_questions = number resource.save() @receiver(models.signals.pre_save,sender=EditorLink)
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 6381, 17147, 1330, 9733, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 11748, 7007, 198, 6738, 42625, 14208, 13, 26791, 13, 5239, 1330, 31065, 1958, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 11, 334, 1136, 5239, 198, 6738, 42625, 14208, 13, 7295, 1330, 4938, 2024, 198, 6738, 9619, 1330, 4912, 11, 11102, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 6738, 4818, 8079, 1330, 28805, 12514, 11, 19608, 8079, 198, 6738, 42625, 14208, 62, 18439, 62, 2528, 72, 13, 17147, 62, 50188, 1330, 9575, 198, 198, 6738, 764, 24432, 1330, 1448, 62, 1640, 62, 1078, 1791, 198, 6738, 764, 13116, 62, 448, 2958, 1330, 989, 62, 448, 2958, 62, 1640, 62, 1078, 1791, 11, 6358, 7975, 2958, 50015, 11, 6358, 7975, 2958, 32048, 12331, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 6738, 19974, 7753, 1330, 38636, 8979, 198, 6738, 300, 19875, 1330, 2123, 631, 198, 11748, 302, 198, 11748, 33918, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 8, 628, 198, 2, 13610, 534, 4981, 994, 13, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 3866, 62, 21928, 11, 29788, 28, 3109, 321, 8, 628, 198, 10761, 2885, 2751, 62, 49273, 50, 796, 685, 198, 220, 220, 220, 19203, 35323, 3256, 62, 10786, 36124, 3634, 4776, 11537, 828, 198, 220, 220, 220, 19203, 12957, 3256, 62, 10786, 5956, 2230, 11537, 828, 198, 60, 198, 198, 2200, 15490, 62, 51, 3955, 1546, 796, 685, 198, 220, 220, 220, 19203, 320, 23802, 3256, 62, 10786, 3546, 23802, 11537, 828, 198, 220, 220, 220, 19203, 261, 785, 24547, 3256, 62, 10786, 2202, 11939, 11537, 828, 198, 220, 220, 220, 19203, 805, 935, 3256, 62, 10786, 5124, 935, 11, 416, 21187, 11537, 828, 198, 60, 198, 2200, 15490, 2751, 62, 35744, 2937, 1546, 796, 685, 198, 220, 220, 220, 19203, 49914, 3256, 62, 10786, 42159, 8198, 11537, 828, 198, 220, 220, 220, 19203, 18224, 3256, 62, 10786, 12331, 12956, 11537, 828, 198, 220, 220, 220, 19203, 20751, 3256, 62, 10786, 3237, 8198, 2098, 11537, 828, 198, 60, 198, 198, 9693, 3913, 62, 6173, 1581, 1546, 62, 33365, 1546, 796, 685, 198, 220, 220, 220, 19203, 33770, 3256, 62, 10786, 30374, 11537, 828, 198, 220, 220, 220, 19203, 20751, 3256, 62, 10786, 2215, 2230, 318, 1844, 11537, 828, 198, 220, 220, 220, 19203, 12081, 3256, 62, 10786, 12295, 11537, 828, 198, 60, 198, 198, 41335, 24131, 62, 35744, 2937, 1546, 796, 685, 198, 220, 220, 220, 19203, 1662, 7482, 3256, 62, 10786, 3673, 7482, 11537, 828, 198, 220, 220, 220, 19203, 259, 20751, 3256, 62, 10786, 818, 20751, 11537, 828, 198, 220, 220, 220, 19203, 785, 16838, 3256, 62, 10786, 20988, 11537, 828, 198, 60, 198, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 13, 8443, 7, 2787, 668, 62, 19119, 62, 1416, 3021, 62, 26675, 11, 82, 2194, 28, 8413, 668, 7841, 8, 198, 27530, 13, 12683, 874, 13, 7353, 62, 33678, 13, 8443, 7, 2787, 668, 62, 19119, 62, 1416, 3021, 62, 26675, 11, 82, 2194, 28, 8413, 668, 7841, 8, 198, 198, 26288, 34, 28270, 62, 12473, 7801, 12861, 2606, 6998, 796, 685, 198, 220, 220, 220, 19203, 28956, 41707, 27914, 422, 2472, 33809, 198, 220, 220, 220, 19203, 12853, 14306, 41707, 32, 904, 2506, 1336, 3884, 33809, 198, 60, 198, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 13, 8443, 7, 15410, 608, 62, 19119, 62, 1416, 3021, 62, 26675, 11, 82, 2194, 28, 15642, 608, 7841, 8, 198, 27530, 13, 12683, 874, 13, 7353, 62, 33678, 13, 8443, 7, 15410, 608, 62, 19119, 62, 1416, 3021, 62, 26675, 11, 82, 2194, 28, 15642, 608, 7841, 8, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 11, 82, 2194, 28, 3351, 579, 20180, 8, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 11, 82, 2194, 28, 3351, 579, 20180, 8, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 11, 82, 2194, 28, 3351, 579, 20180, 8, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 7353, 62, 21928, 11, 82, 2194, 28, 3351, 579, 20180, 8, 198, 4299, 629, 579, 62, 2617, 62, 22510, 62, 6138, 507, 7, 82, 2194, 11, 39098, 11, 25598, 11, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 5345, 262, 1271, 286, 2683, 329, 428, 8271, 532, 460, 691, 670, 428, 503, 1752, 262, 2814, 468, 587, 1057, 0, 37227, 198, 220, 220, 220, 611, 407, 302, 13, 15699, 7, 81, 6, 61, 11215, 72, 13, 15252, 1083, 12195, 58, 15, 12, 24, 48688, 737, 312, 3, 3256, 39098, 13, 2539, 8, 393, 407, 2727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1271, 796, 493, 7, 260, 13, 15699, 7, 81, 6, 80, 38016, 67, 28988, 3256, 39098, 13, 8367, 737, 8094, 7, 16, 4008, 10, 16, 198, 220, 220, 220, 8271, 796, 4554, 13, 1078, 1791, 13, 31092, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 1271, 29, 31092, 13, 22510, 62, 6138, 507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8271, 13, 22510, 62, 6138, 507, 796, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 8271, 13, 21928, 3419, 198, 198, 31, 260, 39729, 7, 27530, 13, 12683, 874, 13, 3866, 62, 21928, 11, 82, 2194, 28, 17171, 11280, 8, 198 ]
2.868644
944
import json import re import argparse import sys if __name__ == '__main__': main()
[ 11748, 33918, 198, 11748, 302, 198, 11748, 1822, 29572, 198, 11748, 25064, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.84375
32
import json from src.mappers.heartbeatMapper import Heartbeat
[ 11748, 33918, 198, 198, 6738, 12351, 13, 76, 46629, 13, 11499, 12945, 44, 11463, 1330, 8894, 12945, 628 ]
3.555556
18
# Generated automatically using the command : # c++2py h5py_io.hpp --members_read_only -N h5 -a _h5py -m _h5py -o _h5py --moduledoc="A lightweight hdf5 python interface" --cxxflags="-std=c++20" --includes=./../../c++ --only="object file group h5_read_bare h5_write_bare" from cpp2py.wrap_generator import * # The module module = module_(full_name = "_h5py", doc = r"A lightweight hdf5 python interface", app_name = "_h5py") # Imports # Add here all includes module.add_include("<h5py_io.hpp>") # Add here anything to add in the C++ code at the start, e.g. namespace using module.add_preamble(""" #include <cpp2py/converters/span.hpp> #include <cpp2py/converters/string.hpp> #include <cpp2py/converters/vector.hpp> using namespace h5; """) # The class file c = class_( py_type = "File", # name of the python class c_type = "file", # name of the C++ class doc = r"""A little handler for the HDF5 file The class is basically a pointer to the file.""", # doc of the C++ class hdf5 = False, ) c.add_constructor("""()""", doc = r"""Open a file in memory""") c.add_constructor("""(std::string name, char mode)""", doc = r"""""") c.add_constructor("""(std::span<std::byte> buf)""", doc = r"""Create a file in memory from a byte buffer""") c.add_property(name = "name", getter = cfunction("""std::string name ()"""), doc = r"""Name of the file""") c.add_method("""void flush ()""", doc = r"""Flush the file""") c.add_method("""std::vector<std::byte> as_buffer ()""", doc = r"""Get a copy of the associated byte buffer""") module.add_class(c) # The class group c = class_( py_type = "Group", # name of the python class c_type = "group", # name of the C++ class doc = r"""HDF5 group""", # doc of the C++ class hdf5 = False, ) c.add_constructor("""(file f)""", doc = r"""Takes the "/" group at the top of the file""") c.add_property(name = "name", getter = cfunction("""std::string name ()"""), doc = r"""Name of the group""") c.add_method("""group open_group (std::string key)""", doc = r"""Open a subgroup. Throws std::runtime_error if it does not exist. Parameters ---------- key The name of the subgroup. If empty, return this group""") c.add_method("""group create_group (std::string key, bool delete_if_exists = true)""", doc = r"""Create a subgroup in this group Parameters ---------- key The name of the subgroup. If empty, return this group. delete_if_exists Unlink the group if it exists""") c.add_method("""std::vector<std::string> get_all_subgroup_dataset_names ()""", name='keys', doc = r"""Returns all names of dataset of G""") c.add_property(name = "file", getter = cfunction("""file get_file ()"""), doc = r"""The parent file""") c.add_method("""bool has_subgroup (std::string key)""", doc = r"""True iff key is a subgroup of this. Parameters ---------- key""") c.add_method("""bool has_dataset (std::string key)""", doc = r"""True iff key is a dataset of this. Parameters ---------- key""") c.add_method("void write_attribute(std::string key, std::string val)", calling_pattern = "h5_write_attribute(self_c, key, val)", doc = "Write an attribute") c.add_method("std::string read_attribute(std::string name)", calling_pattern = "std::string result = h5_read_attribute<std::string>(self_c, name)", doc = "Read an attribute") c.add_method("std::string read_hdf5_format_from_key(std::string key)", calling_pattern = "std::string result; read_hdf5_format_from_key(self_c, key, result);", doc = "Read the format string from the key in the group") module.add_class(c) module.add_function (name = "h5_write", signature = "void h5_write_bare (group g, std::string name, PyObject * ob)", doc = r"""""") module.add_function (name = "h5_read", signature = "PyObject * h5_read_bare (group g, std::string name)", doc = r"""""") module.generate_code()
[ 2, 2980, 515, 6338, 1262, 262, 3141, 1058, 198, 2, 269, 4880, 17, 9078, 289, 20, 9078, 62, 952, 13, 71, 381, 1377, 30814, 62, 961, 62, 8807, 532, 45, 289, 20, 532, 64, 4808, 71, 20, 9078, 532, 76, 4808, 71, 20, 9078, 532, 78, 4808, 71, 20, 9078, 1377, 4666, 6309, 420, 2625, 32, 18700, 289, 7568, 20, 21015, 7071, 1, 1377, 66, 5324, 33152, 2625, 12, 19282, 28, 66, 4880, 1238, 1, 1377, 42813, 28, 19571, 40720, 40720, 66, 4880, 1377, 8807, 2625, 15252, 2393, 1448, 289, 20, 62, 961, 62, 49382, 289, 20, 62, 13564, 62, 49382, 1, 198, 6738, 269, 381, 17, 9078, 13, 37150, 62, 8612, 1352, 1330, 1635, 198, 198, 2, 383, 8265, 198, 21412, 796, 8265, 41052, 12853, 62, 3672, 796, 45434, 71, 20, 9078, 1600, 2205, 796, 374, 1, 32, 18700, 289, 7568, 20, 21015, 7071, 1600, 598, 62, 3672, 796, 45434, 71, 20, 9078, 4943, 198, 198, 2, 1846, 3742, 198, 198, 2, 3060, 994, 477, 3407, 198, 21412, 13, 2860, 62, 17256, 7203, 27, 71, 20, 9078, 62, 952, 13, 71, 381, 29, 4943, 198, 198, 2, 3060, 994, 1997, 284, 751, 287, 262, 327, 4880, 2438, 379, 262, 923, 11, 304, 13, 70, 13, 25745, 1262, 198, 21412, 13, 2860, 62, 79, 1476, 903, 7203, 15931, 198, 2, 17256, 1279, 20322, 17, 9078, 14, 1102, 332, 1010, 14, 12626, 13, 71, 381, 29, 198, 2, 17256, 1279, 20322, 17, 9078, 14, 1102, 332, 1010, 14, 8841, 13, 71, 381, 29, 198, 2, 17256, 1279, 20322, 17, 9078, 14, 1102, 332, 1010, 14, 31364, 13, 71, 381, 29, 198, 198, 3500, 25745, 289, 20, 26, 198, 15931, 4943, 628, 198, 2, 383, 1398, 2393, 198, 66, 796, 1398, 41052, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 62, 4906, 796, 366, 8979, 1600, 220, 1303, 1438, 286, 262, 21015, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 4906, 796, 366, 7753, 1600, 220, 220, 1303, 1438, 286, 262, 327, 4880, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 32, 1310, 21360, 329, 262, 5572, 37, 20, 2393, 628, 220, 383, 1398, 318, 6209, 257, 17562, 284, 262, 2393, 32203, 1600, 220, 220, 1303, 2205, 286, 262, 327, 4880, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 796, 10352, 11, 198, 8, 198, 198, 66, 13, 2860, 62, 41571, 273, 7203, 15931, 3419, 15931, 1600, 2205, 796, 374, 37811, 11505, 257, 2393, 287, 4088, 15931, 4943, 198, 198, 66, 13, 2860, 62, 41571, 273, 7203, 15931, 7, 19282, 3712, 8841, 1438, 11, 1149, 4235, 8, 15931, 1600, 2205, 796, 374, 15931, 37811, 4943, 198, 198, 66, 13, 2860, 62, 41571, 273, 7203, 15931, 7, 19282, 3712, 12626, 27, 19282, 3712, 26327, 29, 42684, 8, 15931, 1600, 2205, 796, 374, 37811, 16447, 257, 2393, 287, 4088, 422, 257, 18022, 11876, 15931, 4943, 198, 198, 66, 13, 2860, 62, 26745, 7, 3672, 796, 366, 3672, 1600, 651, 353, 796, 269, 8818, 7203, 15931, 19282, 3712, 8841, 1438, 7499, 15931, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 5376, 286, 262, 2393, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 19382, 24773, 7499, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 7414, 1530, 262, 2393, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 19282, 3712, 31364, 27, 19282, 3712, 26327, 29, 355, 62, 22252, 7499, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 3855, 257, 4866, 286, 262, 3917, 18022, 11876, 15931, 4943, 198, 198, 21412, 13, 2860, 62, 4871, 7, 66, 8, 198, 198, 2, 383, 1398, 1448, 198, 66, 796, 1398, 41052, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 62, 4906, 796, 366, 13247, 1600, 220, 1303, 1438, 286, 262, 21015, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 4906, 796, 366, 8094, 1600, 220, 220, 1303, 1438, 286, 262, 327, 4880, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 39, 8068, 20, 1448, 15931, 1600, 220, 220, 1303, 2205, 286, 262, 327, 4880, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 796, 10352, 11, 198, 8, 198, 198, 66, 13, 2860, 62, 41571, 273, 7203, 15931, 7, 7753, 277, 8, 15931, 1600, 2205, 796, 374, 37811, 51, 1124, 262, 12813, 1, 1448, 379, 262, 1353, 286, 262, 2393, 15931, 4943, 198, 198, 66, 13, 2860, 62, 26745, 7, 3672, 796, 366, 3672, 1600, 651, 353, 796, 269, 8818, 7203, 15931, 19282, 3712, 8841, 1438, 7499, 15931, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 5376, 286, 262, 1448, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 8094, 1280, 62, 8094, 357, 19282, 3712, 8841, 1994, 8, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 11505, 257, 850, 8094, 13, 198, 536, 8516, 14367, 3712, 43282, 62, 18224, 611, 340, 857, 407, 2152, 13, 198, 198, 48944, 198, 35937, 198, 2539, 198, 220, 220, 220, 220, 383, 1438, 286, 262, 850, 8094, 13, 1002, 6565, 11, 1441, 428, 1448, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 8094, 2251, 62, 8094, 357, 19282, 3712, 8841, 1994, 11, 20512, 12233, 62, 361, 62, 1069, 1023, 796, 2081, 8, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 16447, 257, 850, 8094, 287, 428, 1448, 198, 198, 48944, 198, 35937, 198, 2539, 198, 220, 220, 220, 220, 383, 1438, 286, 262, 850, 8094, 13, 1002, 6565, 11, 1441, 428, 1448, 13, 198, 198, 33678, 62, 361, 62, 1069, 1023, 198, 220, 220, 220, 220, 791, 8726, 262, 1448, 611, 340, 7160, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 19282, 3712, 31364, 27, 19282, 3712, 8841, 29, 651, 62, 439, 62, 7266, 8094, 62, 19608, 292, 316, 62, 14933, 7499, 15931, 1600, 1438, 11639, 13083, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 35561, 477, 3891, 286, 27039, 286, 402, 15931, 4943, 198, 198, 66, 13, 2860, 62, 26745, 7, 3672, 796, 366, 7753, 1600, 651, 353, 796, 269, 8818, 7203, 15931, 7753, 651, 62, 7753, 7499, 15931, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 464, 2560, 2393, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 30388, 468, 62, 7266, 8094, 357, 19282, 3712, 8841, 1994, 8, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 17821, 611, 69, 1994, 318, 257, 850, 8094, 286, 428, 13, 198, 198, 48944, 198, 35937, 198, 2539, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 15931, 30388, 468, 62, 19608, 292, 316, 357, 19282, 3712, 8841, 1994, 8, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 796, 374, 37811, 17821, 611, 69, 1994, 318, 257, 27039, 286, 428, 13, 198, 198, 48944, 198, 35937, 198, 2539, 15931, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 19382, 3551, 62, 42348, 7, 19282, 3712, 8841, 1994, 11, 14367, 3712, 8841, 1188, 42501, 4585, 62, 33279, 796, 366, 71, 20, 62, 13564, 62, 42348, 7, 944, 62, 66, 11, 1994, 11, 1188, 42501, 2205, 796, 366, 16594, 281, 11688, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 19282, 3712, 8841, 1100, 62, 42348, 7, 19282, 3712, 8841, 1438, 42501, 4585, 62, 33279, 796, 366, 19282, 3712, 8841, 1255, 796, 289, 20, 62, 961, 62, 42348, 27, 19282, 3712, 8841, 33994, 944, 62, 66, 11, 1438, 42501, 2205, 796, 366, 5569, 281, 11688, 4943, 198, 198, 66, 13, 2860, 62, 24396, 7203, 19282, 3712, 8841, 1100, 62, 71, 7568, 20, 62, 18982, 62, 6738, 62, 2539, 7, 19282, 3712, 8841, 1994, 42501, 4585, 62, 33279, 796, 366, 19282, 3712, 8841, 1255, 26, 1100, 62, 71, 7568, 20, 62, 18982, 62, 6738, 62, 2539, 7, 944, 62, 66, 11, 1994, 11, 1255, 1776, 1600, 2205, 796, 366, 5569, 262, 5794, 4731, 422, 262, 1994, 287, 262, 1448, 4943, 198, 198, 21412, 13, 2860, 62, 4871, 7, 66, 8, 198, 198, 21412, 13, 2860, 62, 8818, 357, 3672, 796, 366, 71, 20, 62, 13564, 1600, 9877, 796, 366, 19382, 289, 20, 62, 13564, 62, 49382, 357, 8094, 308, 11, 14367, 3712, 8841, 1438, 11, 9485, 10267, 1635, 909, 42501, 2205, 796, 374, 15931, 37811, 4943, 198, 198, 21412, 13, 2860, 62, 8818, 357, 3672, 796, 366, 71, 20, 62, 961, 1600, 9877, 796, 366, 20519, 10267, 1635, 289, 20, 62, 961, 62, 49382, 357, 8094, 308, 11, 14367, 3712, 8841, 1438, 42501, 2205, 796, 374, 15931, 37811, 4943, 628, 198, 198, 21412, 13, 8612, 378, 62, 8189, 3419, 198 ]
2.636364
1,518
# Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import testing_config # Must be imported first import flask from unittest import mock import werkzeug from internals import models from internals import approval_defs from internals import detect_intent test_app = flask.Flask(__name__)
[ 2, 15069, 33448, 3012, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 4943, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 4856, 62, 11250, 220, 1303, 12039, 307, 17392, 717, 198, 198, 11748, 42903, 198, 6738, 555, 715, 395, 1330, 15290, 198, 11748, 266, 9587, 2736, 1018, 198, 198, 6738, 1788, 874, 1330, 4981, 198, 6738, 1788, 874, 1330, 7546, 62, 4299, 82, 198, 6738, 1788, 874, 1330, 4886, 62, 48536, 198, 198, 9288, 62, 1324, 796, 42903, 13, 7414, 2093, 7, 834, 3672, 834, 8, 628, 198 ]
3.747706
218
"""Citizens model.""" # Django from django.db import models from django.contrib.auth.models import AbstractUser from django.core.validators import RegexValidator # models from paranuara.companies.models import Company # PostgreSQL fields from django.contrib.postgres.fields import JSONField # Utilities from paranuara.utils.models import ParanuaraModel class Citizen(ParanuaraModel, AbstractUser): """Citizen model. Extend from Django's Abstract User, change the username field to email and add some extra fields. """ index = models.IntegerField( unique=True, default=-1 ) favorite_food = models.ManyToManyField( 'foods.Food', related_name='favorite_food' ) has_died = models.BooleanField( 'died', default=False, help_text=( 'Help easily distinguish citizens died or alive. ' ) ) balance = models.DecimalField( max_digits=15, decimal_places=2, default=None ) picture = models.ImageField( 'profile picture', upload_to='paranuara/citizens/pictures/', blank=True, null=True ) age = models.IntegerField( default=-1 ) eyeColor = models.CharField( max_length=50, blank=False ) gender = models.CharField( max_length=6, blank=True ) email = models.EmailField( 'email address', unique=True, error_messages={ 'unique': 'A user with that email already exists.' } ) phone_regex = RegexValidator( regex=r'\+?1?\d{9,15}$', message="Phone number must be entered in the format: +999999999. Up to 15 digits allowed." ) phone = models.CharField( validators=[phone_regex], max_length=20, blank=True ) address = models.CharField( max_length=100, blank=True ) company = models.ForeignKey( Company, related_name='employees_company', on_delete=models.SET_NULL, null=True ) about = models.CharField( max_length=1000, blank=True, null=True ) greeting = models.CharField( max_length=1000, blank=True, null=True ) tags = JSONField( default=None, blank=True, null=True ) REQUIRED_FIELDS = ['has_died', 'eyeColor', 'index'] class Relationship(models.Model): """Class to represent many to many relation between Ctizens""" from_people = models.ForeignKey(Citizen, related_name='from_people', on_delete=models.CASCADE) to_people = models.ForeignKey(Citizen, related_name='to_people', on_delete=models.CASCADE)
[ 37811, 34, 34100, 2746, 526, 15931, 198, 198, 2, 37770, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 27741, 12982, 198, 6738, 42625, 14208, 13, 7295, 13, 12102, 2024, 1330, 797, 25636, 47139, 1352, 198, 198, 2, 4981, 198, 6738, 23511, 84, 3301, 13, 34390, 444, 13, 27530, 1330, 5834, 198, 198, 2, 2947, 47701, 7032, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 7353, 34239, 13, 25747, 1330, 19449, 15878, 198, 198, 2, 41086, 198, 6738, 23511, 84, 3301, 13, 26791, 13, 27530, 1330, 2547, 42357, 3301, 17633, 628, 198, 4871, 22307, 7, 10044, 42357, 3301, 17633, 11, 27741, 12982, 2599, 198, 220, 220, 220, 37227, 34, 36958, 2746, 13, 198, 220, 220, 220, 46228, 422, 37770, 338, 27741, 11787, 11, 1487, 262, 20579, 2214, 198, 220, 220, 220, 284, 3053, 290, 751, 617, 3131, 7032, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6376, 796, 4981, 13, 46541, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3748, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 10779, 16, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4004, 62, 19425, 796, 4981, 13, 7085, 2514, 7085, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19425, 82, 13, 24602, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 35200, 62, 19425, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 468, 62, 67, 798, 796, 4981, 13, 46120, 13087, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 67, 798, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 5239, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22087, 3538, 15714, 4290, 3724, 393, 6776, 13, 705, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 5236, 796, 4981, 13, 10707, 4402, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 12894, 896, 28, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 32465, 62, 23625, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4286, 796, 4981, 13, 5159, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13317, 4286, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9516, 62, 1462, 11639, 1845, 42357, 3301, 14, 46801, 14, 18847, 942, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2479, 796, 4981, 13, 46541, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 10779, 16, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4151, 10258, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 1120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 25101, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 5279, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3053, 796, 4981, 13, 15333, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12888, 2209, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 37348, 1095, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34642, 10354, 705, 32, 2836, 351, 326, 3053, 1541, 7160, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3072, 62, 260, 25636, 796, 797, 25636, 47139, 1352, 7, 198, 220, 220, 220, 220, 220, 220, 220, 40364, 28, 81, 6, 59, 10, 30, 16, 30, 59, 67, 90, 24, 11, 1314, 92, 3, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 2625, 6132, 1271, 1276, 307, 5982, 287, 262, 5794, 25, 1343, 24214, 2079, 17032, 13, 3205, 284, 1315, 19561, 3142, 526, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3072, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 2024, 41888, 4862, 62, 260, 25636, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2209, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1664, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 7033, 2841, 62, 39722, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 546, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 31933, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 15940, 796, 19449, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4526, 10917, 37819, 62, 11674, 3698, 5258, 796, 37250, 10134, 62, 67, 798, 3256, 705, 25379, 10258, 3256, 705, 9630, 20520, 628, 198, 4871, 39771, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 9487, 284, 2380, 867, 284, 867, 8695, 1022, 43166, 44908, 37811, 628, 220, 220, 220, 422, 62, 15332, 796, 4981, 13, 33616, 9218, 7, 34, 36958, 11, 3519, 62, 3672, 11639, 6738, 62, 15332, 3256, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 198, 220, 220, 220, 284, 62, 15332, 796, 4981, 13, 33616, 9218, 7, 34, 36958, 11, 3519, 62, 3672, 11639, 1462, 62, 15332, 3256, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 198 ]
2.325424
1,180
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.urls import path from .views import login_register, task_manage, analysis_page urlpatterns = [ path('login/', login_register.Login.as_view()), path('register/', login_register.SignIn.as_view()), path('register/check_username', login_register.SignIn.as_view()), path('task_manager/addition/', task_manage.TaskManage.as_view()), path('task_manager/removing/', task_manage.TaskManage.as_view()), path('task_manager/recovering/', task_manage.Recover.as_view()), path('task_manager/upgrade/', task_manage.TaskManage.as_view()), path('task_manager/tasks', task_manage.TaskManage.as_view()), path('task_manager/schools', task_manage.SearchSchool.as_view()), path('analysis_page/posts_data', analysis_page.GetData.as_view()), path('analysis_page/users_analysis_data', analysis_page.GetUserAnalyseData.as_view()), path('analysis_page/posts_analysis_data', analysis_page.GetPostsAnalysisData.as_view()) ]
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 33571, 1330, 17594, 62, 30238, 11, 4876, 62, 805, 496, 11, 3781, 62, 7700, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 38235, 14, 3256, 17594, 62, 30238, 13, 47790, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 30238, 14, 3256, 17594, 62, 30238, 13, 11712, 818, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 30238, 14, 9122, 62, 29460, 3256, 17594, 62, 30238, 13, 11712, 818, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 2860, 653, 14, 3256, 4876, 62, 805, 496, 13, 25714, 5124, 496, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 2787, 5165, 14, 3256, 4876, 62, 805, 496, 13, 25714, 5124, 496, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 260, 9631, 278, 14, 3256, 4876, 62, 805, 496, 13, 6690, 2502, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 929, 9526, 14, 3256, 4876, 62, 805, 496, 13, 25714, 5124, 496, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 83, 6791, 3256, 4876, 62, 805, 496, 13, 25714, 5124, 496, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 35943, 62, 37153, 14, 14347, 82, 3256, 4876, 62, 805, 496, 13, 18243, 26130, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 20930, 62, 7700, 14, 24875, 62, 7890, 3256, 3781, 62, 7700, 13, 3855, 6601, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 20930, 62, 7700, 14, 18417, 62, 20930, 62, 7890, 3256, 3781, 62, 7700, 13, 3855, 12982, 37702, 325, 6601, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 20930, 62, 7700, 14, 24875, 62, 20930, 62, 7890, 3256, 3781, 62, 7700, 13, 3855, 21496, 32750, 6601, 13, 292, 62, 1177, 28955, 198, 60, 198 ]
2.683646
373
from django.conf import settings from django.conf.urls import url, include from django.contrib.staticfiles.urls import staticfiles_urlpatterns from main import views from django.contrib.auth import views as auth_views from django.views.static import serve # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = [ url(r'^$', views.index, name="home"), url("^music/", include("audiotracks.urls")), url("^(?P<username>[\w\._-]+)/music/", include("audiotracks.urls")), url(r'^login$', auth_views.login, name="login"), url(r'^logout$', auth_views.logout, name="logout"), url(r'^admin/', include(admin.site.urls)), ] if settings.DEBUG: urlpatterns += [ url(r'^site_media/(?P<path>.*)$', serve, { 'document_root': settings.MEDIA_ROOT }) ] urlpatterns += staticfiles_urlpatterns()
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 11, 2291, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 6371, 82, 1330, 9037, 16624, 62, 6371, 33279, 82, 198, 6738, 1388, 1330, 5009, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 5009, 355, 6284, 62, 33571, 198, 6738, 42625, 14208, 13, 33571, 13, 12708, 1330, 4691, 198, 198, 2, 791, 23893, 262, 1306, 734, 3951, 284, 7139, 262, 13169, 25, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 28482, 13, 2306, 375, 29392, 3419, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 5009, 13, 9630, 11, 1438, 2625, 11195, 12340, 198, 220, 220, 220, 19016, 7203, 61, 28965, 14, 1600, 2291, 7203, 3885, 5151, 81, 4595, 13, 6371, 82, 4943, 828, 198, 220, 220, 220, 19016, 7203, 61, 7, 30, 47, 27, 29460, 36937, 59, 86, 59, 13557, 12, 48688, 20679, 28965, 14, 1600, 2291, 7203, 3885, 5151, 81, 4595, 13, 6371, 82, 4943, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 38235, 3, 3256, 6284, 62, 33571, 13, 38235, 11, 1438, 2625, 38235, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 6404, 448, 3, 3256, 6284, 62, 33571, 13, 6404, 448, 11, 1438, 2625, 6404, 448, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28482, 14, 3256, 2291, 7, 28482, 13, 15654, 13, 6371, 82, 36911, 198, 60, 198, 198, 361, 6460, 13, 30531, 25, 198, 220, 220, 220, 19016, 33279, 82, 15853, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 7, 81, 6, 61, 15654, 62, 11431, 29006, 30, 47, 27, 6978, 29, 15885, 8, 3, 3256, 4691, 11, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22897, 62, 15763, 10354, 6460, 13, 30733, 3539, 62, 13252, 2394, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 19016, 33279, 82, 15853, 9037, 16624, 62, 6371, 33279, 82, 3419, 198 ]
2.585714
350
from mathbox.statistics.estimator import mean, std # Generalized ESD Test for Outliers # https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
[ 6738, 10688, 3524, 13, 14269, 3969, 13, 395, 320, 1352, 1330, 1612, 11, 14367, 198, 198, 2, 3611, 1143, 412, 10305, 6208, 329, 3806, 75, 3183, 198, 2, 3740, 1378, 2503, 13, 270, 75, 13, 77, 396, 13, 9567, 14, 7146, 23, 4089, 14, 4993, 2070, 14, 18082, 14, 5458, 18, 14, 18082, 2327, 71, 18, 13, 19211 ]
2.672414
58
#!/usr/bin/python from requirement import * from producer import producer from scheduler import fcfs from teller import teller txt = open('result/processes','w') txt.write('Processes\n\n') #Thread(target = producer).start() producer() for process in processes: txt.write(str(process)+'\n') for i in range(teller_count): tellers.append( teller() ) a = fcfs(processes,tellers) txt.close()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 6738, 9079, 1330, 1635, 198, 6738, 9920, 1330, 9920, 198, 6738, 6038, 18173, 1330, 277, 66, 9501, 198, 6738, 1560, 263, 1330, 1560, 263, 628, 198, 14116, 796, 1280, 10786, 20274, 14, 14681, 274, 41707, 86, 11537, 198, 14116, 13, 13564, 10786, 18709, 274, 59, 77, 59, 77, 11537, 198, 198, 2, 16818, 7, 16793, 796, 9920, 737, 9688, 3419, 198, 18230, 2189, 3419, 198, 198, 1640, 1429, 287, 7767, 25, 198, 197, 14116, 13, 13564, 7, 2536, 7, 14681, 47762, 6, 59, 77, 11537, 198, 198, 1640, 1312, 287, 2837, 7, 660, 6051, 62, 9127, 2599, 198, 197, 660, 13802, 13, 33295, 7, 1560, 263, 3419, 1267, 198, 198, 64, 796, 277, 66, 9501, 7, 14681, 274, 11, 660, 13802, 8, 198, 198, 14116, 13, 19836, 3419, 198 ]
2.876812
138
from floem import * n_cores = 2 Enq, Deq, Release = queue.queue_custom('queue', Tuple, 4, n_cores, Tuple.task, enq_output=True) RxWrite('mysend') RxPrint('process') c = Compiler() c.testing = r''' Tuple tuples[5]; for(int i=0; i<5;i++) { tuples[i].task = 10; tuples[i].val = i; } for(int i=0; i<5;i++) { mysend(&tuples[i], 0); process(0); } for(int i=0; i<5;i++) { tuples[i].val = 100 + i; mysend(&tuples[i], 1); tuples[i].task = 0; } for(int i=0; i<5;i++) { process(1); } ''' c.generate_code_and_run([0,0,-1,1,-2,2,-3,3,-4,4,-100,-101,-102,-103,-104,100,101,102,103])
[ 6738, 5530, 368, 1330, 1635, 198, 198, 77, 62, 66, 2850, 796, 362, 628, 198, 4834, 80, 11, 1024, 80, 11, 13868, 796, 16834, 13, 36560, 62, 23144, 10786, 36560, 3256, 309, 29291, 11, 604, 11, 299, 62, 66, 2850, 11, 309, 29291, 13, 35943, 11, 551, 80, 62, 22915, 28, 17821, 8, 628, 198, 49, 87, 16594, 10786, 28744, 437, 11537, 198, 49, 87, 18557, 10786, 14681, 11537, 198, 198, 66, 796, 3082, 5329, 3419, 198, 66, 13, 33407, 796, 374, 7061, 6, 198, 51, 29291, 12777, 2374, 58, 20, 11208, 198, 1640, 7, 600, 1312, 28, 15, 26, 1312, 27, 20, 26, 72, 29577, 1391, 198, 220, 220, 220, 12777, 2374, 58, 72, 4083, 35943, 796, 838, 26, 198, 220, 220, 220, 12777, 2374, 58, 72, 4083, 2100, 796, 1312, 26, 198, 92, 198, 198, 1640, 7, 600, 1312, 28, 15, 26, 1312, 27, 20, 26, 72, 29577, 1391, 198, 220, 220, 220, 616, 21280, 39434, 28047, 2374, 58, 72, 4357, 657, 1776, 198, 220, 220, 220, 1429, 7, 15, 1776, 198, 92, 198, 198, 1640, 7, 600, 1312, 28, 15, 26, 1312, 27, 20, 26, 72, 29577, 1391, 198, 220, 220, 220, 12777, 2374, 58, 72, 4083, 2100, 796, 1802, 1343, 1312, 26, 198, 220, 220, 220, 616, 21280, 39434, 28047, 2374, 58, 72, 4357, 352, 1776, 198, 220, 220, 220, 12777, 2374, 58, 72, 4083, 35943, 796, 657, 26, 198, 92, 198, 198, 1640, 7, 600, 1312, 28, 15, 26, 1312, 27, 20, 26, 72, 29577, 1391, 198, 220, 220, 220, 1429, 7, 16, 1776, 198, 92, 198, 7061, 6, 198, 66, 13, 8612, 378, 62, 8189, 62, 392, 62, 5143, 26933, 15, 11, 15, 12095, 16, 11, 16, 12095, 17, 11, 17, 12095, 18, 11, 18, 12095, 19, 11, 19, 12095, 3064, 12095, 8784, 12095, 15377, 12095, 15197, 12095, 13464, 11, 3064, 11, 8784, 11, 15377, 11, 15197, 12962 ]
1.93949
314
# -*- coding: utf-8 -*- # # Electrum-NMC - lightweight Namecoin client # Copyright (C) 2018 The Namecoin developers # # License for all components not part of Electrum-DOGE: # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on Electrum-DOGE - lightweight Dogecoin client # Copyright (C) 2014 The Electrum-DOGE contributors # # License for the Electrum-DOGE components: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import binascii from .bitcoin import hash_encode, hash_decode from .crypto import sha256d from . import blockchain, constants, transaction from .transaction import BCDataStream, Transaction, TxOutput, TYPE_SCRIPT from .util import bfh, bh2u # Maximum index of the merkle root hash in the coinbase transaction script, # where no merged mining header is present. MAX_INDEX_PC_BACKWARDS_COMPATIBILITY = 20 # Header for merge-mining data in the coinbase. COINBASE_MERGED_MINING_HEADER = bfh('fabe') + b'mm' def deserialize_auxpow_header(base_header, s, start_position=0) -> (dict, int): """Deserialises an AuxPoW instance. Returns the deserialised AuxPoW dict and the end position in the byte array as a pair.""" auxpow_header = {} # Chain ID is the top 16 bits of the 32-bit version. auxpow_header['chain_id'] = get_chain_id(base_header) # The parent coinbase transaction is first. # Deserialize it and save the trailing data. parent_coinbase_tx = Transaction(s, expect_trailing_data=True, copy_input=False, start_position=start_position) parent_coinbase_tx._allow_zero_outputs = True start_position = fast_tx_deserialize(parent_coinbase_tx) auxpow_header['parent_coinbase_tx'] = parent_coinbase_tx # Next is the parent block hash. According to the Bitcoin.it wiki, # this field is not actually consensus-critical. So we don't save it. start_position = start_position + 32 # The coinbase and chain merkle branches/indices are next. # Deserialize them and save the trailing data. auxpow_header['coinbase_merkle_branch'], auxpow_header['coinbase_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position) auxpow_header['chain_merkle_branch'], auxpow_header['chain_merkle_index'], start_position = deserialize_merkle_branch(s, start_position=start_position) # Finally there's the parent header. Deserialize it. parent_header_bytes = s[start_position : start_position + constants.net.HEADER_SIZE] auxpow_header['parent_header'] = blockchain.deserialize_pure_header(parent_header_bytes, None) start_position += constants.net.HEADER_SIZE # The parent block header doesn't have any block height, # so delete that field. (We used None as a dummy value above.) del auxpow_header['parent_header']['block_height'] return auxpow_header, start_position # Copied from merkle_branch_from_string in https://github.com/electrumalt/electrum-doge/blob/f74312822a14f59aa8d50186baff74cade449ccd/lib/blockchain.py#L622 # Returns list of hashes, merkle index, and position of trailing data in s # TODO: Audit this function carefully. # Reimplementation of btcutils.check_merkle_branch from Electrum-DOGE. # btcutils seems to have an unclear license and no obvious Git repo, so it # seemed wiser to re-implement. # This re-implementation is roughly based on libdohj's calculateMerkleRoot. # Copied from Electrum-DOGE # TODO: Audit this function carefully. # https://github.com/kR105/i0coin/compare/bitcoin:master...master#diff-610df86e65fce009eb271c2a4f7394ccR262 # Copied from Electrum-DOGE # TODO: Audit this function carefully. # This is calculated the same as the Transaction.txid() method, but doesn't # reserialize it. # Used by fast_tx_deserialize # This is equivalent to (tx.deserialize(), ), but doesn't parse outputs.
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 5903, 6582, 12, 45, 9655, 532, 18700, 6530, 3630, 5456, 198, 2, 15069, 357, 34, 8, 2864, 383, 6530, 3630, 6505, 198, 2, 198, 2, 13789, 329, 477, 6805, 407, 636, 286, 5903, 6582, 12, 35, 7730, 36, 25, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 198, 2, 16727, 257, 4866, 286, 428, 3788, 290, 3917, 10314, 3696, 198, 2, 357, 1169, 366, 25423, 12340, 284, 1730, 287, 262, 10442, 1231, 17504, 11, 198, 2, 1390, 1231, 17385, 262, 2489, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 198, 2, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 9088, 286, 262, 10442, 11, 198, 2, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 30760, 284, 466, 523, 11, 198, 2, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 198, 2, 3017, 287, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 198, 2, 7788, 32761, 6375, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 198, 2, 34482, 3398, 1565, 5603, 25382, 11, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 198, 2, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 198, 2, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 198, 2, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 16289, 3963, 6375, 3268, 198, 2, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 2, 198, 2, 13403, 319, 5903, 6582, 12, 35, 7730, 36, 532, 18700, 2141, 469, 3630, 5456, 198, 2, 15069, 357, 34, 8, 1946, 383, 5903, 6582, 12, 35, 7730, 36, 20420, 198, 2, 198, 2, 13789, 329, 262, 5903, 6582, 12, 35, 7730, 36, 6805, 25, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 2, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 1863, 351, 428, 1430, 13, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 198, 11748, 9874, 292, 979, 72, 198, 198, 6738, 764, 35395, 1330, 12234, 62, 268, 8189, 11, 12234, 62, 12501, 1098, 198, 6738, 764, 29609, 78, 1330, 427, 64, 11645, 67, 198, 6738, 764, 1330, 11779, 11, 38491, 11, 8611, 198, 6738, 764, 7645, 2673, 1330, 11843, 6601, 12124, 11, 45389, 11, 309, 87, 26410, 11, 41876, 62, 6173, 46023, 198, 6738, 764, 22602, 1330, 275, 69, 71, 11, 275, 71, 17, 84, 198, 198, 2, 22246, 6376, 286, 262, 4017, 74, 293, 6808, 12234, 287, 262, 10752, 8692, 8611, 4226, 11, 198, 2, 810, 645, 23791, 9691, 13639, 318, 1944, 13, 198, 22921, 62, 12115, 6369, 62, 5662, 62, 31098, 16279, 5258, 62, 9858, 47, 1404, 40, 25382, 796, 1160, 198, 198, 2, 48900, 329, 20121, 12, 45374, 1366, 287, 262, 10752, 8692, 13, 198, 8220, 1268, 33, 11159, 62, 29296, 38, 1961, 62, 23678, 2751, 62, 37682, 1137, 796, 275, 69, 71, 10786, 69, 11231, 11537, 1343, 275, 1101, 76, 6, 198, 198, 4299, 748, 48499, 1096, 62, 14644, 79, 322, 62, 25677, 7, 8692, 62, 25677, 11, 264, 11, 923, 62, 9150, 28, 15, 8, 4613, 357, 11600, 11, 493, 2599, 198, 220, 220, 220, 37227, 5960, 48499, 2696, 281, 47105, 18833, 54, 4554, 13, 628, 220, 220, 220, 16409, 262, 748, 48499, 1417, 47105, 18833, 54, 8633, 290, 262, 886, 2292, 287, 262, 18022, 198, 220, 220, 220, 7177, 355, 257, 5166, 526, 15931, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 796, 23884, 628, 220, 220, 220, 1303, 21853, 4522, 318, 262, 1353, 1467, 10340, 286, 262, 3933, 12, 2545, 2196, 13, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 7983, 62, 312, 20520, 796, 651, 62, 7983, 62, 312, 7, 8692, 62, 25677, 8, 628, 220, 220, 220, 1303, 383, 2560, 10752, 8692, 8611, 318, 717, 13, 198, 220, 220, 220, 1303, 2935, 48499, 1096, 340, 290, 3613, 262, 25462, 1366, 13, 198, 220, 220, 220, 2560, 62, 3630, 8692, 62, 17602, 796, 45389, 7, 82, 11, 1607, 62, 9535, 4386, 62, 7890, 28, 17821, 11, 4866, 62, 15414, 28, 25101, 11, 923, 62, 9150, 28, 9688, 62, 9150, 8, 198, 220, 220, 220, 2560, 62, 3630, 8692, 62, 17602, 13557, 12154, 62, 22570, 62, 22915, 82, 796, 6407, 198, 220, 220, 220, 923, 62, 9150, 796, 3049, 62, 17602, 62, 8906, 48499, 1096, 7, 8000, 62, 3630, 8692, 62, 17602, 8, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 8000, 62, 3630, 8692, 62, 17602, 20520, 796, 2560, 62, 3630, 8692, 62, 17602, 628, 220, 220, 220, 1303, 7406, 318, 262, 2560, 2512, 12234, 13, 220, 4784, 284, 262, 6185, 13, 270, 22719, 11, 198, 220, 220, 220, 1303, 428, 2214, 318, 407, 1682, 11529, 12, 34666, 13, 220, 1406, 356, 836, 470, 3613, 340, 13, 198, 220, 220, 220, 923, 62, 9150, 796, 923, 62, 9150, 1343, 3933, 628, 220, 220, 220, 1303, 383, 10752, 8692, 290, 6333, 4017, 74, 293, 13737, 14, 521, 1063, 389, 1306, 13, 198, 220, 220, 220, 1303, 2935, 48499, 1096, 606, 290, 3613, 262, 25462, 1366, 13, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 3630, 8692, 62, 647, 74, 293, 62, 1671, 3702, 6, 4357, 27506, 79, 322, 62, 25677, 17816, 3630, 8692, 62, 647, 74, 293, 62, 9630, 6, 4357, 923, 62, 9150, 796, 748, 48499, 1096, 62, 647, 74, 293, 62, 1671, 3702, 7, 82, 11, 923, 62, 9150, 28, 9688, 62, 9150, 8, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 7983, 62, 647, 74, 293, 62, 1671, 3702, 6, 4357, 27506, 79, 322, 62, 25677, 17816, 7983, 62, 647, 74, 293, 62, 9630, 6, 4357, 923, 62, 9150, 796, 748, 48499, 1096, 62, 647, 74, 293, 62, 1671, 3702, 7, 82, 11, 923, 62, 9150, 28, 9688, 62, 9150, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9461, 612, 338, 262, 2560, 13639, 13, 220, 2935, 48499, 1096, 340, 13, 198, 220, 220, 220, 2560, 62, 25677, 62, 33661, 796, 264, 58, 9688, 62, 9150, 1058, 923, 62, 9150, 1343, 38491, 13, 3262, 13, 37682, 1137, 62, 33489, 60, 198, 220, 220, 220, 27506, 79, 322, 62, 25677, 17816, 8000, 62, 25677, 20520, 796, 11779, 13, 8906, 48499, 1096, 62, 37424, 62, 25677, 7, 8000, 62, 25677, 62, 33661, 11, 6045, 8, 198, 220, 220, 220, 923, 62, 9150, 15853, 38491, 13, 3262, 13, 37682, 1137, 62, 33489, 198, 220, 220, 220, 1303, 383, 2560, 2512, 13639, 1595, 470, 423, 597, 2512, 6001, 11, 198, 220, 220, 220, 1303, 523, 12233, 326, 2214, 13, 220, 357, 1135, 973, 6045, 355, 257, 31548, 1988, 2029, 2014, 198, 220, 220, 220, 1619, 27506, 79, 322, 62, 25677, 17816, 8000, 62, 25677, 6, 7131, 6, 9967, 62, 17015, 20520, 628, 220, 220, 220, 1441, 27506, 79, 322, 62, 25677, 11, 923, 62, 9150, 198, 198, 2, 6955, 798, 422, 4017, 74, 293, 62, 1671, 3702, 62, 6738, 62, 8841, 287, 3740, 1378, 12567, 13, 785, 14, 9509, 6582, 2501, 14, 9509, 6582, 12, 4598, 469, 14, 2436, 672, 14, 69, 22, 3559, 12762, 1828, 64, 1415, 69, 3270, 7252, 23, 67, 33548, 4521, 65, 2001, 4524, 46395, 31911, 535, 67, 14, 8019, 14, 9967, 7983, 13, 9078, 2, 43, 21, 1828, 198, 2, 16409, 1351, 286, 46621, 11, 4017, 74, 293, 6376, 11, 290, 2292, 286, 25462, 1366, 287, 264, 198, 2, 16926, 46, 25, 46450, 428, 2163, 7773, 13, 198, 198, 2, 797, 320, 32851, 286, 275, 83, 8968, 4487, 13, 9122, 62, 647, 74, 293, 62, 1671, 3702, 422, 5903, 6582, 12, 35, 7730, 36, 13, 198, 2, 275, 83, 8968, 4487, 2331, 284, 423, 281, 10061, 5964, 290, 645, 3489, 15151, 29924, 11, 523, 340, 198, 2, 3947, 47897, 284, 302, 12, 320, 26908, 13, 198, 2, 770, 302, 12, 320, 32851, 318, 7323, 1912, 319, 9195, 67, 1219, 73, 338, 15284, 44, 9587, 293, 30016, 13, 198, 198, 2, 6955, 798, 422, 5903, 6582, 12, 35, 7730, 36, 198, 2, 16926, 46, 25, 46450, 428, 2163, 7773, 13, 198, 2, 3740, 1378, 12567, 13, 785, 14, 74, 49, 13348, 14, 72, 15, 3630, 14, 5589, 533, 14, 35395, 25, 9866, 986, 9866, 2, 26069, 12, 39132, 7568, 4521, 68, 2996, 69, 344, 28694, 1765, 28977, 66, 17, 64, 19, 69, 22, 34626, 535, 49, 29119, 198, 198, 2, 6955, 798, 422, 5903, 6582, 12, 35, 7730, 36, 198, 2, 16926, 46, 25, 46450, 428, 2163, 7773, 13, 198, 198, 2, 770, 318, 10488, 262, 976, 355, 262, 45389, 13, 17602, 312, 3419, 2446, 11, 475, 1595, 470, 198, 2, 581, 48499, 1096, 340, 13, 198, 198, 2, 16718, 416, 3049, 62, 17602, 62, 8906, 48499, 1096, 198, 198, 2, 770, 318, 7548, 284, 357, 17602, 13, 8906, 48499, 1096, 22784, 10612, 475, 1595, 470, 21136, 23862, 13 ]
3.208209
1,681
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys def extract(file=None, path=None): """ Extract all of the YouTube links within a Headset user-made list. :param file: headset json export file path :param path: json path to extract, you can use [JSON Columns](http://json-columns.com) to get it :return: `list` containing all of the links in the list """ if not file or not path: print('error: file or json path not provided...') return None # todo: implement pass if __name__ == '__main__': extract()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 25064, 628, 198, 4299, 7925, 7, 7753, 28, 14202, 11, 3108, 28, 14202, 2599, 198, 220, 37227, 198, 220, 29677, 477, 286, 262, 7444, 6117, 1626, 257, 7123, 2617, 2836, 12, 9727, 1351, 13, 628, 220, 1058, 17143, 2393, 25, 23492, 33918, 10784, 2393, 3108, 198, 220, 1058, 17143, 3108, 25, 33918, 3108, 284, 7925, 11, 345, 460, 779, 685, 40386, 29201, 82, 16151, 4023, 1378, 17752, 12, 28665, 82, 13, 785, 8, 284, 651, 340, 198, 220, 1058, 7783, 25, 4600, 4868, 63, 7268, 477, 286, 262, 6117, 287, 262, 1351, 198, 220, 37227, 198, 220, 611, 407, 2393, 393, 407, 3108, 25, 198, 220, 220, 220, 3601, 10786, 18224, 25, 2393, 393, 33918, 3108, 407, 2810, 986, 11537, 198, 220, 220, 220, 1441, 6045, 628, 220, 1303, 284, 4598, 25, 3494, 198, 220, 1208, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 7925, 3419, 198 ]
3.044693
179
from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import login, authenticate from django.contrib.auth.models import User from django.http import JsonResponse #################### # IMPORT OTHER LIBS #################### import os import numpy as np import seaborn as sns import cv2 from heatmappy import Heatmapper from heatmappy.video import VideoHeatmapper from PIL import Image import moviepy.editor as mp import urllib import glob import pandas as pd from pathlib import Path import shutil import vimeo_dl as vimeo import plotly.express as px import plotly import plotly.graph_objects as go from .models import Video, VideoStat EMOTIONS = [ 'angry', 'disgusted', 'fearful', 'happy', 'neutral', 'sad', 'surprised' ] # # Create your views here. # def index(request): # return render(request, 'index.html') heatmap_points = [] def index(request): ''' Renders login + main page ''' global user if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: # if user is authentificated data = Video.objects.all() response_data = { "video_data": data, "name" : username, "is_staff": user.is_staff, } return render(request, 'main.html', response_data) return render(request, 'index.html') else: form = UserCreationForm() return render(request, 'index.html', {'form': form}) def video(request, video_id): ''' Renders video page ''' global video video = list(Video.objects.all())[video_id-1] VideoStat.objects.filter(video_link= video.video_link, user_id= user.username).delete() response_data = { "name" : user.username, "video_name": video.video_name, "video_link": video.video_link, "is_staff": user.is_staff } return render(request, 'video.html', response_data) def recievePoints(request): ''' Recieves gaze points via ajax request ''' x, y = request.GET['x'], request.GET['y'] time = request.GET['time'] width, height = request.GET['width'], request.GET['height'] username = request.GET['username'] try: expressions = urllib.parse.unquote(request.GET['expressions']).split(';') expressions = list(map(float, expressions)) except: expressions = [] try: emotion = EMOTIONS[np.argmax(expressions)] except: emotion = 'None' try: x, y, time = int(float(x)), int(float(y)), int(float(time)) except: x, y = 0, 0 try: width, height = int(width), int(height) except: width, height = 0, 0 VideoStat.objects.create(video_link= video.video_link, user_id= user.username, timestamp = time, emotions=emotion, coordinates=f'{x}:{y}', screen_width=width, screen_height=height) return JsonResponse({'ok': True}) def exportStats(request): ''' Recieves export request via ajax ''' # get video data entries = VideoStat.objects.filter(video_link=video.video_link) DOWNLOAD_PATH = Path('viewer/static/downloads') / video.video_link try: os.mkdir(DOWNLOAD_PATH) except: pass video_data = vimeo.new(f'https://vimeo.com/{video.video_link}') video_data.streams[0].download(quiet=False) video_width, video_height = str(video_data.streams[0]).split('@')[-1].split('x') video_width, video_height = int(video_width), int(video_height) # get video db entries heatmap_points = [] emotion_points = [] for e in entries: x,y = list(map(int, e.coordinates.split(':'))) time = int(e.timestamp) x *= video_width / int(e.screen_width) y *= video_height / int(e.screen_height) heatmap_points.append([x,y, time]) emotion_points.append([e.user_id, time//5000, e.emotions]) emotions = pd.DataFrame(emotion_points) emotions.columns = ['user_name', 'timestamp', 'emotion'] emotion_counts = [] for (ts, item) in emotions.groupby('timestamp'): COUNTER = { 'timestamp': item['timestamp'].iloc[0] * 5, 'angry': 0, 'disgusted': 0, 'fearful': 0, 'happy': 0, 'neutral': 0, 'sad': 0, 'surprised': 0, 'None': 0 } for index, count in item['emotion'].value_counts().items(): COUNTER[index] = count emotion_counts.append(COUNTER.values()) emotion_counts = pd.DataFrame(emotion_counts) emotion_counts.columns = COUNTER.keys() emotion_counts.to_csv(DOWNLOAD_PATH / 'out.csv', index = None) heatmapper = Heatmapper(point_strength=0.6, opacity=0.8) video_heatmapper = VideoHeatmapper(heatmapper) heatmap_video = video_heatmapper.heatmap_on_video_path( video_path=f'{video_data.title}.mp4', points=heatmap_points ) heatmap_video.write_videofile(str(DOWNLOAD_PATH / 'out.mp4'), bitrate="500k", fps=24) mp4_files = glob.glob(str('*.mp4')) for f in mp4_files: if f != 'out.mp4': os.remove(f) shutil.make_archive(str(DOWNLOAD_PATH), 'zip', str(DOWNLOAD_PATH)) shutil.rmtree(str(DOWNLOAD_PATH)) # time based graph fig = px.line(emotion_counts, x="timestamp", y=emotion_counts.columns[1:]) fig = plotly.graph_objs.Figure(fig.data, fig.layout) fig_json_1 = fig.to_json() # pie chart labels, counts = list(emotions['emotion'].value_counts().index), list(emotions['emotion'].value_counts().values) fig = go.Figure(data=[go.Pie(labels=labels, values=counts)]) fig_json_2 = fig.to_json() return JsonResponse({'ok': True, 'plotly_graph_1': fig_json_1, 'plotly_graph_2': fig_json_2})
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 23914, 1330, 11787, 12443, 341, 8479, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 17594, 11, 8323, 5344, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 4023, 1330, 449, 1559, 31077, 628, 198, 14468, 4242, 198, 2, 30023, 9863, 25401, 24653, 4462, 198, 14468, 4242, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 269, 85, 17, 198, 6738, 4894, 76, 7774, 1330, 12308, 76, 11463, 198, 6738, 4894, 76, 7774, 13, 15588, 1330, 7623, 39596, 76, 11463, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 3807, 9078, 13, 35352, 355, 29034, 198, 11748, 2956, 297, 571, 198, 11748, 15095, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 4423, 346, 198, 11748, 410, 47776, 62, 25404, 355, 410, 47776, 198, 11748, 7110, 306, 13, 42712, 355, 279, 87, 198, 11748, 7110, 306, 198, 11748, 7110, 306, 13, 34960, 62, 48205, 355, 467, 198, 198, 6738, 764, 27530, 1330, 7623, 11, 7623, 17126, 198, 198, 3620, 2394, 11053, 796, 685, 198, 220, 220, 220, 705, 648, 563, 3256, 220, 198, 220, 220, 220, 705, 6381, 70, 8459, 3256, 220, 198, 220, 220, 220, 705, 69, 451, 913, 3256, 220, 198, 220, 220, 220, 705, 34191, 3256, 220, 198, 220, 220, 220, 705, 29797, 3256, 220, 198, 220, 220, 220, 705, 82, 324, 3256, 220, 198, 220, 220, 220, 705, 11793, 1050, 1417, 6, 198, 60, 198, 198, 2, 1303, 13610, 534, 5009, 994, 13, 198, 2, 825, 6376, 7, 25927, 2599, 198, 2, 220, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 9630, 13, 6494, 11537, 198, 198, 25080, 8899, 62, 13033, 796, 17635, 198, 4299, 6376, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 371, 7338, 17594, 1343, 1388, 2443, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3298, 2836, 198, 220, 220, 220, 611, 2581, 13, 24396, 6624, 705, 32782, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 20579, 796, 2581, 13, 32782, 17816, 29460, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 2581, 13, 32782, 17816, 28712, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 8323, 5344, 7, 29460, 28, 29460, 11, 9206, 28, 28712, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 2836, 318, 8323, 811, 515, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 7623, 13, 48205, 13, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 7890, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15588, 62, 7890, 1298, 1366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1, 1058, 20579, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 28120, 1298, 2836, 13, 271, 62, 28120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 12417, 13, 6494, 3256, 2882, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 9630, 13, 6494, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1296, 796, 11787, 12443, 341, 8479, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 9630, 13, 6494, 3256, 1391, 6, 687, 10354, 1296, 30072, 628, 198, 4299, 2008, 7, 25927, 11, 2008, 62, 312, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 371, 7338, 2008, 2443, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 3298, 2008, 198, 220, 220, 220, 2008, 796, 1351, 7, 10798, 13, 48205, 13, 439, 28955, 58, 15588, 62, 312, 12, 16, 60, 628, 220, 220, 220, 7623, 17126, 13, 48205, 13, 24455, 7, 15588, 62, 8726, 28, 2008, 13, 15588, 62, 8726, 11, 2836, 62, 312, 28, 2836, 13, 29460, 737, 33678, 3419, 628, 220, 220, 220, 2882, 62, 7890, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1, 1058, 2836, 13, 29460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15588, 62, 3672, 1298, 2008, 13, 15588, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15588, 62, 8726, 1298, 2008, 13, 15588, 62, 8726, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 28120, 1298, 2836, 13, 271, 62, 28120, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 8543, 7, 25927, 11, 705, 15588, 13, 6494, 3256, 2882, 62, 7890, 8, 628, 198, 4299, 664, 12311, 40710, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3311, 17974, 17841, 2173, 2884, 257, 73, 897, 2581, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 2124, 11, 331, 796, 2581, 13, 18851, 17816, 87, 6, 4357, 2581, 13, 18851, 17816, 88, 20520, 198, 220, 220, 220, 640, 796, 2581, 13, 18851, 17816, 2435, 20520, 198, 220, 220, 220, 9647, 11, 6001, 796, 2581, 13, 18851, 17816, 10394, 6, 4357, 2581, 13, 18851, 17816, 17015, 20520, 198, 220, 220, 220, 20579, 796, 2581, 13, 18851, 17816, 29460, 20520, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14700, 796, 2956, 297, 571, 13, 29572, 13, 403, 22708, 7, 25927, 13, 18851, 17816, 42712, 507, 20520, 737, 35312, 10786, 26, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 14700, 796, 1351, 7, 8899, 7, 22468, 11, 14700, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14700, 796, 17635, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9942, 796, 17228, 2394, 11053, 58, 37659, 13, 853, 9806, 7, 42712, 507, 15437, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9942, 796, 705, 14202, 6, 198, 220, 220, 220, 220, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 11, 640, 796, 493, 7, 22468, 7, 87, 36911, 493, 7, 22468, 7, 88, 36911, 493, 7, 22468, 7, 2435, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 796, 657, 11, 657, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 11, 6001, 796, 493, 7, 10394, 828, 493, 7, 17015, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 11, 6001, 796, 657, 11, 657, 628, 198, 220, 220, 220, 7623, 17126, 13, 48205, 13, 17953, 7, 15588, 62, 8726, 28, 2008, 13, 15588, 62, 8726, 11, 2836, 62, 312, 28, 2836, 13, 29460, 11, 41033, 796, 640, 11, 10825, 28, 368, 9650, 11, 22715, 28, 69, 6, 90, 87, 92, 29164, 88, 92, 3256, 3159, 62, 10394, 28, 10394, 11, 3159, 62, 17015, 28, 17015, 8, 628, 198, 220, 220, 220, 1441, 449, 1559, 31077, 15090, 6, 482, 10354, 6407, 30072, 198, 198, 4299, 10784, 29668, 7, 25927, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3311, 17974, 10784, 2581, 2884, 257, 73, 897, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 651, 2008, 1366, 198, 220, 220, 220, 12784, 796, 7623, 17126, 13, 48205, 13, 24455, 7, 15588, 62, 8726, 28, 15588, 13, 15588, 62, 8726, 8, 198, 220, 220, 220, 30320, 35613, 62, 34219, 796, 10644, 10786, 1177, 263, 14, 12708, 14, 15002, 82, 11537, 1220, 2008, 13, 15588, 62, 8726, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 41925, 35613, 62, 34219, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2008, 62, 7890, 796, 410, 47776, 13, 3605, 7, 69, 6, 5450, 1378, 85, 47776, 13, 785, 14, 90, 15588, 13, 15588, 62, 8726, 92, 11537, 198, 220, 220, 220, 2008, 62, 7890, 13, 5532, 82, 58, 15, 4083, 15002, 7, 39624, 28, 25101, 8, 198, 220, 220, 220, 2008, 62, 10394, 11, 2008, 62, 17015, 796, 965, 7, 15588, 62, 7890, 13, 5532, 82, 58, 15, 35944, 35312, 10786, 31, 11537, 58, 12, 16, 4083, 35312, 10786, 87, 11537, 198, 220, 220, 220, 2008, 62, 10394, 11, 2008, 62, 17015, 796, 493, 7, 15588, 62, 10394, 828, 493, 7, 15588, 62, 17015, 8, 628, 220, 220, 220, 1303, 651, 2008, 20613, 12784, 198, 220, 220, 220, 4894, 8899, 62, 13033, 796, 17635, 198, 220, 220, 220, 9942, 62, 13033, 796, 17635, 198, 220, 220, 220, 329, 304, 287, 12784, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 796, 1351, 7, 8899, 7, 600, 11, 304, 13, 37652, 17540, 13, 35312, 7, 10354, 6, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 640, 796, 493, 7, 68, 13, 16514, 27823, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 1635, 28, 2008, 62, 10394, 1220, 493, 7, 68, 13, 9612, 62, 10394, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1635, 28, 2008, 62, 17015, 1220, 493, 7, 68, 13, 9612, 62, 17015, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4894, 8899, 62, 13033, 13, 33295, 26933, 87, 11, 88, 11, 640, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 9942, 62, 13033, 13, 33295, 26933, 68, 13, 7220, 62, 312, 11, 640, 1003, 27641, 11, 304, 13, 368, 36083, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 10825, 796, 279, 67, 13, 6601, 19778, 7, 368, 9650, 62, 13033, 8, 198, 220, 220, 220, 10825, 13, 28665, 82, 796, 37250, 7220, 62, 3672, 3256, 705, 16514, 27823, 3256, 705, 368, 9650, 20520, 628, 220, 220, 220, 220, 198, 220, 220, 220, 9942, 62, 9127, 82, 796, 17635, 198, 220, 220, 220, 329, 357, 912, 11, 2378, 8, 287, 10825, 13, 8094, 1525, 10786, 16514, 27823, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 31404, 5781, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16514, 27823, 10354, 2378, 17816, 16514, 27823, 6, 4083, 346, 420, 58, 15, 60, 1635, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 648, 563, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6381, 70, 8459, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 451, 913, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34191, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29797, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 324, 10354, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11793, 1050, 1417, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14202, 10354, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 954, 287, 2378, 17816, 368, 9650, 6, 4083, 8367, 62, 9127, 82, 22446, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31404, 5781, 58, 9630, 60, 796, 954, 198, 220, 220, 220, 220, 220, 220, 220, 9942, 62, 9127, 82, 13, 33295, 7, 34, 19385, 5781, 13, 27160, 28955, 198, 220, 220, 220, 9942, 62, 9127, 82, 796, 279, 67, 13, 6601, 19778, 7, 368, 9650, 62, 9127, 82, 8, 198, 220, 220, 220, 9942, 62, 9127, 82, 13, 28665, 82, 796, 31404, 5781, 13, 13083, 3419, 198, 220, 220, 220, 9942, 62, 9127, 82, 13, 1462, 62, 40664, 7, 41925, 35613, 62, 34219, 1220, 705, 448, 13, 40664, 3256, 6376, 796, 6045, 8, 628, 220, 220, 220, 220, 198, 220, 220, 220, 4894, 76, 11463, 796, 12308, 76, 11463, 7, 4122, 62, 41402, 28, 15, 13, 21, 11, 45912, 28, 15, 13, 23, 8, 198, 220, 220, 220, 2008, 62, 25080, 76, 11463, 796, 7623, 39596, 76, 11463, 7, 25080, 76, 11463, 8, 198, 220, 220, 220, 4894, 8899, 62, 15588, 796, 2008, 62, 25080, 76, 11463, 13, 25080, 8899, 62, 261, 62, 15588, 62, 6978, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2008, 62, 6978, 28, 69, 6, 90, 15588, 62, 7890, 13, 7839, 27422, 3149, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2173, 28, 25080, 8899, 62, 13033, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4894, 8899, 62, 15588, 13, 13564, 62, 15588, 7753, 7, 2536, 7, 41925, 35613, 62, 34219, 1220, 705, 448, 13, 3149, 19, 33809, 1643, 4873, 2625, 4059, 74, 1600, 32977, 28, 1731, 8, 628, 220, 220, 220, 29034, 19, 62, 16624, 796, 15095, 13, 4743, 672, 7, 2536, 10786, 24620, 3149, 19, 6, 4008, 198, 220, 220, 220, 329, 277, 287, 29034, 19, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 14512, 705, 448, 13, 3149, 19, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 69, 8, 628, 220, 220, 220, 4423, 346, 13, 15883, 62, 17474, 7, 2536, 7, 41925, 35613, 62, 34219, 828, 705, 13344, 3256, 965, 7, 41925, 35613, 62, 34219, 4008, 198, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 2536, 7, 41925, 35613, 62, 34219, 4008, 628, 198, 220, 220, 220, 1303, 640, 1912, 4823, 628, 220, 220, 220, 2336, 796, 279, 87, 13, 1370, 7, 368, 9650, 62, 9127, 82, 11, 2124, 2625, 16514, 27823, 1600, 331, 28, 368, 9650, 62, 9127, 82, 13, 28665, 82, 58, 16, 25, 12962, 198, 220, 220, 220, 2336, 796, 7110, 306, 13, 34960, 62, 672, 8457, 13, 11337, 7, 5647, 13, 7890, 11, 2336, 13, 39786, 8, 198, 220, 220, 220, 2336, 62, 17752, 62, 16, 796, 2336, 13, 1462, 62, 17752, 3419, 628, 220, 220, 220, 1303, 2508, 8262, 198, 220, 220, 220, 14722, 11, 9853, 796, 1351, 7, 368, 36083, 17816, 368, 9650, 6, 4083, 8367, 62, 9127, 82, 22446, 9630, 828, 1351, 7, 368, 36083, 17816, 368, 9650, 6, 4083, 8367, 62, 9127, 82, 22446, 27160, 8, 198, 220, 220, 220, 2336, 796, 467, 13, 11337, 7, 7890, 41888, 2188, 13, 48223, 7, 23912, 1424, 28, 23912, 1424, 11, 3815, 28, 9127, 82, 8, 12962, 198, 220, 220, 220, 2336, 62, 17752, 62, 17, 796, 2336, 13, 1462, 62, 17752, 3419, 628, 628, 198, 220, 220, 220, 1441, 449, 1559, 31077, 15090, 6, 482, 10354, 6407, 11, 705, 29487, 306, 62, 34960, 62, 16, 10354, 2336, 62, 17752, 62, 16, 11, 705, 29487, 306, 62, 34960, 62, 17, 10354, 2336, 62, 17752, 62, 17, 30072, 220, 220, 220, 198 ]
2.31539
2,638
import re from importlib import import_module import inspect import sublime_plugin import sublime SCOPE_RE = re.compile(r'\bsource\.python\b') LIB_MODULE_RE = re.compile(r'\bsupport\.module\.python\b') def grab_module(view, cursor): ''' Grabs the entire module path under the cursor ''' word_sel = view.word(cursor) pos = None # Are we on a dot right now? if view.substr(cursor.begin() - 1) == '.': pos = cursor.begin() - 1 # Are we on a word? elif view.substr(word_sel.begin() - 1) == '.': pos = word_sel.begin() - 1 # Not a module else: return False path_parts = [] while view.substr(pos) == '.': # Expand prefix to a word word_sel = view.word(pos - 1) word = view.substr(word_sel) path_parts.append(word) pos = word_sel.begin() - 1 # Format the module path path = '.'.join(reversed(path_parts)) return path
[ 11748, 302, 198, 6738, 1330, 8019, 1330, 1330, 62, 21412, 198, 11748, 10104, 198, 198, 11748, 41674, 62, 33803, 198, 11748, 41674, 628, 198, 6173, 32135, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 1443, 1668, 17405, 29412, 59, 65, 11537, 198, 40347, 62, 33365, 24212, 62, 2200, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 1443, 84, 4926, 17405, 21412, 17405, 29412, 59, 65, 11537, 628, 198, 198, 4299, 5552, 62, 21412, 7, 1177, 11, 23493, 2599, 198, 220, 220, 220, 705, 7061, 1902, 8937, 262, 2104, 8265, 3108, 739, 262, 23493, 705, 7061, 198, 220, 220, 220, 1573, 62, 741, 796, 1570, 13, 4775, 7, 66, 21471, 8, 628, 220, 220, 220, 1426, 796, 6045, 628, 220, 220, 220, 1303, 4231, 356, 319, 257, 16605, 826, 783, 30, 198, 220, 220, 220, 611, 1570, 13, 7266, 2536, 7, 66, 21471, 13, 27471, 3419, 532, 352, 8, 6624, 705, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 23493, 13, 27471, 3419, 532, 352, 628, 220, 220, 220, 1303, 4231, 356, 319, 257, 1573, 30, 198, 220, 220, 220, 1288, 361, 1570, 13, 7266, 2536, 7, 4775, 62, 741, 13, 27471, 3419, 532, 352, 8, 6624, 705, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 1573, 62, 741, 13, 27471, 3419, 532, 352, 628, 220, 220, 220, 1303, 1892, 257, 8265, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 3108, 62, 42632, 796, 17635, 198, 220, 220, 220, 981, 1570, 13, 7266, 2536, 7, 1930, 8, 6624, 705, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49368, 21231, 284, 257, 1573, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 62, 741, 796, 1570, 13, 4775, 7, 1930, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 1570, 13, 7266, 2536, 7, 4775, 62, 741, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 42632, 13, 33295, 7, 4775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 1573, 62, 741, 13, 27471, 3419, 532, 352, 628, 220, 220, 220, 1303, 18980, 262, 8265, 3108, 198, 220, 220, 220, 3108, 796, 705, 2637, 13, 22179, 7, 260, 690, 276, 7, 6978, 62, 42632, 4008, 628, 220, 220, 220, 1441, 3108, 628, 198 ]
2.382872
397
""" Calculates port ranks and distributes ports. The rank of a port is a floating point number that represents its position inside the containing layer. This depends on the node order of that layer and on the port constraints of the nodes. Port ranks are used by {@link ICrossingMinimizationHeuristics for calculating barycenter or median values for nodes. Furthermore, they are used in this class for distributing the ports of nodes where the order of ports is not fixed, which has to be done as the last step of each crossing minimization processor. There are different ways to determine port ranks, therefore that is done in concrete subclasses. """ from collections import defaultdict from math import inf from typing import List from layeredGraphLayouter.containers.constants import PortType, PortSide from layeredGraphLayouter.containers.lNode import LNode from layeredGraphLayouter.containers.lPort import LPort class AbstractBarycenterPortDistributor(): """ Constructs a port distributor for the given array of port ranks. All ports are required to be assigned ids in the range of the given array. :ivar portRanks: port ranks dict {port: rank} in which the results of ranks calculation are stored. """ # ######################################/ # Port Rank Assignment def calculatePortRanks_many(self, layer: List[LNode], portType: PortType): """ Determine ranks for all ports of specific type in the given layer. The ranks are written to the {@link #getPortRanks() array. :param layer: a layer as node array :param portType: the port type to consider """ #assert isinstance(layer, LNodeLayer), (layer, layer.__class__) calculatePortRanks = self.calculatePortRanks consumedRank = 0 for node in layer: consumedRank += calculatePortRanks(node, consumedRank, portType) def calculatePortRanks(self, node: LNode, rankSum: float, type_: PortType): """ Assign port ranks for the input or output ports of the given node. If the node's port constraints imply a fixed order, the ports are assumed to be pre-ordered in the usual way, i.e. in clockwise order north - east - south - west. The ranks are written to the {@link #getPortRanks() array. :param node: a node :param rankSum: the sum of ranks of preceding nodes in the same layer :param type: the port type to consider :return the rank consumed by the given node the following node's ranks start at {@code rankSum + consumedRank :see: {@link org.eclipse.alg.layered.intermediate.PortListSorter """ raise NotImplementedError("Implement on child class") # ######################################/ # Port Distribution def distributePorts(self, node, ports): """ * Distribute the ports of the given node by their sides, connected ports, and input or output * type. * * :param node * node whose ports shall be sorted """ self.inLayerPorts.clear() if ports: self.iteratePortsAndCollectInLayerPorts(node, ports) if self.inLayerPorts: self.calculateInLayerPortsBarycenterValues(node) def sortPorts(self, node): """ Sort the ports of a node using the given relative position values. These values are interpreted as a hint for the clockwise order of ports. :param node: a node """ portBarycenter = self.portBarycenter for side in node.iterSides(): side.sort(key=lambda p: portBarycenter[p])
[ 198, 37811, 198, 9771, 3129, 689, 2493, 9803, 290, 1233, 7657, 14090, 13, 198, 464, 4279, 286, 257, 2493, 318, 257, 12462, 966, 1271, 326, 6870, 663, 2292, 198, 48787, 262, 7268, 7679, 13, 770, 8338, 319, 262, 10139, 1502, 286, 326, 7679, 290, 319, 262, 198, 634, 17778, 286, 262, 13760, 13, 4347, 9803, 389, 973, 416, 1391, 31, 8726, 12460, 1214, 278, 9452, 320, 1634, 1544, 333, 3969, 198, 1640, 26019, 275, 560, 16159, 393, 14288, 3815, 329, 13760, 13, 11399, 11, 484, 389, 973, 287, 428, 198, 4871, 329, 25950, 262, 14090, 286, 13760, 810, 262, 1502, 286, 14090, 318, 407, 5969, 11, 198, 4758, 468, 284, 307, 1760, 355, 262, 938, 2239, 286, 1123, 12538, 10356, 1634, 12649, 13, 198, 1858, 389, 1180, 2842, 284, 5004, 2493, 9803, 11, 4361, 326, 318, 1760, 287, 10017, 850, 37724, 13, 198, 37811, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 10688, 1330, 1167, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 37748, 37065, 23763, 39605, 13, 3642, 50221, 13, 9979, 1187, 1330, 4347, 6030, 11, 4347, 24819, 198, 6738, 37748, 37065, 23763, 39605, 13, 3642, 50221, 13, 75, 19667, 1330, 406, 19667, 198, 6738, 37748, 37065, 23763, 39605, 13, 3642, 50221, 13, 75, 13924, 1330, 406, 13924, 628, 628, 198, 198, 4871, 27741, 33, 560, 16159, 13924, 20344, 2455, 273, 33529, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 28407, 82, 257, 2493, 32137, 329, 262, 1813, 7177, 286, 2493, 9803, 13, 220, 198, 220, 220, 220, 1439, 14090, 389, 2672, 284, 307, 8686, 220, 2340, 287, 262, 2837, 286, 262, 1813, 7177, 13, 628, 220, 220, 220, 1058, 452, 283, 2493, 49, 2283, 25, 2493, 9803, 8633, 1391, 634, 25, 4279, 92, 287, 543, 262, 2482, 286, 9803, 17952, 389, 8574, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 1303, 29113, 4242, 2, 14, 198, 220, 220, 220, 1303, 4347, 10916, 50144, 628, 220, 220, 220, 825, 15284, 13924, 49, 2283, 62, 21834, 7, 944, 11, 7679, 25, 7343, 58, 43, 19667, 4357, 2493, 6030, 25, 4347, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 45559, 3810, 9803, 329, 477, 14090, 286, 2176, 2099, 287, 262, 1813, 7679, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9803, 389, 3194, 284, 262, 1391, 31, 8726, 1303, 1136, 13924, 49, 2283, 3419, 7177, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7679, 25, 257, 7679, 355, 10139, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2493, 6030, 25, 262, 2493, 2099, 284, 2074, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 30493, 318, 39098, 7, 29289, 11, 406, 19667, 49925, 828, 357, 29289, 11, 7679, 13, 834, 4871, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15284, 13924, 49, 2283, 796, 2116, 13, 9948, 3129, 378, 13924, 49, 2283, 198, 220, 220, 220, 220, 220, 220, 220, 13529, 27520, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 7679, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13529, 27520, 15853, 15284, 13924, 49, 2283, 7, 17440, 11, 13529, 27520, 11, 2493, 6030, 8, 628, 220, 220, 220, 825, 15284, 13924, 49, 2283, 7, 944, 11, 10139, 25, 406, 19667, 11, 4279, 13065, 25, 12178, 11, 2099, 62, 25, 4347, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2195, 570, 2493, 9803, 329, 262, 5128, 393, 5072, 14090, 286, 262, 1813, 10139, 13, 1002, 262, 10139, 338, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 17778, 20135, 257, 5969, 1502, 11, 262, 14090, 389, 9672, 284, 307, 662, 12, 24071, 287, 262, 6678, 835, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 13, 68, 13, 287, 8801, 3083, 1502, 5093, 532, 7627, 532, 5366, 532, 7421, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9803, 389, 3194, 284, 262, 1391, 31, 8726, 1303, 1136, 13924, 49, 2283, 3419, 7177, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10139, 25, 257, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4279, 13065, 25, 262, 2160, 286, 9803, 286, 18148, 13760, 287, 262, 976, 7679, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2099, 25, 262, 2493, 2099, 284, 2074, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 262, 4279, 13529, 416, 262, 1813, 10139, 262, 1708, 10139, 338, 9803, 923, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 31, 8189, 4279, 13065, 1343, 13529, 27520, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 3826, 25, 220, 1391, 31, 8726, 8745, 13, 68, 17043, 13, 14016, 13, 10724, 1068, 13, 3849, 13857, 13, 13924, 8053, 50, 4337, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 3546, 26908, 319, 1200, 1398, 4943, 628, 220, 220, 220, 1303, 1303, 29113, 4242, 2, 14, 198, 220, 220, 220, 1303, 4347, 27484, 628, 220, 220, 220, 825, 14983, 47, 2096, 7, 944, 11, 10139, 11, 14090, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 4307, 4163, 262, 14090, 286, 262, 1813, 10139, 416, 511, 5389, 11, 5884, 14090, 11, 290, 5128, 393, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1058, 17143, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 3025, 14090, 2236, 307, 23243, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 49925, 47, 2096, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14090, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2676, 378, 47, 2096, 1870, 31337, 818, 49925, 47, 2096, 7, 17440, 11, 14090, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 259, 49925, 47, 2096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9948, 3129, 378, 818, 49925, 47, 2096, 33, 560, 16159, 40161, 7, 17440, 8, 628, 220, 220, 220, 825, 3297, 47, 2096, 7, 944, 11, 10139, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33947, 262, 14090, 286, 257, 10139, 1262, 262, 1813, 3585, 2292, 3815, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2312, 3815, 389, 16173, 355, 257, 9254, 329, 262, 8801, 3083, 1502, 286, 14090, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10139, 25, 257, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 33, 560, 16159, 796, 2116, 13, 634, 33, 560, 16159, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1735, 287, 10139, 13, 2676, 50, 1460, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1735, 13, 30619, 7, 2539, 28, 50033, 279, 25, 2493, 33, 560, 16159, 58, 79, 12962, 198 ]
2.94127
1,260
from setuptools import setup, find_packages PACKAGENAME = "deltasigma" VERSION = "0.0.dev" setup( name=PACKAGENAME, version=VERSION, author="Antonio Villarreal", author_email="[email protected]", description="Source code for chopper / halotools implementation to calculate delta sigma.", long_description="Source code for chopper / halotools implementation to calculate delta sigma.", install_requires=["numpy", "halotools", "colossus", "yaml", "pyyaml", "psutil", "six"], packages=find_packages(), url="https://github.com/villarrealas/deltasigma" )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 628, 198, 47, 8120, 4760, 1677, 10067, 796, 366, 67, 2120, 292, 13495, 1, 198, 43717, 796, 366, 15, 13, 15, 13, 7959, 1, 628, 198, 40406, 7, 198, 220, 220, 220, 1438, 28, 47, 8120, 4760, 1677, 10067, 11, 198, 220, 220, 220, 2196, 28, 43717, 11, 198, 220, 220, 220, 1772, 2625, 13217, 261, 952, 9757, 283, 5305, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 615, 359, 283, 5305, 31, 272, 75, 13, 9567, 1600, 198, 220, 220, 220, 6764, 2625, 7416, 2438, 329, 1727, 2848, 1220, 10284, 313, 10141, 7822, 284, 15284, 25979, 264, 13495, 33283, 198, 220, 220, 220, 890, 62, 11213, 2625, 7416, 2438, 329, 1727, 2848, 1220, 10284, 313, 10141, 7822, 284, 15284, 25979, 264, 13495, 33283, 198, 220, 220, 220, 2721, 62, 47911, 28, 14692, 77, 32152, 1600, 366, 14201, 313, 10141, 1600, 366, 4033, 36533, 1600, 366, 88, 43695, 1600, 366, 9078, 88, 43695, 1600, 366, 862, 22602, 1600, 366, 19412, 33116, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 41082, 283, 5305, 292, 14, 67, 2120, 292, 13495, 1, 198, 8, 198 ]
2.859903
207
import itertools import os import csv from loguru import logger from datetime import * class SensorPersistence(Persistence): """ Writes sensor data to a buffer and periodically flushes to file system. """
[ 11748, 340, 861, 10141, 201, 198, 11748, 28686, 201, 198, 11748, 269, 21370, 201, 198, 6738, 2604, 14717, 1330, 49706, 201, 198, 201, 198, 6738, 4818, 8079, 1330, 1635, 201, 198, 201, 198, 201, 198, 201, 198, 4871, 35367, 30946, 13274, 7, 30946, 13274, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 12257, 274, 12694, 1366, 284, 257, 11876, 290, 26034, 781, 17237, 284, 2393, 1080, 13, 201, 198, 220, 220, 220, 37227, 201, 198 ]
2.86747
83
from picamera import PiCamera from time import sleep from gpiozero import Button import keyboard button = keyboard.is_pressed('h') camera = PiCamera() while True: camera.start_preview() button.wait_for_press() print("Button has been pressed!") sleep(3) camera.capture('animateImage.jpg') camera.stop_preview()
[ 6738, 8301, 18144, 1330, 13993, 35632, 198, 6738, 640, 1330, 3993, 198, 6738, 27809, 952, 22570, 1330, 20969, 198, 11748, 10586, 198, 198, 16539, 796, 10586, 13, 271, 62, 45477, 10786, 71, 11537, 198, 25695, 796, 13993, 35632, 3419, 198, 198, 4514, 6407, 25, 198, 197, 25695, 13, 9688, 62, 3866, 1177, 3419, 198, 197, 16539, 13, 17077, 62, 1640, 62, 8439, 3419, 198, 197, 4798, 7203, 21864, 468, 587, 12070, 2474, 8, 198, 197, 42832, 7, 18, 8, 198, 197, 25695, 13, 27144, 495, 10786, 45685, 5159, 13, 9479, 11537, 198, 197, 25695, 13, 11338, 62, 3866, 1177, 3419, 198 ]
3.148515
101
#!/usr/bin/env python import os, sys, pickle import keras.backend as K import tensorflow as tf import numpy as np from argparse import ArgumentParser sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from datasets import mnist from models import (train, accuracy, save_to_file, fc_100_100_10, pca_filtered_model, fastica_filtered_model, incrementalpca_filtered_model, nmf_filtered_model, truncatedsvd_filtered_model, kernelpca_filtered_model) argument_parser = ArgumentParser() argument_parser.add_argument("--pca", action="store_true", help="use PCA image filter defense") argument_parser.add_argument("--fastica", action="store_true", help="use FastICA image filter defense") argument_parser.add_argument("--incrementalpca", action="store_true", help="use IncrementalPCA image filter defense") argument_parser.add_argument("--nmf", action="store_true", help="use IncrementalPCA image filter defense") argument_parser.add_argument("--truncatedsvd", action="store_true", help="use TruncatedSVD image filter defense") argument_parser.add_argument("--kernelpca", action="store_true", help="use KernelPCA image filter defense") argument_parser.add_argument("--n-components", type=int, nargs="+", default=[], help="number of components for image filters") argument_parser.add_argument("--epochs", type=int, default=-1, help="default: let the model choose") argument_parser.add_argument("--random-seed", action="store_true", help="initialize model with random seed") args = argument_parser.parse_args() PREFIX = os.environ.get('PREFIX', '.') X_train, y_train, X_test, y_test = mnist() if not args.random_seed: K.clear_session() tf.set_random_seed(1234) np.random.seed(1234) no_defense_model = fc_100_100_10() print(f"Training {no_defense_model.name}...") train(no_defense_model, X_train, y_train, args.epochs, verbose=True, stop_on_stable_weights=True, reduce_lr_on_plateau=True, stop_on_stable_weights_patience=60, reduce_lr_on_plateau_patience=30) print(f"Saving {no_defense_model.name}...") save_to_file(no_defense_model, PREFIX) for n_components in args.n_components: if args.pca: pca = cached(f"pca-{n_components}") filtered_model = pca_filtered_model(no_defense_model, X_train, n_components, pca=pca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.fastica: fastica = cached(f"fastica-{n_components}") filtered_model = fastica_filtered_model(no_defense_model, X_train, n_components, fastica=fastica) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.incrementalpca: incrementalpca = cached(f"incrementalpca-{n_components}") filtered_model = incrementalpca_filtered_model(no_defense_model, X_train, n_components, incrementalpca=incrementalpca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.nmf: nmf = cached(f"nmf-{n_components}") filtered_model = nmf_filtered_model(no_defense_model, X_train, n_components, nmf=nmf) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.truncatedsvd: truncatedsvd = cached(f"truncatedsvd-{n_components}") filtered_model = truncatedsvd_filtered_model(no_defense_model, X_train, n_components, truncatedsvd=truncatedsvd) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX) if args.kernelpca: kernelpca = cached(f"kernelpca-{n_components}") filtered_model = kernelpca_filtered_model(no_defense_model, X_train, n_components, kernelpca=kernelpca) print(f"Saving {filtered_model.name}...") save_to_file(filtered_model, PREFIX)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 28686, 11, 25064, 11, 2298, 293, 198, 11748, 41927, 292, 13, 1891, 437, 355, 509, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 492, 6, 22305, 198, 6738, 40522, 1330, 285, 77, 396, 198, 6738, 4981, 1330, 357, 27432, 11, 9922, 11, 3613, 62, 1462, 62, 7753, 11, 277, 66, 62, 3064, 62, 3064, 62, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 62, 10379, 4400, 62, 19849, 11, 3049, 3970, 62, 10379, 4400, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29497, 79, 6888, 62, 10379, 4400, 62, 19849, 11, 28642, 69, 62, 10379, 4400, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 515, 82, 20306, 62, 10379, 4400, 62, 19849, 11, 9720, 79, 6888, 62, 10379, 4400, 62, 19849, 8, 198, 198, 49140, 62, 48610, 796, 45751, 46677, 3419, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 79, 6888, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 4217, 32, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 69, 3477, 64, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 12549, 25241, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 24988, 37098, 79, 6888, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 10791, 37098, 5662, 32, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 21533, 69, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 10791, 37098, 5662, 32, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 2213, 19524, 515, 82, 20306, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 833, 19524, 515, 50, 8898, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 33885, 79, 6888, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1904, 32169, 5662, 32, 2939, 8106, 3761, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 77, 12, 5589, 3906, 1600, 2099, 28, 600, 11, 299, 22046, 2625, 10, 1600, 4277, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 17618, 286, 6805, 329, 2939, 16628, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 538, 5374, 82, 1600, 2099, 28, 600, 11, 4277, 10779, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 12286, 25, 1309, 262, 2746, 3853, 4943, 198, 49140, 62, 48610, 13, 2860, 62, 49140, 7203, 438, 25120, 12, 28826, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 36733, 1096, 2746, 351, 4738, 9403, 4943, 198, 22046, 796, 4578, 62, 48610, 13, 29572, 62, 22046, 3419, 198, 198, 47, 31688, 10426, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 47, 31688, 10426, 3256, 705, 2637, 8, 198, 198, 55, 62, 27432, 11, 331, 62, 27432, 11, 1395, 62, 9288, 11, 331, 62, 9288, 796, 285, 77, 396, 3419, 198, 198, 361, 407, 26498, 13, 25120, 62, 28826, 25, 198, 220, 220, 220, 509, 13, 20063, 62, 29891, 3419, 198, 220, 220, 220, 48700, 13, 2617, 62, 25120, 62, 28826, 7, 1065, 2682, 8, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 1065, 2682, 8, 198, 198, 3919, 62, 19774, 62, 19849, 796, 277, 66, 62, 3064, 62, 3064, 62, 940, 3419, 198, 4798, 7, 69, 1, 44357, 1391, 3919, 62, 19774, 62, 19849, 13, 3672, 92, 9313, 8, 198, 27432, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 331, 62, 27432, 11, 26498, 13, 538, 5374, 82, 11, 15942, 577, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 2245, 62, 261, 62, 31284, 62, 43775, 28, 17821, 11, 4646, 62, 14050, 62, 261, 62, 6816, 559, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 2245, 62, 261, 62, 31284, 62, 43775, 62, 8071, 1240, 28, 1899, 11, 4646, 62, 14050, 62, 261, 62, 6816, 559, 62, 8071, 1240, 28, 1270, 8, 198, 198, 4798, 7, 69, 1, 50, 2703, 1391, 3919, 62, 19774, 62, 19849, 13, 3672, 92, 9313, 8, 198, 21928, 62, 1462, 62, 7753, 7, 3919, 62, 19774, 62, 19849, 11, 22814, 47084, 8, 198, 198, 1640, 299, 62, 5589, 3906, 287, 26498, 13, 77, 62, 5589, 3906, 25, 198, 220, 220, 220, 611, 26498, 13, 79, 6888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 796, 39986, 7, 69, 1, 79, 6888, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 279, 6888, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 279, 6888, 28, 79, 6888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 69, 3477, 64, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3049, 3970, 796, 39986, 7, 69, 1, 69, 3477, 64, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 3049, 3970, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 3049, 3970, 28, 69, 3477, 64, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 24988, 37098, 79, 6888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29497, 79, 6888, 796, 39986, 7, 69, 1, 24988, 37098, 79, 6888, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 29497, 79, 6888, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29497, 79, 6888, 28, 24988, 37098, 79, 6888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 21533, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28642, 69, 796, 39986, 7, 69, 1, 21533, 69, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 28642, 69, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 28642, 69, 28, 21533, 69, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 2213, 19524, 515, 82, 20306, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40122, 515, 82, 20306, 796, 39986, 7, 69, 1, 2213, 19524, 515, 82, 20306, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 40122, 515, 82, 20306, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40122, 515, 82, 20306, 28, 2213, 19524, 515, 82, 20306, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 628, 220, 220, 220, 611, 26498, 13, 33885, 79, 6888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 79, 6888, 796, 39986, 7, 69, 1, 33885, 79, 6888, 12, 90, 77, 62, 5589, 3906, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 29083, 62, 19849, 796, 9720, 79, 6888, 62, 10379, 4400, 62, 19849, 7, 3919, 62, 19774, 62, 19849, 11, 1395, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 11, 9720, 79, 6888, 28, 33885, 79, 6888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 2703, 1391, 10379, 4400, 62, 19849, 13, 3672, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 1462, 62, 7753, 7, 10379, 4400, 62, 19849, 11, 22814, 47084, 8, 198 ]
2.054323
2,209
#!/usr/bin/env python ''' VIMTern.py dispatch work to your intern via Slack from the command line. ''' from random import randint from sys import exit, argv import argparse import json import yaml # To load the intrn file VERBOSE = False try: import requests except ImportError: print "Unable to import requests. Run `pip install requests`." exit(1) def _load_intrn(intrn_file="default.intrn"): ''' Load the config file. ''' config = None with open(intrn_file, 'r') as stream: try: config = yaml.load(stream) except yaml.YAMLError as ex: print str(ex) exit(1) return config def vimtern_do(msg, intrn_file): ''' Issue commands to 1ntern. ''' global VERBOSE if not intrn_file: raise AttributeError("Path to .intrn file required.") config = _load_intrn(intrn_file) if not msg or msg == '': num = len(config["default_msgs"]) msg = config["default_msgs"][randint(0, num - 1)] if not isinstance(msg, basestring): print "vimtern_do: msg is not a string." print "msg: ", msg exit(1) # Build JSON message payload msg = msg.replace('"', '').strip() channel = config["Slack"]["channel"] username = config["Slack"]["username"] icon_emoji = config["Slack"]["icon_emoji"] payload = json.dumps({ "text": msg, "channel": channel, "username": username, "icon_emoji": icon_emoji, "parse": "full" }) # Create and send POST request to Slack webhook slack_uri = config['Slack']['uri'] try: r = requests.post(slack_uri, data=payload, headers={ 'Content-type': 'application/json'}) r.raise_for_status() except requests.exceptions.ConnectionError: print "Could not establish connection to Slack." exit(1) except requests.exceptions.HTTPError as err: print "Slack API request was not successful." print err.message exit(1) except requests.exceptions.Timeout: print "Slack API request timed out." exit(1) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-f", "--config", dest='config', help="Path to the .intrn config file.") parser.add_argument("-m", "--msg", dest='msg', help="Message to send.", default="") parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='Verbose mode to help debug.') parser.set_defaults(verbose=False) args = parser.parse_args() VERBOSE = args.verbose if VERBOSE: print "ARGS: ", argv try: vimtern_do(args.msg, args.config) except Exception, e: print str(e) parser.print_help()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 7061, 6, 198, 53, 3955, 51, 1142, 13, 9078, 27965, 670, 284, 534, 1788, 2884, 36256, 422, 262, 3141, 1627, 13, 198, 7061, 6, 198, 6738, 4738, 1330, 43720, 600, 198, 6738, 25064, 1330, 8420, 11, 1822, 85, 198, 11748, 1822, 29572, 198, 11748, 33918, 198, 11748, 331, 43695, 220, 1303, 1675, 3440, 262, 9913, 77, 2393, 198, 198, 5959, 33, 14058, 796, 10352, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 7007, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 3601, 366, 3118, 540, 284, 1330, 7007, 13, 5660, 4600, 79, 541, 2721, 7007, 63, 526, 198, 220, 220, 220, 8420, 7, 16, 8, 628, 198, 4299, 4808, 2220, 62, 600, 35906, 7, 600, 35906, 62, 7753, 2625, 12286, 13, 600, 35906, 1, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 8778, 262, 4566, 2393, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4566, 796, 6045, 198, 220, 220, 220, 351, 1280, 7, 600, 35906, 62, 7753, 11, 705, 81, 11537, 355, 4269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 331, 43695, 13, 2220, 7, 5532, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 331, 43695, 13, 56, 2390, 2538, 81, 1472, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 965, 7, 1069, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 198, 220, 220, 220, 1441, 4566, 628, 198, 4299, 43907, 759, 62, 4598, 7, 19662, 11, 9913, 77, 62, 7753, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 18232, 9729, 284, 352, 77, 759, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3298, 33310, 33, 14058, 198, 220, 220, 220, 611, 407, 9913, 77, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 7203, 15235, 284, 764, 600, 35906, 2393, 2672, 19570, 198, 220, 220, 220, 4566, 796, 4808, 2220, 62, 600, 35906, 7, 600, 35906, 62, 7753, 8, 198, 220, 220, 220, 611, 407, 31456, 393, 31456, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 997, 796, 18896, 7, 11250, 14692, 12286, 62, 907, 14542, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 4566, 14692, 12286, 62, 907, 14542, 1, 7131, 25192, 600, 7, 15, 11, 997, 532, 352, 15437, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 19662, 11, 1615, 395, 1806, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 31124, 759, 62, 4598, 25, 31456, 318, 407, 257, 4731, 526, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 19662, 25, 33172, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 220, 220, 1303, 10934, 19449, 3275, 21437, 198, 220, 220, 220, 31456, 796, 31456, 13, 33491, 10786, 1, 3256, 10148, 737, 36311, 3419, 198, 220, 220, 220, 6518, 796, 4566, 14692, 11122, 441, 1, 7131, 1, 17620, 8973, 198, 220, 220, 220, 20579, 796, 4566, 14692, 11122, 441, 1, 7131, 1, 29460, 8973, 198, 220, 220, 220, 7196, 62, 368, 31370, 796, 4566, 14692, 11122, 441, 1, 7131, 1, 4749, 62, 368, 31370, 8973, 198, 220, 220, 220, 21437, 796, 33918, 13, 67, 8142, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 31456, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17620, 1298, 6518, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29460, 1298, 20579, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4749, 62, 368, 31370, 1298, 7196, 62, 368, 31370, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29572, 1298, 366, 12853, 1, 198, 220, 220, 220, 32092, 628, 220, 220, 220, 1303, 13610, 290, 3758, 24582, 2581, 284, 36256, 3992, 25480, 198, 220, 220, 220, 30740, 62, 9900, 796, 4566, 17816, 11122, 441, 6, 7131, 6, 9900, 20520, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 7007, 13, 7353, 7, 6649, 441, 62, 9900, 11, 1366, 28, 15577, 2220, 11, 24697, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19746, 12, 4906, 10354, 705, 31438, 14, 17752, 6, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 32048, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 23722, 407, 4474, 4637, 284, 36256, 526, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 40717, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 11122, 441, 7824, 2581, 373, 407, 4388, 526, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 11454, 13, 20500, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 48031, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 11122, 441, 7824, 2581, 28805, 503, 526, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 69, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 11250, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 11250, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 262, 764, 600, 35906, 4566, 2393, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 19662, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 19662, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 12837, 284, 3758, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 85, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 19011, 577, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 19011, 577, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 13414, 65, 577, 4235, 284, 1037, 14257, 2637, 8, 198, 220, 220, 220, 30751, 13, 2617, 62, 12286, 82, 7, 19011, 577, 28, 25101, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 33310, 33, 14058, 796, 26498, 13, 19011, 577, 628, 220, 220, 220, 611, 33310, 33, 14058, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 1503, 14313, 25, 33172, 1822, 85, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 43907, 759, 62, 4598, 7, 22046, 13, 19662, 11, 26498, 13, 11250, 8, 198, 220, 220, 220, 2845, 35528, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 4798, 62, 16794, 3419, 198 ]
2.134454
1,428
from numpy import array
[ 6738, 299, 32152, 1330, 7177 ]
4.6
5
import stripe from stripe.test.helper import StripeResourceTest
[ 11748, 39858, 198, 6738, 39858, 13, 9288, 13, 2978, 525, 1330, 26137, 431, 26198, 14402, 628 ]
4.0625
16
""" Created on 10 Nov 2018 @author: Bruno Beloff ([email protected]) a dummy LED state, to maintain compatibility with the DFE Eng package """ from collections import OrderedDict from scs_core.data.json import JSONable # -------------------------------------------------------------------------------------------------------------------- class LEDState(JSONable): """ classdocs """ # ---------------------------------------------------------------------------------------------------------------- @classmethod # ---------------------------------------------------------------------------------------------------------------- # noinspection PyUnusedLocal def __init__(self, colour0, colour1): """ Constructor """ pass # ---------------------------------------------------------------------------------------------------------------- @classmethod # ---------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------- @property @property # ----------------------------------------------------------------------------------------------------------------
[ 37811, 198, 41972, 319, 838, 5267, 2864, 198, 198, 31, 9800, 25, 31045, 3944, 2364, 357, 1671, 36909, 13, 6667, 2364, 31, 35782, 1073, 5773, 4234, 13, 785, 8, 198, 198, 64, 31548, 12365, 1181, 11, 284, 5529, 17764, 351, 262, 360, 15112, 1985, 5301, 198, 37811, 198, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 6738, 629, 82, 62, 7295, 13, 7890, 13, 17752, 1330, 19449, 540, 628, 198, 2, 16529, 3880, 19351, 198, 198, 4871, 12365, 9012, 7, 40386, 540, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1398, 31628, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 1303, 645, 1040, 14978, 9485, 3118, 1484, 14565, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9568, 15, 11, 9568, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 198, 220, 220, 220, 1303, 16529, 47232, 628, 220, 220, 220, 2488, 26745, 628, 198, 220, 220, 220, 2488, 26745, 628, 198, 220, 220, 220, 1303, 16529, 47232, 198 ]
5.549587
242
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Les boucles et les instruction de contrôle Quelques exemples de manipulations des boucles et des instructions """ # la suite de fibonnaci a, b = 0, 1 while a < 20: print(a, end=",") # on idente de 4 espace l'instruction suivante a, b = b, a+b print() if a == 21: print("_") elif a == 13: # 'else if' se note 'elif' en python print("°") else: print(")") # Un peu d'unicode ;) et des boucles for words = ["Bonjour", "Jeune", "Padawan"] for w in words: if w == "Yoda": break # le 'break' permet de sortie de la boucle, else: # par contre on passe dans le 'else' si le break # n'est jamais appelé dans la boucle for' # ici on utilise le r de raw_string st = r""" ____ (xXXXX|xx======---(- / | / XX| /xxx XXX| /xxx X | / ________| __ ____/_|_|_______\_ ###|=||________|_________|_ ~~ |==| __ _ __ /|~~~~~~~~~-------------_______ |==| ||(( ||()| | |XXXXXXXX| > __ |==| ~~__~__~~__ \|_________-------------~~~~~~~ ###|=||~~~~~~~~|_______ |" ~~ ~~~~\~|~| /~ \ ~~~~~~~~~ \xxx X | \xxx XXX| \ XX| Incom's T-65B X-wing Space \ | Superiority Starfighter (4) (xXXXX|xx======---(- ~~~~""" print(st) # on peut aussi utiliser range dans la même idée # que la boucle for(i = 0; i < words.length; i++) dans d'autres langage for i in range(len(words)): print(words[i], len(words[i])) # exemple de range qui est objet iterable, # et pas une liste à proprement parlée range(5) # 0, 1, 2, 3, 4 range(5, 10) # 5, 6, 7, 8, 9 range(0, 10, 3) # 0, 3, 6, 9 range(-10, -100, -30) # -10, -40, -70 # mot clé 'pass' a = 9 if a < 10: pass # 'pass' ne fait rien, mais est parfois nécessaire après une instruction # TODO : Afficher un message d'erreur... else: print("a supérieur a 10")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 35882, 35833, 5427, 2123, 10287, 12064, 390, 3445, 27083, 293, 198, 198, 48, 2731, 13281, 409, 368, 2374, 390, 7704, 5768, 748, 35833, 5427, 2123, 748, 7729, 198, 37811, 198, 198, 2, 8591, 18389, 390, 12900, 261, 77, 32009, 198, 64, 11, 275, 796, 657, 11, 352, 198, 4514, 257, 1279, 1160, 25, 198, 220, 220, 220, 3601, 7, 64, 11, 886, 28, 2430, 8, 220, 220, 220, 220, 220, 220, 1303, 319, 1852, 68, 390, 604, 1658, 10223, 300, 6, 8625, 2762, 424, 452, 12427, 198, 220, 220, 220, 257, 11, 275, 796, 275, 11, 257, 10, 65, 198, 4798, 3419, 198, 198, 361, 257, 6624, 2310, 25, 198, 220, 220, 220, 3601, 7203, 62, 4943, 198, 417, 361, 257, 6624, 1511, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 17772, 611, 6, 384, 3465, 705, 417, 361, 6, 551, 21015, 198, 220, 220, 220, 3601, 7203, 7200, 4943, 198, 17772, 25, 198, 220, 220, 220, 3601, 7, 4943, 4943, 628, 198, 2, 791, 613, 84, 288, 6, 46903, 1098, 35540, 2123, 748, 35833, 5427, 329, 198, 10879, 796, 14631, 20682, 73, 454, 1600, 366, 40932, 1726, 1600, 366, 26114, 43004, 8973, 198, 1640, 266, 287, 2456, 25, 198, 220, 220, 220, 611, 266, 6624, 366, 56, 11329, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 443, 705, 9032, 6, 583, 4164, 390, 3297, 494, 390, 8591, 35833, 2375, 11, 198, 17772, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1582, 542, 260, 319, 279, 21612, 288, 504, 443, 705, 17772, 6, 33721, 443, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 6, 395, 474, 1689, 271, 598, 417, 2634, 288, 504, 8591, 35833, 2375, 329, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14158, 72, 319, 7736, 786, 443, 374, 390, 8246, 62, 8841, 198, 220, 220, 220, 336, 796, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1427, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 24376, 91, 5324, 50155, 6329, 32590, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 220, 220, 220, 21044, 91, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 31811, 27713, 91, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 31811, 1395, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 220, 2602, 91, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 220, 1427, 47835, 91, 62, 91, 37405, 59, 62, 198, 220, 220, 220, 44386, 91, 28, 15886, 2602, 91, 2602, 62, 91, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4907, 220, 220, 930, 855, 91, 11593, 220, 4808, 220, 11593, 220, 220, 1220, 91, 15116, 93, 32501, 37405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 855, 91, 8614, 19510, 8614, 3419, 91, 930, 930, 24376, 24376, 91, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1875, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 220, 220, 930, 855, 91, 220, 4907, 834, 93, 834, 4907, 834, 3467, 91, 2602, 62, 32501, 8728, 4907, 93, 198, 220, 220, 220, 44386, 91, 28, 15886, 15116, 91, 37405, 220, 930, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4907, 220, 8728, 59, 93, 91, 93, 91, 220, 220, 220, 220, 220, 220, 1220, 93, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 220, 15116, 93, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 31811, 1395, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 31811, 27713, 91, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 220, 220, 220, 21044, 91, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 554, 785, 338, 309, 12, 2996, 33, 1395, 12, 5469, 4687, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22953, 414, 2907, 24733, 357, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 24376, 91, 5324, 50155, 6329, 32590, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8728, 37811, 198, 220, 220, 220, 3601, 7, 301, 8, 628, 198, 2, 319, 613, 315, 257, 1046, 72, 7736, 5847, 2837, 288, 504, 8591, 285, 25792, 1326, 4686, 22161, 198, 2, 8358, 8591, 35833, 2375, 329, 7, 72, 796, 657, 26, 1312, 1279, 2456, 13, 13664, 26, 1312, 29577, 288, 504, 288, 6, 2306, 411, 42392, 496, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 10879, 8, 2599, 198, 220, 220, 220, 3601, 7, 10879, 58, 72, 4357, 18896, 7, 10879, 58, 72, 60, 4008, 628, 198, 2, 409, 368, 1154, 390, 2837, 45567, 1556, 26181, 316, 11629, 540, 11, 198, 2, 2123, 38836, 17809, 1351, 68, 28141, 2632, 260, 434, 1582, 75, 22161, 198, 9521, 7, 20, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 657, 11, 352, 11, 362, 11, 513, 11, 604, 198, 9521, 7, 20, 11, 838, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 642, 11, 718, 11, 767, 11, 807, 11, 860, 198, 9521, 7, 15, 11, 838, 11, 513, 8, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 657, 11, 513, 11, 718, 11, 860, 198, 9521, 32590, 940, 11, 532, 3064, 11, 532, 1270, 8, 220, 220, 1303, 532, 940, 11, 532, 1821, 11, 532, 2154, 628, 198, 2, 2369, 537, 2634, 705, 6603, 6, 198, 64, 796, 860, 198, 361, 257, 1279, 838, 25, 198, 220, 220, 220, 1208, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 6603, 6, 497, 277, 4548, 374, 2013, 11, 285, 15152, 1556, 1582, 6513, 271, 299, 2634, 919, 7626, 46593, 14064, 82, 17809, 12064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 1058, 317, 2108, 372, 555, 3275, 288, 6, 263, 260, 333, 986, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 64, 7418, 2634, 5034, 333, 257, 838, 4943, 198 ]
1.794793
1,306
import time
[ 11748, 640, 628 ]
4.333333
3
"""Setup.""" from setuptools import setup, find_packages inst_reqs = [ "mercantile == 1.1.5", "requests", "geojson", "pillow", "gdal == 2.4.2", "shapely == 1.6.4", "affine == 2.3.0", "numpy == 1.19.0", "rasterio == 1.1.5" ] extra_reqs = {"test": ["pytest", "pytest-cov"]} setup( name="app", version="0.5.0", description=u"Lambda Download and Predict", python_requires=">=3", keywords="AWS-Lambda Python", packages=find_packages(exclude=["ez_setup", "examples", "tests"]), include_package_data=True, zip_safe=False, install_requires=inst_reqs, extras_require=extra_reqs, )
[ 37811, 40786, 526, 15931, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 8625, 62, 42180, 82, 796, 685, 198, 220, 220, 220, 366, 647, 66, 415, 576, 6624, 352, 13, 16, 13, 20, 1600, 198, 220, 220, 220, 366, 8897, 3558, 1600, 198, 220, 220, 220, 366, 469, 13210, 1559, 1600, 198, 220, 220, 220, 366, 27215, 322, 1600, 198, 220, 220, 220, 366, 21287, 282, 6624, 362, 13, 19, 13, 17, 1600, 198, 220, 220, 220, 366, 43358, 306, 6624, 352, 13, 21, 13, 19, 1600, 198, 220, 220, 220, 366, 2001, 500, 6624, 362, 13, 18, 13, 15, 1600, 198, 220, 220, 220, 366, 77, 32152, 6624, 352, 13, 1129, 13, 15, 1600, 220, 198, 220, 220, 220, 366, 81, 1603, 952, 6624, 352, 13, 16, 13, 20, 1, 198, 60, 198, 26086, 62, 42180, 82, 796, 19779, 9288, 1298, 14631, 9078, 9288, 1600, 366, 9078, 9288, 12, 66, 709, 8973, 92, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 1324, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 20, 13, 15, 1600, 198, 220, 220, 220, 6764, 28, 84, 1, 43, 4131, 6814, 10472, 290, 49461, 1600, 198, 220, 220, 220, 21015, 62, 47911, 2625, 29, 28, 18, 1600, 198, 220, 220, 220, 26286, 2625, 12298, 50, 12, 43, 4131, 6814, 11361, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 1069, 9152, 28, 14692, 8471, 62, 40406, 1600, 366, 1069, 12629, 1600, 366, 41989, 8973, 828, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 2721, 62, 47911, 28, 8625, 62, 42180, 82, 11, 198, 220, 220, 220, 33849, 62, 46115, 28, 26086, 62, 42180, 82, 11, 198, 8, 198 ]
2.15894
302
# Copyright 2022 Yan Yan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cumm.core_cc.tensorview_bind import (NVRTCParams, GemmAlgoDesp, ConvAlgoDesp, ConvParams, ConvOpType, ConvLayoutType, ShuffleStrideType, ConvMode, run_nvrtc_conv_kernel, GemmParams, run_nvrtc_gemm_kernel)
[ 2, 15069, 33160, 10642, 10642, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 10973, 76, 13, 7295, 62, 535, 13, 83, 22854, 1177, 62, 21653, 1330, 357, 45, 13024, 4825, 10044, 4105, 11, 15669, 76, 2348, 2188, 5960, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34872, 2348, 2188, 5960, 79, 11, 34872, 10044, 4105, 11, 34872, 18257, 6030, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34872, 32517, 6030, 11, 911, 18137, 1273, 13154, 6030, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34872, 19076, 11, 1057, 62, 48005, 17034, 66, 62, 42946, 62, 33885, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15669, 76, 10044, 4105, 11, 1057, 62, 48005, 17034, 66, 62, 24090, 76, 62, 33885, 8, 198 ]
2.380952
399
#!/bin/python3 # author: Jan Hybs from loguru import logger from flask_restful import Resource from cihpc.common.utils import strings from cihpc.common.utils import datautils as du
[ 2, 48443, 8800, 14, 29412, 18, 198, 2, 1772, 25, 2365, 6707, 1443, 198, 198, 6738, 2604, 14717, 1330, 49706, 628, 198, 6738, 42903, 62, 2118, 913, 1330, 20857, 198, 6738, 269, 4449, 14751, 13, 11321, 13, 26791, 1330, 13042, 198, 6738, 269, 4449, 14751, 13, 11321, 13, 26791, 1330, 1366, 26791, 355, 7043, 628 ]
3.363636
55
from spinn_machine.utilities.progress_bar import ProgressBar from spinn_front_end_common.abstract_models.\ abstract_data_specable_vertex import AbstractDataSpecableVertex from spinn_front_end_common.utilities.utility_objs.executable_targets import \ ExecutableTargets from spinn_front_end_common.utilities import exceptions class FrontEndCommonPartitionableGraphDataSpecificationWriter(object): """ Executes a partitionable graph data specification generation """ def __call__( self, placements, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder): """ generates the dsg for the graph. :return: """ # iterate though subvertices and call generate_data_spec for each # vertex executable_targets = ExecutableTargets() dsg_targets = dict() # create a progress bar for end users progress_bar = ProgressBar(len(list(placements.placements)), "Generating data specifications") for placement in placements.placements: associated_vertex = graph_mapper.get_vertex_from_subvertex( placement.subvertex) self._generate_data_spec_for_subvertices( placement, associated_vertex, executable_targets, dsg_targets, graph_mapper, tags, executable_finder, partitioned_graph, partitionable_graph, routing_infos, hostname, report_default_directory, write_text_specs, app_data_runtime_folder) progress_bar.update() # finish the progress bar progress_bar.end() return {'executable_targets': executable_targets, 'dsg_targets': dsg_targets}
[ 6738, 599, 3732, 62, 30243, 13, 315, 2410, 13, 33723, 62, 5657, 1330, 18387, 10374, 198, 198, 6738, 599, 3732, 62, 8534, 62, 437, 62, 11321, 13, 397, 8709, 62, 27530, 13, 59, 198, 220, 220, 220, 12531, 62, 7890, 62, 16684, 540, 62, 332, 16886, 1330, 27741, 6601, 22882, 540, 13414, 16886, 198, 6738, 599, 3732, 62, 8534, 62, 437, 62, 11321, 13, 315, 2410, 13, 315, 879, 62, 672, 8457, 13, 18558, 18187, 62, 83, 853, 1039, 1330, 3467, 198, 220, 220, 220, 8393, 18187, 51, 853, 1039, 198, 6738, 599, 3732, 62, 8534, 62, 437, 62, 11321, 13, 315, 2410, 1330, 13269, 628, 198, 4871, 8880, 12915, 17227, 7841, 653, 540, 37065, 6601, 22882, 2649, 34379, 7, 15252, 2599, 198, 220, 220, 220, 37227, 8393, 1769, 257, 18398, 540, 4823, 1366, 20855, 5270, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 21957, 3196, 11, 4823, 62, 76, 11463, 11, 15940, 11, 28883, 62, 22805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18398, 276, 62, 34960, 11, 18398, 540, 62, 34960, 11, 28166, 62, 10745, 418, 11, 2583, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 62, 12286, 62, 34945, 11, 3551, 62, 5239, 62, 4125, 6359, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 62, 7890, 62, 43282, 62, 43551, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18616, 262, 288, 45213, 329, 262, 4823, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11629, 378, 996, 850, 1851, 1063, 290, 869, 7716, 62, 7890, 62, 16684, 329, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 37423, 198, 220, 220, 220, 220, 220, 220, 220, 28883, 62, 83, 853, 1039, 796, 8393, 18187, 51, 853, 1039, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 45213, 62, 83, 853, 1039, 796, 8633, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 4371, 2318, 329, 886, 2985, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 5657, 796, 18387, 10374, 7, 11925, 7, 4868, 7, 489, 28613, 13, 489, 28613, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8645, 803, 1366, 20640, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 329, 13127, 287, 21957, 3196, 13, 489, 28613, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3917, 62, 332, 16886, 796, 4823, 62, 76, 11463, 13, 1136, 62, 332, 16886, 62, 6738, 62, 7266, 332, 16886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13127, 13, 7266, 332, 16886, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8612, 378, 62, 7890, 62, 16684, 62, 1640, 62, 7266, 1851, 1063, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13127, 11, 3917, 62, 332, 16886, 11, 28883, 62, 83, 853, 1039, 11, 288, 45213, 62, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4823, 62, 76, 11463, 11, 15940, 11, 28883, 62, 22805, 11, 18398, 276, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18398, 540, 62, 34960, 11, 28166, 62, 10745, 418, 11, 2583, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 62, 12286, 62, 34945, 11, 3551, 62, 5239, 62, 4125, 6359, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 62, 7890, 62, 43282, 62, 43551, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 5657, 13, 19119, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5461, 262, 4371, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 5657, 13, 437, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 18558, 18187, 62, 83, 853, 1039, 10354, 28883, 62, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9310, 70, 62, 83, 853, 1039, 10354, 288, 45213, 62, 83, 853, 1039, 92, 198 ]
2.395965
793
# -*- coding: utf-8 -*- import io, json from pathlib import Path class ColorRegistry: """ Open, read and store color names maps Default shipped color registry is used on loading if no specific path is given to ``load`` method. """ def load(self, path=None): """ Load registry and set maps Keyword args: path (pathlib.Path): Optionnal path object to open instead of default of from ``ColorRegistry.map_path``. """ names = self.get_registry_file(path or self.map_path) self.name_map, self.hexa_map = self.get_registry_maps(names) def get_registry_file(self, path): """ Open registry file from given path Args: path (pathlib.Path): Path object to open. Returns: list: List of map items from registry. """ with io.open(str(path), 'r') as fp: registry_map = json.load(fp) return registry_map def get_registry_maps(self, items): """ From registry items build maps, one indexed on name, another one indexed on color. Args: items (list): Registry items Returns: tuple: First item is the names map, second item is the colors map. Both are list object. """ name_map = items # Reverse keys/values so map is indexed on hexa hexa_map = list(zip([v for k,v in items], [k for k,v in items])) return name_map, hexa_map
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 33245, 11, 33918, 198, 198, 6738, 3108, 8019, 1330, 10644, 628, 198, 4871, 5315, 8081, 4592, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4946, 11, 1100, 290, 3650, 3124, 3891, 8739, 628, 220, 220, 220, 15161, 14338, 3124, 20478, 318, 973, 319, 11046, 611, 645, 2176, 3108, 318, 198, 220, 220, 220, 1813, 284, 7559, 2220, 15506, 2446, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 3440, 7, 944, 11, 3108, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 20478, 290, 900, 8739, 628, 220, 220, 220, 220, 220, 220, 220, 7383, 4775, 26498, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 6978, 8019, 13, 15235, 2599, 16018, 77, 282, 3108, 2134, 284, 1280, 2427, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 286, 422, 7559, 10258, 8081, 4592, 13, 8899, 62, 6978, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 2116, 13, 1136, 62, 2301, 4592, 62, 7753, 7, 6978, 393, 2116, 13, 8899, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 8899, 11, 2116, 13, 258, 27865, 62, 8899, 796, 2116, 13, 1136, 62, 2301, 4592, 62, 31803, 7, 14933, 8, 628, 220, 220, 220, 825, 651, 62, 2301, 4592, 62, 7753, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4946, 20478, 2393, 422, 1813, 3108, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 6978, 8019, 13, 15235, 2599, 10644, 2134, 284, 1280, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 25, 7343, 286, 3975, 3709, 422, 20478, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 33245, 13, 9654, 7, 2536, 7, 6978, 828, 705, 81, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20478, 62, 8899, 796, 33918, 13, 2220, 7, 46428, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 20478, 62, 8899, 628, 220, 220, 220, 825, 651, 62, 2301, 4592, 62, 31803, 7, 944, 11, 3709, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3574, 20478, 3709, 1382, 8739, 11, 530, 41497, 319, 1438, 11, 1194, 198, 220, 220, 220, 220, 220, 220, 220, 530, 41497, 319, 3124, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3709, 357, 4868, 2599, 33432, 3709, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46545, 25, 3274, 2378, 318, 262, 3891, 3975, 11, 1218, 2378, 318, 262, 7577, 3975, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5747, 389, 1351, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 8899, 796, 3709, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 31849, 8251, 14, 27160, 523, 3975, 318, 41497, 319, 17910, 64, 198, 220, 220, 220, 220, 220, 220, 220, 17910, 64, 62, 8899, 796, 1351, 7, 13344, 26933, 85, 329, 479, 11, 85, 287, 3709, 4357, 685, 74, 329, 479, 11, 85, 287, 3709, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1438, 62, 8899, 11, 17910, 64, 62, 8899, 198 ]
2.305847
667
#-*-coding:utf-8-*- from futuquant import * import pandas if __name__ == '__main__': GetMulHtryKl().test1()
[ 2, 12, 9, 12, 66, 7656, 25, 40477, 12, 23, 12, 9, 12, 198, 198, 6738, 13294, 84, 40972, 1330, 1635, 198, 11748, 19798, 292, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3497, 44, 377, 39, 28311, 42, 75, 22446, 9288, 16, 3419 ]
2.169811
53
#!/usr/bin/env python3 # Copyright (c) 2021 oatsu """ 連続音歌詞を空白で区切って単独音にするUTAUプラグイン """ import utaupy def ren2tan(plugin): """ 歌詞を空白で区切って、空白より後ろ側だけ残す。 """ for note in plugin.notes: note.lyric = note.lyric.split()[-1] if __name__ == '__main__': utaupy.utauplugin.run(ren2tan)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 357, 66, 8, 33448, 267, 19231, 198, 37811, 198, 34460, 96, 163, 114, 21253, 253, 111, 29826, 234, 164, 102, 252, 31758, 163, 102, 118, 163, 50159, 30640, 44293, 118, 26344, 229, 33180, 28134, 39355, 246, 45379, 105, 165, 253, 111, 28618, 33623, 25748, 3843, 26830, 30965, 9263, 26095, 11482, 6527, 198, 37811, 628, 198, 11748, 3384, 559, 9078, 628, 198, 4299, 8851, 17, 38006, 7, 33803, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 255, 234, 164, 102, 252, 31758, 163, 102, 118, 163, 50159, 30640, 44293, 118, 26344, 229, 33180, 28134, 23513, 163, 102, 118, 163, 50159, 1792, 230, 28255, 36181, 234, 1792, 235, 161, 223, 112, 46777, 2515, 239, 162, 106, 233, 33623, 16764, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 3465, 287, 13877, 13, 17815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3465, 13, 306, 1173, 796, 3465, 13, 306, 1173, 13, 35312, 3419, 58, 12, 16, 60, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3384, 559, 9078, 13, 315, 559, 33803, 13, 5143, 7, 918, 17, 38006, 8, 198 ]
1.517241
203
import cupy def empty(shape, dtype=float): """Returns an array without initializing the elements. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: A new array with elements not initialized. .. seealso:: :func:`numpy.empty` """ # TODO(beam2d): Support ordering option return cupy.ndarray(shape, dtype=dtype) def empty_like(a, dtype=None): """Returns a new array with same shape and dtype of a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The data type of ``a`` is used by default. Returns: cupy.ndarray: A new array with same shape and dtype of ``a`` with elements not initialized. .. seealso:: :func:`numpy.empty_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return empty(a.shape, dtype=dtype) def eye(N, M=None, k=0, dtype=float): """Returns a 2-D array with ones on the diagonals and zeros elsewhere. Args: N (int): Number of rows. M (int): Number of columns. M == N by default. k (int): Index of the diagonal. Zero indicates the main diagonal, a positive index an upper diagonal, and a negative index a lower diagonal. dtype: Data type specifier. Returns: cupy.ndarray: A 2-D array with given diagonals filled with ones and zeros elsewhere. .. seealso:: :func:`numpy.eye` """ if M is None: M = N ret = zeros((N, M), dtype) ret.diagonal(k)[:] = 1 return ret def identity(n, dtype=float): """Returns a 2-D identity array. It is equivalent to ``eye(n, n, dtype)``. Args: n (int): Number of rows and columns. dtype: Data type specifier. Returns: cupy.ndarray: A 2-D identity array. .. seealso:: :func:`numpy.identity` """ return eye(n, dtype=dtype) def ones(shape, dtype=float): """Returns a new array of given shape and dtype, filled with ones. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.ones` """ # TODO(beam2d): Support ordering option return full(shape, 1, dtype) def ones_like(a, dtype=None): """Returns an array of ones with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.ones_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return ones(a.shape, dtype) def zeros(shape, dtype=float): """Returns a new array of given shape and dtype, filled with zeros. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.zeros` """ # TODO(beam2d): Support ordering option a = empty(shape, dtype) a.data.memset(0, a.nbytes) return a def zeros_like(a, dtype=None): """Returns an array of zeros with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ones. .. seealso:: :func:`numpy.zeros_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return zeros(a.shape, dtype=dtype) def full(shape, fill_value, dtype=None): """Returns a new array of given shape and dtype, filled with a given value. This function currently does not support ``order`` option. Args: shape (tuple of ints): Dimensionalities of the array. fill_value: A scalar value to fill a new array. dtype: Data type specifier. Returns: cupy.ndarray: An array filled with ``fill_value``. .. seealso:: :func:`numpy.full` """ # TODO(beam2d): Support ordering option a = empty(shape, dtype) a.fill(fill_value) return a def full_like(a, fill_value, dtype=None): """Returns a full array with same shape and dtype as a given array. This function currently does not support ``order`` and ``subok`` options. Args: a (cupy.ndarray): Base array. fill_value: A scalar value to fill a new array. dtype: Data type specifier. The dtype of ``a`` is used by default. Returns: cupy.ndarray: An array filled with ``fill_value``. .. seealso:: :func:`numpy.full_like` """ # TODO(beam2d): Support ordering option if dtype is None: dtype = a.dtype return full(a.shape, fill_value, dtype)
[ 11748, 6508, 88, 628, 198, 4299, 6565, 7, 43358, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 281, 7177, 1231, 4238, 2890, 262, 4847, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 83, 29291, 286, 493, 82, 2599, 360, 16198, 871, 286, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 317, 649, 7177, 351, 4847, 407, 23224, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 28920, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 1441, 6508, 88, 13, 358, 18747, 7, 43358, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 4299, 6565, 62, 2339, 7, 64, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 7177, 351, 976, 5485, 290, 288, 4906, 286, 257, 1813, 7177, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 290, 7559, 7266, 482, 15506, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 357, 25244, 88, 13, 358, 18747, 2599, 7308, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 383, 1366, 2099, 286, 7559, 64, 15506, 318, 973, 416, 4277, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 317, 649, 7177, 351, 976, 5485, 290, 288, 4906, 286, 7559, 64, 15506, 351, 198, 220, 220, 220, 220, 220, 220, 220, 4847, 407, 23224, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 28920, 62, 2339, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 257, 13, 67, 4906, 198, 220, 220, 220, 1441, 6565, 7, 64, 13, 43358, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 4299, 4151, 7, 45, 11, 337, 28, 14202, 11, 479, 28, 15, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 257, 362, 12, 35, 7177, 351, 3392, 319, 262, 2566, 1840, 874, 290, 1976, 27498, 8057, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 399, 357, 600, 2599, 7913, 286, 15274, 13, 198, 220, 220, 220, 220, 220, 220, 220, 337, 357, 600, 2599, 7913, 286, 15180, 13, 337, 6624, 399, 416, 4277, 13, 198, 220, 220, 220, 220, 220, 220, 220, 479, 357, 600, 2599, 12901, 286, 262, 40039, 13, 12169, 9217, 262, 1388, 40039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 3967, 6376, 281, 6727, 40039, 11, 290, 257, 4633, 6376, 257, 2793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 317, 362, 12, 35, 7177, 351, 1813, 2566, 1840, 874, 5901, 351, 3392, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 27498, 8057, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 25379, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 337, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 337, 796, 399, 198, 220, 220, 220, 1005, 796, 1976, 27498, 19510, 45, 11, 337, 828, 288, 4906, 8, 198, 220, 220, 220, 1005, 13, 10989, 27923, 7, 74, 38381, 47715, 796, 352, 198, 220, 220, 220, 1441, 1005, 628, 198, 4299, 5369, 7, 77, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 257, 362, 12, 35, 5369, 7177, 13, 628, 220, 220, 220, 632, 318, 7548, 284, 7559, 25379, 7, 77, 11, 299, 11, 288, 4906, 8, 15506, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 357, 600, 2599, 7913, 286, 15274, 290, 15180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 317, 362, 12, 35, 5369, 7177, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 738, 414, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4151, 7, 77, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 4299, 3392, 7, 43358, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 7177, 286, 1813, 5485, 290, 288, 4906, 11, 5901, 351, 3392, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 83, 29291, 286, 493, 82, 2599, 360, 16198, 871, 286, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 3392, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 1952, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 1441, 1336, 7, 43358, 11, 352, 11, 288, 4906, 8, 628, 198, 4299, 3392, 62, 2339, 7, 64, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 281, 7177, 286, 3392, 351, 976, 5485, 290, 288, 4906, 355, 257, 1813, 7177, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 290, 7559, 7266, 482, 15506, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 357, 25244, 88, 13, 358, 18747, 2599, 7308, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 383, 288, 4906, 286, 7559, 64, 15506, 318, 973, 416, 4277, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 3392, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 1952, 62, 2339, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 257, 13, 67, 4906, 198, 220, 220, 220, 1441, 3392, 7, 64, 13, 43358, 11, 288, 4906, 8, 628, 198, 4299, 1976, 27498, 7, 43358, 11, 288, 4906, 28, 22468, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 7177, 286, 1813, 5485, 290, 288, 4906, 11, 5901, 351, 1976, 27498, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 83, 29291, 286, 493, 82, 2599, 360, 16198, 871, 286, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 3392, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 9107, 418, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 257, 796, 6565, 7, 43358, 11, 288, 4906, 8, 198, 220, 220, 220, 257, 13, 7890, 13, 11883, 2617, 7, 15, 11, 257, 13, 77, 33661, 8, 198, 220, 220, 220, 1441, 257, 628, 198, 4299, 1976, 27498, 62, 2339, 7, 64, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 281, 7177, 286, 1976, 27498, 351, 976, 5485, 290, 288, 4906, 355, 257, 1813, 7177, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 290, 7559, 7266, 482, 15506, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 357, 25244, 88, 13, 358, 18747, 2599, 7308, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 383, 288, 4906, 286, 7559, 64, 15506, 318, 973, 416, 4277, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 3392, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 9107, 418, 62, 2339, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 257, 13, 67, 4906, 198, 220, 220, 220, 1441, 1976, 27498, 7, 64, 13, 43358, 11, 288, 4906, 28, 67, 4906, 8, 628, 198, 4299, 1336, 7, 43358, 11, 6070, 62, 8367, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 7177, 286, 1813, 5485, 290, 288, 4906, 11, 5901, 351, 257, 1813, 1988, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 3038, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 357, 83, 29291, 286, 493, 82, 2599, 360, 16198, 871, 286, 262, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 8367, 25, 317, 16578, 283, 1988, 284, 6070, 257, 649, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 7559, 20797, 62, 8367, 15506, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 12853, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 257, 796, 6565, 7, 43358, 11, 288, 4906, 8, 198, 220, 220, 220, 257, 13, 20797, 7, 20797, 62, 8367, 8, 198, 220, 220, 220, 1441, 257, 628, 198, 4299, 1336, 62, 2339, 7, 64, 11, 6070, 62, 8367, 11, 288, 4906, 28, 14202, 2599, 198, 220, 220, 220, 37227, 35561, 257, 1336, 7177, 351, 976, 5485, 290, 288, 4906, 355, 257, 1813, 7177, 13, 628, 220, 220, 220, 770, 2163, 3058, 857, 407, 1104, 7559, 2875, 15506, 290, 7559, 7266, 482, 15506, 3689, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 357, 25244, 88, 13, 358, 18747, 2599, 7308, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 8367, 25, 317, 16578, 283, 1988, 284, 6070, 257, 649, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 25, 6060, 2099, 1020, 7483, 13, 383, 288, 4906, 286, 7559, 64, 15506, 318, 973, 416, 4277, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6508, 88, 13, 358, 18747, 25, 1052, 7177, 5901, 351, 7559, 20797, 62, 8367, 15506, 13, 628, 220, 220, 220, 11485, 766, 14508, 3712, 1058, 20786, 25, 63, 77, 32152, 13, 12853, 62, 2339, 63, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 7, 40045, 17, 67, 2599, 7929, 16216, 3038, 198, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 257, 13, 67, 4906, 198, 220, 220, 220, 1441, 1336, 7, 64, 13, 43358, 11, 6070, 62, 8367, 11, 288, 4906, 8, 198 ]
2.563593
2,115
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import argparse import json from functools import reduce import tensorflow as tf from tensorflow.python.lib.io.file_io import FileIO # pylint: disable=E0611 from sciencebeam_gym.trainer.data.examples import ( get_matching_files, read_examples ) from sciencebeam_gym.preprocess.color_map import ( parse_color_map_from_file ) from sciencebeam_gym.tools.calculate_class_weights import ( tf_calculate_efnet_weights_for_frequency_by_label ) from sciencebeam_gym.trainer.models.pix2pix.tf_utils import ( find_nearest_centroid_indices ) from sciencebeam_gym.preprocess.preprocessing_utils import ( parse_page_range ) from sciencebeam_gym.trainer.models.pix2pix.pix2pix_core import ( BaseLoss, ALL_BASE_LOSS, create_pix2pix_model, create_other_summaries ) from sciencebeam_gym.trainer.models.pix2pix.evaluate import ( evaluate_separate_channels, evaluate_predictions, evaluation_summary ) from sciencebeam_gym.model_utils.channels import ( calculate_color_masks ) UNKNOWN_COLOR = (255, 255, 255) UNKNOWN_LABEL = 'unknown' DEFAULT_UNKNOWN_CLASS_WEIGHT = 0.1 class GraphReferences(object): """Holder of base tensors used for training model using common task.""" def create_model(argv=None): """Factory method that creates model to be used by generic task.py.""" parser = model_args_parser() args, task_args = parser.parse_known_args(argv) return Model(args), task_args
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 18931, 198, 11748, 1822, 29572, 198, 11748, 33918, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 8019, 13, 952, 13, 7753, 62, 952, 1330, 9220, 9399, 220, 1303, 279, 2645, 600, 25, 15560, 28, 36, 3312, 1157, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 2213, 10613, 13, 7890, 13, 1069, 12629, 1330, 357, 198, 220, 220, 220, 651, 62, 15699, 278, 62, 16624, 11, 198, 220, 220, 220, 1100, 62, 1069, 12629, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 3866, 14681, 13, 8043, 62, 8899, 1330, 357, 198, 220, 220, 220, 21136, 62, 8043, 62, 8899, 62, 6738, 62, 7753, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 31391, 13, 9948, 3129, 378, 62, 4871, 62, 43775, 1330, 357, 198, 220, 220, 220, 48700, 62, 9948, 3129, 378, 62, 891, 3262, 62, 43775, 62, 1640, 62, 35324, 62, 1525, 62, 18242, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 2213, 10613, 13, 27530, 13, 79, 844, 17, 79, 844, 13, 27110, 62, 26791, 1330, 357, 198, 220, 220, 220, 1064, 62, 710, 12423, 62, 1087, 3882, 62, 521, 1063, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 3866, 14681, 13, 3866, 36948, 62, 26791, 1330, 357, 198, 220, 220, 220, 21136, 62, 7700, 62, 9521, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 2213, 10613, 13, 27530, 13, 79, 844, 17, 79, 844, 13, 79, 844, 17, 79, 844, 62, 7295, 1330, 357, 198, 220, 220, 220, 7308, 43, 793, 11, 198, 220, 220, 220, 11096, 62, 33, 11159, 62, 43, 18420, 11, 198, 220, 220, 220, 2251, 62, 79, 844, 17, 79, 844, 62, 19849, 11, 198, 220, 220, 220, 2251, 62, 847, 62, 82, 13929, 3166, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 2213, 10613, 13, 27530, 13, 79, 844, 17, 79, 844, 13, 49786, 1330, 357, 198, 220, 220, 220, 13446, 62, 25512, 378, 62, 354, 8961, 11, 198, 220, 220, 220, 13446, 62, 28764, 9278, 11, 198, 220, 220, 220, 12660, 62, 49736, 198, 8, 198, 198, 6738, 3783, 40045, 62, 1360, 76, 13, 19849, 62, 26791, 13, 354, 8961, 1330, 357, 198, 220, 220, 220, 15284, 62, 8043, 62, 5356, 591, 198, 8, 628, 198, 4944, 44706, 62, 46786, 796, 357, 13381, 11, 14280, 11, 14280, 8, 198, 4944, 44706, 62, 48780, 3698, 796, 705, 34680, 6, 198, 198, 7206, 38865, 62, 4944, 44706, 62, 31631, 62, 8845, 9947, 796, 657, 13, 16, 628, 628, 198, 4871, 29681, 19927, 7, 15252, 2599, 198, 220, 220, 220, 37227, 39, 19892, 286, 2779, 11192, 669, 973, 329, 3047, 2746, 1262, 2219, 4876, 526, 15931, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 4299, 2251, 62, 19849, 7, 853, 85, 28, 14202, 2599, 198, 220, 220, 220, 37227, 22810, 2446, 326, 8075, 2746, 284, 307, 973, 416, 14276, 4876, 13, 9078, 526, 15931, 198, 220, 220, 220, 30751, 796, 2746, 62, 22046, 62, 48610, 3419, 198, 220, 220, 220, 26498, 11, 4876, 62, 22046, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 7, 853, 85, 8, 198, 220, 220, 220, 1441, 9104, 7, 22046, 828, 4876, 62, 22046, 198 ]
2.757315
581
import aiohttp.web from functools import wraps import logging from typing import Callable import json import dataclasses import ray import ray.dashboard.utils as dashboard_utils from ray._private.job_manager import JobManager from ray._private.runtime_env.packaging import (package_exists, upload_package_to_gcs) from ray.dashboard.modules.job.data_types import ( GetPackageResponse, JobStatus, JobSubmitRequest, JobSubmitResponse, JobStatusResponse, JobLogsResponse) logger = logging.getLogger(__name__) routes = dashboard_utils.ClassMethodRouteTable RAY_INTERNAL_JOBS_NAMESPACE = "_ray_internal_jobs_" JOBS_API_PREFIX = "/api/jobs/" JOBS_API_ROUTE_LOGS = JOBS_API_PREFIX + "logs" JOBS_API_ROUTE_SUBMIT = JOBS_API_PREFIX + "submit" JOBS_API_ROUTE_STATUS = JOBS_API_PREFIX + "status" JOBS_API_ROUTE_PACKAGE = JOBS_API_PREFIX + "package"
[ 11748, 257, 952, 4023, 13, 12384, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 11748, 18931, 198, 6738, 19720, 1330, 4889, 540, 198, 11748, 33918, 198, 11748, 4818, 330, 28958, 198, 198, 11748, 26842, 198, 11748, 26842, 13, 42460, 3526, 13, 26791, 355, 30415, 62, 26791, 198, 6738, 26842, 13557, 19734, 13, 21858, 62, 37153, 1330, 15768, 13511, 198, 6738, 26842, 13557, 19734, 13, 43282, 62, 24330, 13, 8002, 3039, 1330, 357, 26495, 62, 1069, 1023, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9516, 62, 26495, 62, 1462, 62, 70, 6359, 8, 198, 6738, 26842, 13, 42460, 3526, 13, 18170, 13, 21858, 13, 7890, 62, 19199, 1330, 357, 198, 220, 220, 220, 3497, 27813, 31077, 11, 15768, 19580, 11, 15768, 45135, 18453, 11, 15768, 45135, 31077, 11, 198, 220, 220, 220, 15768, 19580, 31077, 11, 15768, 11187, 82, 31077, 8, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 81, 448, 274, 796, 30415, 62, 26791, 13, 9487, 17410, 43401, 10962, 198, 198, 30631, 62, 1268, 31800, 1847, 62, 45006, 4462, 62, 45, 29559, 47, 11598, 796, 45434, 2433, 62, 32538, 62, 43863, 62, 1, 198, 198, 45006, 4462, 62, 17614, 62, 47, 31688, 10426, 796, 12813, 15042, 14, 43863, 30487, 198, 45006, 4462, 62, 17614, 62, 49, 2606, 9328, 62, 25294, 50, 796, 32357, 4462, 62, 17614, 62, 47, 31688, 10426, 1343, 366, 6404, 82, 1, 198, 45006, 4462, 62, 17614, 62, 49, 2606, 9328, 62, 50, 10526, 36393, 796, 32357, 4462, 62, 17614, 62, 47, 31688, 10426, 1343, 366, 46002, 1, 198, 45006, 4462, 62, 17614, 62, 49, 2606, 9328, 62, 35744, 2937, 796, 32357, 4462, 62, 17614, 62, 47, 31688, 10426, 1343, 366, 13376, 1, 198, 45006, 4462, 62, 17614, 62, 49, 2606, 9328, 62, 47, 8120, 11879, 796, 32357, 4462, 62, 17614, 62, 47, 31688, 10426, 1343, 366, 26495, 1, 628, 198 ]
2.532394
355
#!/usr/bin/env python import argparse from .sql import MiniSpiderSQL from .scheduler import MiniSpider from .extractor import Extractor from .downloader import MiniSpiderDownloader __version__ = '0.0.3' if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 1822, 29572, 198, 198, 6738, 764, 25410, 1330, 12558, 41294, 17861, 198, 6738, 764, 1416, 704, 18173, 1330, 12558, 41294, 198, 6738, 764, 2302, 40450, 1330, 29677, 273, 198, 6738, 764, 15002, 263, 1330, 12558, 41294, 10002, 263, 198, 198, 834, 9641, 834, 796, 705, 15, 13, 15, 13, 18, 6, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.037037
81
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # # invenio-app-ils is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """ILL mail tasks.""" from invenio_app_ils.ill.errors import ILLError from invenio_app_ils.ill.mail.factory import ill_message_creator_factory from invenio_app_ils.mail.messages import get_common_message_ctx from invenio_app_ils.mail.tasks import send_ils_email def send_ill_mail(brw_req, action=None, message_ctx={}, **kwargs): """Send an ILL email. :param brw_req: the borrowing request record. :param action: the action performed, if any. :param message_ctx: any other parameter to be passed as ctx in the msg. """ creator = ill_message_creator_factory() message_ctx.update(get_common_message_ctx(record=brw_req)) try: # fetch and inject in the email template the patron loan if available loan = brw_req.patron_loan.get() message_ctx["patron_loan"] = loan except ILLError: # no loan in the borrowin request message_ctx["patron_loan"] = dict() patron = message_ctx["patron"] msg = creator( brw_req, action=action, message_ctx=message_ctx, recipients=[patron.email], **kwargs, ) send_ils_email(msg)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 12131, 327, 28778, 13, 198, 2, 198, 2, 287, 574, 952, 12, 1324, 12, 4487, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 198, 2, 739, 262, 2846, 286, 262, 17168, 13789, 26, 766, 38559, 24290, 2393, 329, 517, 3307, 13, 198, 198, 37811, 8267, 6920, 8861, 526, 15931, 198, 198, 6738, 287, 574, 952, 62, 1324, 62, 4487, 13, 359, 13, 48277, 1330, 14639, 2538, 81, 1472, 198, 6738, 287, 574, 952, 62, 1324, 62, 4487, 13, 359, 13, 4529, 13, 69, 9548, 1330, 2801, 62, 20500, 62, 45382, 62, 69, 9548, 198, 6738, 287, 574, 952, 62, 1324, 62, 4487, 13, 4529, 13, 37348, 1095, 1330, 651, 62, 11321, 62, 20500, 62, 49464, 198, 6738, 287, 574, 952, 62, 1324, 62, 4487, 13, 4529, 13, 83, 6791, 1330, 3758, 62, 4487, 62, 12888, 628, 198, 4299, 3758, 62, 359, 62, 4529, 7, 1671, 86, 62, 42180, 11, 2223, 28, 14202, 11, 3275, 62, 49464, 34758, 5512, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 25206, 281, 314, 3069, 3053, 13, 628, 220, 220, 220, 1058, 17143, 865, 86, 62, 42180, 25, 262, 23669, 2581, 1700, 13, 198, 220, 220, 220, 1058, 17143, 2223, 25, 262, 2223, 6157, 11, 611, 597, 13, 198, 220, 220, 220, 1058, 17143, 3275, 62, 49464, 25, 597, 584, 11507, 284, 307, 3804, 355, 269, 17602, 287, 262, 31456, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13172, 796, 2801, 62, 20500, 62, 45382, 62, 69, 9548, 3419, 628, 220, 220, 220, 3275, 62, 49464, 13, 19119, 7, 1136, 62, 11321, 62, 20500, 62, 49464, 7, 22105, 28, 1671, 86, 62, 42180, 4008, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21207, 290, 8677, 287, 262, 3053, 11055, 262, 19686, 8063, 611, 1695, 198, 220, 220, 220, 220, 220, 220, 220, 8063, 796, 865, 86, 62, 42180, 13, 8071, 1313, 62, 5439, 272, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 62, 49464, 14692, 8071, 1313, 62, 5439, 272, 8973, 796, 8063, 198, 220, 220, 220, 2845, 14639, 2538, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 8063, 287, 262, 8804, 259, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 62, 49464, 14692, 8071, 1313, 62, 5439, 272, 8973, 796, 8633, 3419, 628, 220, 220, 220, 19686, 796, 3275, 62, 49464, 14692, 8071, 1313, 8973, 628, 220, 220, 220, 31456, 796, 13172, 7, 198, 220, 220, 220, 220, 220, 220, 220, 865, 86, 62, 42180, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 28, 2673, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 62, 49464, 28, 20500, 62, 49464, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20352, 41888, 8071, 1313, 13, 12888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3758, 62, 4487, 62, 12888, 7, 19662, 8, 198 ]
2.571702
523
from abc import abstractmethod from csp.observer import Observer class Propagator(Observer): """Abstract class for a constraint propagator.""" @abstractmethod def on_domain_change(self, var): """Called when a variable domain has changed. :param var: The variable that changed :type var: Variable """ pass def setup(self, problem): """Called to initialize this propagator with problem data :param problem: The csp :type problem: Problem """ for v in problem.variables: v.add_observer(self) self.map[v] = [] for c in problem.constraints: for v in c.get_vars(): self.map[v].append(c)
[ 6738, 450, 66, 1330, 12531, 24396, 201, 198, 201, 198, 6738, 269, 2777, 13, 672, 15388, 1330, 27058, 201, 198, 201, 198, 201, 198, 4871, 8772, 363, 1352, 7, 31310, 18497, 2599, 201, 198, 220, 220, 220, 37227, 23839, 1398, 329, 257, 32315, 8928, 1352, 526, 15931, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 2488, 397, 8709, 24396, 201, 198, 220, 220, 220, 825, 319, 62, 27830, 62, 3803, 7, 944, 11, 1401, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34, 4262, 618, 257, 7885, 7386, 468, 3421, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1401, 25, 383, 7885, 326, 3421, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1401, 25, 35748, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 9058, 7, 944, 11, 1917, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34, 4262, 284, 41216, 428, 8928, 1352, 351, 1917, 1366, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1917, 25, 383, 269, 2777, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1917, 25, 20647, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 1917, 13, 25641, 2977, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 13, 2860, 62, 672, 15388, 7, 944, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8899, 58, 85, 60, 796, 17635, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 1917, 13, 1102, 2536, 6003, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 269, 13, 1136, 62, 85, 945, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8899, 58, 85, 4083, 33295, 7, 66, 8, 201, 198 ]
2.119681
376
# Generated by Django 2.0 on 2019-04-02 09:57 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 319, 13130, 12, 3023, 12, 2999, 7769, 25, 3553, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.966667
30
# coding:utf8 import re options = { 'root_url': 'http://www.juooo.com', 'max_count': 1000, 'urlReg': { 'urlRegType': 1, 'urlFull': '', 'urlStr': 'http://(\w+).juooo.com/\w+' }, 'urlData': [] }
[ 2, 19617, 25, 40477, 23, 198, 11748, 302, 198, 198, 25811, 796, 1391, 198, 220, 220, 220, 705, 15763, 62, 6371, 10354, 705, 4023, 1378, 2503, 13, 14396, 34160, 13, 785, 3256, 198, 220, 220, 220, 705, 9806, 62, 9127, 10354, 8576, 11, 198, 220, 220, 220, 705, 6371, 8081, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 8081, 6030, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 13295, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 13290, 10354, 705, 4023, 1378, 38016, 86, 10, 737, 14396, 34160, 13, 785, 14, 59, 86, 10, 6, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 6371, 6601, 10354, 17635, 198, 92, 198, 220, 198 ]
1.875
128
import pandas as pd import numpy as np import os, sys, gc, random import datetime import dateutil.relativedelta # Machine learning from sklearn.preprocessing import LabelEncoder from sklearn.impute import SimpleImputer from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score # Custom library from utils import seed_everything, print_score TOTAL_THRES = 300 # 구매액 임계값 SEED = 42 # 랜덤 시드 seed_everything(SEED) # 시드 고정 data_dir = '../input/train.csv' # os.environ['SM_CHANNEL_TRAIN'] model_dir = '../model' # os.environ['SM_MODEL_DIR'] ''' 입력인자로 받는 year_month에 대해 고객 ID별로 총 구매액이 구매액 임계값을 넘는지 여부의 binary label을 생성하는 함수 ''' # def get_year_month_list(df, year_month): # df = df.copy() # # df['year_month-mode'] = df['order_date'].dt.strftime('%Y-%m') # dd = df.groupby(['year_month-mode', 'customer_id'])['total'].sum() # cust_ids = df['customer_id'].unique() # # # year_month 이전 월 계산 # bef_12_d = datetime.datetime.strptime(year_month, "%Y-%m") # bef_12_prev_ym = bef_12_d - dateutil.relativedelta.relativedelta(months=12) # bef_12_prev_ym = bef_12_prev_ym.strftime('%Y-%m') # # # ddt = df[df['year_month-mode'] == bef_12_prev_ym] # # first_bef = [] # for id in cust_ids: # dd[:, bef_12_prev_ym] # # first_bef.append(dd.xs((id, bef_12_prev_ym))) # # # df['cycle_month'] = pd.Series(first_bef) # # print(df) if __name__ == '__main__': print('data_dir', data_dir)
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 11, 25064, 11, 308, 66, 11, 4738, 198, 11748, 4818, 8079, 198, 11748, 3128, 22602, 13, 2411, 265, 1572, 12514, 198, 198, 2, 10850, 4673, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 36052, 27195, 12342, 198, 6738, 1341, 35720, 13, 11011, 1133, 1330, 17427, 3546, 10549, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 29186, 1431, 42, 37, 727, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 686, 66, 62, 14272, 62, 26675, 198, 198, 2, 8562, 5888, 198, 6738, 3384, 4487, 1330, 9403, 62, 37814, 11, 3601, 62, 26675, 628, 198, 51, 27510, 62, 4221, 19535, 796, 5867, 1303, 220, 166, 113, 105, 167, 100, 97, 168, 243, 94, 23821, 252, 226, 166, 111, 226, 166, 108, 240, 198, 5188, 1961, 796, 5433, 1303, 31619, 252, 250, 167, 235, 97, 23821, 233, 250, 167, 241, 250, 198, 28826, 62, 37814, 7, 5188, 1961, 8, 1303, 23821, 233, 250, 167, 241, 250, 220, 166, 111, 254, 168, 254, 243, 198, 198, 7890, 62, 15908, 796, 705, 40720, 15414, 14, 27432, 13, 40664, 6, 1303, 28686, 13, 268, 2268, 17816, 12310, 62, 3398, 22846, 3698, 62, 51, 3861, 1268, 20520, 198, 19849, 62, 15908, 796, 705, 40720, 19849, 6, 1303, 28686, 13, 268, 2268, 17816, 12310, 62, 33365, 3698, 62, 34720, 20520, 628, 198, 7061, 6, 198, 220, 220, 220, 23821, 252, 227, 167, 254, 98, 35975, 116, 168, 252, 238, 167, 94, 250, 31619, 108, 249, 167, 232, 242, 614, 62, 8424, 168, 245, 238, 31619, 234, 222, 47991, 112, 220, 166, 111, 254, 166, 108, 251, 4522, 167, 111, 226, 167, 94, 250, 23821, 112, 251, 220, 166, 113, 105, 167, 100, 97, 168, 243, 94, 35975, 112, 198, 220, 220, 220, 220, 166, 113, 105, 167, 100, 97, 168, 243, 94, 23821, 252, 226, 166, 111, 226, 166, 108, 240, 35975, 226, 31619, 226, 246, 167, 232, 242, 168, 100, 222, 23821, 245, 105, 167, 114, 222, 35975, 246, 13934, 6167, 35975, 226, 23821, 225, 251, 168, 226, 109, 47991, 246, 167, 232, 242, 220, 47991, 101, 168, 230, 246, 198, 7061, 6, 198, 198, 2, 825, 651, 62, 1941, 62, 8424, 62, 4868, 7, 7568, 11, 614, 62, 8424, 2599, 198, 2, 220, 220, 220, 220, 47764, 796, 47764, 13, 30073, 3419, 198, 2, 198, 2, 220, 220, 220, 220, 47764, 17816, 1941, 62, 8424, 12, 14171, 20520, 796, 47764, 17816, 2875, 62, 4475, 6, 4083, 28664, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 11537, 198, 2, 220, 220, 220, 220, 49427, 796, 47764, 13, 8094, 1525, 7, 17816, 1941, 62, 8424, 12, 14171, 3256, 705, 23144, 263, 62, 312, 6, 12962, 17816, 23350, 6, 4083, 16345, 3419, 198, 2, 220, 220, 220, 220, 9378, 62, 2340, 796, 47764, 17816, 23144, 263, 62, 312, 6, 4083, 34642, 3419, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 614, 62, 8424, 23821, 251, 112, 168, 254, 226, 23821, 249, 242, 220, 166, 111, 226, 168, 224, 108, 198, 2, 220, 220, 220, 220, 307, 69, 62, 1065, 62, 67, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 1941, 62, 8424, 11, 36521, 56, 12, 4, 76, 4943, 198, 2, 220, 220, 220, 220, 307, 69, 62, 1065, 62, 47050, 62, 4948, 796, 307, 69, 62, 1065, 62, 67, 532, 3128, 22602, 13, 2411, 265, 1572, 12514, 13, 2411, 265, 1572, 12514, 7, 41537, 28, 1065, 8, 198, 2, 220, 220, 220, 220, 307, 69, 62, 1065, 62, 47050, 62, 4948, 796, 307, 69, 62, 1065, 62, 47050, 62, 4948, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 11537, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 288, 28664, 796, 47764, 58, 7568, 17816, 1941, 62, 8424, 12, 14171, 20520, 6624, 307, 69, 62, 1065, 62, 47050, 62, 4948, 60, 198, 2, 198, 2, 220, 220, 220, 220, 717, 62, 65, 891, 796, 17635, 198, 2, 220, 220, 220, 220, 329, 4686, 287, 9378, 62, 2340, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 49427, 58, 45299, 307, 69, 62, 1065, 62, 47050, 62, 4948, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 717, 62, 65, 891, 13, 33295, 7, 1860, 13, 34223, 19510, 312, 11, 307, 69, 62, 1065, 62, 47050, 62, 4948, 22305, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 47764, 17816, 13696, 62, 8424, 20520, 796, 279, 67, 13, 27996, 7, 11085, 62, 65, 891, 8, 198, 2, 198, 2, 220, 220, 220, 220, 3601, 7, 7568, 8, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 10786, 7890, 62, 15908, 3256, 1366, 62, 15908, 8, 198 ]
1.867665
801
from __future__ import unicode_literals from __future__ import print_function import unicodedata import unittest """ Very simple assorted helpers for natural language processing that I've used a few times. """ _CHAR_TRANSLATIONS = { # chars to remove "\u00ae": None, "\u2122": None, # chars to normalize that aren't handled by combining char stripping "\u2018": "'", "\u2019": "'", "\u201c": '"', "\u201d": '"', "\u2013": "-", "\u2014": "-", "\u00bd": "1/2" } _CODEPOINT_TRANSLATIONS = {ord(k): v for k, v in _CHAR_TRANSLATIONS.items()} def strip_diacritics(s): """Remove accents and other diacritics""" return "".join(c for c in unicodedata.normalize("NFD", s) if unicodedata.category(c) != "Mn") def normalize_unicode(s): """Remove trademark sign, normalize smart quotes, etc""" return s.translate(_CODEPOINT_TRANSLATIONS)
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28000, 9043, 1045, 198, 11748, 555, 715, 395, 198, 198, 37811, 198, 16371, 2829, 46603, 49385, 329, 3288, 3303, 7587, 326, 314, 1053, 973, 257, 1178, 1661, 13, 198, 37811, 198, 198, 62, 38019, 62, 5446, 1565, 8634, 18421, 796, 1391, 198, 220, 220, 220, 1303, 34534, 284, 4781, 198, 220, 220, 220, 37082, 84, 405, 3609, 1298, 6045, 11, 198, 220, 220, 220, 37082, 84, 17, 18376, 1298, 6045, 11, 628, 220, 220, 220, 1303, 34534, 284, 3487, 1096, 326, 3588, 470, 12118, 416, 19771, 1149, 37727, 198, 220, 220, 220, 37082, 84, 7908, 1298, 24018, 1600, 198, 220, 220, 220, 37082, 84, 23344, 1298, 24018, 1600, 198, 220, 220, 220, 37082, 84, 1264, 66, 1298, 705, 1, 3256, 198, 220, 220, 220, 37082, 84, 1264, 67, 1298, 705, 1, 3256, 198, 220, 220, 220, 37082, 84, 6390, 1298, 27444, 1600, 198, 220, 220, 220, 37082, 84, 4967, 1298, 27444, 1600, 198, 220, 220, 220, 37082, 84, 405, 17457, 1298, 366, 16, 14, 17, 1, 198, 92, 198, 198, 62, 34, 3727, 8905, 46, 12394, 62, 5446, 1565, 8634, 18421, 796, 1391, 585, 7, 74, 2599, 410, 329, 479, 11, 410, 287, 4808, 38019, 62, 5446, 1565, 8634, 18421, 13, 23814, 3419, 92, 628, 198, 4299, 10283, 62, 67, 9607, 799, 873, 7, 82, 2599, 198, 220, 220, 220, 37227, 27914, 39271, 290, 584, 2566, 330, 799, 873, 37811, 198, 220, 220, 220, 1441, 366, 1911, 22179, 7, 66, 329, 269, 287, 28000, 9043, 1045, 13, 11265, 1096, 7203, 21870, 35, 1600, 264, 8, 611, 28000, 9043, 1045, 13, 22872, 7, 66, 8, 14512, 366, 44, 77, 4943, 628, 198, 4299, 3487, 1096, 62, 46903, 1098, 7, 82, 2599, 198, 220, 220, 220, 37227, 27914, 16028, 1051, 11, 3487, 1096, 4451, 13386, 11, 3503, 37811, 198, 220, 220, 220, 1441, 264, 13, 7645, 17660, 28264, 34, 3727, 8905, 46, 12394, 62, 5446, 1565, 8634, 18421, 8, 628, 628 ]
2.630499
341
from manim_imports_ext import *
[ 6738, 582, 320, 62, 320, 3742, 62, 2302, 1330, 1635, 198 ]
2.909091
11
#!/usr/bin/env python """ genome_download: downloading genomes Usage: genome_download [options] <accession_table> genome_download -h | --help genome_download --version Options: <accessin_table> Taxon-accession table (see Description). Use '-' if from STDIN. -d=<d> Output directory. [Default: .] -e=<e> Email to use for NCBI queries. [Default: [email protected]] -a=<a> Number of ambiguous nucleotides allowed in a genome. [Default: 0] -n=<n> Number of cpus. [Default: 1] -t=<t> Number of tries to download genomes. [Default: 10] -r Rename genome sequences based on taxon name? --debug Debug mode (no multiprocessing). -h --help Show this screen. --version Show version. Description: Taxon-accession table --------------------- * tab-delimited * must contain 2 columns * "Taxon" = taxon name * "Accession" = NCBI accession used for downloading * Possible accessions: * ncbi nucleotide db * ncbi assembly db * ftp url to genome (direct download) * other columns are allowed Output ------ * Genome fasta files written to the specified output directory * A table mapping taxa to the download genome fasta file is written to STDOUT """ # import import sys,os import logging ## batteries from docopt import docopt from MGSIM import Genome_Download ## logging logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG) # opt parse
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 198, 5235, 462, 62, 15002, 25, 22023, 42136, 198, 198, 28350, 25, 198, 220, 19270, 62, 15002, 685, 25811, 60, 1279, 15526, 295, 62, 11487, 29, 198, 220, 19270, 62, 15002, 532, 71, 930, 1377, 16794, 198, 220, 19270, 62, 15002, 1377, 9641, 198, 198, 29046, 25, 198, 220, 1279, 15526, 259, 62, 11487, 29, 220, 9241, 261, 12, 15526, 295, 3084, 357, 3826, 12489, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 705, 19355, 611, 422, 48571, 1268, 13, 198, 220, 532, 67, 28, 27, 67, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25235, 8619, 13, 685, 19463, 25, 764, 60, 198, 220, 532, 68, 28, 27, 68, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9570, 284, 779, 329, 8823, 3483, 20743, 13, 685, 19463, 25, 9178, 31, 14816, 13, 785, 60, 198, 220, 532, 64, 28, 27, 64, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 27102, 17751, 313, 1460, 3142, 287, 257, 19270, 13, 685, 19463, 25, 657, 60, 198, 220, 532, 77, 28, 27, 77, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 31396, 385, 13, 685, 19463, 25, 352, 60, 198, 220, 532, 83, 28, 27, 83, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 8404, 284, 4321, 42136, 13, 685, 19463, 25, 838, 60, 198, 220, 532, 81, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7152, 480, 19270, 16311, 1912, 319, 1687, 261, 1438, 30, 198, 220, 1377, 24442, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31687, 4235, 357, 3919, 18540, 305, 919, 278, 737, 198, 220, 532, 71, 1377, 16794, 220, 220, 220, 220, 220, 220, 220, 220, 5438, 428, 3159, 13, 198, 220, 1377, 9641, 220, 220, 220, 220, 220, 220, 220, 220, 5438, 2196, 13, 198, 198, 11828, 25, 198, 220, 9241, 261, 12, 15526, 295, 3084, 198, 220, 41436, 12, 198, 220, 1635, 7400, 12, 12381, 320, 863, 198, 220, 1635, 1276, 3994, 362, 15180, 198, 220, 220, 220, 1635, 366, 27017, 261, 1, 796, 1687, 261, 1438, 198, 220, 220, 220, 1635, 366, 15457, 295, 1, 796, 8823, 3483, 1895, 295, 973, 329, 22023, 220, 198, 220, 220, 220, 220, 220, 1635, 33671, 1895, 507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 299, 66, 8482, 17751, 45608, 20613, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 299, 66, 8482, 10474, 20613, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 10117, 79, 19016, 284, 19270, 357, 12942, 4321, 8, 198, 220, 1635, 584, 15180, 389, 3142, 628, 220, 25235, 198, 220, 40103, 198, 220, 1635, 5215, 462, 3049, 64, 3696, 3194, 284, 262, 7368, 5072, 8619, 198, 220, 1635, 317, 3084, 16855, 1687, 64, 284, 262, 4321, 19270, 3049, 64, 2393, 318, 3194, 284, 48571, 12425, 198, 37811, 198, 198, 2, 1330, 198, 11748, 25064, 11, 418, 198, 11748, 18931, 198, 2235, 13591, 198, 6738, 2205, 8738, 1330, 2205, 8738, 198, 6738, 337, 14313, 3955, 1330, 5215, 462, 62, 10002, 198, 2235, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 30531, 8, 628, 198, 2, 2172, 21136, 198, 220, 220, 220, 198 ]
2.615126
595
import logging import multiprocessing from typing import MutableMapping from PyQt6.QtCore import * from PyQt6.QtWidgets import * from Core.messages import Courier, Message from .widgets import * import os, sys
[ 11748, 18931, 198, 11748, 18540, 305, 919, 278, 198, 6738, 19720, 1330, 13859, 540, 44, 5912, 198, 6738, 9485, 48, 83, 21, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 48, 83, 21, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 6738, 7231, 13, 37348, 1095, 1330, 34268, 11, 16000, 198, 6738, 764, 28029, 11407, 1330, 1635, 198, 11748, 28686, 11, 25064, 628 ]
3.246154
65
# SPDX-License-Identifier: MIT # Greetings to: # - https://www.theiphonewiki.com/wiki/IMG4_File_Format # - https://github.com/tihmstar/img4tool/ # - https://lapo.it/asn1js/ # - hexdump tool of choice import functools from asn1crypto.core import ( Enumerated, Choice, Sequence, SequenceOf, SetOf, Integer, IA5String, OctetString, ParsableOctetString, Integer, Any ) from asn1crypto.x509 import Certificate import restruct class any_tag(tuple): """ highly cursed tuple subtype to bully asn1crypto into accepting any tag """ if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-r', '--raw', action='store_true', help='print raw parsed data') parser.add_argument('infile', type=argparse.FileType('rb'), help='input .img4/.im4m/.im4p file') parser.add_argument('outfile', type=argparse.FileType('wb'), nargs='?', help='output data file for payload') args = parser.parse_args() contents = args.infile.read() errors = {} for p in (IMG4, IMG4Manifest, IMG4Payload): try: img4 = p.load(contents) img4.native # trigger parsing break except Exception as e: errors[p] = e else: print('Could not parse file {}:'.format(args.infile.name)) for (p, e) in errors.items(): print(' - As {}: {}'.format(p.__name__, e)) sys.exit(1) if isinstance(img4, IMG4): payload = img4['payload'] manifest = img4['manifest'] elif isinstance(img4, IMG4Manifest): payload = None manifest = img4 elif isinstance(img4, IMG4Payload): payload = img4 manifest = None if payload: p = payload.native if args.raw: print(restruct.format_value(p, str)) else: print('payload:') print(' type:', p['type']) print(' desc:', p['description']) if p['keybags']: print(' keybags:') keybags = payload['keybags'].parse(IMG4KeyBagSequence).native for kb in keybags: print(' id: ', kb['id']) print(' iv: ', restruct.format_value(kb['iv'], str)) print(' key:', restruct.format_value(kb['key'], str)) print() if p['compression']: print(' compression:') print(' algo:', p['compression']['algorithm']) print(' size:', p['compression']['original_size']) algo = p['compression']['algorithm'] else: algo = None print() if args.outfile: if algo == 'lzfse': import lzfse data = lzfse.decompress(p['data']) elif algo: raise ValueError('unknown algorithm: {}'.format(algo)) else: data = p['data'] args.outfile.write(data) if manifest: m = manifest.native if args.raw: print(restruct.format_value(m, str)) else: print('manifest:') for p in m['contents']: print(' body:') if p['type'] == 'MANB': for c in p['categories']: cname = c['category']['type'] for v in c['category']['values']: print(' {}.{}: {}'.format(cname, v['value']['key'], restruct.format_value(v['value']['value'], str))) print()
[ 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 17168, 198, 2, 402, 46648, 284, 25, 198, 2, 532, 3740, 1378, 2503, 13, 1169, 13323, 44181, 5580, 13, 785, 14, 15466, 14, 3955, 38, 19, 62, 8979, 62, 26227, 198, 2, 532, 3740, 1378, 12567, 13, 785, 14, 83, 4449, 76, 7364, 14, 9600, 19, 25981, 14, 198, 2, 532, 3740, 1378, 37796, 78, 13, 270, 14, 292, 77, 16, 8457, 14, 198, 2, 532, 17910, 39455, 2891, 286, 3572, 198, 198, 11748, 1257, 310, 10141, 198, 6738, 355, 77, 16, 29609, 78, 13, 7295, 1330, 357, 198, 220, 220, 220, 2039, 6975, 515, 11, 18502, 11, 45835, 11, 45835, 5189, 11, 5345, 5189, 11, 198, 220, 220, 220, 34142, 11, 35229, 20, 10100, 11, 2556, 316, 10100, 11, 23042, 540, 12349, 316, 10100, 11, 34142, 11, 198, 220, 220, 220, 4377, 198, 8, 198, 6738, 355, 77, 16, 29609, 78, 13, 87, 29022, 1330, 27895, 198, 11748, 27596, 628, 198, 4871, 597, 62, 12985, 7, 83, 29291, 2599, 198, 220, 220, 220, 37227, 4047, 25155, 46545, 850, 4906, 284, 27410, 355, 77, 16, 29609, 78, 656, 12598, 597, 7621, 37227, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 1822, 29572, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 81, 3256, 705, 438, 1831, 3256, 2223, 11639, 8095, 62, 7942, 3256, 1037, 11639, 4798, 8246, 44267, 1366, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 259, 7753, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 26145, 33809, 1037, 11639, 15414, 764, 9600, 19, 11757, 320, 19, 76, 11757, 320, 19, 79, 2393, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 448, 7753, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 39346, 33809, 299, 22046, 11639, 30, 3256, 1037, 11639, 22915, 1366, 2393, 329, 21437, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 10154, 796, 26498, 13, 259, 7753, 13, 961, 3419, 198, 220, 220, 220, 8563, 796, 23884, 198, 220, 220, 220, 329, 279, 287, 357, 3955, 38, 19, 11, 8959, 38, 19, 5124, 8409, 11, 8959, 38, 19, 19197, 2220, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 19, 796, 279, 13, 2220, 7, 3642, 658, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 19, 13, 30191, 220, 1303, 7616, 32096, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8563, 58, 79, 60, 796, 304, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 23722, 407, 21136, 2393, 23884, 25, 4458, 18982, 7, 22046, 13, 259, 7753, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 79, 11, 304, 8, 287, 8563, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 532, 1081, 23884, 25, 23884, 4458, 18982, 7, 79, 13, 834, 3672, 834, 11, 304, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 318, 39098, 7, 9600, 19, 11, 8959, 38, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 33705, 19, 17816, 15577, 2220, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 10561, 796, 33705, 19, 17816, 805, 8409, 20520, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 9600, 19, 11, 8959, 38, 19, 5124, 8409, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 10561, 796, 33705, 19, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 9600, 19, 11, 8959, 38, 19, 19197, 2220, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 33705, 19, 198, 220, 220, 220, 220, 220, 220, 220, 10561, 796, 6045, 628, 220, 220, 220, 611, 21437, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 21437, 13, 30191, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2118, 1356, 13, 18982, 62, 8367, 7, 79, 11, 965, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 15577, 2220, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 2099, 25, 3256, 279, 17816, 4906, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 1715, 25, 3256, 279, 17816, 11213, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17816, 2539, 34005, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 1994, 34005, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 34005, 796, 21437, 17816, 2539, 34005, 6, 4083, 29572, 7, 3955, 38, 19, 9218, 33, 363, 44015, 594, 737, 30191, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 47823, 287, 1994, 34005, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 4686, 25, 46083, 47823, 17816, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 21628, 25, 46083, 27596, 13, 18982, 62, 8367, 7, 32812, 17816, 452, 6, 4357, 965, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 1994, 25, 3256, 27596, 13, 18982, 62, 8367, 7, 32812, 17816, 2539, 6, 4357, 965, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17816, 5589, 2234, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 19794, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 435, 2188, 25, 3256, 279, 17816, 5589, 2234, 6, 7131, 6, 282, 42289, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 2546, 25, 3256, 279, 17816, 5589, 2234, 6, 7131, 6, 14986, 62, 7857, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 279, 17816, 5589, 2234, 6, 7131, 6, 282, 42289, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 448, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 435, 2188, 6624, 705, 75, 89, 69, 325, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 300, 89, 69, 325, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 300, 89, 69, 325, 13, 12501, 3361, 601, 7, 79, 17816, 7890, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 435, 2188, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 34680, 11862, 25, 23884, 4458, 18982, 7, 282, 2188, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 279, 17816, 7890, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 448, 7753, 13, 13564, 7, 7890, 8, 198, 220, 220, 220, 611, 10561, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 10561, 13, 30191, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2118, 1356, 13, 18982, 62, 8367, 7, 76, 11, 965, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 805, 8409, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 285, 17816, 3642, 658, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 1767, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 17816, 4906, 20520, 6624, 705, 10725, 33, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 279, 17816, 66, 26129, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 3672, 796, 269, 17816, 22872, 6, 7131, 6, 4906, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 269, 17816, 22872, 6, 7131, 6, 27160, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 23884, 13, 90, 38362, 23884, 4458, 18982, 7, 66, 3672, 11, 410, 17816, 8367, 6, 7131, 6, 2539, 6, 4357, 27596, 13, 18982, 62, 8367, 7, 85, 17816, 8367, 6, 7131, 6, 8367, 6, 4357, 965, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198 ]
1.981278
1,816
import unittest from programy.storage.stores.nosql.mongo.dao.rdf import RDF
[ 11748, 555, 715, 395, 198, 198, 6738, 1430, 88, 13, 35350, 13, 43409, 13, 39369, 13976, 13, 76, 25162, 13, 67, 5488, 13, 4372, 69, 1330, 371, 8068, 628 ]
2.689655
29
# (c) 2017 Gregor Mitscha-Baude from matplotlib import pyplot as plt import numpy as np import dolfin from nanopores.tools import fields fields.set_dir_dropbox() from nanopores.models.nanopore import Setup from nanopores.geometries.alphahempoly import poly from nanopores.geometries.alphahem import default from nanopores.geometries.cylpore import Pore, get_geo from nanopores.models.diffusion_ahem import diff_profile_z_ahem, get_diffusivity # params for precomputed diffusivity params = dict(dim=2, Nmax=1e5, h=.5, ahemqsuniform=True, rMolecule=0.11) #ap1 = 18 #ap2 = 49 #x0 = poly[18] #x1 = poly[49] # #zmem = .5*(x0[1] + x1[1]) #print zmem # #poly = [[x[0], x[1] - zmem] for x in poly] #proteincs = [z - zmem for z in default["proteincs"]] #cs = [z - zmem for z in default["cs"]] #default.update(zmem=0., hmem=2.82, Htop=10, Hbot=6, R=6, proteincs=proteincs, cs=cs) #print default # #def new_get_geo(**params): # return get_geo(poly, **params) # #p = Pore(poly, **default) #p.build(h=.5) # #p.polygons["alphahem"].plot("ok") #p.polygons["membrane"].plot() #p.polygons["bulkfluid_top"].plot() #p.polygons["bulkfluid_bottom"].plot() #plt.show() #setup = Setup(get_geo=new_get_geo, geop=default, h=.5) #setup = Setup(h=.5) #setup.geo.plot_boundaries() functions, mesh = fields.get_functions(name="Dalphahem-coupled", **params) dist = functions["dist"] #dolfin.plot(dist, interactive=True) # construct D fit from Noskov2004 and plot tabulated D values A = 0.64309 B = 0.00044 C = 0.06894 D = 0.35647 E = 0.19409 z, D = diff_profile_fit(a=-12, b=2, N=100) plt.plot(z, D, "-b", label="Tabulated (infinite cylinder)") data = diff_profile_z_ahem(a=-12, b=2, N=100, **params) z = [x0[2] for x0 in data["x"]] Dz = data["D"] plt.plot(z, Dz, "og", label="Full hydrodynamic model") plt.ylabel("Rel. diffusivity") plt.xlabel("z [nm]") plt.xlim(-10, 0) ax = plt.gca() #ax.yaxis.tick_right() #ax.yaxis.set_label_position("right") plt.legend(loc="upper left", frameon=False) from nanopores import savefigs from folders import FIGDIR savefigs("Dz", FIGDIR + "/ahem", (6, 4.5)) #print results
[ 2, 357, 66, 8, 2177, 8547, 273, 22424, 11693, 12, 34458, 2507, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 288, 4024, 259, 198, 6738, 46661, 2850, 13, 31391, 1330, 7032, 198, 25747, 13, 2617, 62, 15908, 62, 14781, 3524, 3419, 198, 6738, 46661, 2850, 13, 27530, 13, 12647, 404, 382, 1330, 31122, 198, 6738, 46661, 2850, 13, 469, 908, 1678, 13, 26591, 258, 3149, 3366, 1330, 7514, 198, 6738, 46661, 2850, 13, 469, 908, 1678, 13, 26591, 4411, 1330, 4277, 198, 6738, 46661, 2850, 13, 469, 908, 1678, 13, 948, 34431, 382, 1330, 350, 382, 11, 651, 62, 469, 78, 198, 6738, 46661, 2850, 13, 27530, 13, 26069, 4241, 62, 64, 4411, 1330, 814, 62, 13317, 62, 89, 62, 64, 4411, 11, 651, 62, 26069, 385, 3458, 198, 198, 2, 42287, 329, 662, 785, 17128, 814, 385, 3458, 198, 37266, 796, 8633, 7, 27740, 28, 17, 11, 399, 9806, 28, 16, 68, 20, 11, 289, 28, 13, 20, 11, 257, 4411, 80, 19155, 6933, 28, 17821, 11, 374, 44, 2305, 23172, 28, 15, 13, 1157, 8, 198, 198, 2, 499, 16, 796, 1248, 198, 2, 499, 17, 796, 5125, 198, 2, 87, 15, 796, 7514, 58, 1507, 60, 198, 2, 87, 16, 796, 7514, 58, 2920, 60, 198, 2, 198, 2, 89, 11883, 796, 764, 20, 9, 7, 87, 15, 58, 16, 60, 1343, 2124, 16, 58, 16, 12962, 198, 2, 4798, 1976, 11883, 198, 2, 198, 2, 35428, 796, 16410, 87, 58, 15, 4357, 2124, 58, 16, 60, 532, 1976, 11883, 60, 329, 2124, 287, 7514, 60, 198, 2, 1676, 660, 1939, 82, 796, 685, 89, 532, 1976, 11883, 329, 1976, 287, 4277, 14692, 1676, 660, 1939, 82, 8973, 60, 198, 2, 6359, 796, 685, 89, 532, 1976, 11883, 329, 1976, 287, 4277, 14692, 6359, 8973, 60, 198, 2, 12286, 13, 19119, 7, 89, 11883, 28, 15, 1539, 289, 11883, 28, 17, 13, 6469, 11, 367, 4852, 28, 940, 11, 367, 13645, 28, 21, 11, 371, 28, 21, 11, 5915, 1939, 82, 28, 1676, 660, 1939, 82, 11, 50115, 28, 6359, 8, 198, 2, 4798, 4277, 198, 2, 198, 2, 4299, 649, 62, 1136, 62, 469, 78, 7, 1174, 37266, 2599, 198, 2, 220, 220, 220, 1441, 651, 62, 469, 78, 7, 35428, 11, 12429, 37266, 8, 198, 2, 198, 2, 79, 796, 350, 382, 7, 35428, 11, 12429, 12286, 8, 198, 2, 79, 13, 11249, 7, 71, 28, 13, 20, 8, 198, 2, 198, 2, 79, 13, 35428, 70, 684, 14692, 26591, 4411, 1, 4083, 29487, 7203, 482, 4943, 198, 2, 79, 13, 35428, 70, 684, 14692, 11883, 1671, 1531, 1, 4083, 29487, 3419, 198, 2, 79, 13, 35428, 70, 684, 14692, 65, 12171, 35522, 312, 62, 4852, 1, 4083, 29487, 3419, 198, 2, 79, 13, 35428, 70, 684, 14692, 65, 12171, 35522, 312, 62, 22487, 1, 4083, 29487, 3419, 198, 2, 489, 83, 13, 12860, 3419, 198, 198, 2, 40406, 796, 31122, 7, 1136, 62, 469, 78, 28, 3605, 62, 1136, 62, 469, 78, 11, 30324, 28, 12286, 11, 289, 28, 13, 20, 8, 198, 2, 40406, 796, 31122, 7, 71, 28, 13, 20, 8, 198, 2, 40406, 13, 469, 78, 13, 29487, 62, 7784, 3166, 3419, 198, 12543, 2733, 11, 19609, 796, 7032, 13, 1136, 62, 12543, 2733, 7, 3672, 2625, 35, 26591, 4411, 12, 66, 280, 10137, 1600, 12429, 37266, 8, 198, 17080, 796, 5499, 14692, 17080, 8973, 198, 198, 2, 67, 4024, 259, 13, 29487, 7, 17080, 11, 14333, 28, 17821, 8, 198, 198, 2, 5678, 360, 4197, 422, 32798, 21862, 15724, 290, 7110, 7400, 4817, 360, 3815, 198, 32, 796, 657, 13, 2414, 26895, 198, 33, 796, 657, 13, 830, 2598, 198, 34, 796, 657, 13, 15, 3104, 5824, 198, 35, 796, 657, 13, 2327, 33981, 198, 36, 796, 657, 13, 1129, 29416, 198, 198, 89, 11, 360, 796, 814, 62, 13317, 62, 11147, 7, 64, 10779, 1065, 11, 275, 28, 17, 11, 399, 28, 3064, 8, 198, 489, 83, 13, 29487, 7, 89, 11, 360, 11, 27444, 65, 1600, 6167, 2625, 33349, 4817, 357, 10745, 9504, 24911, 8, 4943, 198, 198, 7890, 796, 814, 62, 13317, 62, 89, 62, 64, 4411, 7, 64, 10779, 1065, 11, 275, 28, 17, 11, 399, 28, 3064, 11, 12429, 37266, 8, 198, 89, 796, 685, 87, 15, 58, 17, 60, 329, 2124, 15, 287, 1366, 14692, 87, 8973, 60, 198, 35, 89, 796, 1366, 14692, 35, 8973, 198, 198, 489, 83, 13, 29487, 7, 89, 11, 360, 89, 11, 366, 519, 1600, 6167, 2625, 13295, 7409, 14892, 28995, 2746, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 6892, 13, 814, 385, 3458, 4943, 198, 489, 83, 13, 87, 18242, 7203, 89, 685, 21533, 60, 4943, 198, 489, 83, 13, 87, 2475, 32590, 940, 11, 657, 8, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 198, 2, 897, 13, 88, 22704, 13, 42298, 62, 3506, 3419, 198, 2, 897, 13, 88, 22704, 13, 2617, 62, 18242, 62, 9150, 7203, 3506, 4943, 198, 489, 83, 13, 1455, 437, 7, 17946, 2625, 45828, 1364, 1600, 5739, 261, 28, 25101, 8, 198, 198, 6738, 46661, 2850, 1330, 3613, 5647, 82, 198, 6738, 24512, 1330, 19697, 34720, 198, 21928, 5647, 82, 7203, 35, 89, 1600, 19697, 34720, 1343, 12813, 64, 4411, 1600, 357, 21, 11, 604, 13, 20, 4008, 198, 2, 4798, 2482 ]
2.334078
895
"""This module solves kata https://www.codewars.com/kata/multiples-and-digit-sums/train/python.""" def procedure(i): """Return an integer derived by first finding all multiples of i up to 100, then summing all up digit sums of all multiples.""" return sum(int(d) for i in range(n, 101, n) for d in str(i))
[ 37811, 1212, 8265, 39107, 479, 1045, 3740, 1378, 2503, 13, 19815, 413, 945, 13, 785, 14, 74, 1045, 14, 41684, 2374, 12, 392, 12, 27003, 12, 82, 5700, 14, 27432, 14, 29412, 526, 15931, 628, 198, 4299, 8771, 7, 72, 2599, 198, 220, 220, 220, 37227, 13615, 281, 18253, 10944, 416, 717, 4917, 477, 5021, 2374, 286, 1312, 510, 284, 1802, 11, 198, 220, 220, 220, 788, 2160, 2229, 477, 510, 16839, 21784, 286, 477, 5021, 2374, 526, 15931, 198, 220, 220, 220, 1441, 2160, 7, 600, 7, 67, 8, 329, 1312, 287, 2837, 7, 77, 11, 8949, 11, 299, 8, 329, 288, 287, 965, 7, 72, 4008, 198 ]
2.93578
109
import json import folium import folium.plugins import tempfile import os import re import argparse if __name__ == "__main__": cwd = os.getcwd() args = get_args() plot_privpurge( os.path.join(cwd, args.zonefile), os.path.join(cwd, args.directory), filename=args.output, )
[ 11748, 33918, 198, 11748, 5955, 1505, 198, 11748, 5955, 1505, 13, 37390, 198, 11748, 20218, 7753, 198, 11748, 28686, 198, 11748, 302, 628, 198, 198, 11748, 1822, 29572, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 269, 16993, 796, 28686, 13, 1136, 66, 16993, 3419, 628, 220, 220, 220, 26498, 796, 651, 62, 22046, 3419, 628, 220, 220, 220, 7110, 62, 13776, 14225, 469, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 66, 16993, 11, 26498, 13, 11340, 7753, 828, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 66, 16993, 11, 26498, 13, 34945, 828, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 28, 22046, 13, 22915, 11, 198, 220, 220, 220, 1267, 198 ]
2.335766
137
# pylint: skip-file """ Unit test for data utils functions. """ import numpy as np import pandas as pd import pytest import tensorflow as tf from tensorflow import test from .data_utils import quantiles_handler, example_handler, fill_none from ..data import random_ts from ..dataset import WindowGenerator @pytest.fixture(scope="class") @pytest.mark.usefixtures("prepare_data") @pytest.mark.usefixtures("prepare_data")
[ 2, 279, 2645, 600, 25, 14267, 12, 7753, 198, 198, 37811, 198, 26453, 1332, 329, 1366, 3384, 4487, 5499, 13, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 12972, 9288, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 1330, 1332, 198, 198, 6738, 764, 7890, 62, 26791, 1330, 5554, 2915, 62, 30281, 11, 1672, 62, 30281, 11, 6070, 62, 23108, 198, 6738, 11485, 7890, 1330, 4738, 62, 912, 198, 6738, 11485, 19608, 292, 316, 1330, 26580, 8645, 1352, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 4871, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 7203, 46012, 533, 62, 7890, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 7203, 46012, 533, 62, 7890, 4943, 198 ]
3.028169
142
# Copyright (C) Mesosphere, Inc. See LICENSE file for details. """ Shared code for DC/OS endpoints mocks used by AR instances, both EE and Open. """ import abc import http.server import logging import os import socket import socketserver import ssl import threading # pylint: disable=C0103 log = logging.getLogger(__name__) # Just a dict would be no good as we want to have threading lock initialization # as well. # pylint: disable=R0903 class EndpointContext: """An endpoint context that holds all the endpoint data together with threading lock that protects it.""" data = None lock = None def __init__(self, initial_data=None): """Initialize EndpointContext object. This data is often manipulated by methods nested across inheritance chains, so we need to use RLock() instead of Lock(). The need for the lock itself stems from the fact that very often certain keys of the context need to be manipulated at the same time/in synchronized manner. In some of the places, code relies on thread safety/atomicity of some of Python's expressions/statements: https://docs.python.org/3.6/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe This is why some of the operations on the EndpointContext dictionary are not protected by locks, esp. in case when it's only about fetching a single value from context dict or storing/appending one there. Args: initial_data (dict): initial data to initialize context with """ self.lock = threading.RLock() if initial_data is not None: self.data = initial_data else: self.data = {} class Endpoint(abc.ABC): """Endpoint base class, from which all Endpoints must inherit This class represents common behaviour shared across all endpoints, no matter the function or repository flavour (ee/open). Ever endpoint must by default serve GOOD/expected data, and only after changing it's state using it's methods, it may start serving something else and/or simulate error conditions. The state of the endpoint may be changed by tests/fixtures by executing Mocker's .send_command() method which in turn redirect the call to the correct endpoint call. For the sake of simplicity it is assumed that each such method will have well-defined interface: def do_something(self, aux_data=None): return result `aux_data` is a python dictionary that must provide all data required by function to execute. It can be None if such data is not required `result` can be anything that makes sense in particular function's case. """ _context = None _httpd_thread = None _httpd = None def __init__(self, endpoint_id): """Initialize new Endpoint object Args: endpoint_id (str): ID of the endpoint that it should identify itself with """ initial_data = {"always_bork": False, "endpoint_id": endpoint_id, "always_redirect": False, "redirect_target": None, "always_stall": False, "response_headers": {}, "stall_time": 0, } self._context = EndpointContext(initial_data) @property def id(self): """Return ID of the endpoint""" return self._context.data['endpoint_id'] def start(self): """Start endpoint's threaded httpd server""" log.debug("Starting endpoint `%s`", self.id) self._httpd_thread.start() self._httpd.startup_done.wait() def stop(self): """Perform cleanup of the endpoint threads This method should be used right before destroying the Endpoint object. It takes care of stopping internal httpd server. """ log.debug("Stopping endpoint `%s`", self.id) self._httpd.shutdown() self._httpd_thread.join() self._httpd.server_close() def reset(self, aux_data=None): """Reset endpoint to the default/good state Args: aux_data (dict): unused, present only to satisfy the endpoint's method interface. See class description for details. """ del aux_data log.debug("Resetting endpoint `%s`", self.id) # Locking is not really needed here as it is atomic op anyway, # but let's be consistent with self._context.lock: self._context.data['always_bork'] = False self._context.data['always_stall'] = False self._context.data['stall_time'] = 0 self._context.data["always_redirect"] = False self._context.data["redirect_target"] = None def set_response_headers(self, aux_data): """Make endpoint sent custom headers in the response Args: aux_data: a dict with header's name/content as keys/vals """ with self._context.lock: self._context.data["response_headers"].update(aux_data) def always_stall(self, aux_data=None): """Make endpoint always wait given time before answering the request Args: aux_data (numeric): time in seconds, as acepted by time.sleep() function """ with self._context.lock: self._context.data["always_stall"] = True self._context.data["stall_time"] = aux_data def always_bork(self, aux_data=True): """Make endpoint always respond with an error Args: aux_data (dict): True or False, depending whether endpoint should always respond with errors or not. """ self._context.data["always_bork"] = aux_data def always_redirect(self, aux_data=None): """Make endpoint always respond with a redirect Args: aux_data (str): target location for the redirect """ with self._context.lock: self._context.data["always_redirect"] = True self._context.data["redirect_target"] = aux_data class StatefullHTTPServer(socketserver.ThreadingMixIn, http.server.HTTPServer): """Base class for all endpoint-internal httpd servers. This class serves as a base for all internal httpd server, it's role is to pull in Threading mix-in and link Endpoint context to httpd itself, so that it's available in the httpd request handler through request's .server.context attribute. Worth noting that this is by default a TCP/IP server. It's based on: https://mail.python.org/pipermail/python-list/2012-March/621727.html """ class TcpIpHttpEndpoint(Endpoint): """Base class for all endpoints that serve TCP/IP requests This class binds together HTTPd server code, http request handler and endpoint context to form a base class for all endpoints that serve TCP/IP traffic. """ def __init__(self, handler_class, port, ip='', keyfile=None, certfile=None): """Initialize new TcpIpHttpEndpoint object Args: handler_class (obj): a request handler class that will be handling requests received by internal httpd server port (int): tcp port that httpd server will listen on ip (str): ip address that httpd server will listen on, by default listen on all addresses """ if certfile is not None and keyfile is not None: endpoint_id = "https://{}:{}".format(ip, port) else: endpoint_id = "http://{}:{}".format(ip, port) super().__init__(endpoint_id) self._context.data['listen_ip'] = ip self._context.data['listen_port'] = port self._context.data['certfile'] = certfile self._context.data['keyfile'] = keyfile self._handler_class = handler_class self.__setup_httpd_thread(ip, port) def __setup_httpd_thread(self, ip, port): """Setup internal HTTPd server that this endpoints relies on to serve requests. """ self._httpd = StatefullHTTPServer(self._context, (ip, port), self._handler_class) httpd_thread_name = "TcpIpHttpdThread-{}".format(self.id) self._httpd_thread = threading.Thread(target=self._httpd.serve_forever, name=httpd_thread_name) class UnixSocketStatefulHTTPServer(StatefullHTTPServer): """Base class for all endpoint-internal httpd servers that listen on Unix socket. This class inherits from StatefullHTTPServer and mofies it's behaviour so that it's able to listen on Unix socket. Attributes: address_family: set only to override default value of the variable set in the http.server.HTTPServer class, must not be modified. """ address_family = socket.AF_UNIX def server_bind(self): """Override default server socket bind behaviour to adapt it to serving on Unix socket. Please check the documentation of http.server.HTTPServer class for more details. """ socketserver.TCPServer.server_bind(self) self.server_name = self.context.data['socket_path'] self.server_port = 0 def client_address(self): """Override default client_address method to adapt it to serving on Unix socket. Without it logging will break as Unix socket has no notion of the client's IP address. Please check the documentation of http.server.HTTPServer class for more details. """ return (self.context.data['socket_path'], 0) # http://stackoverflow.com/questions/21650370/setting-up-an-http-server-that-listens-over-a-file-socket # https://docs.python.org/3.3/library/socketserver.html class UnixSocketHTTPEndpoint(Endpoint): """Base class for all endpoints that serve requests on the Unix socket This class binds together HTTPd server code, http request handler and endpoint context to form a base class for all endpoints that serve Unix socket traffic. """ def __init__(self, handler_class, path, keyfile=None, certfile=None): """Initialize new UnixSocketHTTPEndpoint object Args: handler_class (obj): a request handler class that will be handling requests received by internal httpd server path (str): Unix socket path, that internal httpd server will listen on """ if certfile is not None and keyfile is not None: endpoint_id = "https://{}".format(path) else: endpoint_id = "http://{}".format(path) super().__init__(endpoint_id) self._context.data['socket_path'] = path self._context.data['certfile'] = certfile self._context.data['keyfile'] = keyfile self._handler_class = handler_class self.__cleanup_stale_socket(path) self.__setup_httpd_thread(path) @staticmethod def __setup_httpd_thread(self, socket_path): """Setup internal HTTPd server that this endpoints relies on to serve requests. Args: path (str): Unix socket path, that internal httpd server will listen on """ self._httpd = UnixSocketStatefulHTTPServer(self._context, socket_path, self._handler_class) httpd_thread_name = "UnixSocketHttpdThread-{}".format(self.id) self._httpd_thread = threading.Thread(target=self._httpd.serve_forever, name=httpd_thread_name) # nginx spawns worker processes as 'nobody/nogroup', so we need to # make the socket available to it. os.chmod(socket_path, 0o777)
[ 2, 15069, 357, 34, 8, 14937, 22829, 11, 3457, 13, 4091, 38559, 24290, 2393, 329, 3307, 13, 198, 198, 37811, 198, 2484, 1144, 2438, 329, 6257, 14, 2640, 886, 13033, 285, 3320, 973, 416, 5923, 10245, 11, 1111, 27254, 290, 4946, 13, 198, 37811, 198, 198, 11748, 450, 66, 198, 11748, 2638, 13, 15388, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 17802, 198, 11748, 37037, 18497, 198, 11748, 264, 6649, 198, 11748, 4704, 278, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 34, 486, 3070, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 2, 2329, 257, 8633, 561, 307, 645, 922, 355, 356, 765, 284, 423, 4704, 278, 5793, 37588, 198, 2, 355, 880, 13, 198, 2, 279, 2645, 600, 25, 15560, 28, 49, 2931, 3070, 198, 4871, 5268, 4122, 21947, 25, 198, 220, 220, 220, 37227, 2025, 36123, 4732, 326, 6622, 477, 262, 36123, 1366, 1978, 351, 198, 220, 220, 220, 220, 220, 220, 4704, 278, 5793, 326, 17289, 340, 526, 15931, 198, 220, 220, 220, 1366, 796, 6045, 198, 220, 220, 220, 5793, 796, 6045, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4238, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 5268, 4122, 21947, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1366, 318, 1690, 25036, 416, 5050, 28376, 1973, 198, 220, 220, 220, 220, 220, 220, 220, 24155, 14659, 11, 523, 356, 761, 284, 779, 371, 25392, 3419, 2427, 286, 13656, 22446, 628, 220, 220, 220, 220, 220, 220, 220, 383, 761, 329, 262, 5793, 2346, 21552, 422, 262, 1109, 326, 845, 1690, 1728, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 286, 262, 4732, 761, 284, 307, 25036, 379, 262, 976, 640, 14, 259, 47192, 198, 220, 220, 220, 220, 220, 220, 220, 5642, 13, 628, 220, 220, 220, 220, 220, 220, 220, 554, 617, 286, 262, 4113, 11, 2438, 16507, 319, 4704, 3747, 14, 37696, 8467, 286, 198, 220, 220, 220, 220, 220, 220, 220, 617, 286, 11361, 338, 14700, 14, 14269, 3196, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 13, 21, 14, 13331, 80, 14, 32016, 13, 6494, 2, 10919, 12, 11031, 82, 12, 1659, 12, 20541, 12, 8367, 12, 76, 7094, 12, 533, 12, 16663, 12, 21230, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 1521, 617, 286, 262, 4560, 319, 262, 5268, 4122, 21947, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 389, 407, 6861, 416, 19253, 11, 15024, 13, 287, 1339, 618, 340, 338, 691, 546, 21207, 278, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2060, 1988, 422, 4732, 8633, 393, 23069, 14, 1324, 1571, 530, 612, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 7890, 357, 11600, 2599, 4238, 1366, 284, 41216, 4732, 351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5354, 796, 4704, 278, 13, 7836, 735, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4238, 62, 7890, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 796, 4238, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 796, 23884, 628, 198, 4871, 5268, 4122, 7, 39305, 13, 24694, 2599, 198, 220, 220, 220, 37227, 12915, 4122, 2779, 1398, 11, 422, 543, 477, 5268, 13033, 1276, 16955, 628, 220, 220, 220, 220, 220, 220, 770, 1398, 6870, 2219, 9172, 4888, 1973, 477, 886, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 645, 2300, 262, 2163, 393, 16099, 29254, 357, 1453, 14, 9654, 737, 628, 220, 220, 220, 220, 220, 220, 10776, 36123, 1276, 416, 4277, 4691, 21090, 14, 40319, 1366, 11, 290, 691, 706, 198, 220, 220, 220, 220, 220, 220, 5609, 340, 338, 1181, 1262, 340, 338, 5050, 11, 340, 743, 923, 7351, 1223, 198, 220, 220, 220, 220, 220, 220, 2073, 290, 14, 273, 29308, 4049, 3403, 13, 628, 220, 220, 220, 220, 220, 220, 383, 1181, 286, 262, 36123, 743, 307, 3421, 416, 5254, 14, 69, 25506, 416, 23710, 198, 220, 220, 220, 220, 220, 220, 337, 12721, 338, 764, 21280, 62, 21812, 3419, 2446, 543, 287, 1210, 18941, 262, 869, 284, 262, 198, 220, 220, 220, 220, 220, 220, 3376, 36123, 869, 13, 1114, 262, 11060, 286, 21654, 340, 318, 9672, 326, 1123, 198, 220, 220, 220, 220, 220, 220, 884, 2446, 481, 423, 880, 12, 23211, 7071, 25, 198, 220, 220, 220, 220, 220, 220, 220, 825, 466, 62, 18927, 7, 944, 11, 27506, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 220, 220, 220, 220, 4600, 14644, 62, 7890, 63, 318, 257, 21015, 22155, 326, 1276, 2148, 477, 1366, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 416, 2163, 284, 12260, 13, 632, 460, 307, 6045, 611, 884, 1366, 318, 407, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 20274, 63, 460, 307, 1997, 326, 1838, 2565, 287, 1948, 2163, 338, 1339, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 22866, 796, 6045, 198, 220, 220, 220, 4808, 4023, 67, 62, 16663, 796, 6045, 198, 220, 220, 220, 4808, 4023, 67, 796, 6045, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 36123, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 649, 5268, 4122, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 357, 2536, 2599, 4522, 286, 262, 36123, 326, 340, 815, 5911, 2346, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 7890, 796, 19779, 33770, 62, 65, 967, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 437, 4122, 62, 312, 1298, 36123, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33770, 62, 445, 1060, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 445, 1060, 62, 16793, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33770, 62, 32989, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26209, 62, 50145, 1298, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32989, 62, 2435, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 796, 5268, 4122, 21947, 7, 36733, 62, 7890, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4686, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 4522, 286, 262, 36123, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 22866, 13, 7890, 17816, 437, 4122, 62, 312, 20520, 628, 220, 220, 220, 825, 923, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10434, 36123, 338, 40945, 2638, 67, 4382, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 22851, 36123, 4600, 4, 82, 63, 1600, 2116, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 62, 16663, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 13, 9688, 929, 62, 28060, 13, 17077, 3419, 628, 220, 220, 220, 825, 2245, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5990, 687, 27425, 286, 262, 36123, 14390, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 815, 307, 973, 826, 878, 13897, 262, 5268, 4122, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 632, 2753, 1337, 286, 12225, 5387, 2638, 67, 4382, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 1273, 33307, 36123, 4600, 4, 82, 63, 1600, 2116, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 13, 49625, 2902, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 62, 16663, 13, 22179, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 13, 15388, 62, 19836, 3419, 628, 220, 220, 220, 825, 13259, 7, 944, 11, 27506, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 36123, 284, 262, 4277, 14, 11274, 1181, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 357, 11600, 2599, 21958, 11, 1944, 691, 284, 15959, 262, 36123, 338, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 7071, 13, 4091, 1398, 6764, 329, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 27506, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 4965, 35463, 36123, 4600, 4, 82, 63, 1600, 2116, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 406, 8629, 318, 407, 1107, 2622, 994, 355, 340, 318, 17226, 1034, 6949, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 475, 1309, 338, 307, 6414, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 22866, 13, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 33770, 62, 65, 967, 20520, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 33770, 62, 32989, 20520, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 32989, 62, 2435, 20520, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 33770, 62, 445, 1060, 8973, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 445, 1060, 62, 16793, 8973, 796, 6045, 628, 220, 220, 220, 825, 900, 62, 26209, 62, 50145, 7, 944, 11, 27506, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 36123, 1908, 2183, 24697, 287, 262, 2882, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 25, 257, 8633, 351, 13639, 338, 1438, 14, 11299, 355, 8251, 14, 12786, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 22866, 13, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 26209, 62, 50145, 1, 4083, 19119, 7, 14644, 62, 7890, 8, 628, 220, 220, 220, 825, 1464, 62, 32989, 7, 944, 11, 27506, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 36123, 1464, 4043, 1813, 640, 878, 18877, 262, 2581, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 357, 77, 39223, 2599, 640, 287, 4201, 11, 355, 257, 984, 276, 416, 640, 13, 42832, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 22866, 13, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 33770, 62, 32989, 8973, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 32989, 62, 2435, 8973, 796, 27506, 62, 7890, 628, 220, 220, 220, 825, 1464, 62, 65, 967, 7, 944, 11, 27506, 62, 7890, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 36123, 1464, 3031, 351, 281, 4049, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 357, 11600, 2599, 6407, 393, 10352, 11, 6906, 1771, 36123, 815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1464, 3031, 351, 8563, 393, 407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 33770, 62, 65, 967, 8973, 796, 27506, 62, 7890, 628, 220, 220, 220, 825, 1464, 62, 445, 1060, 7, 944, 11, 27506, 62, 7890, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 36123, 1464, 3031, 351, 257, 18941, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27506, 62, 7890, 357, 2536, 2599, 2496, 4067, 329, 262, 18941, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 22866, 13, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 33770, 62, 445, 1060, 8973, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 14692, 445, 1060, 62, 16793, 8973, 796, 27506, 62, 7890, 628, 198, 4871, 1812, 12853, 6535, 28820, 18497, 7, 82, 11603, 18497, 13, 16818, 278, 35608, 818, 11, 2638, 13, 15388, 13, 6535, 28820, 18497, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 36123, 12, 32538, 2638, 67, 9597, 13, 628, 220, 220, 220, 770, 1398, 9179, 355, 257, 2779, 329, 477, 5387, 2638, 67, 4382, 11, 340, 338, 2597, 318, 198, 220, 220, 220, 284, 2834, 287, 14122, 278, 5022, 12, 259, 290, 2792, 5268, 4122, 4732, 284, 2638, 67, 2346, 11, 198, 220, 220, 220, 523, 326, 340, 338, 1695, 287, 262, 2638, 67, 2581, 21360, 832, 2581, 338, 198, 220, 220, 220, 764, 15388, 13, 22866, 11688, 13, 628, 220, 220, 220, 22301, 10820, 326, 428, 318, 416, 4277, 257, 23633, 14, 4061, 4382, 13, 628, 220, 220, 220, 632, 338, 1912, 319, 25, 198, 220, 220, 220, 3740, 1378, 4529, 13, 29412, 13, 2398, 14, 79, 9346, 4529, 14, 29412, 12, 4868, 14, 6999, 12, 16192, 14, 5237, 1558, 1983, 13, 6494, 198, 220, 220, 220, 37227, 628, 198, 4871, 309, 13155, 40, 79, 43481, 12915, 4122, 7, 12915, 4122, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 886, 13033, 326, 4691, 23633, 14, 4061, 7007, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1398, 37354, 1978, 14626, 67, 4382, 2438, 11, 2638, 2581, 21360, 290, 198, 220, 220, 220, 220, 220, 220, 220, 36123, 4732, 284, 1296, 257, 2779, 1398, 329, 477, 886, 13033, 326, 4691, 198, 220, 220, 220, 220, 220, 220, 220, 23633, 14, 4061, 4979, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 21360, 62, 4871, 11, 2493, 11, 20966, 11639, 3256, 1994, 7753, 28, 14202, 11, 5051, 7753, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 649, 309, 13155, 40, 79, 43481, 12915, 4122, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21360, 62, 4871, 357, 26801, 2599, 257, 2581, 21360, 1398, 326, 481, 307, 9041, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 2722, 416, 5387, 2638, 67, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 357, 600, 2599, 48265, 2493, 326, 2638, 67, 4382, 481, 6004, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 357, 2536, 2599, 20966, 2209, 326, 2638, 67, 4382, 481, 6004, 319, 11, 416, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6004, 319, 477, 9405, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5051, 7753, 318, 407, 6045, 290, 1994, 7753, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 796, 366, 5450, 1378, 90, 92, 29164, 92, 1911, 18982, 7, 541, 11, 2493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 796, 366, 4023, 1378, 90, 92, 29164, 92, 1911, 18982, 7, 541, 11, 2493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 437, 4122, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 4868, 268, 62, 541, 20520, 796, 20966, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 4868, 268, 62, 634, 20520, 796, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 22583, 7753, 20520, 796, 5051, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 2539, 7753, 20520, 796, 1994, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30281, 62, 4871, 796, 21360, 62, 4871, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 40406, 62, 4023, 67, 62, 16663, 7, 541, 11, 2493, 8, 628, 220, 220, 220, 825, 11593, 40406, 62, 4023, 67, 62, 16663, 7, 944, 11, 20966, 11, 2493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 5387, 14626, 67, 4382, 326, 428, 886, 13033, 16507, 319, 284, 4691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 796, 1812, 12853, 6535, 28820, 18497, 7, 944, 13557, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 541, 11, 2493, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30281, 62, 4871, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2638, 67, 62, 16663, 62, 3672, 796, 366, 51, 13155, 40, 79, 43481, 67, 16818, 12, 90, 92, 1911, 18982, 7, 944, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 62, 16663, 796, 4704, 278, 13, 16818, 7, 16793, 28, 944, 13557, 4023, 67, 13, 2655, 303, 62, 754, 332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 4023, 67, 62, 16663, 62, 3672, 8, 628, 198, 4871, 33501, 39105, 9012, 913, 6535, 28820, 18497, 7, 9012, 12853, 6535, 28820, 18497, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 36123, 12, 32538, 2638, 67, 9597, 326, 6004, 319, 198, 220, 220, 220, 220, 220, 220, 33501, 17802, 13, 628, 220, 220, 220, 770, 1398, 10639, 896, 422, 1812, 12853, 6535, 28820, 18497, 290, 285, 1659, 444, 340, 338, 9172, 198, 220, 220, 220, 523, 326, 340, 338, 1498, 284, 6004, 319, 33501, 17802, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2209, 62, 17989, 25, 900, 691, 284, 20957, 4277, 1988, 286, 262, 7885, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 2638, 13, 15388, 13, 6535, 28820, 18497, 1398, 11, 1276, 407, 307, 9518, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2209, 62, 17989, 796, 17802, 13, 8579, 62, 4944, 10426, 628, 220, 220, 220, 825, 4382, 62, 21653, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37961, 4277, 4382, 17802, 11007, 9172, 284, 6068, 340, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7351, 319, 33501, 17802, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4222, 2198, 262, 10314, 286, 2638, 13, 15388, 13, 6535, 28820, 18497, 1398, 329, 517, 198, 220, 220, 220, 220, 220, 220, 220, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37037, 18497, 13, 4825, 3705, 18497, 13, 15388, 62, 21653, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15388, 62, 3672, 796, 2116, 13, 22866, 13, 7890, 17816, 44971, 62, 6978, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15388, 62, 634, 796, 657, 628, 220, 220, 220, 825, 5456, 62, 21975, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37961, 4277, 5456, 62, 21975, 2446, 284, 6068, 340, 284, 7351, 319, 33501, 198, 220, 220, 220, 220, 220, 220, 220, 17802, 13, 9170, 340, 18931, 481, 2270, 355, 33501, 17802, 468, 645, 9495, 286, 198, 220, 220, 220, 220, 220, 220, 220, 262, 5456, 338, 6101, 2209, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4222, 2198, 262, 10314, 286, 2638, 13, 15388, 13, 6535, 28820, 18497, 1398, 329, 517, 198, 220, 220, 220, 220, 220, 220, 220, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13, 22866, 13, 7890, 17816, 44971, 62, 6978, 6, 4357, 657, 8, 628, 198, 2, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 20666, 1120, 20167, 14, 33990, 12, 929, 12, 272, 12, 4023, 12, 15388, 12, 5562, 12, 4868, 641, 12, 2502, 12, 64, 12, 7753, 12, 44971, 198, 2, 3740, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 13, 18, 14, 32016, 14, 82, 11603, 18497, 13, 6494, 198, 4871, 33501, 39105, 40717, 12915, 4122, 7, 12915, 4122, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 886, 13033, 326, 4691, 7007, 319, 262, 33501, 17802, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1398, 37354, 1978, 14626, 67, 4382, 2438, 11, 2638, 2581, 21360, 290, 198, 220, 220, 220, 220, 220, 220, 220, 36123, 4732, 284, 1296, 257, 2779, 1398, 329, 477, 886, 13033, 326, 4691, 198, 220, 220, 220, 220, 220, 220, 220, 33501, 17802, 4979, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 21360, 62, 4871, 11, 3108, 11, 1994, 7753, 28, 14202, 11, 5051, 7753, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 649, 33501, 39105, 40717, 12915, 4122, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21360, 62, 4871, 357, 26801, 2599, 257, 2581, 21360, 1398, 326, 481, 307, 9041, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 2722, 416, 5387, 2638, 67, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 2536, 2599, 33501, 17802, 3108, 11, 326, 5387, 2638, 67, 4382, 481, 6004, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5051, 7753, 318, 407, 6045, 290, 1994, 7753, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 796, 366, 5450, 1378, 90, 92, 1911, 18982, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 62, 312, 796, 366, 4023, 1378, 90, 92, 1911, 18982, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 437, 4122, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 44971, 62, 6978, 20520, 796, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 22583, 7753, 20520, 796, 5051, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22866, 13, 7890, 17816, 2539, 7753, 20520, 796, 1994, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30281, 62, 4871, 796, 21360, 62, 4871, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 27773, 929, 62, 301, 1000, 62, 44971, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 40406, 62, 4023, 67, 62, 16663, 7, 6978, 8, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 825, 11593, 40406, 62, 4023, 67, 62, 16663, 7, 944, 11, 17802, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 5387, 14626, 67, 4382, 326, 428, 886, 13033, 16507, 319, 284, 4691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 2536, 2599, 33501, 17802, 3108, 11, 326, 5387, 2638, 67, 4382, 481, 6004, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 796, 33501, 39105, 9012, 913, 6535, 28820, 18497, 7, 944, 13557, 22866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17802, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30281, 62, 4871, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2638, 67, 62, 16663, 62, 3672, 796, 366, 47000, 39105, 43481, 67, 16818, 12, 90, 92, 1911, 18982, 7, 944, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4023, 67, 62, 16663, 796, 4704, 278, 13, 16818, 7, 16793, 28, 944, 13557, 4023, 67, 13, 2655, 303, 62, 754, 332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 4023, 67, 62, 16663, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 42822, 44632, 8383, 7767, 355, 705, 34952, 1118, 14, 77, 519, 3233, 3256, 523, 356, 761, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 262, 17802, 1695, 284, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 4666, 7, 44971, 62, 6978, 11, 657, 78, 29331, 8, 198 ]
2.498764
4,856
import os import argparse from datetime import datetime import time import torch import torch.nn.functional as F import torch.multiprocessing as mp import numpy as np import pandas as pd from tqdm import tqdm import matplotlib import matplotlib.pyplot as plt from tensorboardX import SummaryWriter import data import track import model import utils matplotlib.use("Qt5Agg") if __name__ == "__main__": try: main() except KeyboardInterrupt: print("Process interrupted by user, emptying cache...") torch.cuda.empty_cache()
[ 11748, 28686, 198, 11748, 1822, 29572, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 640, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 13, 16680, 541, 305, 919, 278, 355, 29034, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 11192, 273, 3526, 55, 1330, 21293, 34379, 198, 198, 11748, 1366, 198, 11748, 2610, 198, 11748, 2746, 198, 11748, 3384, 4487, 198, 198, 6759, 29487, 8019, 13, 1904, 7203, 48, 83, 20, 46384, 4943, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18709, 19072, 416, 2836, 11, 23909, 1112, 12940, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 66, 15339, 13, 28920, 62, 23870, 3419, 198 ]
2.916667
192
import math #def find_par(self): if __name__ == "__main__": main()
[ 11748, 10688, 198, 197, 197, 198, 197, 2, 4299, 1064, 62, 1845, 7, 944, 2599, 198, 197, 197, 198, 197, 197, 198, 197, 197, 198, 197, 198, 197, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 12417, 3419, 198, 197, 197, 628, 198 ]
1.875
48